Transaction Processing Facility

Multi- Processor Interconnect
Facility Reference

Version 4 Release 1

<|lI!

SH31-0155-01

Transaction Processing Facility

Multi- Processor Interconnect
Facility Reference

Version 4 Release 1

<|lI!

SH31-0155-01

Note!
FBefore using this information and the product it supports, be sure to read the general information under ENafices” on page .

Second Edition (June 2000)
This is a major revision of, and obsoletes, SH31-0155-00 and all associated technical newsletters.

This edition applies to Version 4 Release 1 Modification Level 0 of IBM Transaction Processing Facility, program
number 5748-T14, and to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. Address your comments to:

IBM Corporation

TPF Systems Information Development
Mail Station P923

2455 South Road

Poughkeepsie, NY 12601-5400

USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures .
Tables .

Notices.
Trademarks

About This Book .

Before You Begin

Who Should Read This Book

How This Book is Organized . .
Conventions Used in the TPF L|brary
Related Information

IBM Transaction Processmg Facmty (TPF) 4 1 Books
IBM Enterprise Systems/9000 (ES/9000) Books .

How to Send Your Comments
Introduction to the MPIF .

Understanding and Using MPIF
Basic MPIF Terms . o
MPIF Processing Overview .
Services Provided by MPIF.

Path Services Support

Connection Services

Data Transfer .

User Exits . .
Interfacing with MPIF .

MPIF User Profile

Issuing MPIF Requests

Data Requirements for MPIF Requests
Initializing MPIF .

Defining the MPIF EnV|ronment

MPIF Initialization .

Other Considerations
MPIF Error Processing .

MPIF Failures .

Data Transfer Failures .

MPIF User Failures

Path Failures

Connection Failures . .
Example of Using MPIF Serwces .

IDENTIFY/CONNECT Flow

SEND/DISCONNECT Flow

Programming Guide
Status Management .
Echo Check .
Pacing Control .
Prevent Buffer Overruns
SEND Logic .
RECEIVE Logic
Deadlock Situation

© Copyright IBM Corp. 1994, 2000

. Xi
L Xi
. Xi
. Xi
. Xi
. Xii
. Xii
. Xii
. Xiii

ONNN~N~NORDMDNO®

.17
.17
.17
.17
. 18
. 18
. 18
. 19

iv

Sequence Number Control .
Blocking of Data Request Elements .
List Support for Segmented Data .
Priorities
User Exits.
Data Received Exrt
Connection Request Exit .
Connection Completion Exit .
Directory Update Exit
Path Active Exit
Error Exit . .
MPIF User Parameter L|st Defrmtlons (DCTMUP)
Description

MPIF Post-Processing Application . .
Keywords Specifications For Report Generatron
CPU-to-CPU Required Keywords .
Command/Search Argument Examples .
Reducing the Report Size .
DEFAULT, CANCEL Commands .
Summary of Post-Processing Commands .
Command/Keyword Format Requirements .
Trace Summary Report.
Examining Generated Reports .
Sample CPU-to-CPU Analysis Report
Installing MPIF Post-Processing Programs. .
Executing MPIF Post-Processing Programs in an MVS Enwronment .
JCL Samples for MPIF Post-Processing.
JCL Sample for Trace Summary Report.
Sample Reports
Sample CPU-to-CPU Report
Sample Summary Report .

Appendix A. Example of a MPIF Loosely Coupled Complex Initialization
Initialization Commands

Appendix B. 3088 Address Pairing by MPIF

Appendix C. IBM Enterprise Systems Connection Architecture.

IBM Enterprise Systems Connection Architecture Channel-to-Channel Structure
Migration and Coexistence Considerations.

Addressing Considerations

Index

TPF V4R1 Multi-Processor Interconnect Facility Reference

. 19
.19
. 20
. 20
. 20
. 20
.21
.22
.22
. 23
. 24
. 24
. 24

.27
. 28
. 29
. 29
. 30
. 30
. 30
.31
.31
.31
. 32
. 33
. 34
. 35
. 36
. 36
. 36
. 38

39

. 39

.41

. 43

43

. 44
. 44

. 45

Figures

A MPIF Complex Using a 3088 .

A MPIF Complex Using an ESCON CTC
MPIF IDENTIFY and CONNECT Flows
MPIF SEND and DISCONNECT Flows.
SEND LOGIC - PACING .

RECEIVE LOGIC - PACING.

ESCON CTC Channel Structure .
3-way IBM ESCA Configuration

©CoN>O WD

© Copyright IBM Corp. 1994, 2000

Sample MPIF Loosely Coupled Complex .

.14
. 15
. 18
. 18
. 39
. 43
. 44

Vi TPF V4R1 Multi-Processor Interconnect Facility Reference

Tables

1. MPIF Token Definitions9

© Copyright IBM Corp. 1994, 2000 vii

Viil TPF V4R1 Multi-Processor Interconnect Facility Reference

Notices

References in this book to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service in this book is not intended to
state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
IBM's intellectual property rights may be used instead of the IBM product, program,
or service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Department 830A

Mail Drop P131

2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Any pointers in this book to non-IBM Web sites are provided for convenience only
and do not in any way serve as an endorsement. IBM accepts no responsibility for
the content or use of non-IBM Web sites specifically mentioned in this book or
accessed through an IBM Web site that is mentioned in this book.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

Enterprise Systems Connection Architecture

Enterprise System/9000

ESCON

ES/3090

ES/9000

IBM

RETAIN

S/370

400

© Copyright IBM Corp. 1994, 2000 iX

Other company, product, and service names may be trademarks or service marks
of others.

X TPF V4R1 Multi-Processor Interconnect Facility Reference

About This Book

This book describes the Multi-Processor Interconnect Facility (MPIF), provided to
meet the need for increased processing power. In addition, this book provides
information concerning MPIF that you must understand when you are designing
system or utility programs that interface with MPIF.

In this book, abbreviations are often used instead of spelled-out terms. Every term
is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, Systems Network Architecture (SNA). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in the

Before You Begin

You should have a basic understanding of MPIF before reading this book. For an
overview of MPIF, see

Who Should Read This Book

This book is intended for system programmers doing system level coding for
system services and support or utility programs that require MPIF services.

How This Book is Organized

This book is organized by chapters and also contains several appendixes. The
appendixes provide examples of the commands required to initialize a MPIF loosely
coupled complex, and discuss 3088 address pairing, and the ESCON Architecture.

Conventions Used in the TPF Library

The TPF library uses the following conventions:

Conventions Examples of Usage

italic Used for important words and phrases. For example:
A database is a collection of data.

Used to represent variable information. For example:

Enter ZFRST STATUS MODULE mod, where mod is the module for which you want
status.

bold Used to represent text that you type. For example:
Enter ZNALS HELP to obtain help information for the ZNALS command.

Used to represent variable information in C language. For example:

level

© Copyright IBM Corp. 1994, 2000 Xi

Conventions

Examples of Usage

monospaced

Used for messages and information that displays on a screen. For example:
PROCESSING COMPLETED

Used for C language functions. For example:
maskc

Used for examples. For example:
maskc (MASKC_ENABLE, MASKC I0);

bold italic

Used for emphasis. For example:
You must type this command exactly as shown.

Bold underscore

Used to indicate the default in a list of options. For example:
Keyword=OPTION1 | DEFAULT

Vertical bar |

Used to separate options in a list. (Also referred to as the OR symbol.) For example:
Keyword=0Optionl | Option2
Note: Sometimes the vertical bar is used as a pipe (which allows you to pass the output of

one process as input to another process). The library information will clearly explain
whenever the vertical bar is used for this reason.

CAPital LETters

Used to indicate valid abbreviations for keywords. For example:
KEYWord=option

Scale

Used to indicate the column location of input. The scale begins at column position 1. The
plus sign (+) represents increments of 5 and the numerals represent increments of 10 on the
scale. The first plus sign (+) represents column position 5; numeral 1 shows column position
10; numeral 2 shows column position 20 and so on. The following example shows the
required text and column position for the image clear card.

LOADER IMAGE CLEAR

Notes:

1. The word LOADER must begin in column 1.
2. The word IMAGE must begin in column 10.
3. The word CLEAR must begin in column 16.

Related Information

A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM Transaction Processing Facility (TPF) 4.1 Books

+ [PE Concepts and Structured, GH31-0139
« [PE Library Guide, GH31-0146

- [PE Operationd, SH31-0162
« [[PE Transmission Caontrol Pratacal/internet Pratacal, SH31-0120

IBM Enterprise Systems/9000 (ES/9000) Books

+ [ESA/390 ESCON Channel-to-Channel Adapter, SA22-7203
o | . : — l
Configuration Guidel GA22-7138

Xil TPF V4R1 Multi-Processor Interconnect Facility Reference

« ES/9000 Madels 520, 640, 660, 740, 820, 860 and 900 Functional
Characteristics and Configuration Guidd, GA22-7139

« [ES/9000 Madels 711, 821, 822 831,941, 942 952 962 972 and 982

ELmQLLonaLChaLamenslm_and_CQnﬁguxanm_Gmdd GA22-7144

Ic.ha.anel_to_c.ha.anel_aete:encd GC38-0097.

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

» If you prefer to send your comments electronically, do either of the following:
— Go to http:/Ammnw ibm com/tpfipubs/tpfpubhs htm.

There you will find a link to a feedback page where you can enter and submit
comments.

— Send your comments by e-mail to tpfid@us.ibm.com
 If you prefer to send your comments by mail, address your comments to:

IBM Corporation

TPF Systems Information Development
Mail Station P923

2455 South Road

Poughkeepsie, NY 12601-5400

USA

* If you prefer to send your comments by FAX, use this number:
— United States and Canada: 1 + 845 + 432 + 9788
— Other countries: (international code) + 845 + 432 +9788

About This Book Xiil

http://www.ibm.com/tpf/pubs/tpfpubs.htm

XiV TPF V4R1 Multi-Processor Interconnect Facility Reference

Introduction to the MPIF

The High Performance Option feature allows a TPF loosely coupled complex, with
up to eight copies of TPF, to communicate through a common database.

To meet the growing customer need for increased processing power, the
Multi-Processor Interconnect Facility (MPIF) was introduced. MPIF supports multiple
TPF complexes that communicate with each other. A TPF complex can consist of a
single loosely coupled complex or a central processing complex (CPC) running TPF.
Using MPIF, these complexes are be able to distribute processing across the TPF
systems.

MPIF, pronounced MIP-if provides an interface that allows TPF systems to perform
cooperative processing with other TPF systems. Using MPIF, one TPF system can
request a system service that is received, processed, and returned by another TPF
system. The requesting system need not be aware that the receiving system can be
in a different processor, or that the receiving processor can have a different
architecture. MPIF uses channel-to-channel (CTC) support to communicate in a
single TPF loosely coupled complex, or between multiple TPF complexes.

m shows a typical MPIF complex using the IBM* 3088 Multisystem Channel
Communication Unit (MCCU).

Loosely Data Data Loosely
Coupled Coupled
Base Base
Complex Complex
A B
1 2
3088
Unit
Single Data

TPF Base
System C

Figure 1. A MPIF Complex Using a 3088

Eigure 2 on page 2 shows a typical MPIF complex, using the IBM Enterprise
System Architecture* (ESCON*) Channel-to-Channel (CTC).

© Copyright IBM Corp. 1994, 2000 1

Loosely Data Data Loosely
Coupled Coupled
Base Base
Complex Complex
A B
1 2
ESCON
Director
Optional
Single Data

TPF Base
System C

Figure 2. A MPIF Complex Using an ESCON CTC

If you are using ESCON CTC, see ESA/390 ESCON Channel-to-Channel Adaptel

for more information.

See the appropriate Enterprise System/9000 Functional Characteristics and
Configuration Guide for more information about your particular ES/9000 processor
model.

2 TPF V4R1 Multi-Processor Interconnect Facility Reference

Understanding and Using MPIF

This chapter describes:

* Basic MPIF terms

* A MPIF processing overview

* The services provided by MPIF

» User requirements in interfacing when using MPIF
* Processing MPIF errors

* An example of using MPIF services.

Basic MPIF Terms

This section defines some basic MPIF terms. See TRE Library Guids for a complete
list of definitions.

Connection
CNC
CTC
CPC
Path

MPIF complex

MPIF user

TPF complex

A session established between two users.

