<|lI!

Transaction Processing Facility

System Macros

Jersion 4 Release 1

SH31-0151-13

<|lI!

Transaction Processing Facility

System Macros

Jersion 4 Release 1

SH31-0151-13

Note!
FBefore using this information and the product it supports, be sure to read the general information under ENotices™ on page l.

Fourteenth Edition (June 2002)
This is a major revision of, and obsoletes, SH31-0151-12 and all associated technical newsletters.

This edition applies to Version 4 Release 1 Modification Level 0 of IBM Transaction Processing Facility, program
number 5748-T14, and to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. Address your comments to:

IBM Corporation

TPF Systems Information Development
Mail Station P923

2455 South Road

Poughkeepsie, NY 12601-5400

USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables L .00 L. X
Notices. Lo
Trademarks L . L ... 0.0
About This Book . . . e (1
Who Should Read This Book e ([
How This Book Is Organized. . . S 1
Conventions Used in the TPF L|brary T (1,
How to Read the Syntax DiagramsXV
Related Information. . . . D 1T

IBM Transaction Processmg FaC|I|ty (TPF) 4 1 Books D 1T

Miscellaneous IBM Books . . . D T

Online Information . . . T Y/ 1]
How to Send Your Comments D () ¢
System Macros Introduction. .1
Control Program (CP) Lmkage .1

Overview .o . .1

Register Defaults .2

The Stacks. . 3

Linkage . . .4

Sample Stack Area Use . . . 6

Coding Example for Control Program (CP) Lrnkage . . 6

Stack Definition Example .o . 8
System Macros . . e i
$ADPC—-Add Work to a Llst on Specrfred - Stream N
$CKMAC-Validate Use of Restricted Macro14
$CONBC-Connect Block to ECB Virtual Memory16
$CPUC-Interface for SIGP Services19
$CRISC-Cross Over to Another I-Stream22
$DCOLC-Data Collection Hook Insertion . . . 2
$DISBC-Disconnect A Block from the ECB Virtual Memory Y
$FINDC—-CP Find A File Record. . . 24]
$FORKC-Create an Asynchronous ECB N ¥4
$GCOMC—-Obtain Common Storage Block.33
$GETBC—Obtain Storage Block.3
$GETRC — Get a Control Recordo38
$GEVAC-Convert SVM Address to EVM Address T ¢
$GIOBC-Get Available I/O Control Block Address42
$GMNBC-Get Contiguous EVM Storage44
$GSVAC-Convert EVM Address to SVM Address46
$GSWBC-Get System Work Block Address48
$GSYSC-Get System Heap Storage. . . N < 0
$GTSTC-Get Contiguous EVM Stack Storage . . .53
$LCKRC-Lock a Virtual File Access (VFA) Shared Lock or Exclusrve Lock . .55
$LOCKC—Lock a Resource . . . C e e e56
$MASKC—Change the System Mask -58
$MONTC-Set Supervisor State (Monitor Mode) wrth PSW Return61
$MOVEC-Move Data Between EVMandSVM62
$RCOMC-Release Common Storage Block64
$RECVC-Recover from Program Check66

© Copyright IBM Corp. 1994, 2002 i

iv

$RELBC—-Release Storage Block .

$RELRC — Release a Control Record .

$RETRC — Retrieve or Modify a Control Record

$RIOBC—-Release Input/Output Control Block (IOCB) Address
$RMNBC-Release Acquired Storage . Ce
$RSWBC—-Release System Work Block .

$RSYSC—Release System Heap Storage .

$SWSPC-Switch Address Space .

$TCPLC—Control Program (CP) Tape Loggrng .

$ULKRC-Unlock a Virtual File Access (VFA) or Record HoId Table (RHT) Lock
$UNLKC-Unlock a Resource. .
$VALEC-Validate Entry Control Block (ECB) V|rtual Memory (EVM) Address
#SBRC-Standard Linkage Macro Subroutine . . . S
ADDFC-Add a Block to the Top of a Dispatch List .

ADDLC-Add Block to the End of a Dispatch List .

BBEWP—-Recoup Error Item Setup .

BBPDH-Recoup Record Find and Count Interface

BBWRT-Recoup Logging Item Setup .

BRPRO-Query Recoup Options .

BRSTR-Recoup Register and Entry Control Block (ECB) Work Area Restore
BSAVE—-Recoup Register and Work Area Save. Coe e
BSCQC-Release Core Blocks That Are Not Attached to an ECB .
BSTAK—-Recoup Stack.

BSYNC-Recopy SYNCC Facrlrty .o

CEBIC-Change MDBF Subsystem/Subsystem User ID .
CFCONC-Connect to a Coupling Facility List or Cache Structure
CFDISC-Disconnect from a Coupling Facility List or Cache Structure
CFISVC-Find Entry in the Macro Information Tables

CFRQC-Coupling Facility Request .

CFVCTC—-Check or Modify a List Notn‘rcatron Vector

CIOSC-Request a Mount, Dismount or Status of an SDA.
CIOUC-Initialize and Reset Communication Lines

CLAWCC-CLAW API Linkage .

CLNKC—Control Program (CP) Call and L|nk .

CPDSC-Generate Control Program (CP) DSECT.

CPLKC - Link to CP Routines. A

CPRND-Control Program (CP) Roundlng

CRASC-Send Message to CRAS

CRATC-Search CRAS Status Table.

CREGPC-Create a Macro Group Definition. . .

CRESVC—-Create an SVC/Fast-Link Table Entry .
CROSC-Cross-Subsystem Access Service Request.

CTKL-SLC Channel Keypoints Setup .

CVTPC—Convert Tape Status Table Pointer . .

CWRTC-Write Critical Message to the System Console

CXFRC-Create a New ECB and Transfer Control

CYDNC-Cycle Down Utility CP Interface .

DHASHC-Hash Resource Name . .

DLCKC-Modify Lock and I/O Interrupt Status . .
DLNKC-Define Stack DSECT for Control Program (CP) Routrne .
DSDAC-Dismount a Symbolic Device Address (SDA) .

ECBLC-Remove |0Bs Associated with an ECB Address .
ELLEC-Schedule an ECB to Exit or Resume . .

ENATC-Activate or Deactivate C Function Trace for an ECB
ESFAC-Obtain Symbolic File Address Information

FACZC-Compute File Address Coe e

TPF V4R1 System Macros

. 68
. 70
.72
. 75
.77
.79
. 81
. 84

. 87
90

.91

93

. 94
. .98

. 101
. 104
. 106
. 108
. 110

113

. 115
. 117
. 118
. 120
. 122
. 128
. 143
. 146
. 148
. 152
. 159
. 161
. 164
. 166
. 168
. 169
. 172
. 173
. 175
. 179
. 180
. 185
. 189
. 197
. 200
. 204
. 210
. 212
. 214
. 216
. 217
. 218
. 219
. 221
. 226
. 228

FCTLC-File Control

FDCTC-File Data Chain Transfer

FLFAC-Flush a Record from VFA Buffers
FLSPC-File a Special Record .

FLVFC-Flush a Record from VFA Buffers
FNSPC-Find a Special Record

FTSTC-Find/File. .
GCFBC-Get Coupling Facrlrty Work BIock Address .
GCLAC-Get a Specified CLAW Block Type .
GDSCC-General Data Set (GDS) Control

GNAMC-Get Program Prolog Area (PPA) Functlonal Name Informatlon

GROUP-Recoup Descriptor Record Access. .
GRRTC-Get Record Code Check (RCC) Reference TabIe
GSVAC-Convert an EVM Address to an SVM Address.
GSWBC-Get a System Work Block (SWB) Address.
GSYSC-Get System Heap Storage . .o
HIOSC—-Halt an 1/0 Operation . .
IBMSVC-Generate IBM SVC and Fast Lrnk Tables .
ICELOG-TARGET(TPF) C Language Support Epilog
ICLANC-Call a Secondary Library Routine . .
ICPLOG-TARGET(TPF) C Language Support Prolog .
IDATB—-Build Selective Memory Dump Table. .
IDATG—Generate Selective Memory Dump Table Entry.
IDOTB-Dump Override Table Build . .o
IFRVTC-Test RID/RVT Address . .

IGATC-Get Global Attribute Table Entry .

ILCKCB-Lock a Control Block Area Macro .
INDEX—Recoup Descriptor Record Structure

IOIRC—Return from CIO Input/Output (1/O) Interrupt Processrng
IPSDC—-Call TCP/IP Native Stack Common Service Routine .
IPURGE-Purge Data from Queue . .
ISDAC-Interrogate Symbolic Device Address (SDA) Status .
ISNSE-Add an Entry to the Sense Table . .o
IULKCB-Unlock a Control Block Area .

IVTYPE-GETCC Block Type Verification .

KEYCC-Change Protection Key .

KEYUC—-Keypoint Update

LCPCC-Low Address Protect Set and Restore

LEBIC-Load and Shift SS/SSU ID

LEMIC—-Lock Entry Management Interface

LMONC-Reset Supervisor State (Problem State).
MAXBC-Get Maximum Number of Storage Blocks .
MODEC-Change Addressing Mode . . .
MONTC-Set Supervisor State (Monitor Mode)
MONWC-Suspend ECB, Pending 1/0 Completion
MOVEC-Move Data Between EVM and SVM .
MPIFC-Request MPIF Service

MSDAC-Mount a Symbolic Device Address (SDA)
MSPIC-Control MPIF Device .

NUMBC-Query Number of Storage Blocks Avarlable
NUMLC-Get Count of Blocks Queued on a Dispatch List.
NXTLC-Get Address of Next Block Queued on a Dispatch List.
NXTPC-Chain Chase through Prefix Pages. o
NXTRC—-Get next TPF Trace Table Entry .

PAUSC-Control System MP Environment .
PERCC—-Enable/Disable Program Event Recording (PER)

. 233
. 237
. 241
. 243
. 246
. 249
. 252
. 254
. 255
. 258
. 261
. 264
. 275
. 276
. 278
. 279
. 281
. 282
. 283
. 285
. 286
. 289
. 293
. 296
. 300
. 302
. 304
. 306
. 323
. 324
. 325
. 326
. 328
. 330
. 331
. 332
. 334
. 335
. 337
. 340
. 344
. 345
. 347
. 348
. 349
. 350
. 352
. 356
. 358
. 360
. 361
. 363
. 366
. 367
. 369
. 371

Contents

\Y

Vi

PFSWC—-Reset Pool Function Switch
PHYBC-Return Physical Size of Storage Block
PIOFC—Initiate a Preemptive I/O Request
PIORC-Return from PIO I/O Interrupt Processing
PKEYC—Keypoint Communication Data
PLNAC—-Check Symbolic Line Type .
PLNSC-Find SLST Entry

PLONC-Place on Queue. . .
PROGC-Return Program Informatron . .
QASNC—-Query Asynchronous I/O Event Facrlrty .

QGDSQ-Query General Data Set (GDS) Input/Output (1/O) Queue .

RCFBC-Release Coupling Facility Work Block Address
RCLAC-Release a Specified CLAW Block Type .
RCRTC-Clean Up Blocks in the CRET

RCSSC-Access the Record Cache Subsystem Status Table
RDCTC-3705 Communications e e
RESMC-Resume Normal CIO 1/O Processrng
RIOSC—Reset an 1/0 Operation . .o

RITID—Access RIAT Entry

RLNKC-Return to CP Calling Routrne and Reset Stack Pornter
RPVRC-Read and Process Program Version Record
RSWBC-Release a System Work Block (SWB)
RSYSC—-Release System Heap Storage .

RVTCC-Search RVT Entries

RWGTC-Release a Lock on a WGTA Entry

SANQC-Define and Enqueue Resource, Signal Aware
SENDC-Send Message to Terminal.

SETOC-Set Maximum Times to Avoid Applrcatron Trmeout for an ECB

SETTC-Set C Function Trace Information for an ECB .
SICFC-IPC Service Request .

SIOSC-Start an Input/Output (1/0O) Operatron .
SIPCC-System Interprocessor/Inter-1-Stream Communlcatron .
SLCQC-SLC Queue Handling. . .

SLMTC-Send LMT High Speed Transmrssron .

SLNKC-Control Program (CP) Save Link Data & Set Stack Pornter .

SNDLC-Send Control Message to 3270 .

SOUTC-Write Path Information Unit (PIU) Systems Network Arch|tecture

(SNA) Input/Output (1/O) . .
SPNDC-Suspend Normal CIO Processrng
SSMMC-Set System Mask .
STIMC—-Time-Initiated CP Routine Executron
STLUC-Send LU 6.2 Message from OMT
SWCHC-Set and Test Lethal Utility Switch .
SWISC-Switch Entry to Another |-Stream
SYCON-System Configuration
TANCC-Transaction Anchor Table Control (TANC)
TASBC-Turn Off Time Available Supervisor Switch .
TASTC-Turn on Time Available Supervisor Switch
TCLAC—Write a CLAW Error Log. .
TDCTC-General Tape Data Chain Transfer
TDTAC—-General Tape Data (GDS) Transfer .
TERMC-KIill a Threaded Process . .
TIOSC-Test Input/Output (I/0O) Service.
TMSLC-Time Slice an ECB. .
TMTKC—-Get the Unique Token for the Current Transactlon .
TPCNC-Tape Control . Ce e e e

TPF V4R1 System Macros

. 373
. 376
. 378
. 380
. 381
. 383
. 386
. 388
. 390
. 392
. 394
. 396
. 397
. 399
. 400
. 403
. 405
. 406
. 407
. 409
. 411
. 412
. 413
. 415
. 418
. 419
. 422
. 428
. 431
. 435
. 436
. 437
. 443
. 446
. 448
. 450

. 453
. 457
. 459
. 460
. 462
. 464
. 467
. 471
. 473
. 475
. 476
. 477
. 478
. 481
. 485
. 486
. 488
. 492
. 493

TPINC—Special Tape Interface.

TYPBC-Obtain Block Type and Size
USATC—Create User Storage Allocation Table Entry
USRSVC-Generate the User SVC Tables
UXITC-User Exit Interface Linkage .

WLOGC-Write to the Recovery Log.

WRSTC-Get Load Module Writable Static Data Length

YIELDC-Yield Control .

Index .

Contents

. 495
. 500
. 501
. 504
. 506
. 508
. 512
. 514

. 517

Vil

Viil TPF V4R1 System Macros

Tables

1. Return and Reason Codes for the CFCONC Macro13
2. Return and Reason Codes for the CFDISCMacro144
3. Branch Routines for the CFVCTC Macro with REQUEST=MODIFYVECTORSIZE Coded 155
4, Branch Routines for the CFVCTC Macro with REQUEST=LTVECENTRIES Coded 156
5. Branch Routines for the CFVCTC Macro with REQUEST=TESTLISTSTATE Coded. 157
6. Specification of the TYPE Parameter for the INDEX Macro and Parameter Requirements 306
7. Storage requirements for the PLNAC Macro .38
8. Time Slice NameTable .. .40

© Copyright IBM Corp. 1994, 2002 iX

X TPF V4R1 System Macros

Notices

References in this book to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service in this book is not intended to
state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
IBM's intellectual property rights may be used instead of the IBM product, program,
or service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Department 830A

Mail Drop P131

2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Any pointers in this book to non-IBM Web sites are provided for convenience only
and do not in any way serve as an endorsement. IBM accepts no responsibility for
the content or use of non-IBM Web sites specifically mentioned in this book or
accessed through an IBM Web site that is mentioned in this book.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

C/370

ECKD

Enterprise Systems Connection Architecture
ESCON

IBM

Language Environment

MQSeries

0S/390

Sysplex Timer

© Copyright IBM Corp. 1994, 2002 Xi

System/370
VisualAge.

Other company, product, and service names may be trademarks or service marks
of others.

Xil TPF V4R1 System Macros

About This Book

The macro manuals are the primary references for assembler language macro
usage under the TPF system.

[[PE System Macrod contains descriptions of macros to be used only by the TPF
system. For general use macros, refer to [[PE_General Macrod.

In this book, abbreviations are often used instead of spelled-out terms. Every term
is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, Systems Network Architecture (SNA). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in the

Who Should Read This Book

This book is intended for use by system programmers.

How This Book Is Organized

The macro manuals contain the detailed specifications for most TPF macros. Not
included are system installation macros, data macros, structured programming
macros, and macro groups that are related to specific functions or user tasks.

The first section of [LRE System Macrad contains an introduction to control program
considerations such as, linkage, register defaults, and control stacks. The remaining
section consists of descriptions for all the system macros. There are four general
classifications of system macros:

» Those requiring special authorization

* Those not requiring authorization

* Those to be used in the control program only

* Those restricted to special packages (such as, Recoup).

The interfaces to system macros are not guaranteed. Unlike the general use
macros, no effort is made to ensure the interface remains stable. The interface for
the system macros may change without notice.

The following macros are described outside this book:
+ General use macros for application programs are in [PE General Macrod.
« Structured programming macros for application programs are in [[lPEDE and

 System Initialization Program (SIP) macros are in [[PE_System Generation.

* Program Test Vehicle macros, used by test driver programs, are in fred
Program Development Support Referencd.

* Dump format macros are in the online segment (ICDF) of the diagnostic output
formatter (DOF), described in

An index appears at the end of this book.

© Copyright IBM Corp. 1994, 2002 Xiii

Conventions Used in the TPF Library

The TPF library uses the following conventions:

Conventions

Examples of Usage

italic

Used for important words and phrases. For example:
A database is a collection of data.

Used to represent variable information. For example:

Enter ZFRST STATUS MODULE mod, where mod is the module for which you want
status.

bold

Used to represent text that you type. For example:
Enter ZNALS HELP to obtain help information for the ZNALS command.

Used to represent variable information in C language. For example:
level

monospaced

Used for messages and information that displays on a screen. For example:
PROCESSING COMPLETED

Used for C language functions. For example:
maskc

Used for examples. For example:
maskc (MASKC_ENABLE, MASKC_I0);

bold italic

Used for emphasis. For example:
You must type this command exactly as shown.

