
Transaction Processing Facility

Database Reference
Version 4 Release 1

SH31-0143-14

���

Transaction Processing Facility

Database Reference
Version 4 Release 1

SH31-0143-14

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page xiii.

Fifteenth Edition (June 2002)

This is a major revision of, and obsoletes, SH31-0143-13 and all associated technical newsletters.

This edition applies to Version 4 Release 1 Modification Level 0 of IBM Transaction Processing Facility, program
number 5748-T14, and to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. Address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . ix

Tables . xi

Notices . xiii
Trademarks . xiii

About This Book . xv
Before You Begin . xv
Who Should Read This Book . xv
How This Book is Organized . xv
Conventions Used in the TPF Library xv
Related Information . xvi

IBM Transaction Processing Facility (TPF) 4.1 Books. xvi
Miscellaneous IBM Books xvii
Online Information . xvii

How to Send Your Comments xvii

Part 1. Database Organization . 1

File Address Formats . 3
General Files . 3
General Data Sets . 3

Online Processing . 3
Offline Processing . 3

Online Database Addresses . 3
FARF Format . 5

Mapping FARF Addresses . 5
General File Addresses . 11
General Data Set Addresses . 11
Extended MCHR File Address 11
Hardware File Address . 11

General Data Sets . 13
Premount of General Data Sets. 14
General Data Set Commands 14
Record Processing of General Data Sets 14

Record Format . 15
Processing Macros . 15

General Files . 17
Programming Notes for General Files 18

Processing a Relative Record Number Request 19
Processing an Extended MCHR Request 19

File Pool Support . 21
Functional Description . 21
File Address Formats . 22
Pool Characteristics . 22
Maintenance Functions . 23

Pool Generation and Reallocation 23
Pool Directory Update (PDU). 27
Recoup Support . 27

© Copyright IBM Corp. 1994, 2002 iii

||

File Pool Count Reconciliation 27
Online Directory Capture and Restore 27

Management Functions . 27
Get File Storage (GFS) . 27
Release File Storage (RFS) 29
Initialize File Pools . 29
Pool Function Switches . 30
Pool Management Commands 30

Part 2. Caching Support . 33

Virtual File Access (VFA) . 35
VFA Candidate Records . 35
VFA Resource Definition . 37
VFA Record Selection . 38
Maximum VFA Trip Value . 39
Specifying VFA Buffer Ratios and Percentages 39
Restart Procedures . 40
Messages and Responses . 40
Hardware Requirements . 40

Record Caching . 41
3880 Record Cache RPQ . 41

Hardware . 41
Modes of Operation . 41
Initial Program Load . 42
DASD Processing and Error Recovery 42
Restrictions . 43
Command Description . 43

3990 Record Cache RPQ . 43
Hardware . 44
Modes of Operation . 44
TPF Record Cache Subsystem (RCS) Support 45
Command Description . 48
Processing Differences between the 3990 Model 3 and the IBM Enterprise

Storage Server . 49

Part 3. Utilities. 53

Capture and Restore . 55
Capture and Restore Processing Overview 55

Capture Processing . 56
Capture of Keypoints. 62
Restore Processing . 62

Capture Considerations. 64
Record Logging . 65
Keypoint Capture . 65

Restore Considerations and Procedures 65
Restore Procedures . 65

Timing . 67
Assumptions and Conditions Relative to Timing Example 68
Capture Timing Estimates . 69
Restore Timing Estimates . 71

Capture and Restore Keypoint Record 72
Keypoint Fields . 72

iv TPF V4R1 Database Reference

Keypoint Tables . 75
Keypoint DSECTs . 87

Database Reorganization . 89
Prerequisites. 89
Considerations Before Using DBR 89
Database Reorganization Control Records. 91

Master Keypoint . 91
Working Keypoint . 91
Override Keypoint . 91
Database Reorganization Exception Records 91

Database Reorganization Processing Description 91
Initialization . 92
Output Phase . 95
Input Phase . 97

Database Reorganization Sample Problem 98

Recoup . 103
Fixed Records. 103
Pool Records . 103

Controlling the Use of Pool Addresses 103
Losing Pool Addresses Because of Software Errors or a System Restart 103
Recouping Lost Pool Addresses 104

Recoup Functions by Phase 104
Recoup Pre-Phase 1 Functions 104
Recoup Phase 1 Functions 106
Phase 2 Functions . 107
Recoup Phase 3 Functions 107
Recoup Phase 4 Functions 108
Recoup Phase 5–Phase 7 Functions 109

Recoup Procedures by Phase 109
Pre-Phase 1 . 109
Phase 1 Procedures . 110
Phase 2 Procedures . 111
Phase 3 Procedures . 113
Phase 4 Procedures . 114
Phase 5 Procedures . 114
Phase 6 and Phase 7 Procedures 115

Recoup Procedure for a Single Database. 115
Recoup Records and Structures 115

Recoup Keypoint Record (BK0RP) 116
Recoup Data Store . 116
IBM Recoup Scheduling Control Table (IRSCT) 116
IBM Recoup Active Root Table (IRART) 116

User Exits . 116

Real-Time Disk Formatter . 117
Method of Operation . 117
Input . 118

Data Control Cards . 118
Formatter Control Cards . 119

Output . 120

FACE Driver and Offline Interface (DFAD) 121
File Print . 121

File Print Errors . 122

Contents v

Offline Interface . 122
Offline Interface Errors . 122

TPF Transaction Services . 125
Commit Scope Processing . 125

File-Type Requests . 126
MQSeries-Type Requests 126

Recovery Log Support. 126
Writing to the Recovery Log 127
Reading from the Recovery Log 127
Restarting from the Recovery Log 127
Loosely Coupled Considerations and Log Takeover 127

TPF Collection Support. 129
TPFCS Database Layout. 129

Data Stores . 130
Collections . 130
Data Definitions . 137
Property Service . 138
Collection Lifetimes . 138
Data Store Application Dictionary 139

Cursors . 140
Using Iterative Operations over Collections 141
Using Key Paths . 141

Database Integrity . 142
Database Access . 142
Concurrency Controls . 142
Dirty-Reader Protection . 143
TPF Transaction Services 143
Shadowing . 144
Validation . 145
Reconstruction . 145

Database Archives . 145
External Device Support . 145
Archiving Support . 145
Capture and Restore Support 145

Maintaining TPFCS . 147
ZOODB Commands . 147
ZBROW Commands . 148

TPFCS Recoup . 149
General Approach . 149
Recoup Indexes . 149
Embedded 4-Byte File Address Information 151
Embedded 8-Byte File Address Information 151
Embedded Persistent Identifier (PID) Information 152
Sample TPFCS Recoup Applications 152

TPF Collection Support Database from a TPF System Perspective 157
Object-Oriented Concepts . 157
Collection Parts Stored in the TPF Database 160
Source Code Definition of Objects 161
File Representation of Objects. 164
OBJECT Class . 166

Object Header. 166
Use of Pool Records . 167

TPFCS Primary and Shadow Records 167

vi TPF V4R1 Database Reference

TPFCS Record Header . 167
TPFCS Record Trailer . 169

Packaging in DATXPAGE Envelopes 169
Collection Control Record 170

USERdata Object . 173
Collection Residency . 173
Compact Structures (StructureMem Class) 173

MemFLAT . 174
MemHash . 175
MemKey . 177
MemList . 179

Extended Structures (StructureDasd Class) 181
Record Types . 181
Relative Record Numbers 182
Locating Records in a StructureDasd Object 183
DASDINDEX Structures . 188
DASDFLAT Structures. 197
DASDHASH Structures . 198
DASDLIST Structures . 202

How Objects Are Stored on DASD 207
How Some Objects Are Condensed to Save Space 207
How an Object Can Overflow into Additional Records 210
xternalObject . 213
Owner ID . 214
Determining Where Collections Are Stored on DASD 214

Locating the Collection Control Record 214
Listing Collection Parts . 214
Displaying Collection Part Contents 215
Determining Collection Residency 217
Locating the Structure Object 218
Locating the Data . 218

Determining More Information about Pool File Records Used by TPFCS . . . 218
Scope of Current Validation and Reconstruction Support 219

Part 4. Coupling Facility Support . 221

Coupling Facility Support . 223
Data Sharing Concepts and Terminology 223
Connection Services . 224
Coupling Facility Commands 225

Using the Coupling Facility Commands 225
Coupling Facility Structure Concepts 226

Defining Structure Attributes for Coupling Facility Structures 226
Identifying Connection States 227
Understanding Structure Persistence 227

Allocating a Coupling Facility Structure 227
TPF System Considerations 227
Coupling Facility Considerations 228
Coupling Facility Resource Allocation Rules 228
Successfully Completing Coupling Facility Structure Allocation 229

Connecting to a Coupling Facility Structure 230
Overview of Connect Processing 230
Specifying Structure Attributes for Coupling Facility Structures 231
Determining Whether a Connection Is Successful. 232
Receiving Information in the CFCONC Answer Area 233
Handling Failed Attempts to Connect to a Coupling Facility Structure . . . 233

Contents vii

Disconnecting from a Coupling Facility Structure 234
Disconnection Parameters for the Coupling Facility Structure 234
Persistence Considerations 234
Handling Resources for a Disconnection 234
Successfully Completing a Disconnection. 235

Coupling Facility List Structure Concepts 235
Coupling Facility List Structure. 235
How Data Is Maintained in a Coupling Facility List Structure 237
Specifying Connection Parameters for the Coupling Facility List Structure 237
List Transition Exit . 239

Checking or Modifying a List Notification Vector 239
List Notification Vector. 239

Coupling Facility Cache Structure Concepts 241
Terminology . 241
Benefits of Using Coupling Facility Cache Structures 242
Elements of a Cache System 242

Elements of a Coupling Facility Cache Structure 244
Accessing the Data . 245

Maintaining Data Consistency in a Cache System 245
Registering Interest in a Piece of Shared Data and Validating Local Copies 245
Deregistering Interest in a Shared Piece of Data and Invalidating Local

Copies . 246
Coupling Facility Tables . 247

Coupling Facility Control Table. 247
Coupling Facility Status Table 247
Coupling Facility Trace Table 248
Message Subchannel Table 248

Coupling Facility Blocks . 248
Coupling Facility Connection Block 248
Coupling Facility Structure Block 248
Coupling Facility Request Block 248
Coupling Facility Vector Block 248

Storage Dump Format. 248
User-Modified Equates . 249
Coupling Facility Locking Functions 249

Overview . 249
Coupling Facility Lock Format 249

Defining Exit Routines . 251
Conditions at Entry . 251
System Conditions on Entry. 252
Programming Considerations at Entry 252
Conditions on Return . 252
Programming Considerations on Return 253

Coupling Facility Record Lock Support 255
Concepts for Coupling Facility Record Lock Support. 255

Coupling Facility List Structures for Coupling Facility Locking 255
Coupling Facility Record Lock SupportCommands 256

Using the Coupling Facility Record Lock Support Commands 256
Coupling Facility Locking Table 257
User Modification Considerations 258

Determining the Coupling Facility List Structure Size for Locking 258
Changing the Lock Name 258
Changing the Name of Your Complex 258

Index . 259

viii TPF V4R1 Database Reference

Figures

1. File Address Formats. 4
2. FARF Address Generation . 7
3. FARF3 Fixed Address Decode Procedure . 9
4. FARF4, FARF5, and FARF6 Fixed Address Decode Procedure 10
5. Extended MCHR File Address Formats. 12
6. Capture and Restore Load Balancing Using DASDCU and DASDCH 58
7. Capture and Restore Load Balancing Using the TAPECU and TAPECH Parameters 60
8. General Layout of a TPFCS Database . 129
9. TPFCS Abstract Class Hierarchy . 132

10. Data on an External Device . 147
11. Class Inheritance Tree Example . 158
12. Object Class Inheritance . 159
13. Multiple Inheritance Example . 160
14. Object Aggregation . 161
15. Defining TPF Collection Support Source Code Instance Attributes 162
16. ClassC Inheritance Scheme . 164
17. A ClassC Object . 164
18. Another Way to Depict the Same ClassC Object 165
19. Separate Objects in the Same Record . 165
20. A ClassX Object . 165
21. A Limousine Object . 166
22. Data Area Attribute of a ClassX Object in the Vehicle Database 166
23. DSECT Showing the 4-Byte Format Record Header 167
24. DSECT Showing the 8-Byte Format Record Header 168
25. TPF Collection Support Primary Record Header Using 4-Byte File Addresses 168
26. TPFCS Shadow Record Header . 168
27. Primary Record Header with No Shadow . 169
28. Contents of the TPFCS Record Trailer . 169
29. DATXPAGE Envelope Format. 170
30. Example of a Collection Control Record . 171
31. Conceptual View of a Control Record for a Keyed Log Collection 172
32. USERdata Object . 173
33. Example of the Data Area of a MemFLAT Object 175
34. Example of the Data Area of a MemHash Object 176
35. Data Area of MemKey in Memory . 178
36. Example of a MemList Data Area in Memory . 180
37. Abstract View of How Data Is Stored for Extended-Resident Collections 183
38. How Directory Records Are Used to Locate RRNs 18–26 184
39. How TPF Collection Support Adds Records to a StructureDasd Chain 186
40. How Records Are Linked on Both Allocated and Released Chains 188
41. DASDINDEXPool Object and Its Associated Records 190
42. Example of a Key (Index) Record Containing Five Entries 194
43. Example of a Data Record Containing Four Active Entries 196
44. Abstract Model of a DASDHASD Structure Collection 199
45. Example of a VDATPAGE Data Record Containing Four Active Entries 201
46. How Elements of a DASDLIST Structure Collection Are Written in the Database 203
47. How Elements of a DASDLIST Structure Collection Are Ordered 203
48. How the Order of a DASDLIST Collection Is Maintained 204
49. Example of an LDATPAGE Data Record Containing Four Active Entries 206
50. How an Object Containing a Data Area Appears in Memory 208
51. How an Object Containing a Data Area with Locators Appears after Space Saving 209
52. How OBJECTA Is Spread Across Three Records (with Shadowing) 211
53. Control Record for a Nonshadowed Array with Overflow 212

© Copyright IBM Corp. 1994, 2002 ix

54. How TPFCS Handles the Control Record Contents 213
55. Collection Attributes Display Format . 216
56. Actual Collection Attributes Display. 217
57. Multiple Systems Sharing Data through a CF . 224
58. Allocating a CF Structure . 230
59. Connecting to an Allocated CF Structure . 230
60. A Serialized List Structure . 236
61. A List Containing Entries with Various Numbers of Data Elements 237
62. Elements of a Cache System for Processor Shared Cache 244
63. Elements of a Cache System for Processor Unique Cache 244
64. Registered Interest in Shared Pieces of Data . 246
65. Invalidating a Local Cache Copy of a Shared Piece of Data 247
66. Format of the CF Lock . 249
67. Format of the CF Lock When a CF Is in Available State 250
68. Format of the CF Lock When a CF Is in a Nonavailable State 250
69. Format of the CF Lock When the Lock Holder Field Is Set to Zero 251
70. Format of the CF Lock When the Lock Holder Field Is Set to the Processor Ordinal Number for

Processor C . 251

x TPF V4R1 Database Reference

Tables

1. SYCON Values for Pool Support . 24
2. Record Code Check Values . 24
3. Record Caching Attributes . 45
4. Processing Differences between the 3990 Model 3 and ESS. 50
5. Keypoint Fields . 72
6. Tape Device Control Table . 75
7. Tape Definition Table (LXTD) . 76
8. In-Progress Table (IPT) . 77
9. Device Type Control Table (CDT) . 78

10. Keypoint Equates . 81
11. Disk Device Control Table (DDCT) . 87
12. Database Reorganization Operational Requirements. 89
13. Record Allocation on TPF-Supported DASD . 117
14. Collection Support Summary - Part 1 . 132
15. Collection Support Summary - Part 2 . 133
16. Collection Support Summary - Part 3 . 133
17. Managing TPFCS Recoup Indexes. 150
18. Return Codes for a Successful Connection to a CF Structure 233
19. Return Codes for an Unsuccessful Connection to a CF Structure 233

© Copyright IBM Corp. 1994, 2002 xi

xii TPF V4R1 Database Reference

Notices

References in this book to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service in this book is not intended to
state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
IBM’s intellectual property rights may be used instead of the IBM product, program,
or service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department 830A
Mail Drop P131
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Any pointers in this book to non-IBM Web sites are provided for convenience only
and do not in any way serve as an endorsement. IBM accepts no responsibility for
the content or use of non-IBM Web sites specifically mentioned in this book or
accessed through an IBM Web site that is mentioned in this book.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

3090
ECKD
ES/3090
ES/9000
ESCON
IBM
MQSeries
MVS/ESA
OS/390
Processor Resource/Systems Manager
S/390.

© Copyright IBM Corp. 1994, 2002 xiii

Other company, product, and service names may be trademarks or service marks
of others.

xiv TPF V4R1 Database Reference

About This Book

This book contains information about the Transaction Processing Facility (TPF)
system and the planning, programming, and operations required to access data in
an applications and operating environment.

In this book, abbreviations are often used instead of spelled-out terms. Every term
is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, Systems Network Architecture (SNA). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in the TPF
Library Guide.

Before You Begin
You should have a basic understanding of the TPF system, as well as the direct
access storage devices (DASD) and access methods supported by the TPF system.
See TPF Concepts and Structures for an overview of the TPF system. See TPF
Migration Guide: Program Update Tapes for information about supported hardware
and software for the TPF system.

You should also be familiar with MVS because these data processing techniques
are used in the TPF system generation and offline processing.

Who Should Read This Book
This book is intended for system programmers responsible for the planning and
implementing of applications running under the TPF system.

How This Book is Organized
This book is organized into the following major parts:
v Part 1, “Database Organization” on page 1
v Part 2, “Caching Support” on page 33
v Part 3, “Utilities” on page 53
v Part 4, “Coupling Facility Support” on page 221.

Conventions Used in the TPF Library
The TPF library uses the following conventions:

Conventions Examples of Usage

italic Used for important words and phrases. For example:

A database is a collection of data.

Used to represent variable information. For example:

Enter ZFRST STATUS MODULE mod, where mod is the module for which you want
status.

bold Used to represent text that you type. For example:

Enter ZNALS HELP to obtain help information for the ZNALS command.

Used to represent variable information in C language. For example:

level

© Copyright IBM Corp. 1994, 2002 xv

Conventions Examples of Usage

monospaced Used for messages and information that displays on a screen. For example:

PROCESSING COMPLETED

Used for C language functions. For example:

maskc

Used for examples. For example:

maskc(MASKC_ENABLE, MASKC_IO);

bold italic Used for emphasis. For example:

You must type this command exactly as shown.

Bold underscore Used to indicate the default in a list of options. For example:

Keyword=OPTION1 | DEFAULT

Vertical bar | Used to separate options in a list. (Also referred to as the OR symbol.) For example:

Keyword=Option1 | Option2

Note: Sometimes the vertical bar is used as a pipe (which allows you to pass the output of
one process as input to another process). The library information will clearly explain
whenever the vertical bar is used for this reason.

CAPital LETters Used to indicate valid abbreviations for keywords. For example:

KEYWord=option

Scale Used to indicate the column location of input. The scale begins at column position 1. The
plus sign (+) represents increments of 5 and the numerals represent increments of 10 on the
scale. The first plus sign (+) represents column position 5; numeral 1 shows column position
10; numeral 2 shows column position 20 and so on. The following example shows the
required text and column position for the image clear card.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

LOADER IMAGE CLEAR

Notes:

1. The word LOADER must begin in column 1.

2. The word IMAGE must begin in column 10.

3. The word CLEAR must begin in column 16.

Related Information
A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM Transaction Processing Facility (TPF) 4.1 Books
v TPF Application Programming, SH31-0132

v TPF C/C++ Language Support User’s Guide, SH31-0121

v TPF Concepts and Structures, GH31-0139

v TPF General Macros, SH31-0152

v TPF Main Supervisor Reference, SH31-0159

v TPF Migration Guide: Program Update Tapes, GH31-0187

v TPF Operations, SH31-0162

v TPF System Generation, SH31-0171

v TPF System Installation Support Reference, SH31-0149

v TPF System Macros, SH31-0151

xvi TPF V4R1 Database Reference

v TPF Transmission Control Protocol/Internet Protocol, SH31-0120.

Miscellaneous IBM Books
v ES/9000, ES/3090 Input/Output Configuration Program User’s Guide and ESCON

Channel-to-Channel Reference, GC38-0097

v MVS/ESA JCL Reference (order the correct version and release for your
installation)

v OS/390 MVS Sysplex Services Guide, GC28-1771

v S/390 Processor Resource/Systems Manager Planning Guide, GA22-7236

v 3880 Storage Control Record Cache RPQ Description, GA32-0087

v 3880 Storage Control Record Cache RPQ Introduction, GA32-0086

v 3990 Storage Control Introduction, GA32-0098

v 3990 Storage Control Operations and Recovery Guide, GA32-0253

v 3990 Storage Control Planning, Installation, and Storage Administration,
GA32-0100

v 3990 Transaction Processing Facility Support RPQs, GA32-0134.

Online Information
v Messages (Online)

v Messages (System Error and Offline).

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

v If you prefer to send your comments electronically, do either of the following:

– Go to http://www.ibm.com/tpf/pubs/tpfpubs.htm.

There you will find a link to a feedback page where you can enter and submit
comments.

– Send your comments by e-mail to tpfid@us.ibm.com

v If you prefer to send your comments by mail, address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

v If you prefer to send your comments by FAX, use this number:
– United States and Canada: 1 + 845 + 432 + 9788
– Other countries: (international code) + 845 + 432 +9788

About This Book xvii

|

|

|

http://www.ibm.com/tpf/pubs/tpfpubs.htm

xviii TPF V4R1 Database Reference

Part 1. Database Organization

This part contains information about the organization of the database, including:
v File addressing
v General data sets and general files
v Pool support.

© Copyright IBM Corp. 1994, 2002 1

2 TPF V4R1 Database Reference

File Address Formats

The TPF system supports 3 basic logical file structures. They are:
v Online files
v General files
v General data sets.

Online files provide a common data repository for related online applications. These
applications can provide independent function, but all online applications share the
same data repository or online database.

General files and general data sets are usually related to some offline processing.
Data is either produced online to be processed offline by MVS programs or data is
produced offline for online processing. Both structures provide a data interface
between the offline and online system components.

General Files
TPF general files are sequentially organized sets of data that are not MVS
compatible. See “General Files” on page 17 and TPF System Generation for more
information about general files.

General Data Sets
TPF general data sets are directly related to MVS data sets in the same module
(MVS volume). These records can be processed online and offline.

Online Processing
The find and file type macros are used for online processing of TPF fixed and pool
records, while the file data chain transfer (FDCTC) macro allows processing of
records not restricted to TPF file record sizes.

Offline Processing
Offline, standard MVS facilities such as the GET macro are used to process the
records of a TPF general data set. See “General Data Sets” on page 13 and TPF
System Generation for more information about general data sets.

Online Database Addresses
The file address that the FACE program or the get file storage macros generates for
use with find or file type macro requests exists in one of the following formats:
v FARF3 (file address reference format 3)
v FARF4 (file address reference format 4)
v FARF5 (file address reference format 5)
v FARF6 (file address reference format 6).

Figure 1 on page 4 describes these formats.

Note: In this chapter, the term FACE is used as a generic name for the FACE,
FACS, FACZC, or FAC8C program.

© Copyright IBM Corp. 1994, 2002 3

Bit

00

01

02
03
04
05

06
07

08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

FARF4

0

0 = Small
1 = Large

FARF5 FARF6

Universal
Format
Type

Universal
Format
Type

Space
Reserved
for IBM
Use Only

Variable-
Size
Format
Type
Indicator

Variable-
Size
Format
Type
Indicator Universal

Format
Type

Variable-
Size
Ordinal
Number

Variable-
Size
Ordinal
Number

Variable-
Size
Format
Type
Indicator
(8-24 bits
in size)

Variable-
Size
Ordinal
Number
(16-32 bits
in size)

FARF3
Fixed

0=fixed

Band
Number

Ordinal
Number

0 = Simplex
1 = Duplex

1

0 = Small
1 = Large

FARF3
Pool

0=LT, 1=ST

Ordinal
Number

0 = Simplex
1 = Duplex

1

0 = Small
1 = Large

1

General
File RRN

General
File
Symbolic
Module
Number

Relative
Record
Number

0

1

0 = Small
1 = Large

1=pool

28

29

30

31

63

Figure 1. File Address Formats

4 TPF V4R1 Database Reference

FARF Format
With FARF addressing, a database ordinal number is recalculated each time the
find and file type macros find the format that represents a record type and ordinal
number; the configuration dependencies are bound to channel programs that are
based on their current assignments and held in the FACE table (FCTB). This means
that imbedded addresses that use FARF format are less sensitive to file
reorganizations because of the late binding of the referenced imbedded address to
the actual physical address of the record.

Nevertheless, data must be moved to correspond to any new allocations. This is
done by a TPF capture of online data using the directories and FCTB of the original
allocation. This is then followed by a TPF restore using the directories and FCTB of
the new allocation.

The first of the FARF formats is file address reference format 3 (FARF3) and is
shown in Figure 1 on page 4. Based on the sizes of the band and ordinal number
fields in a FARF3 fixed address, there are 212 bands and 216 ordinals. This yields
an addressing range of as many as 228 (268 435 456) fixed records. “Mapping
FARF Addresses” explains the methods and reasons for assigning band numbers to
fixed records.

There is no band field in a FARF3 pool address. Each pool record that is defined in
the TPF system is related to a record type based on pool type, size, and
duplication. The bits in the FARF3 pool address indicate which type the address
belongs to. Each pool record type can have as many as 226 records because 26
bits is the length of the ordinal number field.

The FARF4, FARF5, and FARF6 formats are also shown in Figure 1 on page 4.
FARF4, FARF5, and FARF6 addresses make no distinction between fixed and pool
addresses. With 2 bits of a FARF4 address delegated to control information, this
provides an addressing space of 230. FARF5 has no control bits reserved in the
address, so 232 (4 294 967 296) addresses can be represented. FARF6 can
represent 256 addresses (72 057 594 037 927 936). All control information for
FARF5 and FARF6 addresses is found in the FACE table. The dividing line between
the format type indicator (FTI) field and the ordinal field in FARF4, FARF5, and
FARF6 addresses is not in a fixed position. For each universal format type (UFT)
value, a different FTI size can be related.

Note: The UFT is 6 bits for FARF4 and FARF5 (64 possible UFT values). For
FARF6, the UFT is 16 bits (65 536 possible UFT values).

Once the FTI size is known, the FTI value, the ordinal size, and the ordinal value
can be determined. “Mapping FARF Addresses” describes how these values relate
to specific ordinal numbers of a record type.

Mapping FARF Addresses
During FACE table generation, the details of the specific address formats to use for
each fixed and pool record type are assigned. For FARF3 fixed records, one band
number needs to be assigned for each 64K (65 536) ordinal numbers. Because
there is an upper limit on bands, there is an upper limit to the number of fixed
record types that FARF3 can map. Consider an installation that insists on 4096
fixed record types; in this case each record type is restricted to 65 536 ordinal

File Address Formats 5

numbers. At the other extreme, consider an installation that insist on a single fixed
record type; here, 4096 blocks of 65 536 ordinal numbers can be allocated to 1
record type.

In FARF4, FARF5, and FARF6, each UFT/FTI combination has a specific address
capacity based on the size of the FTI associated with the UFT. Depending on the
number of records needed for a record type, you must assign enough UFT/FTI
combinations to map this number of records.

Assigning bands and UFT/FTIs to record types produces a mapping of each ordinal
number in a record type to a specific FARF address.

FARF3 pools were left out of the preceding discussion because there is no FARF
descriptor related to each pool ordinal (where a descriptor is a band or UFT/FTI).
The control bits in the pool address are the only mapping from a record type to a
pool address. By inspecting a FARF3 pool address the specific ordinal and the pool
type it belongs to are revealed. The relationship between record types and their
descriptors needs to be known to determine this level of information from any other
FARF address. The disadvantage of FARF3 is the limit on addressing capacity
because of the presence of control bits. This disadvantage decreases with FARF4
and does not exist with FARF5.

Regardless of the address format, generating a FARF address for a fixed or pool
record is done identically. The record type of the record creates an index into the
FACE table.

Note: Pool records have record type names and record type equate values that are
assigned to them by the FACE table generator.

A record type can be in one of two forms. It can be an 8-character string if you use
the FACS interface or it can be an equate value if you use the FACE interface. If it
is a character string, the name is hashed and an index into a hash table is created.
The hash table entry points to a name table entry. If the record type name in the
name table does not match the record type name that was specified, a linear
search is performed until the correct name table entry is found. The name table
entry then points to a split chain header in the split chain header array. If the record
type is an equate value (FACE interface), this value is used directly as an index into
the array of split chain headers. The hash and name tables are not used by the
FACE interface. Once the split chain header is found, the dispense mode indicator
is checked to determine which type of FARF address is currently being dispensed.
The current dispense mode determines which chain of splits to follow. If the record
type is shared, the split chain header points directly to the chain of splits as shown
in Figure 2. If the record type is unique, the split chain header points to a matrix
that contains pointers to unique sets of splits. If splits do not exist for the current
dispense mode, the alternate dispense mode splits are used. The input ordinal
number is used to determine which split in the chain of splits maps the input ordinal
number. If the requested ordinal is not in the range that is mapped by the current
split, a pointer to the next mapping is used to access another split. When the split in
which the requested ordinal is mapped has been located, the descriptor that is
contained in the split (either a band or UFT/FTI) is concatenated with the result of
subtracting the requested ordinal from the first ordinal mapped by this descriptor.
(This subtraction gives the relative position of the requested ordinal in the descriptor
mapping.) Figure 2 shows this process.

6 TPF V4R1 Database Reference

FARF addresses are given to application programs to symbolically refer to specific
locations in the database. When a find or file request is made to the database, the
FARF address must be converted to a physical location reference. When a FARF
address needs to be used to access a physical location, the descriptor field of the

#CIMR1 #IPL1 #OLD1 #FRED #BKDRI

Dispense Mode
Indicator

Hash
Table

Name
Table

Array of
Split Chain
Headers

Splits

FACE
Table

(FCTB)

FARFn+1FARFnFARFnFARFn+1FARFnFARFn+1FARFn

Figure 2. FARF Address Generation

File Address Formats 7

address is used to index into a conversion table. A band is a direct index into a
band conversion table; the UFT/FTI conversion is a 2-stage lookup. The pointer that
is retrieved from the appropriate conversion table addresses the first FACE table
split where this descriptor begins mapping the record type. Adding the starting
ordinal in this split to the ordinal field in the FARF address re-creates the ordinal
number in the record type. If the FACE table split that is accessed first from the
pointer in the conversion table does not map the reconstituted ordinal, the next field
is used to scan for the correct split. With FARF3 pool addresses, there is no
conversion table; the control bits of the address are used to determine the pool
type. The PDSCA is used to convert the pool type to pool record type equate value.
The rest of the file address is the pool ordinal number. Once the record type and
ordinal are known, the process described above to create a file address is used to
find the correct split. The base DBON in the correct split is added to the record type
ordinal number to produce the actual value that is used to map to a physical
location on the database. Figure 3 shows the decoding of FARF3 fixed addresses.
Figure 4 shows the decoding of FARF4, FARF5, and FARF6 addresses. See TPF
Concepts and Structures for a detailed discussion of the database allocation rules.

8 TPF V4R1 Database Reference

Band Ordinal FARF3 Fixed
File Address

SSU Index
of I/O
Requestor

Band Table Splits

FACE
Table
(FCTB)

SSU
Vectors

Figure 3. FARF3 Fixed Address Decode Procedure

File Address Formats 9

The FARF3 format for fixed files is band number dependent. FARF4, FARF5, and
FARF6 formats for both fixed and pool files are UFT/FTI dependent. Band and
UFT/FTI numbers must continue to be associated with the same record types from
one system generation to another. This ensures that any embedded FARF address
will continue to refer to the same record even though the record may have been
physically relocated.

The FARF addressing scheme was designed so that migrations would be easier.
FARF4 and FARF3 are used together. When all the FARF3 addresses in the system
have been converted to FARF4 addresses, the system can be made to run in
FARF4 mode only. Similarly, when FARF5 addresses are added to the system,
FARF4 and FARF5 addresses can coexist. When all the FARF4 addresses have
been converted to FARF5, the system can be made to run in FARF5 mode only.

UFT FTI / Ordinal

UFT Table SplitsFTI Tables

Figure 4. FARF4, FARF5, and FARF6 Fixed Address Decode Procedure

10 TPF V4R1 Database Reference

This makes it easier to convert large databases all at once. FARF6 is independent
of FARF3, FARF4, or FARF5, and can be used concurrently.

General File Addresses
A TPF general file is a sequentially organized set of data that, in principle, is similar
to a TPF general data set. General files, however, are not MVS-compatible and
preceded general data sets in the evolution of the TPF system. There are limited
classes of general files used by system programs. For example, the general file that
is used to load the pool directories is not compatible with general data sets.
However, all general files use a sequential data structure and, in principle,
correspond to the general data set procedures.

The general file address format that is supported by the FIND and FILE macros is
shown in Figure 1 as General File RRN.

General Data Set Addresses
A TPF general data set is directly related to the meaning of an MVS data set. The
records of a data set are allocated sequentially in the same module (or MVS
volume). A special macro, file data chain transfer (FDCTC), permits you to process
records that are not restricted to the standard TPF file record sizes. A file with
standard record sizes is processed online by using the TPF standard find and file
type macros.

File referencing for general data sets is slightly different from the procedures used
to access fixed record types and pool records. Two general data set macros are
provided to allow ECB-controlled programs to access records in a general data set:

GDSNC Associates a data set name with a unique entry.

GDSRC Calculates the file address of a specific record in the data set
named by the GDSNC macro.

These macros set up a user-specified data level that is appropriate for accessing
records in a general data set for the find and file type macros using a physically
oriented interface that is transparent to the user.

Extended MCHR File Address
DASDs that are supported by the TPF system require a 7-byte hardware address to
physically access a record, plus a 2-byte symbolic module number. This is the
address that must be used by channel programs, including those generated for the
file data chain macro (FDCTC) and the extended form of the FNSPC and FLSPC
macros under the TPF system. Figure 5 on page 12 shows the formats of extended
MCHR file addresses used to store and retrieve TPF records.

Hardware File Address
The hardware file address that is required to physically refer to a record residing on
a DASD is the same as the extended MCHR file address described previously. The
formats are shown in Figure 5 on page 12.

File Address Formats 11

Note: For the IBM 3390, 8-bit record numbers are used for all TPF record sizes as
shown for 4096-byte records in the previous figure.

Bit

00

15

16

31

48
49
50
51
52

53

54

55

32

47

1055-Byte Record381-Byte Record 4096-Byte Record

Symbolic Module Number;
Must be available at
CE1FMx for the macros.

MM

Same Same

2-Byte Bin Number:
Always set to zero.

BB

Same Same

2-Byte Cylinder Number:
Zero is the first
cylinder number.

CC

Same Same

2-Byte Head Number:
Zero is the first
head number.

HH

Same Same

6-Bit Record Number:
The first record number
on a track is 1.

R

5-Bit Record Number:
The first record number
on a track is 1.

R

8-Bit Record Number:
The first record number
on a track is 1.

R

0 = Simplex
1 = Duplex D

Spare:
Always set to zero.

S

0 = Simplex
1 = Duplex

D

0
L

1
L

Figure 5. Extended MCHR File Address Formats

12 TPF V4R1 Database Reference

General Data Sets

The general data set (GDS) support allows a TPF application to read and write
MVS BSAM or QSAM DASD data sets that are used to pass data between MVS
and TPF. General data sets are BSAM or QSAM multivolume fixed-length record
data sets with records in TPF sizes (381, 1055, 4095, or 4096 bytes). The GDS
support allows the use of nonstandard record sizes up to 4096, but the user must
handle the record accessing using either FDCTC or FNSPC/FLSPC macros.

The GDS support does not include the ability to create or expand a data set; all
space allocation and formatting must be done on MVS. The GDS support does
include the ability to display all mounted data sets by data set name (DSNAME) or
data definition name (DDNAME), and the ability to scan the volume table of
contents (VTOC) for a specific data set name or to display all data sets with extents
on the volume. Also included in the GDS support is the ability to automatically
premount a set of data sets and the ability for the system to automatically remount
previously mounted data sets during a system restart. It extends the use of the find
and file macros to these general data sets (referred to as data sets in the remainder
of this chapter), allowing for TPF single record processing of this data.

Despite the similarity in names, general data sets are not related in any way to
general file data sets. General file data sets are designed for use solely by TPF
systems for such varied purposes as:
v Schedule change
v Fare/quote ticketing.

General files are discussed in “General Files” on page 17.

The physical attributes of general data sets are as follows:

v File resident on DASD devices

v Data set names (1 to 44 characters)

v Single and multiple volume data sets (16 extents per volume with up to 64
multiple volume sequence numbers)

v TPF record sizes (381, 1055, 4095, or 4096 bytes only)

v TPF record number format

v MVS record number format.

Functions provided by this general data set facility are:

v Premount of data sets from an initial IPL.

v Remount of data sets after restart IPL. This function ensures that all data sets
that were mounted before the restart was initiated will again be mounted and
available to the system.

v Operator mount and dismount of data sets with commands.

v Single record processing using the find and file macros with the GDS=Y
parameter.

v Operator display of mounted data sets with a command.

v Operator display of the VTOC of an MVS volume with a command.

Multivolume data sets can be accessed as follows:

v All volumes of any given data set are accessed as a single contiguous data set.
This requires that all volumes of this data set be mounted.

© Copyright IBM Corp. 1994, 2002 13

v Single volume processing of any volume in the data set restricts the ECB to the
specified volume for a given data level, but allows access to other volumes of the
same data set on separate data levels.

Data sets with multiple extents appear as a single contiguous extent on that volume
on which the data set resides.

Premount of General Data Sets
An operator message exists to force premount processing to occur on the next IPL
of the system. During this IPL the user may want a number of data sets to be
mounted. This premount function allows a user to assemble, in the control records
provided, the data set names, volume sequence numbers, and volume serial
numbers of those data sets. This function is provided to free the computer room
operator from manually mounting all the data sets that may be required by the
system.

The premount records are contained in program records. The first premount record
is CVZE, and the second (if needed) is CVZF. The macro GDSPC is used to build
the premount. A GDSPC macro is coded for each data set to be mounted. Each
premount record can hold a variable number of data sets depending on the number
of volumes per data set.

Once the macros are coded, the program is assembled and loaded to the system.
When the premounts are ready for use, the operator issues the ZDSMG INIT
command. This causes the GDS restart to process the premount records on the
next IPL. Any previously mounted data sets are forgotten.

General Data Set Commands
The general data set support provides the following commands for controlling the
system use of general data sets.

ZDSMG MT Mounts a data set or a volume of a data set

ZDSMG DM Dismounts a data set or a volume of a data set

ZDSMG DISPLAY Displays currently mounted data sets

ZDSMG VTOC Displays the data set names contained on a DASD
volume

ZDSMG INIT Forces reinitialization of the restart records from the
premount records on the next IPL

ZDSMG DEF Defines a data definition name to the system for a
tape device, general file data set, virtual reader, or
another user-defined media

ZDSMG REL Removes a data definition from the system

ZDMFS Shows the currently mounted GDS DASD volumes.

See TPF Operations for more information about the general data set commands.

Record Processing of General Data Sets
The following discusses:
v Considerations for the record format of a general data set
v The macros used in processing a general data set.

14 TPF V4R1 Database Reference

Record Format
When laying out a GDS record, the record format should take into account the
following normal TPF procedures:

v TPF tests the first 2 bytes of the record as a record ID on all file macros.
Therefore, the first 2 bytes of the record must be the same as the record ID field
in the file address reference word.

v TPF overlays bytes 4-7 with the program name of the program issuing the file
macro.

v TPF overlays the last byte of a 4096 byte record with a flag byte.

Processing Macros
A get general data set entry macro (GDSNC) is provided by TPF to allow an
application program to retrieve the information necessary to access a specific data
set by initializing the appropriate data level or data event control block (DECB) in
the ECB. The GDSNC macro must be issued before subsequent find/file macros
and returns the file address of the first record.

The parameters provided with the GDSNC macro allow data records to be retrieved
in varying sequences within a particular data set. For example, a data set may be
accessed by name only regardless of the number of volumes mounted. In addition,
any single volume of a data set may be specified for access.

The get general data set record macro (GDSRC) is used to get subsequent record
addresses into the ECB data levels or DECBs for use by find and file macro
processing. Any number of ECBs may simultaneously address a data set.

Concurrent updating of a data set among loosely coupled TPF images is supported.

See TPF General Macros for more information about the GDSNC and GDSRC
macros. See TPF Concepts and Structures and TPF Application Programming for
more information about DECBs.

General Data Sets 15

16 TPF V4R1 Database Reference

General Files

A TPF general file is a single extent of contiguous space on a disk pack formatted
for use within a TPF environment. A general file data set is a subdivision within that
general file. The general file data set contains sequentially organized, but randomly
accessible, records of related data.

There can be no more than three general file data sets in a general file. General
files are subsystem unique, and each general file data set has an
installation-specified number, unique within the subsystem, which identifies it to the
user and to the TPF system.

Despite the similarity in names, general file data sets are not related in any way to
general data sets. General data sets are essentially MVS data sets, and are used
primarily to pass data between TPF and MVS systems. General data sets are
discussed in “General Data Sets” on page 13.

General file data sets, on the other hand, are designed for use solely by TPF
systems for such varied purposes as:
v Schedule change
v Fare/quote ticketing.

From an online application standpoint, general file data sets have certain
advantages over general data sets in that:

v They do not have to be opened and closed.

v The instruction path to access them is more direct than that to access general
data sets.

v They can be displayed and altered online with TPF commands (for example,
ZDFIL, ZAFIL).

Records in a general file data set are not duplicated and, within a general file data
set, must be of the same length, either 381, 1055, or 4KB bytes.

The TPF online file formatter must be used to format a general file, and the starting
address of each data set must be recorded in the general file module table (GFMT).

A SIP skeleton (SKCVZD) creates program segment CVZD, the general file
definition record that also serves as the general file premount record. General files
are defined to the system by adding entries to CVZD and then reassembling and
loading CVZD to the online system. The GFMT is initialized from CVZD during IPL
when CTKB has been loaded with the initial IPL switch (CK9IPLR) set to X'00'.

Positions 42 through 47 of the volume label (cylinder 0, head 0, record 3) are
reserved to record the data set numbers that reside on the general file, and
positions 48 through 51 record the subsystem ID. The valid range of data set
numbers is 00 through 59, but they do not need to be either consecutive or
sequentially ordered.

The data set numbers are used to mount or dismount the data sets. Each data set
on a general file disk pack has to be mounted and dismounted separately by the
operator. The mount function verifies that the data set number is in the volume label
and makes the data set available to an online application program; the dismount
function cancels that availability. A bypass option is provided to allow a data set to
be mounted without checking the volume label for the data set number.

© Copyright IBM Corp. 1994, 2002 17

The system generation process does not place the data set numbers or subsystem
ID in the volume label of a general file; rather, the information is placed there by a
ZAGFL command. Therefore, the user must mount the data sets with the bypass
option until a ZAGFL command is issued to place the necessary data in the label.

Application programs may access a mounted data set with any of the find or file
macros, except find single (FINSC P/D) and file single (FILSC P/D), by specifying
the GDS=Y parameter on the macro. FNSPC and FLSPC macros do not have a
GDS parameter since the target module number is not part of the coded file
address. A pseudo module number, constructed from the data set number, is used
in place of a symbolic module number for I/O. The valid range of pseudo module
numbers is defined at system generation, and is accessible to users in the CONKC
macro fields @02GDF and @02GDA. Default pseudo module numbering starts at
230, and the range of pseudo module numbers will be 230 through 230+n for data
set numbers 00 through n.

The file addressing formats for processing general file records are:
v Extended MCHR
v Relative record number.

Relative record numbers are device independent; programs using this format do not
have to be recorded or reassembled to change a general file from one device to
another. Relative record numbering is sequential and starts with 0. Whichever
address format the user chooses, records can be read or written either sequentially
or randomly by record.

The RAISA macro is provided to increment file addresses in the MCHR and relative
record formats by a user-specified count. It may be invoked by either online or
offline segments. The generated code accounts for control bits and track overflow in
performing the addition, and the result is returned to the caller in the specified data
level. When RAISA is called from an offline program with a relative record number
as input, a pointer to an 8-byte address suitable for Seek and Search I/O
commands is also returned.

The status of a general file data set remains the same over a restart. If it is active
at cycle-down time, it will be ready for use again when restart completes.

The following commands allow the operator to work with general file data sets and
labels:

ZFMNT Mount a general file data set

ZFDNT Dismount a general file data set

ZDMFS Show mounted general files

ZDGFL Display a general file label

ZAGFL Alter a general file label.

See TPF Operations for more information on these commands.

Programming Notes for General Files
The following describes the file addressing formats that can be used to read a
general file data set (using FIND or FIND SPECIAL).

18 TPF V4R1 Database Reference

Note: In these descriptions, the pseudo module number is defined as the sum of
the starting general file module number and the number of the data set the
user wants to access. For example, if the TPF system is generated to start
general file pseudo module numbers at 010 (see the GFMOD parameter of
the RAM macro in TPF System Generation), then general file data set
number 03 will be pseudo module number 013. The module number that the
user specifies will be the hexadecimal equivalent of 013, that is, 0D.

Processing a Relative Record Number Request
The parameter mmgggggg that must be provided for a general file relative record
number request has the following format:

If the calling segment is processing a relative record request (as in the ZDFIL
mmgggggq format):

v mmgggggq must be placed in fields CE1FMn, CE1FCn, CE1FHn, and CE1FRn
of the appropriate entry control block (ECB) data level fields or IDECFM,
IDECFC, IDECFH, and IDECFR of the appropriate data event control block
(DECB).

v The caller must issue a FIND using the GDS=Y keyword.

Processing an Extended MCHR Request
If the calling segment is processing a request for an extended MCHR address (as
in the ZDFIL mmmmcccchhhhrr format):

v CE1FXn bytes 0-1 must contain hex zeros.

v CE1FXn bytes 2-3 must specify the cylinder address.

v CE1FXn bytes 4-5 must specify the head address.

v CE1FXn byte 6 must contain the record number.

v CE1FMn bytes 0-1 must contain the pseudo mod number.

v The caller must issue an FNSPC macro specifying extended addressing (E
parameter).

m m g g g g g q

0 1 2 3

1 0 X

Relative Record Number

x = 1 if large record size (1055 bytes)Pseudo Module
Number

General Files 19

20 TPF V4R1 Database Reference

File Pool Support

Random file pool storage support (referred to as file pool support in the remainder
of this chapter) enables a program to obtain temporary file storage space in much
the same way as temporary main storage is obtained. File addresses for this
temporary file storage are obtained by application programs using a macro. These
programs can then store data at the disk locations for whatever period of time is
appropriate. Another application macro indicates that a file pool address can no
longer be considered in use and is available again.

File pool storage supports devices that use file address reference format (FARF)
addressing (for example, the 3380 DASD).

This chapter is an overview of file pool support with descriptions of the following:
v Functional description
v File address formats
v Pool characteristics
v Maintenance functions
v Management functions.

Functional Description
It is not unreasonable to envision systems with millions of temporary data records
maintained in file pool storage areas. Consequently, an effective and dynamic
facility is required to maintain and manage a file pool complex capable of satisfying
varying requirements in the exacting environment of a real-time system.

All pool addresses are assigned unique bit status indicators in an array. By
interrogating a specific bit, a program can determine if a file record is available for
use or if it is being used for the storage of data. Because of the enormous
requirement for temporary data storage records, a complete array is prohibitive for
an online system in terms of main storage utilization. Therefore, an effective method
is necessary to maintain and manage a bit array that represents a large number of
records.

The medium used by the pool facility for containing a bit array is called a directory
record. A pool bit array is generally first constructed from information in the FACE
table (FCTB), which is created by the FACE table generator (FCTBG). The bit array
is then broken down into directories, each having a record header. The information
in the record header provides a means of locating the bits in each directory in the
full bit array.

To improve overall pool performance, the TPF system allows multiple directories to
be brought into memory in sets called directory sets. These sets are kept in two
directory set buffers called the active and standby directory set buffers.

Directory set buffers are carved (or allocated in main storage) at IPL time by the
initializer program (CCCTIN). These buffers will be carved in high storage on 4–KB
boundaries. The number of directories in each set defaults to 1. The number of
directories per set can be changed by the user with the ZGFSP command. See
TPF Operations for more information about the ZGFSP command. Based on
feedback from a data reduction report, users determine an optimum assignment for
the number of directories in a set, which is a trade-off between working storage
usage and get/release file pool address activity. For additional information about
determining the minimum number of pool directories, see TPF System Generation.

© Copyright IBM Corp. 1994, 2002 21

During cycle-up, pool restart code fills both of the pool buffer areas for the
long-term sections, but fills only the active buffer for the short-term sections.

The following values are associated with directory set size:

Value Description

ACTIVE The number of directories in the set currently dispensing addresses.

STANDBY The number of directories in the set about to dispense addresses.

NEW The size to which the active and standby set sizes will change
through reorder processing.

CARVE The size, in directory increments, that is available to hold
directories. This value represents the amount of storage carved by
CCCTIN for the directory buffer. Set size cannot exceed this value
until the processor is re-IPLed, allowing CCCTIN to allocate more
space.

At IPL time, CCCTIN looks at the 3 set size values in keypoint 9 (CTK9):
v ACTIVE
v STANDBY
v NEW.

Using the largest of the three set size values, CCCTIN carves memory. This area
contains the pool directory set control area (ICY7PR) and, if carving for a short-term
pool, will also contain:
v Short-term limits control subtable (ICY8CS)
v Short-term processor control records (ICY$PR) work area
v Short-term master control file (CY$CR) work area.

File Address Formats
The file address formats supported for pool record addressing are described in “File
Address Formats” on page 3.

Pool Characteristics
File pool support is provided for external storage devices that use FARF
addressing. Support is included for small/large/4K, single/duplicate records with
various retention requirements. There are 10basic pool types, as follows:
v Small, long-term records (SLT)
v Small, short-term records (SST)
v Small, long-term duplicate records (SDP)
v Large, long-term records (LLT)
v Large, short-term records (LST)
v Large, long-term duplicate records (LDP)
v 4K long-term records (4LT)
v 4K short-term records (4ST)
v 4K long-term duplicate records (4DP).
v 4K long-term duplicate FARF6 records (4D6).

Small, large, and 4K records are defined as 381, 1055, and 4095 bytes long
respectively. Pool types SLT, SST, LLT, LST, 4LT, and 4ST contain single copy
records in a partially duplicated file system and duplicate records in a completely

22 TPF V4R1 Database Reference

duplicated file system. Pool types SDP, LDP, 4DP, and 4D6 are provided for
systems with a partially duplicated file system and a requirement for duplicated file
storage records.

Long-term file storage records can be maintained during an interval of time as
determined by operational procedures. Short-term pools, however, are designed for
quick turnover records. Maintain short-term file storage records for short intervals of
time (in other words, the time required to complete a transaction with a customer).
When returned by application programs, long-term addresses are batched to an
online data file to be returned to the TPF system at a later time by recoup or pool
directory update (PDU) processing. Short-term addresses are, however,
immediately returned to the relevant pool for reuse.

Each basic pool type applies to a specific device and uses FARF addressing. Each
group of pool types on a specific device is called a pool section. Each short- and
long-term pool can have a maximum of four pool sections. For example, the
following represents four pool sections for small, long-term records:
v SLTA
v SLTB
v SLTC
v SLTD

where A, B, C, and D represent the device type defined with the system initialization
program (SIP). See TPF System Generation for information about SIP.

Pool sections can be broken up into noncontiguous areas on a device type. Each of
these areas is called a pool segment.

For example, the small, short-term pool (SSTx) might consist of 2 pool sections,
each with segments as follows:
v 3390 SSTA pool section with 2 segments
v 3380 SSTB pool section with 2 segments.

Each directory set is initialized when needed and updated when short-term pool
addresses are returned to those pool sections. Because short-term directories are
recycled, they are not included in recoup and pool directory update (PDU)
processing. When a short-term pool section is depleted, the relevant directory sets
are again reinitialized and used one-at-a-time starting with the pool section’s first
directory. This is called recycling the pool section.

Maintenance Functions
This section provides a general description for the following pool maintenance
functions:
v Pool generation and reallocation
v Pool directory update (PDU)
v Recoup support
v File pool count reconciliation
v Online directory capture and restore

Pool Generation and Reallocation
Input to pool generation is in the form of constants and equates in the system
configuration macro (SYCON) built by the system initialization program (SIP). See
TPF System Generation for details about SIP. Pool support allows as many as 4

File Pool Support 23

device types that can be used for pools. SYCON values should be specified for all
equates to prevent assembly errors even though fewer than 4 devices exist on the
system.

The labels pertinent to pool support are shown in Table 1.

Table 1. SYCON Values for Pool Support

Label Description

&CGDEV(1)
&CGDEV(2)
&CGDEV(3)
&CGDEV(4)

These are global SET symbols used to assign each device a name.
They must be set to blanks if the device is not supported. Otherwise,
they must contain the device name. For example, if 3350s are
supported as the first device for pools then &CGDEV(1) = 3350.

CSONCMA
CSONCMB
CSONCMC
CSONCMD

These define the number of cylinders per module for pool devices 1, 2,
3, and 4 respectively.

CSONHCA
CSONHCB
CSONHCC
CSONHCD

These symbols define the number of tracks per cylinder for each device.

CSONSRA
CSONSRB
CSONSRC
CSONSRD

These symbols define the number of small records per track for each
device.

CSONLRA
CSONLRB
CSONLRC
CSONLRD

These symbols define the number of large records per track for each
device.

CSON4RA
CSON4RB
CSON4RC
CSON4RD

These symbols define the number of 4KB records per track for each
device.

CSONPNMA
CSONPNMB
CSONPNMC
CSONPNMD

The number of modules used for pool records in each device type.
These values are used with the increments (CSONPLBA, CSONPSBA,
and so on) to determine the small, large, and 4KB file address ranges
for each device type. These ranges must not overlap among device
types; otherwise, an ambiguity could be created when trying to
associate an address with a device type.

Pool definition information is part of the FACE table that is generated by the FACE
table generator (FCTBG).

The record code check (RCC) is used throughout pool support to identify specific
pool types and to index pool-specific tables in the control program. The RCC
indicates the pool type as shown in Table 2. The intersection of pool type and
device type gives the RCC. Support is provided for 4 device types.

Table 2. Record Code Check Values

Pool Type

Device Type

A B C D

Small Long-Term 04 28 4C 70

Small Short-Term 08 2C 50 74

Small, Long-Term Duplicate 0C 30 54 78

24 TPF V4R1 Database Reference

Table 2. Record Code Check Values (continued)

Pool Type

Device Type

A B C D

Large Long-Term 10 34 58 7C

Large Short-Term 14 38 5C 80

Large, Long-Term Duplicate 18 3C 60 84

4K Long-Term 1C 40 64 88

4K Short Term 20 44 68 8C

4K Long-Term Duplicate 24 48 6C 90

4K Long-Term Duplicate FARF6 94 98 9C A0

The beginning ordinal number is the ordinal number assigned to the first record in
the pool segment. Successive ordinal numbers are assigned to the remaining
records in the segment. These ordinal numbers must be unique in the pool type. In
addition, in FARF3/FARF4 mode, because large and 4-KB records share ordinal
number ranges, there can be no ordinal number duplication in these two pool types
when they also have equivalent retention and duplication definitions.

Pool Generation and Reallocation Procedure
The pool generation and reallocation procedure can be used to create an initial pool
configuration or change an existing pool configuration. If you are deleting pool files
from your configuration, you must deactivate pool directories before changing your
existing pool configuration.

Note: The pool generation and reallocation procedure can only be used if all
processors in the complex are running 32-way loosely coupled pool support
and the pool data structures have been converted to 32-way loosely coupled
pool support format.

See TPF Migration Guide: Program Update Tapes for more information about
migrating to 32-way loosely coupled pool support and converting pool data
structures to 32-way loosely coupled pool support format.

To generate or reallocate a pool configuration, do the following:

1. Enter the ZPMIG command with the STATUS parameter specified to verify that
all processors are running 32-way loosely coupled pool support and that the
pool data structures are in 32-way loosely coupled pool support format.

See TPF Operations for more information about the ZPMIG command.

2. Define the online database using RAMFIL statements that are available in the
system initialization program (SIP). If you are deactivating pool directories,
specify the DEACTIVATE parameter with the RAMFIL macro to allow pool
segments to be deactivated.

3. Run the FACE table (FCTB) generator to create generation input.

4. Enter ZPOOL GENERATION CREATE to create initial pool directories or to
change existing pool directories.

5. Make sure all processors are in 1052 state.

File Pool Support 25

8-Byte File Address Support
To activate FARF6 8-byte file addressing, enter ZMODE 6 so that 4D6
pools can be generated. See TPF Operations for more information about
the ZMODE command.

6. Enter ZPOOL GENERATION RECONFIGURE to reconfigure existing pool
directories.

Note: If you do not enter ZPOOL GENERATION RECONFIGURE, all existing
pool files will be made available. Enter ZPOOL GENERATION
RECONFIGURE unless you are creating your initial pool directories.

7. Load the new FCTB that was created by the FACE table generator.

8. Enter ZPOOL GENERATION UPDATE to update the pool directories.

9. When prompted by the TPF system, do one of the following:

v Enter ZPOOL GENERATION ONLINE CONTINUE to confirm and continue
rolling new or changed pool directories into the pool rollin directory (#SONRI).

Note: Entering ZPOOL GENERATION ONLINE CONTINUE causes a
CTL-3C system error dump to occur, which requires a TPF system
IPL.

v Enter ZPOOL GENERATION ONLINE ABORT to stop new or changed pool
directories from being rolled into the pool rollin directory (#SONRI).

10. Make sure the TPF system is in 1052 state. If necessary, cycle the TPF
system to 1052 state.

11. Enter the following commands to verify that the new or changed pool
directories were rolled into the pool rollin directory (#SONRI) as you wanted
them rolled in.

v ZPOOL DISPLAY

v ZDFPC

12. Do one of the following:

v If the pool directories were rolled in correctly, do the following:

a. Cycle the TPF system to NORM state.

b. Enter ZPOOL INIT PSDIR to initialize the pseudo directory records
before the next recoup run. Once you enter ZPOOL INIT PSDIR, you
can no longer restore pool rollin directory (#SONRI) records by entering
ZPOOL GENERATION FALLBACK.

v If the pool directories were not rolled in correctly, do the following:

a. Enter ZPOOL GENERATION FALLBACK to copy the recoup SONRI
save area (#SONSV) back to the pool rollin directory (#SONRI).

b. When prompted by the TPF system, do one of the following:

– Enter ZPOOL GENERATION ONLINE CONTINUE to confirm and
continue rolling fallback directories into the pool rollin directory
(#SONRI).

Note: Entering ZPOOL GENERATION ONLINE CONTINUE causes
a CTL-3C system error dump to occur, which requires you to
IPL all processors in TPF system complex.

– Enter ZPOOL GENERATION ONLINE ABORT to stop the fallback
directories from being rolled into the pool rollin directory (#SONRI).

26 TPF V4R1 Database Reference

13. If you are deactivating pool directories, do the following:

a. Enter the ZSDEA command.

b. When the pool directories you want to delete are no longer in use
(deactivated), run this procedure again to define the changed online
database.

Pool Directory Update (PDU)
Pool directory update (PDU) functions are run by doing the procedures that follow.

PDU Procedures
1. Enter the ZRPDU CREATE command to start PDU processing.

2. Once the ZRPDU CREATE command has completed processing and offline
multiple releases have been identified, enter the ZDUPD command, specifying
the S parameter to verify the PDU pseudo directory (#SONUP) against the pool
rollin directory (#SONRI).

3. Once the ZDUPD command has completed verification, enter the ZDUPD
command, specifying the C parameter to continue with the rollin process.

Recoup Support
The recoup function is used to reconcile long-term file pool directory records with
the actual status of the file pool records. See “Recoup” on page 103 for more
information about recoup.

File Pool Count Reconciliation
File pool count reconciliation functions are run by entering the ZRFPC command.

Online Directory Capture and Restore
Online directory capture and restore functions are a part of normal recoup
processing and can also be run by entering the ZRDIR CAPTURE and ZRDIR
START RESTORE commands.

Management Functions
File pool management functions are supported by the following facilities designed to
enhance file pool processing:
v Get file storage (GFS)
v Release file storage (RFS)
v Initialize file pools
v Pool function switches
v Pool commands

These facilities are described in the following sections.

Get File Storage (GFS)
Application programs issue the get file storage macros to obtain large or small file
pool records respectively. The following sections describe the functions available in
the processing of these macros.

Basic Pool Selection
Selection of a pool section is normally based on the get file storage macro
expansions. Pool fallback and ratio dispensing fallback can modify normal pool
selection as described in the following sections. See TPF General Macros for more
information about the file storage macros.

File Pool Support 27

Pool Fallback
When a depleted pool section is selected for address dispensing, an alternate
compatible pool section is used if possible. The appropriate GFS program is started
for processing the alternate pool section.

Selection of alternate pool sections for fallback processing is done based on either
a specified or predefined schedule. Systems with pools have predefined schedules
for short-term pool section fallback. These predefined schedules refer to duplicate
pool sections only. Therefore, a system with pool sections has no predefined
short-term to short-term pool fallback. However, optional, primary pool fallback
schedules can be defined for systems with pool sections. If specified, these optional
schedules can provide short-term to short-term, short-term to long-term, or
long-term to long-term fallback capability for depleted pool sections.

The optional fallback can be specified in the SYCON macro or by a ZGFSP
command. See TPF Operations for more information about the ZGFSP command.

Ratio Dispensing
This facility is used to dispense addresses for any basic pool type using several
sections of the pool (for example, 3390 SSTA pool sections). When a pool section
is selected, its ratio factor (that is, number of addresses) is used to determine how
many addresses to dispense from that section before selecting another pool section
from the schedule. Therefore, ratio dispensing allows any specific record ID (pool
record) to be spread across several device types.

Bit Scanning
The GFS programs process each bit in a directory as an entity although groups of
bits are selected for ease of processing.

Dispensing Algorithms
Dispensing of file pool addresses is based on the pattern of available bits (records)
in the directory records. With all bits in available status, the following describes the
GFS algorithm.

Pool addresses are dispensed across all pertinent modules by increasing the
ordinal by 1 because each ordinal is a continuous number.

Directory Replenishing
Multiple directory records are generated for each pool section. Directory
replenishing (or reordering) for short-term pool sections generally consists of
scheduling retrieval of a new directory set before the in-use directory set is depleted
of available addresses. This is done when the remaining number of available
addresses in the in-use directory set reaches a predefined critical level called the
reorder level. At this point, a control transfer is used to schedule an ECB and the
retrieval of a directory reorder program to perform this function.

The short-term pool sections are designed to be recycled. Therefore, when the last
directory set of such a pool section is depleted, the first directory of the pool section
set is again set up for dispensing pool records with all bits in available status.

For long-term pool sections, two sets are maintained in main storage. These sets
are referred to as the active and the standby sets. When the active set is depleted,
the standby set becomes active and a control transfer is used to schedule a reorder
of the depleted set.

28 TPF V4R1 Database Reference

Implied Wait Processing
When a depleted directory is referred to in order to satisfy a get file storage macro
request, the requesting program is placed in a CPU Loop queue to delay
processing of the request. The get file storage macro is processed again when the
program is again given control by the CPU Loop program.

This implied wait procedure is linked to pool sections that require directory reorder
support. The procedure is enforced to allow retrieval of a new directory to replace
an empty in-use directory.

GFS Keypointing
Each pool section is assigned a counter to determine when a file update of critical
keypoint information should be done. After an address is dispensed from a pool
section, the keypoint update counter of that pool section is checked. If a keypoint
update is necessary, a keypoint procedure is started. The respective keypoint
update counters are also reset.

Module Down Processing
GFS does not dispense pool addresses referring to disk modules in down or offline
status. One of the following techniques is used to recognize the condition and allow
dispensing to continue until a pool address is found that can be dispensed:

v Long-term addresses are marked in the directory as being dispensed and the
address of the directory is passed to return processing.

v Short-term addresses are set to unavailable status and skipped.

Release File Storage (RFS)
Application programs issue the release file storage macro to release file pool
records. The processing done by RFS is based on whether the record is long-term
or short-term.

Processing Long-Term Released File Pool Addresses
Long-term releases are blocked into CYSRB tape records. These tape records are
written to the real-time tape (RTA).

Processing Short-Term Released File Pool Addresses
Released short-term addresses are returned directly to the respective directory if it
is part of a set in main storage and being used by GFS for address dispensing.

RFS Keypointing
RFS performs keypointing procedures similarly to GFS for released short-term pool
addresses only. Each short-term address that is returned to its respective directory
causes the relevant keypoint update counter to be checked as described previously
for GFS keypointing.

Initialize File Pools
Initialization for pool management is done during CP initialization, restart
processing, and cycle-up. During CP initialization, the main storage ICY7PRs are
carved out of the permanent main storage area for each pool section existing in the
system. Pointers to these areas are initialized. Following restart processing, the
system is in 1052 state with pool management still inactive though partially
initialized. Pool management is inactive in 1052 and UTIL state. During cycle-up to
CRAS state or higher, the pool management facilities are initialized. At this point in
time, all pool management facilities are available for use by application programs.

File Pool Support 29

Shutdown of File Pools
All pool management facilities are shut down (that is, inactivated) during and as the
last step of cycle-down. The file copies of each in-use directory are updated, the
last CYSRB records are written to tape, and all keypoints are updated to reflect a
planned shutdown of the pool complex. A system re-IPL or cycle-up must follow a
cycle-down to again reactivate pool management.

Pool Function Switches
A switch is assigned to each major pool function to indicate if a function is active.
This is important because:

v Some functions must not be run concurrently; they are mutually exclusive
functions.

v When any pool function is active, a cycle-up or cycle-down must normally be
disallowed.