An ESCON channel attached to an ESCON capable device
A CTC link, whether a 3088 or an ESCON CTC

Central processing complex.

The route of communication between two processors. This route, or
circuit, consists of a pair of physical units on each side of the
circuit. These physical units are part of the multichannel
communications device being used. The pair of units provides
simultaneous read and write operations across the circuit. On each
side of the path, one unit is designated for reading data while the
other unit is designated for writing data.

Multiple TPF complexes that communicate using a CTC
communication link.

System and support programs, that are run periodically, as part of
TPF processing. Also referred to as a user.

A TPF loosely coupled complex or a CPC running TPF.

TPF loosely coupled complex

TPF system

User

Two or more copies of TPF contained in two or more processors,
sharing a single data base. Also referred to as a loosely coupled
complex.

A single copy of TPF. Also referred to as a system.
See MPIF user.

To help clarify these definitions, consider the following:

* A user exists in a TPF system.

* Multiple TPF systems exist in a TPF loosely coupled complex.

* Multiple TPF complexes exist in a MPIF complex.

* Multiple TPF complexes communicate using a CTC communication link.
* A path must be defined over which two users can communicate.

* A connection must be established to allow two users to communicate.

© Copyright IBM Corp. 1994, 2000

MPIF Processing Overview

MPIF uses channel-to-channel (CTC) communication links to establish connections
between connected TPF complexes. Once these cross-system connections are
made, logical connections can be established between MPIF users. Once the
logical connection is established, transfer of data and commands across a path
between the two MPIF users can be requested.

MPIF provides the typical TPF system control functions, such as error detection and
buffer management. It is suitable for TPF system service programs that will be
enhanced to schedule their services in one system (the requesting system) and
perform their services in another locally-connected system (the server system).

MPIF allows TPF system services to be designed as resident or non-resident
functions in that they can perform the service either in the requester’s processor or
in a locally attached processor. Any MPIF user connected to another user is be able
to interact with no awareness of the location of the other user. MPIF resolves the
residency question. Any control program service enhanced to be non-resident
determines whether the service should be performed in the requester’s processor or
in a locally, channel attached processor. For the latter condition, the function uses
MPIF to transfer the request to the appropriate processor. The TPF system service
provides the same view to the requester regardless of whether the processing is
performed in this processor or in a locally attached processor. A response to the
requester has the same meaning, but the time to execute might be different.

Services Provided by MPIF

MPIF allows users in two TPF systems to communicate. It does this through its
path, connection, and data transfer services. MPIF also supports user exits to
process different events.

* The path services allow operators to define paths to be used in the connection.
* The connection services allow users to establish a session for transferring data.
* The data transfer services allow users to send data over the defined connections.

» User exit support is provided to allow MPIF users to process asynchronous
events relating to connections established or being established.

See User Fxits” on page 20 for a complete description of the MPIF user exits.

Path Services Support

MPIF defines logical paths and physical units. Logical paths are identified by a
name, and are defined by operator commands. Physical units are defined with
operator commands. When a logical path is started, two physical units are assigned
to it. This allows logical paths to be assigned different functional characteristics.

Path Class
Path classes are supported to allow users to select paths based on algorithms for

bandwidth or functional criteria. Paths can be defined as belonging to a class, and
users can request a connection by class when connecting to other users.

Multiple Path Support
MPIF supports multiple paths between systems for bandwidth or user functional

requirements. Multiple paths can be established when multiple CTC links exist,
which allows for maximum bandwidth capability.

4 TPF V4R1 Multi-Processor Interconnect Facility Reference

Users desiring multiple paths can issue a connect request to another user over
each available path to that user. It is the user’s responsibility to manage the multiple
paths for performance and for sequencing of data, if relevant.

Users needing to separate their data requests for functional reasons can do so
using their own algorithm, as is done for path classes.

Protected Path

A protected path cannot have the last path of a path class to a system stopped by
the ZMPIF STOP PATH command. In addition, a protected path causes messages
to be placed on the receiving system’s ready list instead of its input list, as in
standard MPIF message processing. Changing the list used to receive messages
from the input list to the ready list raises the priority associated with MPIF message
processing.

Load Balancing

MPIF load balancing supports multipathing by ensuring that each path, within a path
class defined with load balancing, is assigned to a unique device (for example, a
3088 communication unit or an ESCON CTC where appropriate). The number of
paths defined within such a class should be equivalent to, or a multiple of, the
number of devices used by the class. The association of a path to a CTC link is
made during cross-system startup.

Alternate Path Support
For backup support, each system should have two paths established through CTC

support. When a path fails, MPIF notifies affected users about the failure, and
allows them to re-establish their connections using alternate paths, if they exist.

Dedicated Path Support
MPIF users can separate their requests by data types or priority by using dedicated

paths. A dedicated path supports one user-to-user connection. A path class can be
defined that identifies dedicated paths on one or more CTC communication links.
Users can then send their requests to the paths in the appropriate class.

MPIF also allows users to restrict CTC links to certain path classes. Users can then
direct their requests to the links restricted to the appropriate class. In this way, a
CTC link can be restricted to a specific function or purpose.

Directory Update

MPIF maintains a global directory that contains an entry for each user in a MPIF
complex. Each system in the MPIF complex maintains its own copy of the directory,
which is updated by activity from other systems in the MPIF complex. As each
MPIF user identifies itself, using the IDENTIFY parameter on the MPIFC macro, its
name is broadcast to all attached systems as a directory update request.

Connection Services

MPIF provides services for creating and terminating logical connections between
MPIF users. The main services are called connection and disconnection. A
connection must be established between two users before any communication
between them can take place. The connection process involves coordinated actions
of the two users and a series of requests, which are exchanged between the two
users and the two associated MPIF systems. Both users must be activated before a
connection can be established. A user becomes activated by identifying itself to
MPIF.

When the users no longer want to communicate, the connection can be terminated.
Either of the users can request a disconnection.

Understanding and Using MPIF 5

The following sections describe the MPIF connection protocols and services.

Connection Protocols
MPIF supports two types of connection protocols:
* MPIF-to-MPIF connection
» User-to-user connection.

A MPIF-to-MPIF connection is used to exchange messages between the two MPIF
systems, for the purpose of managing connections between users in the two
systems. A MPIF system uses the path startup process to establish logical
connections to other MPIF systems in other processors.

A user-to-user connection is used to exchange data between the two users. A
connection is assigned to a single path. The connection is broken on path failure or
failure, or on a disconnect request from either user.

Using the Connection Services

Users initiate connection services by coding one of the following parameters on the
MPIFC macro:

* IDENTIFY

» CONNECT

» ACCEPT

* DISCONNECT

* FORGET

« QUERY

The definition of these parameters follows:

IDENTIFY
This function identifies the user to MPIF. The user is associated with MPIF
resources that are required for other MPIF functions. Once a user is identified,
MPIF considers that user as active.

CONNECT
To establish a logical connection between two MPIF users, the two users must
agree to the connection. One of the users indicates the desire to connect to
another specifically named MPIF user by using the CONNECT parameter.

ACCEPT
This function is used by a user to agree to a connection request from another
user.

DISCONNECT
This function is used by one of two connected users to remove a logical
connection, or by a user to reject a CONNECT request. MPIF also uses this
function for a given connection during failure of connection, user, or MPIF
processing.

FORGET
This function removes the named user from the MPIF complex. Additionally,
FORGET does the same processing as DISCONNECT. FORGET is the
opposite of IDENTIFY.

QUERY
This function is used to determine if other specified users have identified
themselves to MPIF. QUERY also provides the user the option to request
notification when one or more specified users become identified to the resident
MPIF system, or when one or more paths become available to a specific
system.

6 TPF V4R1 Multi-Processor Interconnect Facility Reference

Data Transfer

When a user wants to send data to another user with which it has established a
connection, the user invokes the MPIFC macro. In the macro, the user codes a
request type of SEND, and creates a parameter list describing the data. When the
request is transferred to the destination MPIF user, it executes a user exit routine to
process the data.

User Exits

MPIF supports the following user exits:

Data received exit - Provides the user with data received from the other user
across a specific connection.

Connection request exit - Informs a MPIF user that another user has requested a
connection.

Connection completion exit - Informs a MPIF user that a connection request has
been completed.

Directory update exit - Informs a MPIF user of a newly identified user.

Path active exit - Informs a MPIF user of a newly activated path, pertinent to the
user’s requirements.

Error exit - Informs the MPIF user of asynchronous errors that occur, such as
loss of a connection.

See FUser Exits” on page 20 for details on these user exits.

Interfacing with MPIF

This section describes the requirements for a user of MPIF, how a user can request
MPIF services, and what data can be passed in requests.

MPIF User Profile

MPIF provides services to a restricted set of users. These users should be system
programs or system support programs, not application programs. MPIF users have
the following profile:

MPIF users operate within a complex of interconnected processors. The users
are transportable within the complex.

In a tightly coupled multiprocessing configuration, MPIF can operate in any
I-stream engine within a single CPC. The I/O code supported by MPIF operates
on the second I-stream, unless there is only one.

Issuing MPIF Requests

MPIF requests can be issued using macros or operator commands, which are
summarized below.

Macros
The MPIFC macro is provided to allow MPIF users to request the following
services:

IDENTIFY - To establish the existence of a named MPIF user.

CONNECT - To request a logical connection to another named MPIF user.
ACCEPT - To accept a connection request from another MPIF user.
DISCONNECT - To break an existing connection or refuse to establish a
connection.

FORGET - To eliminate all knowledge of a MPIF user.

QUERY - To obtain miscellaneous parameters.

SEND - To initiate transfer of data to another MPIF user.

Understanding and Using MPIF 7

This macro can be executed from an ECB driven program (E-type program) or a
control program module (C-type program). C-type programs executing this macro
must be aware of what address space they are running in.

Operator Commands

MPIF provides commands for the operator to define and display status for
resources such as paths and time-out intervals. All MPIF operator commands are
prefixed with the action code ZMPIF and follow TPF conventions for commands.
Some differences are:

* Commands and parameters can be abbreviated.

* A command can be used to change individual parameters; thus corrections do
not require re-specification of all parameters when repeating a command.

Commands are provided to:
» Define path

« Start path

» Stop path

» Define device

» Start device

» Display device information
* Modify MPIF parameters
* Delete MPIF path/device
» Display MPIF activity/status
* Trace MPIF path/user.

See m for detailed descriptions of these commands.

Data Requirements for MPIF Requests
This section describes the data that can be passed in the various MPIF requests.

MPIF Naming Conventions

A name can consist of one to 8 EBCDIC characters, left-justified in any 8-character
field it might be contained in. A null always consists of eight blank characters.
Exceptions are stated in the specific name description.

There are four types of names:
* System names

* User names

* Path names

* Generic names.

System Names

MPIF knows the logical name of each system in the MPIF complex by the SET
command, a DEFINE PATH command, or Path startup. This information is available
to MPIF users on request (see the QUERY parameter on the MPIFC macro).

User Names

All MPIF users issuing an IDENTIFY request type (see the MPIFC macro) are made
known to each MPIF system. Each MPIF system maintains a directory of all the
identified users in the MPIF complex (those users that are currently accessible).
This distributed directory is updated when MPIF users identify themselves, execute
a MPIFC forget request, or when the connection to a system is lost.

8 TPF V4R1 Multi-Processor Interconnect Facility Reference

One MPIF user can request a connection to another user specifying user names in
either of two ways:

* By specifying both the user name and the logical system name in which the user
must be executing. This form is useful to select a specific copy of a distributed
function.

* By specifying the user name and an asterisk (*) for the system name. If this form
is used, the desired user must be located in a connected system, not the
resident system. Because user names are guaranteed unique only within a single
system, this user name must be unique within a MPIF complex.

Path Names

All MPIF paths defined with the DEFINE PATH operator command are given a
name for identification purposes. A path’s name is provided when an action is to be
performed on a path such as re-defining parameters for the path (DEFINE PATH),
starting a path (START PATH), or stopping a path (STOP PATH).

Generic Names

Generic names are used in MPIF to provide the capability to group paths by CTC
addresses for START and STOP path commands. For example, all active paths
through a specific 3088 MCCU or an ESCON CTC are grouped under the generic
name. Generic names are in the format $n, where:

$ - is used to indicate a generic name
n - can be one to seven characters

Tokens
The following 32-bit tokens are used in various MPIF requests. They are used for

efficient interfacing between MPIF and MPIF users without, in most cases, defining
what the value actually is.