Bold underscore

Used to indicate the default in a list of options. For example:
Keyword=OPTION1 | DEFAULT

Vertical bar |

Used to separate options in a list. (Also referred to as the OR symbol.) For example:
Keyword=Optionl | Option2
Note: Sometimes the vertical bar is used as a pipe (which allows you to pass the output of

one process as input to another process). The library information will clearly explain
whenever the vertical bar is used for this reason.

CAPital LETters

Used to indicate valid abbreviations for keywords. For example:
KEYWord=option

Scale

Used to indicate the column location of input. The scale begins at column position 1. The
plus sign (+) represents increments of 5 and the numerals represent increments of 10 on the
scale. The first plus sign (+) represents column position 5; numeral 1 shows column position
10; numeral 2 shows column position 20 and so on. The following example shows the
required text and column position for the image clear card.

LOADER IMAGE CLEAR

Notes:

1. The word LOADER must begin in column 1.
2. The word IMAGE must begin in column 10.
3. The word CLEAR must begin in column 16.

XiV TPF V4R1 System Macros

How to Read the Syntax Diagrams

This section describes how to read the syntax diagrams (informally called railroad
tracks) used in this book.

* Read the diagrams from left-to-right, top-to-bottom, following the main path line.
Each diagram begins on the left with double arrowheads and ends on the right
with 2 arrowheads facing each other.

»—I Syntax Diagram i »<

» If a diagram is longer than one line, the first line ends with a single arrowhead
and the second line begins with a single arrowhead.

»—| The first line is Tong and extends the width of the diagram |—>

>ﬂ Second Line i >«

* Aword in all uppercase is a parameter that you must spell exactly as shown.

»>—PARAMETER

v
A

» If you can abbreviate a parameter, the optional part of the parameter is shown in
lowercase. (You must type the text that is shown in uppercase. You can type
none, one, or more of the letters that are shown in lowercase.)

Note: Some TPF commands are case-sensitive and contain parameters that
must be entered exactly as shown. This information is noted in the
description of the appropriate commands.

»»>—PARAMeter > <

* A word in all lowercase italics is a variable. Where you see a variable in the
syntax, you must replace it with one of its allowable names or values, as defined
in the text.

About This Book XV

\4
A

»»>—variable

* Required parameters and variables are shown on the main path line. You must
code required parameters and variables.

»>—REQUIRED PARAMETER—required variable > <

 If there is more than one mutually exclusive required parameter or variable to
choose from, they are stacked vertically.

REQUIRED_PARAMETER_1 >«
REQUIRED_PARAMETER_2

required_variable_a

required_variable_b

» Optional parameters and variables are shown below the main path line. You can
choose not to code optional parameters and variables.

»>p-

|-—OPTIONAL_PARAMETER——OptZ'onaZ_Var‘iable—-|

 If there is more than one mutually exclusive optional parameter or variable to
choose from, they are stacked vertically below the main path line.

OPTIONAL_PARAMETER 1
OPTIONAL_PARAMETER_2
ptional_variable_a
ptional _variable b

* An arrow returning to the left above a parameter or variable on the main path line
means that the parameter or variable can be repeated. The comma (,) means
that each parameter or variable must be separated from the next parameter or
variable by a comma.

XVI TPF V4R1 System Macros

»>—Y REPEATABLE_PARAMETER———repeatable variable ><

An arrow returning to the left above a group of parameters or variables means
that more than one can be selected, or a single one can be repeated.

> REPEATABLE_PARAMETER 1 <
EREPEATABLE_PARAMETER_Z—

repeatable_variable

If a diagram shows a blank space, you must code the blank space as part of the
syntax. In the following example, you must code PARAMETER variable.

v
A

»»—PARAMETER— —variable

If a diagram shows a character that is not alphanumeric (such as commas,
parentheses, periods, and equal signs), you must code the character as part of
the syntax. In the following example, you must code PARAMETER=(begin.end).

»>—PARAMETER= (begin.end) ><

Default parameters and values are shown above the main path line. The TPF
system uses the default if you omit the parameter or value entirely.

DEFAULT 0
- I .

|—PARAMETER—| variable—

References to syntax notes are shown as numbers enclosed in parentheses
above the line. Do not code the parentheses or the number.

About This Book XVii

(1)
»>—PARAMETER >

Notes:

1 An example of a syntax note.

* Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in
mixed case and are shown in the diagram and in the heading of the fragment.
The fragment is placed below the main diagram.

A

»—-I Reference to Syntax Fragment i >

Syntax Fragment:

|—1ST_PARAMETER, 2ND_PARAMETER, 3RD_PARAMETER |

Related Information

A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM Transaction Processing Facility (TPF) 4.1 Books
- [[PE ACE/SNA Data Communications Referencd, SH31-0168
- [[PE Application Programming, SH31-0132
- [[PE C/C++ | anguage Support User's Guided, SH31-0121
- [[PE Database Referencd, SH31-0143
« [[PE General Macrod, SH31-0152
- [[PE Operationd, SH31-0162
« [[PE Program Development Support Referencd, SH31-0164
- [TPE Programming Standardd, SH31-0165
+ [PE System Generatiod, SH31-0171
+ [IPE System Installation Support Referencd, SH31-0149
+ [RPEDE and TPE Structured Programming Macrod, SH31-0183

Miscellaneous IBM Books
+ 10S/390 MVS Sysplex Services Guidd, GC28-1771.

| Online Information
| + Messages (QOnline)
| + Messages (System Error and Offline).

XViil TPF V4R1 System Macros

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

» If you prefer to send your comments electronically, do either of the following:
- Go to http:/Avww ibm com/tpf/pubs/tpfpubs htr.

There you will find a link to a feedback page where you can enter and submit
comments.

— Send your comments by e-mail to tpfid@us.ibm.com
 If you prefer to send your comments by mail, address your comments to:

IBM Corporation

TPF Systems Information Development
Mail Station P923

2455 South Road

Poughkeepsie, NY 12601-5400

USA

* If you prefer to send your comments by FAX, use this number:
— United States and Canada: 1 + 845 + 432 + 9788
— Other countries: (international code) + 845 + 432 +9788

About This Book XiX

http://www.ibm.com/tpf/pubs/tpfpubs.htm

XX TPF V4R1 System Macros

System Macros Introduction

Macros in this publication are restricted to system use and are known as system
macros. System macros must not be used by application programs. There are 3
types of system macros:

» System macros that require authorization.

These macros are guarded by the macro checking process. Programs using
them must be authorized in the program allocation table (PAT) during installation
or by the system operator.

» System macros that do not require authorization.

There is no mechanism for authorizing use of these macros. They only operate in
a system environment.

* Macros restricted to the control program (CP).

These macros only operate correctly when invoked by the CP. For example, R9
might not point to an entry control block (ECB) (this is a violation of the
application interface for E-type programs), reserved hardware control sequences
are being executed (operation of hardware is restricted to the CP), or privileged
instructions are being processed (also restricted to the CP). Macros restricted to
the CP do not require authorization.

Explanations of macro authorization appear in the $SCKMAC macro and in the
allocation section of [LPE_System Installation Support Referencd. See
[$CKMAC-Validate Use of Restricted Macra” on page 14 for more information about

the $CKMAC macro.

An additional category of macros appears in this publication — those that relate
specifically to a particular package and are not usable outside that package.

Control Program (CP) Linkage

This section provides overview information, as well as information about:
* Register defaults

» Stacks

* Linkage

* Sample stack area use

* Coding example for CP linkage

» Stack definition example.

Overview

The control program (CP) linkage is intended to provide TPF system programmers
with a mechanism for linking between control program routines. Included here are a
set of rules governing the linkage and a set of system macros that adhere to the
rules. This linkage is available for use when modifying existing CP sections or
creating new ones.

The tightly-coupled multiprocessing environment requires that certain system
macros be coded in every control program CSECT that can be processed from
multiple I-streams. The system macros provide linkage conventions and define work
areas on I-stream unique stacks that protect the TPF system from corruption due to

© Copyright IBM Corp. 1994, 2002 1

multiple I-streams using the same work space. All stack manipulation and CP
linkage must be done only by these system macros to provide efficient,
cost-effective modification in the future.

The mechanism assumes:

The use of I-stream-unique stack areas that are used by all control program
routines: Stack areas can be of any size but must be large enough to include
the total work area of the user requiring the largest work area at each level of
stack use.

Default register usage: These defaults can be overridden to conform to existing
CP routines except for R13 which is always assumed to point to a stack.

No controls to monitor stack area overflow or underflow: For performance
reasons, logic and control flow in both the CP and user exits are the only way to
monitor stack usage and prevent stack overflow.

Stacks exist for the different environments in which the TPF system operates:

Input/output (1/0)
External

Supervisor call (SVC)
Error

Error I/O

Fast Link

Machine Check.

You can also define additional stack areas, such as user-defined stack areas, as
needed. R13 is initialized to point to each respective stack at entry to the
environment. (For example, first level I/O interrupt handler points R13 to the 1/O
stack; macro decoder points R13 to the SVC stack). Therefore, all CP routines
assume R13 addresses a stack save area.

When an environment is entered, a work area, or stack, must be established for
that environment. This stack can be of any size but must be large enough to
include the total work area of the user requiring the largest work area at each level
of stack use. The current implementation of stack control is limited and assumes an
implied limit to levels of nested linkage calls because of the predefined stack size.

Register Defaults
This section provides information about register defaults as follows:

Register 15 is used as the base address of the executing routine.

Register 14 points to the next sequential instruction (NSI) of the routine that
invoked this routine, that is, it is the return address (link register).

Register 13 always points to a stack work area.

Register 0 through Register 12 should be saved and restored over all calls. In
general, contiguous registers starting at RO should be used to pass parameters
between calls (all registers should be saved and restored by the called routine
with the exception of passed parameters which are not restored). This is to
enable a single load multiple instruction to be used to restore registers.

Note: The entire CP does not necessarily adhere to these register conventions. It

is possible to override each convention, with the exception of R13 usage.

2 TPF V4R1 System Macros

The Stacks

This section provides information about:
* Initialization

» DCTSTK data area

» User-defined data area.

Initialization

The system initializer, CCCTIN, carves out a stack for each environment for each
I-stream. After initialization, while the TPF system is running, each environment
entry point (for example, the macro decoder for SVC and the 1/O interrupt handler
for I/0O) sets R13 to point to the appropriate stack. Therefore, the entire CP can
assume R13 always points to a stack entry.

Each stack contains enough space to save registers and work space for the current
CP linkage implementation.

DCTSTK Data Area
The DCTSTK data area that defines stack entries. It has a fixed area that defines

space for registers, a performance area, and space for use by macros. In addition,
by using the SLNKC macro you can define a variable amount of space on the stack
for your use.

All stack manipulation and CP linkage must be done only by the SLNKC, DLNKC,
CLNKC, and RLNKC macros to provide simple modification in the future.

Predefined Equates: Equate values are used to address predefined areas. The
size of this area is constant, making it easier to view in a dump.

Previous Stack Pointer: This fullword contains a pointer to the previous stack
area used. It is used to return to the caller and is for debugging dumps because it
is often necessary to locate the stack area of the caller.

Register Save: Sixteen fullwords are allocated to save all general registers.

Performance Area: The performance area is allocated in every stack entry for use
by performance-oriented routines such as storage block management routines that
do not have to subtract and push the stack pointer. These routines cannot afford the
added cost of pushing the stack pointer. Routines using the performance area
cannot call a lower level routine.

STKINL Macro Save Area: The STKINL macro save area is an inline save area
used by system macros to temporarily save and restore registers and data over the
macro call. This alleviates the problem of finding a place to save registers during
macro calls (inline macros or system macros that generate linkage to central
routines).

User-Defined Area

The user-defined area, in DSECT form, can be variable in size depending on
routine requirements, single register addressability, and stack size. Single register
addressability limits the space to 4096 bytes. This space is defined by coding define
storage instructions between the SLNKC and DLNKC macros.

Note: These areas are not automatically initialized during subroutine calls and if
initialization is important must be handled by the user.

System Macros Introduction 3

Linkage

You should always use the SLNKC, DLNKC, CLNKC, and RLNKC system macros,
which are CP linkage and stack manipulation macros, when linking between CP
routines that require stacks. These system macros use the default register
conventions described in lRegister Defaults” on page 2, but the defaults can easily
be overridden for general TPF system use.

This linkage meets the following requirements:

» The previous stack pointer can always be seen in the current stack entry.

* Minimal instructions are used for the linkage.

» All registers, except the linkage register and parameter registers, can be saved
and restored over the macro call.

» Default register conventions can be overridden and, in addition, coexist with
different register usage. This means one routine can use the CLNKC macro with
one set of link registers while another routine can use the CLNKC macros with
other link registers.

The following are assumptions about this linkage:

* The caller must know the base register used by the caller routine. This is
because the base register of the caller routine is saved on the stack prior to the
call.

» If the default registers for the SLNKC, CLNKC, and RLNKC macros are
overridden, the called routine must know which register was used as the return
link register of the caller.

* The stack has the following areas:
— Afixed size area for TPF system use.
— An optional, variable size area for your use.

These areas do not exceed 4096 bytes of doubleword entries.
» Stack entries are located in contiguous storage.

Initial Linkage

The CCCTIN system initializer carves out stacks for each environment (for example,
SVC, I/0, MCHK, ERROR) for each I-stream and establishes a pointer to each
stack in the prefix page. This pointer is initialized to the bottom of the stack minus 1
entry so that the stack is ready to be addressed upon entry to the environment.

When an environment is entered, R13 is set to point to the proper stack for the
current I-stream. Since the stack pointer is located in the prefix page, it is
addressable by the entire CP and is, by definition, I-stream-unique.

For example, when an SVC interrupt occurs, the macro decoder must:
L R13,PFXSSAVE

This sets R13 to the SVC stack. You can now code the SLNKC and CLNKC
macros.

Calling Linkage

To call a CP routine, the caller’s link register or branch-to-register is saved in the
register save area on the stack. Then the caller loads the branch-to-register (which
will become the called routines base register) and BASRSs to the routine. If default
register conventions are used:

4 TPF V4R1 System Macros

CALLER ST R15,STKR15(,R13)
L R15,CALLEE
BASR R14,R15

Note: The branch-to-register, R15, is saved on the stack before the call to preserve
its contents over the macro call. The called routine must not overlay the
contents of STKR15 when it saves registers, and in addition it must restore
R15 when returning.

Linkage upon Entry to a Routine
Upon entry to a CP routine that had been called by the calling linkage described
previously (see Llnitial Linkage” an page 4 for more information) the lowest number
register used by the routine through register 15 is stored into the caller’'s stack
register save area. R13 is then decremented by the size of the work area needed
by the current routine and its previous value, which points to the last stack entry, is
saved in the current stack entry. If default register conventions are used:

CALLEE STM RO,R14,STKRO(R13)

SL R13,STKLEN
MVC STKPREV,STKLEN+STKR13(R13)

Notes:

1. Remember R15 was saved already by the caller. Therefore, it is essential that
the caller and the callee know what is the base register of the called routine.

2. The registers are saved on the stack first and then R13 is pushed. To find the
register contents at entry to a routine in a dump, you must first get the pointer to
the last stack entry (STKPREV).

Linkage to Return
To return to a CP routine that was called by the linkage described previously, R13 is

restored to point to the caller’s stack area. All registers saved by the called routine
(except parameters being passed between calls) are restored, and return is made
by a BR R14. If default register conventions are used:

L R13,STKPREV(R13)

LM RO,R15,STKRO(R13)
BR R14

Note: This includes the branch-to-register or BASE previously saved in the calling
linkage logic.

Linkage Notes

Keep in mind the following:

* When performance is not critical, all registers should be saved on the stack (low
register of R0). Registers not passing data (as defined by the routine interface
and coded by the RLNKC macro) should be restored upon return. This will
enhance maintainability and debugging ability.

* Generally, the number of instructions required in the called routine is 5
instructions on entry and 3 on exit. The call itself also requires 3 instructions.

* The caller saves its link register (the branch-to-register or BASE of the callee) on
the stack area and the callee restores it upon return.

* The TPF system does not assume the default register conventions described.
The register conventions are used as defaults in the system macros and are
encouraged for use by all new or modified CP routines. However, the linkage
macros are flexible enough to handle any base and linkage registers that do not
to conform to the defaults.

» Following are several enhancements that can be made to the linkage described
previously:

System Macros Introduction 5

— Use Save and Restore for only those registers needed by the routine. This
enhances performance because fewer registers are saved by a single Load
and Store multiple instruction. This technique can be used in
performance-oriented routines. For debugging purposes, it is strongly
recommended that nonperformance critical routines save and restore all
registers.

— Performance-sensitive routines like storage block management routines
reference a predefined stack area. That is, R13 will always point to a stack
area that contains an area allocated for these routines to eliminate the cost of
pushing and popping the stack. This area is overlayed by each call or push of
the stack. Therefore, these routines must be the last level of call. This
technique is for performance sensitive routines only and will be maintained
within the system macros.

Examples of the use of these system macros and the stack area follow.

Sample Stack Area Use
The following is a sample of the stack area use.

(PROG2 SLNKC) R13 = PERFORMANCE AREA
PREV Pointer to last stk
RO Register
R1 save
. area
R15

USER DEFINED AREA

(PROG1 SLNKC) R13 = PREV Pointer to last stk
RO Register
R1 save
. area
R15

USER DEFINED AREA

(PROGO) STACK»> R13-PREV Pointer to last stk

RO

R1 Register
. save

R15 area

USER DEFINED AREA

Note: Performance area exists only at highest/deepest call. It is overlayed on all
other calls.

Coding Example for Control Program (CP) Linkage

Program 0, which is the initial routine, is the initial entry to the CP environment.
Load the stack register with the proper stack from prefix page. Call first routine.

Without Macros With Macros

L R13,PFXSSAVE L R13,PFXSSAVE

6 TPF V4R1 System Macros

ST R15,STKR15(R13) .
L R15,=A(PROG1) CLNKC RTN=PROGI1,TYPE=INT
BASR R14,R15 .

LTORG , LTORG ,
=A(PROG1) =A(PROG1)

End Prog 0 Initial Entry to control program.

Program 1, which is the caller routine, saves registers on the stack. Push the stack
pointer. Save the caller’s stack pointer.

