<|lI!

Transaction Processing Facility

Application Programming

Jersion 4 Release 1

SH31-0132-13

<|lI!

Transaction Processing Facility

Application Programming

Jersion 4 Release 1

SH31-0132-13

Note!
FBefore using this information and the product it supports, be sure to read the general information under ENotices” an page xl.

Fourteenth Edition (June 2002)
This is a major revision of, and obsoletes, SH31-0132-12 and all associated technical newsletters.

This edition applies to Version 4 Release 1 Modification Level 0 of IBM Transaction Processing Facility, program
number 5748-T14, and to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. Address your comments to:

IBM Corporation

TPF Systems Information Development
Mail Station P923

2455 South Road

Poughkeepsie, NY 12601-5400

USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures. L ... s
Tables. L0 0L i
Notices L L. s s
Trademarks L L L Lo XY
About This Book . . . D 4
Who Should Read This Book . i
Conventions Used in the TPF Library XVi
Related Information. . . . S 4 Y/ 1
IBM Transaction Processmg FaC|I|ty (TPF) 4 1 Books D T
IBM Systems Network Architecture Books XX
IBM Message Queuing BooksXX
IBM High-Level Language BooksXiX
Miscellaneous IBM Books .XxXX
Non-IBM Books. oxx
Online Information. .Xx
How to Send Your CommentsXX

Introduction to TPF .
Some Fundamental Definitions :
Language Structures and Case Gwdelmes .
TPF Application Support and Environments .
Communication Protocol Support.
File Storage Support .
TPF Environments .
Functions Performed by the TPF System
Messages and Entries.
Entry Control Block.
Reentrant Programs
Database Support .
Program Categories
C Language in the Control Program
ECB-Controlled Programs
Non-ECB Controlled Programs
High Performance Option
TPF Programming Conventions .
Common Programming Conventions
Assembler Language Programming Conventlons
C Language Programming Conventions . .
TPF Advanced Program-to-Program Communications
TPF Application Requester

QO OVWONNODODOOOUNO A, WWNDNDNNNERLPRP

Message Queue Interface (MQI) Cllent .11
A TPF Transaction Example . 11
TPF Data Structures and System Services.25
Entry Control Block . . . e e25
Linking ECBs and Their Common Serwces A o
Work Areas26
Data Levels e e e e e, 28
Data Event Control Blocks e
I/O-Associated Unusual Conditions38

© Copyright IBM Corp. 1994, 2002 i

Areas Used by the TPF system.
User Register Save Area .
Routing Control Parameter List .
RCPL Data Area .
RCOPL Data Macro .
Activating the Application .
Log Processor . .
Conditions at Activation.
Application Message Editor
Input Edit and Path Selection
Message Recovery
SNA Input Messages.
SNA Output Messages . .
Application Recovery Package .
Terminal and Transaction Control .
Routing Control Block
Agent Assembly Area
Scratchpad Area .
Output Message Control
TPF Macros .

Understanding High-Level Language Concepts in the TPF System .
E-Type Program Chart and Program Attributes . e

Load Module Attributes .

Classic TPF Segment . .
Functions and Calling Other Functlons .

Functions Calling Other Programs .

ISO-C Linkage Performance ConS|derat|ons .
Run-Time (Nondynamic) Library Function Linkage .

Function Stubs . .
Secondary Linkage for ISO C Support .
Quick Enter Directory for TARGET(TPF)
Secondary Directory for TARGET(TPF) .
Storage for Static Variables .
ISO-C Language Stack .
TPF Header Files .
Run-Time Libraries
Dynamic Load Modules.
Creating Globals for C .
C Language Locale .
Character Set Support .
C++ Support.
Class Library Support
TPF Restriction.
Dynamic Link Library (DLL) Support
Terminology and Concepts
Linkage
DLLs and Subsystem Dependencres
Summary .

Understanding TPF MQSeries Support .
TPF MQSeries Client Support

MQSeries Client .

MQI Channel Directory .

TPF MQSeries Local Queue Manager Support .

Supported Queue Types

TPF V4R1 Application Programming

. 38
. 38
. 38
. 39
.41
.41
.41
. 43
. 44
. 45
. 46
. 46
. 47
. 47
. 48
. 48
. 49
. 49
. 51
. 53

. 55
. 56
. 57
. 60
. 60
. 62
. 63
. 65
. 66
. 68
. 69
. 70
. 70
.71
.71
.72
. 73
. 73
. 73
.74
.74
.74
. 75
. 76
. 76
.77
. 78
. 78

.79
.79
.79
.79
. 80
. 80

Starting TPF MQSeries Applications Using Triggers
Message Routing .
Processor Unique Queues versus Processor Shared Queues
Monitoring Queue Depth
Channels .
MQSeries ROUTC Brldge
Transmission Queues: Swinging
Transaction Manager .
Browsing TPF MQSeries Processor Shared Queues .
Trace
Administering Your Local Queue Manager
Defining the MQSeries Profile
Defining Processor Shared Queues .
CPU Parameter for Channel Definitions .
Altering Channels .
Checkpoint
Sweep .
Tuning Memory AIIocatron
Deleting Queues .

Understanding TPF Transaction Services Concepts .
Defining a Commit Scope .

Commit Scope Nesting .
Suspending a Commit Scope
In the Commit Scope

DASD . .

Pool File Addresses .

TPF MQSeries Support.
Ending a Commit Scope
Outside the Commit Scope

Finding Records

Filing Records .

Holding Records
Deadlock Detection .

Loosely Coupled and Multlple Database Functron (MDBF) Consrderatrons .

Exceptions

Understanding TPF Collection Support
Application Characteristics . .
TPFCS Environment Block .
Type Definitions .
Error Handling.
Data Store Application Drctronary
Application Startup Examples .
Types of Functions . -
Returned Data Structures
Collection APIs
Creating and Deleting Collect|ons
Accessing and Modrfyrng Collections
Cursors .
Initializing a Cursor .
Using Cursors for Locating, Accessrng and Removrng Elements .
Using Cursors with Alternate Key Paths
Cursor Positioning . .
Iterating over Collections .
T02_allETementsDo .

Contents

. 80
. 82
. 83
. 83
. 83
. 84
. 84
. 85
. 85
. 85
. 86
. 86
. 86
. 86
. 86
. 87
. 87
. 87
. 87

. 89
. 89
. 90
.91
.91
.91
. 94
. 94
. 94
. 97
.97
. 97
. 97
. 98
. 99
. 99

. 101
. 101
. 101
. 102
. 102
. 104
. 104
. 105
. 106
. 106
. 106
. 107
. 109
. 109
. 110
. 110
. 110
. 113
. 114

\Y

Using Cursors for Locking Collections115

Concurrency Controls .15
None (Nonlocking Cursor) . . . I Y
Optimistic Concurrency (Update Sequence Counter). N S
Pessimistic Concurrency (Locking Cursor) 116
Dirty-Reader Protection .16

Key Path Support .16
Adding Key Paths .17
Removing Key Paths .17

Understanding Logical Record Caching119

Creating a Logical Record Cache120
System Heap and the Hash Table121
CacheName 121
cacheToken Value . . . Ce e e e o122
Processor Unique and Processor Shared Caches T 7))
castOutTime Value T 2

Reading an Entry from a Logical Record Cache e 22
Examples . . . 2

Adding an Entry to a Logrcal Record Cache e 2
Primary and Secondary Keys126
invalidateOthers Parameter.126
timeout Parameter .126
Examples 2 ¢

Updating an Entry in a Loglcal Record Cache T o 6
Primary and Secondary Keys127
invalidateOthers Parameter.128
timeout Parameter .128
Examples . . . e i)

Deleting an Entry from a Logrcal Record Cache e 24]
Examples e 24

Flushing Entries from a Logrcal Record Cache130
Examples . . . N 10

Deleting a Logical Record Cache e RCX 1
Examples 1A

Writing TPF Application Programs inCand C++. 133

Special TPF Considerations.133
Coding main Functions .133
I/O Stream Pipes136
Example of Calling a DLM That Contarns amain Functlon Co . . 136
Example of Creating an ECB That Enters a DLM That Contains a main

Function . . . e Rcte
Coding C++ Applrcatrons e K
C++ Exceptions 1A
Exporting . . . e Y
Reentrant Programmrng P
Standard TPF Program Sizes142
Static Storage Considerations143

TPF Header Files . . . I
Creating Your Own Header Flles e ¥
TPF Header Filesand C++.145
More Useful Information .146

TPF Application Environment149
Accessingthe ECB. .149
Work Areas. .14

Vi TPF V4R1 Application Programming

Data Levels
Managing Files
ECBs and Entries
TPF Terminal Communlcatlons
Using TPF Globals .
Calling Other Functions and Programs
Function Linkage:
Parameter Passing (from C to C)
Calling a C Program (from Assembler).
Calling an Assembler Program (from C)
Compiling and Running C/C++ Programs.
DLL Compiler Option .
Sample Code Written to the RENT Standard
C Header File with Declarations of External Llnkage Objects
C Source File with Definitions of External Linkage Objects
C Source File Showing the Use of External Linkage Objects.

Understanding TPF Internet Server Support. .
The POSIX Process Model As Implemented by the TPF System .
A Process .
Process Inherrtance
POSIX-Compliant APIs for Process Control
TPF-Unique APIs for Process Control .
Signals
File Access in the TPF F|Ie System
Process Attributes -
Access Permissions
Rules to Determine File Accessrbrhty
Internet Daemon .
Process Models .
Internet Daemon Conf|gurat|on F|Ie (IDCF)
Hypertext Transfer Protocol (HTTP) Server .
File Transfer Protocol (FTP) Server .
Trivial File Transfer Protocol (TFTP) Server .
Customizing the TFTP Server .
Security .
File Names.
Using the TFTP Server from Another System
Syslog Daemon .
TPF Internet Mail Servers
Internet Server Application Consrderatrons
Process Models .
Internet Server Application Interface
Add an Internet Server Application to the IDCF
Considerations for Using the Internet Daemon to Start a TPF Program
Interface . .
Starting a TPF Appllcatlon from the Internet
Executable Script

Understanding TPF Remote Procedure Call.
Interface Definition Language and Stub Files

TPF Modifications to Distributed Computing Enwronment (DCE) RPC .

Creating an RPC Interface for TPF .
TPF RPC Run-Time Library.

RPC Calls .

Threads .

Contents

. 149
. 150
. 153
. 154
. 155
. 156
. 156
. 158
. 159
. 160
. 162
. 163
. 163
. 163
. 164
. 164

. 167
. 167
. 167
. 168
. 168
. 169
. 169
. 170
. 170
. 170
. 171
. 172
. 172
. 173
. 173
. 173
. 174
. 174
. 174
. 175
. 175
. 175
. 175
. 176
. 178
. 184
. 188
. 188
. 188
. 188
. 189

. 191
. 191
. 192
. 192
. 193
. 195
. 196

Vil

The Thread Environment.19

Thread Safety. .19
RPC Servers . . . N e TS
Starting and Stopprng RPC Servers N KV 4
Performance and Tuning forRPC198
RPC Storage Considerations198
RPC C Header Files .19

Understanding Virtual Storage Access Method (VSAM) Database Support 201

VSAM Concepts e . . 201
VSAM Database Support. .202
Disk Mirroring . . . C e e e oo 204
VSAM Database Constrarnts .o e e ... 207
VSAM Database Support with Other Ut|||t|es ¢ [
VSAM Database Support Request Flow Control 209
Return Codes 22
Error Recoveryo 213
Constructing the VSAM CIuster Data Set Names 2 0
Coding Your Own Library Functions.219
Coding Library Functionsin C. . . 2 K
Coding Library Functions in Assembler e K
Register Conventions .219
C Language Support Prologs220
C Language Support Epilogs . . . e e e o ..o .. 0220
Secondary Linkage in ISO-C Function L|brar|es e e s 222
Restrictions. . . . e e 220
Coding Assembly Language Routrnes 22 |
User ExpansionArea .223
TPF Application Program Interface Functions 227
Transferring Processor Control227
Enter/Back Services . . . 2
Create Macros and Functlons .. Ce e oo 228
Suspend Processing Macros and Functrons G
Exit Functions. .233
Transfer Vectors .23
Main Storage Allocation .23
Allocating Working Storage237
Application Global Area .24
Global Directory .. .24
CommonValues. .. .24
Protected Data Records .242
Maintaining Global Areas.24
Operation of the Global Functions246
Synchronization Considerations249
Examples of Using the Global Functions . . . 2 ke |
Accessing Data in Assembly Language and C Language250
Fixed File . . . 410
FACE, FACS, and FACBC Co e e28
Making a Call to FACS Using TARGET(TPF) . e253
face facs Function. . . . e e e e25
Random Pool File Area . . . A Y
Examples of Using the Pool Storage Functrons:256
File Storage Access . . . 4 Y
Prerequisites for Basic Find and F|Ie Functlons 1 Y 4

Viii TPF V4R1 Application Programming

Use of the Higher-Level C Language Find and File Functions .
Record Hold Facility .
Summary of File Reference Functrons and Macros .

Using Assembler Language File Reference Macros .
Using C Language File Reference Functions
Determining the Status of I/0O Operations.
Standard Record Header.
Record Identification
Record Code Check
Data Control
Program ID. .
Chaining Addresses
Tape Support . .o
Real-Time Operations .
General Tape Operations.
General Tape Functions .
Summary of General Tape Functrons
Operator Control of Tape Operations
General Data Set and General File Support.
General Data Set Functions.
Input Device Support .
System Error Processing.
SYSRA Macro. .
Standard Error Functrons .
Using C Language Error Functrons .
Temporarily Detaching and Attaching Main Storage Blocks

Design Considerations .
Program Sharing in Main Storage
Virtual File Access Facility .
Program Organization .

Modular Programming .
Performance Considerations

File Access.

Coding Technrques .
Ease of Modification and ExpanS|0n
Program Commentary .

Utility Segments and Subroutrnes
Miscellaneous Programming Tips.

TPF Testing Environment for Assembly Language .
Test System Characteristics. Coe e
Testing Levels.
Test System Components

System Test Compiler (STC)

Program Test Vehicle (PTV).

Real-Time Trace (RTT)

Selective File Dump and Trace (SFDT)

Diagnostic Output Formatter (DOF) .

Debugging Programs and Diagnosing Problems in C Language.

Run-Time Debugging .
Function Mismatches .
Identifying the Library Ordinal Number
ISO-C Dynamic Load Modules (DLMSs).
Storage for ISO-C Static Variables .

. 258
. 259
. 260
. 262
. 262
. 264
. 264
. 266
. 267
. 267
. 267
. 267
. 267
. 267
. 268
. 269
. 271
. 272
. 273
. 273
. 275
. 275
. 276
. 276
. 277
. 278

. 279
. 279
. 279
. 279
. 280
. 280
. 280
. 281
. 281
. 281
. 282
. 282

. 283
. 283
. 283
. 283
. 284
. 288
. 291
. 291
. 292

. 293
. 293
. 293
. 294
. 295
. 296

Contents

iX

X

Layout of ISO-C Structures in a Dump.
Brief Listing of Errors . -

Using C Function Trace .

Using Link Map Support for C Load Modules

Customizing C/C++ Language Support
Required Customizations. -
TPF Globals
Optional Customizations .
Creating and Selecting Locales
C Language Support User Exits .
Customizing User Data Area in ISO-C Modules
Character Sets
Choosing a New Character Set
Translating Character Sets .
Defining a Translation . .
Translating on a TPF System .
Keeping CCSIDs Compatible .
Creating a Translation Table .
Installing Additional 1ISO-C Library Functrons
Prelinking and Linking . S
Library Interface Tool .
Purpose .
Requirements and Restnctrons
Format for the @libid Statement .
Additional Information .
Format for the @libfun Statement
Additional Information .
Example of a Library Interface TooI Scnpt
Running the Tool.
DLM Call Stub Generator
Purpose .
Requirements and Restrlctrons .
Format for a DLM Stub Generator Statement .
Running the Generator
ISO-C Load Module Build Tool (CBLD)
Purpose .
Requirements and Restnctrons .
Format for a Load Module Build Tool Statement .
Sample Load Module Build Scripts .
Running the Build Tool
Rearrange TXT (REATXT) Tool: Sample Code Only
Sample JCL for Generating 1ISO-C Offline Tools

Installing Additional IBM TARGET(TPF) C Library Funct|ons.

Removing TARGET(TPF) Library Functions .

Index .

TPF V4R1 Application Programming

. 296
. 299
. 299
. 300

. 301
. 301
. 301
. 302
. 302
. 313
. 313
. 314
. 314
. 314
. 315
. 316
. 317
. 317
. 322
. 322
. 323
. 323
. 324
. 325
. 325
. 325
. 325
. 326
. 326
. 327
. 328
. 328
. 328
. 328
. 329
. 329
. 330
. 330
. 331
. 332
. 336
. 337
. 338
. 340

. 341

Figures

©CoNoOrWDNE

Conditions When Application Is Activated .

Logic Flow for Program CRC1 .

Logic Flow for Program CRC2 .

DECB Application Area

Application Message Control Package

Kinds of E-Type Executable Programs . .
Example of an Array of Library Addresses and LIBVECS .
Offline Stub Linkage G

Online Function Linkage .

Online Stub Linkage .

Components of an ISO-C L|brary Load Module

Root Commit Scope. .

Root Commit Scope with Nested Scopes

Example of a Nested Commit Scope

Example of a Deadlock Condition.

Collection with N Elements.

tpfeq.h Header File for TARGET(TPF)

tpfeq.h Header File for ISO-C .

Using echptr to Access the Contents of celcrl .

Using the waitc Function for Error Detection .
TARGET(TPF) C #pragma map Statement Format .

C #pragma Linkage Statement Format for TARGET(TPF)
C Parameter List (Part I) e e e
C Parameter List (Part Il)

TPF_regs Structure. .

TCP and the NOWAIT Process Model

TCP and the WAIT Process Model .

TCP and the AOR Process Model .

TCP and the DAEMON Process Model .

UDP and the NOWAIT Process Model

UDP and the WAIT Process Model.

RPC Servers Used to Call Applications .

Remote Procedure Call Overview for Client and Server Platforms
Layout of a Key-Sequenced Data Set.

VSAM Database Logical Flow

VSAM Database Support Request Flow Example
Comparison of Sample Library Functions Written in Assembler
Stack Frame Formats

Virtual Storage Layout

Global Storage Allocation for a TPF Basm Subsystem Wlth a Slngle - Stream .

Example of Fixed File Organization and FACE/FACS Table.
Using Pool Storage Functions

System Test Compiler

Multiple Test Units .

Program Test Vehicle .

ISO-C Control Area Dump .

ISO-C Initial Stack Frame Dump.

ISO-C Stack Frame Function Dump .

ISO-C Static Block and Heap Storage Dump

Assembler Program for a New Locale.

Build Script for a New Locale. .

An EDCLDEF JCL Procedure as Sh|pped Wlth the Compller
A Sample Modified EDCLDEF JCL Procedure. .

© Copyright IBM Corp. 1994, 2002

. 13
. 16
. 20
. 30
. 45
. 57
. 65
. 67
. 68
. 69
.72
. 90
.91
. 95
. .98
. 112
. 144
. 144
. 149
. 151
. 157
. 158
. 159
. 160
. 161
. 179
. 180
. 181
. 182
. 183
. 184
. 191
. 192
. 202
. 204
. 210
. 222
. 224
. 237
. 241
. 252
. 257
. 285
. 287
. 289
. 297
. 298
. 298
. 299
. 304
. 304
. 306
. 308

Xi

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

Xii

Sample JCL Using the Modified EDCLDEF JCL Procedure .
Example of a Build Script for the 1TEY Locale

An Example of the CSNM Table of CCSIDs

An Example of a GENXLT Translation Table .

A GENXLT Procedure for Preparing Translation Files . :
A GENXLT Procedure for Preparing Translation Files Filled Out .
Build Script for a Single-Byte Translation Table Object File .

DLM Build Script JCL for a Single-Byte Translation Table Object File .

Build Script for a Mixed-Byte Translation Table Object File .
Table of Translation Table Object Names and DLMs

CSNM Table Showing Code Set Information

Sample Tool to Convert CD-ROM Translation Table Data
ISO-C Compile, Link, and Load Process.

Output of the Library Interface Tool.

TPF V4R1 Application Programming

. 310
. 311
. 315
. 316
. 318
. 319
. 319
. 320
. 320
. 320
. 321
. 321
. 323
. 324

Tables

©CoNoOrWDNE

Summary of the Entry Control Block Application and Interface Areas .
Application Use of RCPL Control Bytes 0 and 2

Input Application Message Format: The c$am0sg.h Header
Action Code Table (Example) .

Output Application Message Format: The c$amesg h Header
Load Modules and Their Attributes

Function or Program Calls Allowed in ISO- C

Function or Program Calls Allowed in TARGET(TPF).

Library Ordinals .

TPF Transaction Serwces Begln and End Transact|ons

TPF Transaction Services Suspend and Resume Transactions .
Matrix of the Locking Scheme for DASD Inside and Outside a Commit Scope
Adding Elements to a Collection.

Cursor Positioned at the Start of a CoIIectlon .

Cursor Positioned at the End of a Collection

Cursor Returns .

Access Permissions .

VSAM Database Support Cluster Reference

VSAM Database Support Macros

VSAM Database Support Return Codes .

Description of Create Functions .

File Reference Functions or Macros

General Tape Functions .

Brief Listing of Errors.

Compatible Single-, Double-, and Mlxed Byte CCSlDS

File Specifications for the Library Interface Tool .

File Specifications for the DLM Call Stub Generator

C Load Module Build Tool Data Sets . -

MVS and VM Linkage Editor Comparison

© Copyright IBM Corp. 1994, 2002

. 26
. 40
. 43
. 45
. 53
. 58
. 60
. 61
. 65
. 89
. 89
.. 93
. 107
. 111
111
. 112
. 171
. 206
. 207
. 213
. 229
. 260
. 271
. 299
. 317
. 326
. 328
. 332
. 336

Xiii

XiV TPF V4R1 Application Programming

Notices

References in this book to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service in this book is not intended to
state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
IBM's intellectual property rights may be used instead of the IBM product, program,
or service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Department 830A

Mail Drop P131

2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Any pointers in this book to non-IBM Web sites are provided for convenience only
and do not in any way serve as an endorsement. IBM accepts no responsibility for
the content or use of non-IBM Web sites specifically mentioned in this book or
accessed through an IBM Web site that is mentioned in this book.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AD/Cycle

AlX

BookManager

C/370

DB2

DFSMS/MVS

Distributed Relational Database Architecture

DRDA

IBM

Language Environment

MQSeries

© Copyright IBM Corp. 1994, 2002 XV

MVS/ESA
MVS/XA
Open Class
OpenEdition
0Ss/2
0S/390
RS/6000
System/370
System/390

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

XVi TPF V4R1 Application Programming

About This Book

This book describes IBM C and C++ language support for Transaction Processing
Facility (TPF) application programming. It includes chapters about TPF application
programming, writing TPF application programs in C, C++, and assembler, coding
library functions, and debugging. Although this book is primarily directed toward
application programmers, introductory and reference sections will also be of interest
to TPF system programmers and customer system and middleware programmers.
Tools providers will also see a need for the information in this book. It also serves
as a user’s guide to application programming in the TPF operating system.

For details about the C and C++ language functions referenced in this book, see

the TRE_C/C++ L anguage Support User's Guidd. For details about the C language

functions that are provided with Transmission Control Protocol/Internet Protocol

(TCP/IP) support, see [TRPE Transmission Contral Protacol/internet Protocal. For
details about the assembler language macros, see [[RE General Macros,

In this book, abbreviations are often used instead of spelled-out terms. Every term
is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, Systems Network Architecture (SNA). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in the dﬂy

Who Should Read This Book

This book is intended for:

» Application programmers who already understand some general TPF
programming concepts. It offers guidance on how to apply knowledge of
assembler, C, and C++ languages to programming in the TPF system
environment.

* Webmasters who want to use the TPF system as a Web server site. It offers
guidance on how to use Internet server applications, how to port an application to
the TPF system that is compliant with the Portable Operating System Interface
for Computer Environments (POSIX) standards, and how to start a TPF
application from the Internet.

These users are expected to be programmers who have some familiarity with the
TPF system, POSIX standards, UNIX, and the Internet.

Conventions Used in the TPF Library

The TPF library uses the following conventions:

Conventions

Examples of Usage

italic

Used for important words and phrases. For example:
A database is a collection of data.

Used to represent variable information. For example:

Enter ZFRST STATUS MODULE mod, where mod is the module for which you want
status.

© Copyright IBM Corp. 1994, 2002 XVii

Conventions

Examples of Usage

bold

Used to represent text that you type. For example:
Enter ZNALS HELP to obtain help information for the ZNALS command.

Used to represent variable information in C language. For example:
level

monospaced

Used for messages and information that displays on a screen. For example:
PROCESSING COMPLETED

Used for C language functions. For example:
maskc

Used for examples. For example:
maskc (MASKC_ENABLE, MASKC I0);

bold italic

Used for emphasis. For example:
You must type this command exactly as shown.

Bold underscore

Used to indicate the default in a list of options. For example:
Keyword=OPTION1 | DEFAULT

Vertical bar |

Used to separate options in a list. (Also referred to as the OR symbol.) For example:
Keyword=0Optionl | Option2
Note: Sometimes the vertical bar is used as a pipe (which allows you to pass the output of

one process as input to another process). The library information will clearly explain
whenever the vertical bar is used for this reason.

CAPital LETters

Used to indicate valid abbreviations for keywords. For example:
KEYWord=option

Scale

Used to indicate the column location of input. The scale begins at column position 1. The
plus sign (+) represents increments of 5 and the numerals represent increments of 10 on the
scale. The first plus sign (+) represents column position 5; numeral 1 shows column position
10; numeral 2 shows column position 20 and so on. The following example shows the
required text and column position for the image clear card.

LOADER ~ IMAGE CLEAR

Notes:

1. The word LOADER must begin in column 1.
2. The word IMAGE must begin in column 10.
3. The word CLEAR must begin in column 16.

Related Information

A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM Transaction Processing Facility (TPF) 4.1 Books

+ [TPE ACE/SNA Data Communications Referencd, SH31-0168
+ [[PE Application Programming, SH31-0132
« [IPE Application Requester User's Guidel, SH31-0133
« [[PE C/C++ | anguage Support User's Guidel SH31-0121
+ [[PE Concepts and Structured, GH31-0139

XViil TPF V4R1 Application Programming

« [[PE Database Referencd, SH31-0143

- [PE Data Communications Services Reference, SH31-0145
« [[PE General Macrod, SH31-0152

+ [PE General Informatiod, GH31-0147

« [IPE Library Guidd, GH31-0146

« [IPE Main Supervisar Referencd, SH31-0159

« [[PE Migration Guide: Program Update Taped, GH31-0187
- [PE Operationd, SH31-0162

+ [[PE Program Development Suppart Referencd, SH31-0164
« [[PE Programming Standardd, SH31-0165

+ [[PE System Generatiod, SH31-0171

+ [[PE System Installation Support Referencd, SH31-0149

+ [[PE System Macras, SH31-0151

. [IPE System Perfarmance and Measurement F\’pfprpnrd, SH31-0170

« [TPE Transmission Caontrol Pratacal/lnternet Pratocal, SH31-0120.

IBM Systems Network Architecture Books

rchitecture | agic for | U Type 6 2, SC30-3269

+ IBM Systems Network Architecture | Il 6 2 Reference: Peer Protacold,

SC31-6808

IBM Message Queuing Books

+ MQSeries Application Programming Referencd, SC33-1673
+ MQSeries Clientd, GC33-1632
+ MQSeries Distributed Queue Management Guidd, SC33-1139
« MQSeries for AIX Application Programming Referencd, SC33-1374
« MQSeries for QS/2 Application Programming Referencd, SC33-1370
« MQSeries for MVS/ESA Application Programming Referencd, SC33-1212
« MQSeries Message Queue Interface Technical Referencd, SC33-0850.

IBM High-Level Language Books

o ICIC++ for MV/S/ESA V/3R2 | anguage Referencd, SC09-2150

o CICt+ for MVSIESAV3IR2 Library Reference, SC23-3881
+ IC/C++ for MVS/ESA V3R2 Programming Guide, SC09-2164
* IC/Ct+ for MVS/ESA V3R2 User's Guidd, SC09-2205

+ IBM C/37Q Diagnosis Guide and Referencd, LY09-1804

+ IBM C/37Q Programming Guidd, SC09-1384

« IBM C/370 User's Guidd, SC09-1264

+ 10S/390 C/C++ |BM Qpen Class Library Referencd, SC09-2364

« 0S/390 C/C++ IBM Qpen Class | ihrary User's Gllidpli SC09-2363
+ 10S/390 C/C++ | anguage Referencd, SC09-2360

+ 0S/390 C/C++ Programming Guidd, SC09-2362

+ 0S/390 C/C++ Run-Time | jbrary Referencd, SC28-1663

About This Book XiX

+ 10S/390 C/C++ User's Guidd, SC09-2361

 Programming Guide SAA AD/Cycle C/370, SC09-1841

« Programming Guide SAA AD/Cycle | anguage Environment/370, SC09-1840
» ISAA AD/Cycle C/370 Language Referencd, SC09-1762

« ISAA ADICycle C/370 Library Referencd, SC09-1761

« 1SAA ADICycle C/370 User's Guidd, SC09-1763

+ [SAA Common Programming Interface C Reference - Level 4, SC09-1308.

Miscellaneous IBM Books

« IAIX Version 4 1 Commands Referencd, SBOF-1851
+ Character Data Representation Architecture Reference and Registryl, SC09-2190

- DESMS/MVS Version 1 Release 2 Access Methad Services for VSAM (‘amlngd,
SC26-4905

 [ESA/370 Principles of Qperatiod, SA22-7200

+ [ESA/390 Principles of Qperation, SA22-7201

+ Language Environment for MVS & VM Programming Reference, SC26-3312
+ lLanguage Environment for MVS & VM Pragramming Guidd, SC26-4818

+ MVS/XA VSAM Administration: Macra Instruction Referencd, GC26-4016

+ BZ0/XA Principles aof Operatiod, SA22-7085.

Non-IBM Books

* Internet Architecture Board Standard 33, Request for Comments 1350

* OSF DCE Application Development Reference (1993, Prentice Hall), ISBN
0-13-643834-2

* UNIX Network Programming (1990, Prentice Hall) by W. Richard Stevens, ISBN
0-13-949876-1

* UNIX Network Programming: Networking APIs: Sockets and XTI (2nd Edition,
1997, Prentice Hall) by W. Richard Stevens, ISBN 0-13-490012-X.

Online Information

» Messages (Online)

How to Send Your Comments

XX

Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

» If you prefer to send your comments electronically, do either of the following:
— Go to http:/wnw ibm com/tpf/pubs/tpfpubs htm,

There you will find a link to a feedback page where you can enter and submit
comments.

TPF V4R1 Application Programming

http://www.ibm.com/tpf/pubs/tpfpubs.htm

— Send your comments by e-mail to tpfid@us.ibm.com
* If you prefer to send your comments by mail, address your comments to:

IBM Corporation

TPF Systems Information Development
Mail Station P923

2455 South Road

Poughkeepsie, NY 12601-5400

USA

* If you prefer to send your comments by FAX, use this number;
— United States and Canada: 1 + 845 + 432 + 9788
— Other countries: (international code) + 845 + 432 +9788

About This Book XX

XXil TPF V4R1 Application Programming

Introduction to TPF

The TPF operating system is a high performance, high availability, real-time,
message-driven communications system. TPF applications typically support the
functions of a business where the system is in direct contact with the user’s
customer. That customer may have direct access to the operating system (such as
through the 3614 Customer Transaction Facility), or may be serviced by a business
agent, such as a bank teller or reservation agent. In either case, one of the
mandates for high performance is implied: the customer is waiting.

The second mandate is the volume of message processing required. TPF
applications are generally straightforward, such as credit card verification,
depositing or withdrawing money on a bank account, or reserving an airline seat.
However, those functions must be performed from one to several hundred times per
day at each terminal, and a typical TPF system might support thousands of
terminals (although some systems of only a few hundred terminals exist).

Some Fundamental Definitions

A System/370 online computing facility or central processing complex (CPC) is
defined as set of central processing units (CPUSs) that are packaged together to
share a common main storage. The term used in TPF documentation for the set of
CPUs in a CPC is instruction-stream engines or I-streams. A CPC used in a batch
data processing environment normally follows a repetitive cycle of events that can
be planned and timed in detail by programmers.

In a real-time TPF environment, this is seldom the case, because the sequence of
operations is unpredictable. The volume and variety of messages received is such
that several messages may be in the CPC at any one time. The TPF control
program is used to schedule work, allocate storage, and assess priorities
continuously. It permits message processing on an I-stream and component-sharing
basis to maximize use of the various system resources. These resources include
main and file storage, input/output components, terminal equipment, and the
processing performed by each I-stream.

Language Structures and Case Guidelines

Throughout this publication there are references to C language and assembly
language structures and symbols.

Note: The C language structures are in lowercase and the assembly language
structures are in uppercase. This is important because often the only
difference between the C language structure and the assembly language
structure is the case of the name. When this occurs, we provide only the
lowercase name (C language). The assembly language equivalent is always
just the uppercase spelling. When there are more differences than just the
case of the name, both the C language and assembly language versions are
provided.

See the glossary in [[PE Library Guidd for definitions of additional TPF system and
C language terms.

© Copyright IBM Corp. 1994, 2002 1

TPF Application Support and Environments

The original TPF system was designed to satisfy the requirements of airline
reservations agents who access available flight space and record travelers’ choices.
TPF updates inventories, creates passenger name records, and maintains the
indexes or other database support necessary to retrieve records for display or
modification, if required. The agent communicates with a traveler by telephone, but
accesses the necessary data using a terminal that is linked to a central computer
through a communication network.

The airline reservations application still typifies the environment for which TPF
provides the optimum solution. However, any data processing environment that
requires remote users to access a large common database is a potential TPF user.
TPF is implemented by a variety of business types, including banks, car rental
companies, electronic funds transfer systems, hotel reservation systems, message
switching networks, municipal government, and consumer finance companies.

Communication Protocol Support

Although applicable to a wide variety of application areas, TPF achieves its
efficiency, in part, by limiting function and flexibility in favor of extremely high
availability and rapid, consistent responses. The communications area supports a
limited number of line protocols, as the following list indicates.

ALC Airlines line control (high speed lines; sometimes called SABRE line control
by means of the Airlines Control Interface (ALCI feature of NCP).

BSC Binary synchronous line control
SDLC Synchronous data link control, an SNA protocol

SLC Synchronous link control, an airline facility.

File Storage Support

In the area of file storage support, use of both a single access technique and rigid
formatting reduce operating system requirements. Other areas with concepts that
contribute to the efficiency of TPF include the management of messages, working
storage, and programs. The inherent complexity of a real-time system also requires
development of special-purpose test procedures, test tools, and support functions.

TPF Environments

TPF and its support reside in different environments. The primary real-time
environment, under control of TPF serving the application function, is often referred
to as the online system. Most of the secondary programs and facilities, which
support the online system, operate in a batch-oriented environment under control of
an MVS system. This environment is referred to as the offline system.

TPF uses backup equipment to satisfy its high availability requirements: the backup
always is ready to carry the online function in the event of failure. The offline
system may also use the backup equipment in a dual role to provide the tools for
application development, maintenance of programs, maintenance of data, and batch
processing of applications that are not real-time (for example, financial reports and
data reduction of system measurements).

Functions Performed by the TPF System

The TPF system performs the following functions:

2 TPFV4R1 Application Programming

» Control of incoming and outgoing messages; receives and transmits messages
over communication lines

* Main storage and file storage management; controls allocation and release of
main and file storage as requested by programs

* Queuing of work to be done; maintains lists of entries waiting for event
completion or further processing

» Priority of processing; reactivates entries on a system priority basis

* Input/output control; services all input/output operations, usually upon request of
the application programs

» Error checking and error recovery; identifies, logs, and resolves (where possible)
all permanent and transient equipment errors

» Operator communications; communicates with the operator and provides
pertinent information requested by the operator or considered necessary by TPF

» Restart and switchover; provides a means of starting active operations in a
computer system or restarting operations in the standby system.

Most operating systems perform all of the preceding functions. The performance
differences of each can be attributed in large part to the concepts employed to do
each function. It must be assumed in designing a real-time, high-availability system
that the user’s business needs cannot allow the operating system to be taken down
to perform maintenance functions. TPF facilities therefore are designed, and the
user’s applications must be designed, for database update and maintenance to be
performed in real-time and still permit good response time. For the same
considerations, should a system failure occur, the restart process is rapid and
uncomplicated, making most restarts successful and achievable in seconds.

Messages and

Entries

TPF is an operating system in which most units of work are initiated by messages.
TPF is a conversational system in that a single response must be provided for each
message. The term message applies to the input characters that trigger a work unit.

Entry Control Block

When TPF receives a message or entry into the system, it assigns a storage area
called an entry control block (ECB) to that message. The term entry refers to the
processing associated with an entry control block. Once activated, TPF processes
each entry with equal priority on a first-in, first-out basis. The life of an entry is
measured from the creation to the deletion of the entry control block.

An entry in TPF is analogous to a task or process in other operating systems. The
ECB, which corresponds to an MVS task control block, is the primary interface
between TPF and application programs. The ECB is divided into three parts:

1. The first part is used for saving such things as registers, PSW, and status.
Sections are also reserved for use by application programs and for passing data
between the TPF system and application programs.

2. The second part is protected from use by application programs, and is used by
the system for creating and maintaining the ECB address space (the ECB’s
view of virtual storage). Applications should not attempt to modify this area.

3. The third part is used by the system to store ECB-based data and tables, such
as the macro trace table, and the program nesting area.

The term entry should not be confused with another common TPF term: enter.
Enter refers to the use of the TPF enter/back services to transfer control to another

Introduction to TPF 3

program. The entered (or called) program uses the same ECB as the calling
program. The fact that both programs use the same ECB means they are part of
the same entry.

In the TPF system, programs that use the enter/back services to transfer control to
other programs are called E-type or ECB-controlled.

An ENTXC macro transfers processing control to another program segment. This
program segment is a processing component of the original entry where the enter
macro was invoked.

Each new message causes a program called OPZERO to create a new ECB. There
are different OPZERO programs for different message protocols. For example, if the
message obeys SNA protocol, the OPZERO appropriate for SNA messages is
invoked. The application selection programs of the control program activate the
initial segment (also called the root segment) of an application (usually an
application input message editor). The application’s message editor invokes
additional application program segments to process the message. This processing
generally involves retrieving information from, or adding information to, the
database, and responding to the requesting terminal. During processing, the
application programs will make requests of the TPF system programs for services
such as input/output, file and main storage allocation, program enters and returns,
and release of control.

There is no TPF facility for allocating main storage dynamically. It is fixed at system
generation time. Symbolic references and TPF facilities allow common access to
the data by any application, and reconfigurations without reprogramming.

Reentrant Programs

As a program attribute, reentrant means that a single program may be used to
produce multiple outputs while maintaining the ability to accept additional input prior
to producing a previous output. At any given instant, there is a unique ECB, which
is referenced by an application program. To be reentrant, the application program
must not modify any storage located within the bounds of the program itself.
Instead, it must reference switches, indicators or counters in an application work
area that is located in the ECB or owned exclusively by the entry. This means that
the program may suspend, abort, initiate, or resume processing of any number of
entries at any point in their processing, without ever reinitializing. Therefore, one
main storage copy of a program, by referring to different ECBSs, is equivalent to
multiple main storage copies of the program.

An active, assembler application program’s dynamic data resides in the current
ECB, whose address is, by convention, stored in register 9 (R9). Several TPF
macros satisfy the need for data work areas if the work area in the ECB is
insufficient. Any such work area is also indirectly referred to through the ECB.
Application program segments are assembled in relation to a base address of zero.
At execution time, a base register is assigned to the address of the main storage
block in which the program segment has been placed. The control program always
uses register 8 (R8) as the base register for application program segments.

Reentrancy in ISO-C programs is handled through stack frames. A stack frame is
used during the duration of a function. The frame is retained when other functions
are called and reused when the called function returns. The stack frames contain
the storage required by program variables, unless the variables are declared to be
static. Programs that declare data static and modify the static data are said to have

4 TPF V4R1 Application Programming

"writable static” data. To be reentrant, programs with writable static must specify the
RENT parameter when they are compiled.

Therefore, although the terms multijobbing and multitasking are not used in TPF, at
any one time many entries may be present in the system (hundreds, perhaps, in
large systems), each handling a unique unit of work for any number of applications.
Typically, an entry processes one element of input data only. Thus, in contrast to
batch-processing jobs, which may run for several hours, an entry is likely to exist
only for a few seconds, or even merely a few hundred milliseconds.

Batch type operations may still be handled by TPF in the real-time environment by
one of two methods. They may be started by the operator keying an input message
at the console, thus causing an entry to be created. A batch of input data, such as a
tape file, may be handled by the entry created by operator input. This entry would
have a very long life. An alternative method would be to program a monitor that
would control the creation of entries, one for each input tape record. When one
entry exits, the monitor can create another, thus maintaining a level of activity
appropriate to available system resources.

Database Support

The main database of the TPF system is allocated at system generation time and is
shared by all entries and all applications. It comprises two categories of file space.
(A third category, general data sets, and a fourth, general files, are discussed in

IGeneral Data Set and General Eile Support” on page 273

The first category is analogous to a conventional multivolume data set organized for
Basic Direct Access Method (BDAM). In the TPF system this organization is called
fixed file storage. The second category is unique to TPF, and is termed random pool
file storage. Random pool file storage (sometimes called pools) is similar to the
areas of main working storage, because storage is dispensed and returned as
needed. When an entry requests space in random pool file storage, TPF locates an
available record and passes its address to the entry. The entry should record the
address in a fixed file record because ultimately the system expects the requesting
entry to release the random pool file record by returning the address to the TPF
system. Data is stored and retrieved at the physical record level. The record size is
fixed at 4096 bytes.

There is no TPF facility for allocating file storage dynamically. It is fixed at system
generation time. Applications are not aware of the physical configuration of the files.
Symbolic references and TPF facilities allow common access to the data by any
application, and reconfigurations without reprogramming.

Program Categories

This document makes the distinction between two categories of TPF programs:
ECB and non-ECB controlled programs. An application program as discussed in this
document means any user-developed program designed to run online under TPF
that is not a part of the TPF system itself. When used in this document, an
application program always implies an ECB-controlled program as defined in the
following section.

Introduction to TPF 5

C Language in the Control Program

The TPF control program does not support C language programs. The
implementation of C requires ECB virtual memory (EVM) and register connection to
an ECB.

ECB-Controlled Programs

An ECB-controlled program consists of 1 or more program segments. Assembler
language and TARGET(TPF) programs must fit into a standard TPF main storage
block. For practical purposes ISO-C programs have no size limit. ECB-controlled
programs can be permanently assigned to main storage during online execution of
the TPF system, or allocated to file storage and loaded into main storage at
execution.

Main storage resident ECB-controlled programs are allocated as core resident. Core
resident programs are ECB-controlled programs that are permanently allocated to
main storage because they are used so frequently.

TPF publications also refer to ECB-controlled programs as file-resident, real-time,
and E-type programs.

Non-ECB Controlled Programs

The programs that constitute the main storage resident portion of the TPF system
are not required to fit into standard TPF fixed size storage blocks or to use an entry
control block. Although assigned to file storage for restart purposes, these programs
always are resident in main storage. TPF publications sometimes call these
programs C-type programs.

Offline programs run under control of either TPF or MVS to provide function in
support of the online portion of the TPF system. TPF publications often refer to
these programs either as S-type (system installation) or as V-type (other offline)
programs.

High Performance Option

If your TPF system includes the High Performance Option (HPO) licensed feature, it
is important that you have a basic understanding of its terminology and functions.
You must consider certain coding issues if you are writing application programs for
an HPO system. You can find additional overview information about the High

Performance Option feature in the [[PE_General Informatiod and [[PE Maid
Bupervisor Referencd.

An installation can have several TPF systems. If these systems function completely
independently of one another, each must maintain its own database of application
programs and program data. The High Performance Option feature allows these
TPF systems to be interconnected so that any system can access the applications
and data of some or all of the others. The shared access means that data need not
be replicated from system to system.

The High Performance Option feature comprises the following 2 components that
can be installed separately:

* Multiple Data Base Function (MDBF) — Permits a single copy of TPF to access
multiple databases.

6 TPFV4R1 Application Programming

* Loosely Coupled (LC) Facility — Allows up to 8 TPF images to access a single
database; in essence, the converse of MDBF. (An image, in this sense, is at least
a TPF control program, but may also include application, system, and utility
programs and data.)

Combined, these components allow interconnection of TPF systems, an important
capability when multiple TPF systems are required to handle high-volume business.
This interconnection can be effective only if shared data is always as current as
possible, which has critical implications in the writing of application programs. Later
sections describe these implications in detail.

One especially important aspect of the Multiple Data Base Function is the
subsystem. Any TPF system running with MDBF can be divided into as many as 64
subsystems, each of which contains a complete and possibly distinct set of
application programs and application data. One of the subsystems, the basic
subsystem, contains the control program and system utilities for all the subsystems,
and may contain basic subsystem application programs as well. Furthermore, any
subsystem (including the basic subsystem) can be subdivided into as many as 128
subsystem users. (The total number of subsystems and subsystem users cannot
exceed 128.) All subsystem users in a single subsystem share application programs
and may or may not share data.

TPF Programming Conventions

TPF has established certain programming conventions to achieve high performance
and ease program maintenance. It is important that the application conform to these
conventions. TPF enforces some of the conventions; only good programming
discipline can maintain others. Some of these conventions have been mentioned
already and some will be discussed, in detail, in later sections.

Common Programming Conventions

These conventions apply to TPF applications programming in general. Those
particular to assembler language and C language follow this section.

» All application programs must be reentrant. They must not contain any internal
switches, indicators, or counters.

* Do not modify the fields in the ECB that TPF maintains. These fields include, but
are not limited to, core block reference words, the TPF register save area, and
other control information. Refer to these fields as necessary.

* Remember that TPF does not necessarily clear or initialize any working storage
blocks before assigning them to the application program.

All working storage blocks begin on a doubleword boundary.

» Symbolic references must be maintained in all areas. This will enable
programming to be configuration independent and system parameters to be
changed without extensive programming effort.

— In assembly language no absolute address constants can be used; the
technique of subtracting one label from another in order to obtain an actual
byte count of the distance between the two locations can be used, provided
the two labels are defined within the same program segment or data record.

— Also in assembly language the names for all storage locations, registers, and
I/0 devices should be symbolic.

— Use of absolute values of all types should be minimized. In C language only
put absolute values in headers and associate symbolic names with these
values.

Introduction to TPF 7

— Use the TPF_regs structure in C language for passing data in registers to
programs where registers must be specified.

* When your application programs will operate on any I-stream of a multiengined
CPC, follow the rules of multiprogramming and multiprocessing as described in
the ESABQO_Eunctples_af_O.petamd In general, TPF will handle the serial
access to data records via the normal system services (for example, getcc,
relcc, find_record or FINDC, file record or FILEC, fiwhc, filuc). However,
when your application interacts with a shared resource, such as a common
global field, use appropriate multiprocessing techniques to access and update
these areas.

» Ensure that your application programs return control to TPF within 500
milliseconds of activation. Control may be returned in several ways, some of
which follow:

— Call the waitc function while waiting for I/O activity to complete. This is
required for any find request. A program may call the waitc function explicitly,
or may call another function (for example, a fiwhc function) that, in turn,
performs a wait. Note that waitc returns control to the application program,
and resets the 500-millisecond timer, only after all 1/O activity for the ECB
actually has completed.

— Call the dlayc or defrc function partway through the program logic to place
the program’s entry at a lower priority than other work. You might use this
method if the program does little I/O activity, but might run slowly enough to
risk breaking the 500-millisecond limit.

— Call the exit function to end processing of the program.

Most application programs are transaction- and 1/0-oriented, so they return
control to TPF frequently with each waitc. The timing constraint usually only
becomes a concern if the programs will be retrieving much of their data from the
virtual file access area. Such retrieval does not reset the 500-millisecond timeout

counter. See ['Virtual File Access Facility” on page 279 for more information.

» Ensure that all application programs call a waitc function, either explicitly or
implicitly, after a read or write request to ensure that the I/O is complete before
attempting to use the requested resource (for example, the f|Ie record to be read
with a Find function. See L ,

* Application programs should return any system resources not in use or
imminently planned for use. This is an important discipline. All system resources
(such as main storage blocks and file pool addresses) should be returned
promptly. Because many ECBs operate concurrently, failure to do this could be a
significant drain on system performance and require excessive resource
allocation.

» During execution of a TPF API function, a variety of exceptional conditions may
be detected. Application programs regain control only on I/O hardware errors or
I/O-associated unusual conditions related to a unique entry. A function parameter
error results in a forced exit and a dump. TPF takes a dump and sends an
operator message only on 1/O hardware errors. These conditions are recorded in
the ECB on return to the application program from the TPF API function.

» Use the find-and-hold functions to hold all file storage records before you update
them, to ensure the proper sequence of update.

See FRecard Hald Eacility” on page 259 for more explanation. Ensure that your

program holds only one record at any given time, to prevent a lockout condition
from occurring.

8 TPFV4R1 Application Programming

Assembler Language Programming Conventions
Below is a summary listing of assembler language programming conventions:

Except where otherwise noted, only 31-bit addresses must be passed to TPF
system services.

All assembly language application programs must fit into a 4KB block to adhere
to the basic file structure and main storage management facilities of the system.
Approaching the block size limit too closely, for example, within 20%, increases
the difficulty of making corrections or modifications to the program.

Application programs should not execute privileged instructions, nor explicitly
issue the supervisor call (SVC) instruction.

Application programs_should not make use of the restricted-use control program
macros described in [[RE System Macrod. Only the general use control program
macros and the general purpose application macros are appropriate for
application programs, because only these macros are guaranteed to be
compatible with later releases of TPF.

The general registers 0 through 7 are reserved for use by application programs.
Their contents are saved across all control program macros. Registers 14 and 15
may also be used by application programs, but are often used by the control
program to pass information between programs. The contents are not guaranteed
across macro calls unless otherwise indicated.

General register 8 always contains the base address of the active application
program. It must not be altered by application programs.

General register 9 always contains the address of the current active entry control
block. It must not be altered by application programs.

General register 10 is reserved for CP use, but can be used as a scratch register
(the contents are not guaranteed across macro calls).

General registers 11 and 12 are reserved for control program use. Their contents
must not be modified by an application program.

General register 13 is reserved for CP use, but can be used as a scratch register
(the contents are not guaranteed across macro calls).

All storage is assigned by the control program. You do not, in general, code
define storage (DS) commands in your own application program to describe
storage block formats. Instead, your program requests storage blocks from the
control program and uses TPF or user data macros to describe the formats.

An application macro may generate inline code or an SVC through the use of a
control program macro. The SVC machine instruction is never directly used by an
application.

C Language Programming Conventions
The following summary lists conventions that apply to using the C language.

Allocate your program as 31-bit mode only. In general, TPF programs may be
allocated in either 24-bit mode or 31-bit mode; however, TPF C language support
requires programs in C to be in 31-bit mode.

Give a unique 4-character name to each application program segment. For
ISO-C, each application program segment must contain either a main function or
a function with the same name as the program segment. For TARGET(TPF)
programs, the name of the first external function will be used as the name of the
segment.

If you prefer to use a longer name for readability, code a #pragma map statement
for the segment name.

#pragma linkage(name ,TPF, type) is not supported for ISO-C

Introduction to TPF 9

* Use the system function to activate a C program that contains a main function.

+ Follow the register conventions established in the [[PE Program Development
[Support Reference when coding programs that interact between the assembler

and C language support.

TPF Advanced

Program-to-Program Communications

The function provided by the TPF Advanced Program-to-Program Communications
(TPF/APPC) interface is an implementation of the IBM Advanced
Program-to-Program Communications (APPC) architecture. TPF/APPC is an
interface that allows TPF transaction programs to communicate with remote SNA
nodes that have implemented the APPC interface using LU 6.2 protocols. This
application interface is provided for application transaction programs written in
assembler language or in C language.

Note: Mapped conversation support is provided only through the C language
interface.

The TPPCC macro, described in TRE_General Macrod, provides the assembler
language interface for basic conversations. The tppc_ C function calls provide the C
language interface for basic conversations, and the cmxxxx C function calls provide
the C language interface for mapped conversations. All TPF/APPC C function calls
are described in the [[RE_C/C++ | anguage Support User's Guidd. The CNOSC
macro, described in [[RE_General Macrod, provides the communication interface
between the control operator and the TPF application programs.

A conversation between transaction programs is identified and controlled by a
conversation control block (CCB), which is defined by data macro ICCB. A session
is controlled by a session control block (SCB), which is defined by data macro
ISCB. Local TPF transaction programs that are activated by remote transaction
programs or by the tppc_activate _on_receipt or tppc_activate on_confirmation
function must be defined to TPF in the transaction program name table (TPNT).

This publication discusses TPF application programming in a traditional environment
of host and terminals. For more information about application programming in a
distributed processing environment using LU 6.2 protocols (TPF/APPC), see the

TPF Application Requester

The TPF Application Requester (TPFAR) feature permits you to share data between
a remote, DRDA level-1 compliant relational database and a TPF application using
the common structured query language (SQL) interface. An LU6.2 connection is
used to connect to a remote system. With TPFAR, a TPF application can directly
access and retrieve or update the information residing on the remote system. TPF
applications can be written in System/370 assembler language or the C language.

TPFAR uses the Distributed Data Management (DDM) architecture that allows an
application program to work on data residing in a remote system. Built on top of
DDM is the Distributed Relational Database Architecture (DRDA) which contains
protocols for communication between relational databases.

For additional information, see [[RE Application Requester User's Guidd.

10 TPF V4R1 Application Programming

Message Queue Interface (MQI) Client

The MQI client provides TPF applications access to the standard message queue
interface (MQI), supported by other MQSeries product offerings. The MQI client
implements an MQSeries client on the TPF system. With this function, TPF
applications can now interact with MQSeries applications running on several
different platforms using a messaging and queuing model for communication
services. An ISO-C interface is provided for the 11 functions that make up the MQI.
The MQI client function is implemented as an ISO-C library, with the 11 MQI
functions implemented as external functions in this library. A complete description of

the MQI is contained in the MQSeries Message Queue Interface Technical
ﬁ. Specifics about MQI clients is found in MQSeries Clientd and IMQSeried

The TPF MQI client implementation is based on the standard MQSeries client
server interface used by other MQSeries product offerings. MQSeries clients use
MQI channels to communicate with MQ seriess. The MQI client uses LU 6.2
sessions through Common Programming Interface for Communications (CPI-C) or
Transmission Control Protocol/Internet Protocol (TCP/IP) to connect with remote
MQI queue managers that are capable of running MQ series function. A channel
definition must be created at both the MQI client and server ends of the connection.
The MQI channel directory is where the TPF system maintains a maximum of 50
channel definitions. The ZMQID ALTER, ZMQID DEFINE, ZMQID DELETE, and
ZMQID DISPLAY commands are used to maintain the MQI channel directory. For
more information about maintaining the MQI channel directory, see mm

A TPF Transaction Example

This section presents an example transaction that is followed through the system.
Some of the coding details have been simplified for the purposes of discussion.
Many of the C functions used in coding this example are further discussed in

At the outset, assume a TPF system that is idle, except that the communications
control program (CCP) is monitoring the lines for input. System activity is triggered
when any user enters a message at a terminal. A given terminal may have access
to any application in the network, but until some association is established, TPF has
no knowledge of the intended destination of the message. The first message will be
a request to connect the terminal to some application. This is done with a login
message specifying the application. For example:

LOGI CRED

This message requests TPF to connect the inputting terminal to a credit verification
application identified as CRED. (CRED is defined as a non-SNA application.) This
new message would normally be placed at the bottom of a queue called the input
list. In our example the system is idle so that it is processed immediately. The
process flow is as follows:

Step 1 The CCP gives control to a system program called OPZERO, which
performs 2 principal functions.

* OPZERO allocates an ECB from the ECB area and initializes it
as an ECB. This block will be associated with this message
(entry) throughout its life in the system. The ECB will be passed
to all processing programs. Later, this section discusses in detail

Introduction to TPF 11

12

Step 2

Step 3

Step 4

TPF V4R1 Application Programming

the function and format of the ECB because it is the key facility
by which the application interfaces with the TPF system and
controls its processing.

* OPZERO gets a main storage block into which it formats the
input message and stores the address of the message block in
the ECB at data level 0. The ECB contains references to 16 data
levels (level 0—F). The data levels are a series of slots used to
store pointers and control information for data blocks. No priority
or nesting is implied by the use of the term level. All levels may
be used to suit the needs of the application. However, to simplify
interfaces, certain conventions have been established about the
use of specific levels. One of these conventions is that the input
message is passed to the application on data level zero.

OPZERO passes control to the communications source processor
(COMM SOURCE), whose principal function is to determine the
intended destination of the message and to create the routing
control parameter list (RCPL). The RCPL, like the ECB, will be
associated with this entry throughout its life in the system; it defines
the origin and destination of the message as well as descriptive
information to facilitate routing and processing. COMM SOURCE
stores the RCPL in the ECB work area at location EBWO0OO.

COMM SOURCE also retrieves a routing control block (RCB) or
agents assembly area (AAA), or both, depending on what the
application expects. (See FRauting Contral Block” an page 48) By
convention, the RCB address is placed in data level 3 of the ECB,
while the AAA address is placed in data level 1. In a central
processing complex with more than 1 instruction stream COMM
SOURCE also may be used to determine the routing of the
message to an application specific I-stream or to the I-stream
determined by the system. This is done by a COMM SOURCE user
exit. Finally, COMM SOURCE passes control to the log processor
(assuming the terminal is not already logged to an application).

The log processor in effect connects the inputting terminal to
application CRED. The log processor updates the slot for the
terminal in the WGTA table. If the terminal is an SNA logical unit,
the resource vector table (RVT) also is updated. The index value
indicates the connection and also points to the program to be
activated to begin processing the message for application CRED.

The log processor generates a message stating that the terminal
has been successfully connected to application CRED and requests
the TPF message router to send it to the requesting terminal. The
details of how this is done are deferred to the next message.

The terminal operator is now in a position to enter messages for the
credit verification application. Until the connection is terminated all
input from this terminal will be so routed. The operator enters a
message requesting credit against a specific account number for a
value of $75. For example:

/4247852601709 $75

The first character (/) is an action code identifying the format and
expected function of the message. Now assume for clarity in
following the flow that the terminal is connected to a BSC line.

Processing will begin as described in Step 1. It continues with Step
2 in creating the RCPL and retrieving the RCB. However, when
COMM SOURCE looks at the WGTA slot for this terminal it finds
that it is already connected to an application. The index value in the
WGTA points to information in the application name table and the
routing control application table, which supply the file address of the
input message editor for application CRED. COMM SOURCE
passes control to this program, which we will call CRC1.

shows the conditions when CRC1 (the application) is activated.

Register 9 —| Register 8
ECB
S EBWO000
RCPL —» CRED | 020210C1 | 80000000
Level O Level 1 CRC1
Application
Level 3 | i Message
Editor
Program
CE1CRP
AMSG RCB AAA
[M AMOFCH — | CI
00000000 J CRED
Message TPF Area
Block
Application
Area

Figure 1. Conditions When Application Is Activated. The RCB and/or the AAA may be
present.

To summarize:

* The ECB is in main storage, pointed to by register 9.

* The input message, formatted according to the am0sg structure, is in main
storage, pointed to by data level O of the ECB.

* The routing control block (RCB) is in main storage, pointed to by data level 3 of
the ECB, and it is in hold status. Or,

Introduction to TPF 13

— The agents assembly area (AAA) is in main storage, pointed to by data level
1 of the ECB.
— Both an RCB and an AAA are present in main storage as described above.

* The RCPL, which specifies the origin of the message as the terminal address
(LNIATA/CPUID) and the destination as CRED, is stored in the ECB at location
EBWO0O0O.

* The object code for CRCL1 is in main storage, pointed to by register 8.

Should this message come in from an SNA network, conditions would be identical
except that there would be no RCB on level 3 (unless the application is
RCB-dependent), and the origin field of the RCPL would be in SNA format
(sequence number, resource ID/CPU ID).

From this point, the processing flow is exclusively in the hands of the application
and unlimited variations are possible. It depends on the complexity of the functions
to be performed and the application design. Conceivably, a simple application might
be contained in one program segment, which would do something with the data
blocks passed to it by COMM SOURCE, send its response message, and exit. On
the other hand, a complex application may involve hundreds of program segments
interacting with each other and TPF, extensive file accessing and main storage
requirements. For the purpose of this example, assume a simple credit verification
application of two program segments and arbitrarily select some commonly used
functions that illustrate the manner in which application programs interface with

TPF. Eigure 2 an page 16 shows the logic flow for CRC1 and Eigure 2 aon page 20

shows the logic flow for CRC2.

Step 5 There are different procedures for assembly language programs
and C language programs.

For assembly language, after first determining that this is a normal
new input message, CRC1 must edit the message and determine
which function is being requested. TPF provides a data macro that
defines the fields in the input message and allows the program to
refer to it by symbolic tags. The data macro name is AMOSG.

Example:
AMOSG REG=R2

By issuing the data macro statement, CRC1 indicates to the
assembler that it intends to address the AMOSG record using
register 2 as a base. The symbolic tags can be referred to by
loading R2 with the pointer to the input message from level 0 of the
ECB.

The input message tokenization support macro BPKDC might be
used, or the program could supply its own logic for the edit. In any
case, CRC1 determines that the message is a valid standard
request for credit.

For C language, after first determining that this is a normal new
input message, CRC1 must edit the message and determine which
function is being requested. CRCL1 uses the scanf function to read
the data in. The scanf function locates and then parses the input
message into an account number and an amount and returns the
number of fields that were successfully converted and assigned.
Note that the gets function must be implemented for the scanf

14 TPF v4R1 Application Programming

function to work properly. The scanf and gets functions are not
implemented according to the ANSI standard. See the

lLanguage Support User's Guidd for details on scanf and gets.

Alternatively, the C language parser (IPRSE_parse) can be used in
this example.

Example:
rc = scanf("/%[0123456789] $%d", acctnbr, &amount);

For the purposes of this discussion, assume that the message is a
valid standard request for credit.

Step 6 The program then retrieves the negative credit file, which resides
on the fixed file. The fixed file is a DASD file area assigned
permanently to specific functions or record types, as opposed to the
dynamic pools, which may be used repeatedly for various purposes.
There are many types of records on the fixed file, but the TPF file
access routines see it as one file. Therefore, before requesting TPF
to retrieve the negative credit file record you must supply its ordinal
number (relative record number) in the entire fixed file. The
application only knows the ordinal number in the negative credit file.
To resolve this, all records on the fixed file are assigned a record
type, identified by a symbolic name.

TPF provides an index table and utility program called FACS,
which, when given the symbolic record type and ordinal number in
that type, will calculate the ordinal number in the entire fixed file.
Hereafter, ordinal number in the entire fixed file will be referred to in
this publication as the symbolic file address.

Note: An older form of this program, called FACE, operates like FACS except that
a numeric rather than symbolic record type is passed to FACE. The numeric
record type is set up using an equate in assembly language or a #define in
C language; however, any changes to the FACE index table may require
programs that use FACE to be recompiled. Programs that use FACS are not
affected by changes to the FACS index table. See LEEACE, EACS _and

EAC8C” aon page 251l for further information.

Assembly program CRC1 calculates the ordinal number of the desired negative
credit file record and transfers control to FACS, supplying this ordinal number, the
symbolic record type (for example: #VD1VD), and the location in the file address
reference word (Step 8) at which the symbolic file address is to be stored.

Example:
ENTRC FACS

Introduction to TPF 15

Pseudo Togic for credit application segment CRC1.

Edit input message into acct# and amount.

Compute Negative file record address on level D2.
Retrieve Negative file record on Tevel D2.

If acct# is in Negative file record,
Indicate negative response.
Unhold RCB.

Else,

Get floor Timit address
If floor 1imit is exceeded,
Indicate floor limit reject.
Unhold RCB.
Else,
Release message block (DO).
Release Negative file record block (D2).
Release RCB (D3).
Unhold RCB.

Call CRC2.
Get block for output message on Tevel D6.
Edit output message in block on level D6.
Build output message RCPL.
Request send output message.

Exit.

Figure 2. Logic Flow for Program CRC1

/*
/*

/*

FACS or face facs */
finwc or find_record */

unfrc */

/*GLOBZ or glob */

/*
/*

/*
/*
/*

/*

unfrc =/

crusa */

unfrc */
Process activity file */

getcc */

routc */

Program CRC1 calculates the ordinal number of the desired negative credit file
record and calls FACS, supplying this ordinal number, the symbolic record type (for
example: #/D1VD), and the location in the file address reference word (Step 8) at
which the symbolic file address is stored.

In assembler, use the ENTRC macro to call FACS:

ENTRC FACS

In C, include the header file <tpfio.h> to declare the FACS function. FACS takes a
single parameter, a pointer to a TPF_regs structure (defined in <tpfregs.h>). The
fields of the TPF_regs structure (RO, R6, and R7) imitate the assembler interface to

FACS.

The TPF C library also provides a face_facs function, which is a more intuitive
interface for calculating a fixed file address.

Example:

#include <tpfio.h>
#define VDIRI "#VD1VD "
#define VDIRI_ordinal 10

unsigned Tong rtnord ;

/*

/* return ordinal =/

*k Locate negative credit record (VD1VD) for account on fixed file.

*/

16 TPF V4R1 Application Programming

int ffrc = face_facs(VDIRI_ordinal,VD1RI,0,D2,&rtnord) ;
/* Calc fixed file address */

Step 7 The assembler program FACS or the ISO-C face_facs function
calculates the symbolic file address of the desired negative credit
file record, stores it at the location specified, and returns control to
CRC1.

Step 8 CRC1 now can request that TPF read the record from file storage
into main storage. This is done with the FINDC macro (assembly
language) or the find_record (C language) file reference function.
Before the function is called, a data level must be chosen and the
FARW set up. The FARW is an 8-byte control field for file activity
associated with each ECB data level. The low order 4 bytes will
contain the symbolic file address because FACS or face_facs
placed it there in Step 6.

The high order 4 bytes of the FARW are for data integrity. Normally,
the requesting program must specify the record identification as an
argument in the function call so that it will be entered in to the
high-order 2 bytes of the FARW. The record identification will also
appear in the header of the record in file storage. (This record
identification is assigned to your application by an application or
data base designer.) CRC1 enters the ID (for example, VD) and
then requests TPF to read the record into level 2 and return control
to CRC1 only after the I/O is complete. The coding for this form of
the macro is:

FINWC D2,ERROR1

ERROR1 is the symbolic tag in CRC1 to which control will be
returned if there is any abnormal I/O condition.

For C, the find_record function call requires the following
arguments:

level
The data level of an available FARW and CBRW for use by the
system.

address
A pointer to the file address of the record to be retrieved; NULL if
the FARW has been preinitialized.

ID A 2-character string that must match the identification
characters in the record to be retrieved; RECIDRESET if the
identification field has been preinitialized. If the requested ID
does not match the record’s identification characters, the ECB
error fields will indicate an identification check failure and
control will return to the application at I/O completion. No
comparison will be made if the identification field is zero (*\0"').

rcc
An unsigned character that must match the record code check
(rcc) byte in the record to be retrieved. If the requested rcc
does not match the record’s rcc, then the ECB error fields will
indicate an identification check failure and control will return to
the application as described above for the ID argument. If rcc is
zero ('\0'), then no comparison will be made.

Introduction to TPF 17

18

Step 9

Step 10

Step 11

TPF V4R1 Application Programming

type
What the record’s hold status will be after 1/0O completion, either
NOHOLD or HOLD.

CRC1 requests TPF to read the record into level 2 and return
control to CRC1 only after the I/O is complete. An example of the
coding for this form of the function is:

vdlptr = find_record(D2, NULL, "VD", '\0', NOHOLD);

TPF obtains an appropriate storage block and reads the negative
credit file record into main storage, then returns control to CRC1.
Assume that there are no errors or integrity failures.

CRC1 searches the record for the input account number. Assume it
is not found; the account is, therefore, in good standing, and the
next step proceeds.

The dollar value requested in the message must now be checked
against a floor limit; requests greater than the floor limit are
rejected. The floor limit is only a 4-byte field, but must be accessed
by every entry (except those found in the negative credit file). For
performance considerations, it should be stored in an area
accessible to all entries but not requiring a file retrieval. For such
requirements TPF maintains the global area.

The global area is a section of main storage accessible to all users
by executing the appropriate functions. It can be used for any type
of data requiring quick access, from miscellaneous constants to
main storage resident data records.

By issuing one macro (GLOBZ), the assembler application program
can load the base register and have access to any field in the first
4096 bytes of the global area. These 4096 byte global areas are
unique to each I-stream. If there are any shared resources in these
areas, provision must be made to handle the synchronization of
accessing/updating these resources. It is, therefore, a common
practice to place, in the first 4096 bytes, address pointers to the
rest of the global area.

Example:
GLOBZ REGR=R5

The system loads register 5 with the base of the global area. By
convention all tags in the global area (used by assembler language
programs) begin with the character @. For example, the floor limit
might be stored in a field labeled cflth. CRC1 now compares the
input value with the global field; it finds the request value below the
floor limit and proceeds to the next step.

The c$globz.h C language header file contains symbolic tags and
displacements for miscellaneous data fields and pointers to records
in the global area. By calling one function (g1ob), the application
program can examine any global field or record.

By TPF convention, all tags in the global area begin with the
character “_” for C language code; however, it is important to note
that when the same tags are referenced in assembler language
code, the corresponding names must begin with the “@” character.

Also, other characters in the tag name are converted to lowercase.
For example, the floor limit might be stored in a field labeled cfltn
for C language access and atcfltn for assembler access.

CRC1 now compares the input value with the global field; it finds
the request value below the floor limit and proceeds to the next
step.

Example:

cfltn = glob(_cfltn); /* Check against global Tlimit x/
if(amount > *cfltn)
msgnexit ("OVER FLOOR LIMIT\n");

Step 12 The next functional requirement is to check the requesting account
number for excessive activity on this date and during this week.

For this purpose an activity file is maintained. All processing cannot
be contained in one segment so that activity file processing will be
handled by program segment CRC2.

Before passing control to CRC2, however, CRC1 will return any
system resources not in use or imminently planned for use. All
system resources such as main storage blocks and file pool
addresses should be returned promptly. Since many ECBs operate
concurrently, failure to do this could be a significant drain on system
performance and require excessive resource allocation.

CRCL1 finds three items no longer required:

* The input message block—the message has been edited and the
account number and dollar value stored.

* The negative credit file—it has already been searched.

* The RCB—it was passed to CRC1 or CRC1 on activation, in
hold status, but the application design does not require it for

update or terminal lock-out. (See tRauting Control Black” ar
)

These blocks are returned to the system with the crusa function,
which requires only the number of levels to be released and the
names of the data levels themselves.

Because CRC1 expects to be reactivated after activity file
processing, it passes control to CRC2 with the return option.

Example:
ENTRC CRC2

Eigure 2 on page 2d shows the logic flow for CRC2.

C language example:

/*

** Discard input message, VD1VD record block, and RCB

*/

crusa(3, D2, D3, DO); /* Release core blocks */
unfrc(D3); /* Unhold the RCB file record */

Introduction to TPF 19

Pseudo Togic for credit application segment CRC2.

Compute Activity file record address on level D4. /+ FACS or face_facs */
Retrieve and HOLD Activity file record on Tevel D4. /x fiwhc or find_record */

If acct# is in Activity file record,
Update usage counts.
Else,

If there is room for acct# in Activity record,
Add acct# and set usage count to 1.

Else,

Get block for chained Activity record (D5).

Get file address for chained record (D5). /* getfc */
Chain new file address to prime record.

Initialize new Activity file record.

Add acct# and set usage count to 1.

File chained record (D5).
File and UNHOLD prime record (D4).
Create CRC3 to record transaction log.
Return to caller.

Figure 3. Logic Flow for Program CRC2

Step 13

/* filec */
/* filuc or file_record */

/* cremc */

The next functional requirement is to check the requesting account
number for excessive activity on this date and during this week. For
this purpose an activity file is maintained. The activity file also
resides on the fixed file. CRC2 calculates the ordinal number of the
required activity record and calls FACS (or face facs for C
language), passing the ordinal number, the activity file record type
(for example, "#VU1VU "), and the level 4 FARW as the location for
storing the symbolic file address.

C language example:

#define vulvu

“#vuivu "

#define vulvu_ordinal 100 struct TPF_regs regs ;

/%

**% Check if there has been excessive activity for this account.
*% Locate credit activity record on fixed file.

*/

regs.r@ = vulvu_ordinal /* Ordinal number */
regs.r6 = (long) vulvu; /* Record identification (type) =/
regs.r7 = (long) &(ecbptr()->celfad); /* Data level */

FACS (®s) ; /* Calculate record address */

Step 14 The FACS macro (or the face_facs function) calculates the
symbolic file address of the activity record, stores it in the FARW of
level 4, then returns control to CRC2.

Step 15 CRC2 enters the record identification for the activity file in the
FARW, then calls a find-wait-and-hold form of the find_record
function to read the record into data level 4.

For example:

FIWHC D4,ERROR2

C language example:

20 TPF V4R1 Application Programming

if(!(vulptr = find record(D4, NULL, "VU", '\O@', HOLD)))

Serrc_op(SERRC_EXIT,OOXIZSS, "ACTIVITY FILE FIND ERROR",NULL);
/* If no prime exists, error. */

To assure data integrity and proper sequencing of updates when modifying a file,
programs intending to update a record must ensure that the record is not currently
being updated by another program. The program does this either by:

Holding the record itself
Holding the first record in a chain that includes the record to be updated.

A chain is a series of records, each with an address pointer to the next record in

the series. The first record in the chain is usually called the prime record. This
technique will not work if the record to be updated is part of more than one

chain. See ERecord Hald Facility” an page 254 for further details.

The record is read successfully and searched for the input account number, but the
account number is not found. This is a normal condition. Account numbers appear
in this file only if used in the last seven days. An item appearing for the first time in
the last seven days must be added to the file.

Step 16 CRC2 must add the item to the file and note its use today.

However, the record is full and no records are chained from it. A
new record must be created, chained to the first record (now called
the prime record), and filed in the random pool. Unlike the fixed file,
the random pool is a section of DASD storage assigned to no
specific record type. It is a dynamic pool of file blocks from which
any entry may request a record from TPF and return it when no
longer required. The pools are divided only by record size and

usage classification. (Refer to FRandom Paoal File Area” on
).

To create the new file record CRC2 takes the following steps:

1.

It requests from TPF a file address from the random pool and a main storage
block in which to build the record. The GETFC macro in assembly language or
the getfc function in C language obtains the file pool address and storage
block. Although transparent to the application, this record identification is an
index into the RIAT and tells TPF the pool type from which to take the address.
The application need know only the record identification of the it is building. The
size of the acquired working storage block is determined by the attributes
associated with the record identification.

The ID (“VU” in this example) is stored in the header of the new block on level 5
and in the FARW for level 5. The ID is the same because this block is a chain
extension of the prime record, whose identification is VU. All records chained
together have the same record identification. (The record identification is
assigned to the application by an application designer.)

Assembly language example:
GETCC D5,L2 Request a 1055-byte (L2) block on Tlevel 5

C language example:

vulptr->vulfch = getfc(D5, GETFCOVERF, "VU", GETFCBLOCK,
GETFCSERRC) ;

/* model: getfc(level,type,ID,block,error)

The ¢ language arguments and descriptions are as follows:

Introduction to TPF 21

22

Tevel
The data level.

type
The pool type and size to be used with the ID argument.

ID A pointer to a 2-character record identification that will be used in scanning
the record identification attribute table (RIAT).

block
Whether or not a block of working storage should simultaneously be
obtained.

error
Whether or not control should be returned to CRC1 in the event of an error.

2. CRC2 store upon return the new random pool address returned by TPF in the
FARW for level 5 in the forward chain field of the prime record on level 4.

3. CRC2 initializes the chain record and enters the new data item and item count
of 1 in the new record.

4. CRC?2 files the newly created chain record and then files and unholds the prime
record.

Assembly language examples:
FILEC D5 Files chain record from level 5.

FILUC D4 Files and unholds prime record from level 4.

C language example:

if (newpool) /* If we got a pool, */
holdstatus = NOHOLD; /* D4 record is not locked =*/
/* File the D4 record block. =/
file_record (D4, NULL, NULL, '\@', holdstatus);

if (newpool) /* If we got a pool, */
file_record (D5, NULL, NULL, '\@', UNHOLD);
/* file the prime record. */
Step 17 The user wishes to keep a transaction log containing a copy of the

input values (account number and dollar value) for each request for
which credit is granted. The items are to be blocked in a 1055-byte
main storage block and then written to the real-time tape (RTA
tape). However, the user does not want to keep the customer and
operator waiting on line for this processing, since all key decisions
that relate to approving the credit have been made. CRC2,
therefore, creates a separate entry to process the transaction log
independently, passing to it the required log data and specifying the
program to be called for initial processing (CRC3). This is done with
a create macro in assembly language or a create function in C
language, and CRC2 uses a form of the function that requests an
immediate activation of the new entry.

Assembly language example:
LA R14,48 Number of bytes to pass to the new entry

LA R15,EBWO20 Location of data to pass

CREMC CRC3 Program to be activated to process the new entry

C language example:

TPF V4R1 Application Programming

cremc(sizeof (packedacct), cremargs, CRC3);

/* Create entry CRC3 */

CRC3 then continues with the mainline process.

Step 18

Step 19

Step 20

CRC2 processing is now complete. In assembler, it issues a
BACKC macro, which returns control to CRC1. In C language,
control is returned by a return statement. Note that it is not
necessary to return the main storage blocks on levels 4 and 5
because TPF does this automatically unless instructed not to do so.

All that remains is to send a message to the terminal operator
indicating that the credit may be granted.

The first requirement for an assembly language program to send a
message is to build the message block. The first or only segment of
the message must be in main storage, attached to any level of the
ECB. CRC1 requests a 127-byte block from TPF on level 6. The
same data macro (AMOSG) is used for output and input messages.
The data macro is issued, and register 3 loaded with the pointer
from level 6.

GETCC D6,L0O

AMOSG REG=R3
L R3,CE1CR6

The header of the record is initialized with the record ID (‘OM’), the
forward chain field is zeroed, and the character count and text are
entered.

In a C language program, CRC1 uses the puts function to output
the message to terminal.

CRC1 builds the output RCPL for assembly language.

The puts function is not ANSI or ISO compliant. Its action is defined
by site installation. The input RCPL, received from the COMM
SOURCE program at EBWO00O, has not been disturbed and
contains the necessary data for output. The first two fullwords
containing destination and origin are exchanged; destination
becomes the LNIATA and CPU ID of the terminal, origin becomes
CRED. The control field bits are modified as described in the
DSECT RCOPL for assembly language or the c$rcOp1.h header for
C language.

Assembly language program CRC1 loads register 3 with the
address of the RCPL (EBWO000) and requests TPF to send the
message by issuing the ROUTC macro.

Example:
ROUTC LEV=D6,LIST=R3

This specifies that the message is in core at level 6 and register 3
points to the RCPL.

Processing for the entry is now complete; the application has no
further function to perform. CRC1 stops by calling the EXITC macro
in assembly language or the exit function in C language. TPF
removes the entry from the system and releases the main storage

Introduction to TPF 23

block containing the ECB. If any main storage blocks are attached
to the ECB, they are released at exit.

The preceding process by no means presents a definitive review of all application

facilities. It is meant to be illustrative and to give a practical framework into which to
fit the detailed descriptions that follow.

24 TPF V4R1 Application Programming

TPF Data Structures and System Services

This chapter describes some commonly used data structures and system services
in TPF application programs. Familiarity with this material will enhance your
understanding of the events that occur when TPF processes an entry. These
concepts form the basis for the discussion in ETPE Application Program Interfacd

Eunctions” on page 227 of the application programming interface functions for the C
language support.

See [Language Structures and Case Guidelines” on page 1l for an understanding of

why we provide both assembly language and C language structures in some cases
and only C language structures in others.

Entry Control Block

The entry control block (ECB) is the primary interface between TPF and the
application program. TPF creates an ECB for every message entering the system
and follows the processing of that message throughout its life in the system.
Additional entries (ECBs) may be created at the request of the application to
subdivide the processing. Among other things, the ECB contains an activation
number, switches, counters, two limited work areas, and pointers to additional data
in main storage or in file storage. The ECB thus enables the application to control
its processing and to request services from TPF to control file storage and main
storage, transmit messages, and pass control among program segments.

The assembler application accesses its ECB through general register 9. This
register is reserved in the TPF system for this function. At all times there is a
pointer in register 9 to a unique ECB that is being referenced by the application
program in control. The program, in turn, is pointed to by another dedicated register,
register 8.

The C or C++ language application accesses its ECB through linkage generated by
the IBM C and C++ compiler products on the System/390 platform. The ecbptr
macro is available to the application programmer to access information in the ECB.
The ecbhptr macro returns a pointer to a structure of type eb0eb to the currently
executing ECB. This structure is defined in the c$ebOeb.h header.

The ECB enables application programs to be reentrant, a crucial feature of TPF’s
high performance. To be reentrant, an application program refers to switches,
counters, and pointers in the ECB and not in the program itself.

TPF dynamically maintains all references to system storage, register content and
usage in the ECB. Consequently, one main storage copy of a program, by referring
to different ECBs, is able to process many different messages in various stages of
progress.

Whether in assembly language or C language the ECB is defined in great detail;
almost every byte has its own symbolic name. The assembly language DSECT that
defines the symbolic names and displacements in the ECB is hamed EBOEB. The
c$ebbeb.h header defines the symbolic names and displacements in the ECB for C
language.

In assembly language the EBOEB macro does not have to be coded explicitly
because it is called by the BEGIN macro, which must be the first statement in every

© Copyright IBM Corp. 1994, 2002 25

ECB-controlled assembler language program. In C language, if a program refers to
ECB fields, you must include the c$ebOeb.h header, either explicitly or implicitly.

In C language the last 3 or 4 characters of the symbolic names specified in
c$ebOeb.h are used as dump tags to identify ECB fields in a main storage dump.
For example, W032 in a main storage dump identifies ebw032 in application work
area 1.

Note: The corresponding ECB fields are listed in lowercase in the C language and
uppercase in assembler.

There are 3 categories of ECB fields:
* Fields assigned as a work area for application programs

» Fields used by TPF system programs and application programs for passing main
storage and data base references

* Fields used exclusively by TPF as save areas and control fields for monitoring
the entries.

ffable 1 summarizes the fields of greatest importance in application programming.
Study the EBOEB DSECT in assembly language or the c$eb0eb.h header in C
language for an understanding of the ECB fields in this critical block.

Table 1. Summary of the Entry Control Block Application and Interface Areas

Field(s) Area

ebw000-ebw103 Application interprogram work area 1
ebswO1-ebsw03

ebrs01

ebcm01-ebcm03

eber0l

celfa0-celfaf File address reference words (FARW)
celcro-celcrf Core block reference words (CBRW)
celfx0-celfxf File reference address word extensions (FAXW)
celsud, celsug System error indicators
celrda-celsvp TPF register save area

celars User (application) register save area
ebx000-ebx103 Application interprogram work area 2
ebxswl-ebxsw7

celusa User area

Linking ECBs and Their Common Services

Work Areas

The TPF system uses the first 8 bytes of the ECB to link together ECBs requesting
the same service, and for the branch address of the system processing routine
when the ECB is activated.

Application and design requirements determine the use and format of these areas.
You may use the work areas for switches, indicators, and other temporary storage
needs unique to each processing program segment, or for passing information from
program to program. You can make your application programming easier if each
application program in the processing chain specifies in its documentation how each
work area will be used.

26 TPF V4R1 Application Programming

The work areas must be shared by all programs processing the entry. Two
important design considerations for creating a TPF application are to assure a
workable protocol and an optimum use of the space for data that must be saved or
passed along.

You can use the following ECB work areas for application programming:
* Application work areas

* User work area

» User application register save area.

Application Work Areas
There are two application work areas, each 112 bytes long, consisting of a 104-byte
scratch area followed by an 8-byte bit-switch area.

The first work area begins at ebw000. Each byte of its scratch area is nhamed
sequentially beginning with ebw000 and ending with ebw103. The second work area
begins at ebx000. Each byte of its scratch area is named sequentially beginning with
ebx000 and ending with ebx103.

The last 8 bytes in each of these work areas are intended for use as program
switches. The program switch names and their standard usage conventions are as
follows:

First work area:

Name Usage Convention

ebswO1—-ebsw03 Interprogram switch to specify various conditions
among programs

ebrs01 Used to pass error information among program
segments

ebcm01—-ebcm03 Intraprogram switch to specify various conditions
within programs

eber0l Used to pass error information within program
segments.

Second work area:
Name Usage Convention

ebxswl—ebxsw7 No convention.

These conventions are recommended. However, applications not requiring this logic
are free to use these bytes in any way desired.

OPZERO initializes the switches—that is, the last eight elements—in both work
areas, to zero when it creates the ECB. The first 104 elements of the work areas
are not initialized, so their contents are unpredictable. (COMM SOURCE will later
place the routing control parameter list, occupying at least 12 bytes, at the

beginning of the interprogram work area. See FRouting Control Parameter List” od

for further information.)

User Work Area
The user work area is 2752 bytes long and begins at celusa as listed in ffable 1 od

TPF Data Structures and System Services 27

Data Levels

User Application Register Save Area
The user application register save area is for saving registers in assembler

application programming. It begins at celars and is 10 fullwords long (registers 14
and 15 and registers 0 through 7).

Each entry has the capability of referencing 16 data blocks concurrently in the ECB.
The ECB maintains these references in sixteen data levels numbered
hexadecimally from 0 to F (often referred to as DO-DF). As used by the TPF
system, the term data level does not imply any priority assigned to the level number
or any nesting. A data level is simply a series of doubleword reference/control fields
for data blocks that can be used however the application requirements dictate.

There are three sets of doubleword references for each data level. They are, in
order of their physical position in the ECB:

* File address reference words (FARW)

» Core block reference words (CBRW)

* File address extension words (FAXW).

The FARWSs and CBRWSs are of primary importance to your application.

Core Block Reference Words

There is an 8-byte core block reference word (CBRW) for each data level, each of
which the C language treats as a pointer followed by two unsigned short integers.
The CBRW is used to store the main storage address and control information about
main storage blocks used by the entry. TPF system programs format the CBRW
whenever a main storage block is attached to or detached from the ECB. The
format consists of the main storage address (4 bytes), the block type indicator (2
bytes), and the block byte count (2 bytes). The main storage block address has the
same label as the CBRW. The block type indicator and the block byte count have
their own labels. In the following example, x is the data level number, a
hexadecimal digit from O to F.

00 04 28 A0 00 11 00 7F
| I— celccx: 2-byte block byte count, an unsigned short integer
celctx: 2-byte block type indicator, an unsigned short integer

celcrx: 4-byte main storage address, a pointer to void

The block type indicator (celctx) specifies the size of the block attached to the ECB
at level x.

0001 No block attached

0011 127-byte block attached (Lo)
0021 381-byte block attached (L1)
0031 1055-byte block attached (L2)
0051 4095-byte block attached (L4)

The block byte count (celccx) specifies the number of bytes in the block that the
program can access.

It is important to note that only the block type indicator accurately reflects the status
of the level at any given time. If celctx contains X'0001', then the data in the rest of
the CBRW for level x is not meaningful. TPF does not initialize celcrx and celccx
after a block is released. Only if celctx contains X'0011', X'0021', X'0031' or X'0051"
is a currently valid main storage address in the level x CBRW.

28 TPF V4R1 Application Programming

TPF updates the CBRW as a result of an application request to obtain or release a
main storage block or to read or write a file record. Application programs must
never modify the CBRW, but may refer to it to determine data level status and the
address of the acquired block.

File Address Reference Words

There is an 8-byte file address reference word (FARW) for each ECB data level,
each of which the C language treats as an unsigned long integer followed by four
unsigned characters. The FARW is used to record the file address and control data
related to file I/O for each data level. There may be a main storage block on a
given level without any file activity, in which case the FARW will not be used. When
there is file activity the FARW will be used for the record identification (2 bytes),
record code check (1 byte), and symbolic file address (4 bytes); 1 byte is unused.
In the following example, y is the data level number, a hexadecimal digit from O to
F.

Example:
E5 C3 00 00 07 DO 88 40

I— ebcfay: 4-byte symbolic file address, an unsigned long integer

ebcrey: 1-byte record code check, an unsigned character

ebcidy: 2-byte file record identification, an unsigned short integer

celfay: 4-byte file record identification, an unsigned long integer

When the application program requests TPF, via a macro or a library function call,
to read or write a record, the FARW at the specified data level must be set up as
described in IEile Starage Access” on page 257

File Address Extension Words

The file address extension word (FAXW) is used to pass information between TPF
online systems and MVS, using DASD files called general data sets. See [PH
Datahase Reference for more information about the format and use of the FAXW.

Data Event Control Blocks

You can use data event control blocks (DECBS) as an alternative to using standard
ECB data level information. ECB data level information is used to specify
information about 1/0 request CBRW, FARW, and FAXW fields. Although a DECB
does not physically reside in an ECB, the DECB fields specify the same information
without requiring the use of a data level in the ECB. All the same requirements and
conditions that apply to the CBRW, FARW, and FAXW fields in the ECB also pertain
to the same field information in the DECB.

Eigure 4 on page 3d shows the DECB application area and the fields inside the
DECB:

TPFE Data Structures and System Services 29

DECB Name (IDECNAM)

CBRW (IDECCRW)

Core Block | Type | Len
o - —
) (5] w
[[a)
S 8 2
FARW (IDECFRW) ol&] o
R I s
RID | C File Address U
c | D
FAXW (IDECFXO0) (IDECUSR)
Ext. File Address User Data
Reserved

Figure 4. DECB Application Area

DECB Fields
The DECB fields are used as follows:

IDECNAM
IDECCRW

IDECFRW

IDECSUD

IDECDET

IDECFX0
IDECUSR

30 TPF V4R1 Application Programming

Contains the name of the DECB.
Corresponds to an ECB core block level.

IDECDAD (Core block)
Contains the address of a core block.

IDECCTO (Type)
Contains the core block type indicator or X'0001' to signify
there is no core block attached.

IDECDLH (Len)
Contains the data length.

Corresponds to an ECB FARW.

IDECRID (RID)
Contains the record ID for a FIND/FILE request.

IDECRCC (RCC)
Contains the record code check (RCC) value for a
FIND/FILE request.

IDECFA (File Address)
Contains the file address for a FIND/FILE request.

When the FIND/FILE request is completed, this field will be set to
the SUD error value or zero if there is no error.

Contains the number of core blocks currently detached from this
DECB.

Contains the FAXW information.

Contains the user data.

8-Byte File Address Support
Although an ECB data level and a DECB are alike, there is a difference in the

FARW. The IDECFA field, which contains the file address, has been expanded to 8
bytes in the DECB. This expansion allows 8-byte file addressing in either 4x4
format or FARF6 mode. 4x4 format provides for standard 4-byte file addresses
(FARF3, FARF4, and FARF5) to be stored in an 8-byte field. FARF®6 is the
exploitation of 7 of the 8 bytes in the file address.

A 4-byte file address in 4x4 format resides in the low-order 4 bytes of the IDECFA
field. The high-order 4 bytes of the IDECFA field contain an indicator (a fullword of
zeros) that classifies it as a valid 4x4 format address. The high-order 4 bytes of a
FARF6 file address is a nonzero value. When there is file activity, the FARW will be
used for the record identification (2 bytes), record code check (1 byte), and a
symbolic file address (8 bytes); 1 byte is unused. For example:

E5 C3 00 00 00 00 00 00 07 DO 88 40

L |
IDECFA: 8-byte symbolic file address
not used: 1-byte

IDECRCC: 1-byte record code check, an unsigned character

IDECRID: 2-byte file record identification, an unsigned short integer

Referencing Data Blocks

As previously discussed in LData Levels” an page 28, data levels can reference 16
data blocks concurrently in the ECB. If you choose to use DECBSs, you are not
restricted to 16 data blocks. DECBs can be acquired dynamically by a single ECB
by using the tpf_dech create function or the DECBC macro. The storage, which
will hold the DECB, comes from the 1-MB private area of the ECB. Therefore, the
number of DECBs that the ECB is restricted to is limited only by the amount of
storage in the private area that is dedicated to the DECB. See the

Language Support User's Guidd for more information about the tpf_decb_create

function and [CPE_General Macrod for more information about the DECBC macro.