Table 1. MPIF Token Definitions

Token Created by Description
User MPIF
UITOK X Given to MPIF via an IDENTIFY.

Kept by MPIF and given to user exits. This optional token
is defined by the user. It might serve as a pointer to a
primary control record or table.

IDTOK X Given to user on return from an IDENTIFY request.

Kept by user and given to MPIF via MPIF connection
functions. Associates the user with MPIF resources used
for the user and is required for other MPIF functions.

UCTOK X Given to MPIF via a CONNECT or ACCEPT request.

Kept by MPIF and given to user exits. This optional token
can serve as a pointer to a secondary control record that

represents a subfunction or connection. UCTOK might be
converted to the assigned CONTOK which can vary when
the connection is re-established due to failures or normal

procedures.

Understanding and Using MPIF 9

Table 1. MPIF Token Definitions (continued)

Token Created by Description
User MPIF
CONTOK X Given to user via a connect request or connect completion
exit.

Kept by user and given to MPIF via the MPIFC macro.
This token associates a request with a logical connection
represented by a connection control block.

Initializing MPIF

Defining the MPIF Environment

The definition of the MPIF environment is done using operator commands with the
action code ZMPIF. The information provided with these commands become
effective when the next IPL is done.

Follow these steps:

Define the complex parameters with the ZMPIF SET COMPLEX commands.
Define the system parameters with the ZMPIF SET SYSTEM command.
Define the path classes with the ZMPIF SET CLASS command.

Define the MPIF device(s) with the ZMPIF DEFINE DEVICE command.
Define the MPIF path(s) with the ZMPIF DEFINE PATH command.

arwbdE

Display this newly defined MPIF information using the following commands with no
other operands:

e ZMPIF SET COMPLEX

e ZMPIF SET SYSTEM

* ZMPIF SET CLASS

* ZMPIF DEFINE DEVICE

* ZMPIF DEFINE PATH

MPIF Initialization

Initialization of MPIF is done during system restart processing to make MPIF
operational as early as possible during that process. Once MPIF is operational it
schedules path startup processing which occurs asynchronous to the remainder of
the system restart process.

MPIF users might at times need to wait for connections to critical resources such as
users in other systems not yet identified to this system. Such users might want to
use the event facility of TPF (for example, the EVNTC, EVNWC, and POSTC
macros) and the MPIF user exits (for example, the path activation exit or the
directory update exit) to implement a wait process for critical resources.

Other Considerations

MPIF users should quiesce send activity before executing a DISCONNECT for a
connection.

10 TPE V4R1 Multi-Processor Interconnect Facility Reference

MPIF Error Processing

MPIF Failures

MPIF failures, generally speaking, can occur in any one of several levels:
* MPIF failures

» Data transfer failures

* MPIF user failures

e Path failures

e Connection failures.

Failures in MPIF C-type code are considered catastrophic and must be followed
with a re-IPL of the system. Failures in MPIF E-type code is treated individually and
appropriately for the condition and the function being performed. Generally, E-type
failures does not cause a re-IPL of the system.

Data Transfer Failures

During data transfers via MPIF from one user to another, many key MPIF resources
are involved.

* MPIF buffers, staging areas, connections, and path resources are allocated.
* Both the READ and WRITE sides of the path must be manipulated.

» Failures might affect only a connection, or might affect the path and all other
connections using the path.

To insure that these key resources are freed in case of failure, MPIF enforces
disconnections for all users of the path. The processing includes the invoking of
user error exits to process the queued items.

MPIF User Failures

Path Failures

Each MPIF user has allocated to it MPIF resources primarily in the form of
dedicated control blocks and dynamically allocated MPIF resources. These
resources are shared by the users during MPIF processing of their requests (for
example, during send or receive).

For example,

» A connection definition block is allocated and maintained at each end of a logical
connection by MPIF for the associated users.

* Arequest block is allocated for each pending SEND request being processed by
MPIF.

Whenever a user issues a DISCONNECT or FORGET request all MPIF resources
allocated to the user are reclaimed for subsequent use by MPIF for other potential
users. When a user fails, and does not affect the functioning of MPIF (that is, a
ECB driven system utility function), allocated resources can become unavailable for
re-use until the system is re-IPLed. Such users (for example, copies of some
system utility connected to another common user or point) must provide for
recovery of such allocated resources by scheduling a recovery process for failed
users (for example, a time initiated monitor of such users). Neither MPIF nor TPF is
able to detect a failure for this type of MPIF user.

A path is a critical shared MPIF resource with broad implications to both MPIF and
its users.

* It involves system and MPIF resources which are allocated on multiple systems.

Understanding and Using MPIF 11

* It supports multiple user connections, and thus also involves the corresponding
connected users which reside on the two connected systems.

* It supports MPIF-to-MPIF communication and is required for the maintenance of
such key MPIF resources as the global replicated directory.

The status of a path depends on the proper operation of the using processes (for
example, send and receive), the correct functioning of the channel programs, and
the correct and continued operation of the channel and hardware devices. A failure
in any of these might result in path termination. After termination actions have been
completed, a path restart is scheduled to ensure availability of the MPIF transport
mechanism.

In addition, the path can be stopped (gracefully or not) with a command. If the
STOP PATH command is issued with the quiesce option, path termination is started,

but is not complete until all using connections have been given time to quiesce their
activity and disconnect. Refer to the STOP PATH command in ﬁ@ for a

description of this interval.

If the STOP PATH command is issued with the purge option, path termination
completes regardless of the status of the connections; some user data might be lost
in the process. The user is informed of the abnormal disconnect. In this case, the
path is not automatically restarted.

The following are a set of conditions that might cause path startup problems:
» Paths in different systems are not defined with the same class.

» Path classes do not have the same meaning in each system in the MPIF
complex.

* Insufficient control block to support an active path. Any of the following might be
deficient: GFND, CDB.

* Output queue depth (as specified in ZMPIF SET SYSTEM) might be zero.
* System names are not consistent within a MPIF complex.

» Path classes defined as load balancing. If so, only one path of that class is active
per device name.

Connection Failures

12

The connection process is a complex, multistage, asynchronous process involving
the coordinated actions of the two connecting users and the two MPIF systems.
The process of terminating the connection (disconnection) at the request of one of
the users involves similar asynchronous actions by these four parties.

Connection termination can be initiated by a user via a DISCONNECT request or by
MPIF. A connection is a critical MPIF resource upon which numerous MPIF
processes are dependent. A connection is, itself, also highly dependent upon other
critical MPIF resources in order to be fully functional; for example, a failure among
any of the aforementioned parties or the path to which it is allocated causes the
connection to terminate. Also, the failure of any process using the connection (send
or receive), can require the termination of the connection in order to ensure proper
recovery from the error.

TPF V4R1 Multi-Processor Interconnect Facility Reference

Example of Using MPIF Services
Eigure 3 on page 14 and Eigure 4 on page 15 describe the MPIF macro flows and

the use of tokens and user exits. Tokens are shown as TKnn. The user exits are
indicated as:

CCX - Connection completion exit

CRX - Connection request exit

DRX - Data receive exit

ERX - Error exit.

IDENTIFY/CONNECT Flow

Eigure 3 on page 14 shows an example of the flow for IDENTIFY/CONNECT and
indicates three possible responses to CONNECT:

e ACCEPT

» DISCONNECT

* No answer, in which case there is a timeout.

Understanding and Using MPIF

13

SYSTEM X SYSTEM Y
USER MPIF MPIF USER
IDENTIFY R) IDENTIFY
MYNAME=ME1 g) MYNAME=ME2
CRXAD=CRX1 CRXAD=CRX2
ERXAD=ERX1 ERXAD=ERX2
UITOK=TK1 UITOK=T11
IDENTIFY RETURN IDENTIFY RETURN ‘
) IDTOK=TK2 IDTOK=TK12 !
*
CONNECT > > » CRX2 >
NAME=ME2 UITOK=TK1Ll .
DRXAD=DRX1 CONTOK=TK14
IDTOK=TK2
CCXAD=CCX1
UCTOK=TK3
— corie) ACCEPT
) T CONTOK=TK4) IDTOK=TK12
UCTOK=TK3 CONTOK=TK14
UITOK=TK1 DRXAD=DRX2
UCTOK=TK13
DISCONNECT
. (NOT ACCEPT)
coxas UITOK=TK1) CONTOK=TK14
UCTOK=TK3 IDTOK=TK12
. *
CONNECT Timeout R . ERX2 R
NAME=ME2 UITOK=TK1l =
DRXAD=DRX1 CONTOK=TK14
IDTOK=TK2
CCXAD=CCX1
UCTOK=TK3

Figure 3. MPIF IDENTIFY and CONNECT Flows

Also, a connect race condition can occur if both X and Y issue CONNECT at the
same time; only one connection is needed. MPIF supports n connections between
users. If users desire only one, they must define a startup protocol to determine
which user can issue the connection.

All events associated with establishing a connection occur across the path allocated
to the originating CONNECT request. This simplifies processing for path failures. If
a path fails during this processing, the connect request is failed. This avoids having
to recover from all the conditions that a path failure can produce, including receiving
obsolete requests about a connection.

14 TPF V4R1 Multi-Processor Interconnect Facility Reference

SEND/DISCONNECT Flow

Eigure 4 shows an example of the flow for SEND/DISCONNECT.

SYSTEM X SYSTEM Y
USER MPIF MPIF USER
SEND *
> > »DRX2 —»
CONTOK=T4 UITOK=T11 *
UCTOK=T13
* SEND
< DRX1 < <
%+ UCTOK=T3 CONTOK=T14
UITOK=T1
DISCONNECT -
CONTOK=T4 CONTOK=T14
IDTOK=T2 UCTOK=T13
UITOK=T11
DI§CONNECT ACK)
CONTOK=T4
IDTOK=T2
FORGET - P FORGET
IDTOK=T2 IDTOK=T12

Figure 4. MPIF SEND and DISCONNECT Flows

In Eigure 3 on page 14 and Eigure 4 the fact that the user in X issued a SEND first

is just for example. The user in Y can issue a SEND first, but this might result in X
receiving a message before being told that the connection is complete.

Understanding and Using MPIF

15

16 TPE V4R1 Multi-Processor Interconnect Facility Reference

Programming Guide

This chapter describes some of the MPIF processing that you must understand in
designing system or utility programs to interface with MPIF.

Status Management

Echo Check

There is no explicit common status management facility in MPIF; however, the
following should be noted:

* MPIF users identified via the IDENTIFY macro will be considered as active.
» Paths processed by MPIF path startup will be considered as active.
* The systems connected at each end of active paths will be considered as active.

» MPIF will police all paths for lost interrupt conditions and for inactivity on a time
basis.

» Connections will be timed-out if not completed within a predefined period of time.

* The echo check facility will verify the availability of a path found to have had no
activity for a predefined period of time.

The MPIF echo check function exists to ensure that MPIF paths which become
inoperative do not remain undetected. Echo Check is invoked by MPIF at a
user-specified time interval. At each interval an echo check message is sent over
each started path with no activity since the last expired time interval. If the message
is not read by the other side before the next time interval, path failure is assumed.

Potential causes of this are:
* Failure of the other system’s software.
» Failure of the other system’s hardware.

* Failure of a channel or CTC support in such a manner that no 1/O errors are
generated.

* STOP of the other system'’s instruction stream.

* Unresponsiveness of the other system. This could be due to an overloaded
system, or disabling activity such as depleted core conditions, or system error
processing.

Pacing Control

In order to avoid performance impacts to TPF, core blocks must be available for
MPIF to dispatch requests for processing by defined user exits. If there are no
blocks, no reads will be scheduled by MPIF. This is purposefully unfriendly: user
functions should be designed to avoid such conditions when appropriate. The
pacing facilities provided by MPIF can help.

When multiple copies of the same code (for example, multiple TPF routers) are
going to communicate (HOMOGENEOQOUS connections), the code can be easily
designed to use a protocol that avoids flooding a system with more SENDs than it
has core blocks to support. For example, a protocol that is SEND, then wait for
RECEIVE does not overrun either side’s core block lists.

When a system service is providing a general facility and other system services can
connect to it (HETEROGENEOUS connections), things get more difficult. While the

© Copyright IBM Corp. 1994, 2000 17

system service providing the general facility can define a protocol that must be used
by its users, it cannot prevent a user from violating the protocol (it can only punish
users for violations). A user violating the protocol can impact other connections to
the general purpose system service.