Without Macros With Macros

PROGI DS OH PROG1 DS OH

USING PIWK,R13

STM RO,R14,STKRO(R13) SLNKC LOREG=RO,
SL R13,=A(P1WKL) DSECT=P1WRK
MVC STKPREV(R13),K1WKLEN_STRK13(R13)

PIWK DSECT

STKPRF DS 16X Performance area
STKPREV DS 1F Previous Stack
STKREGS DS 16F Register Save
STKINL DS 6F In-Line Reg Save

P1A DS 1F P1A DS 1F

P1B DS 1F P1B DS 1F

P1C DS 1F P1C DS 1F
DS 0D

PIWKLEN EQU *-PIWK

CSECT DLNKC

ST R15,STKR15(R13) .
L R15,PROG2A CLNKC RTN=PROG2,TYPE=INT
BASR R14,R15 .

LM RO,R15,STKREGS RLNKC LOREG=R0O
BR R14 .
PROG2A DC A(PR0OG2) LTORG
LTORG , =A(PROG2)
=A(P1WKLEN) =A(P1WKLEN)
End Prog 1

Program 2, which is the called routine, saves registers on the stack. Push the stack
pointer. Save the caller’s stack pointer.

Without Macros With Macros

PROG2 DS OH PROG2 DS OH
USING P2WK,R13
STM RO,R14,STKRO(R13) SLNKC LOREG=R0O,

SL R13,=A(P2MWKL) DSECT=P2WK
MVC STKPREV(R13),P2WKLEN+STKR13(R13)

System Macros Introduction 7

P2WK DSECT

STKPRF DS 16X Performance area
STKPREV DS 1F Previous Stack
STKREGS DS 16F Register Save
STKINL DS 6F Inline Reg Save

P2A DS 1F P2A DS 1F
P2B DS 1F P2B DS 1F
p2C DS 1F P2C DS 1F
DS oD
P2WKLEN EQU *-P2WK .
CSECT DLNKC
LM RO,R15,STKREGS RLNKC LOREG=RO
BR R14 .
End Prog 2

Stack Definition Example
The following is an example of a stack definition.
PFXSSAVE DS F - SVC Stk

PFXFSAVE DS F - Fast Link Stk I-
S
PFXISAVE DS F - I/0 Stk T
R
PFXESAVE DS F - External Stk E
A

PFXPSAVE DS F - Program Ck Stk (real address) M
PFXMSAVV DS F - Machine Ck Stk (SVA) #1
PFXMSAVR DS F - Machine Ck Stk (real address)
PFXZSAVE DS F - Program Ck IO Stk

PFXSSAVE DS F - SVC Stk

PFXFSAVE DS F - Fast Link Stk I-
S
PFXISAVE DS F - I/0 Stk T
R
PFXESAVE DS F - External Stk E
A

PFXPSAVE DS F - Program Ck Stk (real address) M
PFXMSAVV DS F - Machine Ck Stk (SVA) #2
PFXMSAVR DS F - Machine Ck Stk (real address)

PFXZSAVE DS F

Program Ck IO Stk

Equates
There are common equates provided to refer to a variety of system structures.

Among them are:

» Storage block types
» Logical block types

* Physical block types

8 TPE V4R1 System Macros

* Entry control block (ECB) equates

* Communications Line equates

* System equates

» Configuration-dependent system equates
* Tape program equates

* Terminal type equates

« Control program equates.

In addition to system macros that consist purely of equates, DSECTS also often
carry equates with them.

System Macros Introduction 9

10 TPF V4R1 System Macros

System Macros

This chapter contains an alphabetic listing of the TPF system macros. The
description of each macro includes the following information:

Format: Provides a syntax (railroad track) diagram for the system macro and a

description of each parameter and variable. See [How to Read the Syntax
Diagrams” on page xul for more information about syntax diagrams.

Entry Requirements: Lists any special conditions that must be true on entry to the
system macro.

Return Conditions: Lists what is returned when the system macro finishes
processing.

Storage Requirements: Provides the number of bytes (or range of bytes) required
by the system macro.

Programming Considerations: Lists any additional considerations for using the
system macro, including any restrictions or limitations.

Examples: Provides one or more examples that show you how to code the system
macro.

© Copyright IBM Corp. 1994, 2002 11

$ADPC

$ADPC-Add Work to a List on Specified I-Stream

Use this system macro to add a specified data block to a specified dispatch list on
a specified I-stream. A work element can be added to any I-stream from any
|-stream.

Format

A

>>—L—_|—$ADPC—BLOCK=RX—,—IS=—|:MAIN ,—LIST=Rw— ,—PIADDR=Rz >
label

Ry

label
A symbolic name can be assigned to the macro statement.

BLOCK=Rx

The specified register is set to the address of the data block to be added to the
list.

IS Specify one of the following:

MAIN
The main I-stream is the target.

Ry
The specified register is set to the target I-stream number.

PIADDR=Rz
The register specified is set to the address of the routine to be activated when
the data block is dispatched from the list on the target I-stream.

LIST=Rw
The specified register is set to the appropriate dispatch list index value as
defined in the CLHEQ macro (Ready List, Input List, Defer List).

Entry Requirements
The PSW protect key must be 0 and must be in supervisor state.

Return Conditions

» Control is returned to the next sequential instruction. The contents of all registers
are preserved across this macro call.

Programming Considerations
e This macro can be run on any I-stream.
* An item cannot be added to the Cross List with this macro.
* Return is made to the next sequential instruction.
* This macro generates a CLNKC to the service routine.

* For entry to the macro service routine, the macro will convert the input to the
following:

RO PIADDR, postinterrupt address routine
R1 BLOCK address
R2 LIST index as defined in CLHEQ

12 TPF V4R1 System Macros

Examples

$ADPC

R3 I-stream number (in the range 1-16).
CAPT must be called by the CSECT.

$ADPC will bypass normal dispatch management shutdown processing when
adding to any list other than the main I-stream input list.

Depending on the from I-stream and the to I-stream, the $ADPC service routine
may use the $CRISC macro to cross between I-streams.

This macro is for use in the control program (CP) only.
An entry for this macro will be added to the macro trace table.

This macro requires that if the address passed as the BLOCK parameter is an
ECB address, it must be the SVA address for the ECB. 0B and SWB block
addresses are the same in SVA and EVA. SVA addresses are required because
the processing routine runs in the SVM.

You must understand address space considerations when coding this macro.

None.

System Macros 13

$CKMAC

$CKMAC—-Validate Use of Restricted Macro

Format

Use this system macro to validate or reject authorization of E-type programs
requesting to run a restricted use macro. Macro service routines identified as
restricted use it to enforce the restriction. The program allocation table (PAT) entry
of the requesting program is checked to determine whether the requesting program
is authorized to process a class of restricted use macros.

|_ (1)
>>—L—_|—$CKMAC—REG1=RX—,REGZ=Ry—,CHECK= (—~ M) >
label KEYO
C

ONT
RESTR-
SVCTBL
FLKTBL
>—,—'|:IFAUTH=symboZI J >
NOTAUTH=symbo 12
Notes:
1 kywrd
label
A symbolic name can be assigned to the macro statement.
CHECK

This required parameter specifies the class authorization to be verified. There
are three possible operands:

(kywrd)
Specify one of the following:

KEYO
The KEYO option tests for storage protect key 0 authorization.

This option is listed as KeyO in the authorization box.

MONTC
The MONTC option tests for supervisor state authorization.

This option is listed as System in the authorization box.

RESTR
The RESTR option tests for other restricted macro use authorization.

This option is listed as Restricted in the authorization box.

CMB
The CMB option tests for authorization to obtain common storage
blocks.

This option is listed as Common Storage in the authorization box.

14 TPF V4R1 System Macros

$CKMAC

SVCTBL
The SVCTBL option tests the SVC table entry for the macro against the
PAT entry for the program.

FLKTBL
The FLKTBL option tests the fast link table entry for the macro against the
PAT entry for the program.

REG1=Rx

A work register must be specified. RO cannot be used.

REG2=Ry

A work register must be specified. RO cannot be used.

IFAUTH=symboll

If this parameter is coded, and authorization is validated, control will be passed
to the location defined by symbol1l.

NOTAUTH=symbol2

If this parameter is coded, and authorization is rejected, control will be passed
to the location defined by symbol2.

Note: Either IFAUTH or NOTAUTH must be coded. Both can be coded.

Entry Requirements

RO cannot be specified as a work register.
R9 must contain the address of the requesting ECB.

Return Conditions

Control is returned to the location specified by the appropriate authorization
check condition or to the next sequential instruction (NSI).

The register specified by the REG parameter has been used as a work register.
Its contents are unpredictable.

Programming Considerations

Examples

This macro can be run on any I-stream.

This macro is used by the macro decoder and by restricted use macro service
routines to validate a requestor’s (E-type program) authorization to execute a
macro.

This macro generates inline code.
Authorization is validated through ISVOSV field ISVOAUTHZ.

If coding a SNAPC macro to enforce an authorization failure, be sure to include
the SVC Old PSW (if an SVC), by using the SNAPC LIST parameter and the
registers, by using the SNAPC REGS=YES parameter. This will provide
consistency in $CKMAC usage.

Some macros have authorizations required to use particular parameters even
though the macros themselves do not require authorization by the CKMAC
parameter. The restricted parameters are documented in their respective macro
descriptions.

None.

System Macros 15

$CONBC

$CONBC-Connect Block to ECB Virtual Memory

Format

Use this system macro to attach a data block to an entry control block (ECB)
address space.

,BLOCK=R1 ,PROTECT=NO
»>—$CONBC |_ —l |_ _| >
I—,BLOCK=RnJ I—, PROTECT=YESJ I—,SVAOUT=RmJ

"T oreeces]
M T L T T Tl [
T, J L]
Rx |_’_|
g]
, SAVREG=(LR0—| s l—RJ—l s |—R2—|)
S P
RO]
BLOCK=R1|Rn

Use this parameter to specify the system virtual address (SVA) of a storage
block. The register specified contains the SVA address of a storage block. The
block must be of a type that can be attached to ECB CBRWSs (128, 381, 1055,
or 4095 bytes).

On return, this register contains the ECB virtual address (EVA) of the connected
block.

R9 and R13 cannot be used with the BLOCK parameter R9 cannot be used
because you may not attach the ECB to itself. R13 cannot be used because
you may not attach the stack to the ECB.

R1 is the default.

PROTECT
Use this parameter to specify if the ECB is allowed to modify data in the block.

YES
If YES is specified and the block resides in main storage above the frames,
the page protection bit is set in the page table entry for the storage, and the
data is protected against modification.

Note: The YES option of the PROTECT parameter is intended exclusively
for the ENTXC macros to connect a 24-bit program residing in a 4 K
VFA block to an ECB. The YES option is ineffective when the block
resides in or below the frames.

16 TPF V4R1 System Macros

$CONBC

NO
If NO is specified or if the block resides in main storage in or below the
frames, the page protection bit is not set in the page table entry and the
data can be modified. NO is the default.

SAVOUT=Rm
This optional parameter specifies a register that contains the SVA of the block
connected by the macro.

Note: The SVA may change during the process of connecting the block to the
ECB.

The BLOCK and SVAOUT parameters should not specify the same register.
There is no default register for SVAOUT.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements
* R9 should not be specified for the WKREG parameter.
* R9 must point to the ECB to which the block will be connected.
* You can run the $CONBC macro from system virtual memory (SVM) or ECB
virtual memory (EVM).
Notes:

1. Keep in mind that you can run this macro from EVM only if the block being
connected is addressable by the ECB virtual address (EVA).

2. When blocks are being attached in frames, the program running this macro
must be in SVM.

* The block pointed to by the BLOCK parameter must be disconnected from the
ECB by issuing $GETBC ECB=NO or $DISBC.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

» The register specified in the BLOCK parameter contains the EVA address of the
connected block.

* The condition code is not preserved.

System Macros 17

$CONBC

Programming Considerations

* This macro must be processed on the same I-stream as the ECB to which the
block will be connected.

* This macro is for use in the control program (CP) only.
» System error dumps can occur when servicing a $CONBC request. See

Messages (System Error and Qffline) for more information.

Examples
None.

18 TPF V4R1 System Macros

$CPUC

$CPUC—-Interface for SIGP Services

Use this system macro to provide an interface to the CCIISC inter-I-stream control
CSECT for SIGP services. (Implemented functions are strictly those functions
provided by the SIGP instruction.)

Format
,DATA=16 ,DUMP=YES
»—L——'—$CPUC—FUNCT=——SENSE——,TARGET=RX [] [l >
label —EXTERNAL—| ,DATA=Ry ,DUMP=NO—|
—EMERGENCY—
- START——|
—STOP
—RESTART—|
—STOPSTORE—]
—INITRESET—
—RESET———
—SETPREFIX—
L STATADDR—'
r,STATus=16—|
l—,STATUS=Rz—|
label
A symbolic name can be assigned to the macro statement.
DATA

Specify one of the following:

Ry The specified register is set to the address of a data area for SIGP to store
into.

16 This is the default. There will be no data area.

DUMP
Specify one of the following:

YES
This is the default. A system error is taken on a SIGP error.

NO
No dump is taken.

FUNCT=x
Where x is one of the following SIGP functions:

SENSE
(01)

EXTERNAL
(02)

EMERGENCY
(03)

START
(04)

System Macros 19

$CPUC
STOP
(05)
RESTART
(06)
STOPSTORE
(09)
INITRESET
(0B)
RESET
(0C)
SETPREFIX
(0D)
STATADDR
(OE)
STATUS
Specify one of the following:
Rz The register specified is available for output status.
16 This is the default. There is no output status.

TARGET=RXx
The specified register is set to the CPU address of the target CPU that FUNCT
will be run against.

Entry Requirements
The PSW protect key must be 0 and in supervisor state.

Return Conditions
» Control is returned to the next sequential instruction.

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

Programming Considerations
* This macro can be run on any I-stream.

* General registers R14 and R15 are used to link to the service and cannot be
used as parameters.

* Return is to the NSI, with the DATA area and STATUS register set to indicate the
result of the requested function. All other registers will be restored.

* The SIGP STATUS register values are:

CCO Return X'00000000' Order Code accepted
CC3 Return X'FFFFFFFF' CPU NOT Operational
CC2 Return X'FFFFFFFF' CPU Busy

CC1 Return... Stored Status
SIGECHECK. .. X'80000000' EQUIPMENT CHECK
SIGISTATE... X'00000200"' INCORRECT STATE
SIGIPARAM. .. X'00000100" INCORRECT PARAMETER
SIGEXCALL... X'00000080"' EXTERNAL CALL PENDING
SIGSTOPPD... X'00000040"' STOPPED

SIGOPINTR... X'00000020' OPERATOR INTERVENING
SIGCHKSTP. .. X'00000010' CHECK STOP

20 TPF V4R1 System Macros

$CPUC

SIGSPINOP... X'00000004' SERV PROC INOPERATIVE
SIGINORDR... X'00000002' INVALID ORDER
SIGRCVCHK. .. X'00000001' RECEIVER CHECK

* This macro can be used in a special package only.

Examples
None.

System Macros 21

$CRISC

$CRISC-Cross Over to Another I-Stream

Use this system macro to add the specified item to the CROSS list in the specified
I-stream. An element of work cross over to the main I-stream from any I-stream or
from the main I-stream to any other I-stream.

Format

, PARM1=NO , PARM2=NO
$CRISC—IS=—MAIN 1 [il
L

,PIADDR=Rz <
label (Rw)j_ I—,PARM1=R)(J I—,PARM2=RyJ

label
A symbolic name can be assigned to the macro statement.

IS Specify one of the following:

MAIN
The main I-stream is the target I-stream.
Rw
The specified register is set to the target I-stream number.
PARM1=Rx|NO
The specified register contains user parameter 1. The default is NO.
PARM2=Ry|NO
The specified register contains user parameter 2. The default is NO.
PIADDR=Rz

The register specified is set to the address of the routine to be activated when
the data block is dispatched from the cross list on the target I-stream.

Entry Requirements
* The PSW protect key must be 0 and must be in supervisor state.

Return Conditions
» Control is returned to the next sequential instruction.
* The contents of all other registers are preserved across this macro call.

Programming Considerations
* This macro can be run on any I-stream.

* For entry to the macro service routine, the macro will convert the input to the
following:

RO PARM1, which is a 4-byte parameter 1
R1 PARM2, which is a 4-byte parameter 2
R2 PIADDR, which is a postinterrupt routine address

R3 I-stream number (in the range 1-16).
* CAPT must be called by the CSECT.

22 TPF V4R1 System Macros

$CRISC

* You must use the $CRISC macro to change I-streams. However, the $CRISC
macro does not update I-stream related fields in the ECB or low main storage
(for example, CASNEBA).

* This macro is for use in the control program (CP) only.

* An entry for this macro will be added to the macro trace table for both this
I-stream and the target I-stream.

Examples
None.

System Macros 23

$DCOLC

$DCOLC-Data Collection Hook Insertion

This system macro is for use by TPF system data collection only. It must not be
used and calls to it must not be modified by anyone. This system macro provides
an interface for data collection information. Information can be collected for:

* Message traffic (ROUTC, SENDC, SIPCC, MSGIN, SLMTC)

* File storage activity handled by SON and VFA.

The $DCOLC macro generates either an SVC linkage to a hook (in E-type code) or
the hook itself (in C-type code). When active, the hook calls the corresponding
collection routine.

Required Authorizations

KeyO Restricted System Common Storage
X
Format
> $DCOLC—HOOK=——ATIMER ><
Label —BACKC—
—ENTDC—
—ENTNC—
—ENTRC—
—MSGIN—
—MTIMER—
—ROUTC—
—SENDCAC—
—SENDCK—
—SIPCC—
—SLMTC—
—SON———
—VFA
LVFAFP—
label
A symbolic name can be assigned to the macro statement.
HOOK
A required parameter specifying the intercept type of the inline code to be
generated:
ATIMER
Intercepts CPU timer external interrupts on the application I-streams.
BACKC
Intercepts BACKC macros
ENTDC
Intercepts ENTDC macros
ENTNC
Intercepts ENTNC macros
ENTRC

Intercepts ENTRC macros

24 TPF V4R1 System Macros

$DCOLC

MSGIN
Intercepts incoming messages

MTIMER
Intercepts CPU timer external interrupts on the main I-streams.