The file pool maintenance and initialization scheduler sets all but the recoup switch,
which is set by recoup as needed. The PFSWC macro is used by the individual
functions (that is, programs supporting the function) to reset a switch. This macro
also defines the switches that are located in field CY5PFS of the pool management
global table (CY5GT). You can use a CINFC CMPFSW macro to obtain the address
of the switches.

Pool Management Commands
Some pool management functions are controlled with commands. All file pool
commands are transferred to the file pool maintenance and initialization scheduler
for initial processing. When started in 1052 or UTIL state, this scheduler will
normally force a pool management cycle-up and cycle-down sequence to perform
initialization generally required for these functions even when pool management is
not active. Bypass options are provided to avoid this special initialization procedure
for reconciling pool counts and, optionally, for recoup functions.

The following list shows the pool management commands with a brief description of
each. See TPF Operations for more information about these commands.

ZDFPC Allows you to display the count of all available file pool addresses.
You can display the counts for a specified device or pool type. In
addition, you can display pool counts on a time-initiated basis.

ZGFSP Allows you to do the following miscellaneous file pool functions:
v Modify or display file pool control parameters
v Modify file pool fallback schedules
v Modify the ratio dispensing schedule
v Start or stop get file storage (GFS) functions.

The monitoring function is a GFS function that allows you to
monitor long-term pool activities. Start monitoring by entering
ZGFSP OPT with the MON parameter.

The pool monitor starts in all NORM state processors in a loosely
coupled environment. If the monitor is active when a processor
cycles to NORM state, the function automatically starts in this
processor. The monitor in each processor analyzes pool usage for
its processor only. At 1-minute intervals, the pool monitor checks
the pool usage for each long-term pool section in the subsystem
and displays the appropriate message as follows:

30 TPF V4R1 Database Reference

v Message CYGM0006W is displayed if the available address
count increases.

v Message CYGM0011W is displayed if the number of pool
addresses dispensed in the last minute is greater than an
established amount.

v Message CYGM0007W is displayed if, in any three consecutive
minutes, the number of addresses dispensed per minute is
greater than an established minimum.

v Message CYGM0008W is displayed if the number of available
addresses drops below the established minimum for that pool
type.

See Messages (System Error and Offline) and Messages (Online)
for more information.

ZGAFA Allows you to get a file pool address.

ZGAFI Allows you to get a file pool address by record ID.

ZPMIG Allows you to do the following 32-way loosely coupled pool support
functions:

v Convert the pool data structures from pool expansion (PXP)
support format to 32-way loosely coupled pool support format

v Return the pool data structures from 32-way loosely coupled pool
support format to PXP support format

v Display the 32-way loosely coupled pool support migration status
of each processor in the complex.

You can enter this command only from a processor where 32-way
loosely coupled pool support is installed and active, and only when
the processor is in 1052 state or higher.

See TPF Migration Guide: Program Update Tapes for more
information about migrating to 32-way loosely coupled pool support
and converting pool data structures to 32-way loosely coupled pool
support format.

File Pool Support 31

|
|

32 TPF V4R1 Database Reference

Part 2. Caching Support

This part contains information about caching support for the TPF system, including:
v Virtual file access (VFA)
v Record caching.

© Copyright IBM Corp. 1994, 2002 33

34 TPF V4R1 Database Reference

Virtual File Access (VFA)

Virtual file access (VFA) provides an intermediate staging area between the
application program data and the direct access file database. Because the VFA
area is in real main storage, much higher access rates can be achieved and
input/output (I/O) channel load reduced.

VFA is intended to effectively use the real main storage that cannot be efficiently
used by TPF working storage and main storage resident application programs. VFA
is also used by the TPF system as an intermediate file storage area to avoid having
to maintain information in an entry control block (ECB) about when a file completed.
When an application issues a file, the data record is copied into VFA whether or not
it is a VFA candidate, unless it is a 4 KB non-candidate record. If the record is not a
candidate then the record is filed from VFA by the control program and removed
from VFA. If the record is a VFA candidate, then the record is handled according to
the rules described below for VFA candidates.

VFA is conceptually similar to the virtual storage page pools used in IBM virtual
storage operating systems. Since the number of records competing for residency in
VFA storage greatly exceeds the amount of VFA storage available, only the most
active records will be readily accessible through VFA. However, the design does
allow for some selectivity in the number and type of records that can become
resident in VFA so all of the database does not have to compete for VFA storage.

To further relieve I/O channel load, VFA permits multiple updates to be applied to a
record resident in VFA without the updates being reflected to the database copy
until necessary.

VFA Candidate Records
You can define record groups for VFA candidates with the following attributes:

Delay Filing
When a FILE macro is issued, the record is copied to VFA and not written to file
until:

v A cycle down or catastrophic software IPL occurs.

v The VFA buffer has not been referenced and is required for another VFA
candidate record (age out).

In a loosely coupled environment, this record is not synchronized between
processors. That is, other processors accessing this record will not see the
version of this record in any other processors VFA.

Synchronized Delay Filing
When a FILE macro is issued, the record is only physically written to DASD
when:

v A cycle-down or catastrophic software IPL occurs

v The VFA buffer has not been referenced and is required for another record
(age out).

v Another processor signals that it wants the record.

Immediate Filing
When a FILE macro is issued, the record is copied to VFA and is immediately
filed. In a loosely coupled environment, this record is not synchronized between

© Copyright IBM Corp. 1994, 2002 35

processors. That is, other processors accessing this record will not see the
version of this record in any other processors VFA.

Synchronized Immediate Filing
When a FILE macro is issued, the record is copied to VFA and is immediately
filed. When another processor signals that it wants to use the record, the copy
in VFA is invalidated.

Data record processing occurs for the following general macros:
v FINDC
v FINWC
v FINHC
v FIWHC
v FILEC
v FILUC
v FILNC
v GDSRC.

See TPF General Macros for more information about these macros.

The following general and system macros cause the target record to be flushed
from VFA if the target record is in VFA:
v FINSC
v FILSC
v FNSPC
v FLSPC.

Note: For records defined as VFA synchronization candidates, flushing is only
performed on the processor that issues the FNSPC or FLSPC macro.
Flushing is not performed on all processors. This could lead to database
integrity problems.

See TPF General Macros for more information about the FINSC and FILSC
macros. See TPF System Macros for more information about the FNSPC and
FLSPC macros.

VFA program record processing occurs for the following general macros:
v ENTRC
v ENTNC
v ENTDC
v GETPC.

See TPF General Macros for more information about these macros.

Whenever VFA delay filing is selected and active (both normal delay filing and
synchronized delay filing), it is possible for an application program to retrieve a
record from file using the FDCTC macro while a more recent copy of the record
exists in a VFA buffer. For this reason, it is essential that any application program
that manages data records using the FDCTC macro not be processed while delay
filing or synchronized delay filing is active.

Note: Delay filing is active only in NORM state when one or more VFA candidate
records has been defined with the delay file or synchronized delay filing
attribute. You can use the capture and restore utility while VFA is active.

Data records are defined as VFA candidates by record ID. Program records are

36 TPF V4R1 Database Reference

defined as VFA candidates by record ID as well. Special record ID X'00FF' in the
record ID attribute table (RIAT) describes the candidacy of all file resident
programs.

Note: Program records are VFA candidates when they are retrieved for the
ENTRC, ENTNC, ENTDC, or GETPC macros only.

If a program record that is resident in VFA is accessed by a FILSC, FILEC, FILUC,
or FILNC macro, the record is flushed from the VFA buffers.

See TPF Operations for more information about the ZRTDM DISPLAY and ZRTDM
MODIFY commands, and for information about displaying and modifying VFA
candidacy in the RIAT.

VFA Resource Definition
VFA requires the following information about resources:

v The ratios of large (1055), small (381), and 4 KB (4095) buffers and the
percentage of each size that is to be maintained on reserve chains.

v The value specified by the user for the buffer reuse threshold value. The counter
value is used to determine when a buffer is to be moved from the aging chain to
the reserve chain.

VFA main storage occupies the area following the end of working storage, and
includes the VFA tables and VFA buffers. The VFA tables are used by the VFA
control program to manage its buffers. The VFA buffers are the main storage in
which VFA candidate records reside.

There are three types of VFA buffers:

v Small (381)

v Large (1055)

v 4 KB (4095).

The number of buffers allocated for each type is computed by VFA from
user-defined ratios. The buffers are chained together in either one of two chains:

v The aging chain

v The reserve chain.

The first chain is the aging chain. This chain contains the majority of the records in
VFA. When a record is added to VFA, it is copied into a buffer that is allocated from
the reserve chain, which is the second chain, and then placed on the aging chain.
VFA determines the most active records by maintaining a reference counter for
each resident record. This counter is incremented each time the record is
referenced by a macro. When a record is copied into VFA, the counter is set to zero
and the record buffer is placed on the bottom of the aging chain. Each time the
record is referenced, the counter is incremented. When the size of the reserve
chain falls below the specified percentage, the top buffer on the aging chain is
accessed and its reference count is compared to the user-defined value. If the
reference counter is greater than the user-defined value, the count is zeroed and
the entry is placed on the bottom of the aging chain. Otherwise, the buffer is moved
to the reserve chain and if there is a delay file pending in the buffer, the write is
scheduled. This checking of the aging chain continues until the reserve chain is at
the percentage specified.

Virtual File Access (VFA) 37

Therefore, the aging chain is used to hold the current VFA resident records that
may have delay files pending. The reserve chain is used to hold those records that
can be overlaid with a new VFA candidate because they were not referenced a
minimum number of times and the records do not have a delay file pending. Any
record on the reserve chain can still be referenced by an application find.

Note: A commit scope buffer, which is a type of VFA buffer, is not aged out of VFA.
The size of the reserve chain should be such that when a delay file buffer is moved
from the aging chain to the reserve chain and the write is scheduled, the write is
completed by the time an attempt is made to allocate the buffer for a new record.
Buffers on the reserve chain are used for both candidates and non-candidate write
requests. Buffers used for non-candidate write requests are placed on the top of the
reserve chain once the write is completed.

VFA Record Selection
Use the ZRTDM MODIFY command to define fixed file records or pool records as
VFA candidates. See TPF Operations for more information about the ZRTDM
MODIFY command.

You can define each record group with the following attributes:

Delay Filing
When an application program issues a FILEC or FILNC macro for a delay filing
candidate, the update is noted in the VFA buffer but the updated record is not
physically filed to DASD. This reduces the amount of physical I/O activity when
VFA candidate records are repeatedly filed.

The record is physically filed to DASD during the following conditions:

v The VFA buffer is being moved to the reserve chain because it failed the
buffer reuse threshold value test and the size of the reserve chain has fallen
below the specified percentage. This is known as force filing.

v The TPF system is cycling from NORM state after entering the ZCYCL
command.

v The TPF system is cycling from NORM state after entering the ZRIPL
command.

v The TPF system is cycled to 1052 state after a ZRIPL command with the BP
parameter specified is entered or because of a catastrophic system error
resulting from a software IPL.

When a FILUC macro is processed, the delay filing attribute is handled in one
of the following ways:

v If the TPF system is running on a uniprocessor, delay filing is in effect.

v If the TPF system is running in a loosely coupled environment and the
ZRTDM MODIFY command with the LOCKF parameter specified as DASD is
entered, then the delay filing attribute is ignored. The request is handled as
an immediate file.

v If the TPF system is running in a loosely coupled environment and the
ZRTDM MODIFY command with the LOCKF parameter specified as PROC is
entered, then delay filing is in effect and the updated copy remains in VFA on
that particular processor.

Synchronized Delay Filing
Records are handled the same way as normal delay filing records described
previously with the addition that a synchronized delay file candidate is filed

38 TPF V4R1 Database Reference

when another processor requests the record and database consistency can be
maintained if multiple processors update the record.

Immediate Filing
FILEC, FILNC, and FILUC macros are processed in the conventional way; the
record is physically filed to DASD. Immediate filing occurs for delayed file
records when the TPF system is not in NORM state.

Synchronized Immediate Filing
Records are handled the same way as normal immediate filing records
described previously with the addition that database consistency is maintained if
multiple processors update the record.

DASD Locking
Records that are to be held for exclusive use are fetched from DASD so that
the external lock facility (XLF) can grant exclusive use to one processor. This is
the default setting. Any record that will be altered should have this attribute.

Processor Locking
A record that is used in a read only capacity or is processor unique bypasses
the XLF when the record is located in VFA. The VFA copy is fetched and no
DASD I/O is performed.

Attention: Do not consider this option unless extremely high performance is
warranted. Because the external lock facility is bypassed, the data integrity of
the record may be compromised.

General Data Set Record
A special VFA candidacy condition exists for certain general data set (GDS)
records. Index records that are associated with virtual storage access method
(VSAM) data sets mounted to the TPF system are cached in VFA for
performance reasons. VSAM record access requires an associated key lookup
using an index data set; caching these index records eliminates the need for
repeated accesses to DASD. The TPF system selects GDS record candidates
internally; that is, the ZRTDM command cannot be used to select GDS record
candidacy.

Maximum VFA Trip Value
The maximum VFA trip value provides a way for VFA to force an ECB to give up
control when the ECB is a heavy user of VFA records.

In TPFGBL there are two values, &MXVFARQ and &MXVFARS. The default value
for both is 50. When an ECB is initialized, the maximum VFA trip counter is set to
the value in &MFVFARQ. Every time a file, find, or enter/back request is completed
in VFA, the VFA trip counter is decremented by 1. When the counter reaches 0, the
ECB is forced to give up control on the next WAITC or implied wait. The VFA trip
value is then reset using the value in &MXVFARS.

Specifying VFA Buffer Ratios and Percentages
After a system IPL, you can enter the ZVFAC DEFINE command to modify VFA
values for use in allocating main storage and building the VFA allocation chains.
See TPF Operations for more information about the ZVFAC command.

If new VFA allocation values are used, perform a hardware IPL with the clear option
after the TPF system is successfully cycled down from NORM state or successfully
cycled to 1052 state.

Virtual File Access (VFA) 39

If VFA has to rebuild VFA on an IPL, it will use the values stored in keypoint record
A (CTKA) to allocate resources.

Restart Procedures
When VFA is fully operational and delay file mode records have been defined as
VFA candidates, the VFA buffers can contain updated records that have not been
filed to disk any time the TPF system is in NORM state. If a serious hardware or
software error occurs, there is the potential that updated records can be lost.

For this reason, if you re-IPL the TPF system from NORM state, VFA restart
determines if the VFA buffers are still valid and, if so, the updated buffers are
immediately filed to DASD. The TPF system determines if VFA is valid since the last
IPL. If VFA is valid, the TPF system does not clear the VFA area or allow a
redefinition of the TPF system until VFA has been cleared. The TPF system only
allows an IPL with the same user configuration. This allows VFA restart to file VFA
buffers. Therefore, ensure that the system operator does not clear main storage
before re-IPLing.

Note: An automatic re-IPL does not clear VFA storage.

If a CPU changeover is being considered following a serious error, consideration
must be given to the updated VFA buffers that cannot be recovered if the TPF
system is re-IPLed on a different CPU. Before changing CPUs, it may be
worthwhile to try a re-IPL on the same CPU so the updated VFA buffers are filed.

Messages and Responses
The VFA commands provide the following operations:

v Define VFA buffer ratios, reserve chain sizes, and buffer reuse threshold values

v Enabling and disabling delay filing

v Display VFA status

v Display VFA buffer ratios, reserve chain sizes, and buffer reuse threshold values

v Indicate VFA utilization and efficiency

v Locate VFA residents

v Display VFA buffer usage

v Reset the RIAT control values.

The VFA commands are described in TPF Operations. Normal and error responses
are described in Messages (System Error and Offline) and Messages (Online).

Hardware Requirements
The following additional hardware is required by VFA:

v Additional main storage (depending on the use of the existing storage)

v The IBM 3990 Model 3 or later models with the multi-path lock facility (MPLF)
installed if you are defining VFA synchronization candidates.

See the TPF Migration Guide: Program Update Tapes for more information about
hardware requirements for the TPF system.

40 TPF V4R1 Database Reference

|
|

Record Caching

I/O performance is greatly enhanced when cache storage can directly access DASD
records in contrast to the overhead required to perform physical DASD accesses to
the DASD records. TPF support for DASD record caching is available with 2
features: The 3880 Record Cache RPQ and the 3990 Record Cache RPQ.

The IBM 3880 Storage Control Record Cache RPQ is a high performance record
caching storage controller specifically designed to enhance TPF DASD I/O
performance. The 3880 record caching support is limited to retentive data access.
TPF support for the 3880 Record Cache RPQ is referred to as record cache (RC)
support.

The IBM 3990 Storage Control Record Cache RPQ is a high performance record
caching storage subsystem designed to further enhance TPF DASD I/O
performance. The 3990 record caching support exploits the cache fast write and
DASD fast write extended functions of the 3990 hardware as well as the retentive
data access function of the 3880 Record Cache support. TPF support for the 3990
Record Cache RPQ is referred to as record cache subsystem (RCS) support.

This chapter gives you an overview of the record cache features of the 3880
Record Cache (RC) and the 3990 Record Cache Subsystem (RCS) RPQ. In
addition, the TPF functions that can be used in conjunction with these RPQs are
described. See the following hardware publications for complete operating
information:
v 3880 Storage Control Record Cache RPQ Introduction
v 3880 Storage Control Record Cache RPQ Description
v 3990 Storage Control Introduction
v 3990 Storage Control Planning, Installation, and Storage Administration
v 3990 Storage Control Operations and Recovery Guide
v 3990 Transaction Processing Facility Support RPQs.

3880 Record Cache RPQ
This section provides an overview of the 3880 Record Cache RPQ and a
description of the TPF functions you can use in conjunction with that RPQ.

Hardware
The 3880 Record Cache RPQ contains a large subsystem random access
electronic storage (as many as 64 megabytes) used to store active DASD data for
quick access. This means that frequently used DASD data can remain in the cache,
reducing the number of repetitive DASD accesses to a single initial I/O operation. In
addition, data stored in the cache can be accessed at a much higher speed than
data stored in the DASD device.

Modes of Operation
The 3880 Record Cache RPQ operates in either record access mode or direct
mode. All DASD devices attached to the storage director must operate in either
mode. To directly support TPF, the 3880 Record Cache RPQ (operating in record
access mode) stores single DASD records for accesses when requested by the
TPF system. Direct mode can access data directly from the DASD devices.

© Copyright IBM Corp. 1994, 2002 41

Initial Program Load
One function of the TPF IPL is to initialize the record cache control unit and place
the devices in record access mode, the normal operating state of 3880 attached
record cache devices. However, initializing to record access mode does not take
place for a general file IPL or an IPL of other than the first processor in a loosely
coupled complex. When storage or hardware failures prevent initialization or ready
status, or a device cannot be placed in record access mode, IPL processing notifies
the operator and continues the IPL by placing the devices in direct mode.

If the system is IPLed before a cache allocation request completes, the request
terminates and no allocation processing takes place. A warning message is issued
to notify the operator and the IPL continues. It is the system operator’s
responsibility to insure that the pending allocation operation is completed to the
3880 Record Cache Control Units in the complex using either the prior (current) or
new (target) allocation values.

DASD Processing and Error Recovery
TPF DASD support routines handle the new channel command words (CCW) for
record cache as well as any new error conditions that may result. DASD processing
CCWs are built by segment CJII from indicators set by IPL processing. Normally a
buffered CCW string is built to access record cache DASD.

I/O Retry
On a buffered CCW I/O failure with unit check and command reject, the DASD
program CCSONS retries the operation once using direct access CCWs. If the retry
is successful, direct access CCWs are used to address the device until either a
TPF IPL occurs or the device’s status changes. If the retry is unsuccessful, a
catastrophic error occurs.

Module Up/Down Processing
The ZMCPY DOWN command returns the record cache device to direct mode if it
was in record access mode. This allows other processors not running TPF to
access the device.

The ZMCPY UP command attempts to place the record cache device into record
access mode. If the device is being placed online on an available and initialized
record cache control unit, an attempt is made to place the device into record access
mode. If this attempt fails, the device is placed in direct mode and an error
message is issued.

If the device is the first device to be placed online for the record cache control unit
then the cache must be made ready before the device is put into record access
mode and initialized. If any failures occur, the device is left in direct mode.

The processing of a general file mount and dismount is similar to module up and
down.

Data Collection and Data Reduction
Performance statistics are collected for 3880 Record Cache Control Units and
devices attached to the control units. The ZMEAS command is used to offload the
collected data from each device. These statistics are displayed on the reports
generated by data reduction.

42 TPF V4R1 Database Reference

Restrictions
Nonretentive data is not supported by this RPQ. Loader general files cannot be
attached to this RPQ. Devices are not sharable among subsystems, but are
sharable among processors running the same subsystem.

Command Description
The TPF commands that support 3880 Record Cache operations are:
v ZBUFC ALLOCATE
v ZBUFC ALLOCATE IMPLEMNT
v ZBUFC ALLOCATE DISPLAY
v ZBUFC STATUS.

You are not required to modify the record cache, but you can adjust the ratios for
block sizes in keypoint 0 from the default values.

Note: Throughout the TPF publications, the term ratio refers to the hardware term
weighted values.

In addition, you can monitor data block usage and control unit status as explained
later in this section.

Specifying Block Size Ratios
You can partition the record cache into the 3 TPF record sizes (381, 1055, and
4096 bytes) by assigning block size ratios. Defaults for all 3 ratio values are set in
keypoint 0 at one, dividing the cache equally among the TPF block sizes. In
addition, one full track buffer is defaulted in keypoint 0.

You can change the block size ratios by using the ZBUFC ALLOCATE command.
The allocation is a 2 step process:

1. First use the ZBUFC ALLOCATE RC381-rr,RC1055-rr,RC4096-rr,RCBUF-bb
command to specify the target allocation values.

2. Next use the ZBUFC ALLOCATE IMPLEMNT command to implement those
values. These values will then be applied to all the record cache control units in
the complex.

The ZBUFC ALLOCATE DISPLAY command displays the current and target cache
allocation settings for the specified record cache control unit.

Monitoring Control Unit Status
The ZBUFC STATUS command lets you monitor the status of a control unit. This
display informs you of device operating modes, storage and interface status, and
the storage size allocated to each TPF block size.

For example, record access mode status information can help you determine which
devices to take offline. Placing these devices online again requires the ZMCPY UP
command and each record caching device should be brought online in record
access mode. If the device being placed online is the first device on a specific
control unit, then TPF issues an initialization sequence for the control unit before
placing the device into record access mode.

3990 Record Cache RPQ
This section provides an overview of the 3990 Record Cache RPQ and a
description of the TPF functions you can use in conjunction with that RPQ.

Record Caching 43

Hardware
The 3990 Record Cache RPQ is a high performance record cache subsystem that
provides improved throughput for DASD. The hardware contains 2 storage clusters,
each with 2 storage paths. There are as many as 8 channel attachments per cluster
and an inboard dynamic path selective (DPS) array. The hardware has subsystem
storage with as many as 256 megabytes of storage and a nonvolatile storage (NVS)
with as many as 4 megabytes of storage. The hardware can be configured as 2
subsystems splitting the DPS, cache, NVS, and storage paths and sharing the
channels (device level selection (DLS) configuration); or as a single subsystem with
4-path devices (device level selection enhanced (DLSE) configuration).

As with the 3880 Record Cache Control Unit, a subset of data stored on DASD can
also be stored in the cache. This data can then be accessed from the cache
instead of DASD to improve the I/O response time of the system. Additionally, the
extended function capabilities of cache and DASD fast write provide the benefits of
cache hits to write operations. A write operation indicating fast write data is done at
cache speed and does not require an immediate transfer of data to the DASD
surface. This data is written directly to the cache or nonvolatile storage and is
available for later destaging to the DASD surface.

Modes of Operation
The 3990 Record Cache Subsystem supports the following modes of access:
v Direct
v Track caching
v Record access mode.

Direct mode provides access to the attached devices as if they were attached via a
noncached nonbuffered subsystem. Direct mode is normally used for activities that
require direct access to the device, such as formatting or diagnostics, or for data
accesses when the cache is either not operational or not available to the
subsystem.

Track caching mode maintains full or partial track images in the cache according to
usage algorithms. Multiple record data transfer operations (that is, full track reads or
writes) use track caching algorithms.

Record access mode maintains individual record images in the cache according to
usage algorithms. Single record data transfer operations use record caching
algorithms.

Programmable Options
The 3990 Record Cache Subsystem RPQ supports the use of both CKD and ECKD
channel command chains. Record mode I/O operations can specify the following
access characteristics:
v Bypass cache (direct mode)
v Retentive
v DASD fast writes
v Cache fast writes.

Note: I/O operations that do not indicate record mode will operate in direct (bypass
cache) mode.

The differences between retentive, cache fast write, and DASD fast write, all of
which are caching accesses, are as follows:

44 TPF V4R1 Database Reference

v Retentive places the data in the cache, writes the data to the DASD surface, and
then presents device end status.

v DASD fast write places the data in the cache and in the nonvolatile storage and
then presents device end status. The data is written to DASD when space is
needed in the nonvolatile storage or in the cache, or when directed by a host
CCW request.

v Cache fast write places the data in the cache and then presents device end
status. The data is written to DASD only when cache space is needed or when
directed by a host CCW request.

TPF Record Cache Subsystem (RCS) Support

System Installation Procedure (SIP)
The system installation procedure supports the 3990 Record Cache Subsystem
RPQ by:

v Reserving space in #IBMM4 for the file copy of the record cache subsystem
status table (SSST).

v Inserting the maximum configured 3990 record cache subsystem SSID in
keypoint 0 from the IODEV macro parameters.

v Providing a SYSTC macro switch when the system is generated as having RCS
devices from the IODEV macro parameter information.

v Building the record caching attribute information in the RIAT table from
information in the RIATA macro specifications.

Note: If no caching attribute is specified for a given record ID, the default
caching attribute is retentive.

Extended RIAT Support
The Extended RIAT table is used to contain the record caching attributes associated
with a particular record ID. Table 3 summarizes these attributes and their functions.

Table 3. Record Caching Attributes

Attribute Function Description

RET Retentive Access The specified record ID is placed in the volatile control unit cache
and on the DASD surface when a file-type macro is issued.

CFWS Cache Fast Write Access
(Simplex Write)

The specified record ID is placed in the volatile control unit cache
when a file-type macro is issued and the cache is available. If
the cache is not available, the record will be written directly to
the DASD surface. A single write is issued to the prime module
only.

CFWD Cache Fast Write Access
(Duplex Write)

The specified record ID is placed in the volatile control unit cache
when a file-type macro is issued and the cache is available. If
the cache is not available, the record will be written directly to
the DASD surface. A duplexed write is issued to both the prime
and the duplicate modules.

DFW DASD Fast Write Access The specified record ID is placed in the cache and the
nonvolatile storage when a file-type macro is issued. If the cache
is not available, or the nonvolatile storage is not available, the
record is written directly to the DASD surface.

NO Bypass Cache The specified record ID is not a candidate for caching and all I/O
requests for this ID result in the record being read/written directly
from/to the DASD surface, thus bypassing caching for this record
ID.

Record Caching 45

Note: All read operations are done using the cache fast write attribute in order to
detect possible data loss conditions at the earliest possible time.

Initial Program Load
During IPL, each DASD attached to a 3990 Record Cache Subsystem Control Unit
is marked as a caching device. In addition, IPLB indicates whether or not a DASD
is a real-time module.

Unit check conditions caused by conflicting device information on the status tracks
of the DASD attached to the 3990 Record Cache Subsystem Control Unit may
result in acquiring access to the DASD by forcing the subsystem to re-establish its
global status information.

Unlike the 3880 Record Cache Control Unit, IPL of the loader general file attached
to a record cache subsystem control unit is supported.

System Initializer
The system initializer allocates storage for the record cache subsystem status table
(SSST). Both a memory copy and a file copy of this table are maintained. This table
contains the status of each record cache subsystem control unit in the system. The
system initializer also allocates storage for the AET (asynchronous event table) that
is used to monitor asynchronous I/O request operations. Additional processing is
performed to set up the dump table pointers and control table address pointers for
system use.

System Restart
The RCS restart component of TPF system restart brings all 3990 Record Cache
Subsystem Control Units and their attached devices to full caching capability,
initializes cache slot allocations, and detects and reports possible data loss
conditions since the last TPF IPL. This function also builds the record cache
subsystem status table data structures.

DASD Processing and Error Recovery
Write I/O operations to RCS devices are controlled by the record caching attributes
specified in the RIAT table for a specific record ID. The CCW chains are
dynamically modified on each I/O operation as required to specify the caching
attribute as indicated in the RIAT table.

The following restricted use macros result in using the retentive caching attribute as
the default:

FILSC File a single file record

FINSC Find a single file record

FLSPC File a special record

FNSPC Find a special record

FDCTC File data chain

Cache Fast Write Processing: Records with the fast write caching attribute can
be indicated as cache fast write simplex or duplex. When cache fast write is
indicated, all read operations are done from the prime module only. This insures
consistent data in the event of a cache failure. Write operations will be done to the
prime only if CFW simplex was specified; otherwise, the writes are performed to
both the prime and duplicate modules.

Module Up and Down Processing: When a module down operation completes,
the module is taken offline. All data in the cache is discarded because the module

46 TPF V4R1 Database Reference

is no longer considered current. If you want the module being taken offline to be
current, make sure a ZBUFC FILE command was previously completed to the
device. This will insure that fast write data is destaged to the DASD surface. The
module up function initializes devices that are attached to the record cache
subsystem control units.

Asynchronous Event Processing: Some control I/O operations associated with
the cache may take a long time to complete. These are I/O operations associated
with the Set Subsystem Mode (SSM) and the Perform Subsystem Function (PSF)
CCWs. A facility is provided whereby a long running operation can be started and
allowed to run asynchronously with other I/O activity. Actual completion of the
request is signalled some time later by the hardware via an attention interrupt. TPF
associates the completion of the operation with the original request by using the
asynchronous event table. This feature is only valid for I/O operations issued
through the use of the FDCTC macro.

Error Recovery Methodology
TPF recognizes the following error situations:

1. Unable to enable cache capability.

This condition results when a hardware failure is detected that precludes TPF
from using a caching resource.

2. Potential data loss detection.

This condition is reported during RCS restart and can result from the movement
of DASD from a record cache subsystem or a change in cache fast write ID
since the last TPF IPL.

3. Hardware failure while running.

This condition is reported via unit check/sense information or from receipt of a
state change interrupt.

In all cases, operator notification is provided indicating the error and the affected
RCS subsystem(s).

State Change Processing: Changes in the status of resources in the hardware
are signalled through a state change interrupt presented to the TPF system. This
state change notification results in the TPF system requesting latest subsystem
status and taking appropriate actions depending on the status change detected.

I/O Queue Thresholding: TPF considers any RCS to be running in a degraded
mode of operation if any loss of caching capability occurs. If this happens, TPF
provides an I/O queue thresholding mechanism to monitor the total subsystem
queue depth while an RCS is running in a degraded state. If the total queue depth
exceeds an RCS limit computed from user-specified information, a user exit is
invoked and actions are taken as specified by the user exit routine.

Data Collection/Data Reduction
Caching performance statistics are maintained in the 3990 Record Cache
Subsystem. These statistics are collected for the record cache subsystem control
units and attached devices. The ZMEAS command is used to offload the collected
data from each device. These statistics are displayed on the reports generated by
the data reduction package.

Restrictions
v A DLS configuration is only supported for attachment of a single 3380 DASD

device string.

Record Caching 47

v A DLSE configuration is only supported for attachment of a single 3390 DASD
device string.

v The dual copy facility of the 3990 subsystem is not supported.

v In a loosely coupled environment, TPF only supports a single path to a device.

Note: The TPF system supports multipathing with the concurrency filter lock
facility (CFLF).

v The record cache subsystem SSID must be unique for all subsystems in the
complex.

Command Description
The commands that support the 3990 Record Cache Subsystem (RCS) Control
Units are:
v ZRTDM DISPLAY
v ZRTDM MODIFY
v ZBUFC ALLOCATE
v ZBUFC ALLOCATE IMPLEMNT
v ZBUFC ALLOCATE DISPLAY
v ZBUFC FILE
v ZBUFC ENABLE
v ZBUFC STATUS
v ZBUFC THRESHLD
v ZBUFC PINNED DISPLAY
v ZBUFC PINNED DISCARD
v ZBUFC SETCACHE
v ZBUFC MAP

Specifying Record Caching Attributes
The ZRTDM DISPLAY command can be used to display the record caching
attributes for specified record IDs or for the short- and long-term pool overrides.

The ZRTDM MODIFY command can be used to modify the record caching
attributes for specified record IDs or for the short- and long-term pool overrides.

Specifying Block Size Ratios
You can partition the record cache subsystem into the 3 TPF record sizes (381,
1055, and 4096 bytes) by assigning block size ratios. Also, you can assign full track
slots to be used for buffering.

You can reallocate cache storage by following these 2 steps:

1. First use ZBUFC ALLOCATE RCS381-pp,RCS1055-pp,RCS4096-pp,RCSBUF-tt
to specify the target allocation values.

2. Next use ZBUFC ALLOCATE IMPLEMNT to implement those values. These
values will then be applied to all the record cache subsystem control units in the
complex.

The ZBUFC ALLOCATE DISPLAY command can be used to show the current and
the target cache allocation ratios.

Disabling Fast Write Caching Functions
The ZBUFC FILE command allows you to destage all modified data in the cache
and nonvolatile storage to the DASD surface. In addition, all fast write caching
capability is disabled to prevent any further modified data from entering the cache.
The ZBUFC ENABLE command is used to re-enable fast write caching capability.

48 TPF V4R1 Database Reference

Enabling Caching Functions
The ZBUFC ENABLE command lets you re-enable all caching capability of an RCS
Control Unit and its attached devices. This message should be used after a ZBUFC
FILE was issued.

Displaying Control Unit Status
The ZBUFC STATUS command displays the status of the RCS Control Unit and
attached devices.

The ZBUFC STATUS RCS command displays internal TPF status information
associated with the RCS support package.

Displaying or Changing I/O Queue Threshold Value
The ZBUFC THRESHLD command lets you display or modify the current I/O queue
threshold value. This value is used to calculate the overall threshold value used
when the TPF system is monitoring the I/O queues for an RCS running in degraded
mode.

Displaying Pinned Data Report
The ZBUFC PINNED DISPLAY command lets you display the pinned data for a
given record cache subsystem attached device. Pinned data is data in the cache or
nonvolatile store indicated as having been unable to be written to the DASD
surface.

Discarding Pinned Data
The ZBUFC PINNED DISCARD command allows you to discard all pinned fast
write data associated with a specific DASD device from the 3990 Record Cache
Subsystem cache and nonvolatile storage.

Use this command only for recovery from cache related error conditions where
removal of the pinned data is required to recover fast write caching function for the
device or 3990 Record Cache Subsystem.

Set Cache Operating Modes
The ZBUFC SETCACHE command allows you to alter the 3990 Record Cache
Subsystem caching status for the various caching resource elements for the
purposes of recovery cache capability following certain cache related errors.

Use this command only for recovery from cache related error conditions.

Attention: Use this command carefully; data loss from cache or nonvolatile storage
is possible.

Displaying Map Report
The ZBUFC MAP command lets you display the relationship between an RCS
control unit and its attached devices. The report indicates the RCS SSID associated
with a particular device or the symbolic device address range(s) associated with a
particular RCS SSID.

Processing Differences between the 3990 Model 3 and the IBM
Enterprise Storage Server

TPF record cache subsystem (RCS) support was introduced with the 3990 Model 3
Record Cache RPQ. With the introduction of the 3990 Model 6, subsequent
generations of DASD controllers that are record cache capable provide the original
3990 Model 3 Record Cache RPQ functions as standard product features. To
maintain backward compatibility with TPF RCS support as well as to provide a
migration path for TPF users, these controllers provide a TPF mode setting in the

Record Caching 49

Vital Product Data (VPD) area of the controller. This setting enables the controller
microcode to maintain the original Record Cache RPQ API for TPF. This concept is
further provided with the IBM Enterprise Storage Server (ESS) by allowing the
definition of 3990 Model 3 TPF logical subsystems.

From a TPF software perspective, communicating with DASD attached to newer
versions of the 3990 is logically the same as communicating with DASD attached to
the original 3990 Model 3 controller. However, the internal processing related to the
caching and handling of various I/O operations has changed. These changes
simplified and streamlined internal processing by removing a number of the
processing options that were available to the TPF system in the original record
cache implementation while taking over the management of other aspects of the
cache that previously required user action.

Operationally, the TPF system maintains the intent of the original 3990 Model 3
Record Cache RPQ implementation, but the effects of the processing actions in the
ESS have changed. The trade-off to the TPF system is to maintain compatibility
with the existing code while allowing for a migration path to the ESS for TPF users.

The following table summarizes the differences in the internal processing between
the 3990 Model 3 and ESS as they relate to the TPF system.

Table 4. Processing Differences between the 3990 Model 3 and ESS

Caching Attributes

3990 Model 3:

The record ID attribute table (RIAT) specifies caching
attributes on an individual I/O basis. Valid caching
attributes are as follows:

v Cache data in the volatile cache using the cache fast
write (CFW) attribute

v Cache data in the nonvolatile cache using the DASD
fast write attribute

v Cache data in the volatile cache and write it to the
DASD surface using the retentive write attribute

v Bypass caching data records by writing directly to the
DASD surface.

ESS:

By default, all written data is handled as fast write data
and is written to both cache and nonvolatile storage
(NVS):

v Data is only placed in cache if the I/O requests fast
write.

v Data is placed in both cache and NVS if the I/O is a
normal cache replacement.

TPF I/O requests with one of the fast write attributes will
function as originally implemented. Attributes requesting
to bypass caching result in the use of the cache but the
records age out of cache by means of accelerated least
recently used (LRU) lists.

Enabling Cache and Nonvolatile Storage (NVS)

Differences affect record cache subsystem (RCS) restart actions, which ensure all cache capability is fully enabled
and ZBUFC command processing, which allows user control in the preparation for cache allocation and cache

recovery action.

3990 Model 3:

Users have two levels of control:

v Volatile and nonvolatile caching elements associated
with a specific device

v Volatile and nonvolatile caching elements associated
with all devices at a subsystem level.

Each caching element allows for user control to enable or
disable at the device or subsystem level.

ESS:

Controls associated with options of the set subsystem
mode (SSM) channel command are at a higher level.
While the I/O API associated with SSM is still supported,
the operations at the control unit are largely accepted but
ignored.

For example, only three SSM parameter options are
functional on the ESS:

v Activate CFW for the subsystem

v Deactivate CFW for the subsystem

v Force deactivate DASD fast write for devices.

50 TPF V4R1 Database Reference

Table 4. Processing Differences between the 3990 Model 3 and ESS (continued)

Record Cache Allocation

3990 Model 3:

Cache memory must be partitioned into record and
multi-path lock facility (MPLF) slots in varying proportions
for the standard TPF record sizes. Users must allocate
the cache and the associated ratios appropriately for
optimum usage.

ESS:

Partitioning of the cache for record and MPLF lock slots
is managed by the control unit and is maintained for
optimum usage based on processing patterns. TPF I/O
API operations to set and query the cache allocation are
maintained and still reflect desired ratios as requested by
the ZBUFC commands. The actual allocation, however, is
managed internally and dynamically by the control unit.

Performance Statistics

3990 Model 3:

Cache statistics are reported for each TPF record size
(381, 1055, or 4096 bytes) for each device. This
information is collected by TPF data collection processing
for offline data reduction reporting and could be used to
tailor the cache allocations in the most optimum way.

ESS:

Manages the cache allocation dynamically and, as a
result, only one set of cache statistics is maintained for
each device. The statistics are normalized for the TPF
data record sizes and reported in terms of the TPF
1055-byte record size.

ZBUFC Commands

See TPF Operations for more information about the ZBUFC commands.

ZBUFC ALLOCATE
Use this command to set the desired cache allocation ratios for both record and lock space.

3990 Model 3:

Users specify cache and lock space allocations for
optimum performance.

ESS:

Actual allocations and cache partitioning are managed
dynamically by the control unit. For compatibility reasons,
the specified TPF allocation values are returned to the
TPF query allocation requests.

ZBUFC ALLOCATE IMPLEMNT
Use this command to apply the allocation changes that were specified using the ZBUFC ALLOCATE command.

3990 Model 3:

Allocation changes are applied to the control units that
are not currently initialized with the new allocation values.

ESS:

Accepts and ignores the TPF request to change the
actual cache allocations in use in the control unit,
although the desired TPF ratios will be returned on
allocation queries from TPF.

ZBUFC FILE
Use this command to destage existing modified cache data and prevent additional accumulation of modified data
in cache or NVS in preparation for the hardware reconfiguration or system shutdown.

3990 Model 3:

I/O operations requesting data records be written with
one of the fast write caching attributes results in the data
being written to both the cache and the DASD surface.

ESS:

Only I/O operations requesting data to be written with the
CFW attribute are affected and result in the data being
written to both the cache and the DASD surface.

ZBUFC ENABLE
Use this command to enable all the caching functions for one or all of the 3990 RCS control units in the
complex.

Record Caching 51

Table 4. Processing Differences between the 3990 Model 3 and ESS (continued)

3990 Model 3:

I/O operations requesting data records be written with
one of the fast write caching attributes results in data
being written to cache or NVS, and subsequently,
destaged to DASD as cache space is needed.

ESS:

Only I/O operations requesting data to be written with the
CFW attribute are affected and result in the data once
again being written to the cache, and subsequently,
destaged to DASD as cache space is needed.

ZBUFC SETCACHE
Use this command to change the cache resource states for the 3990 RCS to perform cache error recovery
actions.

3990 Model 3:

Allows you to perform various cache recovery operations.
The syntax allows you to enable or disable cache
elements identified at a device or subsystem level.

ESS:

The following functional processing options are affected
for this command:

v Activation/deactivation of CFW

v Force deactivation of DASD fast write for a device.

All other options are accepted and ignored at the control
unit.

52 TPF V4R1 Database Reference

Part 3. Utilities

This part contains information about the following database utilities:
v Capture and restore
v Database reorganization (DBR)
v Recoup
v Real-time disk formatter
v FACE driver and offline interface (DFAD)
v TPF transaction services
v TPF collection support.

© Copyright IBM Corp. 1994, 2002 53

54 TPF V4R1 Database Reference

Capture and Restore

The information that is stored on the online disk files represents a considerable
investment by the user. The integrity of this data is vital to system operation.

The capture and restore utility serves as the vehicle for system fallback. It allows
you to capture to tape all of the system variable online data. If a serious hardware,
software, or operator-induced failure occurs, you can restore all or selected parts of
the online data files to their state at a predetermined point in time.

Note: With TPF transaction services processing, the capture and restore utility will
bring the TPF database back to a consistent commit state when possible.

Capture and Restore Processing Overview
The capture and restore utility is controlled by the ZFCAP and ZFRST commands,
respectively. The commands support options to start, abort, pause, restart, add or
delete tape devices, and request status. A single purpose, multiple-entry concept is
used to ensure concurrently overlapping I/O operations. The messages are verified
and sent to the participating processors where the appropriate routines are started.
It is important that you identify the participating processors before the capture
function starts. Once the function starts, you cannot add more processors to the
participation list. Use the ZPROT command to add and assign processors for the
capture and restore utility. See TPF Operations for more information about the
capture and restore utility commands.

Automatic tape mounting is suspended for capture and restore, except for devices
used for exception recording and keypoint capture and restore. If capture
processing starts on a device that is enabled for automatic tape mounting and the
device contains an ALT tape, the suspend processing dismounts the ALT tape
without unloading it.

Capture has a message analyzer to:
v Verify messages
v Determine the participating processors
v Synchronize exception recording on the processors
v Set up the necessary tapes
v Start capture processor activity.

The restore message analyzer validates the message and starts the restore
processor activity.

Special purpose programs are called to provide specific elements of the capture
and restore utility. Notable routines handle start/continue/EOJ, read/write, restart,
abort/pause, tape add/delete, status, exception recording/logging, security, and error
recovery.

Data filed out as part of normal capture (as opposed to exception recording) is
written to general tapes referred to as capture tapes. These tapes can be
subsequently read by the restore function. Tape drives and tape drive pairs for use
by capture or restore are listed on the ZFCAP or ZFRST command. Additional
drives or pairs can be added during capture or restore. Each tape drive or pair of
drives can be used to capture 1 module at a time. Channel and control unit

© Copyright IBM Corp. 1994, 2002 55

utilization limits determine how many of the assigned tape drives may be in use by
capture at one time. See “Capture Processing” for more information about channel
and control unit utilization.

One disk module can require more than 1 tape for its capture. If the module is
being captured to a tape pair, at the end of the first tape, data continues to be filed
out to a tape on the second drive in that pair (called the alternate drive). The drives
in a tape pair flip-flop in this way until the entire disk module is captured. If the tape
drive was assigned to capture as a single tape drive, and not as a tape drive pair,
then capture first attempts to find another single drive (that was assigned to
capture) that is not currently in use. If no other drive is available, the system
prompts the operator to mount a standby capture tape.

Restore works in a similar way, with all tapes for a given module loaded to a single
drive or to a pair of drives.

Real-time tapes are used for exception recording. Exception recording tapes must
be mounted by the operator for all active processors before capture can be started.
To restore the records on these tapes, the tapes used for all processors active at
the time of capture must be mounted for a single processor so that the records can
be read from tape and filed in the correct order.

Capture Processing
Either all or selected online disks can be captured. Duplicate copies of duplicated
records on each disk are not captured. Many modules can be preserved
simultaneously. The modules to be captured and their respective tapes should be
chosen to obtain the maximum possible channel separation. The total number of
disk captures that are active at any one time depends on a particular system’s
configuration and the user-specified limits on load balancing. This number, however,
can be changed by a command. To improve operator efficiency, the capture
program selects a tape on which to capture a specific disk, assigns a symbolic tape
name to each tape, and causes the tape to be internally mounted.

During disk capture, you control the load balancing across channel paths and
control units by limiting the maximum number of captures that can occur
simultaneously on a:
v Channel path for DASD or tape
v Device control unit for DASD or tape.

Use of a channel path and control unit are limited to the values set for the
DASDCU, DASDCH, TAPECU, and TAPECH parameters. For example, if a channel
group is handling the maximum amount of captures for tapes, no additional
captures will be allocated to the tape devices that are serviced by that group until
the number of captures are reduced.

Capture sets the value for DASDCU to 1; you cannot change this value. This
ensures that no group of channel paths or control units is overused and keeps
DASD and tape module queues at manageable lengths. You can change the value
for DASDCH, TAPECU, and TAPECH with the ZFCAP CHANGE command.

56 TPF V4R1 Database Reference

A typical configuration of DASD and tapes channel paths has the DASD and tape
control units on separate paths.

10 11

3090

Tape
Control

Unit

DASD
Control
Unit

Channel Paths

The maximum values for the preceding figure are:
DASDCU: 1 TAPECU: 1 DASDCH: 1 TAPECH: 1

In other words, 1 DASD can participate in a capture under any given control unit
and only 1 DASD can be started on a channel path, or CHPID, at a time; similarly
for tape.

If an installation takes advantage of multipathing, the channel paths can run through
the same control units to provide the additional pathway flexibility.

10 11

3090

Tape Control Unit

DASD Control Unit

Channel Paths

The maximum value for this installation is:
DASDCU: 1 TAPECU: 1 DASDCH: 1 TAPECH: 1

This is the same as the previous configuration, but in this case multipathing
definitions have been put into the IOCP generation providing more flexibility.

There is a special consideration when a channel path (CHPID) is shared between a
tape device and a DASD on the same processor. The DASDCH or TAPECH values
must include any DASD or tape running on the same channel path. If the number of
captures is incremented, the second kind of capture (DASD or tape) requested is
not started until the first is completed. This is shown in the following figure:

10 11

3090

Tape Control Unit

DASD Control Unit

Channel Paths

The maximum value for this installation is:

Capture and Restore 57

DASDCU: 1 TAPECU: 1 DASDCH: 2 TAPECH: 2

Notice that the number of captures on the channel path for both DASD and tape is
the number of control units on that path that can possibly be expected to be running
capture.

The relationship between the DASDCU and DASDCH, and the corresponding
TAPECU and TAPECH parameters provides a means for balancing capture
resource requirements across numerous devices, control units, and channel paths.
For example, in Figure 6, a single channel path or CHPID is shown with 2 DASD
control units (C1 and C2) and 3 devices (D1, D2, D3). DASDCU is set to 1. This
means that only a single device will operate at a time under a given control unit.
The DASDCH parameter allows you to specify how many devices can be run under
a single CHPID.

For example, when DASDCU equals 1 and DASDCH equals 1, you can capture
device D1. Devices D2 and D3 are not available for capture at the same time. If
you leave DASDCU equal to 1 but set DASDCH equal to 2, you can capture 2
devices, D1 and D2, at the same time. You cannot capture device D3 at the same
time because DASDCU is 1. DASDCU is restricted to 1 for performance reasons.
(An example of TAPECU > 1 appears later.) If you leave DASDCU equal to 1 but
now set DASDCH equal to 3, 3 devices can be captured at the same time on the
CHPID. The configuration to do this is for another control unit to appear below C2,
call it C3, with the third device attached to it. Device D3 in this example would not
participate in the capture at the same time as D1 (because DASDCU equals 1).

There are configuration considerations for the techniques used for balancing
capture loads for the following IBM 3990 models:
v IBM 3990 Model 2 with the limited lock facility (LLF)
v IBM 3990 Model 3 with LLF running record buffer emulation.

The LLF static switch may cause even and odd addresses to be placed on different
channels. For example, if your configuration defines device addresses 4E0, 6E1,
4E2, 6E3, and so on, the even addresses are placed on channel 4 and the odd
addresses are placed on channel 6. However, for correct load balancing, all the
device addresses of these control units must have the same channel address. For

DASD D2

DASD D3

DASD D1

3090 Processor

CHPID

DASD CU
C1

DASD CU
C2

Figure 6. Capture and Restore Load Balancing Using DASDCU and DASDCH

58 TPF V4R1 Database Reference

example, the addresses in the previous example can be defined as 4E0, 4E1, 4E2,
4E3, and so on. This is not a concern for the IBM 3990 Model 3 running record
cache.

Load balancing is directly related to site resource requirements and the degree of
multipathing found in the configuration. The configuration is described during
Input/Output Configuration Program (IOCP) generation. See ES/9000, ES/3090
Input/Output Configuration Program User’s Guide and ESCON Channel-to-Channel
Reference for more information about IOCP generation.

The TAPECU and TAPECH parameters function similarly. The TAPECU parameter
is not restricted to one with tape, however.

The top part of Figure 7 on page 60 shows 1 CHPID connecting a processor with a
single tape control unit. Under this control unit there are 4 tape devices. If TAPECU
equals 1 and TAPECH equals 1, only 1 of these tape devices can participate in
capture at a time. If TAPECU equals 4 and TAPECH equals 1, only 1 tape can
participate at a time. If TAPECU equals 4 and TAPECH equals 4, all 4 tape devices
can run capture at the same time.

The bottom part of this figure shows 4 CHPIDs connecting the single tape control
unit. This is a multipathing configuration. Using the multipathing aspect you can set
TAPECU equal to 4 (to allow 4 tape devices to operate under the same control unit)
but set TAPECH equal to 1 (thereby limiting the number of tape devices operating
at the same time on the CHPID to 1). The multiple channel paths to the same
control unit satisfy this restriction, but still allow 4 tape devices to be run at the
same time. So, the two parts of this figure provide the same results, which is 4 tape
devices participating in capture at the same time.

The first part shows the TAPECH parameter set to allow more tapes on the CHPID
(TAPECH=4). In the second part the additional CHPIDs are used to run those same
4 tape devices while restricting each CHPID to a single tape device. Load balancing
helps to balance the capture resource requirements.

Capture and Restore 59

The capture functions are independent entities for each subsystem in a multiple
subsystem environment. Multiple subsystem capture can occur simultaneously.
However, from a performance standpoint, it should be limited to a single subsystem
per processor.

There are 2 options available when starting capture. The first option causes the
capture of all online disk packs. The second option results in the capture of
specified modules. For a capture all (the ZFCAP ALL command) request, specify
tape devices from all tape channels. The capture tapes must be pre-initialized and
placed on the tape drive for each participating processor and made ready. The
capture function assumes that all tape drives specified to it as available are always
made ready with a capture tape. The capture function selects a tape drive to
achieve the best possible channel separation, mounts the tape internally, handles
switching to multiple reels if necessary, and causes the tapes to be rewound and
unloaded when completed. The capture function selects the module to be captured
to a particular tape based on disk channel and control unit separation.

In a loosely coupled environment, capture is started from a single processor.
Processor participation is determined by active entries in the processor resource
ownership table (PROT) that are assigned before starting capture with the ZPROT
command. The individual option of file capture is limited to a single processor. See
TPF Operations for more information. Before capture starts, the input message is
verified to determine the following:

3090
Processor

Tape
Drive

Tape
Drive

Tape
Drive

Tape
Drive

Tape
CU

Tape
Drive

Tape
Drive

Tape
Drive

Tape
Drive

Tape
CU

3090
Processor

Figure 7. Capture and Restore Load Balancing Using the TAPECU and TAPECH Parameters

60 TPF V4R1 Database Reference

v At least 1 capture tape device was specified for each participating processor.

v All participating processors are in utility (UTIL) state or higher.

v Exception recording (XCP) tapes are mounted on all active processors, whether
they are participating or not.

v There is an active PROT entry for the initiating processor.

When the previous conditions are met, the capture function is started in the
designated processors and exception recording (XCP) is started in all active
processors. Once started, each processor proceeds independently in selecting
modules for capture so as not to interfere with the modules already in progress by
other processors. When a participating processor exhausts all selection possibilities,
a PROCESSOR COMPLETE message is displayed and the capture function ends
for that processor.

In loosely coupled and multiple database function (MDBF) systems, the control unit
tables are processor-shared, though the values for DASDCU and TAPECU are not
shared. These values are held in processor-unique, capture working keypoints. This
means that apparent inconsistencies can occur. For example, if TAPECU equals 5
on CPU B and TAPECU equals 10 on CPU C, 10 captures can be started on a
control unit, even though processor B sets the limit to 5. In effect, the highest
DASDCU or TAPECU value across all of the processors prevails. The same
apparent inconsistency can occur for subsystems also. For example, if TAPECH
equals 5 in the basic subsystem (BSS) and TAPECH equals 10 in SS2 (a
non-BSS), 10 captures can be started on the CHPID tape despite the limit in the
BSS. There are no restrictions to prevent subsystems from sharing CHPIDs or
control units.

Exception Recording
Capture is designed to run in a real-time environment. Therefore, records can be
updated on disk files that have already been written to the capture tape. When file
capture is started, an indicator is set for the control program, which examines the
address of each record that is written to disk file when this indicator is on. If the
address is behind the current capture location, a copy of the record is written to an
exception recording (XCP) tape. You have the option of not performing exception
recording certain record types. For example, you may choose to ignore short-term
record updates in order to reduce the exception recording (XCP) tape load on the
TPF system. This is done by turning off these record exception recording indicators
in the record ID attribute table (RIAT). Exception recording is not stopped
automatically when capture is completed in order to allow the captured data to
reflect the state of the online files at later time. Discontinue exception recording by
entering a command. If an IPL-restart occurs, the capture function itself must be
restarted by a console order but exception recording automatically continues.

After a capture of all modules, and while exception recording is still in progress,
individual modules can be recaptured and exception recording will continue on all
modules. This is done by using the individual mode of capture and can be done as
many times as necessary, but only following a capture of all modules. A capture of
all modules cannot be started while exception recording is in progress.

The exception recording and logging tapes are real-time tapes. Therefore, tape
drive utilization can be improved by mounting an alternate (ALT) tape instead of a
standby output tape.

Capture and Restore 61

Record Logging
Record logging allows you to log to tape, at any time, all updates to user-specified
record types on file. These tapes are the real-time logging tapes. Logging is started
and discontinued by entering a command.

Note: If logging is active when capture is started, the logging tapes will also be
used as the exception recording tapes.

When multiple subsystems exist, record logging is started on a subsystem level.
The real-time logging tapes may be unique or shared by the different subsystems.

In a loosely coupled environment, the start and stop logging functions affect all
active processors and thereby require active logging tapes on all processors for the
function to start.

If an IPL-restart occurs, logging continues automatically.

Capture of Keypoints
The keypoint capture function is provided to capture the system keypoint records,
tape label directory (TPLD) records, and tape label mask records (TLMR) to the
KPC tape. Keypoint capture is started automatically at the end of the file capture
function when the stop exception recording message is displayed following a
capture ALL request. The subsystem keypoints for all generated processors are
captured to the KPC tape. Keypoints that are shared between subsystems are
captured only when keypoint capture is processing in the basic subsystem (BSS).
Configuration-dependent keypoints (keypoints 1, 6, and I) will not be captured.
Keypoint capture can also be started by command input.

Restore Processing
There are 3 phases to restore processing:
v Phase 1 restores the capture tape records.
v Phase 2 restores logging and exception recording tape records.
v Phase 3 restores keypoints.

In phases 1 and 2, duplicated records are restored on both the prime and duplicate
modules, if any, if the following conditions exist:
v A restore ALL function is started.
v The duplicate restore option is selected.
v Both the primary and duplicated modules were selected for restore.
v A selected module is fully duplicated.

If none of these conditions exist, duplicate tracks are not restored on either the
primary or duplicate modules.

The 3 phases for restore are described in more detail in the following sections.

Restore Generic Capture Tape (CAP)
Phase 1 restores the capture tape records. When a restore is required, you have
three options for the restore of the capture tape file (CAP):
1. Restore all online disk packs.
2. Restore only specified modules.
3. Restore all records for a given address range.

62 TPF V4R1 Database Reference

The optional parameter (D) may be added to the end of each message to indicate
the duplicate restore option. In options 2 on page 62 and 3 on page 62, duplicated
records are restored whether or not both the primary and duplicate copies lie in the
area to be restored.

You may also specify the optional FZ and BP parameters. The FZ parameter means
that zeroed records are to be filed. The BP parameter means that reel sequence
checking will be bypassed.

If more than 1 tape is required, as in the case of a restore ALL request, tape drives
should be selected from as many different channels as possible. This will minimize
restore time. The drives specified in the command should be separated by slashes
(/). The mounted tapes should be for disk modules on the maximum number of
different channels. Subsequent restore tapes should be placed on the available
drives in the same way.

If multireel tapes are to be restored, tape device pairs should be used to minimize
delays because of tape rewind. The 2 drives must be on the same channel and
control unit. The first reel should be mounted on the active drive and the next reel
on the alternate drive. Subsequent reels would be mounted in a flip-flop fashion.
When the rewind of the next-to-last reel is completed, that drive should be made
ready with the first (or only) reel of another module to be restored (if any modules
still remain to be restored).

You only need to ready the tape drives. Restore ensures that the tapes are
mounted and will rewind and unload them when finished. However, restore
assumes that all drives that are made available to it have CAP tapes on them. If a
tape mount error occurs, the drive should be made ready with the correct input tape
but you should not enter the tape mount command.

In a loosely coupled environment, as previously described, file restore is started
from a single processor. Processor participation in the restore function is
determined by active entries in the PROT table. See TPF Operations for more
information about the ZPROT command.

Once started, each processor proceeds independently restoring from the tape
devices assigned to that processor. As in capture, the processors that are to
participate in the restore must be active when the function is started. No provisions
are available to allow more processors to participate once the function is started.
The selective module restore function is limited to a single processor. The
restoration of data can be to a single disk or a number of disks concurrently. As
with capture, the number of disks to be operated on at any one time depends on
the system configuration.

Image-related records will not be restored when records associated with TPF
images are bypassed. Records that are bypassed include:
v Core image restart area (CIMR) records
v Keypoint records
v IPL area records
v Keypoint staging area records
v E-type program area records
v Program history area records
v Image pointer records (CTKX)
v Any record types that have RESTORE=NO coded on the RAMFIL macro,

including #XPRG records containing (ISO-C) C programs.

Capture and Restore 63

You can restore these records to a module with the ZIMAG COPY command or by
using one of the loaders (general file loader or auxiliary loader).

In addition, the tape label directory (TPLD) records and tape label mask records
(TLMR) will not be restored because they are actively used during the restore
function. These records are captured on the KPC tape by the keypoint capture
function, and you can restore these records to a module using the ZFRST KPT
command.

Restore Logging and Exception Recording (XCP) Tapes
Phase 2 restores logging and exception recording tape records.

The records that are logged to the real-time logging and exception recording tapes
can be restored to all modules, a specific module, or an address range in a module
or encompassing many modules. Time parameters are required that specify where
logging restore will start and where it will stop, determined by time-stamp records
on the restore tapes. The time parameter for exception recording (XCP) specifies
where XCP restore will start. This time is generally the time when capture was
started.

The restore of logging and exception recording (XCP) tapes in a loosely coupled
environment requires that you mount tapes for all processors that were active at the
time of capture. This function is not shared by the participating processors but can
be started in any one of them.

Restore Keypoints
Phase 3 restores the keypoint records.

Keypointing is prevented while a restore is in progress to ensure the integrity of the
captured database. While keypointing is prevented by restore, updates are still
allowed to keypoints that are not captured (see TPF Operations). Because these
keypoints cannot be restored, data corruption during restore is not a concern. Data
corruption of restored keypoints (including globals) is also not a concern during a
module restore because a subsequent IPL is not expected. Therefore, keypointing
is prevented only by the following input messages:
v ZFRST CAP ALL
v ZFRST XCP ALL
v ZFRST KPT
v ZFRST RESTART (if after ZFRST CAP ALL).

Keypointing remains disabled until you perform the subsequent mandatory IPL. If
you perform the IPL before the logging records are restored, another IPL is required
to enable keypointing. IPL as soon as possible after the restore to prevent possible
data corruption by the time-initiated keypoint update routines. In a loosely coupled
environment, the complex must be collapsed down to 1 processor before you
re-IPL. This ensures that the proper initialization of the keypoint records takes place
at system restart.

Note: Keypoint B is not fully restored; the VFA and lethal utility switches are not
restored.

Capture Considerations
Depending on your operational schedule, file capture can be done in two ways:

v Real-time online capture.

64 TPF V4R1 Database Reference

v Non-real-time online capture. This has the advantage of limited or no file
interference, and no exception records are written. This method cannot be used
for a continuously operating system.

It is recommended that you preform a capture daily in order to minimize the data
loss if an irrecoverable failure occurs. The optimum time to capture, from the point
of view of file regeneration, is immediately following file maintenance. In addition to
the daily capture, it is recommended that files are captured:
v Before and after fixed-file reorganization
v Before and after file pool reallocation
v Before major program updates.

Record Logging
Record logging can be used as:

v A complete file recovery means against hardware failure but at a cost of
additional system load and hardware requirement during peak periods of
operation

v A test tool to verify the updating of certain record types during program
modifications or additions

v A means of data collection for additional analysis.

Keypoint Capture
The keypoint capture function is normally used after file capture to obtain the latest
copy of the keypoints.

Restore Considerations and Procedures
As mentioned earlier, you can restore all modules (referred to as a total restore) or
a selected area of a file or single module (referred to as a partial restore).

A total restore is necessary for the following conditions:

v Destructive online testing of the system

v Major system software failure affecting vital records

v Major hardware failure in which both prime and duplicate copies of some records
are destroyed

v Major operator error causing destruction of vital system records.

A partial restore is necessary for a hardware failure; for example, damage to a
module or a bad drive causing writes to the module that are not valid.

Note: With TPF transaction services, partial restores will not necessarily produce a
consistent commit system.

For a damaged track, a file copy should be carried out to another module and the
unreadable records repaired or initialized under coverage programmer control. File
recoup can be used as a tool for detecting chains in this process that are not valid.
This procedure allows the TPF system to remain online for normal activity during
the repair process. See “Recoup” on page 103 for more information about recoup.

Restore Procedures
This section describes the procedures for a:
v Total restore without a database
v Total restore with a database

Capture and Restore 65

v Partial restore.

Total Restore without a Database
This procedure is for restoring a TPF system (basic subsystem (BSS) or
subsystem) that has no database.

To restore the captured data records to their respective locations on the online files,
prepare all the system disks so that the TPF system can be IPLed, cycled to UTIL
state, and restored. To do this:

1. Format all disks according to the system configuration.

2. Do a full load of the general file. See TPF System Installation Support
Reference for more information about the loaders program.

3. IPL the general file and cycle the system to 1052 state.

4. Deactivate and initialize the tape label directory (TPLD) records and the tape
label mask records (TLMR) with the ZTLMR command.

5. Create tape labels for data pilot tapes (SDF) and restore tapes (KPC) using
the ZTLBL command.

6. Activate tape label directory records and tape label mask records using the
ZTLMR command.

7. Load the following pilot tapes:
v Data records
v SCK.

See TPF System Installation Support Reference for more information about
loading tapes.

8. Load the SNA definitions using the ZNOPL command.

9. IPL the online module and cycle to utility (UTIL) state.

10. Restore the system keypoint records, the tape label directory (TPLD) records,
and the tape label mask records (TLMR) from the KPC tape by entering the
ZFRST KPT command.

11. Follow the procedures for a total restore in General Total Restore Procedures.

See TPF Operations for information about all the commands.

Total Restore with a Database
To do a total restore of packs that have incorrect data, follow these steps:

1. Cycle the system or desired subsystem to UTIL state.

2. Follow the procedures for a total restore in General Total Restore Procedures.

General Total Restore Procedures
After following the procedures outlined in “Total Restore without a Database” or
“Total Restore with a Database” continue as follows:

1. Restore all the disk files from the latest set of capture tapes.

2. Re-IPL the TPF system.

3. Restore the exception recording (XCP) tapes.

4. Restore the system keypoint records, if you did not do this procedure already
in “Total Restore without a Database”.

5. If the system is loosely coupled, collapse the complex to 1 processor.

6. Re-IPL the TPF system and cycle up to utility (UTIL) state.

7. Restore the LOG tapes if logging was active during capture.

8. Reconcile the file pool counts with the ZRFPC command.

66 TPF V4R1 Database Reference

9. If you did not select RCB records or short-term pool records for exception
recording during real-time capture, they must be initialized to delete incomplete
transactions and references to short-term pool addresses. This is done by
using the ZRCBI command.