Prevent Buffer Overruns

The MPIF pacing facility provides a simple mechanism to help prevent buffer
overrun conditions and to enforce this prevention. It allows each side of a
connection to specify the maximum number of its buffers that the other side can
consume before it is forced to stop SENDing on a specific connection. MPIF
maintains a pacing credit count and when credit is exhausted, SENDs from that
side of the connection are stopped. The receiver is able to increase the sender’s
pacing credit count, by providing the sender with credit with messages sent to the
sender. Thus the receiver is able to control the number of the receiver’s core blocks
consumed by the sender. When options are defaulted, each time the receiver
SENDs to the other side, the other side’s pacing credit count is incremented by one
(credited with 1). This default supports protocols that are rigidly one-in, one-out as
well as protocols that are many-in, many-out with an equal number out.

SEND Logic

Additional user logic is required where MPIF pacing is desired but the number of
SENDs by each side is not expected to be the same. SEND allows one side to
provide the other side with credit for multiple sends. The default provides the other
side with credit for a single send. mpshows the SEND logic exploited by
MPIF.

SEND LOGIC — PACECTL

1. DOES HE HAVE PACING CREDIT?
Y N

2. DECREMENT CREDIT. 2. RETURN — “pace limit reached”
3. CONTINUE WITH SEND.

Figure 5. SEND LOGIC - PACING

RECEIVE Logic
m shows the RECEIVE logic exploited by MPIF.

RECEIVE LOGIC - CREDIT OF 1

1. INCREMENT CREDIT.

2. PASS RECEIVED BUFFER
TO USER.

Figure 6. RECEIVE LOGIC - PACING

18 TPE V4R1 Multi-Processor Interconnect Facility Reference

Deadlock Situation

It is possible to create a deadlock situation using pacing where neither side can
send because both have reached their pacing send count. This deadlock can also
be avoided by appropriate design.

It might be desirable to segregate pacing for data types or sizes. This could be
accomplished by establishing two connections between the two users - each
connection would be used for different data types or sizes. Two connections would
allow independent control of pacing.

The MPIF pacing facilities can be ignored by not selecting the option via the
CONNECT or ACCEPT parameter lists.

The MPIF pacing facilities provide the ability to do what is generally referred to as
windowing. In most cases, this can be accomplished by piggybacking credit on data
or acknowledgement SENDs, thus avoiding extra communications.

Sequence Number Control

MPIF operates in and supports a highly parallel environment. Users of MPIF can
issue functions such as SEND almost simultaneously in uniprocessor machines.
MPIF is designed to deliver messages in the same sequence that they were
provided to MPIF, but the highly parallel environment can cause the illusion that
messages are delivered out of sequence. If a single ECB issues two SEND
requests, the first data block will be scheduled for the user at the other end of the
specified connection before the second data block. That first data block might not
get processed first. For example, an E-type data received exit might invoke some
TPF macro which has enforced an implied wait. The second data block, in the
meantime, could be passed to the same Exit under a different ECB and the
execution of the same TPF macro might not enforce an implied wait this time;
therefore, processing of the second data block could progress ahead of that for the
first data block--it could very well get processed out-of-sequence.

Another example of a sequence that can occur is the invocation of a connect
complete or error or data receive exit associated with a connection after the user
has issued DISCONNECT. This can occur because the user had not quiesced
SEND activity or because the exit was scheduled before the DISCONNECT was
processed.

The MPIF SEND function will assign a connection sequence number. This number
is passed to the issuer of SEND and to the user data receive exit. This connection
sequence number is a 32-bit unsigned number associated with a specific
connection that begins with 1 and wraps to zero. When multiple SENDs are issued
for the same connection (that is, the user at the other end of the connection), the
sequence numbers will be unique and increase by one. Any discrepancy might be
indicative of an out-of-sequence condition or a failure relating to the connection.

Blocking of Data Request Elements

MPIF performs blocking of data elements received from separate system services in
order to maximize 1/O efficiency. Prior to invoking the I/O routine (during MPIFC
execution or during a write I/O interrupt), MPIF assembles numerous data elements
into a single staging buffer. These data elements are removed from a PDT entry’s
output queue. The /O routine initiates execution of a channel program to write the
contents of the staging buffer to the other processor.

Programming Guide 19

Upon receipt of a read interrupt, the I/O routine places the staging buffer on the
ready list or the input list for post interrupt processing. The post interrupt routine
recognizes that blocking has been performed. The individual data elements are
de-blocked and the appropriate user exits will be scheduled.

List Support for Segmented Data

MPIF allows a user to send multiple data blocks with the list variation of the SEND
request parameter list. The maximum number of data bytes that can be transferred
with a list, is limited by the maximum write buffer size specified for the connection,
and for the path class used for the connection. The list format is available to C-type
programs only. The list must contain the system virtual address of blocks not
associated with an ECB. The blocks are not copied but are used as passed. See
the DCTMUP data macro for details on how to determine the number of bytes for
the list control information.

Priorities
MPIF supports three types of priorities that can be specified by the user in a SEND
Request parameter list;
* Normal priority (in the sending system)
» Control message priority (in the sending system)
» Dispatching priority (in the receiving system).
Requests specifying normal priority are serviced in the order they are issued, using
a first-in, first-out method.
A control message request that is waiting to be transferred on the same path and
destination as a normal request will be serviced before the normal request. Multiple
requests indicating control message priority are treated equally, using the first-in,
first-out method.
A request with dispatching priority can specify initial dispatching from the ready list
or the input list, in the system to which the SEND request is transferred.

User EXits

Data Received

Exit

Purpose
To pass to the user a request in the form of a parameter list and, if relevant,

associated core blocks containing data sent over a connection from another user.

Suggested Processing
The user’s data received exit might perform message sequencing and assembly if

appropriate. This could include queueing of data blocks which are not received in
the correct sequence. Following this first step, the exit might process the data
block(s) if appropriate: otherwise, the exit might schedule another program for
processing of the data.

Interface
The data received exit address is specified with a CONNECT or ACCEPT request

and can be different for each connection. MPIF schedules the exit when a request
is received from the other side of the connection.

20 TPF V4R1 Multi-Processor Interconnect Facility Reference

The exit routine can be C or E type code. For C-type code, the exit will be a post
interrupt address (PIA). For E-type code, the exit will be a SWISC expansion.
Registers for E-type routines are as follows:

R1 Contains the address of the data received exit parameter list. The
parameter list is described in the DCTMUP data macro.

R7 Since no save area is provided, R7 will contain zeros.

ECB The parameter list is contained in the ECB starting at EBX000.

Registers for C-type routines are as follows:

R1 Contains the address of the data received exit parameter list. The
parameter list is described in the DCTMUP data macro.

R13 Points to the new stack area.

R15 Contains the base address of the exit (that is, the PIA).

Connection Request Exit

Purpose
To inform a MPIF user that another user has requested a connection.

Suggested Processing

» Validate that the requestor is authorized to connect.

» \Verify that the state is appropriate to establish a connection.

« Save the connection token in the control structure (for example, tables), if one
exists.

* Analyze and/or save any data received with the request.

* Respond with an ACCEPT or DISCONNECT.

Interface

The connection request exit is specified via an IDENTIFY. The exit is scheduled
when a MPIF user in another system requests a connection with a CONNECT
request.

The exit routine can be C or E type code. For C-type code, the exit will be a post
interrupt address (PIA). For E-type code, the exit will be an SWISC expansion.
Registers for E-type routines are as follows:

R1 Contains the address of the connection request exit parameter list. The
parameter list is described in the DCTMUP data macro.

R7 Since no save area is provided, R7 will contain zeros.

ECB The parameter list is contained in the ECB starting at EBX000.

Registers for C-type routines are as follows:

R1 Contains the address of the connect request exit parameter list. The
parameter list is described in the DCTMUP data macro.

R13 Points to the new stack area.
R15 Contains the base address of the exit (that is, the PIA).

Programming Guide 21

Connection Completion Exit

Purpose
To inform a MPIF user that a connection request has been completed.

Suggested Processing
e Save the connection token.

* Analyze and/or save any data from the ACCEPT.
* Note that the connection is available for SENDing data.
 Issue the initial SEND request or cause this to be done, if appropriate.

Interface

The connection completion exit is specified via a CONNECT request. The exit is
scheduled when a connection request is completed (either the connection is
complete or the connection request has failed).

The exit routine can be C or E type code. For C-type code, the exit will be a post
interrupt address (PIA). For E-type code, the exit will be an SWISC expansion.
Registers for E-type routines are as follows:

R1 Contains the address of the connection completion exit parameter list. The
parameter list is described in the DCTMUP data macro.

R7 Since no save area is provided, R7 will contain zeros.
ECB The parameter list is contained in the ECB starting at EBX000.

Registers for C-type routines are as follows:

R1 Contains the address of the connection completion exit parameter list. The
parameter list is described in the DCTMUP data macro.

R13 Points to the new stack area.

R15 Contains the base address of the exit (that is, the PIA).

Directory Update Exit

22

Purpose

To inform a MPIF user that a QUERYed user is now identified in another system.
This notification takes place only once for each MPIFC QUERY request unless a
wildcard character (*) is used to specify the system name.

This user exit is optional; however, it is important to understand that path startup
processing can complete asynchronous to any other activity; thus, QUERY’s for
“active” MPIF users issued immediately after path startup processing will not
necessarily detect the existence of active MPIF users.

Other procedures to achieve the same results might be employed by MPIF users
when appropriate; for example, the QUERY request could be reexecuted on a time
activated basis.

Suggested Processing
* Issue a CONNECT request to establish a connection to the other user.

Interface

The directory update notification exit is invoked whenever a directory replace or
update is received with a named MPIF user which was previously queried by a user
in this system.

TPF V4R1 Multi-Processor Interconnect Facility Reference

The exit routine can be C or E type code. For C-type code, the exit will be a post
interrupt address (PIA). For E-type code, the exit will be a SWISC expansion.
Registers for E-type routines are as follows:

R1 Contains the address of the directory update exit parameter list. The
parameter list is described in the DCTMUP data macro.

R7 Since no save area is provided, R7 will contain zeros.

ECB The parameter list is contained in the ECB starting at EBX000.

Registers for C-type routines are as follows:

R1 Contains the address of the directory update exit parameter list. The
parameter list is described in the DCTMUP data macro.

R13 Points to the new stack area.

R15 Contains the base address of the exit (that is, the PIA).

Path Active Exit

Purpose

To inform a MPIF user that a new path that is relevant to the user’s operation (that
is, a class of paths the user is using for connections to a specific system) has been
activated. This notification takes place only once for each MPIFC QUERY request
unless a wildcard character (*) is used to specify the system name. This optional
user exit will be pertinent to those users of multiple pathing.

Suggested Processing

* Issue a CONNECT request to establish a connection to the other user using the
newly activated path.

Interface
The path active notification exit is invoked whenever a new path of the specified
class to the specified system has been activated via path startup.

The exit routine can be C or E type code. For C-type code, the exit will be a post
interrupt address (PIA). For E-type code, the exit will be an SWISC expansion.
Registers for E-type routines are as follows:

R1 Contains the address of the path active exit parameter list. The parameter
list is described in the DCTMUP data macro.

R7 Since no save area is provided, R7 will contain zeros.
ECB The parameter list is contained in the ECB starting at EBX000.

Registers for C-type routines are as follows:

R1 Contains the address of the path active exit parameter list. The parameter
list is described in the DCTMUP data macro.

R13 Points to the new stack area.

R15 Contains the base address of the exit (that is, the PIA).

Programming Guide 23

Error Exit

Purpose
To inform the user of asynchronous events, normally errors, related to MPIF and

MPIF connections.

Suggested Processing
» For connection related errors, issue status messages as appropriate.

* For “path stopping” warnings, quiesce the connection normally and issue a
DISCONNECT request.

» For other warnings, cause message recovery logic to be invoked to ensure that
no blocks of data have been lost; this logic might disconnect then reconnect or
just use recovery messages.

» For disconnect other than user requested disconnect, determine if an alternate
path is available and, if so, attempt to re-connect.

» Schedule path activation/directory notification as necessary.

Interface
The Error Exit is specified via an IDENTIFY request. The exit is scheduled when a
error is detected - most, but not all errors are related to a particular connection.