ROUTC
Intercepts ROUTC macros

SENDCAC
Intercepts SENDC A/C macros

SENDCK
Intercepts SENDC K macros

SIPCC
Intercepts SIPCC macros

SLMTC
Intercepts SLMTC macros

SON
Intercepts find/file macros handled by SON

VFA
Intercepts find/file macros handled by VFA

VFAFP
Intercepts find/file macros handled by VFA fast path

Entry Requirements

The entry requirements for each HOOK type are:

Hook Register(s) Register Description Mode Restriction
BACKC R9 Address of ECB EVM CP only
ENTDC R9 Address of ECB EVM CP only
ENTNC R9 Address of ECB Note CP only
ENTRC R9 Address of ECB EVM CP only
MSGIN R9 Address of ECB EVM none
ROUTC R9 Address of ECB EVM CP only
SENDCAC R9 Address of ECB EVM CP only
SENDCK R9 Address of ECB EVM CP only
SIPCC R9 Address of ECB EVM CP only
SLMTC R9 Address of ECB EVM CP only
SON R1 Address of MIO EVM CP only
R9 Address of ECB
VFA R1 Address of MIO EVM CP only
R9 Address of ECB
VFAFP R1 Address of MIO EVM CP only
R9 Address of ECB

System Macros 25

$DCOLC

Note: In the case of the ENTNC hook, when CE3PAT is not equal to 0, the
addressing mode is EVM. When CE3PAT equals 0, the addressing mode is
SVM.

Return Conditions

 If the intercepted entry corresponds to a collector that is currently active, data for
that entry is conditionally collected and the counter for skipping intercepts is
changed.

* No user fields change when this macro processes.

Programming Considerations

This macro is restricted to the data collection package only and should not be
coded by any other user. The macro is called throughout the TPF system. It is used
to provide an interface to data collection.

Examples

The following example generates the inline code for data collection to conditionally
intercept the ENTDC macro call.

$DCOLC HOOK=ENTDC

26 TPF V4R1 System Macros

$DISBC

$DISBC-Disconnect A Block from the ECB Virtual Memory

Format

Use this system macro to disconnect a storage block from the entry control block
(ECB) virtual memory (EVM). The macro is used by the TPF system for data that
should no longer be accessible to the ECB (such as output messages after the
ROUTC macro). The TPF system also uses this macro to support macros (such as
the CREEC macro) that pass main storage blocks from one ECB to another.

»>—$DISBC—BLOCK=Rn >
T T
O Tad L]
RO]
e PV PO R -
T L]
LRx]

BLOCK=Rn
This required parameter specifies the register containing the 31-bit EVM
address of the block to be disconnected. R13 can not be specified for this
register. The block must be of a type that can be attached to ECB core block
reference words (CBRWS) (128, 381, 1055, or 4095 bytes).

On return, the register contains the 31-bit SVM address of the disconnected
block.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

System Macros 27

$DISBC

Entry Requirements

* This macro can be run in the EVM or the SVM.
* R9 must point to the ECB defining the EVM in whatever address space this

macro is called.

Return Conditions

» Control is returned to the next sequential instruction (NSI).
* The condition code is not preserved.

Programming Considerations

Examples

* This macro must be processed on the same I-stream as the ECB which provides

the address space for the EVA address.
This macro is for use in the control program (CP) only.

The SVM address of the disconnected block may not be the same as the SVM
address of the block before $DISBC.

If the block contains imbedded pointers (for example, the first fullword in the
block points to the start of a parameter list in the block), then once $DISBC has
been issued, these pointers must be relocated to be useful.

For example, before the $DISBC, the EVM block address might be X'10000' and
the SVM block address might be X'1FE3000'. After $DISBC, the SVM block
address might be X'2301000' and the block does not have an EVM address.
Therefore, in this example, an imbedded pointer of X'200008' (EVM address) or
X'1FE3008' (SVM address) would need relocation to an SVM address of
X'2301008'.

System error dumps can occur when servicing a $DISBC request. See m

(System Frrar and Offline) for more information.

None.

28 TPF V4R1 System Macros

$FINDC

$FINDC-CP Find A File Record

Use this system macro to read a record from a file into storage. The record can be
in the virtual file access (VFA) area.

Format

>>—L——|—$FINDC—DECB= area_label ,—PIA= ntry_point
label —[(Rx) (Ry)4|

label

A symbolic name can be assigned to the macro statement.

DECB=area_label|(Rx)
The address of a data event control block (DECB) must be specified either by
any register (other than RO) or by the label. The label is the address of the
DECB, not an address to a pointer of the DECB.

P1A=entry_point|(Ry)
The address of an entry point to be given control when the request has
completed. The address can be specified either by a register or by the name of
the entry point if it is internal to this routine. If the entry point is external to this
routine, a register must be used.

Entry Requirements

» The DECB address must have the following fields set in the IDECB DSECT:

IDECECB
IDECDBI
IDECSSU
IDECDAD
IDECDLH
IDECRID
IDECRCC
IDECFA

0

Set to the database ID (DBI) of the subsystem

Set to the correct subsystem user (SSU) for the file address
Address of the storage area to hold the record

Length of the storage area

Record ID of the record

Record code check (RCC) value

File address for the record.

* The TPF system state must be:
Address Mode 31-bit
Address State SVM

PSW KEY
PSW MASK
System State

0
I/O disabled
Privileged.

* Register 0 cannot be used to pass the DECB address.

Return Conditions

e $FINDC return:

— Control is returned to the next sequential instruction.

System Macros

29

$FINDC

R14 contains the address of the next sequential instruction.

The contents of RO and R1 are destroyed across this macro call. The
contents of all other registers are preserved.

* PIA entry point

Register contents on entry:
R1 DECB address
R2 PIA entry point address

R14 Return address (CPU loop).
The TPF system state on entry:

Address Mode 31-bit
Address State SVM

PSW KEY 0

PSW MASK I/O Disabled

System State Privileged.

In the post-interrupt routine, control is returned on the same I-stream in which
the $FINDC macro was run.

The IDECSUD field shows the success or failure of the request.

Error codes Descriptions

X'00' I/0 completed without errors (block returned)
X'40' DASD (hardware) I/O error (block not returned)
X'80' Record ID error or record code check error (block returned)

If the macro returns normally, the storage block contains the specified record.
If there is an End-of-File condition or a software or hardware error, the
contents of the specified storage block cannot be predicted.

Programming Considerations
* This macro can be run on any I-stream.
* This macro is for use in the control program (CP) only.
* The control program (CP) caller must do several things:

1.
2.

4,

Allocate a DECB and fill in the required values.

Allocate a storage block to hold the specified record and store the storage
block’s address in the DECB.

Issue a $FINDC macro to cause the DASD support to read the specified
record from file into the specified storage area.

On return from the macro, the requested operation has only been accepted.
When the request has completed, the entry point specified in the PIA
parameter is given control and the success or failure of the request is
indicated in the DECB.

In the post-interrupt routine, control is returned in the same I-stream on which
the $FINDC macro was run.

* Various error conditions can occur:

30 TPF V4R1 System Macros

A check is made by the control program (CP) to determine whether the DECB
is now active. If the DECB is active, control is transferred to the system error
routine.

$FINDC

— If the file address contained in the DECB is not valid, an error code (X'02") is
indicated in the DECB.

— The control program (CP) verifies that the specified record ID matches the ID
in the record. If the record ID specified is zero, this check is not made. If the
match fails, an error code is indicated in the DECB.

— The specified record code check is verified with the record code check in the
record. This check is not made if the specified record code check is zero. If
the check fails, an error code is indicated in the DECB.

Examples
None.

System Macros 31

$FORKC

$FORKC—Create an Asynchronous ECB

Use this system macro to create an asynchronous entry control block (ECB) on a
specified I-stream.

Required Authorizations

Key0 Restricted System Common Storage

X

Format

$FORKC—PARM=reg <
label l—,ARGV=r‘eg—| I—,ENVP=reg—|

label
A symbolic name can be assigned to the macro statement.

PARM=reg
Specifies the macro parameter list that is mapped by the IFORK DSECT, where
reg is a register from RO to R7.

ARGV=reg
Specifies the macro parameter list that is mapped by the IDARGV DSECT,
where reg is a register from RO to R7.

ENVP=reg
Specifies the macro environment variable list that is mapped by the IDENV
DSECT, where reg is a register from RO to R7.

Entry Requirements
» This macro is restricted to ECB-controlled programs.

* This macro is intended only for tpf_fork library routine use. The interface for this
macro is subject to change.

Return Conditions

« Control is returned to the next sequential instruction (NSI).
* The process ID of the created child process is stored in the parameter list.

Programming Considerations
+ See the tpf_fork function in the [CRE C/C++ | anguage Support User's Guide for

information about the items that the child ECB inherits from the parent ECB.

* The macro trace information for this macro will contain the program that will be
activated and the I-stream on which the program is running.

Examples

The following example creates an asynchronous ECB.
$FORKC PARM=R5

32 TPF V4R1 System Macros

$GCOMC

$GCOMC—-Obtain

Common Storage Block

Use this system macro to obtain a storage block from the pool of working storage
that is accessed at the same address in any address space.

Format

».

> $GCOMC—BLOCK=Ri—, FORMAT=Rj—, TYPE=Rk—,ECB= YES >
Craper] o

>

-]
A I P I o I W Y

T J L]
Rx: |_,_|

L,SAVREG=(

Leod " Lasd " Lo
S P
RO]

label

A symbolic name can be assigned to the macro statement.

BLOCK=Ri

This parameter is used to return the block address. The register specified is
loaded with the storage block address on return from the service routine. The
block is allocated below 16 MB. The block address is correct in 24-or 31-bit
mode and in any address space. Any general purpose register, with the
exception of stack register R13, can be used for this parameter.

FORMAT=R]j

This parameter is used to specify the format flag to be placed in the block. The
register specified contains the block format flag in the rightmost (low-order)
byte. Any general purpose register, with the exception of stack register R13, can
be used for this parameter.

TYPE=Rk

This parameter specifies the storage block type requested. The register
specified in this input parameter contains the logical storage block type equate
value in the low-order (rightmost) byte. The block equate is restricted to blocks
that can be placed on an ECB core block reference word (LO, L1, L2, or L4).
Any general purpose register, with the exception of stack register R13, can be
used for this parameter.

ECB

This parameter indicates which address will be saved in the common block
control table.

System Macros 33

$GCOMC

YES
Indicates the SVA of the ECB (CE2SVA) is to be saved in the CCTECB field
of the common control tree table (IDSCCT)

NO
Indicates that the address of the caller (in R14) should be saved in the
CCTECSB field.

SAVREG

The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG

The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements

Entry can be in either EVM or SVM addressing mode.

The program calling this macro must be running in privileged mode with a zero
protection key storage.

R13 is assumed to contain the stack pointer.
R9 is assumed to contain the ECB pointer.

Return Conditions

Control is returned to the NSI.

The register specified in the BLOCK parameter contains the storage block
address.

The storage block returned has the format flag set to the value specified by the
FORMAT parameter.

The register specified in the FORMAT parameter contains the logical block type
and the logical size of the storage block in a format suitable for storing in a core
block reference word.

The condition code is not saved.

Programming Considerations

The most efficient use of this macro can be accomplished by using the WKREG
parameter with the SAVREG parameter.

Examples

None.

34 TPF V4R1 System Macros

$GETBC

$GETBC-Obtain Storage Block

Use this system macro to obtain a storage block from the control lists and connect
that block to the entry control block (ECB) virtual memory (EVM).

Format
»—L—_|—$GETB(:—SVA=Rx—, FORMAT=Ry—, TYPE=Rz >
label
>, ECB=——YES,ADSPACE=——SVM >
EVM1—JJ
LEVA=Rw
,ADSPACE=SVM
NO—— 1
l—,ADSPACE=SVM—|
" L WKREG=()—| "
’ Cod Tpd " Lol
Rx,
[L J
Rx
]
T SAVREG=()—| ~
’ Lrod * Lo 7 Lo
RO,
[CJ
RO
]
label
A symbolic name can be assigned to the macro statement.
SVA=Rx

The register in which the SVM block address is returned. The register specified
is loaded with the SVM storage block address on return from the service
routine. All registers, except register R13, are valid. The SVA parameter is
always valid. It is optional, except when the EVA parameter is invalid or omitted.

FORMAT=Ry
This parameter specifies the format of the block. The register specified contains
the block format flag in the rightmost (low-order) byte. All registers, except
register R13, are valid. No checking is done to ensure the validity of the format
flag supplied.

TYPE=Rz
This parameter specifies the storage block type requested in the low-order
(rightmost) byte. The register specified contains the logical storage block type
equate (LO, L1, L2, or L4). All registers, except register R13, are valid.

System Macros 35

$GETBC

ECB

This parameter specifies whether the storage acquired is connected to the ECB
virtual memory (EVM) immediately.

YES
When ECB=YES, the frame containing the block is connected, thereby
becoming part of the ECB’s virtual memory.

NO
When ECB=NO, the frame containing the block is not connected to an
ECB'’s virtual memory (EVM) at this time. It can later be connected via the
$CONBC macro. ADSPACE=EVM may not be coded and ADSPACE=SVM
is the default. The EVA parameter may not be coded.

ADSPACE
This parameter gives the address space where the calling code is operating.

EVM
The ECB virtual memory (EVM) is the address space used by
ECB-controlled programs. There is one for each ECB in the TPF system.

Control program (CP) code can also be executing in the EVM on behalf of
the ECB.

SVM
The system virtual memory (SVM) is used mainly by control program (CP)
post interrupt routines and interrupt handlers. It is never used by
ECB-controlled programs.

EVA=Rw
The register in which the EVM block address is returned. The register specified
is loaded with the EVM storage block address on return from the service
routine. All registers, except register R13, are valid. The EVA parameter is valid
only when ECB=YES is coded. When the SVA parameter is omitted, the EVA
parameter is mandatory.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements

* The program calling this macro must be running in privileged mode with a zero
protect key storage. The program must also be operating in 31-bit mode. The
address space of the code issuing this macro must be correctly specified via the
ADSPACE parameter.

* R13 is assumed to contain the stack pointer.

36 TPF V4R1 System Macros

$GETBC

If the ECB=YES parameter is used, R9 is assumed to point to the ECB and the
ECB itself is assumed to be running on the current I-stream.

Return Conditions

Control is returned to the NSI.

The register specified in the EVA parameter contains the EVM storage block
address.

The register specified in the SVA parameter contains the SVA storage block
address.

The register specified in the FORMAT parameter contains the logical block type
and the logical size of the storage block in a format suitable for storing in a core
block reference word.

The storage block returned has the format flag set to the value specified by the
FORMAT parameter.

The condition code is not saved.

Programming Considerations
This macro is for use in the control program (CP) only.

Examples

None.

System Macros 37

$GETRC

$GETRC — Get a Control Record

Use this system macro to get one of the control records associated with TPF
transaction services processing. The $GETRC macro is only for use by the
transaction manager (TM) and resource managers (RMs). Through the use of the
$GETRC macro, the TM and RMs are able to define and control the commit scope
environment.

Format

RMCR— ,—RMID= Rx—_l—,—ECB= YES
—[equate —[NO

»—3$G ETRC—TYPE=—ETMCR—,—TID=RX ,—CR=Ry »><
CCR—,—RMID=Rx—,—ECB=—-YES
Lo

TYPE

Defines the type of control record requested. This parameter is required. The
following control record types are valid:

TMCR

Requests a transaction manager control record (TMCR). A new TMCR is
retrieved and chained to the previous one. The previous TMCR is pushed.

RMCR
Requests a resource manager control record (RMCR). This parameter
returns a pointer to an RMCR associated with the current TMCR. It does
not retrieve a new RMCR.

CCR

Requests a commit control record (CCR). A new CCR s retrieved and
chained to the previous one.

TID=Rx
A register (R1 through R7) containing a pointer to the transaction ID (TID) to be
associated with this request. This parameter is required when TMCR is coded.
CR=Ry
A register (R1 through R7) to contain the address of the retrieved control
record. This parameter is required.

RMID=Rx
A register (RO through R7) containing the resource manager ID (RMID)
associated with the record request. This parameter is required when the RMCR
or CCR record type is coded.

Note: An equate can be specified when you specify TYPE=RMCR.

ECB

Defines the area to which the TMCR is anchored. This parameter is required
when the RMCR or CCR record type is coded.

YES
Specifies that the TMCR is anchored out of the ECB at the CE2TMCR field
and out of the transaction anchor table (TANC).

38 TPF V4R1 System Macros

$GETRC

NO
Specifies that the ECB TMCR anchor is not to be used. Instead, the TMCR
address is supplied in the register specified in the CR parameter. The
TMCR is still anchored to the TANC.

Entry Requirements

When you specify ECB=YES, R9 must contain the address of the ECB being
processed. Control records are anchored off of the ECB through the CE2TMCR
field. The $GETRC macro uses and updates this field.

When you specify ECB=NO, the register, which is specified by the CR parameter,
must contain the address of the current TMCR.

Return Conditions

Control is returned to the next sequential instruction.

The contents of the registers are preserved across this macro call with the
exception of the registers specified by the macro parameters. The contents of
these registers are as follows:

— The register specified on the CR parameter will contain the address of the
requested record.

— The register specified on the RMID or TID parameters remains unchanged.

When you specify the TMCR record type, the TMCR control fields are set by the

macro and all other fields are cleared. Each RMCR entry is also cleared. If this is

a root TMCR, it is also anchored off the TANC. Additionally, ECB field CE2TMCR

is updated to point to the new TMCR.

The condition code (CC) is not preserved across the macro call.

Programming Considerations

Examples

This macro can be run from any I-stream.
This macro can only be called from control program (CP) code.

When getting an RMCR, the RM is responsible for initializing the following fields
defined in IRMCR(ICRCR):

— IRM_XID
— IRM_STA
— IRM_SIZE.