10. Because transactions that were completed since capture are determined by
the automatic switching of the RTA at the conclusion of exception recording, it
may be desirable to run file regeneration if compatible with any logged data.

11. You can bring the system online by entering the ZCYCL NORM command.
GFS restart will start and update the FPDR. Run recoup to verify the file pool
directory records.

Partial Restore
For a restore of 1 or multiple modules, follow these steps:

1. Format the disk modules according to the system configuration. See “Real-Time
Disk Formatter” on page 117 for more information.

2. Cycle the system to 1052 state because records that are needed in the restart
schedule will be duplicated on other modules. In this case, it is assumed that
the restart records are duplicated records.

3. Remove the RTA tape by entering the ZTOFF command for the RTA tape.

4. IPL the system. If the new pack is the prime module, IPL from the duplicate
module.

5. You will receive a message requesting you to mount the RTA tape. Enter
messages to take the modules to be restored offline.

6. Mount the RTA tape.

7. The system will now come up to 1052 state. Enter the messages to bring the
requested modules back online. This will cause duplicate updating to start
automatically.

8. Cycle up the system to utility (UTIL) state.

9. Start the restore for the requested modules.

This procedure can be followed for more than 1 module as long as a pack and its
corresponding duplicate are not both down.

Timing
During capture, entire disk tracks are read at a time by using chained channel
control words, including both count and data fields. A search command is not used
to check the transfer, but a software check is made when the read is completed to
ensure that the proper track has been read. This permits the reading of a track to
start after the first address marker is sensed, making rotational delay minimal. One
tape record is written for each track of DASD records that is read. The sequence of
reading DASD tracks runs from head 0 through the last head on cylinder 0, followed
by head 0 through the last head on cylinder 1 and so on for the device that is being
captured.

Restore also uses chaining to read a capture tape and write 1 DASD track at a
time. The tracks are restored in the sequence previously described for capture. The
average rotational delay is about half a disk track. On a restore with the duplicate
option, the prime tracks are written to the module concurrently with the duplicates
on the duplicate module. If the entire system is being restored, the duplicates are
also restored.

Capture and Restore 67

Assumptions and Conditions Relative to Timing Example
To simplify timing calculations for a capture and restore operation, certain conditions
are assumed and described as follows. These values can be changed to match
individual conditions.

1. It is assumed for this example that a single 3380-D DASD has 50% total tracks
allocated and the system is fully duplicated. Because capture copies only the
primary copies of duplicated tracks, only half the modules in a system are
captured.

2. 10% of allocated primary DASD tracks each contain ten 4KB records, 30% of
DASD tracks each contain thirty 1055-byte records, and 60% of DASD tracks
each contain fifty-three 381-byte records.

This DASD information for a 3380-D is summarized as follows:

Record Size Records per Track Percent Allocated

381 bytes 53 60%

1055 bytes 30 30%

4096 bytes (4KB) 10 10%

3. Tape calculations for 3480s and 3490s assume:
v 18 tracks
v 38 000 BPI
v 2 millisecond start/stop time
v 4.5 MB per sec instantaneous data rate
v 150 meters tape length.

More exact tape timing, using effective data rates expressed in megabytes (MB)
per second for 3380-D tracks written out as tape blocks containing 381-, 1055-,
and 4096-byte (4KB) record sizes follows:

Device Type 381-byte Track 1055-byte Track 4096-byte (4KB)
Track

3480 2.35MB per sec 2.5MB per sec 2.5MB per sec

3490 3.0MB per sec 3.0MB per sec 3.0MB per sec

The effective data rate values shown include start/stop time and are based on
capturing a single disk module at a time to a single tape drive with negligible
interference from other system activity.

4. The amount of time required for switching the tape in a multicartridge capture or
restore has not been factored into the estimates.

5. Tape record size per 3380 DASD track =
((nbr records per track) * (nbr bytes per record)) + 508

This calculates to the following tape block sizes for the 3380-D to 3480 tape
example:

DASD Tape Block Sizes

381 bytes 20 702

1055 bytes 32 162

4094 bytes (4KB) 41 468

6. The maximum main storage used by each entry is calculated as follows:

68 TPF V4R1 Database Reference

Total Main Storage per Entry =
(2 * ((nbr 381 records per track * 381 record size)

+ (nbr 1055 rcd per trk * 1055 rcd size)
+ (nbr 4KB rcd per trk * 4KB rcd size)))

+ (nbr work blks * blk size)

At any given time the main storage utilization per entry is the amount of work
space used plus the space required for the track size of the device that is being
processed.

For the devices that are being supported, the main storage values are shown as
follows:

Device Work Space 381 Track
Space

1055 Track
Space

4KB Track
Space

Total

3380 8KB (4 blk) 40KB (106
blk)

62KB (60 blk) 80KB (20 blk) 190KB

3390 8KB (4 blk) 41KB (110
blk)

68KB (66 blk) 96KB (24 blk) 213KB

9345 8KB (4 blk) 35KB (94 blk) 56KB (54 blk) 80KB (20 blk) 179KB

7. The system pause time-out factor is the maximum amount of time allowed for
an entry to complete after a pause has been requested. Entries exceeding this
limit are timed out and aborted. The minimum amount for this field should be at
least the maximum time required to capture or restore a module on any in-use
device type plus an amount required if the module does not have exclusive use
of a channel.

8. To determine the minimum and maximum rewind and unload time for all tape
devices used by capture and restore, do the following:
(Minimum time = maximum rewind and unload time for the slowest tape device)

+
(Time needed by the operator; for example, time for mounting the tape)

See the RESCAP macro in TPF System Generation for the default maximum
rewind and unload time.
Tape time per track =

(tape block size per track) / (effective data rate)

Capture Timing Estimates
The following timing estimates will assist you in calculating your capture and restore
time requirements. The assumptions used should be carefully examined to
determine if they are correct for a particular system.

Note: The longer of the disk read and tape write times determines the time
required to capture the assumed configuration.

Disk Time Calculations
The following table and calculations show the time required to capture data from the
various 3380 DASD models supported by the TPF system.

Average rotational delay is calculated as follows:
Average Rotational Delay =

((rotation time / nbr 381 rcds per track) / 2) * (percentage of 381-byte tracks)
+ ((rotation time / nbr 1055 rcds per track) / 2)) * (percentage of 1055-byte tracks)
+ ((rotation time / nbr 4K rcds per track) / 2)) * (percentage of 4K-byte tracks)

Capture and Restore 69

rotation time (ms)

Average Rotational Delay (ms)

nbr tracks / module

381-/1055-/4096-byte track ratio

percentage of module used

nbr tracks to capture

average seek time (ms)

cyl-cyl seek time (ms)

nbr cylinders/module

device type

3380D,J
3380E
3380K
3390I
3390II
3390III
9345I
9345II

885
1770
2655
1113
2226
3339
1440
2156

3,2
3
2

1.5
1.5
1.5
1.5
1.5

15,12
17
16
9.5

12.5
13.5
10
11

6,638
13,275
19,913

8,348
16,695
25,043
10,800
16,170

50%
50%
50%
50%
50%
50%
50%
50%

60/30/10
60/30/10
60/30/10
60/30/10
60/30/10
60/30/10
60/30/10
60/30/10

13,275
26,550
39,825
16,695
33,390
50,085
21,600
32,340

0.19
0.19
0.19
0.19
0.19
0.19
0.19
0.19

16.7
16.7
16.7
14.1
14.1
14.1
11.2
11.2

Disk time per module =

(nbr tracks to capture * (rotation time + avg rotational delay))
+ (average seek time)
+ (cyl-cyl seek time * ((nbr cyl * pct used) - 1))

For example:
3380-D time/mod = 6,638(16.7 + 0.25) + 15 + 3(885*0.5 - 1) = 117.8 sec.

Tape Time Calculations
The following calculations establish the tape time per captured module. The tables
that were shown previously provide supporting information to verify the arithmetic.

Note: Tape drives use the EDR that is expected for the block size that is being
written (32 158-byte blocks for 1055-byte record tracks, 20 701-byte blocks
for 381-byte record tracks, and 41 468-byte blocks for 4096-byte record
tracks), and the number of records written is the sum of the large, small, and
4KB tracks to capture from the particular device.

Tape time per module = ((nbr bytes per pack) / (EDR for tape record size))
For 381-byte blocks on 3480:

3,982 tracks * 20,701 bytes/track / 2.35 MB/sec. = 35 sec.
For 1055-byte blocks on 3480:

1,991 tracks * 32,158 bytes/track / 2.5 MB/sec. = 26 sec.
For 4KB blocks on 3480:

664 tracks * 41,468 bytes/track / 2.5 MB/sec. = 11 sec.

Total tape time = 72 sec.

The conclusion from these calculations is that the 3380-D DASD example can be
captured to 3480 tape in 117.8 seconds, the longer of the 2 timings (72 seconds for
tape time and 117.8 seconds for DASD).

70 TPF V4R1 Database Reference

Restore Timing Estimates

Single Module Restore Timing Calculations
The following table and calculations show the disk time required to restore 3380
devices. Search time is calculated as follows:

Search time = .5 * rotation time + tape read time - disk write time

Tape read time varies for 381-, 1055-, and 4096-byte (4KB) record tracks. This
table shows the values as calculated from the effective data rates (EDR) for each
record size for both tape drives. Tape time/module is calculated the same as for
capture. Restore time is the greater of either tape time/module or disk time/module.

tape rd time/381-byte track (ms)

tape rd time/1055-byte track (ms)

tape rd time/4096-byte track (ms)

cyl-cyl access time (ms)

rotation time (write time) (ms)

average seek time (ms)

nbr small trks

nbr large trks

nbr 4k trks

nbr cyl/module

device type

3380
3390I
3390II
3390III
9345I
9345II

885
1113
2226
3339
1440
2156

664
835

1670
2504
1080
1617

1992
2504
5009
7513
3240
4851

3983
5009

10017
15026

6480
9702

15
9.5
12.5
13.5
10
11

3
1.5
1.5
1.5
1.5
1.5

16.6 12.916.7
14.1
14.1
14.1
11.2
11.2

.8 (3480)

Disk time per module =
Factor

I (total nbr tracks to restore) * rotation time

II + ((tape rd time per 4K rcd trk - write time
+ (0.5 * rotation time)) * nbr 4K non-dup trks)

III + ((tape rd time per 1055 rcd trk - write time
+ (0.5 * rotation time)) * nbr 1055 non-dup trks)

IV + ((tape rd time per 381 rcd trk - write time
+ (0.5 * rotation time)) * nbr 381 non-dup trks)

V + average seek time

VI + (cyl-cyl seek time * (nbr cyl per mod - 1))

Nonduplicate Restore:

Duplicate Restore:

FACTOR I II III
3380 time/mod = 6638 * (0.0167) + (0.0165 - 0.0167) + (0.0083 * 664) + (0.125 - 0.0167) + (0.0083 * 1992)

(0.0085 - 0.0167) + 0.0085 * 3982) + 0.015 + (0.003 * (443 - 1))
IV V VI

= 167.3 sec

Capture and Restore 71

Tape Volume Estimates
The volume of tape produced is calculated as follows:
Length in inches = ((nbr bytes transferred) / (BPI rate))

+ ((IRG size) * (nbr records written))

where:

v BPI is bytes per inch. The possible values for the BPI rate are:
38K for a 3480 or 3490
38K2 for a 3490E.

v IRG is the inter-record gap, which is the space between the physical tape blocks.
The value for the IRG is:

0.08 inches for a 3480 or 3490.

The following are sample calculations for several 3380-to-tape captures.

Note: These samples do not take into account any improvements possible with the
Increased Data Recording Capability (IDRC) feature available with the 3480
and 3490.

277,045,053/38K + .08(11616) = 8,220 in. = 685 feet (3480 38K BPI)

Capture and Restore Keypoint Record
The capture and restore keypoint (BXAXF) record is used for control and
communication by the capture and restore utility. Fields in the capture and restore
keypoint that must be changed to suit the user’s system can be established with the
system initialization package (SIP). The SIP macro and macro parameters that will
initialize the field are noted after each BXAXF description as follows:

SIP input = (macro keyword name) macro name

The SIP macros that are related to the capture and restore utility are RESCAP,
DDCCAP, and LOGCAP. See TPF System Generation for more information about
coding these macros.

Keypoint Fields
Table 5 shows a description of each of the fields in the keypoint record. Unless
otherwise stated, SIP initializes these fields to X'00'.

Table 5. Keypoint Fields

Name Description

BXXLAB This tag is used to refer to the program record number and demand
counter that are used in lieu of an alphabetic record ID because the
capture and restore keypoint is maintained as a program.

Initialization: Dynamic via assembly and link edit.

FACTOR I II III
3380 time/mod = 13276 * (0.0167) + (0.0165 - 0.0167) + (0.0085 * 1328) + (0.125 - 0.0167) + (0.0085 * 3986)

(0.0085 - 0.0167) + 0.0085 * 7964) + 0.015 + (0.003 * (443 - 1))
IV V VI

= 333.3 sec

72 TPF V4R1 Database Reference

Table 5. Keypoint Fields (continued)

Name Description

BXXNAM This tag is used to refer to the program stamp field. When initially
loaded, this field contains the name of the keypoint program (BXAX or
BXX1). After running online, the working keypoint will change to BXAM,
the program name of the keypoint update program.

Initialization: Dynamic via assembly.

BX1IND This field contains 8 1-bit indicators used by the capture function to
maintain major package status.

BX2IND This field contains 8 1-bit indicators used by the restore function to
maintain major package status.

BX3IND This field contains 8 1-bit indicators used by both capture and restore to
maintain major package status.

BX4IND This field contains 8 1-bit indicators used by the restore function to
maintain status of the XCP/LOG tapes being restored.

BX5IND This field contains 1-bit indicators used by both capture and restore to
maintain status of the participating processors.

BXXCPTP This field contains the number of active XCP/LOG tapes for restore.

BXXSID This field contains the symbolic processor ID.

BXXIID This field contains the internal processor ID.

BXXMAX This field controls the maximum number of entries that can be created
by capture or restore, therefore controlling the maximum number of
modules that can be captured or restored simultaneously.

Initialization: See “Timing” on page 67.

BXXEBR This field contains the LNIATA of the input message that started the
current function.

BXXOID This field contains the CPUID of the input message that started the
current function.

BXXCIP This field is used to maintain a count of the capture or restore entries
currently in progress.

BXXCES This field is used by the restore selection routines as a count of entries
that are in the process of being started but have not yet been started.

BXDDCTC This field is used to unhook the DDCT during capture and restore
operations, therefore providing a core chain to the DDCT.

BXDDCB This subfield of BXDDCTC contains the address of the core block that
contains the DDCT. A load from this location sets the base register for
DDCT DSECT usage.

BXXSSI This field contains the ID of the subsystem in which the capture and
restore function is running.

BXXDTE This field is initialized by the restore function with the current date in the
form of ddmmm (day/month). This value is taken from TPF global field
@U1DMT.

BXXTME This field is used by the restore function as the starting time of the
restore. It is initialized by restore from control program field CMMLST,
referred to with a CINFC macro.

BXXLDT This field is initialized by the Logging program. It contains the last date a
label record has been written to the logging tapes in the form ddmmm
(day/month). This value is taken from global field @U1DMT.

Capture and Restore 73

Table 5. Keypoint Fields (continued)

Name Description

BXXLTM This field is initialized by the Logging program. It contains the last time,
in hours and minutes, that a label record has been written to the logging
tapes, in the form hhmm. This value is taken from the CMMLST field,
referred to with a CINFC macro.

BXSTRD This field is initialized by the restore function with the start date input in
the XCP/LOG restore input message after it has been converted to
binary form by segment CDTA.

BXSTRT This field is initialized by the restore function with the start time input in
the XCP/LOG restore input message after it has been converted to
binary form by segment CDTA.

BXSTPD This field is initialized by the restore function with the stop date input in
the LOG restore input message after it has been converted to binary
form by segment CDTA.

BXSTPT This field is initialized by the restore function with the stop time input in
the LOG restore input message after it has been converted to binary
form by segment CDTA.

BXXTOT This field is used to maintain a count of the total modules to be captured
or restored.

BXXDON This field is used to maintain a count of the total modules that have
completed capture or restore. When this field is equal to BXXTOT, the
entire capture or restore operation is completed.

BXACPS This field contains the system pause time-out factor, which is the
maximum amount of time allowed for an entry to be completed when a
pause is requested. If an entry does not complete processing in this
amount of time, it is timed out and will end.

Initialization: The minimum number of seconds used to initialize this field
should be the maximum time required to capture or restore a module of
any in-use device type. This time should take into consideration the
additional time required by a module not having exclusive use of a
channel.

SIP input = (CAPTO) RESCAP.

BXRWD This field contains the maximum rewind and unload time for all tape
devices that can be used by capture and restore. An amount of time
equivalent to that specified by this field is allowed to elapse after this
tape is rewound before making it available for use.

Initialization: The minimum value should be equivalent to the maximum
rewind and unload time for all tape devices on the system.

SIP input = (TPREW) RESCAP.

BXIOTIME This field contains the minimum amount of elapsed time between
capture I/Os. At the completion of each I/O, the clock value just before
the I/O is compared to the current clock value. If the difference is less
than the value in BXIOTIME, the I/O entry defers because capture I/O
requests are completing too quickly. The entry continues to DEFER until
the required amount of time has elapsed.

BXDASDCH This field contains the maximum number of DASDs capable of running
per channel path.

Initialization: This field is initialized to 1.

74 TPF V4R1 Database Reference

Table 5. Keypoint Fields (continued)

Name Description

BXDASDCU This field contains the maximum number of DASDs capable of running
per control unit.

Initialization: This field is initialized to 1.

BXTAPECH This field contains the maximum number of tape drives capable of
running per channel path.

Initialization: This field is initialized to 1.

BXTAPECU This field contains the maximum number of tape drives capable of
running per control unit.

Initialization: This field is initialized to 1.

BXANDV This field contains the number of devices in the system.

Initialization: This field is initialized to the number of devices in the CDT
(L'BXADTS/L'BXACDT).

BXAMID This field contains the maximum size of the module interval table.

Initialization: This field is initialized to the length of field BXDINT.

BXASDT This field contains the size of an entry in the device control table (see
field BXACDT).

Initialization: This field is initialized to the length of field BXACDT.

BXXPGM This field is used by the restore function as a save field for the type of
restore: CAP, XCP, LOG, or KPT.

BXXERR This tag refers to the fields containing the cumulative error counts for
tape errors (BXXTAP), disk track errors (BXXTRK), disk record errors
(BXXRCD), and a spare field of 2 bytes.

BXXTAP This field contains a cumulative count of all uncorrectable tape read
errors found during restore. Capture does not use this field.

BXXTRK This field contains a cumulative count of the uncorrectable disk track
read errors found since the last capture or restore start request.

BXXRCD This field contains a cumulative count of the number of individual record
errors found since the last capture or restore start request. The counts
in this field and BXXTRK are mutually exclusive.

BXXTTA This field is used by the restore function to accumulate the number of
tapes currently available for selection.

BXXNSL This field is used as a count of TDCT slots that are in use during
restore. Therefore, it serves as an index to the next TDCT slot that is
available to the selection routines.

Keypoint Tables
The following tables are defined in the capture/restore keypoint record (BXAXF).

Tape Device Control Table (TDCT)
The tape device control table is used to keep an inventory and status of the tapes
assigned to capture and restore.

Capture and Restore 75

Table 6. Tape Device Control Table

Name Description

BXTDCT This tag defines the tape device control table (TDCT). This table is used
to maintain an inventory and status of all tape drives made available to
capture or restore by the operator through a start or tape add request.

Initialization: This tag is initialized with a length attribute of the TDCT
table size.

BXTDCTF This tag defines an entry in the tape device control table. There should
be as many entries in the TDCT as are required by multiplying BX1MAX
(the maximum number of entries allowed active) by 2. This allows for
uninterrupted processing during rewind.

Initialization: The length attribute of this tag is the size of an entry in the
TDCT.

BXCUD1 This subfield of BXTDCTF is used to maintain the tape device hardware
address input by the operator.

BXCUDA This subfield of BXTDCTF is used to maintain an alternate tape device
hardware address input by the operator. This field is used only by
restore in multireel restores.

BXCUD1S This subfield of BXTDCTF contains the symbolic tape name associated
with the tape hardware addresses in BXCUD1 and BXCUDA. When
capture and restore provide internal tape mounting and switching, this is
the tape name that will be used.

Initialization: This field is set to BXx, where x is set to A and
incremented through the alphabet for as many entries as exist in the
TDCT.

BXSTAT1 This subfield of BXTDCTF is used as bit indicators to maintain the
status of the tape during the capture or restore operation.

LOG/XCP Tape Definition Table (LXTD)
The LOG/XCP tape definition table (LXTD) defines the logging and exception tapes
available to capture and restore.

Table 7. Tape Definition Table (LXTD)

Name Description

BXTAPS This label refers to the LOG/XCP tape definition (LXTD) table. This table
defines the tapes available to the capture and restore utility for logging
and exception recording.

Initialization: The length attribute of this label is equal to the table length.

BXTTIS This label refers to an item in the LXTD table. Each item contains a tape
name (last character), an ECB count field, and a module range
associated with this entry.

Initialization: The length attribute of this label is equal to the item length.

BXTNAM This subfield of BXTAPS contains the last character of the tape name
for this entry (for capture, the first 2 characters are RT; for restore, the
first 2 characters are XA).

Initialization: The allowable characters for tapes in this table are Y, X, W,
V, U, and T respectively. Any item not used is initialized to X'00'.

SIP input = (RTT thru RTY) LOGCAP.

76 TPF V4R1 Database Reference

Table 7. Tape Definition Table (LXTD) (continued)

Name Description

BXTNEN This subfield of BXTAPS indicates whether the tape for this entry is in
use for capture or restore.

BXTLOM This subfield of BXTAPS contains the low symbolic module number
assigned to this tape for XCP/LOG capture and restore.

Initialization: The initialization of this field and BXTHIM depends on what
use will be made of the data captured to these tapes. Normally, each
item should be initialized so that the load will be evenly spread across
all tapes defined in the table. However, other considerations may dictate
other initialization schemes. If an item is unused, this field will be
initialized to X'00'.

SIP input = (RTT–RTY) LOGCAP.

BXTHIM This subfield of BXTAPS contains the high symbolic module number
assigned to this tape for XCP/LOG capture and restore.

Initialization: See BXTLOM.

In-Progress Table (IPT)
The in-progress table (IPT) maintains the status of reads and writes that are
currently in progress.

Table 8. In-Progress Table (IPT)

Name Description

BXINPT This tag refers to the in-progress table. This table is used to maintain
the status of currently in-progress read/write entries.

Initialization: This tag has a length attribute equal to the size of the
in-progress table.

BXINPF This tag refers to an entry in the in-progress table.

Initialization: This tag has a length attribute equal to the size of an entry
in the in-progress table.

BXMODA This subfield of BXINPF contains the module number of the module
being captured or restored.

BXCUD2 This subfield of BXINPF contains the hardware address of the tape
currently being captured to or restored from.

BXCUD2S This subfield of BXINPF contains the symbolic name being used to
address the tape on the address contained in BXCUD2.

BXTMES This subfield of BXINPF contains the decimal time that the capture or
restore entry began.

BXTMESB This subfield of BXINPF contains the binary time that the capture or
restore entry began processing the current reel of tape.

BXDEVT This subfield of BXINPF contains the device type indicator of the disk
device being captured or restored. This indicator is identical to the
device type indicator in this device’s CDT entry (BXADTI).

BXSTAT2 This subfield of BXINPF is an end-of-reel switch used by the restore
function to indicate when a new reel is being processed.

BXCDTI This subfield of BXINPF is used by the restore function as an index to
the correct device control table (CDT) for the entry in progress.

Capture and Restore 77

Table 8. In-Progress Table (IPT) (continued)

Name Description

BXRRNO This subfield of BXINPF is used to maintain the reel number of the
current reel during a capture and restore operation. If a restart occurs,
this will be the reel where capture and restore will restart.

BXTAP This subfield of BXINPF contains the count of the uncorrectable tape
errors that restore has found during the processing of this entry. When
this entry is completed, this counter will be added to the cumulative tape
error counter, BXXTAP.

BXTRK This subfield of BXINPF contains a count of uncorrectable track errors
found by capture or restore during the processing of this entry. When
this entry is completed, this counter will be added to the cumulative
track error counter, BXXTRK.

BXRCD This subfield of BXINPF contains a count of the individual disk record
errors found by capture or restore during the processing of this entry.
When this entry is completed, this counter will be added to the
cumulative disk record error counter, BXXRCD. The counts in BXTRK
and BXRCD are mutually exclusive.

BXXSP2 This tag is used to refer to the current and restart locations (cylinder and
head) for this entry during a capture operation.

BXXCCL This tag refers to the current module location (cylinder and head) during
a capture operation.

Initialization: This tag has a length attribute of 4.

BXXCC This subfield of BXINPF contains the current cylinder number of the
module that is in progress during capture processing.

BXXCH This subfield of BXINPF contains the current head number of the
module that is in progress during a capture operation.

BXXCCL1 This tag refers to the restart module location (cylinder and head) during
a capture operation. Restart during capture occurs from the beginning of
a tape reel so that the cylinder and head value saved here reflect the
beginning of the reel that is being processed.

Initialization: This tag has a length attribute of 4.

BXXCC1 This subfield of BXINPF contains the restart cylinder number of the
module that is in progress during a capture operation.

BXXCH1 This subfield of BXINPF contains the restart head number of the module
that is in progress during a capture operation.

BXXBSN This subfield of BXINPF contains the tape block sequence number of
the first tape block (record) written to the current reel for capture. It
contains the tape block sequence number of the last tape block (record)
written to the previous reel for restore. If a restart occurs, this number is
used to begin sequencing records on the restart reel.

BXXPID This subfield of BXINPF contains the ID of the processor in which the
capture or restore is running.

BXXEXT This refers to the module extent table of extents that will not be
restored.

Device Type Control Table (CDT)
The device type control table (CDT) contains descriptions of each DASD device that
supports capture and restore.

78 TPF V4R1 Database Reference

Table 9. Device Type Control Table (CDT)

Name Description

BXADTS This tag refers to the device type table (CDT). This table contains
parameters describing the characteristics of each supported device type.

Initialization: This tag has a length attribute equal to the size of the CDT.

BXACDT This tag refers to an entry in the Device Control Table (CDT). There is
an entry for each supported device type. The entries do not need to be
in any specific order and spare CDT items can exist (they must be
initialized to all hex zeros).

Initialization: This tag has a length attribute equal to the length of a CDT
entry item.

BXADTI This subfield of BXACDT defines the device type indicator for this
device. This device type indicator is used primarily as a branch vector
indicator in capture or restore segments that are device dependent.

Initialization: The device type indicator is set to the equate for the
specific device type (DEVA for device A, DEVB for device B, and so on).

SIP input = DDCCAP macro.

BXASRD This subfield of BXACDT defines the number of small records per track
for this device type.

Initialization: This field is initialized by SIP by setting it equivalent to the
correct equate for the number of small records per track for this device
type (CSONSRA for device A, CSONSRB for device B, and so on).

BXALRD This subfield of BXACDT defines the number of large records per track
for this device type.

Initialization: This field is initialized by SIP by setting it equivalent to the
correct equate for the number of large records per track for this device
type (CSONLRA for device A, CSONLRB for device B, and so on).

BXA4RD This subfield of BXACDT defines the number of 4KB records per track
for this device type.

Initialization: This field is initialized by SIP by setting it equivalent to the
correct equate for the number of 4KB records per track for this device
type (CSON4RA for device A, CSON4RB for device B, and so on).

BXASRL This subfield of BXACDT defines the small record length for this device
type.

Initialization: This field is set to the equate for small record size for this
device type (#SBSZE for all devices).

BXALRL This subfield of BXACDT defines the large record length for this device
type.

Initialization: This field is set to the equate for large record size for this
device type (#LBSZE for all devices).

BXA4RL This subfield of BXACDT defines the 4KB record length for this device
type.

Initialization: This field is set to the equate for 4KB record size for this
device type (CPL4C2 for all devices).

Capture and Restore 79

Table 9. Device Type Control Table (CDT) (continued)

Name Description

BXAHDC This subfield of BXACDT contains the maximum addressable head
number for this device type.

Initialization: This field is set to one less than the equate that defines the
number of heads for this device type (CSONHCA-1 for device A,
CSONHCB-1 for device B, and so on).

BXACYL This subfield of BXACDT contains the maximum addressable cylinder
number for this device type.

Initialization: This field is set to one less than the equate that defines the
number of cylinders for this device type (CSONCMA-1 for device A,
CSONCMB-1 for device B, and so on).

BXACINC This subfield of BXACDT contains the cylinder increment factor. This
number defines the interval at which the keypoint will be written to file.
If, for example, the number is 25, the keypoint is written to file every 25
cylinders. On a system IPL, the exception recording pointers will be
updated by this amount to ensure that the exception recording record
sequence is valid.

Initialization: This field should be set to provide frequent checkpointing
without excessive filing of the capture and restore keypoint. A value
greater than 255 should not be used because some segments access
this field as 1 byte at BXACINC+1.

SIP input = (KPUPA–KPUPD) DDCCAP.

BXADCD This subfield of BXACDT contains the cylinder displacement to the
duplicate records for this device type. This field is used by capture to
calculate the location of duplicated records if the primary copies are not
accessible and by restore to calculate the duplicate location if the
duplicated records will be restored.

Initialization: The system value for this device type will be inserted at
system IPL time.

BXADHD This subfield of BXACDT contains the head displacement to the
duplicate records for this device type. This field is used by capture to
calculate the location of duplicated records if the primary copies are not
accessible and by restore to calculate the duplicate location if the
duplicated records will be restored.

Initialization: The system value for this device type will be inserted at
system IPL time.

BXINTS This tag refers to the module interval definition table contained in each
CDT entry. The table defines to capture and restore the valid system
modules that can participate in a capture or restore. It also defines
whether duplicated records will be captured on the defined modules.

Initialization: This tag has a length attribute equal to the total number of
bytes required for the module interval definition table. The BXINTS field
must be the same length in all CDT entries.

80 TPF V4R1 Database Reference

Table 9. Device Type Control Table (CDT) (continued)

Name Description

BXDINT This tag defines an entry in the module interval definition table. Each
entry defines a range of valid modules for this device type and an
indication of whether duplicated records will be captured. The entries do
not need to be in any sequence and spares can exist but must be set to
all hex zeros.

Initialization: This tag has a length attribute equal to the size of 1 entry
in the module interval definition table.

BXILOM This subfield of BXDINT defines the low module in a range of valid
modules to be captured or restored.

Initialization: The hexadecimal module number for the low module in a
module number range should be set here.

SIP input = (INTxP or INTxN) DDCCAP.

BXIHIM This subfield of BXDINT defines the high module number in a range of
valid modules to be captured or restored.

Initialization: This field is initialized to the high hexadecimal module
number for a module number range. BXIHIM must be greater than
BXILOM for a given range specification.

SIP input = (INTxP or INTxN) DDCCAP.

BXICAT This field contains an indication of whether the duplicated records on the
modules in the range between BXILOM and BXIHIM will be captured.

Initialization: Set to "P" if both nonduplicated and primary copies of
duplicated records will be captured. Set to "N" if only nonduplicated
records will be captured.

SIP input = (INTxP or INTxN) DDCCAP, where x = A, B, C, or D.

BXALRT This field is used by the restore function to save the lower limit on a
THRU restore. Cylinder, head, and record are saved as CCHHR. The
last byte of this field (record number) has the tag name BXALRR.

BXAHRL This field is used by the restore function to save the upper limit for a
THRU restore. Cylinder, head, and record number are saved as
CCHHR. The last byte of this field (record number) has a tag name of
BXAHRR.

Keypoint Equates
Keypoint equates define varieties of capture and restore keypoint information used
during processing. Time intervals, delimiters, and indicators are maintained for
hardware and capture and restore program control.

Table 10. Keypoint Equates

Name Description

BXXINT This equate defines the time interval, in minutes, in which the log
time-stamp program will be started. This program (BXTT) will write a
TME label record to all logging tapes each time it is activated.

Initialization: SIP input = (STAMP) LOGCAP.

Capture and Restore 81

Table 10. Keypoint Equates (continued)

Name Description

BXAIT3 This equate defines the time interval, in seconds, in which the capture
and restore security program (BXAI) is to be started. This program
determines if capture or restore read/write entries are processing longer
than expected. If so, the operator is notified and if the condition
continues, the capture or restore is paused.

Initialization: It seems reasonable to set this value to 1/2 the amount of
time required to perform the fastest module capture for the given
system.

SIP input = (SECUR) RESCAP.

BXADT1 This field is equated to BXAIT3.

BXABT1 This field is equated to BXAIT3.

BXAET1 This equate defines the maximum amount of time that will be allowed
for individual entries to end after an ABORT ALL message is entered. If
the entries do not end in the specified time, the operator will be
informed.

Initialization: SIP input = (ABRTO) RESCAP.

BXAMT1 This equate defines the number of times an internal tape mount will be
attempted before ending the module.

Initialization: SIP input = (TPERR, subparameter a) RESCAP.

BXAMT2 This equate defines, in seconds, the time interval between the
successive tape mounts that will be processed. This equate is used with
BXAMT1 to control the retry of an internal tape mount operation.

Initialization: The value specified should allow the operator to respond to
the problem that interfered with the previous tape mount attempt.

SIP input = (TPERR, subparameter b) RESCAP.

BXANNRA This equate defines the number of times capture will retry an individual
disk error (independent of the error retry procedures).

Initialization: SIP input = (DKERR, subparameter a) RESCAP.

BXDELIM This equate defines the delimiter (/) that separates multiple modules or
multiple tapes in a capture or restore input message.

BXDEL1 This equate defines the delimiter (blank) that separates modules from
tapes specified in a selective start message for capture or restore.

BXDEL2 This equate defines the delimiter (-) that separates tape hardware
addresses in a dual tape entry.

BX1MAX This equate defines the maximum number of read/write entries that are
allowed active simultaneously for capture or restore.

Initialization: This field is set to 32.

LABEL This equate defines the length (256) of a label record written to a KPT
or XCP/LOG capture tape.

SMALLB This equate defines the indicator that is used to denote small core
blocks (X'21').

LARGEB This equate defines the indicator that is used to denote large core
blocks (X'31').

FORKB This equate defines the indicator that is used to denote 4KB core blocks
(X'51').

82 TPF V4R1 Database Reference

Table 10. Keypoint Equates (continued)

Name Description

REELNO This equate defines the number to be used to define the first reel of
tape of a module capture.

TPCTL This equate is used by the restore function as a control for the number
of attempts to initially read the header of a tape to be restored.

Initialization: This equate should be initialized to a logical value for error
retries: the suggested value for retry is 3.

SIP input = (TPERR, subparameter c) RESCAP.

BXAUMAX This equate defines the number of times restore will retry an individual
disk error (independent of the error retry procedure).

Initialization: SIP input = (DKERR, subparameter b) RESCAP.

DEVA This equate defines the device type indicator for device A (X'01').

DEVB This equate defines the device type indicator for device B (X'02').

DEVC This equate defines the device type indicator for device C (X'03').

DEVD This equate defines the device type indicator for device D (X'04').

REALSC This equate is used by restore analysis as a tag name for the 2 bytes of
the ECB work area that are used to save the starting cylinder of the
interval that is being analyzed.

REALSH This equate is used by restore analysis as a tag name for the 2 bytes of
the ECB work area that are used to save the starting head of the
interval that is being analyzed.

REALSR This equate is used by restore analysis as a tag name for that byte of
the ECB work area that is used to save the starting record number of
the interval that is being analyzed.

REALEC This equate is used by restore analysis as a tag name for the 2 bytes of
the ECB work area that are used to save the ending cylinder of the
interval that is being analyzed.

REALEH This equate is used by restore analysis as a tag name for the 2 bytes of
the ECB work area that are used to save the ending head of the interval
that is being analyzed.

REALER This equate is used by restore analysis as a tag name for the byte of
the ECB work area that is used to save the ending record number of the
interval that is being analyzed.

ALTRSC This equate is used by restore analysis as a tag name for the 2 bytes of
the ECB work area that are used to save the starting cylinder of the
duplicated area for the interval that is being analyzed.

ALTRSH This equate is used by restore analysis as a tag name for the 2 bytes of
the ECB work area that are used to save the starting head of the
duplicated area for the interval that is being analyzed.

ALTRSR This equate is used by restore analysis as a tag name for the byte of
the work area that is used as a save area for the starting record number
of the duplicated area for the interval that is being analyzed.

ALTREC This equate is used by restore analysis as a tag name for the 2 bytes of
the ECB work area that are used to save the ending cylinder of the
duplicated area for the interval that is being analyzed.

ALTREH This equate is used by restore analysis as a tag name for the 2 bytes of
the ECB work area that are used to save the ending head of the
duplicated area for the interval that is being analyzed.

Capture and Restore 83

Table 10. Keypoint Equates (continued)

Name Description

ALTRER This equate is used by restore analysis as a tag name for the byte of
the ECB work area that is used to save the ending record number of the
duplicated area for the interval that is being analyzed.

BXSECT This tag defines the BXSECT DSECT used by capture and restore.

Note: Fields BXCAP5 through BXAUVER are used by the capture and restore error
recovery segments BXAN, BXBN, and BXAU.

BXCAP5 This tag refers to the work area defined by the BXSECT DSECT.

BXSAVE (RESERVED)

BXBXAH (RESERVED)

BXBXAN This tag refers to a work area that is used by the capture error recovery
program, BXAN, and by restore error recovery program BXAU.

BXANRL This field contains the record length of a record that was unsuccessfully
trying to be read through a find-type macro.

BXANNOR This field contains the number of records per track used by capture
error recovery programs BXAN and BXBN.

BXANLCW This field contains the last CCW error compare address used by capture
error recovery programs BXAN and BXBN.

BXANFCW This field contains the first CCW error compare address used by
capture error recovery programs BXAN and BXBN.

BXANSW1 This field indicates whether the primary or duplicate track had an
irrecoverable error.

BXANSW2 (RESERVED)

BXANRL This field contains a count of the number of bytes remaining in the
record being processed by capture error recovery segment BXBN.

BXANIOB This field contains the base address of the record being processed by
capture error recovery segment BXBN.

BXANLER This field contains the last CCW error compare address that was
processed by capture error recovery.

BXANNR This field contains a count of the number of retries that have been done
so far. It is used by capture error recovery.

BXANDM This field contains the duplicate module number of the module number
that caused a find error.

BXANS1 This field refers to the duplicate argument parameters (cylinder and
head) used by the error recovery segments.

BXANDC This field contains the duplicate cylinder that corresponds to the prime
cylinder associated with a find error.

BXANDH This field contains the duplicate head that corresponds to the prime
head associated with a find error.

BXANRD This field contains the record number of the last record read when a find
error occurred.

BXANMR This field contains the maximum record number possible on the track
being processed by capture error recovery segment BXBN.

BXANCWS This field is the read CCW save area used by error recovery segment
BXBN.

BXAUFCW This field contains the first CCW error compare address used by restore
error recovery program BXAU.

84 TPF V4R1 Database Reference

Table 10. Keypoint Equates (continued)

Name Description

BXAULCW This field contains the last CCW error compare address used by restore
error recovery program BXAU.

BXAUPCW This field contains the address of the previous prime CCW group that
caused an error. Used by BXAU.

BXAUDCW This field contains the address of the previous duplicate CCW group
that caused an error. Used by BXAU.

BXAUFIL This field is a save area for the FDCTC macro used in restore error
recovery segment BXAU.

BXAUREG This field is the register save area for segment BXAU.

BXCLTIN This field contains the base of the tape status table used by segment
BXEL.

BXAUERR This field contains a count of the number of retries attempted on prime
tracks used in restore error recovery.

BXAUERD This field contains a count of the number of retries attempted on
duplicate tracks used in restore error recovery.

BXAUVER This field is used as a switch to indicate whether the primary or
duplicate track is currently being processed by segment BXAU.

BXSEEK This field refers to the seek address of the primary track.

BXSEKB This field is used to process the start of the seek address for the
primary track.

BXSEKCA This field contains the cylinder number of the prime module (used for
CCW seek).

BXSEKH This field contains the head number of the prime module (used for CCW
seek).

BXSEKR This field contains the record number of the prime module (used for
CCW seek).

BXSK1 This field refers to the seek address of the duplicate track.

BXSK1B This field is used to process the start of the seek address for the
duplicate track.

BXSK1CA This field contains the cylinder number of the duplicate module (used for
CCW seek).

BXSK1H This field contains the head number of the duplicate module (used for
CCW seek).

BXSK1R This field contains the record number of the duplicate module (used for
CCW seek).

BXAUEND This equate marks the end of the BXAU work area.

BXTPALL This field contains a tape header for use by capture and restore tape
processing.

BXTPLBL This field contains the tape label (BXA).

BXTPCCW This field contains the current buffer size index used in building CCWs.

BXTPDEV This field contains the device type indicator for the current module that
is being processed.

BXTPDTE This field contains the capture date.

BXTPTME This field contains the capture time.

BXTPSEQ This field contains the tape block sequence number that is currently
being processed.

Capture and Restore 85

Table 10. Keypoint Equates (continued)

Name Description

BXXMODA This field contains the module number of the current module that is
being captured or restored.

BXXRNO This field contains the reel number of the current reel that is being
processed.

BXTPSS (RESERVED)

BXTPSPA (RESERVED)

BXTPCNT This field refers to the capture and restore count fields.

BXTPCTF This field contains the cylinder/head address of each record that is
being processed.

BXTPSP1 (RESERVED)

BXTPCF2 (RESERVED)

BXTPAL2 This field contains the duplicate tape header area.

BXTPCT2 This field contains the capture and restore duplicate count fields.

BXCBADR This field defines the area containing the address of a core block used
for I/O buffers.

BXCBADF This field contains the address of a core block that will be used for I/O
buffers.

CAPCCW This field defines a work area used by capture and restore containing
disk and tape CCW areas.

CAPREG This field is used as a save area for various capture and restore fields.

CAPDSK This field contains the capture and restore disk CCW build area.

CAPTAP This field contains the capture and restore tape CCW build area.

CAPRTR This field contains the retry seek address.

RESDK2 (RESERVED)

RESCW2 (RESERVED)

SAFETY This field redefines the first 24 EBW bytes of the ECB and contains
information common to capture and restore.

SAFIPD This field defines an area containing various capture and restore
indicators.

SAFOPI This field indicates whether a capture or restore is active.

SAFSRT This field indicates whether a module is completed or not.

SAFIPFD This field contains the address of the appropriate in-progress field (IPF).

SAFMOD This field contains the current module number being processed.

SAFDE2 This field contains the current tape hardware address.

SAFDES This field contains the symbolic tape name.

SAFTMM This field contains the decimal time that the capture or restore entry
began.

SAFTMB This field contains the binary time that the capture or restore entry
began processing the current reel of tape.

SAFPSS This field contains the capture common area address (CMMPSS).

86 TPF V4R1 Database Reference

Keypoint DSECTs
The following DSECT definitions are provided in the capture and restore keypoint
record (BXAXF).

Disk Device Control Table (DDCT)
This record is completely initialized by the online capture and restore programs as
needed.

Table 11. Disk Device Control Table (DDCT)

Name Description

DDCT DSECT describing the disk device control table.

DDCLAB This field contains the program record number and demand counter that
are used in lieu of an alphabetic record ID because the disk device
control table is maintained as a program.

DDCNAM This field contains the program stamp. This field will always contain
BXAM because this is the only segment that files the DDCT.

DDCSYN This field contains a synchronization field used to ensure that the
capture and restore keypoint and the DDCT reflect the same point in
time when a system IPL occurs. Refer to keypoint tag BXSYNF for more
information.

DDCTOT This field contains the number of modules to process.

DDCDON This field contains the number of modules that are currently done.

DDCCIP This field contains the number of entries in progress.

DDCCES This field contains the total number of restore entries started.

DDCPIND This field contains the processor participation indicator.

DDCTMID This field contains the number of modules that are deferred.

DDCTMOF This field contains the number of modules that are offline.

DDCHDR This tag refers to the first 30 bytes of the DDCT, which are considered
the record header.

DDCNMOD This tag is equated to the number of DDCMOD entries in the DDCT. It is
calculated as follows: 4096 − L'DDCHDR − 1.

DDCMOD This byte field is used as 8 1-bit indicators to maintain the status of
modules that are being captured or restored. 4065 of these fields exist
in the DDCT, allowing for a module number range of 0–4064.

Capture and Restore 87

88 TPF V4R1 Database Reference

Database Reorganization

This chapter describes the functions that are available in database reorganization
(DBR) and how to use these functions. You should have a general knowledge of the
TPF system; see TPF Concepts and Structures and TPF System Generation.

DBR allows you to:

v Capture the fixed file database and reload it on another system with a different or
reorganized database.

v Capture the pool database and reload it on another system with a different or
reorganized database.

v Capture only specified record types and reload them as necessary.

v Bypass record types or certain records in a record type while capturing the
database.

v Control the processing of the utility while it is running.

v Run in any system state while capturing the database.

DBR also allows a subsystem user to capture an existing database (output phase)
and reload the captured database on a new subsystem (input phase).

DBR is started by the ZDBRO and ZDBRI commands. In a multiple database
environment, the ZDBSO and ZDBSI commands are also available, which allow you
to process more than one subsystem user in a single message. See TPF Main
Supervisor Reference for additional information about the multiple database function
(MDBF). See TPF Operations for information about the format of the DBR
commands.

Prerequisites
The DBR process requires:

v A fixed record type of #DBRRI allocated with the number of record types (fixed
and pool) in the system plus 3 records. These records are used to control DBR
processing and define which records to include in the capture.

v A DBF tape if you want to capture any fixed file records.

v A DBP tape if you want to capture any pool records.

Considerations Before Using DBR
You should have a complete knowledge of the database to be captured and be able
to:

v Define the system state the DBR run will operate in. Table 12 summarizes the
operational requirements for starting a DBR run.

v Define which record types can or cannot be captured.

v Define which pool records will be captured.

Table 12. Database Reorganization Operational Requirements

Phase Record Type IPL State Other

1 Input Fixed General file 1052 None

2 Input Pool Prime module 1052 None

3 Output Fixed Prime module 1052 None

© Copyright IBM Corp. 1994, 2002 89

Table 12. Database Reorganization Operational Requirements (continued)

Phase Record Type IPL State Other

4 Output Fixed Prime module NORM Logging

5 Output Pool Prime module 1052 None

6 Output Pool Prime Module NORM Logging

For example:

v Line 3 shows that if you want to start a DBR run for the output phase of fixed
records, you must IPL the prime module and the TPF system must be in 1052
state.

v Lines 4 and 6 show that the system can enter NORM state only if record logging
for the capture and restore utility is active. See “Capture and Restore” on
page 55 for more information about capture and restore.

v Line 1 shows that if you want to start a DBR run for the input phase of fixed
records, you must IPL the general file and the TPF system must be in 1052
state.

These operational requirements apply only to the START and RESTART functions;
that is, the actual running of DBR. The other DBR commands are not subject to
these requirements.

Additional considerations include the following:

v If a processor is running DBR, you cannot start another DBR run on the same
processor.

v In a multiple database function (MDBF) system, whether loosely coupled or not,
you cannot start a DBR run for a subsystem that is currently running DBR.

v In an MDBF system, whether loosely coupled or not, you cannot start a DBR run
for a subsystem user that is currently running DBR.

v In a loosely coupled MDBF system, 1 processor can run DBR for a given
subsystem user while another processor runs DBR for a different subsystem
user.

v In a loosely coupled MDBF system, 1 processor can run DBR for a given
subsystem while another processor runs DBR for a different subsystem.

v DBR cannot be run on tapes mounted in blocked mode.

If you want to run the DBR output phase with buffered tape devices, you must do
one of the following:

– Specify the DBRBUF=YES parameter on the CONFIG macro in your SIP
stage 1 deck. See TPF System Generation for more information about the
CONFIG macro.

– Enter the ZSYSG command with the DBRBUF parameter.

Attention: Running the DBR output phase with buffered tape devices will
improve performance; however, if the system re-IPLs or tape errors occur while
DBR is in progress, you may lose data. Also, because the switch that is set by
the DBRBUF parameter is subsystem-shared, you can specify ZSYSG with the
DBRBUF parameter only from the basic subsystem (BSS).

v DBR uses 2-byte hexadecimal record types and 8-byte ordinal numbers (up to 16
digits).

90 TPF V4R1 Database Reference

Note: All input and output messages will handle ordinal numbers as
hexadecimal values rather than decimal values.

Database Reorganization Control Records
This section describes the control records used with DBR. These control records
are defined in the DB0DB data macro.

Master Keypoint
The master keypoint contains information necessary to control the capture of the
fixed file and pool database. It contains information relating to each fixed file record
type and pool record type available in the system. The master keypoint is a 4KB
record that contains bits for all possible record types in the system. These bits
indicate:
v If the record type will be captured.
v If the record type contains records that will be bypassed.

In addition, the master keypoint contains the available ECB count. The default ECB
count is 4; however, you can modify this.

Working Keypoint
The working keypoint is used to control the processing of DBR during output and
input phases. When you enter a START command, the master keypoint is copied to
the working keypoint to prevent the loss of the master keypoint if a system error or
restart occurs. The DBR code periodically saves the last record type processed in
the DBR working keypoint so that you can use the RESTART function to restart
DBR at that record type.

Override Keypoint
The override keypoint is used to process a START rectype END command. This
allows you to capture selected record types or groups of records in a record type
without disturbing the master keypoint. Each record type that you enter turns on a
bit in a 4KB record associated with the override keypoint to show that record type is
to be captured. Once the END parameter is found, the override keypoint is copied
to the working keypoint and the DBR output phase is started to capture the selected
record types.

Database Reorganization Exception Records
The exception records control which records in individual record types will be
bypassed during the DBR output phase. Each ordinal number range of a bypass
command for a record type is placed in this record. The exception record can
contain up to 256 different sets of ordinal numbers. When the output phase is
running, each record type is checked to see if exceptions exist. If exceptions exist,
each ordinal number is compared to the exception entries to see if it should be
bypassed.

Database Reorganization Processing Description
Database reorganization (DBR) consists of 3 phases:

Phase Description

Initialization phase Sets up the control and exception records to reflect
the records to be captured.

Database Reorganization 91

Output phase Captures the specified records and writes them to
tape.

Input phase Reloads the captured records to a new TPF
system.

Initialization
Before starting DBR, you must initialize the control and exception records that are
used by DBR. The following commands are used in the initialization phase:
v ZDBRO INIT or ZDBSO INIT
v ZDBRO BYPASS or ZDBSO BYPASS
v ZDBRO RESET or ZDBSO RESET
v ZDBRO DISPLAY or ZDBSO DISPLAY

You can also use the ZDBRO OECB or ZDBSO OECB command to modify the
number of available ECBs to fit your installation requirements. The default number
of available ECBs for the output phase is 4. Be careful when raising the available
ECB count because each ECB causes as many as 20 frames to be used. Checks
have been inserted in the system to prevent users from running out of frames
during the running of DBR. However, additional activity on the system and the
running of DBR on multiple subsystems simultaneously can cause working storage
to be used up rapidly.

INIT
You must enter the ZDBRO INIT or ZDBSO INIT command before any other DBR
command.

The INIT function formats the predefined record type (#DBRRI) to reflect all the
fixed file and pool records to be captured into the necessary control and exception
records that are needed by DBR.

v The master keypoint is formatted to reflect all in-use fixed file and pool records
that are to be captured. There is a maximum of 12 288 possible fixed file record
types. In addition, the available ECB count is set to 4 (default).

v The default initialization sets up the control record to capture all the records that
are accessible from the issuing SSU/processor/I-stream triplet. If an
SSU/processor/I-stream triplet is specified as a parameter, the control record is
set up to capture all the records that are owned by the specified
SSU/processor/I-stream.

v The fixed file and pool exception records are formatted to zero with an available
count of 256 entries.

v The ZDBSO message is used to capture all of the records that a particular
subsystem user owns. For example, if you want to capture all the records owned
by SSU3, SSU4, and SSU5, enter:

ZDBSO INIT SSU3/SSU4/SSU5

v The ZDBRO triplet command is used to capture all records that the
SSU/processor/I-stream combination owns. Without the triplet options, ZDBRO is
used to capture all records that the SSU has access to; the SSU may or may not
own these records. For example, if you want to capture all the records owned by
SSU1 on processor B I-stream 2, enter:

ZDBRO INIT SSU1/B/2

v Only 1 ZDBxO message can be entered for a single SSU at a time. If another
ZDBxO message is required for additional database capturing, you need to wait
for the DBR output phase to finish completely before entering another ZDBxO
message.

92 TPF V4R1 Database Reference

Once the records are initialized, you can modify the control records as necessary to
process the database as determined by your installation.

BYPASS
Use the BYPASS function to set a certain record type or group of records in a
record type so they are not captured. For example:

v If you do not want to capture hexadecimal record type 0009, enter:

ZDBRO BYPASS RECtype-0009

or

ZDBSO BYPASS RECtype-0009

The BYPASS option sets the control bits that are ignored or preserved by the
BYPASS parameter of the INIT command. When BYPASS=YES on the INIT
function, the capture bits that are set with the BYPASS function are ignored.

A practical instance of the BYPASS function involves the PROT table. The output
tape device used by DBR is identified in the PROT table. This table is captured
by the DBR output phase and restored by the DBR input phase. When the
restored system comes online, the previous PROT table takes effect and may not
agree with the tape status of the current system unless the same tape device
was specified for both phases of DBR. If you cannot avoid using different tape
devices, you can bypass the capture of PROT during the output phase, or correct
the contents of PROT after the system is restored if the BYPASS function was
not used.

v If you want to capture hexadecimal record type 0009, but do not want to capture
ordinals 020-035 in that record type, enter:

ZDBRO BYPASS RECtype-0009 RANGE-020.035

or

ZDBSO BYPASS RECtype-0009 RANGE-020.035

v If you want to capture only pool records that are in use, enter:

ZDBRO BYPASS DIR

or

ZDBSO BYPASS DIR

RESET
If a particular hexadecimal record type or group of records in a record type are set
so that they will not be captured, but you determine that they should in fact be
captured, use the RESET function to reset the capture bit in the master keypoint
and the exception fields in the exception records.

For example:

v If you bypassed hexadecimal record type 0009, when it should be captured,
enter:

ZDBRO RESET RECtype-0009

or

ZDBSO RESET RECtype-0009

v If you bypassed ordinal numbers 020-035 in hexadecimal record type 0009, and
now want to capture them, enter:

ZDBRO RESET RECtype-0009 RANGE-020.035

Database Reorganization 93

or

ZDBSO RESET RECtype-0009 RANGE-020.035

v If only pool records that are in use are set to be captured, but you want to
capture all pool records, enter:

ZDBRO RESET DIR

or

ZDBSO RESET DIR

v If you entered a START rectype command but did not enter START rectype END
and want to reset the START rectype parameters, enter:

ZDBRO RESET OVR

or

ZDBSO RESET OVR

DISPLAY
Use the DISPLAY function to display the status of the DBR control and exception
records to determine if the records that are set to be captured or bypassed are
correct, or changes are necessary to update these records before starting the
output phase.

Note: Do not use the display message after DBR is started. The results of the
display are not valid in this case.

For example:

v If you want to display the hexadecimal record types that are set to be captured,
enter:

ZDBRO DISPLAY ALL RECtype-value

or

ZDBSO DISPLAY ALL RECtype-value

where value is the record type code, which must be a 4-digit hexadecimal
number. The record type that is specified by value is the first record type to be
displayed. A maximum of 48 items can be displayed in each output message.

v If you want to display the hexadecimal record types that are set on in the
override keypoint, enter:

ZDBRO DISPLAY OVR

or

ZDBSO DISPLAY OVR

v If you want to display the hexadecimal record types that have exception entries,
enter:

ZDBRO DISPLAY EXC

or

ZDBSO DISPLAY EXC

v If you want to display the exception entries for a given hexadecimal record type,
enter:

ZDBRO DISPLAY RECtype-value

or

94 TPF V4R1 Database Reference

ZDBSO DISPLAY RECtype-value

where value is the record type code, which must be a 4-digit hexadecimal
number.

Output Phase
When the DBR control and exception records are initialized, you can start the DBR
output phase.

Start the DBR output phase with the ZDBRO START or RESTART command or with
the ZDBSO START or RESTART command. See TPF Operations for additional
information about the format of all the DBR commands.

Before you start the DBR output phase, display the master keypoint and exception
records to ensure the database will be captured correctly.

As each record type is captured during the output phase, a message is sent to the
console. Check the record type to ensure that the correct record types are being
captured.

At any time during the output phase, you can request status with the STATUS
function. The record type, ordinal number, and number of available ECBs are
displayed on the console. The STATUS function is not available during the input
phase.

If the system needs to be IPLed for any reason while DBR is running, DBR forces
the DBF/DBP tapes to be removed before DBR is started again.

v The command handler checks to ensure that the record initialization step is
complete and DBR is not already running. If an error is found, a message is
displayed and the command is ignored.

v The working keypoint is formatted to control the record capture unless restart
was entered which causes the file copy of the working keypoint to be obtained to
find the last record type processed.

v The controller searches (starting with hexadecimal record type 0000, for START
and the last record type processed for RESTART) the capture bits until one is
found that is in use.

v Each ordinal number (starting with hexadecimal 00) for the record type is
compared against the exception entries (if present) and passed through the
FACE table for a valid file address.

v If the record is acceptable, the controller moves the ordinal number and file
address of the record to a 4096-byte header record. The header record contains
the record type that is being processed, the number of records in the tape block,
the size of the records, and the ordinal number and file addresses of each of the
records in the subsequent tape block. The tape block can contain as many as
160 small records, 48 large records, or 16 4KB records.

v The controller then goes to the next ordinal number in the record type and
processes it as described previously. When there are enough records to fill a
tape block or when the end of a record type has been reached, a CREEC macro
is issued to the disk read/tape write routine.

v As each CREEC macro is issued to the disk read/tape write routine, a count of
outstanding CREECs increases. If the count is greater than the number of
available ECBs set in the keypoint, the controller defers to allow the outstanding

Database Reorganization 95

CREECs to complete processing. Once the count reaches the available ECB
count, processing continues. If the count is greater for an extended time frame,
DBR ends.

v The DBR code will also wait in a loop until enough frames are available to
process the records. When enough frames are available, the CREEC macro is
issued.

v The CREEC macro passes the header block that was created by the controller to
the disk read/tape write routine.

v The disk read/tape write routine finds all of the records whose ordinal numbers
and file addresses have been passed in the header block. It then writes the
header block and all of the records that it finds to the output tape.

For maximum efficiency, as many as 10 FINDC macros are issued before a
WAITC macro is issued. If a find error occurs, a core block is zeroed and the
record ID field is set to X'FFFF'. This is a dummy record containing all zeros, and
is referenced in the online message as the ZZ record. If the record is necessary,
you must correct the record and restart DBR, or correct the record after it is
moved to the new database.

v If a tape error occurs, the tape is closed and a message requesting a new tape
is sent to the console. Once the new tape is mounted, you must enter the
SWITCH command to allow DBR to open and start using the new tape.

v While the controller is processing, it periodically checks the abort control bit in
the keypoint. If you enter an ABORT command, the controller closes the tape,
cleans up, and exits. (See “Stopping DBR” on page 97 for more information
about the ABORT function.)

v Once all fixed record types are processed, the controller closes the fixed tape,
turns on the pool control bit, and goes to the pool controller to process the pool
records.

v The pool controller processes the pool records based on the pool capture bits
pointed to by the keypoint in the same way as fixed. Upon completion of the pool
record types, the pool tape is closed and the output phase ends.

Unless the DBR control records are destroyed, the DBR output phase can be
stopped and restarted at any time. The restart starts processing with ordinal number
zero of the record type that was being captured when the process was stopped.
The DBF/DBP tape that was mounted when the process was stopped should be
saved and a new tape mounted when the restart is requested.

Records not Captured
When capturing records, the records associated with TPF programs, loaders, and
images are bypassed. Records that are bypassed include:
v Core image restart area (CIMR) records
v Keypoint records
v IPL area records
v Keypoint staging area records
v E-type program area records
v Program history area records
v Image pointer records (CTKX)
v Any record types that have RESTORE=NO coded on the RAMFIL macro,

including #XPRG records containing (ISO-C) C programs.

If you want to move these records from 1 TPF system to another you can do a full
load or use the ZIMAG command to create or copy the image.

96 TPF V4R1 Database Reference

Tape Mount in MDBF Environment
The tape utility writes the subsystem user ID to a tape label. This subsystem user
ID is checked when the tape is mounted. Remember, DBR cannot be run on tapes
that are mounted in blocked mode.

Logging
If you run DBR in a state other than 1052 state, record logging for the capture and
restore utility must be started to record any changes that are made to records after
DBR has captured them to tape. Logging must remain active until the system is
cycled down to 1052 state. See “Capture and Restore” on page 55 for additional
information about the capture and restore utility.

Stopping DBR
If you must stop the DBR process during the output phase, use the ZDBRO ABORT
or ZDBSO ABORT command. This command closes any open tapes and resets the
DBR control bits. The DBR code periodically saves the last record type processed
in the DBR working keypoint so that you can restart DBR at that record type after
an unplanned shutdown of the system. You can use the RESTART function to
restart DBR at the record type saved in the keypoint. Because the record types that
were written to tape may not be in sequential order, additional record types after the
specified record type also may have been written to tape. The DBR code ensures
that all record types up to the specified record type were processed before it saves
that record type in the keypoint. If an ABORT command was entered, a RESTART
command restarts DBR at the last record type processed before the ABORT
message was entered. DBR restarts with ordinal number 0 of the record type that
was being processed when the system was lost. You can also use the RESTART
function to restart DBR at any record type in order to avoid writing records to tape
that may have already been written before an unplanned system shutdown.

Input Phase
The DBR input phase is started by the ZDBRI START or RESTART, or the ZDBSI
START or RESTART command. See TPF Operations for more information about the
format of all the DBR commands.

v The command handler checks to ensure that DBR is not currently running and
the system is in 1052 state. Fixed files are loaded from the general file and pool
records are loaded from the online system.

v The working keypoint is created or read (if already created) and the restart
record type is posted if restart was entered or record type zero for a normal start.

v The controller opens the appropriate input tape and reads the first header record
from the tape.

v The controller increments the CREEC counter and checks it against the available
ECB count in the keypoint. If all available ECBs are used, the controller defers
waiting for some disk write entries to be completed.

v The DBR code also waits in a loop until enough frames are available to process
the records. When enough frames are available, the CREEC macro is issued.
You can modify the available ECB count to allow more or fewer CREEC macros
to be issued (default is 4). Be careful when raising the available ECB count
because each ECB causes as many as 20 frames to be used. Checks have
been inserted in the system to prevent users from running out of frames during
the running of DBR. However, additional activity on the system and the running
of DBR on multiple subsystems simultaneously can cause rapid working storage
depletion.

v The CREEC macro passes the header block read in by the controller to the disk
write routine.

Database Reorganization 97

v The disk write routine reads the next tape block from the input tape and files the
records contained in the tape block to disk by taking each record’s file address
and moving it to a file address reference word in a data event control block
(DECB) before filing it.

For maximum efficiency, as many as 10 FILNC macros are issued before a
WAITC macro is issued.

v The controller reads the next header record from the input tape when the disk
write routine has turned off a bit in the DBR keypoint, indicating that it has read
in a tape block.

v If permanent errors occur on the tapes during the input phase, the tape is closed
and the program exits. You must remake or correct the tape and restart the input
phase.

v The controller periodically checks a bit in the keypoint to see if the disk write
routine is done with the input tape. If yes, the tape is closed and the program
exits.

v If the record cannot be filed, a message is sent to the console, the CREEC count
decremented, and the program exits.

v If the record is a dummy error record from the output phase (record ID =
X'FFFF'), a message is sent to the console before processing the record. The
record should be corrected after the input phase ends.

v At the end of file, the tape is closed and the program exits.

The DBR input phase can be restarted at any specified record type. The tape is
searched until the specified record type is found and processing continues from that
point to end of file.

Logging
Once the fixed file and pool database are reloaded, you should process the logging
tapes that were created during the output phase (if in other than 1052 state). When
the logging tape restore has been completed, the database reorganization process
is completed.

Database Reorganization Sample Problem
The following shows an example of how a large fixed record type (0000) is captured
from one TPF system and reloaded to a different TPF system. It explains the
general flow of the DBR utility and the sequence to follow while using the utility.

Before you begin: Start DBR output in 1052 state and IPL the prime module to
1052 state.

Note: If the system is in a state other than 1052 state, capture and restore logging
must be active before you start DBR.

1. Enter ZDBRO INIT to initialize the DBR record:

User: ZDBRO INIT

System: DBRO0000I 13.42.33 REQUEST COMPLETE

Note: DBR initialization must be the first step of the DBR process.

2. Enter ZDBRO DISPLAY ALL to display the hexadecimal record types to be
captured:

98 TPF V4R1 Database Reference

User: ZDBRO DISPLAY ALL

System: DBRO0067I 10.22.21 RECORD TYPES TO BE CAPTURED
0000 0001 0002 0003 0004 0005 0006 0007
0008 0009 000A 000B 000C 000D 000E 000F
0010 0011 0012 0013 0014 0015 0016 0017
0018 0019 001A 001B 001C 001D 001E 001F
0020 0021 0022 0023 0024 0025 0026 0027
0028 0029 002A 002B 002C 002D 002E 002F
MORE

Note: The first 48 in-use hexadecimal record types are displayed. MORE,
which is on the last line of the display, shows that there are more in-use
record types.

3. Enter ZDBRO BYPASS as follows to bypass ordinal numbers 110–119,
280–287, and 17–28:

User: ZDBRO BYPASS REC-0000 RAN-6E.77

System: DBRO0000I 12.54.00 REQUEST COMPLETE

User: ZDBRO BYPASS REC-0000 RAN-118.11F

System: DBRO0000I 12.55.00 REQUEST COMPLETE

User: ZDBRO BYPASS REC-0000 RAN-11.1C

System: DBRO0000I 12.56.00 REQUEST COMPLETE

Note: The previous ordinal numbers are not needed and will be bypassed in
this example.