The exit routine can be C or E type code. For C-type code, the exit will be a post
interrupt address (PIA). For E-type code, the exit will be an SWISC expansion.
Registers for E-type routines are as follows:

R1 Contains the address of the error exit parameter list. The parameter list is
described in the DCTMUP data macro.

R7 Since no save area is provided, R7 will contain zeros.

ECB The parameter list is contained in the ECB starting at EBX000.

Registers for C-type routines are as follows:

R1 Contains the address of the error exit parameter list. The parameter list is
described in the DCTMUP data macro.

R13 Points to the new stack area.
R15 Contains the base address of the exit (that is, the PIA).

MPIF User Parameter List Definitions (DCTMUP)

Description

RESTRICTIONS
The DCTMUP macro, along with the MPIFC macro, is a restricted use macro
with an interface which is not guaranteed across releases of TPF.
Unauthorized use of this macro might expose the user to interface and/or
processing errors.

This data definition macro describes parameter lists used to define:
1. Specific requests for the MPIFC macro (Request MPIF Service)
2. Input to user exits defined to MPIF.

24 TPF V4R1 Multi-Processor Interconnect Facility Reference

3. A user provided area which is initialized by MPIF with the results of a QUERY
request.

You invoke DCTMUP as follows:
DCTMUP REG=Rxx, LTYPE=Parameter List

REG=
is the keyword used to specify a symbolic register name (Rxx) valid for
assignment to the USING statement as the base register for DCTMUP DSECT.

LTYPE=
The MPIF service request parameter lists are:

IDENTIFY To identify named MPIF user.

CONNECT To establish a connection.

ACCEPT To accept connect request from another user.
DISCONNECT To break the connection.

FORGET To delete reference of user.
QUERY To obtain miscellaneous information.
SEND To send a request to another user.

The MPIF user exit parameter lists are:

CRX Input to user’s connect request exit.

CCX Input to user’s connect request completion exit.
DRX Input to user’s data received exit.

DUX Input to user’s directory update notification exit.
ERX Input to user’s error exit

PAX Input to user’s path active notification exit.
QRA Response to query request.

ALL A call for all of the above definitions.

Programming Guide 25

26 TPF V4R1 Multi-Processor Interconnect Facility Reference

MPIF Post-Processing Application

A MPIF post-processing application has been written to verify MPIF interconnect
traffic from an online (real-time) TPF environment. This application depends on
MPIF trace being set ON with real-time (tape) logging. The log tape is then used as
input to this application in a TPF offline environment, using MVS as the offline
post-processing system. Prerequisites to executing MPIF post-processing services
would therefore include access to one or two trace tapes from a TPF real-time
environment. The number of log tapes would depend on the type of report
requested by the user.

Since a real-time TPF trace tape may contain many types of records, this
application is designed to process MPIF Multisystem request block (MSRB) records
only, using the TRCID field in the DCTTRC DSECT to identify trace record IDs
containing X'00E3' as the field contents, where X'00E3' is the MPIF MSRB trace
record ID.

This post-processing application is designed to be used as a debugging and/or
troubleshooting tool for customers using MPIF. It generates “easy-to-read” reports
for user verification of MPIF online activities. In some instances, users may install
MPIF on a given CPU wanting to verify that MPIF functions are operative within this
newly installed system. In this situation, users can input one trace tape from that
CPU only. A report can then be generated containing “easy-to-read” displays of
every MPIF activity that occurred for this specific CPU. In other instances, users
may want to compare MPIF activities between two systems. This can be
accomplished by inputting two log tapes. The MPIF post-processing application will
then perform a CPU-to-CPU comparison of messages transferred between them,
producing a summary report of traced messages.

Since this application generates two unique types of reports, a method has been
devised that enables customers to specify which report is being requested. This is
accomplished by generating post-processing commands that are applicable to this
application only. The commands include:

PRINT Print the contents of one MPIF trace tape only; generating a report
of each traced activity.

COMPARE Compare the contents of two MPIF trace tapes as a CPU-to-CPU
analysis of message traffic and generate a summary report.

Furthermore, it is assumed that each system at a customer location is only
interested in his (or her) MPIF message traffic. It is therefore important to extract
logged information that meets the specific requirements of the requestor. This has
been accomplished by examining all traced fields (defined in the DCTTRC DSECT)
to identify those fields that are candidates for defining a search criteria. If a specific
field could be used as a customer-defined search criteria, that field has been
assigned a keyword to form a

KEYWORD=ARGUMENT

parameter that can be entered by users to specifically identify the MPIF traffic that
should be reported. For example, the MPIF trace record contains the MPIF logical
path name (referenced as TRCPATHN in the DCTTRC DSECT). If troubleshooting
occurs for a specific logical path, the user can then request a report containing
traffic on that path only:

PRINT PATH=FAIR3088

© Copyright IBM Corp. 1994, 2000 27

If a problem occurred on a given logical path on a specific day at a specific time
interval, the user can further qualify the search criteria as follows:

PRINT PATH=FAIR3088,DATE=15DEC,TIME=02.15.00

This MPIF post-processing application will interpret the above report-generation
search criteria as: print only those MPIF traced activities that occurred for logical
path name= FAIR3088, on December 15 between 02:15 PM and 02:59 PM. The
TIME= parameter functions as a START-TIME, with an implied STOP-TIME equated
to “end of hour.” If the implied STOP-TIME exceeds the requestor’s search criteria a
DUR= parameter can be specified as follows:

PRINT PATH=FAIR3088,DATE=15DEC,TIME=02.15.00,DUR=10

Using the above search criteria, the MPIF trace log tape report will contain a report
of activity from 02:15 PM through 02:25 PM; treating the TIME= parameter as the
START-TIME; adding DUR= to the TIME= (minutes field) to derive an explicit
STOP-TIME. Stated differently, the TIME= parameter functions as a START-TIME
with an implied (default) STOP-TIME equated to “end of hour” unless the implied
STOP-TIME is overwritten by a DUR= parameter that specifies elapsed minutes:
the elapsed minutes will be added to the START-TIME to form an explicit
STOP-TIME. If the DUR= parameter forces the explicit STOP-TIME to exceed an
hour, the STOP-TIME will be forced to “end of hour”.

Using either an implied or explicit STOP-TIME, this application is designed to
search trace tape records, examining the time stamp in the 4K block header
(TRCTTIME), extracting those records that fall within the allowable TIME= range.
Since the TIME= parameter is dependent on a DATE= parameter for full
qualification, this application is designed to validate parameters, generating an error
message if TIME= is entered without DATE= (paired parameters). However, DATE=
can be entered as an independent parameter.

Keywords Specifications For Report Generation

28

A list of acceptable keywords for MPIF post-processing has been provided below.

The keywords are:

BLK Number of 4K blocks to be printed from the trace tape containing
MPIF trace entries. Default = 1,000 4K blocks.

MSG Number of message entries to be printed per 4K block. Default = all
messages within each 4K block.

USER A specific USER that was traced on the MPIF trace tape.

ORG A specific origin (or source) that was specified on MPIF message
transmissions.

DEST A specific destination that was specified for MPIF message
transmissions.

*DATE A specific DATE for traced messages on the MPIF trace tape.

*TIME A specific TIME for traced messages on the MPIF trace tape, using

the TIME stamp in the 4K HDR.

If a time is provided (HH.MM.SS), this program will select all
messages within the hour (HH), on-or-after the minute (MM)
specified.

TPF V4R1 Multi-Processor Interconnect Facility Reference

Example: 02.15.45 says “Give me any messages on or after 2:15
PM (through 2.59.59).”

DUR A MM (minutes) notation signifying elapsed time. If the elapsed time
exceeds the current hour, an “end of hour” STOP-TIME will be
assigned.

PATH A specific PATH that was used during MPIF message transmission.

*CPU1 The primary CPU or system ID where MPIF trace is active.

*CPU2 The connected CPU or system ID used in a COMPARE analysis

between two CPUs.

Note: An asterisk (*) above denotes required keywords that must be entered for
the COMPARE command.

Each of the above keywords (if specified) must be entered as spelled above; using
uppercase or lowercase letters. The arguments must be entered as they appear on
the MPIF log tape, using the DCTTRC DSECT for format lengths. If arguments are
truncated, when entered as KEYWORD= arguments, they will be blank-padded
from left to right. That is, a 4-character USER=aaaa, will be placed in an
8-character field with blanks in positions 5 through 8. Blank padding will only occur
for alphanumeric fields that include USER, DEST, ORG, PATH, CPU1 AND CPU2.

Numeric-only arguments (BLK=, MSG=, and DUR=) must be zero-filled, according
to their size. Both the argument size and range of values have been specified

below:

BLK= A four-position value ranging from 0001 through 9999 in numeric
value. Default = 1,000

MSG= A two-position value ranging from 01 through 63 in numeric value.
Default = ALL (messages in 4K BLK).

DUR= A two-position value ranging from 01 through 59 in numeric value.

Default = “end of hour” STOP-TIME.

Any mixture of keyword parameters can be specified for PRINT and COMPARE
commands. With the PRINT command, at least one parameter must be specified.
With the COMPARE command, however, four keyword parameters are required;
denoted by an asterisk (*) in the keyword list. For quick reference, however, these
required COMPARE keywords are repeated below:

CPU-to-CPU Required Keywords

DATE= What date do you want CPU-to-CPU tape compares?
TIME= What time do you want CPU-to-CPU tape compares?
CPU1= What CPU or System ID are you troubleshooting?

CPU2= What connected-to CPU or System ID is it linked to?

Command/Search Argument Examples

If several search arguments are used, only those messages that meet the search
criteria will be printed on reports. The following is an example of concatenated
search parameters for report generation:

PRINT USER=mpif01,DEST=tpfOl,0RG=tpf02

MPIF Post-Processing Application 29

A program will scan one mounted trace tape for MPIF MSRB logged entries. If the
record ID = X'00E3', this program will then scan for a USER=mpif01, ORG=tpf02
and DEST=tpf01l. Only those messages that were sent from tpf02 to tpfO1 under
USER=mpif01 will be printed.

When an argument is specified (for example, tpf01), the use of uppercase or
lowercase letters depends solely on the conventions used in MPIF.

PRINT BLK=0010,USER=mpif01,DEST=tpf01,0RG=tpf02

If BLK=0010 is specified, then only 10 4K Blocks will be printed if they contain a
USER of mpif01, a DEST of tpf01 and ORG of tpf02. Note that the BLK= parameter
only affects the number of blocks appearing on reports, not the number of blocks
scanned on the log tape.

COMPARE CPU1=TPFXX1,CPU2=TPFXX2,DATE=15Dec, TIME=10:00:00,
DEST=tpfo1

In the above example, a CPU-to-CPU message analysis will be performed for
December 15 from 10:00AM through 10:59AM only for those messages sent from
TPFXX1 to TPFXX2 with a destination of tpf01l. TPFXX2'’s trace tape will also be
searched for the same date and time for messages received by tpfO1.

Reducing the Report Size
The user can reduce the volume of information being printed by using two
volume-associated keywords. They include:

BLK= Reduce my report size by printing the number of 4K blocks |
specifically request.

MSG= Reduce my report size by printing the number of messages |
specifically request within each 4K block.

DEFAULT, CANCEL Commands

Finally, two commands were added that enable the user to bypass keyword entry or
cancel the request. DEFAULT can be used instead of PRINT to bypass entering
parameters. If used, it equates to: PRINT 1,000 4K blocks; all messages within a
4K block. The CANCEL command will cause the program to terminate.

Summary of Post-Processing Commands
The following list summarizes available commands for MPIF post-processing.

PRINT Generate a report of one CPU’s MPIF activity for messages that
meet user-defined search criteria.

DEFAULT Generate a report of one CPU’s MPIF activity for all messages. A
search criteria will not be provided. To reduce the size of report
output, however, only 1,000 4K trace blocks will be printed.

COMPARE Perform a CPU-to-CPU compare of MPIF messages sent and/or
received between two specific CPU’s and generate a summary of
your analysis.

CANCEL Cancel execution at the time user’s input search criteria is
requested by the program. For this command to be valid, JCL
statements must be converted to a C-list.