$GETRC TYPE=TMCR,CR=R6,TID=R2
$GETRC TYPE=RMCR,CR=R1,RMID=R6,ECB=YES

$GETRC TYPE=CCR,CR=R1,RMID=R6,ECB=YES

System Macros 39

$GEVAC
$GEVAC-Convert SVM Address to EVM Address

Use this system macro to convert an address valid in the system virtual memory
(SVM) into the corresponding address in the entry control block (ECB) virtual
memory (EVM).

Format

»»>—$GEVAC—ADDRESS=Rv—, ECB=Rw |_ _| >
,ERROR=Iabel

" saveee-
’ T

| I— WKREG= Rx:
_)_l —[(Rx

Rx

(Rx

—ERX,Ry —ERX,Ry
Rx,Ry,Rz— Rx,Ry,Rz—

ADDRESS=Rv
This required parameter specifies a register containing a 31-bit system virtual
memory (SVM) address.

On return, the specified register contains the 31-bit ECB virtual memory (EVM)
address corresponding to the input 31-bit SVM address, if one exists. If the
SVM address is invalid or does not have a corresponding EVM address, then
the high order bit of the input SVM address is turned on.

ECB=Rw
This parameter specifies the 31-bit address of the ECB. The 31-bit ECB virtual
memory address returned by the $GEVAC macro is valid only for a single ECB.
The specified register is not altered.

Note: The ECB address, specified in the ECB parameter, must be in the same
addressing mode (SVM or EVM) as the address of the calling routine.

ERROR=label
This optional parameter specifies a label identifying the error routine to receive
control if an error condition is raised. An error will occur when the EVM address
specified in the ADDRESS parameter is invalid.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the

40 TPF V4R1 System Macros

$GEVAC

number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements

* This macro can be called from control program (CP) code only, be run in either
EVM or SVM, and be run on any I-stream.

* The ECB specified by the ECB parameter must be operating on the I-stream
where the $GEVAC macro was issued.

Return Conditions

» Following a successful address conversion, control is returned to the next
sequential instruction (NSI).

 If the address can not be converted then the ADDRESS parameter will contain
the input address with the high order bit set on to indicate a conversion error. On
errors, control is returned to the NSI, except when the ERROR parameter
designates an error routine.

* The condition code is not preserved.

Programming Considerations

The register specified for the ADDRESS parameter cannot be the same register
that is specified for the ECB parameter.

Examples
None.

System Macros 41

$GIOBC
$GIOBC-Get Available I/0O Control Block Address

Use this system macro to obtain an available input/output block (IOB) storage block
address.

Format

,BLOCK=R1 , TEST=NO
[1 []

>>—L——|—$GIOBC <
label |—WKREG=RyJ I—,BLOCK=RXJ I—,TEST=YESJ

label
A symbolic name can be assigned to the macro statement.

BLOCK=R1|Rx
This optional parameter specifies the register that will contain the address of the
block that was acquired. The default is R1. RO can not be used.

WKREG=Ry
This optional parameter is used to define a work register to be used by the
macro service. There is no default. RO can not be used.

TEST
This parameter is used for testing and problem determination purposes.

NO
It is intended that this is used for production systems. The code to get IOBs
expands in-line.

YES
This is used in a test environment when you want to generate code that will
go to a central routine (see the CL$GIOBC entry point in CLHV in the
CCSTOR CSECT) to get an IOB. It is useful in monitoring IOB list
accesses. It only takes effect if the global variable SBCTEST is set on (B'1")
within this routine.

The default is NO.

Entry Requirements
» Use this macro in the control program (CP) only.

* Programs invoking this macro must be running with a storage protection key of
zero, and be in 31-bit addressing mode.

* Programs can be processing in the entry control block (ECB) virtual memory
(EVM) or system virtual memory (SVM) address space.

Return Conditions
* Control is returned to the NSI.
* The TPF system is ended with a catastrophic error if there are no IOBs available.

* When the TPF system is out of IOBs, the request fails and a system error is
issued.

42 TPF V4R1 System Macros

$GIOBC

The register specified in the BLOCK parameter contains the storage block
address. If the BLOCK parameter was omitted, the storage block address will be
in R1 on output.

Programming Considerations

Examples

This macro can be run on any I-stream.

System work blocks should replace I/O control blocks for all system functions.
Exceptions should be made only for extremely performance critical applications,
such as DASD 1/O operations.

The address returned in the register specified in the BLOCK parameter is a
31-bit address, and may point to an IOB allocated above the 16 megabyte
boundary. Code must be running in 31-bit mode to access data above the 31-bit
boundary.

The condition code is not set to any specific value on a successful block
allocation, and should not be tested.

System error dumps can occur when servicing a $GIOBC request. See
Messages (System Frrar and Offline) for more information.

If the TEST parameter is used in an online system, severe system degradation
results due to I/O constraints.

The TEST parameter must only be used in test environments.

None.

System Macros 43

$GMNBC
$GMNBC-Get Contiguous EVM Storage

Use this system macro to obtain contiguous storage in the entry control block (ECB)
virtual memory (EVM).

Format

»—L——|—$GMNBC—STORAGE=RX |_ _| >
label ,WKREG= s s
e Td T d Td [

T J L]
Rx l_’_l

l—,SAVREG=(

Leod " Lasd ™ Lged
S P
RO]

label
A symbolic name can be assigned to the macro statement.

STORAGE=RX
This parameter specifies the number of contiguous 4 K byte pages to be
allocated. You must use the general register RO through R7, R14, or R15.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements

* This macro can be run from the entry control block (ECB) virtual memory (EVM)
or the system virtual memory (SVM).

* This macro is for use in the control program (CP) only while running key 0 and in
supervisor state.

* R9 must point at the ECB that will use the contiguous storage.

44 TPF V4R1 System Macros

$GMNBC

Return Conditions

On output, if there is sufficient virtual storage available, the register specified as
the STORAGE parameter will contain the address of the start of the allocated
storage.

Note: The storage acquired will be allocated in the EVM as part of the total ECB
unique storage available to the ECB. It may be located above the 16
megabyte boundary. This address returned will be valid in the 31 bit
addressing mode only.

The STORAGE register will contain X'00000000’ if there is insufficient virtual
storage available for allocation. Control is returned to the NSI.

When main storage blocks are exhausted, a catastrophic system error results,
since insufficient real storage exists to satisfy the request. Control is not returned.

If corruption is detected in the heap, a catastrophic system error is issued and
the ECB exits immediately. Control is not returned.

Programming Considerations

Examples

This macro can be run on any I-stream, however it must be processed on the
same I-stream specified in the CE1ISN field in the associated ECB.

This macro is restricted to control program (CP) use only. The analogous general

use macros are MALOC, CALOC, and RALOC for assembler programs and the
malloc, calloc, and realloc library functions for C language programs.

$GMNBC storage is not contiguous in the SVM.
The amount of virtual storage available for use as ECB unique storage is limited.

Storage acquired by using the $GMNBC macro is returned automatically at ECB
exit (EXITC) time. Storage can also be returned at any time by using the
$RMNBC macro from the control program (CP).

Use of the $RMNBC macro can have a substantial negative performance impact
on a TPF system in a multi-processor (tightly coupled) configuration so use of
this macro should be limited.

None.

System Macros 45

$GSVAC
$GSVAC-Convert EVM Address to SVM Address

Use this system macro to convert a valid address in the entry control block (ECB)
virtual memory (EVM) into the corresponding address in the system virtual memory

(SVM).
Format
, INLINE=NO:
»»—$GSVAC—ADDRESS=Rw >
I—,ERROR=ZabeZJ I—,INLINE=YESJ
g l— WKREG= —| i
S N P I PO I P I
RX ,
“ToJ [J
R,
“TJ
g l— SAVREG= —| B
SR T T T d Ted |
RO,
[J L J
RO
]
ADDRESS=Rw

This parameter specifies the general register that contains the 31-bit EVM
address, in the EVM of the ECB pointed to by R9, to be converted. On return, it
contains the corresponding SVM address.

ERROR=label
This parameter specifies a label identifying the error routine receiving control if
an error condition is raised. An error will occur when the EVM address specified
in the ADDRESS parameter is invalid.

INLINE
This parameter specifies whether inline code or a call to the service routine is
generated.

NO
Linkage to the service routine is generated.

YES
The conversion code is generated inline.

The default is NO. NO should be coded for all call invocations.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you

46 TPF V4R1 System Macros

$GSVAC

expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG

The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements

This macro can be run in either EVM or SVM.
R9 must point to a valid ECB in the address space which is currently active.

Return Conditions

Following a successful address conversion, control is returned to the next
sequential instruction (NSI).

If the address can not be converted then the ADDRESS parameter will contain
the input address with the high order bit set on to indicate a conversion error. On
errors, control is returned to the NSI, except when the ERROR parameter
designates an error routine.

The condition code is not preserved.

This macro checks whether the virtual system heap address is backed by real
storage. If it is not, an error is returned.

Programming Considerations

Examples

This macro can be run on any I-stream, however, the ECB specified by R9 must
be processed from the I-stream on which this macro is issued.

No label is allowed on this macro.
R13 cannot be used; it is assumed to contain the stack address.
This macro can be run in either SVM or EVM.

This macro will not detect all invalid addresses, and it must be noted that passing
an invalid address to this routine can result in an invalid address being returned
to the user without any indication from this macro. The caller should ensure only
valid addresses are converted by this routine. The $VALEC macro should be
used to validate the EVA before using the $GSVAC macro to convert the EVA to
an SVA.

If INLINE=YES is coded, the following restrictions apply:
— R1, R2, R3 and R14 cannot be the base of the calling routine.
— R15 cannot be used as the Frame Control Table base.

— Must have access to CAPT tags CPMPRIVMEG, CPMPRIVEND, and
CPMGMNMEG.

None.

System Macros 47

$GSWBC
$GSWBC-Get System Work Block Address

Use this system macro to obtain an available system work block (SWB) storage
block address.

Format
$GSWBC—BLOCK=Rn >
Ciober] L ikree=(, . -
Lo Tod Lol
RX
T L]
R
T
T SAVREG=()—| ~
’ Leod " Lant 7 Lo
RO,
[L
RO
]
label
A symbolic name can be assigned to the macro statement.
BLOCK=Rn
This output parameter contains the SWB address after macro completion.
SAVREG

The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements

* The program invoking this macro must be running with a storage protection key
of zero, and be in 31-bit addressing mode.

* The program can be executing in either the EVM or the SVM address space.

Return Conditions
e Control is returned to the NSI.

48 TPF V4R1 System Macros

$GSWBC

* The TPF system is ended with a catastrophic error if there are no SWBs
available.

* The register specified in the BLOCK parameter contains the storage block
address.

Programming Considerations
* This macro can be run on any I-stream.

* The address returned in the register specified by the BLOCK parameter is a
31-bit address, and may point to an SWB allocated above the 16 megabyte

boundary. Code must be running in 31-bit mode to access data above the 31-bit
boundary.

» System work blocks should replace 1/0O control blocks for all system functions.
Exceptions should be made only for extremely performance-critical applications,
such as DASD 1/O operations.

Examples
None.

System Macros 49

$GSYSC
$GSYSC-Get System Heap Storage

Use this system macro to allocate a specific number of 4 KB frames as contiguous
storage in the system heap.

Format
>>—L—_|—$GSYSC—FRAMES=Rm,TOKEN=Rr; >
label
" L SAVREG=()—| "
' Leo " Lot " Lo
RO,
aJ L]
RO
L]
" L WKREG= ()J 2
P I O I
Rx ,
[d L]
R
“TJ
label
A symbolic name can be assigned to the macro statement.
FRAMES=Rm

The FRAMES parameter specifies the number of contiguous 4 KB pages to be
allocated. The general register used must be R0-R12, R14, or R15.

TOKEN=Rn
The TOKEN parameter specifies the address of an 8-character string that the
TPF system uses to identify the allocated storage. The general register used
must be R0O-R12, R14, or R15.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

50 TPF V4R1 System Macros

$GSYSC

Entry Requirements

This macro is for use in the control program (CP) only while running in key 0 and
supervisor state.

You can use this macro in entry control block (ECB) virtual memory (EVM) or
system virtual memory (SVM) address modes.

Return Conditions

The register specified by FRAMES contains the starting address of the allocated
storage.

The register specified by FRAMES contains O if:
— The FRAMES parameter register contains zero.

— The system heap does not contain enough storage to satisfy the allocation
request.

— The address specified by the TOKEN parameter is not in the range of
addressable memory.

Control is not returned if there is not enough real storage to satisfy the request.
The TPF system issues an error and recovers through an automatic IPL.

Programming Considerations

Examples

This macro is restricted to CP use only.
Real storage may not be contiguous.
The amount of virtual storage available for the system heap is defined in CTKA.

Storage acquired must be released by the RSYSC or $RSYSC macro when it is
no longer needed. If the storage is not released, it remains in use until you IPL
the TPF system again.

The address returned is a 31-bit address.
The storage key is set to X'C".

The following example shows how the length of a block is converted into a number
of 4 KB frames before requesting storage from the system heap. The return code is
checked before trying to use the address in R14.

ITUUTL REG1=R14 CONNECT WITH TABLE UPDATE DSECT
LA R14,ITULEN GET THE LENGTH OF A BLOCK

LA R14,4095(R14) ROUND TO THE NEXT 4 KB

LR R7,R14 SAVE NUMBER OF FRAMES

SRL R14,12 DETERMINE NUMBER OF 4 KB FRAMES
LA R6,MY_TABLE

$GSYSC FRAMES=R14,TOKEN=R6 ALLOCATE THE STORAGE

LTR R14,R14 CHECK THE RETURN CODE

BZ NO_STORAGE_AVAIL BRANCH TO PROCESS ERROR

routine that uses the storage

RELEASE_STORAGE DS OH

LA R6,MY_TABLE

$RSYSC ADDRESS=R14,FRAMES=R7,TOKEN=R6 RELEASE THE STORAGE
LTR R15,R15 CHECK THE RETURN CODE
BNZ RELEASE_ERROR BRANCH TO PROCESS ERROR

System Macros 51

$GSYSC

MY_TABLE DC CL8'MY_TABLE'

52 TPF V4R1 System Macros

$GTSTC

$GTSTC-Get Contiguous EVM Stack Storage

Use this system macro to obtain contiguous storage for the 1SO-C stack in the
stack area of entry control block (ECB) virtual memory (EVM)

Format

DF—m—$GTSTC—STORAGE=Rw I_ _| >
label ,WKREG= s s
e TLd TJ LJ [

T J L]
Rx |_’_|

T - l)
T Do Tl e |

S P
RO]

label
A symbolic name can be assigned to the macro statement.

STORAGE=Rw
This parameter specifies the number of contiguous 4 K byte pages to be
allocated. The general register used must be R0O-R7, R14, R15.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements

* This macro is for use in the control program (CP) only while running with
protection key 0 and in supervisor state.

* This macro must be used to acquire ISO-C stack storage only. If used for
acquiring storage for any other purpose, results cannot be predicted.

* R9 must point at the ECB that will use the contiguous storage.

System Macros 53

$GTSTC

e This macro can be run from either EVM or from SVM.

Return Conditions

* When this macro completes, if there is enough virtual storage available, the
register specified as the STORAGE parameter contains the address of the start
of the allocated storage.

Note: The storage acquired is allocated in the EVM as part of the 1ISO-C stack
heap. It can be located above 16 MB. The address returned is valid in
31-bit addressing mode only.

* If the maximum amount of storage allowed for the ECB would have been
exceeded by satisfying the request, a system error with exit occurs.

* When main storage blocks are used up, a catastrophic system error occurs,
because insufficient real storage exists to satisfy the request. Control is not
returned.

Programming Considerations

* This macro can be run on any I-stream, however it must be processed from the
same I-stream given in the CE1ISN field in the associated ECB.

* This macro is restricted to CP use only and is used only by ISO-C code to
acquire initial stack allocation (ISA) storage or to extend the stack size through
the stack overflow routine. Use of this macro to acquire storage for other than the
ISO-C stack can corrupt the ISO-C stack.

* $GTSTC storage is not contiguous in the SVM.

» Storage acquired using the $GTSTC macro is automatically returned when the
ECB exits.

Examples
None.

54 TPF V4R1 System Macros

$LCKRC

$LCKRC-Lock a Virtual File Access (VFA) Shared Lock or Exclusive
Lock

Use this system macro to lock a virtual file access (VFA) shared lock or exclusive
lock.

Format

»—L—_|—$ LCKRC—LOCK=——VFAS ><
label —[V FAX—|

label
A symbolic name can be assigned to the macro statement.

LOCK
Specifies the type of lock, where:

VFAS
Specifies shared lock.

VFAX
Specifies exclusive lock.

Entry Requirements
Register 5 (R5) must contain the address of the VFA buffer control area (BCA) only.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

* Register 14 (R14) and register 15 (R15) are used to branch and link to the macro
service routine so the contents of both registers are corrupted. All other registers
are preserved.

Programming Considerations
* You can run this macro from any I-stream.
* This macro is for use in the control program (CP) only.

» System errors can occur while processing the $LCKRC request. See m
(System Frror and Offline) for more information about these system errors.

Examples

The following example shows you how to lock an exclusive lock using this macro.
$LCKRC LOCK=VFAX

System Macros 55

$LOCKC

$LOCKC-Lock a Resource

Use this system macro to reserve access to (or lock) a resource and prevent
access to it by other I-streams. If the resource is already locked by another
I-stream, the I-stream attempting the lock will spin (that is, loop in place) waiting for
the lock to be freed. When the lock is freed, this macro locks the resource. If the
spin lasts too long, the macro times out and a system error is issued.

Format

|—, TRACE=YES—|
> $LOCKC—LKWORD=field—,WKREG=reg |_ J >
label , TRACE=NO

|—, IMMED=program_nameJ

label
A symbolic name can be assigned to the macro statement.

IMMED=program_name
Optional. If coded, it is the name of a routine to be given control if the lock is
already held by another I-stream. This is in lieu of the spin lock.

LKWORD-=field
The name of a doubleword field to be used for lock and trace functions.

TRACE=YES|NO
Specify one of the following:

YES
The current address will be placed in the second fullword of the LKWORD
field.