4. Enter ZDBRO RESET REC-0000 RANGE-11.1C to reset ordinal numbers
17–28:

User: ZDBRO RESET REC-0000 RAN-11.1C

System: DBRO0000I 12.58.00 REQUEST COMPLETE

Note: The previous ordinal numbers should be captured; they are reset.

5. Enter ZDBRO DISPLAY REC-0000 to display hexadecimal record type 0000:

User: ZDBRO DISPLAY REC-0000

System: DBRO0077I 13.45.28 EXCEPTIONS FOR RECORD TYPE 0000
START END
000000000000006E 0000000000000077
0000000000000082 0000000000000083

Note: This display shows verification of the exception entries for the record
type.

6. Enter ZDBRO START 0000 END to start the DBR output phase:

Database Reorganization 99

User: ZDBRO START 0000 END

System: DBRO0010I 13.55.01 DBR OUTPUT PHASE STARTED
COSK0079A 13.55.01 *CP* - MOUNT DBF TAPE FOR OUTPUT

User: ZTMNT DBF 281 AO BP

System: COTN0046I 13.55.01 TMNT - TAPE DBF MOUNTED ON DEVICE 281

Note: Only hexadecimal record type 0000 is needed. END was entered so
that the DBR process starts to capture the record type. The DBF (fixed)
tape is requested and a mount is issued.

7. Enter ZDBRO OECB 20 to change the default available ECB count:

User: ZDBRO OECB 20

System: DBRO0000I 14.33.21 REQUEST COMPLETE

Note: The default value is 4. Be careful when raising the available ECB count
because each ECB causes as many as 20 frames to be used. Consider
gradually increasing the ECB count and monitoring system
performance.

8. Enter ZDBRO STATUS to request DBR status:

User: ZDBRO STATUS

System: DBRO0062I 22.12.33 DBR IS PRESENTLY PROCESSING
RECORD TYPE 0000,ORDINAL NUMBER 000000000000013D,ECB= 00000020

The end of the record type is displayed in the following example:

System: DBRO0015I 22.45.33 DBR HAS FINISHED PROCESSING RECORD TYPE 0000

The end of output phase is displayed in the following example:

System: DBRO0016I 22.46.33 DBRO FIXED OUTPUT PHASE COMPLETE
DBRO0011I 22.46.33 DBR OUTPUT PHASE COMPLETE
COTC0080A 22.46.33 TCLS - REMOVE DBF FROM DEVICE 281

Note: If pool records were to be captured, the pool controller would receive
control at this point and request the DBP (pool) tape.

9. Enter the following to IPL the general file:

User: I 3E7

Note: The fixed file input phase must be run from the general file in 1052
state. The IPL address (3E7) may differ.

10. Enter ZDBRI START FIXED to start the input phase:

100 TPF V4R1 Database Reference

User: ZDBRI START FIXED

System: DBRI0020I 09.30.16 DBR INPUT PHASE STARTED
COSK0079A 09.30.16 *CP* - MOUNT DBF TAPE FOR INPUT

User: ZTMNT DBF 281 AI BP
System: COTN0046I 09.30.16 TMNT - TAPE DBF MOUNTED ON DEVICE 281

Note: DBR requests the DBF tape that was created in previous steps as input
and a mount is issued.

11. Enter ZDBRO IECB to change the default available ECB count:

User: ZDBRO IECB 20

System: DBRO0000I 09.31.43 REQUEST COMPLETE

Fixed hexadecimal record type 0000 is reloaded and the DBR process ends in
the following example:

System: DBRI0015I 09.33.17 DBR HAS FINISHED PROCESSING RECORD TYPE 0000
DBRI0000I 09.33.17 REQUEST COMPLETE
COTC0087A 09.33.17 TCLS - REMOVE DBF FROM DEVICE 281 VSN 111111

See TPF Operations for more information about the ZDBRO commands.

Database Reorganization 101

102 TPF V4R1 Database Reference

Recoup

Recoup processing verifies fixed records and the chains of pool records attached to
them. Recoup processing returns file pool addresses that were released by
applications or were lost because of software errors or unplanned system restarts.

Note: When operating in a loosely coupled complex with more than eight
processors, only the first eight processors can participate in recoup
processing and all processors that participate must be at the same PUT
level.

Fixed Records
Fixed records are predefined data records whose addresses can be calculated
using the file address compute (FACE) program. These records are always present
in the system and are usually those records that are accessed most frequently.

Pool Records
File pool records are records created on demand by applications programs. These
records are always accessed indirectly by file address pointers in:
v Fixed records
v Main storage tables
v Other chained pool records.

Controlling the Use of Pool Addresses
The use of the file pool area is controlled by the control program file directory
system. This system maintains directories for each of the pool areas (4KB, large, or
small; duplicated or nonduplicated; and long-term or short-term records). Pool areas
use file address reference format (FARF) addressing.

When an application program requires a file address for a created record, it issues
a file address request macro to the control program. The control program searches
the appropriate file pool directory for the first address that is not in use and, when it
finds it, sets an indicator bit showing that the address is in use, and passes the file
address to the application program.

When an application program determines that a file address is no longer required, it
issues a file address release macro to the control program. For a short-term file
pool record, for example, a record that exists only for the time of a transaction, the
control program sets the appropriate indicator in the relevant directory to not in use
state. For a long-term record, the control program writes the address of the
released record to the real-time tape RTA and released pool address (FC33)
records, which will be processed by directory support programs to update the status
of the long-term file pool directories (see “Maintenance Functions” on page 23).

Losing Pool Addresses Because of Software Errors or a System
Restart

Pool addresses can be lost when application programs fail to release file addresses
correctly. Although the file copies of the file directory records are frequently updated
from the main storage copies of directory records, at any point in time the file
copies may not accurately reflect the actual state of the directories.The frequency
with which the file copies are updated is based on the number of file addresses

© Copyright IBM Corp. 1994, 2002 103

given out and placed in NOT AVAILABLE state. If an unplanned system restart
occurs because of a machine malfunction or catastrophic error condition, the file
pool directory records are read from file and additional record address NOT
AVAILABLE indicators are set. The number that is set is an estimate of the
maximum number of record file addresses that could have been set to NOT
AVAILABLE state in the main storage directory since the file records were last
updated. This eliminates the possibility of the same file address being given to
application programs before and after a restart. However, some of the file
addresses that are set to NOT AVAILABLE state may not have been used before
the restart, so some file pool addresses are lost to the system.

Recouping Lost Pool Addresses
The recoup function reconciles the long-term file pool directories with the actual
status of the pool area to provide summaries that can be used to isolate the causes
of directory discrepancies. To do this, recoup accesses every fixed record and main
storage table that references pool records. Recoup then reads any pool records
referenced from those records. The data gathered during this record accessing and
chain chasing phase can then be used to create file pool directories showing the
actual status of the file pool area, and to produce summaries, which may be used
to determine how errors are caused.

Recoup Functions by Phase
The following sections list the recoup functions by phase.

Recoup Pre-Phase 1 Functions
Phase 1 chain chasing is determined by information in the recoup descriptor
container records and TPF collection support (TPFCS) recoup indexes. Create
descriptor container records and recoup indexes describing all records and TPFCS
collections that can reference long-term file pool addresses and TPFCS persistent
identifiers (PIDs).

Recoup Descriptor Container Records
The descriptor container records are read and each record type in them is passed
to the appropriate recoup chain chase program for processing. Several descriptor
container records are provided with the recoup package. These records describe
the processing to be done on record types which must be part of the TPF system
and that can contain long-term file address and PID references. These descriptor
container records can be used as an example when you are creating descriptor
container records. See the GROUP and INDEX macros in TPF System Macros for
additional examples and instructions.

Recoup currently supports the following types of record structure processing:

v Standard forward and backward chaining

v Nonstandard forward and backward chaining

v Records containing embedded addresses or PIDs found at a fixed or constant
displacement in the record

v Records containing groups of addresses or PIDs either at fixed or variable
locations.

v Records with multiple items containing fixed record ordinal numbers

v In a loosely coupled or multiple database function (MDBF) environment, records
that are unique to a processor or subsystem user

v Records that make up a TPFCS collection that is contained in a data store

104 TPF V4R1 Database Reference

v Records in a TPFCS collection whose PID is contained as an embedded
reference in another collection. The embedded reference is at a fixed
displacement in a collection element

v Records in a file address structure that is contained as an embedded reference
in a TPFCS collection. The embedded reference is at a fixed displacement in a
collection element

v Record types that have a unique attribute (such as SSU, processor, or I-stream
unique) will be chased by the record owner as defined in the FACE table (FCTB).

TPFCS Recoup Indexes
TPFCS collections created by user applications will not be recouped unless they
are explicitly made known to the TPF system by establishing one or more TPFCS
recoup indexes. A recoup index describes the location of persistent identifiers
(PIDs) and file addresses embedded in all collections associated with that recoup
index. A TPFCS database consists of automatically generated system collections as
well as user collections. An anchor collection which is usually the application
dictionary of the data store (named DS_USER_DICT), refers to user-created
collections, which refer to other collections, and so on. Every user-created collection
must be referred to or it will not be recouped. Several recoup indexes are provided
with the recoup package to recoup the system collections. A recoup index must be
created and associated with the anchor collection and any user collections that
contain embedded references. This is done by running a user application or by
entering the ZBROW RECOUP command. Furthermore, if the embedded reference
is a file address, a TPF descriptor with the USE=TPFCS parameter on the GROUP
macro must be created for that record.

If a TPF file contains an embedded PID, the TPF descriptor for that record is all that
is needed to recoup the embedded PID. However, if the embedded PID contains
additional embedded information, a recoup index will be needed to describe the
embedded PID.

For more information about TPFCS recoup, see “TPFCS Recoup” on page 149. See
the GROUP and INDEX macros in TPF System Macros for additional examples and
instructions. See TPF Operations for more information about the ZBROW RECOUP
command.

Recoup Considerations for TPF Internet Mail Server
Before you run recoup for the TPF Internet mail server database, ensure the mail
server recoup descriptor (BKD1) is defined correctly and loaded on the TPF
subsystem in which you plan to run the TPF Internet mail servers. You must also
ensure that BKD1 contains a GROUP and INDEX macro pair associated with each
#MAILxx record that you have defined.

See TPF Transmission Control Protocol/Internet Protocol for more information about
recoup considerations for the TPF Internet mail server database and how to update
BKD1.

Setup
Recoup setup must be done once from CRAS state or above for each subsystem
by entering the ZRECP SETUP command. The recoup setup process will create the
recoup scheduling control table (IRSCT) and one recoup active root table (IRART)
for each defined processor.

Recoup 105

Recoup Phase 1 Functions
Recoup phase 1 processing consists of the following:

v Pre-chain chase processing

v Chain chase processing

v Post-chain chase processing.

Pre-Chain Chase Processing
Recoup phase 1 does the following before it begins to chase pool addresses:

v Switches released address (FC33) records and the RTA tape to distinguish
between pool addresses that were released before recoup chain chase
processing starts and pool addresses that were released during chain chase
processing. Any pool addresses that are released by applications during chain
chase processing are recorded on new FC33 records and a new RTA tape.

v Captures the long-term file pool directory records onto the phase 1 captured
SONRI directory (#STPKP). This capture is done to provide a comparison for
recording long-term file pool addresses that were given out between phase 1 and
phase 3 of recoup.

v Initializes and verifies pseudo directories.

v Initializes ID tables.

v Builds the recoup scheduling control table (IRSCT) that determines how records
are chain chased.

v Initializes the recoup active root tables (IRARTs) for each processor that is
defined.

v Displays file pool counts.

Chain Chase Processing
Chain chase processing is controlled by the IRSCT. This table is built at the time
the ZRECP RECALL command is entered, during a full recoup run. Each base
group identified in the recoup descriptor container records (BKD) initialized during
the pre-phase 1 stage is examined for validity and scheduling directives. These
groups are added to the IRSCT along with all TPFCS data stores that reside on the
current subsystem. Recoup uses this information to define the order, and in a
loosely coupled complex; on which processor the chain chase will be run. With this
information, every record on the subsystem that contains pointers to file pool
records is accessed. Those file pool records and all file pool records subsequently
chained from them are accessed until all pool-related chains in the subsystem have
been traversed.

Recoup processing uses the FACSZ macro to simulate an environment so the
records can be chased by the assigned processor on behalf of the owning
environment.

When an item is recorded for every pool address in use in the system, the function
of phase 1 recoup is complete.

Notes:

1. It is possible to have a record type in the system that can be referenced from
several sources (for example, a passenger name record, or PNR). Under this
condition, phase 1 chain chasing can spend a great amount of time
reprocessing these chains.

2. In an MDBF environment, records will be chased starting with the first
subsystem user (SSU) in a subsystem and ending with the last SSU for that

106 TPF V4R1 Database Reference

subsystem. Subsystem common records will be chased only once, and
subsystem unique records will be chased by the owning SSU.

3. In a loosely coupled environment, all records of a given type will be chased
from the processor assigned to that type in the IRSCT. Processor common
records are chased only once. Processor unique records will be chased for
each owning processor from a single assigned processor using the FACZ macro
to access the file copy of the processor unique fixed file record. This approach
is also used for records that are defined as processor or I-stream unique.

4. Because it is difficult in a loosely-coupled environment to guarantee that all
processors in the complex will be up and running in the recoup process, it is
mandatory that pool file address pointers maintained in global fields, global
records, and core resident records be chased from the file copy of the records.
The only exception to this restriction is when the records or fields have been
defined to the TPF system as synchronized data (for example, all processors
and I-streams have exactly the same view of the data).

5. Recoup phase 1 will also access all TPFCS data stores defined for the
subsystem on which recoup is running and recoup the data store internal
system collections. Recoup phase 1 will also recoup user-created collections by
using the TPFCS recoup indexes to chain chase PIDs and extract embedded
PIDs and file addresses. Recoup processing uses information in the base
TPFCS data store (TPFDB), which resides on the basic subsystem (BSS). Only
collections belonging to data stores on the subsystem where recoup is running
will be recouped.

Post-Chain Chase Processing
After all record IDs have been chain chased, recoup does the following:

v Switches released address (FC33) records and the RTA tape to distinguish
between pool addresses that were released before recoup chain chase
processing starts and pool addresses that were released during chain chase
processing. Any pool addresses that are released by applications during chain
chase processing are recorded on new FC33 records and a new RTA tape.

v Captures the long-term file pool directory records onto the phase 3 captured
SONRI directory (#SONCP). This capture is done to provide a comparison of
long-term file pool addresses given out between phase 1 and phase 3 of recoup.

Phase 2 Functions
When chain chase processing is completed on all processors, the primary
processor automatically starts recoup phase 2 processing, which does the following:

v Merges the ID counts records from all processors into a total ID counts for all
processors.

v Merges all pseudo directories from all processors into one common pseudo
directory.

v Checks the integrity of the VFA-resident pseudo directories to ensure they are
accurate.

v Adds ID counts to a historical database where as many as 10 runs of ID counts
are stored.

Recoup Phase 3 Functions
Recoup phase 3 can be started when phase 2 is completed and recoup pseudo
directory (#SONRPE) records have been created. Phase 3 functions are started by
entering commands. Recoup phase 3 processing consists of the following:

v Erroneously available processing

Recoup 107

v Lost address processing

v Rebuild processing

v Rollin (pool directory update (PDU)) processing.

Erroneously Available Processing
The ZRECP RESUME command starts erroneously available processing, which
does the following:

v Saves SONRI and keypoint 9 in the event that they are needed for a fallback.

v Applies the get file storage (GFS) activity that has taken place during chain
chase processing to the recoup rollin directory (#SONROLL).

v Identifies pool addresses that are erroneously available and adds them to the
erroneously available address table (#BREATB8) so they can be displayed.

Note: When erroneously available processing ends, you can enter the ZRECP
PROTECT command immediately to protect pool addresses that were found
to be erroneously available from being used by the TPF system. If no pool
addresses were found to be erroneously available, enter the ZRECP
IGNORE command instead.

Lost Address Processing
The ZRECP PROTECT or ZRECP IGNORE command starts lost address
processing, which does the following:

v Saves the PDU pseudo directory (#SONUP) if recoup phase 3 needs to be
restarted or run again.

v Applies pool addresses that have been released since the start of recoup to the
pool rollin directories.

v Identifies pool addresses that are lost and adds them to the lost addresses table
(#BRLOTB8) so they can be displayed.

Note: When lost address processing ends, you can enter the ZRECP ADD or
ZRECP DEL command to create an exclusion or inclusion table. These
tables are used by rebuild processing to adjust the lost addresses that are
rolled in.

Rebuild Processing
The ZRECP REBUILD or ZRECP NOREBUILD command starts rebuild processing,
which does the following:

v ZRECP NOREBUILD builds the recoup rollin directory (#SONROLL), releasing
the lost pool addresses that were identified during lost address processing.

v ZRECP REBUILD builds the recoup rollin directory (#SONROLL), releasing the
lost pool addresses (adjusted by the exclusion or inclusion table) that were
identified during lost address processing.

v Displays recoup activity.

Rollin Processing
The ZRECP PROCEED command starts rollin processing, which adds pool files to
the online pool directory (#SONRI) by using the recoup rollin directory
(#SONROLL).

Recoup Phase 4 Functions
Integrated online pool maintenance and recoup support merged the recoup phase 3
and phase 4 functions into what is now called phase 3. Recoup phase 4 no longer
exists.

108 TPF V4R1 Database Reference

Recoup Phase 5–Phase 7 Functions
Recoup phase 5 is run as an optional phase to help programmers determine the
cause of lost and erroneously available file pool addresses. Phase 5 is not
considered to be part of the normal recoup run. It is started when you enter the
ZRECP DUMP command when phase 3 is completed. Phase 5 reads an input tape
(ADR) and, using selective file dump and trace (SFDT), causes all lost and
erroneously available file pool records to be written to the (RTL) tape.

Recoup phase 6 and phase 7 then use the information gathered by phase 5 to
create various summary listings. Phase 6 and phase 7 are run offline under MVS,
and the summaries that they create are used to help recoup determine the causes
of lost and erroneously available addresses. See “Phase 6 JCL” and “Phase 7 JCL”
for sample JCL to run recoup phase 6 and phase 7.

Phase 6 JCL
****Replace library parameters with installation’s library

LINK.LIBRARY = library containing PPCP offline segment
//POST EXEC PGM=PPCP,REGION=512K,PARM=(’TV,Y,TR.’)
//* TV => STV OR NO PTV RS => RTL CREATED BY PTV
//STEPLIB DD DISP=SHR,DSN=*LINK.LIBRARY*
//SYSOUT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//PRDD DD SYSOUT=A
//DDSCTH DD DSN=&&SCRTH,DISP=(NEW,PASS),
// UNIT=(SYSDA,,DEFER),SPACE=(TRK,(50,200))
//SYS000 DD DSN=RTA.TAPE,UNIT=TAPE,LABEL=(,SL),DISP=(OLD,KEEP),
// VOL=SER=XXXXXX
//

Phase 7 JCL
****Replace library parameters with installation’s library.

LINK.LIBRARY = library containing BPR0xx offline segment
//STEP1 EXEC PGM=BPR0xx,REGION=400K,PARM=’SSID’
//* The PARM specifies the Subsystem data required from the RTL tape.
//* It is the 4-character subsystem name. If omitted, all data
//* pertinent to BPR0 is reported upon.
//STEPLIB DD DSN=*LINK.LIBRARY*,DISP=SHR
//PRINT DD SYSOUT=A
//TAPEIN DD DSN=RTA.TAPE,DISP=(OLD,KEEP),UNIT=(TAPE,,DEFER),
// LABEL=(,SL),VOL=SER=XXXXXX

Recoup Procedures by Phase
The following lists the recoup procedures by phase.

Pre-Phase 1
Pre-phase 1 consists of steps to complete before you run recoup on the TPF
system. This phase is not considered to be part of a normal recoup run.

Notes:

1. Cycle your TPF 4.1 system to CRAS state or above.

2. To run multiprocessor recoup in a loosely coupled environment, you must define
recoup descriptor container records as core resident across all TPF images.

3. In a loosely coupled environment, you can run pre-phase 1 recoup from any
active processor.

To run pre-phase 1 recoup, do the following:

Recoup 109

v Before you run recoup for the first time, allocate #BKMST and #BKWRK as
miscellaneous records with a record type of #IBMM4 and a record ID of BK (for
each subsystem). (In MDBF, assign these records as subsystem common).

v Ensure that all recoup descriptor container records have been defined as core
resident for each subsystem.

v If this is the first time you are running recoup, or if recoup descriptors have been
changed, assemble the recoup descriptors on the offline MVS operating system.

v If recoup descriptors were created or changed, enter the ZOLDR LOAD
command to load the assembled descriptors.

v If new recoup descriptors were loaded to a TPF image, enter the ZRBKD
command, specifying the MOVE parameter to move the assembled descriptors to
the BKD load control record (BK0LC).

v Enter ZRBKD DISP ALL to ensure that all the descriptors used for recoup are
loaded in the BKD load control record (BK0LC) in the order in which you want
them to run.

v If TPFCS was not initialized previously on your TPF system, enter ZOODB INIT
to initialize TPFCS recoup before running recoup for the first time.

v Enter ZRECP SETUP once on each subsystem in which you run recoup.

v Create TPFCS recoup indexes for any user-created collections that contain
embedded references and associate the recoup indexes with the appropriate
collections.

v Enter the ZPROT DSP command to display the processor that owns the POOL
utility. If the POOL utility is not assigned to the primary processor from which
recoup will be started, enter the ZPROT command to assign ownership of the
POOL utility to that processor.

v Enter the ZRECP PROFILE command to display and make any necessary
changes to your recoup run-time options.

v If you have the TPFDF product installed and want to log errors online, enter
ZRECP ELOG ON.

Phase 1 Procedures
Before running recoup phase 1, consider the following:

v In a loosely coupled environment, all processors can be in 1052 or NORM state:

– If recoup is started in 1052 state, you can cycle up the TPF system later.

Note: Recoup phase 1 timeout processing is not active while the TPF system
is in 1052 state. In other words, entry control blocks (ECBs) that are in
an endless pool chain loop cannot time out when the TPF system is in
1052 state. However, the timeout processing of TPFCS data stores is
still active.

– If recoup is started or running in NORM state, you cannot cycle down the
TPF system until phase 1 is completed or a looping ECB error will occur.

v System performance can be affected by the number of ECBs being used by
recoup phase 1. You can enter the ZRECP LEVEL command any time during
recoup phase 1 to change the number of ECBs that recoup phase 1 can have
active at any one time.

To run phase 1 recoup, do the following:

1. Ensure that all processors are in the correct system state.

2. Enter the ZRECP START command to start recoup.

110 TPF V4R1 Database Reference

3. When the RECP0020A – MOUNT RCP TAPE FOR OUTPUT message is
displayed, mount the RCP general tape as an active blocked output tape. The
RCP general tape must be mounted in the first subsystem user of the
subsystem. The default is the BSS.

4. When the RECP004CA – ENSURE STANDBY RTA AND ALT TAPE MOUNTED
FOR PHASE 1 message is displayed, mount a standby RTA and an ALT tape.
(Recoup causes an RTA tape switch to occur.)

5. If you want to display or change your recoup run-time options, enter the ZRECP
PROFILE command now (before you enter the ZRECP RECALL command).

6. Enter ZRECP RECALL after the RCP, standby RTA, and ALT tapes have been
mounted. This command makes the control program file all records in virtual file
access (VFA) if the TPF system is higher than 1052 state.

Notes:

a. You can enter the ZRECP STATUS command at any time during phase 1 to
display summary status information about recoup phase 1 processing.

b. If you have the TPFDF product installed and error logging is on, you can
enter the ZRECP ONEL command at any time during phase 1 to display
information about any errors that were found during phase 1.

7. If you are running recoup on more than one processor, enter (from the primary
recoup processor) the ZRECP START command, specifying the PROC
parameter for each processor that is going to run recoup.

8. If you receive the RECP0012A – FIXED ERROR – RESPOND and the
RECP0014A – DEFERRING TIL SEL RECOUP COMPLETE OR CONTINUE
RESPOND message, have your system programmer correct the problem and
selectively add a record ID to a recoup run. See “Selectively Add a Record ID to
a Recoup Run”.

9. You will receive the RECP0016I – PHASE I COMPLETED message when
recoup phase 1 is completed.

Selectively Add a Record ID to a Recoup Run
Fixed records that are found in error during recoup chain chase processing are
noted on a prime computer room agent set (CRAS) console during recoup phase 1
processing. Selectively adding a record ID to a recoup run allows you to correct and
reprocess these records. If, after correcting the errors, you want to reprocess the
records in error, enter the ZRECP SEL command for each record that you want to
reprocess. This allows the corrected records to be included in the recoup run.

Note: TPFCS persistent identifiers (PIDs) can be reprocessed in a similar way.

Phase 1 Restart
To restart phase 1, do the following:

1. Ensure that the TPF system is in the state in which you originally started.

2. Remount an RCP tape as active output. (The RCP tape must be mounted in the
first subsystem user of the subsystem.)

3. Enter ZRECP RESTART on the primary processor.

Phase 2 Procedures
Recoup phase 2 starts and runs without operator intervention. Recoup phase 2
writes error information to the RCP tape and, depending on your run-time options
and online error log settings, online log files.

Recoup 111

Note: If you do not have the TPFDF product installed, you cannot use the online
error log. You will have to process the RCP tape offline using the BRFA
program. See “Broken Chain Report (BRFA) Program”.

You can find additional information on commands in TPF Operations:

v See the ZRECP PROFILE command for more information about run-time options.

v See the ZRECP ELOG command for more information about turning on online
error logging.

v See the ZRECP ONEL command for more information about displaying errors
found during chain chasing.

Chain chasing multiple records that point to the same pool address, from different
processors, causes ID counts for those pool addresses to be incorrect, because the
pseudo directories are processor unique. These double-counted addresses are
reported during recoup phase 2. Before you run recoup again, change the
descriptor or DBDEF macro statement for the identified record to force
cross-chained databases to be chain chased on the same processor.

Broken Chain Report (BRFA) Program
For each of the possible error conditions determined by phase 1 recoup, separate
listings are produced in phase 2. These listings are as follows:

1. Broken chains due to invalid ID

2. Broken chains due to invalid RCC

3. Broken chains due to software errors

4. Broken chains due to hardware error

5. Broken chains due to invalid control information

Note: Pool addresses with error types 1, 2, and 3 are set to available in the
pseudo directories recoup builds if no valid reference to those addresses are
found. Pool addresses with hardware errors and control information errors
are not returned to the pool, and will remain in IN-USE state.

The phase 2 listings show the following information:

Reference From Contains the record ID, RCC, and file address of
the record that sought the next address in the chain
that it was chasing.

Seek Address Contains the record ID, RCC, and the file address
of the record that was sought by the referenced
from record.

Err For ID or RCC errors only; contains the record ID
or RCC of the record that was found by the
referenced from record.

These listings can be in more than one part if all the error items could not fit in
main storage at one time. A double asterisk in the left-hand margin shows that the
line contains the total number of errors for that part of the listing. A single asterisk
shows that the line contains the total errors for the record type shown.

The following shows an example of the broken chain report:

112 TPF V4R1 Database Reference

A summary listing is also printed that gives the type of errors, the total number of
errors per error type, and the number of parts in the listing for each error type.

The following shows an example of the summary listing:

Phase 3 Procedures
Phase 3 can be started and run in 1052 or NORM state. It should, however, remain
in the state that it was started until it is completed.

To run phase 3 recoup, do the following:

1. Once recoup phase 2 has ended (online recoup displays a PHASE 2
COMPLETED message), enter ZRECP RESUME.

2. When you receive the RECP ENTER ZRECP PROTECT OR IGNORE TO
CONTINUE message, enter ZRECP PROTECT or ZRECP IGNORE.

Notes:

a. The ZRECP PROTECT command immediately protects pool addresses that
were found to be erroneously available from being used by the TPF system.
If no pool addresses were found to be erroneously available, enter the
ZRECP IGNORE command instead.

b. You can enter ZRECP DISPLAY ERRON to display pool addresses that
were found to be erroneously available.

3. When you receive the RECP BUILD LOST ADDR EXCLUSION TABLE NOW
AND REBUILD DIRECTORIES OTHERWISE ENTER ZRECP NOREBUILD TO
CONTINUE message, do one of the following:

v Rebuild the directories as follows:

BROKEN CHAINS DUE TO INVALID ID PART 1 PAGE 1 01131
**
* REFERENCE FROM LOCATION SEEK ADDRESS INFO ERROR / REFERENCE FROM LOCATION SEEK ADDRESS INFO ERROR *
* / *
* ID RC FILE ADDRESS DISP ID RC FILE ADDRESS ID/RC / ID RC FILE ADDRESS DISP ID RC FILE ADDRESS ID/RC *
**
* JA 00 00000000FC3C0001 0040 JB 00 00000000001492F1 FC10 / JA 00 00000000FC3C0001 0028 JE 00 00000000001492ED FC10 *
* JA 00 00000000FC3C0005 0060 JB 00 00000000001492FD FC10 / JA 00 00000000FC3C0005 0040 JB 00 00000000001492F9 FC10 *
* JA 00 00000000FC3C0005 0028 JE 00 00000000001492F5 FC10 / JA 00 00000000FC3C0009 0040 JB 00 0000000000149311 FC10 *
* JA 00 00000000FC3C0009 0028 JE 00 000000000014930D FC10 / JA 00 00000000FC3C000D 0060 JB 00 000000000014931D FC10 *
* JA 00 00000000FC3C000D 0040 JB 00 0000000000149319 FC10 / JA 00 00000000FC3C000D 0028 JE 00 0000000000149315 FC10 *
*
** 10 = NUMBER OF BROKEN CHAINS FOR ID TYPE JA *
*
* JG 00 00000000FC3E0001 0200 KB 00 000000000827BA09 FC10 / JG 00 00000000FC3E0001 0100 KA 00 000000000827BA05 FC10 *
* JG 00 00000000FC3E0001 0060 K8 00 00000000001493B9 FC10 / JG 00 00000000FC3E0001 0050 K8 00 00000000001493B5 FC10 *
* JG 00 00000000FC3E0001 0040 K8 00 00000000001493B1 FC15 / JG 00 00000000FC3E0001 0030 K8 00 00000000001493AD FC15 *
* *
** 6 = NUMBER OF BROKEN CHAINS FOR ID TYPE JG *
**

RECOUP FILE ANALYSIS
**
* ERROR TYPE * TOTAL ERRORS * NO. OF PARTS IN LISTING *
**
* * * *
* INVALID RECORD ID’S * 5 * 1 *
* * * *
* INVALID RCC’S * 0 * 0 *
* * * *
* SOFTWARE ERRORS * 0 * 0 *
* * * *
* HARDWARE ERRORS * 0 * 0 *
* * * *
* INVALID CONTROL INFORMATION * 0 * 0 *
**

Recoup 113

a. If you want to add the record ID of a lost pool address to the exclusion or
inclusion table, enter the ZRECP ADD command.

Note: You can enter ZRECP DISPLAY LOST to display pool addresses
that were found to be lost.

b. Enter ZRECP REBUILD to rebuild the directories and continue recoup.

v Enter ZRECP NOREBUILD to bypass rebuilding the directories and continue
recoup.

4. When you receive messages indicating ACTIVITY DURING RECOUP, PSEUDO
DIRECTORY COUNTS, and RECOUP ACTIVITY COUNTS, have a system
programmer analyze the information to determine whether the directories
created by recoup should be rolled in to the online system. Run recoup phase 5
for more detailed information. See “Phase 5 Procedures” for more information.

5. When you receive the DESTRUCTIVE SEGMENT RESPOND ENTER ZRECP
PROCEED TO ROLLIN OR ZRECP SKIP/ZRECP ABORT TO BYPASS ROLLIN
message, do one of the following:

v Enter ZRECP PROCEED to roll in directories.

Note: If you run recoup phase 3 in NORM state, ZRECP PROCEED does
not roll in pool directories that are in the active or standby state, but
writes these directories to released pool address (FC33) records and
the RTA tape. These directories are processed during the next online
pool update run. Therefore, the display of the pool counts is slightly
lower than the display of the counts in the pseudo directories.

v Enter ZRECP SKIP to skip the rollin.

v Enter ZRECP ABORT to end recoup phase 3.

Phase 3 Restart
If an error occurs during recoup phase 3, you can fix the error and restart recoup
phase 3 from the point of the error.

Note: Do not enter the ZRECP RESTART command to restart phase 3 if the TPF
system IPLed after you entered the ZRECP PROCEED command because
this can destroy the database. You must start recoup again from phase 1.

To restart phase 3 recoup, do the following:

1. Ensure the TPF system is in the same system state it was in when you entered
the ZRECP RESUME command to start recoup phase 3.

2. Enter ZRECP RESTART.

3. Continue with the normal phase 3 procedures.

Phase 4 Procedures
Integrated online pool maintenance and recoup support merged the recoup phase 3
and phase 4 functions into what is now called phase 3. Recoup phase 4 no longer
exists.

Phase 5 Procedures
Recoup phase 3 generated an online file or ADR tapes that contains the file
addresses of lost and erroneously available file pool records. In a loosely coupled
environment, you can run phase 5 from any of the active processors, but it must
remain in the processor where it started and can only be accessed from that
processor.

114 TPF V4R1 Database Reference

To obtain a selective dump of the file addresses of lost and erroneously available
file pool records do the following:

v If lost and erroneously available file pool records were written to ADR tapes, do
the following for each ADR tape:

1. Mount the ADR tape as an active unblocked input tape on the online system.

2. Enter ZRECP DUMP to write the first 32 bytes of each record whose file
address is listed on the ADR tapes to RTL tapes.

v If lost and erroneously available file pool records were written to an online file,
enter ZRECP DUMP to write the first 32 bytes of each record whose file address
is listed on the online file to RTL tapes.

Notes:

1. When all the addresses are processed, status message RECP0000I is
displayed.

2. If an unplanned shutdown occurs during ZRECP DUMP command processing,
you must enter ZRECP DUMP RESTART after the TPF system IPL to continue
the job. Restarting recoup phase 5 dump processing can cause recoup phase 7
output to show duplicated record IDs and incorrect counts.

The RTL tapes can subsequently be processed by the postprocessor (STPP) or
summarized by record ID through the phase 3 output analyzer (phase 6 and phase
7).

The following headers and message formats accompany the record dumps on the
RTL tape:
START OF RECOUP SELD - LOST ADDRESSES FIRST
RECOUP SELD - START OF ERRONEOUSLY AVAIL ADRS

Phase 6 and Phase 7 Procedures
Phase 6 consists of postprocessing the RTL tapes created by phase 5 under the
postprocessor (STPP). Phase 7 consists of a BPR0 offline program that processes
the same RTL tapes and creates listings for more information. This program
summarizes the output of the phase 3 run. Lost addresses are summarized first and
erroneously available addresses, if any, are summarized next. Use the sample JCL
provided in “Phase 6 JCL” on page 109 and “Phase 7 JCL” on page 109 to run
these phases.

Recoup Procedure for a Single Database
Sometimes you may not want to recoup your entire database. The following
selective database recoup procedure allows you to process a single record ID,
persistent identifier (PID), or data store. To run selective database recoup, enter the
following:

1. ZRECP START SEL.

2. The ZRECP RECALL command, specifying the SEL parameter with a record ID,
PID, or data store.

3. ZRECP PROTECT SEL.

Recoup Records and Structures
Certain other data is required during the various phases of recoup.

Recoup 115

Recoup Keypoint Record (BK0RP)
Two copies of the recoup keypoint record are used by the recoup package. These
are called the master and working copies. Both the master and the working copies
reside in the fixed file area of the online system. The master copy is initialized by
recoup phase 1 at the start of each recoup run and the working copy is initialized
from the master copy. Both copies of the recoup keypoint record must reside in
each subsystem.

Recoup Data Store
Before recoup processing can be run on a subsystem, a TPFCS data store must be
created for that subsystem by entering the ZRECP SETUP command. The data
stores are automatically assigned the name IRCPssss, where ssss is the name of
the subsystem.

IBM Recoup Scheduling Control Table (IRSCT)
The IRSCT contains information that determines in what order TPF records and
TPFCS data stores will be processed during recoup phase 1. This table is
represented as a TPFCS binary large object (BLOB). The IRSCT is rebuilt every
time a ZRECP SETUP command is entered, or when ZRECP RECALL is entered
for recoup phase 1. You can display the contents of the IRSCT by entering the
ZBROW DISPLAY command with the ELEMENT parameter specified with a
collection name of IRSCT.

IBM Recoup Active Root Table (IRART)
An IRART contains information about the TPF records or TPFCS collections that
are in progress. This information is used if a recoup restart occurs. The IRARTs are
represented as TPFCS BLOBs and are reinitialized every time a ZRECP SETUP
command is entered or when the ZRECP RECALL command is entered for recoup
phase 1. One IRART exists in the recoup data store for a given subsystem for each
processor defined and has the name IRART_cpuid, where cpuid is the ID of the
processor.

User Exits
Recoup user exits have been provided to allow concurrent use with unique user
recoup packages. See TPF System Installation Support Reference for more
information about user exits.

116 TPF V4R1 Database Reference

|
|
|
|
|
|
|

Real-Time Disk Formatter

Use the real-time disk formatter (FMTR) to prepare all direct access storage
devices for system use. (See TPF Migration Guide: Program Update Tapes for a list
of supported devices.) For all devices, this program formats any specified track up
to the maximum cylinder and track values specified for the particular device type.

This program is run under MVS system control. It is assembled and run as a
normal MVS job.

Method of Operation
The formatter examines an input card for errors and determines the desired size
and number of records per track. It then converts the starting and ending disk
addresses (CCCCCHH) to binary and builds the count fields for the track. The
count fields are then written to the disk. All I/O to the disk is performed by EXCP
and tested for errors. If this is not the last track specified in the ending address of
the input card, the track number is incremented and the count fields are built and
written again. When the ending address is reached, another card is read in and the
previous procedure is repeated. When the END card is read, a listing that contains
the location, size, and duplication factor of every track on the pack is sent to the
printer. The listing also includes the address of the VTOC and the addresses of any
tracks that were not formatted. If you want a status report without formatting the
pack, use an END card with the device type specified so that you read, but do not
write, to the disk. An end-of-job message is then sent.

If the same type of record will be defined in 2 or more noncontiguous areas on disk,
you will need 2 or more cards to describe these areas.

Size and duplication indicators on the input card are used to set the last 3 bits of
the disk record numbers to the correct value for small and large record types (2KB
and 4KB records are compatible with MVS record numbers). (See the information
about macro usage conventions in TPF General Macros for details about the
meaning of these bits.)

Note: For 3390 storage devices in native mode and newer devices, the last 3 bits
of the disk record numbers are not used as control bits. They are part of the
physical record number. Therefore, the duplication indicator (N or D) is
ignored by FMTR and can be omitted from the formatter control cards for
3390 devices.

A 3390 installed in 3380 emulation mode appears to the TPF system as a
3380 and must be coded as if it was a physical 3380. Therefore, the
duplication factor is required for emulated 3380s.

Table 13 shows the number of records per track and the number of cylinders for
TPF-supported DASD.

Table 13. Record Allocation on TPF-Supported DASD

Device Large
Rec/Trk

Small
Rec/Trk

2KB Rec/Trk 4KB Rec/Trk Number of
Cylinders

3350 15 34 8 4 555

3375 25 46 14 8 959

© Copyright IBM Corp. 1994, 2002 117

Table 13. Record Allocation on TPF-Supported DASD (continued)

Device Large
Rec/Trk

Small
Rec/Trk

2KB Rec/Trk 4KB Rec/Trk Number of
Cylinders

3380 30 53 18 10 2655

3390 33 55 — 12 3339

9345 27 47 — 10 2156

Note: The number of cylinders that are shown for 3380 and 3390 devices reflects
the highest density devices currently supported. Your devices may have
fewer cylinders than those listed.

2KB (IPC) records are not supported on 3390 and newer devices. The TPF
system does not use 2KB records or support SIPC data sets on general
files.

Input
The input for the real-time disk formatter consists of data control cards and
formatter control cards.

This program will format 1 disk at a time, with the volume label of the pack to be
formatted being specified by a standard DD card used in MVS JCL. The volume
serial number on the pack can be any standard label that you want (6 alphanumeric
digits), and the data set name can be any valid data set name allowed under MVS.

Although this program formats 1 disk pack at a time, many packs can be formatted
at once by running different jobs, calling the formatter at the same time. The
amount depends on the number of nonallocated disk modules and the amount of
main storage that is allocated to the user in the particular MVS system being used.

All disk packs to be formatted must have first been initialized by MVS initialize disk
program ICKDSF. This is required to properly label and format the first track and to
place the volume table of contents on the pack.

Data Control Cards
You need 3 data control cards to run this program.

Data Device Name Use

FMTDD1 Read input card (SYSIN)

FMTDD2 Printer status report (SYSOUT)

FMTDD3 Pack to be formatted

MVS Job Control Cards and Sequence of Deck (EXEC)
//FORMAT JOB (Accounting Information)
//STEP1 EXEC PGM=FMTRXX (XX-LINKED VERSION)
//SYSPRINT DD SYSOUT=A
//FMTDD2 DD SYSOUT=A
//FMTDD3 DD DSNAME=PARSRCDS,UNIT=SYSDA,VOLUME=SER=(PARCRY),

DISP=(NEW,KEEP),SPACE=(TRK,7654)
//SYSUDUMP DD SYSOUT=A
//FMTSNP DD SYSOUT=A

118 TPF V4R1 Database Reference

//FMTDD1 DD *

------- Formatter Control Cards -------
/*

When you format a disk pack for the first time, the disposition of the data set is new
(DISP=(NEW,KEEP)). When the packs are being reformatted, the disposition is old
(DISP=(OLD,KEEP)). See MVS/ESA JCL Reference for additional information about
coding MVS job control cards.

Formatter Control Cards
The following shows the format for the formatter control cards. The scale at the top
of the figure indicates the column position for each parameter.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
FMT s d ccccchh ccccchh dddd comments

Where:

s is the record size, which can be one of the following:

S Small size record (381 bytes)

L Large size record (1055 bytes)

4 4KB record (4096 bytes)

2 2KB record (2048 bytes); only supported for SIPC data sets on general
files; for migration purposes only.

d is the duplication factor, which can be one of the following:

D Duplicate area

N Nonduplicate area.

Note: The duplication indicator is ignored for 3390s in native mode and newer
devices and, therefore, can be omitted for these devices. In addition, the
duplication indicator is not applicable for 2KB or 4KB records.

ccccchh
is the first and last track to be formatted. For example, 0012208 to 0013814
specifies that cylinder 122, head 8 to cylinder 138, head 14 will be formatted.

dddd
is the device type to be formatted; for example, 3390. This is required only on
the first card. See the TPF Migration Guide: Program Update Tapes for a list of
the supported devices.

Note: 3390s installed in 3380 emulation mode must be coded as 3380s.

comments
Columns 50–80 can contain optional comments.

You can use as many control cards as necessary. Ranges of tracks can overlap; in
this case the last card that affects a particular track determines the format. Control
cards do not need to be in order by cylinder and head, but it will reduce the run
time if they are. The FMT END card must be the last card in the control deck.

The following shows some sample input:

Real-Time Disk Formatter 119

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
FMT L D 0000004 0001019 3390 LARGE DUP
FMT S D 0001100 0018919 SMALL DUP
FMT 2 0019000 0019819
FMT 4 0019600 0019919
FMT END

Notes:

1. Cylinder 0, track 0 is reserved for the volume label and IPL records and cannot
be formatted.

2. At least one other track must be set aside for the volume table of contents
(VTOC); this track cannot be formatted either. If the VTOC track is specified in
the formatter control card, a message is sent to the printer stating that the track
is a VTOC track and cannot be formatted. The program then continues to format
the next track specified in the formatter control card.

3. An abend will also occur if you specify a cylinder higher than the cylinder limit
for the pack indicated on the control card.

Output
The output of the real-time disk formatter is a disk pack that is formatted for online
use. In addition, a status report is provided for the disk pack that was formatted with
information about the type of records on each track. The following is an example of
a status report:

****** DISPLAY OF FORMATTED DISK ******
CYL-HEAD TO CYL-HEAD

LARGE NONDUPLICATE 000 001 009 007
4K RECORD 009 008 010 001
LARGE NONDUPLICATE 010 002 044 028
VTOC TRACK 044 029 044 029
NOT FORMATTED 045 000 554 029

SMALL RECORD: 0381 BYTES LARGE RECORD: 1055 BYTES 2K RECORD:
2048 BYTES 4K RECORD: 4096
END OF JOB

120 TPF V4R1 Database Reference

FACE Driver and Offline Interface (DFAD)

Use the FACE driver and offline interface (DFAD) to print all record-type
ordinal-number combinations and their associated FACE generated file addresses.
DFAD also provides an interface to the file address compute program (FACE) so
that offline programs can obtain an address for a specific record type-ordinal
number combination.

DFAD is run under MVS control. You can run this program using one of the
following methods.

v Assemble and run the program as a normal MVS job. This is referred to as file
print in the remainder of this chapter.

v Call the program from an assembly language program that is running under MVS
control. This is referred to as the offline interface in the remainder of this chapter.

DFAD must be assembled against the STCEQ and the SYSEQC macros, which
were created for the FACE table (FCTB) being processed.

Note: DFAD does not return information for FARF6 or unique record types.

File Print
The DFAD file print routine uses MVS job control language (JCL) statements as
input and produces a listing that contains the record type, ordinal number, and
associated FACE generated file address.

The following shows an example of the JCL statements needed to run the file print
routine:

//DFAD EXEC PGM=DFAD40,PARM=’ALL,nn’
//JOBLIB DD DSN=ACP.LINK.RLSE40.BSS,DISP=SHR
//SYSOUT DD SYSOUT=A
//DFADPRT DD SYSOUT=A

Where:

v nn is a 2-character FCTB version.

Note: If you do not specify the PARM parameter, the program prompts the
operator with the following message to supply the required version
number.

ENTER FCTB TABLE VERSION, (FF TO END JOB)

v The JOBLIB statement defines where the FCTB is located.

v The DFADPRT statement defines where the output report will go.

DFAD runs a FACE-type call for each record type index in the range 0 through the
highest record type defined. If the record type is valid to FACE, DFAD prints the
address returned from FACE in the current dispense format for every valid ordinal
number for that record type. The output listing contains the following information for
valid record types:
v The 8-character record type from the corresponding entry in the SYSEQC macro
v The ordinal number in hexadecimal format
v The file address in hexadecimal format.

DFAD prints a single line message for invalid record types.

© Copyright IBM Corp. 1994, 2002 121

The following shows an example of the output listing.
ORDNL RETURNED ORDNL RETURNED ORDNL

ID NUMBER ADDRESS ID NUMBER ADDRESS ID NUMBER

* NEXT RECORD TYPE ATTEMPTED: ID=004()
RECORD TYPE NOT ALLOCATED/NOT IN USE,ID=004()

* NEXT RECORD TYPE ATTEMPTED: ID=005(#SSSRI)
#SSSRI 000000 02800006 #SSSRI 000001 0280000E #SSSRI 000002
#SSSRI 000004 02800026 #SSSRI 000005 0280002E #SSSRI 000006
#SSSRI 000008 02800046 #SSSRI 000009 0280004E #SSSRI 00000A
#SSSRI 00000C 02800066 #SSSRI 00000D 0280006E #SSSRI 00000E
#SSSRI 000010 02800086 #SSSRI 000011 0280008E #SSSRI 000012

File Print Errors
If the version of the FCTB specified is not available, the job ends with system
completion code of 806.

If you specify PARM data that is less than 6 characters or if ALL is not the first
parameter, the following message displays:

INSUFFICIENT OR ERRONEOUS ’PARM’ DATA

A return code of 16 is placed in register 15 and the job ends.

Offline Interface
An offline (MVS) program that requires a file address can link or call DFAD. To do
this, code the following statement in the MVS program:

CALL DFAD, (recid,ord,ret,nn)

Where:

recid is a halfword record type equate value.

ord is a fullword ordinal number.

ret is the FACE program output area. The 4-byte FACE output will be located
at ret+4. This address can be aligned to any boundary.

nn is the 2-character FCTB version in EBCDIC form.

In this mode of operation no external (for example, print or console) communication
is used.

DFAD loads the FACE table (FCTB) and gets a single file address. If no errors
occur, a zero return code is set in register 15, and DFAD returns to the calling
program with the file address placed at the location specified by the user.

Offline Interface Errors
If the version of the FCTB specified is not available, the job ends with system
completion code of 806.

A return code is placed in R15:
0 Normal return
1 Invalid or not-in-use record type
2 Ordinal number greater than maximum
3 Unsupported unique record type
4 FARF6 splits are not supported

122 TPF V4R1 Database Reference

8 Calling sequence error.

FACE Driver and Offline Interface (DFAD) 123

124 TPF V4R1 Database Reference

TPF Transaction Services

TPF transaction services includes support for a transaction manager, resource
managers, log manager, and recovery log to ensure a consistent view of the
database. A consistent view of the database ensures that either all or none of the
file changes have been completed; there is no such thing as a partially updated
database.

The transaction manager (TM) provides a set of application program interfaces
(APIs) for the application to define both the scope of a transaction as well as
actions to be taken for the transaction. The TM coordinates resource managers and
determines which resources are written to the recovery log at commit time and
which resources are recovered at restart time. The TM is aware of which resource
managers are participating in TPF transaction services processing as well as what
transactions are active. The TM also understands both nested and suspended
commit scopes and uses a set of XA functions, defined by the X/Open specification,
to interface with the resource managers.

The following resource managers (RMs) supplied by IBM work with the TM to
identify and harden (write to the recovery log) resources used by the application in
a commit scope:

v TPF DASD: handles updates to the TPF database.

v TPF MQSeries: handles updates to queues.

v Pool support: manages pool file addresses.

During normal processing, RMs do the following:

v Record a recoverable event when a native resource manager request is received

v Write all recoverable events to the recovery log when an application program
enters a commit request (either with the tx_commit C function or the TXCMC
assembler macro)

v Harden the recoverable events after they have completed writing to the recovery
log.

You can write your own RM provided that it adheres to the architected TM and RM
interface. Adhering to the interface means that the user-written RM can participate
in all TPF transaction services actions controlled by the TM and all log and recovery
actions controlled by the log manager (LM).

The log manager controls the recovery log and recovery actions.

The recovery log is written to DASD and holds the data necessary to recover
resources following a system failure without compromising the integrity of the
database. The recovery log is defined as vertically allocated, processor unique,
fixed file records. This permits the log to be striped (written one track at a time,
indexing across all of the modules for the device type) across the TPF database,
which gives the TPF system the ability to handle an arbitrarily large data rate.

Commit Scope Processing
The following information describes the file-type requests and MQSeries-type
requests used for commit scope processing.

© Copyright IBM Corp. 1994, 2002 125

File-Type Requests
At a high level, file-type requests that are entered in a commit scope are cached by
the TPF system in virtual file access (VFA). This affects the amount of storage used
for VFA. When you enter a find-type request for a record that is written by a commit
scope (or a higher-level commit scope if the commit scope is nested), the record is
read from a special VFA buffer, called a commit scope buffer, instead of from a
normal VFA buffer or from DASD.

Note: Commit scope buffers do not age out of VFA.

The commit control records that are used by the transaction manager are
maintained in system work blocks (SWBs); this will increase the number of SWBs
that are required in the TPF system.

DASD hold processing is recorded in the commit control records for use when a
commit transaction (tx_commit C function or TXCMC assembler macro) or rollback
transaction (tx_rollback C function or TXRBC assembler macro) is entered. The
record hold table (RHT) is used to maintain the following:

v A commit-level hold (when an entry control block (ECB) is not currently holding a
lock and the unlock was done in an uncommitted commit scope).

v An ECB-level hold (when an ECB holds a lock, whether the ECB is holding the
lock in a commit scope).

Specifying this as an external is intended to minimize updates to customer tools
that recognize the record hold table.

MQSeries-Type Requests
At a high level, all processor unique queues are maintained in system heap and
SWBs to obtain extremely high access rates to TPF queues. To assist with the
recovery of persistent messages after an IPL, the contents of all queues are
checkpointed on a time-initiated basis to fixed file records. All updates made by
using the MQPUT, MQPUT1, or MQGET functions between checkpoints are written
to the recovery log.

All processor shared queues are filed on TPF collection support (TPFCS).

Recovery Log Support
Recovery log support is general in nature and is designed to be extendable to
support recovery of additional resources such as message and tape processing.
User resource managers can be written to allow application-specific resources to
use the recovery log to become part of the recoverable transaction. The TPF
system uses the recovery log with TPF transaction services processing.

The recovery log permits the TPF system to recover, over a software or hardware
IPL, to the point of failure without compromising the integrity of the database.
Recovery is to a point at which all TPF transaction services processing is either
redone or not redone. Partial update conditions will not occur.

The recovery log is defined as vertically allocated 4-KB fixed file records residing on
a single logical device type. The log does not span multiple device types. Each
4-KB record is in the standard TPF format; that is, each record contains a standard
8-byte header. The data area of each record is relatively unstructured and contains
information relating to transaction manager and resource manager write requests.

126 TPF V4R1 Database Reference

Writing to the Recovery Log
Writing to the recovery log, which consists of the writing of control information and
data, is done through the use of the WLOGC macro. A user exit is activated when
WLOGC processing has been completed to give users the opportunity to access
the data being written; for example, to write the information to tape.

Writing associated commit scope log records is a multiple write event, as the
following describes:

1. This process is started with a commit transaction. The transaction manager
directs all of the associated resource managers to prepare the data to be
committed.

2. Each resource manager then enters WLOGC macros to write its data to the
recovery log.

3. Once all of the resource managers (RMs) have completed preparing the data,
the transaction manager (TM) writes a record, using the WLOGC macro, to
indicate that the xa_prepare function has been completed.

4. The TM then directs all of the RMs to harden their data (write the data to the
recovery log.)

5. When hardening has been completed, each resource manager enters a
WLOGC macro to indicate that the data has been hardened.

Reading from the Recovery Log
Only the log manager (LM) can read from the recovery log.

Restarting from the Recovery Log
During restart (after an IPL), the recovery log is used to recall information to bring
the TPF system back to the state it was in before the IPL occurred. The recovery
log is used for any DASD writes or MQSeries requests that may have been in
transition or lost.

Loosely Coupled Considerations and Log Takeover
The recovery log is defined as processor unique, enabling each processor in the
loosely coupled complex to maintain and recover its own log without regard to the
other processors. The recovery log is a viable entity as long as its processor is up
and running. Under certain conditions, it is necessary to recover the log to preserve
a consistent commit database.

v One of these conditions occurs during the IPL of a processor because of an
outage. In this case, the log is recovered during restart (after the IPL).

v A second condition occurs when a processor is excluded from the complex
because of a hardware problem or as a nightly collapse procedure. Under the
latter condition, it is expected that the processor will not be immediately IPLed.
Therefore, to preserve a consistent commit database, the log must be run as part
of the processor deactivation process.

– For a condition where a processor is excluded from the complex by way of a
normal cycle down and deactivation, the ZPSMS command with the PROC
DEACT parameters specified permits active ECBs to drain from the system.
Once all activity has been completed, the log is in a state where no
transactions exist that would need to be redone; the log is essentially empty.
Log recovery does not need to be activated. When you IPL a processor from
the deactivate state, the recovery log is reinitialized and any previous log
information is considered to be not valid.

TPF Transaction Services 127

– For a condition where a processor has stopped because of a hardware error
and is not capable of running its own log, it is necessary for another
processor to control the recovery. This process is known as log takeover. Log
takeover occurs during processing of the ZPSMS command with the PROC
FORCE DEACT x parameters specified.

v A third condition occurs during a catastrophic outage that involves the entire
complex, where the ensuing IPL is of the destructive type (that is, IPL BYPASS).
For this condition, the first processor to IPL successfully is responsible for
recovering its own log and the log for each of the other processors.

128 TPF V4R1 Database Reference

TPF Collection Support

TPFCS Database Layout
TPF collection support (TPFCS) contains all the components that you need to
access collections. The TPFCS database consists of user-defined data stores. In
these data stores are collections. Each collection consists of elements. Elements
can contain character data, binary data, structures, or references to other
collections or TPF files. The TPFCS database will handle collection sizes from 0 to
2 147 483 647 elements.

To relate the concept to familiar terms, you might say that an element could be a
record, a file could be a collection, and a related set of files could be a data store.
All of these files put together are the TPFCS database.

Figure 8 shows the general layout of a TPFCS database:

The following are some key points to remember about a TPFCS database:

v The basic subsystem (BSS) contains a directory for all data stores, including
ones stored on other subsystems.

v The database contains user-defined data stores as well as multiple data stores.

v The database is anchored with two #IBMM4 records (one is a shadow, or copy,
of the other).

v The database is initialized with the ZOODB INIT command.

elementelement

elementelement

elementelement

elementelement

CollectionCollection

Data storeData store

TPFCS Database

CollectionCollection

elementelement

elementelement

Figure 8. General Layout of a TPFCS Database

© Copyright IBM Corp. 1994, 2002 129

Data Stores
A data store (DS) contains collections. A data store name is a maximum of 8
characters and can use printable special characters (for example: !, &, %, and *).
Some data stores are created when TPFCS is initialized; others are user-defined
and user-named by entering the ZOODB command (see “Maintaining TPFCS” on
page 147).

The following are some important key points to remember about data stores:

v A TPFCS database can have multiple data stores. A data store provides the
capability to divide a TPFCS database as shown in Figure 8 on page 129.

v Data store names must be unique across the entire TPFCS database, but the
data store itself is subsystem unique and applications on other subsystems
cannot access the data.

v Each defined data store contains collections. Any nontemporary collection with a
persistent identifier (PID) can be stored in a data store.

v Some collections are automatically created and assigned a name when the data
store is defined. These collections are used internally by the system or are
available for use by the application:

– DS_USER_DICT, an application dictionary. You can store whatever you want
in this dictionary (for example, PIDs). See “Data Store Application Dictionary”
on page 139 for more information.

– DS_SYSTEM_DICT, a system dictionary. The system dictionaries are for use
by TPFCS system code.

– DS_BROWSE, a browser dictionary with a list of names associated with
defined collections for use with the browser utility.

– DS_INVENTORY, an inventory collection that contains the PIDs of all
assigned collections.

– DS_DELETED, a deleted PID collection that contains the PIDs of all
collections scheduled to be deleted.

– DS_RECOUP, a recoup repository containing the TPFCS recoup indexes that
describe the layouts of collections for use by recoup.

– DS_RESTARTLOG, a collection that contains information for TPFCS to use
when an IPL occurs.

v Data stores can be created with different options, including whether or not an
inventory collection should be automatically maintained (for tracking), and
whether or not a collection delete request should be processed immediately or
delayed 48 hours.

Collections
The TPFCS database provides basic support for the following types of collections
(whether they are persistent or temporary):
v Arrays (single dimension)
v Bags
v BLOBs (binary large objects; also known as byte arrays)
v Key bags
v Key sets
v Key sorted bags
v Key sorted sets (also known as dictionaries)
v Keyed logs
v Log
v Sequence
v Sets

130 TPF V4R1 Database Reference

v Sorted bags
v Sorted sets.

TPFCS uses the collection manipulation routines to maintain its own collections, just
as any application would maintain collections. By using this support, it is possible
for TPFCS database users to access and retrieve information from the collection
without having to retrieve the entire collection.

The following are some key points to remember about collections:

v All persistent collections are assigned a PID.

v A collection is created using a data definition (DD) defined for a particular data
store (DS).

v Collections are created and deleted dynamically by using the TO2_create... and
TO2_deleteCollection APIs, respectively.

v Long-term persistent collections reside on DASD in 4-KB long-term pool records.

v Short-term persistent collections reside on DASD in 4-KB short-term pool
records.

v Temporary collections reside in the private heap storage of the entry control block
(ECB) and overflow to short-term pool directories.

v The maximum collection size is as follows:

– BLOBs: 2 GB (where 1 GB equals 1 073 741 824 bytes)

– Others: 2-G elements (where 1 G equals 1 073 741 824 elements).

Elements
An element is a subunit of a collection. The following are some key points to
remember about elements:

v Elements consist of any data type including binary strings and can hold
references to other collections (PIDs) or TPF files.

v Elements with unformatted data can be stored in collections.

v Elements can be added, located, updated, or removed using TPFCS APIs (see
TPF Application Programming for more information).

Collection Support
Figure 9 on page 132 shows an overview of the collection class hierarchy. The
dashed boxes represent abstract classes and the solid boxes represent concrete
classes (collection types) available with TPFCS. Solid lines between the classes
represent logical inheritance of attributes and methods.

TPF Collection Support 131

The following tables summarize collection support and can help you select the
appropriate collection type for your application.

Table 14. Collection Support Summary - Part 1

Collection Keyed Duplicate Keys Duplicate Values Sort Fields Element Equality

Array No N/A Yes No No

Bag No N/A Yes No Yes

BLOB No N/A Yes No No

Key Bag Yes Yes Yes No No

Key Set Yes No Yes No No

Key Sorted Bag Yes Yes Yes No No

Key Sorted Set Yes No Yes No No

Keyed Log Yes No Yes No No

Log No N/A Yes No No

Sequence No N/A Yes No No

Set No N/A No No Yes

Sorted Bag No N/A Yes Yes No

Collection

Array

Log

Keyed
Log

Key Set
Sorted

Set
Key Sorted Set

(Dictionary)

Key Bag Sorted
Bag

Key Sorted Bag

BLOBSet

Bag

Sequence

Equality
Collection

Sorted
Collection

Key
Collection

Key Sorted
Collection

Sequential
Collection

Unordered
Collection

Ordered
Collection

Figure 9. TPFCS Abstract Class Hierarchy

132 TPF V4R1 Database Reference

Table 14. Collection Support Summary - Part 1 (continued)

Collection Keyed Duplicate Keys Duplicate Values Sort Fields Element Equality

Sorted Set No N/A No1 Yes No

Note: 1 The sort field must be unique, but the rest of the data value may be nonunique.

Table 15. Collection Support Summary - Part 2

Collection Ordered Accessed Added Updated Deleted

Array By position
(index)

By position
(index)

At the end By position
(index)

N/A
(zeros/elements)

Bag Randomly By value Randomly N/A By value

BLOB By position
(index)

By position
(index)

At the end By position
(index)

N/A
(zeros/elements)

Key Bag Randomly By key Randomly N/A By key

Key Set Randomly By key Randomly N/A By key

Key Sorted Bag By key By key By key By key By key

Key Sorted Set By key By key By key By key By key

Keyed Log By arrival By key; by arrival
position

At the end, with a
wrap

N/A N/A

Log By arrival By arrival At the end, with a
wrap

N/A N/A

Sequence By arrival; by
position

By position
(index)

At the end, by
position

By position
(index)

By position
(index)

Set Randomly By value Randomly N/A By value

Sorted Bag By field By field By field N/A* N/A*

Sorted Set By field By field By field N/A* N/A*

Note: * Elements in this collection can only be updated or deleted using cursors.

Table 16. Collection Support Summary - Part 3

Collection
Maximum Key
Length

Maximum Element
Length1

Fixed Length
Elements Required

Variable Length
Elements Supported

Array N/A 4000 bytes Yes No

Bag N/A 248 bytes No Yes

BLOB N/A 1 byte3 No Yes

Key Bag 248 bytes 1000 bytes No Yes

Key Set 256 bytes 1000 bytes No Yes

Key Sorted Bag 248 bytes 1000 bytes No Yes

Key Sorted Set 256 bytes 1000 bytes No Yes

Keyed Log 256 bytes 4000 bytes Yes No

Log N/A 4000 bytes Yes No

Sequence N/A 4000 bytes No Yes

Set N/A 256 bytes No Yes

Sorted Bag 2482 bytes 1000 bytes No No

Sorted Set 2562 bytes 1000 bytes No No

TPF Collection Support 133

Table 16. Collection Support Summary - Part 3 (continued)

Collection
Maximum Key
Length

Maximum Element
Length1

Fixed Length
Elements Required

Variable Length
Elements Supported

Notes:
1 The element length does not include the length of a key, but it does include the length of a sort field.
2 The 248- and 256-byte lengths shown here are for sort fields, not keys.
3 A BLOB can also be considered to have a single element that is 2 GB.

Collection Examples
This section lists TPFCS collections and provides an example of a potential
application for each collection type. The examples can help you to understand the
characteristics, behavior, and the overall capabilities of the collections.

Array: An array is an ordered collection of elements with no key. Element equality
is not supported. The array elements are a fixed length and are accessed by
relative position (index) in the array starting with index 1.

An example of using an array is a program for keeping track of seat assignments
on an airplane. The program addresses array elements by using the seat number
as an index to the corresponding entry in the array. When the seat is assigned, the
name of the passenger is entered into the entry using the seat number as the
index. You can determine the name of the passenger assigned to a specific seat by
accessing the entry of the array indexed by the seat number. However, you cannot
determine empty seats except by iterating through the array and testing for an
empty entry.

Bag: A bag is an unordered collection of elements with no key. Nonunique
elements having the same value are supported. This collection allows duplicate
elements. The elements can have a maximum length of 248 bytes. A request to add
an element that already exists will add the element again.

An example of using a bag is a program for tracking supplies in a medical supply
room. Each time you spot a supply in the medical supply room, you enter the name
of the supply into the collection. If you spot a supply twice during an observation
period, the supply is added twice because a bag supports nonunique elements. You
can locate the name of a supply that you have observed and you can determine the
number of observations of that supply; however, you cannot sort the collection by
supply (because a bag is an unordered collection). To sort the elements of a bag,
use a sorted bag collection instead.

BLOB: A BLOB, sometimes referred to as a byte array, is a special array
collection of elements with an element size of 1 byte. Element equality is not
supported. The BLOB elements are addressed by relative byte address (RBA)
starting with byte 1. With BLOBs, multiple operations can be performed on ranges
of elements and data can be read in its entirety or part by part.

An example of using a BLOB is a program for keeping track of a patient’s X rays.
The X ray must be available to be read or updated in its entirety or part by part.
Each patient X ray is stored in the data store as a BLOB and can be directly
addressed.

Key Bag: A key bag is an unordered collection of elements that have a key.
Multiple copies of the same key are supported. The element value associated with
the key is not relevant and the key is not part of the element data.