Only the COMPARE and PRINT commands can have keywords that provide a
search criteria. When provided, each keyword must be entered as formatted below:

30 TPF V4R1 Multi-Processor Interconnect Facility Reference

Command/Keyword Format Requirements
COMMAND KEYWORD=ARGUMENT , KEYWORD=ARGUMENT

The command must begin in column 1. The first keyword must be separated from
the command with a blank. If the user enters more than one
KEYWORD=ARGUMENT search parameter, each parameter must be separated by
a comma to signify continuation. Imbedded blanks are prohibited between a list of
KEYWORD=ARGUMENT entries. The program that reads and interprets the user’s
entry will scan the entry from right to left, looking for a blank (end of
KEYWORD=ARGUMENT list) or comma as the last character entered. If a comma
is found, the program will expect a second (continuation) record that begins in
column 1.

Trace Summary Report

A user who wishes to generate a dense listing of MPIF message traffic can obtain
an unformatted listing of trace data from a single real-time tape by using the
summary report post-processor. Program CBQPRT performs this function. The
summary report will include all logged messages on the input real-time tape. Refer

to ESample Summary Repart” on page 34 for a sample report.

Trace data in the summary report is listed in tabular format. One report line is
logged for each MPIF message entry and presents all traced information for that
message. The summary report post-processor does not allow the user to filter trace
data on the basis of time, user name, system name, etc.

SamEIe JCL has been provided (refer to l1CI Sample for Trace Summary Repart!

Examining Generated Reports

Since a user may wish to activate this post-processing application several times,
having different search criteria for each execution, each report will identify
user-defined search criteria on its first report page.

A sample report has been provided for PRINT (or DEFAULT) commands (refer to
[Sample Print/Default Report” on page 37). As can be seen in this sample, all fields
in the 4K header have been printed at the top of each page. For each traced MPIF
activity, all traced fields defined in DCTTRC DSECT have been formatted in an
“easy-to-read” char display. The I/O flag and MSRB function code have been
translated, reporting both their hexadecimal contents and their definition.

FUNCTION X'nn', = "UNDEFINED TO PGM'

When this message appears, the function code identified as X'nn' (in hexadecimal
notation) must be added to the table of function codes labeled FUNCTBLE (MPIF
Function Codes) and the maximum code must be revised to reflect a new maximum
(labeled MAX#FUNC).

A portion of the transmitted message is also printed in hexadecimal and character
format. If the MSRB function code is zero or if the message length is zero, the
message area in this report will contain:

SIZE = 000 (MSG = NONE)

Each traced MPIF activity will generate a five or six line report entry if the PRINT or
DEFAULT command is issued with a one line variation depending on the absence

MPIF Post-Processing Application 31

or presence of a transmitted message. If a message is not present, only the line
above will be printed. Otherwise, the line above will be printed (with the transmitted
message size displayed) preceded by a line containing a portion of the transmitted
message in hexadecimal and character notation (as shown in the report sample).

It should be pointed out that if the user-transmitted message contains a greater
than or less than mathematical sign, some printer-supported software packages are
designed to recognize these mathematical signs as “character shift then print”, if
carriage control characters (CC) are imbedded in the report. As a result, the
right-most bar (]) that should otherwise enclose report contents may be shifted left
or right by 6 characters, depending on the greater than or less than sign incurred
within the message.

The COMPARE command generates a more compressed report version, with one
report line per logged MPIF message entry.

As shown in the CPU-to-CPU report sample (see ESample CPU-ta-CPU Repart” od

, the report heading identifies the primary CPU and its connected CPU.
Each reported line then identifies another message transmission. If a given
message was sent from the primary CPU and received by the connected CPU or
vice versa, transmission (lag) time is derived by subtracting the sending CPU time
stamp (DCTMMSSC) from the receiving CPU time stamp (DCTMMSSC). The result
is printed in a column labeled “Transmit”. At the end of this report, a statistical
summary provides the average transmission time derived from the sum of
transmission (lag) time divided by the number of transmitted messages.

If a message cannot be found on both (to-from) CPU log tapes, the column labeled
“Transmit” will have the words “Not Found” in it for that message. Furthermore, an
attempt was made to identify the CPU containing the unmatched message by
placing an asterisk (*) in front of the 1/O activity code if a “Not Found” (unable to
match messages) condition occurred on the log tape referenced by CPU2=
parameter. See the report sample below:

Sample CPU-to-CPU Analysis Report

32

MPIF Tape-to-Tape Trace Analysis
TPFXX1 Sent To or Received from TPFXX2

1/0 Dest. Origin Path Size Time Transmit
Sent TPFO1 TPFO2 C/U-3088 059 2-24 Not Found
*Sent TPFO3 TPFO4 Dev-3088 059 2-24 Not Found

In this example, TPFXX1 (primary CPU) sent one message to TPFXX2 that was not
found on TPFXX2’'s log tape. TPFXX2 sent one message to TPFXX1 that was not
found on TPFXX1's log tape. An asterisk (*) before the word Sent above denotes
that a message on the connected CPU’s log tape that could not be found on the
primary CPU log tape.

For each “Not Found” condition, you could also obtain a portion of the transmitted
message and its path send sequence number (for further investigation). Keep in
mind that a “Not Found” condition can occur from several possibilities:

1. Trace was turned ON with logging in one CPU but not within the connected
CPU.

2. The START-TIME; STOP-TIME range for extracting MPIF logged messages is
based on a time stamp in the 4K header. This time stamp is placed there when
the 4K block is dumped to tape.

TPF V4R1 Multi-Processor Interconnect Facility Reference

If message traffic differs between CPUs causing the 4K blocks to be dumped at
different time intervals, a “Not Found” condition (outside time range) may result.

3. A clock synchronization error may occur between two MPIF-connected CPUs
causing a difference in time stamps.

In other words, a “Not Found” condition may result, as opposed to losing a
message. The user would have to further research the cause.

In addition to reporting one line per transmitted message on log tapes, these
post-processing programs will also generate the following statistics:

Minimum Transmission Timeeveeeenieenennn. :00 (MIN:SEC)
Maximum Transmission Timecoveeueeennnn :01 (MIN:SEC)
Average Transmission Timeeeveenneennnn 01.87 (SEC.%SEC)
Number of Messages Matched 02
Number of Msg. Not Found 00
Number of Clock Sync. Errors 01

A Minimum Transmission Time of zero indicates that a message was transmitted
from one CPU and received at another CPU within the same second (or zero
elapsed time). This should be viewed as an optimum condition, since the phase
“transmission time” equates to user response time (elapsed time between sending
and receiving). Maximum Transmission Time indicates the largest lag time between
sending and receiving a given message. Average Transmission Time is the sum of
transmission lag time (among all match messages) divided by the volume of
matched messages. An Average Transmission Time = 0 and Number of Messages
Matched = 300 is equivalent to:

300 messages were transmitted between these CPUs within the same second.

The Number of Messages Matched and the Number Msg. Not Found are
self-explanatory. Lastly, a Clock Sync. Error is reported if the time stamp of a
sending (WRITE) CPU exceeds the time stamp of the receiving (READ) CPU for a
given message.

With Clock Sync. Errors, each message is counted and discarded. To trace
messages causing this error, the user can revise the program to write these
messages to an error file.

Installing MPIF Post-Processing Programs

MPIF post-processing programs have been distributed on a standard TPF tape in
assembler language source statements. These programs must be copied to a
DASD data set prior to compilation using an Assembler Level H compiler. In an
MVS environment, the user would typically create a partitioned data set with the
following sample attributes:

MPIF.POST.SOURCE DCB=(DSORG=PO,LRECL=80,BLKSIZE=nnnn),
SPACE=(CYL, (2,2,1))

where: nnnn must be a user provided block size appropriate to the device type
(typically BLKSIZE=800).

Each program would be copied as a member to the above PDS (partitioned data

set) prior to assembly. The TPF DSECT names DCTTRC, REGEQ, and REGEQ1
should be moved to the installation’s TPF macro library prior to assembly. If JCL is

MPIF Post-Processing Application 33

used during assembly, a //[STEPLIB or //JOBLIB statement would be used to
reference the TPF macro library, for example,

//STEPLIB DD DSN=TPF.MACLIB,DISP=SHR

prior to program assembly. Once the programs and DSECTs have been placed in
their respective PDS libraries, the user would then activate a standard assembler
procedure to assemble the following programs:

CBQ4 PGM Used to verify user request (parameters), write
page 1 of report and (a) produce a report of one
CPU'’s trace tape or (b) set return codes to
schedule the CBQ5 program.

CBQ5 PGM Used to (a) read two CPU log tapes if COMPARE
was requested and (b) extract trace messages that
meet user’s search arguments.

CBQ6 PGM Used to sort extracted files built by CBQ5,
producing a summary report on CPU-to-CPU
message traffic.

CBQPRT PGM Used to generate a trace summary report.

DCTTRC DSECT TPF DSECT describing the MPIF trace log tape’s
format; referenced in CBQ4 and CBQ5 programs.

REGEQ DSECT TPF DSECT containing register EQU statements for
registers.

REGEQ1 DSECT TPF DSECT containing register EQU statements for

registers (referenced by REGEQ).

Notes:

1. Only the programs are assembled. Referenced DSECTs are dynamically copied
into the programs during assembly.

2. If the system initialization program (SIP) is used to build TPF STAGE | in an
MVS environment, the above-mentioned programs will be assembled and
link-edited during the build process. The user need only request the name of the
library to reference it using a //JOBLIB or a //[STEPLIB JCL statement during
program execution as shown below:

//STEPLIB DD DSN=TPF.24.LOADLIB,DISP=SHR

Executing MPIF Post-Processing Programs in an MVS Environment

The programs will function in an MVS environment. JCL samples have been
provided below. To complete an installation, the user must enter the JCL, revising
statements where appropriate for installation-dependent requirements prior to
activating these programs.

Installations familiar with CLIST (TSO commands for foreground interactive)
processing may obtain the equivalent VM interactive program execution by
converting MVS JCL to CLIST statements in an MVS TSO environment.

Keep in mind that MVS JCL statements can be customized to installation-dependent
requirements. As a result, the statements below should be examined and revised to
meet the customer’s environment prior to execution:

34 TPF V4R1 Multi-Processor Interconnect Facility Reference

JCL Samples for MPIF Post-Processing

//J0B
//JOBLIB
/1*

/1%

/1%

//*

/1%

//PGM1
/1*
//LOGTAPE
//

/1*
//REPORT
//

//

/1*
//TERM#OUT
//TERM#IN
/1%

/1%

/1*

/1%

/1%

/1*

/1%

/1*

/1%

JOB (Installation Dependent Parameters)
DD (Installation-dependent Systems Libraries)
DSN=SYS1.MACLIB,DISP=SHR *%% example #*x

The program below reads your input command and search
argument Tist.

EXEC PGM=CBQ4,REGION=100K

DD DSN=nnnn.nnnn.nnnl,DISP=SHR,VOL=SER=nnnnnn,UNIT=nnnn,
LABEL=(,SL)

DD DSN=MPIF.REPORT,DISP=(NEW,CATLG,KEEP),VOL=SER=nnnnnn,
DEV=3380,SPACE=(TRK,(2,2)),
DCB=(LRECL=71,BLKSIZE=7100,DSORG=PS)

DD SYSOUT=A (Identify your printer SYSOUT class here)
DD =

Enter your input transaction below, using the standards
established earlier in this document, starting in Col. 1:

COMMAND KEYWORD=ARGUMENT, KEYWORD=ARGUMENT

A sample has been provided for you to replace with your
own specification:

PRINT BLK=0010,MSG=05

/*

/1%
/1%
/1%

[—

/1%
/1%
/1%
/1%
/1%
/1%

JE—
J/—

/1%

/1%

/1%

/1%

/1%

/1%

/1%

/1%

//PGM2

/1%
//LOGTAPE1
/1
//LOGTAPE2
/11

/1%
//CPUIFILE
/1

/1%
//CPUZFILE
/1

The /* statement marks the end of your in-Tine input data
for the program identified on //PGM1 JCL statement.

If input errors are issued, see SYSOUT=A file contents
for error description.

If PRINT or DEFAULT command, see DSN=MPIF.REPORT file
on DASD using ISPF commands.

The program below will not be activated unless the pre-
viously executed program returned a CONDITION CODE = 15

The following program will extract information from two
tapes and build two temporary files if the COMPARE command
was used.