Using Symbolic Names

Using DECBs allows you to associate symbolic names with each DECB. This
allows different components of a program to easily pass information in core blocks
attached to a DECB. Each component only needs to know the name of the DECB
where the information is to be found to access it. However, functions that support
the use of a DECB (such as file_record_ext, find_record_ext, and so on) will
only accept a DECB address as a valid reference to a DECB. If an application does
not maintain the address of a particular DECB and, instead, maintains the name of
the DECB, the caller will first have to issue the tpf_decb_locate function to obtain
the address of the DECB. The resulting DECB address can then be passed on the
subsequent function call.

Accessing File Records with a DECB
All types of applications can use DECBs. Application programming interfaces (APIs)

have been added to allow TPF programs to access file records with a DECB
instead of an ECB data level. However, only a subset of the existing macros and C
functions that currently reference ECB data levels accept a DECB in place of an
ECB data level. Macros and C functions that use a file address will first verify that it
is a valid address in 4x4 format or FARF6 mode. If the address is not valid, a
system error will occur. See [[PE General Macrod and [[PE_System Macrod for more
information about general and system macros that were added or changed for TPF
DECB support.

TPF Data Structures and System Services 31

32

Applications that call the following functions (using 8-byte file addresses or DECBs
in place of ECB data levels) must be compiled with the C++ compiler and they must
create linkage to the service routines in the CTAD dynamic link library (DLL):

* attac_ext

* creec, CREEC

e cretc_level,_ CRETCL
* crusa

* csonc

* detac_ext

* file_record_ext
* find_record_ext
e gdsnc

* gdsrc

* getcc

e getfc

* Jevtest

* rcunc

* relcc

* relfc

* rlcha

* sonic

* swisc_create

» tpf_dech create
* tpf_decb_Tocate
* tpf_decb release
» tpf_dech swapblk
* tpf_decb_validate
* tpf_esfac

* tpf_fac8c

» tpf_faczc

» tpf_fadxdc

e tpf_rerfc

* unfrc_ext.

New or existing applications that only use ECB data levels can still use the C
compiler to create linkage to these TPF functions in the CTAL DLL. See the fred

C/C++ | anguage Suppart User's Guidd for more information about these functions.

Error Handling
With TPF DECB support, each DECB has a detailed error indicator byte

(IDECSUD). The existing celsug byte will include any errors that occur on a
DECB-related 1/O operation.

Functional Flow
The flow of a DECB through the TPF 4.1 system can be very different depending

on how it is used by the application. The DECB acts as an interface between the
application and the TPF control program, and contains relevant information about

TPF V4R1 Application Programming

core block and file 1/0 requests. The following example shows how TPF DECB
support works by providing a sample application and describing how DECBs are
referenced by the TPF 4.1 system.

Assume there is a TPF application called Bermuda. When an airline passenger
purchases a one-way ticket to the island of Bermuda, this application is activated to
update a database that maintains a list of every one-way passenger. The Bermuda
application consists of two program segments, SUNN and SAND. The SUNN
segment will validate the database update request and verify that the passenger
record does not already exist in the current passenger list. Once the request has
been validated, SUNN will forward the request to the SAND segment, which will
add the name of the new passenger (A. Traveller) to the existing passenger list.

1. SUNN is entered by a reservation application with a copy of the passenger
record of A. Traveller attached on data level 0 (DO) of the ECB. After verifying
that there is a passenger record attached to DO, SUNN allocates a DECB,
which will be used to hold the primary database record for Bermuda. The
following example shows the DECB allocation:

Assembler: IDECB REG=R1
DECBC FUNC=CREATE,DECB=(R1),NAME=DECBPRIME

DECBPRIME DC CL16'BERMUDA.PRI'

C++: TPF_DECB =decb;
DECBC_RC rc;

decb = tpf_decb_create ("BERMUDA.PRI", &rc;);

Because there were no DECBs previously associated with this entry, a 4-K
frame will be obtained from the ECB private area, which becomes a DECB
frame. Multiple DECBs will be carved from a single DECB frame. The address
of the first DECB frame will be stored in page 2 of the ECB in the
CE2DECBPT field. It is also possible to have a single ECB with more than one
DECB frame. Each successive DECB frame will be forward-chained from the
previous frame.

ECB
R DECB Frame
Available
BERMUDA.PRI
CE2DECBPT

“AVL" [«
“AVL"
“AVL

2. Now that a DECB is available for use, SUNN will attempt to calculate the file
address of the primary record for the Bermuda database. The following
example shows a call to the file address compute program (FACE) to
determine the correct file address:

TPFE Data Structures and System Services 33

Assembler: IFAC8 REG=R7
LA R7,EBX000
MVC IFACORD,=XL8'150"
MVC IFACREC,=CL8'#BERMUDA'
MVI IFACTYP,IFACFCS
FAC8C PARMS=(R7)

C++: TPF_FAC8 *fac8 parms;

fac8 parms = (TPF_FAC8 *)&ecbptr()->ebx000;
fac8_parms->ifacord = 0x150;

memcpy (fac8 parms->ifacrec, "#BERMUDA", 8);
fac8_parms->ifactyp = IFAC8FCS

tpf_fac8c (fac8_parms);

3. SUNN now has the file address for the primary record and will issue a FIND
request to bring the record into working storage and obtain an exclusive lock of
the record for this ECB. The following example shows how the FIND-type call
might look:

Assembler: MVC IDECFA,IFACADR
MVC IDECRID,=CL2'AB'

XC IDECRCC,IDECRCC
FIWHC ,DECB=(R1),ERROR_BRANCH

C++: decb->fa = fac8_parms->ifacadr;
find_record ext (decb, NULL, "AB", '\0'
HOLD WAIT, FIND DEFEXT);
4. When the FIND request ends either successfully or unsuccessfully, the DECB
will be updated accordingly. For a successful call, the SUD value in the DECB
will be cleared and a core block will be attached at the CBRW of the DECB.

ECB

DECB Frame
ol Core

Block

Available

BERMUDA.PRI /

CBRW

CE2DECBPT

“AVL” |

“AVL”

“AVL"

5. Now that the primary record has been read in from the database, SUNN enters
segment SAND to complete the processing. SAND will search the primary
record for an available entry slot to which the passenger record of A. Traveller
can be added. If there are no available entries in the primary record, an
overflow record will be obtained. To obtain the overflow record, a new DECB
must be created. The following example shows the allocation of a new DECB:

Assembler: DECBC FUNC=CREATE,DECB=(R2),NAME=DECBOFLW

DECBPRIME DC CL16'BERMUDA.PRI'
DECBOFLW DC CL16'BERMUDA.OQVR'

C++: TPF_DECB #*prime, *overflow;

34 TPF V4R1 Application Programming

DECBC_RC rc;

c.)\'/('er‘ﬂow = tpf_dech create ("BERMUDA.OVR", &rc);
The first available DECB in the DECB frame is dispensed to the application.

There are now two DECBs in the single DECB frame, which are marked as in
use by the ECB.

ECB

DECB Frame

v

Core
Block

Available

BERMUDA.PRI /

CBRW
CE2DECBPT BERMUDA.OVR

“AVL" b

“AVL”

SAND must obtain a file pool record, which will serve as the new overflow
record in the Bermuda database. SAND must then locate the DECB created by
SUNN, which contains the primary record so that the pool record can be
chained to it. The following example shows how the file pool record is obtained
and how the DECB containing the primary record is located:

Assembler: GETFC ,DECB=(R2),ID=CL2'AB',BLOCK=NO
DECBC FUNC=LOCATE,DECB=(R3),NAME=DECBPRIME

DECBPRIME DC CL16'BERMUDA.PRI'
DECBOFLW DC CL16'BERMUDA.QVR'

C++: TPF_FA8 pool_addr;

pool_addr = getfc (overflow, GETFC_TYPEO, "AB",
GETFC_NOBLOCK, GETFC_SERRC);

prime = tpf_dech _Tocate ("BERMUDA.PRI", &rc);

To build the overflow record, SAND must get a core block and attach it to the
DECB where the overflow pool file address was obtained. The following
example shows a call to the get core routine:

Assembler: GETCC ,DECB=(R2),L4,FILL=00
CH+: getcc (overflow,

(enum t_getfmt) (GETCC_TYPE+GETCC FILL),
L4, 0x00);

TPF Data Structures and System Services 35

ECB

DECB Frame

Core
Block

Available

BERMUDA.PRI /

CBRW
CE2DECBPT BERMUDA.OVR

Core

CBRW 7 Block

“AVL”

“AVL"

8. SAND must now copy the relevant information from the passenger record of A.
Traveller, which is attached on ECB data level DO to an available entry in the
overflow record attached to the DECB. After copying the information, a FILE
macro request must be issued to update the Bermuda database with the
information of the new passenger. The following example shows the FILE
request:

Assembler: FILEC DECB=(R2)

C++: file record ext (overflow, NULL, "AB", '\0'
NOHOLD, FILE DEFEXT);

9. Now that the overflow record is no longer being referenced by the ECB, SAND
may choose to release the DECB that was allocated to hold the record. The
following example shows the call to release the DECB, which once held the
new overflow record of the Bermuda database:

Assembler: DECBC FUNC=RELEASE,DECB=(R2)

C++: tpf_decb_release (overflow)

ECB

DECB Frame

Available

BERMUDA.PRI

CBRW
CE2DECBPT BERMUDA.OVR

v

Core
“AVL” Block

“AVL" |«

“AVL”

10. Having filed down the updated overflow record, the SAND segment can now
update the primary record with the file address of the overflow record to chain
them together. After performing this update, SAND can now issue a FILE

36 TPF V4R1 Application Programming

request to update the primary record in the database and release the lock,
which SUNN had previously obtained on the record. The following example
shows this FILE request:

Assembler: FILUC DECB=(R3)

CH++: file _record_ext (prime, NULL, "AB", '\0',
UNHOLD, FILE_DEFEXT);

ECB

DECB Frame

v

Available

BERMUDA.PRI

CBRW
CE2DECBPT BERMUDA.OVR

“AVL?

“AVL" |«

“AVL”

11. After performing its final operation on the Bermuda database, SAND may
choose to release the final DECB, which was being used before exiting the
ECB. Even if the final DECB is released by the application, the DECB frame
will remain attached to the ECB in preparation for when the next DECB will be
created. The DECB frame will be released when the ECB is finally exited.

Assembler: DECBC FUNC=RELEASE,NAME=DECBPRIME

DECBPRIME DC CL16'BERMUDA.PRI'
DECBOFLW DC CL16'BERMUDA.OVR'

Ct+: tpf_decb_release ("BERMUDA.PRI");

ECB

DECB Frame

v

Available

BERMUDA.PRI

“AVL”
CE2DECBPT BERMUDA.OVR

“AVL”

“AVL" [«

“AVL"

TPF Data Structures and System Services 37

I/O-Associated Unusual Conditions

Two fields in the ECB are used to indicate unusual conditions associated with I/O
requests:

» celsug is a 1-byte gross or summary indicator of all unusual conditions occurring
on any level.

* celsud is a series of 16 indicators—1 byte for each level.

The application should never clear or modify celsug, and should only modify celsud
immediately after an 1/0O request has ended. TPF resets celsug and celsud after
each waitc function call.

[[PE General Macrod discusses these indicators in detail.
Note: See LErrar Handling” on page 32 for information about unusual conditions for

DECBs.

Areas Used by the TPF system

Some areas of the ECB are used exclusively by the TPF system, but can be useful
in error analysis. More about error analysis can be found in

Development Suppart Referencd as well as ETRPE Testing Environment for Assemhlyl
Language” an page 283 in this publication.

TPF Register Save Area

The primary function of the TPF register save area is to save registers 14, 15, and
0 through 7 (the general application use registers) plus register 8 (the application
program base register) whenever the application program surrenders control by
issuing a control program macro. When control is returned to the application
program, the registers are restored from this area.

A main storage dump shows the contents of the registers at the time of the last
control program macro, which can be helpful in pinpointing the section of code that
was processing at that time.

Control Program Save Area

TPF saves the program status word whenever the operational program surrenders
control as a result of a wait type function, and restores it from this area when that
program regains control. This area contains pertinent information associated with
the application state.

User Register Save Area

The user register save area, which is also known as the application register save
area, generally is used in assembler application programming to save register
contents when they are being passed between programs. The user register save
area is distinct from the TPF register save area.

Routing Control Parameter List

38

A routing control parameter list (RCPL) is associated with each TPF input or output
message. The RCPL provides information about the origin, destination, and
characteristics of the message. TPF programs use this information to determine the
routing required for the message. Application programs, for input messages, use the
RCPL to determine the message characteristics and its origin. The application’s
input message editor must look at the RCPL to determine if the input is a normal

TPF V4R1 Application Programming

new message, a resubmitted input message resulting from failure of a reply to the
original, or a returned output message resulting from a failure to transmit
successfully to its destination.

For output messages, the application program generates the RCPL to provide the
TPF programs with the information necessary to route the message to its
destination.

The RCPL is passed to the application starting at ebw000 of the ECB work area. The
length of the RCPL is either the 12-byte basic format or 16-byte extended format.
The extended format provides for an additional optional general data area of up to
82 bytes. The application must specify at implementation time which format will be
used. This is done with the RCPL parameter of the MSGRTA macro in SIP. (See

[PE System Generation)
RCPL Data Area

The header that defines the RCPL is DSECT RCOPL or header c$rcOpl.h. The data
area of the RCPL contains three major fields, whether input or output, base or
expanded format:

Field Size

Destination 4 bytes
Origin 4 bytes
Control 4 or 8 bytes, depending on the RCPL format

RCPL Destination Field
This field specifies the destination address of the message. Its contents depend on

the type of destination, that is, whether it is an application program or a terminal. If
the destination is an application program, then this field contains the 4-character
EBCDIC application name. If the destination is a terminal, then this field will contain
the TPF terminal address, but will be unique for SNA and non-SNA systems. When
the destination is an SNA logical unit this field will contain:

* An identifier of the logical unit to which the message is being sent. This 3-byte

subfield is called the network addressable unit (NAU), the resource identification
(RID) of the logical unit or node, or the session control block identifier (SCB ID).

* The 1-character identification of the CPU to which the logical unit is directly
connected.

When the destination is a non-SNA terminal, this field will contain:
* The 3-byte line, interchange, and terminal address (LNIATA).
* The 1-byte identification of the CPU to which the terminal is directly connected.

RCPL Origin Field
This field specifies the origin address of a message. As with the destination field,

the contents of this field can be either an application name (for application to
terminal or application to application messages) or a TPF terminal address (for
terminal to application messages) in the forms described in the destination field
above.

RCPL Control Field

This field contains information describing the message origin and destination along
with various control indicators. The contents of the control bytes within this field
vary depending on whether this RCPL is being passed to the TPF router package

TPFE Data Structures and System Services 39

(via the ROUTC macro or the routc function) by an application program, and also
on whether base or expanded format is used.

In the basic format the control field consists of 4 bytes, the first 3 bytes of which are

of primary significance to the application:
* Byte 0 is summarized in franie 3.
* Byte 1 is used for messages to or from a terminal and contains the terminal type

character from the TRMEQ assembler macro (see

), except

for 3600/4700 devices, in which case the byte contains X'00'".
* Byte 2 also is summarized in frable 4.

* Byte 3 is used exclusively by the TPF system.

Note: As shown in the following table, bit meanings in control bytes 0 and 2 vary in
some cases for input and output. The table should be used with c$rcOp1.h,
because the programming considerations cannot all be precisely defined in
the table. You can find additional information in [LRE_ ACE/SNA Datd

Communications Referencd and in [[PE_Data Communications Serviced

Referencd,

In the expanded RCPL, there are four additional control bytes:

* Byte 4 contains 2 specialized indicators related to use of the expanded RCPL for
message recovery and 3600/4700 batch LU support.

* Byte 5 is reserved.

* Bytes 6 and 7 are used, optionally, to define an attached general data area of up
to 82 bytes. The use of the general data area is beyond the scope of this
publication. See the RCOPL DSECT or the c$rcOp1.h header for more
information.

Table 2. Application Use of RCPL Control Bytes 0 and 2

Byte Bit Use Set Meaning On Input Meaning On Output
0 0 Destination type 0 Destination is terminal Same as input
1 Destination is application Same as input
1 Origin type 0 Origin is terminal Same as input
1 Origin is application Same as input
2 Message type 0 Not used Reply to input message
1 Not used Unsolicited message
3 Message priority 0 TPF use only TPF use only
1 TPF use only TPF use only
4 Message recovery 0 Normal input message Return to application if undeliverable
1 Returned output message Queue message if undeliverable
5 SLC usage 0 Not used Output less than 4000 bytes
1 Not used Output exceeds 4000 bytes
6 Terminal address 0 LNIATA address Same as input
format 1 RID address Same as input
7 RCPL format 0 Basic 12 bytes Same as input
1 Expanded format Same as input
2 0 Release output 0 Not used Release output pool file record
1 Not used Don't release output pool file record
1 UlO ROUTC 0 Not used ROUTC not issued by UIO
1 Not used ROUTC issued by UIO
2 Resubmitted input 0 Not used TPF use only
1 Not used TPF use only
3 Message format 0 Not used AMSG format
1 Not used OMSG format

40 TPFV4R1 Application Programming

Table 2. Application Use of RCPL Control Bytes 0 and 2 (continued)

Byte Bit Use Set Meaning On Input Meaning On Output

4 Brackets 0 No brackets (SNA) Bracket state unchanged
1 Begin (CONTINUE) brackets End bracket state

5 Release input file 0 Message not recoverable Don't release input file record
1 Message recoverable Release input file record

6 Change direction 0 Normal input No change in direction of data flow
1 Resubmitted (possible duplicate msg.)| Change in direction of data flow

7 Output FM header 0 No FM header No FM header
1 FM header in text FM header in output text

RCOPL Data Macro

The data macro name for the DSECT that defines the RCPL is RCOPL. This
DSECT contains labels to refer to each of the fields as well as labels equated to the
necessary values for testing and resetting each of the bit indicators. Since new
applications have the option of using the base or expanded format, the macro has a
keyword for specifying which format the program requires.

Example:
RCOPL REG=Rxx|ORG=addr (,FORM=BASE/XPND)

Where:
¢ RCOPL is the data macro name

* REG= is the keyword used to specify a symbolic register name (Rxx) valid for
assignment to the USING statement as the base register for DSECT RCOPL.

¢ ORG= can be used instead of REG= when the RCPL will be defined as a
relocated value (for example, ORG=EBWO000).

* FORM-= is the keyword used to specify the basic or expanded format of this
macro. Valid operands are:
— BASE for the basic 12-byte format.
— XPND for the expanded format which is a minimum length of 16 bytes.

BASE is the default value.

Activating the Application

Log Processor

This section discusses the log processor and conditions at activation.

When a terminal operator enters a message intended, for example, for a credit
verification application, it is not practical for TPF to analyze the text of the message
to determine its intended destination. Large TPF systems may host thousands of
terminals and dozens of applications, each of which might have scores of unique
message types. The TPF log processor resolves this problem and allows any
terminal to be connected to any application in the network at a given time. This is
not a hardware connection; by the use of the system tables and programs all data
entered at the terminal for the duration of the connection is delivered to the
application requested.

The connection is established and terminated by log messages from the originating

terminal. A terminal operator gets access to an application with a login message
and terminates the connection with a logout message.

TPF Data Structures and System Services 41

42

The system tables that are used to maintain terminal to application logging are
mostly transparent to the application, so we will discuss them only briefly.

Application Name Table (ANT)

This table contains an item for every application in the system to which a terminal
may log. Each item has the 4-character application name that would be used in the
login message and status information about that application. Each item contains a
pointer to that application’s entry in the routing control application table (RCAT).

Routing Control Application Table (RCAT)
The RCAT has more detailed information about each application and pointers that

enable efficient routing of messages. Included in each item are:
* The status of the application
* Whether it uses the base or expanded RCPL

* The address of the application input message editor, which is the program
segment to be activated to begin processing of input messages.

Operator Security: The RCAT also indicates that the sign-in or sign-out function
is supported by the application.

This level of security is designed uniquely by the application. This security may be
needed for accounting purposes, for applications performing multiple functions each
of which require unique security codes or for a variety of reasons known only to the
application.

Although sign-in or sign-out is not a TPF operation, the log processor includes an
interface for it via a sign-in or sign-out procedure. If the RCAT entry for the
application indicates sign-in/sign-out is required, this interface allows the application
to notify the log processor of successful sign-in. Once the log processor is so
notified, it no longer monitors messages from that terminal. They are passed
directly to the application, until such time as the operator signs out and the log
processor is notified.

The interface to the log processor is in the form of an application to application data
transmission where:

* The origin of the data is the application itself.

* The destination of the data is application CLGx (x is the ID of the CPU in direct
control of the terminal).

* The text of the data is the address (LNIATA/CPUID) of the originating terminal.

Resource Vector Table (RVT)
The RVT is used for SNA terminal definition and control. There is an item in the

record for each network resource in the network. When an SNA terminal logs in to
an application, the RVT item is updated with an index value that serves two
purposes. It indicates that the terminal is logged to an application, and it points
indirectly to the RCAT item that gives the routing data for that application. When the
application being logged on to is a non-SNA application, the WGTA table will also
be updated.

WGTA Table (WGTA)

This table serves a purpose for non-SNA terminals similar to that of the resource
vector table for SNA. When a terminal logs in to an application, the WGTA item for
that terminal is updated with the index value pointing to the routing control
information. WGTA contains either the RCB or AAA addresses. (See

Contral Block” on page 48 and EAgent Assembly Area” an page 49).

TPF V4R1 Application Programming

Conditions at Activation

To recap, once a terminal is logged to an application, subsequent messages from
that terminal are routed directly to the application. The application message editor
for the application is pointed to by the RCAT. When COMM SOURCE completes its
processing of the input message, it passes control to that program. m
shows the conditions at that point.

In summary:

* The ECB is in main storage and register 9 is loaded with its main storage
address.

* The input message (or the first block of the message) is in main storage in
AMSG format and is pointed to by data level O of the ECB.

* The RCPL will be in the ECB starting at location ebw000.

» For messages arriving from terminals (or intended for RCB-dependent
applications), the RCB will be in main storage, pointed to by level 3 of the ECB,
and it will be in hold status.

Input Data

Input messages are presented to the application in a standard format described in
the AMOSG DSECT or c$am0@sg.h header. TPF performs the following processing
before presenting a message to an application:

* Message elements (segments) are combined into an entire message.

* The elements are packed as one continuous character string in either a 381- or
1055-byte main storage block.

* When the entire message cannot be contained in a single 1055-byte main
storage block, file pool storage is obtained, and subsequent message elements
are packed into 1055-byte file storage blocks. These additional blocks are
forward chained from the prime (main storage) block.

» For SNA systems, if the input message is defined as recoverable, the entire
message is written to file pool storage for recovery purposes.

By including the AMOSG DSECT or c$am@sg.h header, the application program can
address the fields in the message with the symbolic names in the header.

If the application requires you to use the older input message format (the MIOMI
DSECT or the c$miOmi.h header), it is the responsibility of the application input
message editor to reformat the input message to that older format.

Table 3. Input Application Message Format: The c$amfsg.h Header

Data Type Displacement |Symbolic Description
(Bytes) Name
char 0-1 amOrid Record identification: Ml for input
unsigned char |2 amOrcc Record code check (not used)
unsigned char |3 amOct]l Control byte
char 4-7 amOpgm Filing program (for TPF use)
unsigned Tong |[8-11 amOfch Forward chain - Must contain address of next file record (must

int

be zero if no chain)

unsigned Tong |[12-15 am@bch Last record in chain - must contain address of last record in

int chain (zero if no chain); used in prime record only, must be zero
in all chain records

short int 16-17 amOcct Character count from byte 18 to end of text (text + 5)

TPF Data Structures and System Services 43

Table 3. Input Application Message Format: The c$am@sg.h Header (continued)

Data Type Displacement |Symbolic Description
(Bytes) Name
unsigned char |18-20 am0lit Origin address; sequence number, record identification, or
LNIATA
char 21 amOnpl Control byte
char 22 amOnp2 Control byte
char 23-N amOtxt Text of message, including any function management header or

terminal control characters

Note that amObch, which you might expect to be a back chain, is not used as such
by the TPF message router.

Application Message Editor

The first application program given control by TPF is usually called the input
message editor or the application message editor, but the function is normally much
broader than a data edit. The task varies with the complexity of the application, the
variety of messages expected, and application design. Minimally, this program
module must have an awareness of all the message types expected, exception
conditions that may occur, and the logic to determine the appropriate program path.
A good design is to make the input editor a component of a package of programs
controlling all input and output message activity. The functions of this package
would include:
» Editing and validation of the input

* Message integrity and recovery logic

» Program path selection for processing

* Maintenance of the terminal/conversational transaction control records
» Control of output messages.

This design is consistent with the top-down concept of structured programming.

Eigure 5 on page 45 shows an overview of the process flow for such a package.

44 TPF V4R1 Application Programming

Communication
Source Program
(TPF)

Application
Message Editor
(Segment 1)

Program Referenced

in RCAT

EDIT Program: EDIT Program: EDIT Program: EDIT Program:
MSG Type 1 MSG Type 2 MSG Type 3 MSG Type 4
Processing Processing Processing
Package: Package: Package:
MSG Type 1 MSG Types 2 & 3 MSG Type 4
PROG| [PROG
1 2
PROG| |PROG PROG| |PROG PROG| |PROG
1 2 3 4 1 2
PROG PROG PROG| | PROG
3 5 3 4

[| | |
Output
Control Calls routc
Program
Exit

Figure 5. Application Message Control Package

Input Edit and Path Selection

As previously mentioned, the nature of the input and its variations will determine the
type of edit required. Applications with limited message types may contain the
complete edit in several program segments, which then pass control to the
processing routines. When there are many message types or format variations, a
more sophisticated approach will be necessary. For example, the text of the
message may contain a specific character at a given position, which identifies its
format and content. In this case, the editor could access a table such as [Tanle 4,
which matches action codes to editing program routines.

Table 4. Action Code Table (Example)

Action Code

Edit Routine

/

Edit routine A

%

Edit routine B

TPF Data Structures and System Services 45

Table 4. Action Code Table (Example) (continued)

Action Code Edit Routine
$ Edit routine C
* Edit routine D
1 Edit routine E
2 Edit routine F

For variations within message types, additional action codes could be used to
further define the expected format. Each message might contain, for example,
primary, secondary, or tertiary action codes. Ideally, the action code is in the first
position of message text. The edit program segment activated for a given primary
action code can then test any additional codes by means of a subtable or whatever
logic is most efficient for the expected message mix. Ultimately, each final routine in
the edit process is aware of the appropriate program to call to continue processing.
For example:

/I % * 1234, $100, Gale Aims, 5 JUL 96

|— Body of message text (including account, amount, customer, date)

Tertiary action code (program D)

Secondary action code (program B)

Primary action code (program A)

Message Recovery

The message editor program must be aware of the application message recovery
options to be applied for this application. Message recovery is an optional feature of
TPF SNA support, which varies with the type of system and the requirements of the
application.

SNA Input Messages

46

For SNA systems, TPF maintains information on every SNA input message
currently being processed. The level of recovery is user-selected, and it extends
from full recovery of all input and output messages to simply keeping track of each
input message in process. See [[PE ACE/SNA Data Communications Referencd for
a complete description of this feature. For the host application programmer, the
important aspect of message recovery is input recovery.

As each SNA input message is received, its origin and sequence number are
recorded. The message is then passed to a TPF or a user-written transaction
analysis routine to determine its input time-out interval and recoverability. Messages
determined to be recoverable are written to file.

Note: Because of storage constraints in the routing control parameter list (RCPL),
message recovery cannot be activated for 3600 multithread devices.

The input time-out interval is the time period TPF should wait for the application to
respond. If no response is received before the time interval expires, the message is
considered lost and is resubmitted to the application. The data resubmitted to the
application is the original input if the input was recoverable or a canned message if
the input was unrecoverable. It is critical that the application editor recognize this

TPF V4R1 Application Programming

resubmitted input and supply the logic to complete the transaction or to cancel it. A
bit in RCPL control word O (RCPL2POS in rcplct10) identifies the message as
returned or possible duplicate input.

SNA Output Messages

TPF SNA support also provides output message recovery. A message that cannot
be delivered to its destination because the session between TPF and the logical
unit has been lost is returned to the application with the returned message indicator
bit (RCPLORET in rcplct10, the RCPL control byte 0) set. In addition, the origin and
destination fields in the original outgoing RCPL are reversed when the message is
returned.

The application may then:

» Reset RCPLORET and send the message again; if the message still cannot be
delivered, it will be returned again.

» Leave RCPLORET set and send the message again; if the message still cannot be
delivered it will be queued by TPF for later transmission.

When TPF returns an output message, the RCPLORET bit is used to tell the
application that it is a returned message. The application editor must recognize this
returned output message and also must contain the logic to process the message
according to its own requirements.

Note: If an application sends a message with a return request again, it must
include appropriate code to prevent an infinite loop of returned messages.

An alternate method of handling returned output is for the application to place a
unigue application hame associated only with returned output in the origin field of
the output RCPL. This application name must be present in the RCAT in addition to
the name for normal input. With this method, when a message is returned, TPF
passes control to the editing program associated in the RCAT with the application
name for returned messages. The point of this discussion is not to recommend a
method but to mention the options, and to emphasize the application’s responsibility
to implement this logic.

Application Recovery Package

TPF also supplies an application recovery package (ARP) that may be used by any
system, SNA or non-SNA. The functions provided are similar in concept to SNA
message recovery, but are designed to allow users maximum flexibility in its
implementation. This package makes message recovery available for non-SNA
systems, and it may be used by SNA systems as an alternative or supplement to
support provided by TPF systems.

The ARP package is designed to allow the application to determine the extent of
message recovery features, when they are performed, and the time-out factors. By
using the application recovery table (ART), a unique reference is maintained for
every active message in the system. At any point in the life of a message, the
application can refer to the message and its control data (RCPL) and can file and
retrieve the message block, or another related data block. The ART resides in main
storage and contains the reference to the message plus an optional data area of up
to 82 bytes, and the address of the data block on file. The filed block may or may
not be a message block. For non-SNA systems, dependent on ARP alone for
message recovery, the most common use is to file the message. SNA systems can
depend on TPF to file the message block and can use ARP to file an additional

TPF Data Structures and System Services 47

data block such as financial totals affected by the transaction. Once the message is
transmitted successfully, these totals can be considered secure and the filed block
released. Should the message fail, the filed block can be retrieved and the affected
amounts canceled.

The application passes control to ARP via an Enter to an external function call to an
E-type assembler language program. In C language generally, the TPF_regs struct
must be set up with a parameter list specifying the functions required before calling
ARP. For TARGET(TPF) C language programs a #pragma linkage statement must
be coded before calling ARP to allow the correct linkage to be made. Whether in
assembler or in C language, although ARP can be used for output message
recovery, for non-SNA systems the application must have a method of determining
when the message is successfully delivered or has failed. This is an application
responsibility; TPF does not supply it for non-SNA systems.

For details on the use of the Application Recovery Package, see ffeE Datd

Terminal and Transaction Control

In the simplest configuration and application environment, each message has a
uniquely identifiable terminal origin and is processed to completion without
dependence on prior or subsequent messages. However, you probably do not
experience this simplicity in practice. For example, you may need to build a
transaction in conversational mode between a terminal operator, such as a bank
teller, and application program that, perhaps, creates a new customer account. It
would not be practical for the teller to enter all the data in 1 message. Rather, it
should be entered in segments, consisting, for example, of name, address,
telephone, initial deposit amount, other account data. This conversation requires a
terminal operator-oriented record in which the status of the transaction can be
stored after each message element and retrieved when the next element is entered.
TPF provides the mechanism for this requirement with the following records:

* Routing control block

* Agent assembly area

» Scratchpad area.

The routing control block and agent assembly area predate SNA systems, although
applications that use them may be accessed by SNA terminals. The scratchpad
area is used only with SNA terminals.

Routing Control Block

48

There is one routing control block (RCB) record permanently assigned for every
terminal addressed by a symbolic line, interchange, and terminal number
(LN,IA,TA). The CPU ID further identifies the location of the terminal in the network.
An RCB also is assigned to each symbolic line number used in a binary
synchronous communication link.

When a message is received at the host from the terminal, TPF retrieves the RCB
and passes it to the application message editor on data level 3. Because TPF
assumes that the record may need to be modified, it is passed in hold status. While
the RCB is in hold status, any further messages from the terminal associated with
that RCB are queued. It is the application’s responsibility to unhold the RCB when it
does not need to modify the RCB or lock out other messages from the terminal.

TPF V4R1 Application Programming

The RCB contains a system area, which should never be modified by the
application, and about 700 bytes exclusively for application use. The application
area is undefined and may be used by the application in any way. It could be used,
for example, for building transactions in conversational mode, as outlined above.

Agent Assembly Area

Airline reservation systems often use an agent assembly area (AAA) instead of an
RCB. The AAA is similar in concept to and uses the same addressing mechanism
as the RCB. However, it was designed expressly for airline applications and does
not have a reserved system area, nor is it initially passed in hold status. Any
terminal capable of accessing an AAA-dependent application is actually assigned an
AAA when it logs into any application.

Scratchpad Area

To provide support similar to the RCB for SNA systems, a system record and an
application record are assigned to each logical unit. The system record is the node
control block (NCB) and the application has no need to refer to it.

The scratchpad area (SPA) is allocated exclusively for application use, if desired.
The SPA is undefined except for a 13-byte header. Your application should create a
DSECT or define a structure that describes a record that suits your needs. The
scratchpad area is allocated to fixed file storage and you can define it as 381 or
1055 bytes. The SPA (and NCB) records are ordered by resource identification
(RID), which is in effect the network address of the logical unit.

Sometimes only a single terminal is associated with a logical unit, but in other
cases, multiple terminals are associated with 1 logical unit (LU). In either case,
however, the SPA records are allocated one per LU. This may not provide adequate
flexibility or working storage. The application must design the record layout and a
mechanism for additional file space per terminal that will meet its requirements. This
will vary with the maximum number of terminals per LU, and the complexity of the
application function. Possibilities include:

» The SPA could be allocated as a large record (1055 bytes) with logical sections
for each terminal. Overflow could be chained to a random pool record in the
same format. This solution would not be practical unless the number of terminals
per LU were small (perhaps less than 10).

* The prime SPA could be formatted as above, with an overflow random pool
record for each terminal, chained to the prime logical block.

* The prime SPA might contain common data usable by all terminals; an overflow
random pool record could be chained for each terminal, as above.

SPA Retrieval

Since use of the SPA is optional, it is not automatically retrieved by TPF. However,
a program is provided to retrieve it at your request. (See [[PE ACE/SNA Datd
Communications Referencd.) You pass control to the GETSPA program by calling
the CSNB external function. For TARGET(TPF) C language programs a #pragma
linkage statement must be coded before calling CSNB to allow the correct linkage
to be made. In C language, the TPF_regs structure must be set up to load R1 with
the address of a 5-byte parameter list, which is located on a halfword boundary. In
assembler, before the ENTRC macro is invoked, R1 must be loaded with the
address of a 5-byte parameter list located on a half word boundary.

You must define a structure or DSECT as follows to contain the required parameter
list:

TPF Data Structures and System Services 49

Size Requirements

Bytes 0-2 Must contain the RID. This information is available from the first 3
bytes of the origin field of the input RCPL.

Byte 3 Must contain the data level for record (or file address) retrieval. The
level may be expressed symbolically as DO-DF, or as its
hexadecimal equivalent. For example:

Value Data Level

X'00' Data level 0

X'08' Data level 1

X'10' Data level 2

X'18' Data level 3, and so on.

Byte 4 Specifies the user options as follows:

Bit User Option

Bit 0=1 Always 1 for SPA retrieval. (This program is also
used by system programs to retrieve the NCB
record.)

Bit 1=0 Retrieve the record onto data level

Bit 1=1 Return file address only

Bit 2=0 Issue FIWHC assembler macro

Bit 2=1 Issue FINHC assembler macro

Bit 3=0 Return to user program if error

Bit 3=1 Exit if error

Bits 4—7 Not used.

On return to the application program, conditions will be specified in register RO as
follows:

Return Code Condition

R0O=0 Normal return.

RO=1 FACE error calculating ordinal number.

R0=2 Find error, celsud at the specified data level will further define the
error.

R0=3 Error in input parameter list.

The SPA is filed using standard TPF file functions.

Function Management Header

TPF does not recognize the origin or destination of a message beyond the logical
unit. It is the responsibility of the application to design a protocol between the
application program in the cluster controller and the application program in the host
that will identify (in the message text) multiple terminals associated with a logical
unit.

One method of handling this is with the function management (FM) header, which

may be included in the text of an input or output message. The FM header provides
information about the text of the message. It may be used to indicate:

50 TPF V4R1 Application Programming

* The terminal associated with the logical unit that originated the message or is to
receive the message

* The results of host processing, such as transaction status (completed, cancelled,
or in process).

The format of an FM header is:
HL CI

where:

* HL is the header length, a 1-byte field indicating the length of the FM header
including this byte.

» Cl is control information, a user-supplied field, 1 to 254 bytes in length, providing
information about the text of the message. The application designer is
responsible for specifying the meaning and contents of this field.

When an FM header is provided, it must be the first part of the message text and
its presence is indicated by the appropriate bit in the RCPL (in assembler
RCPL2FMH=1 and in C language RCPL2FMH in rcplcti12, the RCPL control byte 2 in
the c$rcOpl.h header).

The FM header may be maintained as received on input, modified or expanded,
and included in the output. A unique RCPL bit indicates its inclusion in the output
message (in assembler RCPL2FMO=1 and in C language RCPL2FMO in rcplct12, the
RCPL control byte 2).

Output Message Control

An efficient design for most applications is to concentrate the output message
processing into a single program or package. Individual processing programs can
pass requirements to the output processor usually with a single indicator or
message number. Commonly used message texts can be formatted in a message
file and referenced by number.

Whether handled by a single package or by the individual programs, the
requirements for sending an output message consist of 3 steps:

Step 1 Prepare the data to be transmitted (as is described in the AMOSG
DSECT or in the c$am@sg.h header) in a main storage block
attached to any data level. If the entire message cannot be
contained in a single block, the remainder must be placed in file
pool records of the same size and chained from the prime main
storage block. The DSECT or header for the AMSG record is the
same for output or input: AMOSG DSECT or header c$amdsg.h. The
symbolic names may be used by including the header. In assembler
use the specified register with the CBRW of the data level chosen.
In C use the ecbptr macro to point to the CBRW of the data level
chosen. It is important that the chain fields in the record header be
zeroed if not used; TPF will use the presence of a nonzero value in
amOfch to indicate that an overflow file record exists.

Step 2 Construct the output RCPL, describing the destination and origin of
the message. The output RCPL is similar in content to the input
RCPL. It describes the origin, destination, and various indicators
used for processing the output. Normally, the application preserves
the input RCPL in order to construct the output RCPL. In most

TPF Data Structures and System Services 51

52

Step 3

TPF V4R1 Application Programming

cases, the output RCPL can be constructed by swapping the origin
and destination fields and setting the required indicators.

The destination field on output contains the symbolic network
address of the terminal/logical unit to receive the message. For
SNA systems it also contains the sequence number identifying the
input to which this message is replying. This field, therefore, must
be an exact copy of the input message origin field.

The origin field specifies the four-character name of the application
sending the message. For SNA systems, when the message cannot
be delivered to its destination, it will be returned to the application
specified as the destination field of the input RCPL.

The application can enter a unique application name in the origin
field on output so that undeliverable messages can be returned to
that unique application. If so, the user must ensure that the
alternate name is defined in the RCAT.

There are 4 or 8 bytes of control data, depending on whether the
expanded RCPL is used. Sometimes only minimal changes to the
input will suffice; in other cases, extensive resetting will be required.
See the summary chart under ERauting Control Parameter |ist” ad
and, for more detail, to the RCOPL DSECT, the c$rcOpl.h
header and to the [[EE ACE/SNA Data Cammunications Reference.

Request the TPF system to send the message by calling the
ROUTC macro or the routc function, as described in

Macrod or [[RE C/C++ | anguage Support User's Guidd. This is a
simple coding routine once steps 1 and 2 are completed. The
ROUTC macro or the routc function call specifies a pointer to the
RCOPL DSECT or the rcOpl structure and the data level of the
block in which the message resides.

Examples:
routc (&(echptr->ebw000),D6) ;

ROUTC LIST=R1,LEV=D6

Error conditions detected by the associated system service routine
(routc) may cause a system error to be issued and the ECB exited.
Error conditions include:

* Absence of a storage block at the specified CBRW

* Invalid message length

* Invalid contents of the message block and/or the RCPL.

Transmission of the message does not necessarily occur during the
execution of the ROUTC system service routine, so the application
may not be notified of transmission failure. However, when a
detectable failure occurs (such as with SNA systems or applications
able to use the application recovery package for output messages)
the application specified in the RCPL origin field will be activated;
the input RCPL will indicate this is a returned output message.

On return from the macro or the function, the CBRW indicates that
the core block for the specified level is released to the system and
no longer available to the application.

Table 5. Output Application Message Format: The c$am0sg.h Header

Data Type Displacement |Symbolic Description
(Bytes) Name

char 0-1 amOrid Record identification: OM for output (application must enter)

unsigned char |2 amOrcc Record code check (not used)

unsigned char |3 amOct]l Control byte

char 4-7 amOpgm Filing program (for TPF use)

unsigned long |[8-11 am0fch Forward chain - Must contain address of next file record (must

int be zero if no chain)

unsigned Tong |[12-15 amObch Last record in chain - must contain address of last record in

int chain (zero if no chain); used in prime record only, must be zero
in all chain records

short int 16-17 amOcct Character count from byte 18 to end of text
(text + 5)

unsigned char |18-20 amOlit Origin address; sequence number, record identification, or
LNIATA

char 21 amOnpl Control byte

char 22 amOnp2 Control byte

char 23-N amOtxt Text of message, including any function management header or
terminal control characters

Note that amObch, which you might expect to be a back chain, is not used as such
by the TPF message router.
TPF Macros

In the TPF environment, macro is a generic term covering several types of TPF
user services. Generally, the application programmer is concerned with the use of a
macro and not the details of defining the macro code, which becomes part of the
MVS assembly system. For more information about macro definition, see

TPF Data Structures and System Services 53

54 TPF V4R1 Application Programming

Understanding High-Level Language Concepts in the TPF

System

This chapter introduces the terms and concepts used throughout this publication.
Some of the terms describe features of C language and C++ language. See the

user’s guide, programmer’s guide, and language reference for the IBM C or C++
compiler on the System/390 platform used by your installation for a more detailed

understanding of these terms. See [IBM High-I evel | anguage Books” on page xix

for a list of IBM C and C++ compiler publications on the System/390 platform.

Other terms have special meaning in the TPF system environment. There is a

glossary of TPF terms in the [[PE Library Guidd.

— Note on Terminology

The use of the term load module supersedes that of C load module.
Throughout this book, you will see C load module, which is a type of load
module. For historical reasons, load modules on the TPF system were referred
to as C load modules. The more generic term, load module, is used wherever
possible so as not to be associated with a specific language.

See E-Type Program Chart and Program Attributes” an page 56 for more

information about the types of load modules.

Terminology is important to understand the concepts discussed in this chapter. The
following is a list of some important terms:

Source file

Object file

Load module

Dynamic link library (DLL)

DLL application

Mangling

Bind

© Copyright IBM Corp. 1994, 2002

This file consists of C, C++, or assembler language
statements that define the actions of a program. A
compiler or assembler reads this file as input.

A compiler or assembler output file that is suitable
as input to a linkage editor. In the TPF system,
object files are included in a load module as
designated by the load module build script.

All or part of a computer program in a form that is
suitable for loading into main storage for execution.
A load module is usually the output of a linkage
editor.

A collection of one or more functions or variables
gathered in a load module and executable or
accessible from a separate DLL application load
module.

An application that can reference imported functions
or imported variables in a DLL.

The encoding during compilation of identifiers such
as function and variable names to include type and
scope information.

To combine one or more control sections or
program modules into a single program module,
resolving references between them, or to assign
virtual storage addresses to external symbols.

55

Binder The DFSMS/MVS program that processes the
output of language translators and compilers into an
executable program. It replaces the linkage editor
and batch loader in the MVS/ESA or OS/390
operating system.

The word program is used generically to refer to processes and not just to the
source file or executable load module.

The TPF system supports online programs written in C, C++, and System/390
assembler. Before its standard C support, the TPF system supported a nonstandard
implementation of a C language subset known as TARGET(TPF) (from the compiler
option that it required). TARGET(TPF) support is completely separate from standard
C support and is no longer enhanced or used by the TPF system, although it is still
available for legacy applications that have not been updated or migrated to
standard C support.

In this publication, C or C++ refers to standard high-level language support. The
term TARGET(TPF) is used to highlight significant differences or limitations between
TARGET(TPF) and standard C support.

With the C or C++ language and compilers, you can create dynamic link libraries

(DLLs) and DLL applications. See lC++ Suppart” an page 74 and EDynamic | inld

for more information about C++ and DLLs.

ISO-C and TARGET(TPF) functions can call each other; however, they operate in
separate environments. This fact can have subtle effects where the global C
environment is shared among C functions. For example, calling setlocale to
change the current locale in a TARGET(TPF) function will have no effect on the
locale for any ISO-C functions that may be called, and vice versa.

Note: TARGET(TPF) functions cannot call DLLs.

E-Type Program Chart and Program Attributes

56

Eigure 6 on page 57 shows the kinds of E-type executable programs in the TPF
system. A description of the attributes and characteristics of these programs follows

the figure.

TPF V4R1 Application Programming

Executable E-Type Program

Classic TPF Segment Load Module

l
1 |

Application (DLM) Library
Run-time DLL
(Nondynamic)
Library

Figure 6. Kinds of E-Type Executable Programs

Load Module Attributes

This section describes some of the attributes of the various kinds of load modules. *
Unlike classic TPF segments, load modules are link-edited (or bound). In general,
load modules may include a variety of object files, which may be compiled or
assembled from source code written in:

* Assembler

* C language compiled with the NODLL option
* C language compiled with the DLL option

» C++ language.

The build script of the load module specifies the type of load module (DLM,
LIBRARY, or DLL) and the object files (but not the source language or compiler
options) that the load module contains. The system initialization program (SIP)
macro, SPPGML, specifies the source language and some of the compiler options,
including RENT, NORENT, DLL, and NODLL, for TPF source code.

The primary distinction among the kinds of load modules is the kind of startup
object file that is linked into them. The three main types of load modules are:
applications (DLMs), run-time (nondynamic) libraries, and DLLs, each with its own
separate startup object file. This determines many of their other attributes and ways
that the TPF system handles them. The kind of load module is specified by the
keyword in the first noncomment line in its build script. See L

Build Tool (CBIL D)’ an page 329 for more information about bund scripts.

1. There are other types of load modules in the TPF system, but here we are discussing only real-time load modules.

Understanding High-Level Language Concepts in the TPF System 57

A secondary distinction concerns the name of the entry point function that is called
first when an application (DLM) load module is run. This entry point function may
either have the same name as the DLM or it may be named main. 2

* DLMs that contain a main function are called by calling the system function in
stdlib.h. This creates a new process and causes the calling process to wait for
the new process to exit. If the initial main function call returns, the new process
exits implicitly, or it can exit by calling a function or macro or taking a system
error that causes it to exit. In any case, when the new process does exit, its exit
status is returned to the calling process as the return value of the system
function, and the calling process resumes running.

* DLMs that do not contain a main function (therefore their entry point function has
the same name as the DLM) are called by being entered. If the initial entry point
function call returns, there must be a program in the program nesting level to
which control will return through BACKC linkage.

Load modules that contain object files written in C and compiled with the DLL option
or written in C++ are DLL applications because they have the capability of implicitly
referencing functions or variables that are defined in DLLs. Run-time (nondynamic)
libraries are more restrictive than other kinds of load modules in that they cannot be
DLL applications: they cannot contain object files compiled from C++ source code
or from C source code compiled with the DLL option.

[fanle 4 lists the attributes of the various types of load modules.

Table 6. Load Modules and Their Attributes

function

Type of Load Application (DLM) Run-Time
Module and With non-main Entry | With main Entry (Nondynamic) DLL
Attribute Point Function Point Function Library
Keyword for the first |DLM DLM LIBRARY DLL
noncomment line in
the build script
Name of the startup |CSTRTD CSTRTD CSTRTL CSTDLL
object file
Allocator residency File resident (FR), FR, CR, or PRELOAD | PRELOAD FR, CR, or PRELOAD
requirements core resident (CR), or
PRELOAD

Number of entry one one one or more one or more
points
Contains a main No Yes No No

Specification of entry
points

Function with same
name as load module

main function

Specified by library
interface script !

Specified by the
EXPORTALL compiler
option, #pragma
export directive, or
_Export keyword 2

Name used by callers
to call entry points

DLM name

DLM name

Names declared in
API header files

Names declared in
API header files

Linkage to entry
points

C function call syntax,
or enter- or

create-type C function
or assembler macro 3

system function,
declared in stdlib.h

Library call stubs,
AUTOCALLed into
load module by
prelinker or binder

Resolved at run time
either implicitly or
explicitly

2. A special case of DLM is an iconv translate table, which has its own unique entry point function naming convention.

58

TPF V4R1 Application Programming

Table 6. Load Modules and Their Attributes (continued)

Type of Load Application (DLM) Run-Time
Module and With non-main Entry With main Entry (Nondynamic) DLL
Attribute Point Function Point Function Library
Linkage type of entry |C (requires extern C (handled implicitly | C (requires extern C or C++

points

"C" declaration in
C++ source code)

by the system function
and TPF C run-time
initialization code)

"C" declaration in
C++ source code

Can include
assembler source
code object files

Yes

Yes

Yes

Yes

Can include C source
code object files
compiled with the
NODLL option

Yes

Yes

Yes

Yes

Can include C source
code object files
compiled with the DLL
option

Yes

Yes

No

Yes

Can include C++
source code object
files

Yes

Yes

No

Yes

Can call other
executable E-type
programs (using DLM
call stubs)

Yes

Yes

Yes

Yes

Can call run-time
library functions
(using library call
stubs)

Yes

Yes

Yes

Yes

Can explicitly access
DLL functions and
DLL variables using
run-time library
functions

Yes

Yes

Yes

Yes

Can implicitly call DLL
functions and access
DLL variables

Yes (requires C
source code compiled
with the DLL option,
or C++ source code)

Yes (requires C
source code compiled
with the DLL option,
or C++ source code)

No

Yes (requires C
source code compiled
with the DLL option,
or C++ source code)

Can export DLL
functions and
variables

No

No

No

Yes

Notes:

1 The interface to run-time (nondynamic) libraries, including the library call stubs, is built by the LIBI offline

program. See tRun-Time (Nondynamic) | ibrary Function | inkage” on page 65 for more information about run-time
library linkage. For more information about the LIBI offline program, see LLibrary Interface Tool” on page 323.

2 When a DLL is built, one of the prelinker or binder outputs is a definition side-deck, which contains information
about the functions and variables that the DLL can export. When you build a DLL application, its build script
specifies which definition side-decks are to be given as input to the prelinker or binder, which uses them to build

the trigger functions that import DLL functions and variables.

3 A'load module can use C function call syntax to enter another executable E-type program (either classic TPF
segment or DLM) with a DLM call stub. DLM call stubs are created by the STUB offline program or by SIP (if
STUB=YES is coded on the SPPBLD macro in SPPGML) and AUTOCALLed into the load module by the

prelinker or binder. See tDLM Call Stih Generator” on page 327 for more information about the STUB tool.

Understanding High-Level Language Concepts in the TPF System

59

Classic TPF Segment

We use the term classic in this context to describe the TPF E-type segment that is

written in basic assembler language (BAL) or TARGET(TPF) C language. Its

characteristics are as follows:

e It is limited in size to 4 KB.

» If it is written in BAL, the output object module is ready to be processed by the
TPF offline loader (TPFLDR) once it has been assembled by the high-level
assembler (HLASM). To create an object module with HLASM, the source code
must call the BEGIN (with TPFISOC=NO) and FINIS macros.

« If it is written in TARGET(TPF), the output object module is ready to be
processed by TPFLDR once it has been compiled by a C compiler supported by
the TPF system that also supports the TARGET(TPF) compiler option.

e It is not link-edited.

Functions and Calling Other Functions

The following tables show summaries of the calls that are supported in TPF E-type
programs.

Table 7. Function or Program Calls Allowed in ISO-C

Type of Dynamic DLMs with External Library Static Assembler Dynamic
Function (or |Load main Functions |Functions Functions [Programs Link
Program) Modules (Link (Source Library
Originating | (DLMs) Scope) Scope) (DLL)
the Call

Dynamic Yes Yes Yes? Yes Yes!? Yes? Yes3
Load

Modules

(DLMs)

DLMs with Yes Yes Yes2 Yes Yes! Yes Yes
main

External Yes Yes Yes? Yes Yes! Yes Yes3
Functions

(link scope)

Library Yes Yes Yes2 Yes Yes! Yes No4
Functions

Static Yes Yes Yes2 Yes Yes! Yes Yes?3
Functions

(source

scope)

Assembler Yes® No Not No Not Yes Nos
Programs Applicable Applicable

Dynamic Link | Yes Yes Yes2 Yes Yes! Yes Yes
Library

60 TPF V4R1 Application Programming

Table 7. Function or Program Calls Allowed in ISO-C (continued)

Type of Dynamic DLMs with External Library Static Assembler Dynamic
Function (or |Load main Functions |Functions Functions |Programs Link
Program) Modules (Link (Source Library
Originating | (DLMs) Scope) Scope) (DLL)
the Call

Notes:

1 means in the same object file.
2 means in the same load module.

3 means the function or program originating the call must be compiled with the DLL compiler option.

4 Library functions cannot be compiled with the DLL option; therefore, a run-time library function cannot call a

DLL.

5 A segment written in assembler cannot call functions in a DLL.

6 A segment written in assembler can call the entry point function in a C++ load module because of the extern
"C" wrapper for the entry point function. This wrapper makes the linkage to the entry point of the load module be

C linkage.

7 If you want to call a program written in assembler from a program written in C++, you need to put the C function
prolog and epilog macros, TMSPC and TMSEC, around the program written in assembler. You also need to
prototype the program written in assembler as a C function.

Note: The parameter list structure and linkage are different between C and C++.

Therefore, functions coded in C and compiled with a C compiler cannot call
functions written in C++ unless the C++ function is declared to have C-type
linkage using extern "C".

See tl:a.b.le_ﬁ_an_pa.ge_ﬂd and Lmaa.n_aLexLam_{‘_Rqu.utemem_an_pa.ge_lAd i ekl i !

for more information about this linkage difference.

Table 8. Function or Program Calls Allowed in TARGET(TPF).

Type of Function (or | External Functions Library Functions Static Functions Assembler
Program) Programs
Originating the Call

External Functions Yes Yes Yes * Yes

Library Functions Yes Yes Yes * No

Static Functions Yes Yes Yes * Yes
Assembler Programs | Yes No No Yes

Note:

* means in the same module.

There are several different types of items that DLMs can call using function call
syntax:

BAL segments

All other C functions, including inline, internal, external, library, TARGET(TPF),
and other DLMs

Exported functions in DLLs.

The only difference between calling BAL segments and other C functions is that the
function prototype for BAL segments is restricted. If you call a BAL segment, the

prototype must be:

void SEGN(struct TPF_regs =*);

where SEGN is the 4-character segment name.

Understanding High-Level Language Concepts in the TPF System 61

The call to a BAL segment looks like:

struct TPF_regs regs;
/* Set up regs as appropriate to the BAL segment interface */
SEGN (®s) ;

In standard C or C++, if the BAL segment does not use registers in its interface,
you can code a NULL pointer:

SEGN(NULL); /* You MUST code the regs parameter for BAL calls, =/
/* even if the called segment doesn't use registers =*/
/* for its interface. x/

Do not use the NULL pointer instead of TPF registers in TARGET(TPF).

Functions Calling Other Programs

There are several functions that activate only E-type programs. The following
functions call E-type programs:

entdc reset stack, no return (drop nesting levels)
credc create new deferred ECB

creec create new ECB with core block attached
cremc create new immediate ECB

cretc create new time-initiated ECB

cretc_level create new time-initiated ECB with core block

crexc create new low-priority deferred ECB

crosc_entrc cross-subsystem call with return

swisc_create create new ECB specifying I-stream

tpf_cresc create new synchronous ECB

system execute a command

If a function is written in assembler with the TMSPC and TMSEC macros, this

assembler function can activate E-type programs. The following is a list of the BAL
equivalents of the C macros:

ENTDC enter dropping nesting levels (reset ISO-C stack)
ENTRC enter with return

CREDC create new deferred ECB

CREEC create new ECB with core block attached
CREMC create new immediate ECB

CRESC create new synchronous ECBs

CRETC create new time-initiated ECB

CREXC create new low-priority deferred ECB
CROSC ENTDC cross-subsystem ENTDC

CROSC ENTRC cross-subsystem ENTRC

SWISC ENTER cross-I-stream enter (ENTDC)

SWISC CREATE create new ECB specifying I-stream

62 TPF V4R1 Application Programming

ISO-C Linkage

Notes:
1. Load modules do not use ENTNC and CROSC ENTNC macros.

2. For TARGET(TPF), writable static storage is deallocated by entdc. For standard
C, writable static storage is preserved across entdc.

Performance Considerations

How ISO-C functions are packaged can affect the overall performance of a

program. There are several ways to package functions:

* As inline functions of a C or C++ compiler. These functions are directly in place
where they are called.

» As internal functions added by the linkage editor. These functions are contained
in the same load module as the calling function.

» As external functions contained in a DLL. These are function calls to separately

compiled programs. See Dynamic Link Library (DI 1) Support” on page 76 for
more information about DLLs and EC++ Support” on page 74 for more information

about C++ support.

» As library functions. These functions are referenced by stubs added to the load
module during linkage editing.

* As external functions in the form of a DLM. These are function calls to separately
compiled programs.

There are advantages and disadvantages to each packaging technique.

INLINE Compiler Option

The fastest performance for a function comes from using the INLINE option of the
compiler. Using inline functions eliminates entirely call linkage, function prolog,
function epilog and return linkage, and allows global optimization of calculating
function arguments and the function body. If simple functions must be called many
times in a loop, the combination of inlining and global optimization can yield
significant improvements in path length.

Note: Because there are no references to certain functions with inlining, there are
no pointers to them. These functions will not be part of the link map for the
load module. See [[PE Operationd for more information about the ZDMAP
command and link map support.

One cost of using inline functions is maintenance. The source code for the functions
is included in header files for all the programs that use them. If a function needs to
be updated all applications that call it must be recompiled, relinked, and reloaded.

Other disadvantages to inline code are:
* Functions must be defined in the same compile unit in which they are inlined.
» Code size increases when non-trivial functions are inlined multiple times.

» Debugging can be more difficult because inlined functions do not have a single
entry or exit point, and may generate different object code each time they are
inlined.

Inlining is an optional feature of the IBM C compilers on the System/390 platform.

Inlining is standard for the IBM C++ compilers on the System/390 platform. It is not
part of the ANSI/ISO C standard.

Understanding High-Level Language Concepts in the TPF System 63

Linking Functions
The next fastest performance is determined by how functions are accessed,

whether through a stub or not. Functions that are accessed without using a stub are
faster than those accessed through a stub.

For function calls that do not need a stub, the compiler, linkage editor, and
relocating loader (program fetch) generate the linkage, which is executed without
use of system services or system data. Call linkage is usually 2 instructions, plus
parameter loading and unloading, and return linkage is included in the function

epilog.

The cost of a function in the same compiled unit as its caller and the cost of link
editing functions together are much the same. It is a tradeoff between program
execution and easier maintenance. If a function needs to be updated, only the
function itself must be recompiled, but all applications that use the function still must
be relinked, reloaded, and tested again.

Using Library Functions

The use of library functions involves a slightly longer path length than the use of
link-edited functions. This is because the calling program must use a library call
stub to access library functions. In addition, secondary linkage processing makes
the path length for the library calls much longer if one of the following conditions
exists:

* The library load module contains static data.
» User exits are active.
* The library was selectively activated using the E-type loader.

The advantage of library functions is that they are easy to maintain and reuse in
many applications. If the function needs to be updated only the function needs to be
recompiled, and only the library load module needs to be relinked and loaded.

A disadvantage is that at a given time, for a given library, all functions use the same
linkage. Libraries that contain reentrant (RENT) static ALWAYS use secondary
linkage. Therefore, library functions that require reentrant static should not be
included in libraries that must give high performance.

DLM Performance

DLMs are the primary structure for ISO-C functions. Call and return linkages
between DLMs are managed by TPF system services and are comparable to
ENTRC and BACKC linkage. There is additional overhead for managing linkages
between different types of programs.

The performance decision involves the number of DLMs that need to be created for
a given application. The fewer DLM calls needed, the faster a given application
performs. Calls to DLMs generate the most linkage overhead because they:

» Utilize enter/back services

* Create additional stack frames

* Manipulate static storage pointers.

The disadvantage is the loss of visibility of the function of a DLM to the system. If

DLM A is folded into DLM B to improve DLM B’s performance, the service that DLM
A provides is lost to other DLMs (without replicating DLM A).

64 TPF V4R1 Application Programming

Run-Time (Nondynamic) Library Function Linkage

Note: This section discusses library function linkage for run-time (nondynamic)

libraries only. See [Dynamic Link |ibrary (DI 1) Support” on page 76 for more

information about DLL linkage.

ISO-C uses an array of addresses to library vectors (AOLA) to provide its primary
. The AOLA is created during TPF restart.

linkage to library functions. See

AOLA entries are replaced with pointers to library vectors (LIBVECS) as libraries are
read into main storage. A LIBVEC is a series of entry point addresses of functions.

Each library is associated with a particular library ordinal, defined by the library

interface tool. This library ordinal defines the order that the libraries are placed in
the AOLA. See [rable d to see which ordinals are assigned to which libraries. The
AOLA mechanism allows calls to functions in as many as 1024 libraries. A library

ordinal in the AOLA and a LIBVEC offset together serve to uniquely identify a

particular function.

When a new version of a library included in an E-type loader loadset is activated, a

common block is used to build a new AOLA. The common block is key-protected.

LIBVECs
Library AOLA 0 1 2 3
Ordinal
0 —1— | addr | addr | addr | addr
1 —]
| 0 1 2 3
2 addr | addr | addr | addr
3
0 1 2
4 — | addr | addr | addr
S 0
6 »
» CISOINVL
0 1 2 3
301 P>
addr | addr | addr |
302 l
Foo

Library Names

CISO

CTAL

CTDF

CISOILCL

CMAS

Figure 7. Example of an Array of Library Addresses and LIBVECs

[Cahle d describes which ordinals are in use by which library.

Table 9. Library Ordinals

Library Ordinal Number Description
CISO 0000 Standard C library
CTAL 0001 TPF API library

Understanding High-Level Language Concepts in the TPF System

65

Function Stubs

66

Table 9. Library Ordinals (continued)

Library Ordinal Number Description

CTDF 0002 TPFDF library

CTBX 0003 ISO-C general purpose toolbox library
COMX 0004 TPF communications functions

CMQI 0007 MQI client library

CTHD 0008 threads library

CRPC 0011 RPC library

Linkage to functions contained in libraries is through a stub. A stub is a small piece
of code on the end of a program used to locate functions in libraries. For example,
the clock function is contained in the TPF library CISO. Imagine a program BAZ
calls clock. To gain access to the clock function, control transfers to the stub for
clock on the end of BAZ. The stub was added during the link-editing of BAZ. The
stub itself comes from the stub library created by the library interface tool. The stub
for clock contains the library ordinal and LIBVEC offset for the actual clock
function. The executable form of the clock function was loaded during TPF restart
when the CISO library was loaded. The information in the stub provides run-time
access to the code for clock and the stub transfers control to the clock code.

program stub library

t = clock();

clock stub

The program calls
the clock function
which is represented
by the stub which came from the stub
library and which selects the library CCLOCK code
function that implements then carries
out the clock function using CCLOCK.

function library

clock stub

Suppose we have a program BAZ. Overall, when the C compiler encounters an
external function call (Foo) in an ISO-C program, it generates external function
linkage. While satisfying the external linkage, the linkage editor gets a stub to
access the external function. (See the)

The address of the function required is not available at compile time. The compiler
generates a VCON to be satisfied during linkage editing. During linkage editing the
VCON for the external function is satisfied by using the stub function that
corresponds to the function called. The linkage editor retrieves the stub from the
stub library and appends it on the end of the load module being generated. The
stub contains the library ordinal and the LIBVEC offset. When the stub was

TPF V4R1 Application Programming

generated, it was set with information about the location of the function it
represents. In the example function Foo is the fourth function defined in library
CMAS (301), so the library ordinal is 301 and the LIBVEC offset is 3. When run, the
stub function performs like an execution-time "glue module”, sticking the library
references kept in the function body together with the library as it exists in the
online system.

Source code of program BAZ

retval = Foo(x) ; Call to function Foo

A

BAZ Load Module

Foo()
Offset of 3 (to Foo)
Stub for Foo —» Foo in LIBVEC CMAS
library » ord(301)
ordinal offset(3) <

Figure 8. Offline Stub Linkage

When segment BAZ runs on the online system and finds a call to function Foo, the
stub for Foo at the end of BAZ uses the library information to locate the executable
code for Foo. (See m) The stub does this by using the library ordinal (301) it
contains to look up the pointer to the correct LIBVEC in the AOLA. Using the
LIBVEC pointer and the offset (3) it picks up a pointer to the code for Foo (in the
CMAS user library). With this LIBVEC the stub uses the function offset to locate the
entry point address for function Foo, which was created when the library with Foo
was loaded (during restart). The stub transfers to the entry point address to run the
Foo function. When Foo returns, it continues at the NSI after the original call to Foo
in program BAZ.

It is critical that the order of the libraries in the AOLA must correspond to the order
of the libraries used when programs are compiled and linked. Clearly, if the order of
the 2 libraries is different, the functions called by the program will not be the
functions run by the system.

Understanding High-Level Language Concepts in the TPF System 67

Segment BAZ

1. Start:
NSI

|—> call to Foo

8. Continue
e

3. A portion of the AOLA

stub . 300
for FOOd(3Ol) 2. This
or | identifies 301
Foo off(3) >
302

4. Which identifies

for CMAS

5. The LIBVEC l
0 1 2 3

addr | addr | addr| entry point address of Foo | addr

CMAS Library

6. Run starting at the

7. when address for Foo
done executable <
code for
Foo

Figure 9. Online Function Linkage

Secondary Linkage for ISO-C Support

68

If a library requires writable static, or contains an active user exit, or is selectively
activated using the E-type loader, the linkage for any function in the library uses
secondary linkage. In this case, the AOLA entry for the library is a pointer to the
secondary LIBVEC. The LIBVEC itself points to a branch vector that receives
control instead of the function directly. When the function is called, common code
handles the static storage pointers or activates the user exit routine. This additional
overhead causes slower performance in these functions.

Writable static involves such overhead that you should be clear about what it is. In
C language a variable can be declared static. This means the variable is not
reinitialized every time the function containing it is called. An example of static data
is a constant character string (like "this is a test”). Constant data can be reinitialized
with every function call without loss. What if you wanted to prevent the data from
being initialized every time? If the static character string contained a part that
changed (like "this is Bob”, "this is Fred”, and so on), something special would be

TPF V4R1 Application Programming

required to keep the information. This something special is secondary linkage.
Secondary linkage is required to keep track of Bob one time, Fred the next, and so
on.

Secondary linkage is described in m following. Function Foo, which is found
in segment BAZ, has its associated library information. The stub for Foo, which is
the same whether primary or secondary linkage is used, is at the end of BAZ and
uses the library information. The AOLA entry either points to the executable code
for Foo in the CMAS library (primary linkage) or it points to the library startup code
at the beginning of the library (secondary linkage). Every library has library startup
code at its beginning. The startup code takes care of some housekeeping chores
before and after transferring to function Foo. If the CMAS library contains writable
static or has the user exits active, secondary linkage is used instead of primary
linkage.

In the figure primary linkage is shown as a simple double arrow and secondary
linkage is shown as steps A, B, and C.

If writable static is required, space in the frame is set up to accommodate the static.
If the user exits are active, they receive control. When the user exit ends, the
startup code transfers to the entry point address of Foo. When Foo ends, it returns
to the startup code, which transfers to another user exit, if they are active. When
this ends, the startup code returns to segment BAZ which continues with the next
sequential instruction after the call to Foo.

Segment BAZ

Start: if CMAS Library (online)

NSI secondary
—| call to Foo(x) linkage

—> Library Startup

- fix static

A - if user exit active,
call exit

- run Foo

- if user exit active,
call exit B.

- restore writable

C. static

- return

A

Stubs

Foo

Library ordinal Executable code -
LIBVEC offset

if primary linkage for function Foo

v

Figure 10. Online Stub Linkage

Quick Enter Directory for TARGET(TPF)
Note: The quick enter directory does not exist for ISO-C support.

Understanding High-Level Language Concepts in the TPF System 69

In TARGET(TPF) library functions are implemented as a collection of common
programs in main storage. The location in memory of all the library functions is
maintained in the quick enter directory, which is built during system restart. (The
quick enter directory is also known as the primary directory). The basis for the
information in this table is provided at installation time by way of CLIBFUN macro
calls, which are assembled into program C000.

For more information about the CLIBFUN macro, see ECustomizing C/C++
W—m—w’ .

Secondary Directory for TARGET(TPF)

Note: The secondary directory does not exist for ISO-C support.

Some of the C library functions (such as the math functions) are coded in
assembler and do not follow the conventions required for TPF ECB-controlled
programs. We refer to these as secondary library routines. These routines reside in
their own control program CSECTs. When a function that corresponds to one of
these secondary library routines is called, a program is activated that generates
linkage to the TPF service routine. The service routine transfers control to the
appropriate CSECT and obtains the address where the secondary library routine
resides from a table of VCONs known as the secondary directory.

Storage for Static Variables

Static storage contains the static variables declared in a C language program. For
ISO-C the static storage is unique to a load module, subsystem, and environment.
There is only 1 static storage allocation for each load module in the same
subsystem and environment per ECB. The storage block used for static storage is
obtained by the DLM startup code or library startup code that requires it. When
static storage is required, the static storage block for the load module is found if
one exists or obtained through a call to the $GMNBC macro if one does not exist.
This storage comes from the ECB heap.

When writable static variables are used in a function, static storage maintains the
values of these variables. To handle the static storage in libraries, secondary
linkage is employed when a function is run. The secondary LIBVEC is used to
manage processing the writable static. The extra overhead of this processing can
cause a performance loss.

In TARGET(TPF) a chain of working storage blocks is used to contain the storage
needed for any static variables declared in the C source module. These blocks are
known as static blocks and contain 1 or more static frames. Each static frame maps
to a single TPF C program segment.

In standard C, once a static frame is allocated, it remains in existence until the ECB
exits. The same is true for TARGET(TPF) except for the case where entdc is called.
In TARGET(TPF), the static block is removed if the ECB called an entdc.

In general the static exception routine handles the process of allocating static
blocks.

For more information about coding with static storage, see m

70 TPF V4R1 Application Programming

ISO-C Language Stack

In ISO-C, a stack is used to manage function environments represented by local
variables and parameter lists. The stack is allocated from a contiguous virtual
address space set aside for the 1ISO-C stack. The first time a C function is called,
an initial storage area (ISA) is set up to handle the C environment and control
blocks. It contains a work space (LWS) that can be used by the functions managed
by the stack. If the called function calls another function, a new frame is added to
the stack. Each frame holds space for information relevant to a given function (such
as the automatic variables and a register save area). When the function returns, its
frame is removed from the stack and the frame for its caller becomes the current
frame.

The largest amount of stack storage an ECB can acquire and the amount of each
stack increment are determined by fields in keypoint A. These fields are copied to
an ECB page during restart. The amount of the stack increment for an ECB can be
adjusted using the ZCTKA ALTER command and in the ECB creation user exit (see
UCCECB in [[PE System Installation Suppart Referencd). If an ECB exceeds the
amount of stack storage initially carved, an overflow routine is called to extend the
overall stack size by a stack increment or the current required size. Stack extension
is done in multiples of 4KB. If the ECB tries to acquire stack storage greater than
the maximum allowed for it, a system error results and the ECB exits.

See ICSOTK DSECT for a detailed layout of the TARGET(TPF) stack frame and the
DSECTs IDSDSA and IDSLWS for the ISO-C stack frame layout.

TPF Header Files

An integral component of C language is the ability to include function prototypes,
parameter definitions, preprocessor directives, and commonly used structures in
what is known as a header or header file. The preprocessor #include directive is
used to specify that the contents of a particular header file are to be included as
part of the C source module.

The TPF system provides several header files that support the TPF API functions
and map common TPF data structures and the IBM released globals (frequently
used and commonly accessed symbols and values that reside in main storage). For
example, header file c$eb0eb.h maps the ECB structure. In addition, TPF provides
a subset of the C/370 header files for use when compiling C code for the TPF
system.

Once ISO-C support has been added to your system, if a TARGET(TPF) program is
to be compiled, the DEFINE(_TARGET_TPF) compiler option must be specified.
DEFINE(_TARGET_TPF) can either be specified as a command line parameter to
the compiler or it can be added to the source code as #DEFINE _TARGET_TPF 1.
Header files and macros will produce ISO-C compatible code unless

TARGET_TPF is defined. For a list of these header files, see L

LﬂnguagE_SLLprLt_QD_pﬂgEjQJl" .

Note: See [TPE Header Files and C++” on page 148 for information about the
changes to the header file structure of C programs for C++.

Understanding High-Level Language Concepts in the TPF System 71

Run-Time Libraries

72

Note: The following describes run-time (nondynamic) libraries only. See [Dynamid
Link Library (DLL) Support” on page 76 for more information about DLLs.

Support for multiple libraries of functions is supported. These libraries must reside
in main storage. The IBM-shipped libraries are the most widely used libraries in the
complex. They are allocated as PRELOAD and loaded during restart.

shows an example of a library load module. If a library is not loaded during restart,
the online system cannot use it.

Data Area \
(IDSLST)
Secondary LIBVEC
and Branch Table
TPF Library
Startup Code
Secondary LIBVEC Processing
Invalid Library Function
/
\
Primary
> Library
Vector
J
N
Library
Functions
b
Stub
Routines

Figure 11. Components of an ISO-C Library Load Module

The TPF library startup code contains data about the library load module and code
that processes the secondary library linkage. IDSLST DSECT is used to map the
data portion of the startup code.

All libraries should be allocated as core resident, PRELOAD, shared, and with a
31-bit addressing mode. These attributes are assumed by the loader regardless of
how the libraries are allocated. Moreover, ISO-C programs cannot be allocated as
private or as I-stream unique.

If a new library is being created and loaded with the E-type loader, a new program
name is needed. It is not possible to load a new version of an existing program that
contains the new library unless the existing version is a library.

TPF V4R1 Application Programming

Dynamic Load Modules

Dynamic load modules (DLMs) are compiled and linked source programs that are
ready to be loaded into main storage and run. Although a DLM has a single entry
point, it can consist of many parts or subfunctions. The DLM is created by linking
together separately compiled object files into a single load module.

A DLM transfers control back to its caller from its entry point function. Control can
be given up either explicitly with a return or exit statement or implicitly when the
last line of the function runs.

The name of a DLM entry point must match the 4-character DLM name or main.
Use prototype statements to define the valid parameters for a DLM.

Note: If the entry point function is written in C++, it must use extern "C" linkage.

Creating Globals for C

TPF globals are normally accessed using assembler labels, which are not
accessible to the C or C++ compiler. Therefore, a set of C global tags, known as
tag names, has been created that correspond to the assembler labels. (TPF
provides a sample utility, called GNTAGH which uses the ADATA generated by the
HLASM assembler as input to show how this process might be automated.) Each
global tag name maps to a unique 32-bit value that describes the displacement of
the item in its global area, its length, and other attributes. These tag names make
up the c$globz.h header file. Header file tpfgl1bl.h contains TPF-defined global
constants and function prototypes.

See [Customizing C/C++ | anguage Support” on page 301 for more information
about TPF global tags. See [[PE C/C++ | anguage Support User's Guidd for

detailed information about the GENTAG program and creating C global tag names.

C Language Locale

There is a locale associated with each C environment that consists of a set of
constants that vary with geographic area, such as time zones and monetary
symbols. Locales are often associated with particular countries, such as the USA or
France. The setlocale function can be used to specify a particular locale.

In 1ISO-C, the default locale is defined in the ISO-C library (CISO) and resides in
segment C$S370. The C locale is the first one set by the system; the other locales
reside in separate DLMs. For TARGET(TPF) the locale resides in segment CL04, a
part of CCLANG, the control program CSECT for C language.

In TARGET(TPF), pointers to locale information are stored in the first stack frame
associated with an ECB. This stack frame is created and initialized the first time a C
program or function is called (when the stack exception routine is invoked). A user
exit is provided that allows you to specify the particular locale definitions you want
to use.

For more information about defining locales, see lCustomizing C/C++ | anguage
Bupport” on page 301l For more information about the C stack exception routine
user exit and others, see [[PE System Installation Suppart Reference.

Understanding High-Level Language Concepts in the TPF System 73

Character Set Support

A number of offline tasks must be completed to create support for a new character
set on the online system. For information on character sets, see [Character Sets]

C++ Support

C++ language introduces object-oriented (OO) concepts into C language. Built on a
foundation of C language, C++ adds support for OO programming along with many
other features. Because it is based on C, much of what you know about C applies
to C++.

Class Library Support
The TPF system provides class library support for the following:

* The I/O Stream Class Library, which provides facilities for handling many
varieties of I/O such as cin, cout, clog, and cerr. See

Class | ibrary Referencd for more information about this class library.

* A subset of the C++ classes of the Application Support Class Library. The
classes provided are:

IBinaryCodedDecimal
The IBinaryCodedDecimal and decimal classes allow you to represent
numerical quantities accurately in business and commercial applications
for financial application.

IDate The IDate class provides support for date information. You can construct
IDate objects in a number of ways and then use IDate methods to
determine the day of the week, month, or year, compare two dates, test
a date for certain characteristics, and obtain the names of days or
months that are dependent on the national language locale setting in
effect at run time.

IException
The IException class is the base class from which all exception objects
thrown in the library are derived.

IString
The IString class provides greater flexibility in handling strings than
traditional C-style character arrays. The IString class supports both
single- and multiple-byte character sets. With IString objects, you can
code string-handling operations much more quickly. For example, you
can concatenate two strings simply by using the +operator, or compare
them using the == operator.

ITime The ITime class creates time-of-day objects. You can compare the
objects, add them together, remove specific information from them, or
write them to an output stream.

ITimeStamp
The ITimeStamp class creates time-stamp objects. You can compare the
objects, add them together, remove specific information from them, or
write them to an output stream.

I0String
The I0String class is identical to the IString class except in its method
of indexing strings. In the IString class, the first character of a string is
at position 1, whereas the same string when stored in an I0String object

74 TPF V4R1 Application Programming

has its first character at position 0. I10String is provided for programmers
who are used to the C string-handling approach of treating strings as
starting at position 0. IString and I0String objects are easily
interchanged, and they support the same set of methods and operators.

Note: When you use the objects of the exception classes in the Application

Support Class Library, the following series of messages may be displayed:

Error ID is nnnn
Error Code group is string
Exception Text is:
Refer to Class Library Support in the TPF Application Programming book.

where nnnn is the error number and string is the group associated with
the error ID. See the 0Ss/390 C/C++ IBM Qpen Class | ihmry Referencd

for more information about this series of messages.

TPF message OPR-1094204 may also be displayed immediately following
these messages. This message is the result of the same error condition,
SO you can ignore it.

+ As described in 0S/390 C/C++ IRM Qpen Class | ibrary Referencd, the following

header files are used by applications to make use of the Application Support
Class Library (CPP3):

— idate.hpp

— idecimal.hpp
— iexchase.hpp
— distring.hpp
— itime.hpp

— itmstamp.hpp
— 1i0string.hpp.

All other header files shipped with the Application Support Class Library are for

implementation only.

The STLport standard template library, which is a standard template library that

contains generic container classes and algorithms. The container classes are
used as templates to define objects, while the algorithms are used to manage

data in the containers. STLport standard template library code, which is available
on the Web at http:/Aww stlport ord is not shipped with the TPF system, but you

can port this code to the TPF system. For more information about porting
STLport code:

1. Go to the TPF Web page at: http://mww.ibm.com/tpfi.

2. Click Site map.
3. Click STLport.

See the QS/390 C/C++ IBM Qpen Class Library User's Guidd for more information
about the C++ classes.

TPF Restriction

If you code a throw block in a destructor, the corresponding try and catch blocks
must also be in the scope of the destructor or the results cannot be predicted.

Understanding High-Level Language Concepts in the TPF System 75

http://www.stlport.org
http://www.ibm.com/tpf/

Dynamic Link Library (DLL) Support

To use DLLs, you must use one of the following compilers:
e IBM C/C++ for MVS/ESA Version 3 Release 2
* IBM OS/390 C/C++ Version 1 Release 2 or later.

Note: There is no IBM VM compiler that supports the DLL compiler option. All
applications that use the DLL compiler option must be compiled on an IBM
MVS system. See the [[RE Migration Guide: Pragram Update Taped for more
information about C/C++ compilers.

Several terms are defined to help you understand DLLs. Also see tE-Type Pragram

Chart and Program Attributes” on page 56 for more information about where DLLs

and DLL applications fit into the realm of TPF executable E-type programs and their
characteristics and attributes.

See the IBM C/C++ programming guide and user’s guide for the compiler used by
your installation for a more thorough discussion of DLL support. See

High-L evel | anguage Boaks” on page xix for a list of C and C++ compiler

publications on the System/390 platform.

Terminology and Concepts

Definition side-deck A directive file that contains an IMPORT control
statement for each function and variable exported
by the DLL. When you build a DLL, a definition
side-deck is automatically created and written to the
SYSDEFSD DDname by the prelinker. You must include
this definition side-deck when you prelink a DLL
application that imports any of those functions or
variables from a DLL.

Dynamic link library (DLL) A collection of one or more functions or variables
gathered in a load module and executable or
accessible from a separate DLL application load
module.

DLL application An application that can reference imported functions
or imported variables in a DLL.

Function descriptor An internal control block that contains the function
address and its associated writable static area
(WSA). In the TPF system, a function descriptor
can be thought of as a dynamic linkage call stub in
contrast to the static linkage call stubs that are
generated offline by the DLM stub generator tool
(STUB) and the library interface tool (LIBI) before
link-edit time.

Variable descriptor An internal control block that contains the variable
address. This control block is a dynamic linkage call
stub.

The following are concepts to be aware of:

» Imported functions and variables are those that are not defined in the load
module where a reference to them is made but are defined in a referenced DLL.

76 TPF V4R1 Application Programming

Linkage

* Nonimported functions are those that do not use DLL linkage. Nonimported
variables are those that are defined in the same load module where a reference
to them is made.

» Exported functions and variables are defined in one load module and can be
referenced from another load module.

The connection or link between the DLL application that uses the DLL and the DLL
functions or variables is made dynamically while the application is being run rather
than statically when the application is built. You can, therefore, call a function or use
a variable in a load module other than the one that contains the definition. You can
use DLLs both implicitly and explicitly. When an application calls an imported
function or references an imported variable, the DLL is implicitly loaded. This is
referred to as load-on-call. For an explicit call, the application uses explicit
source-level calls to one or more run-time services to connect the reference to the
definition. These connections are made at run time.

The CISO run-time library has been updated with several application programming
interfaces (APIs) that allow a load module to explicitly call these run-time services:

* d117oad, which loads the DLL and connects it to the application
* dllqueryfn, which obtains a pointer to a DLL function

» dllqueryvar, which obtains a pointer to a DLL variable

» d11free, which frees a DLL loaded with d1110ad.

See the [[RE_C/C++ | anguage Support User's Guidd for more information about

these services.

Functions or variables in DLLs can be called or referenced only through DLL
linkage. The DLL cannot be called with TPF enter/back services.

Definition Side-Deck

When you link-edit a DLL or DLL application, in addition to specifying the included
object files, you must also specify the definition side-deck inputs if the DLL or DLL
application imports from other DLLs. A definition side-deck is automatically
generated by the prelinker and contains IMPORT control statements for functions and
variables exported by a DLL. The linkage editor resolves external functions in the
following search order:

1. Those functions explicitly included in text decks (this is from the original list of
included object files in a load module build script)
2. Those functions in included EXPORT data set members

3. Those functions for which static stubs exist in stub data sets concatenated
under the SYSLIB data set. These stubs are created with the STUB tool.

Using sample load module FOOG, the following is an example of code that exports
functions and variables and its resulting definition side-deck:

#pragma export(foo)

#pragma export(goo)

int foo()

{

int goo()
{

Understanding High-Level Language Concepts in the TPF System 77

int keep_it_hidden()
{

}

#pragma export (hooVar)
#pragma export (gooVar)
int hooVar;

int gooVar;
int keep_it_hidden_variable;

Definition Side-Deck produced:

IMPORT CODE 'F00G' foo
IMPORT CODE 'FO0G' goo
IMPORT DATA 'FOOG' hooVar
IMPORT DATA 'F00G' gooVar

The C load module build tool (CBLD) has been updated to handle definition

side-decks and DLLs. See [1SQ-C | oad Module Build Tool (CBL D) on page 329 for

more information about CBLD.

DLLs and Subsystem Dependencies

User exit function is_d11 _user_ss_shared is in source file USUD, which is in DLM
USUD. Adding shared user subsystem DLL names to the table in this module
allows for those DLLs to be accessed by applications running in other subsystems.

See [[PE System Installation Suppart Reference for more information about this

user exit.

Summary

You have been introduced, on a very high level, to several types of terminology:
* C language (as in functions, locales, header files, and C++ language)

* DLLs (as in DLLs, DLL applications, definition side-decks, and exporting)

* TPF (as in ECB and globals)

» Architectural (the AOLA, LIBVECS, stack, and the TPF API).

We have covered the basic concepts of TPF support for C/C++ application
programming. It is time to move on to different parts of this publication, depending
on whether you are interested in installing TPF C/C++ language support or writing
appllcatlon programs. If you are an application programmer, continue to

++" . If you are a system

programmer, skip to LC.ustammng.CLC:l:l-_La.ngJ.Lage_Sanpatt_on_page_SﬂJJ

78 TPF V4R1 Application Programming

Understanding TPF MQSeries Support

This chapter provides an overall understanding of TPF MQSeries support. Cross
references are included throughout this information that direct you to more detailed
explanations of certain functions or entities.

TPF MQSeries Client Support

TPF MQSeries client support provides a Message Queue Interface (MQI) client on
the TPF system to enable the complete MQSeries application programming
interface (API). MQSeries clients use MQI channels to communicate with remote
MQSeries servers.

MQSeries Client

When an application connects to a queue manager other than the local queue
manager, a connection is established with a remote MQSeries server. Each
MQSeries API function (for example, MQPUT, MQGET, and so on) is then delivered
to a remote MQSeries server over LU 6.2 or Transmission Control Protocol/Internet
Protocol (TCP/IP) communications links and then processed by the MQSeries
server. The queues themselves reside on the server, not on the TPF system. The
API available to the application is determined by the APl available on the remote

server. For a complete description of the MQI, see MQSeries Message Queud
Interface Technical Reference. For more information about MQI clients, see

MQSeries Clientd and the MQSeries Distributed Queue Management Guidd.
MQI Channel Directory

An MQSeries client communicates with an MQSeries server by using an MQI
channel, which is used to transfer MQI call requests from the client to the server,
and responses from the server back to the client.

MQI channels differ from message channels (that are used to connect queue
managers) in two ways:

* An MQI channel is bidirectional. One MQI channel can be used to send requests
in one direction and responses in the opposite direction.

With message channels, data can be passed in one direction only. If two-way
communication is required between two queue managers (for example, when
reply messages are to be sent to the same queue manager that handled an
initial request message), two message channels then are required:

— One message channel to handle messages that move in one direction
— The other message channel for messages that move in the opposite direction.

* Communication on an MQI channel is synchronous. When an MQI request is
transmitted from a client to a server, the MQSeries client product must wait for a
response from the server before it can send the next MQI request.

With message channels, the message traffic on the channel is time-independent.
Multiple messages can be sent from one queue manager to the other without the
sending queue manager having to wait for any replies from the receiving queue
manager.

The TPF system maintains a maximum of 50 channel definitions in the MQI channel
directory. The ZMQID ALTER, ZMQID DEFINE, ZMQID DELETE, and ZMQID

© Copyright IBM Corp. 1994, 2002 79

DISPLAY commands are used to maintain the MQI channel directory. See freH
for more information about the ZMQID ALTER, ZMQID DELETE, and
ZMQID DISPLAY commands.

TPF MQSeries Local Queue Manager Support

When an application connects to the queue manager, the application can connect to
the local queue manager running on the TPF system by specifying the name of the
local queue manager in the MQCONN function. All subsequent MQI function
requests will be serviced by the local TPF queue manager. The MQI functions that
are available to the local queue manager are more restrictive than most remote

servers. See the [[PE C/C++ | anguage Support User's Guidd for more information

about the MQI functions that are available.

Supported Queue Types
The TPF local queue manager supports the following queue types:
« Alias
* Local
* Remote.

These queue types are defined using the ZMQSC DEFINE QA, ZMQSC DEF QL,
or ZMQSC DEF QR commands. The following are the two types of local queues:

¢ Normal
e Transmission.

Normal local queues physically reside in the TPF system and messages on local
queues are retrieved by applications using the MQGET function. Applications can add
messages to local queues for processing by a TPF application by using the MQPUT
function.

Transmission queues contain messages that are destined for a remote system. In
fact, the transmission queue is also physically located in the TPF system, but
applications do not normally get and put messages directly to them. When an
application puts a message to a remote queue, the TPF queue manager, in turn,
determines on which transmission queue to put the message. At some point, the
channel associated with that transmission queue takes the messages from that
queue and sends them to the remote system.

With alias queues, the system administrator can define an alias queue that is
opened by an application. However, unknown to the application, the queue that is
actually opened is the target of the alias queue, which is some other local queue or
local definition of a remote queue. In this way, the administrator manages the
queues that are processed by applications. The application code never has to
change to satisfy changes in queue names.

Starting TPF MQSeries Applications Using Triggers

TPF MQSeries provides a facility that allows you to automatically start an
application when messages arrive on a queue. This facility is known as triggering.
The ZMQSC ALT QL and ZMQSC DEF QL commands support the following trigger
types:

First Trigger first processing occurs the first time a message arrives on a queue
by setting a trigger when an application attempts to read (MQGET) a message
from an empty queue. The next message that arrives on the queue, triggers

80 TPF V4R1 Application Programming

a program in the process object associated with the queue. If no process
object is associated with the queue, the TPF MQSeries queue trigger user
exit ,CUIR, is called.

Every Trigger every processing occurs every time a message arrives on a queue.
Every time a message arrives on the queue, the TPF system creates a new
ECB and triggers a program in the process object associated with the
queue.