134 TPF V4R1 Database Reference

An example of using a key bag is a program that tracks assignments of dormitory
suites. The element key is the number that is printed on the back of each key. Each
element also has data members for the student name, student ID number, dormitory
location, and so on. When you arrive at college, you are given one of the available
keys, and your name, student ID number, and the dormitory location are entered
into the collection. Because a given number on a key may appear on several keys,
the program allows the same key number to be added to the collection many times.
When you return a key because you are leaving the dormitory, the program finds
each element whose key matches the serial number of your key and deletes one
such element that has your name associated with it.

Key Set: A key set is an unordered collection of elements that have a unique key.
Element equality (where all data members of both elements are equal) is not
supported, and only elements with unique keys are supported. The key is not part
of the element data. Requests to add an element whose key already exists result in
an error return.

An example of using a key set is a program that allocates rooms to patrons
checking into a hotel. The room number serves as the key of the element and the
patron’s name is a data member of the element. When you check in at the front
desk, the clerk pulls a room key from the board and enters the number of the key
and your name into the collection. When you return the key at checkout time, the
record for that key is removed from the collection. You cannot add an element to
the collection that is already present because there is only one key for each room.
If you attempt to add an element that is already present, the function returns an
error to indicate that the element was not added because of duplicate keys.

Key Sorted Bag: A key sorted bag is an ordered collection of elements that have
a key. Elements are sorted according to the value of their key field, but the key is
not part of the element data. Element equality is not supported while nonunique
elements are. The maximum element size is 1000 bytes and the maximum sort field
is 248 bytes.

An example of using a key sorted bag collection is a program that maintains a list
of zip codes (for marketing purposes), sorted by the number of people in each zip
code. The key is the zip code. You can add an element whose key is already in the
collection (because two people can have the same zip code), and you can generate
a list of people sorted by zip code; however, you cannot locate a person except by
their key because a key sorted bag does not support element equality.

Key Sorted Set: A key sorted set, sometimes referred to as a dictionary, is an
ordered collection of elements that have a key. Elements are sorted according to
the value of their key field but, the key is not part of the element data. Element
equality is not supported and only elements with unique keys are supported.
Requests to add an element whose key already exists result in an error return.

An example of using a key sorted set is a program that keeps track of canceled
credit card numbers and the individuals to whom they are issued. Each card
number occurs only once and the collection is sorted by card number. When a
merchant enters a customer’s card number into a point-of-sale (POS) terminal, the
collection is checked to see if that card number is listed in the collection of canceled
cards. If the card number is found, the name of the individual is shown and the
merchant is given directions for contacting the credit card company. If the card
number is not found, the transaction can proceed because the card is considered to

TPF Collection Support 135

be valid. A list of canceled cards is printed out each month, sorted by card number,
and distributed to all merchants who do not have an automatic POS terminal
installed.

Keyed Log: The elements in a keyed log collection are ordered by arrival
sequence; when the collection is full, the collection wraps and starts overlaying
elements at the start of the collection. The keyed log consists of an element and
key, where the key is a field contained in the element, and is not part of the
element data. The keyed log assumes that the elements are a fixed length and are
accessed by relative position (index) in the keyed log starting with index 1. The key
can be used to access the collection to retrieve the element. There is no order to
the keys of the collection.

Element fields other than the key field may be duplicated. If the key field is not
unique, the add to the collection request will fail with an error return code. The
elements can be a maximum length of 4000 bytes. The maximum key length is 256
bytes. For a keyed log collection, the first element is always the oldest entry still in
the collection and the last element is the last to be added to the collection.
Elements cannot be removed from a keyed log collection. The keyed log collection
supports both access by position and by element key.

An example of using a keyed log collection is a program for tracking an account
closing balance over the last 90 days. The keyed log collection would allow key
access to specific dates over the 90 days being tracked. After 90 days, the
collection is full and will begin overlaying transactions at the start of the collection.

Log: The elements in a log collection are ordered by arrival sequence; when the
collection is full, the collection wraps and starts overlaying elements at the start of
the collection. For a log collection, the first element is always the oldest entry still in
the collection and the last element is the last to be added to the collection. The log
assumes that the elements are a fixed length and are accessed by relative position
(index) in the log starting with index 1. Elements cannot be removed from a log
collection. The elements can have a maximum length of 4000 bytes.

An example of using a log collection is a program for tracking an account closing
balance over the last 90 days. After 90 days, the collection is full and will begin
overlaying transactions at the start of the collection.

Sequence: A sequence is a collection of elements with no keys. The elements are
ordered by the arrival of requests. Element equality is not supported, while
nonunique elements are supported. The type and value of the elements have no
effect on the behavior of the sequence collection. Elements can be added and
deleted from any position in the collection, can be retrieved or replaced. A sequence
collection does not support element equality or a key.

An example of a sequence collection is a program that maintains a list of the words
in a paragraph. The order of the words is obviously important; you can add or
remove words at a given position, but you cannot search for individual words except
by iterating through the collection and comparing each word to the word you are
searching for. You can add a word that is already present in the collection because
a given word may be used more than once in a paragraph.

Set: A set is an unordered collection of elements with no key. Element equality is
supported and the values of the elements are relevant. Only unique elements are
supported. A request to add an element that already exists is ignored.

136 TPF V4R1 Database Reference

An example of a set is a program that creates a packing list for a box of free
samples to be sent to a warehouse customer. The program searches a database of
in-stock merchandise and selects 10 items at random whose price is below a
threshold level. Each item is then added to the set. The set does not allow an item
to be added if it is already present in the collection, ensuring that a customer does
not get two samples of a single product. The set is not sorted and elements of the
set cannot be located by key.

Sorted Bag: A sorted bag collection is an ordered collection of elements with no
key. Element equality is not supported, while nonunique elements are supported.
Elements are sorted according to the value of their sort field, which is part of the
element data. Nonunique elements are supported and a request to add an element
that already exists will add the element again. The maximum element size is 1000
bytes and the maximum sort field is 248 bytes.

An example of using a sorted bag collection is a program for entering observations
on the types of stones found in a riverbed. Each time you find a stone on the
riverbed, you enter the mineral type of the stone into the collection. You can enter
the same mineral type for several stones because a sorted bag collection supports
nonunique elements. You can search for stones of a particular mineral type and you
can determine the number of observations of stones of that type. You can also
display the contents of the collection, sorted by mineral type, if you want a complete
list of observations made to date.

Sorted Set: A sorted set collection is an ordered collection of elements with no
key. Elements are sorted according to the value of their sort field, which is part of
the element data. Element equality is not supported, while unique elements are
supported; and a request to add an element that already exists will result in an
error. The maximum element size is 1000 bytes and the maximum sort field is 256
bytes.

An example of using a sorted set collection is a program that tests numbers to see
if they are prime. Two complementary sorted sets are used: one for prime numbers
and one for nonprime numbers. When you enter a number, the program first looks
in the set of nonprime numbers. If the value is found there, the number is nonprime.
If the value is not found there, the program looks in the set of prime numbers. If the
value is found there, the number is prime. Otherwise, the program determines
whether the number is prime or nonprime and places it in the appropriate sorted
set. The program can also display a list of prime or nonprime numbers beginning at
the first prime or nonprime number following a given value because the numbers in
a sorted set are sorted from smallest to largest.

Data Definitions
A data definition (DD) is an integral part of a collection definition. It provides
characteristics for collections in a data store.

The following are some key points to remember about data definitions:

v Data definitions are data store unique. The same data definition name can be
used with multiple data stores.

v Data stores may have multiple data definitions.

v Data definitions are used to assign the following record identifiers (IDs) to
collections:
– Data record ID
– Key (index) record ID
– Directory record ID.

TPF Collection Support 137

Note: These record IDs and their attributes must be defined in the record ID
attribute table (RIAT). Record IDs are used for services such as identifying
virtual file access (VFA) candidates.

v Data definitions are used to specify shadowing, which indicates whether a
second copy of each collection exists (see “Shadowing” on page 144).

v Data definitions are used to assign recoup indexes to collections. For more
information about TPFCS recoup, see “TPFCS Recoup” on page 149 and TPF
Operations.

v Data definitions can be defined, changed, displayed, or deleted by using the
ZOODB command (see TPF Operations for more information).

v Data definitions are specified when the collection is created.

v Each collection has only one data definition.

v If a data definition is changed, only collections created after that will be affected.
The definition for a particular collection is fixed once the collection is created.

Property Service
The TPFCS database supports a property service for persistent collections that are
created. Properties are essentially typed named values that you can dynamically
associate with an already existing persistent collection. Once these properties are
defined, they can be named, their values can be set and obtained, their access
modes can be set, and they can be deleted. These operations can be performed by
using either the ZBROW PROPERTY command or the TPFCS property APIs.

The typed named values are:

Typed Name Value Description

TO2_PROPERTY_CHAR 1-byte value.

TO2_PROPERTY_LONG 4-byte value.

TO2_PROPERTY_DOUBLE 8-byte value.

TO2_PROPERTY_STRING C character string (maximum 256 bytes).

TO2_PROPERTY_STRUCT Structure (maximum 1000 bytes).

The property service defines four mutually exclusive property modes:

NORMAL The property can be read, changed, or deleted (there are no
restrictions).

NOCHANGE The property can only be read and deleted. It cannot be changed.

NODELETE The property can be read or changed but it cannot be deleted. A
NODELETE property mode is deleted only when the target
collection is deleted.

READONLY The property can only be read. It cannot be changed or deleted. A
READONLY property mode is deleted only when the target
collection is deleted.

Collection Lifetimes
TPFCS provides the following collection lifetimes:

Persistent long-term
Exists beyond the life of the creating ECB, resides on DASD in 4-KB long-term
pools, and can survive a re-IPL. TPFCS reuses its own long-term pool

138 TPF V4R1 Database Reference

addresses so applications do not flush through pool records too quickly, causing
the TPF system to run out of long-term pool records.

TPFCS reuses long-term pool records by maintaining a table for each
subsystem. Each table is large enough to hold 100 file addresses. When
TPFCS decides to return a long-term pool record, rather than release it to the
system, it stores the file address of the record in the appropriate table if the
following conditions are met:

v Recoup is not active

v There is no open commit scope for the ECB under which TPFCS is running

v The table is not already full.

If any of these conditions are not met or if the record is a short-term pool, the
record is released to the system and its address is not stored in the table.
When TPFCS needs to obtain a new long-term pool record, before allocating
one using the GETFC macro, it looks in the appropriate table for a pool record
it can reuse and then removes that entry from the table. Additionally, when
TPFCS recoup starts, it releases all file addresses from each subsystem table
and removes them.

Persistent short-term
Exists beyond the life of the creating ECB, resides on DASD in 4-KB short-term
pools, and can survive a re-IPL. Persistent short-term collections are
distinguished from persistent long-term collections by assigned record IDs and
their RIAT attributes. Because the collection resides in short-term pools, it will
be deleted when the short-term pools are recycled.

Temporary
Resides in the private heap area of the ECB and overflows to short-term pools.
It is deleted when the ECB exits because the private heap area of the ECB is
reclaimed by the system when the ECB exits. In order for the resources to be
reclaimed correctly by the system, the collection should be explicitly deleted by
the application before the ECB exits. This allows any overflow to short-term
pools to be released and returned to the short-term pool directories for possible
reuse.

The lifetime for a collection is established when the collection is created and cannot
be subsequently changed. A collection lifetime is specified by selecting the
appropriate collection creation API and data definition.

Deleting Collections
When you define a data store using the ZOODB DEFINE command, you can
specify the disposition of deleted collections; that is, whether the collection deletion
will be delayed 48 hours or whether the collection will be deleted immediately. If the
deletion is delayed, collections can be reclaimed until the actual deletion takes
place using the ZBROW COLLECTION command or the TO2_reclaimPID function.
See “Maintaining TPFCS” on page 147 and the TPF C/C++ Language Support
User’s Guide for more information.

Entering the ZBROW COLLECTION command with the EMPTY parameter specified
on a DS_DELETED collection forces delayed deletions to occur for the particular
data store. See TPF Operations for more information about the ZBROW
COLLECTION command.

Data Store Application Dictionary
Each data store contains a dictionary automatically created by TPFCS that is
available for use by the application. This dictionary is known as the data store

TPF Collection Support 139

application dictionary and is assigned the name DS_USER_DICT. This dictionary is
accessed by establishing an environment for the target data store and using the
TO2_...DSdict... type functions. The dictionary uses EBCDIC keys of 64 bytes
with data elements of 1000 bytes.

One suggested use for the application dictionary is to place the PIDs of data store
anchor collections in the dictionary and to assign a symbolic name to each one as
the key.

Note: When PIDs are stored in collection elements, a recoup index must be
established and associated with that collection.

The application dictionary of TPFDB, the base TPFCS data store, can be accessed
with a special set of functions (TO2_...TPF...). This allows all applications access
to a common dictionary without needing to establish an environment for a particular
data store. A possible use for this dictionary is to associate applications with data
stores.

Note: The data store system dictionaries, accessed with the TO2_...DSsystem...
and TO2_...TPFsystem... type functions, are used by the TPFCS system
and are not intended to be used by applications.

Cursors
A cursor is a nonpersistent internal structure associated with a collection that is
used to reference an element in the collection. Cursors are used for the following:

v To iterate through collections

The cursor provides methods that allow an application program to move through
a collection one element at a time without needing keys or indexes. See “Using
Iterative Operations over Collections” on page 141 for more information.

v To prevent concurrent updating of a collection

To prevent concurrent updating of a collection while you are accessing elements
in the collection, you can establish a locking cursor. When a locking cursor is
created for a particular collection, a lock is placed on the entire collection so that
only the ECB that created the cursor can update the elements in the collection.
See “Concurrency Controls” on page 142 for more information.

v To access collection elements in different predetermined orders

For certain types of collections, cursors allow you to either access a particular
element using a field other than the primary key or sort field, or to iterate through
a collection in an order other than that determined by the primary key or sort
field. These tasks involve the use of alternate key paths, which can only be used
by cursors. See “Using Key Paths” on page 141 for more information.

v To improve processing efficiency

It is more efficient to access multiple elements in a collection by using a cursor.
Most TPFCS functions are atomic; that is, the element is read into storage,
managed, and removed from storage for each function call. This type of
processing requires much overhead. With cursors, once a collection is read into
storage, it remains there for the life of the cursor. The cursor is temporary and
must be deleted by the application program or when the ECB exits.

Cursors can be used with any collection. If you use the cursor APIs to add or
remove elements, cursor positioning remains valid unless an error occurs. If you
use the collection (non-cursor) APIs on collections that have a cursor associated

140 TPF V4R1 Database Reference

with them to add or remove elements, cursor positioning might not be valid. For
more information about cursors, see TPF Application Programming.

Using Iterative Operations over Collections
Iterating over all or some elements of a collection is a common operation. TPFCS
gives you two methods of iteration:
v Using cursors
v Using the TO2_allElementsDo function together with your own function.

Some ordered collections, such as an array or sequence collection, are easy to
traverse because elements can be referenced by a numerical position. However,
other ordered collections, such as key sorted sets and sorted bags, cannot be
easily traversed without advance knowledge of the key and sort values. Unordered
collections, such as bag and key set, also cannot be easily traversed. Using one of
the two TPFCS methods of iteration allows all elements to be visited exactly once.
For unordered collections, there is no defined order in which the elements are
visited, but each element is still visited exactly once. If you add or remove elements
from a collection while you are iterating over a collection (except by using the
cursor doing the iteration), all elements may not be visited once. See TPF
Application Programming for information about adding and removing elements.

Using Key Paths
TPFCS supports primary and alternate key paths for the following persistent keyed
and sorted collections:
v Key bags
v Key sets
v Key sorted bags
v Key sorted sets
v Sorted bags
v Sorted sets.

Note: Sorted bag and sorted set collections do not have primary keys; they only
have sort fields.

A key path establishes the order in which elements will be sequentially accessed
when iterating through a collection using a cursor. There are two types of key paths:
primary and alternate. When a collection is first created, the primary key path of the
collection is used by default for searching and accessing data. After the key path
has been defined, TPFCS will automatically update it whenever the collection is
updated. Therefore, collections with alternate key paths will take longer to update
because they have to maintain the internal structures of every key path.

You can use the TO2_setKeyPath function to override the default setting or any
previous TO2_setKeyPath function calls to specify an alternate key path. A maximum
of 16 alternate key paths (in addition to the primary) can be defined for each
collection. When the TO2_setKeyPath function call is issued, the position of the
cursor must be reestablished by using one of the positioning functions, such as
TO2_first.

See TPF Application Programming for information about adding, using, and
removing alternate key paths or the TPF C/C++ Language Support User’s Guide for
information about the TO2_first or TO2_setKeyPath function.

TPF Collection Support 141

Database Integrity
This section provides information about services that maintain TPFCS database
integrity.

Database Access
There are no restrictions on which users can access the TPFCS database.
Database access is denied only if the data store you requested does not exist. An
application program informs the TPFCS database that you want to access the
database. The TPFCS database assigns a token and saves any information
required by the TPFCS database to communicate with you. Once you are known to
the TPFCS database, you have access to all of the collections in the database. The
TPFCS database has no service that restricts your access to only a subset of
collections. If you are allowed to access the database, the TPFCS database then
allows access to all the collections in the database.

Concurrency Controls
TPFCS provides three levels of concurrency control:

v None (using nonlocking cursors)

v Optimistic (using update sequence counters)

v Pessimistic (using locking cursors)

None (Nonlocking Cursor)
The first type of concurrency uses a nonlocking cursor to read elements in a
collection without creating any type of interlock on the target collection. The same
ECB or other ECBs can still issue requests to update the collection while the cursor
is associated with the collection. Because the information can change underneath
the cursor, the cursor may not iterate over all elements, it may iterate over some
elements more than once, or it may no longer be valid. For this reason, a
nonlocking cursor is considered a dirty-read cursor (see “Dirty-Reader Protection”
on page 143). A subsequent request to lock the collection by the same ECB or
another ECB will be successful and an exclusive lock will be placed on the
collection by the new cursor. However, the nonlocking cursor will still be able to
read elements in the collection. Nonlocking cursors are created by using the
TO2_createCursor API. For more information, see TPF Application Programming.

Optimistic Concurrency (Update Sequence Counter)
To provide additional database integrity for those collections that allow element
updating, an update sequence counter is stored in each element in a given
collection and optimistic concurrency is enforced on the element during update
processing. Optimistic concurrency allows you to read a collection and update it
without exclusive access to the collection. When an element is to be updated, it
must first be read from the collection with the returned sequence counter saved.
The functions used to update elements in a collection require that the application
provide the expected value for this counter. TPFCS increments the counter
whenever a collection element is updated. If the collection is updated by some other
user, your current update request will fail because the value passed by the
application as input to the function does not match the update sequence counter
embedded in the element. The collection must be retrieved again for a successful
update to take place.

Pessimistic (Locking Cursor)
Pessimistic concurrency uses a locking cursor to create an exclusive lock on the
collection. Write operations will only be allowed for the ECB creating the locking
cursor. Any attempt by the same ECB to create another concurrent locking cursor

142 TPF V4R1 Database Reference

on the collection will be rejected, and a request by another ECB to create a locking
cursor will be forced to wait until the first ECB either deletes its locking cursor or
exits. Locking cursors are created by using the TO2_createReadWriteCursor API.
For more information, see TPF Application Programming.

Comparing Cursor Types
The following summarizes TPFCS operations involving the two different types of
cursors:

v When a nonlocking cursor is used on a collection, the same ECB can:

– Perform noncursor reads and writes

– Perform cursor reads

– Create other nonlocking cursors

– Create a locking cursor.

A different ECB can also do all of the above.

When a locking cursor is used on a collection, the same ECB can:

v Perform noncursor reads and writes

v Perform cursor reads and writes

v Create other nonlocking cursors.

The same ECB cannot create another locking cursor. A different ECB can do all of
the above and it can also create another locking cursor, although the request will be
deferred until the original locking cursor is deleted.

Dirty-Reader Protection
TPFCS provides dirty-reader protection by using the FILNC macro to file records in
a sequence to make sure that an updated or new record is on the DASD surface
before filing the record that points to the updated record. This is done to ensure that
another user who is attempting to read the collection using a nonlocking cursor will
be able to follow a whole chain. If the updates were filed in the wrong order, it might
be possible for the reader to follow a chain with holes in it or the chain could point
to records that were not even part of the collection; for example:

Record A contains a pointer to record B and now TPFCS has to insert record C
between record A and B. If TPFCS filed record A with the new pointer to record
C before filing record C, it would then be possible for a reader to read record A
and then attempt to read record C before it had been filed. To prevent this,
TPFCS dirty-reader protection will make sure that record C is filed first by using
the FILNC macro, and then record A will be filed.

For more information about the FILNC macro, see TPF General Macros.

TPF Transaction Services
TPFCS uses TPF transaction services to create a commit scope on behalf of the
caller for all update requests with the exception of cursor update requests. The
application is responsible for commit scopes when using cursors. TPF transaction
services will then either commit or roll back the change depending on the success
of the request.

Note: To determine which TPFCS functions use commit and rollback protocols, see
the TPF C/C++ Language Support User’s Guide.

The TPFCS database will also use commit and rollback protocols for maintaining its
own structures in a consistent state. Therefore, an API that does not use commit

TPF Collection Support 143

and rollback on behalf of the caller may still activate the system commit and
rollback protocols on behalf of the TPFCS database. Prime examples of this are
most cursor functions that cause a collection to be changed.

TPF Transaction Services with Cursors
When using cursors, you should create a commit scope before creating a locking or
nonlocking cursor on a collection. When using cursors, the TPFCS database
maintains the state of the collection cached in storage. This can cause problems
because there is no communication between the TPFCS database and the
transaction processor of the system. Therefore, if you issue a commit or rollback
request, the collection may not be committed or rolled back. You must delete the
cursor before the commit or rollback request is issued. Otherwise, there is a
possibility that some updates will not be committed or rolled back.

TPF Transaction Services with Dirty-Reader Protection
Using dirty-reader protection in a TPF commit scope can cause problems because
of the way TPF transaction services supports FILNC macro requests in a loosely
coupled system. TPF transaction services maintains a unique copy of every record
filed using the FILNC macro. This is done so that TPF transaction services can
honor the FILNC interface and make sure that the record has been filed before any
following records that might have a pointer to the record. Therefore, every time a
record is filed using the FILNC macro, TPF transaction services will add a copy of
the record to the commit scope. For example, if the record is filed 500 times using
the FILNC macro in the commit scope, there will be 500 copies of the record in the
commit scope. This can cause TPF transaction services to exhaust its commit
buffers. For more information about dirty-reader functions and programming
considerations, see the TPF C/C++ Language Support User’s Guide.

Shadowing
TPFCS provides an option on the TO2_create functions that allows you to specify
that the collection is to be shadowed. When TPFCS shadows a collection, two
copies of the collection are maintained: the prime and the shadow. TPFCS does
this by allocating two DASD records for every record assigned to the collection.
TPFCS will read one of the two records and will file all updates to both records. If
the initial read fails, TPFCS automatically attempts to read the copy. When using
normal TPF duplicate records for the collection, shadowing means that TPFCS is
actually maintaining four copies of the data.

The shadow support can be set for a collection in one of two ways: The TO2_create
type call that creates the collection can have the shadow option specified, or the
specified data definition (DD) can have shadowing set on in it. If either the create
call or the DD specifies shadowing, TPFCS activates shadowing for the created
collection. Once a shadowing characteristic is created for a collection, it cannot be
changed.

Note: Shadowing is only supported for nontemporary persistent collections. The
shadow option will result in an error if specified for a temporary collection.

To specify shadowing for a collection, enter the ZOODB DEFINE or ZOODB
CHANGE command with the DD and SHADOW parameters specified. For more
information about the ZOODB DEFINE or ZOODB CHANGE command, see TPF
Operations.

144 TPF V4R1 Database Reference

Validation
TPFCS validation involves using the ZBROW command to perform a check of a
subset of collection structures to ensure that they are built correctly. Errors are
detected, isolated, and reported to the calling program, such as the ZBROW utility.
A validation report will be returned to the user. This report will contain information
about the types of errors found and the file addresses involved. The report will be
sorted by error identifier. Each type of error will have a unique error identifier that
indicates the severity of the error (generally, the lower the error identifier, the higher
the severity). It is up to you to take additional actions to diagnose and repair the
problems.

Reconstruction
Reconstruction involves correcting a subset of the fields in a control record of the
collection and the chains that it anchors. Such reconstruction would be necessary if
data becomes inaccessible as a result of data or control record corruption, logic
errors, I/O errors, or a user error. The ZBROW RECONSTRUCT command is
available to reconstruct these internal data and control structures from the
beginning. It is up to you to make additional repairs by using the ZAFIL command.

Database Archives
This section provides information about the TPFCS database archive services.

External Device Support
External device and archiving support provide interfaces that will allow you to read
and write data from external devices such as tape, general data sets,
communication devices, and any other devices supported by the TPF 4.1 system.
The initial support will be for tape only. As part of the external device support for
tape, functions have been added that will interface with the tape robotics to allow
access to tapes without operator intervention. Through the support for tape and
tape robotics, external device support will be used to provide an archiving function
that will be used by TPFCS to archive collections. Through the use of tape robotics
and archiving, TPFCS will be able to move collections in and out of the TPF 4.1
system as required.

Archiving Support
For archiving, the application calls the TPFxd_archiveStart function. The
TPFxd_archiveStart function will return a token that the application passes to
TPFCS as a parameter on the TO2_capture or TO2_restore function. Once the
request has completed successfully, the application can continue with another
TO2_capture or TO2_restore function request until all required collections have
either been archived or restored from the archive devices. The application will then
issue a TPFxd_archiveEnd function request. Therefore, the application program
determines if the TPFCS request is for archiving or to just restore another external
device.

Capture and Restore Support
TPFCS provides functions to write and retrieve collections to external storage. By
using these TPFCS functions and the archiving support of the external device
support, collections will be able to be moved in and out of archived storage.

The TO2_capture and TO2_restore functions are used to write and retrieve
collections from the external device using the external device support functions.

TPF Collection Support 145

When an application decides to capture or restore a collection, the application must
choose which external device will be used for the function. The application starts a
capture or restore by issuing a TPFxd_externalStart function call with the required
values. This function call will return a token that the application passes to TPFCS
as a parameter on the TO2_capture or TO2_restore function. Once the request has
been completed, the application issues a TPFxd_externalEnd function call to inform
the external device support that it is done.

When TPFCS captures a collection to external storage, it will precede the collection
with a capture header object and it appends a capture trailer object to the captured
collection. Therefore, the captured object will start with a header object and end
with a trailer object. Between the two objects, there will be the actual collection
being captured. The captured object will be written as a set of control information
and 4-KB data records. For each set of data records, there will be a data trailer
object to indicate the end of one set of data records from another set of data
records. Figure 10 on page 147 shows an example of data on the external device.

146 TPF V4R1 Database Reference

If the collection is small enough to fit in the object control information area, the
capture trailer object will follow the object control information.

Maintaining TPFCS
This section provides information about the commands used to initialize and
maintain the TPFCS database.

Note: Most of the functionality achieved by using the commands can also be
implemented by writing applications that use the TPFCS APIs.

ZOODB Commands
The ZOODB commands are used to initialize the TPFCS database, define and
display a data store or data definition, and change or delete a data definition. The
following describes the ZOODB commands:

xxx Bytes < 4 KB

1 to 32 KB

4-KB Data Record Image

4-KB Data Record Image

xxx Bytes < 4 KB

More data records if the collection contains
multiple data structures. Each set of data
records will end with a data trailer object.

Capture Header

Object Control
Information
and Data

First 4-KB
Data Record

Second 4-KB
Data Record

Last 4-KB
Data Record

Data Trailer

Capture Trailer xxx Bytes < 4 KB

Figure 10. Data on an External Device

TPF Collection Support 147

Function Description

ZOODB CHANGE Changes a data definition or data store.

ZOODB DEFINE Defines a data definition or data store.

ZOODB DELETE Deletes a data definition or data store.

ZOODB DISPLAY Displays a data definition or data store.

ZOODB INIT Initializes support.

ZOODB MIGRATE Migrates a data store.

ZOODB RECREATE Re-creates a data store.

ZOODB SET Sets on or sets off the method trace table or set
dump creation on a TO2_getErrorText function call.

Note: For more information about the ZOODB commands, see TPF Operations.

Initializing TPFCS
The ZOODB INIT command is a one-time-only message that is used to initialize
TPFCS. If you attempt to initialize TPFCS again, an error message will be
displayed.

After the ZOODB INIT command has been completed successfully, enter the
ZOODB DEFINE command with the DS parameter specified to create user-defined
data stores.

ZBROW Commands
TPFCS provides browsing support that allows classes, methods, and collections to
be located, interrogated, validated, displayed, and dumped. This support is provided
by using the ZBROW commands and TPFCS function calls.

The following describes the ZBROW commands:

Function Description

ZBROW ALTER Changes the contents or access mode of a
specified collection.

ZBROW CLASS Displays class name information.

ZBROW COLLECTION Performs maintenance on a collection.

ZBROW DISPLAY Displays information about a collection or its
contents.

ZBROW KEYPATH Adds, displays, or removes a key path.

ZBROW NAME Alters or displays collection name information.

ZBROW PATH Displays path information for a collection structure.

ZBROW PROPERTY Alters or displays a property.

ZBROW QUALIFY Qualifies ZBROW command requests for a data
store.

ZBROW RECOUP Manages recoup indexes.

See TPF Operations for more information about the ZBROW commands. See the
TPF C/C++ Language Support User’s Guide for more information about the TPFCS
C function calls.

148 TPF V4R1 Database Reference

||
|

TPFCS Recoup
Records that are used by TPFCS data stores are recouped as an extension of
phase 1 of TPF recoup.

Because TPFCS has no knowledge of the contents of the data stored in a
collection, this knowledge must be provided to TPFCS through another means so
that collections that contain references to standard TPF files or to other collections
can be recouped correctly. TPFCS can obtain information about the contents of the
data by requiring the applications to describe the layout of data in a collection.
Applications do this by identifying the displacements of any embedded 4- or 8-byte
file addresses or PIDs.

General Approach
During phase 1 of TPF recoup, TPFCS recoup will recoup its own internal
collections. However, any collections created by user applications will not be
recouped unless they are explicitly made known to TPFCS by establishing one or
more recoup indexes. A recoup index describes the location of PIDs and 4- or
8-byte file addresses embedded in all collections associated with that recoup index.
An anchor collection, usually the data store application dictionary (named
DS_USER_DICT) of the data store, refers to user-created collections, which refer to
other collections, and so on. Every user-created collection must be referred to by an
anchor collection or it will not be recouped. A recoup index must be created and
associated with the anchor collection and any other collections that contain
embedded references.

Recoup Indexes
Recoup indexes can be managed by an application or by using the ZBROW
RECOUP command.

A separate index should be created for each of the different collection formats in
your TPFCS database. A recoup index is unique to the data store. If necessary, a
recoup index can be deleted.

After a recoup index is created, you must add one or more entries to it. (Previously
added entries can be deleted from a recoup index if they are no longer needed.)
Recoup index entries identify the location of file addresses or PIDs in the collection
data. 4- or 8-byte file addresses embedded in TPFCS collections must be part of a
traditionally chained TPF structure and must have a corresponding TPF recoup
descriptor. File addresses of TPFDF records cannot be embedded in TPFCS
collections.

There are two basic types of recoup indexes. The first type, known as an
homogeneous index, is used when each of the elements in the collections
associated with this index has the same format and can be recouped the same
way. A homogeneous recoup index can be associated with any type of collection
with the exception of BLOBs. The second type, known as a heterogeneous index, is
used when the elements in the collections associated with this index cannot be
recouped the same way because they have different formats. When adding entries
to a heterogeneous index, you must specify which elements have embedded 4- or
8-byte file address or PID information (as well as the displacements in those
elements where the file address or PID information is stored). The following
restrictions exist:

v Heterogeneous recoup indexes can be associated with all collection types
except for BLOBs.

TPF Collection Support 149

v Heterogeneous indexes associated with keyed collections must access elements
by key, and heterogeneous indexes associated with non-keyed collections must
access elements by index.

v Partial keys cannot be used by heterogeneous recoup indexes to access
collection elements.

Because BLOBs have a single element, special processing is required and the
recoup index type indicator is ignored. Therefore, the recoup index associated with
a BLOB is not considered to be either homogeneous or heterogeneous.

After the recoup index has been created, it can be associated with one or more
collections if they have the same format for embedded 4- or 8-byte file addresses or
PIDs. However, a single collection can only be associated with one recoup index at
a time. You can also associate a recoup index with a collection when the collection
is created by using an option list. You can also remove an association whenever
you have determined that you no longer want TPFCS recoup to use a given recoup
index to process the collection.

TPFCS will use the TPFCS recoup indexes to chain chase any embedded 4- or
8-byte file addresses or PIDs while processing a ZRECP RECALL command. You
can also recoup individual collections by identifying a specific data store (DS). In
test mode, use the ZRECP RECALL command with the SEL and DS parameters
specified to recoup a specific collection. In production mode, use the ZRECP
SELECT command with the PID parameter specified to recoup a specific collection
when the collection has errors. To display the status of TPFCS recoup, use the
ZRECP STATUS command. TPFCS recoup status messages are displayed
approximately every minute, when recoup processing for a data store ends or when
the ZRECP STATUS command is entered. See TPF Operations for more
information about the ZRECP commands.

The following table lists the operations you can perform on a recoup index and
identifies the API or parameter of the ZBROW RECOUP command you can use for
each operation.

Table 17. Managing TPFCS Recoup Indexes

Operation API ZBROW RECOUP Command
Parameter

Create a recoup index TO2_createRecoupIndex DEFINE

Add an entry to a recoup index TO2_addRecoupIndexEntry ADD

Associate a collection with a recoup
index

TO2_associateRecoupIndexWithPID LINK

Display recoup indexes None DISPLAY

Delete a recoup index to collection
association

TO2_removeRecoupIndexFromPID UNLINK

Delete an entry from a recoup index TO2_deleteRecoupIndexEntry REMOVE

Delete a recoup index TO2_deleteRecoupIndex DELETE

See the TPF C/C++ Language Support User’s Guide for more information about
TPFCS APIs and TPF Operations for more information about the ZBROW RECOUP
command.

150 TPF V4R1 Database Reference

Embedded 4-Byte File Address Information
If 4-byte file addresses are embedded in a collection, they must be stored as a
16-byte entry of type TO2_RECOUP_FA, which has the following format:

unsigned char format
Indicates the type of file address that is contained.

TO2_RECOUP_FRMT_FARF
Indicates that fileAddr is a 4-byte file address.

unsigned char reserved1
Reserved for future IBM use; must be set to zero.

unsigned char flag
Indicates whether this reference contains overflow records or other referenced
records.

TO2_RECOUP_DSCR_NO
Indicates that this reference does not contain any overflow records or other
referenced records.

TO2_RECOUP_DSCR_YES
Indicates that this reference contains overflow records or other referenced
records. Create a unique group or index record set by entering the GROUP
macro with the USE parameter specified with a value of TPFCS, and the
IND parameter specified with a value of C and loaded as a recoup
descriptor. See TPF System Macros for more information about the GROUP
macro.

unsigned char recID[2]
Hexadecimal record ID.

unsigned char rcc
Hexadecimal record code check (RCC), or set to zero.

unsigned char ctl
Must be set to 0.

TO2_FARF_FA fileAddr
File address.

unsigned long reserved
Reserved for future IBM use; must be set to zero.

Embedded 8-Byte File Address Information
If 8-byte file addresses are embedded in a collection, they must be stored as a
16-byte entry of type TO2_RECOUP_XFA, which has the following format:

unsigned char format
Indicates the type of file address that is contained.

TO2_RECOUP_FRMT_FARF6
Indicates that fileAddr is an 8-byte file address.

unsigned char reserved1
Reserved for future IBM use; must be set to zero.

unsigned char flag
Indicates whether this reference contains overflow records or other referenced
records.

TPF Collection Support 151

TO2_RECOUP_DSCR_NO
Indicates that this reference does not contain any overflow records or other
referenced records.

TO2_RECOUP_DSCR_YES
Indicates that this reference contains overflow records or other referenced
records. Create a unique group or index record set by entering the GROUP
macro with the USE parameter specified with a value of TPFCS, and the
IND parameter specified with a value of C and loaded as a recoup
descriptor. See TPF System Macros for more information about the GROUP
macro.

unsigned char recID[2]
Hexadecimal record ID.

unsigned char rcc
Hexadecimal record code check (RCC), or set to zero.

unsigned char ctl
Must be set to zero.

TO2_FARF6_FA fileAddr
File address.

Embedded Persistent Identifier (PID) Information
If PIDs are embedded within a collection, they must be stored in the following
format:

TO2_PID
The PID of the referenced collection.

Note: Recoup will ignore an embedded PID that is all zeros.

Sample TPFCS Recoup Applications
The following examples are intended as suggested uses for TPFCS recoup
applications.

The following example creates recoup indexes:
/***/
/* Sample application to create recoup indexes */
/***/

#include <tpfapi.h> /* Needed for TPF_regs structure */
#include <c$to2.h> /* Needed for TO2 API functions */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void main(void)
{

TO2_ENV_PTR env_ptr = NULL; /* pointer to environment */
TO2_USER_TOKEN userToken = 0; /* user token */
char applid[] = "RECOUP_INDEX_CREATOR ";
char dsname[] = "TESTX.DS";

TO2_PID dsDictPID; /* DS dictionary PID */
TO2_PID_PTR dsDictPtr = &dsDictPID; /* ptr to DS dict PID */
char IndexName[8]; /* Recoup index name */
TO2_RECOUP_TYPE rc_type; /* recoup index type */
TO2_RECOUP_CONTROL rc_ctrl; /* recoup index control */
TO2_RECOUP_ENTRY_TYPE rce_type; /* PID or FA indicator */
TO2_RECOUP_ENTRY_ACCESS rce_access; /* index or key indicator */

152 TPF V4R1 Database Reference

char rce_token[8]; /* recoup index entry token */
long rce_displ; /* displ. to embedded ref. */
long rce_valLen; /* length of collect. index */
long rce_value; /* collection index */

/***/
/* Create TO2_environment */
/***/

if (TO2_createEnv(&env_ptr,&userToken,applid,dsname) == TO2_ERROR)
{

printf("ERROR: createEnv failed ! \n");
exit(1);

}

/***/
/* Set up the recoup index for the application dictionary collection.*/
/* If this index already existed, delete it first and recreate it. */
/* Each entry in the dictionary collection will have a PID embedded */
/* at a displacement of 0, so the collection is homogeneous. */
/***/

if (TO2_getDSdictPID(dsDictPtr, env_ptr) == TO2_ERROR)
{

printf("ERROR: getDSdictPID failed\n");
TO2_deleteEnv(env_ptr);
exit(1);

}

memcpy(IndexName, "APPLDICT", 8);
TO2_deleteRecoupIndex(env_ptr, IndexName);

rc_type = TO2_RECOUP_HOMOGENEOUS;
rc_ctrl = TO2_RECOUP_CONTROL_NONE;
if (TO2_createRecoupIndex(env_ptr, IndexName, rc_type, rc_ctrl,

NULL, NULL, "Used with data store appl dictionary") == TO2_ERROR)
{

printf("ERROR: createRecoupIndex %s failed\n", IndexName);
TO2_deleteEnv(env_ptr);
exit(1);

}

memcpy(rce_token, "ENTRY001", 8);
rce_type = TO2_RECOUP_ENTRY_PID;
rce_displ = 0;
rce_access = TO2_RECOUP_ACCESS_NOTUSED;
if (TO2_addRecoupIndexEntry(env_ptr, IndexName, &rce_token,

rce_type, &rce_displ,
rce_access, NULL, NULL) == TO2_ERROR)

{
printf("ERROR: addRecoupIndexEntry for DS failed !\n");

}

if (TO2_associateRecoupIndexWithPID(dsDictPtr, env_ptr, IndexName)
== TO2_ERROR)

{
printf("ERROR: associateRecoupIndexWithPID for DS failed !\n");

}

/***/
/* Create a recoup index for a heterogeneous collection. */
/* Every collection that is associated with this recoup index must */
/* have the following format: */
/* The second element has two embedded references; a file address */
/* at displacement 16, and a file address at displacement 40. */
/* The third element has an embedded file address at displacement */
/* 14. */
/* (Note: Minimal error checking is shown.) */
/***/

TPF Collection Support 153

memcpy(IndexName,"HETERO01",8);
rc_type = TO2_RECOUP_HETEROGENEOUS;
rc_ctrl = TO2_RECOUP_CONTROL_NONE;
if (TO2_createRecoupIndex(env_ptr, IndexName, rc_type, rc_ctrl,

NULL, NULL, NULL) == TO2_ERROR)
{

if (TO2_getErrorCode(env_ptr) == TO2_ERROR_INDEX_EXISTS)
printf("Index %8s already exists\n", IndexName);

else
{

printf("ERROR: createRecoupIndex %s failed\n", IndexName);
TO2_deleteEnv(env_ptr);
exit(1);

}
}

memcpy(rce_token, "ENTRY01A", 8);
rce_type = TO2_RECOUP_ENTRY_FA;
rce_displ = 16;
rce_access = TO2_RECOUP_ACCESS_INDEX;
rce_valLen = 4;
rce_value = 2;
TO2_addRecoupIndexEntry(env_ptr, IndexName, &rce_token,

rce_type, &rce_displ, rce_access,
&rce_valLen, &rce_value);

memcpy(rce_token, "ENTRY01B", 8);
rce_displ = 40;
TO2_addRecoupIndexEntry(env_ptr, IndexName, &rce_token,

rce_type, &rce_displ, rce_access,
&rce_valLen, &rce_value);

memcpy(rce_token, "ENTRY02A", 8);
rce_displ = 14;
rce_value = 3;
TO2_addRecoupIndexEntry(env_ptr, IndexName, &rce_token,

rce_type, &rce_displ, rce_access,
&rce_valLen, &rce_value);

/***/
/* Delete TO2_environment */
/***/

TO2_deleteEnv(env_ptr);
exit(0);

}

The following example associates recoup indexes with collections:
/***/
/* Sample application to associate recoup indexes with collections */
/***/

#include <tpfapi.h> /* Needed for TPF_regs structure */
#include <c$to2.h> /* Needed for TO2 API functions */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <tpfio.h> /* Needed for getfc() */

void main(void)
{

TO2_ENV_PTR env_ptr = NULL; /* pointer to environment */
TO2_USER_TOKEN userToken = 0; /* user token */
char applid[] = "APPLICATION_1 ";
char dsname[] = "TESTX.DS"; /* data store name */
char IndexName[8]; /* Recoup index name */
TO2_PID pid; /* area for array PID */

154 TPF V4R1 Database Reference

TO2_PID_PTR arpid_ptr=&pid; /* pointer to array PID */
char element[50]; /* array element */
long element_length; /* length of array element*/
TO2_RECOUP_FA fa_entry; /* fileAddr entry in elem */
char recid[2]; /* fileAddr record ID */
unsigned int file_addr; /* TPF record file address*/
struct stdhdr *file2rec_ptr; /* pointer to TPF record */
long size; /* size of PID */
TO2_OPTION_PTR optionListPtr = NULL; /* pointer to option list */
char colName[64]; /* collection name */

/***/
/* Create TO2_environment */
/***/

if (TO2_createEnv(&env_ptr,&userToken,applid,dsname) == TO2_ERROR)
{

printf("ERROR: createEnv failed ! \n");
exit(1);

}

/***/
/* Create an array that is associated with the heterogeneous recoup */
/* index created in the previous sample application. The array will */
/* be an anchor collection in the data store, so add it to the data */
/* store application dictionary. Also, assign a browse name to the */
/* array that is the same as the array’s key in the application dict.*/
/***/

memcpy(IndexName,"HETERO01",8);
element_length = sizeof(element);
optionListPtr = TO2_createOptionList(env_ptr,

TO2_OPTION_LIST_CREATE,
TO2_CREATE_RECOUP,
TO2_OPTION_LIST_END,
IndexName);

if (TO2_createArrayWithOptions(arpid_ptr, env_ptr, optionListPtr,
&element_length) == TO2_ERROR)

{
printf("ERROR: createArray failed !\n");

}
free(optionListPtr);

memset(colName, 0x00, sizeof(colName));
memcpy(colName, "ARRAY1", 6);
size = sizeof(TO2_PID);
TO2_atDSdictNewKeyPut(env_ptr, colName, arpid_ptr, &size);

TO2_defineBrowseNameForPID(arpid_ptr, env_ptr, colName);

/***/
/* Add the 3rd element to the array. This element has a TPF file */
/* address embedded at a displacement of 14 bytes. The TPF file has */
/* a standard TPF header and will contain forward references. */
/***/

recid[0] = 0xAB;
recid[1] = 0x12;
file_addr = getfc(D2, GETFC_TYPE0, recid, GETFC_BLOCK|GETFC_FILL,

GETFC_NOSERRC, 0x00);
memset(&fa_entry, 0x00, sizeof(fa_entry));
fa_entry.flag = TO2_RECOUP_DSCR_YES;
memcpy(&fa_entry.recID, recid, 2);
memcpy(&fa_entry.fileAddr, &file_addr, 4);

file2rec_ptr = ecbptr()->ce1cr2;
memcpy(file2rec_ptr,&array_entry.recID,4);
filec(D2);

memset(&element, 0x00, sizeof(element));

TPF Collection Support 155

memcpy(element,"DATA BEFORE FA",14);
memcpy(&element[14], &fa_entry, sizeof(fa_entry));
memcpy(element,"DATA AFTER FA",13);
TO2_add(arpid_ptr, env_ptr, element, &element_length);

/***/
/* Delete TO2_environment */
/***/

TO2_deleteEnv(env_ptr);
exit(0);

}

156 TPF V4R1 Database Reference

TPF Collection Support Database from a TPF System
Perspective

The applications that use TPF collection support (TPFCS) can be written with
minimal knowledge of the TPF database. However, system database administrators
who maintain the TPF database need to understand, at some level, how TPFCS
stores collections in the TPF database. Such knowledge is helpful in detecting
database corruption and in taking appropriate action.

System programmers also will benefit from a high-level understanding of how
TPFCS represents and stores collections in the TPF database. TPFCS uses pool
records to represent and manage collections. These pool records often contain data
that represents displacement pointers that are used when a portion of an
associated collection is read into memory. If a defective application corrupts pool
records that TPFCS uses, it is possible for the TPFCS program to either detect a
severe error or, depending on the nature of how the data is corrupted, the TPFCS
code itself could experience a CTL-3 or CTL-4 system error. Such exceptions would
be caused by defective applications that have corrupted the TPFCS displacement
pointers for a collection, and would not necessarily be caused by defects in product
code.

The way that TPFCS stores collections physically in the TPF database differs vastly
from how those collections appear to an application programmer who writes
programs that create and use those collections. For example, even if a key sorted
set (dictionary) collection is small enough for TPFCS to file all of its data elements
and their keys in a single 4-K record, those data elements and their keys might very
well be written in that record in random physical order. TPFCS would keep track of
the conceptual order as seen by application programs that access that key sorted
set (dictionary) by maintaining pointer fields (locators) that it also stores with the
data and their keys. The existence of these locators is totally hidden from
application programs that access the key sorted set (dictionary).

There is no set way in which TPFCS chooses to store a given collection in the TPF
database. Even two collections of the same type and the same number of elements
can be stored by TPFCS in different ways in the same TPF database.

The information presented in this chapter provides information about how TPFCS
represents collections so that problems such as data corruption can be detected
and corrected. While you might have to call your IBM representative if the tools
such as TPFCS capture and restore of collections are not enough to correct data
corruption, it is imperative that you read this section to be able to work with your
IBM representative to reach your goals.

Object-Oriented Concepts
TPFCS has been implemented using an object-oriented design. While application
programmers need no knowledge of object-oriented concepts to use the services
TPFCS provides, a knowledge of general object-oriented concepts described in this
document is required to understand how collections are stored in a TPF database.

An object is an entity consisting of data and functions that are available to manage
the data. The terms attributes and methods are often used to refer to the data fields
and functions, respectively. Objects are classified into different categories. Each
category of objects is known as an object class, or simply as a class. An object

© Copyright IBM Corp. 1994, 2002 157

class is merely a description that defines the exact format of the attributes (data) as
well as the exact methods (functions) to be applied to the data. The attributes and
methods together comprise each object of that class. Each specific, existing
example of an object is said to be an instance of the object class. In discussing
object-oriented design, the terms object and instance are often used
interchangeably. Both refer to an actual example of a generic type that is described
by a class. Each object or instance contains all the attributes and methods defined
for its class. We commonly say that each instance contains those attributes and
methods from its class.

Some object classes can be categorized and divided into more specific classes, just
as a generic category can be divided into more specific types. The more generic
class is commonly known as the superclass of the more specific classes. Likewise,
each of the more specific classes is commonly known as a subclass of the more
generic class. A given subclass, in turn, can be divided into additional, more specific
subclasses. Each subclass definition is built on the definition of its superclasses,
and can also specify a set of additional attributes and methods unique to the
subclass. An object, which is an instance of a subclass, not only contains or inherits
the attributes and methods defined for the subclass, but also inherits the attributes
and methods defined for each of the more generic classes (superclasses) as well.

You can best understand how different objects inherit attributes from different
classes by drawing an inheritance tree, which is a diagram that shows how different
classes and their objects are related. Consider the following example of an
inheritance tree:

In our example, ClassA is divided into two subclasses, ClassB1 and ClassB2.
ClassB1 contains only one subclass (ClassC1), whereas ClassB2 is divided into two
additional subclasses called ClassD1 and ClassD2 respectively. In our example,
only the leaves of an inheritance tree represent classes for which specific objects or
instances can exist. ClassA, ClassB1, and ClassB2 can be referred to as abstract
classes because there are no objects belonging to those classes that do not also
belong to an additional subclass.

All objects of ClassC1 not only inherit all of the attributes and methods defined for
ClassC1, but also inherit the attributes and methods defined for ClassB1 and
ClassA. Similarly, all ClassD1 objects inherit the attributes and methods defined for
ClassD1, ClassB2, and ClassA; and all ClassD2 objects inherit the attributes and
methods defined for ClassD2, ClassB2, and ClassA. Notice that, while all of the
objects inherit the attributes and methods defined for ClassA, none of the objects
inherit from all of the classes. For example, a ClassD1 object does not inherit
attributes and methods from ClassC1, ClassB1, or ClassD2.

ClassA

ClassB1

ClassC1
Objects

ClassB2

ClassD2
Objects

ClassD1
Objects

Figure 11. Class Inheritance Tree Example

158 TPF V4R1 Database Reference

It is also important to note that, in our example as in many other object-oriented
designs, a specific object can be an instance of more than one class. For example,
based on the way we have shown the class inheritance, any ClassD1 object is not
only an instance of ClassD1, but is also an instance of ClassB2 as well as an
instance of ClassA. In simpler terms, we can say that a ClassD1 object is also a
ClassB2 object and is also a ClassA object.

You can best understand how class inheritance works by considering a concrete,
but hypothetical example. Suppose that you were designing an object-oriented
database to store information about vehicles. An object-oriented design of such a
database might be shown as follows:

In our example, every object belonging to the Vehicle class also belongs to the
OBJECT class. 1 The Vehicle class is divided into two more specific subclasses: the
NonMotorVehicle and the MotorVehicle classes. Notice that the NonMotorVehicle
class only contains one subclass: the Bicycle class. On the other hand, the
MotorVehicle class contains two subclasses: the Truck class and the Automobile
class. The Automobile class, in turn, contains several subclasses of its own; the
only two shown are the SportsCar and the Limousine classes.

Assume that all of the classes shown are abstract except for the Bicycle class, the
Truck class, and the subclasses of Automobile. This means that there is no
OBJECT in our database that is not something more specific; for example, an
OBJECT can be a Vehicle. Likewise, there are no Vehicle objects in our database
that are not additionally classified as a specific type of Vehicle, and so on.
Furthermore, there is no Automobile object that is not a specific type of Automobile:
for example, a specific instance of the Automobile class must be either a SportsCar,
a Limousine, or an instance of one of the other Automobile subclasses not shown. It
is also important to note that, in our example, every object inherits from the generic
OBJECT class. The OBJECT class is not only abstract, but it can be referred to as
the base class of our database because all instances inherit from it.

Suppose we have stored objects in our database that represent specific vehicles,
including Frank’s sports car and Jackie’s limousine. Frank’s sports car is an

1. Assume that the database for this example may contain other subclasses of OBJECT in addition to Vehicle, as well as other
subclasses for Automobile in addition to SportsCar and Limousine. These subclasses are not shown in Figure 12 to simplify our
discussion.

Vehicle

OBJECT

NonMotorVehicle

Bicycle

MotorVehicle

Automobile

Limousine

Truck

SportsCar

Figure 12. Object Class Inheritance

TPF Collection Support Database from a TPF System Perspective 159

instance of the SportsCar class. It is a SportsCar. We can also say that Frank’s
sports car is an Automobile, that it is a MotorVehicle, that it is a Vehicle, and that it
is an OBJECT. After all, any sports car can be classified as an automobile, as well
as a motor-powered vehicle, a generic vehicle, or even as a physical object.
Similarly, Jackie’s limousine is a Limousine, an Automobile, and so on.

The type of inheritance that has been described is also known as single inheritance.
Single inheritance is a design characteristic of an object-oriented database in which
each class inherits directly from only one immediate superclass. For example, even
though SportsCar inherits from Automobile, which inherits from MotorVehicle and so
on, SportsCar only inherits directly from one immediate superclass: Automobile.
This is true for all the other classes in our vehicle database because it is designed
using single inheritance.

You can best understand single inheritance by considering its alternative, which is
multiple inheritance. Multiple inheritance is a design characteristic of an
object-oriented database in which a given class can inherit directly from more than
one immediate superclass. Our original vehicle database was not designed using
multiple inheritance because no class inherited directly from more than one
immediate superclass. Another vehicle database could implement multiple
inheritance in the following way:

This is an example of multiple inheritance because Motorcycle inherits directly from
both TwoWheeler and MotorVehicle. Note that multiple inheritance and single
inheritance are mutually exclusive.

Collection Parts Stored in the TPF Database
In object-oriented design, objects that are unrelated to each other in terms of
inheritance are often grouped together to represent other objects. This practice of
grouping objects together for this purpose is commonly known as object
aggregation. Object aggregation is a way in which objects of different classes relate
to one another and has nothing to do with class inheritance. You can best
understand object aggregation by considering how it can serve to design another
database used to store vehicle information. Consider the following example, which
shows how objects of the Automobile class relate to objects of various different
classes even though none of these classes may be related in terms of inheritance.
Even though the Automobile class defines a whole set of attributes that are
inherited by objects belonging to this class, other objects might be needed in
addition to these attributes to represent a real automobile. Some, but not all, of
these objects are shown in the following figure:

Vehicle

TwoWheeler MotorVehicle

Bicycle AutomobileMotorcycle

Figure 13. Multiple Inheritance Example

160 TPF V4R1 Database Reference

To represent an actual automobile in our database in greater detail, we use an
Automobile object to store some generic attributes about the automobile as well as
a whole series of other objects such as Wheel objects, an Engine object, a
Dashboard object, and so on. All of these objects, including the Automobile object
itself, are considered as parts of a greater whole that represents an actual
automobile.

Source Code Definition of Objects
Object classes are defined in the TPFCS source code with the internally used
CLASSC macro. A DSECT following each CLASSC statement defines the attributes
inherited by all objects belonging to a particular class. Each field in the DSECT
describes an attribute.

To understand how TPFCS defines class attributes and inheritance, consider the
following example, which describes a subset of our original vehicle database.

Automobile

WheelWheel

WheelWheel

Engine
Dashboard

Speedometer

Figure 14. Object Aggregation

TPF Collection Support Database from a TPF System Perspective 161

OBJECT CLASSC ,
ATTRIBUTES TYPE=INSTANCE

ObjectHeader DS 0CL16
ObjectId DS F class ID of object
ObjectSeqCtr DS F update sequence counter
ObjectLength DS F length of this object

DS F reserved
ENDATTRIBUTES TYPE=INSTANCE...
ENDCLASS

Vehicle CLASSC SUPERCLASS=OBJECT

ATTRIBUTES TYPE=INSTANCE
Owner DS CL16 name of the Vehicle Owner
OwnerAddress DS CL16 address of Vehicle Owner
RegisterRequired DS CL1 ’Y’ == reg. required by law
* ’N’ == reg. is optional
RegisterSatus DS CL1 ’Y’ == Yes, registered
* ’N’ == No, not registered
VehicleIdNumber DS CL32 Vehicle Identification Number
* or blanks if not registered
BrandName DS CL16 Brand Name or Manufacturer
ModelName DS CL16 Model Name or blanks
Year DS CL4 Year of manufacture or zero if
* unknown
*

ENDATTRIBUTES TYPE=INSTANCE...
ENDCLASS

Figure 15. Defining TPF Collection Support Source Code Instance Attributes (Part 1 of 2)

162 TPF V4R1 Database Reference

Note: In addition to method attributes, TPFCS also defines class attributes and
methods for each object class, which are not shown in Figure 15 on
page 162. Class attributes are internal constants and are not contained in
the objects themselves, nor are they written to the TPF database. The object
methods are present only in the TPFCS load modules and also are not
written to the TPF database in file copies of objects.2

The example of source code we have just cited describes the attributes of all
objects of the Limousine, Automobile, MotorVehicle, Vehicle, and OBJECT classes.
The SUPERCLASS parameter on each CLASSC macro establishes the inheritance
relationship among these classes by dictating that a Limousine is an Automobile,
which, in turn, is a MotorVehicle, and so on. Because of this inheritance
relationship, any Limousine object would not only inherit the attributes defined for
the Limousine class, but would inherit the attributes defined for the other classes as
well.

It is important to realize that the inheritance relationship among the classes would
still exist even if the CLASSC macro defining each class was located in a separate
source module.

2. In standard object-oriented terminology, objects refer to encapsulated data, which consists of both the attributes and methods.
Because TPFCS only includes the data stored in instance attributes of an object when it is written to the TPF database, from this
point on in our discussion, whenever we refer to objects we are referring exclusively to data.

MotorVehicle CLASSC SUPERCLASS=Vehicle

ATTRIBUTES TYPE=INSTANCE
PowerSource DS CL16 Main Power Source
* e.g. (UN)LEADEDGAS, GASOHOL, DIESEL
NumberOfWheels DS H Number of Wheels
LicensePlate DS CL10 License Plate Number or blanks

ENDATTRIBUTES TYPE=INSTANCE...
ENDCLASS

Automobile CLASSC SUPERCLASS=MotorVehicle

ATTRIBUTES TYPE=INSTANCE
NumberOfDoors DS H Number of Doors
NumberOfSeats DS H Number of Seats
Radio DS C ’Y’ if radio, ’N’ if none
AirConditioner DS C ’Y’ if a/c, ’N’ if none
ExteriorColor DS CL10 Color of Exterior

ENDATTRIBUTES TYPE=INSTANCE...
ENDCLASS

Limousine CLASSC SUPERCLASS=Automobile

ATTRIBUTES TYPE=INSTANCE
Bar DS C ’Y’ if bar, ’N’ if none
Refrigerator DS C ’Y’ if fridge,’N’ if none
TelevisionBrand DS CL10 Brand of TV or blanks if none

ENDATTRIBUTES TYPE=INSTANCE...
ENDCLASS

Figure 15. Defining TPF Collection Support Source Code Instance Attributes (Part 2 of 2)

TPF Collection Support Database from a TPF System Perspective 163

File Representation of Objects
TPFCS is implemented using many of the object-oriented concepts previously
described. All data in a TPFCS database is stored and maintained using objects.
The data comprising an object consists of the attributes that the object inherits from
its own class, preceded by all the attributes the object inherits from higher classes.

There are several similarities between the design of the previously discussed
sample vehicle database and the design of the TPFCS database. Recall that, in our
vehicle database, we have an abstract OBJECT class that is the base class; that is,
all objects in the database inherit attributes and methods from the OBJECT class.
TPFCS also implements an abstract class named OBJECT as the base class from
which all objects stored in the database inherit.

Furthermore, just as in the vehicle database, the TPFCS object-oriented design
uses single inheritance and, therefore, does not use multiple inheritance.

Suppose TPFCS created an object of ClassC, where ClassC objects inherit from
higher classes as follows:

TPFCS would store a ClassC object in a pool record in the TPF database as
follows:

Because all of the objects in the TPFCS database design inherit from the base
OBJECT class, the attributes of the OBJECT class always precede all other
attributes contained in a TPFCS object. We refer to the attributes the object inherits
from the OBJECT class as the object header. As was the case for the definition of
our hypothetical vehicle database objects in Figure 15 on page 162, one of the
attributes inherited from OBJECT is the class ID, which is an identifier in the object
header that indicates the most detailed classification of the object. This identifier
would always indicate the most immediate (and detailed) class to which the object
belongs. Therefore, for a ClassC object, even though it also belongs to other
classes (such as ClassA and ClassB), this attribute would identify the object as an
instance of ClassC.

OBJECT

ClassA

ClassB

ClassC

Figure 16. ClassC Inheritance Scheme

OBJECT
Attributes

ClassA
Attributes

ClassB
Attributes

ClassC
Attributes

Figure 17. A ClassC Object

164 TPF V4R1 Database Reference

Keeping in mind that the attributes inherited from the OBJECT class constitute an
object header, which, in turn, identifies or describes the object, the following is
another way to depict the same ClassC object as stored in a 4-K pool record:

As shown in Figure 18, the object header would identify the object in question as an
instance of ClassC.

TPFCS sometimes chooses to store separate objects in the same record in the TPF
database. For example, there might be other objects immediately surrounding our
ClassC object in the same record:

In Figure 19, each object would contain its own unique header as well as its own
unique set of attributes, including those it inherits from other classes. Furthermore,
even though TPFCS can use the ClassC, ClassD, and ClassE objects to write
information about the same collection in the TPF database, those objects would be
unrelated to each other in terms of class inheritance. TPFCS could also choose to
embed the same three objects in the data area attribute of yet another, larger object
of ClassX to which they are also unrelated in terms of inheritance. A single record
might then contain all these objects as follows:

A data area attribute is an attribute (field) within an object that is used to store
generic data. Depending on how TPFCS implements the object, the generic data
can be comprised of other objects, as in our example.

The easiest way to understand how TPFCS objects will appear in the database is to
consider the vehicle objects of our hypothetical example described in Figure 15 on
page 162. If a Limousine object were written in the TPF database in the same way
as an object created by TPFCS, it would appear in a 4-K pool record as follows:

Object Header
(ID=ClassC)

ClassA
Attributes

ClassB
Attributes

ClassC
Attributes

Figure 18. Another Way to Depict the Same ClassC Object

ClassE
Object

ClassD
Object

ClassC
Object

Figure 19. Separate Objects in the Same Record

Object Header
(ID=ClassX)

End of Last
Attribute of

ClassX Object

ClassE
Object

ClassC
Object

Data Area Attribute

ClassD
Object

Figure 20. A ClassX Object. (Contains Other Objects Stored As Data in an Attribute)

TPF Collection Support Database from a TPF System Perspective 165

Similarly, other objects associated with the Limousine would be embedded in the
data area attribute of a ClassX object as shown below:

The ClassX object shown would appear in a separate 4-K pool record from the one
containing the Limousine object. The AutoProxy object contained in its data area
would contain an attribute where the file address of the Limousine object record is
stored. In this way, the ClassX object is used to store or locate all the objects used
to represent a real limousine.

OBJECT Class
As previously mentioned, every class in TPFCS has the OBJECT class as its base
class; that is, all classes inherit from the OBJECT class. For this reason, all objects
are said to have an object header, which consists of the attributes of OBJECT.

Object Header
The object header contains the following data in the order presented:

Object ID (class ID)
A 4-byte field containing a hexadecimal value known as the class ID of the
object. The class ID stored in this field for a given object represents its most
detailed classification. This field is the same attribute discussed in our previous
abstract examples and identified an object as being either a Limousine or a
ClassC object, and so on. The class IDs of all of the objects used by TPFCS
are defined by CLASSID macro statements in the ITO2 DSECT.

Update sequence counter
A 4-byte sequence counter field used by some application programming
interfaces (APIs).

Object length
A 4-byte field containing the length of the object when it is brought into memory.

The value stored in this field will include the lengths of all attributes inherited
from higher classes, including the length of the object header itself.

spare
An additional 4 bytes is reserved for future use by IBM.

Object Header
(ID=Limousine)

Vehicle
Attributes

MotorVehicle
Attributes

Limousine
Attributes

Automobile
Attributes

Figure 21. A Limousine Object

AutoProxy
Object

Dashboard
Object

Engine
Object

Wheel
Object

Wheel
Object

Wheel
Object

Wheel
Object

Figure 22. Data Area Attribute of a ClassX Object in the Vehicle Database

166 TPF V4R1 Database Reference

Use of Pool Records
The objects used internally by TPFCS to represent collections and their elements
are stored in TPF long-term 4-K pool records. TPFCS will use FARF3, FARF4, or
FARF5 4-byte file addresses or FARF6 8-byte file addresses. The type of address
that is used depends on two things: whether the TPF system has been set to allow
FARF6 file address dispensing or when the collection was created. Once the TPF
system is set to allow FARF6 file address dispensing, all new collections will be
created using 8-byte file addresses. To set the TPF system to allow 8-byte file
addressing, enter ZMODE 6 to set on the SB8BFAD SYSTC switch (see TPF
Operations for more information about the ZMODE command). To begin using
8-byte file addressing, you must use the record ID attribute table (RIAT)
characteristics associated with the TPFCS record IDs (4-byte collections use RIAT
RTP=0 and 8-byte collections use RIAT RTP=1). The following section describes
how TPFCS logical objects are physically represented on DASD.

TPFCS Primary and Shadow Records
When a collection is created using the shadow option, TPFCS maintains a duplicate
copy of each of the records used to represent the collection in the TPF database.
This duplication feature that TPFCS provides is known as shadowing, and all
collections that are duplicated in this way are said to be shadowed. TPFCS
provides shadowing independent of TPF duplication of files. This means that if the
pool records used to represent a shadowed collection are duplicated by the TPF
system, there are four copies of each record.