EXEC PGM=CBQ5,COND=(15,EQ) ,REGION=100K

DD DSN=nnnn.nnnn.nnnl,DISP=SHR,VOL=SER=nnnnnn,UNIT=nnnn,
LABEL=(2,NL)

DD DSN=nnnn.nnnn.nnn2,DISP=SHR,VOL=SER=nnnnnn,UNIT=nnnn,
LABEL=(,SL)

DD DSN=&&TEMP.CPU1,UNIT=SYSDA,DISP=(NEW,PASS),
SPACE=(CYL, (2,2)) ,DCB=(DSORG=PS)

DD DSN=&&TEMP.CPU2,UNIT=SYSDA,DISP=(NEW,PASS),
SPACE=(CYL,(2,2)),DCB=(DSORG=PS)

MPIF Post-Processing Application

35

/1%

//USERLIST DD DSN=+.PGM1.REPORT,DISP=SHR

/1%

//TERM#0OUT DD SYSOUT=A (Identify your printer SYSOUT class here)
/1%

/1%
2y

2y
/1%

/1* The program below will not be activated unless the pre-

//* viously executed program returned a CONDITION CODE = 12

A

//* The following program will perform a CPU-to-CPU comparison
//* between two sorted input files:

/1%

//PGM3 EXEC PGM=CBQ6,COND=(12,EQ,PGM2) ,REGION=100K

/1*

//CPULFILE DD DSN=&&TEMP.CPU1,DISP=SHR

//CPU2FILE DD DSN=&&TEMP.CPU2,DISP=SHR

/1%

//REPORT DD DSN=+.PGM1.REPORT,DISP=SHR

/1*

//TERM#0UT DD SYSOUT=A (Identify your printer SYSOUT class here)
/1%

/1%

JCL Sample for Trace Summary Report

The tape number, shown as XXXXXX, and the link library name, shown as
ACP.DEVP.TEST.LK, must be modified.
//CBQPRT EXEC PGM=CBQPRTM3,REGION=512K

//STEPLIB DD DSN=ACP.DEVP.TEST.LK,DISP=SHR
//RTL DD DSN=RTA,LABEL=(2,BLP),DISP=(OLD,PASS),

// DCB=(DEN=4,RECFM=U,BLKSIZE=4096),
// VOL=(,RETAIN, SER=XXXXXX) ,
// UNIT=(TAPE, ,DEFER)

//PRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133),0UTLIM=10000

Sample Reports

Sample CPU-to-CPU Report

36

Following is the first page of the report:

MPIF Trace / Log Tape Report
SAMPLE

The parameters identified below were provided
on your input as report generation criteria:

COMPARE BLK 1,000 (DEFAULT)

MSG = ALL (default)

USER = argument omitted
DATE = 16JAN

TIME = 10:00:00

PATH = argument omitted
DEST = argument omitted
ORG = argument omitted
CPUL = TPFXX1

CPU2 = TPFXX2

TPF V4R1 Multi-Processor Interconnect Facility Reference

DUR = argument omitted

CPU1; CPU2 arguments will be disregarded ex-
cept for a COMPARE command.

The following is the second page of the report through the next-to-last page.

SAMPLE
MPIF Tape-to-Tape Trace Analysis
TPFXX1 Sent To or Received From TPFXX2

I/0 Dest. Origin Path Size Time Transmit
Recv USER1 USER2 Dev-3088 059 22.44 100
Recv USER3 USER1 C/U-3088 059 22.44 100
Recv USER4 USER7 Dev-3088 059 22.44 100
Recv USER5 USER1 Dev-3088 059 22.44 :01
Recv USER3 USER6 Dev-3088 059 22.44 :01
Recv USER7 USER5 C/U-3088 059 22.44 :00
Recv USER7 USER8 Dev-3088 059 22.44 100

Following is the last page of the report.
SAMPLE REPORT, CONT'D

Minimum Transmission Timeoveeeenieenennn. :00 (MIN:SEC)
Maximum Transmission Timeoveeeeneenennns :01 (MIN:SEC)
Average Transmission Timeeveeuneennnn 01.87 (SEC.%SEC)

MPIF Tape-to-Tape Trace Analysis
TPFXX1 Sent To -or- Received From TPFXX2

The message traces above have been Timited to the search criteria you
provided on the first page of this report, for example,ORG=, DEST=, etc.

An asterisk (*) indicates a message found on CPU2 Tog tape that could
not be found on CPUL.

Minimum Transmission Timecoveeuneennn. :00 (MIN:SEC)
Maximum Transmission Timeveeeenieenennn. :01 (MIN:SEC)
Average Transmission Timeeveeuneennnn 000.28 (SEC.%SEC)
Number of Messages Matched 07
Number of Msg. Not Found 00
Number of Clock Sync. Errors 00

A Clock Sync. Error is reported if the time stamp of a sending (WRITE)
CPU exceeds the time stamp of the receiving (READ) CPU for a given
message.

Sample Print/Default Report

MPIF Trace / Log Tape Report
PRINT/DEFAULT Sample

The parameters identified below were provided
on your input as report generation criteria:

PRINT BLK = 1,000 (DEFAULT)
MSG = ALL (DEFAULT)

MPIF Post-Processing Application

37

C

PUT;

USER = argument omitted
DATE = argument omitted
TIME = argument omitted
PATH = argument omitted
DEST = USER3

ORG = USERG6

CPUL = argument omitted
CPU2 = argument omitted
DUR = argument omitted

CPU2 arguments will be disregarded ex-

cept for a COMPARE command.

DATE:
TIME:

DEST:

ORIGIN: USER6

MPIF Trace / Log Tape Report
SYSTEM: TPFXX1 USER: Com-Mgr.

18086 ID: ER, x'C1F1' LAST:
10:15:44 SWITCH: x'FO' NEXT:

USER3 PATH NAME: Dev-3088 PATH#

SYS NAME: TPFXX2-1 PACING

I/0 ACT x'80'=WRITE XMIT TIME: 2-24 USER#
= "UNDEFINED TO PGM ! FLGS 1

FUNCTION x'08'

00
56

640
511

61849

='80" 2='Fo!

MSG=x"'A285A340A38994856B408986', CHAR = set time, if

S

DEST:

ORIGIN: USER6

IZE = 059
USER3 PATH NAME: Dev-3088 PATH#
SYS NAME: TPFVM3-1 PACING
I/0 ACT x'80'=WRITE XMIT TIME: 2-24 USER#
= "UNDEFINED TO PGM " FLGS 1

FUNCTION x'08'

896

512

127385

='80" 2='FO'

MSG=x'8481A84089A240879696844B', CHAR = day is good.

S

DEST:

ORIGIN: USER6

IZE = 059
USER3 PATH NAME: Dev-3088 PATH#
SYS NAME: TPFVM4-1 PACING
I/0 ACT x'80'=WRITE XMIT TIME: 2-24 USER#
= "UNDEFINED TO PGM ! FLGS 1

FUNCTION x'08'

1152
543

192921

='80" 2='Fo'

MSG=x"'E381928540A3968481A84086', CHAR = Take today f

S

IZE =

059

NOTE: The date shown above is provided by the user who therefore
has control over its format.

Sample Summary Report
THIS MSRB BLOCK WAS WRITTEN TO TAPE AT 10.37.35 02AUG

38

TIME

00.34
00.34
00.34
00.34
00.34

1/0 D-TOKEN S-TOKEN PATH

===

IPC
IPC
IPC
IPC
IPC

PATH-SEQ DATA-LEN PACING

IPC PTH1 0000000E 00000023 0010
IPC PTH1 0000000F 00000144 0010
IPC PTH1 00000000 00000128 0010
IPC PTH1 00000000 00000082 0010
IPC PTH1 00000010 0000002A 0010

P1 P2 CON-SEQ

80 80 00000007
80 80 00000008
80 80 000OOOOE
80 80 00OOOOOF
80 80 00000009

EOF REACHED, MSRB TRACE POST PROCESSOR COMPLETED SUCCESSFULLY.

TPF V4R1 Multi-Processor Interconnect Facility Reference

Appendix A. Example of a MPIF Loosely Coupled Complex

Initialization

Detailed below is a sample MPIF loosely coupled complex and the commands
required to initialize the complex. It is assumed that the system has been generated
with the MPIF function included and the appropriate address ranges have been

included for the channel-to-channel (CTC) communication links.

Processor A
(SYSA)

channel 1

channel 2

channel 3

CTC

channel 4

CTC

Processor B
(SYSB)

Figure 7. Sample MPIF Loosely Coupled Complex. CTC represents channel-to-channel

support.

Notes on the Sample Configuration:

1. There are three paths between each processor in the loosely coupled complex

with subchannel addresses and device names as follows:

Channel # Address Range Actual Addresses Device Name
Generated Available
1 0320-033F 0320-0323 $CTOCAL
2 0340-035F 0340-0341 $CTOCA2
3 0320-033F 0320-0323 $CTOCAL
4 0340-035F 0340-0341 $CTOCA2

2. The number of subchannels per channel for a 3088 device can be any even
number from 2 through 64, although all subchannel addresses may not be
available. An ESCON CTC can have between 2 and 128 physical links.
Thirty-two subchannel addresses are shown above for each path.

MPIF requires a pair of addresses to define a logical path, one address for
reading and one for writing. MPIF will do the pairing of addresses automatically.

3. There are four addresses in use on channels 1 and 3 because there are two
logical paths across these channels.

4. The device names and address ranges are the same on both processors, which
gives the loosely coupled complex symmetry.

Initialization Commands

Detailed below are the MPIF commands required to initialize the sample MPIF
loosely coupled complex.

1. Enter the following messages from Processor A in 1052 state:

a. ZMPIF SET SYSTEM,NAME-SYSA,NUSER-10,NCONN-10,NDNT-10,NPAN-
10,QDEPTH-15

b. ZMPIF SET COMPLEX,NSYS-10,NUSER-10,CONTIME-10,PATHTIME-
10,SYSTIME-10

© Copyright IBM Corp. 1994, 2000

39

2.

3.

c. ZMPIF SET CLASS,CODE-A,RBUFF-4096,WBUFF-4096,PROTECT-
Y,BLOCK-Y,LOADB-Y

d. ZMPIF SET CLASS,CODE-B,RBUFF-4096,WBUFF-4096

e. ZMPIF DEF DEVICE,NAME-$3088A1,SDA-32/0320,MODEL-2,CLASS-A
f. ZMPIF DEF DEVICE,NAME-$3088A2,SDA-32/0340,MODEL-2,CLASS-AB
g. ZMPIF DEF PATH,NAME-A1TOB1,SYSTEM-SYSB,CLASS-A

h. ZMPIF DEF PATH,NAME-A2TOB2,SYSTEM-SYSB,CLASS-A

i. ZMPIF DEF PATH,NAME-A3TOB3,SYSTEM-SYSB,CLASS-B

Enter the following messages from Processor B in 1052 state:

a. ZMPIF SET SYSTEM,NAME-SYSB,NUSER-10,NCONN-10,NDNT-10,NPAN-
10,QDEPTH-15

b. ZMPIF DEF PATH,NAME-B1TOA1,SYSTEM-SYSA,CLASS-A
c. ZMPIF DEF PATH,NAME-B2TOA2,SYSTEM-SYSA,CLASS-A
d. ZMPIF DEF PATH,NAME-B3TOA3,SYSTEM-SYSA,CLASS-B
Re-IPL both processors for defined parameters to take effect.

Notes:

1.

The values of parameters that have been used here are for the example only

and you should review them and change them for your specific configuration.
See m for details.

The SET COMPLEX, SET CLASS, and DEFINE DEVICE commands need to
be entered from only one of the processors in the loosely coupled complex
because the parameters are either in shared records or are propagated through
the loosely coupled complex.

The only restriction on the sequence of commands entered is that the SET
CLASS command must be entered before any PATHs are defined for that class.
If you try to enter a DEF PATH command before SET CLASS, the DEF PATH
command is rejected.

If more processors exist in the loosely coupled complex than is shown in this
example, only the SET SYSTEM and DEF PATH commands need be entered
on those processors.

In this example, load balancing is requested for CLASS-A paths. Load balancing
is achieved because there is CTC support for 2 channels across which the load
can be balanced. If there was one physical 3088 communication unit that had
two channels attached to each processor, MPIF load balances across the
channels.

Note: This tuning is not true load balancing since there is only one physical
3088 communication unit through which all messages must pass.