When the TPF MQSeries queue trigger user exit, CUIR, is called, the TPF system
passes the message queuing message descriptor (MQMD) and message queuing
trigger message (MQTM) structures on data level 0 of the entry control block (ECB)
to CUIR. CUIR can interpret this data and pass control to the appropriate
application for processing the message. The MQGET, MQPUT, and MQPUT1 C
functions define the values that are passed in the MQMD structure. The ZMQSC
ALT PROC, ZMQSC DEF PROC, ZMQSC ALT QL, and ZMQSC DEF QL
commands define the values that are passed in the MQTM structure. The MQMD
structure is as follows:

typedef struct tagMQMD {

MQCHAR4 Strucld; /* Structure identifier */

MQLONG Version; /* Structure version number */
MQLONG Report; /* Report options */

MQLONG MsgType; /* Message type */

MQLONG Expiry; /* Expiry time */

MQLONG Feedback; /* Feedback or reason code x/
MQLONG Encoding; /* Data encoding */

MQLONG CodedCharSetId; /* Coded character set identifier */
MQCHAR8 Format; /* Format name =/

MQLONG Priority; /* Message priority =/

MQLONG Persistence; /* Message persistence x/
MQBYTE24 Msgld; /* Message identifier */

MQBYTE24 Correlld; /* Correlation identifier */
MQLONG BackoutCount; /* Backout counter =/

MQCHAR48 ReplyToQ; /* Name of reply-to queue */
MQCHAR48 ReplyToQMgr; /* Name of reply queue manager */

MQCHAR12 UserIdentifier; /* User identifier =/

MQBYTE32 AccountingToken; /* Accounting token x/

MQCHAR32 ApplldentityData; /* Application data relating to
identity */

MQLONG PutApp1Type; /* Type of application that put the
message */

MQCHAR28 PutApplName; /* Name of application that put the
message */

MQCHAR8 PutDate; /* Date when message was put */

MQCHAR8 PutTime; /* Time when message was put */

MQCHAR4 ApplOriginData; /* Application data relating to origin x/

MQBYTE24 Groupld; /* Group identifier */

MQLONG MsgSegNumber; /* Sequence number of logical message
within group */

MQLONG Offset; /* 0ffset of data in physical message
from start of logical message */

MQLONG MsgFlags; /* Message flags x/

MQLONG OriginallLength; /* Length of original message */
} MQMD;

The MQTM structure is as follows:
typedef struct tagMQTM {

MQCHAR4 Strucld; /* Structure identifier =/
MQLONG Version; /* Structure version number */
MQCHAR48 QName; /* Name of triggered queue */

MQCHAR48 ProcessName; /* Name of process object */
MQCHAR64 TriggerData; /* Trigger data */
MQLONG App1Type; /* Application type */

Understanding TPF MQSeries Support 81

MQCHAR256 ApplId; /* Application identifier */

MQCHAR128 EnvData; /* Environment data */
MQCHAR128 UserData; /* User data =/
} MQTM;

When a process is called, the TPF system passes the MQTMC2 structure to the
process. The ZMQSC ALT PROC, ZMQSC DEF PROC, ZMQSC ALT QL, and
ZMQSC DEF QL commands define the values that are passed in the MQTMC2
structure. The MQTMC2 structure is as follows:

typedef struct tagMQTMC2 {

MQCHAR4 Strucld; /* Structure identifier =/
MQCHAR4 Version; /* Structure version number */
MQCHAR48 QName; /* Name of triggered queue */

MQCHAR48 ProcessName; /* Name of process object */
MQCHAR64 TriggerData; /* Trigger data */

MQCHAR4 App1Type; /* Application type */
MQCHAR256 ApplId; /* Application identifier */
MQCHAR128 EnvData; /* Environment data =/
MQCHAR128 UserData; /* User data */
MQCHAR48 QMgrName; /* Queue manager name */

} MQTMC2;

See [[PE C/C++ | anguage Support User's Guidd for more information about the

MQGET, MQPUT, and MQPUT1 C functions. See [[PE Operationd for more
information about the ZMQSC ALT PROC, ZMQSC DEF PROC, ZMQSC ALT QL,
and ZMQSC DEF QL commands. See i

for more information about the TPF MQSeries queue trigger user exit.

Message Routing

82

The TPF system supports the following methods when resolving queue names.

Local Definition of Remote Queues
To remove the burden of having the application determine the queue manager and

gueue to receive its message, the MQSeries administrator can define a local
definition of a remote queue that specifies the actual destination queue manager
and destination queue name. The application opens a local name for the queue,
and the TPF queue manager will then substitute the specified queue manager and
queue name and put the message on the specified transmission queue. For more
information about defining a local definition of a remote queue, see the ZMQSC
DEF QR command in

Queue Manager Aliasing

The TPF system also supports queue manager aliasing. Here, the name of the
remote queue is known, but not the name of the remote queue manager. When the
application opens a queue specifying a queue manager, the TPF system will look
up the name of the queue manager and substitute the queue manager that is
specified. Queue manager aliasing is accomplished by leaving the RNAME field
blank in the ZMQSC DEF QR command.

Queue Manager Name as Transmission Queue Name

In addition to a local definition of remote queues and queue manager aliasing, the
system administrator can send a message to an adjacent queue manager if the
name of the queue manager that is opened by the application is the same as a
transmission queue.

Middle Hop Routing

Messages that are received by TPF MQSeries local queue manager channels may
not be destined for the TPF queue manager. The TPF receiver channel calls the
local TPF queue manager to resolve the name of the destination queue manager

TPF V4R1 Application Programming

and queue name for each message it receives. The queue manager and queue
name are resolved according to the rules previously stated, and the message is put
on the appropriate transmission queue.

Processor Unique Queues versus Processor Shared Queues

Turbo enhancements for TPF support of MQSeries local queue manager provides a
performance enhancement that makes processor unique queues (which are defined
by specifying NO for the COMMON parameter on the ZMQSC DEF QL command)
memory resident. Processor shared queues (which are defined by specifying YES
for the COMMON parameter on the ZMQSC DEF QL command) reside in TPF
collection support (TPFCS). Before this enhancement, all queues resided in TPFCS.
Now, processor unique queues reside in memory and use checkpoint records and
the recovery log as a repository for persistent data (such as the messages). Only
local normal queues can be defined as processor shared. Se% for
more information about the ZMQSC DEF QL command. See

for more information about recovery logs.

Monitoring Queue Depth

Channels

The TPF system provides a queue depth monitor for processor unique queues.
When the queue depth on a transmission queue exceeds the value specified by the
administrator on the QDEPTHHI parameter using the ZMQSC DEF QL command, a
warning message is sent to the operator console. This could mean that the queue
is stalled and may need operator intervention. The warning message is sent to the
console every xx seconds until the queue goes below the QDEPTHHI value (where
xX is the interval that is determined by the administrator via the QDT parameter on
the ZMQSC DEF MQP command). See m for more information about
the ZMQSC DEF QL command.

The TPF MQSeries local queue manager supports two channel types that connect
to remote MQSeries systems:

* A sender channel, which must connect only to a remote receiver channel

* A receiver channel, which accepts one connection request at a time, only from
remote sender channels.

Receiver channels make use of the TPF Internet daemon. When a remote sender
channel first connects to the TPF system over Transmission Control
Protocol/Internet Protocol (TCP/IP), it sends a connection request to port 1414,
which is the standard MQSeries port. System administrators must set up an Internet
daemon listener on that port that, once the connection request is received, passes
control to the TPF MQSeries receiver channel session initiation program (CMQL).
To set up the Internet daemon listener for MQSeries, you must add an MQSeries
server by entering the following.

ZINET ADD S-MQS P-TCP MODEL-AOR PORT-1414 PGM-CMQL AORL-8

This is required before establishing a connection between remote sender channels
and TPF receiver channels. It is possible to change the TCP/IP port that is used for
these connections. If you establish an Internet daemon listener on a different port
for the MQSeries server, you need to specify the same port in the connection name
when defining the sender channel on the remote MQSeries system.

Two channel speeds are supported for both sender and receiver channels: normal
and fast.

Understanding TPF MQSeries Support 83

When sending messages over normal speed sender channels, persistent and
nonpersistent messages are included in batches and receipt confirmation is
required before the messages are deleted from the transmission queue.

Persistent and nonpersistent messages can be sent over fast sender channels.
When sending messages over fast sender channels, only persistent messages are
included in batches. Nonpersistent messages are sent outside of the batch and are
deleted from the transmission queue without receiving receipt confirmation.
Nonpersistent messages are never sent again during channel recovery procedures.

When receiving both persistent and nonpersistent messages over normal receiver
channels, the messages are processed as part of a batch, and receipt confirmation
is sent for the entire batch of messages. Once the confirmation is sent, the
messages appear on local TPF MQSeries queues or are put on transmission
queues destined for another queue manager if the TPF queue manager is not the
target queue manager. Applications must retrieve messages from the local queues
by using the MQGET function.

When receiving nonpersistent messages over a fast receiver channel, the message
is not filed and is assumed to be destined for a traditional non-MQSeries
application. To obtain significant performance throughput for these messages, they
are given directly to TPF applications by using the TPF-unique MQSeries ROUTC
Bridge function. The messages never appear on a queue. Persistent messages
received over fast receiver channels are processed as if the message was received
over a normal receiver channel.

MQSeries ROUTC Bridge

TPF local queue manager support includes a TPF-unique mechanism for passing
nonpersistent messages received over fast channels directly to traditional TPF
applications. In this way, TPF customers can take advantage of MQSeries-oriented
networks for delivering older traditional, high-speed TPF-type messages to TPF
applications. The MQSeries message is converted into TPF AMOSG format and
given to TPF message router program COA4 for routing the message to an
application. A user exit is provided that gives you the opportunity to assign a line
number, interchange address and terminal address (LNIATA) to the message before
giving it to the application. In addition, the terminal address table (WGTA) for that
LNIATA is marked with an MQSeries indicator, so when the application responds to
the message using the ROUTC bridge, the message is intercepted and converted

back to an MQSeries message format. See [[PE System Installation Suppart

for more information about user exits.

Transmission Queues: Swinging

The TPF local queue manager provides a unique feature that redirects messages
originally destined for a transmission queue to an alternate transmission queue. If,
for example, a channel is stalled or the remote receiver channel is down, messages
can be moved to a transmission queue that has an active channel. All messages
that were previously on the original transmission queue are moved to the new
transmission queue, and all new messages put to the original transmission queue
are actually added to the new transmission queue. The ZMQSC SWQ command is
used to perform this function. See m for more information about the
ZMQSC SWQ command.

84 TPF V4R1 Application Programming

Transaction Manager

With the release of turbo enhancements for TPF support of MQSeries local queue
manager, the TPF transaction manager was enabled to control MQSeries API
functions. This means that MQSeries MQPUT, MQGET, and MQPUT1 API functions will
participate in transaction scopes. Before this, an MQPUT function in a commit scope
resulted in the message being immediately put on the queue and the queue was
locked until a tx_commit function or tx_rollback function was issued. The
transaction manager had no knowledge of the MQSeries APls. With turbo
enhancements for TPF support of MQSeries local queue manager enhancements,
MQPUT and MQGET functions become visible to other processes during tx_commit
function processing and the queue is only locked during tx_commit function
processing. With the transaction scopes in place for MQSeries APIs, the behavior of
these APIs will change for those applications that already have transaction scopes
surrounding the MQSeries APIs.

Browsing TPF MQSeries Processor Shared Queues

Because the TPF MQSeries implementation for processor shared queues uses TPF
collection support (TPFCS) for its database, there are several named collections
that you can browse by using the TPFCS browser. To display the named
collections, enter the ZBROW NAME command with the DISPLAY and ALL
parameters specified. Ensure you set the browser qualifier to MQSeries data store
MQSCxxx, where xxx is the subsystem name (for example, MQSCBSS). See fted
m for more information about the ZBROW QUALIFY command used to set
the browser qualifier, and the ZBROW NAME command.

Trace

Communications trace and function trace are included in TPF MQSeries support.

With communications trace, the data sent and received over channels is included in
a trace block attached to the channel definition. Much of the data will not be
formatted because the contents of the message flows are considered proprietary
and confidential.

With function trace, you can trace function calls in the three different areas of
MQSeries:

* Administrative (ZMQSC commands)

* Queue manager

* Communications.

Each function that is called and returned creates an entry in a trace block that is
attached to the ECB. You can use trace data for problem determination. You can

use function trace to trace individual channels or queues, or all channels or all
queues.

Trace data can be sent to either the console, the RTA tape, or both the RTA tape
and console. Only send trace data to the console in a test system environment so
the console does not become flooded with trace messages. See

Development Support Referencd for more information about trace.

Understanding TPF MQSeries Support 85

Administering Your Local Queue Manager

The administrative functions in the TPF implementation of an MQSeries local queue
manager are similar to, but not exactly the same as, other platforms. Some of the
functions are unique because of the loosely coupled nature of TPF systems, while
other differences result because TPF maintains some of the MQSeries object
definitions in system heap for performance.

Defining the MQSeries Profile

When you define the MQSeries profile, the TPF system automatically provides a
system queue called DEAD.LETTER.QUEUE and a SPECIAL.RECOVERY.QUEUE;
these are the only default queues provided. Other platforms provide several other
default queues. Any message that arrives at the TPF system whose destination
queue name cannot be resolved is put on the dead-letter queue. All users are
expected to create a monitor for the dead-letter queue that determines what to do
with messages that arrive there. The special-recovery queue is used by transaction
services to recover uncommitted messages on processor shared queues.

Defining Processor Shared Queues

In a loosely coupled environment, normal local queues can be shared between
processors or they can be processor unique. When you define a local queue by
using the ZMQSC DEF QL command, you can specify that you want all processors
to see the queue by specifying a value of YES for the COMMON parameter. When
you specify YES for the COMMON parameter, a single TPF collection support
(TPFCS) persistent identifier (PID) is used for the queue that all of the processors
can see. Messages added to the queue from one processor can be retrieved from
another processor. If you specify a value of NO for the COMMON parameter, the
queue resides in memory for each processor and is made persistent using the TPF
recovery log.

Once you have specified whether the queue is shared or not, you cannot change
this attribute using the ZMQSC ALT QL command. To change it, you will need to
delete the queue and redefine it with the new attribute.

All transmission queues are processor unique because they all are associated with
channels that are also, by definition, processor unique. Remote queues are really
virtual and actually get resolved to physical transmission queues.

CPU Parameter for Channel Definitions

Channels, by nature, are processor unique. Each processor establishes an
MQSeries channel connection to an adjacent MQSeries system. As a matter of
convenience, the TPF system provides a CPU parameter for the ZMQSC DEF CHL
and ZMQSC ALT CHL commands. Therefore, if you are on processor A, you can
define or change channels on processor B even while processor B is down.

Altering Channels

Because channel definitions reside in memory and you do not want to lock the
tables for each access, changes to these definitions do not occur immediately. For
changes to channel definitions, the channel must be stopped and restarted.

86 TPF V4R1 Application Programming

Checkpoint

All the memory queues and some channel data is filed to fixed file records
(#IMQCK) on a regular basis. This is called MQSeries checkpointing. The file copy
of the queues and channels, together with the data written to the recovery log, are
how The TPF system ensures that all data is made persistent during an IPL of a
TPF system. TPF restart will rebuild the queues and channels to exactly the same
state as before the IPL by using the fixed file checkpoint with the data found on the
recovery log.

The size of the recovery log must be enough to accommodate all logging activity for
all TPF resource managers, (not just the TPF MQSeries resource manager)
between each successful completed checkpoint. The checkpoint interval is 5
seconds.

Ensure that you have enough fixed file checkpoint records (#IMQCK) to fit all the

queues and channel data. See [[PE System Generatiad for information on how to

determine the correct number of records to allocate for checkpointing.

Sweep

Because processor-unique queues reside in memory, TPF system defaults are set
to move queues from system work block (SWB) memory to TPF collection support
(TPFCS) records if the queue is not processed at a reasonable rate. The
processing rate is considered unreasonable when the number of messages on the
front and rear message list of the local memory queue is greater than half the
number of outstanding GET requests.

Tuning Memory Allocation

To accommodate processor unique queues that reside in memory, you will need to
allocate significantly more memory resources to system work blocks (SWBs). To
calculate the number of SWBs required to accommodate message traffic, assume
each SWB can hold 1000 bytes of message data plus an additional 500 bytes of
message header for each message. Therefore, if the average message size is
750-850 bytes of message data, each message will fit in one SWB. If the message
size is 4096 (on the average), each message will then require five SWBs.

Deleting Queues

A local queue will be marked as delete pending until it is empty on every active
processor in the complex. Enter the ZMQSC DEL QL command with the purge
parameter specified to bypass this requirement for specified processors and delete
all messages on the queue for this processor. Messages can be removed from a
queue marked delete pending, but no messages can be added to them. An attempt
to issue an MQPUT function to a queue that is pending a deletion results in an
MQRC_Q_ DELETED reason code. See m for more information about

the ZMQSC DEL QL command.

Understanding TPF MQSeries Support 87

88 TPF V4R1 Application Programming

Understanding TPF Transaction Services Concepts

TPF transaction services support is designed to help application programmers by
ensuring a consistent view of the database. A consistent view of the database helps
in the following ways:

* Reducing application complexity by having to write and maintain fewer error
recovery routines

* Reducing application development cycle time because you know you do not have
to worry about a partially-updated database. Either all of your file changes have
completed or none of them have. You can thereby reduce the amount of error
recovery code you have to write.

* Increasing programmer productivity because the combination of reduced
application complexity and development cycle time means that you can add more
function or you can get your application to market that much sooner.

* Increasing application reliability because the order of updates is no longer of
paramount importance. At any time, the application can stop processing and
request that the TPF 4.1 system ignore all of its previous updates.

This overview of TPF transaction services includes discussions about defining the
commit scope, requesting that data be written to the DASD surface, and
understanding how to operate inside and outside the commit scope.

The term commit scope is used throughout this chapter to refer to a unit of work
that groups together a set of database updates. These updates can then be written,
or hardened, to the DASD surface as a group at the same time or rejected as a
group (where no hardening takes place).

The application view of the commit scope is through the macro interface or
application programming interface (API). Therefore, it is necessary to understand
the macro API and how it is affected by the commit scope.

Defining a Commit Scope

You need to explicitly define the start and end of a commit scope in the application
program; this is commonly referred to as a begin transaction. The TPF system
provides a subset of TX functions (defined by the X/Open TX interface) to the
application to begin and end (that is, commit or roll back) a transaction:

Table 10. TPF Transaction Services Begin and End Transactions

C Function Assembler Macro

tx_begin TXBGC

tx_commit TXCMC

tx_rollback TXRBC

Note: In this publication, these functions and macros are referred to as begin, commit, and
rollback transactions, respectively.

Additionally, the TPF system provides the following extension (to X/Open) functions
to the application to suspend or resume a transaction:

Table 11. TPF Transaction Services Suspend and Resume Transactions

C Function Assembler Macro
tx_suspend_tpf TXSPC

© Copyright IBM Corp. 1994, 2002 89

Table 11. TPF Transaction Services Suspend and Resume Transactions (continued)

C Function Assembler Macro
tx_resume_tpf TXRSC

Note: In this publication, these functions and macros are referred to as suspend and
resume transactions, respectively.

Commit Scope Nesting

Commit scope nesting provides a powerful mechanism for fine-tuning the scope of
a rollback transaction (that is, the tx_rollback C function or the TXRBC assembler
macro) in applications with a complex structure. The term nesting is used whenever
a begin transaction is requested and a commit scope is already active. An
application may consist of multiple processes where each process is responsible for
its own commit scope. This environment can be represented by root and nested
commit scopes.

Root Scope
The root commit scope is the first commit scope that is activated by the application.

shows a begin and a commit transaction in a simple commit scope. The
begin transaction could be either the TXBGC macro or the tx_begin C function. The
commit transaction could be either the TXCMC macro or the tx_commit C function.

ECB 1

tx_begin (Root)

tx_commit

Figure 12. Root Commit Scope

Nested Scope
A nested commit scope is a commit scope that is activated after the root scope has

been activated. A root commit scope may have many nested scopes. A nested
scope may, in turn, have its own nested scopes. Eigure 13 on page 91 shows a root
scope, which is started with the first begin transaction followed by three nested
scopes. The first begin transaction is the highest-level scope. The fourth begin
transaction is the lowest-level scope; this is the last commit scope to open before
the root scope is either committed or rolled back.

90 TPF V4R1 Application Programming

tx_begin

(Root)

e e« tx_begin |[(First nested scope)

e o+ o o tx begin

e ¢ e e tx_commit

(Second nested scope, nested
in a nested scope)

tx_commit

tx_commit

Figure 13. Root Commit Scope with Nested Scopes

Suspending a Commit Scope

Suspending the current commit scope (the root and all nested levels) permits
changes to be made to DASD records outside of the current commit scope set,
including any nested commit scopes. You can define another commit scope to
coordinate these out-of-scope changes. References to records in the suspended
commit scope set are not permitted; they cause a transfer of control to the system

error routine.

In the Commit Scope

DASD

The following explains how commit scope processing affects DASD requests, pool
file addresses, and TPF MQSeries support.

In the commit scope, all DASD requests are satisfied first from the current commit
scope set and, then up the chain of nested scopes (from lowest to highest), and
finally from outside the commit scope.

Finding Records

The TPF system first searches in the commit scope set for the record; if it is not
found, normal DASD retrieval takes place from VFA or the DASD surface. Once it is
found, the record is attached to the ECB. Find requests are not added to the

commit scope.

Filing Records
The TPF system writes the record to the commit scope buffer; writing (or hardening)
the data to the DASD surface occurs only when you enter the commit transaction.
File requests are always added to the commit scope.

The action of the FILEC macro depends on the settings returned from the record ID
attribute table (RIAT) and the RIAT user exit. These settings include the control of

Understanding TPF Transaction Services Concepts 91

92

logging, record cache options, and VFA options. The FILEC actions that are
controlled by the RIAT indicators are set at FILEC time, but do not take place until
the record has been committed.

Holding Record Locks

Record lock holding occurs at two levels: the ECB level and the commit level.
Following a find-and-hold type macro, record locks are held at the ECB level. If an
ECB releases a lock that is held at the ECB level using an unhold-type macro while
in a commit scope, the lock is no longer held at the ECB level; it is then held at the
commit level.

A record lock that is held at the commit level becomes held at the ECB level if the
ECB in the commit scope, or a commit scope nested from the commit scope, issues
a find-and-hold type macro.

A record lock that is held at the commit level becomes unheld when the root commit
scope commits.

A record lock held at the ECB level is released if an ECB issues an unhold-type
macro outside of a commit scope. [[ahle 12 on page 93 is a matrix that shows what
happens when locks are held and released and the effect if they are held inside or
outside the commit scope. See Unhold in commit scope in column 1 for an example
of how to read the matrix.

Operation
The action taken is that an unhold-type assembler macro or C function is
entered in a commit scope.

Columns 2 and 3 represent current lock processing for the TPF system. This
functions the same regardless of whether TPF transaction services processing is
active.

Record Lock Is Not Held
If the record lock is not held, the TPF system dumps.

Record Lock Is Held in ECB
The lock is now held at the commit scope level.

Columns 4, 5, and 6 represent processing in the TPF system.

Record Lock Is Held in Current Commit Scope
If the lock is held in the current commit scope and an unhold-type macro or
function is entered, the TPF system dumps.

Record Lock Is Held in Nested Commit Scope
The result is the same as for column 4 in that the TPF system dumps.

Record Lock Is Held by the ECB and the Hold Was Done in a Commit Scope
If the lock is held by the ECB and the hold was entered in a current commit
scope, the lock is held at the commit scope level.

TPF V4R1 Application Programming

s1daou0) S82IAIBS uondesuel] 441 Buipuelsiapun

€6

Table 12. Matrix of the Locking Scheme for DASD Inside and Outside a Commit Scope

Operation Current Lock Processing Processing in a Commit Scope
Record Lock Is Not Held | Record Lock Is Held in | Record Lock Is Held in |Record Lock Is Held in |Record Lock Is Held by
ECB Current Commit Scope |Nested Commit Scope |[the ECB and the Hold
Was Done in a Commit
Scope
Commit Not held Held ECB Release lock Held at commit level Held at ECB level
Rollback Not held Released if acquired in Release lock Held commit Held at commit level if
the scope; otherwise, held acquired in the scope;
at ECB level otherwise, held at ECB
level
Unhold in commit scope | Dump Held at commit level Dump Dump Held at commit level
Unhold suspended Dump Lock is released Dump Dump Dump
commit scope
Unhold other ECB Dump Dump Dump Dump Dump
Hold in commit scope Held at ECB level Dump Held at ECB level Held at nested commit Dump
and ECB levels
Hold suspended commit |Held at ECB level Dump Dump Dump Dump
scope
Hold other ECB Held at ECB level Queued Queued Queued Queued

WAITC Processing

WAITC will normally suspend the ECB until the requested 1/0 has completed. Most
WAITC processing happens normally in a commit scope. One exception is FILNC
and WAITC. FILNC-detected DASD surface errors that are currently reported on
WAITC cannot be reported if the FILNC operation is in a commit scope because the
actual filing of the record does not take place until you enter a commit transaction.
Hardware errors, normally seen at WAITC completion, will not be returned.

Pool File Addresses

TPF transaction services processing does not change the retrieval process for pool
file addresses; that is, there is no change when an ECB gets a pool address from
the TPF system. Nothing different happens for these addresses. When you enter a
commit transaction, the retrieval process is still the same. However, these
addresses will be released if you roll back the transaction.

The way release pool address processing works changes in a commit scope; the
timing of the release of pool addresses is different. Because of the possibility of a
rollback transaction, pool address release requests are held until the commit
transaction is completed. This applies to both single releases and chain (RLCHA)
releases.

TPF MQSeries Support

Updates to local queues, which are managed by the TPF local queue manager,
participate in the commit scope. The MQPUT, MQPUT1 and MQGET functions are
part of the transaction that can be committed or backed out by the application.
Updates to queues that are managed by a remote MQSeries server (via TPF
MQSeries client support) do not participate in the commit scope and are processed
outside the unit of work.

When an application issues an MQPUT or MQPUT1 function in an open commit
scope, the message appears on the queue in an uncommitted state. No other ECBs
can access the message unless the application commits the unit of work. The same
ECB can see the message on the queue if it issues an MQGET function even
though the commit scope is still open.

When an application issues an MQGET function while in an open commit scope,
the message is retrieved from the queue and given to the application, but is not
deleted from the queue until the application commits the unit of work. No other

ECBs can access the same message until the root commit scope is rolled back.

When an application issues an MQGET function to a processor shared queue while
in an open commit scope, the message is retrieved and deleted from the queue and
given to the application. The message is put back on the queue if the transaction
ends abnormally or if the application rolls back the transaction.

No other MQSeries APIs participate in the commit scope. For instance, a
tx_rollback function does not imply that a queue that was opened is automatically
closed.

Ending a Commit Scope

A commit scope can be ended in the following ways:
* Entering a commit transaction

94 TPF V4R1 Application Programming

This is the normal way to end a commit scope and causes all changes to be
either written to the DASD surface, the recovery log, or reflected up to the next
higher level commit scope.

* Entering a rollback transaction

This is the abnormal way to end the commit scope; all DASD changes are
discarded with this method. The writing of changes to the DASD surface ends
abnormally. Any release pool address requests that were made in the commit
scope are discarded. Messages put to a queue through the MQPUT function are
removed, and messages retrieved from a queue through the MQGET function
are put back.

* Through exit or system error processing.

If the ECB either exits or causes a system error in the commit scope, an implied
root commit scope rollback transaction is entered. If the ECB has suspended root
scopes, these are also rolled back.

Commit scopes are processed according to the following rules:
e Commit rules

— When a commit transaction is entered in a nested commit scope, any file
requests (functions or macros such as filnc or FILNC) that you entered in
the nested commit scope are passed up to the next higher level commit
scope. Essentially, when you enter a file request in a lower level (that is,
nested) commit scope, followed by a commit transaction, the request
becomes part of the higher level commit scope.

tx_begin tx_begin
FiI; A FiI; A
ceees tx_begin
Fil;z B equals File B
e tx_cc;mmit :
tx_C(;mmit tx_cc;mmit

Figure 14. Example of a Nested Commit Scope

— When a commit transaction is entered in a root commit scope, it causes all
changes to be written to the DASD surface.

When you enter a commit transaction on a commit scope, locks that are held at
the commit scope level are either:

— Copied into the next higher commit scope if the commit scope is a nested
commit scope.

— Released to the TPF system if the root commit scope is committed.

When you enter a commit transaction on the current commit scope, all pool
addresses acquired while in the commit scope are:

— Made part of the next higher commit scope, if the commit scope is a nested
commit scope

— Given to the application without the possibility of automatic release by the
TPF system, if the root commit scope is committed.

Understanding TPF Transaction Services Concepts 95

96

Note: If a system error exits the ECB before you enter a commit transaction,
any get pool requests (that is, a getfc function or GETFC macro) are
rolled back, which then releases the pool address back to the TPF
system.

When you enter a commit transaction on the current commit scope, all requests
entered in the commit scope to release file pool addresses are:

— Deferred until the root scope commits if the commit scope is a nested commit
scope

— Returned to the TPF system if the root commit scope is committed.

When you enter a commit transaction on the current commit scope, all virtual file
access (VFA) flush requests entered in the commit scope are:

— Deferred until the root scope commits if the commit scope is a nested commit
scope

— Entered after all file-type macros are entered.

When entering a commit transaction on the current commit scope, all requests
entered in the commit scope to change any queues managed by the local TPF
MQSeries local queue manager (MQPUT, MQPUT1, or MQGET functions) are
passed up to the next highest commit scope.

— When a commit transaction is entered in a root commit scope, it causes all
messages put to all queues to become visible to all other ECBs. For
processor shared queues, the message is visible to all other processors in the
loosely coupled complex.

— When a commit transaction is entered in a root commit scope, it causes all
messages retrieved from all queues to be permanently removed from the
queue.

Rollback Rule
When you enter a rollback transaction, the following processing takes place:

— All records that were written with file-type macros entered in the commit scope
to online (non-general file) DASD are discarded. The records will have never
been visible to any other ECBs.

— All DASD locks that were acquired with find-and-hold type macros in the
commit scope that is being rolled back will be released:

- To a higher commit scope if they were held at the commit scope level by a
higher level (nested) commit scope

- To the TPF system if they were not previously held at the commit scope
level.

DASD locks that are obtained outside the commit scope are not affected by
the rollback of a commit scope.

All pool addresses acquired while in the commit scope are released back to the
TPF system if the general file system (GFS) is active. If the GFS is not active,
the pool addresses are lost until the next time you run the recoup utility. Pool
addresses that are obtained outside the commit scope are not affected by the
rollback transaction.

— Entering a getfc function (or GETFC macro) to get a pool address within a
commit scope, followed by the rollback of the scope, makes it seem as though
the get request never took place.

TPF V4R1 Application Programming

— Entering a getfc function (or GETFC macro) to get a pool address outside the
current commit scope, followed by the rollback of the current scope, will have
no effect on the get request. The pool address is still available for the
application.

All pool address releases that are entered while in the commit scope are ignored.
The pool addresses, if acquired outside the commit scope, are still owned by the
application.

— Entering a get request (getfc function or GETFC macro) and a release
request (relfc function or RELFC macro) of a pool address in a commit
scope, followed by the rollback of the scope, makes it seem as though the
requests never took place.

— Entering a get request (getfc function or GETFC macro) and a release
request (relfc function or RELFC macro) of a pool address outside the
current commit scope, followed by the release of the address in the current
scope and the subsequent rollback of the current scope, makes it seem as
though only the get request and not the release request took place.

— VFA flush requests that are entered in a commit scope are discarded if you
enter a rollback transaction in the commit scope.

All messages that were added to queues are removed from the queues and all
system resources are released. All messages that were retrieved from the
gueues are restored to the queues.

* Visibility Rule
All changes made by a nested scope become visible to the next higher level
nested scope when you enter the commit transaction.

When you enter the commit transaction on the root scope, all the changes that
were made become visible to all ECBs.

Changes made in a nested scope are not visible to higher level nested scopes,
to other commit scopes, or to ECBs not running in a commit scope until you
enter the commit transaction on the root commit scope.

Outside the Commit Scope

Because the starting of a commit scope is under ECB control, you can implement
TPF transaction services support without affecting the way existing applications run.
However, existing applications may be impacted by applications using this support.

Finding Records

Normal find processing is not affected by TPF transaction services support.

Find-with-hold processing may be affected; see EHalding Records! for more
information.

Filing Records

Normal file processing is not affected by TPF transaction services support.

File-with-unhold processing may be affected, however; see tHalding Recards! for
more information.

Holding Records

Although there are no API changes for processes that are outside of the commit
scope, you need to understand what effect the commit scope has on them. For

Understanding TPF Transaction Services Concepts 97

requests outside of the commit scope, a commit-level hold is viewed the same as
an ECB-level hold. This means that if the requested record is held at the ECB level
or the commit level, the request will be queued. This processing could result in an
increase in record hold duration and an increase in record hold deadlock conditions.

For example, look at the scenario in w Program A, which is using TPF
transaction services support, causes a deadlock to occur.

Program A Timeline Program B
tx_begin Tll .
Find and Hold A T2 °
. T3 Find and Hold B
Update A l .
y T4 Find and Hold A
FILUC A T5 .
y l Update A
Find and Hold B +— T6 .
. Update B
Update B .
. FILUC A
FILUC B .
. FILUC B
. 3 .

Figure 15. Example of a Deadlock Condition

T1 Program A starts a root commit scope by entering a begin transaction.

T2 Program A gets a hold lock on record A. The lock is added to the commit
scope.

T3 Program B gets a hold lock on record B.

T4 Program B requests a hold on record A; record A is still held by program A

so the request is queued and program B waits.

T5 Program A files and unholds record A; the lock for record A is still held by
the commit scope. Program B will continue to wait.

T6 Program A requests a hold on record B. Record B is held by program B,
which is still waiting, so the request is queued and program A waits,
resulting in a deadlock condition.

Deadlock Detection

98

A deadlock detection routine is provided to assist with deadlock detection. This
routine is a time initiated routine and is activated during restart or by the CRETC
macro.

Deadlock detection processing is applied on loosely coupled systems and base-only
systems. It consists of taking a snapshot of all of the record hold tables (RHTS) in
the complex, merging them into a table, and then running the table through the
deadlock detection algorithm.

TPF V4R1 Application Programming

To have a true event, a cutoff time (the earliest of the time stamps associated with
each CPU snapshot of the RHT) determines whether an individual entry of an RHT
of a CPU will be merged into the table. If a record is held within the cutoff time, the
related RHT entry is merged into the table. Otherwise, the entry is discarded.

When the deadlock detection program is activated, the CPU that has the lowest
ordinal number will be the master CPU. The master CPU merges all of the RHT
snapshots that were sent by other CPUs and performs the deadlock detection
routine.

If a deadlock is detected, a deadlock user exit (CLUD) is activated on the CPU
where the deadlocked ECB is located. The deadlock detection routine takes an
action as follows:

* If the return code from the user exit is 0, the ECB remains deadlocked.

e |f the return code from the user exit is 4, the ECB will be scheduled to exit with
dump D9.

¢ |f the return code from the user exit is 8, the deadlock detection routine sets the
CE1SUD and CE1SUG fields of the ECB to CJCSUHRD and CJCSUDLK (that
is, X'81").
The new deadlock detection bit in SUD and SUG is as follows:
In MRLNQ, the bit is called:

CJCSUDLK EQU X'o1' DEADLOCK DETECTION
In EBOEB, the bit is called:
CXSGDLK EQU Xx'01' DEADLOCK DETECTION

The waiting input/output block (IOB) associated with this ECB is removed from
the waiting queue and the post-interrupt routine in the IOB is activated.

You can also use the ZECBL command with the E parameter to remove all the
I0OBs associated with the deadlocked ECB and force the ECB to exit with dump D9.

SYSTC switch SBDLOCK is defined for deadlock detection processing. You can
turn it off using the ZSYSG ALTER command with the NODLOCK parameter.

Loosely Coupled and Multiple Database Function (MDBF)

Considerations

Exceptions

In a loosely coupled complex, records that are held in LLF/CFLF control units while
the transaction is active need to remain held during the recovery process. The TPF
system will keep locks across a system IPL until the recovery log is processed to
synchronize data record updates among all loosely coupled processors and ensure
database integrity.

The following cases are exceptions to TPF transaction services processing.
* Unsupported functions

— Processing of general files or general data sets is not considered part of the
commit scope and is not affected by commit scope processing. All updates to
general files are made at the time of the macro request using standard TPF
4.1 logic. A rollback transaction will not undo these updates.

— Processing of find/file single and find/file special macros is not supported in
the commit scope and causes the transfer of control to the system error
routine.

Understanding TPF Transaction Services Concepts 99

e Functions that do not work

Applications that do any of the following must ensure that data is committed; that
is, the commit scope is ended before using any of the following:

— Pass file address or file chains to other application functions or system
functions that run either on a separate ECB or without an ECB

— Use techniques that coordinate updates to both core and file records without
relying on find-and-hold processing for concurrency control

— Use hold techniques other than DASD holds.
* The following system functions will not work when called from a commit scope:

— ROUTC, SENDC, and CVIx, where the ROUTC macro is issued. System error
CEC136l is taken in this case. System error CEC1371 is taken when the chain
message is sent using CVIX.

— TPF Database Facility (TPFDF).
— Systems Network Architecture (SNA) message recovery.

100 TPF V4R1 Application Programming

Understanding TPF Collection Support

TPF collection support (TPFCS) is a service for managing the storage and retrieval
of data on a TPF database. The data is stored in units known as collections.
Collections are abstract representations of data having common attributes and
functions. Persistent collections maintain their state after the entry control block
(ECB) that creates them exits.

TPFCS can be considered an application development tool that integrates database
functionality with the application. Potentially complicated data manipulation routines
are not needed in application programs because their functionality is already
included in the TPF 4.1 system. Furthermore, the TPF 4.1 system does not need to
have any knowledge of the format of the data, so more control is given to the
application and taken away from the TPF system.

This section discusses many of the application programming interfaces (APIs) used
in writing TPFCS applications. For more information about these APIs, see the

Application Characteristics

This section provides information about some of the characteristics that are unique
to TPFCS application programs.

TPFCS Environment Block

To access TPFCS data stores and collections, the application must do the following:
» Define the application to TPFCS

» Connect the application to the specified data store

* Create an environment block for your application.

Calling the T02_createEnv function accomplishes all of these goals.

The T02_createEnv function is issued once by each ECB for each data store in the
database that is accessed by that ECB. In other words, if the application will be
creating collections in multiple data stores, the application will have to issue a
T02_createEnv for each data store. The environment block that is created is built in
ECB private storage and, therefore, cannot be shared among ECBs and its pointer
cannot be saved to be used by other ECBs.

A pointer to the environment block is returned by the T02_createEnv function so that
your application can access the database. The environment block that is created is
used on almost all the TPFCS function calls. The collection creation functions
(TO2_create...) use the environment block to determine in which data store to
create the collection.

Because the TPFCS system can usually determine the correct data store to work
with from the persistent identifier (PID) of the collection, the data store of the
environment passed to a function call does not need to be the same as the data
store in which the collection was created. For example, an environment could be
created with the TPFDB data store and be used by an application to access any
collection already created in any data store. However, if a target collection PID is
not included on a function call (such as with the T02_atDSdictKey function), the
appropriate data store environment must be used.

© Copyright IBM Corp. 1994, 2002 101

When the ECB has completed accessing the TPFCS database, enter a
T02_deleteEnv function call to allow TPFCS to clean up and release any allocated
system resources that it is still holding.

Type Definitions

Error Handling

The following type definitions are found in the c$to2.h header file:

TO2_ENV_PTR This type is defined as a pointer to void. A variable
of this type is set by calling the T02_createEnv
function and passing a pointer to this pointer. It is
set by TPFCS to point to the environment block,
which is used on almost all TPFCS API calls.

TO2_PID This type defines the TPFCS PID assigned to a
collection when it is created and then used to
reference to the collection until it is deleted from the
TPFCS database.

TO2_PID_PTR This type is defined as a TO2_PID pointer and
should be set to point to a variable of type
TO2_PID.

TO2_BUF_HDR This type defines the returned TPFCS data buffer

header returned on an element retrieval using such
TPFCS functions as T02_at, T02_atKey,
T02 atCursor, and T02 key. See IReturned Datd

[Structures” on page 106 for the format of the buffer.

TO2_BUF_PTR This type is defined as a TO2_BUF_HDR pointer.

TO2_ERR_CODE This type is defined as a long integer that, on return
from a T02_getErrorCode function call, contains the
actual error code value that is stored in the
environment.

TO2_ERR_TEXT_PTR This type is defined as a char pointer and is
returned from a T02_getErrorText call. It will point
to text that describes the actual error that occurred.

When a TPFCS function is successful, it returns a positive value to the application
program. When an error occurs in an attempt to process a TPFCS function, TPFCS
sets an error code in the environment block and returns TO2_ERROR (which is
defined as zero) to the application program. Once the application identifies that an
error has occurred, it can query the environment block using the T02_getErrorCode
function to determine the specific error that has occurred. If additional text
describing the error is desired, the error code can be passed to the

T02 getErrorText function. Error processing is handled the same way regardless of
the type of function being called. See L ions” for more
information.

Note: The error code in the environment block is not reset until another error
occurs or a Boolean-type request is entered that returns TO2_IS_FALSE.

For more information about error codes, see the [[RE_ C/C++ | anguage Support
Users Guidd.

102 TPF V4R1 Application Programming

Boolean Error Handling

By convention, TPF API return codes indicate successful or unsuccessful
completion by returning positive or zero values, respectively. This convention is
violated somewhat by TPFCS API functions returning positive or zero values for
true or false results, respectively.

To distinguish an unsuccessful API return code from a Boolean zero result, use the
T02_getErrorCode function call for error value retrieval. A zero error code value
indicates a successful return of TO2_IS_FALSE while a nonzero error code value
indicates an error return from the Boolean API function.

The following logic might be used in an application program to test for an error on a
Boolean function:
1. Call a Boolean TPFCS API; for example:

TO2_isEmpty

If a value of TO2_ERROR (0) is returned, this indicates that either an error has
occurred or a value of TO2_IS FALSE has been returned. If a value of
TO2_IS_TRUE is returned, this indicates that no error has occurred.

2. Call the following TPFCS API to retrieve the error code value:
T02_getErrorCode

If a value of TO2_IS_FALSE (0) is returned, this indicates that no error has
occurred. All other values returned from T02_getErrorCode indicate the error that
occurred.

3. If an error has occurred, you can optionally call the following TPFCS API to
retrieve the error code message text for the returned value:

T02_getErrorText

Example of a Returned Error Code
When an error occurs in the attempt to process a function, TPFCS sets an error

code in the environment block and returns a 0 to the application program. The
following example shows how an application can check to see if an error occurs
when calling a Boolean TPFCS function.

#include <c$to2.h> /* Needed for T02 API Functions */
#include <stdio.h> /* APIs for standard I/0 functions =/
T02_PID cursor;
TO2_ENV_PTR env_ptr;
TO2_ERR_CODE err_code; /* T02 error code value */

TO2_ERR_TEXT_PTR err_text_ptr; /x T02 error code text pointer */

/’k*‘***‘k**/
/* Are there more elements after the current one? */
/*************'k**/
if (T02_more(&cursor,env_ptr) == T02_ERROR)
{
err_code = T02_getErrorCode(env_ptr);
if (err_code != T02_IS FALSE)
{
printf("T02_more failed!\n");
err_text _ptr = T02_getErrorText(env_ptr, err_code);
printf("The error is: %s\n", err_text_ptr);

else
printf("There are no more elements after the current element.\n");

else
printf("There are more elements after the current element.\n");

Understanding TPF Collection Support 103

Data Store Application Dictionary

To access a collection, the application must determine the PID of the collection. The
recommended approach is to place the PIDs of data store anchor collections in the
data store application dictionary and assign a symbolic hame to each one as the
key. This dictionary, which has the preassigned name of DS_USER_DICT, is
accessed by establishing an environment for the target data store and using the
T02_...DSdict... type functions. For example, you can use the
T02_atDSdictNewKeyPut function to store the PID of an anchor in the dictionary. You
can retrieve the PID of an anchor with the T02_atDSdictKey function. The dictionary
uses EBCDIC keys of 64 bytes with data elements of up to 1000 bytes.

Note: When PIDs are stored in collection elements, a recoup index must be
established and associated with that collection, including the application
dictionary.

The TPF dictionary (the application dictionary of TPFDB, the base TPFCS data
store) can be accessed with a special set of functions (T02_...TPF...). This allows
all applications access to a common dictionary without needing to establish an
environment for a particular data store. A possible use for this dictionary is to
associate applications with data stores.

Note: The data store system dictionaries, accessed with the T02_...DSsystem...
and T02_...TPFsystem... type functions, are used by the TPFCS system
and are not intended to be used by applications.

Application Startup Examples

The examples in this section describe the steps that could be followed for initial
population of a data store and for application startup.

Initial Population of a Data Store
When a data store is first created, the startup flow for an application that initially
populates the data store could be as follows:

1. Create the environment using the target data store name on the T02_createEnv
function.

2. Create a recoup index for the application dictionary using the
T02_createRecoupIndex function.

3. Add a recoup index entry to the index describing how PIDs are stored in the
dictionary using the T02_addRecoupIndexEntry function.

4. Get the PID of the application dictionary using the T02_getDSdictPID function.
5. Associate the recoup index with the dictionary by using the

T02_associateRecoupIndexWithPID function (see [TRE Database Referencs for
more information).

6. Create an anchor collection using a T02_create. .. function.

7. Store the PID of the anchor collection in the application dictionary by using the
T02_atDSdictNewKeyPut function. The key could be a symbolic name for the
collection or any other value.

8. Optionally assign a name to the collection so that the collection can be easily
accessed with the browser functional messages by using the
T02_defineBrowseNameForPID function. Consider using the same symbolic name
used to store the PID in the application dictionary.

Optionally, you can associate particular applications with this data store by doing
the following:

104 TPF V4R1 Application Programming

1. Create an environment using TPFDB as the data store name.

2. For each application that will use this data store, store the data store name in
the TPF application dictionary using the T02_atTPFNewKeyPut function with the
name of the application as the key.

3. Enter a T02_deleteEnv call to delete the environment.

Application Startup Flow
The startup flow for a typical application could be as follows:

1. Create the environment using the target data store name on the T02_createEnv
function.

2. Access the TPF application dictionary to read the data store name of this
application using the T02_atTPFKey function.

Make the following assumptions:

* The application uses the name of the application as the key when accessing
the dictionary.

* Another application puts the element into the dictionary (using the
T02_atTPFNewKeyPut function) before this application was started.

3. Enter a T02_deleteEnv call to delete the TPFDB environment because it is not
needed again to access TPFDB.

4. Create a new environment using the retrieved data store name.

5. Retrieve the PID of an anchor collection from the application dictionary by using
the predetermined key on the T02_atDSdictKey function.

6. Continue with the remainder of the application processing.

7. When processing has been completed, enter a T02_deleteEnv call to delete the
environment.

Types of Functions

The provided functions that make up the collection library are divided into three
types:
» Collection functions

A collection is a related group of elements organized within a data store.
Collections are created by applications and may be temporary or persistent. The
collection APIs allow collection creation and deletion and element manipulation
and interrogation. Collections include abstractions such as array, set, bag, and
key sorted set. Most TPFCS functions are atomic; that is, the element is read
into storage, managed, and removed from storage for each function call.

e Cursor functions

Cursors provide you with convenient methods for accessing and iterating through
the elements stored in the collections. The cursor APIs allow element
manipulation and interrogation. Cursors can also be used to lock collections to
prevent other users from updating a collection while you are accessing the
elements in the collection. Furthermore, cursors allow parts of collections to stay
in memory so that some repetitive or consecutive accesses do not require data
to be constantly read from or written to DASD. It also allows you to use alternate
key paths.

* Auxiliary functions

The auxiliary functions include dictionary, browser, and other miscellaneous
functions:

Understanding TPF Collection Support 105

— Dictionary functions are used to access the data store and TPF dictionaries.
This allows applications to access a collection without having to know the
actual PID of the collection.

— Browser functions allow you to do tasks such as the following:
- Display information about a collection
- Display the contents of a collection
- Delete or reclaim a collection
- Capture and restore a collection
- Validate the integrity of a collection
- Reconstruct a collection that has errors.

For more information about TPFCS functions, see the [[PE_C/C++ | anguagd
Support User's Guidel.

Returned Data Structures

When TPFCS returns an element in response to a T02_at, T02_atCursor, T02_peek,
or other similar function (except for T02_atRBA), it returns a data structure that
resides in a private heap storage area. The calling routine must use the free
function call to free the buffer once it has completed processing the returned data.
When the function call includes the pointer to a buffer (for example, a
T02_atWithBuffer, T02_atCursorWithBuffer or a T02_peekWithBuffer function call),
the data is also returned in the buffer.

The normal return from these types of APIs is a pointer (TO2_BUF _PTR) to a
structure (buffer) of type TO2_BUF_HDR. The structure of this buffer has five fields:

Field Description

spare Type long, reserved for IBM use.

updateSeqNbr Type long, update sequence counter value.

datalL Type long, length of the data.

spare Type long, reserved for IBM use.

data Array of char, the beginning of the actual data. The

data does not contain the key.

Collection APIs

TPFCS provides APIs for performing certain operations on a collection. This section
describes the types of operations that can be performed on a collection.

Creating and Deleting Collections

When you create the collection instance, you do so by calling the appropriate

T02 create... function for the instance you want. There is a unique create function
for each TPFCS collection type. The T02 create... function returns the PID
assigned to the collection.

Several different options can be selected when creating collections using the
T02_create...WithOptionList type APIs and specifying customized data definitions.
These options include:

» Collection lifetime (persistent long-term, persistent short-term, or temporary)
* Whether or not the collection is shadowed
* What recoup index (if any) is associated with the collection.

106 TPF V4R1 Application Programming

For more information about collection lifetimes, see [[PE Datahase Referencd.

You can delete collections dynamically by using the T02_deleteCollection function.
After you enter the T02_deleteCollection function, the collection is either marked
for deletion or actually deleted from the database and cannot be accessed by other
TPFCS functions. For persistent short-term collections and temporary collections,
the deletion always takes place immediately. For persistent long-term collections,
the deletion is controlled by the data store characteristics set with the ZOODB
command. A persistent long-term collection marked for deletion can be reclaimed by
entering the T02_reclaimPID function in the time period between the

T02 deleteCollection request and the time the actual deletion occurs (48 hours).

Accessing and Modifying Collections
You can perform the following operations to modify a collection:

Modification Operation
Adding elements Use the T02_add function and its variants.

Finding and retrieving elements
Use the T02_at function and its variants.

Updating elements Use the T02_atPut function and its variants.

Removing elements Use the T02_remove function and its variants.

Adding Elements

For nonkeyed collections, the T02_add function places the element identified by its
argument into the collection. For keyed collections, the T02_atNewKeyPut function
places the element identified by its key into the collection. See
Language Support User's Guidd for more information about the T02_add and
T02_atNewKeyPut functions. For binary large objects (BLOBS), you can operate on
elements using the T02_atRBAPut function. In general, you can copy one collection
to another collection that is initially empty by iterating through the elements of the
first collection and calling T02_add or T02_atNewKeyPut with each element as an
argument.

For sequence collections, elements can be added at a given position using
T02_addAtIndex.

[Table 13 describes how the T02_add and T02_atNewKeyPut APIs function with unique
and nonunique collections:

Table 13. Adding Elements to a Collection

Type of Collection Description

Unique collections without keys The T02_add function will not add an element that is
equal to an element that is already in the collection.

Nonunique collections without keys | The T02_add function adds elements regardless of
whether they are equal to any existing elements.

Unique collections with keys The T02_atNewKeyPut function will not add a key that
is equal to a key that is already in the collection.

Nonunique collections with keys The T02_atNewKeyPut function adds keys regardless
of whether they are equal to any existing keys.

Finding and Retrieving Elements
You can find an element without using a cursor by searching for it based on position
or key by using the T02_at, T02_atKey, and T02_atRBA function. In arrays, BLOBS,

Understanding TPF Collection Support 107

keyed logs, logs, or sequence collections, elements are addressed by their index.
The index of the first element is always 1; that is, they are 1-based. Elements in
these types of collections are accessed using the T02_at API (data in BLOBs are
accessed using the T02_atRBA API). For keyed collections, an element can be
addressed by its key using T02_atKey. For collections without unique keys, such as
key bags, only the first element with the given key can be explicitly addressed. In
collections such as bags, sets, and sorted bags, elements have no address
component and, therefore, cannot be individually selected except through the use of

cursors (see ECursars” an page 10d). Once you have found and retrieved the

element, you can update it and then replace it.

Updating Elements

It is possible to modify collections by updating the value of an element occurrence.
The maximum length of the updated element cannot be changed; however,
elements can be shorter than the specified maximum length.

The key or element value that must be preserved is called the positioning property
of the element in the given collection. For nonkeyed collections with element
equality (bags and sets), an update function is not provided. Element equality is a
condition where two elements in a single collection are equal in length and equal in
bit sequence. To change an element for a nonkeyed collection, the old element
must be removed and the new element added to the collection.

For sorted collections that are organized according to an element property (the sort
field), if the update function changes this element property, the old element is
automatically deleted and the new updated element is automatically placed in its
correct position in the collection.

Arrays, BLOBS, keyed logs, logs, and sequence collections do not have a
positioning property; that is, instead of having a key that can be preserved or
element value, they have a logical position that is independent of the content of the
element. Element values in these collections can be changed freely using the
T02_atPut function.

Update sequence counter: As a form of database integrity for those collections
that allow element updating, an update sequence counter is stored in each element
in a given collection and optimistic concurrency is enforced on the element during

update processing. For more information, see [Optimistic Concurrency (Update
Bequence Counter)” on page 1185.

Removing Elements

To remove elements from a collection, you can either use a specific remove-type
function (T02_removeIndex, T02_removeValue, or T02 r‘emoveKey) or you can remove
an eIement that is pomted to by a given cursor (see L

0)

There is an important difference between element values and element occurrences.
An element value may, for nonunique collections, occur more than once. The basic
remove-type function removes only the first occurrence of an element. If you want
to remove all occurrences of the elements in a collection that have a given property,
use the T02_removeValueAll function.

For collections with key equality or element equality, removal functions remove one

or all occurrences of a given key or element. Sequence collections provide
functions for removing an element at a given index.

108 TPF V4R1 Application Programming

Cursors

A cursor is a nonpersistent internal structure associated with a collection that is
used to reference an element in the collection. Cursors are used for the following:

» To iterate through collections

The cursor provides methods that allow an application program to move through
a collection one element at a time without needing keys or indexes.

* To establish locks on collections

When a locking cursor is created for a particular collection, a lock is placed on
the entire collection so that only the ECB that created the cursor can update the
elements in the collection.

» To improve processing efficiency

It is more efficient to access multiple elements in a collection using a cursor.
Most TPFCS functions are atomic; that is, the element is read into storage,
managed, and removed from storage for each function call. This type of
processing requires much overhead. With cursors, once a collection is read into
storage, it remains there for the life of the cursor. The cursor is temporary and
must be deleted by the application program or when the ECB exits.

For more information about cursor APIs, see the [[PE_C/C++ | anguage Suppari
Users Guidd.

Cursors can be used with any collection. If you use the cursor APIs to add or
remove elements, cursor positioning remains valid unless an error occurs. If you
use the collection (noncursor) APIs on collections that have a cursor associated
with them to add or remove elements, cursor positioning might not be valid. One of
the following conditions occurs:

* The cursor points to the same element.

* The cursor points to a different element.

* The cursor no longer points to an element of the collection.
* The cursor is marked as not valid.

Positioning might not be valid because a cursor points to a particular element
position within a collection, not to an element itself. If collection APIs are used to
add or remove elements in a collection that has a cursor pointing to a specific
element, the elements in the collection may shift position and the cursor may no
longer be pointing to same element. For example, if the cursor last pointed at the
fifth position and an element was inserted after the first position, the cursor would
be pointing at the same position when positioning is checked again. However, this
position would now be referencing what was originally the fourth element.

When the cursor is used again, the positioning is checked and, if the cursor no
longer points to an element or to an element that matches the current positioning
information of the cursor, the cursor is marked as not valid and a request to
reposition the cursor to a specific element is required before it can be used again.
Note that elements in collections that allow multiples do not have a uniqueness
among themselves. As a result, it is possible for the current positioning information
of the cursor to match an element that is not the original element to which the
cursor was pointing.

Initializing a Cursor

When a cursor is created, the cursor does not have a default position. A
positioning-type operation (such as T02_first or T02_locate) is required before the

Understanding TPF Collection Support 109

Using Cursors

Using Cursors

cursor can be used to access the target collection. Whenever an error code
indicating that the cursor is not valid (TO2_ERROR_CURSOR) is returned, it
signifies that the cursor function has lost position either because the collection has
been changed by the current user, some other user (only for dirty-reads), or
because of a TPFCS problem. When you see this error code, try to reposition the
cursor with a positioning-type operation on the cursor.

TPFCS provides the following functions to construct a cursor for a given collection:
* T02 createCursor
* T02_createReadWriteCursor.

If the position of the element changes, TPFCS attempts to reposition the cursor to
point to the subject element. If TPFCS is unable to do so, the cursor is not valid.
This occurs because the cursor refers only to the position of the element and not to
the element itself.

If you add or remove elements from a collection while you are iterating over a
collection (except by using the cursor doing the iteration), all elements may not be
visited once.

for Locating, Accessing, and Removing Elements

Cursors provide a basic mechanism for accessing elements of collections. For each
collection, you can define one or more cursors and you can use these cursors to
access elements. Collection functions such as T02_Tlocate, T02_setPositionIndex,
and T02_setPositionValue use cursors to locate and access specific elements. You
can then access the actual element by using cursor functions such as

T02 atCursor, T02_atCursorPut, or T02_remove (see [Remaving Flements” on

for more information).

Note: Cursor functions specify the PID of the cursor, not the PID of the collection.

with Alternate Key Paths

A key path is used to determine the order in which some collections are traversed.
There are two types of key paths: primary and alternate. When a collection is first
created, the primary key path of the collection is used by default for searching and
accessing data. You can use alternate key paths only with cursors.

You can use the T02_setKeyPath function to override the default setting or any
previous T02_setKeyPath calls to specify an alternate key path. A maximum of 16
alternate key paths (in addition to the primary) can be defined for each collection.
When the T02_setKeyPath function is issued, the position of the cursor must be
reestablished by using one of the positioning functions such as T02_first. See

Key Path Support” on page 114 for more information.

Cursor Positioning

The first and last elements in a collection are based on what type of collection it is.
The following sections describe what the first and last elements are according to the
type of collection.

First Element in a Collection
The first element in a collection is based on the type of collection:

* For log and keyed log collections, it is the oldest element.

» For other ordered but nonkeyed collections (array, BLOB, and sequence), it is the
element at index 1.

110 TPF V4R1 Application Programming

For other collections with a key or sort field (key sorted set, key bag, key set, key
sorted bag, sorted bag, and sorted set), it is the element with the lowest key or
sort field value.

For all other collections (bag and set) without an explicit ordering, it is determined
by the implementation (that is, randomly).

When the cursor is positioned at the first element in the collection and a
T02_cursorMinus request is issued, a TO2_ERROR_EODAD error is returned
and the cursor will be marked as not valid.

Note: With the exception of sequence collections, elements cannot be added
before the first element by issuing a T02_cursorMinus function to position
the cursor before the first element.

[fable 14 summarizes what happens when a cursor is positioned at the start of a
collection (T02_first returns TO2_IS_TRUE).

Table 14. Cursor Positioned at the Start of a Collection

Function Name Result Cursor Status
T02_addAtCursor Adds the element as the first | Positioned to point at the
element. inserted element.
T02_atCursor Reads the first element. Unchanged.
T02_atCursorPut Updates the first element. Unchanged.
T02_cursorMinus TO2_ERROR_EODAD Not valid.
T02_cursorPlus Updates the cursor position | Positioned to point at the
(or returns EODAD if the next element.
collection contains only one
element).
T02_remove Removes the first element. Positioned to point at the
next element, which is now
the first.

Last Element in a Collection
The last element in a collection is based on the type of collection:

For log and keyed log collections, it is the newest element.

For other ordered but nonkeyed collections (array, BLOB, and sequence), it is the
element with the highest index value.

For other collections with a key or sort field (key bag, key set, key sorted bag,
key sorted set, sorted bag, and sorted set), it is the element with the highest key
or sort field value.

For all other collections (bag and set) without an explicit ordering, it is determined
by the implementation (that is, randomly).

The following applies to all collection types except for arrays and BLOBsS:

— When the cursor is positioned at the last element in a collection and a
T02_cursorPlus function call is issued, the cursor will be positioned at the end
of the collection. If another T02_cursorPlus function call is issued, it will
receive a TO2_ERROR_EODAD return code and the cursor will not be valid.
Any further cursor operations will receive a TO2_ERROR_CURSOR until an
explicit positioning cursor operation is issued, such as T02_first or a
T02 last.

[Mable 15 on page 112 summarizes what happens when a cursor is positioned
at the end of a collection (T02_atEnd returns TO2_IS_TRUE).

Understanding TPF Collection Support 111

112

Table 15. Cursor Positioned at the End of a Collection

Function Name

Result

Cursor Status

T02_addAtCursor

Adds the element as the last
element.

Positioned to point at the
inserted element.

T02_atCursor

TO2_ERROR_EODAD

Unchanged.

T02_atCursorPut

TO2_ERROR_EODAD

Unchanged.

T02_cursorMinus Successful. Positioned at the last
element.

T02_cursorPlus TO2_ERROR_EODAD Not valid.

T02_remove TO2_ERROR_EODAD Unchanged.

* Arrays and BLOBs are handled differently because they can grow by logically
adding NULL entries. A T02_cursorPTlus request can continue to advance beyond
the end of the collection without receiving a TO2_ERROR_EODAD error. If a
T02_atCursor or a T02_remove request is issued when the cursor has advanced
beyond the end of the collection, a TO2_ERROR_EODAD will be returned. If a
T02_atCursorPut request is issued, the element will be added to the collection at
the current position of the cursor and NULL entries will be logically added from
the original end of the collection to the element before the added element.

Determining the End of the Collection
The end of the collection is defined as the position after the last existing element in
the collection. For collections without an explicit ordering, this position is determined
by the implementation (that is, randomly). In the following example, x points to the
first element, y points to the last element, and z points to the end of the collection.

< X
1 AAAAA
2 BBBBB
3 ccece
4 DDDDD

4 y
N FFFFF

< A

(N+1) |

Figure 16. Collection with N Elements

[able 16 an page 113 relates to m and provides a summary of cursor

returns for the T02_first, T02_atLast, and T02_atEnd functions.

TPF V4R1 Application Programming

Table 16. Cursor Returns

Cursor Position TO2_First TO2_atLast TO2_atEnd

X TO2_IS_TRUE TO2_IS_FALSE TO2_IS_FALSE

y TO2_IS_FALSE TO2_IS_TRUE TO2_IS_FALSE
TO2_IS_FALSE TO2_IS_FALSE TO2_IS_TRUE

Rules for Cursor Movement and Positioning

TPFCS observes the following rules for cursor movement and positioning:

» If an error occurs while the cursor attempts to perform a positioning request, the
cursor will be marked as not valid and the error will be returned to the caller
(except as noted for T02_Tocate).

* The T02_remove function call will cause the element where the cursor is
positioned to be removed (zeroed if it is an array or BLOB collection). The cursor
will be positioned to point at the following element unless it was the last element
in the collection, in which case it will be positioned at the end of the collection.

* T02 locate

— For key sorted bag, key sorted set, sorted bag, and sorted set collections, a
T02 locate request that returns a TO2_ERROR_LOCATOR_NOT_FOUND
error will position the cursor to point at the next higher key or sort field.

— For key sets and key bags, a T02_Tocate request that returns a
TO2_ERROR_LOCATOR_NOT_FOUND error will cause the cursor to be not
valid.

» For bags and sets, T02_Tocate implicitly calls T02_setPositionValue and returns
a TO2_ERROR_LOCATOR_NOT_FOUND error that will cause the cursor to be
not valid.

» For key bag, key set, key sorted bag, key sorted set, sorted bag, and sorted set
collections, T02_setPositionValue implicitly calls T02_locate.

* T02 locate and T02_setPositionValue are not supported for keyed log
collections.

Iterating over Collections

Iterating over all or some elements of a collection is a common operation. The
collection library gives you two methods of iteration:

» Using cursors

* Using the T02_allElementsDo function with your own function.

Ordered collections, such as array and sorted set, have a well-defined ordering of
their elements. Unordered collections, such as bag and set, have no defined order
in which the elements are visited in an iteration; however, for these types of
collections, each element is visited exactly once. Similarly, unique collections, such
as set and key sorted set, do not allow multiple elements with the same key or
value. Nonunique collections, such as bag and key sorted bag, allow duplicate
values and keys; again, for these types of collections, each element is visited
exactly once.

Iteration Using Cursors
Do not add or remove elements from a collection while you are iterating over a

collection except by using the cursor that is doing the iterating or all elements may

not be visited once. See [Remaving Flements” on page 108 for more information

about removing elements.

Cursor iteration can be done with a for loop. Consider the following example:

Understanding TPF Collection Support 113

#include <c$to2.h> /* Needed for T0O2 API functions =*/

T02_PID myCollection;
TO02_PID myCursor;
TO2_ENV_PTR env_ptr;
MyIntETement *currentElementPtr;

T02_BUF_PTR bufferPtr;

/***/

/* Access each of the elements in the collection... */
/***/

T02_createCursor(&myCollection, env_ptr, &myCursor);

for (T02_first(&myCursor, env_ptr),
T02_more (&myCursor, env_ptr),
T02_cursorPlus (&myCursor, env_ptr))

if ((bufferPtr = T02_atCursor(&myCursor,env_ptr)) == T02_ERROR)

{
printf("T02_atCursor failed!\n");

process_error(env_ptr);

}

else

{
/% work with currentElement using currentElementPtr.x*/
currentElementPtr = (MyIntElement *)bufferPtr->data;

free(bufferPtr); release returned buffer

}

T02_deleteCursor(myCursor, env_ptr);

In this example, a cursor is created for myCollection. The loop is initialized by
pointing the cursor to the beginning of the collection. The loop then iterates over all
elements stored in the collection. The data component of each element is accessed
and manipulated. The loop ends when there are no more elements remaining to
process in the collection. Finally, the cursor is deleted.

Note: This code example does not show any environment tests for possible errors.

T02_al1ElementsDo

Cursor iteration has two possible drawbacks:

» For unordered collections, the explicit notion of an (arbitrary) ordering may not be
desirable for reasons of style. For example, it could mislead you (or other
programmers) into perceiving or exploiting an order where, in fact, the order does
not exist or is not guaranteed.

* Iteration on a collection might be done more effectively (because of a shorter
path length) by the collection itself than by the application using cursors and
explicit positioning calls.

The collection library provides the T02_allETementsDo function, which addresses

both drawbacks by calling a user-specified function that is applied to all elements.
The user-specified function returns a value that is used internally to indicate the

114 TPF V4R1 Application Programming

continuation or ending of the iteration. For collections with order, the function is
applied in this order. Otherwise, the order is not specified.

Additional arguments that are needed for the iteration can be passed as an extra
parameter list on the T02_al1ETementsDo function.

Using Cursors for Locking Collections

Cursors are also used to prevent concurrent updating of a collection while you are
accessing elements in the collection.

The following summarizes TPFCS operations involving the two different types of
Cursors:

* When a nonlocking cursor is used on a collection, the same ECB can:
— Perform noncursor reads and writes
— Perform cursor reads
— Create other nonlocking cursors
— Create a locking cursor.

A different ECB can also do all of the above.

* When a locking cursor is used on a collection, the same ECB can:
— Perform noncursor reads and writes
— Perform cursor reads and writes
— Create other nonlocking cursors.

The same ECB cannot create another locking cursor. A different ECB can do all of
the above and it can also create another locking cursor, although the request will be
deferred until the original locking cursor is deleted.

Concurrency Controls

TPFCS provides three levels of concurrency control:
* None (using nonlocking cursors)

» Optimistic (using update sequence counters)

* Pessimistic (using locking cursors).

None (Nonlocking Cursor)

The first type of concurrency uses a nonlocking cursor to read elements in a
collection without creating any type of interlock on the target collection. For this
reason, it is considered a dirty-read cursor. A subsequent request to access the
collection by a locking cursor will be successful and an exclusive lock will be placed
on the collection by the new cursor. However, the nonlocking cursor will still be able
to read elements in the collection.

Optimistic Concurrency (Update Sequence Counter)

To provide additional database integrity for those collections that allow element
updating, an update sequence counter is stored in each element in a given
collection and optimistic concurrency is enforced on the element during update
processing. Optimistic concurrency allows you to read a collection and update it
without exclusive access to the collection. When an element is to be updated, it
must first be read from the collection with the returned sequence counter saved.
The functions used to update elements in a collection require that the application
provide the expected value for this counter. TPFCS increments the counter

Understanding TPF Collection Support 115

whenever a collection element is updated. If the collection is updated by some other
user, your current update request will fail because the value passed by the
application as input to the function does not match the update sequence counter
embedded in the element. The collection must be retrieved again for a successful
update to take place.

Pessimistic Concurrency (Locking Cursor)

Pessimistic concurrency uses a locking cursor to create an exclusive lock on the
collection. No other locking cursor in the same ECB is able to create a lock on the
collection and the attempt is rejected with an error return code. If another ECB
attempts to access the collection using a locking cursor, the ECB is forced to wait
until the first ECB either deletes its cursor or exits. This is called a dirty-read cursor
because there is no guarantee that two back-to-back reads can read the same
element. However, the nonlocking cursors are still able to read the collection.

Note: Locking cursors do not prevent a dirty read from being done by some other
user.

Dirty-Reader Protection

TPFCS provides dirty-reader protection by using the FILNC macro to file records in
a sequence to make sure that an updated or new record is on the DASD surface
before filing the record that points to the updated record. This is done to ensure that
another user who is attempting to read the collection using a nonlocking cursor will
be able to follow a whole chain. If the updates were filed in the wrong order, it might
be possible for the reader to follow a chain with holes in it or the chain could point
to records that were not even part of the collection; for example:

Record A contains a pointer to record B and now TPFCS has to insert record C
between record A and B. If TPFCS filed record A with the new pointer to record
C before filing record C, it would then be possible for a reader to read record A
and then attempt to read record C before it had been filed. To prevent this,
TPFCS dirty-reader protection will make sure that record C is filed first by using
the FILNC macro, and then record A will be filed.

For more information about the FILNC macro, see [TPE General Macros.

Key Path Support

116

Key path support enables you to search for and access data in a collection by using
the value of a specified data field or key.

TPFCS supports two types of key paths, primary and alternate, for the following
persistent keyed and sorted collections:

* Key bags

* Key sets

» Key sorted bags

* Key sorted sets

* Sorted bags

* Sorted sets.

Note: Sorted bag and sorted set collections do not have primary keys; they only
have sort fields.

Primary key paths are sorted in ascending binary value by the primary key, and
they can be either unique or nonunique depending on the collection type. Alternate
key paths support nonunique key path fields (keys) and are sorted in ascending

TPF V4R1 Application Programming

binary value based on the key path field. A maximum of 16 alternate key paths (in
addition to the primary key path) can be defined one at a time for each collection.

Atomic functions (APIs) such as T02_atKey, T02_atKeyPut, T02_atNewKeyPut, and
T02_removeKey use only the primary key path for accessing data. You can use
alternate key paths only with cursors. The application program can use a cursor to
access primary or alternate key paths. To use a key path, the application program
creates a cursor by using either the T02_createCursor or

T02 createReadWriteCursor function. Initially, the cursor uses the primary key path
by default. The application can change the key path and assign an alternate key
path to the cursor by using the T02_setKeyPath function and specifying a key path
name.

The application program can also issue a T02_setKeyPath call with the
TO2_PRIME_KEYPATH name to reset the cursor to use the primary key path.

While the key path build process is in progress, the
TO2_ERROR_KEYPATH_BUILD_ACTIVE error code is returned. The specified key
path is not usable until the build process has ended.

Adding Key Paths

Primary key paths are automatically established when a collection is created in a
TPFCS database. Alternate key paths are added to a collection by using the
T02_addKeyPath function. Using the T02_addKeyPath function, the application
program specifies the name of the new key path and the displacement and length
of the field in the data element that the key path will reference. If a particular data
element is too short to contain the entire field, it will still be included in the key path
as if bytes of zero were concatenated at the end for the remaining length of the key.

Key paths are built automatically by an asynchronous task if the collection already
exists and contains data elements. The key path is not usable until the build
process has completed successfully.

After the key path has been defined, TPFCS will automatically update it whenever
the collection is updated. Therefore, collections with alternate key paths will take
longer to update because they have to maintain the internal structures of every key
path.

Removing Key Paths

To remove an alternate key path from the collection, the application program issues
a T02_removeKeyPath request specifying the name of the key path to remove. The
T02_removeKeyPath function deletes the key path from the collection and releases
the resources of the key path back to the system.

Note: You cannot remove the primary key path from a collection.

Understanding TPF Collection Support 117

118 TPF V4R1 Application Programming

Understanding Logical Record Caching

A Logical record cache is a set of system functions that allows an application to
define and use memory caches. A cache is a hashed structure for holding
information in lookaside storage buffers. A lookaside storage buffer is a temporary
storage area where a copy of the data is saved to avoid refetching the data on
every access. The data is retrieved from the temporary storage area instead of its
permanent residence. The cache gives the application fast access to frequently
used information without always needing to retrieve the information from an external
storage device. The logical record caches are named caches that are subsystem
shared, but the entries are subsystem unique. If two applications try to use the
same name for their cache, the first call will create the cache and the second
application will be connected to the created cache as long as the structure
attributes of the create call for the second application are identical to the first
application. Otherwise, the create call for the second application is returned with an
error code.

Logical record caches are subsystem shared and either processor unique or
processor shared. Processor unique caches contain information that pertains only to
the processor where the information resides and does not need to be kept
synchronous with the image of any other processor. Processor shared caches
contain information that is shared across the processors in the complex so the
information must be kept synchronous with the information contained in the caches
for the other processors. In a processor shared cache, updating an entry will cause
all other processors using the same named cache to have their representation of
the information invalidated so that a CACHE_NOT_ FOUND return code is returned
the next time the information is accessed.

Logical record cache support uses coupling facility (CF) cache support to maintain
information synchronization between the same named caches residing in different
processors in the complex. This synchronization is done through the cache name.
At least one CF must be added to the locking configuration by using the ZCFLK
ADD command before a logical record cache can use a CF. When a processor
shared cache is created and a CF is available for use, a CF cache structure is
created in the CF with the same name as the cache that is created. If the CF cache
structure already exists, the processor is connected to the structure that already
exists. The CF cache structure is a directory-only structure that is used to keep
track of the entries that are in the cache of each processor. Through this
mechanism, the processor copy of the cache is notified of an update to an entry by
another processor, which causes the CF to invalidate the corresponding entry of the
processor. CF cache structures are created with a disposition of DELETE
(STRDISP=DELETE specified on the CFCONC macro). See

for more information about CF cache support, CF cache structures, and
structure persistence for CF cache structures. See [[PE Qperatiand for more
information about the ZCFLK ADD command. See [[PE System Macrod for more
information about the CFCONC macro.

The information held in the logical record cache must also be resident on an
external storage device. A cache is lost over a processor IPL and must be
reestablished by the application after an IPL occurs. There is no mechanism for
preserving the contents of a cache over an IPL.

The logical record cache uses the database ID (DBI) in the entry control block
(ECB) and the primary and secondary keys (which are passed on the function call)
to identify entries in the cache. The DBI and the keys are hashed and the result is

© Copyright IBM Corp. 1994, 2002 119

used to locate a specific entry in the cache. The primary and secondary keys can
be from 1 to 256 characters in length. A cache must have a primary key length
defined, but does not need a secondary key. The keys and the DBI are used to
uniquely identify an entry in the cache. The length of the keys specified on the
function calls must be less than or equal to the lengths specified on the create
function call. Because the cache is hashed, an entry can only be found as long as
the specified keys and DBI exactly match the keys on the entry. There is no way to
perform a partial key search on the entries in the cache. When the cache is
processor shared, the values of the keys and the DBI are hashed into a 14-byte
hash name that is used to identify an entry to the CF. Because the CF and logical
record cache support do not support synonyms for the 14-byte hash name, logical
record cache support will not store two different entries that hash to the same
14-byte hash name. This is true whether the cache is using the CF or not.

When adding or updating an entry in the cache, it is the responsibility of the
application to serialize the call. If the call is not serialized, it is possible for two
ECBs on different central processing units (CPUs) in the same processor to try to
add or update the same entry at the same time. If this occurs, logical record cache
support adds the entry for one and then overlays it for the other. It is difficult to
predict which CPU call will cause the information to be overlaid. This is also true for
processor shared caches. To guarantee that the cache does not contain old
information, the application should perform all adds and updates while maintaining
an external serialization lock. Otherwise, it is possible for a cache invalidate to flow
from one processor to another through the CF, and for the second processor to
retrieve old information from the external storage device and add the information
again before the first processor has completed updating the information.

The following are examples of caches the TPF system currently uses:
» File system directory cache

* File system i-node cache

* Domain Name System (DNS) Internet Protocol (IP) and host names.

Creating a Logical Record Cache
To create a logical record cache, the application starts the newCache function,
passing the following as inputs:
* The name of the cache being created
* A pointer to a field where the token for the created cache will be stored
* The attributes of the information that will be stored in the cache.

See [TPE C/C++ | anguage Suppart User's Guidd for more information about the

newCache function.

The following shows the function to create a logical record cache:

Tong newCache(const void * cache_name,
cacheTokenPtr cachetokenReturn,

const long primaryKeylLength,
const long secondaryKeylLength,
const Tong datalength,

const long numberEntries,
const long castoutTime,

const Tong =* type of cache,
const Tong * reserved);

120 TPF V4R1 Application Programming

System Heap and the Hash Table

Cache Name

When logical record cache support creates a new cache, it resides in the system
heap. The amount of system heap allocated is determined by the values passed on
the newCache function for the primaryKeyLength, secondaryKeyLength, datalLength,
and numberEntries parameters. The numberEntries parameter is used to determine
the size of the hash table and the number of entries the cache must hold.
Determine the minimum number of entries needed. If more entries are needed as
shown by an unacceptable castout rate in the data collection reports, you can
increase the value of the entries by entering the ZCACH command without
changing the code. See m for more information about the ZCACH
command. See [[RE System Performance and Measurement Referencd for more
information about the data collection reports.

To determine the size of the hash table, logical record cache support doubles the
value passed for the number of entries and calculates the best prime number to use
as the hash divisor. The resulting value becomes the size of the hash table. The
size of an entry is calculated by adding the values for the primaryKeyLength,
secondaryKeyLength, and datalLength parameters plus some TPF system overhead
for chaining. Therefore, the amount of system heap allocated is determined by
adding the following values together:

* The size of the hash table

* The size of the entry area (entry size * value of the numberEntries
parameter)

* A cache header area.

See [[PE System Generation for more information about the system heap.

The cache name is used to define the cache and to allow other applications to
connect to the cache by issuing their own newCache function call and specifying the
same cache name. The first application to issue the newCache function for a specific
cache name will cause the cache to be created and its attributes set. The newCache
function call with the same cache name must pass parameters that are checked
against the attributes of the cache and, if they are the same, the caller is connected
to the cache. If the parameters and the attributes do not match, an error code is
returned to the caller.

The cache name:
* Must be 4 to 12 alphanumeric characters
* Must begin with an alphabetic character

» Can contain the following special characters: at sign (@), dollar sign ($), or
underscore ()

* Must be padded to the right with blanks if the cache name is less than 12
characters.

Note: All cache names beginning with the letter | are reserved for IBM use.
Additionally, all cache names beginning with the letters tpf in uppercase,
lowercase, or mixed case are reserved for IBM use. See i

for more information about naming conventions.

The following are examples of valid cache names:
» CacheBSS1
* BSS_cache

Understanding Logical Record Caching 121

* US Cities
* Denver@12

The following are examples of cache names that are not valid:

Aca Is less than 4 characters in length.

AnameThatlsTooLong Is greater than 12 characters in length.

TPFcache2 Begins with IBM reserved letters.

Icache6 Begins with an IBM reserved letter.

cachel5* Contains an asterisk (*), which is an unsupported
character.

cacheToken Value

The cacheToken is a value returned from the newCache function. The cacheToken
value is returned in the field pointed to by the cacheTokenPtr parameter and is used
for all other function calls to logical record cache support to identify the specific
cache to act on. Whenever a specific cache is to be read, updated, or deleted, the
cacheToken value identifies the cache. The passed token is validated by logical
record cache support and, if it is not valid, an error code is returned to the caller
and the function is not performed. The returned token can be saved and passed on
all other iterations of code using the cache, or a newCache function can be started
on every iteration of the code to retrieve the cacheToken value.

Examples
The following example shows how to define and use a cacheToken value:

#include <c$cache.h>
cacheToken myCache;

Then set the cacheToken by issuing the following.

newCache (cache name, /* name of the cache */
&myCache, /* address of where to store the token =/
) /* the remainder of the parameters */

The following shows how cacheToken is used on a readCacheEntry function.

readCacheEntry (&myCache, /* address of the token to use */
......) /* the remainder of the parameters */

Processor Unique and Processor Shared Caches

Logical record caching supports processor unique and processor shared caches.
The cache type is passed as a parameter on the newCache function.

Examples
The following example shows how to pass the cache type on the newCache function.

/* To create a processor unique cache */

#include <c$cache.h>
char cacheType = Cache_ProcQ; /* processor unique cache */

newCache(cache name, /* name of the cache */
&myCache, /* address of where to store the token =/
. /* other parameters */
&cacheType, /* address of the cache type value */
NULL) ; /* reserved set to NULL */

/* To create a processor shared cache =*/

122 TPF V4R1 Application Programming

#include <c$cache.h>
char cacheType =

newCache (cache name,
&myCache,

&cacheType,
NULL) ;

castOutTime Value

Cache_ProcS; /* processor shared cache */
/* name of the cache */
/* address of where to store the token */
/* other parameters */
/* address of the cache type value */
/* reserved set to NULL */

The castOutTime parameter specifies the default time, in seconds, that an entry can
exist in cache before it is considered old and must be replaced. This value is only
used for processor unique caches or for processor shared caches that are not
being managed using a CF to handle entry invalidations from other processors. If
the cache is processor shared and connected to a CF cache structure, the
castOutTime value is ignored. If there are no CFs available for use by the cache,
the cache is still defined to be processor shared but operating in local mode and
the castOutTime value is used.

The following example shows how to create a processor shared cache with primary

and secondary keys.
#include <c$cache.h>

char cacheNameS[12] = "Shared_Cache"; /* cache name */
char cacheNameU[12] = "Unique_Cache"; /* cache name /
cacheToken myCacheShared; /* where to save cacheToken =/
cacheToken myCacheUnique; /* where to save cacheToken =/
long primaryKeylLgh = 255; /* 255 byte primary key */
long secondaryKeyLgh = 32; /* 32 byte secondary key */
long datalgh = 48; /* 48 bytes of data */
Tong numbEntries = 200; /* 200 entries */
long castOutTime = 60; /* cast entry after 60 seconds=*/
char cacheType = Cache_ProcS; /* processor shared cache */
if(newCache (cacheNameS, /* name of the cache
myCacheShared, /* address of where to store the token
primaryKeylLgh, /* maximum primary key length
secondaryKeylLgh, /* maximum secondary key Tength
datalgh, /* maximum data length
numbEntries, /* number of entries in cache
castOutTime, /* cast out Time value
&cacheType, /* address of cache type value
NULL) /* reserved set to NULL
1=CACHE_SUCCESS) /* successful create
{
printf("error creating Shared Cache"); /* write error msg =*/
/* and exit */
}
The following example shows how you can create a processor unique cache with
only primary keys and no castout time.
cacheType = Cache_ProcQ; /* processor unique cache =*/
if(newcache (cacheNameU, /* name of the cache */
&myCacheUnique, /* address of where to store the token */
primaryKeyLgh, /* maximum primary key length */
NULL, /* no secondary keys */
datalgh, /* maximum data length x/
numbEntries, /* number of entries in cache */
NULL, /* cast out Time value */
&cacheType /* address of cache type value x/
NULL) /* reserved set to NULL */
1=CACHE_SUCCESS) /+* successful create */
Understanding Logical Record Caching 123

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

printf("error creating Unique_Cache"); /* write error msg */
exit(1l); /* and exit */

Reading an Entry from a Logical Record Cache

To read an entry from a logical record cache, the application starts the
readCacheEntry function, passing the following as inputs:

* A pointer to the returned cacheToken value
* The primary and secondary key values and lengths
* A pointer to a buffer to hold the data that is found and the length of the buffer.

See [[PE_C/C++ | anguage Suppart User's Guidd for more information about the

readCacheEntry function.

The primary and secondary keys must exactly match the primary and secondary
keys that are used to add the entry to the cache. This includes both the content of
the keys and their lengths. Additionally, the ECB must have the same DBI as the
ECB that is used to add the entry. If the entry is found, as much of the data in the
entry as possible is copied to the passed buffer, and the passed length field is
overlaid with the length of the data copied.

The following shows the function for reading a logical record cache entry:

/* Read a cache entry */

long readCacheEntry(const cacheTokenPtr cache to_read,
const void * primary_key,
const long * primary_key length,
const void * secondary_key,
const long * secondary_key length,
const Tong * size_of_buffer,
const void * buffer);

If the entry is found, a CACHE_SUCCESS return code is returned to the caller. If
no entry is found, a CACHE_NOT_FOUND return code is returned to the caller.
When you receive this return code, you can retrieve the entry from permanent
storage and add it to a logical record cache by using the updateCacheEntry
function. See [Adding an Entry to a | ogical Record Cache” on page 129 for more
information about the updateCacheEntry function and using the function to add an
entry to a logical record cache.

If the target cache was defined with a primary and secondary key, both a primary
and a secondary key must be provided on each call to the readCacheEntry function.
If the cache was defined with a primary key only, only a primary key should be
passed. If a secondary key is provided, it is ignored by the readCacheEntry function.

Examples

The following example shows how to read an entry with primary and secondary
keys from the processor shared cache that was created previously.

char primaryKey[] = "find the entry with this key";
char secondaryKey[] = "using this secondary key";
char buffer[255];
long primaryKeyL = 0;
long secondaryKeyL =
long bufferL = 255;

0;

124 TPF V4R1 Application Programming

primaryKeyL = strlen(primaryKey); /* get length of primary Key x/

secondaryKeyL = strlen(secondaryKey); /* get length of secondary Key */
if(readCacheEntry (&myCacheShared, /* addr of the token for the cache */
primaryKey, /* primary key */
&primaryKeyl, /* primary key length */
secondaryKey, /* secondary key */
&secondaryKeyl, /* secondary key length x/
&bufferl, /* length of buffer to return data in */
buffer) /* address of buffer */
1=CACHE_SUCCESS) /* successful read */
{

printf("entry not found reading Shared Cache"); /* write message */
exit(1); /* and exit x/
}

The following example shows how to read an entry with a primary key from the
processor unique cache that was created previously and has only primary keys.

strcpy(primaryKey, "find the entry with this key");

primaryKeyL = strlen(primaryKey); /* get length of primary Key =*/
if(readCacheEntry (&myCacheUnique, /* addr of the token for the cache */
primaryKey, /* primary key */
&primaryKeylL, /* primary key length */
NULL, /* no secondary key */
NULL, /* no secondary key length */
&bufferL, /* length of buffer to return data in =/
buffer) /* address of buffer */
1=CACHE_SUCCESS) /* successful read */

{

printf("entry not found reading Shared_Cache"); /* write message */
exit(1); /* and exit */
1

Adding an Entry to a Logical Record Cache

To add an entry to a logical record cache, the application starts the
updateCacheEntry function, passing the following as inputs:

* A pointer to the returned cacheToken value
* The primary and secondary key values and lengths
* A pointer to the data you want to add and the length of that data.

If the data is to be individually timed, you can pass a pointer to a timeout value. If
not, set the timeout parameter to NULL. The updateCacheEntry function works as
both an add when the entry is not already in cache or as an update when the entry
already exists in cache. Therefore, the updateCacheEntry function can be used for
both an add and an update; however, there is no way to determine whether the
updateCacheEntry function performed an add or an update.

See h:EI:_CLCdzl-_Language_SuppaLt_LLsem_GLudd for more information about the

updateCacheEntry function. See LUpdating an Entry in a | ogical Record Cache” od
Em for more information about updating an entry in a logical record cache.

The following shows the function to add an entry to a logical record cache:

Tong updateCacheEntry(const cacheTokenPtr cache to_update,
const void * primary_key,

const Tong * primary_key length,
const void * secondary key,

const Tong * secondary_key length,
const Tong * size of entry,

Understanding Logical Record Caching 125

const void * entry data,
const long * timeout,
const char * invalidateOthers);

Primary and Secondary Keys

If the target cache was defined with both a primary and a secondary key, both a
primary and secondary key must be specified on a call to the updateCacheEntry
function. If the cache was defined with only a primary key, only a primary key is
passed. If a secondary key is specified, the updateCacheEntry function ignores it.

invalidateOthers Parameter

The invalidateOthers parameter is used to identify the updateCacheEntry function as
a change to local cache only or as a change to all caches in the complex. Because
this call is used to add the entry to the local cache so that the next readCacheEntry
will find the entry, set the invalidateOthers parameter to either a NULL pointer or a
pointer to a char of Cache_noInvalidate.

timeout Parameter

The timeout parameter is used to associate a lifetime, in seconds, to the entry. If
the entry remains in cache beyond this lifetime, the entry is invalidated and a
CACHE_NOT_FOUND return code is returned to the next readCacheEntry function
that tries to read the entry. The timeout parameter overrides the value specified for
the castOutTime parameter on the newCache function call.

Examples

The following example shows how to add an entry with primary and secondary keys
defined to the processor shared cache that was created previously.

char primaryKey[] = "add the entry with this key";
char secondaryKey[] = "using this secondary key";
char data[255] = "This is the data entry";

long primaryKeyL = 0;

long secondaryKeyL = 0;

long datal = 0;

char invalidateOption = Cache_NoInvalidate;

primaryKeyL = strlen(primaryKey); /* get length of primary Key x/
secondaryKeyL = strlen(secondaryKey); /% get length of secondary Key */
datalL = strlen(data); /% get length of data string */

if(updateCacheEntry(

&myCacheShared, /* addr of the token for the cache x/

primaryKey, /* primary key x/

&primaryKeyl, /* primary key length */

secondaryKey, /* secondary key */
&secondaryKeyl, /* secondary key length */

&datal, /* length of data to put in entry =/

data, /* address of data */

NULL, /* no timeout */
&invalidateOption) /* invalidateOthers option */

1= CACHE_SUCCESS) /* successful add */

{

printf("error on adding to Shared Cache"); /* write message */
exit(1); /* and exit */

}

126 TPF V4R1 Application Programming

The following example shows how to add an entry with a primary key to the
processor unique cache that was created previously and has only primary keys

defined.
Tong lifeTime = 180; /*1ife time of 180 seconds (3 min) =/
strcpy(primaryKey, "add the entry with this key");
primaryKeyL = strlen(primaryKey); /* get length of primary Key */
if(updateCacheEntry (
&myCacheUnique, /* addr of the token for the cache */
primaryKey, /* primary key */
&primaryKeyl, /* primary key length */
NULL, /* no secondary key */
NULL, /* no secondary key length */
&datal, /* length of data to put in entry =*/
data, /* address of data */
&lifeTime, /* entry timeout */
NULL) /* no invalidateOthers option */
1= CACHE_SUCCESS) /* successful add */

{

printf("error adding entry to Unique_Cache"); /* write message */
exit(1); /* and exit */
}

Updating an Entry in a Logical Record Cache

To update an entry in a logical record cache, the application starts the
updateCacheEntry function, passing the following as inputs:

* A pointer to the returned cacheToken value
* The primary and secondary key values and lengths
* A pointer to the new data and the length of that data.

If the new data is to be individually timed, a pointer to a timeout value can be
passed. If not, set the timeout parameter to NULL. The updateCacheEntry function
works as both an add when the entry is not already in the cache or as an update
when the entry already exists in the cache. Therefore, the updateCacheEntry
function can be used for both an add and an update; however, there is no way to
determine whether the updateCacheEntry function performed an add or an update.

See [PE C/C++ | anguage Support User's Guidd for more information about the
updateCacheEntry function. See [Adding an Fntry to a | ogical Record Cache” on

for more information about adding an entry to a logical record cache.

The following shows the function to update an entry in a logical record cache:

Tong updateCacheEntry(const cacheTokenPtr cache_to_update,
const void * primary key,

const Tong * primary_key length,
const void * secondary key,
const Tong * secondary_key length,
const Tong * size_of_entry,
const void * entry data,
const long * timeout,

*

const char * invalidateOthers);

Primary and Secondary Keys

If the target cache was defined with both a primary and a secondary key, both a
primary and a secondary key must be provided on each call to the
updateCacheEntry function. If the cache was defined with a primary key only, only a
primary key is passed. If a secondary key is specified, the updateCacheEntry
function ignores it.