The first copy of each record TPFCS uses to represent a collection is known as a
primary record. If a collection is not shadowed, TPFCS uses only primary records to
represent the collection. If the collection is shadowed, TPFCS maintains a copy of
each primary record used to represent the collection. Each copy is known as a
shadow record or simply, a shadow. Any time it needs to read one of these records,
TPFCS can randomly read the shadow of that record rather than the primary copy
of that record to maintain database integrity.

See TPF Operations for more information about the ZOODB DEFINE command
with the SHADOW parameter.

TPFCS Record Header
Figure 23 describes the record header that TPFCS uses to file its objects in 4-K
pool records using the 4-byte file address format:

IDSDGP DSECT
DGPTPF_HDR DS 0XL24 TPF record header
DGPRID DS XL2 record ID
DGPRCC DS X record code check
DGPCTL DS X record format flag
DGPFORMAT1 EQU X’01’ 1 - current format
* other value reserved for future use.
DGPPRGNM DS XL4 program name
DGPFWD DS XL4 reserved
DGPBKD DS XL4 reserved
DGPPRIME DS XL4 file address of primary record
DGPSHADOW DS XL4 file address of shadow or zero
DGPTPF_HDR_SIZE EQU *-DGPTPF_HDR

Figure 23. DSECT Showing the 4-Byte Format Record Header

TPF Collection Support Database from a TPF System Perspective 167

Figure 24 describes the record header that TPFCS uses to file its objects in 4-K
pool records using 8-byte file address format:

It is important to note how prime and shadow fields are used. Consider the
following example using the 4-byte file address format in which the pool record at
file address 180BF6A6 is used by TPFCS:

In Figure 25, the primary record points to itself because, at the displacement
corresponding to its DGPPRIME field, the file address of the primary record
(180BF6A6) is stored. The primary record also points to the shadow using
DGPSHADOW, which contains the file address of the shadow record (180BF6A7).
Likewise, the shadow record, whose contents match the primary record exactly,
points back to the primary record using the DGPPRIME field as well as to itself
through the DGPSHADOW field.

If shadowing were not active for the record filed at file address 180BF6A6, our
example might be as follows:

IF6DP DSECT
I6PTPF_HDR DS 0XL48 TPF record header
I6PRID DS XL2 record ID
I6PRCC DS X record code check
I6PCTL DS X record format flag
I6PFORMAT0 EQU X’00’ 0 - current format
I6PFORMAT1 EQU X’01’ 1 - current format (alternative)
I6PFORMAT2 EQU X’02’ 2 - expanded (FARF6) format
I6PPRGNM DS XL4 program name

DS XL4 Reserved for future IBM use
DS XL4 Reserved for future IBM use

I6PFWD DS XL8 file address of next in chain
I6PBKD DS XL8 reserved
I6PPRIME DS XL8 file address of prime
I6PSHADOW DS XL8 file address of shadow or 0
I6PTPF_HDR_SIZE EQU *-I6PTPF_HDR

Figure 24. DSECT Showing the 8-Byte Format Record Header

User: ZDFIL 180BF6A6 000.1F

System: CSMP0097I 16.32.50 CPU-B SS-BSS SSU-HPN IS-01
DFIL0010I 16.32.50 BEGIN DISPLAY OF FILE ADDRESS 180BF6A6
00000000- FC160100 C3D1F0F0 00000000 00000000CJ00
00000010- 180BF6A6 180BF6A7 0000004C 00000000 ..6w..6x ...<....
END OF DISPLAY - ZEROED LINES NOT DISPLAYED

Figure 25. TPF Collection Support Primary Record Header Using 4-Byte File Addresses

User: ZDFIL 180BF6A7 000.1F

System: CSMP0097I 16.32.50 CPU-B SS-BSS SSU-HPN IS-01
DFIL0010I 16.32.50 BEGIN DISPLAY OF FILE ADDRESS 180BF6A7
00000000- FC160100 C3D1F0F0 00000000 00000000CJ00
00000010- 180BF6A6 180BF6A7 0000004C 00000000 ..6w..6x ...<....
END OF DISPLAY - ZEROED LINES NOT DISPLAYED

Figure 26. TPFCS Shadow Record Header

168 TPF V4R1 Database Reference

We know that the record is not shadowed because the displacement that
corresponds to the DGPSHADOW field contains zero.

TPFCS Record Trailer
In addition to having a header, the records in which TPFCS files its objects contain
a trailer. The following DSECT outlines the contents of this trailer:

For more information about a relative record number (RRN), see “Extended
Structures (StructureDasd Class)” on page 181. For more information about the
owning control record, see “Collection Control Record” on page 170.

Packaging in DATXPAGE Envelopes
TPFCS uses object aggregation to represent actual collections (see “Collection
Parts Stored in the TPF Database” on page 160). Apart from the many data
elements that can be contained in a collection, TPFCS groups more than one object
together to represent the collection itself. Objects such as these are referred to as
collection part objects, which are also known as collection parts or part objects.
TPFCS uses part objects to store control information about collections as well as to
hold or point to the data elements that are contained in those collections. To be a
collection part, an object must inherit from the ObjectPart class as defined in the
TPFCS source code. Do not let the name of this class mislead you: a collection
part, while a member of the ObjectPart class, is itself an entire object because the
ObjectPart class inherits from the OBJECT class. 3

The group of internal part objects that represent a collection are packaged into a
larger object, which is an instance of the DATXPAGE class, and will be referred to
as a DATXPAGE envelope. A DATXPAGE envelope appears in a pool record after
the TPF record header as follows.

Note: The DATXPAGE envelope will contain embedded objects.

3. Recall our discussion in “Object-Oriented Concepts” on page 157 in which a SportsCar is an Automobile, as well as a
MotorVehicle, as well as a Vehicle, as well as an OBJECT. Similarly, any given ObjectPart is also an OBJECT.

User: ZDFIL 180BF6A6 000.1F

System: CSMP0097I 16.32.50 CPU-B SS-BSS SSU-HPN IS-01
DFIL0010I 16.32.50 BEGIN DISPLAY OF FILE ADDRESS 180BF6A6
00000000- FC160100 C3D1F0F0 800814CE 00000000CJ00
00000010- 180BF6A6 00000000 0000004C 00000000 ..6w..6x ...<....
END OF DISPLAY - ZEROED LINES NOT DISPLAYED

Figure 27. Primary Record Header with No Shadow

DSECT
DGPPG_TRAILER DS 0XL14 OODB PAGE TRAILER
DGPPG_RRN DS XL4 RRN of this record
DGPPG_ID DS XL8 File address of the owning control record
DGPPG_RESV DS X reserved for future use
DGPPG_FFLG DS X TPF format flag

Figure 28. Contents of the TPFCS Record Trailer

TPF Collection Support Database from a TPF System Perspective 169

Figure 29 shows that:

v The DATXPAGE envelope follows the TPF record header.

v The object header in the DATXPAGE header is the same standard header that all
objects have (see “Object Header” on page 166), which includes an object length
field. The value for the length stored in this field is the size of the entire
DATXPAGE envelope.

v The time-stamp attribute in the DATXPAGE header is an 8-byte field containing
the time that TPFCS last filed that record.

v The data length attribute in the DATXPAGE header is a 4-byte field containing
the hexadecimal number of bytes of the data area in use.

v The data area contains the objects (all of which are collection parts) that TPFCS
has embedded or packaged in that DATXPAGE envelope. The only time the data
in this area is not an actual object is when an overflow condition results. See
“How an Object Can Overflow into Additional Records” on page 210 for more
information about this condition.

v The DATXPAGE trailer is the same as the TPFCS record trailer. See Figure 28
on page 169 to determine its contents.

The DATXPAGE envelope and all the collection parts contained in it are filed in the
TPF database in a record known as the control record.

Collection Control Record
Every persistent collection has a control record associated with it. To an application
programmer, the unique persistent identifier (PID) associated with a given collection
serves as a token that applications must supply to TPFCS to perform any operation
on the collection after it is created. The PID represents an anchor to which an
associated collection and all its data are tied. From the perspective of a database
administrator, the control record serves as the anchor to which all of the parts that
represent an associated collection (including its data) are chained.

The control record contains a DATXPAGE envelope in which all of the collection
part objects used to represent a collection are stored. The following example shows
the contents of a control record for an array collection that is not shadowed:

DATXPAGE
Envelope

DATXPAGE
Data Area

Additional
Embedded
Collection

Part
Objects

TPF Record
Header

TPF Record

DATXPAGE
Header
(Includes Object
Header, Time
Stamp, and
Data Length)

DATXPAGE
Trailer

DATXPAGE
Envelope

OIDentry
Object

DATXPAGE
Data Area

Other Collection Parts (Besides OIDentry)

Structure or xStructDASD
Objects

DDEF_OBJ Class Objects

Collection Objects
(For Example, Array and
Keyed Log)

Figure 29. DATXPAGE Envelope Format

170 TPF V4R1 Database Reference

The following objects are all packaged in the DATXPAGE envelope filed in the
control record:

v OIDentry object:

An OIDentry object is the first collection part packaged in the DATXPAGE
envelope. Its purpose is to serve as a table of contents by identifying how many
other collection parts follow in the envelope and where each part begins (relative
to the beginning of the OIDentry object itself). The OIDentry object contains a
table of contents attribute with as many entries as there are additional objects in
the DATXPAGE envelope. Each entry contains:

– A displacement relative to the start of the OIDentry itself where another object
has been stored

– The length of the object stored at that location.

v Collection object:

This varies according to collection type. For example, if the collection is an array,
its collection object is an ARRAY object. The collection object contains
information that is unique to the type of collection. For example, for arrays, one
of the attributes stored in the ARRAY object is the next index to be used.

v Structure object or xStructDASD object:

For compact-resident collections, the structure object follows (see “Collection
Residency” on page 173 for more information about residency). This is the object
that contains control information as well as the actual data elements stored in
those collections.

For extended-resident collections, the DATXPAGE envelope contains an
xStructDASD object instead of a structure object because the structure object is
too large. The xStructDASD object, in turn, contains a pointer to the structure
object. This structure object will contain control information used to locate the
data elements elsewhere in the TPF database, rather than containing the data
elements themselves.

4 K Record

TPFCS Record Header

OIDentry Object
(Contains Table of Contents)

Object Header for DATXPAGE

Collection Object

Structure Object or
xStructDASD Object

Data
Area

DATXPAGE
Envelope

DDEF_OBJ Class Object

DATXPAGE Trailer

Figure 30. Example of a Collection Control Record

TPF Collection Support Database from a TPF System Perspective 171

Note: For compact-resident collections, the structure record and control record
are one and the same. As a result, the file address for the structure record
for compact-resident collections should be the same as the file address
contained in the collection PID.

v DDEF_OBJ object:

This is an object that contains information about the data definition used to store
the collection.

TPFCS stores some types of collections using more than one structure. For
example, a keyed log collection can be stored using the same structure object used
for regular (nonkeyed) logs to contain the data, and another structure that is the
same structure object as a key set collection to maintain the key associated with
each entry there. When this occurs, TPFCS will use a separate collection object as
well as a separate DDEF_OBJ object for each structure object. In our example,
TPFCS would implement the keyed log collection using both a log collection as well
as a key set collection. There would still be just one PID assigned to the keyed log.
The contents of the control record associated with the PID would be as follows:

To make it easier, all other discussions in this publication assume a single structure
for a collection unless otherwise noted. Furthermore, our discussion of both the
DATXPAGE envelope and the control record has been based upon a logical
representation. In reality, it is possible that all of the objects which TPFCS intends
to package in a single DATXPAGE envelope and corresponding control record will
not fit in a single 4-K pool record on DASD. See “How an Object Can Overflow into

TPFCS Record Header

OIDentry Object
(Contains Table of Contents)

Object Header for DATXPAGE

KeyedLog Object

Structure Object or
xStructDASD Object for the Key Set

Structure Object or
xStructDASD Object for the Keyed Log

DDEF_OBJ Class Object

DDEF_OBJ Class Object

DATXPAGE Trailer

Key Set Object

Data
Area

DATXPAGE
Envelope

Figure 31. Conceptual View of a Control Record for a Keyed Log Collection

172 TPF V4R1 Database Reference

Additional Records” on page 210 for detailed information about how a logical control
record and the objects it contains are split across multiple physical records.

USERdata Object
TPFCS often stores the data elements in a collection in USERdata objects.
USERdata objects are embedded in other objects that TPFCS uses in its internal
representation of the collection.

A USERdata object only inherits from the OBJECT class. This means that it only
contains a standard object header followed immediately by the actual user data,
which is the data element itself.

Collection Residency
TPFCS classifies collections by a characteristic known as residency, which
determines what the layout of the data is in the internal objects that comprise a
collection. The two types of residency are compact and extended. For
compact-resident collections, the data elements are embedded in the structure
object itself. For extended-resident collections, the structure object only contains
control information about the collection structure and the data elements are
embedded in data records, which are chained to the structure object.

Note: Because the data elements are embedded in compact structures, it is more
effective to implement collections with fewer elements using compact
structures. Likewise, it is more effective to implement collections with a very
large number of elements using extended structures because of the
overhead that is necessary to sort and retrieve those elements.

Every collection can be represented by a compact or extended structure. When a
collection is first created it is compact-resident. TPFCS changes the internal
representation of the collection to be extended-resident only when the collection has
exceeded a predetermined size as more and more elements are added to it. Once
TPFCS has made a collection extended-resident, the collection will remain that way
even if the number of elements in the collection is significantly reduced.

Note: Collections are not transformed back and forth from extended-resident to
compact-resident to avoid overhead. There would be a performance impact
for this transformation as a collection continued to increase and decrease in
size as many elements were added to it and many were deleted from it.

Compact Structures (StructureMem Class)
All compact structure objects inherit from the StructureMem class. This section
describes the specific types of compact structure objects provided by TPFCS:

v MemFLAT

v MemHash

USERdata
Object Header Data Element

Figure 32. USERdata Object

TPF Collection Support Database from a TPF System Perspective 173

v MemKey

v MemList.

Every compact structure will be an instance of one of these object classes. You will
notice that all of these classes are similar in that they each have a data area
attribute, but they are different because each has their own specific attributes used
to manage the data.

MemFLAT
Of all the structure objects belonging to the StructureMem class, the MemFLAT
object is the most simple. The MemFLAT structure object contains a data area
attribute where TPFCS stores the collection data. The collection data is stored in
the exact order and format the applications using the collection have specified.
Each time an application requests data to be stored or retrieved from the collection,
TPFCS uses a relative byte position as the displacement into the data area. The
applications that store, retrieve, or update data in MemFLAT collections specify this
relative byte position either directly or as an index.

Important Attributes
The following are important MemFLAT attributes that precede the data area:

MemFLAT_I_FAL
A 4-byte field containing the number of bytes in the data area available to add
new data.

MemFLAT_I_LGH
A 4-byte field containing the length of the data area where the collection data is
stored.

MemFLAT_I_NAB
A 4-byte field containing the displacement into the data area where new data
can be added.

Graphical Representation
To understand how the MemFLAT object data area will appear on file, it is helpful to
understand how TPFCS sets it up in memory. The following figure is a conceptual
representation of how TPFCS lays out a MemFLAT object data area in memory:

174 TPF V4R1 Database Reference

Data Format
Each data entry contains the actual user data.

MemHash
TPFCS uses the MemHash object to employ a hashing algorithm to store and
retrieve data in collections. The hashing algorithm makes use of an input value,
which is extracted from the input that is provided by application programs
requesting to store and retrieve data from those collections as well as a hash value,
which is produced by the algorithm.

Important Attributes
The following attributes of the MemHash object are most important:

MemHash_I_DataArea
The data area where the collection elements and their hash values are stored.
This data area is a contiguous list of data entries that contain the elements of
the collection and their hash values.

MemHash_I_FAL
A 4-byte field containing the number of bytes that are available to store
additional data and control information.

MemHash_I_LGH
A 4-byte field containing the length of the data area.

MemHash_I_MaxEntryLgh
A 2-byte field containing the maximum data entry length.

MemHash_I_NAB
A 4-byte field containing the number of bytes that are in use to store both data
and control information.

"Top" of Data Area

Data Entry 4

Data Entry 5

Data Entry 1

Data Entry 2

Data Entry 3

(Unused Bytes)

(Unused Bytes)

"Bottom" of Data Area

Figure 33. Example of the Data Area of a MemFLAT Object

TPF Collection Support Database from a TPF System Perspective 175

MemHash_I_NumEntries
A 2-byte field containing the number of entries or elements stored in the
collection.

MemHash_I_ValueLgh
A 2-byte field containing the length of the input value for each data element on
which TPFCS will perform a hashing algorithm to locate that element.

Graphical Representation
TPFCS inserts entries into the data area as applications insert elements in the
corresponding collection. There is no sorting of elements and there is no chaining of
hash synonyms. For example, the data area of a MemHash structure object could
contain the following:

To retrieve an element in the collection, TPFCS searches the data area sequentially
for all occurrences of its hash value until the element input value is found. In
Figure 34, if TPFCS needed to process a request to retrieve Element 3, it would
perform the MemHash hash algorithm on Element 3 using Input Value 3, which
would either be a portion of Element 3 specified by the requesting application or

Length of USERdata Object 1

Length of USERdata Object 2

Length of USERdata Object 3

Length of Input Value 1

Length of Input Value 2

Length of Input Value 3

Input Value 1

Input Value 2

Input Value 3

USERdata Object 1
(Contains Element 1)

USERdata Object 2
(Contains Element 2)

USERdata Object 3
(Contains Element 3)

Hash Value A
Entry 1

Hash Value B
Entry 2

Hash Value A
Entry 3

Figure 34. Example of the Data Area of a MemHash Object

176 TPF V4R1 Database Reference

Element 3 itself. 4 The result of the hash operation would be Hash Value A. TPFCS
would then search the MemHash data area for a match on Hash Value A that also
contained a matching input value. Element 1 would be found but would be
bypassed because Input Value 1 does not equal Input Value 3. TPFCS would
continue its search and retrieve Element 3 because its entry in the data area
contains both a matching hash value as well as a matching input value.

Data Format
Each entry in the data area consists of the following:

v A 4-byte hash value that TPFCS produced to locate a corresponding data
element the next time it is accessed.

v A 2-byte field containing the length of the USERdata object where the data
element is stored.

v A 2-byte field containing the length of the input value that was used to produce
the hash value for the data element.

v The input value TPFCS used to produce the hash value for the data element. For
some collections such as bags and sets, the input value is a replica of the data
element itself.

v A USERdata object containing the data element.

MemKey
The MemKey object provides the fastest way to retrieve and store data elements in
small collections which are sorted on key. It is also used to store data for other
keyed collections which are not sorted.

Important Attributes
The following attributes of a MemKey object are most important:

MemKey_I_DataArea
A data area of varying length where the keys, their data elements, and locators
that determine the order of those elements in the collection are stored.

MemKey_I_FAL
A 4-byte field containing the number of bytes remaining in the MemKey data
area (MemKey_I_DataArea).

MemKey_I_FirstDeadSlot
A 4-byte field that indicates the displacement to the first inactive entry in the
data area. When there are no inactive entries, TPFCS sets this attribute to
X'FFFFFFFF'.

An inactive entry is an entry in the MemKey data area that corresponds to an
element in the associated collection that an application program has deleted.

MemKey_I_KeyLgh
A 2-byte field that contains the length of a key used for a data element that
TPFCS will store in this MemKey object. The length of every key is the same.

MemKey_I_LGH
A 4-byte field containing the length of the data area when TPFCS reads the
MemKey object into memory. This length will differ from the actual length of the
data area on file because TPFCS will strip the data area of its unused bytes
before filing the MemKey object to the TPF database.

4. Whether the input value is part of, or the same as, the collection element depends on the type of collection represented by the
MemHash structure object.

TPF Collection Support Database from a TPF System Perspective 177

MemKey_I_MaxEntryLgh
A 4-byte field that contains the maximum size of a data element that TPFCS will
insert into the MemKey data area.

MemKey_I_NAB
A 4-byte field containing the displacement in MemKey_I_DataArea where
TPFCS will insert the next key and data element that is added to the collection.

MemKey_I_NumEntries
Contains the number of active data entries that the MemKey object currently
holds. Each data entry is composed of a key as well as the data element that
corresponds to that key in the collection.

Graphical Representation
To understand how the MemKey object data area will appear on file, it is helpful to
understand how TPFCS sets it up in memory. The following figure is a conceptual
representation of how TPFCS lays out a data area of MemKey in memory:

Data Entry 4

Fifth

(*) Order:

Data Entry 6 (Inactive/Previously Deleted)

Fourth

Data Entry 2

Third

Data Entry 3

Second

Data Entry 1 (Inactive/Previously Deleted)

First

Data Entry 7

Data Entry 5

MemKey_I_NAB: points to beginning of
this space, which is currently unused
and available for inserting additional keys
and their data.

NOTE: Memkey_I_FirstDeadSlot contains
the original contents of Locator 6; that is,
it references the first inactive slot in the
data area from the top. Locator 6 no longer
exists because it was removed when the
element stored in Data Entry 6 was deleted
from the associated collection.

The order shown indicates the conceptual
order as "seen" by applications that access
the data: that is, the data with Key 2 is first,
the data with Key 3 is second, and so on.

(*)

"Top" of Data Area

Key 4/Data 4

Locator 7

Key 6/Data 6

Locator 5

Key 2/Data 2

Locator 4

Key 3/Data 3

Locator 3

Key 1/Data 1

Locator 2

Key 7/Data 7

Key 5/Data 5

(Unused Bytes)

"Bottom" of Data Area

Figure 35. Data Area of MemKey in Memory

178 TPF V4R1 Database Reference

The conceptual order of the data entries stored in a MemKey object differs greatly
from the physical order in which TPFCS stores them. This conceptual order is
determined by the order of the locators, which are displacement fields that TPFCS
keeps at the bottom of the data area. TPFCS sorts the locators based on the keys
of the data entries to which they point rather than sorting those entries themselves.
When an application wants to delete an element from a collection that is
represented by a MemKey object, TPFCS usually deletes the locator to the
corresponding data entry that holds that element rather than deleting the entry itself.
TPFCS only stores elements with unique keys in a MemKey object. As a result, if
there appear to be entries with duplicate keys in a data area of a MemKey object, it
is most likely that all but one of those entries are remnants of data elements that
have been deleted from the associated collection. Even though TPFCS files
MemKey objects whose data areas contain inactive entries, TPFCS always strips
the data area of any gap of unused bytes between the last data entry and the start
of the locators before filing a MemKey object. Therefore, when you display a record
that contains a MemKey object, you will find its locators immediately following the
last entry in the data area.

Data Format
The format of each data entry is as follows:

v The first 2 bytes contain the length of the entire entry. This length equals the
length of the key, plus the length of the USERdata object that holds the element
associated with that key, plus 2 (for the length field itself).

v The key associated with the data element. If the MemKey object holds a
collection for which TPFCS allows duplicate keys, TPFCS adds a time stamp to
this key to make it unique.

v A USERdata object that contains the actual data element.

Each locator is 4 bytes long and contains the following:

v The first 2 bytes contain the length of the data entry associated with that locator.

v The next 2 bytes contain the displacement from the start of the data area where
the associated data entry begins.

Note: The format of the MemKey object when written to DASD differs from its
format in memory because TPFCS condenses the object by removing all
unused bytes from the data area. See “How Some Objects Are Condensed
to Save Space” on page 207 for more information.

MemList
The MemList object is similar to the MemKey object because data elements stored
in a MemList are sorted using locators. The main differences are that there are no
keys associated with each element stored in a MemList object and there is no
inherent order to those data elements. The order of the data elements for MemList
structure collections is determined solely by the applications that create and
populate them with elements.

Important Attributes
The following attributes of a Memlist object are most important:

MemList_I_DataArea
A data area of varying length where the data elements and locators that
determine the order of those elements in the collection are stored.

MemList_I_DataLgh
A 4-byte field containing the length of the data area where elements are stored.

TPF Collection Support Database from a TPF System Perspective 179

MemList_I_FAL
A 4-byte field containing the number of bytes available in the unused portion of
the data area where the next element will be inserted.

MemList_I_NAB
A 4-byte field containing the displacement from the beginning of the data area
where the next element will be inserted.

MemList_I_NumEntries
A 4-byte field containing the number of active entries (elements) in the
collection.

Graphical Representation
To understand how the MemList object data area appears on file, it is helpful to
understand how TPFCS sets it up in memory. The following figure is a conceptual
representation of how TPFCS arranges a MemList data area in memory:

The conceptual order of the data entries stored in a MemList object differs greatly
from the physical order in which TPFCS stores them. This conceptual order is

Fifth

(*) Order:

Data Entry 6

Fourth

Data Entry 2 (Inactive/Previously Deleted)

Third

Data Entry 3 (Inactive/Previously Deleted)

Second

Data Entry 1

First

Data Entry 7

Data Entry 5

MemList_I_NAB: points to beginning of
this space, which is currently unused
and available for inserting additional
data elements (entries).

The order shown indicates the conceptual
order as "seen" by applications that access
the data: that is, the Data Entry 1 is first,
Data Entry 4 is second, and so on.

(*)

"Top" of Data Area

Data Entry 4

Locator 7

Data Entry 6

Locator 6

Data Entry 2

Locator 5

Data Entry 3

Locator 4

Data Entry 1

Locator 1

Data Entry 7

Data Entry 5

(Unused Bytes)

"Bottom" of Data Area

Figure 36. Example of a MemList Data Area in Memory

180 TPF V4R1 Database Reference

determined by the order of the locators, which are displacement fields that TPFCS
keeps at the bottom of the data area. TPFCS sorts the locators based on the order
of the entries to which they point as indicated by the application rather than sorting
those entries themselves. When an application wants to delete an element from a
collection that is represented by a MemList object, TPFCS usually just deletes the
locator to the corresponding data entry that holds that element rather than deleting
the entry itself. Even though TPFCS files MemList objects whose data areas
contain inactive entries, TPFCS will always strip the data area of any gap of unused
bytes between the last data entry and the start of the locators. Therefore, when you
display a record that contains a MemList object, you will find its locators
immediately following the last entry in the data area.

Data Format
The format of each data entry is as follows:

v The first 2 bytes contain the length of the entire entry. This length equals the
length of the USERdata object that holds the element stored in that entry plus 2
bytes (for the length field itself).

v A USERdata object that contains the actual data element.

Each locator is 4 bytes long and contains the following:

v The first 2 bytes contain the length of the data entry associated with that locator.

v The next 2 bytes contain the displacement from the start of the data area where
the associated data entry begins.

Note: The format of the MemList object when written to DASD differs from its
format in memory because TPFCS condenses the object by removing all
unused bytes from the data area. See “How Some Objects Are Condensed
to Save Space” on page 207 for more information.

Extended Structures (StructureDasd Class)
All extended structures inherit from the StructureDasd class. This section describes
the following specific types of extended-structure objects provided by TPFCS as
they apply to collections created with 4-byte file address format:

v DASDINDEX

v DASDFLAT

v DASDHASH

v DASDLIST.

Note: The architectural detail for collections created with 8-byte file address format
is the same, except the object names will be different.

Record Types
Extended structures make use of the following:

v Data records

TPFCS stores and retrieves data elements for extended-resident collections
using data records. Data records are pool records where the actual data
elements for the collection are stored. A data record often contains more than
one data element for a given collection.

v Key records (index records)

For collections with keys, TPFCS stores and retrieves data elements for
extended-resident collections using key (index) records as well. Key records are
pool records that are arranged in a tree-like structure by which TPFCS sorts the

TPF Collection Support Database from a TPF System Perspective 181

keys and locates the data record containing the data element that corresponds to
each key. The root of the tree is chained to the structure object.

v Directory entries and directory records

TPFCS also uses directory entries to represent extended-resident collections.
Each directory entry that is in use for an extended-resident collection contains
the file address of a key (index) or data record as well as its shadow if one
exists. TPFCS uses the directory entries for a given collection to locate its key
and data records by their relative record number (RRN). Some directory entries
are embedded in the extended structure object (StructureDasd) itself, whereas
others are kept in pool records, which are called directory records. Just as with
key records, TPFCS chains the directory records for a collection in a tree-like
structure whose root is chained to the structure object.

Note: When a directory entry is not in use, it either contains zero or indicates
the RRN for the next directory entry that is available.

A directory entry is not an object itself, but rather an attribute or field in the object in
which it is contained. If you read the TPFCS source code, you must not confuse the
directory entry with the DIRECTORY object, which is just one of the objects that
TPFCS uses to store directory entries. A DIRECTORY object itself contains
directory entries and is filed in a directory record.

A directory entry can have either of two formats and always contains a bit flag that
identifies which format describes that entry. TPFCS uses directory entries in the first
format to locate records on file.

In the first format, the following fields are contained in directory entries:

primary file address
A 4-byte field that contains the file address of a primary record used by TPFCS.

shadow file address
A 4-byte field that contains the file address of the shadow copy of the primary
record or zero when a shadow does not exist.

The second format for a directory entry is used to store a next available RRN that
TPFCS will use to represent a collection on DASD.

Note: For more information about the exact contents of a directory entry in either
format, see the IDSDIRE DSECT in the ITO2 DSECT.

Relative Record Numbers
Each data record and key record (when present) belonging to an extended-resident
collection is associated with an RRN. A key or data record relative record number
describes the order in which that record occurs in the abstract flat file
representation of the collection data and associated control information. You can
best understand what is meant by a relative record number, as well as gain a better
understanding of extended-resident collections, by considering the following abstract
model. Even though it is not the case, you can think of all of the data of a given
extended collection, as well as associated control information used to manage or
sort through that data, as being stored in one huge continuous flat file. This flat file
itself is partitioned into 4-K records:

182 TPF V4R1 Database Reference

Each of the 4-K records used to contain or manage the data is either a data record
or (for keyed collections) a key record. The first record in this file is assigned RRN
0, the next is assigned RRN 1, and so on.

In reality, the flat file of this abstract representation does not exist. The 4-K records
comprising the file are scattered across the TPF database in pool records. TPFCS
uses directory entries as well as directory records to locate and access each of
these records according to its relative record number.

Locating Records in a StructureDasd Object
As mentioned earlier, TPFCS uses directory entries and directory records to locate
collection data and key records by their relative record number. Directory entries
0–17 are embedded in the collection structure object and TPFCS uses them to
locate RRNs 0–17 directly: that is, when one of these RRNs is in use for a
collection, the corresponding directory entry of the RRN will contain its file address
(for both the primary record and the shadow when present). The directory records
are used to locate RRNs 18 and higher. Logically, the directory records are
arranged in a tree-like structure with the root of the tree referenced by the
Structure_I_DirectoryR attribute of the structure object. Consider the following
figure, which shows a directory record tree for a collection containing RRNs 18–30,
where RRNs 20, 25, and 29 are not active.

Notes:

1. For the purpose of simplicity, our example assumes that a directory record only
holds three directory entries. In reality, a directory record would hold many more
directory entries.

2. Only directory entry fields for each directory record are shown. TPFCS makes
use of other fields in the directory record to maintain information such as:

v The level of the directory record (which is an integer 0 or greater, where a
level of 0 indicates that the directory entries point directly to data or key
records)

v The number of directory entries currently in use

v The RRN for which the directory record was created (which is usually the
lowest RRN that this directory record locates).

Flat File

Record 0

4 K

Record 1

4 K

Record 2

4 K

Record 3

4 K

Figure 37. Abstract View of How Data Is Stored for Extended-Resident Collections

TPF Collection Support Database from a TPF System Perspective 183

In Figure 38, the collection associated with directory records A–H is shadowed.
Therefore, each of the directory records has both a primary and a shadow copy. For
example, record A' is the shadow copy of record A. As with all of the records that

F
ile

 A
dd

re
ss

*
R

R
N

 1
8

F
ile

 A
dd

re
ss

*
R

R
N

 1
9

A
va

ila
bl

e

F
ile

 A
dd

re
ss

*
R

R
N

 2
1

F
ile

 A
dd

re
ss

*
R

R
N

 2
2

F
ile

 A
dd

re
ss

*
R

R
N

 2
3

*
C

on
ta

in
s

th
e

fil
e

ad
dr

es
s

of
 b

ot
h

th
e

pr
im

ar
y

as
 w

el
l a

s
sh

ad
ow

 d
at

a
or

 k
ey

 r
ec

or
d

fo
r

th
e

R
R

N
 in

di
ca

te
d.

F
ile

 A
dd

re
ss

*
R

R
N

 2
4

A
va

ila
bl

e
F

ile
 A

dd
re

ss
*

R
R

N
 2

6

F
ile

 A
dd

re
ss

*
R

R
N

 2
7

F
ile

 A
dd

re
ss

*
R

R
N

 2
8

A
va

ila
bl

e

F
ile

 A
dd

re
ss

*
R

R
N

 3
0

U
nu

se
d

U
nu

se
d

D
ire

ct
or

y

0
Le

ve
l

D
ire

ct
or

y

1
Le

ve
l

D
ire

ct
or

y

2
Le

ve
l

F
ile

 A
dd

re
ss

 D
, D

'
F

ile
 A

dd
re

ss
 E

, E
'

F
ile

 A
dd

re
ss

 F
, F

'

18
–2

0
21

–2
3

24
–2

6

Lo
ca

te
s

R
R

N
s

F
ile

 A
dd

re
ss

 G
, G

'
F

ile
 A

dd
re

ss
 H

, H
'

U
nu

se
d

Lo
ca

te
s

R
R

N
s

27
–2

9
30

–3
2

F
ile

 A
dd

re
ss

 B
, B

'
F

ile
 A

dd
re

ss
 C

, C
'

U
nu

se
d

Lo
ca

te
s

R
R

N
s

18
–2

6
27

–3
2

D
ire

ct
or

y
R

ec
or

d
D

D
ire

ct
or

y
R

ec
or

d
E

D
ire

ct
or

y
R

ec
or

d
F

D
ire

ct
or

y
R

ec
or

d
G

D
ire

ct
or

y
R

ec
or

d
H

D
ire

ct
or

y
R

ec
or

d
B

D
ire

ct
or

y
R

ec
or

d
C

D
ire

ct
or

y
R

ec
or

d
A

R
oo

t

D
'

E
'

F
'

G
'

H
'

B
'

C
'

A
'

1

2

3

4

5

6

Figure 38. How Directory Records Are Used to Locate RRNs 18–26

184 TPF V4R1 Database Reference

TPFCS uses, each shadow record contains the exact same contents as its primary
counterpart. (To keep our discussion simple, the contents of the shadow records are
not shown in our example and we will assume that TPFCS selects the primary
copy.)

To understand how the tree of directory records is used to locate RRNs 18 and
higher, consider a condition in which TPFCS needs to access RRN 24 of the
associated collection. TPFCS arrives at the root of the tree via
StructDasd_I_DirectoryR, which contains the file address of record A as well as the
file address of its shadow, record A'. TPFCS reads record A �1� . Given the RRN
we want to locate, TPFCS uses an internal algorithm to determine which RRNs
each entry locates. This algorithm uses information such as the level of directory
record A (which is 2), its number of entries (which is 3), and the RRN for which
record A was allocated (RRN 18). In our example, the algorithm would determine
that the first entry �2�, which points to record B, is used to locate RRNs 18–26
inclusive. TPFCS reads directory record B �3� and scans it using an algorithm to
determine which entry locates RRN 24. In our example, the third entry �4� from the
top of the record is used because it locates RRNs 24–26. TPFCS uses this
directory entry to read record F �5� . Because directory record F is at level 0, each
active entry points directly to a relative record in the associated collection. TPFCS
uses the same algorithm used previously to determine that the very first entry �6� in
the directory record contains the file addresses of the primary (and shadow) copy of
the data or key record with RRN 24. Either file address is used to read information
in the record with RRN 24, and both file addresses (when present) are used to
update information in that record.

It is also important to note that not every RRN from 0 to the current maximum RRN
used by a given collection will be in use. This is normally true when the operations
performed by application programs on a given collection have caused a data or key
record to be deleted as elements were first added to a collection and later on
removed from that collection. For example, assume the current maximum RRN in
use for the collection in question is 30. Notice how the directory entries
corresponding to RRNs 20, 25, and 29 in records D, F, and G respectively do not
contain file address information. Instead of containing file address information, they
are marked as available. For the collection in question (whose current maximum
RRN in use is 30), if TPFCS needs to allocate another RRN to store additional
elements, it can use any of the RRNs that are marked available rather than
allocating RRN 31.

You will also notice that in the directory records in Figure 38 on page 184, some of
the entries are marked unused and others are marked as available. The difference
between unused and available is as follows: Unused entries have never been used
and contain zero. Available entries were previously used and once contained RRN
file address information. The information formerly contained in these entries has
been removed and the entries have been marked available as the associated RRNs
were deleted. TPFCS can choose either unused entries or available entries to store
file address information for new RRNs.

Whether or not a directory entry contains file address information is determined by
its format. For a general discussion on directory entry format as well as how to
determine more information about each format, see “Record Types” on page 181.

StructureDASD Attributes to Consider
The following are the main attributes from the StructureDasd object class that will
be contained in the extended-residency structure object:

v StructDasd_I_Directory, which contains the file address of the structure record.

TPF Collection Support Database from a TPF System Perspective 185

v Pointers to file chains for directory records, key records, and data records:

– StructDasd_I_AllocatedFACount_Data, which is the count of records on the
allocated data chain where TPFCS places data records.

– StructDasd_I_AllocatedFACount_Direct, which is the count of records on
the allocated directory chain where TPFCS places directory records.

Note: Because it contains embedded directory entries, the structure record
itself is linked as part of the allocated directory chain and is included in
this count.

– StructDasd_I_AllocatedFACount_Index, which is the count of records on
the key (index) chain where TPFCS places key records.

– StructDasd_I_LastAllocatedFA_Data, which contains the file address of the
head of the allocated data chain.

– StructDasd_I_LastAllocatedFA_Direct, which contains the file address of
the head of the allocated directory chain.

Note: Because the structure object contains embedded directory entries, the
record containing the structure object itself is considered a special
directory record. Consequently, when a collection is small enough to
contain only embedded directory entries and no additional directory
records, the structure object record itself is the head of the allocated
directory chain and its file address will be contained in this field. When
more elements are added to the collection to require additional
directory records, the structure object record will be last in the chain.

– StructDasd_I_LastAllocatedFA_Index, which contains the file address of the
head of the allocated key (index) chain.

TPFCS places records on each of these chains in topdown order. This means that
each chain is really a stack, and the head of each chain really points to the last
record that TPFCS added on that chain rather than the first. That is why the name
of each header contains the phrase last allocated. TPFCS always uses the TPF
forward chain pointer of each record to point to the next element on the chain. The
following figure shows how TPFCS adds a record to one of these chains:

The allocated data and allocated key chains also contain records that TPFCS no
longer uses to represent the collection associated with the StructureDasd object. As

Last Allocated
(Chain Head Pointer)

Last Allocated
(Chain Head Pointer)

When there is only one record, Record 1, on the chain:

After TPFCS places a second record, Record 2, on that chain:

(Forward Pointer = 0)
Record 1

(Forward Pointer)
Record 2

(Forward Pointer = 0)
Record 1

First Record Added

Second Record Added First Record Added

Figure 39. How TPF Collection Support Adds Records to a StructureDasd Chain

186 TPF V4R1 Database Reference

a result, when chasing these chains for the StructureDasd object of a given
collection, not every record you find is necessarily being used by TPFCS for that
collection. Rather than immediately removing records it no longer needs from the
allocated data or allocated key chain, TPFCS chains these records to an associated
released chain and schedules them to be released back to the TPF system when
the length of the chain exceeds a predetermined threshold. The released chains are
just another way of logically chaining the same physical records that are on the
allocated chains.

TPFCS uses the following attributes of StructureDasd to manage each released
chain:

v StructDasd_I_ReleasedFACount_Data, which is the count of records on the
released data chain where TPFCS places data records that are scheduled for
release.

v StructDasd_I_ReleasedFACount_Index, which is the count of records on the
released key chain where TPFCS places key records that are scheduled for
release.

v StructDasd_I_LastReleasedFA_Data, which contains the file address of the
head of the released data chain.

v StructDasd_I_LastReleasedFA_Index, which contains the file address of the
head of the released key chain.

Records are added to each released chain in topdown order similar to the way in
which they are added to the allocated chains. TPFCS uses the TPF backward chain
pointer to link records on each released chain. The following figure shows an
example of how records are linked on both the allocated and released chains:

TPF Collection Support Database from a TPF System Perspective 187

In Figure 40, the count of records on the allocated chain is 4 because the chain
contains records A, B, C, and D. However, only records A and C are used for the
collection because records B and D are on the released chain.

Note: TPFCS only uses the allocated chains and their counts for processing the
validation and reconstruction requests available to you using the ZBROW
command (see TPF Operations for more information).

To insert, retrieve, and delete elements from an extended-resident collection,
TPFCS uses the following attributes:

v StructDasd_I_Directory0 to StructDasd_I_Directory17 contain the first 18
directory entries of the collection. These directory entries correspond to RRNs
0–17. Because these directory entries are located inside the extended structure
(StructureDasd) object itself, we will refer to them as the embedded directory
entries.

v StructDasd_I_DirectoryR is a directory entry that points to the root of a tree of
directory records when all of the directory entries needed to represent the
collection do not fit in the embedded directory entries.

DASDINDEX Structures
When TPFCS uses key records for a collection, its structure object will be a
DASDINDEXPool object. DASDINDEXPool objects currently inherit attributes from
the DASDINDEX class, which inherits from StructureDasd. The attributes are:

AllocatedFACount = 4

Last Allocated
(Chain Header)

ReleasedFACount = 2

Last Released
(Chain Header)

(Forward Pointer)
(Backward Pointer=0)

Record A

(Forward Pointer)
(Backward Pointer)

Record B

(Forward Pointer)
(Backward Pointer=0)

Record C

Represents Pointing
on the Allocated Chain

Represents Pointing
on the Released Chain

(Forward Pointer=0)
(Backward Pointer=0)

Record D

Figure 40. How Records Are Linked on Both Allocated and Released Chains

188 TPF V4R1 Database Reference

v DASDINDEX_I_RootRRN contains the RRN for the root of the key record tree
structure.

v DASDINDEX_I_RootDirEntry contains a directory entry that points to the root
key record as well as its shadow, if one exists.

v DASDINDEX_I_MaxKeyLength is the maximum key length allowed for a data
element that TPFCS will store for this DASDINDEX object. The value of this
attribute could be greater than the maximum length of a key for the actual
collection as seen by an application programmer.

Figure 41 on page 190 is a conceptual diagram of a DASDINDEXPool structure
object:

TPF Collection Support Database from a TPF System Perspective 189

Note the following in Figure 41:

2201
2101

2200
2100

2001

AAA'

A
301

FA: 300

B
101

FA: 100

3

1

5

6

2

8

9

7

10

4

C
401

FA: 400

D
201

FA: 200

A' B' C' D'

Allocated
Data

Root Key
(Index)

Root Directory

Structure Record
(DASDINDEXPool)

Embedded
Directory Entries

RRN: 19

RRN: 270

RRN: 269
ADAMS
BAKER

JAMES

18
268

46

BBB'

BBB

CCC'

CCC

JAMES
MILLER
SMITH

JONES

MILLER

19
269
30

101

2201
2101

301
1101
1001

100

18
19
20

.

.

.

267

Access RRNs

1200 1201

0
1
2

17

Access RRNs

2200
2100

18-267
268-517

Access RRNs

300
1100
1000

268
269
270

.

.

.

517

Access RRNs

20

1
FA: 1200

1201

2201

FA: 1000

FA: 2200

FA: 2000
Root Directory

Record

Root Key
Record

AAA

FA: 2100

FA: 1100

1101

2101

1001

RRN: 268
Highest Key:
BAKER

RRN: 1
Highest Key:
MILLER

RRN: 18
Highest Key:
ADAMS

RRN: 20
Highest Key:
JONES

Figure 41. DASDINDEXPool Object and Its Associated Records

190 TPF V4R1 Database Reference

v The size and number of entries in each record, as well as file addresses shown,
are not accurate. They are presented in such a way to make the figure as simple
as possible.

v Similarly, the size of each record is not drawn to scale. All of the records are 4 K,
including the record that contains the structure object (the DASDINDEXPool
object).

v Not every field in the DASDINDEXPool object and not every field in the other
records is shown; and not every key, data, or directory record is shown.

v A logical view and not a physical layout of all records is shown. For example,
entries in key records are sorted using locators, but this is not shown.

v The allocated data field represents the StructDasd_I_LastAllocatedFA_Data
attribute, which points to the allocated data chain.

v For the sake of simplicity, the released data chain is not shown. You can assume
that none of the data records on the allocated chain happen to be released.

v The Highest Key label in each data record shows the highest value of a key for a
data element stored in that data record. (Each data record can contain many
data elements and their keys.) This label does not correspond to a special field
in a data record.

v The RRN: label that is in each data and each key (index) record indicates the
RRN of that record; that is, the relative record number for the directory entry that
contains the primary and shadow file address for that record and its shadow. This
label does refer to a special field in those records because TPFCS stores the
RRN of every data or key record in the record itself.

v Every record in the figure has a shadow, which is represented with a dotted
border. The contents of these records are not shown, but are always exactly the
same as each primary record. Even the record containing the DASDINDEXPool
object itself is shadowed.

v The Root Key (Index) label corresponds to DASDINDEX_I_RootDirEntry.

v The Embedded Directory Entries label corresponds to the directory entries which
access RRNs 0–17. These directory entries are contained in the structure object
as attributes from StructDasd_I_Directory0 to StructDasd_I_Directory17.

v The Root Directory label corresponds to StructDasd_I_DirectoryR, which contains
the file address of the primary copy of the root of the directory record tree as well
as its shadow copy.

To understand how the DASDINDEXPool object is used to represent a collection,
consider an example in which TPFCS is processing a request of an application to
retrieve the data element in the collection that has a key of LEMIE. TPFCS uses
the root key pointer (DASDINDEX_I_RootDirEntry) to read the root key record (at
file address 1000). �1� A key record contains one or more entries, each of which in
turn contains a key value and an RRN. The entries are sorted by key. The root key
record is scanned until either the first entry is found whose key is greater than or
equal to the requested key (LEMIE), or the entries in the root key record are
exhausted. In our example, TPFCS would stop scanning the root key record at the
entry containing a key of MILLER and an RRN of 269 �2� .

TPFCS would then try to locate the directory entry for an RRN of 269. Because this
RRN (269) is beyond RRN 17 (which is the highest RRN for an embedded
directory), TPFCS begins its search for the directory entry to access that RRN by
reading the root directory record of the directory record tree. The file address of the
root Directory is contained in the root directory (StructDasd_I_DirectoryR) field in
the DASDINDEXPool structure object. This address is 2000 in our example (record
AAA) �3� . TPFCS reads the directory record (record AAA) from DASD and

TPF Collection Support Database from a TPF System Perspective 191

searches its entries using an internal algorithm to locate the entry that accesses
RRN 269. The entry that TPFCS finds contains a primary file address of 2100 (as
well as a shadow file address of 2101).5 �4� TPFCS reads the record (record CCC)
at this file address from DASD �5� .

Based on other fields in the record that are not shown, TPFCS knows that record
CCC is another directory record, but that the file addresses contained in its
directory entries point to key records, not directory records. TPFCS locates the
directory entry in directory record CCC that accesses RRN 269 �6� . This entry has
file addresses of 1100 and 1101, which point respectively to a primary and a
shadow key record. TPFCS reads the key record at file address 1100 �7� (whose
RRN is 269). TPFCS then scans this key record until it finds the first entry whose
key is greater than or equal to the requested key of LEMIE, or until the entries are
exhausted. In our example, the entry that satisfies this request contains MILLER as
its key and an RRN of 1 �8� .

Once again, TPFCS attempts to locate the directory entry that accesses RRN. In
this example, the search ends quickly because the directory entry that accesses
RRN = 1 is the second embedded directory entry �9� . This directory entry points to
the data record (record B) at file address 100 as well as its shadow (record B' at file
address 101). TPFCS then reads this data record, whose highest key is MILLER
�10� . TPFCS then searches this data record for a data element whose key
matches LEMIE. If a match is found, the contents of the data element are returned
to the requesting application. If no match is found, an appropriate error condition is
returned.

We have just illustrated how, conceptually, the various components of a
DASDINDEXPool structure object and the various records to which it points
represent a keyed collection.

The following sections describe the contents of the structure record (where the
DASDINDEXPool structure object is stored) as well as the other records used to
store objects to manage the collection data. You will notice that none of these
records contain DATXPAGE envelopes to store their objects.

Note: This is true even for the structure object, although it is a collection part.
Recall that for extended-resident collections, the structure object is not
embedded in the DATXPAGE envelope of the control record; rather, an
xStructDASD object is embedded in place of the structure object itself. See
“Collection Control Record” on page 170 for more information.

Structure Record
The structure record contains the following in the order listed:

1. The TPFCS record header as described under “TPFCS Record Header” on
page 167. The record ID will be the ID of a directory record as defined in the
ITO2 DSECT.

2. The structure object itself, which will be a DASDINDEXPool object.

3. There is no standard TPFCS record trailer (as described in “TPFCS Record
Trailer” on page 169) at the end of a structure record containing a
DASDINDEXPool object. However, the following information, normally contained
in the trailer, will be included at the end of the record:
v The file address of the owning control record

5. This directory entry is not the final directory entry for RRN = 269 because the record to which it points on file is not a data or a key
record. TPFCS will not stop searching for directory entries until the directory entry it locates points to a data or a key record.

192 TPF V4R1 Database Reference

v A reserved byte
v A TPF format flag.

Directory Records
The directory records contain the following in the order listed:

1. The TPFCS record header as described in “TPFCS Record Header” on
page 167. The record ID will be the ID of a directory record as defined in the
ITO2 DSECT.

2. The remainder of the record will be filled by a DIRECTORY object containing
control information as well as actual directory entries. For the instance attributes
of a DIRECTORY object, see the TPFCS source code.

Note: The final bytes of a DIRECTORY object comprise a TPFCS record trailer
as described in “TPFCS Record Trailer” on page 169. Because directory
records themselves do not contain an RRN, TPFCS uses the field in the
trailer for a directory record that normally contains an RRN to store an
identifier. For an explanation of the contents of this identifier and how
TPFCS uses it, see your IBM service representative.

Key Records
Key records will contain the following in the order listed:

1. The TPFCS record header as described in “TPFCS Record Header” on
page 167. The record ID will be the ID of a key (index) record as defined in the
ITO2 DSECT.

2. An NDXPAGE object, which is the object used to store keys and associated
RRNs in the key record.

Note: The NDXPAGE object fills the remaining portion of the record after the
record header. Furthermore, it contains its own trailer, which will be
located at the end of the record in place of the TPFCS record trailer.

The following example is a representation of a key record that contains five active
entries. Note that the entries are sorted using locators in a similar way to how
entries were sorted in a MemKey structure.

TPF Collection Support Database from a TPF System Perspective 193

You can determine the exact format and contents of the NDXPAGE control
information preceding its data area from the definition of the NDXPAGE instance
attributes in the TPFCS source code. The exact format of the NDXPAGE trailer is
defined under the NDXPG_Trailer tag in the same source module. The contents of
this trailer include the following:

v The number of entries in use

v The displacement to the beginning of the available space in the data area
relative to the start of the key record itself rather than the start of the NDXPAGE
object

v The number of bytes in the available space.

Each entry in the data area consists solely of a unique key followed immediately by
an associated RRN. There is no DSECT that defines these entries in the TPFCS
source code because the length of an entry depends on the key length, which
varies from collection to collection. The entry length is stored in the NDXPAGE
locator for that entry and equals the collection key length plus the length of an RRN
(4 bytes). If the NDXPAGE locators are corrupt, you can determine the collection
key length in several ways:

Data Area

Record Header

End of Available Space

Object Header

NDXPAGE Control Information
(Note: Includes RRN of this Key Record)

Entry Containing Key 4 and its Associated RRN

Entry Containing Key 2 and its Associated RRN

Entry Containing Key 1 and its Associated RRN

Locator for Entry with Key 5

Entry Containing Key 5 and its Associated RRN

Locator for Entry with Key 4

Locator for Entry with Key 2

Locator for Entry with Key 1

Entry Containing Key 3 and its Associated RRN

Locator for Entry with Key 3

NDXPAGE Trailer
(Includes Number of Entries)

Beginning of Available
Space for Future Entries

End of Record

Figure 42. Example of a Key (Index) Record Containing Five Entries

194 TPF V4R1 Database Reference

v The collection key length is stored in DASDINDEX_I_MaxKeyLength, which will
appear in response to a ZBROW COLLECTION command with the ATTRIBUTES
parameter specified for the collection.

v The collection key length is also displayed in response to a ZBROW
COLLECTION command with the DISPLAY parameter specified for the collection.

v If you suspect that the collection is corrupted and the response to these
commands is incorrect, check the application program that defined and populated
the collection.

The locators are used to sort the entries by key (from lowest to highest) as shown
in Figure 42 on page 194. Each locator consists of 6 bytes in the following format:

v A 2-byte displacement field to the associated entry

Note: For the key records, this displacement is relative to the beginning of the
record (that is, starting at the TPFCS record header) rather than the
NDXPAGE object or its data area.

v A 2-byte field containing the length of its associated entry

v 2 bytes reserved for future use.

Note: TPFCS does not remove the unused bytes from the data area before filing
an NDXPAGE object in a key record on DASD.

Data Records
Data records contain the following in the order listed:

1. The TPFCS record header as described in “TPFCS Record Header” on
page 167 . The record ID will be the ID of a data record as defined in the ITO2
DSECT.

2. An NDXDATAPAGE object, which is the object used to store data elements in
the data records of collections with this structure.

Notes:

a. The NDXDATAPAGE object fills the remaining portion of the record after the
record header. Just like the NDXPAGE object used for key records, the
NDXDATAPAGE object contains an NDXPAGE trailer that will be located at
the end of the record in place of the TPFCS record trailer.

b. TPFCS does not remove the unused bytes from the data area before filing
an NDXDATAPAGE object in a data record on DASD.

The following example is a representation of a data record that contains four active
entries. As with key records, data record entries are sorted using locators.

TPF Collection Support Database from a TPF System Perspective 195

You can determine the exact format and contents of the NDXDATAPAGE control
information preceding its data area from the definition of the NDXDATAPAGE
instance attributes in the TPFCS source code. As mentioned previously, the trailer is
the same as the NDXPAGE object and is described under the NDXPG_Trailer tag
in the same source module.

Each entry in the data area consists of the following in the order indicated:

1. A 2-byte field containing the length of the USERdata object embedded in the
entry where the data is located

2. The key for that entry

(*) Order:

Data Area

The order shown indicates the conceptual order as "seen"
by applications that access the data: that is, the data with
Key 1 is first, the data with Key 3 is second, and so on.

The entry that contains Key 2 has evidently been deleted
and is, therefore, inactive because there is no locator that
points to that entry.

(*)

Record Header

End of Available Space

Object Header

NDXDATAPAGE Control Information
(Note: Includes RRN of this Data Record)

Key 4/Data 4

Key 2/Data 2
(Inactive Entry)

Key 1/Data 1

Locator for Entry with Key 5 Fourth

Key 5/Data 5

Locator for Entry with Key 4 Third

Locator for Entry with Key 1 First

Key 3/Data 3

Locator for Entry with Key 3 Second

NDXPAGE Trailer
(Includes Number of Entries)

Beginning of Available
Space for Future Entries

End of Record

Figure 43. Example of a Data Record Containing Four Active Entries

196 TPF V4R1 Database Reference

3. A USERdata object containing the data element in the associated collection that
corresponds to that key.

Note: TPFCS only stores elements with unique keys in an NDXDATAPAGE object.
As a result, if there are to be entries with duplicate keys in a data area of an
NDXDATAPAGE object, it is most likely that all but one of those entries are
remnants of data elements that have been deleted from the associated
collection.

The format of the locators used to sort data record entries is the same as for those
used to sort key record entries. See “Key Records” on page 193 for specific
information.

DASDFLAT Structures
TPFCS uses DASDFLAT structure objects for the same types of collections that it
uses for MemFLAT structures. Application programs specify a relative byte position
when storing, updating, or retrieving data for those collections. As with MemFLAT
structure collections, applications always specify a relative byte position when using
DASDFLAT structure collections, either explicitly or as an index, depending on the
type of collection the DASDFLAT structure represents.

To understand how DASDFLAT structure collections are stored in the TPF
database, it is necessary to understand how TPFCS processes the relative byte
position specified by the application to store or retrieve data for those collections.
TPFCS takes the relative byte position, decrements it by 1 to make it 0-based, and
then divides it by the number of bytes of data that would fit in a data record. TPFCS
handles this quotient as an RRN and allocates a data record to hold the data when
it is first stored in the collection. Directory entries are updated to locate the data
record, and directory records are allocated as they are needed. For information
about how directory entries and directory records relate to data records by RRN,
see “Extended Structures (StructureDasd Class)” on page 181. If the data does not
fit in one data record, an additional data record is allocated and the next sequential
RRN is assigned to that record.

Note: If an application requests data from a relative byte position where data has
never been stored, TPFCS will find an unused RRN for that position and will
return a string of hexadecimal zeros to the requesting application for the
number of bytes requested. TPFCS does not allocate any data records
corresponding to gaps among the RRNs of the data records.

Structure Record
The structure record contains the following in the order listed:

1. The TPFCS record header as described on page 167. The record ID will be the
ID of a directory record as defined in the ITO2 DSECT.

2. The structure object itself. The structure object will be a DASDFLATPool object,
which inherits from the DASDFLAT class.

3. There is no standard TPFCS record trailer (as described in “TPFCS Record
Trailer” on page 169) at the end of a structure record containing a
DASDFLATPool object. However, the following information, normally contained
in the trailer, will be included at the end of the record:
v The file address of the owning control record
v A reserved byte
v A TPF format flag.

TPF Collection Support Database from a TPF System Perspective 197

Directory Records
The directory records for a DASDFLATPool object are the same format as those
used for DASDINDEXPool objects. See “Directory Records” on page 193 for more
information.

Data Records
The data record for collections that use a DASDFLAT structure will contain a
FLATPAGE object immediately following the TPFCS record header. The following
are the important attributes of the FLATPAGE object:

v A data area where data for the collection is stored.

v Two 2-byte sequence counters that TPFCS uses to manage concurrent updates
to logical records that span across several data records.

v The TPFCS record trailer.

Key Records
TPFCS does not use key records for collections of this structure type.

DASDHASH Structures
The best way to understand how a persistent collection is represented on the TPF
database using a DASDHASH structure object is to consider the following
algorithm:

TPFCS uses relative records 0–66 as anchor records for storing the collection data
elements. This is done as follows:

v When an application requests that an element be stored in the collection, TPFCS
takes the data element and performs a hash operation on it. It then takes the
resulting hash value and divides it as an unsigned integer by 67.

v The remainder of this division (0–66) dictates the RRN of the data record where
TPFCS will first attempt to store the data element. These data records will serve
as anchor records.

TPFCS performs the following steps to store a data element in a data record:

Note: Initially, the current record is the appropriate anchor record.

1. The current data record is scanned to see if there is room for the element. If
there is room in the current data record, the data element and its hash value
are stored there.

If there is no room in the current data record, TPFCS will check if there are any
additional data records chained to it. If there is another in the chain that
contains enough room, TPFCS will store the element and its hash value there.

2. If there are no additional records chained to the current data record or none of
them have enough room, a new data record and RRN are allocated and the
data element and hash value are stored in the new record. The new data record
is chained to the current record using its RRN rather than its file address.

The following abstract model shows how this algorithm works:

198 TPF V4R1 Database Reference

In our model, elements A1, A2, and A3 all produce hash value a. Likewise,
elements B1 and B2 produce Hash Value b.

v A1 was the first element that the application added to the collection. When Hash
Value a is divided by 67, the remainder is n. Because there was room in the data
record with RRN = n, element A1 and its hash value were stored there.

v B1 was the next element that the application added to the collection. When Hash
Value b is divided by 67, the remainder is also n. Because there was room in the
data record with RRN = n, element B1 and its hash value were stored there.

v Similarly, another element, C1, was also added to the collection. It had a unique
hash value that, when divided by 67, produced a remainder of n. Element C1
and its hash value were, therefore, also stored in the data record with RRN = n.

Element C1 does not appear in the figure because it was later deleted.

v When A2 and B2 were being added to the collection, another data record (with
RRN = x) was used to store these elements and their hash values because there
was no room for them in the data record with RRN = n.

v The application then removed element C1 from the collection.

v A3, with a hash value of a, was the next element to be added. Because the
remainder of the division of its hash value is n, TPFCS first looked at the data
record with this RRN to see if A3 and its hash value could be stored there.
Because element C1 had been removed, there was enough room in that record,
and TPFCS stored A3 and its hash value there.

RRN = 0 RRN = 65RRN = n

Anchor Records 0–66

RRN = x

Element
A1

Element
A2

Element
B1

Element
A3

Element
B2

Hash Value
a

Hash Value
a

Hash Value
b

Hash Value
b

Hash Value
bSynonym

Chain

RRN = 1 RRN = 66

Figure 44. Abstract Model of a DASDHASD Structure Collection

TPF Collection Support Database from a TPF System Perspective 199

Note: The data element and its hash value are not stored contiguously in the data
record as shown in the figure. Figure 44 on page 199 is a conceptual
representation of how the data elements and their corresponding hash
values are stored. See the discussion of Figure 45 on page 201 for more
information about how the data elements and their hash values are stored in
a data record.

Structure Record
This record contains the following in the order listed:

1. The TPFCS record header as described on page 167. The record ID will be the
ID of a directory record as defined in the ITO2 DSECT.

2. The structure object itself. The structure object will be a DASDHASHprime
object, which inherits from the DASDHASH class.

3. There is no standard TPFCS record trailer (as described on page 169) at the
end of a structure record containing a DASDHASHprime object. However, the
following information, normally contained in the trailer, will be included at the
end of the record:
v The file address of the owning control record
v A reserved byte
v A TPF format flag.

Note: The DASDHASHprime and DASDHASH classes inherit the majority of their
attributes from the StructureDASD class, and currently do not have any
unique attributes of their own that are relevant to the level of our discussion.
The most important attributes used to store data elements and retrieve them
belong to the VDATPAGE object filed in the data record. See “Data Records”
for more information.

Directory Records
The directory records for a DASDHASHprime object are the same format as those
used for DASDINDEXPool objects. See “Directory Records” on page 193 for more
information.

Data Records
These records contain the following in the order listed:

1. The TPFCS record header as described on page 167. The record ID will be the
ID of a data record as defined in the ITO2 DSECT.

2. A VDATPAGE object, which is the object used to put data elements in a data
record for collections with this structure.

Note: The VDATPAGE object fills the remaining portion of the record after the
record header. Furthermore, the VDATPAGE object includes the TPFCS
record trailer.

The following figure represents a VDATPAGE data record that contains four active
entries. Notice how the data entries are sorted by their associated hash values
using locators that are at the bottom of the data area.

200 TPF V4R1 Database Reference

For more information about the control information attributes contained in the
VDATPAGE object, see the definition for that object class in the TPFCS source
code.

Each entry in the data area consists of the following in the order indicated:

1. A 2-byte field containing the length of the USERdata object embedded in the
entry where the collection element is located.

2. A 2-byte field containing the length of the input value that was used to produce
the data entry hash value. For some collections such as bags and sets, the
input value is a replica of the data element itself.

3. The input value used to produce the hash value for this data entry.

(*) Order:

Data Area

The order shown indicates the conceptual order of the
data entries by hash value: that is, the Entry with Hash
Value 1 is first, the Entry with Hash Value 3 is second,
and so on.

The entry with Hash Value 2 has been deleted and is,
therefore, inactive because there is no locator that
points to that entry.

(*)

Record Header

End of Available Space

Object Header

Data Entry for Hash Value 4

Data Entry for Hash Value 2
(Inactive)

Data Entry for Hash Value 1

Locator for Entry with Hash Value 5Fourth

Data Entry for Hash Value 5

Locator for Entry with Hash Value 4Third

Locator for Entry with Hash Value 1

VDATPAGE Control Information (Includes
Additional Control Information, Such As

Number of Entries and RRN of Overflow Record)

First

Data Entry for Hash Value 3

Locator for Entry with Hash Value 3Second

DGPPG_TRAILER

Beginning of Available
Space for Future Entries

End of Record

Figure 45. Example of a VDATPAGE Data Record Containing Four Active Entries

TPF Collection Support Database from a TPF System Perspective 201

4. A USERdata object containing the collection data element.

Each locator is an 8-byte field consisting of the following:

v A 4-byte field containing the hash value used to locate the associated data entry

Note: The hash value is, therefore, not stored in the data entry itself.

v A 2-byte field containing the total length of its associated data entry

v A 2-byte displacement field to the associated entry.

Notes:

1. Unlike the locators used in the NDXDATAPAGE object for DASDINDEX
structure collections described in “Data Records” on page 195, the displacement
stored in each VDATPAGE locator is relative to the beginning of the VDATPAGE
data area and not relative to the beginning of the data record.

2. TPFCS does not remove the unused bytes from the data area before filing a
VDATPAGE object in a data record on DASD.

Key Records
TPFCS does not use key records for collections of this structure type.

DASDLIST Structures
TPFCS uses structure objects with DASDLIST attributes to represent collections
where the elements have an order determined exclusively by the application. This
differs from DASDINDEX structure collections where the order of collection
elements is determined by the key associated with each element. For example, in a
DASDINDEX structure collection, an element with a key of BAKER would naturally
come before an element with a key of COOPER. On the other hand, in a
DASDLIST structure collection, an element containing COOPER could precede an
element containing BAKER because the application that created the collection has
chosen to give COOPER a higher priority than BAKER.

To understand how TPFCS keeps track of arbitrarily ordered collections using the
DASDLIST structure, consider the following scenario. Suppose that an application
inserts the following elements into a collection in the order described, specifying the
priority or order of each element as it is inserted:

1. The first element the application inserted contains BAKER.

2. The application then inserts COOPER in the collection, but specifies that
COOPER is to be first in order (that is, to precede BAKER).

3. The application then inserts FOLEY in the collection, but specifies that FOLEY
will now be first in order (that is, it will precede COOPER).