NO
The trace function is skipped.

WKREG
The specified register is used as a work register by the macro.

Entry Requirements
None.

Return Conditions
» Control is returned to the next sequential instruction.

* The contents of the work register specified is unknown. The contents of all other
registers are preserved across this macro call.

Programming Considerations
* This macro can be run on any I-stream.
* Return is made to the next sequential instruction.

* The lock specified by LKWORD must not be held by this I-stream. If the lock is
held a system error will be taken and the lock will be held.

56 TPF V4R1 System Macros

Examples

$LOCKC
* The protection key of the program issuing the $LOCKC macro must be the same
as the item being locked.

* No other lock should be held by this I-stream since a lock-out condition could
occur.

» If several I-streams are waiting for the same lock, it is unpredictable which
I-stream will obtain the lock when it is freed, regardless of which I-stream began
waiting first.

» A catastrophic system error will occur if the spin lock (IMMED is not coded) times
out.

None.

System Macros 57

$MASKC

$MASKC—-Change the System Mask

Format

Use this system macro to change fundamental characteristics of a system operation
by changing the first byte of the current program status word (PSW). Input/output
(I/O) interrupts, external interrupts, program event recording (PER) interrupts, and
the dynamic address translation (DAT) mode may be enabled or disabled.

>>—L—_|—MASKC >
label |—RESTORE—| l—,WINDOW- EXT
10
PER
DAT
(V|_

EXT
I

PER
DAT

—,ENABLE= XT —,DISABLE= XT
—EPERﬂ —EPERﬂ
DAT DAT

(2) (2)

L, ENABLE=(') L ,DISABLE=(')
EXT EXT
10 10
PER PER
DAT DAT

|—, SAVEWORK=CPSAVMSK——

, SAVEWORK= —[address
(RX)

Notes:
1 mask keywords
2 List of mask keywords

label
A symbolic name can be assigned to the macro statement.

ENABLE=mask | (mask,...)

DISABLE=mask | (mask,...)

WINDOW=mask | (mask,...)
These parameters result in the current system mask being saved at the location
specified by the SAVEWORK parameter and its control bits being enabled or
disabled accordingly as indicated by the mask keyword (or list of mask
keywords) coded.

58 TPF V4R1 System Macros

$MASKC

The WINDOW parameter stores the system mask, enables the mask keywords
specified, and reloads it.

The ENABLE and DISABLE parameters do not reload the system mask. Setting
the bits to one/zero enables/disables the associated facilities when the system
mask is reloaded by the RESTORE parameter.

These parameters specify the type of masking required with mask keywords.
Masking can be specified either by individual keywords or by a list of keywords
enclosed within parentheses. Either ENABLE, DISABLE, or both can be
specified. The WINDOW and RESTORE parameters cannot be used on the
same invocation as the DISABLE and ENABLE parameters. The RESTORE
and WINDOW parameters cannot be used together on the same invocation.
The mask keywords are:

EXT
External interrupt mask

IO Input/output interrupt mask

PER
Program event recording interrupt mask

DAT
Dynamic address translation mode mask. When this bit is set on, dynamic
address translation is initiated. When this bit is set off, addresses are
treated as real addresses.

The ENABLE and DISABLE parameters are mutually exclusive with the
RESTORE and WINDOW parameters.

If a null list is specified [for example, WINDOW=()], the parameter is ignored.

RESTORE

Indicates a system mask should be loaded from an address specified by the
SAVEWORK parameter. RESTORE is a positional parameter.

SAVEWORK

Specifies the 1-byte storage location for a system mask. The default location is
CPSAVMSK. The address can be specified by a label or a register enclosed in
parentheses. Register RO cannot be used.

If both the ENABLE and DISABLE parameters are specified, the byte following
the address specified by SAVEWORK is used as a work area.

Entry Requirements

* The TPF system must be in supervisor state with protect key 0.
* The LOCEQ macro must have been called.

Return Conditions
The system mask of the current PSW is set to the desired state.

Programming Considerations

This macro can be run on any I-stream.
This macro is for use in the control program (CP) only.
This macro will only change the masking of the I-stream on which it is issued.

This macro will only change the PSW masking bits. It will not change control
register contents which may also prevent certain types of interrupts.

System Macros 59

$MASKC

* This macro is not visible in TPF traces.
» Specifying $MASKC with no parameters has no effect.

Examples

* Enabling and disabling interrupts using a list.
$MASKC DISABLE=(EXT,IO0,PER)

<uninterruptable code>

$MASKC ENABLE=(EXT,10,PER)
* Combined enabling and disabling interrupts without using a list.

The following invocations disable the PER interrupts and enable the 1/0 and
external interrupts.

$MASKC DISABLE=PER,ENABLE=I0
$MASKC ENABLE=EXT

* Combined enabling and disabling interrupts using a list.
$MASKC DISABLE=(PER),ENABLE=(I10,EXT)
* Restoring the system mask.
— From the default location (CPSAVMSK):
$MASKC RESTORE
— From an address in register 5:
$MASKC RESTORE, SAVEWORK=(R5)

60 TPF V4R1 System Macros

$MONTC
$MONTC-Set Supervisor State (Monitor Mode) with PSW Return

Use this system macro to change the operating state of the central processing unit
(CPU) from problem to supervisor state with key O set and the input/output (1/O)
interrupts masked. This macro provides a mechanism for returning the first part of
the program status word (PSW) active at the time of its invocation to the calling
program.

Supervisor state allows processing of privileged instructions. See the [MONTC—Sel
i i z macro for an E-type method of
setting supervisor state.

Format

- $MONTC >

|—labe l—l |—OLDSTATE=R)(—|

label
A symbolic name can be assigned to the macro statement.

OLDSTATE=Rx
An optional parameter specifying a register to receive the first word of the PSW
active at the time of SMONTC processing.

Entry Requirements
This macro is for use in the control program (CP) only.

Return Conditions
» Control is returned to the next sequential instruction.
* The TPF system is masked for I/O interrupts.

* The contents of all registers are preserved across this macro call except for the
register specified by the OLDSTATE parameter.

* The CPU is in supervisor state (PSW bit 15 = 0).
* The storage protect key is zero (PSW bits 8 - 11).

Programming Considerations
* This macro can be run on any I-stream.
* This macro is for system programming use only.

» Care should be exercised when operating in this state. Any location in main
storage can be modified, except that to modify locations below the 512-byte line
the LCPCC macro should be used first.

* Supervisor state is maintained across all other macros that can be issued by the
program.

Examples
None.

System Macros 61

$MOVEC
$MOVEC—-Move Data Between EVM and SVM

Use this system macro to move:

» Data between entry control block (ECB) virtual memory (EVM) address space
and system virtual memory (SVM) address space.

* Between EVM addresses that belong to two different ECBs.

This macro is similar to the E-type MOVEC macro.

Format
$MOVEC—PARM=Rx >
label L,SAVREG= s > J
. Tl Tad " Ted |
RO,
Cod T
RO
]
" L WKREG= ()—| ”
P I P I
Rx
o] L]
R
T
label
A symbolic name can be assigned to the macro statement.
PARM=Rx

This register points to the address of a parameter list in the IMOVE DSECT that
contains the following fields to be filled in with the appropriate values:

MFROM
This 4-byte field contains the address from which data is moved.

IMTO
This 4-byte field contains the address to which data is moved.

IMSVAF
This 4-byte field contains the system virtual address (SVA) of the ECB from
which the data is moved.

IMSVAT
This 4-byte field contains the SVA address of the ECB to which the data is
moved.

IMLENTH
This 4-byte field contains the length of the storage to be moved.

IMTYPE
This 1-byte field contains the type of move to occur, either an SVA to SVA
move or an SVA to ECB virtual address (EVA) move.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or

62 TPF V4R1 System Macros

$MOVEC

in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

This parameter is ignored if the $MOVEC macro is issued from ECB code.

WKREG

The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

This parameter is ignored if the $MOVEC macro is issued from ECB code.

Entry Requirements
You must call the $SMOVEC macro in 31-bit addressing mode.

Return Conditions
Control is returned to the next sequential instruction (NSI).

Programming Considerations

Examples

* This macro can be run on any I-stream.
» The following combinations are valid:

From EVM to SVM Move data from an EVM address space to an
SVM address space.

From SVM to EVM Move data from an SVM address space to an
EVM address space.

From EVM1 to EVM2 Move data within an EVM address space or
between different EVM address spaces.

From SVM1 to SVM2 Move data from an SVM address space to

another SVM address space.

Note: System error dumps can occur when servicing a $SMOVEC request. See

Messages (System Error and Qffline) for more information.

None.

System Macros

63

$RCOMC

$RCOMC-Release Common Storage Block

Use this system macro to return:
* A common storage block to the TPF system
* Common blocks to the TPF system.

Note: Entry control block (ECB)-controlled programs must use the RELCC macro
to return storage blocks.

Format

$RCOMC—BLOCK=Rn >

label L,WKREG= , . J
e T T TJ [
—Rx,
“Tod L]
LR
T
" L, saveea- l ~
S [I R PR R s
RO,
o L J
RO
]
label
A symbolic name can be assigned to the macro statement.
BLOCK=Rn

This parameter is used to return the block address. The register specified must
contain the 31-bit storage block address which is to be returned to the TPF
system. This storage block must have been acquired through the $GCOMC
macro.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

64 TPF V4R1 System Macros

$RCOMC

Entry Requirements

This macro is for use in the control program (CP) only.

The program invoking this macro must be running in a privileged mode of
operation and with a storage protection key of zero. The program must also be
operating in 31-bit mode. This macro operates in either the EVM or the SVM.

R13 is assumed to contain the stack pointer.

Return Conditions

Control is returned to the NSI.
The contents of the register specified in the BLOCK parameter are unpredictable.
The condition code is not saved.

Programming Considerations

Examples

The $RELBC macro can also be used to return common blocks to the TPF
system. If there is any doubt whether a storage block is a common block or part
of the ECB’s private area, then $RELBC should be used instead of $SRCOMC.

This macro is for use in the control program (CP) only.
System error dumps can occur when servicing a $SRCOMC request. See

Messages (System Frrar and Offline) for more information.

None.

System Macros 65

$RECVC

$RECVC-Recover from Program Check

Format

Use this system macro to establish the location specified by the EP parameter as
the routine to receive control when a program check occurs. On a program check,
the general registers and system state at the time the macro was issued are
restored and control is passed to the specified location.

Required Authorizations

Key0 Restricted System Common Storage

X

»—$RECVC—EP=—|:address <
RESET—I

EP=address|RESET
A symbolic label specifying the entry point of the routine to receive control if a
program check occurs. This label must be directly addressable.

If RESET is specified the protection set via a previous $RECVC is turned off.

Entry Requirements

* The program must be masked for 1/0 and external interrupts.

* For E-type calls the program must be executing in 31-bit mode. If the program is
not in 31-bit mode, authorization to use $RECVC will be refused and a program
check will occur.

Return Conditions

* For E-type calls the contents of R10 and R13 are unpredictable; all other
registers are restored. For C-type calls all registers are saved and restored.

Programming Considerations

66

* This macro is to be used with extreme care. The window between the macro call
and the possible program check should be as small as possible. Indiscriminate
use of this macro may result in catastrophic system failure.

» To eliminate the possibility of trapping unexpected errors, the calling program
must be masked for I/O and External interrupts. The program must not give up
control once protection is set.

* The use of this macro is restricted to system use only.

* The macro uses a monitor call (MC) to access its service routine.

* Program check protection is automatically reset when a program check occurs.

» A distinct pair of $RECVC calls must be coded for each program check expected.

Only one call specifying a label is permitted prior to a program check or RESET
call. Subsequent invocations of $RECVC will result in a SNAP dump, and the

current process will be exited. See Messages (System Errar and Qffline) for more

information.

* Protection must be reset before exiting an ECB.

TPF V4R1 System Macros

$RECVC

* Use of this macro removes the need for the program to modify the program new
PSW.

Examples
This sample is from CSPM while servicing a SNAPC request.
$RECVC EP=SNAPPCHK

$RECVC RESET

SNAPPCHK DS OH

System Macros 67

$RELBC

$RELBC-Release Storage Block

Use this system macro to return a storage block to the TPF system. The storage
block can be any logical block or a system work block (SWB).

Format

>>—L——|—$RELBC—BLOCK=Rn—,ADSPACE= EV ,ECB=—T-YES >
label —[SV NO—I I—,EXIT=YES—|

" L WKREG= ()—|
’ P I R I
R, B
“T,J L]
R
“TJ
" L SAVREG= ()J ~
' Leo " Lot " Lo
RO,
aJ L J
RO
L]
label
A symbolic name can be assigned to the macro statement.
BLOCK=Rn

This parameter is used to return the block address to the TPF system. The
register specified must contain the 31-bit storage block address to be returned
to the TPF system. The block address returned will be correct for the address
space currently being used: an EVM address if ADSPACE=EVM, an SVM
address if ADSPACE=SVM.

ADSPACE
This parameter gives the address space where the calling code is operating.

EVM
The code issuing this macro is operating in the EVM on behalf of an ECB.

SVM
The code issuing this macro is operating in the SVM and may or may not
be operating on behalf of an ECB.

ECB
This parameter specifies whether the block is currently connected to the ECB
virtual memory (EVM).

YES
When ECB=YES, the frame containing the block must currently be
connected to an ECB’s virtual memory. The ECB must be on the I-stream
where the $RELBC was issued.

68 TPF V4R1 System Macros

$RELBC

NO
The block address being returned must be an SVM address. The frame
containing the block cannot be part any ECB’s virtual memory.

EXIT=YES
EXIT=YES is a special interface for EXITC processing. During EXITC
processing a check must be made for VEQR mode. If VEQR is On, all blocks
must be released. If VEQR is Off, only common blocks must be released. This
parameter is only valid for the EXITC service routine.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements

* The program invoking this macro must be running in a privileged mode of
operation and with a storage protection key of zero. The program must also be
operating in 31-bit mode. The address space of the code issuing this macro must
be correctly specified via the ADSPACE parameter.

* R13 is assumed to contain the stack pointer.

Return Conditions

* Control is returned to the NSI.
* The contents of the register specified in the BLOCK parameter are unpredictable.
* The condition code is not saved.

Programming Considerations

System error dumps can occur when servicing a $RELBC request. See Messaged
ine) for more information about system errors.

Examples
None.

System Macros 69

$RELRC
$RELRC — Release a Control Record

Use this system macro to release control records associated with TPF transaction
services processing. This macro is only for use by the transaction manager (TM)
and resource managers (RMs). Through the use of the $RELRC macro, the TM and
RMs are able to control and release the commit scope environment.

Format

RMCR, CR=Rx-

»»>—$RELRC—TYPE= TMCR,ECB=—|:YES ,CR=Rx ><
—E N
CCR, CR=Rx:

TYPE
Defines the type of control record to be released. This parameter is required.
The following control record types are valid:

TMCR
Releases the transaction manager control record (TMCR).

RMCR
Releases the resource manager control record (RMCR) and all associated
commit scope control records.

CCR
Releases a single commit scope control record.

ECB
Defines the area to which the TMCR is anchored. This parameter is required
when you code TYPE=TMCR.

YES
Specifies that the TMCR is anchored out of the ECB at the CE2TMCR field.

NO
Specifies that the ECB TMCR anchor is not to be used. Instead, the TMCR
address is supplied in the register specified in the CR parameter.

CR=Rx

A register (R1-R7) that contains the address of the record to be released. This
parameter is required when you code ECB=NO, TYPE=RMCR, or TYPE=CCR.

Entry Requirements

* When you specify ECB=YES, R9 must contain the address of the ECB being
processed. Control records are anchored off the ECB through the CE2TMCR
field. The $SRELRC macro uses and updates this field.

* When you specify ECB=NO, the register, which is specified by the CR parameter,
must contain the address of the current TMCR.

* When you specify TYPE=RMCR, the register, which is specified by the CR
parameter, must contain the address of the RMCR to be released.

* When you specify TYPE=CCR, the register, which is specified by the CR
parameter, must contain the address of the CCR to be released.

70 TPF V4R1 System Macros

$RELRC

Return Conditions

» Control is returned to the next sequential instruction.

* The contents of the registers are preserved across this macro call with the
exception of the registers specified by the macro parameters. The contents of
these registers are as follows:

— When TYPE=TMCR, the register specified on the CR parameter will contain
the address of the next TMCR or zero if there are no more TMCRs.

— When TYPE=RMCR, the register specified on the CR parameter is
unchanged.

— When TYPE=CCR, the register specified on the CR parameter is unchanged.

* When you code ECB=YES, field CE2TMCR is updated to point to the previous
TMCR or zero if there is no previous TMCR.

* The condition code (CC) is not preserved across the macro call.

Programming Considerations
* This macro can be run from any I-stream.
* This macro can only be called from control program (CP) code.
» Before releasing a TMCR, all the associated RMCRs must be released.

Examples
$RELRC TYPE=TMCR,ECB=YES

$RELRC TYPE=RMCR,CR=R2

$RELRC TYPE=CCR,CR=R2

System Macros 71

$RETRC

$RETRC — Retrieve or Modify a Control Record

Format

Use this system macro to retrieve or modify control records that are associated with
TPF transaction services processing. This macro is only used by the transaction
manager (TM) and resource managers (RMs). Through the use of the $RETRC
macro, the TM and RMs control the commit scope environment.

>>—$RETRC—TYPE=—|::MCR—,STEP=—|:NEXT ,TMCR=Ry—,ECB=—|:YES <
PREV NO—I

Commit Control Record i

Commit Control Record:

F—CCR, RMID=——Rx ,CCR=Rz ,ECB=—-YES |
Tequote] L, acTron=popcharn- Lo, muer-ry

TYPE
Defines the type of control record to be acted on. This parameter is required.
The following control record types are valid:

TMCR
Requests a transaction manager control record (TMCR).

CCR
Requests a commit control record (CCR).

TMCR=Ry
A register (R1-R7) used to identify the current TMCR and to contain the
address of the retrieved TMCR. This parameter is required when you code
TYPE=TMCR or ECB=NO.

STEP
Specifies the direction to use when retrieving a TMCR. This parameter is
required when you code TYPE=TMCR.