Understanding Logical Record Caching 127

invalidateOthers Parameter
The invalidateOthers parameter is used to identify this updateCacheEntry as a

change to the local cache only (an add call; see lAdding an Fntry to a | ogical
Record Cache” on page 124 for more information about adding an entry to a logical

record cache) or as a change to all caches in the complex (an update call). If the
cache is a processor shared cache, the invalidateOthers parameter is then used to
tell the logical record cache to invalidate this entry in all processors. If the entry is
marked as an update type by setting the invalidateOthers value to
Cache_Invalidate, the logical record cache will start CF support to inform any other
processor that has registered interest in this cache entry that it has been changed.
Do this when the source information is actually changed on permanent storage and
is not used if this call was just to add the information to the local cache. Using the
invalidateOthers parameter the wrong way can cause performance problems. If the
invalidateOthers parameter is set to either a NULL pointer or a pointer to a char of
Cache _NoInvalidate, the updateCacheEntry function call is considered an add or
update of the entry in the local cache only. If the cache is a processor unique
cache, there is no difference between the two types of calls (add or update) and the
invalidateOthers parameter is ignored.

Note: When a processor shared cache is running in local mode because CF
support has not been installed, the value of the invalidateOthers parameter
has no effect.

timeout Parameter

The timeout parameter is used to associate a lifetime, in seconds, to the entry. If
the entry remains in the cache beyond this lifetime, the entry is invalidated and a
CACHE_NOT_ FOUND return code is returned to the next readCacheEntry function
that tries to read the entry. The new timeout parameter overrides the value specified
for the castOutTime parameter on the newCache function call, overlays the value the
updated entry may contain, and restarts the timeout function for the entry using the
new value.

Examples

The following example shows how to update an entry with primary and secondary
keys in the processor shared cache that was created previously and how to cause
any other processors with the same entry to have the entry marked as invalidated.

char primaryKey[] = "update the entry with this key";

char secondaryKey[] = "using this secondary key";

char data[255] = "This is the data entry";

long primaryKeyL = 0;

long secondaryKeyL = 0;

long datal = 0;

char invalidateOption = Cache_Invalidate; /*force invalidation of other processors */

primaryKeyL = strlen(primaryKey); /* get length of primary Key x/
secondaryKeyL = strlen(secondaryKey); /% get length of secondary Key */
datalL = strlen(data); /* get length of data string x/
if(updateCacheEntry (
&myCacheUnique, /* addr of the token for the cache */
primaryKey, /* primary key */
&primaryKeylL, /* primary key Tength */
NULL, /* no secondary key */
NULL, /* no secondary key length */
&datal, /* length of data to put in entry =/
data, /* address of data */
&lifeTime, /* entry timeout */
&invalidateOption) /* invalidateOthers option */

128 TPF V4R1 Application Programming

= CACHE_SUCCESS) /* successful add */
{
printf("error updating entry in Unique_Cache"); /* write message */
exit(1); /* and exit */
}

Deleting an Entry from a Logical Record Cache
To delete an entry from a logical record cache, the application starts the
deleteCacheEntry function, passing the following as inputs:
* A pointer to the returned cacheToken value
* The primary and secondary key values.

The primary and secondary keys must exactly match the primary and secondary
keys that are used to add the entry to cache. This includes both the content of the
keys and their lengths. Additionally, the ECB must have the same DBI as the ECB

that is used to add the entry. See FAdding an Entry to a | ogical Record Cache” od

for more information about adding an entry to a logical record cache.

See [[PE C/C++ | anguage Suppart User's Guidd for more information about the

deleteCacheEntry function.

The following shows the function to delete an entry from a logical record cache:

Tong deleteCacheEntry(const cacheTokenPtr cache to_update),
const void =* primary_key,
const Tong = primary_key length,
const void =* secondary key,
const long =* secondary_key length);

If the target cache was defined with a primary and a secondary key, both a primary
and secondary key must be provided on each call to the deleteCacheEntry function.
If the cache was defined with a primary key only, then only a primary key should be
passed. If a secondary key is provided, it is ignored by the deleteCacheEntry
function.

If the target cache is a processor shared cache using the CF, the deleteCacheEntry
function causes all other processors to have their copies of the deleted entry
invalidated.

Examples

The following example shows how to delete an entry with primary and secondary
keys defined in the processor shared cache that was created previously and how to
cause any other processors with the same entry to have that entry marked as
invalidated.

char primaryKey[

] "delete the entry with this key";
char secondaryKey[
L

= "using this secondary key";
long primaryKeylL
long secondaryKey

" O‘—‘ "

0

primaryKeyL = strlen(primaryKey); /* get length of primary Key x/
secondaryKeyL = strlen(secondaryKey); /* get Tength of secondary Key =*/

if(deleteCacheEntry (

&myCacheShared, /* addr of the token for the cache */
primaryKey, /* primary key */
&primaryKeyl, /* primary key length */
secondaryKey, /* secondary key */
&secondaryKeyl) /* secondary key length */

Understanding Logical Record Caching 129

= CACHE_SUCCESS) /+* successful delete */
{

printf("error deleting entry in Shared Cache"); /* write message =/
exit(1); /* and exit */
}

The following example shows how to delete an entry with a primary key defined in a
processor unique cache that was previously created with only primary keys.

strcpy(primaryKey, "delete the entry with this key");

primaryKeyL = strlen(primaryKey); /* get Tength of primary Keyx/
if(deleteCacheEntry (

&myCacheUnique, /* addr of the token for the cache */

primaryKey, /* primary key */

&primaryKeyl, /* primary key Tength */

NULL, /* no secondary key */

NULL) /* no secondary key Tlength */

1=CACHE_SUCCESS) /* successful delete */

{
printf("error deleting entry in Unique_Cache"); /* write message */
exit(1l); /* and exit */
}

Flushing Entries from a Logical Record Cache

To flush all the entries from a logical record cache, the application starts the
flushCache function, passing a pointer to the returned cacheToken value for the
cache to be flushed as input. The flush occurs immediately although other
applications may also be using the cache. If the cache is a processor shared cache,
no notification is sent to any other processors and no entries in their copy of the
cache are affected.

See [[PE C/C++ | anguage Suppart User's Guidd for more information about the

flushCache function.

The following example shows the function to flush a logical record cache:
Tong flushCache(cacheTokenPtr cache_to_flush);

Examples

The following example shows how to flush all entries from the processor shared
cache that was created previously.

flushCache (&myCacheShared); /* addr of the token for the cache =/
printf(" Shared Cache flushed"); /* write message */

exit(0); /* and exit */

The following shows how to flush all entries from the processor unique cache that
was created previously.

flushCache (&myCacheUnique); /* addr of the token for the cache =/
printf(" Unique_Cache flushed"); /* write message */

exit(0); /* and exit */

130 TPF V4R1 Application Programming

Deleting a Logical Record Cache

Examples

To delete a logical record cache, the application starts the deleteCache function,
passing a pointer to the returned cacheToken value for the cache to be deleted as
input. This delete occurs immediately although other applications may also be using
the cache. Users of the cache will receive a CACHE_ERROR_TOKEN return code
when they try to access the deleted cache.

If the cache is a processor shared cache, the connection to the CF cache structure
is deleted. If this is the last processor using the CF cache structure in the CF, the
structure is deleted. Otherwise, no other notification is sent to any other processor
and no entries in their copy of the cache are affected. See mﬁ

for more information about CF cache structures.

See [[PE_ C/C++ | anguage Suppart User's Guidd for more information about the

deleteCache function.

The following shows the function to delete a logical record cache:
Tong deleteCache(cacheTokenPtr cache_to_delete);

The following example shows how to delete a processor shared cache that was
created previously.

deleteCache (&myCacheShared); /* addr of the token for the cache =/

printf(" Shared Cache deleted"); /* write message */
exit(0); /* and exit */

The following example shows how to a delete processor unique cache that was
created previously.

deleteCache (&myCacheUnique); /* addr of the token for the cache */
printf("Unique_Cache deleted"); /* write message */

exit(0); /* and exit */

Understanding Logical Record Caching 131

132 TPF V4R1 Application Programming

Writing TPF Application Programs in C and C++

This chapter teaches you what you need to know to write TPF programs in C and
C++ languages. It contains a limited amount of information about C and C++
languages and compilers.

For detailed information about the many TPF application programming interface
(API) functions that are referred to in this chapter (including how to code them), see
the [CPE C/C++ | anguage Support User's Guidd. For information about the
functions that are provided with TCP/IP support, see [[PE Transmission Control
Protacal/lnternet Pratacal.

This chapter contains the following sections:

+ ISpecial TPE Considerationd discusses characteristics of the TPF operating

system that affect programming in C and C++.

+ [TPE Header Eiled describes header files included for the TPF operating system,
their relationship to each other, and how to create your own.

« [[PE Application Environment tells you how to perform specific TPF tasks using C

and C++ language support.

+ Calling Qther Functions and Programsd tells you how function linkage is

performed and how parameters are passed.

+ Compiling and Running C/C++ Programd describes TPF-related C and C++

compiler options and how using them affects your compiled programs.

+ DLL Compiler Qptiod tells you when to use this compiler option and what it

means to use the DLL compiler option.

Special TPF Considerations

There are some characteristics of the TPF operating system that will affect your
programming.

Coding main Functions

The TPF system supports coding main functions in dynamic load modules (DLMSs)
and passing the standard C argc and argv parameters to them. A DLM can contain,
at most, one main function. If a DLM does contain a main function, the main function
is the DLM entry point.

Building and Loading DLMs Containing a main Function

There is no change to the DLM build or load process. DLMs that contain a main
function are compiled, prelinked, link-edited, and loaded exactly the same way as
DLMs have been before this support.

The TPF offline loader (TPFLDR) program, the DLM startup code (segment
CSTRTD, which must be linked into every DLM, including those that contain a main
function), and the TPF C run-time environment initialization code (segment CLMINT
in the CISO library) detect the presence of the main function and manage it
appropriately.

CLMINT also includes a function similar to a UNIX shell that parses command
strings passed with the system function into argc and argv parameters for the main
function. This same function will also parse a command string contained in a core
block attached to data level 0 (DO) of the ECB that is passed by various ECB
create functions.

© Copyright IBM Corp. 1994, 2002 133

Defining a main Function
The main function can be defined anywhere in a DLM. The definition of main should
return an int, and take either no parameters:

int main(void) { /* code for main */ }

or two parameters:
* int, which is set to the number of argument strings passed to main
* charx**, which is set to the vector of pointers to argument strings passed to main.

These parameters are conventionally named argc and argv; for example:

int main(int argc, char x*argv) { /* code for main x/ }

The constraints on these variables are as follows:

e argc >=0.

» argv[argc] is a null pointer.

« argv[0] through argv[argc-1] point to NUL ('\0') terminated argument strings.
» if argc >= 0, argv[0] contains the load module name.

Calling a DLM Containing a main Function

The TPF system supports calling a DLM containing a main function through the
system function which is a standard C library function. The system function creates
a new ECB, which runs synchronously while the calling ECB waits. In UNIX terms,
the ECB that calls the system function is the parent process; the created ECB is the
child process. When the child process exits, its exit value is returned to the parent
process as the system function’s return value, and the parent process resumes
running.

In addition, the TPF system supports calling a DLM containing a main function
through several TPF-unique ECB create functions or macros. The supported
functions and macros include:

* creec function

* cretc_Tevel function
* swisc_create function
* tpf_cresc function

* CREEC macro

* CRESC macro

e CRETC macro

* CXFRC macro

e SWISC macro.

Passing Arguments to main

When a process calls the system function and creates a child process, the TPF
system parses the system command string into argc and argv parameters for the
main function of the child process.

When a process calls one of the TPF-unique functions that will enter a DLM, the
TPF system checks data level 0 (DO) of the ECB for a core block that contains the
command string. If DO is unoccupied, argc is set to 0 and argv[0] is set to the
program name. However, if there is a core block at DO of the ECB, the TPF system
parses the command string, starting at byte O of the core block, into argc and argv
parameters for the main function. The TPF system then releases the core block.

134 TPF V4R1 Application Programming

The TPF system uses the following format to parse command strings:

command:

[—prog I

v . .
redirection |
| [
parameterQ

redirection:

i pathname I
0<

—1>—
—2>—
L>>_ |
—1>>—
L2>>—]

Where

command
A string that creates a new process, giving the program name and any
additional parameters and standard stream redirections associated with the new
process.

prog
The name of the TPF program segment that contains the main function.

redirection
Specification of a file that is to be opened as one of the standard streams.

<or0<
Indicates redirection of the stdin stream.

>or 1>
Indicates redirection of the stdout stream. If the file exists, it is truncated to
zero bytes.

2> Indicates redirection of the stderr stream. If the file exists, it is truncated to
zero hytes.

>> or 1>>
Indicates redirection of the stdout stream without truncation and with output
appended to the end of the file.

2>>
Indicates redirection of the stderr stream without truncation and with output
appended to the end of the file.

pathname
The path to the file from or to which the stream will be redirected.

Writing TPF Application Programs in C and C++ 135

parameter
A blank delimited substring of the command string that contains no blank
characters and cannot be parsed as a redirection. Each parameter is passed as
an element of the argv vector to the main function in program name.

The TPF system:

* Formats the command string into the argv vector so that:
— argv[0] contains the address of the prog string.
— argv[1] to argv[n] contains the addresses of any parameter strings.
— argv[n+1] contains a null pointer.

* Builds a parameter list. This parameter list contains the following two parameters:
— An int parameter, which contains the total number of strings in the argv array

(n+1)
— The address of the argv array.

» Sets the current working directory as specified by the TPF_CWD_PATHNAME
environment variable, or to the root directory if TPF_CWD_PATHNAME does not
specify a directory.

* Opens the standard streams on the files specified by:

1. The redirection specifications in the command string
2. If there is no redirection specification for the standard stream, it is opened on

the path specified by environment variable TPF_STDIN_PATHNAME,
TPF_STDOUT_PATHNAME, or TPF_STDERR_PATHNAME

3. If no path name is specified for the standard stream, either by a redirection
specification or by an environment variable, the standard stream is not
opened and any I/O operations on that stream will fail unless a call to the
freopen function successfully opens the standard stream.

I/O Stream Pipes

Many C run-time environments support piping the standard output (stdout) stream
from one process to the standard input (stdin) stream of a second process. The
TPF system does not accept command strings that contain vertical bars (]) (which
are used by UNIX and other C run-time environments to indicate 1/O stream pipes)
when you are using the system function. If a string containing a vertical bar is
passed to the system function, the system function returns -1 and sets errno to
EINVAL. For more information about 1/0O stream pipes, see the information for the

mkfifo, tpf_fork, and pipe functions in [PE C/C++ | anguage Support User'd
Guidd.

Example of Calling a DLM That Contains a main Function
If the following program ABCD:
/* Demonstration program ABCD */

#include <stdio.h>
#define _POSIX_SOURCE
#include <stdlib.h>

int main(int argc, char x*argv)
{
FILE *fp = fopen("wxyz.input", "w");
fputs("A message from ABCD.\n", fp);
fputs("TPF now supports:\n\n", fp);
fputs("-- int main(void);\n", fp);
fputs("-- int main(int argc, char ** argv);\n", fp);
fputs("-- environment variables, inherited through system();\n",

136 TPF V4R1 Application Programming

p);
fputs("-- standard I/0 stream redirection.\n", fp);
fclose(fp);

setenv("myname", argv[0], 1);
printf("%s: My name is %s.\n", argv[0], getenv("myname"));

printf("%s: Now I will execute program WXYZ.\n", argv[0]);

printf("%s: WXYZ returned %d\n", argv[0],
system("WXYZ <wxyz.input one two three"));

printf("%s: My name is still %s\n", argv[0], getenv("myname"));
remove ("wxyz.input");

return 0;

}

invokes the following program WXYZ:
/* Demonstration program WXYZ x/
#include <stdio.h>

#include <limits.h>

#define _POSIX_SOURCE
#include <stdlib.h>

int main(int argc, char x*argv)

{
int i;
char buffer[256];
printf("%s: My parent's name is %s\n", argv[0], getenv("myname"));
setenv("myname", argv[0], 1);
printf("%s: My name is %s\n", argv[0], getenv("myname"));
printf("%s: argc = %d\n", argv[0], argc);
for (i = 0; i < argc; ++i)
{
printf("%s: argv[%d] = %s\n", argv[0], i, &cond.
argv[il);
}
for (i = 1; gets(buffer); ++i)
{
printf("%s: Line %d of stdin: %s\n", argv[0], i, buffer);
}
return 42;
1

The output will then be:

ABCD: My name is ABCD.

ABCD: Now I will execute program WXYZ.

WXYZ: My parent's name is ABCD

WXYZ: My name is WXYZ

WXYZ: argc = 4

WXYZ: argv[0] = WXYZ

WXYZ: argv[1l] = one

WXYZ: argv[2] = two

WXYZ: argv[3] = three

WXYZ: Line 1 of stdin: A message from ABCD.

WXYZ: Line 2 of stdin: TPF now supports:

WXYZ: Line 3 of stdin:

WXYZ: Line 4 of stdin: -- int main(void);

WXYZ: Line 5 of stdin: -- int main(int argc, char ** argv);

Writing TPF Application Programs in C and C++

137

WXYZ:
WXYZ:
ABCD:
ABCD:

Note:

— TARGET(TPF) Restriction
While we are talking about functions, there is something else that you should
keep in mind. If a function linkage is not explicitly specified (coded without
static or extern specified), the default is extern. Although there is no
requirement to explicitly type functions, it is recommended for TPF systems.

Line 6 of stdin: -- environment variables, inherited through system();
Line 7 of stdin: -- standard I/0 stream redirection.

WXYZ returned 42

My name is still ABCD

In the previous example, program WXYZ inherits a copy of the ABCD
environment list, but changes that WXYZ makes to its environment list are
not copied back to the ABCD environment list.

If you change the declaration of a function from static to extern, you must
change the allocator table so that external linkage is provided for the new
entry point:

1. Code a statement in SIP skeleton IBMPAL for each new external function.
Use the format for a transfer vector as described in

Installation Support Referencd.

2. Create a new version of the allocator.

Example of Creating an ECB That Enters a DLM That Contains a main

Function

If the following program EFGH:

#include <tpfapi.h>
#include <stdlib.h>
#include <stdio.h>

#define PROG_NAME "EFGH"
#define COMMAND_STRING "STUV Parm#l Parm#2 TESTParm"

void EFGH (void)
{

int seconds; /* CRETC time interval */
char *coreBlock; /* pointer to core block */
char =xaction; /* action word passed by CRETC */

printf ("%s: Creating ECB to enter DLM main.\n",

PROG_NAME) ;

/***/

/* Release data level 3, if held. Then get a new */
/* core block which will hold command string for */
/* the main function. */

/***/
crusa (1, D3);
coreBlock = (char *)getcc(D3, GETCC_TYPE, L2);

memset (coreBlock, 0x00, ecbptr()->celcc3);

/***/

/* Setup the command string for the main function. =/
/***/

strcpy (coreBlock,

COMMAND_STRING,
strlen(COMMAND_STRING));

138 TPF V4R1 Application Programming

/***/

/* Create a time-initiated ECB. */

/***/
seconds = 10;

action = "TPFO";

cretc_level (CRETC_SECONDS, STUV, seconds, action, D3);

/***/

/* Print completion message. */
/***/

printf ("%s: ECB will be created in %d seconds.\n",
PROG_NAME, seconds);

exit(0);

invokes the following program STUV.:

#include <stdlib.h>
#include <stdio.h>

#define PROG_NAME "STUV"

int main (int argc, char **argv)
{
int 13 /* Loop counter */
char *action; /* Action code passed by caller */

printf ("%s: New ECB created successfully.\n",
PROG_NAME) ;

action = (char *)&echptr;()->ebwd00;
action[4] = '\0';

/***/

/* Print the action code which was passed by caller. */
/***/

printf ("%s: Action code = %s.\n", PROG_NAME, action);

[F kg kKR R 2 2 R R R R R R T T TR E Kk kkkh Kk /
/* Print the name of our program and then Toop */
/* through each of the parameters passed in the argv */
/* parameter. */

/***/
printf ("%s: Our program name is %s.\n", PROG_NAME,
argv[e]);

for (i = 1; i < argc; i++)
}
printf ("%s: Parameter #%d is %s.\n", PROG_NAME,
i, argv[il);

[FK R gk gk kk ko k ok kR ok ok k ok ok k ko k ko k ok k ok ok k ok *kkkk [

/* Exit this ECB. */

/***/

printf ("%s: Created ECB is now exiting.\n",
PROG_NAME) ;

exit (0);

The output will then be:

Writing TPF Application Programs in C and C++

139

EFGH: Creating ECB to enter DLM main.
EFGH: ECB will be created in 10 seconds.
STUV: New ECB created successfully.
STUV: Action code = TPFO.

STUV: OQur program name is STUV.

STUV: Parameter #1 is Parm#l.

STUV: Parameter #2 is Parm#2.

STUV: Parameter #3 is TESTParm.

STUV: Created ECB is now exiting.

Coding C++ Applications

This section describes some of the concepts you need to know when coding C++
applications. See the IBM C/C++ user’s guide and programmer’s guide for the
System/390 platform used by your installation for a more thorough discussion about
C++ and dynamic link libraries (DLLS).

main or extern "C" Requirement

DLL applications are required to have either main or an entry point with the same
name as the load module. If your DLL application does not have main, C++ mangles
the function name. You code an extern "C" linkage specification to produce an
entry point with the same 4-character uppercase name as the load module.

The extern "C" linkage specification allows a C++ application entry point to be
called through TPF enter/back services. This linkage specification also forces the
linkage to the entry point of the load module to be C linkage instead of C++ linkage.

Only the entry point function must have the extern "C" linkage specification. Other
functions in a C++ application do not need this linkage specification. A function in
the C++ application that is called by another function in the same load module can
have C++ linkage.

If you do not code the extern "C" linkage specification, the offline loader (TPFLDR)
provides an error message that the entry point is not found in the program.

In the following example, the extern "C" linkage specification produces an entry
point with the same name as the QZZ0 load module name. The call to ReadIt in
EmpClass does not require this linkage specification.

class EmpClass

{
i..
extern "C" void QZZ0 ();

double raise;
EmpClass *EmpPtr = new EmpClass[total_employees];

raise = EmpPtr[i].ReadIt(raise);
}

double & EmpClass::ReadIt (double & rate)
{

140 TPF V4R1 Application Programming

C++ Exceptions

Exporting

This section describes some of the TPF system considerations you need to know

when coding C++ exceptions in your application. See the I0S/390 C/C++ | anguagd
Referencd

for more information about general C++ exception handling.

The TPF system supports only application-defined exceptions. System errors and
program checks are handled by the operating system and are not surfaced to the
application.

Exceptions can be thrown across load module boundaries; for example, an
exception can be thrown by a DLM but caught by another DLM that resides in the
ECB program nesting level (PNL). All TPF programs that reside in the PNL between
the current program and the program that contains a catch clause are dropped from
the nesting level. TPF enter/back processing performs all clean up that is
associated with dropping a program from a nesting level.

Note: Do not use C++ exceptions in applications that have parts written in
(TARGET)TPF.

If a TARGET(TPF) program is dropped from a nesting level during exception

processing, a SNAP system error is taken and the application continues to run;

however, application problems may occur if the application calls a TARGET(TPF)

program after the exception is processed.

If an exception is thrown, but a catch clause in the application cannot be found to
handle the exception, the standard behavior is that the terminate function is called.
The default action of the terminate function is to call the abort function, which
raises the SIGABRT signal; however, the terminate function is modified to produce
a system error and exit the ECB instead of calling the abort function.

Note: For this reason, do not write applications to use both signals and exceptions.

If you code a throw block in a destructor, the corresponding try and catch blocks
must also be in the scope of the destructor or the results are unpredictable.

Exporting is a DLL concept. The following are ways to export functions and
variables:

* The EXPORTALL compiler option allows a DLL to export all external functions
and variables. This also means that no functions or variables can be hidden;
everything in the DLL is accessible to other DLLs and DLL applications. If you
use EXPORTALL, you do not need to include the #pragma export directive.

* The #pragma export directive permits you to control specific functions and
functions that can be exported when you can code this directive in your source
file.

* Using the EXPORT C++ language extension keyword permits you to declare that
the function or variable is to be exported.

Reentrant Programming

All TPF application programs must be reentrant. This means that a TPF application
program must be coded as if it was being run simultaneously by more than one
process. This is called parallel reentrancy. Furthermore, TPF applications must not
leave anything behind that alters the path of a subsequent process. This is called
serial reentrancy.

Writing TPF Application Programs in C and C++ 141

TPF systems provides 2 ways of defining data objects to be accessed by more than
1 program (globals).

* For data that remains across multiple ECBs, use globals. For more information
about globals, see [Using TPE Globals” on page 155.

¢ For data that does not remain across ECBs, the ECB work area and data levels
can be used.

Addresses can be passed between functions in the same DLM. Passing function
pointers between DLMs can result in errors, because in most cases the static
storage is not set up properly.

Note: DLL and C++ applications can pass function pointers between themselves.

Programming Rule
Pass addresses between functions in the same C program. Do not pass
function pointers between C programs.

It is possible, though difficult, to write self-modifying code in C. Because of
reentrancy requirements, this practice is not allowed in TPF systems.

Standard TPF Program Sizes

142

ISO-C programs can exceed 4095 bytes (4KB). The load module representing an
ISO-C program can be the largest size supported by the linkage editor. The load
module is stored on online DASD in 4KB chained records. When loaded into main
storage, contiguous storage is used.

— TARGET(TPF) Restriction
TARGET(TPF) programs are restricted to 4KB blocks. If you need to break up
an existing C source program into smaller segments, do the following:

» Ensure that the appropriate set of header files is duplicated in the new
segments.

» Ensure that any required function prototypes and structure declarations are
present in the new segments. Prototypes for static functions must be
modified to reflect the fact that they now reside in a different source module
and are, therefore, external.

* There can be certain static functions that are called by both the functions
being placed in the new segment, and the functions that remain in the old,;
these must be duplicated in both segments.

#include <stdlib.h>
#include <stdio.h>

#define PROG_NAME "STUV"
int main (int argc, char xxargv)
{
int 1; /* Loop counter */
char *action; /* Action code passed by caller */

printf ("%s: New ECB created successfully.\n",
PROG_NAME) ;

action = (char *)echptr()->ebwd00;

TPF V4R1 Application Programming

/***/

/* Print the action code which was passed by caller. */
/***/

printf ("%s: Action code = %s.\n", PROG_NAME, action);

/***/

/* Print the name of our program and then Toop */
/* through each of the parameters passed in the argv */
/* parameter. */

/***/
printf ("%s: Our program name is %s.\n", PROG_NAME,
argv[e]);

for (i = 1; i < argc; i++)
{
printf ("%s: Parameter #%d is %s.\n", PROG_NAME,

i, argv[il);
}

/***/

/* Exit this ECB. */

/***/
printf ("%s: Created ECB is now exiting.\n",
PROG_NAME) ;

exit (0);

}

For planning purposes, it is a good idea to map out all of the functions in the
original source module and determine which functions are called by other functions.

Static Storage Considerations
As described in Understanding High-1 evel | anguage Concepts in the TPE System,
static storage is the storage required for static variables needed by a given ECB.

Once acquired, this storage is not released until the ECB exits. (Static storage is
not released with an ENTDC for ISO-C but it is released for TARGET(TPF).)

TPF Header Files

Several header files are provided for TPF application programming. The header files
perform the following functions:

* Map the ECB, IBM-released globals, and other TPF data structures

* Provide C function prototypes

* Provide constant definitions for the function parameters and return codes
» Define macros for the functions implemented as macros

» Define the TPF_regs structure (TPF_regs is a C structure used to pass parameter
values to assembly language programs in registers).

The header file structure approach changed from TARGET(TPF) to be more aligned

with the way standard C programs are written. TARGET(TPF) provides the following
for the tpfeq.h header file:

Writing TPF Application Programs in C and C++ 143

tpfeq (TARGET(TPF))

tpfregs ctca assert tpflink c$ebOeb c$syseq
stddef tca time exlocal sysdef errno
c$ebOeb c$ebOeb
locale stdlib

Figure 17. tpfeq.h Header File for TARGET(TPF)

ISO-C provides the following for the tpfeq.h header file:

tpfeq (ISO-C)

| time | locale

assert tpfregs

c$ebOeb
stddef stdlib errno sysdef c$syseq

Figure 18. tpfeq.h Header File for ISO-C

Creating Your Own Header Files

In addition to the header files that the TPF system provides, you can create your
own. This section gives you some general guidelines.

The following items belong in TPF header files:

» Commonly defined constant terms using the #define preprocessor statement.
These include:

— TPF constants
— Bit masks used to test for particular conditions

— Other uses of the #define statement, such as coding a #define statement for
a constant following an #ifndef statement, to make sure the constant is not
defined more than once.

e struct, enum, and union declarations (not definitions, which actually reserve
space for the data objects)

* C macros
* Entry point prototypes

Note: It is recommended that you pass structures to a function by reference and
not by value. If the function does not update the structure, pass a pointer
to a constant structure.

* Type definitions (using the typedef facility)
* Any number of nested #include statements.

The following items do not belong in TPF header files:
» Data object definitions of any type or class

144 TPF V4R1 Application Programming

* Function code of any type.

All data st

ructures that have a corresponding assembler DSECT defined by their

own macro reside in their own header files. If you are going to convert existing
assembler data macros to C or C++ structures, you need to consider boundary

alignment. Boundary alignment is determined by how data types are stored. The
following shows how data types are stored and aligned by the C or C++ compiler:
Data Type Memory Occupied Alignment

char 1 byte byte

int 4 bytes fullword

short int 2 bytes halfword

long int 4 bytes fullword

float 4 bytes fullword

double 8 bytes doubleword

In C, using int, short int, Tong int, float, and double in data structures forces

boundary
data struc

alignment to the next boundary determined by the data type. When these
tures are coded in assembler, the boundaries can differ (unless the

assembler version is coded to coincide with the C version). This is a serious

problem b

TPF Header Files and

ecause it can result in errors that are difficult to diagnose.

C++

The header file structure of C programs is changed to handle C++. The following
changes have been made:

1. The header file prolog will look as follows:

??=ifndef _ NAME_HEADER _
?7=ifdef __COMPILER VER _
??=pragma filetag("IBM-1047")
??7=endif

#define _ NAME_HEADER _ 1

See [[PE Programming Standardd for an example of the C header prolog.

The #pragma margins directive is deleted from the code. The following example

shows how the #pragma margins directive was previously used.

??=pragma margins(1,72) sequence(73,80)

C linkage wrappers are added around all function prototypes, so all the existing

C functions can be called from the C++ programs.

#ifdef __cplusplus
extern "C" {
#endif

/* C function prototypes */
#ifdef _ cplusplus

}
#endif

4. The definition of NULL for C++ is added as follows:

#ifdef _ cplusplus
#define NULL 0
#else
#define NULL
#endif

((void =) 0)

Writing TPF Application Programs in C and C++ 145

5. The #pragma pack directive is supported for C++. The #pragma pack directive
specifies the alignment roles to use for the structures, unions, and classes. The
C++ compiler does not support the _Packed qualifier on the structure
declaration. See the following example:

#ifdef __cplusplus
#pragma pack (packed)

#else

_Packed

#endif

struct

{
long int 1il;
char ccl;
short int sil;
long int 1i2;
short int si2;
char cc2;

} mytest;

#ifdef __cplusplus
#pragma pack (reset)
#endif

See the IBM C/C++ language reference on the System/390 platform used by
your installation for more information about #pragma pack.

6. The #pragma 1linkage directive is not supported in C++ language. Therefore,
change the #pragma linkage (func_name, builtin) directive in C to read:

#ifdef _ cplusplus
extern "builtin"
#else
#pragma linkage(func_name,builtin)

More Useful Information
The following items can be useful.

1. If you need to create a C structure from an existing BAL DSECT, use the
CDSECT tool. The tool is documented in the user’s guide for the particular IBM

C or C++ compiler used by your installation. See EIBM High-1 evel | anguage
Books” on page xix for a list of IBM C and C++ compiler publications for the

System/390 platform. Using the CDSECT tool will aid in avoiding code
language-porting errors.

When you run the CDSECT tool, these are the recommended parameters:
CDSECT name (BITFOXL DEFSUB EQUATE(DEF) LOWERCASE SEQUENCE)

2. Indicate all storage generated for boundary alignment in a global/external
structure by using a bit declaration and a comment.

struct tpf_example {

Tong int exam_long; /* Field one */
short int exam short; /* Field two */

int : 16; /* Reserved for use by IBM =/
long int exam_longl; /* Field three */

}s
3. Declare all reserved storage in a structure by using an unnamed bit declaration
and a comment.
Use no more than 16-bit increments to declare unnamed bit fields. If more than
2 bytes (16 bits) are needed, then use as many instances of 16-bit declarations
as necessary.

struct tpf_example { Tong int exam_long; /* Field one x/
int . 163 /* Reserved for use by IBM x/
int : 163 /* Reserved for use by IBM =/

146 TPF V4R1 Application Programming

Tong int exam longl; /* Field two */

1

struct tpf_example2 { Tong int exam long; /* Field one %/
char exam_longl; /* Field two */
int : 16; /* Reserved for use by IBM =/
int . 8, /* Reserved for use by IBM x/};

4. Order the fields within a structure according to the basic integral boundary
alignment (double, fullword, halfword, character) when creating new structures.
This avoids boundary alignment problems which can cause code errors.

To take advantage of field characteristics with C addressability, here is a
suggested use of pattern:

struct tpf_example { Tong int exam_long; /* long example x/
short int exam_short; /* short example */
short int exam_short2; /* 2nd short example */
short int exam_short3; /* 3rd short example */

char exam_char; /* character example */
char exam_char2; /* 2nd character example =*/ };
instead of:

struct tpf_example { char exam_char; /* character example */

int : 8 /* Reserved for use by IBM */
short int exam_short; /* short example */
short int exam_short2; /* 2nd short example */
short int exam_short3; /* 3rd short example */
char exam_char2; /* 2nd character example */
int : 16; /* Reserved for use by IBM =/
int : 8; /* Reserved for use by IBM =/
Tong int exam_long; /* Tong example x/ }

Even if you need to organize a structure by function, this convention still
applies. A substructure is created to contain the function, and the fields in the
substructure are ordered by their integral boundary alignment.

Programming Rule
When data is used by both C or C++ language and assembler language
programs, define the storage consistently with C or C++ language and adapt
the assembler language programs accordingly.

When an int field is defined as a bit field, the C compiler does not align the field,
unless there is an intervening 0-length field.

Example: Assume you have 3 bytes of characters, followed by an integer. In
assembler, it might be coded as follows:

CHARS DS CL3
INTEGER DS XL4

Assuming the character variable started at displacement 0, the integer variable will
start in location 3.

Assume the same structure is coded in C as follows:
char chars [3];

int integer;

The character variable will still start at displacement 0. However, the integer
variable will start at displacement 4 because integer data types are aligned on

Writing TPF Application Programs in C and C++ 147

fullword boundaries. To make the alignment of the C structure the same as the
alignment of the assembler structure, code it as follows:

typedef Packed struct { char chars[3] ;
int integer ; } astruct ;

Note: The struct has no tag; this prevents unintentional unpacked declaration of

this struct. With the MVS and OS/390 C/C++ compilers, you may use
#pragma pack():

#pragma pack(packed)
struct astruct { char chars[3]; int integer; };

#pragma pack(reset)

Following are some reminders and coding techniques that you will find helpful when
working with header files:

The #ifndef directive can be used to prevent multiple declarations of the same
identifier (in case the header file is included more than once). This allows
headers to be included more than once without causing compile errors. The
ISO/IEC C standard requires that all standard header files, except assert, can be
included any number of times with the same effect as if they were only included
the first time.

The #if and #ifdef statements can be used to separate operating
system-specific sections of code. For example, if you have an offline utility that
runs differently on MVS systems than on TPF systems, but the interface as seen
by the programmer is the same, these statements can be used to separate
distinct code. The same file can then contain the source code for both.

It is very important that for every else, #if, #ifdef, #ifndef, and #elif statement
coded, there is a corresponding #endif in the same header file. Missing #endi f
statements can cause serious problems at compile time.

The # and ## operators, for quotation and concatenation, are very useful when
defining macros.

Do not include header files inside any other declaration. In other words, include
all header files at file scope. The ISO/IEC C standard specifically requires this for
the headers that it describes.

Define the user interfaces and symbols required by the interface in user API
header files. The interfaces and symbols should not include any symbols that are
used to implement the interface.

Nesting should be done judiciously. Using several levels of nesting when
declaring structures and unions has a serious drawback: the composite identifier
names that must be used to refer to members of the structure or union at an
inner nesting level can become quite lengthy and make programming and
debugging unnecessarily challenging. When one level of nesting is not sufficient,
you may want to declare separate unions or structures for each level, and use
pointers to address them.

The LSEARCH and SEARCH compile-time options control how the compiler
locates filenames in <> and "" pairs under VM/CMS in the #include
preprocessor directive. The SEARCH option is required for compiling TPF system
programs, to insure that the correct header file library is present.

You can view header files in a listing format by using the SHOWINC compile-time
option.

148 TPF V4R1 Application Programming

TPF Application Environment

Accessing the ECB

Work Areas

Data Levels

There is an entry control block assigned to each input message or entry that
defines all resources allocated to process that entry. The C data structure
corresponding to the ECB is called ebOeb, and is defined in_header file c$eboeb.h.
The macro, ecbptr, is used to obtain access to the ECB. m shows 2
examples of using this macro. In the first example, pointer ecb is initialized to point
to the current ECB. In the second example, amsg is a pointer data object that is
assigned to point to the AMOSG record on data level 1. The ecbptr macro returns
the base address of the ECB.

The echptr macro is resolved by a single instruction. Repeated calls to ecbptr,

struct ebOeb *ecb;
struct amOsg *amsg;

echb = ecbptr(); /* set ecbh to point to ECB */
amsg = echptr()->celcrl; /* set aaa to point to 1st CBRW in ECB */

Figure 19. Using ecbptr to Access the Contents of celcrl

therefore, generate more efficient code than storing the result and using that result
as a pointer to the eb0Oeb structure.

The ECB contains areas for application use and reference, as well as several areas
that only TPF can use. Areas available to the application program are known as
work areas. There are 2 work areas, known as the EBW and EBX work areas,
which are controlled by the application. These areas are used as transient work
areas, as register save areas, for switch settings, or for other application purposes.
C/C++ programmers, however, must use these areas judiciously, because they are
subject to modification by any program segment that processes this entry. In the
course of processing the entry, the contents of these areas are used for different
purposes. Because automatic storage is available in C/C++ programming, it should
be used for internal variables. For C/C++ programmers, the preferred purpose of
the ECB work areas is to interface with assembler programs. There are several
ways to pass parameters or values in assembler, including using registers and by
using these ECB areas.

Programming Rule
Avoid using the ECB work areas for storing transient data. The preferred use
of these areas is to pass arguments to or receive values from a called
assembler segment. Use automatic storage for internal variables.

Information about file addresses is stored in 8-byte fields called file address
reference words (FARWS). Information about certain main storage blocks is stored
in 8-byte fields called core block reference words (CBRWS). There are 16 FARWSs
and 16 CBRWs per ECB, each of which is associated with a data level. The data
levels are identified in hexadecimal notation as DO (data level 0) through DF (data
level 15).

Writing TPF Application Programs in C and C++ 149

Think of a data event control block (DECB) as another ECB data level, but it does
not reside in an ECB. An ECB data level and a DECB are very similar, but in a
DECB the FARW has been expanded to 12 bytes to provide 8-byte file addressing.

For more information, see Data Event Control Blocks” on page 29.

Managing Files
The TPF system supports stream input/output (I/O) at an abstract level, with a
hierarchical file system modeled on the UNIX and Portable Operating System
Interface for Computer Environmentsl standards (POSIX) TPF also supports
record-level DASD 1/O using TPF-specific FIND and FILE protocols. The TPF tape
and general file interfaces are also record-level protocols.

TPF File System

The TPF file system automatically and transparently handles low-level problems
such as record blocking, allocation, chaining, and locking protocols. The TPF file
system also gives efficient direct access to data in a file. When used appropriately,
the hierarchical file system can significantly reduce the cost and time required to
design, implement, and maintain applications.

The TPF file system application programming interface (APIs) include all of the
ANSI Standard C library (ISO/IEC 9899-1990, section 7) and most of the POSIX1,
standards sections 5 and 6. The TPF file system is not POSIX compliant but for
most of the API functions, the interfaces and semantics are identical to POSIX1

(see [[RPE_C/C++ | anguage Support User's Guidd for details about deviations

between the TPF file system APIs and the POSIX.1 standards).

The TPF file system APIs work at two levels:
« Buffered 1/0
* System-level 1/0.

The more abstract level is the buffered I/O functions, declared in <stdio.h>. The
buffered 1/0O functions operate on a pointer to FILE. Examples include fopen, fclose
and fflush; fread and fwrite; the formatted 1/O functions such as fprintf and
fscanf; the character 1/0O functions such as fgetc, fgets, fputc, fputs; and many
others. These APIs are typically used in C language applications that need to create
and access files. In general, they are easier to use and more efficient than the less
abstract system-level functions that follow.

The system-level 1/O functions, declared in <unistd.h>, <fcntl.h>, <dir.h>, and
other headers, are appropriate in cases where an application needs to work on the
directory structure itself or where more control over files than is provided by the
buffered 1/0O functions is required. The system-level 1/O functions operate on a file
descriptor, a path name (which is a C string), or a pointer to DIR. Examples include
creat, open, close, read, write, fcntl, chdir, chown, chmod, mkdir, mknod, and stat,
and many others.

It is possible to switch levels if necessary. The fileno function returns the file
descriptor underlying a pointer to FILE, allowing you to switch from buffered 1/O to
system-level 1/0. Conversely, the fdopen function creates a pointer to FILE from a
previously opened file descriptor, allowing you to switch from system-level 1/O to
buffered I/O.

Record-Level DASD I/O

The term DASD refers to direct access storage devices. C programmers can think
of the term DASD as being synonymous with disk file, or disk, or file.

150 TPF V4R1 Application Programming

The basic record-level DASD I/O actions are implemented in TPF API functions
find_record and file_record. The waitc function is used in TPF for error detection

at the record 1/0 level. See [PE_C/C++ | anguage Support User's Guide for more

information about these functions.

if(waitc()) /* if nonzero return code */

{

snapc (SNAP_EXIT,0x6404,"1/0 ERROR",NULL,'U",SNAPC_NOREGS,SNAPC ECB,NULL);
/* force abnormal exit */

}

Figure 20. Using the waitc Function for Error Detection

There are two groups of find and file functions. The first group is higher level in the
sense that invoking one function takes care of several different operations with one
command. These functions are also simpler to use, because the programmer can
specify certain fields (id and rcc) as parameters on the function call, rather than
setting these CBRW fields with separate assignment statements.

file_record File a record.

file_record_ext File a record with extended options (this function
includes TPF DECB support).

find_record_ext Find a record with extended options (this function
includes TPF DECB support).

find_record Find a record.

Note: Applications that call the find_record_ext and file_record_ext functions
and use 8-byte file addresses or DECBs in place of data levels, must be
compiled with the C++ compiler. For more information about TPF DECB

support, see tData Event Control Blacks” on page 29.

Additional find and file functions that give the C programmer more control, and
should, therefore, be used with more caution are:

filec File a record

filnc File a record with no release

filuc File and unhold a record

findc Find a record

finhc Find and hold a record

finwc Find a record and wait

fiwhc Find and hold a record and wait

unfrc Unhold a file record.

When using this second set of functions, programmers must have a greater

understanding of the system file-record-level I/O routines and may need to call the
waitc function to make sure the record is attached to the ECB.

See the detailed API function descriptions in TRE_-C/C++ | anguage Support User'd
for more information about the use of these functions.

Writing TPF Application Programs in C and C++ 151

152

The TPF system also uses another entity for file /O, called a general data set.
General data sets are organized on the basis of contiguous space on DASD, and
are compatible with MVS. Two functions are used to manage this type of data set:

gdsnc Open and close data set

gdsrc Get record address.

Tape 1/0O

Real-time tapes are tapes that can be written to (and only written to) at any time by
any operation in the system. There are two API functions available to write to
real-time tapes:

tourc Write record, release buffer block

toutc Write record, retain buffer block.

General tapes are 1/0O tapes used for application programming. They allow the
application program to write to consecutive files and read them in logical sequence.
There are two groups of API functions for managing general tapes: basic general
tape functions and high-level general tape functions.

A basic general tape function performs a single tape function and gives an ECB
absolute control over a tape. (However, a tape can be shared between ECBs hy
assigning and reserving a tape in the appropriate sequence.) Using the basic
general tape functions can also provide more efficient processing if it is needed.
The basic general tape functions are:

tasnc Assign tape to process
tbspc Backspace tape

tclsc Close a general tape
tdspc Display tape status
tdspc_q Display tape queue length
topnc Open tape

tprdc Read tape record

trewc Rewind tape

trsvc Reserve tape for other processes
tsync Flush tape buffer

twrtc Write tape record.

A high-level general tape function performs multiple tape functions from the set of
basic general tape functions and allows all ECBs to share a tape.

At the beginning of processing a high-level general tape function, all the functions,
except for tape_open, assign the tape. Therefore, when you use these functions,
except for tape_open, you must reserve the tape or the tape must be in a reserved
state from previous processing.

At the end of processing a high-level general tape function, all the functions, except
for tape_close, reserve the tape. Therefore, when using these functions, except for
tape_close, the tape will be left in a reserved state at the end of processing.

The high-level general tape functions are:

TPF V4R1 Application Programming

tape_close Close a general tape

tape_cnt] Tape position control
tape_open Open tape
tape_read Read a record

tape_write Write a record.

ECBs and Entries

In the TPF system each active entry has an ECB associated with it. Once created,
the ECB is processed by a specific application, which can consist of many
individual program segments.

Control
An ECB or entry has control when it has the attention of the CPU. Control is
granted based on the CPU loop, the TPF system’s scheduling system. (See fred

Concepts and Structures or [[RE Main Supervisor Referencd for more detail about

the CPU loop and task dispatching.)

Control is lost under the following circumstances:

* When some system services are accessed (for example, find, wait, and hold).
The nature of the request determines when control is returned to the entry.

» Exit processing. This can occur voluntarily, by calling either the exit or abort
functions, or involuntarily, as the result of the entry causing a system error.

The TPF system will also force an ECB to exit if it does not relinquish control to the
operating system in 500 milliseconds (that is, it appears to be looping). This timer is
reset when an ECB waits for pending 1/O with the waitc function and when it
suspends processing through the dlayc and defrc functions.

When TPF Enter/Back services are invoked, the same ECB remains in control and
continues processing with another program segment.

You can create an entry (ECB) by calling one of the following TPF API functions:

credc Create a deferred entry

creec Create a new ECB with an attached block
cremc Create an immediate entry

cretc Create a time-initiated entry

cretc_Tevel Create a time-initiated entry with an attached core block

crexc Create a low priority entry.
tpf_cresc Create a synchronous entry
system Execute a command

The application program is responsible for passing any required data to the newly
created ECB when it calls the TPF API library function. In particular, note that the
input message and terminal address are not automatically copied to the new ECB.
In the TPF system environment, there is not a strong parent-child relationship
between entries; the new ECB cannot communicate anything back to the ECB that
created it unless the tpf_cresc or system function is used, whereby the child ECB
may pass or return a value back to the parent ECB.

Writing TPF Application Programs in C and C++ 153

Use caution when using the ECB creation functions. There is a limit to the number
of entries that can be active in the system and approaching this limit too closely can
degrade performance.

Exit Processing
When an entry is completed, control is returned to the operating system. If the entry

was created by the system function calling a DLM with a main function, or if it was
created by the CRESC macro or the tpf_cresc function, the system adds the
parent process to the CPU ready list so that it can resume processing.

The entry’s exit status is returned to the parent process as the system function’s
return code. Returning from the initial call to a main function is equivalent to calling
the exit function with the return value as its status parameter. For example:

int main(void) { return 15; }

is equivalent to:

#include <stdlib.h>
int main(void) { exit(15); }

If the initial program that the entry ran does not contain a main function, the entry
must explicitly call a process-terminating function, such as exit, abort, serrc_op,
snapc, and others to return control to the operating system. The abort function
forces the current ECB to exit under abnormal circumstances; no dumps are issued
for invalid ECB states such as having a hold on a file address, or having a general
tape opened or assigned. The serrc_op function causes a system error dump to be
generated. Following the dump the ECB will be exited if the defined term
SERRC_EXIT was coded as one of the parameters. The snapc function causes a
system error dump to be generated. Following the dump the ECB will be exited if
the defined term SNAPC_EXIT was coded as one of the parameters.

TPF Terminal Communications

Terminal Input
The user input terminal can only send messages to the system, which is then

responsible for scheduling a process associated with the message. TPF application
programs are activated by these input messages. Although they can send output
messages in response, they do not remain active and wait for additional input
messages except for TPF/APPC where the TP remains active in the same ECB
throughout the life of a conversation. For non-TPF/APPC messages each new input
message that arrives will cause the TPF system to create a new, independent ECB.

Therefore, non-TPF/APPC application programs must obtain all information required
to process the transaction from the single input message along with data contained
in the TPF file system. TPF application programs cannot operate in an interactive
mode because they are not able to “listen” for additional input messages.

— Programming Rule
Use the parser (IPRSE) or sscanf to obtain portions of the input message. Do
not attempt to interact with the user input terminal. Design applications in such
a manner that all information required to process the transaction is available in
either the input message itself or in existing data records available to the
process.

154 TPF V4R1 Application Programming

When a user enters a message, it is processed by the appropriate network facilities
and passed to the TPF system. The message is then added to the input list
(processed by the CPU loop), and becomes associated with data level 0 (DO). The
standard C function sscanf has been adapted to the TPF system to access these
user input messages from DO. The only difference is that these functions do not
solicit terminal input, but will access the message on DO. If the user attempts to get
input message lines that do not exist, a null will be returned. Likewise, if the
message associated with DO has been released or is not an input message, a null
will be returned.

Output Messages
There are several different options available to C and C++ programmers who want
to send an output message to the user terminal:

I/O stream An 1/O stream, including stdout or stderr can be opened on a
special file node such as /dev/tpf.omsg/, which is associated with
a device driver that writes an output message. Any of the formatted
I/O functions (fprintf, printf) or text I/O functions (fputs, putc,
putchar, puts) can then be used to write the output message to the
I/O stream.

routc Requires a routing control parameter list (RCPL) to be built and
passed to it as an argument. An RCPL is associated with each
input and output message, and identifies the origin, destination, and
characteristics of the message. For this reason, it is recommended
that an application program preserve the RCPL received at
activation time and change it to an output RCPL (by swapping the
origin and destination addresses).

The routc function can be used with either single line or full-screen
formatted output (SNA) terminals. Also, TPF Advanced
Program-to-Program Communication support allows TPF application
programs to communicate with LU 6.2 applications on remote
platforms. (For more information about TPF Advanced
Program-to-Program Communications support, see
Data Communications Referenced

)
The TPF system also supports direction of output using a device

driver. A device driver should be designed by the user to output
streams to the desired terminal.

Using TPF Globals

There must be a tag name for each global field and record defined in the c$globz.h
header file. This file is included by tpfglbl.h, which is required whenever you
access global fields or records. Whenever changes are made to c$globz.h, you
must recompile any programs that access the global tags.

There are 2 functions that you can use to access TPF globals:

glob Returns the address if a field is specified and returns the address of
global directory entry if record is specified.

global Allows you to modify a global field or record.

The following functions are available in ISO-C only.
glob_keypoint Keypoints a global field or record.

glob_Tock Locks and accesses a global field or record in preparation for a
synchronous update.

Writing TPF Application Programs in C and C++ 155

glob _modify Modifies a global field or record.

glob_sync Synchronizes a global field or record across a complex.
glob_unTock Unlocks a global field or record.

glob_update Updates a global field or record.

The glob function provides read-only access, whereas the global function allows
you to update, modify, keypoint, lock (reserve for exclusive use), unlock, copy, or
synchronize global fields. These command options must be run in the correct order;

for example, you cannot issue an UNLOCK before you have issued a LOCK. For
more detail about these options, see i i

The global tags acted on by C functions must be defined in the c$globz.h header
file or unpredictable results can occur.

Naturally, locks should not be held longer than necessary. Programs using the
glob_Tock function should be prepared to call glob_update, glob_sync or
glob_unlock as soon as possible to prevent severe system degradation caused by
other ECBs waiting for the lock.

If the global field or record can be synchronized, glob_Tock must be called before
calling gTob_modify or glob_update.

Programs using these functions should not have any pending I/O operations
outstanding because they can perform the equivalent of a waitc function.

You can find more detailed information about TPF globals as follows:

Type of Information Reference

High-level description LCreating Globals for C” on page 73

Installation details : izi ”
bage 301

Basic TPF global concepts, terminology, [CPE System Installation Support Referencd

overview

Global program logic [TPE System Installation Support Referencd,

Calling Other Functions and Programs

The following TARGET(TPF) calls are not supported:

» Library functions cannot call entry points, including assembler programs.

» Assembler language programs cannot call library functions or static functions.
* TARGET(TPF) cannot issue system calls

The compilers that support the TARGET(TPF) compiler option also provide the
appropriate linkage for other function calls. Ensure that you do the following:

1. You must include the tpflink.h header file by using #include. This file contains
the #pragma directive for the library.

2. Parameter passing.

Function Linkage:

In ISO-C the linkage type is automatically defined by the linkage editor or online
service.

156 TPF V4R1 Application Programming

#pragma Compiler Directive for TARGET(TPF)

A #pragma directive is an implementation-defined instruction to the compiler used for
assembly language programs or library functions in TARGET(TPF). When a TPF
program is compiled, the #pragma directive is used to communicate critical
information to the compiler concerning:

* The type of function being compiled
* The type of any function called by the function being compiled.

When a C function is compiled for use in the TPF system environment, the compiler
needs to know which TPF program segment will contain the compiled code. For
entry points, the function name is initially assumed to match the TPF segment
name. However, from the C programmer’s point of view this is not always desirable,
and there is the additional problem of the library functions, of which none of the
names match TPF segment names.

The compiler is notified of the segment name to which a function name maps by
the #pragma map directive. mqij shows the format of the #pragma map
statement.

#pragma map(internal_name, "external_name")
#pragma
is the compiler directive used to pass information to the compiler
map
identifies the type of data being passed

internal_name
is the name by which the C function is known

external_name
is the name used when generating linkage to the function.

Figure 21. TARGET(TPF) C #pragma map Statement Format

For example, the statement
#pragma map(accept_trans, "QZz0")

maps the TPF segment name QZZ0 to C function accept_trans.

When the compiler finds a call to another C function, the compiler needs to know
what type of function call expansion to generate. When compiling the called
function, the compiler needs to know what type of return linkage to generate.

The #pragma linkage with type TPF statement is not supported in ISO-C and
should be removed from any TARGET(TPF) programs that are being migrated to
ISO-C. In TARGET(TPF), linkage information is passed to the compiler by the
#pragma 1inkage directive. Eigure 22 on page 158 shows the format of the #pragma
linkage statement for TARGET(TPF). #pragma 1inkage of type TPF is not valid for
ISO-C.

Writing TPF Application Programs in C and C++ 157

#pragma linkage(internal_name,TPF,tpftype)
#pragma
is the compiler directive used to pass information to the compiler.
linkage
identifies the type of data being passed.

internal_name
is the name by which the C function is known.

TPF
is the string that identifies the TPF programming environment. This is valid
for TARGET(TPF) only.

tpftype
describes the type of object being linked to:

1. Cindicates a C entry point. This is the default type used if no linkage
statement is found.

2. N indicates that the function is an assembler program.

3. An integer in the 0—-999 range indicates that the function is a library
function.

Note: This value is not range-checked at compile time.

Figure 22. C #pragma Linkage Statement Format for TARGET(TPF)

For example, the statement
#pragma linkage(malloc, TPF, 42)

identifies malloc as a library function and assigns it an index number of 42 in the
quick enter directory.

If no #pragma 1inkage directive is found for a given function, the compiler will
assume a type-C linkage.

All of the #pragma directives required for the C/370 run-time library programs are
collected into a single header file, tpflink.h. The tpflink.h header is included by
tpfeq.h. Because tpfeq.h is required to be the first header in every TARGET(TPF)
C program, all linkage information for the C/370 library functions required by the
compiler is guaranteed to be available to application programs.

Parameter Passing (from C to C)

There are no special considerations for parameter passing between C functions or
programs in TPF systems, except for the passing of structures.

Note: The following information is a TARGET(TPF) restriction only. Although
structures are passed by value (as are all parameters), this can take up a lot
of stack storage, and stack storage is a scarce commodity. One way to
preserve stack storage is to pass addresses of structures (using the &
operator), rather than passing the structures themselves. The parameter
should be declared as const in the called function (to prevent unintentional
modification of the structure passed by reference). This practice is strongly
recommended.

158 TPF V4R1 Application Programming

Calling a C Program (from Assembler)

There can be times when you want to call a segment written in C from a segment
written in assembler. This is done using an Enter function. When doing so, it is
important to know whether the C segment being called is TARGET(TPF) or ISO-C
because the register conventions are different in each. See ﬁog_mé

Development Support Reference for more information about register conventions.

Note: The preceding information does not apply to C++ functions except for those
that use extern "C" linkage.

Assembler Calling C: The C Parameter List

Because C entry points are normally called using the TPF Enter mechanism, it is
possible to start a C entry point function from an assembler program using one of
the Enter macros. The assembler program must construct a C parameter list in the
format expected by the C compiler-generated code. This section explains the format
of the C parameter list for ISO-C and TARGET(TPF).

Note: The format of the C parameter list is an IBM restricted interface, and could
change in future releases. Do not use this interface unless absolutely
necessary.

The compiler-generated code allocates storage for the parameter list in the calling
function’s stack frame. All parameters are passed by value. This applies to
structures as well; the entire structure is copied to parameter list storage. (Arrays
are treated as pointers; the address of the array is passed by value.)

The compiled code assumes that R1 contains the address of the parameter list for
ISO-C and R6 contains the address of the parameter list for TARGET(TPF). The
format of the parameter list takes one of two forms, depending on the type of value
returned by the function. If the function returns type integer, character, or pointer,
the parameter list has the structure shown in

int f1 (int a, char b, double x, char *c);

Parameter List on Input Level of C Parameter List on Output
R1 or ISO-C R15 contains the returned value
R6 TARGET(TPF) R6 contains the returned value
arg a int
argb | char

arg X | double

argc ptr

Figure 23. C Parameter List (Part I)

Writing TPF Application Programs in C and C++ 159

Each parameter occupies one fullword of storage, except for float and double,
which occupy two consecutive fullwords. Unsigned parameter values are right
justified and padded on the left with binary zeros. Signed parameters are right
justified and have sign extension on the left.

If the function returns type float, double, struct, or union, the parameter list has
the structure shown in m

The first fullword of the parameter list contains the address of an area of sufficient

size to contain the returned float, double, structure, or union. The called function
simply stores its result in the area indicated.

float f2 (int a, char b, float x, char *c);

ISO-C: R1 or
TARGET(TPF): R6 P

arg a int

argb | char

arg x |double

argc ptr

return
value

Figure 24. C Parameter List (Part Il)

Calling an Assembler Program (from C)
This section describes the interface requirements for assembler and C language.

Entry points implemented in assembler language can be called from ISO-C without

any special calling protocol. When the assembler segment is called, the run-time
parameter linkage is automatically handled by the control program.

160 TPF V4R1 Application Programming

struct TPF_regs
{
long int ro;
long int rl;
long int r2;
long int r3;
long int rd;
long int r5;
long int ré;
long int r7;

}s

Figure 25. TPF_regs Structure. Used to pass parameters to assembler programs in registers.

In TARGET(TPF), entry points (TPF segments) written in assembler are typically
called N-type linkage segments, which comes from their required #pragma Tinkage
statement:

#pragma linkage(SEG1, TPF, N)

The N in this statement means Non-C. N-type linkage implies that the segment to
be called has no knowledge of the existence or format of a C compiler parameter
list and may, therefore, be expecting some or all of its parameters in registers.

In either ISO-C or TARGET(TPF), to call an assembler program in C language, you
must code a valid C prototype statement for the assembler program, passing the
TPF_regs structure as follows:

void segl(struct TPF_regs =*);

Including this prototype statement allows the compiler to do type checking during
compilation, and instructs the compiler not to generate or expect any return value.
These prototype statements are declared as returning type void, although in ISO-C
a NULL pointer can be passed instead of the register structure. Even though C
prototype for assembler programs specify void return, assembler program’s RO-R7
are returned in TPF_regs. Because most assembler programs are unaware of the
mechanisms of returning values to a C calling function, declaring another return
type can cause unpredictable results.

The TPF_regs structure is predefined in tpfregs.h, as shown in m TPF_regs
can be used in either ISO-C or TARGET(TPF).

Whenever an assembly language program is called, the only argument must be a
pointer to type TPF_regs.

Programming Rule
When calling an assembly language program declare prototype statements to
take 1, and only 1, argument: a pointer to a structure of type TPF_regs. For
ISO-C a null pointer can be coded for TPF_regs.

writing TPF Application Programs in C and C++ 161

— TARGET(TPF) Restriction
If the N-type linkage function does not take any arguments in registers,
allocate the space for a TPF_regs structure and pass a pointer to it anyway.
This is necessary because the linkage code uses the second part of the
TPF_regs structure to save the calling C program’s registers (RO—R5) to protect
its environment from all possible calling sequences. Also, before returning
control to the calling C program, the contents of registers 0—7 are stored in the
same location (the TPF_regs structure) so that the C program has access to
any return values from the assembler program.

Compiling and Running C/C++ Programs

162

This section contains a brief description of compiling and running C or C++
programs. See the user’s guide for the IBM C or C++ compiler on the System/390
platform used by your installation for more detailed information about compiling C
and C++ application programs.

The following briefly describes the RENT and LONGNAME compiler options.

RENT
Causes the compiler to generate reentrant code. Reentrancy of a single
variable can be controlled by coding

#pragma variable(vb1l, RENT)

RENT must be used if the program uses writable static. The RENT directive is
not required if the program being compiled does not use writable static. If RENT
is not used and writable static is encountered, a system error occurs. If RENT is
used and there is no writable static, there is a performance loss associated with
secondary linkage.

The RENT/NORENT option and #pragma variables are not supported for
TARGET(TPF).

This parameter is assumed if the TARGET(TPF) option is used.

Note: There is no RENT compiler option in the family of IBM C++ compilers on
the System/390 platform. Source code written in C++ and compiled with
a C++ compiler will automatically be compiled as RENT.

See [[RE Programming Standardd for more information about the TPF RENT
standard. See [Sample Cade Written to the RENT Standard” on page 163 for

code samples.

LONGNAME/NOLONGNAME
Enables or suppresses support for long and mixed case external variable
names. This directive is not supported for TARGET(TPF).

Compiling with the LONGNAME option allows you to use external names that
are unique in the first 255 characters, with case respected. For code compiled
with the NOLONGNAME compiler option, all identifiers that have external
linkage must have names that are unique in the first 8 characters, ignoring
case.

Segments that will be linked into a single load module must be compiled either
all with the LONGNAME option or all with the NOLONGNAME option.

TPF V4R1 Application Programming

See [[PE Programming Standardd for more information about the LONGNAME

standard.

DLL Compiler Option

DLL applications written in C are compiled with the DLL compiler option. For this
case, function pointers are pointers to corresponding function descriptors.
Therefore, a function pointer that is passed from code compiled without the DLL
option to a function in code compiled with the DLL option will not work because the
DLL code always expects a function descriptor pointer. Code compiled with the DLL
option can still pass a function pointer to code compiled without the DLL option. The
special code at the beginning of the function descriptor handles these conditions.
See the user’s guide for the IBM C/C++ compiler on the System/390 platform used
by your installation for more information about the DLL compiler option and function
descriptors.

There is no DLL compiler option for source code written in C++. C++ source code is
automatically compiled as a DLL application.

Sample Code Written to the RENT Standard

The following 3 sample code examples correlate to the RENT standard described in

C Header File with Declarations of External Linkage Objects
Sample 1

/**/
/* c$xmpl.h: header file showing declarations of external linkage */
/* objects. */

/**/
/***************************************/

/* Declarations of writable externals. */
/***************************************/

extern int i;

#define NUM_ELEMENTS 3
extern int ia[NUM_ELEMENTS];

extern const char *ccp; /* non-const pointer to const char */

/**/

/* Declarations of NORENT read-only externals. There are various */
/* reasons that you may need to specify NORENT externals, including: =/
/* */
/* 1. Defining externals in a runtime library which cannot contain */
/* RENT static for performance reasons. */
/* */
/* 2. Referring to an external which is defined in assembler. */
/* */
/* Note that #pragma variable does not work on static variables with =/
/* internal linkage (i.e. declared with the "static" keyword) or */
/* string Titerals (such as "Hello, world!\n"); for these you need */
/* the NORENT compile time option or #pragma strings(readonly). */
/* */
/* Note also that all NORENT variables must be read only and should =/
/* therefore be declared using the "const" keyword. */

/**/

writing TPF Application Programs in C and C++ 163

#pragma variable(const_i,NORENT)
extern const int const_i;

#pragma variable(const_ia,NORENT)
extern const int const_ia[NUM_ELEMENTS];

#pragma variable(cp_const,NORENT)
extern char * const cp_const; /* const pointer to non-const char */

C Source File with Definitions of External Linkage Objects
Sample 2

/**/
/* xmpld.c: C source file showing definitions of external linkage */

/% objects. */
/* */
/* Note: This module is not naturally reentrant because of the */
/* modifiable static duration objects that it defines, so it =/
/* must be compiled with the RENT option. It also defines a */
/* writable static object with internal linkage (see variable =/
/* sca below). */

/**/

/*********************** """""""""""" ***********************/

/* The header file (above) containing the external declarations is */
/* included to guarantee that the definitions and the RENTness are */

/* consistent with the declarations which are #included in source */
/* files that reference these externals. */
/**************** """"""""""" *********************************/
#include <c$xmpl.h> /* include declarations of externals =/

/**********************************/

/* Define the writable externals. */
/**********************************/

int i = 17;
int ia[NUM_ELEMENTS] = { 0, 1, 2 };
const char *ccp = "ccp can be changed to point to another string.";

/********************************/

/* Define the NORENT externals. =/

/********************************/

const int const_i = 42;

const int const_ia[NUM_ELEMENTS] = { 0xCO, O0xCl, 0xC2 };

static char sca[] = "cp_const will always point to this array, but the
"contents of the array can change.";

char = const cp_const = sca;

C Source File Showing the Use of External Linkage Objects
Sample 3

/**/
/* xmplu.c: C source file showing use of external linkage objects. =/

/% x/
/* Note: This module does not define any static duration objects, */
/* but it does REFER to the static duration objects which are =/
/* compiled with the RENT option; therefore, it must also be x/
/* compiled with the RENT option. */

/**/

#include <string.h>
#include <c$xmpl.h> /* include declarations of externals =/

int foo(void)

164 TPF V4R1 Application Programming

/**/

/* Only the RENT/writable (non-const) variables can be changed. */
/**/

for (i = 0; i < NUM_ELEMENTS; ++i)
{

ja[i] = const_ia[i];

strcpy(cp_const, ccp); /* change the non-const chars x/
ccp = cp_const; /* change the non-const pointer */
return const_i;

Writing TPF Application Programs in C and C++

165

166 TPF V4R1 Application Programming

Understanding TPF Internet Server Support

This chapter describes:

» The functions of the Portable Operating System Interface for Computer
Environments (POSIX) process model that are implemented by the TPF system

* The Internet daemon in the TPF system

* How Internet server applications run on the TPF system
* How to start a TPF application from the Internet

* Administering the TPF system as a Web site.

The POSIX Process Model As Implemented by the TPF System

TPF Internet server support allows POSIX-compliant servers (Internet server
applications) to be written for or ported to the TPF system, usually with only minimal
modifications to account for the differences in the TPF implementation. Because of
the existing unique architecture of the TPF system, TPF Internet server support
consists of a subset of POSIX-compliant application programming interface (API)
functions and TPF-unique API functions.

Note: The TPF system is not POSIX-compliant; only a subset of POSIX-compliant
API functions are implemented in the TPF system.

The following discussions assume a basic knowledge of client, server, and UNIX
concepts. Suggested references that describe these concepts are:

* UNIX Network Programming
* UNIX Network Programming: Networking APIs: Sockets and XTI.

A Process

A process is an address space and the single thread of control that executes within
that address space and its required system resources. There is a process block
associated with each entry control block (ECB) where process-related information is
maintained by the TPF system.

In the TPF system, all active ECBs are part of a process. The system, tpf_cresc,
and tpf_fork functions create a child process.

See the [[PE C/C++ | anguage Support User's Guidd for more information about the

system, tpf_cresc, and tpf_fork functions.

Process ID

A process ID is a unique, positive number that represents a process. Because the
process ID is a unique identifier, it can be used to direct signals between
processes. See ['Signals” on page 169 for more information about signals. The
process ID is also used in the tmpnam function; this function returns a temporary file
name based on this unique identifier.

Every process also has a parent process ID associated with it. If there is no parent
process, the parent process ID is set to 1. For a child process created by the
tpf_fork function, the parent process ID is set to the process ID of the parent
process.

A process ID is a unique two-part number, 32 bits in length:

© Copyright IBM Corp. 1994, 2002 167

» The first part is an index that corresponds directly to the address of an entry
control block (ECB); the details of the correspondence are not important, but
knowing that the correspondence exists is important.

* The second part is a counter that is incremented each time an ECB is reused.
The counter reduces the risk of using a leftover process ID of an ECB that has
been reused.

The getpid and getppid functions are provided so that an ECB can obtain its
process ID and the process ID of its parent process, respectively. See the
! idel for more information about the getpid and

getppid functions.

Process Group

A process group is a set of related processes and each process has a process
group ID associated with it. Most processes, when created, are assigned to their
own process groups. However, a child process created by the tpf_fork function is
part of the process group of its parent process, so the child process inherits the
process group ID of its parent process.

Process Inheritance

A child process created by the system and tpf_cresc functions inherits the
environment list from the parent process. A child process created by the tpf_fork
function inherits the following properties from the parent process:

* Environment list

* Real user ID (UID) and real group ID (GID)

* Process group ID

» Current working directory

* File mode creation mask

» Open file descriptors that do not have the FD_CLOEXEC file descriptor flag set to 1.

The effective user ID and effective group ID of a child process created by a
tpf_fork function are initialized to the effective user ID and effective group ID of the
parent process, with the following exceptions:

* If TPF_FORK_FILE is specified and if the file specified by the program
parameter has the set-user-id (S_ISUID) flag set, the effective user ID of the
child process is set to the user ID of the owner of the file.

* If TPF_FORK_FILE is specified and if the file specified by the program
parameter has the set-group-id (S_ISGID) flag set, the effective group ID of the
child process is set to the group ID of the owner of the file.

The saved set-user-ID and saved set-group-ID of a child process created by the
tpf_fork function are initialized to the same values as the effective user ID and
effective group ID respectively. This enables an application to toggle its effective
user ID between the real user ID and the owner ID of the executable file, if
applicable.

POSIX-Compliant APIs for Process Control

The following functions have interfaces identical to the POSIX standards. However,
because of the unique TPF architecture, there are differences in the way the
functions behave; refer to the individual functions in the [[RE_C/C++ | anguagd
Bupport User's Guidd for specific information about the differences.

168 TPF V4R1 Application Programming

If Internet server application code written for the UNIX system is ported to the TPF
system, these function calls do not necessarily need to be changed, but it is likely
that the Internet server application needs some modification to account for the
differences.

e alarm

* getpid

e getppid

e kill

* pause

° raise

* sijgaction
* signal

* sigpending
* sigprocmask
* sigsuspend
e sleep

° wait

* waitpid.

TPF-Unique APIs for Process Control

Signals

Because of the unique TPF architecture, there are some functions that cannot be
implemented with interfaces identical and behavior similar to the POSIX standards.
The following are the TPF-unique functions for process control:

* tpf_fork, which is based on the POSIX fork and exec functions
* tpf_process_signals, which is based on POSIX signal support.

Because the TPF system does not allow a process to be interrupted
asynchronously, the tpf_process_signals function is a way for a process to
explicitly tell the TPF system to check for and handle outstanding signals.

A signal is a simple method of communication between two processes and is used
for processes to communicate with each other about important events.

In the POSIX process model, signals are sent to processes by the system for a
number of reasons, synchronously and asynchronously. The SIGCHLD signal is the
only signal sent by the TPF system. Additionally, a subset of POSIX signals are
implemented in the TPF system and are listed in the description of the signal
function in the i i

Signal Handlers
Any process can send a signal to any other process if the sending process knows
the process ID of the intended receiving process and if one of the following is true:

* The real user ID or effective user ID of the sending process matches the real
user ID of the receiving process

* The real user ID or effective user ID of the sending process matches the saved
set-user-ID of the receiving process

* The sending process has superuser privileges.

Sending a signal does not imply that any action will be taken by the receiving
process. In the TPF system, incoming signals are only handled by a process when

Understanding TPF Internet Server Support 169

the process explicitly requests that signals be handled. The receiving process can
choose to process signals, selectively ignore signals, or not process signals.

The following APIs are used to request the handling of pending signals:
* sleep

* tpf_process_signals

* wait

* waitpid.

For example, if signals are used by an application to allow a monitoring process to
shut down other processes in the application, the monitoring process could do so
only if all of the programs in the application periodically issue a sleep,
tpf_process_signals, wait, or waitpid function.

SIGCHLD Signal
The SIGCHLD signal is the only signal that the TPF system sends to a process.
When a child process created by the tpf_fork function ends, the TPF system:

* Sends a SIGCHLD signal to the parent process to indicate that the child process
has ended

* Saves the exit status of the child process so that the parent process can identify
which child process (by process ID) ended and its exit status.

Exit Status

Exit status is saved only if the parent process still exists and it handles signals; that
is, the SIGCHLD signal disposition is not set to ignore signals (the SIGCHLD signal
handler is not set to SIG_IGN).

An application (especially a long-running application) that creates many child
processes using the tpf_fork function must periodically check for saved exit status
so that the system resources used to save exit status can be freed. If signals are
not processed on a periodic basis, there is a potential to deplete system resources.
Alternatively, if an application creates child processes using the tpf_fork function,
but is not interested in knowing when its child processes end, the application can
notify the TPF system to ignore SIGCHLD signals, and as a result, the exit status
for the child processes is not saved and the system resources are not tied up.

File Access in the TPF File System

Access to a file in the file system is POSIX-compliant and is controlled by the
effective user ID, effective group ID, and access permissions.

Process Attributes

There are process attributes that are used to determine whether a process can
access a file:

¢ The effective user ID is a user ID associated with the last setuid or seteuid
function.

* The effective group ID is a group ID associated with the last setgid or setegid
function.

Access Permissions

Associated with a file in the file system are access permissions that determine if a
process can access a file. The access permissions available for a file are read,

170 TPF V4R1 Application Programming

write, and execute (or any combination), and can be set for a file owner (or user),
group, and users other than the owner or group. Users other than the owner or
group are referred to as just other.

If the bit corresponding to the action that a process wants to take is on, file access
is granted. Use the chmod function in a program to change the access permissions
of a file. Use the ZFILE chmod command to manually change the access
permissions of a file. Enter the ZFILE |Is command with the -l parameter specified to
display the access permissions of a file.

fFable 14 shows a summary of the different access permissions and the settings
used by the chmod function and the ZFILE chmod and ZFILE Is commands.

Note: The access permission values used by the ZFILE chmod command are in
octal notation.

Table 17. Access Permissions

Accessed By |Access Type |chmod ZFILE chmod ZFILE Is
Function Command Command

Settings Settings Settings
User Read S_IRUSR 0400 re--mmm-
Write S_IWUSR 0200 Wemmmm e
Execute S_IXUSR 0100 S CEEEEE
Group Read S IRGRP 0040 ——-r-----
Write S_IWGRP 0020 TR
Execute S _IXGRP o000 | ----- X=---
Other Read S_IROTH 0004 | eeeee- r--
Write S_IWOTH 0002 | emmme-- w-
Execute S_IXOTH 0001 [ememee-- X

See ! idg for more information about the
chmod function. See for more information about the ZFILE chmod

and ZFILE |s commands.

Rules to Determine File Accessibility
The following rules determine if a process can access a file:
* The effective user ID of the process is compared to the owner of the file.
If they match, the user access permissions are checked.

— If the user access permission associated with the action that the process
wants to take is on, the process is allowed to take the action; that is, file
access is granted.

— If the user access permission associated with the action that the process
wants to take is off, access is denied.

 If the effective user ID of the process does not match the owner of the file, the
effective group ID of the process is compared to the group of the file.

If they match, the group access permissions are checked.

— If the group access permission associated with the action that the process
wants to take is on, the process is allowed to take the action; that is, file
access is granted.

Understanding TPF Internet Server Support 171

— If the group access permission associated with the action that the process
wants to take is off, access is denied.

If the effective user ID of the process does not match the owner of the file and
the effective group ID of the process does not match the group of the file, the
other access permission is checked.

— If the other access permission associated with the action that the process
wants to take is on, the process is allowed to take the action; that is, file
access is granted.

— If the other access permission associated with the action that the process
wants to take is off, access is denied.

Use the ZFILE chmod and ZFILE chown commands to maintain file accessibility by

See

for more information about ZFILE chmod and ZFILE chown

chanEing the access permissions and the owner or group of a file in the file system.

commands.

Internet Daemon

The Internet daemon consists of two major components:

Process Models

The Internet daemon monitor, which is responsible for starting and stopping the
Internet daemon listeners for Internet server applications and for error recovery
when an Internet daemon listener fails.

An Internet daemon listener, which monitors the Internet server applications and,
with some process models, creates and monitors a socket for the Internet server
application.

The following process models define the interface to the Internet daemon:

The WAIT process model offers synchronous control by using the tpf_fork
function to create a child process. When the entry control block (ECB) associated
with the child process ends, the TPF system sends a SIGCHLD signal to the
Internet daemon (parent process). After the Internet daemon issues the tpf_fork
function, the Internet daemon waits for the child process to end before activating
another child process. In other words, only one child process can be active at a
time.

For TCP servers, the child process is created when a remote client connects and
the Internet daemon accepts the socket connection. For UDP servers, the child
process is created when a message is received on the UDP socket. Information
about the socket is passed to the child process, enabling the child process to
communicate with the remote client over the socket.

The NOWAIT process model offers synchronous control by using the tpf_fork
function to create a child process. When the ECB associated with the child
process ends, the TPF system sends a SIGCHLD signal to the Internet daemon
(parent process). Multiple child processes can be concurrently active up to a
user-defined limit. You can define this limit by specifying the MAXPROC
parameter on the ZINET ADD or ZINET ALTER command. See

for more information about the ZINET ADD and ZINET ALTER commands.

For TCP servers, the child process is created when a remote client connects and
the Internet daemon accepts the socket connection. For UDP servers, the child
process is created when a message is received on the UDP socket. Information
about the socket is passed to the child process, enabling the child process to
communicate with the remote client over the socket.

172 TPF V4R1 Application Programming

For UDP servers, after the Internet daemon creates a child process, the next
child process is not activated until the previous child process ends or the
previous child process sends a SIGUSRL1 signal to the Internet daemon
indicating that the child process is no longer using the socket. If child processes
do not issue any SIGUSR1 signals, the NOWAIT process model has the same
characteristics as the WAIT process model for UDP servers.

» The AOR process model offers asynchronous control for TCP servers by using
the activate_on_receipt or activate_on_receipt_with_length function. When a
remote client connects, the Internet daemon issues an activate_on_receipt or
activate_on_receipt_with_Tlength function to pass control of the new socket to
your TCP server application when the first message is received from the remote
client. After the Internet daemon issues the activate_on_receipt or
activate_on_receipt with_length function, the Internet daemon continues
processing.

* The NOLISTEN and RPC process models offer no control because a
swisc_create function is used to create an ECB for the specified Internet server
application. The Internet daemon is used only to activate the server for these
models. The Internet daemon does not create or monitor any sockets, nor does it
monitor the server application.

* The DAEMON process model is similar to the NOLISTEN process model, but
uses the tpf_fork function. The DAEMON process model does not create or
monitor any sockets, but the Internet daemon does monitor the server
application.

All Internet server applications handled by the Internet daemon follow a defined
process model; these process models are described in more detail in
Ee_nLELAppchanon_Con.SLde_Lananslan_pageJld and [Cansiderations for Using thel
Internet Daeman ta Start a TPE Program” on page 184.

Internet Daemon Configuration File (IDCF)

The data for all Internet server applications processed by the Internet daemon is
maintained in the Internet daemon configuration file (IDCF). See [[PE Transmission
Control Praotacol/Internet Pratacol for more information about the IDCF.

Hypertext Transfer Protocol (HTTP) Server

Although an HTTP server is not provided as part of the base TPF system, using
TPF Internet server support, an HTTP server can be installed so that Web pages
can be retrieved and TPF applications can be started from the Internet; for
example, the Apache server.For more information see the Apache Web page at:

File Transfer Protocol (FTP) Server

The FTP server is used to transfer files between the TPF system and a remote host
that supports Transmission Control Protocol/Internet Protocol (TCP/IP) and FTP
clients. See [[PE Transmission Contral Pratocal/internet Protacal and

for more information on the FTP server.

Understanding TPF Internet Server Support 173

http://www.apache.org

Trivial File Transfer Protocol (TFTP) Server

The TPF system supports any TFTP client, such as AIX 3.1 and higher or DOS 5.0
and higher, that conforms to the Internet Activity Board (IAB) TFTP draft standard
documented in Request for Comments (RFC) 1350.

However, the following differences are noted:

* The TFTP server creates files and directories specified in a TFTP write request
that do not already exist.

* The TFTP server allows an existing file to be overwritten instead of issuing error
06 (file already exists).

* As data is received for a file being written, the TFTP server writes the data to a
temporary file until the data transfer is complete. The temporary file is then
renamed to the specified file.

Overwriting of a file is controlled by its access permissions and is not done
unless that file allows other write access permission.

» Access permissions for a new file are controlled by the TFTP configuration file.

If the TFTP configuration file does not contain an AUTH directive, the access
permissions default to 444 octal, which allows owner, group, and other read

access. See tLBHransmssmn.CaanLEmlacalLLnleme.LEmlam] for more

information about the TFTP configuration file.

* The TFTP server provides a limited form of access control. In the TPF system,
any path that is not explicitly allowed is not accessible.

* Logging of transmissions is available and controlled by the LOG directive in the
TFTP configuration file. The following information is recorded:

— The Internet Protocol (IP) address and port of the connecting system
— The path and name of the file being transferred

— The direction of transfer (read or write request)

— The number of bytes transferred.

If the TFTP configuration file does not contain a LOG directive, transmissions are
Iogged to the /tmp/tftp.log file. See [PE Transmission Control Protacal/lnternet

for more information about the TFTP configuration file.

» Client access to the TFTP server can be started and stopped using the ZINET
START and ZINET STOP commnds, respectively. See m for more
information about the ZINET START and ZINET STOP commands.

Customizing the TFTP Server

Security

The TFTP configuration file, /etc/tftp.conf, controls the behavior of the TFTP
server for accessing files and the access permissions assigned to a file when it is
stored. See FRPE Transmission Control Protocal/lnternet Protacal for more
information about the TFTP configuration file.

The TFTP server does not perform any user validation. Carefully consider the file

access rights allowed by read and write requests. The allow and deny directives

that are specmed in the TETP configuration file are used to control file access. See
for more information about the

TFTP configuration file.

174 TPF V4R1 Application Programming

File Names

All TPF file names specified by a TFTP client must be fully qualified path names
that begin with a slash (/).

Using the TFTP Server from Another System

Use the tools for your system to create and maintain files of Web page content and
transfer these files using the TFTP server to the TPF system where they can be
accessed.

For more information about TFTP, see the following references.

* Internet Architecture Board Standard 33, Request for Comments 1350

« |AIX Version 4 1 Commands Referencd

* On DOS or DOS-based systems on a personal computer (PC), enter HELP
TFTP or TFTP 2.

Syslog Daemon

The syslog daemon is a server process that provides a message logging facility for
all application and system processes. The syslog daemon must be started before
any other application or system process that uses it starts. Internet server
applications and components use the syslog daemon for logging purposes and can
also send trace information to the syslog daemon. Messages can be logged to files
or to tape.

The syslog daemon processing is controlled by a configuration file named
/etc/syslog.conf in which you define logging rules and output destinations for error
messages, authorization violation messages, and trace data.

See [[PE Transmission Control Protacol/lnternet Protacol for more information about
the syslog daemon, the configuration file, and application considerations.

TPF Internet Mail Servers

TPF Internet mail server support provides a set of servers that implement the
standard Internet mail protocols on the TPF system. Users, or mail clients, interact
with the TPF Internet mail servers to send and retrieve Internet mail, also known as
electronic mail (e-mail). The TPF system supports the following standard Internet
protocols:

» Simple Mail Transfer Protocol (SMTP)
* Internet Message Access Protocol (IMAP) Version 4
» Post Office Protocol (POP) Version 3.

SMTP describes how mail messages are delivered from one computer user to
another. IMAP and POP describe how mail messages that are received on a
computer (that is, a mail server) are retrieved by a mail client (usually another
computer, such as a workstation).

See [[PE Transmission Control Protacal/lnternet Pratacal for more information about

TPF Internet mail server support.

Understanding TPF Internet Server Support 175

Internet Server Application Considerations

An Internet server application must conform to one of the process models defined
by the Internet daemon:

 WAIT

The WAIT process model is for an Internet server application that is an iterative
or single-thread program. The Internet daemon starts the Internet server
application as a child process using the tpf_fork function and does not start any
more occurrences of the Internet server application until the one that is running
ends.

For TCP servers, the Internet daemon creates and monitors the listener socket.
When a remote client connects, information about the socket that is associated
with this client (the connected socket) is passed to the child process. The child
process communicates with the remote client over the connected socket. If the
child process ends and does not close the connected socket, the TPF system
closes the connected socket automatically.

For UDP servers, the Internet daemon creates and monitors the socket. When a
message from a remote client is received, the socket is passed to the child
process, allowing the child process to exchange data with the remote client.

* NOWAIT

The NOWAIT process model is for an Internet server application that is a
concurrent or multi-thread program. The Internet daemon starts the Internet
server application as a child process using the tpf_fork function and continues
to start more occurrences of the Internet server application until a predefined limit
is reached. When the limit is reached, no more occurrences are started until an
occurrence that was previously started ends.

For TCP servers, the Internet daemon creates and monitors the listener socket.
When a remote client connects, information about the socket that is associated
with this client (the connected socket) is passed to the child process. The child
process communicates with the remote client over the connected socket. If the
child process ends and does not close the connected socket, the TPF system
closes the connected socket automatically. If you do not want the socket to be
closed when the child process ends, the child process must issue an fcntl
function with the O_TPF_NODDCLOSE option on the socket. You must do this
when the child process passes the socket to another ECB (for example, using
the activate_on_receipt function.)

For UDP servers, the Internet daemon creates and monitors the socket. When a
message from a remote client is received, the socket is passed to the child
process, allowing the child process to exchange data with the remote client. The
Internet daemon will not create another child process until the previous child
process ends, or until the previous child process sends a SIGUSR1 signal to the
Internet daemon. If child processes do not send SIGUSR1 signals, the NOWAIT
model becomes single threaded and has the same characteristics as the WAIT
model. If the UDP server application is bound to all local IP addresses and more
than one local IP address exists, the child process should not send the SIGUSR1
signal until after the process has sent all its data to the remote client. If a
SIGUSRL1 signal is sent before all the data is sent, the wrong local IP address
can be placed in the packets sent to the remote client, causing that data to be
discarded.

* AOR

The AOR process model is for an Internet server application that is a concurrent
or multithread program. The AOR process model can be used only for TCP
servers, not UDP. The Internet daemon creates and monitors the listener socket.

176 TPF V4R1 Application Programming

When a remote client connects, the Internet daemon issues an

activate on_receipt or activate on_receipt_with_Tength function to pass
control of the new socket to your TCP server application when the first message
is received from the remote client.

« DAEMON

The DAEMON process model is for an Internet server application that is started
and monitored by the Internet daemon. The Internet daemon starts the Internet
server application as a child process by using the tpf_fork function and does not
start any more occurrences of the Internet server application until the one that is
running ends. The Internet daemon does not create or monitor any sockets for
this process model.

* NOLISTEN

The NOLISTEN process model is for an Internet server application that the
Internet daemon only starts. The Internet daemon does not create or monitor any
sockets, nor does it monitor the server application.

* RPC

The RPC process model is for a remote procedure call (RPC) server application
that the Internet daemon only starts. The Internet daemon does not create or
monitor any sockets, nor does it monitor the server application.

Because these process models provide different levels of control, the overhead of
system resource can be affected. The AOR process model has the potential to use
system resources more effectively than the WAIT and NOWAIT process models.
The AOR process models uses the activate on_receipt or
activate_on_receipt_with_length function to create the entry control block (ECB)
for the Internet server application only after data is received on a connected socket,
whereas the WAIT and NOWAIT process models use the tpf_fork function to
create an ECB for immediate processing, which requires the Internet server
application to request data and then wait for the data to arrive.

For the NOWAIT process model, use the MAXPROC parameter in the ZINET ADD
or ZINET ALTER command to limit the number of occurrences of an Internet server
application that the Internet daemon starts. For the AOR process model, there is no
throttling control, so the Internet daemon can potentially start more occurrences of
the Internet server application until system resources are depleted. See [ed

for more information about the ZINET ADD and ZINET ALTER
commands.

In general, a ported Internet server application uses the WAIT or NOWAIT process
model and an Internet server application designed specifically for TPF architecture
uses the AOR process model.

When the Internet daemon is running, there is one long-running ECB for the
Internet daemon monitor program and one long-running ECB for each server
application that the Internet daemon is monitoring. Some E-type loader operations
are not completed until all old ECBs exit in the system. When the Internet daemon
detects that the system activation number has changed, the Internet daemon
recycles itself. A new instance of the Internet daemon is immediately created in new
ECBs, and the old Internet daemon ECBs exit when all their child processes end.
When the Internet daemon recycles, the effect on the server application and
sockets is based on the process model:

» For the WAIT, NOWAIT, and AOR process models, there is no disruption to the
sockets. The fact that the Internet daemon has recycled itself is completely
transparent to the server and remote client applications.

Understanding TPF Internet Server Support 177

* For the NOLISTEN and RPC process models, no action is taken when the
Internet daemon recycles. Servers using these models are activated when the
Internet daemon first starts and, after that, the Internet daemon does not monitor
those applications.

* For the DAEMON process model, the Internet daemon issues a ki1l function to
stop the old application server instance. The new instance of the Internet
daemon starts a new server application instance as soon as the old server
instance ends. The Internet daemon does not create or monitor sockets for this
process model; therefore, your application must take the appropriate actions
regarding any sockets that it created. A common implementation is for the old
server application to close the sockets and have the new server application
instance start new sockets. Another method is to keep the sockets active by
having the old server application instance save the socket descriptors in a user
table that the new server application instance picks up and uses.

When you enter the ZINET STOP command to stop a server application, the
actions that are taken are based on the process model:

* For a TCP server using the WAIT, NOWAIT, or AOR process model, the listener
socket is closed and no new connections can be started with this server. Existing
connections (sockets) between remote clients and this server are allowed to
continue their normal processing. If you want to break the existing connections
that use TCP/IP native stack support, enter ZSOCK INACT LPORT-Iport, where
Iport is the port number of the TCP server application.

* For a UDP server using the WAIT or NOWAIT process model, the socket is
closed.

* For the NOLISTEN and RPC process models, no action is taken because the
Internet daemon does not monitor these process models.

* For the DAEMON process model, the Internet daemon issues a ki1l function to
stop the application server. When using this process model, ensure that your
Internet server application uses the signal function to enable the SIGTERM
signal.

See [[PE Operatiaond for more information about the ZINET STOP and ZSOCK
commands.

Process Models

The following sections describe the processing flow for each process model based
on the transport protocol (Transmission Control Protocol (TCP) or User Datagram
Protocol (UDP)).

TCP and the NOWAIT Process Model

In a TCP environment, if you specify the NOWAIT process model, the Internet
daemon starts the Internet server application as a child process using the tpf fork
function and then immediately processes the next request. Eigure 26 on page 179
shows the relationship of the parent and child processes and an overview of the
logic flow of process control and socket APIs.