The MPIF IPC path should be defined first because the loosely coupled
complex will not be able to initialize if it is unable to start a path that can be
used for MPIF IPC. In this example, MPIF IPC should be assigned to CLASS-A.

The procedure defined here could be used for non-loosely coupled complexes;
in which case, the note on MPIF IPC would not apply.

40 TPF V4R1 Multi-Processor Interconnect Facility Reference

Appendix B. 3088 Address Pairing by MPIF

The 3088 MCCU supports channel communication between 2, 4, or 8 processors
(depending on 3088 model). A processor physically attaches to one of the 3088’s
channel adapters. The physical channel adapter is assigned a base control unit
address. Starting with this address, a range of 32 or 64 addresses is provided. The
base address in a 32-address configuration may be xx00, xx20, xx40, xx60, xx80,
xxA0, xxCO or xXEO (xx = unrestricted value). The base address in a 64-address
configuration may be xx00, xx40, xx80 or xxCO.

MPIF supports the definition of 3088 address ranges of size 2 to 64 (even numbers
only). The address range defined to MPIF does not have to begin at the base
address.

MPIF will pair individual addresses; logical paths will use one address for read
operations and the other for write operations. The following table lists the address
pairs that will be assigned. Each address is described as a displacement from the
base address. Add the displacements in the table to the base control unit address
to compute the pairs for a range of addresses. For example, the address pairs for a
32-address Model 1 communication unit with a base address of OEAO would be
OEAO-OEAL, OEA2-OEA3, OEA4-OEA5, OEAB-OEAY... If only addresses OEA8-OEB7
were defined to MPIF, the address pairs would be OEA8-OEA9, OEAA-OEAB,
OEBO0-0OEB1, OEB2-0EB3, OEB4-0EB5, OEB6-0EB?7.

Model 1A (Two-Way) Model 1 (Four-Way) Model 2 (Eight-Way)
00 - 01 00 - 01 00 - 01
02 - 03 02 - 03 02 - 03
04 - 05 04 - 05 04 - 05
06 - 07 06 - 07 06 - 07
08 - 09 08 - 09 08 - 09
OA - 0B OA - 0B OA-0B
0C - 1C 0C - 1C 0C - 0D
0D - 1D 0D - 1D OE - OF
OE - 1E OE - 1E 10-11
10-11 10-11 12 - 13
12 - 13 12 - 13 14 - 15
14 - 15 14 - 15 16 - 17
16 - 17 16 - 17 18 - 19
18 - 19 18 - 19 1A-1B
1A-1B 1A-1B 20-21
20-21 20-21 22 -23
22 -23 22 -23 24 - 25
24 - 25 24 - 25 26 - 27
26 - 27 26 - 27 28 - 29
28 -29 28 - 29 2A-2B
2A - 2B 2A-2B 2C-2D
2C-3C 2C - 3C 2E - 2F

© Copyright IBM Corp. 1994, 2000 41

42

Model 1A (Two-Way) Model 1 (Four-Way) Model 2 (Eight-Way)
2D - 3D 2D - 3D 30-31

2E - 3E 2E - 3E 32-33

30-31 30-31 34-35

32-33 32-33 36 - 37

34-35 34-35 38 -39

36 - 37 36 - 37 3A-3B

38 -39 38 -39

3A-3B 3A-3B

TPF V4R1 Multi-Processor Interconnect Facility Reference

Appendix C. IBM Enterprise Systems Connection Architecture

IBM Enterprise Systems Connection Architecture* (ESCON¥*) provides high-speed
connections between local and remote TPF systems using MPIF. ESCON provides
a faster data transfer rate, and allows a greater distance between the channel and
control unit.

IBM Enterprise Systems Connection Architecture Channel-to-Channel

Structure

An ESCON channel-to-channel (CTC) channel is a channel that has the CTC
adapter function implemented in its Licensed Internal Code (LIC). An ESCON CTC
channel can be logically divided into two sections:

¢ Channel section
The channel section performs the regular channel functions.
e CTC Control unit section

The CTC control unit section synchronizes the operations performed between
two channels.

See ESA/2390 ESCQON Channel-to-Channel Adapted for more information. The

ESCON CTC channel acts like a control unit, not a channel, on the ESCON 1/O
interface to the connected CNC channels. A CTC connection requires an ESCON
CTC channel at one end of the connection and an ESCON CNC channel at the
other end of the connection. An ESCON CNC channel is an ESCON channel that
can communicate with any ESCON control unit. An ESCON CTC channel is an
ESCON channel that can only communicate with a CNC channel. A CTC channel
and a CNC channel in a CTC connection can send information to each other. See
for an example of the channel structure.

ESCON CTC Channel

ESCON I/O ESCON CNC
Channel CTC CU Channel
Section Section Interface

Figure 8. ESCON CTC Channel Structure

The ESCON CTC channel also provides a link between the local system and
multiple remote systems through the use of an ESCON Director. When attached to
an ESCON Director, the CTC channel establishes a link with any other ESCON
CNC channels attached to the same ESCON Director. A link requires a CTC
channel at one end and a CNC channel at the other end. The local system’s CTC
channel does not provide a direct connection between the two remote systems.

Eigure 9 on page 44 shows a diagram of a 3-way ESCON configuration. The
diagram illustrates the following 3 connections:

1. The local system ESCON CTC channel to the remote system 1 CNC channel

2. The local system ESCON CTC channel to the remote system 2 CNC channel

3. The remote system 1 ESCON CTC channel to the remote system 2 CNC
channel.

© Copyright IBM Corp. 1994, 2000 43

Local
System

CTC Channel

CNC Channel
ESCON Remote
Director System 1
[— CTC Channel
CNC Channel
Remote
System 2

Figure 9. 3-way IBM ESCA Configuration

Migration and Coexistence Considerations

To use the IBM ESCON hardware, you must perform a new device definition to
MPIF. Define the hardware with the ZMPIF DEFINE DEVICE command. Issue the
definition from a single processor within each loosely coupled complex that uses the
ESCON CTC channel. Refer to m for details on the format of the
ZMPIF command.

S/360 and S/370* 1/0O interface CTC hardware (parallel CTC hardware) and ESCON
CTC channels can coexist within a MPIF complex. A single processor can connect
to a set of processors using the ESCON CTC and connect to another set of
processors using parallel CTC hardware. However, both ends of a CTC link must
use the same I/O protocol. One end of a link cannot be an ESCON channel while
the other end is parallel CTC hardware.

Addressing Considerations

MPIF views the ESCON CTC as a set of 512 physical links. The input/output
configuration data set (IOCDS) assigns a symbolic device address to each link. See

Channel-to-Channel Referencd. Use the ZMPIF DEFINE DEVICE command to
define the hardware to MPIF as range of symbolic device address. The number of
symbolic device addresses in the range can be from 2 to 128. Within a defined
range, MPIF pairs addresses in sequential order. If symbolic device address’s 400
to 407 are defined as a range, the address pairs will be (400,401), (402,403),
(404,405), (406,407).

IBM Enterprise Systems Connection Architecture, referred to as IBM ESCA,
provides high-speed connections between local and remote TPF systems through
MPIF. It provides a faster data transfer rate, allows a greater distance between the
channel and control unit, and increases the number of processors that can be
connected.

44 TPF V4R1 Multi-Processor Interconnect Facility Reference

Index

A

alternate path 5
an ESCON channel 3

B

blocking data elements 19

C

central processing complex (CPC) 3
channel-to-channel (CTC) 4
channel-to-channel connection 3
connection 3

connection services 5

D

data transfer 7
DCTMUP 24
dedicated paths 5
directory update 5

E

echo check 17
ESCON channel-to-channel (ESCON CTC) 3

IBM Enterprise Systems Connection Architecture 43,
44

IBM ESCA 44

IBM ESCON 43

L

list support for segmented data 20
load balancing for paths 5

logical path 4
macros
summary 7

MPIF complex 3
MPIF post-processor
commands
CANCEL 30
COMPARE 27, 30
DEFAULT 30
PRINT 27, 30
executing in MVS 34
installing 33
introduction 27

© Copyright IBM Corp. 1994, 2000

MPIF post-processor (continued)
keywords
BLK 28
CPUl1 29
CPU2 29
DATE 28
DEST 28
DUR 29
MSG 28
ORG 28
PATH 29
TIME 28
USER 28
message traffic 27
MVS JCL samples 35, 36
statistics 33

transmission time, definition 33

MPIF user 3
MSRB 27
multiple paths 4

N

names
generic 9
path 9
system 8
user 8

naming conventions
generic names 9
path names 9
system names 8
user names 8

O

operator commands
summary 8

P

pacing control 17

path 3,4

path class 4,5

path support
alternate 5
class 4
dedicated 5
load balancing 5, 40
logical 4
multiple 4
physical 4

physical path 4

priorities 20

45

S

sequence number control 19
status management 17

T

tokens 9

TPF complex 3

TPF loosely coupled complex 3
TPF system 3

U

user 3
user exits description 7
user profile 7

46 TPF V4R1 Multi-Processor Interconnect Facility Reference

File Number: S370/30XX-30
Program Number: 5748-T14

on recycled paper containing 10%

@ Printed in the United States of America
recovered post-consumer fiber.

SH31-0155-01

	Contents
	Figures
	Tables
	Notices
	Trademarks

	About This Book
	Before You Begin
	Who Should Read This Book
	How This Book is Organized
	Conventions Used in the TPF Library
	Related Information
	IBM Transaction Processing Facility (TPF) 4.1 Books
	IBM Enterprise Systems/9000 (ES/9000) Books

	How to Send Your Comments

	Introduction to the MPIF
	Understanding and Using MPIF
	Basic MPIF Terms
	MPIF Processing Overview
	Services Provided by MPIF
	Path Services Support
	Path Class
	Multiple Path Support
	Protected Path
	Load Balancing
	Alternate Path Support
	Dedicated Path Support
	Directory Update

	Connection Services
	Connection Protocols
	Using the Connection Services

	Data Transfer
	User Exits

	Interfacing with MPIF
	MPIF User Profile
	Issuing MPIF Requests
	Macros
	Operator Commands

	Data Requirements for MPIF Requests
	MPIF Naming Conventions
	Tokens

	Initializing MPIF
	Defining the MPIF Environment
	MPIF Initialization
	Other Considerations

	MPIF Error Processing
	MPIF Failures
	Data Transfer Failures
	MPIF User Failures
	Path Failures
	Connection Failures

	Example of Using MPIF Services
	IDENTIFY/CONNECT Flow
	SEND/DISCONNECT Flow

	Programming Guide
	Status Management
	Echo Check

	Pacing Control
	Prevent Buffer Overruns

	SEND Logic
	RECEIVE Logic
	Deadlock Situation

	Sequence Number Control
	Blocking of Data Request Elements
	List Support for Segmented Data
	Priorities
	User Exits
	Data Received Exit
	Purpose
	Suggested Processing
	Interface

	Connection Request Exit
	Purpose
	Suggested Processing
	Interface

	Connection Completion Exit
	Purpose
	Suggested Processing
	Interface

	Directory Update Exit
	Purpose
	Suggested Processing
	Interface

	Path Active Exit
	Purpose
	Suggested Processing
	Interface

	Error Exit
	Purpose
	Suggested Processing
	Interface

	MPIF User Parameter List Definitions (DCTMUP)
	Description

	MPIF Post-Processing Application
	Keywords Specifications For Report Generation
	CPU-to-CPU Required Keywords
	Command/Search Argument Examples
	Reducing the Report Size
	DEFAULT, CANCEL Commands
	Summary of Post-Processing Commands
	Command/Keyword Format Requirements

	Trace Summary Report
	Examining Generated Reports
	Sample CPU-to-CPU Analysis Report

	Installing MPIF Post-Processing Programs
	Executing MPIF Post-Processing Programs in an MVS Environment
	JCL Samples for MPIF Post-Processing
	JCL Sample for Trace Summary Report

	Sample Reports
	Sample CPU-to-CPU Report
	Sample Print/Default Report

	Sample Summary Report

	Appendix A. Example of a MPIF Loosely Coupled Complex Initialization
	Initialization Commands

	Appendix B. 3088 Address Pairing by MPIF
	Appendix C. IBM Enterprise Systems Connection Architecture
	IBM Enterprise Systems Connection Architecture Channel-to-Channel Structure
	Migration and Coexistence Considerations
	Addressing Considerations

	Index