NEXT
Retrieve the next TMCR in the chain of TMCRs.

PREV
Retrieve the previous TMCR in the chain of TMCRs.

ECB
Defines the area to which the TMCR is anchored. This parameter is required.

YES
Specifies that the TMCR is anchored out of the ECB at the CE2TMCR field.

NO
Specifies that the ECB TMCR anchor is not to be used. Instead, the TMCR
address is supplied in the register specified in the TMCR parameter.

CCR=Rz
A register (R1-R7) used to identify the current CCR and to contain the address
of the retrieved CCR. This parameter is required when you code TYPE=CCR.

72 TPF V4R1 System Macros

$RETRC

RMID=Rx|equate
A register (RO-R7) or equate used to define the RMID associated with the
record request. This parameter is required when you code TYPE=CCR.

ACTION
Specifies a modification to the chaining of CCRs. This parameter is optional.
When this parameter is not specified, the CCRs are retrieved.

POPCHAIN
The chain of CCRs is removed from the current resource manager control
record (RMCR) and added to the CCR chain of the previous RMCR; that is,
the chain is popped back to the previous level of nested RMCRs.
POPCHAIN is only valid when you code TYPE=CCR.

Entry Requirements
* When you specify ECB=YES, R9 must contain the address of the ECB being
processed. The current TMCR address is retrieved from ECB field CE2TMCR.

* When you specify ECB=NO, the register, which is specified by the TMCR
parameter, must contain the address of the current TMCR.

* The register specified on the CCR parameter must contain the following:
When CCR retrieval is requested (the ACTION parameter is not coded):
- 0 when requesting the first CCR in the chain

- The address of the current CCR when requesting the next CCR in the
chain.

When ACTION=POPCHAIN is specified:
- Is not used for input but will contain the status of the operation upon return.

Return Conditions

« Control is returned to the next sequential instruction.

* The contents of the registers are preserved across this macro call with the
exception of the registers specified by the macro parameters. The contents of
these registers are as follows:

— The register specified on the TMCR parameter will contain the following.
- When TYPE=TMCR, the register contains:
* The address of the retrieved TMCR.

* 0 when the end of the chain has been reached and nothing more can be
retrieved in the indicated direction.

* —2 when a protocol error has been detected or O was passed as the
TMCR address.

- When TYPE=CCR, the register is unchanged.
— The register specified on the CCR parameter contains the following.
- When the ACTION parameter is not coded:
* The address of the retrieved CCR.

* 0 when the end of the chain has been reached and nothing more can be
retrieved.

* -1 when the first CCR is requested and none exists.
- When ACTION=POPCHAIN:
* Unchanged when the requested action is successful.

» —2 when a protocol error has been detected and there is no previous
level to pop the CCR chain back to.

System Macros 73

$RETRC

— The register specified on the RMID parameter remains unchanged.
— The condition code (CC) is not preserved across the macro call.

Programming Considerations
e This macro can be run from any I-stream.
* This macro can only be called from control program (CP) code.

Examples
$RETRC TYPE=TMCR,STEP=PREV,TMCR=R1,ECB=YES

$RETRC TYPE=CCR,CCR=R1,RMID=R2,ECB=YES

74 TPF V4R1 System Macros

$RIOBC

$RIOBC-Release Input/Output Control Block (IOCB) Address

Use this system macro to release an input/output control block (IOCB) address.

Format

,TEST=N

>>—L——|—$RIOBC—BLOCK=RX >
label I—,WKREG=Ry—| l—,TEST=YES—|

label
A symbolic name can be assigned to the macro statement.

BLOCK=Rx
This register contains the address of the 1/0 block that is to be released.

WKREG=Ry
The register specified will be used as a work register.

TEST
This parameter is used for testing and problem determination purposes.

NO
It is intended that this is used for production systems. The code to get IOBs
expands in-line.

YES
This is used in a test environment to generate code to go to a central
routine (see the CL$RIOBC entry point in the CLHV segment of the
CCSTOR CSECT) when releasing an IOB. It is useful in monitoring IOB list
accesses. It only takes effect if the global variable SBCTEST is set on
(BX'1") within this routine.

The default is NO.

Entry Requirements

The program that invokes this macro must be running with a storage protection key
of zero. It must also be operating in 31-bit mode.

Return Conditions
» Control is returned to the next sequential instruction (NSI).
» The condition code is not set on return.
* The block released is no longer available for program use.

Programming Considerations
* This macro can be run on any I-stream.

» Register RO is used internally by the macro and should not be used to specify
the address of the block or be used as a work register.

* If the TEST parameter is used in an online system, severe system degradation
results due to 1/O constraints.

* The TEST parameter must only be used in test environments.

System Macros 75

$RIOBC

Examples
None.

76 TPF V4R1 System Macros

$RMNBC

$RMNBC-Release Acquired Storage

Use this system macro to return the contiguous storage acquired by the $GMNBC
macro.

Format

>>—L——|—$RMNBC—STORAGE=RX—,PAGES=R] >
label

" L WKREG= ()—| "
’ Cod Lo d Lol
R b
“T,J L]
R
“TJ
" L SAVREG=()J ~
’ Lpod " Lot " Lo
RO,
CaJ L J
RO
L]
label
A symbolic name can be assigned to the macro statement.
STORAGE=RXx

This required parameter specifies the register containing the address of the
storage being returned.

On input, this register contains the EVA address of an area of memory acquired
by the MALOC, RALOC, CALOC, or $GMNBC macros. This address must be
on a 4 KB boundary, and must be a valid 31-bit address.

PAGES=Ry
This required parameter specifies the number of 4 KB pages to be returned to
the TPF system.

On input, this register contains the number of 4 KB pages being returned. This
number can be less than the number of pages originally acquired by the
MALOC, RALOC, CALOC, or $GMNBC macros.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be

System Macros /7

$RMNBC

specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements

This macro can be run from the EVM or the SVM.

This macro is for use in the control program (CP) only while running key 0 and in
supervisor state.

R9 must point at the ECB that has the contiguous storage being released.

Return Conditions

The registers specified by the STORAGE and PAGES keywords contain
X'00000000'.

Control is returned to the next sequential instruction (NSI) if the storage area
being released was validly acquired via MALOC, RALOC, CALOC, or $GMNBC.

The ECB associated with the $RMNBC macro is exited with a SERRC if the area
being released is not valid.

Programming Considerations

Examples

This macro can be run on any I-stream, however, it must be run from the same
[-stream given in the CE1ISN field in the associated ECB.

This macro can only be called from the control program (CP) code. The
analogous general use macros are FREEC for assembler programs and the
(free) library function for C programs.

Use of the $RMNBC macro may have a substantial negative performance impact
on the TPF system in a multi-processor (tightly-coupled) configuration. In general,
storage acquired through the MALOC, RALOC, CALOC, or $GMNBC macros
should be returned automatically at ECB EXIT time by the TPF system, rather
than explicitly by you.

None.

78 TPF V4R1 System Macros

$RSWBC

$RSWBC-Release System Work Block

Use this system macro to release an available system work block (SWB).

Format
> $RSWBC—BLOCK=Rn >
label I—,WKREG= , , l
e Td T Td [
R B
T L]
R
T
T SAVREG= l ~
S T T T e d [
R0,
L
RO
]
label
A symbolic name can be assigned to the macro statement.
BLOCK=Rn

This register specifies the address of the SWB block to be released. This
parameter is required.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements

* Programs invoking this macro must be running with a storage protection key of
zero and be in 31-bit addressing mode.

* Programs can be executing in either the EVM or the SVM address space.

Return Conditions
Control is returned to the next sequential instruction (NSI).

System Macros 79

$RSWBC

Programming Considerations
* This macro can be run on any I-stream.
* $RELBC can also be used to release SWBs.

» System error dumps can occur when servicing a $RSWBC request. See
i for more information.

Examples
None.

80 TPF V4R1 System Macros

$RSYSC

$RSYSC—-Release System Heap Storage

Use this system macro to return frames to the TPF system that were allocated to
the system heap.

Format
>>—L——|—$RSYSC—ADDRESS=Rm,FRAMES=Rn,T0KEN=Rp >
label
" L SAVREG= ()—| "
’ Lpod " Lot " Lo
RO,
aJ L]
RO
L]
" L WKREG= ()J ~
P R P N
Rx ,
[pd L
R
“TJ
label
A symbolic name can be assigned to the macro statement.
ADDRESS=Rm

The ADDRESS parameter specifies the register containing the starting address
of the storage being returned. This address must be:

* Avalid system heap address
* On a 4 KB boundary.

The general register used must be RO-R12, R14, or R15.

FRAMES=Rn
The FRAMES parameter specifies the number of 4 KB frames to be returned to
the TPF system. The number of frames requested for release must be the
same number of frames requested on the $GSYSC or GSYSC macro. The
general register used must be R0-R12, R14, or R15.

TOKEN=Rp
The TOKEN parameter specifies the address of an 8-character string that the
TPF system uses to identify the allocated storage. This string must match the
string specified on the $GSYSC or GSYSC macro. The general register used
must be RO through R12, R14, or R15.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you

System Macros 81

$RSYSC

expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements

* This macro is for use in the control program (CP) only while running in key 0 and
in supervisor state.

* The general register indicated by ADDRESS must contain the starting address of
storage allocated using the GSYSC or $GSYSC macro.

* You can use this macro in entry control block (ECB) virtual memory (EVM) or
system virtual memory (SVM) address modes.

Return Conditions

* The TPF system returns control to the next sequential instruction (NSI).
* R15 contains the following return code values:

0 The TPF system has successfully released all specified storage.

RSYSC_ERROR
The address specified is not valid, the storage is not in use, and the
starting address, size, and token do not match current storage
allocations. No storage is released.

Programming Considerations
* This macro is restricted to CP use only.

* $RSYSC must use the same FRAMES and TOKEN parameters specified on the
GSYSC or $GSYSC call. For example, if 12 KB of storage is allocated with a
token of TABLE, the release macro must be coded to release 12 KB of storage
with a token of TABLE.

Examples

The following example shows how the length of a block is converted into a number
of 4 KB frames before requesting storage from the system heap. The return code is
checked before trying to use the address in R14.

ITUUTL REG1=R14 CONNECT WITH TABLE UPDATE DSECT
LA R14,ITULEN GET THE LENGTH OF A BLOCK

LA R14,4095(R14) ROUND TO THE NEXT 4 KB

LR R7,R14 SAVE NUMBER OF FRAMES

SRL R14,12 DETERMINE NUMBER OF 4 KB FRAMES
LA R6,MY_TABLE

$GSYSC FRAMES=R14,TOKEN=R6 ALLOCATE THE STORAGE

LTR R14,R14 CHECK THE RETURN CODE

BZ NO_STORAGE_AVAIL BRANCH TO PROCESS ERROR

routine that uses the storage

82 TPF V4R1 System Macros

$RSYSC

RELEASE_STORAGE DS OH
LA R6,MY_TABLE
$RSYSC ADDRESS=R14,FRAMES=R7,TOKEN=R6 RELEASE THE STORAGE
LTR R15,R15 CHECK THE RETURN CODE
BNZ RELEASE_ERROR BRANCH TO PROCESS ERROR

MY _TABLE DC CL8'MY_TABLE'

System Macros 83

$SWSPC

$SWSPC-Switch Address Space

Use this system macro to change the address space control information in the
program status word (PSW). The TPF system supports 2 types of address spaces:

» Entry control block (ECB) virtual memory (EVM), which contains all memory that
can be referenced or changed by the ECB. There is one EVM for each ECB in
the TPF system.

» System virtual memory (SVM), which contains all storage that can be used by an
I-stream.

Before using this macro, be sure you understand the effects of switching address
spaces on register 9 (the ECB pointer) and control register 1 (the ECB segment
and page table pointer). This macro can be run to set up these registers (with a
dependency on R9) or to switch the address mode without updating the registers.

Format

—, ECBINR9=YES—
»»>—$SWSPC—GOTO=—EVM |_ _| ><
—SVM— —,ECBINR9=NO— ,0LD=Ry

L Ry—!

GOTO
This parameter identifies the address space in which the TPF system is to
resume operation. There are three options:

EVM
The address space being switched to is the EVM. The input and return
conditions vary, dependent on the ECBINR9 parameter.

If ECBINR9=YES then R9 must contain the virtual address of the ECB for
the address space the ECB is executing in. On return, R9 contains the
EVM address of the ECB, and control register 1 is loaded with a pointer to
the ECB segment and page tables.

If ECBINR9=NO then the $SWSPC macro will issue only the SAC
instruction to switch the address space. The set-up of R9 and control
register 1 would be left to the caller. This combination of parameters
(GOTO=EVM and ECBINR9=NO) is essentially illogical, and is not
recommended.

SVM
The address space being switched to is the SVM. The input and return
conditions vary, dependent on the ECBINR9 parameter.

If ECBINR9=YES then R9 must contain the virtual address of the ECB for
the address space the ECB is executing in. On return, R9 contains the
SVM address of the ECB.

If ECBINR9=NO then the $SWSPC macro will issue only the SAC
instruction to switch the address space. If the caller plans to access the
ECB or issue a $SWSPC to the EVM, then R9 would need to be set up by
the user.

Rx Rx is a register that has been previously set by the OLD option of the
$SWSPC macro. The contents of Rx cannot be modified by the user. When

84 TPF V4R1 System Macros

$SWSPC

GOTO=RXx is specified, R9 must contain the address of the ECB for the
address space the ECB is executing in, unless ECBINR9=NO is coded.

Note: There can be no loss of control between the invocation of the
$SWSPC macro that saved the OLD register and the invocation of
the $SWSPC macro with the GOTO parameter, nor should R9 be
changed.

OLD=Ry

This is an optional parameter. If specified, the TPF system saves the
information necessary to return to the addressing mode in effect at the time the
$SWSPC macro is issued.

This parameter can be used in a subroutine to allow entry in either mode, with
return to the correct addressing mode.

Ry Specify the register that will contain the return information.

ECBINR9

This is an optional parameter. The default is ECBINR9=YES. This parameter
indicates if the macro call should use and update R9, which implies R9 is a
valid ECB pointer.

YES
R9 will be referenced as the ECB pointer and updated to point to the ECB
in the proper addressing mode. If the switch is to the EVM, then control
register 1 will be loaded with the segment and page tables.

NO
R9 will neither be referenced nor updated. Control register 1 will not be
updated when switching to the EVM.

Entry Requirements

Supervisor state, protection key of zero, 31-bit addressing mode.
See individual parameters for R9 requirements.

Return Conditions

Control is returned to the next sequential instruction (NSI).

Registers are unchanged except for R9 and control register 1 as noted
previously, and, optionally, the register specified by the OLD parameter.

Programming Considerations

This macro can be run on any I-stream.

The results of a $SWSPC GOTO are totally unpredictable if there has been a
loss of control between the $SWSPC macro that saved the OLD register and the
$SWSPC macro with the GOTO parameter.

Use of this macro can cause a performance impact.

The usage of the ECBINR9=NO parameter is not recommended because it
leaves the responsibility of maintaining R9 and control register 1 to the caller.

If $SWSPC GOTO=EVM,ECBINR9=YES is issued, the ECB addressed by R9
must be operating on the I-stream that issued the $SWSPC macro.

This macro can be run in either SVM or EVM.
The program using this macro must be in supervisor state.
System error dump can occur when servicing a $SWSPC request. See

Messages (System Errar and Qffline) for more information about system errors.

System Macros 85

$SWSPC
Examples

This example will switch to the EVM, and update R9 to contain the EVA of the
ECB, and control register 1 will point to the segment and page tables for that
ECB address space.

Note: R9 must contain the valid ECB address for whatever address space the
macro was invoked in upon entry.

$SWSPC GOTO=EVM

This example will switch to the SVM, without updating R9.

Note: There is no dependency on R9 for this invocation.

$SWSPC GOTO=SVM, ECBINR9=NO

This example will switch to the SVM, then switch back to the address space the
first $SWSPC switched from. R9 will contain the SVA of the ECB after the first
call, and either the EVA or SVA after the second call, dependent on the address
space before the first call.

Note: R9 must contain the valid ECB address for whatever address space the
macro was invoked in upon entry.

$SWSPC GOTO=SVM,O0LD=R3
. R9 and R3 must remain unaltered
during this process ...

$SWSPC GOTO=R3

86 TPF V4R1 System Macros

$TCPLC

$TCPLC—-Control Program (CP) Tape Logging

Use this system macro to log data blocks to an active real-time tape.

Format

>>—L—_|—$TCPLC—BLOCK=RX—,TYPE= Ry ,ERROR=Iabell |_ >
label —[Lx:l l—,TAPE= RTc

, TAPE=RTL

(RU)_—|_

,COPY=NO

l—,SS= RZ‘J—‘ I—,COPY=YES—| l—,THRESHOLD=Rw—| I—,TRLRDATA=(RV,Ln)—|

label2

label

A symbolic name can be assigned to the macro statement.

BLOCK=RXx

This parameter specifies the general register containing the system virtual
address (SVA) of the block to be logged.

TYPE=Ry|Lx

This parameter specifies the type of block to be logged. A general register
containing the block type or a CLH equate specifying the block type can be
coded. The following types are supported:

LO 128 byte block
L1 381 byte block
L2 1055 byte block
L4 4095 byte block.

ERROR-=labell

Control will be passed if the specified tape is found to be offline, not active, or
the threshold value, if specified, has been exceeded.

TAPE=RTL|RTc|(Ru)

SS

This parameter specifies the symbolic tape name of a system tape to which the
block is to be logged. A general register containing a pointer to the tape name
may also be coded. In this case the tape name must be left-justified in the first
3 bytes of the address supplied.

The default is RTL. The default will be forced to RTA if RTL output is merged to
the RTA.

This parameter specifies the subsystem and subsystem user ID to which the
data belongs. These IDs are in the two byte complement and index format. See

I‘CEBIC—Change MDBE Subsystem/Subsystem User |D_an_pa.g.e_122|" for more

information about this format.

Rz When Rz is specified, bytes 0-1 should contain the subsystem ID, and
bytes 2-3 should contain the subsystem user ID.