178 TPF V4R1 Application Programming

TCP Client

socket()
bind()
connect()

TPF System

server_sock = socket
bind(server_sock)
listen(server_sock)

> select(server_sock)

&

\ 4

<

write()

new(client_sock) = accept (server_sock)

tpf_fork
(parent)

(child)

read() <

» read(client_sock)

Internet Server
Application Logic

close()

write(client_sock)
close(client_sock)

exit()

Figure 26. TCP and the NOWAIT Process Model. After starting the Internet server application, the Internet daemon
processes the next request from the Internet.

TCP and the WAIT Process Model

In a TCP environment, if you specify the WAIT process model, the Internet daemon
starts the Internet server application as a child process using the tpf_fork function
and does not process the next request (that is, the Internet daemon waits) until the
Internet server application ends and the TPF system sends a SIGCHLD signal.
Eigure 27 on page 180 shows the relationship of the parent and child processes and
an overview of the logic flow of process control and socket APIs.

Understanding TPF Internet Server Support 179

(child)

read(client_sock)

Internet Server
Application Logic

write(client_sock)

close(client_sock)

TCP Client TPF System
server_sock = socket
bind(server_sock)
listen(server_sock)
> select(server_sock)
socket()
bind()
connect() P
new(client_sock) = accept (server_sock)
tpf_fork
(parent)
Wait for SIGCHLD
from TPF System
write() >
read() <
close()

Figure 27. TCP and the WAIT Process Model. After starting the Internet server application (child process), the Internet
daemon (parent process) does not continue processing until the Internet server application ends and the TPF system

signals to the parent process that the child process has ended.

TCP and the AOR Process Model

In a TCP environment, if you specify the AOR process model, the Internet server
application is started as a new entry control block (ECB) when there is data for it by
an activate_on_receipt function call. Meanwhile, the Internet daemon continues to

process requests from the Internet. Eigure 28 an page 181 shows the relationship of
the Internet daemon listener and an Internet server application using the AOR

exit()

process model and an overview of the logic flow of socket APIs.

180 TPF V4R1 Application Programming

TCP Client TPF System

server_sock = socket
bind(server_sock)
listen(server_sock)

> select(server_sock)

socket()

bind()

connect() >

< new(client_sock) = accept (server_sock)
activate_on_receipt(client_sock)

write() » read(client_sock)
Internet Server
Application Logic

read() < write(client_sock)

close() close(client_sock)

exit()

Figure 28. TCP and the AOR Process Model. After starting the Internet server application, the Internet daemon
accepts the next request from the Internet.

TCP and the DAEMON Process Model

In a TCP environment, if you specify the DAEMON process model, the Internet
daemon starts the Internet server application as a child process by using the
tpf_fork function and does not process the next request (that is, the Internet
daemon waits) until the Internet server application ends and the TPF system sends
a SIGCHLD signal back to the Internet daemon. Eigure 29 on page 183 shows the
relationship of the parent and child processes and an overview of the logic flow of
process control and socket APIs.

Understanding TPF Internet Server Support 181

TCP Client TPF System

— 5 tpf _fork
(parent) (child)

Wait for SIGCHLD
from TPF System

Internet Server
Application Logic

< exit()

Figure 29. TCP and the DAEMON Process Model. After starting the Internet server application (child process), the
Internet daemon (parent process) does not continue processing until the Internet server application ends and the TPF
system signals to the parent process that the child process has ended.

UDP and the NOWAIT Process Model
In a UDP environment, if you specify the NOWAIT process model, the Internet

daemon starts the Internet server application as a child process using the tpf_fork
function and then waits until the child process sends a SIGUSR1 signal before
continuing its processing. Eigure 30 on page 183 shows the relationship of the
parent and child processes and an overview of the logic flow of process control and
socket APlIs.

182 TPF V4R1 Application Programming

UDP Client

socket()
bind()

TPF System

server_sock = socket
bind(server_sock)
listen(server_sock)

> select(server_sock)

signal(SIGUSR1,sigusrl_handler)

tpf_fork

(parent)

Wait for SIGUSR1 from child

v

write()

A

read() <

write()

v

(child)

recvfrom(server_sock)

socket(client_sock)
bind(client_sock)
connect(client_sock)

kill(getppid(),SIGUSR1)

send(client_sock)

Internet Server
Application Logic

close()

Figure 30. UDP and the NOWAIT Process Model. After starting the Internet server application (child process), the
Internet daemon (parent process) waits until the child process sends a SIGUSR1 signal before continuing its
processing.

UDP and the WAIT Process Model

recv(client_sock)
close(client_sock)

exit()

In a UDP environment, if you specify the WAIT process model, the Internet daemon
starts the Internet server application as a child process using the tpf_fork function
and does not process the next request (that is, the Internet daemon waits) until the

Internet server application ends and the TPF system sends a SIGCHLD signal.

Eigure 31 on page 184 shows the relationship of the parent and child processes and
an overview of the logic flow of process control and socket APIs.

Understanding TPF Internet Server Support

183

UDP Client TPF System

server_sock = socket
bind(server_sock)
listen(server_sock)

> select(server_sock)
E?ncggt() signal(SIGUSR1,SIG_IGN)
signal(SIGCHLD,sigchld_handler)
tpf_fork
(parent)
child
Wait for SIGCHLD ()
from TPF System
write() » recvirom(server_sock)
Internet Server
Application Logic
read() < send(server_sock)
write() > recv(server_sock)
close() P exit)

Figure 31. UDP and the WAIT Process Model. The Internet daemon (parent process) does not continue processing
until the Internet server application (child process) ends and the TPF system signals to the parent process that the
child process has ended.

Internet Server Application Interface

The following sections describe the interface between the Internet daemon and an
Internet server application for the process model based on the transport protocol
(TCP or UDP).

TCP and the WAIT Process Model
The Internet server application is started using the tpf_fork function and must be a
C or C++ main program.

When the Internet server application receives control, the following data is in the
entry control block (ECB):

EBWO000-003
Socket descriptor, defined as (long int).

184 TPF V4R1 Application Programming

The Internet daemon has accepted a socket connection, and the socket
descriptor passed in EBWO0O0O is for the connected socket.

EBWO004-011
1- to 8-character alphanumeric parameter string defined for the application in
the IDCF; this parameter string corresponds to the PARM parameter in the
ZINET ADD command.

EBW012-021
Server name; this corresponds to the SERVER parameter in the ZINET ADD
command.

Although it is not necessary for the Internet server application to explicitly reference
the associated process block, the following inheritance properties, as defined by
UNIX, are passed to the Internet server application:

File descriptor O
Socket descriptor for standard input (stdin).

File descriptor 1
Socket descriptor for standard output (stdout).

Real and effective user and group IDs
This information is obtained from the password file based on the Internet
daemon configuration file (IDCF) entry that was initialized by the USER
parameter in the ZINET ADD command.

Working directory
This information is obtained from the password file based on the IDCF entry
that was initialized by the USER parameter in the ZINET ADD command.

The Internet daemon does not accept another connection or data until the ECB for
the Internet server application ends.

The Internet server application must close the socket from which the request was
received.

See [[PE Operatiand for more information about the ZINET ADD command.

TCP and the NOWAIT Process Model
The Internet server application is started using the tpf_fork function and must be a

C or C++ main program.

When the Internet server application receives control, the following data is in the
entry control block (ECB):

EBWO000-003
Socket descriptor, defined as (long int).

The Internet daemon has accepted a socket connection, and the socket
descriptor is passed in EBWO0O0O for the connected socket.

EBW004-011
1- to 8-character alphanumeric parameter string defined for the application in
the IDCF; this parameter string corresponds to the PARM parameter in the
ZINET ADD command.

EBW012-021
Server name; this corresponds to the SERVER parameter in the ZINET ADD
command.

Understanding TPF Internet Server Support 185

Although it is not necessary for the Internet server application to explicitly reference
the associated process block, the following inheritance properties, as defined by
UNIX, are passed to the Internet server application:

File descriptor O
Socket descriptor for standard input (stdin).

File descriptor 1
Socket descriptor for standard output (stdout).

Real and effective user and group IDs
This information is obtained from the password and group files based on the
IDCF entry that was initialized by the USER parameter in the ZINET ADD
command.

Working directory
This information is obtained from the password file based on the IDCF entry
that was initialized by the USER parameter in the ZINET ADD command.

The Internet server application must close the socket from which the request was
received.

See m for more information about the ZINET ADD command.

UDP and the WAIT Process Model
The Internet server application is started using the tpf_fork function and must be a
C or C++ main program.

When the Internet server application receives control, the following data is in the
entry control block (ECB):

EBWO000-003
Socket descriptor, defined as (long int).

EBW004-011
1- to 8-character alphanumeric parameter string defined for the application in
the IDCF; this parameter string corresponds to the PARM parameter in the
ZINET ADD command.

EBW012-021
Server name; this corresponds to the SERVER parameter in the ZINET ADD
command.

Although it is not necessary for the Internet server application to explicitly reference
the associated process block, the following inheritance properties, as defined by
UNIX, are passed to the Internet server application:

File descriptor O
Socket descriptor for standard input (stdin).

File descriptor 1
Socket descriptor for standard output (stdout).

Real and effective user and group IDs
This information is obtained from the password and group files based on the
IDCF entry that was initialized by the USER parameter in the ZINET ADD
command.

Working directory
This information is obtained from the password file based on the IDCF entry
that was initialized by the USER parameter in the ZINET ADD command.

186 TPF V4R1 Application Programming

The Internet daemon does not accept another connection or data until the ECB for
the Internet server application ends.

The Internet server application must not close the socket from which the request
was received.

See W for more information about the ZINET ADD command.

UDP and the NOWAIT Process Model
The Internet server application is started using the tpf_fork function and must be a
C or C++ main program.

When the Internet server application receives control, the following data is in the
entry control block (ECB):

EBWO000-003
Socket descriptor, defined as (long int).

EBWO004-011
1- to 8-character alphanumeric parameter string defined for the application in
the IDCF; this parameter string corresponds to the PARM parameter in the
ZINET ADD command.

EBW012-021
Server name; this corresponds to the SERVER parameter in the ZINET ADD
command.

Although it is not necessary for the Internet server application to explicitly reference
the associated process block, the following inheritance properties, as defined by
UNIX, are passed to the Internet server application:

File descriptor 0
Socket descriptor for standard input (stdin).

File descriptor 1
Socket descriptor for standard output (stdout).

Real and effective user and group IDs
This information is obtained from the password and group files based on the
IDCF entry that was initialized by the USER parameter in the ZINET ADD
command.

Working directory
This information is obtained from the password file based on the IDCF entry
that was initialized by the USER parameter in the ZINET ADD command.

The Internet server application must not close the socket from which the request
was received.

See m for more information about the ZINET ADD command.
TCP and the AOR Process Model

The Internet daemon uses the activate_on_receipt function to start the Internet
server application.

When the Internet server application receives control, most of the data in the ECB
is provided by the TPF system. However, the Internet daemon obtained the user
parameter string from the IDCF that was initialized by the PARM parameter in the
ZINET ADD command. This parameter string is the data at EBW004-011.

Understanding TPF Internet Server Support 187

See [[PE Operationd for more information about the ZINET ADD command. See the
description of the activate on_receipt function in [PE Transmission Control
Pratocal/lnternet Pratacal for the layout of the data in the ECB.

The Internet daemon issues the activate_on_receipt function for a connected
socket.

There are no inheritance properties associated with this model because the Internet
server application is started as a new ECB rather than a child process.

Add an Internet Server Application to the IDCF

Use the ZINET ADD command to add an Internet server application to the IDCF.
See [[PE Transmission Caontrol Protacal/lnternet Pratacol and [TRE Qperationd for

more information about the ZINET ADD command and adding entries to the IDCF.

Considerations for Using the Internet Daemon to Start a TPF Program

Interface

The NOLISTEN process model in the Internet daemon is provided to start any TPF
application that does not communicate over the Internet.

A TPF program is started using the swisc_create function.

When the application receives control, the following data is in the entry control block
(ECB):

EBWO000-003
4 bytes of zeros (X'00".

EBW008-011
1- to 8-character alphanumeric parameter string defined for the application in
the IDCF; this parameter string corresponds to the PARM parameter in the
ZINET ADD command.

EBW012-021
Server name; this corresponds to the SERVER parameter in the ZINET ADD
command.

There are no inheritance properties associated with this model because the TPF
program is started as a new ECB rather than a child process.

e m for more information about the ZINET ADD command.

Starting a TPF Application from the Internet

Assuming that a Hypertext Transfer Protocol (HTTP) server is installed, TPF
Internet server support provides a way to start an E-type program based on an
application name as described in the HTTP request. So, it appears that starting an
application is similar to the way it is implemented on a UNIX system while, in reality,
the program is started using the TPF system loader.

On another system, write an executable script, which is a type of executable file,
and transfer it to the TPF system using the TFTP server. The TFTP server has the
capability to convert the data to EBCDIC if necessary.

188 TPF V4R1 Application Programming

When the HTTP server processes the executable script, it creates a child process
that is associated with an E-type program in the TPF application using the tpf_ fork
function. The HTTP server must have execute access permission to the executable
script.

A TPF application can direct its output to the Internet using file system APIs on file
descriptors that refer to sockets.

Executable Script

An executable script is a type of executable file that can be used by the tpf fork
function to start a TPF application.

The content of an executable script is EBCDIC text of the form:
#linterpreter name

The interpreter name is the 4-character loader segment (E-type program) name
containing a main function.

Example

Using the example of asking for the availability of an airline flight, assume the first
program in the availability application is QZZ2. The associated executable scripts
would contain:

#1Qzz2
For this example, when the client on the Internet requests availability, the Internet

daemon starts the HTTP server, which creates the child process that runs E-type
program QZZ2.

Understanding TPF Internet Server Support 189

190 TPF V4R1 Application Programming

Understanding TPF Remote Procedure Call

Remote procedure call (RPC) allows applications on one workstation to call
functions that reside on and are run by another workstation. Eigure 33 shows how
RPC can be used to call various types of new and existing applications. The
requesting application is not concerned with networking issues and data
representation of passed parameters between the two workstations because these
are resolved when the RPC client and server applications are developed and the
RPC interface is defined. The interface consists of the supported functions and the
format of their parameters, and is created by using the Interface Definition
Language (IDL). Each RPC interface requires a universal unique identifier (UUID)
that is created by using a UUID generator utility. TPF RPC requires that all the
offline utilities, such as the UUID generator and the IDL compiler, are run on the
0OS/390 system.

Client Server Machine
Machine (TPF)
Clientl Connections Call 1..n)
1.n RPC P Persistent
PC » Collection
Server »| Functions
Client2 Connections Call1l..n o
1.n RPC » Existing
Oldapp » Application
Server »| Functions
Client3 Connections Call 1.n
1.n RPC »| User (DLM)
Lib P Library
Server » Functions

Figure 32. RPC Servers Used to Call Applications

Interface Definition Language and Stub Files

Client and server code are tied together through the use of the interface definition.
The interface definition describes the set of procedures that is offered by the
interface. The interface definition file is coded using the Interface Definition
Language (IDL).

To create an RPC interface, you must use the IDL to define each RPC function and
the format of the input and output parameters. An IDL compiler on both the client
and server platforms is used to compile a .idl file, and also to generate header files
and stub (C source) files. The header files are included and the stub files are linked
in both the client and server application code; this code includes the required
functions to convert between client and server data formats and to handle network
communications between the client and the server.

© Copyright IBM Corp. 1994, 2002 191

TPF Modifications to Distributed Computing Environment (DCE) RPC

Client applications running on any IBM or non-IBM DCE platform are able to run
remote procedure calls to a TPF server. All DCE services are available to client
applications; however, the TPF 4.1 system supports only a subset of the DCE RPC
services. The following are elements of a traditional DCE RPC environment that can
be used with the TPF implementation:

» Server support only (no client support)
* Unauthenticated RPC only (no DCE security service or Kerberos provided)

* An offline process to load TPF server information into a directory server (no
directory service application programming interfaces (APISs))

» Preassigned server port numbers (no dynamic server port assignment at run
time). Client applications must obtain full binding information about the TPF
server.

Creating an RPC Interface for TPF

m shows how an RPC interface is created and used in the RPC
client/server environment.

Note: The directory server is not needed if string bindings are used that contain the
complete binding information.

DCE Client System TPF
Client > <
Application Remote
Procedure Call Server
Application
Get Bind
Information
Directory Server 0S/390
> UUID Generator

Directory IDL Compiler
Service Compile
Link

Figure 33. Remote Procedure Call Overview for Client and Server Platforms

To create an RPC client/server application, do the following:

1. Generate a universal unique identifier (UUID) for the new RPC interface by
using the UUID Generator Utility on an OS/390 system.

2. Create an Interface Definition Language (IDL) file that includes the UUID and
the remote procedures with their input and output parameters.

192 TPF V4R1 Application Programming

3. Compile the IDL file with an IDL compiler to generate header files and stub
files for client and server applications on an OS/390 system.

4. Include the header file in the server application. Compile and link the server
stub file and the server application on the server platform (this would be where
you compile and link all your TPF code).

5. Include the header file in the client application. Compile and link the client stub
file and the client application on the client platform.

6. Load the server code to your TPF 4.1 system. RPC servers are processor and
subsystem unique.

7. Cycle the TPF 4.1 system to 1052 state or higher.

8. To increase thread resources, change the thread parameters in keypoint A
(CTKA) by entering the ZCTKA ALTER command with the MTHD and TSTK
parameters specified. Restart your system by entering the ZRIPL command.

9. Define an Internet daemon (INETD) entry for the new server by entering the
ZINET ADD command with the S, MODEL-RPC, and PGM parameters
specified.

10. Cycle the TPF 4.1 system to CRAS state or higher.

11. Verify that TCP/IP support is active in the TPF 4.1 system and that required
offload devices or Internet Protocol (IP) routers are available and active. Enter
the ZCLAW DISPLAY command with the ACTIVE parameter specified to check
the active CLAW workstations, and the ZTTCP DISPLAY command with the
ACTIVE parameter specified to display all active IP routers.

12. Start the server using the INETD by entering the ZINET START command with
the S parameter specified.

Clients can now access remote procedures from any client platform.

See [[PE Operationd for more information about the ZCLAW DISPLAY, ZCTKA
ALTER, ZINET ADD, ZINET START, ZRIPL, and ZTTCP DISPLAY commands.

TPF RPC Run-Time Library

The Open Software Foundation Distributed Computing Environment (OSF DCE)
RPC run-time library consists of RPC routines that perform a variety of functions.
The TPF 4.1 system has implemented the subset of those routines that relate to
server support. The RPC run-time library was ported from MVS/ESA OpenEdition
DCE. The code is written in C language and is implemented as a dynamic link
library (DLL) on the TPF 4.1 system; therefore, TPF RPC server applications must
be compiled with the DLL option.

The RPC run-time library allows you to develop RPC server applications that are
accessed using Transmission Control Protocol (TCP) or User Datagram Protocol
(UDP). The RPC library name is CRPC and the library ordinal number is 0011. The
RPC library APIs establish all required client/server connections using socket APIs.
The following is a list of supported RPC run-time library APIs:

rpc_binding_copy Returns a copy of a binding handle.
rpc_binding_free Releases binding handle resources.
rpc_binding_inq_object Returns the object UUID from a binding handle.

rpc_binding_to_string_binding
Returns a string representation of a binding handle.

Understanding TPF Remote Procedure Call 193

rpc_binding_vector_free

rpc_if_id_vector_free

rpc_if_inq_id

rpc_mgmt_inqg_if_ids

rpc_mgmt_inq_stats

rpc_mgmt_is_server_listening

rpc_mgmt_stats_vector_free

Frees the memory used to store a vector of binding
handles.

Frees a vector and the interface identifier structure
it contains.

Returns the interface identifier for an interface
specification.

Returns a vector of interface identifiers of interfaces
a server offers.

Returns RPC run-time library statistics.

Tells whether a server is listening for remote
procedure calls.

Frees a statistics vector.

rpc_mgmt_stop_server_listening

rpc_network_ing_protseqs

rpc_network_is_protseq_valid

rpc_object_inq_type
rpc_object_set_ing_fn

rpc_object_set_type

rpc_protseq_vector_free

rpc_server_ing_bindings

rpc_server_ing_if

rpc_server_listen

rpc_server_register_if

rpc_server_unregister_if

Tells a server to stop listening for remote procedure
calls.

Returns all protocol sequences supported by both
the RPC run-time library and the operating system.

Tells whether the specified protocol sequence is
supported by both the RPC run-time library and the
operating system.

Returns the type of an object.
Registers an object inquiry function.

Registers the type of an object with the RPC
run-time library.

Frees the memory used by a vector and its protocol
sequences.

Returns binding handles for communications with a
server.

Returns the manager entry point vector registered
for an interface.

Tells the RPC run-time library to listen for remote
procedure calls.

Registers an interface with the RPC run-time library.

Removes an interface from the RPC run-time
library.

rpc_server_use_all_protseqs_if

rpc_server_use_protseq_ep

rpc_server_use_protseq_if

194 TPF V4R1 Application Programming

Tells the RPC run-time library to use all the protocol
sequences and endpoints specified in the interface
specification for receiving remote procedure calls.

Tells the RPC run-time library to use the specified
protocol sequence combined with the specified
endpoint for receiving remote procedure calls.

Tells the RPC run-time library to use the specified

rpc_ss_allocate

rpc_ss_free

rpc_string_binding_compose

rpc_string_binding_parse

rpc_string_free

uuid_compare
uuid_create
uuid_create_nil
uuid_equal
uuid_from_string
uuid_hash
uuid_is_nil

uuid_to_string

protocol sequence combined with the endpoints in
the interface specification for receiving remote
procedure calls.

Allocates memory within the RPC stub memory
management scheme.

Frees memory allocated by the rpc_ss_allocate
routine.

Combines the components of a string binding into a
string binding.

Returns, as separate strings, the components of a
string binding.

Frees a character string allocated by the run-time
library.

Compares two UUIDs and determines their order.
Creates a new UUID.

Creates a nil UUID.

Determines if two UUIDs are equal.

Converts a string UUID to its binary representation.
Creates a hash value for a UUID.

Determines if a UUID is nil.

Converts a UUID from a binary representation to a
string representation.

See the OSF DCE Application Development Reference for more information on the

DCE RPC APIs.

The first time an RPC API is called, the run-time library is initialized. After the first
APl is completed, the server runs in a thread environment. See
for more information about the thread environment and thread safety.

RPC Calls

You can use the rpc_server_listen APl with the max_calls_exec parameter to
specify the maximum number of RPC server calls that are running concurrently on
the TPF 4.1 system. The run-time library accepts or rejects an RPC call (the call is
not queued) when accepting a connection for TCP implementation; this is
determined by the number of calls that are currently running. The max_calls_exec
value must take into account thread resources and must be a number greater than
zero and less than the maximum number of threads per process. You can use the
following formula as a guideline:

(2 * max_call) + 3 threads defined

To change the maximum number of threads allowed for each process, see the
information for the MTHD parameter of the ZCTKA ALTER command in

If the TPF 4.1 system cannot acquire heap storage while attempting to receive a
call, a dump occurs and the RPC server is exited. If the TPF 4.1 system cannot
create a thread to process the RPC call (because of maximum thread limitations),

Understanding TPF Remote Procedure Call 195

RPC closes the newly accepted socket and the server continues to run. Done at
accept time, this form of throttling rejects the RPC calls if system resources are not
available and processes the next RPC call as soon as system resources become
available. Although it has an impact on the client, this throttling is not unique to the
TPF 4.1 system. If errors such as queue limits exceeded or network failures occur,
the client can retry the call.

Threads

OSF DCE RPC is built on top of a thread model. In the TPF 4.1 system, the thread
library name is CTHD and the library ordinal number is 0008.

The Thread Environment

Thread Safety

To enable your TPF 4.1 system for threads, enter the ZCTKA ALTER command and
specify the MTHD and TSTK parameters. The MTHD parameter specifies the
maximum number of threads allowed in a process. The TSTK parameter specifies
the maximum number of 4-KB ISO-C stack frames for each thread. The TSTK

arameter must be a value from 4 to 1024 and must be a power of 2. See fred
m for more information on the ZCTKA ALTER command.

Server applications run as threads and, therefore, must be thread safe. Most TPF
services are currently thread safe; however, some services, such as file system and
C function trace are not. Any function that causes the file system to be initialized,
such as printf, and is used by a threaded application will cause results that cannot
be predicted in the threaded application, such as depletion of 4-KB frames. C
function trace is skipped in a threaded environment. The TPF recommendation is
for RPC server applications to exit the thread environment to run the call (see
tpf_cresc in the [[RE_C/C++ | anguage Support User's Guidd as one way to exit
the thread environment), and then return to the thread environment when the call is
completed. Parameters can still be passed back and forth using this method.

In addition to the server applications, the server itself runs as a thread. Typically,
the server contains RPC run-time APIs and additional processing, such as
initialization and cleanup. You must be certain that any additional processing that
occurs in the server is thread safe.

RPC Servers

RPC servers are subsystem unique.

Note: Because the TPF 4.1 system does not support dynamic endpoints (port
numbers) for RPC servers, the same RPC server cannot run in multiple
subsystems unless there is a unique connection for the server.

The local IP address or port number has to be unique to establish a unique

connection.

Whenever a remote procedure call takes a system error and the ECB exits, the
RPC server is deactivated and cleaned up. The TPF 4.1 system provides the
tpf_RPC_options APl with a TPF_RPC_OPTIONS _EXIT_ THREAD parameter so you can
avoid this server deactivation. You can use this parameter to make the issuing
thread ECB exit without stopping its process. The TPF_RPC_OPTIONS_EXIT_THREAD
parameter must be issued in the call thread immediately before the requested RPC

196 TPF V4R1 Application Programming

interface function is run. The tpf RPC_options API provides a corresponding reset
parameter, TPF_RPC_OPTIONS EXIT PROCESS, that must be issued before the remote
procedure call returns.

Starting and Stopping RPC Servers
You can start or stop RPC servers through the following:

* Internet daemon (INETD), by using the ZINET ADD, ZINET ALTER, ZINET
START, and ZINET STOP commands

* Cycle-up and cycle-down processing

* E-type loader, by using the ZOLDR ACTIVATE, ZOLDR DEACTIVATE, and
ZOLDR EXCLUDE commands.

INETD
You can add, change, start, or stop RPC servers by using the following commands
for the INETD:

* ZINET ADD adds an RPC server entry to the Internet daemon configuration file.
You must specify the MODEL=RPC parameter so that INETD will only start and
stop the TPF RPC server and not manage it. TPF RPC servers use static binding
(the IP address and port number are predetermined), so the IP and PORT
parameters have no value for RPC.

* ZINET ALTER allows you to change the server parameters and the type of
activation.

* ZINET START starts a specified server.
* ZINET STOP stops a specified server.

When you enter the ZINET STOP command, the INETD marks the specified
server as inactive. The RPC run-time library detects that the ZINET STOP
command was issued and attempts an orderly shutdown. The server stops
listening on the port and handles all queued or active requests before cleaning
up. Two messages are displayed for this condition. INETD processing indicates
that the server was stopped (as a direct response to the ZINET STOP command
that was entered). The RPC run-time library then displays a message indicating
that the server is shut down.

See [[PE Operationd for more information about the ZINET ADD, ZINET ALTER,
ZINET START, and ZINET STOP commands.

TPF Cycle-Up and Cycle-Down Processing
RPC servers can be started and stopped automatically in cycle-up and cycle-down

processing. This support is implemented through the INETD.

Note: Transmission Control Protocol/Internet Protocol (TCP/IP) and socket support
deactivates connections as part of cycle-down processing. Any or all of the
outstanding RPC requests may or may not be processed during cycle-down
processing. RPC takes a communication error cycling to 1052 state;
however, RPC will end normally when cycling down to CRAS state (if the
INETD is not set to be active in CRAS state). See the ZINET commands in

for more information.

E-Type Loader
RPC servers are automatically recycled whenever any loadset is activated,

deactivated, or excluded by the E-type loader. Continuous service is provided
between the time that the server is shut down and the server is reactivated. Any
remote procedure calls received during this time are queued and handled by the
newly activated server. All remote procedure calls in the TPF 4.1 system cause an

Understanding TPF Remote Procedure Call 197

ECB to be created that inherits the system activation number. Newly activated
functions will not be used by the RPC server until the server is restarted and can
create ECBs with the new system activation number.

The tpf_is_RPCServer_auto_restarted API is provided so you can have a server
application query if it is automatically restarted. Applications can skip certain initial
startup code for a server that is restarted.

Performance and Tuning for RPC

Three fields have been added to the System Summary Report:

» To ensure that there are enough threads defined to the TPF 4.1 system for any
application that uses threads, data is collected from the following fields:

— The maximum number of threads for each process

The maximum number of threads active in any process at any time during an
iteration of data collection.

— The high-water mark number of threads active in a process

The maximum number of threads active in any process at any point in time
during the current initial program load (IPL).

If a thread application (for example, RPC) is using a large number of threads
compared to the number defined in keypoint A (CTKA), you can enter the ZCTKA
ALTER command to change the maximum number of threads.

* The third field is the maximum number of frames on the frames pending list,
which is collected to help determine if additional 4-KB frames are needed. If the
maximum number is greater than 10% of the frames in the TPF 4.1 system, a
system shutdown can occur because it is low on available frames.

Frames that are released by threaded ECBs are placed on the frames pending
list until it is safe to reuse them; for example, after a purge of the translation
look-aside buffer (PTLB) is performed on all I-streams. If a large number of
frames remains on the frames pending list, additional 4-KB frames should be

generated in the TPF 4.1 system. See [[PE System Generation for more

information about the CORREQ macro.

RPC Storage Considerations

RPC servers run in a threaded environment. You need to consider both the size of
the ECB heap area and the maximum number of threads in a process. As each
thread is created in a process, the heap area of the initial thread is shared with the
new thread. The maximum number of threads in a process affects the size of the
collective heap.

You can enter the ZCTKA ALTER command to modify heap storage values. The
maximum size of the ECB heap is set by specifying the EMPS parameter. The
maximum number of 4-KB frames that an ECB can acquire for heap storage is set
by specifying the MMHS parameter. Specifying these parameters affects all ECBs in
the TPF 4.1 system. In a threaded environment, the value in the MMHS parameter
may be too small to accommodate the collective heap. You can modify the
CE2MPF field in the ECB to override the value in the MMHS parameter; this will
allow for the number of 4-KB frames required by the collective heap.

When a thread issues a request for heap storage, frames are attached to the initial
thread. For RPC, this is the ECB that issued the rpc_server_Tisten API.

198 TPF V4R1 Application Programming

Note: These frames are not released until the initial ECB exits. For RPC, this
means that the server has been shut down.

RPC C Header Files

Following is a list of standard RPC C header files that are supported by the TPF
system:

c$thex.h
cobolbas.h
codestbh.h
dcemvs.h
dce/codesets.h
dce/cpconver.h
dce/csmgmt.h
dce/dce.h
dce/dceerror.h
dce/dcemsg.h
dce/dcemsgmsg.h
dce/dcerpcmsg.h
dce/dcerpcsvc.h
dce/dcesvc.h
dce/dcesvcmacro.h
dce/dcesvemsg.h
dce/d11types.h
dce/idlbase.h
dce/idlddefs.h
dce/idles.h
dce/iovector.h
dce/1base.h
dce/marshall.h
dce/nbase.h
dce/ncastat.h
dce/ndrold.h
dce/ndrrep.h
dce/ndrtypes.h
dce/rpchase.h
dce/rpcexc.h
dce/rpcpvt.h
dce/rpctypes.h
dce/rpcxdl.h
dce/service.h
dce/stubbase.h
dce/twr.h
dce/uuid.h
ldrall.h
pthdex.h

Understanding TPF Remote Procedure Call 199

rpcxstub.h

Note: Some of these RPC C header files are included by the server, the server
stub file, or the server application.

200 TPF V4R1 Application Programming

Understanding Virtual Storage Access Method (VSAM)
Database Support

This chapter describes the macro-level interface as well as the external interactions
between the multiple virtual storage (MVS) system and the TPF system that are
required to access VSAM databases from the TPF system. An introduction to VSAM
is provided, including terminology that is useful in understanding VSAM database
support, which is the term that we will use to refer to the support implemented in
the TPF system that permits applications to access VSAM databases.

VSAM Concepts

VSAM is an IBM licensed program; as an access method service, it provides fast
storage and retrieval of data. Records are stored in control intervals; that is, in the
block on the disk that VSAM uses to store data records and control information that
describes the records. Records are ordered by key values in a key field or by when
they were stored.

For access to a keyed data set, also known as a key-sequenced data set (KSDS),
you specify a key value; for access to a nonkeyed data set, also known as an
entry-sequenced data set (ESDS) or sequential data set, you specify a relative byte
address (RBA). A variation of keyed data set access is known as a relative record
data set (RRDS), which is comprised entirely of fixed-length records; the record
number is handled like a key.

VSAM maintains the concept of a logical next record and logical previous record
interface to provide database scans and searches. Keyed positioning is also
available to begin scans either at the beginning or in the middle of a data set,
including a KSDS.

A KSDS has two data set components: a data component and an index component.
The VSAM index of a highly volatile file may be very complex, requiring several
levels of indexes. These layers are known as the index set. The index set points to
the lowest level index, called the sequence set. For performance reasons, the
sequence set typically resides on the same cylinder as the data control intervals to
which it refers in the data component. The keys in the index set are always
compressed. VSAM supports alternate indexes to provide alternate access to data;
for example, the prime index key to a database could be an account number, while
the alternate key could be a customer name.

The three ways to access data in a VSAM data set are:
» Direct access, which is usually required for keyed data sets
* Sequential access, which is usually required for entry-sequenced data sets

» Skip sequential access, which permits positioning to the next records based on a
defined value.

Eigure 34 on page 202 shows the typical layout of a key-sequenced data set.

© Copyright IBM Corp. 1994, 2002 201

Index g 2131|5
Set R 51910
IT-———======—- |
LY A 4
Sequence g 1112 g 313]3
Set R 419(5 R 01719
3 Data CI1 | Data ClI2 3 Data CI3
C C C
Free [R) g | Free g | Free g g |
112 Space D 2025 Space D 1518 Space D
F|F F F|F
F F F
0 4096

Control Information

Figure 34. Layout of a Key-Sequenced Data Set

VSAM is controlled by a set of macros to manage data (OPEN, POINT, GET, PUT,
ERASE, ENDREQ, and CLOSE) and a set of macros to manage control blocks
(GENCB, TESTCB, SHOWCB, MODCB). These are described in MVS/XA VSAM
Administration: Macro Instruction Reference.

Typically, an application requests VSAM services by running a predefined sequence
of macro calls. The dialog is controlled by two major control blocks: the access
method control block (ACB) and the request parameter list (RPL). These control
blocks describe the characteristics of the data set, the type of access that is
required, and the status of active requests. They are created using the TPF GENCB
macro and are passed with each VSAM data request.

The dialog between VSAM and an application to read a record is structured as
follows:

1. Enter the GENCB macro to create an ACB and an RPL.
2. Enter the OPEN macro to connect to a database.

3. Enter the GET macro to read a data record, followed by the CHECK macro to
wait for results of the read.

4. Process the data record.

5. Enter the ENDREQ and CLOSE macros to end the request and disconnect from
the database.

VSAM Database Support

202

The TPF system implements VSAM (called VSAM database support) through TPF
general data set (GDS) support. This VSAM database support provides read-only
access to VSAM KSDSs by using a macro interface and general processing
protocol that is loosely modeled after IBM VSAM.

TPF V4R1 Application Programming

The VSAM database space is managed by an integrated catalog facility (ICF) entry
that is set up on an MVS system at the time the VSAM data cluster is created. The
catalog entry contains the physical characteristics of the cluster: the name of the
data set, the extents, the number of volumes, the physical block size, the control
interval size, and so on. In addition, the catalog entry contains the logical layout of
the data and the type of organization. Because this information is required by the
TPF system to decode VSAM requests, it is extracted from the MVS system by
using the IDCAMS LISTCAT function (or other comparable function) and passed to
the TPF system on the data set name. IDCAMS is an executable program in the
MVS system that provides specialized VSAM support.

The actual management of space (that is, allocating data sets on DASD),
multivolume control, populating disks with data, and performing index maintenance
is performed by the MVS system. Each VSAM volume, therefore, is connected to
the TPF system and MVS at the same time. Data is inserted into VSAM control
intervals using the IDCAMS REPRO function on MVS; however, TPF applications
cannot access a data set while it is being populated with data on the MVS system.

VSAM database support is grouped logically into four areas, as follows:

» Data set management (open, close, mount, and remove)

* Record management (servicing requests to manage data)

» Control block management (storage management and interface control)

* Input/output (I/O) management (drivers, index processing, decompression, and
asynchronous control).

These areas are implemented in E-type programs called run-time routines that
operate between application programs and the TPF system. Asynchronous control
for 1/0O processing is not permitted; however, VSAM requests can be interleaved
with application find and file requests to help database coexistence and migration.

Eigure 35 on page 204l identifies the major components that comprise the interface
and shows the logical flow between the components to convert a sample flat file

into a VSAM key-sequenced data cluster and move it online to the TPF system.

Understanding Virtual Storage Access Method (VSAM) Database Support 203

<
<
[2)
—
U
T

Space Allocation, CcPU
7 | Formatting, VTOCs
VSAM e ,_
‘DEFINE CLUSTER’ Applications
VSAM/TPF Run-Time Routines
Load-type function that 1/0 Routines Control and
populates databases with VSAM Mount/Dismount
business data and creates KSDS A
indexes and Cls.
y Read|Data

VSAM
‘REPRO’
Function

\

\ RS

E/pical Load Data

— B
| Appl. Data

T Rename Data Set T

F

ICF Catalog L LISTCAT Output
((\
\

\
\

\\ Rename the VSAM data set and
append control information.

Figure 35. VSAM Database Logical Flow

Disk Mirroring

VSAM database support provides mirrored disks as well as the ability to balance
disk queues to provide a high level of data availability for TPF applications. With
disk mirroring, a disk failure remains transparent to the application as long as the
mirror disk can manage the request. For example, if a volume of an index or data
space is taken offline either manually or by the TPF system, VSAM database
support switches active read operations off the failed volume to the alternate
volume on the mirror data cluster. In the same way, any read operations that occur
after the disk failure are switched to the alternate disk. When the disk volume or
cluster is brought online again, VSAM database support incorporates the disk or
cluster into the configuration again and uses it immediately.

Disks can be added or removed from the configuration at any time by using the
ZDSMG DM or MT command with the ALL parameter specified (for an entire
cluster) or the VOLUME parameter specified (for an individual disk). Note that the
index and data portions must be handled separately for a KSDS; therefore, you
must enter the ZDSMG command twice, each time with a separate data definition
(DD) name reference.

204 TPF V4R1 Application Programming

Each VSAM cluster must be identical to the other (except for the volume serial
numbers (VOLSERS)) for disk mirroring to work. An MVS database administrator
must run two jobs to create two VSAM clusters on different sets of disk volumes to
set up a mirrored VSAM group. The MVS DEFINE command in the VSAM CREATE
function is identical for both clusters except for the VOLSERSs, which must change.
This ensures that VSAM arranges the files in exactly the same way on both sets of
disks. Each disk then has a unique MVS data set name.

Data Set Naming Convention
MVS catalog information is passed to the TPF system by appending it to the end of

the data set name. Each MVS VSAM data set name of each portion of the VSAM
cluster must end with the following:

.R <SS RBA> <High Level Block Number> .P <Key Position> L <Key Length> <.INDEX | .DATA>

SS RBA
Specifies the hexadecimal value of the sequence set RBA that is displayed in
the LISTCAT output on the MVS system, divided by the control interval (CI)
size. SS RBA is the pointer to the start of the sequence set Cl blocks in the
index set. For example, an SS RBA of 1 474 560 and a CI size of 4096 would
result in X'168'".

High-Level Block Number
Specifies the 4-digit hexadecimal value of 1 plus the value of the high-level
RBA that is displayed in a LISTCAT output on the MVS system, divided by the
Cl size. The high-level RBA is the pointer to the first index block in the highest-
level index; that is, the point where all index lookups begin. For example, a
high-level RBA of 8192 and a CI size of 4096 would have a block number of
X'0003' 1+(8192/4096).

Key Position and Key Length
Specifies the hexadecimal offset to the key in the record, counting from 0. For
example, a key of 22 bytes at byte offset 33 would result in .P21L16. These are
the values specified in the KEYS parameter on the define cluster command;
they are also the RKP and KEYLEN values that are displayed in LISTCAT on
the MVS system.

INDEX | DATA
For a KSDS, VSAM (on MVS) automatically appends the names INDEX or
DATA to the data set name during the VSAM create process to identify the
index and data spaces of the cluster. For a cluster with a high-level RBA of
1474 560, Cl size of 4096, and key length of 22 bytes at offset 33 in each
record, the data set name for the index portion of the cluster would be
.R1680003.P21L16.INDEX. The data portion of the cluster would be
.R1680003.P21L16.DATA.

Referring to Data Definition (DD) Names and Clusters

The TPF system provides several levels of references for data sets to maintain a
high level of flexibility in managing files. By convention, applications refer to the
VSAM database by using an application DD name, while the TPF system refers to
the VSAM database by using a system DD name, which is derived for the
application DD name. The TPF system can also refer to a disk by its cluster data

set name and volume sequence number. See [Canstructing the VSAM Cluster Datd
Bet Names” an page 214 for more information about constructing cluster data set

names.

Each key-sequenced data set cluster is then defined by two unique DD names: one
to identify the index space and one to identify the data space. Therefore, there are
two unique data set names. In a mirrored cluster, there are four unique DD names

Understanding Virtual Storage Access Method (VSAM) Database Support 205

and four unique data set names. A cluster group refers to the entire group of VSAM
clusters that comprise a prime and mirror set.

DD names are created by first assigning an 8-byte name to an application to
identify the cluster group (prime and mirror) (for example, FREQFLYR). The
application uses this name in the ACB to refer to the cluster group. The TPF system
refers to this DD name (using the ZDSMG command) by appending INPR, INMI,
DAPR, or DAMI when referring to discrete parts of the cluster group. Consider the
following example.

FREQFLYRINPR Specifies the prime index portion of the cluster
group.

FREQFLYRDAPR Specifies the prime data portion of the cluster
group.

FREQFLYRINMI Specifies the mirror index, a copy of INPR.

FREQFLYRDAMI Specifies the mirror data, a copy of DAPR.

The disk volumes in a DD name can also be addressed by the ZDMSG command
with the VOL parameter specified.

[fable 14 shows how a cluster referencing scheme might look. Application
programmers use the application DD name when writing programs. A TPF operator
uses the TPF system DD name to mount and remove files, while an MVS database
administrator uses the MVS data set names to create and copy VSAM data sets.

Table 18. VSAM Database Support Cluster Reference

Application DD Name TPF System DD Name MVS Data Set Name

CHECKING CHECKINGINPR TPF.CHECKING.PRIME.R1680003.P21L16.INDEX
CHECKING CHECKINGDAPR TPF.CHECKING.PRIME.R1680003.P21L16.DATA
CHECKING CHECKINGINMI TPF.CHECKING.MIRROR.R1680003.P21L16.INDEX
CHECKING CHECKINGDAMI TPF.CHECKING.MIRROR.R1680003.P21L16.DATA

I/O Interface and VFA

The I/O management scheme used by the interface uses several optimization
options that include virtual file access (VFA) buffering for index blocks (Cls). All
index blocks in the index data set are VFA candidates. Each time an index block is
retrieved, the run-time program tries to get it from VFA. If it is not present, it is
retrieved from disk and placed in VFA for later retrieval. The number of index blocks
in the IMBED type of data cluster is typically small.

The run-time program uses the standard TPF macro interface to read data blocks
and perform 1/0. The GDSNC and FINWC macros are used to read index set,
sequence set, and data set control intervals. Each call converts the index set
vertical pointer to a relative record number that the TPF system can convert into a
file address reference format (FARF) type of address.

For a typical direct key retrieval for an IMBED type of data cluster, this requires the
TPF system to perform two VFA reads of the index set, followed by two disk 1/Os:
one to read the sequence set Cl and one to read the data record CI. No head
movement is required between the two physical I/Os because the sequence set Cl
is at the same seek cylinder address as the data record CI.

206 TPF V4R1 Application Programming

Scanning, or sequential processing, is highly optimized because the run-time
program takes full advantage of the sequence set to data record relationship,
including scanning within a Cl that was already retrieved and then scanning the
entire cylinder to read all the records in a Cl. To take full advantage of this, an
application may spawn many entry control blocks (ECBs) to consume an entire
VSAM file in parallel.

VSAM Database Constraints

VSAM database support for the TPF system is read-only. This means that while a
VSAM data set is being actively referenced by TPF applications, the MVS system
will not try to modify the data set, and the TPF system will not write to or modify the
VSAM data set in any way. The MVS system, however, can modify the database
when the data cluster is logically or physically disconnected from the TPF
application that is referring to it. Access to VSAM data sets between the MVS and
TPF systems, therefore, is mutually exclusive.

The following VSAM database macros support this read-only interface:

Table 19. VSAM Database Support Macros

VSAM Database |Description MVS System
Macro Equivalent
Macro
VOPNC Use this macro to connect to a VSAM database. OPEN
VGETC Use this macro to read a record. GET
VCHKC Use this macro to wait for a request to end. CHECK
VPNTC Use this macro to position for access. POINT
VENDC Use this macro to end a request. ENDREQ
VCLSC Use this macro to disconnect from a database. CLOSE
VGENC Use this macro to generate a control block. GENCB
VSHOC Use this macro to access a control block. SHOWCB

Because VSAM database support for the TPF system is read-only, the MACRF and
OPTCD parameters of the VGENC macro, which specify processing options and
type of access, are restricted to the read-only set and exclude parameters that
would change the database. The locate (LOC) and move (MVE) parameters are
supported by VSAM database support for retrieving data. The VGENC macro is
also used to generate ACBs and RPLs. The maximum number of ACBs that can be
specified per ECB is 16; the maximum number of RPLs per ECB that can be
specified is 32.

Three types of access to a VSAM data set were previously mentioned in describing
VSAM:

» Direct access is supported for transaction-type requests.
» Sequential access is supported for scan-type requests.
» Skip sequential access to a VSAM data set is not supported for the TPF system.

The ICF catalog structure on the MVS system is the only catalog structure that is
supported. The Cl must be set to the maximum TPF block size of 4096 bytes and
the physical block size on a track must be equal to the CI size. Alternate indexes
and the specialized linear data set are not supported.

Understanding Virtual Storage Access Method (VSAM) Database Support 207

The prime and backup copies of each data cluster must be physical and logical
mirror images of each other for applications that require backup. Each disk must be
a physical mirror image of its alternate.

You must specify either the IMBED or the NOIMBED option for the DEFINE
command when creating the VSAM database on the MVS system. The maximum
size of a Cl is 4096 bytes; spanning of Cls is not supported. The maximum record
size, therefore, is 4089 bytes after taking into account the 4-byte control interval
definition field (CIDF) at the end of the block and a 3-byte record definition field
(RDF) field that follows it. The CIDF describes the free space, if there is any, in the
control interval. The RDF describes the characteristics of each record.

The index component cannot span multiple volumes and can only be on one extent.

The following options are restricted for the DEFINE CLUSTER command on the
MVS system when you are defining VSAM data sets that will be used by the TPF
system:

« NONSPANNED
+ NOREPLICATE
. ClISZ

- CYLINDERS

« UNIQUE

- INDEXED.

VSAM Database Considerations
VSAM database support is compatible with certain levels of data facility product

DFP) VSAM, MVS/ESA, and TPF; see [[PE Migration Guide: Program Updatd

for more information about what levels are supported. VSAM database
support coexists with all other TPF database support.

The VSHOC macro is a special version of the VSAM SHOWCB macro; this macro
returns the first ACB and RPL in sequence. Subsequent control blocks of the same
type are accessed by using the chain word in each block.

VSAM blocks do not use the format flag; therefore, you must review code that
depends on format flags. The area that was occupied by the format flag is used to
hold part of the CDF field at the end of the block.

Storage allocation for control blocks is managed by TPF VSAM database database
support or by the application (by coding the WORKAREA parameter on the GENCB
macro). Storage allocation for I/O buffers is managed exclusively by VSAM
database support by using the GETCC macro. As a result, the buffer parameters
that are usually coded on the GENCB macro in the MVS system are not required in
the TPF system. Instead, a new parameter, LEVEL=DX, is coded in generating the
RPL to specify the TPF data level and core block reference word (CBRW) to use for
I/O operations.

For performance reasons, all I/O requests in VSAM database support are

synchronous, which means that the OPTCD=ASY parameter is not supported for
the VGENC macro. Therefore, all VGETC, VENDC, and VPNTC requests do not
need the corresponding VCHKC macro to get the results of the macro operation.

VSAM database support does not include the EXLST macro to generate an EXIT
list.

208 TPF V4R1 Application Programming

VSAM Database Support with Other Utilities

VSAM data sets are mounted to the TPF system as 4-KB general data sets
(GDSs). These data sets are managed by the TPF control program as GDSs and
are mounted and removed using GDS commands and macros. By using the GDS
interface, VSAM data sets inherit all of the reliability, availability, and serviceability
characteristics that are provided by the GDS packaging, including 1/O error
recovery, environmental error record editing and printing program (EREP) analysis,
and sustained connections across TPF system restarts. VSAM database support
additionally enhances data availability through the use of disk mirroring, as
mentioned previously.

TPF data collection tools, which measure I/O performance, storage use, and
response times, are available with VSAM database support to use in capacity
planning and performance measurement.

To extract the required ICF catalog information for the TPF system, a COBOL utility
is available, on request, that demonstrates how to derive the catalog information
that is needed by the TPF system as part of the data set name. A sample
restructured extended executor language (REXX) program is provided in
EConstructing the VSAM Cluster Data Set Names” an page 214, which can be used
to construct the VSAM database support cluster data set names to be mounted to
the TPF system.

VSAM Database Support Request Flow Control

An ECB communicates with VSAM database support through a set of macros to
manage a VSAM database. The flow of control begins by running the VGENC
macro to create an access method control block (ACB). Now that the data cluster to
be opened is defined, as well as the processing options that are required, the ECB
connects to the VSAM database by using the VOPNC macro. This prepares the
data set for access. For VOPNC requests, the run-time routines internally issue the
TPF GDSNC macro to connect the ECB to the database and save the output from
that process.

Note: The application DD name is used to derive the TPF system DD name that is
used when the cluster data set components are mounted to the TPF system.
In this way, VSAM database support is able to make the connection to the
prime and mirror cluster data sets.

Using an RPL, the ECB then manages records in the database by using the
VGETC and VPNTC macros. Use the VCHKC macro to get the results of requests
and the VENDC macro to end requests. When ECB processing is completed, it
issues a VCLSC macro to break the connection. This flow of control is similar to a
typical TPF database access where an ECB hashes a key to a fixed record slot,
calls the FACS program to get the disk address of the slot followed by a find and
wait to get the data block, and finally issues the RELCC macro to release it. The
difference between that flow control and VSAM database support is that VSAM
database support provides functions such as indexing and hashing in addition to the
ability to locate specific records in blocks rather than having to write code for it.
VSAM database support also performs complex, hierarchical data searches and full
database scans. Eigure 36 on page 210 shows the interaction of VSAM macros and
control blocks and how they are used during request processing.

Understanding Virtual Storage Access Method (VSAM) Database Support 209

Epplication fills in
the ACB for OPEN. Application fills in the RPL for
GET and specifies a data level

to use and the address of the
Generate Control OPEN Generate Rquest key.
Block > Data Set Parameter List
GENCB ACB GENCB RPL
A 4 Application supplies RPL.

Read Request

GET
Application passes the RPL
used from the GET request
] and the application waits for
RPL points the read operation to complete.
to data.
Data Yes CHECK - 1/0
OK
\ 4
Application
Processes N
Data °
v RPL used on GET is passed.
Application ends request // Core level freed. RPL freed.
or issues another GET for Re

\ 4

END Request
more records.

ACB is supplied, data set
A 4 disconnected from ECB.

,7 | ACB released.
,

CLOSE é

Figure 36. VSAM Database Support Request Flow Example

As you see in w data requests to VSAM database support are
asynchronous and permit the interleaving of native /O requests with VSAM
database support requests. A VSAM database /O request comprises the TPF
GDSNC macro and a FINWC macro call. The RBA for input to the GDSNC macro
is obtained inside run-time processing by searching the index set and the sequence
set. The GDSNC macro converts the RBA to a TPF disk address and then issues
the FINWC macro to read the data to the ECB data level (Dx) that was specified in
the RPL.

Applications issue the VCHKC macro to get the results of an 1/0 request; the
completion status of the request is placed in register 15. Detailed error information
is placed in the feedback field of the RPL. The VCHKC macro causes the following
to occur:

210 TPF V4R1 Application Programming

e An internal TPF WAITC macro is issued.
* The RPL is filled.
* Register 15 is set.

Because all I/O is synchronous, the VCHKC macro is not required to interrogate the
status of the VGETC request. The same output is provided on a VGETC request as

for a VCHKC request. The VCHKC macro is available for compatibility.

VSAM database support has no requirement for record locking. However, because

a VSAM VGETC macro request results in a TPF FINWC macro request, the
existing TPF page-level record hold feature may easily be added if locking is
required at any point. Currently, all data records are shared by all ECBs. VSAM

data sets are attached to the TPF system by using the ZDSMG command and the

standard TPF mount data set procedure in the GDS.

Sample VSAM Database Support Program
Following is a sample program to show the VSAM database support macros.

BEGIN NAME=xxxx,VERSION=41

VSACB , ACB DSECT definition
VSRPL , RPL DSECT definition
VGENC BLK=ACB,AM=VSAM,DDNAME=CUSTOMER,
MACRF=(KEY,DIR,IN)
ST R1,EBX000 Save ACB address
VGENC BLK=RPL,AM=VSAM,ACB=EBX000,LEVEL=D2,AREA=EBX008,
ARG=EBWOOO, OPTCD=(LOC,SYN)
IF CCO
THEN,
L R1,EBX000 Pick up ACB address
VOPNC (R1)
IF CCO If VOPNC ok
THEN,
MVC EBWO0O,=C'00" Set up Arg fields.
MVC EBWOO2,=C'12345678"' Account Number.
VGETC RPL=EBX008
IF CCo,
... A sample TPF native I/0 call is intermingled here.
MVC CE1FA3,=C'PR' Record ID.
MVC CE1FM3(4),FARF3 Address
FINWC D3,ERRLAB Find a TPF record.
. Now back to the VSAM call
VCHKC RPL=EBX008
IF CCo,
THEN,
CE1CR2 now contains the VSAM record.
The data record in CEICRZ is pointed to by EBX008.
CE1CR3 contains the TPF record.
ENDIF,
ERRLAB DS OH
VENDC RPL=EBX008
L R1,EBX000
VCLSC EBX000
ENDIF ,
ENDIF ,

Understanding Virtual Storage Access Method (VSAM) Database Support

211

212

Managing Buffers
The application interface to VSAM database support is pointer-driven using the ACB

and RPL control structures. The ACB is used as context to control the interaction
between the ECB and VSAM database support. It is created by the VGENC macro
and is used for all interactions. The ACB is released through the VCLSC macro.
The RPL is used to control individual VSAM database data requests. It is also used
to hold parameters and to provide the status of requests and responses. The
VENDC macro is used to release the RPL.

For a typical VGETC macro request, the application sets pointers in the RPL to the
type of request to be performed in addition to any special processing options. The
result of the VGETC macro is returned in the RPL by the run-time routines. Get and
release macros (GETCC and RELCC), with the DETAC macro, acquire and release
storage for ACBs and RPLs. For multiple, concurrent requests in a single ECB, the
application specifies one unique RPL for each request. This is done by coding one
VGENC macro for each request. VSAM database support also uses TPF working
storage for output data buffers. Additionally, VFA is used to store and retrieve index
Cls.

When an application calls its first VGENC macro to generate a VSAM control block,
VSAM database support gets a 4-KB block and detaches it from the data level
(DF). The block is used to hold a context data block and subsequent interface
control blocks, ACBs, and RPLs. Space is optimized in the buffer by stacking blocks
from the bottom up. Interface blocks are allocated in the buffer through VGENC
macro calls; they are unallocated by using VENDC macro calls. The 4-KB block is
released only when the ECB exits. This optimizes block management because
subsequent calls of VSAM by the same ECB do not need to allocate the context
block.

Sequence set Cls are the lowest-level index blocks; they reside on the same
cylinder as the data records for performance reasons. These CI blocks are retrieved
and detached on the data level specified in the RPL. They are kept for subsequent
fast scan requests and then are released by using the VENDC macro. For a single
direct key retrieval, the data level contains a private copy of the sequence set block
(detached) and a private copy of the VSAM data record block (also detached).
Applications that need to economize on storage would use the LOCate mode
retrieval method to get access to a data record rather than MOVE mode, which
moves the data record out of the VSAM data buffer into an application area. The
VSAM data record block remains detached from that data level until a VENDC
macro is issued for the RPL that owns the request. The run-time interface requires
12 KB of space for a typical direct key retrieval.

Reusing Data Levels
Applications can reuse the data level in the ECB that is used to perform VSAM I/O

operations (as indicated in the RPL) after a VENDC macro is issued for the VSAM
request that was using the data level. This avoids the necessity to repeatedly call
the VOPNC macro in centralized application programming interface (API) routines.
The rule for reusing a data level and core block is that the level is freed by the
application before calling the first VGETC macro and that a VENDC macro request
must be called before an application can reuse the level. The VENDC macro
releases any positioning and context for the current VSAM database request.

TPF V4R1 Application Programming

Return Codes

Error Recovery

Register 15 (R15) contains the return code for VSAM database support macro
processing; the condition code is set on return from each macro call. The interface
for VSAM database support return codes is the same as for the MVS system, as
follows:

» For data set open and close errors, the ACB ERROR field contains the detailed
reason for the error.

» For record processing (for example, the VGETC and VPNTC macros), the RPL
FEEDBACK field contains the detailed description of the error.

e For the VGENC macro, R14 contains the reason code.

For performance reasons, VSAM database support provides these codes
immediately following macro processing; you do not need to enter the VSHOC
macro call. (This is different from the MVS system, where you would need to enter
the SHOWCB macro call.) When a record is not found, the return code is set to not
found instead of showing successful or null status. VSAM database does not
support options for error message text and codes.

Table 20. VSAM Database Support Return Codes

Return Code Meaning

0 Macro processing was successful.

1 Request was not valid.

2 Block type was not valid.

3 Parameter was not valid.

8 VSAM database support internal work area is full.

9 VSAM database support internal work area is too small.
14 Combination of options is not valid.

15 Address not on a fullword boundary.

16 End of file.

17 Record not found.

18 Duplicate previous operation.

32 VSAM database support data set name is not valid.

33 VSAM database support data set open error.

34 VSAM database support data set error during read.

35 VSAM database support data set FINWC macro 1/O error.
44 Short length record on MVE.

128 Mask for retry-type errors.

129 VSAM database support index error.

Because VSAM database support consists primarily of E-type programs that run
between application programs and the TPF control program (CP), all error recovery
functions that are provided by the CP are available to applications using VSAM
database support. These include DASD single-image 1/O error handling, recovery
from an abnormal ending of a program, exit processing, and system recovery.

Understanding Virtual Storage Access Method (VSAM) Database Support 213

Constructing the VSAM Cluster Data Set Names

The following is a sample REXX program that you can use to construct the VSAM
database support cluster data set names to be mounted to the TPF system. The
TPF system requires that a subset of the catalog information be passed to it in the
data set name to be able to navigate the VSAM cluster in satisfying requests for
data records made by TPF VSAM applications.

/* REXX */

/**/
/* */
/* NAME: VSAMTPFX (SAMPLE CSI PROGRAM BASED ON IGGCSIRX) */
/* */
/*DESCRIPTION: THIS REXX EXEC CAN BE USED TO CALL THE CATALOG */
/* SEARCH INTERFACE AND GENERATE THE NECESSARY */
/* DATA SET NAME SUFFIX THAT CAN BE APPENDED TO THE */
/* CLUSTER/COMPONENTS IN ORDER TO COMMUNICATE CATALOG */
/* INFORMATION TO THE TPF/VSAM SUPPORT WHEN MOUNTING */
/* THE CLUSTER TO TPF. */
/* */
/* INPUT: FILTER KEY (KSDS CLUSTER NAME) */
/* IN THE FORM =*.DDNAME. * */
/* WHERE DDNAME IS 8 CHARACTERS IN LENGTH AND */
/* CAN REPRESENT THE FIRST 8 CHARACTERS OF THE 12 */
/* CHARACTER SYSTEM DDNAMES USED BY TPF TO REFERENCEx/
/* THE DATASET COMPONENTS OF THE PRIME/MIRROR */
/* CLUSTERS MOUNTED TO TPF. */
/* */
/* OUTPUT: ALTER DATA SET NAME INFORMATION */
/* CONSISTS OF THE NEW DATA SET NAME APPENDED WITH */
/* ENCODED CATALOG INFORMATION DERIVED FROM THE INPUT */
/* DATA SET NAME CLUSTER CATALOG ENTRY. */
/* */
/* EXAMPLE: */
/* */
/* CLUSTER NAME => x ,CHECKING */
/* INDEX COMPONENT => *,CHECKING.INDEX */
/* DATA COMPONENT => *.CHECKING.DATA */
/* */
/* (values in hexadecimal) */
/* */
/* CATALOG LIST ENCODING => R 168 0001 . P22 L16 */
/* */
/* marker | Key Tength */
/* Key Position */
/* SS RBA/4096 */
/% 1+(HIGH LEVEL RBA/4096) =/
/* */
/* */
/* */
/* NEW CLUSTER NAME => * . CHECKING.R1680001.P22L16 */
/* INDEX COMPONENT => »,CHECKING.R1680001.P22L16.INDEX */
/* DATA COMPONENT => *.CHECKING.R1680001.P22L16.DATA */
/* */
/* TPF MOUNT INFORMATION: */
/* */

/* ZDSMG MT {SDA} CHECKINGINPR DSN-*.CHECKING.R1680001.P22L16.INDEX */
/* ZDSMG MT {SDA} CHECKINGDAPR DSN-+*.CHECKING.R1680001.P22L16.DATA */

/* */
/% */
[HHexded xR KKk A Kok kR kR AR Rk Rk KA Kk kR KKk Kk KKk KKk KKk KKk KKk kK

SAY "ENTER VSAM CLUSTER NAME' /* ASK FOR FILTER KEY */

PULL KEY /* GET FILTER KEY */
[ek e e ok ok ok ok ok ok ok ok ko ke ko ko ko ko ko ko ke ke ek ko ko ko
/* */
/* INITIALIZE THE PARM LIST */
/% */

214 TPF V4R1 Application Programming

/**/

MODRSNRC = SUBSTR(' ',1,4) /* CLEAR MODULE/RETURN/REASON =/
CSIFILTK = SUBSTR(KEY,1,44) /* MOVE FILTER KEY INTO LIST =/
CSICATNM = SUBSTR(' ',1,44) /* CLEAR CATALOG NAME */
CSIRESNM = SUBSTR(' ',1,44) /* CLEAR RESUME NAME */
CSIDTYPS = SUBSTR(' ',1,16) [+ CLEAR ENTRY TYPES */
CSICLDI = SUBSTR('Y',1,1) /* INDICATE DATA AND INDEX */
CSIRESUM = SUBSTR(' ',1,1) /* CLEAR RESUME FLAG */
CSISICAT = SUBSTR(' ',1,1) /* INDICATE SEARCH > 1 CATALOGS*/
CSIRESRV = SUBSTR(' ',1,1) /* CLEAR RESERVE CHARACTER */
CSINUMEN = '0004'X /* INIT NUMBER OF FIELDS */
CSIFLDI = SUBSTR('AMDKEY',1,8) /* AMDKEY */
CSIFLD1 = CSIFLD1 || SUBSTR('AMDCIREC',1,8) /* AMDCIREC */
CSIFLDl = CSIFLDL || SUBSTR('HKRBA',1,8) /* HKRBA */
CSIFLDl = CSIFLD1 || SUBSTR('HARBA',1,8) /* HARBA */
/*** """""""""" /
/* */
/* BUILD THE SELECTION CRITERIA FIELDS PART OF PARAMETER LIST */
/* */
/**/
CSIOPTS = CSICLDI || CSIRESUM || CSIS1CAT || CSIRESRV

CSIFIELD = CSIFILTK || CSICATNM || CSIRESNM || CSIDTYPS || CSIOPTS

CSIFIELD = CSIFIELD CSINUMEN CSIFLD1

/**/

/* */
/* INITIALIZE AND BUILD WORK AREA OUTPUT PART OF PARAMETER LIST */
/* */

[H kg kg ko k ok k ok ko ok ok ok ko ko k ok kR ok ko ok ko ok ko ok ko ok ko ok ko ke ke k ko
WORKLEN = 1024
DWORK = '00000400'X || COPIES('00'X,WORKLEN-4)

/**/

/* */
/* INITIALIZE WORK VARIABLES */
/% */
[Rk Fk ek kkk ko kk ok kk ok kk ko k ko kok ok k ok kok ok k ok kR Kk kxrhhhhhkkrrhhhk kK kk /
RESUME = 'Y!

CATNAMET = SUBSTR(' ',1,44)
DNAMET = SUBSTR(' ',1,44)

/**/

/* */
/* SET UP LOOP FOR RESUME (IF A RESUME IS NECESSARY) */
/* */

/**/

DO WHILE RESUME = 'Y'

/**/

/* */
/* ISSUE LINK TO CATALOG GENERIC FILTER INTERFACE */
/* */

/**/

ADDRESS LINKPGM 'IGGCSIOO MODRSNRC CSIFIELD DWORK'

RESUME = SUBSTR(CSIFIELD,150,1) /* GET RESUME FLAG FOR NEXT LOOP */
USEDLEN = C2D(SUBSTR(DWORK,9,4)) /* GET AMOUNT OF WORK AREA USED */

POS1=15 /* STARTING POSITION */
[H kg ok dk ko k gk ok h ko k ko k ko k ko k ko kkh kR h kA h ko h ko k ko k ko k ko k ko k kK k kK k kK k kK [
/* */
/* PROCESS DATA RETURNED IN WORK AREA */
/* */
[ke ke ek ek ok ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ko ko ke ok ke ok ek ko ok ok
DO WHILE POS1 < USEDLEN /* DO UNTIL ALL DATA IS PROCESSED=/

IF SUBSTR(DWORK,P0S1+1,1) = '0' /* IF CATALOG, PRINT CATALOG HEAD+*/
THEN DO

Understanding Virtual Storage Access Method (VSAM) Database Support

215

CATNAME=SUBSTR (DWORK,P0S1+2,44)
IF CATNAME ~= CATNAMET THEN /* IF RESUME NAME MAY ALREADY BEx/

DO /* PRINTED */
SAY 'CATALOG ' CATNAME /* IF NOT, PRINT IT */
SAY ' !
CATNAMET = CATNAME
END
POS1 = POS1 + 50
END
DNAME = SUBSTR(DWORK,P0S1+2,44) /* GET ENTRY NAME */
/**/
/% */
/* ASSIGN ENTRY TYPE NAME */
/% */

/**/

IF SUBSTR(DWORK,POS1+1,1) = 'C' THEN DTYPE = 'CLUSTER '

EL?E SUBSTR(DWORK,POS1+1,1) = 'D' THEN DTYPE = 'DATA '
E&iESUBSTR(DWORK,POSl+1,1) = 'I' THEN DTYPE = 'INDEX '
EII_IEESUBSTR(DWORK,POSl+1,1) = 'A' THEN DTYPE = 'NONVSAM '
E&EESUBSTR(DWORK,POSl+1,1) = 'H' THEN DTYPE = 'GDS !
EEEESUBSTR(DWORK,POSI+1,1) = 'B' THEN DTYPE = 'GDG :
E&?ESUBSTR(DWORK,P051+1,1) = 'R' THEN DTYPE = 'PATH '
EII_EESUBSTR(DWORK,P051+1,1) = 'G' THEN DTYPE = 'AIX '
EIfiESUBSTR(DWORK,P0$1+1,1) = 'X' THEN DTYPE = 'ALIAS '
EII_IEESUBSTR(DWORK,POSl+1,1) = 'U' THEN DTYPE = 'UCAT '

ELSE

DTYPE = '
-
2: HAVE NAME AND TYPE, IF INDEX ENTRY CALCULATE MAGIC PARAMETERS :2
* %

[ke ke ek ok ok ok ok ko ok ok ko ke ko ko ok ok ok ko ok ko ok ko ok ko ke ke ko ko ko
POS1 = POS1 + 46
IF DTYPE = "INDEX'

THEN DO
POSLENI = POSI + 4
POSLEN2 = POSLEN1 + 2
POSLEN3 = POSLEN2 + 2
POSLEN4 = POSLEN3 + 2
POSDATL = POSLEN4 + 2
POSDAT2 = POSDATL + C2D(SUBSTR(DWORK,POSLEN1,2))
POSDAT3 = POSDAT2 + C2D(SUBSTR(DWORK,POSLEN2,2))
POSDAT4 = POSDAT3 + C2D(SUBSTR(DWORK,POSLEN3,2))
SAY "KEY-POS => X'"C2X (SUBSTR(DWORK,POSDAT1,2))" "
KEYPOS = C2X (SUBSTR (DWORK, POSDAT1,2))
SAY "KEY-LEN => X'"C2X (SUBSTR(DWORK, POSDAT1+2,2))"""
KEYLEN = C2X (SUBSTR (DWORK, POSDAT1+2,2))
SAY "CI-SIZE => X'"C2X (SUBSTR(DWORK,POSDAT2,4))" "
CISIZE - C2D (SUBSTR (DWORK, POSDAT2, 4))

SAY "HI-LEVEL-RBA => X'"C2X(SUBSTR(DWORK,POSDAT3,4))"""
HLRBA = C2D(SUBSTR (DWORK,POSDAT3,4))

216 TPF V4R1 Application Programming

E
END

JEZTE
/*
/*
/*

VEZTES

SAY "SEQ-SET-RBA => X'"C2X(SUBSTR(DWORK,POSDAT4,4))"""

SSRBA = C2D(SUBSTR(DWORK, POSDAT4,4))
MAGIC = 'R" || D2X((SSRBA/CISIZE),3)

MAGIC = MAGIC D2X (((HLRBA/CISIZE)+1),4) || '."
MAGIC = MAGIC 'p! RIGHT (KEYPOS,2)

MAGIC = MAGIC e RIGHT (KEYLEN,2)

SAY '

SAY "INPUT CLUSTER NAME <= ' KEY

SAY '

SAY "CATALOG SUFFIX STRING == '"MAGIC"'"

ALTERDSN = TRANSLATE(KEY,' ','.")
IF WORDS(ALTERDSN) >= '2'
THEN DO

NEWDSN = SUBWORD(ALTERDSN,1,1) || '.'
DDNAME = SUBWORD (ALTERDSN,2,1)

IF LENGTH(DDNAME) <8
THEN DDNAME = DDNAME || '='

NEWDSN = NEWDSN |} DDNAME || '."

NEWDSN = NEWDSN MAGIC

SAY !

SAY "NEW CLUSTER NAME => '"NEWDSN"'"

SAY "NEW DATA COMPONENT NAME => '"NEWDSN }} .DATA" '™
SAY "NEW INDEX COMPONENT NAME => '"NEWDSN JINDEX"'"
SAY !

DAPRDDN = DDNAME |‘ ! || DAPR'

INPRDDN = DDNAME ! INPR'

DAMIDDN = DDNAME || ' || DAMI '

INMIDDN = DDNAME ! INMI'

SAY 'TPF (SYSTEM) DDNAMES:'

SAY !

SAY " DATA COMPONENT (PRIME) => '"DAPRDDN"'"
SAY " INDEX COMPONENT (PRIME) => '"INPRDDN"'"
SAY !

SAY " DATA COMPONENT (MIRROR) => '"DAMIDDN"'"
SAY " INDEX COMPONENT (MIRROR) => '"INMIDDN"'"

SAY !
SAY 'TPF (APPLICATION) DDNAME:'
SAY !
SAY n 1 IIDDNAMEII rn
IF POS("+",DDNAME) \= 0
THEN DO
SAY *'!

SAY 'x = MUST BE 8 CHARACTERS IN LENGTH FOR VSAM/TPF USE'
END

ND

Kok ko k ko ko k kR k Rk Rk kdk kR ko ko ko ko ko ko kR Rk Rk kR ko k
*/

GET POSITION OF NEXT ENTRY */
*/

**/

Understanding Virtual Storage Access Method (VSAM) Database Support

217

POS1 = POSL + C2D(SUBSTR(DWORK,P0S1,2))
END
END
/% END OF PROGRAM */

218 TPF V4R1 Application Programming

Coding Your Own Library Functions

In addition to the library functions provided with the IBM C and C++ compiler
products on the System/390 platform and those added for the TPF system, you can
code your own library functions, either in C language or in assembler. There are
different conventions for each.

Coding Library Functions in C

There are no special requirements for coding library functions in C. The procedures
for compiling and loading library functions to the TPF system is the same as
compiling and loading application programs written in C. See 'Customizing C/C+4
Language Support” on page 301 for more details.

Coding Library Functions in Assembler

There are special requirements for coding library functions in assembler. The first of
these is knowing which registers are available and which are reserved for the TPF
system. The second is understanding the prolog and epilog macros.

There are two kinds of assembler programs: those that call additional TPF services
and those that do not. Programs that call additional services require prologs and
epilogs. Programs that do not call additional services do not require prologs or
epilogs.

For functions requiring prologs and epilogs, when the assembler program begins to
run, the first statement is a BEGIN statement, coded with TPFISOC=YES. A frame
is not automatically added to the call stack when an assembler program is run but if
the assembler program calls other programs, the environment must be saved first,
to retain the information needed to return to the original C function. The prolog
macro, TMSPC, saves the C environment. The application base needed for
assembler applications, CEL1SVP, must be loaded before calling the entry point.
Before a return statement (BACKC or EXITC macros), the epilog, a TMSEC macro,
must be coded to restore the C environment.

Register Conventions

TPF has its own set of register conventions, which have been adapted for use by
the IBM C compiler. Some registers are reserved for TPF system use while others
are used by the compiler for specific purposes. The register conventions for ISO-C
and TARGET(TPF) are somewhat different. Most registers are available for
application use and are saved and restored across function calls. Some registers
are used by the compiler. These are not saved or restored across calls.

The following are summaries. See the [[PE Program Development Suppori

for more information about register conventions.

Registers ISO-C Convention

RO Available for application program use

R1 Available for application program use Used by the compiler for parameter
list pointer.

R2 Available for application program use.

R3 Available for application program use. Used by the compiler as the code
base.

© Copyright IBM Corp. 1994, 2002 219

Registers ISO-C Convention

R4 — R11 Available for application program use.

R12 Address of the TCA.

R13 Address of the DSA.

R14 Available for application program use. Used by the compiler as the link
register.

R15 Available for application program use. Used by the compiler as the called

function address and as the return register.

Register TARGET(TPF) Convention

RO - R5 Available for application program use.

R6 Parameter list pointer/function return value.

R7 Reserved, pointer to current stack frame.

R8 Reserved, program base.

R9 Reserved, ECB base register

R10 Available for application use but not saved across function calls.

R11 Reserved, always contains X'1000'

R12 Available for application use but contains X'2000' across external function
calls and returns.

R13 Available for application use but contains TPF system stack pointer across
function calls.

R14 Available for application program use, on function calls is used as the
return address register.

R15 Available for application program use, used in external and library function
linkage.

C Language Support Prologs

Library functions written in assembler, as well as external functions linked to DLMs
written in assembler, that need to acquire a stack frame, must begin with a TMSPC
macro call when called from ISO-C functions or with an ICPLOG macro call when
called from TARGET(TPF) functions. The TMSPC or ICPLOG macros must be the
first instruction coded after the BEGIN macro. The code generated by these macros
helps manage the programming environment of the C caller.

Earlier we talked about the need for stack blocks and stack frames. C functions use
a stack for storage of local variables and parameter lists. The first time a C function
is called, a stack block is attached to the ECB. In addition to saving registers, the
TMSPC and ICPLOG macros are used to allocate additional space in the stack

frame. Refer to [[RE C/C++ | anguage Support User's Guidd for details on TMSPC

and ICPLOG.

C Language Support Epilogs
The TMSEC and ICELOG macros are required for C library functions written in
assembler and for entry points written in assembler that need to acquire a stack
frame, like C written entry points. The TMSEC macro is for ISO-C functions and the
ICELOG macro is for TARGET(TPF) functions. Each one deallocates the stack
frame, restores the registers specified (or defaulted) by the prolog macro, and
returns control to the calling function. There are two ways values can be returned,

220 TPF V4R1 Application Programming

depending on their types: one way is to put the value in a return register, the other
way is to put a pointer to the value in the parameter list.

Data Type to be Returned ISO-C TARGET(TPF)

Integer, Character, Pointer RC=Rx R6

float, double 1st fullword of C 1st fullword of C
parameter list parameter list

The epilog macros can be coded anywhere in the program and any number of
times. However, it makes good sense to code it once, immediately before the exit
point of a function or program.

Secondary Linkage in ISO-C Function Libraries

Restrictions

All the functions in a library use secondary linkage if any one library function uses
writable static or the library has active user exits. This results in performance losses
for any function in the library. To keep these losses at a minimum, isolate the
functions requiring writable static in less frequently used libraries rather than in
libraries with frequently used functions and activate user exits only for libraries that
require them.

Because library functions are not activated by way of the standard TPF ENTRC
mechanism, there are certain considerations that must be kept in mind when coding
a library function.

» Although it is not always a good idea, most SVC and fast-link TPF macros can
be called from an assembler language library function. However, the TPF system
services will not function correctly if general register 8 (R8) contains the base of
the library function when the service is invoked; instead, the application program
base must be reestablished before the macro call. This is done by loading R8
from ECB field CE1SVP. Before performing the load, the library function base
should be stored in CSTKLBAS in the current stack frame so that it can be
restored on return from the TPF service routine. In assembly programs that use
ISO-C linkage when the LWS parameter is used with the TMSPC macro, storage
for the function base is provided by the ILWSLBAS field. CSTKLBAS is always
provided as long as the FRAMESIZE parameter is not NO. See the example that
follows.

Coding Assembly Language Routines

Eigure 37 shows the same library function written in assembler. The function calls
the TIMEC macro to generate an 8-byte EBCDIC time stamp. The function returns
the address of the time stamp to the calling C function.

Coding Your Own Library Functions 221

222

* ISO-C version TARGET(TPF) version
*

PRINT NOGEN PRINT NOGEN
BEGIN NAME=C001,VERSION=41, BEGIN NAME=C001,VERSION=31
TPFISOC=YES

TMSPC FRAMESIZE=NO,LWS=R6 ICPLOG HIGHREG=R5,FRAMESIZE=NO
L R5,CE1TCA
SL R5,=A(CSTKTCA-ICSOTK)

L R5, ILWSUEXP L R5,CSTKUEXP-ICSOTK(,R5)
ST R8, ILWSLBAS ST R8,CSTKLBAS
L R8,CE1SVP L R8,CE1SVP
TIMEC , TIMEC ,
L R8, ILWSLBAS L R8,CSTKLBAS
LR R6,R5

TMSEC RC=R5 ICELOG ,

*
LTORG LTORG
FINIS FINIS
END END

Figure 37. Comparison of Sample Library Functions Written in Assembler

The blank areas in the ISO-C version of the sample program are just for spacing in
this example and are not present in an actual program.

The BEGIN macro in the 1ISO-C versions uses the TPFISOC parameter because
the default (that is, TPFISOC=NO) C language is TARGET(TPF).

The prolog macros, TMSPC and ICPLOG, are called to save the environment of the
calling program. The TIMEC macro requires the use of R5 in this example. Saving
the environment is automatic with ISO-C support. In TARGET(TPF) we must instruct
ICPLOG to save registers R14—-R5 using the HIGHREG parameter.

When the prolog macros finish, the assembly language program has addressability
to a stack frame. For ISO-C the stack frame is addressed through the IDSDSA
DSECT in R13. In TARGET(TPF) it is addressed through the ISCOTK DSECT in
R7.

In either ISO-C or TARGET(TPF) if FRAMESIZE=NO, the stack frame addressed is
that created for the program call. If FRAMESIZE is a number, the stack frame
addressed is the newly created one. Such an additional stack frame is necessary to
preserve the environment if the assembly language program calls another program
or requires temporary storage. Library functions typically would specify
FRAMESIZE=NO because they perform some simple service and return to their
caller. Specifying FRAMESIZE=NO minimizes the amount of stack required and
enhances performance slightly by avoiding unnecessary frame generation.

The ISO-C LWS parameter provides a simple means for accessing non-volatile
work space. The LWS parameter provides a DSECT (IDSLWS) for accessing the
structures in the work space. The address of the work space is returned, as
specified in the example, in R6.

In ISO-C, if the CENV user exit is active, the user expansion area can be added to
the initial stack and accessed through the ILWSUEXP data area. In the 1SO-C
example the address of the user expansion area is moved to R5 to begin setting up
the call to TIMEC.

TPF V4R1 Application Programming

In TARGET(TPF), if the CSK user exit is active, addressability to the user
expansion area can be set up in R5 through the TCA of the current stack and the
CSTKUEXP. Storage in this area has been allocated by the C language support

user exit (see Customizing C/C++ | anguage Support” on page 301) and in this

example is used to contain the time stamp returned by TIMEC.

Because TIMEC is a fast-link macro, R8 must contain the base of the calling
application program when the macro is called. The library base address must be
saved before the call to TIMEC. The ISO-C example uses ILWSLBAS for this
because addressability to it is provided by the LWS parameter of TMSPC. If
TMSPC had been called without the LWS parameter, the 1ISO-C example would
have used CSTKLBAS with FRAMESIZE=0 to save the library base, just as the
TARGET(TPF) example does.

On return from the TIMEC macro, the library function restores its program base
from CSTKLBAS or ILWSLBAS, as appropriate.

When the TIMEC macro returns, in this example the address of the time stamp is in
R5. In the ISO-C example, the TMSEC macro places the contents of R5 in R15
before the return. Therefore, when the assembly language program returns, the
return value is a pointer to the time stamp.

Similarly, in the TARGET(TPF) example, the address of the time stamp is copied to
R6, the register designated to contain function return values. A TARGET(TPF)
ICELOG macro is called to return control to the calling C function in the application
program segment.

User Expansion Area

The TPF system provides support for internal static variables defined with file or
block scope. You may want to write library functions that provide their own static
variable support, using the stack. There are two advantages to this: performance
can be improved, and less storage is used. The user expansion area is provided in
the first stack frame for this purpose.

There are 2 stack frame formats. The first stack frame of the first stack block is
different from all the other stack frames that are eventually chained to it, which we
will call subsequent stack blocks. The ICSOTK data macro maps the stack frames
for TARGET(TPF) and the IDSDSA data macro maps the stack frames for ISO-C.
(For more information about ICSOTK and IDSDSA, see their code listings.)

Coding Your Own Library Functions 223

TARGET (TPF) ISO-C
First Stack Frame First Stack Frame
The arrows indicate similar function not direct mapping
—>
Task
Communications
Area (TCA)
CSTKPREV .
register save
register save area
area
_ >
Autostorage
(from FRAMESIZE)
CSTKLBAS
4—
Library Function . - ILWSLBAS
Work Area h g
Performance
o Library Work
Critical Area
Space (LWS)
User Fields < >
0 (Olpz)tlonal). (Optional)
ser AxpanS|0n User Expansion
rea) - Area
Subsequent Stack Frames ISO-C
TARGET (TPF) . .
with TMSPC with TMSPC
(FRAMESIZE=NO) (FRAMESIZE>=0)
CSTKPREV back pointer back pointer
register save register save
register save area area
area LWS address
LWS address
CSTKLBAS next available next available
Autostorage CSTKLBAS
(from FRAMESIZE)
Autostorage

Figure 38. Stack Frame Formats

We talked about adding additional space to subsequent stack frames in kd

224 TPF V4R1 Application Programming

The area at the end of the first stack frame is known as the user expansion area. In
ISO-C, the user expansion area is accessed through the LWS (DSECT IDSLWS)
and in TARGET(TPF) it is accessed by the ICSOTK DSECT.

This area is available to application programs and is added during coding a user
exit. A user exit allows TPF system users to add user-unique processing at various
points in TPF programs.

The C stack exception routine user exit can be used to extend the first stack frame
to include a user work area at the end. The name of the exit point is CENV in
ISO-C and CSK in TARGET(TPF). The area itself is accessed with pointer
CSTKUEXP in TARGET(TPF) and ILWSUEXP in ISO-C. It appears at the beginning
of the library function work area.

See [[PE System Installation Support Reference for more information about this

particular exit and TPF user exits in general.

Coding Your Own Library Functions 225

226 TPF V4R1 Application Programming

TPF Application Program Interface Functions

This chapter discusses macros and functions that perform similar operations. The
discussion only mentions functions, but the same points are true also for macros
unless specifically described otherwise.

Refer to lLanguage Structures and Case Guidelines” on page 1 for an

understanding of why we provide both assembly language and C language
structures in some cases and only C language structures in others.

The environment of an application program is the conceptual layer between the
program and the TPF system. The environment is created when the system initially
loads (IPLs) and its characteristics (such as the date, locale, libraries, and access
to system resources) come from aspects of system operation. When the C library is
brought into memory during restart, it is part of the environment and available to be
shared by all C programs. The environment is implicit in each ECB by default even
though the associated C structures are not physically allocated.

Environments are important because the ISO-C environment is different from the
TARGET(TPF) environment. The TARGET(TPF) environment is composed of
system state information a program can access from the TPF system. The ISO-C
environment consists of state information provided through library functions and
kept in the task communications area (TCA). TARGET(TPF) programs access TPF
system structures to determine state information. ISO-C programs access state
information in the TCA.

Transferring Processor Control

At times, several programs are required to process a single message. This can be
done under the control of a single ECB, or the active ECB can create another
independent entry, which has the effect of subdividing the processing. The active
entry also has the ability to change the processing order by suspending its own
processing or lowering its priority.

Enter/Back Services

Application programs transfer control to other entry points that use the same ECB
with the enter/back services. The enter/back mechanism allows the application
program to call or return to other application programs. The enter/back mechanism
generates a code expansion that contains the information required by the linkage
editor to create the linkage to reach the appropriate system service routine. The
TPF system locates the programs in system storage and manages the main storage
required to execute the programs. In assembler, only the 4-character program
library name (for example, CYYA) is needed to call other programs. As programs
return, main storage can be released by the system.

Information necessary to locate and execute an application program is transferred
through one of the program Enter macros. Enter macros are coded explicitly by
assembly language programs. The action of the ENTRC macro is performed
automatically by the C language calling mechanism, so there is no C language
equivalent of the ENTRC macro. There is a C function that corresponds to the
ENTDC (Enter-Drop) macro. A request can be to:

* ENTRC: Enter a program with return expected.
« ENTNC: Enter a program with no return expected.

© Copyright IBM Corp. 1994, 2002 227

Create Macros

 ENTDC: Enter a program and release all other programs attached to the ECB
(that is, programs that issued a prior ENTRC macro).

* BACKC: Return to a previous program (that is, to the last program to issue an
ENTRC with no intervening ENTDCSs).

The process of calling a chain of application programs under the control of the
same ECB (using the enter/back services) is called nesting. The ECB contains 35
program levels that TPF uses to control program linkage. If more than 35 levels are
required, TPF uses an additional block of working storage to control program
linkages and correlate the ECB and the programs that it references. This linkage is
transparent to the application program. However, the application programs must not
exceed the nesting limit determined at system initialization. If the limit is exceeded,
a system error will result and the entry will be exited.

You should release all programs as soon as possible to allow efficient use of main
storage. This is the significance of the ENTDC macro or the entdc function. When
the logic flow indicates that a series of programs no longer need to be activated,
you can use entdc to release them. The ENTDC macro or the entdc function
handles situations in which a programmer wishes to leave the C programming
environment for the assembler environment. For ISO-C after a call to entdc, the
stack pointer is reset to the top of the stack and the static storage is kept. For
TARGET(TPF) after a call to entdc, all associated stack storage and static storage
are released.

The C language programmer who also is experienced in assembler programming
under TPF should note that the ENTNC assembler macro is not supported for C
programming because a goto concept to an entry point does not exist in the C
language.

and Functions

Sometimes it is desirable to subdivide the processing of a given message to enable
faster response to time-dependent functions or a more efficient program structure.
TPF provides a set of macros and functions to permit an active entry to create
another independent entry (TPF normally creates an entry as the result of an input
message). When tpf_cresc is used, one creating entry can pass as much as 4 K
bytes of data to a created entry and the created entry can pass a return value back
to the creating entry. The creating entry can pass up to 104 bytes of parameter
information to the created entry. Once TPF creates the entry, it retains the name of
the creating entry at ECB location celtrc, but that is the extent of any linkage
between the 2 entries—they continue processing completely independently of one
another.

TPF stores the parameters to be passed to the created entry in an interim main
storage block that it adds as an item to a CPU loop list. This list is one of the
following:

» Cross list —identifies entries for dispatching among I-stream engines

* Ready list—identifies items that are ready for immediate processing

* Input list—identifies items generated by messages from communication facilities

» Deferred list—identifies items that have been assigned low priority by an
application program or by TPF for lack of resources.

TPF dispatches these lists, among others, whenever it is given control. The
dispatching is in the above order; therefore, no item on the deferred list can be
processed unless the input list is completely empty, and no item on the input list
can be processed unless the ready list is completely empty.

228 TPF V4R1 Application Programming

When the item placed on the list by the create function is removed from the list for
execution, the parameters to be passed to the newly created entry are moved into a
new ECB that operational program zero (OPZERO) creates. An ECB is created for
each new entry in the system and is assigned an activation number, which is
obtained either from a system counter in OPZERO or from the ECB of the program
executing the create function. The activation number determines which version of
the E-type program the ECB will use. TPF then transfers control to the entry point
specified in the create function call.

The type of create function called determines the priority of the processing that will
be associated with the new ECB. [lable 21 describes the create functions available
to programmers using the C language under TPF.

Table 21. Description of Create Functions

Function Action

credc Creates a deferred entry and places the entry on the deferred list.

creec Creates an entry with an attached main storage block, for immediate or deferred
processing.

cremc Creates an entry for immediate processing on the ready list.

cretc Creates a time-initiated entry from an item placed on the ready list after a specified

time interval. This function requires an interface with the system clocks.

cretc_level

Creates a time-initiated entry from an item placed on the ready list after a specified
time interval. It places the entry on the specified core block reference word. This
function requires an interface with the system clocks.

crexc Creates a low priority deferred entry from the deferred list. This function is like credc,
but crexc requires that more main storage blocks be available for real-time processing
before it will execute. Programs that create many deferred entries use crexc to avoid
depleting the number of blocks available for more critical real-time processing.

sipcc In a loosely coupled environment, provides communication between processors; in a

tightly coupled environment, provides communication between instruction streams.
This is for system programs only.

swisc_create

Creates a new ECB on another |-stream.

system Creates a synchronous entry for immediate processing of a program that has a main
function and suspends the current entry.

tpf_cresc Creates a synchronous entry for immediate processing on the ready list and suspends
the current entry.

tpf_fork Creates an asynchronous ECB on a specified I-stream.

All these functions subdivide the processing of a given entry by creating a new ECB
and passing it to a specified entry point to continue processing. The entry point
must have been allocated by means of the system allocator. The proper linkage
also must be available to the entry point.

In assembly language, the program to be activated must be specified in the macro
instruction operand. R14 and R15 must be used to reference the parameters being
passed. For CREDC, CREEC, CREMC, and CREXC, R14 must be loaded with the
number of bytes of parameters being passed, and R15 with the location of the
parameters. For CRETC, R14 can be loaded with the time interval prior to activation
or the time interval can be passed via the TIMEINC parameter of the CRETC
macro. R15 contains data to be passed, or the PARM parameter can be used in the
CRETC call. See the [[PE_General Macrod for further details on using CRETC
parameters.

TPF Application Program Interface Functions 229

The CRESC macro, which creates a synchronous entry for immediate processing,
may request the creation of up to 50 ECBs. The ECBs are created in the same
subsystem and subsystem user as the creating ECB (also called the parent ECB)
but may be dispatched on any I-stream. The creating ECB may pass up to 4 K of
data to each of the created ECBs. The creating ECB is placed on the wait list until
the created ECB has completed. Upon exiting, the ECB that was created may pass
a return value back to the creating ECB. See [[RE_General Macrad for further
details on using tpf_cresc parameters and register specifications.