4. The application then inserts SMITH in the collection. However, this time the
application specifies that SMITH should be last in the collection.

Let us assume that each of these elements the application inserted in the collection
are large enough to each fill an entire data record. BAKER, the first element
inserted, would be filed in relative record number (RRN) 0. COOPER, the next
element inserted, would be filed in RRN 1, and so on. The following figure shows
how each record that is written in the database would appear:

202 TPF V4R1 Database Reference

Notice that how the elements are written in the database differs greatly from a
logical diagram of how those elements are ordered, where FOLEY is the first
element in the collection, COOPER is the second, and so on:

TPFCS uses fields in the DASDLIST structure as well as in the data records
chained to that structure to keep track of the order of collections with arbitrarily
ordered elements. The following are the fields in DASDLIST that are used to keep
track of the order:

DASDLIST_I_FirstRRN
A 4-byte field that contains the RRN of the first data record in the collection, or
−1 if the collection is empty.

DASDLIST_I_LastRRN
A 4-byte field that contains the RRN of the last data record in the collection, or
−1 if the collection is empty.

Note: For other attributes of the DASDLIST structure object, such as the number of
elements in the associated collection, see the definition of the DASDLIST
instance attributes in the TPFCS source code.

TPFCS chains the data records in order as well as in reverse by maintaining the
following fields in each of the data records:

LDATPAGE_NEXTRRN
A 4-byte field that contains the RRN of the next data record as ordered by the
application, or −1 if this is the last data record for the collection.

LDATPAGE_PREVRRN
A 4-byte field that contains the RRN of the previous data record as ordered by
the application, or −1 if this is the first data record for the collection.

Figure 48 shows how the DASDLIST structure object, together with the next RRN
and previous RRN fields in each of the data records, enables TPFCS to traverse
the collection either in order from the first to the last element, or in reverse order
from the last element to the first element:

BAKER

RRN 0

COOPER

RRN 1

FOLEY

RRN 2

SMITH

RRN 3

Figure 46. How Elements of a DASDLIST Structure Collection Are Written in the Database

FOLEY

RRN 2

COOPER

RRN 1

BAKER

RRN 0

SMITH

RRN 3

Figure 47. How Elements of a DASDLIST Structure Collection Are Ordered

TPF Collection Support Database from a TPF System Perspective 203

By using the DASDLIST_I_FirstRRN structure object field (labeled First RRN in the
figure), TPFCS can locate the first element in the collection regardless of where it is
filed in the TPF database. (For more information about how directory entries and
directory records are used to locate the data record corresponding to a given RRN,
see Figure 38 on page 184 and the discussion that follows it). TPFCS can then
traverse the entire collection, in order, using the LDATPAGE_NEXTRRN field
(labeled Next RRN in the figure) in each data record. Similarly, TPFCS can traverse
the entire collection in reverse order, starting with the last element, by using the
DASDLIST_I_LastRRN structure object field (labeled Last RRN) and the
LDATPAGE_PREVRRN field (labeled Previous RRN) in each data record.

In reality, not every element in a DASDLIST structure collection will fill an entire
data record. In a real example of a collection, each of the data records of a
DASDLIST structure collection would contain many elements. TPFCS manages the
order of elements in these data records by using locators to sort them based on
how they were ordered by the applications that added them to the collection. The
contents of a data record for DASDLIST structure collections are, therefore, more
complex than the example we have just discussed, and data records will contain

COOPER

SMITH

FOLEY

BAKER

RRN=1

RRN=3

RRN=2

DASDLISTPool
Object

RRN=0

Previous
RRN=2

Previous
RRN=0

Previous
RRN=1

-1 Next
RRN=0

-1

Next
RRN=1

Last
RRN=3

First
RRN=2

Next
RRN=3

How records are chained
in order from first to last.

How records are chained
in reverse from last to first.

Figure 48. How the Order of a DASDLIST Collection Is Maintained

204 TPF V4R1 Database Reference

many more fields to count and sort the elements they contain. See “Data Records”
for a complete discussion of the format of data records for DASDLIST structure
collections.

Structure Record
This record contains the following in the order listed:

1. The TPFCS record header as described on page 167. The record ID will be the
ID of a directory record as defined in the ITO2 DSECT.

2. The structure object itself. The structure object will be a DASDLISTPool object,
which inherits from the DASDLIST class.

3. There is no standard TPFCS record trailer (as described in “TPFCS Record
Trailer” on page 169) at the end of a structure record containing a
DASDLISTPool object. However, the following information, normally contained in
the trailer, will be included at the end of the record:
v The file address of the owning control record
v A reserved byte
v A TPF format flag.

Directory Records
The directory records for a DASDLISTPool object are the same format as those
used for DASDINDEXPool objects. See “Directory Records” on page 193 for more
information.

Data Records
These records contain the following in the order listed:

v The TPFCS record header as described in “TPFCS Record Header” on
page 167. The record ID will be the ID of a data record as defined in the ITO2
DSECT.

v An LDATPAGE object, which is the object used to fill data elements in a data
record for collections with this structure.

Note: The LDATPAGE object fills the remaining portion of the record after the
record header. Furthermore, this object includes the TPFCS record trailer.

The following example is a representation of a data record that contains four active
entries. Notice how the data entries are sorted using locators, which are at the
bottom of the data area.

TPF Collection Support Database from a TPF System Perspective 205

We have already discussed two items contained in the LDATPAGE control
information: namely, the RRN of the previous data record and the RRN of the next
data record in the collection. You can determine the exact format and contents of all
the LDATPAGE control information preceding its data area from the definition of the
LDATPAGE instance attributes in the TPFCS source code.

Each entry in the data area consists of the following in the order indicated:

1. A 2-byte field containing the length of the USERdata object embedded in the
entry where the data is located.

2. A USERdata object containing the data element stored in that entry.

(*) Order:

Data Area

The order shown indicates the conceptual order as
"seen" by applications that access the data: that is,
Data Entry 1 is first, Data Entry 3 is second, and so on.

Data Entry 2 has evidently been deleted and is, therefore,
inactive because there is no locator that points to that
entry.

(*)

Record Header

End of Available Space

Object Header

Data Entry 4

Data Entry 2
(Inactive Entry)

Data Entry 1

Locator for Data Entry 5Fourth

Data Entry 5

Locator for Data Entry 4Third

Locator for Data Entry 1

LDATPAGE Control Information (Includes
Additional Control Information, Such As

Number of Entries and Previous/Next RRN)

First

Data Entry 3

Locator for Data Entry 3Second

DGPPG_TRAILER

Beginning of Available
Space for Future Entries

End of Record

Figure 49. Example of an LDATPAGE Data Record Containing Four Active Entries

206 TPF V4R1 Database Reference

Each of the locators used to maintain order among the data entries is a 4-byte field
containing the following:

v A 2-byte field containing the length of its associated entry

v A 2-byte displacement field to the associated entry.

Note: Unlike the locators used in the NDXDATAPAGE object for DASDINDEX
structure collections described in “Data Records” on page 195, the
displacement stored in each LDATPAGE locator is relative to the
beginning of the LDATPAGE data area and not relative to the beginning of
the data record.

Key Records
TPFCS does not use key records for collections of this structure type.

How Objects Are Stored on DASD
All objects that TPFCS files to DASD are written in 4-K pool records. As mentioned
previously, the objects used by TPFCS are filed to DASD in a slightly different
format from their representation in memory when they are actually used. The
general nature of these differences is as follows:

v Space Saving: Many objects TPFCS uses to hold collection data elements
contain attributes that are contiguous data areas. For a given collection, TPFCS
stores collection data elements in the object data area.

The object data area is allocated when the object is first created and is filled as
applications add elements to the associated collection. The number of bytes of
the object data area currently in use is, therefore, dynamic. Sometimes, for
compact structure objects only to save DASD space, TPFCS will strip the object
of those bytes contained in the object data area that are not in use before filing
the object in the TPF database. See “How Some Objects Are Condensed to
Save Space” for more information.

v Packaging: Before being written to DASD, objects which TPFCS includes in a
collection control record are inserted into a DATXPAGE object. The DATXPAGE
object functions as an envelope to hold those objects. Packaging was discussed
in detail in “Packaging in DATXPAGE Envelopes” on page 169.

v Overflow: TPFCS files all of its objects in 4-K records. Because the objects
belonging in a collection control record may not fit in a single 4-K record, they
may overflow into one or more 4-K additional records. See “How an Object Can
Overflow into Additional Records” on page 210 for more information about how
TPFCS handles overflow conditions.

How Some Objects Are Condensed to Save Space
As mentioned previously, TPFCS sometimes condenses compact structure objects
that contain data areas by removing unused portions of the data area before filing
those objects. TPFCS condenses such objects to save DASD space. When the
object is filed on DASD, it appears as follows:

v The displacements to any fields that were relocated will differ from their definition
in the TPFCS source code and will vary.

v The length field in the object header, as well as any attributes that represent the
length of the data area, reflect the number of bytes that will be contained in the
object when TPFCS reads it into memory, and will be greater than the number of
bytes contained in the object as filed on DASD.

TPF Collection Support Database from a TPF System Perspective 207

Figure 50 clarifies these points. Consider the following object as it appears in
memory as the TPF system accesses it to process application requests against an
associated collection:

Each data entry is a field in the data area where collection elements are stored. In
objects such as these, the collection elements need to be sorted. As was discussed
previously for compact structures, TPFCS normally inserts elements that need to be
sorted into the data area as they arrive, and locators are used to retrieve the
elements in correct order as if they were sorted.

Also, as discussed previously, when using locators, TPFCS inserts data entries
starting at the top of a data area working downward, and adds locators to the same
data area starting at the bottom and working backward. This practice leaves a gap
of unused bytes between the last data entry and the displacement where the
locators are stored. This gap of unused space is where additional entries are added
as applications add or insert more elements in the associated collection.

Recall that objects with locators contain control information attributes as well as a
data area. Depending on the specific object, these attributes can occur before the
data area, after it, or at both locations. The control information attributes determine

Any control information
attribute containing the
displacement to the next
available byte in the data
area (where new data entries
may be added) points here.

Beginning of data
area attribute points here.

Bottom or end of data
area attribute points here.

Locator

Object Header

Locator

Control Information
Attributes Preceding

Data Area
(If Present)

Control Information
Attributes Following

Data Area
(If Present)

Locator

Data Entry

Data Entry

Data Entry

(Unused Bytes)

Figure 50. How an Object Containing a Data Area Appears in Memory

208 TPF V4R1 Database Reference

information such as the entire size of the data area (including unused bytes), the
number of unused bytes, the displacement in the data area where the unused bytes
begin, and so on. TPFCS will use this information to determine whether there is
room for the data entry, as well as where in the data area to store the entry, when
inserting an additional data entry into the object data area. Besides having the
length of its data area in one of its control information attributes, the object has its
entire length stored in the object header.

Figure 51 shows how the same object is condensed for space saving when it is
filed in a record on DASD:

The data area of the object is now much smaller because the gap of unused bytes
between the last data entry and the beginning of the locators is no longer present.
This is the only difference between how the object appears in memory and how it
is stored on DASD. For example, the contents of the following are not changed:

v The object header contains the length of the entire object when it is active in
memory even though the object, as it appears on DASD, is smaller because
TPFCS removed the unused bytes from its data area. Likewise, all control
information attributes used to contain length values, such as the length of the
data area, have not changed and reflect the length of the data area in memory
(which is larger) rather than the length of the data area on DASD. TPFCS
maintains the original values for all length attributes because this information is
needed to expand the object when reading it into memory.

Any control information
attribute containing the
displacement to the next
available byte in the data
area (where new data entries
may be added) points here.still

Beginning of data
area attribute points here.

Locator

Object Header

Locator

Control Information
Attributes Preceding

Data Area
(If Present)

Control Information
Attributes Following

Data Area
(If Present)

Locator

Data Entry

Data Entry

Data Entry

Figure 51. How an Object Containing a Data Area with Locators Appears after Space Saving

TPF Collection Support Database from a TPF System Perspective 209

v All other fields in the control information attributes or the locator fields are not
changed. These fields can include displacements that are relative to the object
as it appears in memory, not as it appears on DASD. An example of such a field
is an attribute containing the displacement in the data area where the unused
bytes begin. TPFCS does not reset these fields because they are needed when
the object is read and expanded in memory to its original size.

Note: The only objects that TPFCS condenses on DASD for space saving are
those indicated in “Compact Structures (StructureMem Class)” on page 173.
Objects filed in data records listed under “Extended Structures
(StructureDasd Class)” on page 181 are not condensed.

How an Object Can Overflow into Additional Records
As mentioned previously, not every collection part that TPFCS wants to file for a
given collection can fit in a single DATXPAGE envelope in the control record
because this envelope itself must fit in a 4-K record. When this occurs, the object
splits and overflows into one or more additional DATXPAGE envelopes, each of
which is filed in a separate 4-K record.

When an overflow condition occurs, TPFCS files another object (called an
xternalObject) in the very first 4-K record along with the beginning of the object. The
xternalObject serves as a pointer that contains the file addresses of all the 4-K
records that TPFCS needed to use to file a single object or set of related objects.
Once again, each portion of the object that is filed in each record is packaged in a
separate DATXPAGE envelope.

Note: Do not confuse a portion of an object with an ObjectPart (collection part). A
collection part or ObjectPart is itself an entire object, which can be divided
into several portions and filed in separate records. OBJECTA in Figure 52 on
page 211 is most likely a collection part object.

The following figure shows how an object is split into portions and packaged into
several DATXPAGE envelopes to be filed in more than one 4-K record:

210 TPF V4R1 Database Reference

Note: When an object such as OBJECTA does not fit in a single record, it can split
at any location. It could also have split in the middle of its object header.
Furthermore, the split could have occurred in the middle of the OIDentry
object rather than in OBJECTA. (These scenarios are not shown for the sake
of simplicity.)

Object Header for DATXPAGE

TPFCS Record Header

Object Header for DATXPAGE

TPFCS Record Header

First
Overflow

Prime Record 2 Shadow of Record 2

Portion 2 of OBJECTA Data Portion 2 of OBJECTA Data

DATXPAGE Trailer DATXPAGE Trailer

Object Header for DATXPAGE

TPFCS Record Header

Object Header for DATXPAGE

TPFCS Record Header

Object Header for OBJECTA Object Header for OBJECTA
Start of
OBJECTA

Prime Record 1 Shadow of Record 1

Portion 1 of OBJECTA Data Portion 1 of OBJECTA Data

DATXPAGE Trailer DATXPAGE Trailer

xternalObject

OIDentry Object

xternalObject

OIDentry Object

Object Header for DATXPAGE

TPFCS Record Header

Object Header for DATXPAGE

TPFCS Record Header

Second
Overflow

Prime Record 3 Shadow of Record 3

DATXPAGE Trailer DATXPAGE Trailer

Portion 3 of OBJECTA Data Portion 3 of OBJECTA Data

Figure 52. How OBJECTA Is Spread Across Three Records (with Shadowing)

TPF Collection Support Database from a TPF System Perspective 211

The previous example could also have contained more than a single object in place
of OBJECTA. For example, we could have been dealing with objects called
OBJECT1, OBJECT2, and OBJECT3. In this example, TPFCS would have
attempted to file all three objects in sequence, one immediately after the other
starting with OBJECT1, in a single DATXPAGE envelope and corresponding 4-K
record. As soon as the first DATXPAGE envelope and its corresponding record was
filled, TPFCS would continue with the current object and begin to fill another
envelope in another record until all of the objects have been accounted for. By the
time TPFCS filed all of the objects, it could have filed them in separate records, but
this does not imply that each object would be contained entirely in its own record.

Not every object will fit in a single 4-K record along with all of the other objects
TPFCS chooses to file there for the same collection. For example, for a
compact-resident collection, the structure object, which houses the data elements of
that collection, can overflow into additional records that are beyond the control
record. The following figure shows such an example, where the structure object for
a compact-resident array collection overflows into another 4-K record. When this
occurs, an xternalObject is included in the first DATXPAGE envelope and points to
the next and any subsequent records into which an overflow has occurred.

It is important to realize that TPFCS will handle both physical records as a single
logical control record when reading them into memory to service an application
request to access the collection. Because of this, all displacements in the OIDentry
table of contents are relative to the beginning of the OIDentry when all of the
objects of our previous example are read into one contiguous buffer with the
surrounding DATXPAGE envelopes removed as follows:

First Record (4 K) Second Record (4 K)

Object Header for DATXPAGE

TPFCS Record Header

xternalObject Pointing to
Any Subsequent Records

OIDentry Object
(Contains Table of Contents)

Array Object

First Portion of the Structure
Object for the Array

End of DATXPAGE Envelope =
DATXPAGE Trailer

Object Header for DATXPAGE

TPFCS Record Header

Continuation of Structure
Object for the Array

DDEF_OBJ Class Object

Unused Space

End of DATXPAGE Envelope =
DATXPAGE Trailer

Figure 53. Control Record for a Nonshadowed Array with Overflow

212 TPF V4R1 Database Reference

In addition, any other object attributes or fields containing pointers for the logical
control record refer only to the first physical 4-K record in which control record
information is written: that is, the record containing the xternalObject. For example,
the PID of the array whose control record is shown in Figure 53 on page 212 would
contain the file address of First Record. This same file address is stored in the
owner ID discussed below.

xternalObject
As discussed earlier, an xternalObject is placed in a file record when an object does
not fit in a single control record and has overflowed into one or more additional
records.

Note: In our discussion, we are still referring to the example described in Figure 52
on page 211.

The following are attributes or fields to look for in a filed xternalObject:

v XOBJ_OID, which is a field containing the persistent identifier (PID) of the
collection for which TPFCS uses that object. (In our example, XOBJ_OID would
contain the PID of the collection associated with OBJECTA.)

v XOBJcount, which is the count of overflow records, including the first. (In our
example, XOBJcount would contain three records.)

v One XOBJentry for each primary record. (In our example, there would be three
XOBJentry fields, which include an entry that points to both the primary and
shadow copies of record 1.) Each XOBJentry contains:

– A directory entry containing the file addresses of both the primary as well as
the shadow copy of the record if one exists. The format of directory entries
are also used elsewhere by TPFCS. Unless otherwise noted, their format
corresponds to the first directory entry format discussed in “Record Types” on
page 181.

– The record ID and record code check (RCC) of the record.

You can calculate the exact displacements to these attributes as well as their
lengths by reading the definition of the xternalObject instance in the TPFCS source
code.

Contiguous Buffer

Array Object

OIDentry Object
(Contains Table of Contents)

Complete Structure
for the Array

DDEF_OBJ Class Object

Figure 54. How TPFCS Handles the Control Record Contents

TPF Collection Support Database from a TPF System Perspective 213

Owner ID
The first pool record containing the primary control record is considered the owner
of all other collection parts that are chained together to form the internal collection
structure in the TPF database. This pool record is often referred to as the owning
control record, and its file address, as well as additional control information, is
stored in a field as either the owner identifier (ID) or owning ID in the TPFCS
source code. This ID is often stored in many of the other pool records that are
written to the TPF database as part of the TPFCS internal representation of a given
collection.

Determining Where Collections Are Stored on DASD
Using commands, you can display information about collections and determine
where different components of a collection reside on DASD.

Locating the Collection Control Record
The control record (like all of the other records TPFCS uses to represent a given
collection) is a pool record. As mentioned previously, the PID contains the file
address of the prime control record and, if the collection is shadowed, it contains
the file address of the shadow control record too. See the definitions for the
OIDnumber class hierarchy in the TPF source code to determine the location of the
file addresses in the PID.

Listing Collection Parts
Enter the ZBROW COLLECTION command with the PARTS parameter specified to
display a summary of the part objects that comprise a specified collection and
which are located in its logical control record. For example, you can analyze an
array collection as follows:
ZBROW COLLECTION PARTS ARRAYCOL
BROW0602I 14.21.50 BROWSER QUALIFIED FOR DSNAME TO2SVTDS
BROW0403I 14.21.50 COLLECTION PARTS DISPLAY
PART NAME

0 OIDentry
1 ARRAY
2 DASDFLATPool
3 DDEF_OBJ_DASD

END OF DISPLAY
BROW0410I 14.21.50 BROWSE OF COLLECTION COMPLETED

Similarly, a collection that consists of multiple structures such as represented in
Figure 31 on page 172 might be represented as follows:
ZBROW COLLECTION PARTS KEYEDLOGCOL
BROW0602I 14.41.26 BROWSER QUALIFIED FOR DSNAME TO2SVTDS
BROW0403I 14.41.26 COLLECTION PARTS DISPLAY
PART NAME

0 OIDentry
1 KeyedLog
2 DASDFLATPool
3 DDEF_OBJ_DASD
4 KeySet
5 MemKey
6 DDEF_OBJ_DASD

END OF DISPLAY
BROW0410I 14.41.26 BROWSE OF COLLECTION COMPLETED

214 TPF V4R1 Database Reference

Displaying Collection Part Contents
You can display the contents of these object parts, otherwise known as their
attribute values, by using the ZBROW COLLECTION command with the
ATTRIBUTES parameter specified for a given collection. This display lists the object
parts that are used to represent the specified collection and many of the attributes
of the parts, including attributes that those objects inherit from higher classes. 6 The
data and control information for the collection are stored differently for each class of
object and can require several screens to be fully displayed.

The collection attributes display, which results from the ZBROW COLLECTION
command with the ATTRIBUTES parameter specified, has the following format. The
header of this display includes the collection type (collection class name) for the
specified collection. Each collection part follows, with the name of the part
displayed. This is the same list of parts that would result from the ZBROW
COLLECTION command with the PARTS parameter specified. Remember that each
collection part is an object. In each part display, the class hierarchy for the object’s
class is shown, with the name of each class displayed, starting with the root class
(OBJECT). These are the same classes that would be displayed using the ZBROW
CLASS command with the TREE parameter specified. In each class display, there
is a list of the attributes for that class and a list of the attribute values for that
object.

Figure 55 shows the format for the collection attributes display. The figure shows
the layout for one part. An actual display could contain any number of collection
part objects, each of which inheriting from any number of higher object classes.

6. Not every attribute of an object is displayed by this command. Which attributes are displayed, as well as the order in which they
are displayed, does not correspond to the order in which they will be seen when displaying the record where that object has been
filed. The attributes displayed and their order is determined by the presence and order of the PRINTATTRIBUTE macros for the
definition of the class of the object in the TPFCS source code. Look at the order in which the instance attributes are defined in the
TPFCS source code to determine their order in a file record.

TPF Collection Support Database from a TPF System Perspective 215

In our example, collection_name �1� is the name assigned to the collection.
collection_type �2� is one of the collection types supported by TPFCS, such as
ARRAY. Object part PartA �3� is the first part that is shown. The class hierarchy for
this object begins with OBJECT �4� , which is the root class, and continues an
inheritance hierarchy of ObjectA1, ObjectA2, and so on until the leaf class, PartA
�5� itself, is reached. Notice that as discussed previously, every collection part
object eventually inherits from the OBJECT class. The attributes of the OBJECT
class consist solely of the TPFCS object header.

The attributes for each of these object classes are included in the display although
they are not shown in this figure. After the PartA display, the beginning of the PartB
�6� display is shown. Remember that PartB and PartA are not related in terms of
inheritance, but are aggregate parts of collection_name. This display would continue
in a similar way until all parts that comprise collection_name are included in the
display.

Note: Data, key, and directory records are not part objects and are therefore not
displayed by using the ZBROW COLLECTION command.

The following is an example of an actual display and is labeled with the same
numbers as described in the previous example.

ZBROW COLLECTION ATTRIBUTE collection_name �1�
BROW0406I 15.03.08 COLLECTION ATTRIBUTES DISPLAY
ATTRIBUTE VALUE
COLLECTION CLASS NAME - collection_type �2�

PART NAME ********** PartA �3�
CLASS NAME ** OBJECT �4�
OBJECT_ID PartA ID
OBJECT_LGH PartA length
OBJECT_SEQ_CTR PartA sequence counter
CLASS NAME ** ObjectPart...

(collection_name attributes inherited from class ObjectPart)...
CLASS NAME ** ObjectA1...

(collection_name attributes inherited from class ObjectA1)...
CLASS NAME ** ObjectA2...

(collection_name attributes inherited from class ObjectA2)......
CLASS NAME ** PartA �5�...

(collection_name attributes inherited from parent class)
PART NAME ********** PartB �6�...

END OF DISPLAY
BROW0410I 15.04.12 BROWSE OF COLLECTION COMPLETED

Figure 55. Collection Attributes Display Format

216 TPF V4R1 Database Reference

Not every attribute for these objects has been listed. You can determine what exact
attributes each of these objects has, as well as the displacement and length of each
attribute, by scanning the TPFCS source code for the CLASSC macro definition of
each object.

See TPF Operations for more information and additional examples.

Determining Collection Residency
You can determine whether a collection is compact resident or extended resident by
entering the ZBROW DISPLAY command with the COLLECTION parameter
specified and examining the RESIDENCY TYPE field.

ZBROW COLLECTION ATTRIBUTES ARRAYCOL �1�
BROW0602I 09.43.28 BROWSER QUALIFIED FOR DSNAME TO2SVTDS
BROW0406I 09.43.29 COLLECTION ATTRIBUTES DISPLAY
ATTRIBUTE VALUE
COLLECTION CLASS NAME - ARRAY �2�

PART NAME ********** OIDentry �3�
CLASS NAME ** OBJECT �4�
OBJECT_ID 00000034
OBJECT_LGH 0000028A
OBJECT_SEQ_CTR 000000C8
CLASS NAME ** ObjectPart
OBJ_Part_CHANGE 00
OBJ_Part_RESERVE2 000000
OBJ_Part_PartID 00000000
OBJ_Part_OIE 00611748
CLASS NAME ** OIDentry �5�
OIDentry_OID 0200FC16 B06BF4DD E3D6F2E2 E5E3C4E2
**** 1800C28B 00000000 00000000 00000000...

PART NAME ********** ARRAY �6�
CLASS NAME ** OBJECT
OBJECT_ID 0000000C
OBJECT_LGH 00000068
OBJECT_SEQ_CTR 00000000
CLASS NAME ** ObjectPart
OBJ_Part_CHANGE 00
OBJ_Part_RESERVE2 000000
OBJ_Part_PartID 00FE0001
OBJ_Part_OIE 006071F8
CLASS NAME ** Collect
Collect_I_Struct_PartID 00FE0002
Collect_I_Struct_PTR 0060DBA8
Collect_I_Cursor 00000000
Collect_I_DDEF_PartID 00FE0003
Collect_I_DDEF_PTR 00603BE0
CLASS NAME ** ARRAY
ARRAY_I_NEXTINDEX 201
ARRAY_I_MAXINDEX -1...

PART NAME ********** DASDFLATPool...
PART NAME ********** ObjectAccess...
PART NAME ********** DDEF_OBJ_DASD...

DDEF_FORCE 00
END OF DISPLAY
BROW0410I 09.48.54 BROWSE OF COLLECTION COMPLETED

Figure 56. Actual Collection Attributes Display

TPF Collection Support Database from a TPF System Perspective 217

You can also determine the collection residency by displaying the parts of the
collection. By examining the structure collection part for a collection, you can
determine whether a collection is compact or extended as described in “Locating
the Structure Object”.

Locating the Structure Object
One of the collection parts in a collection attributes display is the structure object
used to represent the collection. (For extended-resident collections, there are also
other objects that are located in pool file records chained to the structure object.)
You can locate the file address of the structure object by using the ZBROW
COLLECTION command with the ATTRIBUTES parameter specified to display the
structure object attributes. You can find the file address of the pool record
containing the structure object, otherwise known as the structure record, as follows:

v If the residency of the collection is compact, you will find the file address as part
of the value indicated for the Structure_I_ID attribute.

v If the residency of the collection is extended, you will find the address as part of
the directory entry, which is displayed for the StructDasd_I_Directory attribute.

As part of the response you receive from the ZBROW COLLECTION command with
the ATTRIBUTES parameter specified, you will find either a CLASS NAME of
StructureMem if the collection has a compact structure or a CLASS NAME of
StructureDasd if the collection has an extended structure. As mentioned previously,
all compact structures currently inherit from the StructureMem object class, whereas
all extended structures currently inherit from the StructureDasd object class.

Locating the Data
The way that TPFCS stores the data for a collection on DASD depends on the
structure object. As mentioned previously, for compact-resident collections, the data
elements of the collection are stored in the structure object itself.7 For
extended-resident collections, the structure object is more complex and contains
pointers to tree structures in the TPF database. The records that comprise these
tree structures contain the data elements as well as control information for
extended-resident collections.

Determining More Information about Pool File Records Used by TPFCS
One way to analyze a pool file record you suspect is being used by TPFCS to store
a given collection in the TPF database is to do so manually using the ZDFIL
command. While this procedure would be the most thorough, it requires a detailed
knowledge of the information presented in this chapter, as well as a detailed
knowledge of how each of the objects stored in the record is defined in the TPFCS
source code. An easier approach is to use the ZBROW command with the FA
parameter specified. This will provide some of the basic information about how that
pool file record may 8 be used by TPFCS. If you need more detailed information,
then use the ZDFIL command.

For more information about how to use the ZBROW command with the FA
parameter, see TPF Operations.

7. The structure object itself might not fit in a TPF 4-K record and, therefore, overflow into one or more additional records as we have
discussed previously. If the structure object contains data, the data can be located in each of these records.

8. The record might not ever be used by TPFCS even if it contains data that looks valid.

218 TPF V4R1 Database Reference

Scope of Current Validation and Reconstruction Support
The validation and reconstruction of collections currently provided by TPFCS by
options on the ZBROW command can currently operate only on extended-resident
collections. An error message results if you enter the ZBROW command with either
the VALIDATE or RECONSTRUCT parameter specified for a compact-resident
collection.

The following describes the scope of validation that TPFCS currently provides on
extended-resident collections by using the ZBROW command:

v Validation currently does not perform automatic reconstruction or correction of
errors reported, and reconstruction does not perform any preliminary validation of
a collection.

v A subset and not all of the fields in the StructureDasd object are verified for
those collections when validation is performed.

v The allocated and released data, key, and directory chains are verified when
validation is performed.

v When validation is performed, an attempt is made to verify all directory entries,
including those embedded in the StructureDasd object.

v Other than validation of directory entries, validation does not verify the contents
of records on the data, key, and directory chains.

v Validation ends as soon as a major error occurs. As a result, a given validation
report resulting in a response to a ZBROW command with the VALIDATION
parameter might not indicate all of the errors present in a collection. It might be
necessary for you to enter a validation request, followed by a reconstruction
request or manual reconstruction, followed by another validation request.
Depending on the nature of the errors found, you might have to use the ZBROW
command several times, alternating between validation and reconstruction
requests.

The following describes the scope of reconstruction that TPFCS currently provides
on extended-resident collections by using the ZBROW command:

v Reconstruction does not perform any preliminary validation of a collection.

v The ZBROW command can only be used to perform one of the following types of
reconstruction at any given time:

– Reconstruction of the allocated data chain using information from key records
located on the allocated key (index) chain (when present), and the directory
entries located in the structure object as well as those located in the records
on the allocated directory chain.

– Reconstruction of the allocated key chain (when present) using information
from the allocated data chain as well as the collection directory entries.

– Reconstruction of both the allocated directory chain and the allocated key
chain (when present) using information from the allocated data chain.

Note: TPFCS can automatically rebuild even those allocated chains it uses to
perform a given reconstruction operation before that operation has been
completed.

v Reconstruction of the data chain normally does not change the contents of data
records. Records are either placed on the new data chain or excluded from it.

For information about the ZBROW command, see TPF Operations.

TPF Collection Support Database from a TPF System Perspective 219

220 TPF V4R1 Database Reference

Part 4. Coupling Facility Support

This part contains information about coupling facility (CF) support.

© Copyright IBM Corp. 1994, 2002 221

222 TPF V4R1 Database Reference

Coupling Facility Support

Coupling facility (CF) support provides data sharing capabilities that allow
subsystems, system products, and applications running in a processor configuration
to use a CF for high-performance, high-availability data sharing. The CF is a
processor that attaches to other processors in a loosely coupled configuration to
perform special-purpose operations. CF support provides connectivity to a CF for
use by TPF system functions. CF support allows as many as 32 CFs and provides
two types of CF structures that are used to perform various operations:

v CF list structure, which is a named piece of storage on a CF that enables the
TPF system to share information organized as entries on a set of lists or queues.
See “Coupling Facility List Structure” on page 235 for more information about CF
list structures.

v CF cache structure, which is a named piece of storage on a CF that enables the
TPF system to share information and allows high-performance sharing of
frequently referenced data in logical entities. See “Coupling Facility Cache
Structure Concepts” on page 241 for more information about CF cache
structures.

You can add one or more CFs from a TPF processor to the processor configuration.
Applications can connect to CF list or cache structures on CFs that have been
added to the processor configuration and use connection services to manage data
in that CF structure. See “Connection Services” on page 224 for more information.
The first TPF system to connect to a CF structure allocates the structure in a CF
and defines the structure attributes. When a TPF system no longer requires access
to the CF structure, the TPF system can disconnect from that structure. See
“Connecting to a Coupling Facility Structure” on page 230 and “Disconnecting from
a Coupling Facility Structure” on page 234 for more information about connecting to
and disconnecting from CF structures.

Other TPF systems can connect to the existing CF structure (either list or cache) by
name, but cannot change the structure attributes of that CF structure as long as it
remains allocated. See “Defining Structure Attributes for Coupling Facility
Structures” on page 226 for more information about defining structure attributes.

An application that connects to a CF list structure can monitor individual lists to
determine when list entries have been created on the list. When a list changes from
empty state to nonempty state (that is, when a list entry is added to a previously
empty list), an application-defined exit is called. This eliminates the need for
application polling of lists and simplifies programming requirements.

An application that connects to a CF cache structure can automatically notify
affected TPF systems when shared data in the cache is changed. The application
can also determine whether the local copy of shared data is valid by checking
system-maintained validity indicators.

Data Sharing Concepts and Terminology
Data sharing in a processor configuration refers to the ability of concurrent
subsystems or applications to directly access and change the same data while
maintaining data integrity and consistency throughout the processor configuration.

Throughout this chapter you will find the following terms used:

Term Definition

© Copyright IBM Corp. 1994, 2002 223

Data Any type of information; not only data contained in a database.

Application Any subsystem, system product, or authorized application running
on a TPF system in a multisystem environment or processor
configuration. Typically, multiple instances of the application,
distributed across the processor configuration, work together to
perform a set of functions. For example, a database product could
be installed on several systems in the processor configuration. On
each system, an instance of the application accesses and manages
the data that it shares with the other instances of the application.

Figure 57 shows a diagram of a CF with connected TPF systems.

Connection Services
CF support provides services known as connection services, which allow authorized
programs and subsystems to use the CF to share data in a processor configuration.
The sections that follow discuss the connection services that manage connections
to CF structures and include the following information:

v Connecting to a CF structure and causing allocation of the structure in a CF. To
access connection services, you must first connect to a CF structure, specifying
both a CF name and a structure type. The CFCONC macro allows you to
connect to a CF structure. See “Connecting to a Coupling Facility Structure” on
page 230 for more information.

Note: You will need to connect again after TPF restart is completed.

v Disconnecting from a CF structure and causing deallocation of the structure in a
CF. When you no longer need access to a CF structure, you can disconnect from
that structure. The CFDISC macro allows you to do this disconnection. To access
the CF structure at some later time, you must again connect to the structure
using the CFCONC macro. See “Disconnecting from a Coupling Facility
Structure” on page 234 for more information.

Other structure-specific information is made known to connectors through exit
routines and, if applicable, you specify when you connect to a CF structure. The
complete exit notifies you when a request that you submitted previously has

Connection C Connection X

Coupling Facility

Connection P Connection A

Processor 1 Processor 2

Application 1 Application 1

Application 2 Application 2

CF List
Structure

CF Cache
Structure

Figure 57. Multiple Systems Sharing Data through a CF

224 TPF V4R1 Database Reference

completed. The list transition user notifies you when a list has changed from an
empty state to a nonempty state. See “Defining Exit Routines” on page 251 for
more information.

See the OS/390 MVS Sysplex Services Guide for more information about
connection services.

Coupling Facility Commands
The commands are used to display entries in the coupling facility trace table (CFTT)
and manage the CFs in a processor configuration. The following lists the CF
commands and their functions:

Function Description

ZCFCH Manages CF cache structures.

ZDCFT Displays entries in the CFTT. See “Coupling Facility
Trace Table” on page 248 for more information.

ZMCFT ADD Adds a CF to a processor configuration.

ZMCFT CLEAR Removes from a CF the CF structures that are not
known to this processor configuration.

ZMCFT DELETE Removes a CF from a processor configuration.

ZMCFT DISPLAY Displays the status of one or more CFs in the
complex.

ZMCFT ENABLE Resumes normal operations of a CF that was active
previously, but became inactive when an error
occurred.

ZMCFT REMOVE Removes all inactive connections a processor has
to a CF structure.

ZMCFT RESETLOCK Resets a CF lock to an available state.

See TPF Operations for more information about these commands.

Using the Coupling Facility Commands
This section shows a scenario of how you might use the CF commands to manage
CFs in a processor configuration by providing examples that span a series of
commands.

Example 1: In the following example, two CFs are added to a processor
configuration. First, a CF named CFONE, which is attached to symbolic device
address (SDA) 1001, is added. Then, a CF named CFTWO, which is attached to
SDA 510, is added.

A third CF named CFTHREE is enabled (normal operations are resumed on a CF
that had been disabled) after a previous error interrupted it and the error has since
been corrected. A TPF system tries to enable a fourth CF named CFFOUR after a
previous error interrupted it and the error has not been corrected.

Coupling Facility Support 225

User: ZMCFT ADD CFONE 1001
System: MCFT0001I 07.59.28 CFMADD - COUPLING FACILITY CFONE ADDED - 2

PATHS EXIST

User: ZMCFT ADD CFTWO 510
System: MCFT0001I 07.55.28 CFMADD - COUPLING FACILITY CFTWO ADDED - 2

PATHS EXIST

User: ZMCFT ENABLE CFTHREE
System: MCFT0008I 07.52.15 CFMENA - COUPLING FACILITY CFTHREE ENABLED

User: ZMCFT ENABLE CFFOUR
System: MCFT0007E 07.50.15 CFMENA - COUPLING FACILITY CFFOUR COULD NOT

BE ENABLED

Example 2: In the following example, the fourth CF named CFFOUR is deleted
from a processor configuration. By mistake, an attempt is made to delete the first
CF named CFONE after a function started running on it.

User: ZMCFT DELETE CFFOUR
System: MCFT0002I 07.59.28 CFMDEL - COUPLING FACILITY CFFOUR DELETED

User: ZMCFT DELETE CFONE
System: MCFT0011T 07:57.24 CFMDEL - COUPLING FACILITY CFONE NOT DELETED - THERE

ARE STILL STRUCTURES ALLOCATED

Example 3: In the following example, you tried to add the first CF named CFONE
to a processor configuration again. You also tried to add a fifth CF named CFFIVE
to a processor configuration, but the SDA you specified is already being used by
another CF.

User: ZMCFT ADD CFONE 500
System: MCFT0006T 07.59.20 CFMADD - COUPLING FACILITY CFONE HAS ALREADY BEEN

ADDED

User: ZMCFT ADD CFFIVE 510
System: MCFT0020T 07.59.25 CFMADD - COUPLING FACILITY ATTACHED TO SDA 510 HAS

ALREADY BEEN ADDED WITH NAME CFTWO

Coupling Facility Structure Concepts
Whether a CF structure is defined as a CF list structure or a CF cache structure,
certain characteristics are common to both types. The topics that follow provide
basic information about both types of CF structures.

Defining Structure Attributes for Coupling Facility Structures
When using the CFCONC macro to connect to a CF structure, specify structure
attributes that describe the CF structure you need. Whether the TPF system uses
the structure attributes you specify depends not only on your CFCONC parameters,
but also on resource availability in the CF and whether you are the first to issue the
CFCONC macro for the CF structure, therefore causing its allocation.

The CF structure to which you receive connectivity may or may not meet all your
requirements. The TPF system returns the actual structure attributes to you in the
CFCONC answer area, which is mapped by the ICFAA data macro. It is your
responsibility to verify that the structure attributes, as indicated in the CFCONC
answer area, are acceptable. If you decide not to accept one or more of the
structure attributes, you can disconnect from the CF structure.

226 TPF V4R1 Database Reference

See “Specifying Structure Attributes for Coupling Facility Structures” on page 231 for
a description of the structure attributes that are required on the CFCONC macro.

Identifying Connection States
A connection to a CF structure can be in one of two states:

v Undefined state, where the connection does not exist

v Active state, where the connection is active.

Understanding Structure Persistence
The structure attribute of persistence applies to CF list structures and CF cache
structures. The persistence attribute of a CF structure is affected by how you define
your structure disposition.

The structure disposition (the STRDISP parameter on the CFCONC macro)
determines whether the CF structure remains allocated when there are no active
connections to either CF structure. A structure disposition of KEEP indicates that
when there are no active connections to the CF structure, that structure remains
allocated. For example, if data in the CF structure needs to be kept permanently in
the CF, specify a structure disposition of KEEP by coding STRDISP=KEEP on the
CFCONC macro. A CF structure that remains allocated when there are no active
connections is called a persistent structure.

A structure disposition of DELETE (by coding STRDISP=DELETE) indicates that
when there are no active connections to the CF structure, that structure is
deallocated. However, if there any active connections to the CF structure, that
structure remains allocated.

See “Specifying Structure Attributes for Coupling Facility Structures” on page 231 for
more information about the STRDISP parameter. See TPF System Macros for more
information about the CFCONC macro.

Allocating a Coupling Facility Structure
The allocation of a CF structure depends on the following factors:

v Application requirements

v Availability of CF storage.

The request of the application for CF structure allocation, combined with the storage
usage requirements of the control code, ultimately determines if, where, and how
large a CF structure is allocated.

TPF System Considerations
When the CF structure is allocated successfully, the TPF system sets a return code
of zero and the ICFCAACONNALLOC bit in the CFCONC answer area is set to
indicate that the connection caused the CF structure to be allocated. However, you
still must verify that the structure attributes finally assigned to the CF structure are
acceptable.

The CFCONC answer area for a CF structure contains:

v The vector length that the TPF system obtained (the ICFCAAVECLEN field). This
length may be less than what you requested on the CFCONC macro.

v Control information for the CF structure, such as the maximum number of data
elements for each list entry (the ICFCAALISTMAXELEMNUM field).

Coupling Facility Support 227

Coupling Facility Structure Size
The requested size of the CF structure is specified on the CFCONC macro using
the STRSIZE parameter. The actual size of the CF structure allocated is returned in
the ICFCAASTRSIZE field of the CFCONC answer area. See the S/390 Processor
Resource/Systems Manager Planning Guide for more information about calculating
the size of the CF structure. See “Specifying Structure Attributes for Coupling
Facility Structures” on page 231 for more information about the STRSIZE
parameter. See TPF System Macros for more information about the CFCONC
macro.

The CF ensures that the size of a CF structure is a multiple of the CF storage
increment. See “Coupling Facility Storage Increment” on page 229 for more
information. If not, the CF rounds up the size value to be a multiple of the
increment. Ultimately, the actual size of the CF structure allocated is based on
storage allocation priorities that comply with the CF control code and on storage
constraints in the CF itself. See “Coupling Facility Considerations” for more
information about these CF allocation considerations.

Coupling Facility Considerations
CF structure size includes both control areas required by the CF control code and
data areas used by the application. The size is also affected by CF allocation rules
and the CF allocation increment size, which is a function of the CF level.

You must take all these factors into consideration when determining how to
configure your CF.

Coupling Facility Storage
There are two types of storage in a CF:

v Control storage

v Noncontrol storage.

The CF control code uses each type of storage for a specific purpose. Essentially,
the CF control code usescontrol storage either for its control information or for data,
and the noncontrol storage only for data. Depending on the particular processor on
which the CF is defined, the storage can be all control storage or a combination of
control and noncontrol storage. You control the amount of storage assigned to
control and noncontrol storage when you configure the amount of central and
expanded storage in the CF. The amount of central storage equates to the amount
of control storage; the amount of expanded storage equates to the amount of
noncontrol storage. In processors that do not support the concept of central and
expanded storage, all CF storage is considered to be control storage.

The division of control storage and noncontrol storage becomes a consideration
when the CF control code allocates specific amounts of storage to a CF structure.
The division between the two storage types must be considered to ensure that the
CF storage is distributed most effectively for use by the application.

Coupling Facility Resource Allocation Rules
A CF structure is allocated at a certain size based on characteristics of the CF
itself, such as storage constraints and the storage increment.

Coupling Facility Storage Constraints
The CF control code locates parts of a CF structure in either control storage or
noncontrol storage depending on whether the part is control information or data.

228 TPF V4R1 Database Reference

Control information must reside in control storage and cannot reside in noncontrol
storage; data may reside in either control storage or noncontrol storage.

The amount of control storage available can affect the allocation of CF structures.
When there is no control storage available in the CF, control information, such as
list entry controls or directory entries, cannot be allocated (even though there may
be ample available noncontrol storage in the CF structure).

The following summarizes the actions taken when there is no more available control
storage in a CF structure:

v Entries, which are control information, cannot be allocated because they must
reside in control storage.

v If data elements are requested in the CF structure, they can continue to be
allocated because they can reside in noncontrol storage. This action causes the
actual entry-to-element ratio to be changed in favor of elements.

v The CF control code continues allocating data elements until one of the following
occurs:

– The total space for the CF structure is equal to the requested total structure
size.

– The number of elements allocated equals the number of elements that result
in an actual achieved entry-to-element ratio of 1 divided by the value specified
for the MAXELEMNUM parameter on the CFCONC macro.

Note: The value specified for the MAXELEMNUM parameter is specified by
the application when it connects to the CF structure and indicates the
maximum number of data elements for each list entry that are
supported for any list entry in the CF structure.

Even though the total requested CF structure size may not be reached when
the ratio of 1 divided by the MAXELEMNUM parameter value is reached,
additional data elements are not allocated.

Coupling Facility Storage Increment
CF storage is allocated in multiples of the CF model-dependent storage increment
size. For CF level 6, all CF structure allocations are rounded up to a multiple of 256
KB.

Successfully Completing Coupling Facility Structure Allocation
Each time you successfully issue the CFCONC macro for a CF structure, the TPF
system places a connect token in the CFCONC answer area. The connect token
identifies each connection to the CF structure and is unique for a connection in the
processor configuration. You can issue the CFCONC macro from any TPF system
in the processor configuration that is connected to the CF.

Figure 58 shows task 1 allocating a CF structure for the first time.

Coupling Facility Support 229

In Figure 59, task 2 connects to the same CF structure.

Each connector, whether it is the first connector or a subsequent connector to a CF
structure, must verify that the structure attributes are acceptable.

v For the first connector, even though the return code may be zero (0), the
CFCONC macro may not have satisfied all structure attributes requested. The
CONACONNALLOC flag is set to indicate that this connection allocated the CF
structure in the CF.

v Subsequent connectors to a CF structure that is allocated already must verify
that the structure attributes established by the first connector to the CF structure
or received in the CFCONC answer area are acceptable.

If you find that the structure attributes are not acceptable, you can disconnect from
the CF structure using the CFDISC macro. See “Disconnecting from a Coupling
Facility Structure” on page 234 for more information.

Connecting to a Coupling Facility Structure
You connect to a CF structure to use connection services to manage data in that
CF structure. See “Connection Services” on page 224 for more information about
connection services.

Overview of Connect Processing
You connect to a CF structure to manage structure data. The first TPF system to
connect to a CF structure causes the structure to be allocated in a CF using the
structure attributes specified on the CFCONC macro. Subsequent connectors to the
CF structure cannot change those initial structure attributes. The number of TPF
systems that are allowed to connect to a CF structure is a function of the CF model.

Once your CFCONC request is completed successfully:

v You can receive data in the CFCONC answer area, which is mapped by the
ICFCAA DSECT.

v You are connected to the CF structure you requested.

CF
Structure

Task 1
Allocates and
connects to the
CF structure
by name.

CFCONC

Coupling Facility

Figure 58. Allocating a CF Structure

CF
Structure

Task 1

Task 2
Connects to a
CF structure
by name.

CFCONC

CFCONC

Coupling Facility

Figure 59. Connecting to an Allocated CF Structure

230 TPF V4R1 Database Reference

v You can request structure services that are valid for a CF structure.

Specifying Structure Attributes for Coupling Facility Structures
The following CFCONC parameters define the structure attributes for the CF
structure. See the CFCONC macro in TPF System Macros for detailed information
about each parameter.

Parameters Common to Both Structure Types

Parameter Description

CFLEVEL Use this parameter to specify the level of the CF in
which the CF structure will be allocated. If you try to
connect with a CF level higher than that of the CF,
your CFCONC request fails with return code
ICFRRCBADCFLEVEL. The maximum CF level
value supported is returned in the CFCONC answer
area in the ICFCAATPFMAXCFLEV field. The CF
level in which the CF structure is actually allocated
is returned in the ICFCAACFLEVEL field.

The CF level can be specified only through the
CFCONC macro. To change to a different CF level,
you must disconnect and then connect to the CF
structure again with a different value.

See “Coupling Facility Considerations” on page 228
and “Disconnecting from a Coupling Facility
Structure” on page 234 for more information.

CFNAME Use this parameter to specify the CF name, which
is needed to allocate the CF structure.

CONDATA Use this parameter to provide 8 bytes of connect
data. The CF passes this data to your exit routines
when called and is for your use only. A possible use
for this parameter is as a pointer to a control block
that represents the connector.

CONNAME Use this parameter to identify your connection to
the CF structure.

STRNAME Use this parameter to name the CF structure to
which you want to connect. You must supply this
name to users of your application and then use the
TYPE parameter to indicate that the structure you
want allocated is a CF list structure or a CF cache
structure.

STRSIZE Use this parameter to specify the size of the CF
structure in 4-KB blocks.

STRDISP Use this parameter to specify the disposition of the
CF structure when all connections are released.

TYPE Use this parameter to identify the type of CF
structure in the CF to which you want to connect.
For a CF list structure, the type is LIST. For a CF
cache structure, the type is CACHE.

Parameters for CF List Structures

Coupling Facility Support 231

Parameter Description

ADJUNCT Use this parameter to specify whether the CF list
structure will contain adjunct data areas.

ELEMCHAR Use this parameter to specify the data element size
to be used.

ELEMENTRATIO Use this parameter to specify the element
component of the entry-to-element ratio.

ELEMINCRNUM Use this parameter to specify the data element size
to be used.

ENTRYRATIO Use this parameter to specify the list entry portion
of the entry-to-element ratio.

LISTCNTLTYPE Use this parameter to specify whether the amount
of CF storage that may reside on a given list
header is to be controlled by limiting the maximum
number of entries or the maximum number of data
elements.

LISTHEADERS Use this parameter to specify the number of lists to
be allocated in the CF list structure.

LISTTRANEXIT Use this parameter if you plan to use list monitoring
because the parameter specifies the address of
your list transition exit routine.

LOCKENTRIES Use this parameter to specify the number of lock
entries for a serialized CF list structure.

MAXELEMNUM Use this parameter to specify the maximum number
of data elements for each data entry.

REFOPTION Use this parameter to specify whether list entries
are to be referenced by entry name, entry key, or
neither. List entries can always be referenced by
the list entry identifier (LEID) or unkeyed position.

VECTORLEN Use this parameter if you plan to use list monitoring
because the parameter specifies the maximum
number of list headers that you can monitor for
transitions between empty state and nonempty
state.

Parameter for CF Cache Structures

Parameter Description

VECTORLEN Use this parameter to specify the number of cache
buffers in the local storage of the requester that
require concurrent registration.

Determining Whether a Connection Is Successful
When you issue the CFCONC macro, you identify the storage area (using the
ANSAREA parameter) where the TPF system returns information about the success
or failure of your connect request. Note the following about the return codes shown
in Table 18 on page 233 and Table 19 on page 233:

v All five return codes are returned in the high-order 2 bytes of register 15 (R15).

232 TPF V4R1 Database Reference

v If the return code is not zero, the low-order 2 bytes of R15 contain reason codes.
See TPF System Macros for an explanation of these reason codes.

If your request to connect to a CF structure is successful, one of the following
return codes, as shown in Table 18, is returned.

Table 18. Return Codes for a Successful Connection to a CF Structure

Return Code Equate Symbol Description

0000 ICFRRCOK Your connection is successful. The TPF
system has returned data to you in the
CFCONC answer area.

0004 ICFRRCWARNING Your connection is successful, but you may
need to do additional processing based on
the information returned to you in the
CFCONC answer area.

If your request to connect to a CF structure is not successful, one of the following
return codes, as shown in Table 19, is returned in R15.

Table 19. Return Codes for an Unsuccessful Connection to a CF Structure

Return Code Equate Symbol Description

0008 ICFRRCPARMERROR You have incorrectly specified a parameter
on your CFCONC request.

000C ICFRRCENVERROR There is an environmental error.

0010 ICFRRCCOMPONENT A system failure occurred.

See “Receiving Information in the CFCONC Answer Area” for more information.

Receiving Information in the CFCONC Answer Area
When you issue the CFCONC macro, you identify the storage area where the TPF
system will return information about the status of your request. Use the following
parameters to specify this CFCONC answer area:

Parameter Description

ANSAREA Contains the address of the CFCONC answer area. Use the
ICFCAA DSECT to map the CFCONC answer area.

ANSLEN Contains the length of the CFCONC answer area. The length must
be large enough to hold the CFCONC answer area mapped by the
ICFCAA DSECT.

Successfully Completing a Connection
The CFCONC macro returns information about a successful connection in the
ANSAREA area. See the ICFCAA DSECT for information about the successful
completion of a connection.

Handling Failed Attempts to Connect to a Coupling Facility Structure
When a connection request is not successful, you must consider the conditions that
could have caused the rejection. In a short-term condition, consider issuing the
connect request again as soon as possible.

Coupling Facility Support 233

Another type of condition may require your intervention and, therefore, take a
significantly greater amount of time to resolve. It may be necessary to reconfigure
connectivity to a CF. The following are examples of longer-term conditions that
cause a connect request to fail:

v All connections to a specific CF structure are in use.

v The requesting TPF system does not have connectivity to the CF that contains
the specified CF structure.

v The CF function is not active; for example, CF restart did not end successfully or
the TPF system has not allocated the fixed file records.

Disconnecting from a Coupling Facility Structure
A connected TPF system can disconnect from a CF structure when you no longer
require access to that structure. Once disconnected, the TPF system cannot access
the CF structure through any connection services.

TPF systems disconnect from a CF structure either for normal processing or
because of a failure. The connect token is invalidated for the disconnecting TPF
system.

Disconnection Parameters for the Coupling Facility Structure
The CFDISC macro allows you to disconnect from a CF structure when you no
longer require access to it. You can disconnect from only one CF structure at a
time. If you want to disconnect from multiple CF structures, issue the CFDISC
macro once for each CF structure.

The CFDISC macro requires you to provide the connect token on the CONTOKEN
parameter that was returned by the connection services when the initial connection
to the CF structure was made with the CFCONC macro.

See TPF System Macros for more information about the CFDISC macro.

Persistence Considerations
Structure persistence is defined at connect time using the STRDISP parameter of
the CFCONC macro. Coding STRDISP=KEEP and STRDISP=DELETE indicates
whether a CF structure will become undefined after all TPF systems have
disconnected from it. See “Specifying Structure Attributes for Coupling Facility
Structures” on page 231 for more information about the STRDISP parameter. See
TPF System Macros for more information about the CFCONC macro.

The TPF system releases the connection to the CF structure when a normal
disconnect occurs. You can also disconnect from the CF structure in an error
recovery condition.

Handling Resources for a Disconnection
After all active TPF systems have disconnected from the CF structure, connection
services either deletes or retains the CF structure depending on the structure
disposition you specified for the STRDISP parameter of the CFCONC macro. See
“Defining Structure Attributes for Coupling Facility Structures” on page 226 for more
information.

Whether the disconnect is normal or the result of an error, the TPF system cleans
up resources for a CF structure. For example, the list monitoring interest, if
registered, is released.

234 TPF V4R1 Database Reference

Successfully Completing a Disconnection
The connect token for the TPF system is invalidated before returning control to the
TPF system that issued the CFDISC macro. This ensures that the TPF system
cannot issue additional connection services mainline requests. If the TPF system
does use the invalidated connect token to issue a request for connection services,
the request fails.

Coupling Facility List Structure Concepts
The topics that follow topics provide basic information about the CF list structure.

See “Allocating a Coupling Facility Structure” on page 227 for more information
about how the TPF system handles a request for CF list structure allocation.
Understanding this concept will help you provide assistance to anyone using CF
support.

Coupling Facility List Structure
Rather than accessing data in a CF by address, you can allocate objects called
structures and access data in the structures as logical entities (for example, by
name). The ability to access data this way frees you from having to be concerned
with the physical location or address of the data. One type of object that CF support
provides is a CF list structure. Each CF list structure must reside entirely in a single
CF and applications can use multiple CF list structures.

The CF can support multiple occurrences of the CF list structure at the same time.
However, a CF list structure found in one CF cannot be seen by another CF. A CF
list structure consists of a number of lists, each with a number of list items.

The characteristics and services associated with a CF list structure support certain
types of uses and offer certain unique functions. A CF list structure is a named
piece of storage on a CF that enables TPF systems to share information organized
as entries on a set of lists or queues. Connections could use a CF list structure, for
example, to distribute work or maintain shared status information. By using a CF list
structure, you can monitor list transitions from an empty state to a nonempty state
without accessing the CF and checking the lists directly.

A CF list structure consists of a set of lists and an optional lock table of exclusive
locks that you can use to serialize the use of lists, list entries, or other resources in
the CF list structure. A list header points to a CF list, which can contain a number of
list entries. A list entry consists of list entry controls and can also include a data
entry, an adjunct area, or both. Data entries and adjunct areas are both optional.
However, data entries are optional for each list entry while adjunct areas exist for all
list entries or no list entries. A CF list structure that includes a lock table is called a
serialized list structure. Figure 60 on page 236 shows a serialized list structure.

Coupling Facility Support 235

The following are the parts of the CF list structure:

Part Description

List Header Anchors the list to the CF list structure and contains control
information that is associated with the list. The control information is
known as list controls. The first TPF system to connect to the CF
list structure designates the number of list headers it is to have and
allocates the CF list structure.

List Entry An entry on the list. Data in the CF list structure is stored in list
entries, each of which can consist of a data entry of up to 16 data
elements in a CF level 6 and an optional adjunct data area. A list
entry contains the following:

v List entry control, which contains control information associated
with the list entry.

v An optional data entry that holds user-defined data. Data entries
contain units of storage called data elements. For CF level 6,
data entries can contain 0 to 255 data elements and a data entry
can contain up to 64 KB (65 536 bytes) of data.

v An adjunct area that is used to hold up to 64 bytes of data. You
can use the adjunct area to maintain control information about
the contents of the data entry. If your data is always 64 bytes or
less, you can use the adjunct area to hold your data and omit the
use of data entries.

Each list entry can reside on only one list at a time. Unused list
entries do not reside on any list.

Lock Table An array of exclusive locks that you can use to serialize access to
CF list structure resources such as lists or list entries. The purpose
and scope of the exclusive locks are defined by the application.

Connection A

Connection B

Connection C

Processor 2

Processor 1

Serialized List Structure

List 0
Header

List 1
Header

List n
Header

List Entry
Controls

List Entry
Controls

List Entry
Controls

Lock
Table

0

1

2

3

4

m List Entry
Controls

Adjunct
Data

Adjunct
Data

Adjunct
Data

Adjunct
Data

Data
Entry

Data
Entry

Data
Entry

Figure 60. A Serialized List Structure

236 TPF V4R1 Database Reference

Lock table users create and maintain the association between a
lock table entry and its associated resource. The lock table can be
used:

v Together with list entry operations such as reading or writing list
entry data

v Independently of list entry operations.

See “Coupling Facility Locking Functions” on page 249 for more information about a
serialized list structure, the CF locking functions, and the lock table.

How Data Is Maintained in a Coupling Facility List Structure
Data in the CF list structure is stored in list entries, each of which can consist of a
data entry up to 255 data elements in a CF level 6 and an optional adjunct data
area. The number of data element sizes and the range in the number of elements
for each data entry provides a tremendous choice of data entry sizes. The
maximum data entry size is 64 KB, except in a CF list structure that has a data
element size of 256 bytes. Because the maximum number of data elements for
each data entry is 255, the maximum data entry size with 256-byte data elements is
65 280 bytes (255 × 256). All other combinations of data element size and data
entry size allow a maximum of 64 KB (65 536 bytes). Although a data entry consists
of a number of data elements, list operations handle the data entry as a single
entity; data elements cannot be read or written individually. The adjunct area can be
used to hold additional, user-defined information about the data entry.

Figure 61 shows a list that contains list entries with various numbers of data
elements; list entry controls are not shown in this figure. See the OS/390 MVS
Sysplex Services Guide for more information about how data is maintained in a CF
list structure.

Specifying Connection Parameters for the Coupling Facility List
Structure

This section provides general information about how to code the CFCONC macro
so you can connect to a CF list structure. See TPF System Macros for detailed
information about each parameter of the CFCONC macro.

List
Header

Data Entry
with Three

Data Elements

Data Entry
with Two

Data Elements

Data Entry
with Zero

Data Elements

Adjunct
Data Area

Adjunct
Data Area

Adjunct
Data Area

1 21 2 3

Figure 61. A List Containing Entries with Various Numbers of Data Elements

Coupling Facility Support 237

Data Element Size
To select the data element size for a CF list structure you must understand the
approximate sizes of the smallest and largest pieces of data you want stored in the
list entries. If the data can fit into adjunct areas, you can avoid using data entries
altogether. If you specify 0, the CF list structure is allocated without data elements.
The TPF system ignores the MAXELEMNUM parameter if you specify it with the
ELEMENTRATIO parameter set to 0.

The CF allows a maximum of 255 data elements for each data entry, but you can
use the MAXELEMNUM parameter to specify a smaller maximum number if you
want to additionally restrict the size of the largest data entries.

The value you specify for the MAXELEMNUM parameter must be greater than or
equal to the value specified for the ELEMENTRATIO parameter divided by the
value specified for the ENTRYRATIO parameter:

MAXELEMNUM >= (ELEMENTRATIO / ENTRYRATIO)

The data element size multiplied by the maximum number of data elements must
be enough to accommodate the largest piece of data that you need to manage as a
single entry.

Entry-to-Element Ratio
You cannot directly control the number of list entries or data elements the CF list
structure holds. When the CF list structure is allocated, its storage is subdivided to
reserve space for CF list structure components like data elements and list entry
controls. The value you specify for the entry-to-element ratio is used by the TPF
system to determine the proportion of the CF list structure storage to allocate to
each component. The ratio, expressed as a pair of whole numbers like 1:4, is
passed to the CFCONC macro using the ENTRYRATIO and ELEMENTRATIO
parameters:

v The ENTRYRATIO parameter specifies the part of the ratio for the list entries; for
example, the 1 in the 1:4 ratio.

v The ELEMENTRATIO parameter specifies the part of the ratio for the data
elements; for example, the 4 in the 1:4 ratio.

In general, the entry-to-element ratio should reflect the average number of data
elements for each list entry. For example, if your data element size is 4096 bytes
and you estimate that about half of the list entries will require 1 data element and
about half of the list entries will require 8 data elements, you want a ratio of 1:4.5,
which you would express in whole numbers as 2:9.

Although you request a particular entry-to-element ratio through the CFCONC
macro, the CF may use a slightly different ratio. The actual number of entries and
elements in the CF list structure, rather than the ratio, is returned to you in the
CFCONC answer area, which is mapped by the ICFCAA DSECT.

Note: The values in the CFCONC answer area are not exact values.

Limiting the Storage Used by Each List
The LISTCNTLTYPE parameter allows you to choose how storage use is managed
for individual lists. You can limit either the number of list entries for each list or the
number of data elements for each list. A limit on storage use for each list may be
needed to prevent the excessive use of storage by certain lists.

The flexibility offered by the choice of limits allows you to select the type of limit that
best suits your use of the CF list structure. For example, if your main concern is to

238 TPF V4R1 Database Reference

limit the number of entries that may build up on a list, limit the number of list entries
for each list. If your main concern is to prevent the entries on a given list from
consuming too much of the storage in a CF list structure, limit the number of data
elements on a list.

Adjunct Areas
The adjunct area can contain 64 bytes of user-defined data such as information
about the status of the data entry or time stamp. The adjunct area is maintained
separately from the data entry so you can change the contents of the data entry or
the adjunct area independently.

Named or Keyed List Entries
Named entries let users reference list entries by a user-defined name. Keyed
entries let users maintain list entries in a keyed order. The choice of named or
keyed entries, or the use of neither, depends on how you are using the CF list
structure. For example, if the list entries represent units of work ordered by priority,
you may choose keyed entries. If the list entries represent customer records in a
particular category, you may choose named entries. If the lists represent units of
work to be processed on a first-in-first-out (FIFO) basis, there may be no need for
names or keys. Use the REFOPTION parameter on the CFCONC macro to specify
how to reference the list entries in the CF list structure.

List Transition Exit
CF support provides the list transition exit routine, which plays a critical role in the
operation of the CF list structure. TPF systems provide the address of the exit
routine when they issue the CFCONC macro to connect to the CF list structure.
See “Defining Exit Routines” on page 251 for more information.

Checking or Modifying a List Notification Vector
The CFVCTC macro allows you to perform the following functions on a list
notification vector associated with a CF list structure:

v Test whether a list is empty or not empty

v Test a range of list notification vector entries to determine whether the associated
lists are empty or not empty

v Modify the number of entries in a list notification vector.

List Notification Vector
When you issue the CFVCTC macro, you identify the list notification vector using
the vector token returned in the CFCONC answer area (mapped by the
ICFCAAVECTOK field of the CFCONC macro) when you issued the CFCONC
macro to connect to the CF list structure. You receive a vector token from the
CFCONC macro only if you coded the VECTORLEN parameter.

Changing the Number of Entries in a List Notification Vector
Coding REQUEST=MODIFYVECTORSIZE on the CFVCTC macro allows you to
change the number of entries in the list notification vector so that you can monitor a
different number of lists in the CF list structure.