Examples:

LA R1,PGM Name of program to enter
LA R2,2 I-stream number

LA R3,DATA Address of data to pass
LA R4,20 Number of bytes of data
LA R5,100 100 second timeout

CRESC PROGRAM=(R1),WAIT=YES,DATA=(R3,R4),IS=(R2),TIMEOUT=(R5),
RTNLST=(R6)

One ECB will be created and dispatched
on the I-stream specified by R2. Twenty
bytes of data, beginning at DATA, will be
passed. The creating ECB will wait 100 seconds
for the created ECB to be completed
successfully. Upon reactivation, the creating
ECB can access the value returned by the
created ECB using R6.

LA R15,EBWO20 Address of bytes to pass

CREMC ABCI Activate program ABCI

LA R14,48 Number of bytes passed

LA R15,EBWO20 Address of bytes to pass

CREMC ABCI Activate program ABCI

LA R14,10 Time increment value

L R15,EBWO40 Data meaningful to program ABCI
CRETC S,ABCI Time interval is seconds (may

also be 'M' for minutes)
Activate program ABCI after 10
seconds

CRETC S,ABCI,TIMEINC=10,PARM=pgmlabel
Time interval will be placed in
R14 by the CRETC macro
Activate program ABCI after 10
seconds
Data meaningful to program ABCI at
label 'pgmlabel' will be placed in
R15 by the CRETC macro

You must supply the following arguments when calling C language functions credc,
cremc, and crexc:

length
An integer between 0 and 104 that determines the number of bytes to be
passed to the newly created ECB.

parm
A pointer to the parameters to be passed.

230 TPF V4R1 Application Programming

segname
A pointer to the entry point to be called.

A creec function call also must specify the data level that contains the working
storage block to be passed to the new ECB. A creec function call also must specify
an integer value, either DEFERRED or IMMEDIATE priority, to determine the list where
the block is to be placed.

For cretc, you must specify the following arguments:

type
One of the predefined terms MINUTES or SECONDS, which indicate the units
associated with the specified time interval.

segname
A pointer to the entry point to be called, as above.

units
An integer value that defines an increment of MINUTES or SECONDS that will
elapse before the ECB is activated.

action
The address of 4 bytes to be passed to the created ECB. They will be copied
into the work area of the new ECB ebw000—ebw003.

A cretc_Tevel function call also must specify the data level of the core block
reference word on which the ECB will be placed.

For tpf_cresc, you must specify the following arguments:

program
The name of the program that the created ECB will run.

istream
The number of the I-stream on which the created ECB will run.

wait
For WAIT=NO, initialize the created ECB; for WAIT=YES, create an ECB and
dispatch all requested ECBs.

timeout
The number of seconds the creating ECB will wait for the created ECBs to be
completed successfully.

rtnlst
The pointer that will contain the address of the event block with the return
values of the created ECBs.

Examples of Using the Create Functions:

The following example creates a deferred entry for program COTO, passing the
string “VPH" as input data to the program.

#include <tpfapi.h>
char *parmstring = "VPH";

credc(strlen(parmstring),parmstring,C0T0);

The following example creates an ECB dispatched from the ready list for program
OMAQO, passing the string “755/15AUG” and the working storage block on level DO
as input to the program.

TPF Application Program Interface Functions 231

#include <tpfapi.h>
char *parmstring = "755/15AUG";

creec(strlen(parmstring),parmstring,OMA@,DO, IMMEDIATE);

The following example creates an ECB dispatched from the ready list for program
COTO, passing the string “VPH" as input data to the program.

#include <tpfapi.h>
char *parmstring = "VPH";

cremc(strlen(parmstring),parmstring,C0TO);

The following example creates an ECB dispatched from the ready list for program
QZZ0 after 5 seconds have elapsed. TPF will place the 4-byte character string
“INIT” in ebw000—ebw003 of the new ECB.

#include <tpfapi.h>
cretc (SECONDS,QZZ0,5,"INIT");

The following example creates a deferred entry for program COTO, passing the
string “VPH" as input data to the program.

#include <tpfapi.h>
char *parmstring = "VPH";

crexc(strlen(parmstring),parmstring,C0TO);

The following example creates two synchronous ECBs for immediate processing.
The first ECB that is created will be passed 20 bytes of data and will be dispatched
on I-stream 1. The second ECB that is created will not receive any data, will be
dispatched on the main I-stream, and the creating ECB will wait indefinitely for the
created ECBs to be completed.

#include <stdio.h>
#include <stdlib.h>
#include <tpfapi.h>

/* Initialize parameters for WAIT=NO call. */
char data[16] = "Hi..this is QXQZ"; /* Data to be passed */
struct tpf_cresc_input tci; /* Input structure for */

/* tpf_cresc() */
struct tpf_evObk Tist data *ebptr; /* Return value from */

/* tpf_cresc() */
tci.program = "QPM1A"; /* Pgm for child to enter */
tci.istream = 1; /* 1/S for child to run on x/
tci.wait = TPF_CRESC_WAIT_NO; /* Don't create ECB yet */
tci.data_length = 20; /* Pass 20 bytes of data */
tci.data = data; /* Pass data at label DATA */
/* Issue WAIT=NO call. */
ebptr = tpf_cresc(&tci); /* Issue WAIT=NO call * /
/* Initialize parameters for WAIT=YES call. */

232 TPF V4R1 Application Programming

tci.program = "QPM1A"; /* Pgm for child to enter x/

tci.istream = TPF_CRESC_IS_MAIN; /* 1/S for child */
tci.timeout = 0; /* Timeout value for parent x/

/* Parent will wait forever x/
tci.wait = TPF_CRESC_WAIT_YES; /* Create all children */
tci.data_length = 0 /* No data being passed */
tci.data = NULL; /* No data being passed */

/* Issue WAIT=YES call. A1l child ECBs requested to date will now */
/* be created and dispatched. */

ebptr = tpf_cresc(&tci); /* Issue WAIT=YES call */

Suspend Processing Macros and Functions

Exit Functions

TPF provides 2 macros or functions that permit the entry currently using the CPU to
request suspension of processing. TPF places suspended entries on either the
input or deferred lists. This permits system programs to restore registers and return
control to a suspended program.

The 2 functions used to suspend processing are:

Function Action

defrc Defer Processing of Current Entry — Places the entry at the bottom
of the deferred list. The deferred list is simply the lowest priority list
serviced by the CPU loop. After the entry is placed on the deferred
list the system will service the higher priority lists.

dlayc Delay Processing of Current Entry — Places the entry at the bottom
of the input list: dTayc is, therefore, a shorter suspension than
defrc.

No parameters are required with the defrc and dlayc functions.

The defrc and dlayc functions differ slightly from the waitc function. The waitc
function is related to the completion of an I/O operation; if no 1/0 is pending then no
suspension occurs. Both dlayc and defrc place the entry at the bottom of a list.

The period of time during which processing is suspended for deferred entries can
be substantial. Accordingly, no records can be held by means of the record hold
facility by an entry executing defrc, and no time dependent action (for example,
response to a terminal) should follow this function. The entry should hold the least
possible amount of working storage to minimize the impact on system performance.

The exit functions are a special case of transferring control. They signify that
processing of the entry is complete, and that the application wishes to release the
remaining system resources and return control to TPF. Exit functions do the
housekeeping required to remove an entry from the system. Resources held by the
exiting entry are returned to the system for use by other entries.

When you call an exit function, the TPF system transfers control to the exit system
service routine. Several library functions can cause this transfer of control to occur:
exit Exits the ECB under normal circumstances.

abort Exits the ECB under abnormal circumstances.

TPF Application Program Interface Functions 233

serrc_op For C language, when coded with the predefined term SERRCEXIT as
its first argument, calls the system error routine and then exits the
ECB.

SERRC For assembly language programs using SERRC (or its less
expensive counterpart snapc), calls the system error routine and
then exits the ECB.

serrc_op_ext This function is similar to the serrc_op function with the addition
that a prefix can be specified to identity the user or system program
generating the dump.

snapc Generates a snapshot dump and allows the program to stop or
continue according to a parameter.

A program check (for example: an addressing exception, or an attempt to change
protected areas of main storage) also causes the TPF system to transfer control to
the exit system service routine.

Exit System Service Routine
The exit system service routine performs the following checks and functions when

executing on behalf of exit, abort, snapc, and serrc_op with the SERRCEXIT option
for C language or SERRC for assembly language:

» Passes control to any programs enrolled by the atexit function if the ECB exit
was not abnormal (caused by a system error condition or by the abort function).

» Disconnects all programs associated with the entry from the ECB and
decrements the demand counter for each disconnected program

* Releases stack and static storage
* Releases all frames used by the entry.

» Ensures that the ECB has not PAUSED the system. If a pause condition exists,
the pause condition is ended.

* Clears any internal events associated with this ECB.

* Reactivates the creating entry if the ECB was created by a CRESC macro,
tpf_cresc C function, or system C function.

* Unholds all records held by the entry.

A held record means the entry was using the system conventions to prevent
other entries from modifying the record.

* Closes all tapes or unit record devices still open to the entry
» Ensures that all I/O started by the entry is completed

» Passes control to the exit user exit (if active) to perform any user-defined exit
services

¢ Returns the ECB to the available list.

The information needed for clearing an exited entry from the system is contained in
various ECB fields.

Calling the Exit Functions
No operands are required with the EXITC macro. The parameters for the SERRC

and snapc macros are described in [[RPE_General Macrod

The exit functions for C language require the following arguments:

Function Arguments

234 TPF V4R1 Application Programming

exit An integer value that specifies a return code. In TARGET(TPF) if
the value is nonzero, a system error dump bearing this number will
be issued prior to exiting.

abort None.

serrc_op Four arguments specified in the following order:

1. A status argument (predefined to be SERRCEXIT for the purposes
described above).

2. An integer of which the last 24 bits will be the identification
number for the dump.

3. A pointer to the string to be displayed at the CRAS console and
appended to the dump (or NULL if no message is desired).

4. A pointer to an array of pointers that indicates extra areas of
storage to be displayed on the dump (or NULL if no storage list
exists).

serrc_op_ext The same 4 arguments specified in serrc_op and a prefix argument
that associates an error with either an application or the IBM
system.

Transfer Vectors

Transfer vectors are not supported for load modules. Load modules contain 1
external entry point.

In TARGET(TPF) C language transfer vectors allow a single program segment to
have multiple entry points; in other words, transfer vectors allow a single program
segment to contain multiple entry points. TPF handles calls to transfer vectors with
the enter/back services: even when transfer vectors in the same program segment
call each other. You should be aware of the general form of transfer vectors so that
you will recognize them when you see them in existing code.

In TARGET(TPF) transfer vectors are coded into the system allocator and cross
referenced to the program segment name. From C programs, transfer vectors can
be called in the same way as normal entry points. If a C program contains multiple
entry points, these functions are treated as transfer vectors. The IBM C compiler
with TARGET(TPF) set automatically generates a branch table consisting of a
series of unconditional branch instructions associated with each of the transfer
vector names. Each transfer vector, once entered, functions as an independent
entry point.

Main Storage Allocation

The TPF system and an ECB see virtual storage as 2 different address spaces: the
system virtual memory (SVM) and the ECB virtual memory (EVM). The SVM
contains all storage that can be used by a particular I-stream. The EVM contains all
memory that can be referenced by an ECB. Each ECB has its own EVM. The

layouts of both the SVM and EVM are shown in Eigure 39 on page 237,

In a virtual storage system, main storage is almost synonymous with system virtual
memory. Main storage is a critical resource that must be shared by the CP and
ECBs. Its organization and efficient use is an important factor in a high performance
system.

TPF Application Program Interface Functions 235

Part of main storage contains programs and data that are common to all entries
and which are permanently resident there. This portion is called fixed storage, and
is allocated at system generation. It typically includes at least:

* The control program and control program data

* Frequently accessed application programs and their required data, including the
application global area

Another portion of main storage, called working storage, is allocated as 4 KB
frames (in the SVM), from which working storage blocks are carved (in the EVM).
Working storage is used to store and update data retrieved from file storage and
consists of logical and physical blocks (which can be ECB private or shared) and
contiguous or heap storage. (Logical block sizes are described in m

)

It is the responsibility of system designers to allocate main storage areas to provide
optimum system performance. The application programmer’s concerns are simply to
know how to access the fixed application data area and how to get and return
working storage blocks.

236 TPF V4R1 Application Programming

Storage Area Protection Storage Area Protection
Key Key
ISO-C Stack Storage
For Threads 1
(Area 2)
System Heap Storage C System Heap Storage C
(never mapped in SVM) (never mapped in EVM)
Page Os F Page Os =
CIlO Code/Blocks E CIO Code/Blocks F
FACE, RIAT, etc. F FACE, RIAT, etc. F
31-Bit Core Resident F 31-Bit Core Resident F
Program Area Program Area
PAT, XPAT, etc. F PAT, XPAT, etc. F
Extended Globals F Extended Globals F
Global Areas for .
other I-Streams C1cC (never mapped in EVM) c,1C
SVM Page/Seg. Tables = SVM Page/Seg. Tables =
Assorted Tables F Assorted Tables F
VFA Storage E VFA Storage F
(Buffers and Control Tables) (Buffers and Control Tables)
ECB Page/Seg. Tables E ECB Page/Seg. Tables E
CLH Tables F CLH Tables F
IOBs F 10Bs F
SWBs F SWBs F
ISO-C Stack Storage
For Threads 1
ECBs (Area 1)
ISO-C stack 1
ECB Heap 1
16MB = o= = = = m e e e e e e e e — - — = — - —-16MB
4K Frames ECB Private Area (1M)
4K Common Frames varies 4K Common Frames varies
24-Bit Core Resident E 24-Bit Core Resident E
Program Area Program Area
Control Program = Control Program =
Records and Tables Records and Tables
I-S Unique Global Areas I-S Unique Global Areas
GLL, GL2, GL3 ¢Lc GLL, GL2, GL3 ¢Lc
I-S Shared Global Areas I-S Shared Global Areas
GLL, GL2, GL3 ¢Lc GL1, GL2, GL3 ¢Lce
Low Control Program Area E Control Program Area E

IPL and System Virtual Memory

Figure 39. Virtual Storage Layout

ECB Virtual Memory

Note: TPF's virtual address spaces makes it impossible to use a full 2 gigabytes of
real memory.

Allocating Working Storage

Working storage is main storage that is allocated from 4-KB frames and attached to
entries during their system life. The elements allocated, for example, are used for
the following:

* Entry control blocks (ECBSs)
« Data event control blocks (DECBS)

TPF Application Program Interface Functions

237

* Programs required from file storage
» Data blocks either created in main storage or transferred from file storage.

The TPF system allocates storage for automatic variables and parameter lists in C
language every time you call an external or library function. Much of this is
transparent to the application. However, your application program also may need
working storage blocks for its own processing. You can reference a limited number
of working storage blocks in your application program from fixed locations in the
ECB or DECB.

You obtain access to a single working storage block with the getcc function, which
places the address of the block on a specified ECB data level or DECB. You can
release working storage blocks with the relcc function.

You can obtain access to DECBs by using the tpf_decb types of functions or by
using the DECBC macro. For more information about DECBSs, see

Control Blocks” an page 29. For more information about the tpf decb types of

functions or the DECBC macro, see the [[PE C/C++ | anguage Support User'd

Guidd and [LRPE General Macrad, respectively.

You can obtain access to a heap storage block with the malTloc function and release
the storage with the freec function. The argument used with the relcc function and
the two arguments used with the getcc function are an enumerated data type that is
defined in the tpfapi.h header. Examples follow.

The following is an example for assembly language.
GETCC D3,L0

This statement requests a 127-byte block on data level 3. TPF system programs
will assign one main storage address from the 127-byte pool to the ECB, and will
update the CBRW at level 3:

CBRW

| 0003A420 | o011 | oo7F |
Level 3
Core address Block Bytes
type held in block

On return from the GETCC macro, register 14 (R14) will also contain the main
storage address of the block, which the ECB can now access in the ECB private
area. Of course, the ECB must not be holding a block at the specified level when
the macro is issued. If it is, a system error will occur and the ECB will be forcibly
exited.

The application can also request a 127-byte common block to share with other
ECBs using the COMMON= parameter, for example:

GETCC D3,L0,COMMON=YES

The ECB accesses common blocks in the ECB common area (assuming it is
properly authorized).

The release main storage macro is used to release blocks, one at a time, when
they are no longer needed. For example:

RELCC D3

The block size is not required. TPF will return it to the pool and update the CBRW.
After the RELCC request, the level 3 CBRW (see above, after the GETCC) will

238 TPF V4R1 Application Programming

appear as follows:

CBRW | 50034420 | 0001 [oo7e |
Level 3
Core address Block Bytes
type held in block

Note that only the block type held indicator is modified. The remainder of the CBRW
is unchanged. For additional information on use of the CBRW, see

When using RELCC, a block must be held at the specified level; if not, a system
error will occur and the ECB forcibly exited.

The following is a C language example.

#include <tpfapi.h>
#include <c$amOsg.h>
struct am@sg *amsg; /* pointer to message block */

amsg = getcc(D3,GETCCTYPE,L1); /% attaches a 127-byte block on data

TPF system programs will assign one main storage address from the 127-byte
block pool to the ECB, and will update the CBRW at level 3:

CBRW | 0003420 | o011 [oo7r |
Level 3
Core address Block Bytes
type held in block

The getcc function normally returns a pointer that represents the starting address of
the newly obtained working storage block, which the ECB can now access in the
ECB private area. Of course, the ECB must not be holding a block at the specified
level when the function is called. If so, a system error will occur and the ECB will be
forcibly exited.

The relcc function is used to release blocks, one at a time, when they are no
longer needed. For example:

#include <tpfapi.h>
relcc(D3); /* releases the storage block on data lev

The block size is not required. TPF will return the block to the pool and update the
CBRW. After the relcc request, the level 3 CBRW (see above, after the getcc
function call) will appear as follows:

CBRW

| 0003A420 | o001 | oo7F |
Level 3
Core address Block Bytes
type held in block

Note that only the block type held indicator is modified. The remainder of the CBRW
is unchanged. For additional information on use of the CBRW, see

When using relcc, a block must be held at the specified level; if not, a system error
will occur and the ECB will be forcibly exited.

TPF Application Program Interface Functions 239

Assembly language and C language applications can also request (and release)
storage in blocks of varying sizes (greater than 4 KB) from contiguous or heap
storage using the MALOC or malloc, CALOC or calloc, RALOC or realloc, and
FREEC or free functions. This storage resides in the heap private area, above 16
megabytes.

If the ECB exits with main storage blocks being held, TPF releases them. This is
generally the most efficient way to release this storage, assuming that an
ordinary amount of system resources are being used.

In the case of reading from and writing to file storage, it is TPF (rather than the
application) that manages the working storage blocks. For a file read, TPF gets a
block of the proper size, then reads in the file record. For a file write, TPF writes,
and may release, the block. A system error will occur if the application attempts a
file read into an occupied data level, or attempts to release a block after a file write
(assuming that the write was not performed on behalf of a file with no release
function).

TPF provides additional functions that combine the allocation of main storage

blocks and file retrieval and storage. See ESummary of File Reference Functiond
and Macros” on page 260, the [[PE_C/C++ | anguage Support User's Guidd, [TPH
General Macrod, and [[RE System Macrod for more information.

Application Global Area

The fixed data area called the application global area is of prime importance to the
application programmer. Although in practice the TPF system also uses the
application global area, it is primarily an application area. The purpose of the area
is to provide efficient access for all programs to commonly and often highly
accessed data. A detailed discussion of the concepts and format of the global area

is given in the [[RPE_System Installation Support Referencd.

Eigure 40 on page 241 shows a layout of the application global area. Conceptually,
global area 1 and global area 3 are similarly structured protected areas. Each

contains a directory, records for common system and application values, and other
protected data records. Global area 2 contains nonprotected data records. An
extended global area, residing above the 16-MB boundary, also can be specified; its
inclusion in the system is optional. The structure of this area is analogous to the
primary area. Application programs can take advantage of the greatly extended
storage capacities of 31-bit addressing mode, at the same time relieving storage
constraints below the 16-MB boundary. Support is provided under TPF for writing
application programs in the C language that interact with global areas 1, 2, 3, and
their extended areas.

It is important to note that the TPF global areas are used by programs written in
both assembler and the C language and that different naming conventions apply.

TPF convention requires that all symbolic names for the global area start with the

@ character in assembly language and _ in C language. The remaining characters
in the symbol are in lowercase.

240 TPF V4R1 Application Programming

High
Page O's

Extended

Global Area 3 (Protected)

Extended Extended

Globals Global Area 2 (Unprotected)

Extended

Global Area 1 (Protected)

GAT

Application Records

Global Blocks: Global (Protected)
GLOBPGLOBQ Area 3
(SSU Common Fields)

Directory - GLOBY

Primary Global

Globals Records Area 2 (Unprotected)

Application Records

Global Blocks:
GLOBB,GLOBC,GLOBD, Global
GLOBE,GLOBF,GLOBG Areq 1 (Protected)

(SSU Unique Fields)

Directory - GLOBA

Control Program Area

Low

Figure 40. Global Storage Allocation for a TPF Basic Subsystem with a Single I-Stream.
Terms labeled GLOxx correspond to the names of assembler DSECTs associated with the
areas.

Global Directory

A global directory (@GLOBA for global area 1 and @GLOBY for global area 3) is
simply a series of pointers, each with a symbolic name, containing the main storage
address of each record or record type in the global area.

TPF Application Program Interface Functions 241

For assembly language, the GLOBZ macro provides a DSECT and direct
addressability via symbolic names for the first 4096 bytes of global area 1 and
global area 3. The directory and the common system/application value records must
reside in the 4096-byte limit, but the protected resident records need not.

If the item pointed to is a multiple record file, then the pointer refers to the first
record of the file. The application must then develop its own logic for stepping
through the file. Because global records must be backed up in file storage, the
directory item also contains the system file address.

Common Values

Immediately following each directory is a variable number of records that contain
the common system and application values. Each field in these records has a
unigue symbolic name and either can be operated on or indirectly addressed. In
assembly language the GLOBZ macro is used. For example, @CFLTN can be a
symbolic name for a 4-byte field assigned in a miscellaneous common value global
record. After issuing GLOBZ, the program can address @CFLTN with any standard
instruction.

Protected Data Records

The protected resident records are pointed to by the directory (@GLOBA), but fields
in these records are not defined by GLOBZ. Each resident record type has its own
data macro, and the assembly language program addresses it by loading a base
register with the pointer from the directory.

C language access to the protected data records in global areas 1 and 3 may be
obtained only by means of a pointer returned by the glob function, (see IEhLa.I

Brea Functions for C | anguage” an page 246). It is the application programmer’s

responsibility to write a structure to examine the contents of the record itself.

For example, assume that one of the protected resident records is an exception
authorization record that has its fields defined in a data macro named EXOAU, and
has a pointer in the global directory labeled @ or _. Your program could address
the fields in the exception record with the following code:

GLOBZ REGR=R1 Defines global fields and loads base register

EXOAU REG=R2 Assigns register 2 as base for exception record

L R2,@EXAU Loads exception record base with pointer from
global directory

CLC EXAU1l,EBWO20 Example instruction using detail field from

exception record data macro

Note: Your program should not give up control of the processor (by issuing any 1/0
request, such as FINWC) between reading a global record or field and
updating that record or field. If it does, the data that your program reads may
have already been updated by another program by the time your program
decides to update it.

Maintaining Global Areas

242

Global areas are maintained either:
* From common main storage, or
» Across multiple copies of main storage or DASD.

This organization affects the techniques that are used when updating the global
areas.

TPF V4R1 Application Programming

When global data in a central processing complex (CPC) exists in common storage,
application programs must use appropriate multiprocessing techniques. See the

When global data must be maintained identically across multiple copies, global
synchronization services should be considered. A detailed discussion is given
below.

Synchronizing Global Areas

Global synchronization provides an application programmer with a method of
coordinating values in main storage among several active I-streams. This need
arises when multiple I-streams (processors) in a multiple processor CPC and/or a
loosely coupled (LC) complex use a shared global resource. All I-streams in the
complex share DASD and have access to all data that reside on that DASD.

In a Multiple Data Base Function system, a global area is defined for each
subsystem user (SSU). A global area also is defined for each processor in a CPC
and in an LC complex generated with the High Performance Option licensed
feature.

Loosely coupled systems allow terminals to be connected to several CPCs, all of
which use the same database. Although most of the data required for an input
message to be processed exist on shared DASD storage, some of the critical data
resides in global main storage. This data must be maintained (as much as possible)
concurrently in all processors connected to the network. In other words, the data
must be synchronized.

Each program that relies on the most current value of data in a global area must
ensure the presence of the most current data in main storage by using a SYNCC
synchronization macro if in assembly language, a GLOBALSYNC argument with the
global function if in C language, or if in ISO-C the glob update or glob sync
functions. (See the L i ”

and the description of the global
function or the SYNCC macro in [[PE_General Macrad for more information.)

Keypointing Global Areas

In TPF, certain critical data in main storage is backed up on file. This data is
maintained in records called keypoints, and the process of backing them up is
called keypointing. Some global data, when it is modified, is not keypointable. All
other data must be keypointed whenever it is modified. A C language application
programmer using the global function in ISO-C or TARGET(TPF), or glob_keypoint
in ISO-C has the option of specifying that keypointing should take place or allowing
the decision of whether or not to keypoint data to be handled by the function itself.
More details are given in L i ions”

Global Area Macros for Assembly Language
The use of global area macros varies greatly depending on whether you are
accessing synchronized or nonsynchronized global records and fields.

GLOBZz This macro is used for both synchronized and nonsynchronized
records and fields.

GLOBZ is an executive macro as well as a data macro. It defines
the symbolic labels to be used in addressing data in the first 4096
bytes of global areas 1 and 3. It also loads the base register
specified in the instruction with the address of the global area

TPF Application Program Interface Functions 243

GLMOD

FILKW

SYNCC

244 TPF V4R1 Application Programming

requested. It has options for global area 1 or global area 3 or both,
and to specify a field name to be accessed when the global area is
not known.

Examples: GLOBZ REGR=R1 Loads Rl with base of
global area 1
GLOBZ REGS=R2 Loads R2 with base
of global area 3
GLOBZ REGR=R1,FIELD=@CFLTN Loads R1 with base of

global area containing
the field GCFLTN

This macro used only for nonsynchronized records and fields.

Application global areas 1 and 3 are in protected main storage.
Before they can be modified the application program must first
issue the GLMOD macro to change the protection key. Global area
1 or global area 3 may be specified as an operand; global area 1 is
the default.

This macro is used only for nonsynchronized records and fields.

After the global area is modified, the application program must
restore the protection key. Until it is restored, the application cannot
modify its own ECB or other standard data areas. This is done with
a parameter of the file keyword macro, FILKW.

FILKW can also request that critical main storage records be
backed up on file. In TPF, these records are called keypoints, and
the process of backing them up is called keypointing. Some global
records—those that are not modified—are not keypointable. All
others must be keypointed whenever they are modified.

FILKW parameters are:

* Restore or don't restore the protection key.

* The symbolic name of the field containing the address of the
global record to be keypointed or a field in the global record to
be keypointed. (Note that if the field parameter is used, the
specified field must be coded in a table contained in the FILKW
code itself.)

Up to 8 records or fields may be specified in one FILKW statement.

Examples:

FILKW R,@GBLCC Restore protection key
and keypoint record
@GBLCC

FILKW N,@GBLCC,@GLOBA Update keypoint records

specified; do not restore
protection key.

FILKW R,@GLOBA,@GLBCC,@CFLTN,FLD=YES Restore protection key
and keypoint specified
records. At Teast 1 of
the names specified is
a field in a record.

This macro is used only for synchronized global records and fields.

The SYNCC macro is used to (1) gain exclusive use of a
synchronizable global field to update it and (2) notify other
processors in the multiple processor complex that the updates have
been made. The synchronization macro and its supporting logic in

the control program ensure that the most current data is obtained
from the global area, and that any updates to a global record or
field are refreshed in the main storage of all the loosely-coupled
processors.

SYNCC options are:

* LOCK—Retrieve the most recent file copy of the data and move
the contents of the field or record into main storage at the
appropriate location. An additional function of the LOCK option is
to maintain a hold on the file copy to prevent simultaneous
updates to the file copy. This results in a hold in the processor’s
record hold table and a hold at the disk control unit. The LOCK
option will, upon return to the calling program, set the protection
key to the proper value for the global field or global record
requested.

* UNLOCK—Release the file record after a LOCK has been
issued, but no update (and therefore no synchronization) is
required. The UNLOCK option restores the protection key to the
proper working storage key.

* SYNC—Refresh the main storage images of modified data in
every active processor by (1) copying the data to file storage; (2)
informing the other loosely-coupled processors, via a facility
called interprocessor communication (IPC), that the data should
be immediately refreshed from that file copy; and (3) informing
the other processors in the CPC that their copy of the data must
be updated. The SYNC option, like the UNLOCK option, restores
the protection key to the proper working storage key and
releases the hold on the file copy.

The order and timing of the options you specify on the SYNCC
macro is critical to the operation of your program.

* You must specify a LOCK option before either a SYNC or
UNLOCK option; otherwise, your program will be exited.
Furthermore, if any input or output requests are pending when
you specify SYNCC LOCK, your program will be exited.

* Your application program must process synchronized fields and
records 1 at a time. This means each LOCK option must be
followed by SYNC or UNLOCK before another LOCK can be
issued.

* The program segment that issues a LOCK option must also
issue the SYNC or UNLOCK option before entering another
segment or issuing an EXITC macro.

In a loosely-coupled environment the SYNCC macro results in a
find-wait-hold on the file record that services the synchronized
global field or record. As a result, it prevents other programs on the
same processor or any other active processor from accessing the
referenced global field or record. To shorten the duration of this
"lockout”, you should keep the number of instructions executed
between the LOCK and the SYNC or UNLOCK options to the
minimum number required to perform the updates.

The SYNCC macro issues a supervisor call to refresh main storage
from file storage. This is a slow 1/O process during which the
program that issues the SYNCC does not have control.

TPF Application Program Interface Functions 245

Special Coding Considerations
Because the SYNCC macro modifies the protection key, data in working storage

cannot be manipulated after SYNCC LOCK has been issued. If you need access to
working storage before all global updates are complete, you can use FILKW and
GLMOD macros to alter protection keys appropriately. For an example, see the
application global area in the i

Global Area Functions for C Language

Before considering the operation of the global functions, an application programmer
should follow the programming considerations that apply to using the global
functions provided with IBM C language support. An application programmer who
intends to access global data in the extended global areas should follow the
addressing conventions for those areas. After considering the operation of the
global functions, the programmer who intends to employ synchronization techniques
should regard the special treatment that applies.

Each of these topics is discussed in more detail below.

Programming Considerations with the Global Functions
It is important to note that the TPF global areas are used by programs written in

both assembler and the C language and that different naming conventions apply.
TPF convention requires that all symbolic names coded in assembler for the global
area begin with the @ character. The C language prohibits the @ character in any
identifier; TPF convention calls for an underscore (_) to be used in its place. All
remaining characters are specified by convention in lowercase.

Support for the C language requires that all names used to refer to global fields and
records be previously defined in the c$globz.h header and also requires that the
tpfglbl.h header, which includes c$globz.h, be included in any code that calls the
global functions. Each global tag name in the c$globz.h header is assigned a
unique 32-bit number that describes:

* The global item’s displacement in the global area of residence
* Its length as defined
* The number of the global area in which it resides

» Characteristics of online handling, such as keypointability and subsystem
commonality or uniqueness.

The c$globz.h header file normally is created at installation time and must be
revised every time that the definition or order of items in the global areas change.
Because the compiler treats the contents of c§globz.h as constant values, existing
C programs that reference global tag names must be recompiled whenever the
c$globz.h header is revised.

Sample code that may be helpful in generating the contents of c$globz.h has been
provided with the installation tapes. A more complete description of the use of this

code is given in the [[RE_C/C++ | anguage Suppart User's Guidd,

Operation of the Global Functions

TPF provides 2 C functions for ISO-C or TARGET(TPF) for the application
programmer who wants to access data in the global areas: glob and global. The
use of global area functions varies greatly depending on whether you are accessing
a global record or field. You can use the global function only with a global field and
only to operate on that field, which is discussed in more detail below. You can use
the glob function with either a global field or record solely to obtain a pointer to the

246 TPF V4R1 Application Programming

global data. In the case of a global field, glob returns the field address. In the case
of a global record, glob returns the record’s directory entry address (coreffile)
indicated by the tag.

Note: A program should not give up control (by calling an 1/O function, such as
finwc) between reading and updating a global field. If it does, the data that
the program reads may have already been updated by another program by
the time the program decides to update it. Use of the locking facility provides
additional security when updating synchronizable global fields.

The operation of the global function is determined by the action that is specified as
the second argument in the function call. The predefined terms that can be used to
specify the global operation to be performed include:

Term

GLOBALUPDT

GLOBALMODF

GLOBALCOPY

GLOBALKEY

GLOBALLOCK

GLOBALUNLK

GLOBALSYNC

Action

Updates the referenced global field with the value pointed to by a
third argument that is required in the function call. Additional
operations (keypointing, synchronizing) determined by the field’s
attributes are performed on the referenced global.

Alters the referenced global field with the value pointed to by a third
argument required in the function call. No additional keypointing or
synchronization are performed on the field.

Copies the contents of the referenced global field to the place in
automatic storage pointed to by a third argument required in the
function call.

Causes keypointing of the referenced global field. A third argument
is not required with GLOBALKEY.

Reserves the exclusive use of the referenced global field and forces
its main storage copy to be refreshed from the most current file
copy. The contents of the field then are copied to automatic
storage. The GLOBALLOCK operation maintains a hold on the file copy
to prevent simultaneous alterations to the file copy. This results in a
hold in the processor’s record hold table and a hold at the
associated disk control unit. Programs that use GLOBALLOCK should
use GLOBALUNLK or GLOBALSYNC as soon as possible to prevent
severe system degradation caused when other ECBs are awaiting
access to the referenced global field.

Releases exclusive use of a referenced global field without altering
it. A third argument is not required with GLOBALUNLK.

Releases exclusive use of a referenced global field and
synchronizes the global values across processors in an LC
complex. A third argument is not required with GLOBALSYNC.

The GLOBALSYNC operation is used to (1) gain exclusive use of a
synchronizable global field to update it and (2) notify other
processors in a multiple processor complex that the updates have
been made. The synchronization operation and its supporting logic
in TPF ensure that the most current data is obtained from the global
area, and that any updates to a global field are refreshed in the
main storage of all the LC processors.

The GLOBALSYNC operation refreshes the main storage images of
modified data in every active processor by (1) copying the data to
file storage; (2) informing the other LC processors, via a facility

TPF Application Program Interface Functions 247

called interprocessor communication (IPC), that the data should be
immediately refreshed from that file copy; and (3) informing the
other processors in the CPC that their copy of the data must be
updated. The SYNC operation releases the hold on the file copy.

ISO-C support provides for manipulating global fields and records with the glob
function. The 6 operations available are similar to those available with the global

function.
Term

glob_keypoint

glob_Tock

glob_modify

glob_sync

glob_unlock

glob_update

248 TPF V4R1 Application Programming

Action
Keypoint a global field or record

This function causes the keypointing of the
specified TPF global field or record. This function
performs the equivalent of a GLOUC assembler
macro.

Lock and access a synchronizable global field or
record

This function reserves exclusive write access to the
specified TPF global field or record and forces
refreshing of the core copy from the most current
file copy. This function performs the equivalent of a
SYNCC LOCK assembler macro.

Modify a global field or record

This function copies the modification data to the
specified TPF global field or record.

Synchronize a global field or record

This function releases the exclusive use of the
specified TPF global field or record, and
synchronizes the field or record across processors
in a loosely coupled complex. This function
performs the equivalent of a SYNCC SYNC
assembler macro.

Unlock a global field or record

This function releases the exclusive use of the
specified TPF global field or record. This function
performs the equivalent of a SYNCC UNLOCK
assembler macro.

Update a global field or record

This function updates data contained in the
specified TPF global field or record. If the tag name
is synchronizable, the equivalent of a SYNCC
SYNC assembler macro is performed to
synchronize the global area across the loosely
coupled complex; otherwise, if the tagname is
keypointable, the equivalent of a GLOUC assembler
macro is performed to keypoint the global record
specified by tagname (or the record containing the
global field).

Synchronization Considerations

The order and timing of the operation you specify for synchronizing a global field is
critical to the operation of your program. These considerations are true for assembly
language programs, TARGET(TPF) functions, or ISO-C function.

* You must specify a locking operation (global GLOBALLOCK or glob_Tock) before
either a synchronization (global GLOBALSYNC or glob_sync) or unlocking operation
(g1obal GLOBALUNLK or gTob_unlock); otherwise, a system error results. Similarly,
if any 1/0O requests are pending when you specify a locking operation (global
GLOBALLOCK or gTob_Tock), a system error results.

The global GLOBALUPDT and glob_update functions automatically synchronize the
field or record being updated, provided the synchronization indicator is set. The
record or field should be locked prior to calling the update function.

* Your application program must process synchronized fields 1 at a time. Each
locking operation (global GLOBALLOCK or glob_Tock) must be followed by a
synchronizing (global GLOBALSYNC or glob_sync) or unlocking (global GLOBALUNLK
or glob_unlock) operation before another locking operation can be called.

» External functions that call the locking functions must also call the synchronizing
or unlocking functions before calling another external or library function.

The locking functions (global GLOBALLOCK and glob Tock) resultin a
find-wait-and-hold (see LEile Starage Access” on page 257) on the file record that
services the synchronized global field. As a result, if any other entries on the same
I-stream or any other active I-stream in the loosely-coupled complex attempt to
simultaneously lock the same global field, their request will be queued. Such entries
will be able to access the specified global field only after the first entry has released
its lock through either an unlocking function (global GLOBALUNLK or glob _unlock) or
a synchronizing function (global GLOBALSYNC or glob_sync).

At any given time only 1 ECB may hold the lock for a particular global field. To
shorten the duration of this “lockout”, keep the number of instructions executed
between the locking functions and either the synchronizing or unlocking functions to
the minimum number required to perform the updates.

The synchronizing functions (g1obal GLOBALSYNC or glob_sync) issue a supervisor
call to refresh main storage from file storage. This is a slow I/O process during
which the program that called for the synchronization does not have control.

Examples of Using the Global Functions

In the illustrative process flow introducing the application interfaces, our credit
application stored its floor limit, an integer, assigned the symbolic name CFLTN in a
global field. It was updated with the value pointed to by amount as follows:

#include <tpfglbl.h>
global(CFLTN, GLOBALUPDT, &amount);

If a protected resident record in the extended area were an exception authorization
record that had its fields defined in a structure named ex0au, and had a pointer in
the global directory labeled exau, a program could examine the fields in the
exception record with the following code:

#include <tpfglbl.h>
#include <tpfapi.h>
struct exOau {

TPF Application Program Interface Functions 249

} *@EXAU;

@EXAU = *(struct exOau **) glob(_exau);

It would be up to the application to know and properly define the structure used
above.

Accessing Data in Assembly Language and C Language

Database support is critical to the performance of any system. Performance of a
system is largely dependent on the number of file storage requests and the time
required to transfer them. TPF is designed to optimize the queuing and transfer
time, but the number of requests is largely determined by application design.
Therefore, good performance in any online system is the result of TPF support
facilities, plus good application design and use of those facilities. For this reason, it
is important that application programmers understand the concepts and basic
structure supported by TPF.

High performance is an assumed objective of TPF data support. This implies 2
secondary objectives:

1. The online files are a common data resource for all users and applications.
Applications may be designed to provide independent function, but all share the
same data resource. The application may structure data to its unique
requirements, but the structuring must be in the context of the basic common
data structure. This common database is allocated and structured at system
generation. There is no facility comparable to MVS jobs or JCL which allow file
allocation per job. The program or entry must use the preallocated system data

resource. (See [General Data Set and General File Suppart” on page 273 for a
discussion of MVS-type data sets in TPF.)

2. File addressing is symbolic so that the application programming is independent
of the physical configuration. Essentially, all disk files are organized for direct
access and are allocated across the entire physical storage to improve
performance. The application always deals with a symbolic reference number
that system programs and tables translate ultimately to a physical address. The
user configuration can expand, take on new devices or eliminate old, without
requiring application programming changes.

The main database of a TPF system comprises 2 categories of disk data file: the
fixed file and the random pool. (General data sets and general files are excluded
from this discussion. See tGeneral Data Set and General File Support” onl

.) Programs that run on the TPF system are another category of disk file,
although they are not considered data.

Fixed File

The fixed file is analogous to a conventional multivolume data set organized for
direct access. The storage area in the fixed file is allocated at system generation to
specific functional application record types. An application cannot create a new
record type, nor can it add to the allocation for a record type, during execution. It
can use only what was allocated during system generation. The characteristics of
the fixed file determine the type of records that should be placed in the fixed file.

* Because the number of records can be changed only by regenerating the
system, the records required by applications should be fairly constant in
number—otherwise, the file space will not be well used.

250 TPF V4R1 Application Programming

* Because the fixed file ordinal number provides an accessing scheme for direct
retrieval, it is appropriate to place frequently accessed records there.

For example, the fixed file often is used to contain records that are pointers to data

in the random pool file area (see tRandom Poal File Area” on page 254).

A given record type may be allocated on the fixed file as small (381 bytes), large
(1055 bytes), or 4 K (4095 bytes). For assembly language, the record types are
assigned symbolic names (which begin, by convention, with a #) and are equated in
the system equate macro (SYSEQC) to an absolute value. For C language, the
record types are assigned symbolic names and equated to absolute values in
c$syseq.h using #define preprocessor statements.

For more information about fixed file storage, see [[RE System Generatiod.
FACE, FACS, and FAC8C

In a record type, each record has a record ordinal number (also called relative
record number or RRN). However, to retrieve a record, the TPF system must know
the ordinal number of the record across the entire DASD base. The file address
compute programs (FACE and FACS) and the FAC8C macro calculate this number
from the record type and record ordinal number.

FACE, FACS, and the FAC8C macro each consist of a system utility program and
associated index table residing permanently in main storage. An application
programmer must know the record type of the record to be retrieved. The
application must develop the algorithm that calculates the desired ordinal number in
that record type.

Eigure 41 on page 252 shows an example of a simple fixed file structure with 4

record types, the FACE/FACS table, and SYSEQC items that define it. Usually the
numeric record type is set up using an equate or a #define. Nevertheless, any
changes to the FACE index table may require programs that use FACE to be
recompiled.

The FACE and FACS programs and the FAC8C macro are similar:

* FACE is passed numeric record types in the form of equates when coding in
assembler language or #define statements when coding in C language.
* FACS is passed symbolic record types.

* FACBSC is passed numeric or symbolic record types.

The numeric record types may be changed from time to time in the FACE table;
they may also vary from MDBF subsystem to subsystem. This means programs that
use FACE must be recompiled when the FACE table is changed or when they are
transported between systems. The symbolic record types used by FACS avoid this
drawback.

TPF Application Program Interface Functions 251

Ordinal number Ordinal number User requires 4 types of records:

in entire fixed file in record type - 15 customer records,
type CUSMR
0 TYPEO ORD # 0 |— - 3 inventory records,
1 1 type INVEN
- 2 accounting records,
2 2 type ACCTG
- 4 sales representative
° o records, type SALES
[] []
[) [)
FACE table
8 8
9 Base # of Record
9 ord # records type
10 00 L— 5|0 15 0
11 11
— |15 3 1
12 12
— |18 2 2
13 13
—P
14 14 20 4 3
15 TYPE1 ORD # 0 |—
16 1
17 2
18 TYPE 2 ORD # 0|— SYSEQC or
19 1 #define statements
20 TYPE 3 ORD # Q0 |— #define CUSMR 0
21 1 #CUSMR EQU 0
#define INVEN 1
22 2 #INVEN EQU 1
#define ACCTG 2
23 3 #ACCTG EQU 2
#define SALES 3
#SALES 3

Figure 41. Example of Fixed File Organization and FACE/FACS Table

Application linkage from assembly language to FACE or FACS is by the ENTRC
macro, by the face_facs function from ISO-C, and from TARGET(TPF) by the
#pragma linkage and, optionally, the #pragma map preprocessor statements. For the
FACS program or the FAC8C macro, the symbolic record type must be an 8-byte
field, left-justified and padded with blanks, at the address specified.

Note: Entry requirements and return conditions for the FAC8C macro are different
from FACE and FACS and are found through the IFAC8 DSECT in the
IFACRET field. See [[RE General Macrod for more information about the
FAC8C macro.

Register requirements on input for FACE or FACS, which in C language normally
are set up by means of the TPF_regs structure, are as follows:

Register Use

252 TPF V4R1 Application Programming

Register 0 (RO) The ordinal number in a record type.

Register 6 (R6) The address of symbolic record type (for FACS)
and record type (for FACE).

Register 7 (R7) The location of an 8-byte field where the system file
reference is to be placed. Normally, this location will
be the FARW because the address must be there
before the find or file function can be called.

Return conditions from FACE/FACS are as follows:

* Normal return

System file reference at the specified location
Register 0: maximum ordinal number for record type
Registers 1-5: contents unchanged

Registers 6 and 7: contents changed

* Error or Exception Return
— Register 0: 0
— Registers 1-5: unchanged
— Register 6:
when R7 =1 and
* R6 =1, the requested record type is not in use.
* R6 = 2, the record type is not defined or exceeds the limit.
* R6 = 3, no records are defined for the record type on the associated
SSU/Processor/I-stream.
when R7 = 2 and
* R6 = 0, the ordinal number exceeds the record type limit.
* R6 not equal 0, the next valid ordinal, if requested, does not exist but
does not exceed the maximum.
— Register 7:
=1 - Input record type invalid
= 2 - Input ordinal number out of range
= 3 - No records defined for the record type on the requested
SSU/Processor/I-stream.

Note: If autostorage blocks are being used, then R7 is set to the address of
the current autostorage block and the error code is placed in the
autostorage block as the returned R7.

Return conditions from the FAC8C macro are found through the IFAC8 DSECT in
the IFACRET field. See [[PE General Macrad for more information about the FAC8C
macro.

Following is a FACS linkage coding example for assembly language:

L RO, EBWO20 Load ordinal number

LA R6,=CL8'#VD1VD' Symbolic record type

LA R7,CE1FA2 Location = FARW, Tlevel 2
ENTRC FACS

LTR RO,RO Test for exception

BZ EXCEPT Logic for exception return

Making a Call to FACS Using TARGET(TPF)

The following TARGET(TPF) example makes a call to FACS to compute a file
address prior to calling findc. Note that the assembler program FACS has been
renamed for use in C as getfileadd.

TPF Application Program Interface Functions 253

#pragma linkage(getfileadd,7PF,N) /* define appropriate Tinkage
#include <tpfapi.h>

#include <tpfio.h>

#define VDIRI "#VD1VD "

struct TPF_regs regs; /* set up for register interface
regs.r6 = (long) VDIRI; /* pointer to symbolic record ty
regs.r7 = (long) &(echptr()->celfa2); /* level where file addres
regs.r0 = 10; /* ordinal number *
&FACS. (®s); /* calculate fixed file address */
if (!regs.r0) /* FACS error?

if (regs.r7 == 1) /* invalid record identification

exit(0x12345);
else
{ /* invalid ordinal number */

serrc_op(SERRC_EXIT,0x1234,"INVALID ORDINAL NUMBER",NULL);
}

findc(D2); /* find the record *

face _facs Function

The face_facs ISO-C function provides for file address generation. The function is
not available in TARGET(TPF). It initializes a file address reference word (FARW)
with the data necessary to access a fixed file record.

The following generates a SON address for "#PR0G1" record number 235 and stores
it in the FARW for data level D6.

#include <tpfio.h>

unsigned long progl ordinal;
int rc = face facs(235, "#PROG1", 0, D6, &progl ordinal);
switch (rc)
{
case 0: /% Success: the FARW at data Tevel D6 contains the */

/* file address for "#PROG1" record ordinal number */
/* 235, and progl ordinal contains the maximum record =*/
/* ordinal for #PROG1 fixed file records. */

break;
Default: /* Error Conditions include the record type is not */
/* defined, is empty, contains fewer records than the =/
/* number requested, and so forth. */

break;

}
For information on the face_facs function, see the [CPE C/C++ Language Suppor]
User's Guidd

Random Pool File Area

The dynamic requirements for file storage are maintained in an area called the
random pool file area, or simply pools. Whereas the fixed file is allocated to static
record types, the pools are allocated for random use and are dispensed on an
as-needed basis. In other words, TPF manages the availability of each pool record.
The application simply requests a pool record, uses it for as long as necessary,
then returns it to the system.

254 TPF V4R1 Application Programming

Records in random pools are categorized by size (small, large, or 4 K), length of
retention (short-term or long-term), and duplicate or single. Pools are also
categorized by file address size (4-byte or 8-byte).

Short-term records are intended for quick turnover, such as the life of a customer
transaction, and are returned immediately to the pool when the application releases
them. Long-term records are intended for a longer interval of use dictated by
application needs, and may extend into months. When released by application
programs, long-term record addresses are written to tape for offline return to the
pool.

A typical example of the practical use of the fixed file and the pools is provided by
the airline reservation system. Flight inventory records and indexes to the
passenger names are maintained on the fixed file. Pool records contain the
individual passenger name records. Because the flight is flown on a scheduled
basis, the inventory and indexes, though modified, will be retained permanently.
When the flight has flown, however, individual passenger records are not retained
online; they are placed in a history file and the pool space is made available for use
again.

Duplicate records are records that, at allocation, are assigned to 2 different disk
modules in order to increase availability of those records. If a module on which a
duplicate record resides should fail, the record can still be retrieved from the other
module. When the record is filed, both copies of the record are updated
automatically. This updating is transparent to the application.

Application use of pool storage is simple and straightforward: it amounts to
requesting an address (1 per function call) and releasing an address (1 per function
call). Good use of resources mandates that addresses be returned promptly.

The assembly language GETFC macro gets small, large, or 4 KB records by pool
ID. The pool ID is a parameter on the macro and is used as an index into the
record ID attribute table (RIAT), which specifies long or short term, single or
duplicate, and small, large, or 4 KB.

All file storage pool record addresses are returned by running the RELFC (release
file storage) macro. The file address that is being returned is contained in the ECB
data level or the DECB FARW specified in the macro instruction. See

Cantrol Blocks” on page 29 for more information about DECBs.

Examples of these macros are as follows:

GETFC D6, ,ID=AB D6 specifies that the record address be
placed in the ECB Tevel 6 FARW; AB is the
record ID, which is used in the RIAT.

RELFC D6 D6 specifies that the record address, in the
level 6 FARW, is to be returned. This is the
only parameter required. The record size and
whether it is short or long term is determined
from the contents of the FARW.

The C language getfc (obtain file pool address) function gets a file address (and
optionally, a working storage block) based on attributes associated with a pool
identification. The following arguments, listed in the order given below, are
associated with the getfc function:

TPF Application Program Interface Functions 255

level or dech
level is a value of enumeration type t_1v1 that specifies an available ECB data
level. decb is a value of structure type TPF_DECB*, which is a pointer to a DECB.

type
One of the predefined terms GETFCTYPO through GETFCTYP9, which determine the
size and pool types in the record identification attribute table (RIAT) associated
with the id argument. GETFCPRIME and GETFCOVERF are still supported for
migration purposes only.

id A pointer to a 2-character string that contains the pool identification. The pool
identification is used as an index into the RIAT, which specifies long or short
term, single or duplicate, and small, large, or 4 K.

block
One of the predefined terms GETFCBLOCK or GETFCNOBLK, which determines
whether or not a working storage block with characteristics specified by the
RIAT is to be obtained simultaneously.

error
One of the predefined terms GETFCSERRC or GETFCNOSER, which determines
whether or not control is to be returned to TPF in the event of an error.
GETFCSERRC will cause control to be transferred to the system error routine (with
exit) in the event that storage cannot be obtained as requested.

The getfc function returns the requested file address.

All file storage pool record addresses are returned to the TPF system by calling the
relfc (release file pool storage) function. The file address that is being returned is
contained in the ECB data level or the DECB FARW specified as the only argument
of the function.

Examples of Using the Pool Storage Functions:

It is important to understand that the pool area has no access scheme; that is, it
has no record type, ordinal number, or other identification enabling retrieval except
the system address. Once the application gets an address, it must maintain its own
future access by saving that address. The address may be saved in the fixed file,
the ECB, the global areas, or wherever good design dictates, but it is an application
responsibility.

256 TPF V4R1 Application Programming

#include <tpfio.h>
#include <c$am@sg.h>
struct amdsg *amsg;

/* Pointers to message blocks */

amsg = echptr()->celcrl; /* Base prime AAA record */

if (!(amsg->am@fch =

GETFCNOSER)))
/*
/*
/*
/*
/*
/*

getfc(D6,GETFCTYP3,"0OM" ,GETFCBLOCK,

D6 specifies that the record address be placed in the */
ECB Tevel 6 FARW; pool type is 3; OM is the */
record ID used in the RIAT; BLOCK causes a block and =*/
file address to be obtained; NOSERRC does not cause */
an exit to the system error routine in the case of an */
error. */

serrc_op(&EXIT.,0x33001," ",NULL,NULL); /* Perform dump with exit */

/% if getfc() fails */

relfc(D6); /* D6 specifies that the record address, in the level 6 =*/

/*
/*
/*

FARW, is to be returned. This is the only parameter =/
required. The record size and whether it is short- or =/
long-term is determined from the contents of the FARW.*/

Figure 42. Using Pool Storage Functions

File Storage Access

Note: In this section, FARW refers to an ECB data level or a DECB. See [Datd
Event Contral Blocks” an page 29 for more information about DECBSs.

Whether fixed file or pools, all file accessing under TPF is done in a similar fashion.
The TPF terms for file accessing are:

Term Function Type
find Read a record

file Write a record.

There are many variations of these 2 basic operations, but the largest distinction
exists between the “higher-level” and “basic” find and file functions. Higher-level
functions allow an application programmer to read and write files without previously
performing certain setup functions required for the basic functions. All basic find and
file operations must be preceded by 2 application steps:

1. The system file reference (symbolic file address) must be supplied in the FARW.
2. The remainder of the FARW must be initialized according to the requirements of
the function call used.

All higher-level functions must be supplied with the same information, but you must
supply it in the argument list of the function itself.

Prerequisites for Basic Find and File Functions

The prerequisite information required by the basic find and file functions is as
follows:

Step 1 The TPF system programs handle the details of obtaining the
physical address of the record at the time of the find/file request. To

TPF Application Program Interface Functions 257

enable this the application must supply the symbolic address in the
low-order 4 bytes of the FARW. You can obtain this address in 1 of
3 ways:

1. If the record resides on the fixed file, pass the record type and
ordinal number as a parameter to FACE/FACS. If the program
specifies the FARW of a data level as the location, FACE/FACS
will store the address there, ready for the find/file function
request.

2. If a new pool record is to be used, use the getfc function to
obtain the address and store it in the FARW.

3. If the address is a previously used pool record, move the
address from where the application has saved it to the FARW.
In C language, use the ecbhptr function to do this. In assembly
language, move it directly.

Step 2 As pointed out in the discussion of the ECB, the FARW is an 8-byte
control field for file activity related to any data level. The low-order
word must contain the file address. The high-order 3 bytes are used
for data integrity checks, which vary as follows (the fourth byte is
not used):

For find requests:

* The high-order 2 bytes can contain a record identification that, if
present, must match the header of the record retrieved from file.
If the record identification does not match, the ECB /O error
fields (celsud and celsug in DSECT EBOEB or header
c$eb0eb.h) will indicate an identification check failure and control
will return to the application.

No check will be made if this field is zero in the FARW.

* The third byte, the record code check, can be used for a
secondary integrity check; requirements are identical to the
record identification.

For file requests:

* The high-order 2 bytes must contain a record identification that
must match the first 2 characters in the header of the record to
be filed. Otherwise, TPF will issue a system error and force the
entry to exit.

e The third byte can contain a record code check (any nonzero
value) to be used as a secondary integrity check with the same
logic as the record identification.

No check will be made if this byte is zero.

Use of the Higher-Level C Language Find and File Functions

258

The prerequisite information required by the basic find and file operations is
supplied to the associated higher-level functions by means of the following
arguments, which must be listed in the order given below:

level or dech
level is a value of enumeration type t_1v1 that specifies available core block
reference word (CBRW) and FARW locations. decb is a value of structure type
TPF_DECB=*, which is a pointer to a DECB.

TPF V4R1 Application Programming

address
A file address that is typically obtained through a call to either the FACE and
FACS programs or the FAC8C macro.

id A 2-character string that must match the identification characters in the record
image. For find_record, if the requested ID does not match the record’s
identification characters, the ECB error fields will indicate an identification check
failure and control will return to the application at I/O completion. For
file_record, if the requested ID does not match the record’s identification
characters, the system error routine will be activated and the ECB will be forced
to exit. No comparison for either find_record or file_record will be made if the
identification field is preinitialized to zero (X'0000") or is coded as RECIDRESET.

rcc
An unsigned character that must match the record control check (rcc) byte in
the record to be retrieved (find_record) or filed (file_record). If the requested
rcc does not match the record’s rcc, then the system error routine will be
activated and the ECB will be forced to exit. No comparison will be made if rcc
is zero (X'00' or '\0").

type
One of the predefined terms enumerated in t_act that are used to indicate the
record’s hold status.

The following optional parameters may also be used with find and file functions:

FIND_GDS
Use FIND_GDS to specify that the record to be read resides in a general file or
general data set. If FIND_GDS is not specified, findc_ext accesses the record
on the online database.

Note: If the flag is not needed default extended options flag, FIND_DEFEXT,
should be coded. In this case user should consider using the findc
function.

FILE_GDS
Use FILE_GDS to specify that the record to be filed resides in a general file or
general data set. If FILE_GDS is not specified, filec_ext accesses the record
on the online database.

FILE_NOTAG
The TPF system code that places the program identification in the record
header is bypassed. This flag should only be used when the application
updating the record has placed the required program identification in the header
directly.

Note: If neither of the above flags are needed default extended options flag,
FILE_DEFEXT, should be coded. In this case user should consider using
the filec function.

Record Hold Facility

All programs should hold file records before updating them. The TPF record hold
facility is intended to reserve a file record for exclusive use of 1 entry during record
update; this ownership ensures data integrity and proper sequencing of updates.

TPF maintains a record hold table that consists of a list of file addresses and the

ECB of the holding entry. When an entry attempts to hold a record by calling a
find-and-hold function (finhc, finwc, or find_record with HOLD specified as the last

TPF Application Program Interface Functions 259

argument), TPF honors the find request only if the address of the requested record
is not in the record hold table. If it is, TPF denies the entry access to the record.
This does not prevent entries that simply call a find function from gaining
access to and even updating the record. Only entries that properly use the hold
facility are so restricted. Therefore, properly sequenced updates are only ensured if

all programs cooperate in using the hold facility properly.

TPF's limitation of the hold feature to the individual record level is an important
contribution to performance. Even so, misuse of the hold could have very serious
effects on the system. A program should hold only 1 file record (or the unique first
record of a chain of records) at a time; otherwise, a lockout condition may occur.
(This is sometimes colloquially called horns lock, deadlock, or deadly embrace.) A
program also should unhold a record as soon as possible—ideally, as soon as its

update is complete.

Summary of File Reference Functions and Macros

Following is a summary of the find and file functions or macros, listed in alphabetic

order. Basic and higher-level function types are so noted.

Table 22. File Reference Functions or Macros

Function or
Macro

Summary

Type

filec

File a Record — Causes the TPF system programs to write a record to file.
Both copies of the record will be updated if the record is duplicated.

The application program supplies the file address, record identification, and
record code check in the ECB data level FARW specified in the function
call. The block of storage is returned to the appropriate storage pool
following the I/O operation. No waitc should be used with this function;
once filec is called, the application program cannot determine the status of
the operation, and so cannot know whether 1/0 is complete.

Basic

file_record (C
language only)

File a Record — Causes the TPF system programs to write a record to file.
Both copies of the record are updated if the record is duplicated.

The application program supplies the file address, record identification, and
record code check in the function call, in addition to the data level of the
CBRW that points to the record to be filed and the type of hold status to be
associated with the record. One of 3 disposition types may be applied:

Type Disposition

NOHOLD The record written was not previously in hold status, and its
associated block of storage will be returned to the appropriate
storage pool following the 1/O operation.

UNHOLD The record’s file address must have been held by the issuing ECB
prior to the function call. Upon return, the record written will be
removed from hold status, and its associated block of storage will
be returned to the appropriate storage pool.

NOREL The record written was not previously in hold status, and its
associated working storage block will not be returned to the
system.

A programmer must code a waitc after a function call of this type
only to determine the status of the file operation; the status of the
operation cannot be determined for NOHOLD and UNHOLD calls, so
waitc should not be used for these cases.

Higher-level

260 TPF V4R1 Application Programming

Table 22. File Reference Functions or Macros (continued)

Function or
Macro

Summary

Type

filnc

File a Record with No Release — Causes TPF to write a record to file
storage like filec, and requires the same application program input as
filec. However, TPF does not return the block of storage containing the
record to the storage pool, which leaves the block available to the
application program after completion of the write. Because this function,
unlike all other file functions, does not release the storage block, you must
call waitc to ensure completion of the operation. If an error occurs during
filing, TPF returns control to the system error routine.

Basic

filuc

File and Unhold a Record — Provides the same function as filec.
However, the record is unheld before it is written to file storage. If another
request to hold the record is pending, then a TPF system program effects a
main-storage-to-main-storage move that saves a file access. (However, if
the hold request is from another TPF system in a loosely coupled
environment, then the record will be filed just as though there had been no
hold request.)

Basic

findc

Find a File Record — Reads a record from file storage into main storage.
The application program places the file address, and, optionally, the record
identification and record code check, in the ECB data level FARW specified
in the function instruction. A block of storage is obtained as a read-in area
by TPF system programs and reference to the block is placed in the
appropriate CBRW. You must call waitc to ensure completion of the I/O
operation.

Basic

find_record (C
language only)

Find a File Record — Reads a record from file storage into main storage. A
block of storage is obtained as a read-in area by TPF system programs and
reference to the block is placed in the appropriate CBRW. This function
performs the equivalent of a waitc call, which ensures completion of the 1/O
operation.

The application program supplies in the function argument the file address,
and, optionally, the record identification and record code check, in addition
to a CBRW and FARW data level for system use, and the intended hold
status for the record. Either of 2 types of hold may be applied:

Type Disposition

NOHOLD The record address will not be placed in the record hold table
following the I/O operation.

HOLD The record address will be placed in the record hold table following
the I/O operation. The application is responsible for ensuring that
the record is removed from the record hold table prior to calling the
exit function.

Higher-level

finhc

Find and Hold a File Record — Performs the same function as the findc
function, in addition to including the record hold feature, which reserves a
data record for the exclusive use of an entry during an update of the record.

Basic

finwc

Find a File Record and Wait — Performs the same function as the findc
function while including an additional waitc. Thus, the application program
need not call a separate waitc function to ensure completion of the I/O
operation. TPF returns control to the system error routine on an error or
abnormal 1/0 operation.

Basic

fiwhc

Find a File Record, Wait, and Hold — Includes all of the functionality of
finhc with an additional waitc, as described for finwc, above.

Basic

TPF Application Program Interface Functions

261

Table 22. File Reference Functions or Macros (continued)

record whose file address is contained in the ECB data level FARW
specified in the function call. This function does not cause any records to be

accessed.

Function or Summary Type
Macro
unfrc Unhold a File Record — Causes the system service routines to unhold a Basic

Using Assembler Language File Reference Macros

In assembler language, all file reference macros require the ECB data level or
DECB referencing the transfer as a parameter. In addition, the combination macros
that include a WAITC must specify a label in the application program to which
control will be transferred in any abnormal I/O operations. The application must then
contain the logic to test the I/O indicators in the ECB (CE1SUG) to determine the
nature of the abnormality and to specify the action to be taken.

Here are some macro coding examples:

FINDC
WAITC

FINWC

FIWHC

FILEC

FILNC
WAITC

FILUC

UNFRC

Note:

D1
ERROR1

D1,ERROR1

D2 ,ERROR2

D6

D6
ERROR

D6

D6

Find record, data level 1

Find record, & wait, data level 1

Find record, & wait, hold file address,
data level 2

File record, data level 6

File record, do not release main storage
block, data Tevel 6

File record, unhold file address, data
level 6

Unhold file address, data Tevel 6

Two specialized file retrieval macros—FNSPC (find a special record) and
FDCTC (file data chain transfer)—do not examine the VFA area when
searching for records. Therefore, when VFA delayed-filing is active, these 2
macros may retrieve records from file storage when more recently updated
copies of the records exist in VFA. See the [[PE Database Referencd for
more information about virtual file access.

Using C Language File Reference Functions

The following TARGET(TPF) example retrieves a data record from file on level D1 or
aborts if the retrieve is unsuccessful.

#include<tpfio.h>

finde(D1);
if (waitc())

{

Serr‘c_op(&EXIT. ,0x1234,"1/0 ERROR OCCURRED",NULL);
/* serrc_op replaced the TARGET(TPF) exit: =*/

262 TPF V4R1 Application Programming

/* errno = 0x1234; */

/% perror("I/0 ERROR OCCURRED"); */

/% abort(); */
}

The following example retrieves a data record from a general file onto level D2. The
file address has already been computed and resides in the level D2 FARW. Control
is returned to the operational program when the 1/0 has completed and the record

has been attached to the specified level.

#include<tpfio.h>
struct imOim *inm;

inm = finwc_ext(D2,FIND_GDS);

The following example retrieves a data record from file on level D2 with hold. The
file address has already been computed and resides in the level D2 FARW. TPF
returns control to the operational program when the 1/0 has completed and the
record has been attached to the specified level.

#include<tpfio.h>
struct imOQim *inm;

inm = fiwhc(D2);

The following example writes the data in the working storage block on level D6 to a
general data set, bypasses the record header update, and releases the block.

#include<tpfio.h>
filec_ext(D6,FILE_GDS|FILE_NOTAG);

The following TARGET(TPF) example writes the data in the working storage block
on level D6 to file or aborts if the retrieve is unsuccessful. The working storage block
remains attached to the data level.

#include<tpfio.h>

filnc(D6);
if (waitc())
{
serrc_op(&EXIT.,0x1234,"1/0 ERROR OCCURRED",NULL) ;

}
The following example writes the data in the working storage block on level D6 to

file, bypasses the record header update, and releases the block. The file copy of
the record is available to other ECB’s on return.

#include<tpfio.h>
filuc_ext(D6,FILE_NOTAG)

The following example finds a message block on level 6 with hold and then
removes the address from the record hold table.

TPF Application Program Interface Functions 263

#include<tpfio.h>
#include<c$amOsg.h>
struct amOsg *PRIME, *chain; /* Pointers to message blocks */

PRIME = ecbptr()->celcrl; /* Base prime message block */

/* Read first chain record with hold =x/
chain = find_record(D6, (unsigned int *)&(PRIME->amOfch),
"OM",'\0',HOLD) ;
unfrc(D6) ; /* Now remove the chain address from the x/
/* record hold table. */

Determining the Status of I/O Operations

The waitc function is used to delay processing of an entry until all I/O in process for
that entry is complete. A single waitc, regardless of whether it is explicitly invoked
or implied in another function call, applies to all pending 1/O for the entry (it is not
possible to restrict the waitc to 1 request). Control returns to the application
program after all /0O requests are complete, and in C language the waitc function
returns an integer value of zero.

In assembly language the WAITC requires a single parameter—the label of a
routine in the requesting program—to which control will be transferred in case of
hardware error or other abnormal condition. For example:

WAITC EXCEPT1

Should this routine be activated, the application must check 1/O indicators in the
ECB (CE1SUD, CE1SUG) to determine the condition and take appropriate action.

(See LSystem Frror Pracessing” on page 275 for more information).

In C language the waitc function returns the value of celsug in case of hardware
error or other abnormal condition. The application must determine the condition and

take appropriate action. (See kSystem Error Pracessing” on page 273 for more

information).

On many types of output operations, the data record is detached from the ECB
upon execution of the library function call, in which case the waitc function is
meaningless. In this situation, the application program cannot determine when
output operations are completed. Standard system conventions must be relied on to
handle errors.

The time for completion of an I/O operation is substantial compared with CPU
processing speed. Accordingly, following the execution of waitc and during the
delay pending I/O completion, TPF may transfer control to another entry. This may
result in a transfer to the same program (or some other program) on behalf of a
different entry. In addition to the explicit waitc function, many functions in TPF
contain an implicit waitc. The [[PE_C/C++ | anguage Suppart User's Guidd, [TPH
General Macrod, and [[RE System Macrod specify, for every C function and
assembler macro, the circumstances under which a waitc is implied.

Standard Record Header

A standard header, which ranges from 8 to 32 bytes, is used for all data file records
in the TPF system. The first 8 bytes comprise 4 fields that are present in all record

types:

264 TPF V4R1 Application Programming

* Record identification (2 bytes)
» Record code check (1 byte)

» Data control (1 byte)

* Filing program ID (4 bytes).

Record
Code Data
ID Check Control Name

The 8 bytes starting at X'008' of a standard header can contain either 4-byte
forward and backward chain address fields or zeros. If these fields are not used for
chaining, they can be used by the application for other data. The following shows a
4-byte file address standard header:

Record
Code
ID Check Reserved | Name
Forward Chain Backward Chain

The 16 bytes starting at position X'010' of a standard header can contain either
8-byte forward and backward chain address fields or zeros. If these fields are not
used for chaining, they can be used by the application for other data. The following
shows an 8-byte file address standard header:

Record

Code
ID Check Reserved | |Name
Reserved Reserved

Forward Chain

Backward Chain

Program record headers have 8 bytes. The content of the header depends on the
program attributes.

For the following items:

» File copy and core copy of file resident (FR) programs
* File copy of core resident (CR) programs

TPF Application Program Interface Functions 265

* Main storage copy of programs executing out of VFA or protected common
blocks

the record header consists of the following:
* A 2-byte record ID

* A 2-byte compiled program size

* A 4-byte name.

ID Size Name

For the following item:
* Main storage copy of core resident (CR) programs

the record header consists of the following:

* The 2-byte complement of the core resident area reserved for the program
* The 2-byte size of the program’s core resident area

* A 4-byte name.

Comple-
ment of
Rounded | Rounded
Size Size Name

For the following item:
* Unprotected common blocks

the record header consists of the following:
* A 2-byte record ID

* A 2-byte demand counter

* The 4-byte name.

Demand
ID Counter Name

Record ldentification

This field is used by the system for a record integrity verification called identification
or ID check. Assignment of record identifications (IDs) is a manual procedure
involving a level of control to ensure that there is no duplication of identification
assignment. Upon a request for 1/0O services, system action on the record
identification varies as follows:

» For read requests, the high-order 2 bytes of the FARW can contain a record
identification that, if present, must match the header of the record retrieved from
file storage. If the record identification does not match, ECB 1/O error fields will
indicate an identification check failure and control will return to the application.

If this field in the FARW is zero, no check will be made.

» For write requests, the high-order 2 bytes of the FARW must contain a record
identification that matches the first 2 characters in the header of the record to be
filed. Otherwise, TPF will issue a system error and force the entry to exit.

266 TPF V4R1 Application Programming

Record Code Check

An optional record code check may be requested by placing a nonzero value in the
record code. This field is used by the application environment to do an additional
data integrity check. This check may also be used as a security check. For
example, the same code may be placed in all the records of a data chain that is
only to be accessed by selected programs. The record code check procedures are
identical to those used for the record identification check.

Data Control

Program ID

This field is used to specify the record size and whether 2 standard chaining fields
are to be used.

Upon filing a record, the system inserts the 4-byte system name of the program
requesting the file operation. For C programs, this is the name of the first external
function. Use of the optional NOTAG parameter on file functions bypasses the TPF
system code that places the program identification in the record header. This
parameter should only be used when the application updating the record has placed
the required program identification in the header directly.

Chaining Addresses

Standard forward and backward chaining address fields may be used to link records
together. Complex data structures may, of course, be created by chains in the data
content of the record. The use of the standard chain fields permits common system
routines to do integrity checks on data chains. (This idea is used to recover
unreturned or lost pool records, a process called RECOUP).

Tape Support

Real-time and general tape functions provide the application program with single
file, multivolume tape input and output. In order to fulfill different system
requirements, 2 distinct 1/0O capabilities are provided. The real-time tapes are
intended for logging application data, system changes, system performance and
other dynamic maintenance information in the real-time environment. The general
tape functions provide the tape writing, reading, and searching capabilities required
by utility and application programs.

Real-Time Operations

The real-time tapes are write-only tapes that are available to all entries in the
system. All hardware-oriented tape functions such as labeling, label checking, and
end-of-volume conditions are handled by TPF. The application program is relieved
of these responsibilities and can assume that the real-time tapes are always
available. Records are written on these tapes in the order in which the toutc and
tourc functions are received by TPF. However, because each tape is also available
to other entries in the system, the application program should not depend on
creating consecutive records.

The toutc function writes a record, contained in main storage, on the specified
real-time tape. This record must not be altered until the writing operation is
complete. The execution of a wait system service routine ensures the completion of
the 1/O transfer. Note that no restrictions are placed on the record’s location in main
storage. The record may be in a permanent main storage area, a working storage
block, or the fixed work area in the ECB. To prevent a condition in which the tape

TPF Application Program Interface Functions 267

output record is modified by another entry before the completion of the I/O transfer,
it is recommended that the output record be located in a storage area held
exclusively by the ECB. The following arguments must be specified in the order
listed below when using the toutc function:

name
A pointer to a 3-character string that names the tape to be written to.

level
A value of enumeration type t_1v1 that specifies the FARW containing the
address of the record to be written to tape.

bufmode
One of the predefined terms NOBUFF, NULL, or BUFFERED, which determines
whether the tape will be written to in immediate (NOBUFF or NULL) or buffered
(BUFFERED) mode.

These parameters, which identify the symbolic tape to be used, are passed to TPF.
The record starting location and byte count are stored in the specified request level
in the FARW, in the following format:

Address of Start of Record Unused Byte Count

4 bytes 2 bytes 2 bytes

The CBRW is unused. Because of this, the application program may use any
request level without releasing the main storage block held, if any, on that level.

The tourc function writes a record, contained in a main storage block, on the
specified real-time tape. The main storage must be held by the ECB at the specified
CBRW. This block is detached from the ECB upon execution of the function and
then written to independently. Consequently, the application program cannot
determine the status of the write operation; a waitc function call is unnecessary.
Moreover, the request level used in the tourc function is available immediately for
more use upon return from the function.

Code examples in assembly language:

TOUTC NAME=RTA,LEVEL=D2
TOURC NAME=RTL,LEVEL=D6

Code examples in C language:

toutc("RTA",D2,BUFFERED) ;
tourc("RTL",D6);

General Tape Operations

There may be active general tapes on the system at any time. These tapes are
separated into distinct sets or groups, each one exclusively associated with a
particular active entry: no entry can use another entry’s general tape set
concurrently. In addition to the tape reading, writing, and searching capabilities
provided, the application program can refine and adjust the definition of its tape(s).
Two types of C library functions are provided for general tape operations: basic and
higher-level functions.

The basic general tape functions for assembly language and C language, which
include tasnc, tbspc, tdspc, topnc, tprdc, trewc, trsvc, tsync, and twrtc, provide

268 TPF V4R1 Application Programming

more direct control of general tape operations. In addition, the tdspc_q function is
provided for C language only. These functions can provide very efficient general
tape access when an entry can be assured of sole use of a general tape or when
multiple 1/0 requests to a specific general tape are made. Each of the basic
functions directly corresponds to a single macro service routine and therefore a
small functionality, whereas the higher-level functions incorporate more system
services. The judicious use of the basic functions can reduce unnecessary use of
system resources and can be employed in some cases to produce more efficient
code.

The higher-level general tape functions handle the details of general tape access
for the application programmer, which can be especially useful in handling attempts
to access a general tape that is already in use. The higher-level functions in C
language include the tape_open, tape_close, tape_read, tape write, and tape cntl
functions. It is important to note that these higher-level functions comprise an
adequate library for performing general tape operations.

General Tape Functions
Most of the information for tape operations is described in terms of the basic tape

functions. See the [[RE_ C/C++ | anguage Support User's Guidd and [[RE General

for more information on basic and higher-level general tape functions.

Tape Allocation — Open and Close: The open and close functions (topnc,
tape_open, tclsc, and tape_close) are used in determining the availability of a
general tape to an application program.

A general tape first becomes available to an application program through the use of
an open function. The following arguments must be specified when using the topnc
function:

name
A pointer to a 3-character string that names the general tape to be opened.

io Indicates whether the tape is to be read or written to. INPUT indicates the tape is
to be read. OUTPUT indicates that the tape is to be written to.

bufmode
The mode in which a buffered device will be written to. It can be one of the
predefined terms NOBUFF, NULL, or BUFFERED NOBUFF or NULL indicates that a
buffered device will be written to in write-immediate mode. BUFFERED indicates
that a buffered device will be written to in buffered mode.

The tape_open function takes only the first 2 arguments listed above.

When an open function is called, the tape name is added to the tape set for that
entry. TPF does the specified labeling operations and presents the desired tape
positioned at the first data record. For topnc, TPF assigns the tape to the current
ECB — making it unavailable to any other ECB. For tape_open, TPF places the
tape into the reserved state — making it available for use by any ECB. Either close
function, when called, deactivates the specified tape by deleting its tape name from
the entry’s tape set. TPF performs the trailer labeling when a close function
addresses an output tape.

The allocation of physical tape units for general tape use is controlled by the
computer operator, who is responsible for mounting the proper tapes and starting
the various job phases in their correct sequence. The operator must know where
new input or scratch tapes are needed, and when output tapes are complete. A

TPF Application Program Interface Functions 269

utility program can communicate this information to the operator through the
combined use of a setup sheet and the open and close functions.

Data Transfer — Read, Write, and Synchronize: The general tape input/output
functions are tprdc, twrtc, and tsync (all basic functions) and tape_read and
tape_write (higher-level functions). In addition to the I/O operation, each read and
write function does the appropriate main storage allocation. During the execution of
a read function, TPF gets a main storage block to read the record into. Reference
to this block is placed in the specified CBRW when the input operation completes.
Conversely, after the completion of a write function, the main storage block
containing the record is released to the appropriate storage pool. Accordingly, each
request of tape I/O via the general tape functions has an associated data level in
the ECB; this CBRW contains the block references in standard format. The FARW
at the associated data level is not used.

On return from the tprdc function, the status of the read operation is unknown.
Consequently, a call to the waitc function must be made to ensure completion of
the 1/0 in C language. The return from the waitc function is used to indicate the
success or failure of any input operation. In assembly language the success or
failure of any input operation is activated by the condition code. The tape_read
function produces the equivalent of a call to waitc. Consequently, all pending I/O
will have occurred prior to return to the calling program.

On a write function, the writing operation and main storage containing the data
record are detached from the ECB on return from the function. Therefore, the data
level used is immediately available for more use upon the return from the twrtc
function. The same availability applies to the return from the tape_write function.
Note that for both twrtc and tape write, the status of the 1/0O operation cannot be
determined by the application. Consequently, a waitc function call is irrelevant.

The tsync function can be called in conjunction with twrtc to ensure that all records
contained in all buffers (the control unit hardware buffer and/or the host buffer) are
physically written to tape. A waitc function call made afterward will ensure the
operation completes. It also is desirable to call waitc before calling tsync to clear
any outstanding DASD 1/0O. Note that the tape_cnt1 function using the predefined
FLUSH command will perform a similar synchronization with the higher-level
functions.

Tape Allocation — Assign and Reserve: It is important to note that the use of
tasnc and trsvc is unnecessary when only higher-level functions are coded.

For those utility jobs that are single entry jobs (process from start to finish in the
same entry), the previously described functions provide an adequate library.
However, some jobs with extensive running time are segmented into a sequence of
short phases. Each phase is a unique entry in the system and is begun by the
computer operator upon completion of the previous phase. In such a case, it is
desirable to have 1 set of tapes associated with the entire life of the job. An
example of such a job might be nightly file maintenance, in which several
capabilities are desirable:

* One input tape - processed in sequence by each phase of the job

* One output tape - processed in sequence by each phase of the job.

To eliminate the tape handling by the operator between job phases, the application

programmer may use 2 special purpose functions, general tape reserve (trsvc) and
assign (tasnc). These functions are designed to pass an open set of general tapes

from a currently active entry, which is about to exit, to a future entry.

270 TPF V4R1 Application Programming

Between these phases the positioning of the tapes remains unchanged. The trsvc
function reserves the specified tape, in the set of this entry or current job phase, for
use by a future entry or the next phase. When the next phase of the job is initiated,
the new entry makes the tapes available by calling the assign (tasnc) function.

Control Operations: Control functions provide the application program with the
motion control necessary to search a tape. These functions include: tbspc
(backspace), trewc (rewind), and tape_cnt1 (tape control). The tape_cnt1 function,
depending upon its argument list, can be used to execute the following type of
motion control:

» Forward space a specified number of physical blocks
» Backward space a specified number of physical blocks
* Synchronize a tape’s buffer(s)

* Rewind to the first record of either the currently mounted tape or to the first
volume of a multivolume tape set.

Not all applications can use tapes mounted in either blocked or unblocked mode.
The following operational differences between blocked and unblocked tapes should
be noted:

1. Forward space or backward space operations on a blocked tape are performed
at the physical block level, rather than the logical record level.
2. If the tbspc function is issued to a blocked tape a system error will occur.

Tape Utilities: Tape utility functions provide information that helps applications
manage tapes. The tdspc function returns a pointer to the data structure that
contains tape status (tpstat). The tdspc_g function returns a pointer to the data
structure that contains the module queue length (tpgstat) of a specified active tape.

Summary of General Tape Functions
Following is a summary of the general tape functions, listed in alphabetical order.

Basic and higher-level function types are so noted.

Table 23. General Tape Functions

Function Summary Type
tape_close Close General Tape — Deactivates a general tape from an entry (C only). Higher-level
tape_cntl Tape Control — Provides tape control operations not otherwise provided; for | Higher-level
example, write tape marks (C only).
tape_open Open General Tape — Makes a general tape available to an entry (C only). |Higher-level
tape_read Read General Tape Record — Gets a main storage block and reads a Higher-level
general tape record (C only).
tape_write Write General Tape Record — Writes a general tape record from a main Higher-level
storage block and releases the block (C only).
tasnc Assign General Tape — Makes a general tape that was reserved by a Basic
previous entry available to the current entry.
tbspc Backspace General Tape — Backspaces a general tape a specified number | Basic
of physical blocks.
tclsc Close General Tape — Deactivates a general tape from an entry. Basic
TDCTC The Tape Data Chain Transfer macro writes or reads a single record from or | Basic
into specified main storage areas. WAITC must be issued to ensure that the
CCWs have been completed. For a list of tape commands supported by this
macro, see [[PE System Macrod (Assembly language only).

TPF Application Program Interface Functions

271

Table 23. General Tape Functions (continued)

Function Summary Type

tdspc Display Tape Status — Provides the status of a specified tape. Basic

tdspc_q Display Tape Queue Status — Provides the module queue length of a Basic
specified active tape (C only).

TDTAC The Tape Data Transfer macro performs 1 of several data transfer Basic
commands. For a list of tape commands supported by this macro, see

(Assembly language only).

topnc Open General Tape — Makes a general tape available to an entry. Basic

TPCNC The Tape Control macro performs 1 of several control commands. For a list | Basic
of tape commands supported by this macro, see [PE System Macros
(Assembly language only).

tprdc Read General Tape Record — Gets a main storage block and reads a Basic
general tape record. The tape remains open for use by other ECBs upon
return.

trewc Rewind General Tape — Positions a general tape to the beginning of its first | Basic
data record.

trsve Reserve General Tape — Reserves a general tape at the current position Basic
for use by a future entry.

tsync The Synchronize Tape function enables an application to ensure that Basic
records contained in a buffer are physically written to the tape.

twrtc Write General Tape Record — Writes a general tape record from a main Basic
storage block and releases the block.

Operator Control of Tape Operations

The section discusses a method of structuring general tape programs to allow for
independence from the hardware tape configuration. The application programmer
provides the computer operator with a run sheet outlining the symbolic tape
configuration for each job. This run sheet identifies each tape by general name and
attributes (input, output, scratch, blocked, and so on). Using the run sheet, tape
units are assigned and the necessary tapes are mounted for the job. The operator
then communicates the tape units assigned and their corresponding general tape
names to TPF.

Each tape is recorded as being in a ready status by TPF. When the utility job is
started, the application program opens each tape with a call to either topnc or
tape_open. TPF expects to find a ready tape for each topnc or tape_open call from
the application program. If no such tape exists, TPF sends a message to the
operator requesting the desired tape. Return from the open function is delayed until
the tape is made ready.

Only the operator and TPF are concerned with the tape units in use. Thus, the
application program, working with symbolic general tape names, is independent of
the system’s physical tape configuration. For details about C function use or
macros, see the [[PE C/C++ | anguage Support User's Guidd, [[PE General Macrod,
and [[PE_System Macrod.

272 TPF V4R1 Application Programming

General Data Set and General File Support

General data sets are usually related to some offline processing. Either data is
produced online (for example, management reports) to be processed by offline
programs, or data is produced offline (for example, programs to be loaded) for
online processing. A general data set provides a data interface between the offline
and online system components.

A TPF general data set (a disk module) is related to the meaning of an MVS data
set. The records of a data set are allocated sequentially in the same module (called
a volume in MVS). The file is processed online by using the TPF find and file
functions. The find and file function extensions have a parameter where GDS can
be specified to indicate that a requested data record resides on a general file or
general data set, rather than in the TPF online database. A special assembler
macro, file data chain transfer (FDCTC), permits the processing of records that are
not restricted to the standard TPF record sizes. A file with standard record sizes is
processed online by using the TPF find and file functions. The file referencing is
slightly different from the procedures used to access fixed record types and pool
records.

TPF provides 2 distinct general data set functions to allow an ECB-controlled
program to access records in a TPF general data set:

Function Action

gdsnc General Data Set Name — Associates a data set name with a
unique entry by using the MVS data definition name (DDNAME)
concept. (This is functionally similar to an MVS OPEN.)

gdsrc General Data Set Record — Accesses a specific record in the data
set named by the gdsnc function. (This corresponds to the use of
FACE/FACS for obtaining a file address).

A command allows an operator to mount and dismount modules (volumes)
associated with a data set and to make an association between a data set name
and a data definition name. The combination of gdsrc and any find function is
equivalent to an MVS GET.

A TPF general file is a sequentially organized set of data that, in principle, is similar
to a general data set. However, general files are not MVS compatible. Limited
classes of general files are used by system programs. They may be used by
application programs if appropriate.

General files and data sets are exceptions to the online real-time environment and
will not be discussed here in more detail. For more information about general data
sets, see

General Data Set Functions

The general data set name (gdsnc) and general data set record (gdsrc) functions
are used to access general data set records. gdsnc is used to open and close the
data set. gdsrc is used to access specific records in the data set. The find and file
functions are used to read from and write to the data set.

The general data set (GDS) support uses the MVS concept of data definition name
(DDNAME) specified by the program and data set name (DSNAME) bound by the
operator at execution time. The program, when coded, specifies a 16-character
DDNAME as a parameter for the gdsnc function. The operator, when mounting the

TPF Application Program Interface Functions 273

general data set for the program, specifies both the DDNAME and the DSNAME as
part of the mount command. Then, when the gdsnc function is issued, the TPF
system provides the binding to link the program to the correct data set as specified
by the operator.

Note: Nothing prevents the DDNAME and the DSNAME from being the same.

The user must open the data set with the gdsnc function by passing the DDNAME,
volume sequence number, and relative record number of the data set. The volume
sequence number and relative record number may be 0. gdsnc returns in the
CE1FMx, CE1FCx, CE1FHx, and CE1FRXx fields of the file address reference word
(FARW) that the user specified with the function, the indexes necessary for the
system to access the data set. The file address of the relative record in the data set
is returned in CCHR format in the file address reference word extension (CE1FXXx).
If the relative record number was 0, the address of the first record of the data set is
returned.

To access specific records in the data set, the user must pass with the gdsrc
function the relative record number of the desired record. The relative record
number may be zero. gdsrc returns the file address of the desired record in CCHR
format in the file address reference word extension (CE1FXXx). If the relative record
specified was 0, the address of the first record of the data set is returned.

The find or file functions with the GDS parameter specified are used to read data
from or write data to the general data set record.

After manipulating the data with the find and file functions, the user must close the
general data set with the gdsnc function. The parameters passed are the same as
those passed with gdsnc open. The FARW (CE1FMx, CE1FCx, CE1FHXx, CE1FRX)
is cleared on return from gdsnc close.

The following is an example of the use of the general data set macros for assembly

language.
kkhkkkkhkkhkhkkhkhkhkkhhkkhhkhkhhkhhkhkhhkkhkhhkkhhkkhhkhkhhkhkhkkhhkkhhkhkhhkhkhkkhhkhkkhhkhkhhkhkhkkhkkhkhkkhkkk*
= "OPEN" THE GENERAL DATA SET. *
hkkkhkkhkhkkhkhkkhkhhhhhkhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhrhhhhhhhkkhkhhdhkhhkhkdhkkxkx

XC CE1FM8(1),CELFM8 VOLUME SEQUENCE NUMBER

MVC EBWOOO(16),=CL16'TPF.DATA.SET.A' DDNAME

MVC EBWO16(4),=F'0" RELATIVE RECORD NUMBER

LA R14,EBWOOO ADDRESS OF DDNAME

GDSNC D8,0,RCT=A,SIZE=L,WORK=YES OPEN DATA SET

LTR R14,R14 CHECK RETURN CODE

BNZ GDSNERR BRANCH IF ERROR

R e e e e T T T R R S R R S R S R S e L R L e L 2 e

* READ, UPDATE, AND WRITE THE FIFTH RECORD OF THE GENERAL DATA SET. =
* WHEN WORK=YES THE USER MUST PASS THE RELATIVE RECORD NUMBER IN THE =

* FOUR BYTES IMMEDIATELY FOLLOWING THE DDNAME. *
khkkkkkhkkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhhhhhhhhhhhhhhhhkhhhkhkhhhkhhkkhhhkkhkhkkhkhkhkxkx
LA R14,EBWOOO ADDRESS OF DDNAME
MVC EBWO16(4),=F'5' RELATIVE RECORD NUMBER = 5
GDSRC D8,SIZE=L,WORK=YES GET ADDRESS OF 5TH RELATIVE RECORD
LTR R14,R14 CHECK RETURN CODE
BNZ GDSRERR BRANCH IF ERROR

MVC CELFA8(2),=CL2'GS' RECORD ID

MVC CEL1FA8+2(1),=XL1'00' RECORD CODE CHECK
FINDC D8,GDS=Y READ DATA SET RECORD
WAITC FINDERR BRANCH IF ERROR

UPDATE THE DATA SET RECORD

274 TPF V4R1 Application Programming

FILEC D8,GDS=Y WRITE DATA SET RECORD

WAITC FILEERR BRANCH IF ERROR
khkkhkkkhkhkhkhkkhhhhhhhkhkhkhkhkhhhdhhhdhdhhdhhhhdhhhhhhhhhhhhhkhhhhkhhhhhhhkhhhkkkhhkhhhkdkx
* READ, UPDATE, AND WRITE THE THIRD RECORD OF THE SAME DATA SET. *
* WHEN WORK=NO THE USER MUST PASS THE RELATIVE RECORD NUMBER IN THE =
* FARW EXTENSION. *
KA K A A h Kk hkhhhhhhhhhhhhhhhhhhhkhkhkhk kA Ak ko dkhhkhdhhhhhhhhhkhhhkdkx

MVC CELFX8(4),=F'3" RELATIVE RECORD NUMBER = 3

GDSRC D8,SIZE=L,WORK=NO GET ADDRESS OF 3RD RELATIVE RECORD

LTR R14,R14 CHECK RETURN CODE

BNZ GDSRERR BRANCH IF ERROR

* "CLOSE"

MVC CELFA8(2),=CL2'GS' RECORD ID

MVC CE1FA8+2(1),=XL1'00' RECORD CODE CHECK
FINHC D8,GDS=Y READ DATA SET RECORD
WAITC FINDERR BRANCH IF ERROR

UPDATE THE DATA SET RECORD

FILUC D8,GDS=Y WRITE DATA SET RECORD

WAITC FILEERR BRANCH IF ERROR
oS KRR KRR R Rk R
THE GENERAL DATA SET. *
FRA AR A KA KA TR R A AR A RHE A AR A AT F R K AT AR KA KA AT A AR F A AT AR KA A A F KA K XK
LA R14,EBWOOO ADDRESS OF DDNAME
XC CE1FM8(1),CE1FM8 VOLUME SEQUENCE NUMBER
MVC EBWO16(4),=F'0" RELATIVE RECORD NUMBER
GDSNC D8,C,RCT=A,SIZE=L,WORK=YES CLOSE DATA SET
LTR R14,R14 CHECK RETURN CODE
BNZ GDSNERR BRANCH IF ERROR

Input Device Support

A package exists to provide common input device support. You can use this

package when doing sequential 4 KB reads from 1 of the following devices: tape,
general data set, virtual reader, or a user-defined medium. Once a data definition
name has been set up for the device, you can use that name to perform operations.
Use the ZDSMG DEF command to define the DD name. The input support package
takes the data definition name as input and performs an open, read, or close on the

device. The application does not need device-specific information; only the data

definition name is needed. See [[PE System Installation Suppart Referencd for

more information.

System Error Processing

Errors may occur at any point of processing. There may be programming errors,
such as incorrect function parameters, hardware malfunctions, and a variety of
unusual conditions such as identification check failures on file operations. Three

levels of

errors are:

1. Hardware malfunctions that are overcome by retrying the 1/O operation. In this
case, error statistics are recorded, but the entry is insulated from the problem

(for e

xample, unit checks).

2. An error is detected by TPF from which the programs related to an entry may

be able to recover. In this case the ECB-controlled program regains control.
3. An error is detected by TPF or the hardware from which the entry cannot

recover (for example, an addressing exception generated by an ECB-controlled
program). In this case the entry is forced to exit.

4. An error is detected that makes any more processing inadvisable. This is called

catastrophic failure (for example, an operation exception in TPF). Such a failure
is detected by various components of TPF and may require a system restart.

TPF Application Program Interface Functions

275

SYSRA Macro

The general philosophy of TPF system error processing is:

* Save as much information as possible for the technical staff's analysis and
action. The amount of data saved is dependent on the severity of the error and
its nature, whether program error or data integrity, for example.

* Notify the central site that the error occurred. A message to the CRAS terminal
will identify the error by number and the program in control at the time of the

error. All system errors are documented in TRE_Messages,-\olume 1l and [TRPH

, which describe the cause of the error, the action taken by
TPF, and in some cases suggests actions to be taken by the application program
or operations staff.

* Respond to the program in control at the time of the error, if possible.
» Determine if more processing may continue.

If an ECB-controlled program is given control after an error is detected, then error
indicators are set in the affected ECB. The program is assumed to contain the
procedures to respond accordingly. These procedures typically include:

* Providing a selective main storage dump of data pertinent to the active ECB

* Sending an error message to the CRAS terminal

» Either regaining control or forcing an exit of the ECB.

An important reason for returning control to the application (when possible) is to
allow response to online terminal operators. The application can respond to the
operator in the most meaningful manner once the condition is analyzed. If TPF is
unable to return to the application program, it will force a standard message to be
sent to the operator/terminal: “Check data and call supervisor”.

Given the many possible errors and variations in the nature and complexity of
applications, it is not meaningful to generalize about what the application should do.
Designers and applications programmers must be alert to the possibility of errors at
any point, and diligent in making the best possible response based on what is
known. Additional information about TPF system error processing can be found in

[PE General Macrod and [[PE System Macrad. Error processing with the control

program save area in the ECB is discussed briefly in L i

The SYSRA macro enables assembly language application programs to:
» Determine the action to be taken.

» Specify the error number.

* Specify the error number prefix.

* Append additional error message text to the error number when it appears on the
CRAS console.

* Branch to a symbolic location in the event of a hardware error.

* Branch to a symbolic location if the control program detects an invalid file
address.

For a complete description of SYSRA, see [[PE General Macrod.

Standard Error Functions

The TPF system provides several C functions that can be used for standard error
processing by an application program. They are:
e serrc_op

276 TPF V4R1 Application Programming

° serrc_op_ext

* snhapc

All of these functions can be used to generate a main storage dump. The snapc,
serrc_op, and serrc_op_ext functions determine whether, after dump processing,
the ECB is to be exited or the control returned to the application program. It is an

application’s responsibility to test the I/O indicators in the ECB (celsug) to
determine the nature of the abnormality and specify the action to be taken.

The serrc_op function enables an application to:

* Force the ECB to exit, or not

» Associate a specific system error identification number with the generated dump
* Send a specified message to the CRAS console

» Display additional main storage areas on the generated dump.

In addition to the serrc_op capabilities, the serrc_op_ext function enables an
application to associate a particular prefix with a system error identification number
to determine which user application generated the dump or whether it was an IBM
program that generated the dump.

The snapc function allows an application to:

» Determine the action to be taken

* Determine the error number

* Include the registers in a snapshot dump to the system console

» Specify the program name that is issuing the snapc function

» Specify the error message text to be appended to the snapshot dump

* Specify if the subsystem (SS), subsystem user (SSU) and terminal address
should be taken from the ECB

» Specify the location of the snapc_T1ist struct which indicates the locations and
lengths of the areas to be dumped.

Indicate the prefix to be put on the identification code for the snapshot dump.

Using C Language Error Functions
Following are several examples of C language error functions:
1. serrc_op function

The following example generates a main storage dump bearing the identification
number U012345 (U is the default prefix). “ERROR OCCURRED?” is the
message displayed at the prime CRAS and appended to the dump. TPF returns
control to the application program after generating the dump.

#include <tpfapi.h>

serrc_op (&RETURN; ,0x12345,"ERROR OCCURRED",NULL) ;
2. serrc_op_ext

The following example generates a main storage dump bearing identification
number A012345 (A is the user-chosen prefix). “ERROR OCCURRED?” is the
message displayed at the prime CRAS and appended to the dump. TPF returns
control to the application program after generating the dump.

#jnc]ude <tpfapi.h>

serrc_op_ext (&RETURN. ,0x12345,"ERROR OCCURRED",'A',NULL);
3. snapc function

TPF Application Program Interface Functions 277

This example forces a snapshot dump bearing ID number 12345 with a prefix of
‘A’ to be issued. Control returns to the program after the dump. The registers
are included in the dump. The ECB is used for the SS and SSU names, and
terminal ID and the program name are “C001". The snapc_list is snapstuff
and the message is “PROGRAM BLEW UP”.

#include <tpfeq.h>

#include <tpfapi.h>

test()
{

struct snapc_list *snapstuff[2]

snapstuff[0]->snapc_len = 4;
snapstuff[0]->snapc_name = "MYSTUFF ";
snapstuff[0]->snapc_tag = ecbptr()->ebw000;
snapstuff[0]->snapc_indir = SNAPC_INDIR;

snapstuff[1]->snapc_len = 0;

snapc (SNAPC_RETURN,0x12345,"PROGRAM BLEW UP",snapstuff,\
'A',SNAPC_REGS, SNAPC_ECB, "C001");

exit(0):
}

Temporarily Detaching and Attaching Main Storage Blocks

The DETAC macro or the detac or detac_ext (detach) functions allow you to
temporarily detach the main storage block on a given ECB data level or DECB
without releasing it. Use this facility if:

You need a main storage block but no more ECB data levels are available.

You need a main storage block but you are not sure which ECB data levels are
available when your program gains control from another program.

You need to keep using a particular DECB, but it is not available.

You must reattach the block with the same data level in that ECB using the ATTAC
macro or the attac or attac_ext function.

Excessive use of the detac and attac functions can cause a depletion of working
storage: you should carefully monitor their use.

278 TPF V4R1 Application Programming

Design Considerations

There are some design considerations that the application programmer should be
aware of. These issues overlap, to some extent, the responsibilities of the
application designer.

Program Sharing in Main Storage

TPF allows all active entries to share the programs that are currently in main
storage. Whenever an external function is called, TPF first determines if its program
segment is already in main storage or previously requested by another entry, in
which case a new retrieval is not required. It is this feature that makes it essential
that all programs be reentrant. Any number of entries may be using the same
program segment, but each at a different point in the logic flow.

Program sharing is a key of TPF’s high performance. However, you must assume
the potential for a file retrieval every time a program is entered. Processing for
every message type should be designed to minimize the requirement.

Virtual File Access Facility

You may have some data that is highly accessed, but only temporarily or
intermittently. In this case, you would like to have fast access (requiring no 1/0O) to
the data when it is needed, but you are reluctant to allocate the data to main
storage permanently.

The virtual file access (VFA) facility temporarily retains both program and record
data that has been retrieved from file storage in a specially allocated area of main
storage. A file reference request searches the VFA area for the data to be
accessed; if it is not found, then the search moves to file storage, but if it is found,
the relatively slow 1/0O operation to file storage is avoided. Note that if the data is
found in the VFA area, then any wait system service request to await the
completion of 1/0O does not reset the 500-millisecond timeout counter.

Data remains in the VFA area until the VFA area is full; then the least used data is
filed and removed from the VFA area to make room for more frequently used data.
In this way, data that is occasionally highly accessed (such as records that are
updated every hour) remains in main storage during high activity, but can be filed to
file storage when activity slows.

Program Organization

ISO-C programs do not have the 4KB size limit that TARGET(TPF) programs do. If
the need for organizing programs into packages comes mainly from this size
constraint, performance gains can be realized by using calls to functions that reside
in a single ISO-C program module. The performance gains result from avoiding the
Enter protocol usually used for calling programs.

Typically, TPF programs are organized into packages. A package is a group of
program segments designed to handle the processing for a given functional area.
There is no rule about the number of segments in a package or the breadth of
functionality covered. This is a function of the complexity of the application. The

© Copyright IBM Corp. 1994, 2002 279

functionality to be programmed must be assessed and then broken into packages.
The principal criteria should be efficient program development and, ultimately, good
system performance.

An examgle of possible package structure is offered in LApplication Message Editor]

. All the functions of the application message editor might be grouped
into a package. But again, it is a question of application complexity and variety of
message types. Large applications will find it advisable to have multiple packages
just to handle input. For example, some airlines have implemented a function
relating to reservations, for fare quotation and ticket printing. The input messages
may be long and involved. A separate package was designed just to edit input for a
fare quote/ticketing request and pass the reformatted request to the quotation and
ticketing functional packages.

Another possible approach is to group all programs required to handle a specific
transaction into a package. For example, in the banking environment, the creation
of a new customer account would be a transaction consisting of multiple messages,
each supplying a data item required for the new account. Similar transaction types,
those requiring essentially the same type of data and accessing the same files,
might be combined into a single package.

It is outside the scope of this document, which is intended primarily as a
programming guide, to offer a definitive discussion of application design. Following
is a survey of some of the principal design considerations, and some miscellaneous
programming tips.

Modular Programming

Modular programming is the concept of dividing the problem solution into its logical
parts or routines so that each part may be programmed independently. This should
contribute to ease of understanding, ease of modification and standardization of
structure. ldeally, any module could be modified without affecting other modules.
The structured programming concept of top down logic should be used as much as
is practical without sacrificing performance. The major decision criteria and the main
path logic should be developed first.

Performance Considerations

TPF application and system programmers must remain aware of the need to make
their programs perform efficiently. Evaluate every routine against this objective.
Some compromises are to be considered, such as coding productivity, simplicity,
ease of understanding and modifying—but performance must always be a primary
factor.

File Access

The most productive area for improving performance is in minimizing file accesses.
The main focus for this, of course, is the data structure itself and the method by
which the program accesses its data. Other factors, however, are directly controlled
by program design and are therefore in the hands of the individual programmer.

» Develop conventions for procedures for using records shared by multiple
programs, including the ECB data levels or data event control blocks (DECBs)to
be used. When possible, these records should be kept in main storage and
passed via the ECB from program to program—not filed by program A, then
retrieved by program B. It was suggested in an earlier section that it is important
to release system resources, such as main storage blocks, as early as possible.

280 TPF V4R1 Application Programming

However, that determination must be made in terms of the total processing for
the entry, not just in the logic of each program segment.

In a multiple processor (I-stream) environment, programmers must also be aware
of shared main storage resources and should minimize their use. When required
to access a shared resource, appropriate multiprocessing techniques must be
used. See [TPE Concepts and Structured for additional discussion of
multiprocessing.

Early development of conventions on data level use also will allow all programs
to be coded with specific records on the conventional level, thus avoiding
excessive use of the attac and detac functions.

* Do not file records without determining that they, in fact, have been updated. Set
an indicator when you update the record, and file only if the indicator is set.

* Do not file partial updates of a record. Complete all updates, then file the record
once.

» Hold file records only for as long as required for a complete update: holding file
records can be a significant performance bottleneck. If the update is complete
but the entry still requires the data block, file the block without releasing it
(filnc), and then unhold it (unfrc). The data block may then be retained as long
as necessary without serious system impact.

Note: You can use DECBs for passing data between programs without using ECB
data levels. For more information, see L !

Coding Techniques
Other performance-oriented suggestions:

» For areas where fast performance is most critical, consider using low level C
functions, if they are available. For a 1-time use it may not seem significant, but
consistent use of the most efficient instructions can be productive.

» Evaluate moving and clearing operations. Do not clear work blocks unless
necessary, and then choose efficient methods.

» Evaluate different table search techniques; under some conditions a binary
search can be dramatically faster than a serial search.

Ease of Modification and Expansion

It should be assumed that all application programs will require modification at some
point. Ease of understanding and modification is therefore of primary importance.
Programs should be designed and coded so that external changes such as system
configuration and values or other program changes have the least possible impact.
The key to this is to keep coding symbolic. Absolute values should be avoided; use
length attributes and calculations from symbolic references. All assembler programs
and TARGET(TPF) functions are limited to 4KB and ISO-C functions have no size
limit in main storage. Assembly language and TARGET(TPF) programs should leave
room for expansion (perhaps 20% of record size) when they are originally coded.

Program Commentary

Emphasize good programming commentary. It serves the dual purpose of
explaining how the program works and communicating expected interfaces with
other programs.

Design Considerations 281

As suggested earlier, application designers should develop conventions about the
use of common system resources, such as data levels, the ECB work area, and
shared interface records such as the routing control block and the scratchpad area.
Whether or not by convention, program commentary must specify expected
interfaces: the expected condition of common system resources at the time the
program is activated and when it passes control to other programs. The program
listing should contain clear, concise comments throughout. When modifying existing
code, ensure that comments remain meaningful.

Utility Segments and Subroutines

Special care should be given to developing routines that will be common to many
programs. These programs will probably be frequently accessed and should
therefore be coded for maximum efficiency. The effort might be assigned to
experienced programmers and the code assigned permanently to main storage. All
programmers should be aware of the availability of these utilities and ensure
optimum use of them.

Miscellaneous Programming Tips

282

» Audit loop control for efficiency and brevity. This can improve performance and
reduce object code size.

* Aim at efficient code without over sophistication. There is virtue in simplicity: its
ease of understanding and modification, and less probability of errors.

* Generate responses that are meaningful to both programmers and general user
personnel. Consider a message table from which programs may request
formatted responses by number.

* Be aware of each function’s return conditions. Consult the function specifications.

» Call any system error function at the point of error so the dump will show all
conditions at the time the error occurred. Do not do any clean-up procedures, or
pass control to another program prior to calling a system error function.

» Do not request dumps for information only. No processing can be done during a
dump; inputs are queued. Performance will be degraded by improper requests for
dumps.

In addition, do not request dumps with too high a severity. Prefer using snapc
instead of serrc_op. Do not dump more information than you really need. Use
the LISTC function to specify the important areas in main storage for a dump.

» Use create functions with discretion. Creating a new entry requires some
overhead. More importantly, if entries are created indiscriminately without
monitoring, system resources such as main storage blocks could be depleted.

TPF V4R1 Application Programming

TPF Testing Environment for Assembly Language

A key element in the TPF assembly language application environment is a
comprehensive set of testing facilities. In a real-time system that must be relied on
by online users 24 hours a day, no program can be incorporated into the online
system until it has been thoroughly evaluated for correct logic, effective
accomplishment of its prescribed function, and the ability to interface with TPF
system programs and other application programs.

Test System Characteristics

The TPF test facilities are designed to provide:
» A check on violations (or possible violations) of programming conventions

* An orderly progression from simple debugging through complex multiprogram
tests, including the entry of messages from terminals

* A uniform data definition and database for use in all levels of testing
» The ability to batch various test runs

» A flexible method to specify and modify data for each test case

* A method of simulating unavailable programs

» Flexibility in specifying the types of output desired

* Online components to assist in the detection of faulty programs

» Offline components to print the results of a test

» Debugging aids (traces, formatted dumps, processing snapshots).

Testing Levels

TPF test facilities are designed to be used at the following levels:
» Package or transaction testing:

This refers to the testing of several programs together to check the validity of
interrelated functions within a package of programs. It may include testing a
complete transaction in a single-thread or multithread environment. Multithread
means that concurrent entries must be processed by the package. Thus, the
reentrant programming conventions are verified.

» System testing:

This is a multithread test through a realistic simulation of the environment in
which the programs will ultimately operate.

Test System Components
The following components of the test facilities will be discussed in somewhat more
detail in this section:
» System test compiler (STC):

This is used to create a test database, input test messages, and control
information for a test unit. STC runs offline under control of MVS and is the
primary vehicle for test and online data preparation.

* Program test vehicle (PTV):

PTV creates a testing environment that runs under TPF. When PTV is activated,
it provides comprehensive checks on application programs by controlling the
execution of test cases. During PTV testing, live terminals can be active

© Copyright IBM Corp. 1994, 2002 283

simultaneously. PTV can only be executed in a uniprocessing environment,
meaning only one instruction stream can be active.

* Real-time trace (RTT):

This is used to monitor and record the activity of application programs in the TPF
system. RTT can be run either in an operational system or when testing the
control program macro activity. The level of output detail is controlled by option
indicators in commands when used by an operational environment, and by
control statements when used in a PTV environment.

» Selective file dump and trace (SFDT) and diagnostic output formatter (DOF):

The SFDT writes specified file records to tape and, in conjunction with DOF,
formats all file traces and printouts of main storage for ease of analysis.

System Test Compiler (STC)

All testing requires test data. Three types of data are generally required: program
data, data representing system or application records, and message data. The
system test compiler (STC) programs provide the basic tool for this data
preparation. Eigure 43 on page 285 shows the STC environment. STC is also used
to generate initial system and application data records, including global area data.

STC, executing offline under MVS control, generates a test unit tape that is the
primary input for testing under the program test vehicle (PTV). The test unit tape
contains one or more test units. A test unit is generated via STC statements in the
form of card image inputs. Some of the input is merely copied to tape and
represents commands ultimately interpreted by PTV or DOF. Other input contains
statements that invoke STC offline programs to insert programs and data into the
test unit. The programs and data in an STC-generated test unit are used by PTV to
modify a TPF set of online files with a function equivalent to a TPF system load.
When PTV is in control, the set of online files is ordinarily called a test database.
The following card image inputs are processed by STC to form a test unit.

284 TPF V4R1 Application Programming

Test Units

Standard Data Data Record OS/VS
Message File Information Library Object Library
(SDMF) (DRIL) (TPF Programs)

A\

System Test
n SN compler [N Ou
(STC)
Test Unit Test Unit Tape Pilot Tape
Listings (TUT) (SDF)

Legend

Data Path

‘ Process Path

Figure 43. System Test Compiler

RUNID

PTV options

Data

This identifies the beginning of a test unit. The card image is placed
on tape for use by PTV.

These options are used by PTV and RTT to control test options,

and will be described in the following sections. STC places an exact

image of the following PTV option card images on the test unit

tape:

» Terminal simulation: Specifies printer output to be formatted like
terminal output.

* Dump options: Specifies test data to be collected.

This is used by STC to generate a sentinel on the test unit tape
which marks the beginning of data records for PTV.

TPF Testing Environment for Assembly Language 285

Data Card Images (STC Instructions)

286 TPF V4R1 Application Programming

Data records and test messages are generated with the same
procedures. STC either extracts records or messages from a file
called Standard Data/Message File (SDMF) or by generating them
through the use of data declarations placed on a file called Data
Record Information Library (DRIL). The DRIL file contains a data
declaration of all the records in the TPF system for which there is a
corresponding declarative macro in the TPF macro library. The
DRIL declaration of a record is composed of a series of assembly
language statements which define the data record. The STC user
is, therefore, capable of generating data to be placed on a test unit
by using STC statements and the macro name and definition of the
record. A data record or message is produced with an STC
generation start (GSTAR) instruction.

For example:

AMOSG GSTAR 1
AMOLIT ENT X'020406"'.

causes STC to create an input message and place the value
020406 in the terminal address field of the message. (Absolute
values rather than symbolic references can be used to create data
records and messages).

The SDMF file contains “canned” data records and messages. The
same procedure used to generate data records and messages
through a DRIL reference is also used to generate the canned data
contained on the SDMF file. This data can be transferred to the test
unit tape by using the appropriate STC segments.

All data records generated by STC contain a 200-byte prefix that is
used to communicate address information to the loading program.
The address information usually consists of record types and
ordinal numbers which are converted, via FACE or FACS, to
absolute file addresses at load time. These card images are

illustrated in Eigure 44 on page 287.

| End STC

RUNID
Test Unit 'N'
/ Test Units
2 through N-1
RUNID
| Test Unit 2

L

(Message Cards

MSG

|

r Data Cards

l Data

(Program Patch

| Program Call

yd

| Dump Options

Trace Options
(Phase 1)

y4

Terminal
Simulation

RUNID
Test Unit 1

MVS
JCL

Figure 44. Multiple Test Units

MSG This is used by STC generate a sentinel on the test unit tape which
marks the beginning of messages for PTV.

Message Card Images
These are the procedures used to create messages are identical to
those used for data records.

In addition to generating the test unit tape input for PTV, STC may
also be used to generate pilot tapes. These tapes contain
predefined sets of data records which can be loaded onto the TPF

TPF Testing Environment for Assembly Language 287

files either by the TPF system loader facility or by PTV. This facility
can be used either in a test environment or to load initial data for
an operational environment.

For further details on the use of STC see the following documents:

Program Test Vehicle (PTV)

PTV controls the execution of test cases. In order to execute PTV in a
multi-I-stream environment, the system must be IPLed in uniprocessor mode since
the PTV facility is not capable of multiprocessing. PTV testing requires the use of
the TPF system loader to create the equivalent of online files.

Files adhering to the standard TPF data structure but generated for the purpose of
testing are the test database and are maintained using the TPF system loading
facility. Data can be dynamically and temporarily replaced or added by the PTV
loading facilities for the duration of a test.

Following the IPL sequence and TPF system initialization, the TPF restart scheduler
program enters the first PTV program which starts the test environment.

PTV provides extensive test facilities to execute application programs in an
environment which runs under the control of the TPF system control program.
Inputs to PTV are one or more test units on a test unit tape (TUT) created by the
system test compiler (STC). STC may also be used to create an input pilot tape
(SDF) for PTV which contains application data records. A file pool directory file is
used to initialize the pool directories. Information generated by a test run is written
to the real-time log tape, RTL, or the real-time tape, RTA, for later processing by the

diagnostic output formatter (DOF). Eigure 45 on page 289 represents an overview of
PTV.

288 TPF V4R1 Application Programming

IPL
Prime Module

?

Pool
Direct

From
IPL

TPF
Restart

PTV
Restart

PTV

A 4

Test Data Base

Test Data Base

-

X

TPF

Appl. System

Programs

Programs

2

A 4

Trace
Programs

Figure 45. Program Test Vehicle

Legend:
DBR: Data Base Restore Tape (a Scratch Tape)
TUT: Test Unit Tape
SDF: Standard Data File
RTL: Real Time Log Tape

The following capabilities are provided by PTV:
Builds the file environment from data provided in a test unit

Restores the database before each test unit is executed, if so specified, and at
the end of all testing.

Provides message input in single-thread or multithread mode of operation
Permits live message input in all phases of testing

Monitors and records activity of application programs

Records TPF macro activity and input/output messages

Records file updates.

TPF Testing Environment for Assembly Language 289

Control information generated by STC and placed on a test unit tape (TUT) is used
to specify PTV options for each test unit in unit and package testing. A system
restart is used to invoke PTV. Before PTV processes an input tape, an operator is
requested to input a command to identify the type of test, that is, unit/package test
or system test. If the test is a system test, then some of the PTV options must be
selected by a command, otherwise the options are selected with parameters in the
RUNID statement. The significant PTV options are:

* Request to load pilot tapes and/or pool directories: It is specified in RUNID.

* Message input mode—burst or asynchronous: Burst mode means that if there
are no active entries, then a specified number of messages from a test unit are
placed on the input list. Asynchronous mode means that a specified number of
messages are kept in the system until the messages in the test unit are
exhausted. The mode is specified in RUNID.

» Live input may be permitted between any test unit of any phase; it is specified in
RUNID.

* PTV dump options require separate card image input. These options permit the
specification of the amount of information to be dumped and permit the selection
of conditions upon which dumping should occur. Macros as well as macro groups
are used to identify dumping conditions. Examples are:

— Dump the ECB on all enter/back macro requests.
— Dump the ECB and attached data blocks on all FIND macro requests.

A real-time trace (RTT) option which corresponds to a PTV dump option must be
specified for dumping to take place. PTV dump options select additional
information for output. RTT options are specified with commands in the message
stream.

* Terminal simulation options

These options are used to request terminal simulation by the Diagnostic Output
Formatter on messages whose addresses are specified on separate option
cards.

» Database Restore options
A highly useful function of PTV is the database restore option. PTV will save
every online record modified by the test run, using the database restore tape
(DBR), and will either:

— Restore those records to their original status after each test unit, or
— Build on the processing of each test unit, and restore the records at the end
of the test run.

An indicator in the RUNID card specifies the option desired.

Package Test
Package test may be at the individual program level or the package level. It

depends on standard TPF facilities; no special test macros are provided (or
allowed). It is ideal for testing interfaces among system and application programs in
a controlled environment.

Package testing consists of:
» Data is loaded from the test unit tape.

* PTV options are selected from control information generated by STC and placed
on the test unit tape. (The online trace options RTT and SFDT are permitted in
package testing but must be requested with a command in the message stream
on the test unit tape).

» Test data is restored by PTV at the end of a test.

290 TPF V4R1 Application Programming

* An ECB is created by TPF as the result of input message processing (the input
messages are generated by STC and placed on the test unit tape).

System Test

The system test environment consists of a major application or class of applications
loaded on the test database files and a TPF system which includes the PTV
programs activated. Generally the files include a structured test database which
eases the analysis of test results. The only input placed on the test unit tape is a
collection of input messages (no PTV options, programs or data). PTV options are
selected at the beginning of a test run with a command. The application is driven by
creating multiple entries from the messages found on the test unit tape. The
application is, in essence, in an online environment. Terminals may be used in
addition to the test unit tape input.

Live Test

At times, the test database is used without PTV programs activated. Terminals are
used for input instead. This means that test SCRIPTs are provided to the people
who enter messages. This is often called live testing. Real-time trace (RTT) options
and selective file dump and trace (SFDT) options are selected through the use of
commands. PTV options may not be used.

For additional information on the use of PTV see [[PE Qperationd and [[RPE Pragram
Development Support Referencd.

Real-Time Trace (RTT)

The real-time trace program (RTT) is used to monitor and record the activity of
application programs in the TPF system. RTT can be run in an operational system
or when testing under the control of PTV. The output of the RTT is a historical
record of input message and control program macro activity. The level of detail of
the output is controlled by option indicators in commands when used in an
operational environment and by control cards when used in a PTV environment.

RTT sets indicators in the ECB to indicate which macros are to be traced and the
output required. Options may be selected to trace:

» Specified macros in all entries

» Specified macros in specified programs

» File type macros referencing specified file records.

Macros and macro groups (for example, all Find macros) are used to select
conditions upon which RTT should provide trace information. The type and amount
of data included in the trace option may be specified to include only a simple
logging of the macro execution or more extensive logging. The logging option may
be further modified by the PTV dump option if RTT is used in conjunction with PTV
package testing. All output is written to the real time log tape.

For additional information, see the [[RE Pragram Development Suppart Referencd.
Selective File Dump and Trace (SFDT)

The selective file dump and trace program (SFDT) provides a debugging aid for file
type activities. Like real-time trace, selective file dump and trace can be run on the
online system or when testing under the control of PTV. All output is written to the
real time log tape.

The selective file dump programs write specified file records (primary and chain if
desired) to the real-time log tape. Functional messages during online operation and

TPF Testing Environment for Assembly Language 291

control cards during PTV testing may be included at any point in the processing to
help determine the point at which records are altered.

The selective file trace option dumps only updated records from a set of specified
file records during a file trace period. At the end of the period, only the updated
records are written to the real-time log tape. If any record is updated more than
once, the intermediate updates are not recorded and only the final contents are
output. This function enables information to be obtained about specific file record
update activity for a given period of time. A subfunction provides a list of addresses
of all file records updated during a trace period. Online command or PTV control
cards define the trace period.

For additional information, see the [[RE Pragram Development Suppart Referencd.

Diagnostic Output Formatter (DOF)

292

The program test vehicle (PTV), real-time trace (RTT), selective file dump and trace
(SFDT), TPF system error dump routine and CCP 1/O trace routines produce output
which is written to the real-time log tape (RTL). The Diagnostic Output Formatter
(DOF) deblocks, decodes, and formats the real-time log tape data in the form of an
easily readable printer listing used for debugging. DOF is executed offline under
MVS control.

System test terminal simulator (STTS) programs are operated in conjunction with
DOF. Each of the simulators formats and prints input and output messages as the
message would appear on a specified terminal. The printed output from each of the
simulators is used as a debugging aid to check message format and content.

The real-time log tape which becomes input to DOF may be processed at any time
after a test run. DOF is made up of the various subroutines that format the logical
record data types found on the input tape. Encoded data is formatted and
interpreted for ease of readability. For example, the SVC interrupt code in the old
PSW is printed as a macro mnemonic as well as a hexadecimal value. Labels are
assigned to significant main storage. The ECB work area is in hexadecimal with the
EBCDIC translation (if possible) on the line below. Data blocks attached to a unique
ECB are grouped with that ECB for output.

For more information, see the diagnostic output formatter in [[PE Pragrand

Development Suppart Referencd and [[PE Qperationd.

The programming event recording (PER) facility enables applications programmers
to monitor specific events in a native TPF 4.1 environment. Use the ZSPER
command to trace:

» Storage alteration events

* Instruction fetching events

» Successful branching events (on ESA/390 systems only).

The information you supplied in the data parameter of the ZSPER command is
compared to the particular event you are monitoring in the range you specified. If a
match is detected, a PER interrupt occurs. Using the ZSPEP command specify an
output device with the PRINTER parameter. This parameter lets you specify a
device that is meaningful to your installation. The default is the RO CRAS. You
must write a program to support the information provided at the PER exit. See fred

and [[RE Qperationd for additional

information.

TPF V4R1 Application Programming

Debugging Programs and Diagnosing Problems in C
Language

This chapter is designed to help you determine where or why a problem is
occurring.

Do not use the diagnosis, modification, or tuning information as a programming
interface.

Run-Time Debugging

Errors that occur while running a program can be vastly more difficult to correct
than syntactic errors. This section contains some topics that will help.

Function Mismatches
This is one type of error to check when you are having a problem.

Description
When a program calls a function, the stub associated with the function provides an

index into the AOLA and an index into the corresponding library vector. Online this
identifies the executable code for the function. If either of these indexes do not
match the online system, unexpected function calls can result.

There are several places where this can go wrong.

» Stub information is a product of the (offline) library build tool. The stubs indicate
the order that libraries and functions must be loaded online. Offline, the order is
specified by the input to the library interface tool.

 If the order that 2 libraries are loaded online is switched, the order of the
LIBVECs is also switched. This is analogous to being in a building in an office on
the floor directly below the office where you want to be.

 If the order of functions loaded online is switched from how they are defined by
the library build tool, the wrong function is executed.

Refer to the IDSLST DSECT for the structure of the AOLA.

Indications
To determine whether this problem exists compare the name of the function being

called with the name of the code being executed.

The name of the function code being executed is found at the beginning of the
executable code identified by the LIBVEC. Refer to the library build script for the
library name and LIBVEC index for the function. Assume for the following example
the function is FUNC in library CTAL.

The library ordinal number for a given library can be displayed online by doing the

following:

1. Lock the library load module into main memory using ZRPGM. The address
returned is the starting address of the loadset.

ZRPGM CTAL LOCK
CSMPOO97I 19.56.44 CPU-B SS-BSS SSU-HPN 1S-01

RPGMOOO1I 19.56.44 PROGRAM CTAL LOADSET BASE LOCKED IN CORE
------------------ AT ADDRESS 00820BB0

© Copyright IBM Corp. 1994, 2002 293

2. Display the loadset entry for the library load module using ZDCOR. This provides

the library name and address of its library vector.

ZDCOR 820BB0O.10

CSMPOO97I 19.56.44 CPU-B SS-BSS SSU-HPN 1S-01

DCOROO1OI 19.56.44 BEGIN DISPLAY

00820BBO- OOOOFFFF C3E3C1D3 00822D28 00000000CTAL
END OF DISPLAY - ZEROED LINES NOT DISPLAYED

3. Using ZDCOR display main storage at the address shown by the previous step.

The value 00000001 is the ordinal number of CTAL.

ZDCOR 822D28.10

CSMPOO971 19.56.44 CPU-B SS-BSS SSU-HPN IS-01

DCOR0OO1OI 19.56.44 BEGIN DISPLAY

00822D28- 00000001 00820BBO 00823E60 00823EB8
END OF DISPLAY - ZEROED LINES NOT DISPLAYED

4. Using ZDCOR display main storage at the function address displayed by the
previous step. Assume the function has LIBVEC ordinal 2. This puts it at
00823EBS.

ZDCOR 823EB8.10

CSMPO0O97I 19.56.44 CPU-B SS-BSS SSU-HPN IS-01

DCOROO1OI 19.56.44 BEGIN DISPLAY

00823EB8- 4700C004 C6E4D5C3 18781894 5850C006FUNC
END OF DISPLAY - ZEROED LINES NOT DISPLAYED

Identifying the Library Ordinal Number

A library ordinal number can be found using the shared library names table (SLNT).

Description

As the library addresses are filled into the AOLA structure, the 4-character name of
the library load module is filled into the SLNT. The library ordinal number is used to

place the library name into the SLNT.

Indications

The SLNT is located in the CCISOC CSECT and can be displayed online by doing

the following:
1. Display the address of the CP link map using ZDDCA LMP

ZDDCA LMP
CSMPO097I 19.56.44 CPU-B SS-BSS SSU-HPN IS-01
DDCAOOO1I 19.56.44 DUMP TAG LMP ADDRESS - 000B9BBO

2. Display the CP link map using ZDCOR and find the address of CCISOC.

/,ZDCOR B9BBO. 40
CSMPOO97I 19.56.44 CPU-B SS-BSS SSU-HPN 1S-01
DCOR0OO1OI 19.56.44 BEGIN DISPLAY
000B9BBO- C3C3D3C9 CAC8F4FO 000BBOOO 00000500 CCLIDH40
000BI9BCO- C3C3C9E2 D6C3F4FO 0OOBCOOO 00003850 CCISOC40
000B9BDO- C3C3D3C1 D5C7F4FO 000CO000 00009500 CCLANG4O
O000BIBEO- C3C3D4E3 C8F1F4FO 000C9500 00000002 CCMTH140
\\END OF DISPLAY - ZEROED LINES NOT DISPLAYED

J

3. Display CCISOC using ZDCOR. The SLNT is located at the beginning of CCISOC.

Libraries CISO and CTAL are ordinal numbers 0 and 1.

294 TPF V4R1 Application Programming

ZDCOR BC0O0O.100

CSMPOO97T 19.56.44 CPU-B SS-BSS SSU-HPN IS-01

DCOROO1OI 19.56.44 BEGIN DISPLAY

000BCOOO- 0OOBFO34 00OBCO1C 0OOBDO24 00000000 ..0.....
000BCO10- 00000000 E2D3D5E3 00000000 C3C9E2D6SLNTCISO
000BCO20- C3E3C1D3 40404040 40404040 40404040 CTAL

000BCO30- D8D7D5FO 40404040 40404040 40404040 QPNO

000BCO40- 40404040 40404040 40404040 40404040

OOOBCOEO- 40404040 40404040 40404040 40404040
000BCOFO- 40404040 40404040 40404040 40404040
\\END OF DISPLAY - ZEROED LINES NOT DISPLAYED

ISO-C Dynamic Load Modules (DLMs)

The TPF DLM startup code (CSTRTD) provides a bridge between TPF Enter/Back
services and the ISO-C environment. Because CSTRTD receives control whenever
an ISO-C DLM is called, CSTRTD must be defined as the first object in the load
module. The entry point function will be called from within CSTRTD and, when the
function ends, control returns to CSTRTD. Because the entry point is resolved in
the TPF startup code, the prelinker and linkage editor list the following message:

IEW2650I 5102 MODULE ENTRY NOT PROVIDED. ENTRY DEFAULTS TO SECTION CSTRTD

CSTRTD obtains the address of the entry point function through the weak external
@@DLMENT. @ @DLMENT is resolved by the loader to the address of the function
with a name equivalent to the name of the load module.

For example, load module DLM1 has an entry point function named DLM1. If there
is no function called DLM1, the TPF offline loader returns with a condition code 8
and lists the following reason:

DLM ENTRY PT NOT FOUND IN MODULE.

Stub routines are used to resolve the VCONSs produced by the compiler for library
function calls and external function calls, which can reside in BAL segments,
TARGET(TPF) segments, or other ISO-C segments. It is important to inspect the
output of the prelinker to verify the correct stubs are merged into the load module.

@@DLMENT is used to get the address of the DLM prolog entry point. The
address of @ @DLMENT itself comes from the link map generated during linkage
editing.

To display online the address of @@DLMENT, do the following:

1. Lock the C load module into main storage using the ZRPGM command with the
LOCK parameter:

ZRPGM CIM9 LOCK

CSMPOO97I 15.45.12 CPU-B SS-BSS SSU-HPN 1S-01

RPGMOOOLI 15.45.12 PROGRAM CIMO LOADSET BASE LOCKED IN CORE
------------------ AT ADDRESS 01F91690

2. Use the ZDCOR command with the address shown in the previous step.
@@DLMENT is at offset X'14' from this address. In the following example, the
DLM entry point is at address X'1F91700'".

Debugging Programs and Diagnosing Problems in C Language 295

ZDCOR 1F91690.20

CSMPOO97I 15.45.12 CPU-B SS-BSS SSU-HPN IS-01

DCOROO1OI 15.45.12 BEGIN DISPLAY

01F91690- 0OOOFFFF C3C9D4F9 00000000 01F91988CIMI Yo c
01F916A0- 00000000 01F91700 00000000 00000000 Yoo cooaooac
END OF DISPLAY - ZEROED LINES NOT DISPLAYED

The following example of the file map shows the two object files specified in the
prelink job and all the stub routines automatically included by the prelinker.

*ORIGIN FILE ID FILE NAME

PI 00001 DD:0BJLIB(CSTRTDNA)

PI 00002 DD:0BJLIB(CIMANC)

00003 IS00000.DEVP.STUB.OB(@CINIT)
00004 1S00000.DEVP.STUB.OB(STRPBRK)
00005 IS00000.DEVP.STUB.OB(CRFA)
00006 I1S00000.DEVP.STUB.OB(EXIT)
00007 IS00000.DEVP.STUB.OB(CIMZ)
00008 I1S00000.DEVP.STUB.OB(ATOI)
00009 IS00000.DEVP.STUB.OB(CIMC)
00010 IS00000.DEVP.STUB.OB(CIMB)

*0RIGIN: P=primary input PI=primary INCLUDE SI=secondary INCLUDE
A=automatic call R=RENAME card L=C Library

Storage for ISO-C Static Variables

If the compiler determines that 1 or more static variables are declared in a given
source file, the object file needs to be processed by the prelinker. The linkage editor
returns a condition code 8 and lists

@EXINIT@ as an UNRESOLVED EXTERNAL REFERENCE

for object files that contain static data but have not been processed by the prelinker.
@@XINIT@ is defined to be the address of the static data length and is filled in by
the prelinker.

Every time an ECB enters a DLM or a library that contains static, the startup code
tests @@XINIT@ to see if there is an associated static area. If the load module
contains static data, @@XINIT@ contains the address of the static data length;
otherwise, it contains zero. The static data pointer in the TCA is saved in the startup
code’s stack frame. The static exception routine is called to find the current load
module’s static data area. The pointer that is returned by the static exception
routine is saved in the TCA.

After the entry point function ends, the startup code restores the saved static data
pointer to the TCA before returning to the control program.

ISO-C static frames are mapped by the IDSCSF data macro.

Layout of ISO-C Structures in a Dump

System error processing formats the contents of the ISO-C control structures, the
ISO-C language support stack, and all static areas if the ISO-C environment exists.

296 TPF V4R1 Application Programming

*ISOC CONTROL AREA

01000010 TCA 00000000

01000030
01000050
01000070
01000090
01000130
01000150
010001B0O
010001D0
010001F0
01000210
01000230
01000250
01000270
01000A50
01000A70
01000870
01000890
01000BBO
01000C50

010018D0
01001950

PRM

CID

00000000
0071C930
01000010
00000000
00000000
00000000
00000000
0700C198
0700C198
00000000
00000000
000BF7CO
00000000
00000000
00000000
00000000
00841F68
00000000
00000000

00000000
00000000

The ISO-C TCA appears in the dump following the program area. The dump tags
identify the following:

TCA
BOS
EOS
WSP
EPT
CID
WSC
CTC
TPS

00000000
00000000
0700C198
01009F6C
00000000
00000000
00000000
00000000
0700C198
0700C198
00A17C7C
00000000
000BF584
00000000
00000000
00000000
0084134E
00842178
00000000
00000000

00000000
00000000

Beginning of the TCA structure

Address of the beginning of the 1SO-C stack
Address of the end of the 1ISO-C stack

Address of the current writable static area

Address of the entry point function

Beginning of the CID structure
Beginning of the writable static control block (WSCB)
Beginning of the CTCA structure

Beginning of the TPSA structure.

BOS 01001964
00000000
01000200
00A17DFO
00000000
00000000
00000000
0700C198
0700C198
0700C198
00030802
00000000
000F32C8
00000000
00000000
00000000
00004650
00842088
00000000
00000000

TPS 00000000
00000000

Figure 46. ISO-C Control Area Dump

01009FFF EOS
00000000
00000000
000BF7CO
00000000
00000000
00000000
0700C198
0700C198
0700C198
010011F4
00000000
000F36A8
00000000
00000000
00000000
00842240
0084F040
00000000
00000000

00000000
00000000

00000000
0100A08C
00A17ABO
00000000
00000000
00000000
00000000
0700C198
0700C198
01000A64
000BDO24
00000000
01000264
00000000
00000000
00000000
00841E48
00842198
00000000
000OE2E8

00000000
00000000

00000000
0071C930
00300000
000BF7CO
00000000
00000090
00000000
0700C198
0700C198
00000000
01001544
00000000
00000000
00000000
00000620
00000000
00841F00
00000000
00000000
E2C9D540

00000000

WSP

WSC

CTC

EPT

00000000
01009FFC
800F35CA
00000000
00000000
01000010
00000000
0700C198
0700C198
4E000000
00000000
01000250
00000000
00000000
00000000
00000000
00841EBO
00000000
00000000
404000E2

00000000

00000000
80A17E04
01002FFF
98000000
00000000
00002FFO
00000000
0700C198
0700C198
00000000
00000004
00000000
00000000
00000000
00000000
00000000
00841F88
00000000
00000000
E8E2D7D9

00000000

The data in the 1SO-C stack is broken down into the individual stack frames and

each is tagged with the name of the function that created it.

The initial stack frame will always be the stack frame associated with TPF startup
code CSTRTD when the ISO-C environment was initialized for this ECB. All stack
frames point to the next structure, which is the LWS.

Debugging Programs and Diagnosing Problems in C Language 297

*ISOC INITIAL STACK FRAME

01001964 00000000 00000000 BKP 00000000 80A17C34 R14 00A17D08 01001CB4 0071C930 01000264
BCD e ! I

01001984 01000250 0071C930 0700C198 01000200 00000000 00A17ABO 00300000 800F35CA
BCD & I A

010019A4 01002FFF 00000000 R12 01001A2C 01001B3C NAB 00000000 00000000 00000000 00000000

010019C4 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

010019E4 00000000 0071C930 0071C496 00000038 00319E80 00319E80 00331560 003314B0O
BCD I D -

01001A04 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

01001A24 00000000 00000000

*ISOC LWS

01001A2C 0A320070 58D09250 58E0DOOC 982CDO1C 0D1EOO82 DF180000 00000000 00000000

01001A4C 00000000 00000000 00000000 00000000 01001B3C 00000000 00000000 00000000

01001A6C 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

01001B2C 00000000 00000000 00000000 00000000

Figure 47. ISO-C Initial Stack Frame Dump

The remaining stack frames are formatted in reverse order. The first function called
will be at the bottom and the last function called will be at the top. Each stack frame
is labeled with the #pragma map name of the function.

Each stack frame contains a register save area. While reviewing the register
contents, keep in mind that the compiler saves only those registers which are used
by the function.

*ISOC STACK FRAME FUNCTION-called_function

01009F6C 10000000 01009EDC BKP 00000000 80A17EOA R14 00A17DBO 01009FFC 0071C930 01009F6C
BCD = ! I

01009F8C 80A17E04 00000000 00000000 00000000 00000000 00000000 00000000 00000000
BCD =

01009FAC 00000000 00000000 R12 01001A2C 01009FFC NAB 00000000 00000000 00000000 00000000

01009FCC 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

01009FEC 00000000 00000000 00000000 00000000

*ISOC STACK FRAME FUNCTION-called_function

01001BCC 10000A64 01001B3C BKP 10000000 80A17EOA R14 00A17?BO 01001C5C 0071C930 01001BCC
OlegggEC 80A17E04 000001F4 8087EAGA 00000;70 00000000 0000000; 01001éAC 00004650
OIOSEEOC OOGOOZBG 00000003 R12 01001A2C 01001C5C NAB 01001A2C 01001CB4 00000000 00000008
OIOEEEZC 00000000 00000000 00000000 00000008 00000000 00000000 00000000 00000000
01001C4C 00000000 00000000 00000000 00000000

*ISOC STACK FRAME FUNCTION-ghph_first_function

01001B3C 10000000 01001964 BKP 00000000 80A17?70 R14 00A17?BO 01001BCC 0071C930 01001B3C
0103§EEC 80A17?6A 0083E700 01000010 00851490 01000A64 01000A64 01000é10 00000000
0103§g7C 01000010 00000300 R12 01001A2C 01001BCC NAB 00000000 00000000 00000000 00000000
01001B9C 00000000 00000000 00000000 00000000 00000000 00000000 00A17CBC 00000000
OlegggBC 00000170 00000000 00000000 00000000 ’

Figure 48. ISO-C Stack Frame Function Dump

298 TPF V4R1 Application Programming

*ISOC STATIC BLOCK

D8E9E9F4 FFFFFFOO
C9C340C4 C1E3C140
40404040 40404040

*IN USE HEAP STORAGE

827F66C6 00000080
00000000 00000000
00000000 00000082

ISO-C static and heap areas follow the ISO-C stack frames and are identified by

the DLM name.

Figure 49. ISO-C Static Block and Heap Storage Dump

00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 06000000 0OOOOOOO

0000007C 00000000 E3C8CIE2 40C9E240 E3C8C540 E2E3C1E3 QZZ4............ THIS IS THE STAT
C2D3D6C3 D2404040 40404040 40404040 40404040 40404040
4015FOF0 FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO
FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO

IC DATA BLOCK
.0000000000000000000000
0000000000000000000000000000

If the error occurs in the ISO-C environment, registers 12 and 13 contain the

following values:
R12

R13 Address of a stack frame.

Address of ISO-C task communications area (TCA)

Although the contents are not guaranteed, other ISO-C register conventions are:

R1 Parameter list pointer

R3 Function base address

R14 Return address

R15 Routine address or return value.

All other registers are in use by the compiler.

Brief Listing of Errors

The following list briefly describes an error condition and its probable cause.

Table 24. Brief Listing of Errors

Symptom

Probable Error

Unresolved Zxx VCONSs during linkage
editing

Including TARGET(TPF) segments in prelink
or link-edit steps

Return code 4 from the prelinker

DLM call stubs not previously created

Unresolved VCONSs to compiler components

Different levels of compiler and prelinker

System error CTL-3 - branch to location 0

DLM call stub either not created or not linked

System error CTL-3 - store into program

Program compiled with the NORENT
parameter

Error during prelinking

WARNING EDC4015: Unresolved
references are detected: @@TRT
Return code 4

The CTRT40 object module (OCO), found in
the ACP.OBJ.RELvv PDS, must be copied to
the ACP.CLIB.RELvv PDS and renamed to
@@TRT.

Using C Function Trace

C function trace provides the ability to trace ISO-C programs. When an ISO-C
program has been compiled with the TEST option of one of the C/370 family of
compilers supported by the TPF system, C function trace provides the programmer
with relevant information to expedite the analysis of C program problems. For

Debugging Programs and Diagnosing Problems in C Language

299

information on how to use C function trace and sample trace output see [i=Tz]

Program Development Support Referencel.
Using Link Map Support for C Load Modules

The ZDMAP command allows you to display the link maps for C load modules to
help you debug C load modules online. You must use both the offline C load
module build tool (CBLD) and the offline loader (TPFLDR) if you want a C load
module to have a link map. See LISQ- ' z

for more information about link map support in the C load module build tool.

The link map consists of a list of object files included in the C load module, a list of
C function names in the object files, and the addresses of the object files and C
functions.

Link map displays include both main storage addresses and the offsets of C
functions into their respective object files. Any time an object file name or function
name is displayed, the address of the object file or function is also displayed.

Parameters on the ZDMAP command allow you to request the following:
* Alist of all object files in the C load module

« Alist of all object files in the C load module and all functions contained in those
object files

» A specific object file (or several object files whose names match input criteria)

* A specific object file (or several object files whose names match input criteria)
and all functions contained in those object files

» A specific function (and the object file containing the function)

* The object file and function whose main storage addresses span a specified
address.

See m for more information about the ZDMAP command.

300 TPF V4R1 Application Programming

Customizing C/C++ Language Support

This chapter is a guide to customizing C language support on your TPF system. C

language support is part of the base TPF system. See [[PE System Generation for
more information on how to build and customize a TPF system.

Required Customizations

TPF Globals

You need to customize the TPF system to be able to take full advantage of C
language support. This section includes a description of required and optional
customizations.

TPF globals are a unique phenomenon.

Most operating systems provide a means for application programs to access and
modify variables in common storage. The structure of the TPF global areas, and the
fact that they are not link-edited with the application load module, ensure that TPF
application programs that manipulate the global areas will never be fully portable to
other operating systems. However, there is a way for TPF application programs
written in C to access the global areas.

This section describes the special concerns that arise when creating a C language
interface to TPF globals, and the customization that you need to do before you can
create application programs written in C that access TPF global fields and records.
See the earlier section on globals for architecture and terminology.

* Assembler global tagnames are converted to C language globals by changing all
@, $ or # characters to underscore (_). This is required because C restricts
identifier names to alphanumerics and the _ character. This can introduce
duplicate names. The user is responsible for resolving any name duplications.

For example, consider assembler global tag @MAXCL, which defines the
maximum CRT line count. This item has displacement into the global 1 area of
X'44A', a length of 2 bytes, can be synchronized, and is a subsystem-unique
global field. The following #define statement would appear in c§globz.h for this
global:

#define _maxcl 0x044a0241

The displacement is shown in bits 4-15 (X'44A"), the length in bits 16-23 (X'02"),
attributes in bits 24—-28 (B'01000"), and the global area where the item resides in
bits 29-31 (B'001").

« To permit access to the IBM-supplied global fields, a version of c$globz.h is
provided with C language support. However, because the nature and content of
global areas and blocks varies from installation to installation, c$globz.h must be
updated by the user to include installation-specific global tag names. When tags
are added, deleted, or changed, c$globz.h must be modified and made available
for use by application programs; the correct version of c$globz.h must be
available at compile time. Similarly, C programs that refer to a given TPF global
tag must be recompiled if there is a change made to any of the tag’s attributes.

TPF provides 2 sample utilities, GENTAG.C (for use with Assembler H) and
GNTAGH.C (for use with HLASM), which demonstrate a means of automating
the creation of c$globz.h. These programs can be run whenever changes have
been made to the allocation of global fields or records. For more information

about GENTAG and GNTAGH, see [[RE System Installation Support Referencd.

© Copyright IBM Corp. 1994, 2002 301

For a description of the TPF API functions that make use of the tag names to
access or modify individual global fields or records, see the

The 6 1ISO-C glob functions (glob_keypoint, glob_modify, glob_Tock,
glob_update, glob_sync, and glob_unlock) have several, similar requirements:

— They all must include. tpfglbl.h and c$globz.h, except for glob_modify
which must include tpfglobh and c$globz.h.

— The argument coded as the globals or records must be defined in header file
c$globzh. If they are not, results are unpredictable.

— These functions all have important considerations regarding giving up control
because of locks or I/O considerations. Care must be taken when using them.

For details on these functions see their individual sections in the [[RE_C/C+4

Language Suppart User's Guidd.

Optional Customizations

This section includes a description of optional customizations.

Creating and Selecting Locales
This section describes the different types of locales.

What is a Locale?

A C locale consists of a set of constants that depend on geographic area. The
constants affect the action of certain library functions (such as the string collation
function strcol1) and control:

» Character editing and processing

* Monetary symbols and formatting

* Nonmonetary formatting

* Collating sequences

* Time zones.

Note: Time information is dependent on the system clock setting, which is
assumed to be set to Greenwich Mean Time (GMT). If you set the system

clock to something other than GMT, see [[PE_System Generation for details

on how to customize the clock value.

The setTocale function selects the appropriate portion of the program’s locale. It
can be used to change or query the program’s entire current locale, or portions of it.

The basic format of the function is:

setlocale(category, Tocale)

where category specifies which attributes of the locale you want to change or
query, and locale identifies the locale itself (as in LC_C_GERMANY, LC_C_SPAIN,
and so on). If you specify "” for locale, the setlocale function will default the locale
to LC_DEFAULT_LOCALE.

When the first C program for a given ECB is activated, the equivalent of
setlocale(LC_ALL, "C");

has been performed. A value of C for the locale specifies the minimal environment

for C translation. The program can then call the setTocale function if a different
locale is desired.

302 TPF V4R1 Application Programming

The setlocale function is described in more detail in the library reference for the
IBM C or C++ compiler on the System/390 platform used by your installation.

In ISO-C the C locale supplied by IBM is in C$S370 which is linked in library CISO.
All the other shipped locales are in DLMs:

Locale Source DLM

LC_C_GERMANY CLLGER CLLG
LC_C_FRANCE CLLFRN CLLF
LC_C_UK CLLENG CLLE
LC_C_ITALY CLLITL CLLI

LC_C_SPAIN CLLSPA CLLS
LC_C_USA CLLUSA CLLU
LC_C_TPF CLLTPF CLLT

These locales are defined by calling the EDCLOC macro. All of the shipped locales
specify a TZDIFF value of 1500 (that is, use the system time zone difference). The
TPF system time zone difference is defined in keypoint record A at tag CK1LGD. In
order for the standard C time formatting functions to use this value you must define
the appropriate time zone name (TNAME). To handle daylight savings time you
must also specify the following EDCLOC parameters: DSTSTM, DSTSTW,
DSTSTD, STARTTM, SHIFT, DSTENM, DSTENW, DSTEND, ENDTM, and
DSTNAME.

For TARGET(TPF), all of the locales are defined in CP segment CL04 (CCLANG).
For TARGET(TPF) the absolute value of TZDIFF must not exceed 1440 (minutes,
that is 24 hours). System time zone differences are not supported for
TARGET(TPF). All of the TARGET(TPF) locales specify a TDZIFF value of -300 for
North American eastern standard time. You should modify these locales as
appropriate for your installation.

Creating a New ISO-C Locale

You can create a new locale, or modify an existing one, by specifying a new set of

parameters to the assembler macro EDCLOC. Edit the locale source file (xxx) and

change the EDCLOC parameters to make small changes in a default locale. New
locales are created by:

* Coding an ISO-C compatible assembler program with a call to the EDCLOC
macro, because each locale must be in its own dynamic load module (DLM). The
first 4 characters of the name of the DLM being created, the name of the locale,
and the label on the EDCLOC macro must all be the same.

» Creating a build script for the new DLM containing a DLM record and a record
indicating the name of the locale definition file.

* Following the usual procedure for assembling, building, allocating, and loading a
DLM.

After the new DLM is loaded online, the new values in the new locale are available
to the functions setlocale and Tocaleconv.

For example, suppose we wanted to set up a new locale for the North Pole. The

locale definition could be as in Eigure 50 on page 304 At the North Pole we might

find that every day is Saturday and that every month is December.

Customizing C/C++ Language Support 303

S e o ok ook o ek ok ke ko ko e ke ok o ko ek ke ek ek
* MODULE NAME: NPOLLC *
* DESCRIPTION: DEFINITION OF C LOCALE "NPOL" FOR THE NORTH POLE. *

* *
kkkkkkkhkkkkhkkkhkkkhkkkhkhkkhkhkkhkhkkhkhkkhkhkkkhkhkkkhkhkkhkhkkhkhkkhkhkkkhkkkhkhkkkhkhkkhkhkkkkkkkkkkx
NPOL EDCLOC CHARTYP=1,CTYPE=,CTYPEl=,UPPER=,LOWER=,COLLTAB=,
COLLSTR=,DEC=".",SEP=,GROUP=(0,0) ,ICURR=,CURR=,
MDEC=,MSEP=,MPLUS=,MMINUS=,
MIFDIGITS=CHAR_MAX,
MFDIGITS=CHAR_MAX,MGROUP=(0,0) ,MPCSP=CHAR_MAX,
MPSBYS=CHAR_MAX ,MNCSP=CHAR_MAX,MNSBS=CHAR_MAX,
MPLUSPOS=CHAR_MAX,MMINUSPOS=CHAR_MAX,
SDAYS=(SAT,SAT,SAT,SAT,SAT,SAT,SAT),
LDAYS=(SATURDAY, SATURDAY, SATURDAY, SATURDAY, SATURDAY,
SATURDAY, SATURDAY) ,
SMONS=(DEC,DEC,DEC,DEC,DEC,DEC,DEC,DEC,DEC,DEC,DEC,
DEC),
LMONS=(DECEMBER,DECEMBER,DECEMBER, DECEMBER , DECEMBER,
DECEMBER,DECEMBER,DECEMBER,DECEMBER, DECEMBER,
DECEMBER,DECEMBER),
DATFMT="%m/%d/%y" ,TIMFMT="%H.%M.%S" ,AM="AM",PM="PM",
DATTIM="%m/%d/%y %X',
TZDIFF=0,TNAME=NPST,
DSTSTM=0,DSTSTW=0,DSTSTD=0,STARTTM=0,SHIFT=0,
DSTENM=0,DSTENW=0,DSTEND=0, ENDTM=0,DSTNAME=,
VERSION=1

END ,

Figure 50. Assembler Program for a New Locale

This assembler program only contains a call to the EDCLOC macro (and END). No
calls to the BEGIN or TMSPC macro are required; EDCLOC generates all of the
required code.

A build script for the North Pole locale could be

iddgadddadsdaadddaaddaadataadpadddaagdgadadaaddaddpagddaddaadaaddidi

LOAD MODULE NAME: NPOL
DESCRIPTION: North Pole locale "NPOL" definition.
idgddddddsddsddsddsddadddddsddadddaddddsddsddaddaddaddsddddaadadddddd
DLM NPOL41

NPOLLC41

Figure 51. Build Script for a New Locale

The DLM locale is assembled, built, allocated, and loaded. An application can call
setlocale(LC_ALL, "NPOL") ;

and all standard library functions that take locale values into account would operate
in a manner appropriate to the North Pole.

The parameters for defining a locale are fully described in the user’s guide for the
IBM C or C++ compiler on the System/390 platform used by your installation. Keep
the following in mind when creating a locale for the TARGET(TPF) environment:

* The TPF version of the locale generator macro will not allow you to specify
CHARTYP greater than 1; that is, multiple-byte character sets are not supported.

* Itis not possible to code TZDIFF with a value greater than 1440. On other
systems this will call the system time zone difference; this is not supported for
TPF systems.

304 TPF V4R1 Application Programming

See the IBM C or C++ user’s guide and programming guide for the IBM
System/390 platform used by your installation for a description of the macro
parameters used to define a locale.

Creating a New localedef Utility-Based Locale
localedef utility-based locales must co-exist with the existing EDCLOC macro-based

locales. The existing EDCLOC locales are coded in the application by their load
module name. localedef utility-based locales are coded by their 4-character internal
name or the long external name. On the setlocale() function, the locale name is
first assumed to be a localedef utility-based locale. If a localedef utility-based locale
module is not found mapping to the locale name coded, an attempt will then be
made to load it as an existing EDCLOC locale.

Preparing the EDCLDEF JCL Procedure for the TPF System: The EDCLDEF
job control language (JCL) procedure provided with the compiler takes a locale
definition as input and displays the locale module. For the TPF system, the module
needs TPF startup code. You must modify the EDCLDEF JCL procedure to create
object code for the locale, and the object code can then be link-edited as a new
locale module. Eigure 52 on page 306 shows the EDCLDEF JCL procedure as it is
shipped. Eigure 53 on page 308 shows you a sample of the EDCLDEF JCL

procedure after it has been modified. In these figures, changes that you must make
to the EDCLDEF JCL procedure are shown in a bold example font; for example
SYSLBLK="3200'".

You must make the following changes to the EDCLDEF JCL procedure:

* Remove the SYSLBLK= line because it is no longer needed.

* Replace the OUTFILE definition with OUTFILE=. OUTFILE will be used for
placing object code generated from the compile step. The data set will be a

partitioned data set (PDS) provided in the JCL using the procedure with
DISP=SHR.

* Add CREATE and MERGE steps after the LOCALDEF step to modify the locale
C source.

Note: The CREATE step requires the PRAGMA segment, which you must create
and place in your PDS. For example, the EDCLDEF JCL procedure found

in Eigure 52 on page 306 has a PDS named

ACP.CHDR.SARAT(PRAGMA). The PRAGMA will contain one line:

#pragma nomargins nosequence

In the JCL that uses this procedure, code MARGINS(1,72) on the CPARM
parameter. This, with the modification to locale C source, will allow you to
compile the >80-record-size locale source with the TPF fixed 80-record-size
header files.

* Remove the last two steps, INCLUDE and LKED, and change the data set for

output of the COMPILE step (SYSLIN) to OUTFILE. See Ei
for an ori%inal EDCLDEF procedure as shipped with the compiler, and

for a modified EDCLDEF procedure for the TPF system.

Customizing C/C++ Language Support 305

[[FxHkdkk gk gk ok dk ok dk ok dk ko k ko k ok ok ok ko k ok k ok ko k ko k ko k ko k ko ko ko k ko k ko k kK
/1%

//* LICENSED MATERIALS - PROPERTY OF IBM

/1%

//* 5647-A01

//* (C) COPYRIGHT IBM CORP. 1988, 1997 ALL RIGHTS RESERVED
/1%

//* US GOVERNMENT USERS RESTRICTED RIGHTS - USE,

//* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP

//* SCHEDULE CONTRACT WITH IBM CORP

/1%

//***

L R T R

//***/

/% MVS PROGRAM PRODUCTS TEAM */
/1% */
//* THE FOLLOWING CHANGES MADE TO CORRECT PROCEDURE */
//* 1. VIO CHANGED TO SYSDA */
//* 2. LIBPRFX='CEE' TO LIBPREX='SYS1.CEE.V2R4MO' */
//* 3. LNGPRFX='CBC' TO LNGPRFX='SYS1.CBC.V2R4M0' */
/1% */

//**/
//***

//* *
//* INVOKE THE LOCALEDEF UTILITY OT CREATE C SOURCE CODE *
//* THEN COMPILE AND LIKN EDIT THE PROGRAM *
//* *
//* 0S/390 C/C++ *
//* *
//* RELEASE LEVEL: 02.04.00 (VERSION.RELEASE.MODIFICATION LEVEL) *
//* *
R R T R T T T
/1%

//EDCLDEF PROC INFILE=, < INPUT ... REQUIRED

// CREGSIZ='4M', < COMPILER REGION SIZE

// CPARM=, < COMPILER OPTIONS

// SYSLBLK='3200', < BLOCKSIZE FOR &&LOADSET

//* LIBPRFX='CEE'; < PREFIX FOR LIBRARY DSN

// LIBPRFX='SYS1.CEE.V2R4MO', < PREFIX FOR LIBRARY DSN

//* LNGPRFX='CBC', < PREFIX FOR LANGUAGE DSN

// LNGPRFX='SYS1.CBC.V2R4MO', < PREFIX FOR LANGUAGE DSN

// CLANG="EDCMSGE', < NOT USED IN THIS RELEASE. KEPT FOR COMPATIBILITY
// LOPT=, < LOCALDEF OPTIONS

// DCB80='(RECFM=FB,LRECL=80,BLKSIZE=3200", <DCB FOR LRECL 80

// DCB3200="'(RECFM=FB,LRECL=3200,BLKSIZE=12800("', <DCB FOR LRECL 3200b
// OUTFILE='&&GSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,SPACE=(TRK,(7,7,1))",
// TUNIT='SYSDA' < UNIT FOR TEMPORARY FILES
/1%

Ty Sy

//* LOCALDEF STEP:

//* INVOKE CBC3LDEF MODULE TO READ LOCALE DEFINITION FILE AND

//* GENERATE C CODE.

// EXEC PGM=CBC3LDEF,REGION=6144K,

// PARM=(&LOPT)

//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
// DD DSNAME=&LNGPRFX..SCBCCMP,DISP=SHR
//SYSOUT DD SYSOUT=+

//SYSPRINT DD SYSOUT=+

//SYSIN DD DSNAME=&INFILE,DISP=SHR
//SYSPUNCH DD DSNAME=&&SYSCIN,DISP=(NEW,PASS),
// DCB=(RECFM=FB,LRECL=120,BLKSIZE=4800),
// SPACE=(4800,(100,100)) ,UNIT=&TUNIT.
//EDCCMAP DD DSNAME=&LIBPRFX..SCEEMAP,DISP=SHR
//EDCLOCL DD DSNAME=&LIBPRFX..SCEELOCL,DISP=SHR

Figure 52. An EDCLDEF JCL Procedure as Shipped with the Compiler (Part 1 of 2)

306 TPF V4R1 Application Programming

//COMPILE EXEC PGM=CBCDRVR,REGION=&CREGSIZ,
// COND=(4,LT,LOCALDEF),
// PARM=('NOSEQ,NOMARGINS',

// '&CPARM')
//STEPLIB DD
// DD
//SYSMSGS DD
//SYSLIN DD
//SYSLIB DD
// DD
//SYSPRINT DD
//SYSOUT DD
//SYSCPRT DD
//SYSUT1 DD
//SYSUT4 DD
//SYSUT5 DD
//SYSUT6 DD
//SYSUT7 DD
//SYSUT8 DD
//SYSUT9 DD
//

//SYSUT10 DD

DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
DSNAME=&LNGPRFX. .SCBCCMP,DISP=SHR

DUMMY , DSN=&LNGPRFX. . SCBC3MSG (&CLANG) ,DISP=SHR
DSNAME=&&SYSCIN,DISP=(0LD,DELETE)
DSNAME=&LIBPRFX..SCEEH.H,DISP=SHR
DSNAME=&&LOADSET,UNIT=&TUNIT.,

SYSOUT=~

SYSOUT=+

SYSOUT=+

UNIT=&TUNIT.,SPACE=(32000, (30,30)),DCB=&DCB80O
UNIT=&TUNIT.,SPACE=(32000, (30,30)),DCB=&DCB8O
UNIT=&TUNIT.,SPACE=(32000, (30,30)),DCB=&DCB3200
UNIT=&TUNIT.,SPACE=(32000, (30,30)),DCB=&DCB3200
UNIT=&TUNIT.,SPACE=(32000, (30,30)),DCB=&DCB3200
UNIT=&TUNIT.,SPACE=(32000, (30,30)),DCB=&DCB3200
UNIT=&TUNIT.,SPACE=(32000, (30,30)),
DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)

SYSOUT=+

Figure 52. An EDCLDEF JCL Procedure as Shipped with the Compiler (Part 2 of 2)

Customizing C/C++ Language Support

307

//***

/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%

LICENSED MATERIALS - PROPERTY OF IBM
5647-A01
(C) COPYRIGHT IBM CORP. 1988, 1997 ALL

US GOVERNMENT USERS RESTRICTED RIGHTS - USE,
DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP

SCHEDULE CONTRACT WITH IBM CORP

RIGHTS RESERVED

L R T R

//***

//***/

/1%
/1%
/1%
/1%
/1%
/1%
/1%

MVS PROGRAM PRODUCTS TEAM */

*/

THE FOLLOWING CHANGES MADE TO CORRECT PROCEDURE */
1. VIO CHANGED TO SYSDA */
2. LIBPRFX='CEE' TO LIBPREX='SYS1.CEE.V2R4MO' */
3. LNGPRFX='CBC' TO LNGPRFX='SYS1.CBC.V2R4MO' */
*/

//**/

//***

/1%
/1%
/1%
/1%
/1%
/1%
/1%
/1%

INVOKE THE LOCALEDEF UTILITY OT CREATE
THEN COMPILE AND LIKN EDIT THE PROGRAM

0S/390 C/C++

RELEASE LEVEL: 02.04.00 (VERSION.RELEASE.MODIFICATION LEVEL)

C SOURCE CODE

L R R

//***

/1%
//E
/1l
/1
/1%
//

/1%
/1%
/1%
/1%

DCLDEF PROC INFILE=,
CREGSIZ="4M",
CPARM=,
LIBPRFX="CEE",
LIBPRFX="SYS1.CEE',
LNGPRFX="CBC",
LNGPRFX="SYS1.CBC', <

AN NANANNA

INPUT ... REQUIRED
COMPILER REGION SIZE
COMPILER OPTIONS

PREFIX FOR LIBRARY DSN
PREFIX FOR LIBRARY DSN
PREFIX FOR LANGUAGE DSN
PREFIX FOR LANGUAGE DSN

CLANG="EDCMSGE', < NOT USED IN THIS RELEASE. KEPT FOR COMPATIBILITY

LOPT=, <

LOCALDEF OPTIONS

DCB80="' (RECFM=FB,LRECL=80,BLKSIZE=3200) ', <DCB FOR LRECL 80
DCB3200="(RECFM=FB,LRECL=3200,BLKSIZE=12800) "', <DCB FOR LRECL 3200

OUTFILE=,
TUNIT="SYSDA' <

LOCALDEF STEP:

UNIT FOR TEMPORARY FILES

INVOKE CBC3LDEF MODULE TO READ LOCALE DEFINITION FILE AND

GENERATE C CODE.

//LOCALDEF EXEC PGM=CB3LDEF,REGION=6144K,

//

PARM= (8LOPT)

//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
DD DSNAME=&LNGPRFX..SCBCCMP,DISP=SHR

//

/1S
/1S
/1S
/1S
//

/1

//E
/1%
//E
/1%

YSOUT DD SYSOUT=+
YSPRINT DD SYSOUT=*
YSIN DD DSNAME=&INFILE,DISP=SHR

YSPUNCH DD DSNAME=8&SYSCIN,DISP=(NEW,PASS),

DCB=(RECFM=FB,LRECL=120,BLKSIZE=

4800) ,

SPACE=(9800, (500,200) ,UNIT=&TUNIT.
DCCMAP DD DSNAME=&LIBPRFX..SCEECMAP,DISP=SHR
EDCLOCL DD DSNAME=&LIBPRFX..SCEELOCX,DISP=SHR
DCLOCL DD DSNAME=&LIBPRFX..SCEELOCL,DISP=SHR

Figure 53. A Sample Modified EDCLDEF JCL Procedure (Part 1 of 2)
308 TPF V4R1 Application Programming

//CREATE EXEC PGM=ICEGENER

//SYSPRINT DD SYSOUT=+

//SYSUT1 ~ DDDSN=ACP.CHDR.SARAT (PRAGMA) ,DISP=SHR
//SYSUT2 DD DSNAME=&&SYSCIN1,DISP=(NEW,PASS),

// DCB=(RECFM=FB,LRECL=120,BLKSIZE=4800),
// SPACE=(10, (10,10)),UNIT=SYSDA

//SYSIN DD DUMMY

/1%
Ty
//* MERGE SYSHD AND SYSCIN PRODUCING SYSCIN2

] £ T S S S S U SRS SRSy

//MERGE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=+
//SYSUT1 DD DSN=&&SYSCIN1,DIS=(OLD,DELETE)

// DD DSN=&&SYSCIN,DIS=(0LD,DELETE)

//SYSUT2 DD DSNAME=&&SYSCIN2,DISP=(NEW,PASS),

// DCB=(RECFM=FB, LRECL=120,BLKSIZE=4800),

// SPACE=(4000, (100,100)),UNIT=SYSDA

//SYSIN DD DUMMY

4 gy
//* COMPILE STEP:

27 gy

//COMPILE EXEC PGM=CBCDRVR,REGION=&CREGSIZ,
// COND=(4,LT,LOCALDEF),
// PARM=('NOSEQ,NOMARGINS',

/! '&CPARM)
//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
// DD DSNAME=&LNGPRFX..SCBCCMP,DISP=SHR

//SYSMSGS DD DUMMY,DSN=&LNGPRFX. .SCBC3MSG (&CLANG) ,DISP=SHR
//SYSIN DD DSNAME=&&SYSCIN2,DISP=(OLD,DELETE)

//SYSLIB DD

// DD DSNAME=&LIBPRFX..SCEEH.H,DISP=SHR

// DD DSNAME=&LIBPRFX..SCEEH.SYS.H,DISP=SHR

//SYSLIN DD DSNAME=&0UTFILE,DISP=SHR

//SYSPRINT DD SYSOUT=+

//SYSOUT DD SYSOUT=x

//SYSCPRT DD SYSOUT=#

//SYSUTL DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),DCB=4DCB8O
//SYSUT4 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),DCB=&DCB8O
//SYSUT5 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT6 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT7 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT8 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),DCB=&DCB3200
//SYSUT9 DD UNIT=&TUNIT.,SPACE=(32000,(30,30)),

// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)

//SYSUT10 DD SYSOUT=*

Figure 53. A Sample Modified EDCLDEF JCL Procedure (Part 2 of 2)

Place the modified EDCLDEF JCL procedure in the proclib data set. See m
for a sample JCL to create object code for a locale using the modified

EDCLDEF JCL procedure. In this figure, changes that you must make to the

EDCLDEF JCL procedure shipped are shown in a bold example font; for example

(EDC$S1TEY).

Customizing C/C++ Language Support

309

//LCDEFC ~ JOB MSGLEVEL=(1,1),CLASS=A,MSGCLASS=A

//* NOTE: EDCLDEFT isthe modified EDCLDEF procedure.

//LDEFCOMP EXEC EDCLDEFT,

//* provide PDS member where the locale definition source

//* is placed for INFILE parameter.

// INFILE="ACP.LOCALE.SOURCE (EDC$1TEY) ',

//* NOTE: ProvidePDS member where the object code for the locale
//* must be placed for OUTFILE parameter

// OUTFILE="'ACP.REL40.0B(CLITEYVV) ',

//* NOTE: In addition to any other compile options always provide
//* MARGINS(1,72) on CPARM parameter.

// CPARM="MARGINS(1,72) "

//COMPILE.SYSLIB DD DSNAME=ACP.CHDR.REL40,DISP=SHR
/*

/1l

Figure 54. Sample JCL Using the Modified EDCLDEF JCL Procedure

Preparing localedef Utility-Based Locale Load Modules: You can use one of
the locale definitions provided with the compiler, modify one of them, or create a
new one using the format documented in the IBM C/C++ programming guide on the
IBM System/390 platform used by your installation.

To Prepare the localedef Utility-Based Locales Load Module::

1. Prepare the locale definition. See the IBM C/C++ programmer’s guide on the
IBM System/390 platform used by your installation.

2. Run the modified EDCLDEF JCL procedure to create the object file (TEXT) for
the locale.

3. Create the build script for the locale load module. These locales must be
link-edited with the additional CENTPT40 object file. See [Eigure 55 on page 311l
for an example of a build script for the 1TEY locale compiled in JCL. In this
figure, changes that you must make to the EDCLDEF JCL procedure shipped by
IBM are shown in a bold example font; for example PDS member CL1TEY

310 TPF V4R1 Application Programming

#H###HHF AR R R R AR AR AR A

This build script is to build CNLT Tocale module. #

The object code for this locale is in PDS member CL1TEY.#
The Tocales external Tong name is MYLOC.IBM-1047, the internal #
short name is 1TEY where 1T maps to MYLOC from locale name table #
and EY maps to IBM-1047 from code set name table. The locale #
module will reside in CNLT and the Tocales internal name #
1TEY should be mapped to CNLT in locale module name mapping table #
in CLMODN. #
idgsddsddddssddsaddsssdidsdddssddtaddssddtsaddtsdddssddgadisdadaii
#

SCRIPT NAME: CNLTBS

DESCRIPTION: New extended locale called MYLOC that uses

code set name IBM-1047 or <CC> = EY.

Locale code or <LT> code = 1T.

Remember <LT> for user defined locales need to

have a numeric.
lddgdzdsdadadadadaddsdsdsdadadadadaddddsdadsdsdadadadaddddddadadadddd
DLM CNLT40

SR SR SR S SR SR SR SR SR SR SR SR SR SR SR SR

FHe F H= H= S e I

#0bject File Function Source Language
Bommmmmmmmm mmmmm—em e
CENTPT40 # remember this is needed for AssembTler
locales
CLITEYVV # TEXT created by the modified Locale definition

EDCLDEF PROC

Figure 55. Example of a Build Script for the 1TEY Locale

4. Using the C load module build tool (CBLD), create the locale load module.

Other Changes Needed to Use localedef Utility-Based Locales: Add an entry

for the locale in the locale name table by adding an EDCLOCNM macro call as
documented in the IBM C/C++ programming guide for the compiler on the IBM
System/390 platform used by your installation. The locale name table is in the

CLNM assembler (BAL) source file. As shipped, this would have the EDCLOCNM

call entries for the localedef utility-based locales shipped with the TPF system.

Locale name table segment CLNM is part of DLM CLNM. The following is an entry

that would be added for the sample locale:
EDCLOCNM TYPE=ENTRY,LOCALE='MYLOC',CODESET="1BM-1047"',CODE="1T"

If a new code set is used that is not in the code set name table, you must add an
entry for it. Code set hame table is in the CSNM assembler (BAL) source file. Code

set name table CSNM is part of DLM CSNM. See [Character Sets” on page 314 for

more information about the CSNM code set name table.

The CMLM source file contains a table mapping the localedef utility-based locale

names to the TPF locale load module names. This source file is part of DLM

CMLM. Modify the CMLM source file to add an entry mapping the new locale name

to the load module name. The locale name has two parts:
* The first part is the 2-character Language Territory code, <LT>. If the locale

definition is not an IBM-shipped definition, the first character must be numeric.

* The second part is the 2-character code, <CC>, which identifies the
CodeSetRegistry-CodeSetEncoding. Use the <CC> code from the code set
names and the CC code table in the IBM C/C++ programming guide for the
compiler on the IBM System/390 platform used by your installation. For the
sample locale, the entry coded would be:

Customizing C/C++ Language Support

311

["1TEY","CNLT"],

Using localedef Utility-Based Locales: You can code the new localedef
utility-based locale name two different ways in the setlocale function call:

 locale descriptive name

The descriptive name is the concatenation of the LOCALE and CODESET
parameter values separated by a period (.) on the EDCLOCNM macro call entry
for the locale in the locale name table:

/* Using the descriptive name */
setlocale(LC_ALL, "MYLOC.IBM-1047");

¢ short internal name

The internal name is the concatenation of the <LT> and <CC> codes for the
locale:

/* Using the short internal name x/
setlocale(LC_ALL, "1TEY");

Before activating any application that uses the locale, do the following:
1. Modify locale name table CLNM.
2. Modify code set name table CSNM.

3. Modify locale module name mapping table CMLM as in Qther Changes Needed

4. Build and load the CLNM, CSNM, and CMLM DLMs.
5. Build the locale load module.

See the IBM C/C++ programming guide and user’s guide for the compiler on the
IBM System/390 platform that is used by your installation for more information
about the localedef utility-based locale definitions and how to use, customize, and
modify them.

For setlocale(LC_ALL,""), the C locale is set. You can change this definition by
setting the locale-related environment variable. For example, if
setenv("LC_ALL","MYLOC.IBM-1047",1) is issued to initialize the LC_ALL
environment variable, setlocale(LC_ALL,"") will then set and return the
"MYLOC.IBM-147" locale.

Note: This indicates that you have changed the default NULL string locale set by
the TPF system.

Creating a New TARGET(TPF) Locale
For TPF systems, a set of C locales is provided in copy member CLO4 of the

CCLANG CSECT. A locale is generated using a special assembler macro to which
you pass parameters. The locale in effect when the first C program is activated for
a given ECB is known as EDC$S370 in CLO04; this is the system name for the
locale shown in the previous example. For other locales the system name
appearing in CL0O4 has EDCS$ as the first part of the name followed by xxxx
(EDC$xxxx), where xxxx is the first 4 characters of the name of the country. For
example, the system name for the locale for Germany is EDC$GERM.

Note: You can find that the EDC$S370 locale is not an acceptable locale for any of
the applications in your environment. If this is true you can simply modify the
macro parameters for this locale in CL0O4, and reassemble CCLANG. This
frees application programs from always having to call the setlocale function
before initiating their normal processing.

312 TPF V4R1 Application Programming

You can create a new locale, or modify an existing one, by specifying a new set of
parameters to the assembler macros in CLO4. To do this, modify CL04 as follows:

1. Copy 1 of the existing locales that describes a locale most similar to the 1 that
you are creating. Choose a system name for the new locale with EDC$ as the
first 4 characters followed by xxxx (EDC$xxxx) where xxxx represents 1-4
characters.

2. Change the invocation parameters to define the categories of the new locale.

3. Add an entry to the LOCALTAB table in CL04 for your new locale. (Follow the
instructions in the listing commentary.)

4. Reassemble CCLANG and link-edit the control program again. Load the new
control program to your system. Your new locale is now available for use by
applications. It can be called (via setTocale) using the xxxx portion of the locale
name defined in step f.

C Language Support User Exits

The C language user exits are dynamic user exits that can be activated the first
time a C program is called for a given ECB. When the exits are given control, the
first C language stack block has been allocated, and the first stack frame,
containing the library function work area, has been initialized. Information

concerning the C user exit interface can be found in the [[RE_System Installation
Bupport Referencd,

User exits are provided, as follows:

1. The first user exit (CSK, CENV) provides the system programmer the capability
to make changes to the environment.

2. Other user exits support test tools to allow trap points before and after a library
function is called.

3. Two user exits provide access to entry and exit through stack processing.

Extending the Library Function Work Area

The purpose of the library function work area is to provide an area of storage for
data that must be available to various library functions throughout the life of an
ECB. User-written library functions can also require storage of this type in order to
perform their tasks.

The C user exit can be used to allocate and initialize additional storage in the
library function work area for use by library functions. The storage is allocated in the
first stack frame, beginning at the end of the IBM library function work area. This
region is known as the user expansion area. The pointer to the user expansion area
should be loaded by the user library function whenever access to the storage is

desired. See ICading Your Qwn Library Functions, for an example.

Collection of Data

User exits (EFCE and RTNE) can be activated every time a C program is called for
a given ECB, so the number of times the user exit is called in a given time interval

can be accumulated. This can be used to calculate the percentage of ECBs active

in the system, over a period of time, that called C programs.

Customizing User Data Area in ISO-C Modules

The TPF system provides user data areas that can be initialized with user-defined
data at system startup. You can access these user data areas from applications
written in C/C++ by using the data object name for the user data area in the desired
module type. Following is the TPF code segment in which the user data area
resides and the user data area data object name for each module type:

Customizing C/C++ Language Support 313

Module Type

Startup Code Segment

Data Object Name

DLM CSTRTD @@USRDMD
LLM CSTRTL @@USRLBD
DLL CSTDLL @@USRDLD

Object code only (OCO) dummy stub data objects are provided to set up and
initialize the user data areas. These dummy stub data objects consist of the
following code, where @ @USRxxx is the data object name:

@EUSRxxx CSECT

@EUSRxxx AMODE ANY
@EUSRxxx RMODE ANY

DS 0D
DC 4F'0'
END

Note: These stub data objects are autocalled into the module.

You supply your own user data area by replacing the particular existing OCO
dummy stub data object in data set ACP.STUB.REL40 with a user data object by
using the following steps:

1. Create a source segment containing the code for the stub data object you wish
to customize.
2. Substitute your customized data in place of the current data.

3. Assemble the segment with data set ACP.STUB.REL40 as the target for the
object module.

4. Link-edit all modules requiring access to the user data area.

Note: To avoid loading incorrect user data, there should be a single copy of that
particular stub data object and it should be in data set ACP.STUB.REL40.
Delete any copies of the stub data object that are in data set
ACP.CLIB.RELA40.

Character Sets

You must complete a number of offline tasks to create support for a new character
set on the online system.

Choosing a New Character Set

Character sets are chosen on the basis of the kinds of letters and symbols required.
Once these requirements are understood, you can choose the appropriate character
sets. To learn more about character sets, see Character Data Representation
Architecture Reference and Registry.

Translating Character Sets

A character set is referred to by a number called a coded character set identifier
(CCsSID). The TPF system contains characters in one or more CCSIDs (or
TPFCCSIDs).

When the CCSIDs of the TPF system matches another system, no translation is
necessary. If the character sets are different, a translation mechanism must exist to
transform each character from the remote CCSID to a corresponding character of
the TPF system CCSID.

314 TPF V4R1 Application Programming

Suppose the TPF system uses CCSID 500 and the RS/6000 uses CCSID 819. To
communicate with single-byte TPF system using 500, there must be translations
between 819 and 500 available: 819 to 500 for the TPF system and 500 to 819 for
the remote server.

CCSIDs that IBM specifies are in the CSNM table. Code set name table CSNM is
part of the DLM CSNM. This table joins aspects of CCSIDs through calls to the
CSNMC macro. The code set name for a CCSID is the name for the CCSID in the
Character Data Representation Architecture Reference and Registry, the CDRA
code set registry. The CCSID itself is often the numerical part of the registry name.
Each CCSID has a two-letter code associated with it. This code is used with other
two-letter codes to specify a translation. The STYLE parameter of the CSNMC
macro indicates whether the CCSID is single-byte (S), double-byte (D), or
mixed-byte (M). The SINGLE and DOUBLE parameters are required for mixed-byte
CCSIDs. These parameters indicate the CCSIDs for the single-byte and double-byte
components of a mixed-byte CCSID.

CSNMC CODESET='1BM-037',CODE="'EA',CCSID=037,STYLE=S
CSNMC CODESET='1BM-284',CODE="'EJ',CCSID=284,STYLE=S
CSNMC CODESET='IBM-500',CODE="'E0',CCSID=500,STYLE=S
CSNMC CODESET='IS08859-1',CODE='I1',CCSID=819,STYLE=S
CSNMC CODESET='IBM-850',CODE="AA"',CCSID=850,STYLE=S
CSNMC CODESET='IBM-1027',CODE="EX',CCSID=1027,STYLE=S
CSNMC CODESET='IBM-1047',CODE="'EY',CCSID=1047,STYLE=S

CSNMC CODESET="'IBM-300',CODE="EN',CCSID=300,STYLE=D
CSNMC CODESET='IBM-300',CODE="EN"',CCSID=4396,STYLE=D

CSNMC CODESET='IBM-930',CODE="EU',CCSID=930,STYLE=M,
SINGLE=290,DOUBLE=300

CSNMC CODESET='IBM-932',CODE="'AB',CCSID=932,STYLE=M,
SINGLE=897,DOUBLE=301

CSNMC CODESET='IBM-939',CODE="'EV',CCSID=5035,STYLE=M,
SINGLE=1027,DOUBLE=300

Figure 56. An Example of the CSNM Table of CCSIDs

Picking CCSID 500 for the TPF system CCSID and 819 for the RS/6000 system, for
example, requires a translation table called EOI1 (500 to 819). The translation is
done on inbound data and no translation is done on outbound data. Therefore, the
TPF system needs the I1EO table.

Changes to the CSNM table are not needed unless you are adding a CCSID for a
code page that is entirely new.

Defining a Translation

Translations are defined using the CSNM table by specifying the code set registry
name, the two-letter code, the CCSID, and the STYLE parameter. A translation
table is required that corresponds to this CCSID specification.

The tables for many CCSIDs are shipped as a part of the IBM C language support
product. The name of the code page for the character set consists of the product
identifier, EDCU, followed by the two-letter code of the character set. Two code
page tables are joined to create a translation table. The names of the translation
tables provided by IBM C language are of the form EDCUxxyy, where xx is the
two-letter code for the TPF system table and yy is the two-letter code for the remote
table. These tables are used as input to the GENXLT program.

Customizing C/C++ Language Support 315

Translating on a TPF System

On a TPF system iconv runs online. This requires the translation table it uses to be
constructed in the form of a DLM and that its name conform to TPF naming
standards.

The EDCGNXLT process uses TPF code sets and the remote code sets to create
translation tables. m shows a part of the EDCUEOI1 GENXLT translation
table for IBM-500 to 1SO8859-1 CCSID 819.

0x00 0x00 <NUL>

0x01 0x01 <SOH>

0x02 0x02 <STX>

0x03 0x03 <ETX>

0x04 0x9c <SEL>

0x05 0x09 <tab>

0x06 0x86 <RNL>

0x07 0x7f

0x08 0x97 <GE>

0x09 0x8d <SPS>

0x0a 0x8e <RPT>

0x0b 0x0b <vertical-tab>
0x0c 0x0c <form-feed>
0x0d 0x0d <carriage-return>

0x7f 0x22 <quotation-mark>
0x80 0xd8 <0-slash>

0x81 0x61 <a>

0x82 0x62

0x83 0x63 <c>

0x84 0x64 <d>

0x85 0x65 <e>

0x86 0x66 <f>

0x87 0x67 <g>

0x88 0x68 <h>

0x89 0x69 <i>

0x8a Oxab <left-angle-quotes>
0x8b 0xbb <right-angle-quotes>
0x8c 0xf0 <eth>

0x8d 0xfd <y-acute>

0x8e 0xfe <thorn>

0x8f 0xbl <plus-minus>
0x90 0xb0 <degree>

0x91 Oxba <j>

0x92 0x6b <k>

0x93 0x6c <1>

Figure 57. An Example of a GENXLT Translation Table

The EDUGNXLT program generates a translation table which must be built into a
DLM for online use. The IBM-supplied translation DLMs are called CPGx (where x
is0, 1, ..., 9). (User-supplied translation DLMs can be used in the JCL that runs the
ECUGNXLT job as well.) The name of the CPGx (or user-supplied) DLM is paired
with the original set of two-letter codes and placed in a table in a segment called
CPGS. For example, in the IBM-supplied table, I1EO is paired with CPGO, AAEY
with CPG1, and ABEU with CPG9. These form an xxyy pair that is used at run time
to find the CPGx name of the DLM that is required to perform the translation. The

316 TPF V4R1 Application Programming

pairings for new translation tables are added to this table; CPGS is recompiled,
linked, and loaded, along with the new DLM that contains the translation tables.

Keeping CCSIDs Compatible

When deciding on mixed-byte character sets, it is critical to use CCSIDs that are
compatible. Just because a given CCSID refers to a single-byte character set, it
does not mean that the CCSID can be used wherever a single-byte character set is
needed. For example, consider m, which displays compatible Japanese to
ASCII or EBCDIC CCSIDs.

Table 25. Compatible Single-, Double-, and Mixed-Byte CCSIDs

Character Set Single CCSID Double CCSID Mixed CCSID
Japanese to ASCII 897 301 932
Japanese to EBCDIC 290 300 930

The 897 CCSID cannot be used in place of 290 because 897 is not compatible with
the 930 CCSID. The 930 CCSID is constructed so that it is compatible with 290, not
with 897. If you use incompatible CCSIDs, connections from the TPF system to
remote systems may be refused. The purpose of the SINGLE and DOUBLE
parameters is to help keep the component CCSIDs consistent. It is the user’s
responsibility to define mixed-byte CCSIDs with the CSNMC macro using
single-byte and double-byte CCSIDs associated with the mixed-byte CCSIDs. For
more information see Character Data Representation Architecture Reference and
Registry.