Reducing the size of the list notification vector when it is larger than necessary
frees storage for the list notification vectors of other users in the TPF system. Use
the VECTORLEN parameter to indicate the new number of entries you would like
the list notification vector to contain. If the value you specify is not a multiple of 32,
the TPF system rounds up the value to a multiple of 32.

Coupling Facility Support 239

The number of entries the TPF system actually assigns to the list notification vector
is returned to you as output through the ACTUALVECLEN parameter.

Decreasing the Number of Entries: If you request a decrease in the number of
entries in the list notification vector, your request will always be satisfied. When the
size of a list notification vector is decreased, the number of entries is reduced by
removing entries starting with the highest number. The remaining entries are
unchanged and retain their original values (empty state or nonempty state).

Before eliminating any entries, you must ensure that the entries that will be deleted
are not being used to monitor lists.

If multiple TPF systems could be accessing list notification vector entries at the
same time, you should obtain exclusive serialized access to the list notification
vector before decreasing its size. Otherwise, if you code
REQUEST=LTVECENTRIES or REQUEST=TESTLISTSTATE must be prepared to
handle the ICFRRCINVALIDINDEX return code, which indicates that the specified
vector index is no longer valid.

Increasing the Number of Entries: If you request an increase in the number of
entries in the list notification vector and the TPF system is unable to obtain enough
storage to satisfy your request, the new number of entries may be unchanged or
smaller than you requested. When this occurs, the number of entries returned
through the ACTUALVECLEN parameter will be smaller than the requested number
and you will receive the ICFRRCLESSTHAN return code to inform you of the result.

When the size of the list notification vector is increased, the number of entries is
increased by adding additional entries after the current highest-numbered entry.
Existing entries are unchanged and retain their original values (empty state or
nonempty state). New entries are initialized to the nonempty state.

Testing Whether a List Is Empty
Coding REQUEST=TESTLISTSTATE on the CFVCTC macro allows you to test the
entry representing a particular list to determine whether that list is empty. List
notification vector updates are performed asynchronously by the TPF system, so a
list notification vector entry may not show a particular list state change at the time
you check it. However, the CF architecture ensures that the change in the list
notification vector will be performed. The CF architecture also ensures that if the list
transitions from an empty state to a nonempty state and then back to an empty
state and so on multiple times, the final state reflected in the vector will match the
final state of the list. However, individual transitions may not be applied to the
vector if they are superseded by subsequent changes. For example, if the initial
state of the list notification vector entry indicates that the list is empty and then the
list transitions to a nonempty state and becomes empty again in a short period of
time, the TPF system does not ensure that the interim nonempty state will be
reflected in the vector. However, the TPF system ensures that the final state (an
empty state, in this example) is correct.

Testing Whether a Range of Lists Is Empty
Coding REQUEST=LTVECENTRIES on the CFVCTC macro allows you to test as
many as 32 consecutive list notification vector entries to determine whether their
associated lists are empty. The output from this request is a bit string with 1 bit for
each list notification vector entry, starting with the vector entry you specify as the
starting vector entry number and continuing until 32 bits are loaded. List notification
vector entries range from 0 to n−1, where n is the number of entries in the list
notification vector.

240 TPF V4R1 Database Reference

The bit values in the bit string are interpreted as follows:

Bit Value Interpretation

0 The bit value indicates that the corresponding monitored list is not
empty.

1 The bit value indicates that the corresponding monitored list is
empty.

Coupling Facility Cache Structure Concepts
A CF cache structure allows high-performance sharing of frequently referenced data
in logical entities and provides you with data consistency and high-speed access to
data. Data consistency means that you can develop protocols to ensure the data
that they share is valid. High-speed access means that you can develop data
sharing programs and protocols with improved performance. You can do the
following:

v Automatically notify TPF systems when the shared data is changed. The TPF
system keeps track of who is using a particular piece of data and notifies them
when an update to the data makes their locally cached version obsolete.

v Determine when your copy of shared data is valid by checking
system-maintained validity indicators for your locally cached copies of shared
data.

The TPF system supports directory-only CF cache structures. See “Elements of a
Cache System” on page 242 for more information about directory-only CF cache
structures. See “Benefits of Using Coupling Facility Cache Structures” on page 242
for more information about data consistency and high-speed access to shared data.

Terminology
The following lists terms that describe the basic concepts that are important to
understand the CF cache structure.

deregistration/deregistering interest
A way to indicate to you information about the validity of a piece of shared
data. If you have a registered interest in a piece of shared data, you can
have your interest deregistered if that piece of shared data has changed
and the local copy of the data is no longer valid. When a piece of shared
data is updated, the TPF system indicates to those interested, through the
associated local cache vector entry, that the piece of shared data has been
changed. The copy of the data in the local cache buffer is then considered
to be not valid. This process is also referred to as invalidation of local cache
copies of pieces of shared data.

directory-only cache
A CF cache structure that contains directory entries but not pieces of
shared data. See “Elements of a Coupling Facility Cache Structure” on
page 244 for more information about a directory-only cache.

invalidation
See deregistration/deregistering interest.

registration/registering interest
A way to indicate to you information about the validity of a piece of shared
data. If you use the CF cache structure, you can register interest in a piece
of shared data. When you register interest in a piece of shared data, an
association is formed between the local cache vector entry associated with

Coupling Facility Support 241

your local copy of the data and the directory entry for the data in the CF
cache structure. When interest has been registered, the TPF system uses
the local cache vector entry to indicate whether the data in your local cache
buffer is valid. If you have registered interest in a piece of shared data, the
copy of that data in your local cache buffer is considered to be valid.

valid data
The state of data in your local cache buffer. If your copy of a piece of
shared data is valid, the copy contains the latest changes. If a copy of the
data is not valid, it does not reflect the latest changes. See also
registration/registering interest.

validation
See registration/registering interest.

Benefits of Using Coupling Facility Cache Structures
This section discusses some benefits of using CF cache structures.

Data Consistency
You can use the CF cache structure to keep track of data that resides in the local
cache and in permanent storage. No matter how you store data that multiple TPF
systems share, each CF cache structure is expected to maintain a local cache
buffer to contain a copy of the data. By using a directory in the CF cache structure
and a mechanism called cross-invalidate to inform TPF systems of changes to data,
each TPF system in the complex can keep track of whether locally cached copies
of the data are valid; that is, whether the copies contain the latest changes.

The directory allows you to refer to named data items that you can store in local
storage. Cross-invalidate processing involves setting an indicator in a local cache
vector for each of the TPF systems to indicate whether the locally cached copy of
the data is valid. TPF systems must test the indicator to determine if their copy is
valid and, if the data is no longer valid, they must read the data from permanent
storage to obtain the most current copy.

High-Speed Access to Shared Data
You can use the CF cache structure to keep track of shared data that TPF systems
maintain in their local cache buffers. Accessing data stored in the local cache buffer
is the quickest way for a TPF system to access the shared data. However, if the
TPF system has invalidated the local copy because another system has updated
the data, the TPF system must gain access to the data from permanent storage.

See TPF Application Programming for more information about local cache buffers
and permanent storage.

Elements of a Cache System
A cache system contains the following elements:

v CF cache structure, which is a structure in the CF that contains a directory to
keep track of data that is shared among cache users. TPF systems that are
connected to the CF cache structure can manage shared data.

v Permanent storage, which is storage that is the final repository for the data that
TPF systems share and might be on DASD. TPF systems can read the data from
permanent storage to local cache buffers and use the directory-only caching
method to track the validity of the data. After TPF systems make updates to the
locally cached data, they are responsible for ensuring that the changes are made
to the permanent storage copy of the data. They make these changes to
permanent storage either immediately after the update or at a later time

242 TPF V4R1 Database Reference

depending on the cache protocol. See TPF Application Programming for more
information about permanent storage and the relationship to logical record
caches.

v Local cache buffers, which are buffers that TPF systems allocate in their own
storage area. They contain copies of data that is shared among cache users.
TPF systems read data from permanent storage to their local cache buffers and
write data from their local cache buffers to permanent storage. Each TPF
systems that accesses the CF cache structure must have a set of local cache
buffers to accommodate the data to be shared. See TPF Application
Programming for more information about local cache buffers and their
relationship to logical record caches.

v Local cache vector, which is a vector that provides a way for CF cache users to
determine if data in their local cache buffers is valid. There is one local cache
vector for each TPF system using the cache. Each vector is divided into separate
entries with each entry corresponding to a local cache buffer. Each vector entry
contains an indicator that the CF sets to indicate whether the data in the
corresponding local cache buffer is valid.

The TPF system supports processor unique caches and processor shared caches:

v Processor unique cache contains cache entries that are used by only one
processor in a loosely coupled complex.

v Processor shared cache contains cache entries that are kept synchronized
between all processors in a loosely coupled complex that are using the cache.

Figure 62 shows the elements and their relationship to each other for a processor
shared cache. Each piece of shared data can be stored in different locations in the
cache system. Copies of shared data are stored in the local cache buffers (fastest
access) belonging to each cache user. The shared data also resides on permanent
storage (slower access to the data than from the local cache). In general, how
quickly you access the data depends on where it is stored.

Coupling Facility Support 243

Figure 63 shows the elements and their relationship to each other for a processor
unique cache.

Elements of a Coupling Facility Cache Structure
The TPF system supports directory-only CF cache structures. Directory-only cache
users do not store data in the CF cache structure. Rather, directory-only users use
the CF cache structure to maintain the consistency of data in their local caches.

The directory is a directory for the CF cache structure where the TPF system keeps
control information about data shared among cache users. There is one directory
entry for each piece of data that is shared. Shared data is maintained in the local
cache buffer of each TPF system.

DASD
CF Cache
Structure

TPFA

Connection A

Connection B

Local Cache
Buffers

Local Cache
Buffers

Local Cache
Vector

Local Cache
Vector

TPFB

Figure 62. Elements of a Cache System for Processor Shared Cache

DASD

TPFA

Connection A

Local Cache
Buffers

Figure 63. Elements of a Cache System for Processor Unique Cache

244 TPF V4R1 Database Reference

If a directory entry exists in the cache for a piece of shared data (that is, the TPF
system has assigned a directory entry to the piece of shared data), the data is said
to be identified to the CF cache structure. When a piece of shared data is identified
to the CF cache structure, each TPF system receives notification through the local
cache vector about the validity of the data. As long as the piece of shared data is
identified by a directory entry, the CF can be notified that the data associated with
the directory entry has been changed and is, therefore, no longer valid. A CF cache
structure that contains directory entries but no pieces of shared data is referred to
as a directory-only cache.

Accessing the Data
A directory-only user needs to access permanent storage frequently.

v Reading a Piece of Shared Data: The TPF system checks the local cache vector
entry that corresponds to the piece of shared data to determine if the copy of the
data is valid. If the local cache buffer does not contain a valid copy, the TPF
system must read from permanent storage.

v Writing a Piece of Shared Data: The TPF system must write to permanent
storage and use cross-invalidation to invalidate the local copies of data of other
TPF systems.

Maintaining Data Consistency in a Cache System
Each time a connecting TPF system tries to read or write data, the interest of that
TPF system is registered in that piece of shared data. It also indicates, in a local
cache vector entry the TPF system specifies, that the copy of the piece of shared
data is valid. A valid copy of data is one that contains the latest updates to that
piece of shared data that other TPF systems might have made.

Registering interest allows the TPF system to remember that the local cache buffer
contains a valid copy of the piece of shared data. If that piece of shared data is
changed, the TPF system deregisters interest in that piece of shared data for the
others and indicates in their local cache vector entry that the copy is no longer
valid. Each connecting TPF system must ensure that the locally cached copy is
valid by testing the vector entry associated with that piece of shared data. Each
TPF system also needs to ensure that there is serialization of the data between the
time the TPF system tests the validity of the piece of shared data and the time
when the TPF system makes use of the data.

Registering Interest in a Piece of Shared Data and Validating Local
Copies

When interest is registered, the TPF system must specify an entry in the local
cache vector that has been assigned to that piece of shared data. The TPF system
uses the vector entry to indicate that the associated piece of shared data in the
local cache buffer is valid. Figure 64 on page 246 shows a piece of shared data X
in the local storage buffer of connecting user A. The piece of shared data is valid
because vector entry 2 (the vector entry that connection A assigned to the shared
piece of data X) indicates that the data is valid.

The TPF system keeps track of the validity of copies of the shared pieces of data,
and the vector entries for each TPF system in the directory entry for each data item
in the CF cache structure. In Figure 64 on page 246, the directory for the shared
piece of data Z shows that connecting users A and B have registered interest in Z;
that is, the connections have valid copies of the shared piece of data Z. If a third
connection updates Z in the CF cache structure, the TPF system uses the assigned

Coupling Facility Support 245

vector entries (entry 5 for connection A and entry 4 for connection B) to invalidate
the local copies belonging to connections A and B.

Deregistering Interest in a Shared Piece of Data and Invalidating Local
Copies

Figure 65 on page 247 shows what happens when connection A updates the shared
piece of data Z. The TPF system invalidates the copy of Z belonging to connection
B using local cache vector entry 4 (the vector entry that connection B assigned to
Z). Notice also that the CF cache structure directory shows that only connection A
has registered interest in Z; connection B has been deregistered.

TPFA

CF Cache Structure

TPFB

Connection A

Connection B

Local Cache
Buffer Directory

Local Cache
Buffer Directory

Local Cache Vector for Connection A

Local Cache Vector for Connection B

V=Valid

V=Valid

Vector Index

Vector Index

Vector Index

Vector Index

Data
X

Data
Z

Data
Z

2

4

5

0

0

1

1

2

2

V

3

3

4

4

5

V

V

Directory

X Connection A
Vector Index 2

Connection A
Vector Index 5

Connection B
Vector Index 4Z

Figure 64. Registered Interest in Shared Pieces of Data

246 TPF V4R1 Database Reference

Coupling Facility Tables
CF support uses the following tables:

v Coupling facility control table (CFCT)

v Coupling facility status table (CFST)

v Coupling facility trace table (CFTT)

v Message subchannel table (MSCT).

Coupling Facility Control Table
The CFCT is referenced by the CMMCFC CINFC tag and contains information
global to CF support such as pointers to other tables and locks for CF processors.

Coupling Facility Status Table
The CFST maintains the status of each CF that was added to a processor
configuration. The table contains multiple entries with each entry containing
information particular to a CF in the processor configuration. Section 1 of each entry
is maintained on file and is rebuilt following each initial program load (IPL).

TPFA

CF Cache Structure

TPFB

Connection A

Connection B

Local Cache
Buffer Directory

Local Cache
Buffer Directory

Local Cache Vector for Connection A

Local Cache Vector for Connection B

V=Valid
NV=Not Valid

V=Valid
NV=Not Valid

Vector Index

Vector Index

Vector Index

Vector Index

Data
X

Data
Z

Data
Z

2

4

5

0

0

1

1

2

2

V

3

3

4

4

5

V

NV

Directory

X Connection A
Vector Index 2

Connection A
Vector Index 5Z

Figure 65. Invalidating a Local Cache Copy of a Shared Piece of Data

Coupling Facility Support 247

Coupling Facility Trace Table
The CFTT contains trace data for use by IBM service representatives.

Message Subchannel Table
The MSCT contains information about message subchannels that are detected in
the TPF system.

Coupling Facility Blocks
CF support uses the following blocks:

v Coupling facility connection block (CFCB)

v Coupling facility structure block (CFSB)

v Coupling facility request block (CFRB)

v Coupling facility vector block (CFVB).

Coupling Facility Connection Block
The CFCB is a dynamic CF area whose contents are not maintained on file and
are deleted by TPF restart. In addition, your application must reconnect the CFCB
following each IPL.

There is one CFCB for each connection of a CF to the TPF system, and that CFCB
contains information about the connection. Each time a CF connects to a CF
structure, a new CFCB is obtained and added to the corresponding CFCB chains.

Coupling Facility Structure Block
The CFSB is a dynamic CF area maintained in both main storage and fixed file
records that contains information about a CF structure. There is one CFSB for each
CF structure in any CF of the processor configuration.

Each time a CF structure is created in a CF, a new CFSB is obtained and added to
the corresponding CFSB chain. The contents of the CFSB are maintained on file
and rebuilt following each IPL

Coupling Facility Request Block
The CFRB is a dynamic CF area that monitors the progress of a CF macro call.
Each time a CF macro is issued, a CFRB is obtained to monitor the progress of the
macro call. CFRBs are chained as a queue in storage. The contents of the CFRB
are not maintained on file.

Coupling Facility Vector Block
The CFVB is a dynamic CF area whose contents are not maintained on file. CF
support uses CFVBs to track completion of asynchronous CF requests, and to
maintain validity of data in local cache buffers.

Storage Dump Format
A CF-related storage dump includes the CFTT.

248 TPF V4R1 Database Reference

User-Modified Equates
You can modify the equates that start with ICFU in the ICFEQ segment and the
c$cfeq.h header file. Use your system configuration and your storage constraints to
determine if you want to update the default values before assembling and compiling
the CF components in your TPF system.

You can modify the following symbols:

Symbol Description

ICFUMSCTE The minimum number of MSCT entries that can be
allocated. This value is rounded up to fill an integral
number of 4-KB pages before allocating the MSCT.
This value must be nonzero. The default is 250.

ICFUCFTTE The minimum number of CFTT entries that can be
allocated. This value is rounded up to fill an integral
number of 4-KB pages before allocating the CFTT.
This value must be nonzero. The default is 1000.

ICFUMAXTIME The number of seconds that may elapse between
warnings when the CF lock cannot be obtained.

Coupling Facility Locking Functions
This section will help you to understand how to use the serialized list structure as
well as provide information about the CF locking functions and the format of the CF
lock.

Overview
As discussed previously in “Coupling Facility List Structure” on page 235, a
serialized list structure is a list structure that contains a lock table. The lock table is
an array of exclusive locks whose purpose and scope are defined by the
application. Lock table locks can provide a serialization mechanism for lists, list
entries, or any other list structure entity you designate. The first connector to a CF
list structure specifies whether it is to be a serialized list structure and, if so, the
number of lock entries to be allocated in the lock table. Figure 60 on page 236
shows a serialized list structure.

Coupling Facility Lock Format
The CF lock is used to serialize operations on the CF and is 16 bytes long.
Figure 66 shows the format of the CF lock.

0Bytes 1 2 3

Lock Holder Field

Bit Array of Processor Ordinal Numbers

Available State Indicator

154

Figure 66. Format of the CF Lock

Coupling Facility Support 249

In the CF lock:

v Bytes 0 to 2 are known as the available state indicator and can contain either the
characters ’TPF’ or X'000000'. For example, bytes 0 to 2 will contain ’TPF’ when
any bit in the bit array of processor ordinal numbers is nonzero. When resetting a
bit in the bit array results in all bits being zero, the available state indicator
changes from ’TPF’ to X'000000'.

The CF lock is considered corrupted when the available state indicator does not
contain the characters ’TPF’ and the CF lock is not set to all zeros.

v Byte 3 is known as the lock holder field. The lock holder field indicates one of the
following to the user:

– The CF lock is not being held by a processor and can be obtained for use.
When that occurs, the lock holder field is set to X'00'.

– The CF lock is currently being held by a processor. When this occurs, the lock
holder field is set to the processor ordinal number of the processor holding the
CF lock plus 1. For example, if processor B has a processor ordinal number
of 0, the lock holder field would be set to X'01' (0 + 1).

v Bytes 4 to 15 are a bit array of processor ordinal numbers. When you add a CF
to a processor configuration using the ZMCFT ADD command, the processor
ordinal number for that processor is set on in bytes 4 to 15 of the CF lock. The
processor ordinal number determines which bit gets turned on in the bit array.

The following scenarios illustrate how the content of the CF lock changes when
different CF operations are performed or various system states occur.

v When you add a CF to a processor configuration using the ZMCFT ADD
command, the CF is put in an available state. An available state is the state a CF
is in when all CF commands are processed normally. When a CF is put in
available state, the available state indicator contains the characters ’TPF’.
Figure 67 shows the format of the CF lock when a CF is in available state.

v When bytes 0 to 15 are set to all zeros, the CF is in a nonavailable state. A
nonavailable state is the state a CF is in when only certain CF commands are
processed normally; all other CF commands are suppressed. Figure 68 shows
the format of the CF lock when a CF is in a nonavailable state.

'TPF' X'01' B'00001'

0Bytes 1 2 3

Available State Indicator

154

Figure 67. Format of the CF Lock When a CF Is in Available State

X'00' X'00' B'00000'

0Bytes 1 2 3 154

Figure 68. Format of the CF Lock When a CF Is in a Nonavailable State

250 TPF V4R1 Database Reference

v When the lock holder field of the CF lock is set to X'00', no processor is currently
holding the CF lock and you can obtain it now. Figure 69 shows the format of the
CF lock when the lock holder field is set to X'00'.

When the lock holder field is not set to X'00', it is set toP+1, where P is the
processor ordinal number of the processor holding the CF lock. For example, if
processor C has a processor ordinal number of 1, the lock holder field would be
set to X'02' (1 + 1). Figure 70 shows the format of the CF lock when the lock
holder field is set to the processor ordinal number of processor C.

Defining Exit Routines
CF support provides the list transition exit routine, which plays a critical role in the
operation of the CF list structure. Users provide the address of the exit routine
when they issue the CFCONC macro to connect to the CF list structure.

The list transition exit routine informs users when lists they are monitoring change
from an empty state to a nonempty state. The affected lists are not identified; this
exit routine must issue the CFVCTC macro to determine which lists changed from
an empty state to a nonempty state.

Conditions at Entry
v IBM recommends that you place the list transition exit routine in the control

program (CP).

v Connection services passes information to the list transition exit routine in the list
transition exit parameter list (LEPL). The registers at entry to this exit routine are:

R1 Address of the LEPL.

R14 Address to which control is to be returned.

R15 Address of the entry point for the list transition exit routine.

In addition to these registers, standard CLNKC linkage must be followed.

'TPF' X'00' B'11000'

0Bytes 1 2 3

Lock Holder Field

154

Figure 69. Format of the CF Lock When the Lock Holder Field Is Set to Zero

'TPF' X'02' B'11000'

0Bytes 1 2 3

Lock Holder Field

154

Figure 70. Format of the CF Lock When the Lock Holder Field Is Set to the Processor
Ordinal Number for Processor C

Coupling Facility Support 251

System Conditions on Entry
System state Supervisor

Protect key 0

Address space System virtual memory (SVM)

Interrupt status Disabled for external and input/output (I/O)
interrupts.

Programming Considerations at Entry
1. Provide the address of the list transition exit routine using the LISTTRANEXIT

parameter when you issue the CFCONC macro to connect to the CF list
structure. The exit routine may receive control before control is returned to you
from the CFCONC macro. Therefore, ensure that you have the exit routine
established along with any control structures that are necessary for completing
the processing of the exit routine before issuing the CFCONC macro.

When the exit routine receives control, it receives information about the request
and the outcome in the LEPL. The LEPL is mapped by the ICFLEPL DSECT,
which is generated by the ICFPL macro with the LEPL=YES parameter coded.

2. If you use the list transition exit routine to monitor several lists, be aware that
the exit routine is given control whenever any list that you monitor in this way
changes from empty state to nonempty state. To determine which monitored list
changed its state, issue the CFVTC macro with either the
REQUEST=TESTLISTSTATE or REQUEST=LTVECENTRIES parameter coded
to check the vector entry for each monitored list.

3. The time interval involved when detecting and responding to a list transition exit
routine introduces several timing considerations, particularly if multiple
connections are monitoring the same list:

v If multiple connections are monitoring the same list, the first connection to
respond to the exit routine could empty the list before other connections test
the list notification vector or check the list. Depending on when the other
connection emptied the list, either of the following could occur:

– The exit routine could receive control, test the list notification vector, and
find no nonempty lists.

– The exit routine could receive control, test the list notification vector, find
that the list is in a nonempty state, and then try to read a list entry from
the list and find it empty.

v There is a possible delay between the time a list changes from empty state to
nonempty state and the time its list notification vector is updated. Changes to
the list notification vector are made in the order in which the corresponding
list transitions occur. However, timing of the updates is not guaranteed.

v There is a possible delay between the time a list transition occurs and the
time the exit routine receives control.

v A list transition exit may receive control even though the monitored list has
not changed.

4. You can only access the LEPL data area while the list transition exit is running.
If you want to save the LEPL information for later processing, make a copy of it
before the exit returns.

Conditions on Return
The list transition exit routine must return control to the address that is contained in
register 14 (R14) on entry. The contents of all the registers must be restored before

252 TPF V4R1 Database Reference

returning control to the address in R14. The CEPL and the LEPL includes a
16-fullword save area in which you may choose to save the registers of the caller.
In addition, you cannot change the program status word (PSW) or the I/O or
external interrupt masks.

Programming Considerations on Return
The list transition exit routine must return to the caller without giving up control.

Coupling Facility Support 253

254 TPF V4R1 Database Reference

Coupling Facility Record Lock Support

The limited lock facility (LLF) and the concurrency filter lock facility (CFLF), which
are two external lock facilities (XLFs) supported by the TPF system, were required
to control access to data shared by two or more processors in a loosely coupled
complex. CF record lock support provides the option of using one or more CFs as
XLFs.

CF record lock support offers significant flexibility in using CFs as XLFs in your CF
locking configuration. Your CF locking configuration may be dynamically modified by
adding or deleting CFs. When a CF is added to or deleted from the CF locking
configuration, the TPF system automatically redistributes any CF locks to balance
the locking workload across all available CFs. You can add as many as 32 CFs to
your CF locking configuration for a high degree of availability. The CFs in your CF
locking configuration can be used in addition to or instead of LLF and CFLF. In
addition, the CFs in your CF locking configuration can simultaneously be used for
nonlocking workloads. Using CFs in a locking configuration can eliminate the need
for LLF or CFLF XLFs, giving you greater flexibility when selecting and
implementing new module control units (CUs).

All online modules in a loosely coupled complex must use an XLF for locking to
control access to shared data. You may specify which online modules will use CFs
for locking even if those modules are connected to a CU with an LLF or CFLF.
Modules can be migrated to use CFs for locking either individually, in groups, or by
migrating all online modules at once. Note that the lock residency of any duplicate
module is configured automatically to be identical to that of the corresponding prime
module.

See TPF Migration Guide: Program Update Tapes for more information about CF
record lock support and seeTPF Concepts and Structures for more information
about CF record lock support, the LLF, CFLF, and XLFs.

Concepts for Coupling Facility Record Lock Support
Before continuing with the information in this chapter, review the conceptual
information and terminology provided in “Data Sharing Concepts and Terminology”
on page 223 and “Coupling Facility List Structure Concepts” on page 235.

Coupling Facility List Structures for Coupling Facility Locking
CF record lock support creates the following CF list structures for CF locking on
each CF in the locking configuration:

v ITPFLK1_xxxxxx

v ITPFLK2_xxxxxx

Where xxxxxx is the complex name.

Any event that changes the status or configuration of the TPF system and impacts
the distribution or location of CF locks on the external locking facility (XLF) can
require that CF locks are reassigned from one XLF to another. Events that can
trigger lock recovery include:

v Changing the status of a module from offline to online or online to offline

v Completing an all file-copy operation

v Adding or removing a CF from the CF locking configuration

© Copyright IBM Corp. 1994, 2002 255

v Changing an assignment of lock residency between a module and a CF

v Failure of a CF that was actively participating in CF locking.

Coupling Facility Record Lock SupportCommands
The commands are used to display entries in the coupling facility locking table
(CFLT) and manage the CFs in a locking configuration. The following lists the CF
locking commands and their functions:

Function Description

ZCFLK ADD Adds a CF to the CF locking configuration, which
then enables the CF for use as an XLF so new
locks can be stored on it.

ZCFLK DELETE Removes a CF from the CF locking configuration.
All CF locks stored on this CF are redistributed
automatically among the remaining CFs in the CF
locking configuration on a module-by-module basis.
As a result, CF locks can no longer be stored on
this CF.

ZCFLK DISPLAY Displays information about the CF locking
configuration.

ZCFLK INITIALIZE Initializes the CF locking configuration.

ZCFLK MIGRATE Changes the lock residency of a module from a
CFLF locking control unit (CU) to a CF, or from a
CF to a CFLF locking CU.

ZDLCK DISPLAY Displays locks in a CF.

See TPF Operations for more information about these commands.

Using the Coupling Facility Record Lock Support Commands
This section shows a scenario of how you might use the CF commands to manage
locks in a CF locking configuration by providing examples that span a series of
commands.

Example 1: In the following example, two CFs are added to a processor
configuration. First, a CF named CFONE, which is attached to symbolic device
address (SDA) FF00, is added. Then, a CF named CFTWO, which is attached to
SDA FE00, is added. Both CFs are then added to the locking configuration. The
size of the CF list structure for locking on both CFs is 1200 4-K blocks. All the
online modules on both the basic subsystem (BSS) and the WP subsystem are
then migrated to use the CFs for locking. The general data set (GDS) modules on
both the BSS and the WP subsystem are then migrated to use the CFs for locking.

256 TPF V4R1 Database Reference

User: ZMCFT ADD CFONE FF00
System: MCFT0001I 18.54.45 CFMADD - COUPLING FACILITY CFONE ADDED -

2 PATHS EXIST

User: ZMCFT ADD CFTWO FE00
System: MCFT0001I 18.54.45 CFMADD - COUPLING FACILITY CFTWO ADDED -

2 PATHS EXIST

User: ZCFLK ADD CFONE SIZE 1200
System: CFLK0002I 18.54.45 CFLO - COUPLING FACILITY CFONE WAS ADDED TO THE

LOCKING CONFIGURATION

User: ZCFLK ADD CFTWO SIZE 1200
System: CFLK0002I 18.54.45 CFLO - COUPLING FACILITY CFTWO WAS ADDED TO THE

LOCKING CONFIGURATION

User: ZCFLK MIGRATE ONL TO CF
System: CFLK0004I 18.54.45 CFLW - ZCFLK MIGRATE PROCESSING COMPLETE

User: WP/ZCFLK MIGRATE ONL TO CF
System: CFLK0004I 18.54.45 CFLW - ZCFLK MIGRATE PROCESSING COMPLETE

User: ZCFLK MIGRATE GDS TO CF
System: CFLK0004I 18.54.45 CFLW - ZCFLK MIGRATE PROCESSING COMPLETE

User: WP/ZCFLK MIGRATE GDS TO CF
System: CFLK0004I 18.54.45 CFLW - ZCFLK MIGRATE PROCESSING COMPLETE

Example 2: In the following example, a range of modules is migrated to use CF for
locking.

User: WP/ZCFLK MIGRATE 01E.021 TO CF
System: CFLK0004I 20.54.45 CFLW - ZCFLK MIGRATE PROCESSING COMPLETE

Example 3: In the following example, one module is migrated to use a control unit
(CU) for locking.

User: ZCFLK MIGRATE 047 TO CU
System: CFLK0004I 18.54.45 CFLW - ZCFLK MIGRATE PROCESSING COMPLETE

Example 4: In the following example, the CF named CFTWO is deleted from the
locking configuration. By mistake, an attempt is made to delete the CF named
CFONE from the locking configuration before all modules have been migrated to
use CUs for locking.

User: ZCFLK DEL CFTWO
System: CFLK0003I 18.54.45 CFLDEL - COUPLING FACILITY CFTWO WAS DELETED FROM

THE LOCKING CONFIGURATION

User: ZCFLK DEL CFONE
System: CFLK0031E 18.54.45 CFLDEL - DELETE ENDED - COUPLING FACILITY CFONE

CANNOT BE DELETED - IT IS THE LAST CF IN THE
LOCKING CONFIGURATION AND LOCKS STILL RESIDE ON IT

Coupling Facility Locking Table
CF record lock support uses the coupling facility locking table (CFLT). The main
storage CFLT is referenced by the CMMCFL CINFC tag and contains information
essential to maintain correct locking on a CF in the CF locking configuration. The
CFLT on file is maintained in the #CF2LR fixed file record.

Coupling Facility Record Lock Support 257

User Modification Considerations
This section provides information to help you determine the CF list structure size for
CF locking and considerations for when you change the lock name.

Determining the Coupling Facility List Structure Size for Locking
The size of the CF list structure you will use for locking is specific to your CF
locking configuration. See your IBM service representative for guidance when
determining the size of the CF list structure for locking.

Do the following if you need to change the size of the CF list structures you are
using for locking:

1. Enter the ZCFLK DELETE command to remove the CF from the CF locking
configuration. The lock residency for all CF locks stored on this CF is
recalculated automatically among the remaining CFs in the CF locking
configuration on a module-by-module basis. As a result, CF locks can no longer
be stored on this CF.

2. Enter the ZCFLK ADD command with a new value specified for the SIZE
parameter to add the CF to the CF locking configuration, which then enables
the CF for use as an XLF so new locks can be stored on it.

See TPF Operations for more information about these commands.

Changing the Lock Name
If you change the lock name, you must provide a routine in the CFL1 copy member
at CFL1VALK to prevent errors from occurring.

Changing the Name of Your Complex
If you change the name of your complex and then perform an initial program load
(IPL) of the TPF system, you must ensure that all CF list structures for locking have
been deleted and added again.

258 TPF V4R1 Database Reference

Index

Numerics
32-way loosely coupled pool support 25

ZPMIG 31
3990 Model 3 49
4-byte record header 167
8-byte record header 168

A
abort, database reorganization 97
access to the TPFCS database 142
address formats 22
addresses

extended MCHR 11
formats 3
general data set 11
general file 11
online file 3

archiving support, TPFCS 145
array collection 134
attributes, StructureDASD 185

B
bag collection 134
BLOB collection 134
block size rations, cache 43
block size ratios, cache 48
blocks

for coupling facility support 248
browse support, ZBROW command 148
buffer ratio 39
buffer reuse threshold value 39
bypass, BP for database reorganization 93

C
cache

block size ratio 43
block size ratios 48
commands 43, 48, 51
control unit status 43, 49
data collection 42
data collection/data reduction 47
data reduction 42
disabling fast write functions 48
enabling 49
hardware 41, 44
I/O queue threshold value 49
initializer 46
introduction 41
IPL 42, 46
map device 49
modes, operation 41, 44
module up and down processing 46
operating mode 49
operation modes 41, 44

cache (continued)
pinned data 49
processing 42, 46
processing differences 49
programmable options 44
record caching attributes 48
recovery 42, 46
restrictions 43, 47
retry 42
RIAT 45
status, control unit 43, 49
up/down processing 42
weighted values 43

cache fast writes, cache 44
calculation, disk time 69
calculation, tape time 70
capture and restore

capture considerations 64
capture processing 56
conditions requiring restore 65
exception recording 61
frequency of capture 65
keypoint capture 62
mode of capture 64
phase 1, restore 62
phase 2, restore 64
phase 3, restore 64
processing overview 55
record logging 62
restore capture tape 62
restore considerations 65
restore exception records 64
restore keypoints 64
restore logging records 64
restore processing 62

capture and restore support 145
capture considerations 64
capture processing 56
capture timing estimate 69
CE1FCn 19
CE1FHn 19
CE1FMn 19
CE1FRn 19
CE1FXn 19
characteristics, pool file 22
CLASSC macro 161
collection control record, locating 214
collection parts

displaying contents of 215
listing 214
stored in the TPF database 160

collections
accessing 129
determining residency 173, 217
examples 134
iterative operations 141
locating data 218
names 130

© Copyright IBM Corp. 1994, 2002 259

collections (continued)
structure object 218
summary 131
support 130

command
ZGFSP 21

commands
general data set 14
general file 18
record caching 43, 48, 49
ZBROW 148
ZBROW COLLECTION 195
ZBROW DISPLAY 218
ZDFIL 218
ZDFPC 30
ZDUPD 27
ZGAFA 31
ZGAFI 31
ZGFSP 28, 30
ZOLDR LOAD 110
ZOODB 147
ZPMIG 31
ZPOOL GENERATION 25
ZPROT 110
ZRBKD 110
ZRDIR CAPTURE 27
ZRDIR START RESTORE 27
ZRECP ABORT 114
ZRECP ADD 108, 114
ZRECP DEL 108
ZRECP DISPLAY 113
ZRECP DUMP 109, 115
ZRECP ELOG 110
ZRECP IGNORE 108, 113
ZRECP LEVEL 110
ZRECP NOREBUILD 108, 114
ZRECP ONEL 111
ZRECP PROCEED 108, 114
ZRECP PROFILE 110, 111
ZRECP PROTECT 108, 113
ZRECP REBUILD 108, 114
ZRECP RECALL 111
ZRECP RESTART 111, 114
ZRECP RESUME 108, 113
ZRECP SEL 111
ZRECP SKIP 114
ZRECP START 110
ZRECP STATUS 111
ZRPDU CREATE 27

commands, database reorganization 89
commit and rollback protocols

TPF transaction services 143
with cursors 144

commit scope 144
commit scope processing 125
commit scope, using with dirty-reader protection 144
compact structures 173
concepts, object-oriented (TPFCS) 157
concurrency controls 142
condensing objects to save space 207
conditions requiring restore 65

connection services
for coupling facility support 224

considerations, database reorganization 89
control program, managing buffers 37
control record 170
control records, DBR 91
control unit status, cache 43, 49
count reconciliation, pool files 27
coupling facility (CF) cache support

allocating a CF structure 227
benefits 242
cache system 242, 245
cache system elements 242
commands 225
concepts 241
connecting to a CF cache structure 230
connection states 227
coupling facility cache structure persistence 227
deregistering interest 246
disconnecting from a CF cache structure 234
elements of a cache system 242
elements of a CF cache structure 244
introduction 223
invalidating local copies 246
maintaining data consistency in a cache

system 245
processor shared cache 243
processor unique cache 243
registering interest 245
structure attributes 226
structure concepts 226
terminology 241
validating local copies 245

coupling facility (CF) support
allocating a CF structure 227
blocks

coupling facility connection block (CFCB) 248
coupling facility request block (CFRB) 248
coupling facility structure block (CFSB) 248
coupling facility vector block (CFVB) 248

CF cache structure concepts 241
CF cache structure terminology 241
CF cache support 223
CF list structure concepts 235
CFCONC answer area

successful completion of a connection 233
CFVCTC macro 239
checking a list notification vector 239
command scenario 225
commands 225
concepts, CF cache structure 241
concepts, CF list structure 235
connecting to a CF list structure 230
connection parameters 237
connection services 224
connection states 227
coupling facility lock format 249
coupling facility locking functions 249
coupling facility structure attributes 226
data sharing concepts 223
data sharing terminology 223

260 TPF V4R1 Database Reference

coupling facility (CF) support (continued)
disconnecting from a CF list structure 234
exit routines

defining 251
issuing the CFCONC macro 239, 251
list transition exit routine 239, 251
overview 239

introduction 223
list notification vector 239
maintaining data in a coupling facility list

structure 237
modifying a list notification vector 239
serialized list structure 235, 249
storage dump format 248
storing data in a coupling facility list structure 237
structure concepts 226
tables

control table (CFCT) 247
coupling facility status table (CFST) 247
coupling facility trace table (CFTT) 248
message subchannel table (MSCT) 248

terminology, CF cache structure 241
user-modified equates 249

coupling facility connection block (CFCB)
description 248

coupling facility control table (CFCT)
description 247

coupling facility record lock support
activating CF locks 258
CF list structure size 258
changing the complex name 258
changing the lock name 258
command scenario 256
commands 256
concepts 255
coupling facility locking table (CFLT) 257
introduction 255
list structures for locking 255
user modification considerations 258

coupling facility request block (CFRB)
description 248

coupling facility status table (CFST)
description 247

coupling facility structure block (CFSB)
description 248

coupling facility trace table (CFTT)
description 248

coupling facility vector block (CFVB)
description 248

current validation and reconstruct support 219
cursors 140
cursors, key path support 141

D
DASD fast writes, cache 44
DASD resource manager 125
DASD, storing objects 207
DASDFLAT structures 197
DASDHASH structures 198
DASDINDEX structures 188

DASDLIST structures 202
data collection 42, 47
data collection/data reduction, cache 47
data definition 137
data event control block (DECB) fields 19
data reduction 42, 47
data sharing concepts and terminology

for CF cache support 223
for coupling facility support 223

data store
definition of 130
dictionary support 139
initializing 148

database access 142
database corruption, TPFCS 157
database layout, TPFCS 129
database reorganization

abort 97
bypass 93
commands 89
considerations 89
control records 91
DB0DB 91
display 94
exception record 91
I/O descriptions 91
initialization 92
input phase 97
introduction 89
logging 97
logging tape 98
master keypoint 91
OECB 92
output phase 95
override keypoint 91
prerequisites 89
processing description 91
records not captured 96
reset 93
restart 96, 98
sample problem 98
status 95
tape block header 95
tape mount 97
working keypoint 91

database, detecting a corrupt collection 157
DATXPAGE envelope 169
DB0DB 91
defining program records as VFA synchronization

candidate
macros to use 37

definition of objects (TPFCS) 161
delay filing for VFA

active in NORM state 36
description, I/O 91
description, processing 91
destaging, cache 48
detecting a corrupt collection 157, 219
determining collection residency 217
DFAD 121
dictionary support 139

Index 261

direct mode, cache 41, 44
dirty-reader protection 143
disk time calculations 69
display 94
displaying collection parts 215

E
ECKD, cache 44
elements, TPFCS 131
enabling, cache 49
envelope, DATXPAGE 169
estimate, capture timing 69
estimate, tape volume 72
example, timing 68
exception record 91
exception recording 61
exclusive lock, creating 142
extended MCHR addresses 11
extended structures 181

with DASDFLAT attributes 197
with DASDHASH attributes 198
with DASDINDEX attributes 188
with DASDLIST attributes 202

external device support 145

F
FACE driver 121
FACE driver and offline interface (DFAD) 121

FACE driver and offline interface (DFAD) 121
FARF3 5
FDCTC macro 3
file address formats 3, 22
file capture and restore

capture timing estimate 69
disk time calculations 69
keypoint record 72
restore timing estimate 71
tape time calculation 70
tape volume estimate 72
timing 67
timing example 68

file representation of objects, TPFCS 164
FMTR, (real-time disk formatter) 117
formats, file address 3, 22
frequency of capture 65
function switches 30

G
GDSNC 15
GDSRC 15
general data set addresses 11
general data set commands 14
general data sets

introduction 13
premount 14
record processing 14

general file addresses 11
general files 13

general files (continued)
introduction 17
programming notes 18

GFS 27

H
header

object 166
record header, 4-byte 167
record header, 8-byte 168

header, tape block 95

I
I/O descriptions 91
IBM Enterprise Storage Server (ESS) 49
IBM recoup active root table (IRART) 116
IBM recoup scheduling control table (IRSCT) 116
IDs, record 137
images, multiple 96
initialization, database reorganization 92
initializer, cache 46
initializing TPF collection support 148
input phase 97
introduction

file address formats 3
general data sets 13
general files 17
TPF transaction services 125

IPL, cache 42, 46

K
key bag collection 134
key paths, using with cursors 141
key set collection 135
key sorted bag collection 135
key sorted set collection 135
keyed log collection 136
keypoint

capture 62
master 91
override 91
record 72
working 91

L
list notification vector

changing the number of entries 239
identifying a list notification vector 239
testing for an empty list 240
testing whether a range of lists is empty 240

listing collection parts 214
locating data for a collection 218
locating records in a StructureDasd object 183
locating the collection control record 214
locating the structure object 218

262 TPF V4R1 Database Reference

lock format
for coupling facility support 249

lock, on a collection 142
locking cursors 142
log collection 136
log manager 125
log takeover 128
logging 97
logging tape 98
logical objects, physically represented in DASD 167
loosely coupled considerations 127

M
macro, CLASSC 161
maintaining TPFCS 147
maintenance, pool files 23
management functions, pool files 27
manual reconstruction 157
map SSID 49
master keypoint 91
MCHR 11
MemFLAT object 174
MemHash object 175
MemKey object 177
MemList object 179
message subchannel table (MSCT)

description 248
mode of capture 64
modes, operation 41, 44
module up and down processing, cache 46
more information about pool file records 218
multiple images 96

N
nonlocking cursors 142

O
OBJECT class, TPFCS 166
object header 166
object-oriented concepts, TPFCS 157
objects

condensing to save space 207
file representation of 164
logical 167
MemFLAT 174
MemHash 175
MemKey 177
MemList 179
overflowing into additional records 210

OECB 92
offline interface 121
online directory capture, pool files 27
online file addresses 3
operation modes, cache 41, 44
optimistic concurrency 142
other I/O, recoup 115
output phase 95
overflow of objects into additional records 210

override keypoint 91
overview of TPF collection support 129
owner ID 214
owning control record 214

P
parts, collection 160
pessimistic concurrency 142
phase 1, recoup functions 106
phase 1, recoup procedures 110
phase 1, restore 62
phase 2, recoup functions 107
phase 2, recoup procedures 111
phase 2, restore 64
phase 3, recoup 106, 108
phase 3, recoup functions 107
phase 3, recoup procedures 113
phase 3, restore 64
phase 4, recoup functions 108
phase 4, recoup procedures 114
phase 5-7, recoup functions 109
phase 5, recoup procedures 114
phase 6-7, recoup procedures 115
phase, input 97
phase, output 95
pinned data, cache 49
pool addresses

losing 103
recovering 104

pool files
32-way loosely coupled pool support 25
characteristics 22
file address formats 22
function switches 30
functional description 21
GET file storage 27
introduction 21
maintenance 23
management functions 27
online directory capture 27
pool count reconciliation 27
pool directory update (PDU) 27
pool generation 23
recoup 27
release file storage 29

pool generation, pool files 23
pool management

commands 30
pool record, owning control record 214
pool records, TPFCS 167, 218
pool resource manager 125
pre-phase 1, recoup functions 104
pre-phase 1, recoup procedures 109
premount 14
prerequisites, database reorganization 89
primary records, TPFCS 167
processing

capture 56
description 91
module up and down 46

Index 263

processing (continued)
module, up/down 42
overview, capture and restore 55

programming notes, general files 18
properties, TPFCS 138

R
real-time disk formatter 117

method of operation 117
reconstruction support 145
reconstruction, manual 157
record access mode, cache 41, 44
record cache subsystem (RCS)

processing differences 49
record caching attributes, cache 48
record groups

delay filing 35
immediate filing 35
synchronized delay filing 35
synchronized immediate filing 36

record IDs, assigning to a collection 137
record logging 62
record processing, general data sets 14
record trailer 169
record types, extended structures 181
record, control 170
record, exception 91
record, keypoint 72
recoup 27

IBM recoup active root table (IRART) 116
IBM recoup scheduling control table (IRSCT) 116
other I/O 115
phase 1 functions 106
phase 1 procedures 110
phase 2 functions 107
phase 2 procedures 111
phase 3 106, 108
phase 3 functions 107
phase 3 procedures 113
phase 4 functions 108
phase 4 procedures 114
phase 5 procedures 114
phase 5-7 functions 109
phase 6-7 procedures 115
phase pre-phase1 functions 104
phase pre-phase1 procedures 109
recoup data store 116
recoup keypoint record (BK0RP) 116
recovering lost pool addresses 104
TPF Internet mail server considerations 105
TPFCS 149
user exits 116

recovery log 125
log takeover 128
loosely coupled considerations 127
reading from 127
restarting from 127
writing to 127

recovery, cache 42, 46
relative record numbers, TPFCS 182

representation, object-oriented (TPFCS) 164
reserve percentages 39
reset, database reorganization 93
residency, collection 173
resource manager 125
restart, cache 46
restart, database reorganization 96, 98
restore capture tape 62
restore considerations 65
restore exception records 64
restore keypoints 64
restore logging records 64
restore processing 62
restore timing estimate 71
restrictions, cache 43, 47
retentive writes, cache 44
retry, cache I/O 42
RFS 29
RIAT, cache 45
RIAT, record ID attribute table 138

S
sequence collection 136
set collection 136
SETCACHE, cache 49
shadow records, TPFCS 167
shadowing support 144
sorted bag collection 137
sorted set collection 137
source code definition of objects, TPFCS 161
standard CKD, cache 44
status 95
status, cache control unit 43, 49
storage dump format

for coupling facility support 248
storing

collections on DASD 214
data elements in USERdata objects 173
objects on DASD, TPFCS 207
TPFCS collections in a TPF database 157

structure object
locating 218
storing data 218

StructureDASD attributes 185
StructureDasd class 181
StructureMem class 173
summary of processing differences for 3990 Model 3

and ESS 49

T
tables

for coupling facility record lock support 257
for coupling facility support 247

tape block header 95
tape time calculation 70
tape volume estimate 72
tape, logging 98
threshold value, cache 49
timing estimate, restore 71

264 TPF V4R1 Database Reference

timing, capture and restore 67
TPF collection support (TPFCS)

archiving 145
browse support 148
capture and restore 145
collection examples 134
collection lifetimes 138
collection parts stored in the TPF database 160
collection residency 173
compact structures 173
concurrency controls 142
condensing objects to save space 207
cursors 140
data definitions 137
data store application dictionary 139
data stores 130
database access 142
database integrity and archives 145
database layout 129
detecting a corrupt collection 157
dirty-reader protection 143
elements 131
extended structures 181
external device support 145
file representation of objects 164
how an object overflows 210
initializing 148
locking cursors 142
maintaining 147
nonlocking cursors 142
OBJECT class 166
object-oriented concepts 157
optimistic concurrency 142
overview 129
pessimistic concurrency 142
primary and shadow records 167
properties 138
reconstruction 145
recoup 149
shadowing 144
source code definition of objects 161
storing collections on DASD 214
storing objects on DASD 207
storing TPFCS collections in a TPF database 157
support for collection types 130
tables, collection support 131
TPF transaction services 143
USERdata object 173
using key paths with cursors 141
validation 145
validation and reconstruct support 219
xternalObject 213
ZBROW commands 148
ZOODB commands 147

TPF Internet mail server recoup considerations 105
TPF transaction services

capture and restore 55
commit scope 125
commit scope buffers 38
introduction 125
locks 126

TPF transaction services (continued)
log manager 125
recovery log 125
resource manager 125
transaction manager 125

track caching, cache 44
trailer, record 169
transaction manager 125
types of records, extended structures 181

U
up/down processing, cache 42
update sequence counter 142
update, pool files 27
user exits, recoup 116
user-modifiable equates

for coupling facility support 249
USERdata object 173
using dirty-reader protection in a TPF commit

scope 144
using iterative operations over collections 141
using key paths with cursors 141

V
validation support 145
VFA

buffer ratio 39
buffer reuse threshold value 39
buffers 37
candidate records 35
control program 37
data record processing 36
defining record groups 35
flushing target records from VFA 36
hardware requirements 40
introduction 35
macros to use 36
main storage 37
messages 40
program record processing 36
record selection 38
records 35
reference counter 37
reserve chain size 39
resetting the file RIAT control values 40
resource definition 37
restart 40
tables 37
trip value 39
using the capture and restore utility 36
using the ZRTDM DISPLAY command 37, 38
using the ZRTDM MODIFY command 37, 38
using the ZRTDM RESET command 40
working storage 37
ZVFAC DEFINE 39

VFA buffers
residency of VFA candidate records 37

Index 265

W
weighted values, cache 43
working keypoint 91

X
xternalObject 213

Z
ZBROW COLLECTION command 195, 214
ZBROW commands 148
ZBROW DISPLAY command 217, 218
ZBUFC ALLOCATE 48, 51
ZBUFC ALLOCATE IMPLEMNT 51
ZBUFC commands 51
ZBUFC ENABLE 49, 51
ZBUFC FILE 48, 51
ZBUFC MAP REPORT 49
ZBUFC PINNED DISCARD 49
ZBUFC PINNED DISPLAY 49
ZBUFC SETCACHE 49, 52
ZBUFC STATUS 43, 49
ZBUFC THRESHLD 49
ZDFIL command 218
ZDFPC command 30
ZDUPD command 27
ZGAFA command 31
ZGAFI command 31
ZGFSP command 28, 30
ZGFSP commands 21
ZMCPY DOWN 42, 46
ZMCPY UP 42, 47
ZOLDR LOAD command 110
ZOODB commands

initializing 148
introduction to 147

ZPMIG command 31
ZPOOL GENERATION command 25
ZPROT command 110
ZRBKD command 110
ZRDIR CAPTURE command 27
ZRDIR START RESTORE command 27
ZRECP ABORT command 114
ZRECP ADD command 108, 114
ZRECP DEL command 108
ZRECP DISPLAY command 113
ZRECP DUMP command 109, 115
ZRECP ELOG command 110
ZRECP IGNORE command 108, 113
ZRECP LEVEL command 110
ZRECP NOREBUILD command 108, 114
ZRECP ONEL command 111
ZRECP PROCEED command 108, 114
ZRECP PROFILE command 110, 111
ZRECP PROTECT command 108, 113
ZRECP REBUILD command 108, 114
ZRECP RECALL command 111
ZRECP RESTART command 111, 114
ZRECP RESUME command 108, 113

ZRECP SEL command 111
ZRECP SKIP command 114
ZRECP START command 110
ZRECP STATUS command 111
ZRPDU CREATE command 27
ZRTDM DISPLAY 48
ZRTDM MODIFY 48

266 TPF V4R1 Database Reference

����

File Number: S370/30XX-30
Program Number: 5748-T14

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH31-0143-14

	Contents
	Figures
	Tables
	Notices
	Trademarks

	About This Book
	Before You Begin
	Who Should Read This Book
	How This Book is Organized
	Conventions Used in the TPF Library
	Related Information
	IBM Transaction Processing Facility (TPF) 4.1 Books
	Miscellaneous IBM Books
	Online Information

	How to Send Your Comments

	Part 1. Database Organization
	File Address Formats
	General Files
	General Data Sets
	Online Processing
	Offline Processing

	Online Database Addresses
	FARF Format

	Mapping FARF Addresses
	General File Addresses
	General Data Set Addresses
	Extended MCHR File Address
	Hardware File Address

	General Data Sets
	Premount of General Data Sets
	General Data Set Commands
	Record Processing of General Data Sets
	Record Format
	Processing Macros

	General Files
	Programming Notes for General Files
	Processing a Relative Record Number Request
	Processing an Extended MCHR Request

	File Pool Support
	Functional Description
	File Address Formats
	Pool Characteristics
	Maintenance Functions
	Pool Generation and Reallocation
	Pool Generation and Reallocation Procedure

	Pool Directory Update (PDU)
	PDU Procedures

	Recoup Support
	File Pool Count Reconciliation
	Online Directory Capture and Restore

	Management Functions
	Get File Storage (GFS)
	Basic Pool Selection
	Pool Fallback
	Ratio Dispensing
	Bit Scanning
	Dispensing Algorithms
	Directory Replenishing
	Implied Wait Processing
	GFS Keypointing
	Module Down Processing

	Release File Storage (RFS)
	Processing Long-Term Released File Pool Addresses
	Processing Short-Term Released File Pool Addresses
	RFS Keypointing

	Initialize File Pools
	Shutdown of File Pools

	Pool Function Switches
	Pool Management Commands

	Part 2. Caching Support
	Virtual File Access (VFA)
	VFA Candidate Records
	VFA Resource Definition
	VFA Record Selection
	Maximum VFA Trip Value
	Specifying VFA Buffer Ratios and Percentages
	Restart Procedures
	Messages and Responses
	Hardware Requirements

	Record Caching
	3880 Record Cache RPQ
	Hardware
	Modes of Operation
	Initial Program Load
	DASD Processing and Error Recovery
	I/O Retry
	Module Up/Down Processing
	Data Collection and Data Reduction

	Restrictions
	Command Description
	Specifying Block Size Ratios
	Monitoring Control Unit Status

	3990 Record Cache RPQ
	Hardware
	Modes of Operation
	Programmable Options

	TPF Record Cache Subsystem (RCS) Support
	System Installation Procedure (SIP)
	Extended RIAT Support
	Initial Program Load
	System Initializer
	System Restart
	DASD Processing and Error Recovery
	Error Recovery Methodology
	Data Collection/Data Reduction
	Restrictions

	Command Description
	Specifying Record Caching Attributes
	Specifying Block Size Ratios
	Disabling Fast Write Caching Functions
	Enabling Caching Functions
	Displaying Control Unit Status
	Displaying or Changing I/O Queue Threshold Value
	Displaying Pinned Data Report
	Discarding Pinned Data
	Set Cache Operating Modes
	Displaying Map Report

	Processing Differences between the 3990 Model 3 and the IBM Enterprise Storage Server

	Part 3. Utilities
	Capture and Restore
	Capture and Restore Processing Overview
	Capture Processing
	Exception Recording
	Record Logging

	Capture of Keypoints
	Restore Processing
	Restore Generic Capture Tape (CAP)
	Restore Logging and Exception Recording (XCP) Tapes
	Restore Keypoints

	Capture Considerations
	Record Logging
	Keypoint Capture

	Restore Considerations and Procedures
	Restore Procedures
	Total Restore without a Database
	Total Restore with a Database
	General Total Restore Procedures
	Partial Restore

	Timing
	Assumptions and Conditions Relative to Timing Example
	Capture Timing Estimates
	Disk Time Calculations
	Tape Time Calculations

	Restore Timing Estimates
	Single Module Restore Timing Calculations
	Tape Volume Estimates

	Capture and Restore Keypoint Record
	Keypoint Fields
	Keypoint Tables
	Tape Device Control Table (TDCT)
	LOG/XCP Tape Definition Table (LXTD)
	In-Progress Table (IPT)
	Device Type Control Table (CDT)
	Keypoint Equates

	Keypoint DSECTs
	Disk Device Control Table (DDCT)

	Database Reorganization
	Prerequisites
	Considerations Before Using DBR
	Database Reorganization Control Records
	Master Keypoint
	Working Keypoint
	Override Keypoint
	Database Reorganization Exception Records

	Database Reorganization Processing Description
	Initialization
	INIT
	BYPASS
	RESET
	DISPLAY

	Output Phase
	Records not Captured
	Tape Mount in MDBF Environment
	Logging
	Stopping DBR

	Input Phase
	Logging

	Database Reorganization Sample Problem

	Recoup
	Fixed Records
	Pool Records
	Controlling the Use of Pool Addresses
	Losing Pool Addresses Because of Software Errors or a System Restart
	Recouping Lost Pool Addresses

	Recoup Functions by Phase
	Recoup Pre-Phase 1 Functions
	Recoup Descriptor Container Records
	TPFCS Recoup Indexes
	Recoup Considerations for TPF Internet Mail Server
	Setup

	Recoup Phase 1 Functions
	Pre-Chain Chase Processing
	Chain Chase Processing
	Post-Chain Chase Processing

	Phase 2 Functions
	Recoup Phase 3 Functions
	Erroneously Available Processing
	Lost Address Processing
	Rebuild Processing
	Rollin Processing

	Recoup Phase 4 Functions
	Recoup Phase 5–Phase 7 Functions
	Phase 6 JCL
	Phase 7 JCL

	Recoup Procedures by Phase
	Pre-Phase 1
	Phase 1 Procedures
	Selectively Add a Record ID to a Recoup Run
	Phase 1 Restart

	Phase 2 Procedures
	Broken Chain Report (BRFA) Program

	Phase 3 Procedures
	Phase 3 Restart

	Phase 4 Procedures
	Phase 5 Procedures
	Phase 6 and Phase 7 Procedures

	Recoup Procedure for a Single Database
	Recoup Records and Structures
	Recoup Keypoint Record (BK0RP)
	Recoup Data Store
	IBM Recoup Scheduling Control Table (IRSCT)
	IBM Recoup Active Root Table (IRART)

	User Exits

	Real-Time Disk Formatter
	Method of Operation
	Input
	Data Control Cards
	MVS Job Control Cards and Sequence of Deck (EXEC)

	Formatter Control Cards

	Output

	FACE Driver and Offline Interface (DFAD)
	File Print
	File Print Errors

	Offline Interface
	Offline Interface Errors

	TPF Transaction Services
	Commit Scope Processing
	File-Type Requests
	MQSeries-Type Requests

	Recovery Log Support
	Writing to the Recovery Log
	Reading from the Recovery Log
	Restarting from the Recovery Log
	Loosely Coupled Considerations and Log Takeover

	TPF Collection Support
	TPFCS Database Layout
	Data Stores
	Collections
	Elements
	Collection Support
	Collection Examples

	Data Definitions
	Property Service
	Collection Lifetimes
	Deleting Collections

	Data Store Application Dictionary

	Cursors
	Using Iterative Operations over Collections
	Using Key Paths

	Database Integrity
	Database Access
	Concurrency Controls
	None (Nonlocking Cursor)
	Optimistic Concurrency (Update Sequence Counter)
	Pessimistic (Locking Cursor)
	Comparing Cursor Types

	Dirty-Reader Protection
	TPF Transaction Services
	TPF Transaction Services with Cursors
	TPF Transaction Services with Dirty-Reader Protection

	Shadowing
	Validation
	Reconstruction

	Database Archives
	External Device Support
	Archiving Support
	Capture and Restore Support

	Maintaining TPFCS
	ZOODB Commands
	Initializing TPFCS

	ZBROW Commands

	TPFCS Recoup
	General Approach
	Recoup Indexes
	Embedded 4-Byte File Address Information
	Embedded 8-Byte File Address Information
	Embedded Persistent Identifier (PID) Information
	Sample TPFCS Recoup Applications

	TPF Collection Support Database from a TPF System Perspective
	Object-Oriented Concepts
	Collection Parts Stored in the TPF Database
	Source Code Definition of Objects
	File Representation of Objects
	OBJECT Class
	Object Header

	Use of Pool Records
	TPFCS Primary and Shadow Records
	TPFCS Record Header
	TPFCS Record Trailer

	Packaging in DATXPAGE Envelopes
	Collection Control Record

	USERdata Object
	Collection Residency
	Compact Structures (StructureMem Class)
	MemFLAT
	Important Attributes
	Graphical Representation
	Data Format

	MemHash
	Important Attributes
	Graphical Representation
	Data Format

	MemKey
	Important Attributes
	Graphical Representation
	Data Format

	MemList
	Important Attributes
	Graphical Representation
	Data Format

	Extended Structures (StructureDasd Class)
	Record Types
	Relative Record Numbers
	Locating Records in a StructureDasd Object
	StructureDASD Attributes to Consider

	DASDINDEX Structures
	Structure Record
	Directory Records
	Key Records
	Data Records

	DASDFLAT Structures
	Structure Record
	Directory Records
	Data Records
	Key Records

	DASDHASH Structures
	Structure Record
	Directory Records
	Data Records
	Key Records

	DASDLIST Structures
	Structure Record
	Directory Records
	Data Records
	Key Records

	How Objects Are Stored on DASD
	How Some Objects Are Condensed to Save Space
	How an Object Can Overflow into Additional Records
	xternalObject
	Owner ID
	Determining Where Collections Are Stored on DASD
	Locating the Collection Control Record
	Listing Collection Parts
	Displaying Collection Part Contents
	Determining Collection Residency
	Locating the Structure Object
	Locating the Data

	Determining More Information about Pool File Records Used by TPFCS
	Scope of Current Validation and Reconstruction Support

	Part 4. Coupling Facility Support
	Coupling Facility Support
	Data Sharing Concepts and Terminology
	Connection Services
	Coupling Facility Commands
	Using the Coupling Facility Commands

	Coupling Facility Structure Concepts
	Defining Structure Attributes for Coupling Facility Structures
	Identifying Connection States
	Understanding Structure Persistence

	Allocating a Coupling Facility Structure
	TPF System Considerations
	Coupling Facility Structure Size

	Coupling Facility Considerations
	Coupling Facility Storage

	Coupling Facility Resource Allocation Rules
	Coupling Facility Storage Constraints
	Coupling Facility Storage Increment

	Successfully Completing Coupling Facility Structure Allocation

	Connecting to a Coupling Facility Structure
	Overview of Connect Processing
	Specifying Structure Attributes for Coupling Facility Structures
	Determining Whether a Connection Is Successful
	Receiving Information in the CFCONC Answer Area
	Successfully Completing a Connection

	Handling Failed Attempts to Connect to a Coupling Facility Structure

	Disconnecting from a Coupling Facility Structure
	Disconnection Parameters for the Coupling Facility Structure
	Persistence Considerations
	Handling Resources for a Disconnection
	Successfully Completing a Disconnection

	Coupling Facility List Structure Concepts
	Coupling Facility List Structure
	How Data Is Maintained in a Coupling Facility List Structure
	Specifying Connection Parameters for the Coupling Facility List Structure
	Data Element Size
	Entry-to-Element Ratio
	Limiting the Storage Used by Each List
	Adjunct Areas
	Named or Keyed List Entries

	List Transition Exit

	Checking or Modifying a List Notification Vector
	List Notification Vector
	Changing the Number of Entries in a List Notification Vector
	Testing Whether a List Is Empty
	Testing Whether a Range of Lists Is Empty

	Coupling Facility Cache Structure Concepts
	Terminology
	Benefits of Using Coupling Facility Cache Structures
	Data Consistency
	High-Speed Access to Shared Data

	Elements of a Cache System

	Elements of a Coupling Facility Cache Structure
	Accessing the Data

	Maintaining Data Consistency in a Cache System
	Registering Interest in a Piece of Shared Data and Validating Local Copies
	Deregistering Interest in a Shared Piece of Data and Invalidating Local Copies

	Coupling Facility Tables
	Coupling Facility Control Table
	Coupling Facility Status Table
	Coupling Facility Trace Table
	Message Subchannel Table

	Coupling Facility Blocks
	Coupling Facility Connection Block
	Coupling Facility Structure Block
	Coupling Facility Request Block
	Coupling Facility Vector Block

	Storage Dump Format
	User-Modified Equates
	Coupling Facility Locking Functions
	Overview
	Coupling Facility Lock Format

	Defining Exit Routines
	Conditions at Entry
	System Conditions on Entry
	Programming Considerations at Entry
	Conditions on Return
	Programming Considerations on Return

	Coupling Facility Record Lock Support
	Concepts for Coupling Facility Record Lock Support
	Coupling Facility List Structures for Coupling Facility Locking

	Coupling Facility Record Lock SupportCommands
	Using the Coupling Facility Record Lock Support Commands

	Coupling Facility Locking Table
	User Modification Considerations
	Determining the Coupling Facility List Structure Size for Locking
	Changing the Lock Name
	Changing the Name of Your Complex

	Index