Creating a Translation Table

Some sites may require code sets in addition to those provided with the TPF
system product. Information and procedures for additional code sets are obtained
from the MVS Language Environment (LE) product.

The first step is to identify the additional code sets that you need. To do this, review
the following publications for the characteristics of the various code sets that are
available and select compatible code sets.

» Character Data Representation Architecture Reference and Registry (called the
CDRA Registry)

» Language Environment Programming Guide
» Language Environment Programming Reference.

To create a translation table you must find the code pages for the code sets
corresponding to the application requester (on the TPF system) and the application
server (on the remote server). These code pages reside either in the data sets for
GENXLT support for LE or on the CD-ROM that accompanies the CDRA registry. If
the code pages are on the CD-ROM bring them online according to the instructions

that follow ésee I'Creating Translation Tables That Do Not Exist in the | F Data Sets]|

). Once online, the procedure for creating the translation table is the

same.

When the Translation Table Data Sets are Online

When the data sets that contain the desired translation tables are found in LE
GENXLT support, the code page data sets do not need to be loaded from the
CDRA registry CD-ROM. The data sets are identified by using the two-letter codes
that identifies each code page. This two-letter code is found in the CDRA registry.
For instance, the two-letter code, EO, identifies code page 500 and the two-letter

Customizing C/C++ Language Support 317

code, 11, identifies code page 819. The two-letter codes are joined (source-target)
to identify a translation table (EDCUILEO, where EDCU is a common file name
prefix for translation tables).

Having located the data set with the correct translation table, the EDCGNXLT load
module creates an object file that can be used on the online TPF system.
EDCGNXLT is called using JCL, as shown in the example (in).

e e o oo ko ok o ko ke o koo ko ok ko ek ok ke ek ok ek ek ok
LANGUAGE ENVIRONMENT FOR MVS & VM
EDCGNXLT--- INVOKE THE GENXLT UTILITY

RELEASE LEVEL: vv.rr.mm (VERSION.RELEASE.MODIFICATION LEVEL)

EE I R
* Ok 3k X X X F

""""""" Kook ek ok ko ko ok ko ok koo ko ok ko ok ko ko ok ko ok ko ok ok ok

* *

INFILE=, < INPUT DATA SET CONTAINING A SOURCE
TRANSLATION FILE

REGSIZ='6144K", < GENXLT REGION SIZE

OPT=, < GENXLT OPTIONS

OUTFILE=, < OUTPUT DATA SET FOR GENERATED OBJECT
<

LIBPRFX="PROD.CEE.V1R4MO' PREFIX FOR LIBRARY DSN CONTAINING

GENXLT MODULE

*

EDCGNXLT STEP:
INVOKE EDCGNXLT MODULE TO READ THE SOURCE TRANSLATION FILE
AND PRODUCE AN OBJECT SUITABLE TO BE LINKED AND LOADED ON TPF.

* o

EDCGNXLT EXEC PGM=EDCGNXLT,REGION=®SIZ,PARM="'&0PT'

STEPLIB DD DSNAME=&LIBPRFX .SCEERUN,DISP=SHR

SYSIN DD DSN=&INFILE,DISP=SHR

SYSPUNCH DD DSN=ACP.DRVE.TEST.O0B2(CPGO),DISP=0LD,
DCB=(BLKSIZE=400,DSORG=P0)

SYSPRINT DD SYSOUT=+

Figure 58. A GENXLT Procedure for Preparing Translation Files

In the previous example, the INFILE data set is an input translation table that
correspond to the code pages of the application server of the remote server and the
TPF system application requester (EDCUILEO).

GENXLT support is documented in the Language Environment Programming Guide.

The following shows a connection from the TPF system to a server on a RS/6000
system. The TPF system code page is 500 and the RISC code page is 819. The
translation table used as input on the INFILE statement in the JCL is found in the
Language Environment Programming Guide. 11 identifies code page 819 and EO
identifies code page 500. So, the input translation table is EDCUILEO. For the TPF
system the standard file name prefix EDCU is dropped and the object module is
called I11EO. This prevents conflicts with any name spaces in the Language

Environment. Eigure 59 on page 319 shows the modified JCL.

318 TPF V4R1 Application Programming

R R R R R R S R R R S R R R S R R R R Tt T R S S

: LANGUAGE ENVIRONMENT FOR MVS & VM :
: EDCGNXLT--- INVOKE THE GENXLT UTILITY :
: RELEASE LEVEL: vv.rr.mm (VERSION.RELEASE.MODIFICATION LEVEL) :
* *

INFILE=, < INPUT DATA SET CONTAINING A SOURCE
TRANSLATION FILE

REGSIZ='6144K", < GENXLT REGION SIZE

OPT=, < GENXLT OPTIONS

OUTFILE=, < OUTPUT DATA SET FOR GENERATED OBJECT
<

PREFIX FOR LIBRARY DSN CONTAINING
GENXLT MODULE

LIBPRFX="PROD.CEE.V1R4MO'

* EDCGNXLT STEP:
* INVOKE EDCGNXLT MODULE TO READ THE SOURCE TRANSLATION FILE
* AND PRODUCE AN OBJECT SUITABLE TO BE LINKED AND LOADED ON TPF.

EDCGNXLT EXEC PGM=EDCGNXLT,REGION=®SIZ,PARM='&0PT'

STEPLIB DD DSNAME=&LIBPRFX .SCEERUN,DISP=SHR

SYSIN DD DSN='INPUT.TRANSLATE.TABLE.SCEEGXLT(EDCUI1EO) ' ,DISP=SHR

SYSPUNCH DD DSN='MY.OBJECT.DATA.OB(I1E0)',DISP=0LD,
DCB=(BLKSIZE=400,DSORG=PO)

SYSPRINT DD SYSOUT=*

Figure 59. A GENXLT Procedure for Preparing Translation Files Filled Out

The object I1EO that contains the translation table is placed in user data set
MY.OBJECT.DATA.OB by the EDCGNXLT program.

Packaging Translation Tables
The translation table object files are built into individual DLMs. The names of the

DLMs and object files must not match (so that the correct entry point is available).
The CPGO DLM name is reserved. The TPF system uses DLMs named CPGx and
DLM build scripts named CPGxBS. Added DLMs name should be in the user file
name space.

The translation table DLM is created using a build script and the CBLD tool, a part
of SIP. The build script JCL must refer to the CSTRTD and CENTPT modules,
followed by the name of the translation table object module. w shows a
typical translation table DLM build script.

HH##### A AR A AR AR A A AR A A AR A AR AR A A A

DLM CPG1vv # Include start-up code for DLM
#0bject File Function

B emcmoo-

CENTPT # return entry point address

I1EO # GNXLT translation table 500-819

Figure 60. Build Script for a Single-Byte Translation Table Object File

When the CBLD tool reads this build script as input, it produces JCL with an input
to the linkage editor as shown in Ei

Customizing C/C++ Language Support 319

//PLKED.SYSIN DD *
INCLUDE OBJLIB(CSTRTD40)
INCLUDE OBJLIB(CENTPT)
INCLUDE OBJLIB(IIEQ)
/*
//LKED.SYSLMOD DD DISP=0LD,DSN=ACP.DEVP.TEST.LK(CPG1vv)

Figure 61. DLM Build Script JCL for a Single-Byte Translation Table Object File

An additional object module, CHCS, is required when the complex converter is
used. The complex converter is a program that handles the conversion between
mixed-byte code pages. For example, conversion from Japanese EBCDIC to
Japanese ASCII (for example, 939 to 930) requires the use of the complex
converter. The complex converter is not used when single-byte code pages (for
example, 500 to 819) are translated. m shows the complex converter build
script.

ifgdddgadddaaddgadddaadddadadpaddaaddadstadiddaddtsagdadddiaii

DLM CPG1vv # Include start-up code for DLM
#0bject File Function

$omommmeem oo

CENTPT # return entry point address
CHCS # complex converter

EVEU # GNXLT translation table 939-930

Figure 62. Build Script for a Mixed-Byte Translation Table Object File

Loading Translation Tables Online

Before loading the translation table DLM to an online TPF system, the name of the
DLM and the various kinds of code page identifications are added to two system
structures:

1. The CPGS segment contains a table relating the translation table object name
and the DLM where the translation table resides. m shows a sample
translation table with object I11EO residing in DLM CPGO.

table_entry table[table_len] =
{
{"I1E0","CPGO"}, /*single 819 to single 500%/
{"EVEU","CPG1"}, /*mixed 939 to mixed 930%/
{"AAEY","CPG2"}, /*single 850 to 1047 =/
{"AAEO","CPG3"}, /*single 850 to single 500%/
{"ABEX","CPG5"}, /*mixed 932 to single 1027*/
{"ABEL","CPG6"}, /*mixed 932 to single 290%*/
{"ABEN","CPG7"}, /*mixed 932 to double 300%/
{"ACEX","CPG8"}, /*single 897 to single 1027%/
{"ABEU","CPG9"}, /*mixed 932 to mixed 930%/
{"0000","0000"}, /*end of tablex/
1

Figure 63. Table of Translation Table Object Names and DLMs

2. The CSNM segment, an extract of which appears in Eigure 64 on page 321,

contains various kinds of information that is used to identify a code page.

320 TPF V4R1 Application Programming

CSNMC CODESET='IBM-500"',CODE="EQ",CCSID=500,STYLE=S
CSNMC CODESET='IBM-819',CODE="'I1",CCSID=838,STYLE=S

CSNMC CODESET='IBM-930',CODE="'EU',CCSID=930,STYLE=M,
SINGLE=290,DOUBLE=300

CSNMC CODESET='IBM-939',CODE="'EV',CCSID=5035,STYLE=M,
SINGLE=1027,DOUBLE=300

Figure 64. CSNM Table Showing Code Set Information

The same information for any code sets that are used in a new translation table
must appear in the CSNM table, whether a code set is in the table initially or is

added by a user. Required information is available from the CDRA registry and

the Language Environment Programming Guide.

Once these system structures are updated, the translation table DLMs can be
linked and loaded using the TPF loader (TPFLDR) like any other DLM. System
operators use the ZSQLD command to add or modify relational database definitions
with CCSID and TPFCCSID parameters identifying the new translation tables.

Creating Translation Tables That Do Not Exist in the LE Data
Sets

A CD-ROM that contains all possible translation tables is shipped with the character
data representation architecture (CDRA) registry. Using the instructions provided in
CDRA registry, load a translation table from the CD-ROM. This translation table
must be processed into a form that can be read by GENXLT. Eigure 63 shows an
example of a tool to put the translation table into the correct form.

/% */
arg fn ft fm
'pipe < 'fn ft fm ,

| fblock 1 /*one char wide */

spec number from 0 1.3 1-1 4 ', /*add record number */
spec 1.3 d2x 1 4.1 9 ', /xconvert it to hex x/
9.1 2 ', /xconvert those to chars =/

Specs 1-* C2X 1 ', /*convert it all to text */
spec /0x/ 1 1.2 next /0x/ 10 3.2 next /<comment>/ 15 ',

"| spec 7.2 x2c 1.1
"I > 'fn ' twocolum a !

Figure 65. Sample Tool to Convert CD-ROM Translation Table Data

Once the translation table is online and in a form acceptable to the EDCGNXLT
program, the procedure proceeds as though the translation table was found in the
data sets for GENXLT support.

Summary of Steps Needed to Create a New Translation Table:
1. Creating the translation table:

a. ldentify the code pages of the server and requestor.

b. Ensure the Language Environment support is installed on MVS.

c. Create JCL to call EDCGNXLT to create a translation table.
2. Packaging the translation table:

a. Name restriction: the DLM name cannot contain an object with same name
as the DLM.

b. Create the build script with the following entries:
CSTRTD
CENTPT

Customizing C/C++ Language Support 321

ILEO (or the name of the object created by GENXLT).

c. If this is a complex converter (such as, Japanese EBCDIC to Japanese
ASCII) the entries are:
CSTRTD
CENTPT
CHCS
I1EO.

3. Loading the translation tables to the TPF system:
a. Update segment CPGS to map I1EO to CPGx (or a user DLM)
b. Check segment CSNM to make sure there is an entry for this code page.
c. Build and load DLM CSNM.

Installing Additional ISO-C Library Functions

Prelinking and

There are several mechanisms at work to create library functions for ISO-C.

Linking

Function libraries are nothing more than previously compiled code that can be used
by newly compiled code for some purpose. Frequently used ISO-C code can be
collected into common library routines available to all ISO-C programs. System
programmers may create site dependent versions of C input/output functions (like
gets and puts). Similarly, extensions to ISO-C libraries can be used to enforce
common programming techniques and support specific kinds of data. These
libraries can be used with the libraries shipped by IBM to enhance the C
programming environment.

The process of making code in libraries available to user programs is called linkage.
It is performed by a linkage editor. In ISO-C, there is prelinkage before linkage.

Functions that are called in the user program are represented in the stub library.
For example, the user can call for the malloc function in their program. There is a
stub for malloc which consists of a library lookup for the code that actually
implements the action of malloc.

The library vector (LIBVEC) consists of slots for addresses that show the location of
each function in the library. The linkage editor uses the library vector and the
composite object file to create the load module containing the machine code and
relocation information for the user’s program. The load module ultimately is loaded
and run on TPF. See [Eigure 66 on page 323 to see how the offline support of ISO-C
relates to the online support.

322 TPF V4R1 Application Programming

- TPF Startup
Source Program Stub Library Source
Tool Interface Assembler
Statements P
Compile or Interf Tool rograme
nterface| Too
Assemble Stub | Generator lAssembk?r
v v I l
Obiject File DLM Stub C Stub | LIBVEC | Startup
Library Library Code
Library
Prelinkage
A4
Composite . <« <«—
Object File [* «))
Linkage Overall Linkage Process
Editor
v
Load
Module
Offline
Loader
v
Tape -
Offline Online Fetch Main
Loader Loader DASD Mechanism
General Library Storage
File Image

Figure 66. ISO-C Compile, Link, and Load Process

Library Interface Tool

This section describes the library interface tool.

Purpose

The library interface tool produces a library transfer vector (LIBVEC) and the library
call linkage stubs. Eigure 67 on page 324 shows the relationships found in the tool.
To do this, the tool reads a file defining the library ordinal numbers and the
functions contained in the libraries. These files are called library interface scripts.
The library interface scripts define the libraries using @libid and @libfun
statements.

Note
FYou do not need the library interface tool for dynamic link libraries (DLLS).

Customizing C/C++ Language Support 323

Library Interface Script

@libid(0005,LIB1)

@libfun(0000,funcl)

@libfun(0001,func2) Library Interface

\ 4

Tool
@libfun(0002,func3)
[]
[]
[]
¥ LIB1IXV
FUNC1 A(FUNC1)
function_displacement A(FUNC?2)
is equal to 0 FUNC2
A(FUNC3)
function_displacement
is equal to 4 FUNC3
function_displacement
is equal to 8
Library Call Stubs Primary LIBVEC

Figure 67. Output of the Library Interface Tool

Library ordinals are extremely important because they identify the library in the
online system (using the array of library addresses). There are 1024 library ordinals
available and 1024 functions can appear in each library. So, you can refer to more
than 1 million functions throughout all the possible libraries. Of the the library
ordinals, IBM reserves ordinals in the 0—199 range for its own use and the
remainder (200-1023) for users.

The first non-comment line in a build script defines the library ordinal and library
name. The remaining non-comment lines specify the ordinal numbers and names
for the functions in the library.

Requirements and Restrictions

* The ordinal numbers for the libraries and the functions specified in the library
interface scripts must correspond exactly to the ordinals for the libraries and
functions loaded online.

« Each function defined in the library interface script must also be defined in one of
the object files included in the library, or the results of calling the function are
undefined.

324 TPF V4R1 Application Programming

* Some common rules govern interface tool statements. Each statement is
restricted to a single line. Comments begin with the number sign (#) and continue
for the remainder of the input line. Blank lines are ignored.

+ Refer to [PE_General Macrod, TPE System Macrod, or [PE Operations for
information on how to read syntax diagrams that represent the statement
formats.

Format for the @libid Statement

»»>—Q1ibid(library ordinal number,library name) <

library ordinal number
the decimal ordinal number of the library

library name
the name of the library

Additional Information
* Only 1 @libid statement can be used in each library interface script

* Every library must have a unique ordinal number. Each library should have the
same ordinal on every processor where it is loaded. This is especially important
when using libraries or code imported from another installation.

* The name is 4 characters long and must be unique.

Format for the @libfun Statement

(1)

»>—Y @1ibfun(fn ordinal number,fn external name,fn internal name)

Notes:

1 Each repetition takes place on a new line.

fn ordinal number
the decimal ordinal number of the function. The function ordinal is the number
of the function in the library. The position in the file of the @libfun statement
specifying a function has no effect on the ordinal of the function.

fn external name
The external name is the name of the function to be used by callers (users of

the library). The internal_name is the name of the function in the library.

fn internal name
The internal name is optional and defaults to the external_name if it is not used.

Additional Information
* Only 1 @libfun statement should appear for each function being defined.

Customizing C/C++ Language Support 325

For each @libfun statement you must also define a library function within the
library load module. The name of the function is the same as the internal name
defined by the @1ibfun statement (if fn internal name is not specified, then the
internal name is the same as fn external name). If no such function is defined, a
call stub for the function will still be generated, and the results of calling the
function will be indeterminate. During development, before the library is fully
implemented, coding an empty function that just returns, or one that only takes a
snap dump, for each unimplemented function will ensure that the library works in
a predicatable manner.

Example of a Library Interface Tool Script
This script creates a small ISO-C library. There are several points to notice:

The name of the library, ASHB, appears in the @libid statement. The ordinal
number of the ASHB library is 13. Notice that the line immediately following the
@libid statement is blank.

The order that the functions appear in the library depends solely on the ordinal
specified. The order they appear in the list has no bearing on the order of
functions in the library. It is not required that the ordinals be in increasing order.

Function 8, good1, was commented out. It does not appear in the finished library.

The cursr function is defined to appear at the end of the library generated. The
programmer who created the list ensured that it would appear as the last function
in the library by making its ordinal 1023. Where cursr appears in the input list has
no effect.

The die function has an internal name as well as an external name. The internal
name (_TPFABRT) is what the members of the library are called by the library,
and the external name (die) is used by callers.

iggaddddddddddddddsddasdanaaasaaaaaaaaaaaaaaaagaaiaaapiaaidddddd

@1ibid(0013,ASHB) # Ashby's Gems
@1ibfun(0000,mysort) # Called by payroll program
@1ibfun(0001,die, TPFABRT) # stop it, please
@1ibfun(0003,qsortl) # quicker
@1ibfun(0005,qsort2) # maybe

@1ibfun(0007,token) # get next word
@1ibfun(0002,hell0)

@1ibfun(0004,mydate) # provides sensible date data
@1ibfun(0006,myssm)

#####1ibfun(0008,good1) # Use another version
@1ibfun(1023,cursr) # last function in Tibrary

Running the Tool

The tool runs as an offline '!ob. It uses several data sets as specified in the data
sets table on page

Table 26. File Specifications for the Library Interface Tool

DD Name DCB Characteristics Purpose

SYSIN LRECL=80, Input file of library interface
RECFM=F or statements - the interface script
RECFM=FB

SYSPRINT Output file for tool messages

326 TPF V4R1 Application Programming

Table 26. File Specifications for the Library Interface Tool (continued)

DD Name DCB Characteristics Purpose

SYSXV LRECL=80, Output object file for the library
RECFM=F or transfer vector (LIBVEC)
RECFM=FB

SYSCLS LRECL=80, Output object partitioned data set
RECFM=F or (PDS) containing the library call
RECFM=FB linkage stubs.

There are 2 run-time parameters: MSGS and SOURCE. They regulate the
information provided to SYSPRINT.

MSGS
lists only library interface tool messages. This is the default.

SOURCE
lists the input statements interspersed with any messages from the library tool.

The JCL necessary to run the interface script is straight forward. The program
name, LIBlvy, is requested to run from the ACP.LINK.RELvv library. According to our
previous example the interface statements are found in a file called ASHBXVwv in
the ACP.CSRCE.RELvv dataset. SYSPRINT is to the standard output file, SYSOUT.
The library vector (LIBVEC) is put in the LIB1XVvv member of ACP.CSRCE.RELvv,
overriding any existing version as LIBI proceeds. The stub library is put in the
ACP.CLIB.RELwv file. Any error messages displayed are documented in the Offline

section of [[PE Messages, Volume 1l and

//LIBINTFC EXEC PGM=LIBIvv,REGION=4M

//STEPLIB DD DSN=ACP.LINK.RELvv.BSS,DISP=SHR

// DD DSN=LE.V1R3MO.SEDCLINK,DISP=SHR

// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR

//SYSXV DD DSN=ACP.0BJ.RELvv.BSS(ASHBXVvv),DISP=0LD
//SYSCLS DD DSN=ACP.CLIB.RELvv.BSS,DISP=0LD

//SYSIN DD DSN=ACP.CSRCE.RT.RELvv(ASHBXVvv),DISP=SHR
//SYSPRINT DD SYSOUT=A

/*

SOURCE

MSGS

/*

Return codes indicate if the tool successfully built the library vector and stub library.

Code Meaning

0 indicates successful completion and informational messages
4 indicates unsuccessful completion and one or more warning messages as
the highest severity
8 indicates unsuccessful completion and 1 or more error messages as the
highest severity
16 indicates unsuccessful completion.
DLM Call Stub Generator

This section describes the DLM call stub generator.

Customizing C/C++ Language Support 327

Purpose

The DLM call stub generator adds stubs to an object library of call stubs. Any entry
point function called by an ISO-C load module must have a stub produced by the
generator. The stubs are statically linked to an ISO-C program using the autocall
mechanism during prelinking. The program name and PAT displacement is
generated as a weak TPF VCON in the stub object module. The weak VCON is
resolved when the offline loader runs.

Note
All load modules need the DLM call stub generator to generate the stubs for
other E-type programs external to themselves that are called with TPF
Enter/Back services.

Requirements and Restrictions

* The input file is a list of 4-character program names, 1 per line.

* Comments are specified by the number sign (#) and are similar to the comments
in the library interface tool.

» Stubs can be produced for allocated or unallocated programs. The names are
not checked against the program allocator list (PAL).

* Blank lines are ignored.

Format for a DLM Stub Generator Statement

(1)

»»—Y Function Name

v
A

Notes:

1 Each repetition takes place on a new line.

Function Name Name of a function found in any DLM.

Running the Generator
[fahle 27 lists the data sets required by the stub generator.

Table 27. File Specifications for the DLM Call Stub Generator

DD Name DCB Characteristics Purpose

SYSIN LRECL=80, Input file of DLM call stub
RECFM=F or generator statements - the
RECFM=FB generator script.

SYSPRINT Output file for generator messages.

STUBS LRECL=80, Output object partitioned dataset
RECFM=F or (PDS) generated.
RECFM=FB

328 TPF V4R1 Application Programming

The JCL needed to run the stub generator is quite simple. The generator
(CSTUBGW) is set up to run using the version on the ACP.LINK.RELvv library. The
listing goes to SYSPRINT, which is set to standard output. The object file file
containing the stubs is written through DD name STUB in the PDS
ACP.STUB.RELvv. The input to the generator appears right after the SYSIN DD *.

There are 3 comment lines followed by 3 lines indicating routines to put into the
stub object file. Comments follow each routine showing where the calling routines
are.

//CSTUBGEN EXEC PGM=STUBvv,REGION=4M
//STEPLIB DD DSN=ACP.LINK.RELvv.BSS,DISP=SHR
// DD DSN=LE.V1R3MO.SEDCLINK,DISP=SHR
// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR
//STUB DD DSN=ACP.STUB.RELxx.BSS,DISP=0LD
//SYSPRINT DD SYSOUT=A

//SYSIN DD *

#

Generate 3 stub object modules

#

PGM1 # called by DLM1

PGM2 # called by DLM2

UIIO # called by DLM1 and DLM2
/*

Return codes indicate if the generator successfully built the stub object file. A stub
is generated for each program name in the input file. If an error occurs or a problem
prevents stub generation, an error message is displayed in SYSPRINT and a
nonzero return code is set. Each error message contains the line number of the
corresponding input line. The return codes are:

0 indicates successful completion and all stub object modules generated

4 indicates a warning that there were no program names provided in the input
file, so no stubs were generated.

8 indicates an error that prevented 1 or more stub object modules from being
generated.

16 indicates that the error message file could not be opened.

ISO-C Load Module Build Tool (CBLD)

Purpose

This section describes the ISO-C load module build tool.

The C load module build tool (CBLD) creates the job control language (JCL)
needed to make files from compiled or assembled object files. Input to the C load
module build tool consists of build script input records, collectively called a script,
and comments.

The C load module build tool is called by SIP to generate the JCL needed to prelink

and link-edit run-time (nondynamic) libraries, DLMs, or dynamic link libraries (DLLS).
It can be used as a front-end utility to assist application programmers.

Customizing C/C++ Language Support 329

Requirements and Restrictions

» The first build script input record must specify DLM, LIBRARY, or DLL, followed
by the load module name and version. Load module names are 4 characters
long and are immediately followed by a 2-character version. Object file names
and versions follow, 1 per line.

* The requirement for an object file is to be 4 to 6 characters, followed by a
2-character version. You can code the name anywhere in columns 1—72; the
convention is to start the name in column 1.

Note: See [TPE Programming Standards for more information about naming

conventions.

* Comments begin with a number sign (#) and continue to the end of the source
record. The beginning of a comment can occur anywhere in a library interface
instruction. There are no special continuation characters to join 2 lines.

* The build tool adds an INCLUDE OBJ line in the output JCL file. If no characters
are in columns 1-72, the line is considered blank and ignored. This allows for
library systems that put sequence numbers in columns 73-80. There are no
continuations. The build tool does not provide a warning message.

Note: The data set itself can have a RECFM of V and an LRECL greater than
73.

» If an @IMPORTDS statement is in the build script, CBLD will include data sets in the
output JCL file for definition side-decks imported by the DLL.

* No check is made for duplicate object file names in the output JCL.

Format for a Load Module Build Tool Statement

> DLM |_ _| —module_nameyy ><
XX
LIBRARY—L—_|—
XX
S
XX
(1)
»—Y object filezz ><
Notes:
1 Each repetition takes place on a new line.

module_name
Name of the load module being created.

XX Yy 2z
Two-digit, alphanumeric version codes.

330 TPF V4R1 Application Programming

When DLM, LIBRARY, or DLL has a version code, the version appears on the
DLM, library, or DLL startup code (CSTRTDxx, CSTRTLxx, or CSTDLLXX,
respectively). If DLM, LIBRARY, or DLL does not have a version code supplied,
version 40 is used as the default. Similarly, if the version code supplied is not
valid, version code 40 is used.

Sample Load Module Build Scripts

The following shows an example of a build script for a dynamic load module (DLM).
The load module in this example is a non-DLL application because there are no
@IMPORTDS statements.

[fgdddsadddaddddadsdaaddtadatpdddadddaadddaddaaddadadaaddtaagddadatia

#
SCRIPT NAME..... CDMOBS
#o #
#

[fgddddadddaaddadddaadddadadpaddsaaddaadadaaddpaddadadaagdsaaddadadi

DLM CDMOLB # Include startup code for DLM

#0bject File Function Source Language
Bommmmmmel mmmeoC ol
CDMAINLB # ZDMAP command C
mainline routine
CDMPRSLB # zdmap_parse C
CDMHLP40 # zdmap_help C
CDMDSPF1 # zdmap_display C
CDMER140 # zdmap_parse_error_handler; error C
messages in 1000 range
CDMER240 # zdmap_retrieve_error_handler; C
error messages in 2000 range
CDMER340 # zdmap_process_error_handler; C
error messages in 3000 range

The load module that results from this sample script is CDMOLB, where LB is the
version code.

Note: With link map support, if the object file name plus the version code is greater
than 8 characters, an error message will be written to the message file and
the INCLUDE card will not be written to the generated JCL deck.

The following shows an example of a build script for a DLL.
lgddgddaddaddaddaddasaspddaadsddsgagsdadadaadaadaatagtagagagsadia

#
SCRIPT NAME..... QZZ2BS
#
#

#H###### A A FH A A F A A AR RS AR A A A A AR A A A

DLL QZZ2RX # Include startup code for DLL

Q@IMPORTDS CPP140 # Include a definition side-deck
Q@IMPORTDS DLL3RK # Include a definition side-deck

#0bject File Function Source Language
Boememmm emmm——e— oo
QzZz2A41 # QZZ2A function C++

Qzz2B41 # QZZ2B function C

Customizing C/C++ Language Support 331

Note: With the DLL keyword, CSTDLL startup code is used. The @IMPORTDS
statements indicate the definition side-decks that this DLL imports from.
@IMPORTDS statements must follow the DLL statement and precede the list of
object files to be included.

The following shows an example of a build script for a DLM that is a DLL
application.

#H###### A HH AR A A A A A AR A A AR A AR

#
SCRIPT NAME..... QZZ1BS
#
#

LR3I TTTTTTTT T T AT 8 E d & 338818838 44
DLM QZZ1RX # Include startup code for DLM (DLL application)

Q@IMPORTDS QCCC41 # Include a definition side-deck
Q@IMPORTDS QDDDRX # Include a definition side-deck

#0bject File Function Source Language
Bommmmmmmmem oo -
QZZ1A41 # QZZ1A function C

QZZ1B41 # QZZ1B function C++

Note: DLL applications use the DLM keyword in the build script. CSTRTD startup
code is used. The @IMPORTDS statements indicate the definition side-decks
that this DLL application (DLM) imports from. @IMPORTDS statements must
follow the DLM statement and precede the list of object files to be included.

Running the Build Tool

332

The C load module build tool (CBLD) requires 3 data sets, as described in fanle 24,
Table 28. C Load Module Build Tool Data Sets

C Definition Purpose

stdin Input file containing a C load module build script.

The user specifies the name of a file, called the Load Module Build
Script.

stdout Output file containing JCL to link the object files.

The user specifies the name of a file used to write the JCL to link the
load modules. This file can be modified before it is run on MVS.

stderr Output file for C Load Module Build Tool messages.

The user specifies the name of a file used to write messages, including
error messages. Read this file before the JCL is sent to MVS for
execution.

The JCL needed to run the build tool is quite simple.

//CLMBUILD EXEC PGM=CBLDxx,REGION=4M

//STEPLIB DD DSN=ACP.LINK.INTGvv.NBS,DISP=SHR
// DD DSN=LE.V1R3MO.SCEERUN,DISP=SHR
//SYSUDUMP DD DUMMY

//SYSABEND DD DUMMY

TPF V4R1 Application Programming

//SYSPRINT DD DSN=ACP.LK.RELxx(myprgvv),DISP=(NEW,PASS),UNIT=SYSDA,

// DCB=(BLKSIZE=400,RECFM=FB, LRECL=80)

//SYSIN DD DSN=ACP.SRCE.OL.INTGvv(myprgvv),DISP=SHR
/*

where

* ACP.LINK.RELxx contains the CLBDxx program to be executed.
* ACP.OBJ.RELxx(myprgvv) contains the input file or load module build script.
SYSIN records can also be defined in the input stream rather than in a data set.
* ACP.LK.RELxx(myprgvv) will contain the output JCL.
* CBLDxx can have the NOJCL parameter added. Adding it looks like:
//CBMBLD EXEC PGM=CBLDxx,PARM='NOJCL',REGION=4M

This parameter suppresses the generation of the JCL decks for prelinking and
linking, and only generates the list of INCLUDE files. There is no JCL parameter.
If NOJCL is not specific, the JCL decks are generated by default.

Return codes indicate if the generator successfully built the JCL object file.

Code Meaning

2 Successful completion with only informational messages.

4 One or more warning messages were generated, but no error or fatal
messages.

8 One or more error messages were generated, but no fatal message.

16 The tool ended with a fatal message.

When the build tool completes successfully, a JCL deck has been generated that
will link the object library or DLM specified. The linkage editor, EDCPL, takes the
object files specified (in this case using SYSIN) and produces a linked load module
in the ACP.LK.RELvv data set.

For link map support, the generated JCL deck has extra data. For each included
object file (excluding the startup code), the following three cards are added before
each INCLUDE card:

1. An ESD card for a symbol named @@LMnnnn, where nnnn is a 4-digit value
beginning with 0001.

2. ATXT card, which contains 8 bytes of character data. The first 6 bytes are for
the name of the object file and the last 2 bytes contain the version code.

Note: If the object file name is less than 6 characters, the name is
blank-padded on the right. The version code is always in bytes 7 and 8.

3. An END card.

With the addition of these three cards, the prelinker and linkage editor create an
8-byte CSECT before each object file. The symbol named in the ESD card is found
by the offline loader so that the address of each 8-byte CSECT can be placed in
the link map.

After the INCLUDE card for the last object file, the following cards are added by
CBLD to build a final CSECT:

1. An ESD card for a symbol named @@LMnnnn, where nnnn is a 4-digit value
that is one digit higher than the previous value used.

Customizing C/C++ Language Support 333

2. A TXT card, which contains the following 16 bytes of eye-catcher character
data: 'END_OF_LAST OBJ'

3. An END card.

This CSECT is used to mark the end of the last object file so that its size can be
determined.

The sample JCL that is generated for CDMOLB used a DLM specification on input.
This can be seen by the inclusion of the CSTRTD object file (the DLM startup code)
at the beginning of the list of object files to include.

The ESD, TXT, and END cards generated by CBLD contain some unprintable
characters that cannot be seen in the following examples.

//$CDMOBS1 JOB ...

//PRELINK EXEC EDCPL,COND.LKED=(0,NE),

// LPARM="'AMODE=31,RMODE=ANY,LIST,XREF"
//PLKED.SYSLIB DD DSN=ACP.CLIB.RELxx,DISP=0LD
// DD DSN=ACP.STUB.RELxx,DISP=0LD
//PLKED.OBJLIB DD DSN=ACP.0BJ.RELxx,DISP=SHR
//PLKED.SYSIN DD =*

INCLUDE OBJLIB(CSTRTD40)

ESD 0ELMO001

TXT CDMAINLB

END 1569623400 010195215
INCLUDE OBJLIB(CDMAINLB)

ESD @ELMO002

TXT CDMPRSLB

END 1569623400 010195215
INCLUDE OBJLIB(CDMPRSLB)

ESD ©@ELMO003

TXT CDMHLP40

END 1569623400 010195215
INCLUDE OBJLIB(CDMHLP40)

ESD @RLMO0O04

XT CDMDSPF1

END 1569623400 010195215
INCLUDE OBJLIB(CDMDSPF1)

ESD @ELMO005

TXT CDMER140

END 1569623400 010195215
INCLUDE OBJLIB(CDMER140)

ESD ©@ELMO006

TXT CDMER240

END 1569623400 010195215
INCLUDE OBJLIB(CDMER240)

ESD @ERLMO007

TXT CDMER340

END 1569623400 010195215
INCLUDE OBJLIB(CDMER340)

ESD @ELMO008

TXT END_OF _LAST_OBJ

END 1569623400 010195215
/*
//LKED.SYSLMOD DD DSN=ACP.LK.RELxx(CDMOLB),DISP=0LD
//

As mentioned previously, object file names that are less than 6 characters are
right-padded with blanks. Using QZZ0 as an example, the build script for C load
module QZZ0 is as follows:

DLM QZZOLD # Include startup code for DLM

#0bject File Function Source Language

334 TPF V4R1 Application Programming

QZZoLD # QZZO function C
QZADDLC # QZADD function C

After running the C load module build tool, the output is as follows:

//PLKED.SYSIN DD =*
INCLUDE OBJLIB(CSTRTD40)

ESD @ELMO001

XT QZz6 LD

END 1569623400 010195215
INCLUDE OBJLIB(QZZOLD)

ESD @eLMO002

TXT QZZ1A LC

END 1569623400 010195215
INCLUDE OBJLIB(QZZ1ALC)

ESD ©0ELMO003

TXT END_OF_LAST_0BJ

END 1569623400 010195215
/*

Note: The COND parameter on the EXEC card means “execute the link-edit step only
if the prelink step returns zero.” For online TPF ISO-C programs, all external
references should be resolved by the prelinker and, therefore, a nonzero
return code from the prelink step indicates an error in the build process. For
regular MVS C programs (including offline TPF C programs), an RC=4 from
the prelink step is normal because references to library functions are only
resolved during the link-edit step.

CBLD Support for Dynamic Link Libraries (DLLS)
Both the previous DLL and DLL application build script examples show the use of

the @IMPORTDS keyword. CBLD takes the load module name that follows this
keyword and adds a definition side-deck INCLUDE statement to the list of INCLUDE
statements in the JCL output deck. For a DLL only, the JCL will also contain the
ACP. IMPORTS.RELvv definition side-deck SYSDEFSD data set for exported functions and
variables. The following examples show the different JCL output decks generated
by CBLD for a DLL and a DLL application:

e For aDLL:

//$QZZ2BS0 JOB ...
//PRELINK EXEC EDCPL,COND.LKED=(0,NE),
// LPARM="'AMODE=31,RMODE=ANY,LIST,XREF,MAP',
// PPARM="'DLLNAME (QzZ2)"
//PLKED.SYSLIB DD DSN=ACP.CLIB.RELxx,DISP=0LD
// DD DSN=ACP.STUB.RELxx,DISP=0LD
//PLKED.OBJLIB DD DSN=ACP.0BJ.RELxx,DISP=SHR
/1%
//PLKED.SYSDEFSD DD DISP=SHR,DSN=ACP.IMPORTS.RELxx (QZZ2RX)
/1*
//PLKED.DSD DD DISP=SHR,DSN=ACP.IMPORTS.RELxx
//PLKED.SYSIN DD *

INCLUDE OBJLIB(CSTDLL40)

INCLUDE DSD(DLL240)

INCLUDE DSD(DLL3RK)

ESD @ELM0001

XT QZZ2A 41

END 1569623400 010195215
INCLUDE OBJLIB(QZZ2A41)

ESD @ELM0002

XT Qzz2B 41

END 1569623400 010195215
INCLUDE OBJLIB(QZZ2B41)

ESD @eLM0003

XT END_OF_LAST OBJ

Customizing C/C++ Language Support 335

END 1569623400 010195215
/*

//LKED.SYSLMOD DD DISP=0LD,DSN=ACP.LK.RELxx(QZZ2RX)
//

* For a DLL application:

//$QZZ1BS5 JOB ...
//PRELINK EXEC EDCPL,COND.LKED=(0,NE),
// LPARM="'AMODE=31,RMODE=ANY,LIST,XREF"
//PLKED.SYSLIB DD DSN=ACP.CLIB.RELxx,DISP=0LD
/] DD DSN=ACP.STUB.RELxx,DISP=0LD
//PLKED.OBJLIB DD DSN=ACP.0BJ.RELxx,DISP=SHR
//PLKED.DSD DD DISP=SHR,DSN=ACP.IMPORTS.RELxx
//PLKED.SYSIN DD *

INCLUDE OBJLIB(CSTRTD40)

INCLUDE DSD(QCCC41)

INCLUDE DSD(QDDDRX)

ESD @ELMO001

TXT QZZ1A 41

END 1569623400 010195215
INCLUDE OBJLIB(QZZ1A41)

ESD @ELM0O002

TXT QZZ1B 41

END 1569623400 010195215
INCLUDE OBJLIB(QZZ1B41)

ESD @ELMO003

TXT END_OF_LAST_OBJ

END 1569623400 010195215
/*

//LKED.SYSLMOD DD DISP=0LD,DSN=ACP.LK.RELxx(QZZ1RX)
//

See the programming guide for the IBM C/C++ compiler used by your installation
for more information about DLLs and definition side-decks. See\m

for more information about the ACP.IMPORTS.RELvv definition side-deck
data set.

Rearrange TXT (REATXT) Tool: Sample Code Only

For link map support, the REATXT tool (sample code only) performs the extra
processing needed when the C source file has been compiled with the NORENT
option and the VM linkage editor (LKED) is used. The code and static data CSECTs
for each object file are out of order, making it difficult to find the code that matches
up with a compiled listing. The REATXT tool rearranges the CSECTs to match the
order produced by the MVS linkage editor between the prelink and link-edit steps.

Note: If you do all the compiles with the RENT option and use the VM linkage
editor (VM LKED), you do not need to use the REATXT tool.

frable 2d shows you the difference between compiling with the NORENT option
while using the MVS linkage editor versus using the VM linkage editor (VM LKED).

Table 29. MVS and VM Linkage Editor Comparison

MVS VM LKED + NORENT

CSTRTD CSTRTD

Address of object file 1 Address of object file 1
Code CSECT for object file 1 Static CSECTs for object file 1
Static CSECTs for object file 1 Code CSECT for object file 1

336 TPF V4R1 Application Programming

Table 29. MVS and VM Linkage Editor Comparison (continued)

MVS

VM LKED + NORENT

Address of object file 2
Code CSECT for object file 2
Static CSECTs for object file 2

Address of object file 2
Static CSECTs for object file 2
Code CSECT for object file 2

ESDs are placed in ascending numeric order.

ESDs are placed in ascending numeric order.

TXTs are in the same ascending numeric
order as ESDs.

TXTs are left in the same order from the
compile.

Because the length of these static variable CSECTS is not a fixed length, it is
helpful to rearrange the CSECTs to match the order produced by the MVS linkage
editor between the prelink and link-edit steps.

See the prolog of the REATXT source code for more information about using the

REATXT tool.

Sample JCL for Generating ISO-C Offline Tools

The following sample JCL shows running the library generator, the stub generator,
and the linkage editor in a single job stream. These jobs were generated by SIP
and can be identified by their job names (SIPLxXx).

//**

/1%
/1%
/1%
/1%

Library Interface Tool
- Build the CTALXV library

//**

//SIPL51 JOB
/1l
/1
/*ROUTE PRINT
/*ROUTE PUNCH

MSGLEVEL=
MSGCLASS=A,TIME=100

(82F91,7323E),'SIP ACP ',
1,CLASS=F,

TPFVM1 (EDDYE)
TPFVM1 (EDDYE)

//L511B EXEC PGM=LIBI40,REGION=4M

//STEPLIB DD

// DD
// DD
//SYSXV DD
//SYSCLS DD
//SYSIN DD

//SYSPRINT DD
/1

DSN=ACP.LINK.RELxx.BSS,DISP=SHR
DSN=LE.V1R3MO.SEDCLINK,DISP=SHR
DSN=SYS1.PLI.SIBMLINK,DISP=SHR
DSN=ACP.0BJ.RELxx.BSS(CTALXV40) ,DISP=0LD
DSN=ACP.CLIB.RELxx.BSS,DISP=0LD
DSN=ACP.CSRCE.RT.RELxx (CTALXV40) ,DISP=SHR
SYSOUT=A

//**

/1%
/1%
/1%
/1%

DLM STUB

GENERATOR JCL

- build a stub for CYYM

//**

//SIPL52 JOB
//
//
/*ROUTE PRINT
/*ROUTE PUNCH

MSGLEVEL=
MSGCLASS=

(82F91,7323E),'SIP ACP ',
1,CLASS=F,

A, TIME=100

TPFVM1 (EDDYE)

TPFVM1 (EDDYE)

//L521A EXEC PGM=STUB40,REGION=4M

//STEPLIB DD

// DD
// DD
//STUB DD
//SYSPRINT DD
//SYSIN DD
CYYM

DSN=ACP.LINK.RELxx.BSS,DISP=SHR
DSN=LE.V1R3MO.SEDCLINK,DISP=SHR
DSN=SYS1.PLI.SIBMLINK,DISP=SHR
DSN=ACP.STUB.RELxx.BSS,DISP=0LD
SYSOUT=A

*

Customizing C/C++ Language Support 337

/*
//**
/1%

//* BUILD TOOL JCL

//* - Build the JCL and INCLUDE decks for CTAL

//* Note &XINCDECK (NEW,PASS)

/1*
//‘k‘k**‘k**‘k‘k*‘k*‘k**‘k*‘k****‘k*‘k****‘k*‘k*******‘k**************
//

//SIPL53 JOB (82F91,7323E),'SIP ACP ',

// MSGLEVEL=1,CLASS=F,

// MSGCLASS=A,TIME=100

/*ROUTE PRINT TPFVM1(EDDYE)

/*ROUTE PUNCH TPFVM1(EDDYE)

//L53A EXEC PGM=CBLD40,REGION=4M,PARM="NOJCL"'

//STEPLIB DD DSN=ACP.LINK.RELxx.BSS,DISP=SHR

// DD DSN=LE.VIR3MO.SEDCLINK,DISP=SHR

// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR

//SYSPRINT DD DSN=&&INCDECK,DISP=(NEW,PASS),UNIT=SYSDA,
// DCB=(BLKSIZE=400,RECFM=FB,LRECL=80)

//SYSIN DD DSN=ACP.CSRCE.RT.RELxx(CTAL40),DISP=SHR
//‘k‘k'k*‘k‘k*‘k‘k‘k‘k‘k‘k*‘k‘k*‘k*'k*‘k‘k*‘k‘k*‘k*‘k*‘k‘k*‘k*‘k**‘k*‘k****‘k*‘k‘k*‘k‘k‘k
/1%

//* PRELINK/LINK JCL

//* - Link CTAL using the EDCPL proc

/1%
//‘k‘k*‘k‘k**‘k‘k*‘k‘k*'k‘k**‘k‘k*’k‘k**‘k‘k*‘k‘k**‘k‘k*‘k***‘k**‘k‘k*****‘k‘k*‘k‘k*
//L53B EXEC EDCPL,COND.LKED=(0,NE),

// LPARM='AMODE=31,RMODE=ANY,LIST,XREF'

//PLKED.SYSLIB DD DSN=ACP.CLIB.RELxx.BSS,DISP=SHR

// DD DSN=ACP.STUB.RELxx.BSS,DISP=SHR
//PLKED.OBJLIB DD DSN=ACP.0BJ.RELxx.BSS,
// DISP=SHR

//PLKED.SYSIN DD DSN=&&INCDECK,DISP=(OLD,DELETE)
//LKED.SYSLIN DD DSN=+.PLKED.SYSMOD,DISP=(0OLD,DELETE)
//LKED.SYSLMOD DD DSN=ACP.LINK.RELxx.BSS(CTAL40),DISP=0LD
/1

Installing Additional IBM TARGET(TPF) C Library Functions

Periodically, application programmers can want to collect frequently used C code
into a common library routine available to all application programs. The following
section describes the procedure for doing this.

1. Choose a TPF program segment to contain the library function source code.
Prepare the C source code.

2. Add a CLIBFUN macro call to segment C0O00 for the new function.
The format of the CLIBFUN macro is:
CLIBFUN cfun,tpfname, TYPE=,VERSION=, FEATURE=

where:

cfun
is the name of the C library function

tpfname
is the TPF program segment that will contain the C library function

TYPE
is the TPF segment type for the SPPBLD macro. Valid types are:

RT TPF system assembler code

UR user assembler code

338 TPF V4R1 Application Programming

CRT TPF system C code
CUR user C code
OCO object code only.

VERSION
is the version code on the TPF segment name. The default is 40.

FEATURE
is the name of a TPF feature, such as TPFAR. Functions that belong to
optional features need to code this parameter. (This parameter is optional
for functions of required features.) The feature name is defined in SYGLB
and set by SYSET.

Note: If the feature is not active, the CLIBFUN macro call for that set of
functions is considered a dummy call.

cfun and tpfname are positional, required parameters. TYPE and VERSION
are keyword parameters, and VERSION is optional.

The purpose of segment C00O is to provide a single point of update whenever
new library functions are created. CO00 contains a CLIBFUN macro call for
every library function in the system. When CO000 is assembled, 4 sets of objects
are automatically produced in the form of comment cards in the object decks:

a. A set of #pragma map and #pragma 1inkage statements for the C compiler.
Remove these #pragma map and #pragma 1inkage statements and put them
in the tpflink.h header file. This header file contains all of the information
the compiler needs to provide linkage.

b. A set of allocation statements for the system allocator. Remove these
statements and add them to your allocator input deck.

c. A set of SPPBLD statements for the TPF program list. The SPPBLD macro
is used to build dependency tables that determine which programs will or will
not be included in the system. Extract these SPPBLD cards and add them to
SPPGML.

d. A set of LOADER CALL cards for the system loaders. These cards can be
extracted and added to the appropriate load deck.

Note: To avoid having to recompile all existing C application programs, add
CLIBFUN calls for new library functions to the END of the list in C0OO.
The order in which the CLIBFUN calls appear directly affects the calling
linkage produced by the compiler. If the sequence of the CLIBFUN calls
is disturbed, you must recompile all application programs that refer to
library functions that have moved to ensure that the compiler resolves
the linkage to each library function correctly.

You can also code the following special form,
CLIBFUN DUMMY,tpfname

which will reserve an entry in the quick enter directory for future use. No
comment cards will be generated for this item, but it will serve as a
placeholder so that the sequence of CLIBFUN calls is not disturbed when
the item is later converted to a normal CLIBFUN call. If any program
attempts to call a library function using an index number that
corresponds to a dummy slot, segment C246 will be activated and cause
the ECB to exit with system error.

Customizing C/C++ Language Support 339

3. Assemble C0O00 and use a text editor to extract the cards needed from the
object deck, as described in Step B.

You can want to extract only the allocator statements, SPPBLD, and LOADER
CALL cards that are actually required for the new library function. However, be
sure to replace the entire set of #pragma statements in tpflink.h with those
generated by assembling C0O00 as the new set of #pragma map and #pragma
Tinkage statements are interrelated.

4. Prepare to run SIP.

Check if an update to the APSIZxx parameter of the CORREQ macro is
required to accommodate the additional code. This can be determined by
examining the sum of accumulated code size that appears in the object decks
(and in the listings) when C000 is assembled.

5. Run SIP Stages | and Il. The resulting TPF system will contain the new library
function.

6. Be sure to compile any application programs that call the new function against
the updated version of tpflink.h. This will ensure that the library function
linkage is resolved correctly by the compiler.

Removing TARGET(TPF) Library Functions

When you want to remove a TARGET(TPF) C library function follow these steps:

1. Replace the CLIBFUN macro call in segment C000 that corresponds to the
library function with a CLIBFUN DUMMY call, and reassemble C000.

This will preserve the sequence of CLIBFUN calls so that index numbers into
the quick enter directory are not disturbed and recompilation of the C application
programs will not be required. This will also ensure that any application
programs that attempt to use the removed library function will cause a system
error.

2. Remove the library function’s #pragma map and #pragma 1inkage cards from the
tpflink.h header file.

Although this simple update is all that is required to block references to the
library function at compile time, you can also want to remove the allocator cards
from your allocator input deck, the SPPBLD card from SPPGML, and the
LOADER CALL card from the appropriate load decks.

3. Ensure that all application programs that called the library function have been
altered and recompiled.

Caution: If any program has coded an explicit #pragma 1inkage it will still be
able to refer to the library function at compile time even though it has been
removed from the tpflink.h header file. Also, if the name of the library function
is exactly 4 characters, the compiler will not flag the references to the library
function as errors; it will assume the default linkage (TPF Enter/Back) should be
used instead of the quick enter linkage. In these special cases, be careful to
scan through the source code of your application programs.

4. Load the new version of CO00 along with any altered application programs, to
your TPF system.

340 TPF V4R1 Application Programming

Index

Special Characters scanf function 15

) serrc_op_ext function 234
/tmp/tftp.log file 174 serrc_op function 234
#include 71

soragma link tatement 15 setlocale function 302
pragma age stateme sigaction function 169
#pragma map statement 15 . .
- signal function 169
#define statement 251 . . .
. sigpending function 169

abort function 233 . .

. . . . sigprocmask function 169
activate_on_receipt_with_length function 173 . .

tivat ‘ot function 173 sigsuspend function 169
activate_on_receip sleep function 169, 170
alarm function 169

. function 234
attac_ext function 278 :3?22 :r:f;[ltc:e funftion 173
attac function 278, 281 -

system function 167
c$am0sg.h header 51 .
c$ebleb.h header 25 tasnc function 270, 271

. tbspc function 271
c$globz.h, updating 301 tclsc function 269, 271
c$rcOpl.h header 39 .
: - tdspc_q function 272
celsud (detailed summary error indicator) 38 - .
1 indicat 38 tdspc function 272
Ze fsugf (gr?.ss sug;ary error indicator) T02_al1ElementsDo function 114
errc Iunction = topnc function 269, 272
deleteCache function 131 .
. tourc function 268
deleteCacheEntry function 129 toutc function 267
detac_ext function 278

: tpf_cresc function 167
detac function 278, 281 tpf_fork function 167, 168, 169
dlayc function 233 -

file_record function 260 tpf_process_signals function 169, 170

filec function 260 TPF_regs

. . using 161
filnc function 261 . .
£iluc function 261 tpflink.h, updating 339, 340

find_record function 261 tprde funct!on 270, 272
findc function 261 trenc funct!on 212
finhc function 261 trsvc funct!on 270, 272
finwc function 261 tsync funct!on 270, 272
fiwhc function 261 tw;tc Iunc:!on g;g 212
- unfrc function
f;“ShcaCSe L“”Ct'f” 130 273 updateCacheEntry function 125, 127
gdsnc and gdsre functions wait function 169, 170
gdsnc function - 273 waitc function 8, 233, 264, 270
gdsrc]tunct!on 213 use with the file reference functions 261
ggt;ﬁ fﬂggggz ggg waitpid function 169, 170

getpid function 168, 169

getppid function 168, 169 1

glob function 18, 246 NU MEriCcs

global function 246 4-byte standard record header 265

GLOBALSYNC operation 243, 247 4x4 format, data event control blocks (DECBs) 31
ki1l function 169 ' 8-byte file address support 31, 265

main function 8-byte standard record header 265

argc parameter 134

argv parameter 134 A
coding 133
malloc function 238 access permissions 170
pause function 169 general discussion 170
raise function 169 rules to determine file accessibility 171
realloc function 238 access, controlling 101
relcc function 238 accessing
relfc function 256 data 250
return function 23 file storage 257
routc function 52 accessing elements, using cursors 110

© Copyright IBM Corp. 1994, 2002 341

accessing file records with a data event control block
(DECB) 31
activating applications 41
conditions at activation 12, 43
adding elements 107
adding key paths 117
address chains 267
address spaces 235
addresses of C library functions 65
addressing elements 107
administering local queue manager, TPF MQSeries 86
agent assembly area (AAA) 49
agents assembly area (AAA) 12
aliasing a queue manager, TPF MQSeries 82
alignment, boundary
data macros, converting 145
allocating storage 235, 237, 254
file storage allocation 250
main storage allocation 235
random pool file area allocation 254
working storage allocation 237
allocation statements 339
allow directive 174
altering channels, TPF MQSeries 86
alternate key paths, using cursors 110
AMOSG macro 14, 23
AOLA (array of library addresses) 65
AOR process model 173, 176, 180
API, TPF MQSeries 79
APIs for process control
alarm 169
getpid 169
getppid 169
ki1l 169
pause 169
raise 169
sigaction 169
signal 169
sigpending 169
sigprocmask 169
sigsuspend 169
sleep 169
tpf_fork 169
tpf_process_signals 169
wait 169
waitpid 169
APIs for signal handling
sleep 170
tpf_process_signals 170
waitc 170
waitpid 170
application 18
activation of 12, 41
conditions at activation 43
expanding an 281
global area 18, 240
message recovery 46
programs
application message editor 44
register save area 38
security 42

342 TPF V4R1 Application Programming

application (continued)
tables
application name table (ANT) 42
resource vector table (RVT) 42

routing control application table (RCAT) 42

WGTA table 42

work areas 26
application characteristics 101
application dictionary, data store 104
application message editor 44
application name table (ANT) 42
application program interface (API) 227

functions 227
application programming interface (API) 25
application recovery package (ARP) 47
application security 42
application startup, TPFCS 104

T02_createEnv method 104
Application Support Class Library 74
argc parameter to main functions 134
argv parameter to main functions 134
array of library addresses 65
assembler language

calling C from 159
assembler programs, calling from C 160
assembler to C or C++, converting 145
assign and reserve functions 270
attaching main storage blocks 278
AUTH directive 174
auxiliary functions, TPFCS 105

B

BACKC macro 23, 227
basic functions 257, 268
BEGIN macro 25
begin transaction 89
block size limits in TPF 142
Boolean error handling 103
boundary alignment

data macros, converting 145
buffer header 106

C

C function libraries 72
C language support, customizing 301
C load module build tool (CBLD)
purpose 329
C parameter list 159
diagrams 159, 160
C programs, calling from assembler 159
C++ support, customizing 301
C000
description 339
updating 339
card inputs 284
CCB 10
central processing complex (CPC) 1, 243
chaining addresses 267
changing an ECB'’s processing priority 227

channel directory, TPF MQSeries 79
channels, TPF MQSeries 83
character sets 314
checkpoint, TPF MQSeries 87
child process
effective group ID 168
effective user ID 168
general discussion 168
process inheritance 168
saved set-group-ID 168
saved set-user-ID 168
CL04 312, 313
class library support 74
CLIBFUN macro 338
code samples written to the RENT standard 163
coding considerations 246
collection functions, TPFCS 105
collection, names 104
collections
accessing and modifying 107
creating 106
defining 101
deleting 106
determining the end of 112
iterating over 113
iteration using cursors 113
locking 115
combination functions 240
combination macros 262
commands 291
commit rules 95
commit scope 89
begin transaction 89
commit 89
filing records 91
finding records 91
holding record locks 92
nesting 90
resume 89
rollback 89
root scope 90
suspend 89
commit transaction 89
common data 250
communications control program (CCP) 11
communications source processor (COMM
SOURCE) 12
compiler options
not supported for TPF 162
TARGET(TPF) option 162
compiling C/C++ programs
general 162
concurrency controls 115
configuration file
for Internet daemon 173
for TFTP server 174
control
transfer of 227, 233
control program (CP)
save area 38
controlling tape operations 272

converting assembler to C or C++ 145
core block reference word (CBRW) 28, 238, 239
description of 149
counter, update sequence 108, 115
CPU control 153
CPU loop list
See processing list
CPU parameter for channel definitions, TPF
MQSeries 86
create functions 228
credc function 229
creec function 229
cremc function 229
cretc_level function 229
cretc function 229
crexc function 229
cxfrc function 229
sipcc function 229
swisc function 229
system function 229
tpf_cresc function 229
creating collections 106
Creating translation tables 317
CSK user exit 225
cursor functions, TPFCS
information about 109
cursor movement 113
cursor positioning 110
customizing
C language support 301
C++ language support 301
TFTP server 174

D

DAEMON process model 173, 177, 181
DASD I/0O 150
data blocks, referencing 31
data card images (STC instructions) 286
data control field in record header 267
data event control blocks (DECBs) 29
4x4 format 31
8-byte file address support 31
accessing file records 31
data blocks, referencing 31
data level 150
error handling 32
fields 30
functional flow 32
symbolic names 31
data levels 28, 149
data macros, converting to C or C++ 145
Data Record Information Library (DRIL) 286
data store
dictionary support 104
data structures, returning 106
database integrity 108, 115
database restore 290
database support 5
deadlock detection 98
deferred list 228

Index

343

defining a commit scope 89
defining processor shared queues, TPF MQSeries 86
defining profile, TPF MQSeries 86
deleting collections 106
deleting queues, TPF MQSeries 87
demand counter in record headers 266
deny directive 174
design considerations 279
detaching main storage blocks 278
detailed summary error indicator 38
determining the end of the collection 112
diagnostic output formatter (DOF) 292
dictionary support 104
directives

allow 174

and file accessibility 174

and security 174

AUTH 174

deny 174

LOG 174
directories

quick enter 69

secondary directory 70
dirty-reader protection 116
DLMs 73
double byte character set (DBCS)

support in TPF 304

DSECT
AMOSG 43, 51
MIOMI 43

dump of static blocks 299

dump structures in ISO-C 297, 298
duplicate records 255

dynamic load modules 73

E

EBOEB macro 25
ECB

addressing 149

creation 153

parameter passing using 149
ECB virtual memory

layout of 237
ECB-controlled program 6
effective group ID 168, 170
effective user ID 168, 170
element

accessing and modifying collections 107

addressing 107

finding 108

returning 106

updating 108
ending a commit scope 94
ENTDC macro 227
enter/back services 227
ENTNC macro 227
ENTRC macro 227
entry control block (ECB)

association with an entry 3

fields 28

344 TPF V4R1 Application Programming

entry control block (ECB) (continued)
application register save area 38
control program save area 38
data levels in 28
detailed summary error indicator 38
gross summary error indicator 38
register save areas 38
TPF register save area 38
TPF-reserved areas 38
user register save area 38
general description of 25
initializing 27
linking ECBs and their common services 26
work areas 25, 26
entry points
providing linkage for 138
environment block, TPFCS 101
epilog for assembler programs 220
error
functions 276
processing 275
error handling, TPFCS 102, 103
error indicator, IDECSUD 32
EXOAU macro 242
example transaction 11
exclusive lock, creating 116
executable script
process inheritance 168
writing 189
exit functions 233
abort function 233
exit function 8, 233
serrc_op_ext function 234
serrc_op function 234
snapc function 234
serrc function 234
exit processing 154
exit status 170
expanding an application 281

F

FAC8C macro 251
face_facs function 254
FACE/FACS program 15, 251
FDCTC macro 262
field lockout 249
fields, data event control block (DECB) 30
file accessibility
general discussion 170
rules to determine 171
file address extension word (FAXW) 29
file address reference word (FARW) 29
description of 149
file addressing 250
file name format used by the TFTP server 175
file record headers 264
file records, accessing with a data event control block
(DECB) 31
file reference functions
summary of 260

file reference macros
summary of 260

file storage
access 257
allocation 250
file system

file names used by the TFTP server 175
rules to determine file accessibility 171
filing records in a commit scope 91
FILKW macro 244
find and file functions 151
finding elements 108
finding records in a commit scope 91
first element in a collection 110
fixed file 250
use example 255
fixed storage 236
FNSPC macro 262
FTP server 173
general discussion 173
function format
file reference coding examples 262
function management (FM) header 50
function types 105
functional flow of data event control blocks
(DECBs) 32
functions
calling other 60
calling other functions 156
changing from static to extern 138
coding main 133
ECB creation 153
external 138
find and file 151
library
coding in assembler 219
coding in C 219
output 155
secondary library routines for TARGET(TPF) 70
tape management 152

G

general data set functions 273
general data sets 152, 273
general file 273
general tape 268
functions 271
operations 268
GETCC macro 23
GETFC macro 255
GLMOD macro 244
global area 18, 240
conventions 18
functions 246
macros 243
symbolic names in 240, 246
synchronization 243
globals
addressing and modifying 155
description of 73

globals (continued)
TPF
converting for C 301
customizing 301
GLOBZ macro 18, 242, 243
gross summary error indicator 38
GSTAR (STC generation start) instruction 286

H

hardening 89
header 264
header files
contents of 144
creating 144
description of 71
nesting in, use of 148
TPF, list of 143
what goes into 144
headers
c$amOsg.h header 43, 51
c$eb0eb.h header 25
c$globz.h header 246
c$miOmi.h header 43
c$rcOpl.h header 23, 39, 52
tpfapi.h header 238
tpfeq.h header 25
heap storage dump 299
High Performance Option (HPO) 6, 243
higher-level functions 257, 269
holding record locks in a commit scope 92
commit-level hold 92
ECB-level hold 92
holding records 8, 21, 234, 247, 259
HTTP server 173
general discussion 173

1/0

DASD 150

tape 152
1/0 stream pipes 136
1/O-associated unusual conditions 38
ICELOG

macro, description of 220
ICPLOG

macro, description of 220
IDECSUD error indicator, data event control blocks

(DECBs) 32

implementation differences for TFTP server 174
initial population of a data store 104
initial stack frame dump 298
initializing a cursor 109
initializing ECBs 27
input data 43
input edit 45
input list 228
input pilot tape (SDF) 288
interface

AOR process model 187

Index

345

interface (continued)
NOLISTEN process model 188
NOWAIT process model 185, 187
WAIT 186
WAIT process model 184
Internet daemon
adding entry to IDCF 188
configuration file (IDCF) 173, 188
general discussion 172
process models 172
using activate_on_receipt_with_length
function 173
using activate_on_receipt function 173
using swisc_create function 173
using tpf_fork function 172, 173
Internet server application
FTP server 173
HTTP server 173
interface 184
porting 167
process models 176
syslog daemon 175
TFTP server 174
TPF Internet mail servers 175
writing 167
introduction to TPF transaction services 89
introduction to TPFCS database 101
ISO-C control area dump 297
iterating over collections 113

J

job control language 250

K

key path support 116
keypoints 243, 244

L

last element in a collection 111
libraries of C functions 72
library addresses, array of 65
library functions
coding in assembler 219
coding in C 219
installing 338
removing 340
library ordinal display online 293
library ordinals in C 324
library vector 65
LIBVEC 65
LIBVEC online display 294
link map support for C load modules
ZDMAP command 300
live test 291
local definition of remote queues, TPF MQSeries 82
local queue manager support, TPF MQSeries 80
locale, C language
description of 73

346 TPF V4R1 Application Programming

locale, the C language
setlocale function 302
creating new 313
description of 302
locating and accessing elements 110
using cursors 110
without using cursors 108
lock, on a collection 116
locking collections, using cursors 115
locking cursors 116
locking out terminals 48
lockout from fields 249
LOG directive 174
log processor 41
logging
ltmpl/tftp.log 174
LOG directive 174
syslog daemon 175
TFTP log 174
TFTP transmissions 174
logical record caching
deleteCache function 131
deleteCacheEntry function 129
flushCache function 130
newCache function 120
readCacheEntry function 124
updateCacheEntry function 125, 127
adding an entry to a logical record cache 125
cache name 121
cacheToken value 122
castOutTime value 123
CF cache structure 119
creating a logical record cache 120
deleting a logical record cache 131
deleting an entry from a logical record cache 129
flushing entries from a logical record cache 130
hash table 121
logical record cache 119
overview 119
processor shared caches 122
processor unique caches 122
reading an entry from a logical record cache 124
system heap 121
updating an entry in a logical record cache 127
long-term records 255
loosely coupled (LC)
facility 7
processors 243

M

macro format

file reference coding examples 262
macro, FAC8C 251
macros 53
macros, TPF

converting to C or C++ structures 145
message card images 287
Message Queue Interface (MQI) Client 11
message recovery 46
messages and entries 3

middle hop routing, TPF MQSeries 82
miscellaneous programming tips 282
mixed-byte support 317

modifying and expanding applications 281
modular programming 280

monitoring queue depth, TPF MQSeries 83
movement, cursor 113

MQI (Message Queue Interface) Client 11
multiple record file 242

multiple-byte character sets, support of 304
multithread environment 283

MVS assembly system 53

MVS job 250

N

N-type linkage 160

functions, calling 161
nested commit scope 90

commit rules 95

rollback rule 96

visibility rule 97
nesting commit scopes 90
nesting programs 228
NOLISTEN process model 173, 177, 188
non-ECB controlled programs 6
nonlocking cursor 115
nonprotected data records 240, 242
NOWAIT process model 172, 176, 178, 182

O

operational program zero (OPZERO) 11, 229
operator
control of tape operations 272
security 42
optimistic concurrency 115
ordinal number 251
ordinals for C libraries 324
output messages 155
overview of TPF collection support 101
overview of TPF MQSeries support 79
overview of TPF transaction services 89

P

package test 290
parameter list, C language 159
diagrams 159, 160
parameter passing 159
assembler to C 159
C to assembler 160
CtoC 158
structures, passing by address 158
path selection 45
performance considerations 280
pessimistic concurrency 116
Phase | testing 283
Phase lll testing 283
pipes 136
PNA (program nesting area) 228

PNA (program nesting area) (continued)
nesting limit 228
pool storage
See also random pool file area
access scheme 256
duplicate records 255
long-term records 255
short-term records 255
single records 255
use example 255
pools 254
porting an Internet server application 167
positioning, cursors 110
POSIX process model
by the TPF system 167
priority of ECB 227
process
child 167, 168
exit status 170
general discussion 167
group 168
group ID 168
ID 167
inheritance 168
process attributes
effective group ID 170
effective user ID 170
process control
APIs 169
POSIX-compliant APIs 168
TPF-unique APIs 169
process group 168
process model
AOR 173, 176, 180
DAEMON 173, 177, 181
NOLISTEN 173, 177, 188
NOWAIT 172,176, 178, 182
POSIX 167
RPC 173, 177
WAIT 172, 176, 179, 183
process that starts a TPF application
process inheritance 168
processing list 228

processor shared queues, TPF MQSeries 83, 85

processor unique queues, TPF MQSeries 83
program
chart 56
commentary 281
levels 228
library name 227
organization 279
performance considerations 280
program attributes 56
program characteristics 56
sharing 279
program categories 5
ECB-controlled 6
non-ECB controlled 6
program commentary 281
program ID in record header 267
program record header 265

Index

347

program size 266
program test vehicle (PTV) 284, 288
programming
conventions 7, 18, 240, 246
tips 282
programming rules 142, 147, 149, 154, 161
prolog for assembler programs 220
protected data records 240
protection key 246
protection, dirty-reader 116
protocol
Transmission Control Protocol (TCP) 178
User Datagram Protocol (UDP) 178
PTV options 285

Q

queued terminal messages 48
quick enter directory for TARGET(TPF)
description of 69

R

random pool file area 254

RCOPL macro 41

ready list 228

real time log tape (RTL) 288

real time tape (RTA) 288

real-time operations 267

real-time trace (RTT) 291

REATXT tool (rearrange CSECTSs)
rearrange CSECTs 336
rearrange TXTs 336

record code check in record header 267

record header 264

record headers 264

record hold facility 8, 21, 234, 259

record ID 266

record identification in record header 266

record ordinal number 251

reentrancy in TPF 141

reentrant programs 4

referencing data blocks, data event control blocks

(DECBs) 31

register 8 (program pointer) 25

register 9 (ECB pointer) 25

register conventions, TPF 219

register save areas 38

relative record number 251

releasing programs 228

RELFC macro 255

Remote Procedure Call 191
creating an interface 192
interface definition language (IDL) 191
maximum number of calls 195
maximum number of threads 195
performance and tuning 198
run-time library 193
servers 196
storage considerations 198
stub files 191

348 TPF V4R1 Application Programming

Remote Procedure Call (continued)
supported application programming interfaces
(APIs) 193
supported RPC C header files 199
supported RPC DCE services 192
threads 196
universal unique identifier (UUID) 191
removing elements 108
removing key paths 117
RENT standard, code samples 163
reserved registers
register 8 program pointer 25
register 9 ECB pointer 25
resource vector table (RVT) 12, 42
resume transaction 89
return of control 17
rollback rule 96
rollback transaction 89
root commit scope 90
ROUTC bridge, TPF MQSeries 84
ROUTC macro 23
routing control application table (RCAT) 42
routing control block (RCB) 12, 48
routing control parameter list (RCPL) 12, 23, 38
data area 39
description of 155
RPC process model 173, 177
rules for cursor movement and positioning 113
rules to determine file accessibility 171
RUNID 285

S

sample code written to the RENT standard 163
save areas 38
saved set-group-ID 168
saved set-user-ID 168
saving registers 162
SCB 10
scheduling 153
SDF (input pilot tape) 288
secondary directory
description of 70
secondary library routines for TARGET(TPF)
description of 70
security
operator, terminal, and application 42
TFTP server 174
selective file dump and trace (SFDT) 291
sequence counter 108, 115
serrc function 234
short-term records 255
SIGCHLD signal 170
signal handler 169
signals
general discussion 169
SIGCHLD signal 170
signal handler 169
SIGUSR1 182
SIGUSR1 signal 182
single records 255

size limit for TPF programs 142
size of program 266
SNA messages 46
special coding considerations 246
SPPBLD macro, coding for C 339
stack block
description of 71
stack frame
description of 71
layout of 223
stack frame function dump 298
stack, C language 71
standard record headers
4-byte 265
8-byte 265
startup, TPFCS 101
static block
description of 70
static block dump 299
static frame
description of 70
static storage 70
static variables 70
storage types
working storage 237
stub 328

suspend processing macros and functions 233

suspend transaction 89
suspending a commit scope 91
sweep, TPF MQSeries 87

swinging transmission queues, TPF MQSeries 84

symbolic names

in global area 240, 242, 246
SYNCC macro 244
SYNCC operation 243
synchronizing global areas 243
SYSEQC macro 251
syslog daemon

general discussion 175
SYSRA macro 276
system error functions 276
system error processing 275
system loading facility 288
system test 283, 291
system test compiler (STC) 284
system test terminal simulator 292
system virtual memory

layout of 237

T

tape I/0 152
tape support 267
tape support functions
assign and reserve 270
general tape
tape_close function 269, 271
tape_cntl function 271
tape_open function 269, 271
tape_read function 270, 271
tape_write function 270, 271

tape support functions (continued)
general tape (continued)
tasnc function 271
tbspc function 271
tclsc function 269, 271
tdspc_q function 272
tdspc function 272
topnc function 269, 272
tprdc function 270, 272
trewc function 272
trsvc function 272
tsync function 270
twrtc function 270, 272
real-time
tourc function 268
toutc function 267
tape support macros
general tape
tsync function 272
TPCNC macro 272
TDCTC macro 271
TDTAC macro 272
terminal and transaction control 48
terminal control 48
agent assembly area (AAA) 49
locking out terminals 48
routing control block (RCB) 48
terminal input 154
terminal security 42
terminal simulation 290
test system characteristics 283
test system components 283
testing environment 283
testing levels 283
TFTP configuration file 174
TFTP log 174
TFTP server
customizing 174
file names 175
general discussion 174
implementation differences 174
security 174
using from another system 175
TMSEC
macro, description of 220
TMSPC
macro, description of 220
TPCNC macro 272

TPF Advanced Program-to-Program Communications

(TPF/APPC) 10
TPF Application Requester (TPFAR) 10
TPF collection support
error handling 103
overview 101
returned data structures 106
type definitions 102
TPF Internet mail servers
general discussion 175
IMAP server 175
POP server 175
SMTP server 175

Index

349

TPF MQSeries support
channel definitions 86
channels 86
checkpoint 87
client 79
CPU parameter 86
defining 86
deleting queues 87
local queue manager 80
administering 86
channels 83
empty queue trigger user exit 80
message routing 82
processor unique vs. processor shared 83
route bridge 84
supported queue types 80
transaction manager 85
local queues 86
memory allocation 87
overview 79
processor shared 86
processor shared queues browsing 85
profile 86
sweep 87
trace 85
transmission queues 84
monitoring depth 83
swinging 84
TPF register save area 38
TPF transaction services
benefits 89
commit scope 89
deadlock detection 98
in the scope 91
locking 93
inside a commit scope 93
outside a commit scope 93
loosely coupled and MDBF considerations 99
nesting 90
outside the scope 97
overview 89
pool file addresses 94
WAITC processing 94
TPF-reserved ECB areas 38
TPF/APPC 10
TPFAR (TPF Application Requester) 10
TPFCS database interface
controlling access 101
data store dictionary support 104
error handling 103
returned data structures 106
TPNT 10
trace, TPF MQSeries 85
tracing application activity 291
transaction
commit 94
exceptions 99
functions that do no work 100
unsupported functions 99
EXITC 95
rollback 95

350 TPF V4R1 Application Programming

transaction (continued)
system error processing 95
transaction control 48
transaction manager, TPF MQSeries 85
transfer vectors 235
transferring processor control 227, 233
translation tables 315
creating new 317
transmission queues, TPF MQSeries 84
transport protocol
Transmission Control Protocol (TCP) 178
User Datagram Protocol (UDP) 178
tuning memory allocation, TPF MQSeries 87
type definitions 102
types of functions 105

U

update sequence counter 108, 115
updating elements 108
user exit CSK 225
user exit, C stack exception routine 225, 313
user expansion area
description of 223
user expansion area user exit 225
user register save area 38
using cursors with alternate key paths 110
using symbolic names, data event control blocks
(DECBs) 31
Using the TFTP server from another system 175
utility segments/subroutines 282

Vv

VFA delayed-filing 262
virtual file access (VFA)
facility 279
virtual storage
layout of 237
visibility rule 97
VSAM 201
concepts 201
database support 202
database constraints 207
disk mirroring 204
error recovery 213
request flow control 209
return codes 213
with other utilities 209

W

WAIT process model 172, 176, 179, 183
Web page 173, 175
WGTA table 12, 42
work areas in ECB 25, 26
working storage 236, 237
writing
executable script 189
Internet server application 167

File Number: S370/30XX-40
Program Number: 5748-T14

on recycled paper containing 10%

@ Printed in the United States of America
recovered post-consumer fiber.

SH31-0132-13

	Contents
	Figures
	Tables
	Notices
	Trademarks

	About This Book
	Who Should Read This Book
	Conventions Used in the TPF Library
	Related Information
	IBM Transaction Processing Facility (TPF) 4.1 Books
	IBM Systems Network Architecture Books
	IBM Message Queuing Books
	IBM High-Level Language Books
	Miscellaneous IBM Books
	Non-IBM Books
	Online Information

	How to Send Your Comments

	Introduction to TPF
	Some Fundamental Definitions
	Language Structures and Case Guidelines

	TPF Application Support and Environments
	Communication Protocol Support
	File Storage Support
	TPF Environments

	Functions Performed by the TPF System
	Messages and Entries
	Entry Control Block
	Reentrant Programs

	Database Support
	Program Categories
	C Language in the Control Program
	ECB-Controlled Programs
	Non-ECB Controlled Programs

	High Performance Option
	TPF Programming Conventions
	Common Programming Conventions
	Assembler Language Programming Conventions
	C Language Programming Conventions

	TPF Advanced Program-to-Program Communications
	TPF Application Requester
	Message Queue Interface (MQI) Client
	A TPF Transaction Example

	TPF Data Structures and System Services
	Entry Control Block
	Linking ECBs and Their Common Services
	Work Areas
	Application Work Areas
	User Work Area
	User Application Register Save Area

	Data Levels
	Core Block Reference Words
	File Address Reference Words
	File Address Extension Words

	Data Event Control Blocks
	DECB Fields
	8-Byte File Address Support
	Referencing Data Blocks
	Using Symbolic Names
	Accessing File Records with a DECB
	Error Handling
	Functional Flow

	I/O-Associated Unusual Conditions
	Areas Used by the TPF system
	TPF Register Save Area
	Control Program Save Area

	User Register Save Area

	Routing Control Parameter List
	RCPL Data Area
	RCPL Destination Field
	RCPL Origin Field
	RCPL Control Field

	RC0PL Data Macro

	Activating the Application
	Log Processor
	Application Name Table (ANT)
	Routing Control Application Table (RCAT)
	Resource Vector Table (RVT)
	WGTA Table (WGTA)

	Conditions at Activation
	Input Data

	Application Message Editor
	Input Edit and Path Selection

	Message Recovery
	SNA Input Messages
	SNA Output Messages
	Application Recovery Package

	Terminal and Transaction Control
	Routing Control Block
	Agent Assembly Area
	Scratchpad Area
	SPA Retrieval
	Function Management Header

	Output Message Control
	TPF Macros

	Understanding High-Level Language Concepts in the TPF System
	E-Type Program Chart and Program Attributes
	Load Module Attributes
	Classic TPF Segment

	Functions and Calling Other Functions
	Functions Calling Other Programs
	ISO-C Linkage Performance Considerations
	INLINE Compiler Option
	Linking Functions
	Using Library Functions
	DLM Performance

	Run-Time (Nondynamic) Library Function Linkage
	Function Stubs
	Secondary Linkage for ISO-C Support

	Quick Enter Directory for TARGET(TPF)
	Secondary Directory for TARGET(TPF)
	Storage for Static Variables
	ISO-C Language Stack
	TPF Header Files
	Run-Time Libraries
	Dynamic Load Modules
	Creating Globals for C
	C Language Locale
	Character Set Support
	C++ Support
	Class Library Support
	TPF Restriction

	Dynamic Link Library (DLL) Support
	Terminology and Concepts
	Linkage
	Definition Side-Deck

	DLLs and Subsystem Dependencies

	Summary

	Understanding TPF MQSeries Support
	TPF MQSeries Client Support
	MQSeries Client
	MQI Channel Directory

	TPF MQSeries Local Queue Manager Support
	Supported Queue Types
	Starting TPF MQSeries Applications Using Triggers
	Message Routing
	Local Definition of Remote Queues
	Queue Manager Aliasing
	Queue Manager Name as Transmission Queue Name
	Middle Hop Routing

	Processor Unique Queues versus Processor Shared Queues
	Monitoring Queue Depth
	Channels
	MQSeries ROUTC Bridge
	Transmission Queues: Swinging
	Transaction Manager

	Browsing TPF MQSeries Processor Shared Queues
	Trace
	Administering Your Local Queue Manager
	Defining the MQSeries Profile
	Defining Processor Shared Queues
	CPU Parameter for Channel Definitions
	Altering Channels

	Checkpoint
	Sweep
	Tuning Memory Allocation
	Deleting Queues

	Understanding TPF Transaction Services Concepts
	Defining a Commit Scope
	Commit Scope Nesting
	Root Scope
	Nested Scope

	Suspending a Commit Scope
	In the Commit Scope
	DASD
	Finding Records
	Filing Records
	Holding Record Locks
	WAITC Processing

	Pool File Addresses
	TPF MQSeries Support

	Ending a Commit Scope
	Outside the Commit Scope
	Finding Records
	Filing Records
	Holding Records

	Deadlock Detection
	Loosely Coupled and Multiple Database Function (MDBF) Considerations
	Exceptions

	Understanding TPF Collection Support
	Application Characteristics
	TPFCS Environment Block
	Type Definitions
	Error Handling
	Boolean Error Handling
	Example of a Returned Error Code

	Data Store Application Dictionary
	Application Startup Examples
	Initial Population of a Data Store
	Application Startup Flow

	Types of Functions
	Returned Data Structures

	Collection APIs
	Creating and Deleting Collections
	Accessing and Modifying Collections
	Adding Elements
	Finding and Retrieving Elements
	Updating Elements
	Removing Elements

	Cursors
	Initializing a Cursor
	Using Cursors for Locating, Accessing, and Removing Elements
	Using Cursors with Alternate Key Paths
	Cursor Positioning
	First Element in a Collection
	Last Element in a Collection
	Determining the End of the Collection
	Rules for Cursor Movement and Positioning

	Iterating over Collections
	Iteration Using Cursors

	TO2_allElementsDo
	Using Cursors for Locking Collections

	Concurrency Controls
	None (Nonlocking Cursor)
	Optimistic Concurrency (Update Sequence Counter)
	Pessimistic Concurrency (Locking Cursor)
	Dirty-Reader Protection

	Key Path Support
	Adding Key Paths
	Removing Key Paths

	Understanding Logical Record Caching
	Creating a Logical Record Cache
	System Heap and the Hash Table
	Cache Name
	cacheToken Value
	Examples

	Processor Unique and Processor Shared Caches
	Examples

	castOutTime Value

	Reading an Entry from a Logical Record Cache
	Examples

	Adding an Entry to a Logical Record Cache
	Primary and Secondary Keys
	invalidateOthers Parameter
	timeout Parameter
	Examples

	Updating an Entry in a Logical Record Cache
	Primary and Secondary Keys
	invalidateOthers Parameter
	timeout Parameter
	Examples

	Deleting an Entry from a Logical Record Cache
	Examples

	Flushing Entries from a Logical Record Cache
	Examples

	Deleting a Logical Record Cache
	Examples

	Writing TPF Application Programs in C and C++
	Special TPF Considerations
	Coding main Functions
	Building and Loading DLMs Containing a main Function
	Defining a main Function
	Calling a DLM Containing a main Function
	Passing Arguments to main

	I/O Stream Pipes
	Example of Calling a DLM That Contains a main Function
	Example of Creating an ECB That Enters a DLM That Contains a main Function
	Coding C++ Applications
	main or extern "C" Requirement

	C++ Exceptions
	Exporting
	Reentrant Programming
	Standard TPF Program Sizes
	Static Storage Considerations

	TPF Header Files
	Creating Your Own Header Files
	TPF Header Files and C++
	More Useful Information

	TPF Application Environment
	Accessing the ECB
	Work Areas
	Data Levels
	Managing Files
	TPF File System
	Record-Level DASD I/O
	Tape I/O

	ECBs and Entries
	Control
	Exit Processing

	TPF Terminal Communications
	Terminal Input
	Output Messages

	Using TPF Globals

	Calling Other Functions and Programs
	Function Linkage:
	#pragma Compiler Directive for TARGET(TPF)

	Parameter Passing (from C to C)
	Calling a C Program (from Assembler)
	Assembler Calling C: The C Parameter List

	Calling an Assembler Program (from C)

	Compiling and Running C/C++ Programs
	DLL Compiler Option
	Sample Code Written to the RENT Standard
	C Header File with Declarations of External Linkage Objects
	C Source File with Definitions of External Linkage Objects
	C Source File Showing the Use of External Linkage Objects

	Understanding TPF Internet Server Support
	The POSIX Process Model As Implemented by the TPF System
	A Process
	Process ID
	Process Group

	Process Inheritance
	POSIX-Compliant APIs for Process Control
	TPF-Unique APIs for Process Control
	Signals
	Signal Handlers
	SIGCHLD Signal
	Exit Status

	File Access in the TPF File System
	Process Attributes
	Access Permissions
	Rules to Determine File Accessibility

	Internet Daemon
	Process Models
	Internet Daemon Configuration File (IDCF)

	Hypertext Transfer Protocol (HTTP) Server
	File Transfer Protocol (FTP) Server
	Trivial File Transfer Protocol (TFTP) Server
	Customizing the TFTP Server
	Security
	File Names
	Using the TFTP Server from Another System

	Syslog Daemon
	TPF Internet Mail Servers
	Internet Server Application Considerations
	Process Models
	TCP and the NOWAIT Process Model
	TCP and the WAIT Process Model
	TCP and the AOR Process Model
	TCP and the DAEMON Process Model
	UDP and the NOWAIT Process Model
	UDP and the WAIT Process Model

	Internet Server Application Interface
	TCP and the WAIT Process Model
	TCP and the NOWAIT Process Model
	UDP and the WAIT Process Model
	UDP and the NOWAIT Process Model
	TCP and the AOR Process Model

	Add an Internet Server Application to the IDCF

	Considerations for Using the Internet Daemon to Start a TPF Program
	Interface

	Starting a TPF Application from the Internet
	Executable Script
	Example

	Understanding TPF Remote Procedure Call
	Interface Definition Language and Stub Files
	TPF Modifications to Distributed Computing Environment (DCE) RPC
	Creating an RPC Interface for TPF
	TPF RPC Run-Time Library
	RPC Calls
	Threads
	The Thread Environment
	Thread Safety

	RPC Servers
	Starting and Stopping RPC Servers
	INETD
	TPF Cycle-Up and Cycle-Down Processing
	E-Type Loader

	Performance and Tuning for RPC
	RPC Storage Considerations
	RPC C Header Files

	Understanding Virtual Storage Access Method (VSAM) Database Support
	VSAM Concepts
	VSAM Database Support
	Disk Mirroring
	Data Set Naming Convention
	Referring to Data Definition (DD) Names and Clusters
	I/O Interface and VFA

	VSAM Database Constraints
	VSAM Database Considerations

	VSAM Database Support with Other Utilities
	VSAM Database Support Request Flow Control
	Sample VSAM Database Support Program
	Managing Buffers
	Reusing Data Levels

	Return Codes
	Error Recovery
	Constructing the VSAM Cluster Data Set Names

	Coding Your Own Library Functions
	Coding Library Functions in C
	Coding Library Functions in Assembler
	Register Conventions
	C Language Support Prologs
	C Language Support Epilogs
	Secondary Linkage in ISO-C Function Libraries
	Restrictions
	Coding Assembly Language Routines

	User Expansion Area

	TPF Application Program Interface Functions
	Transferring Processor Control
	Enter/Back Services
	Create Macros and Functions
	Suspend Processing Macros and Functions
	Exit Functions
	Exit System Service Routine
	Calling the Exit Functions

	Transfer Vectors

	Main Storage Allocation
	Allocating Working Storage
	Application Global Area
	Global Directory
	Common Values
	Protected Data Records
	Maintaining Global Areas
	Synchronizing Global Areas
	Keypointing Global Areas
	Global Area Macros for Assembly Language
	Special Coding Considerations
	Global Area Functions for C Language
	Programming Considerations with the Global Functions

	Operation of the Global Functions
	Synchronization Considerations
	Examples of Using the Global Functions

	Accessing Data in Assembly Language and C Language
	Fixed File
	FACE, FACS, and FAC8C
	Making a Call to FACS Using TARGET(TPF)
	face_facs Function

	Random Pool File Area
	Examples of Using the Pool Storage Functions:

	File Storage Access
	Prerequisites for Basic Find and File Functions
	Use of the Higher-Level C Language Find and File Functions
	Record Hold Facility

	Summary of File Reference Functions and Macros
	Using Assembler Language File Reference Macros
	Using C Language File Reference Functions

	Determining the Status of I/O Operations
	Standard Record Header
	Record Identification
	Record Code Check

	Data Control
	Program ID
	Chaining Addresses

	Tape Support
	Real-Time Operations
	General Tape Operations
	General Tape Functions
	Summary of General Tape Functions
	Operator Control of Tape Operations

	General Data Set and General File Support
	General Data Set Functions

	Input Device Support
	System Error Processing
	SYSRA Macro
	Standard Error Functions
	Using C Language Error Functions

	Temporarily Detaching and Attaching Main Storage Blocks

	Design Considerations
	Program Sharing in Main Storage
	Virtual File Access Facility
	Program Organization
	Modular Programming
	Performance Considerations
	File Access
	Coding Techniques

	Ease of Modification and Expansion
	Program Commentary
	Utility Segments and Subroutines
	Miscellaneous Programming Tips

	TPF Testing Environment for Assembly Language
	Test System Characteristics
	Testing Levels
	Test System Components
	System Test Compiler (STC)
	Program Test Vehicle (PTV)
	Package Test
	System Test
	Live Test

	Real-Time Trace (RTT)
	Selective File Dump and Trace (SFDT)
	Diagnostic Output Formatter (DOF)

	Debugging Programs and Diagnosing Problems in C Language
	Run-Time Debugging
	Function Mismatches
	Description
	Indications

	Identifying the Library Ordinal Number
	Description
	Indications

	ISO-C Dynamic Load Modules (DLMs)
	Storage for ISO-C Static Variables
	Layout of ISO-C Structures in a Dump
	Brief Listing of Errors
	Using C Function Trace
	Using Link Map Support for C Load Modules

	Customizing C/C++ Language Support
	Required Customizations
	TPF Globals

	Optional Customizations
	Creating and Selecting Locales
	What is a Locale?
	Creating a New ISO-C Locale
	Creating a New localedef Utility-Based Locale
	Creating a New TARGET(TPF) Locale

	C Language Support User Exits
	Extending the Library Function Work Area
	Collection of Data

	Customizing User Data Area in ISO-C Modules

	Character Sets
	Choosing a New Character Set
	Translating Character Sets
	Defining a Translation
	Translating on a TPF System
	Keeping CCSIDs Compatible
	Creating a Translation Table
	When the Translation Table Data Sets are Online
	Packaging Translation Tables
	Loading Translation Tables Online
	Creating Translation Tables That Do Not Exist in the LE Data Sets
	Summary of Steps Needed to Create a New Translation Table:

	Installing Additional ISO-C Library Functions
	Prelinking and Linking

	Library Interface Tool
	Purpose
	Requirements and Restrictions
	Format for the @libid Statement
	Additional Information
	Format for the @libfun Statement
	Additional Information
	Example of a Library Interface Tool Script
	Running the Tool

	DLM Call Stub Generator
	Purpose
	Requirements and Restrictions
	Format for a DLM Stub Generator Statement
	Running the Generator

	ISO-C Load Module Build Tool (CBLD)
	Purpose
	Requirements and Restrictions
	Format for a Load Module Build Tool Statement
	Sample Load Module Build Scripts
	Running the Build Tool
	CBLD Support for Dynamic Link Libraries (DLLs)

	Rearrange TXT (REATXT) Tool: Sample Code Only
	Sample JCL for Generating ISO-C Offline Tools
	Installing Additional IBM TARGET(TPF) C Library Functions
	Removing TARGET(TPF) Library Functions

	Index