System Macros 87

$TCPLC

label2
When label2 is specified, it should point to four bytes of storage where the
first two bytes contain the subsystem ID, and the second two bytes contain
the subsystem user ID.

The default is the SS/SSU ID of BSS.

COPY

This parameter specifies whether the data is copied into a block, and passed to
the 1/O routines.

NO
If COPY=NO is specified, the block passed in Rx is passed to the I/O
routines and returned to the TPF system at I/O completion. Therefore, the
block should not be mapped in any EVM. COPY=NO is the default.

YES
If COPY=YES is specified, the macro service routine gets a storage block
of the type specified by the TYPE parameter, copies the data into the block,
and passes the new block to the 1/O routines.

THRESHOLD=Rw
This parameter specifies a register that contains the threshold value to be
checked before adding the SWB to the cross list. If the number of SWBs on the
module queue exceeds the threshold value, then the SWB will not be added to
the cross list and the macro will return to labell.

TRLRDATA=(Rv,Ln)
This parameter specifies a register, Rv, that contains a pointer to the user trailer
data information. Ln specifies the length, in bytes, of the user trailer data
information. This data will be written at the end of the record to be logged just
before the standard trailer information. A maximum of 32 data bytes may be
specified. If Ln is less than 32, the data is left-justified and filled with
hexadecimal zeros. The standard trailer information consists of the subsystem
name, subsystem user name, and the time-of-day (TOD) clock. The default is
that no additional data is added to the standard trailer.

Entry Requirements
* This macro can only be run in the system virtual memory (SVM).
* R13 must point to the system stack area.

* The caller must be in the SVM. Rx is not mapped in any EVM if COPY=NO is
specified.

Return Conditions

» Control is returned to the NSI if the specified tape is mounted, online, and the
threshold value, if specified, has not been exceeded. If the tape is not mounted
or is not in a useable state, control will be passed to the routine specified on the
ERROR parameter.

¢ The condition code is not saved.

* If COPY=NO is specified, the block is no longer available for use by the calling
program. If COPY=YES is specified the caller is responsible for insuring that the
original block is eventually returned to the TPF system.

» A detailed indication of status of the write request is contained in R15.
X'00' An SWB has been added to the cross list. This is not an error condition.

X'04'" The specified tape was not mounted or tape restart not complete.

88 TPF V4R1 System Macros

$TCPLC

X'08'" The module queue length for the specified tape exceeded the value in
the register specified by the THRESHOLD parameter.

Programming Considerations
» This macro is for use in the control program (CP) only.
* $TCPLC can only be invoked in the SVM.

* The $TCPLC macro service routine ensures that tape restart is not in progress
before attempting to satisfy the $TCPLC request. If tape restart is in progress,
error code 4 is returned in R15 to indicate unsuccessful completion of the
request.

Examples
None.

System Macros 89

$ULKRC

$ULKRC-Unlock a Virtual File Access (VFA) or Record Hold Table
(RHT) Lock

Use this system macro to unlock a virtual file access (VFA) or a record hold table

(RHT) lock.
Format
|—TYPE=D
> $ULKRC—LOCK=—VFA ><
label —[RHT—l Lrvpe-1
label
A symbolic name can be assigned to the macro statement.
LOCK
Specifies the type of lock, where:
VFA
Specifies a VFA lock.
RHT

Specifies an RHT lock.

TYPE
Specifies whether the lock is immediate or delayed, where:

| Specifies immediate.

D Specifies delayed. A delayed unlock is cached whenever possible, which
means the lock is saved in the module file status table (MFST) and
processed as part of the next channel program that communicates with the
device.

Entry Requirements
Register 5 (R5) must contain the address of the VFA buffer control area (BCA) only.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

* Register 14 (R14) and register 15 (R15) are used to branch and link to the macro
service routine so the contents of both registers are corrupted. All other registers
are preserved.

Programming Considerations
* You can run this macro from any I-stream.
* This macro is for use in the control program (CP) only.
» System errors can occur while processing the $ULKRC macro. See @

(System Errar and Qffline) for more information about these system errors.

Examples

The following example shows you how to unlock a VFA lock using this macro.
$ULKRC LOCK=VFA

90 TPF V4R1 System Macros

$UNLKC

$UNLKC—-Unlock a Resource

Use this system macro to unlock a resource previously locked by using the
$LOCKC macro. If the lock is not held by this I-stream, a system dump is issued
and the lock is unlocked.

Format

, TRACE=YES
_l

»—L——'—$UNLKC—LKW0RD= oubleword field ,WKREG=Ry [J >
label (Rx)4—| ,TRACE=NO

l—, FORCE=Reven—|

label
A symbolic name can be assigned to the macro statement.

LKWORD=doubleword_field|(Rx)
Doubleword field used for the lock and trace, or a base register containing the
address of the doubleword field.

WKREG=Ry
A work register to be used by this macro. If FORCE is specified, it must be the
even-numbered register of an even/odd pair.

TRACE=YES|NO
If YES then the current address will be stored in the second fullword of the lock
doubleword. YES is the default.

FORCE=Reven
The even-numbered register of an even/odd pair.

If specified, FORCE is an even/odd register pair; bits 16-31 of the even register
contain the I-stream number for the special unlock.

Entry Requirements

* The resource specified by LKWORD must be locked by the $LOCKC macro
unless FORCE is specified.

» If FORCE is specified, bits 16-31 of the even register must contain the number of
the I-stream which is holding the lock.

Return Conditions

» Control is returned to the next sequential instruction.

* The contents the specified work register are unknown. If FORCE is specified, the
contents of both even/odd register pairs specified by WKREG and FORCE are
unknown. The contents of all other registers are preserved across this macro
call.

Programming Considerations

* Return is made to the next sequential instruction.
* This macro can be run on any I-stream.

System Macros 91

$UNLKC

* The protection key of the program issuing the $UNLKC macro must be the same
as the item being unlocked.

* The lock specified by LKWORD must be held by this I-stream. If the lock is not
held a system error will be taken unless the FORCE parameter is coded.

Examples
None.

92 TPF V4R1 System Macros

$VALEC

$VALEC-Validate Entry Control Block (ECB) Virtual Memory (EVM)
Address

Use this system macro to generate inline code that uses an entry control block
(ECB) virtual memory (EVM) segment and page tables to determine if an EVM
address is valid.

Format

»—L——'—$VALEC—ADDRESS=RX—,ERR0R=ZabeZ ><
label

label
A symbolic name can be assigned to the macro statement.

ADDRESS

This required parameter specifies the register containing the EVM address to be
validated.

Rx Specifies a general purpose register, from RO through R7.

ERROR=label
This required parameter specifies a program label, in the calling program,
where control is to be transferred in the event the specified EVM address is not
valid.

Entry Requirements
* The invoking routine must be executing in the SVM and be in supervisor state.
* Register 9 must contain the SVM address of the target ECB.
* Register 11 must contain the standard TPF address value (X'1000").

Return Conditions
* The register specified in the ADDRESS parameter is unchanged.
* The contents of registers R14 and R15 are unpredictable.

* When validation is successful, control is returned to the next sequential
instruction (NSI) following the macro. No address conversion was performed.

* When validation is unsuccessful, processing continues at the address specified
by the ERROR parameter.

Programming Considerations
* This macro is for use in the control program (CP) only.
* The literals generated by this macro must be accessible to the generated code.

* This macro uses general registers 14 and 15. They are not saved prior to being
used.

Examples
None.

System Macros 93

#SBRC
#SBRC-Standard Linkage Macro Subroutine

Use this system macro to generate the most efficient standard linkage for the
macros that call it.

Format

»—#SBRC—INREG=~| INREG Parameters '—,OUTREG=(|_ _| , |_ _| . |_ _|) >
Ru Rv Rw-

,TYPE=EXT
[]

> ,RTN=routine_name
l—,WKREG= Rx: l l—,TYPE=INT—|

]
N P I P I O

,GEN=ALL
r_

,GEN=——TOP
—[BOT

».

INREG Parameters:

(1) (2) (3) (4)
—(, , , g
AR ok B v R
(,A) (,A) (,A) (,A)

(5)

.-,) |
]
(,A)

Notes:

1 P1

2 P2

3 P3

4 P4

5 P5

INREG=(P1,P2,P3,P4,P5)
This parameter contains positional sublist entries P1, P2,...,P5 for general
registers R14, R15, RO, R1, and R2 respectively. There is direct mapping
between the position of the sublist entry and the general register to which it
refers (for example, P1 refers to R14, P2 refers to R15, and so on).

The format of a sublist entry is (Rx,y) or Null.

» The first parameter of a sublist entry is a general register name, RO thru R15,
or null.

94 TPF V4R1 System Macros

#SBRC

* The second parameter is the character A or null. A signifies that the contents
of the corresponding register in the range RO — R2 is an applicable
parameter to the subroutine and should be initialized with the contents of the
register Rx. If Rx is not the actual corresponding register, then the contents
of the register to which Rx refers are saved.

Notes:

1. Registers R14 and R15 are always saved, and their sublist entries P1 and
P2 cannot contain Rx parameters. This is because only registers RO-R2 can
contain parameters to routines. The INREG parameter is also used by
#SBRC to reload any corrupted registers after return from the service
subroutine. However, only registers RO, R1 and R2 are considered here
since registers R14 and R15 will always be reloaded on return by the
service subroutine.

2. The format of a sublist entry for registers R14 and R15 can only be (,A) or
Null because these registers are always used as part of the basic
subroutine linkage, and are always saved.

For another example,
INREG=(, (,A), (R6,A),, (R7,))

generates:

STM R14,R0,SAVAREA
LR RO,R6
LR R2,R7

This means R15 and RO must be saved over this subroutine call, and, RO and
R2 are the inputs to this subroutine through R6 and R7 respectively.

The defaults for each sublist entry are the corresponding mapped registers and
null.

OUTREG=(P1,P2,P3)
This parameter deals with initializing registers on return from the service
subroutine. It can contain a maximum of 3 registers with PO, P1, and P2 as
positional entries for registers RO, R1, and R2 respectively. The delimiter for
each position is a comma.

For example, when a subroutine returns RO and R2 with resultant data, and the
calling program expects the results to be contained in registers R6 and RO
respectively, the following #SBRC parameter is formatted. For example,

OUTREG=(R6, ,R0O)

generates:
LR R6,RO
LR RO,R2

The default for each sublist entry is null, which generates no code.

RTN=routine_name
This parameter contains the name of the routine to be invoked. This parameter
is mandatory and must not be null. See each individual macro for the specified
routine.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used

System Macros 95

#SBRC

here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

TYPE
This parameter determines the way in which the RTN parameter is resolved.

EXT
The RTN parameter is assumed to specify an external routine, RTN=EXT is
the default.

INT
The RTN parameter is assumed to contain a routine that is directly
addressable.

GEN
This parameter defines the code generation. There are two options; GEN=ALL,
or GEN=TOP followed by a parameter list and GEN=BOT.

ALL
The complete linkage is generated. This is the default.

TOP|BOT
When GEN=TOP is coded, the code is generated through the BASR. This
is followed by an inline parameter list, which is followed by GEN=BOT.

When GEN=TOP and GEN=BOT are coded, the other parameters coded on the
#SBRC macro must be identical.

For example:

#SBRC GEN=TOP, INREG=(, (,A), (R6,A),, (R7,)),0UTREG=(R6, ,R0) ,RTN=routine,
TYPE=EXT DC A(PARMLIST)

#SBRC GEN=BOT, INREG=(, (,A), (R6,A),, (R7,)),0UTREG=(R6, ,R0) ,RTN=routine,
TYPE=EXT

Entry Requirements

* R13 is assumed to contain the stack pointer. The macro uses a predefined area
in the stack to save and restore R14 through R2 over the macro call.

» See the entry requirements listed for each of the individual calling macros.

Return Conditions
= Control is returned to the next sequential instruction in all cases.
* The contents of R14 and R15 will unchanged upon return.

* The condition code is not altered by the #SBRC macro, and is passed through to
the exit of the macro invoking #SBRC.

» See the individual calling macros for the specific return conditions associated
with each macro.

Programming Considerations
* #SBRC is an internal macro subroutine. Some of the macros that call it are:
— The storage block control macros are GETBC, GTMBC, RELBC, and RLMBC

— The storage block inquiry macros are BLKBC, CLHCC, CLHEC, NUMBC,
NXTBC, VALBC, and VALTC

— The dispatch control macros are ADDFC, ADDLC, STPLC, and STTLC

96 TPF V4R1 System Macros

#SBRC
— The dispatch inquiry macros are NUMLC and NXTLC.

The name #SBRC deviates from the standard naming convention to indicate this
differentiation.

» See the individual calling macros for specific programming considerations
associated with each macro.

Examples
None.

System Macros 97

ADDFC

ADDFC-Add a Block to the Top of a Dispatch List

Format

Use this system macro to add a block to the top of the specified system task
dispatcher list.

The block added through this macro will be the first block dispatched the next time
the specified system task dispatcher list is processed.

Required Authorizations

Key0 Restricted System Common Storage

X

BLOCK=R1 ,LIST=RO
[1

»»—ADDFC
i:BLOCK=in| |—,LIST=RxJ l—,PIADDR=Rx—|

ADDRESS=Rw-

-]
e B P I o I I I

S P
Rx: |_,_|

"L savree- l
T Lo Tl e |

S
RO]

BLOCK=R1|Rx
The register specified on this parameter contains the EVM address of the
storage block to be added to the specified system task dispatcher list. If the
parameter is omitted, the default assignment is R1.

The ADDRESS and BLOCK parameters are mutually exclusive.

ADDRESS=Rw
The register specified on this parameter contains the SVA address of the
storage block to be added to the specified System Task Dispatcher list as
indicated by the LIST parameter. There is no default.

The ADDRESS and BLOCK parameters are mutually exclusive.

LIST=RO|Rx
The register specified on this input parameter contains a dispatch list equate
value as defined in the CLHEQ macro. If the parameter is omitted, the default
assignment is RO.

Valid equate values are:

98 TPF V4R1 System Macros

ADDFC

#CLHRDY
Ready List

#CLHINP
Input List

#CLHDEF
Defer List

PIADDR=RX

The register specified on this parameter contains the address of the
postinterrupt routine to be given control when dispatched from the list. If the
parameter is omitted, it is assumed that displacements 6-7 in the specified
block will contain the postinterrupt address.

SAVREG

The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG

The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements

If the macro is coded in a real-time segment, R9 must contain the address of the
ECB being processed.

If the macro is coded in the control program (CP), the routine invoking this macro
must be running in a privileged mode of operation and with a storage protect key
of zero.

The block address passed in the BLOCK parameter must be a valid EVM
address and the block address passed in the ADDRESS parameter must be a
valid SVM address.

The ADDRESS and BLOCK parameters are mutually exclusive. If neither is
coded, the default is BLOCK=R1.

If the PIADDR parameter is not used, the postinterrupt status halfword at relative
location 6 and 7 in the block must contain a valid branch vector address.

Return Conditions

Control is returned to the next sequential instruction.

When invoked from a real-time segment, the contents of all user registers are
preserved across this macro call. When invoked from the control program (CP),
the registers specified on the WKREG parameter will be used to save the
contents of any volatile registers specified on the SAVREG parameter. All other
registers will be returned intact.

The condition code is not saved across this macro call.

System Macros 99

ADDFC

Programming Considerations
* This macro can be run on any I-stream.

* When called from a real-time segment and using the BLOCK parameter, ADDFC
will disconnect the block from the ECB private area. Upon return the real-time
segment must clear the block held indicator, from the core block reference word,
to prevent double release problems in EXITC processing.

When the ADDRESS parameter is used instead of the BLOCK parameter, it is
assumed that the block is not attached and no attempt is made to disconnect it.

e This macro cannot be used to add a block to the cross list. To add to the cross
list, use the $ADPC macro.

* The WKREG and SAVREG parameters are used only on macro invocations from
the control program (CP). These parameters have no effect on the macro
expansions in real-time programs.

Examples
None.

100 TPF V4R1 System Macros

ADDLC

ADDLC-Add Block to the End of a Dispatch List

Format

Use this system macro to add a block to the bottom of the specified system task
dispatcher list.

Required Authorizations

Key0 Restricted System Common Storage

X

BLOCK=R0O ,LIST=R1
[1

»—ADDLC
i:BLOCK:RXi‘ l—, LI ST=RX—| l—, PIADDR=RX—|

ADDRESS=Rw-

-]
A I PO R P I O I

Sk P
Rx |_,_|

,DEBUG=NO

)—| I—, DEBUG=YESJ

"Toamee.
,SAVREG= |—Ro—| , I—Rl—l , |—R2—|
S P
RO]

BLOCK=RO0|Rx
The register specified by this parameter contains the EVM address of the
storage block to be added to the specified System Task Dispatcher list. If the
parameter is omitted, the default assignment is RO.

The BLOCK and ADDRESS parameters are mutually exclusive.

ADDRESS=Rw
The register specified by this parameter contains the SVM address of the
storage block to be added to the system task dispatcher specified by the LIST
parameter. There is no default.

The BLOCK and ADDRESS parameters are mutually exclusive.

LIST=R1|Rx
The register specified on this input parameter contains a dispatch list equate
value as defined in the CLHEQ macro. If the parameter is omitted, the default
assignment is R1.

Valid equate values are:

#CLHRDY
Ready List

System Macros 101

ADDLC

#CLHINP
Input List

#CLHDEF
Defer List

PIADDR=RXx

The register specified on this parameter contains the address of the
postinterrupt routine to be given control when dispatched from the list. If the
parameter is omitted, it is assumed that displacements 6-7 into the specified
block will contain the postinterrupt address.

SAVREG

The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG

The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

DEBUG=NO|YES

This parameter is only valid on calls from the control program (CP). If coded as
YES, the value of all macro parameters at the time of the macro call will be
printed. This parameter is not for general use, and will not effect operation at
processing time.

Entry Requirements

If the macro is coded in a real-time segment, R9 must contain the address of the
ECB being processed.

If the macro is coded in the control program (CP), the routine invoking this macro
must be running in a privileged mode of operation and with a storage protect key
of zero.

The block address passed in the BLOCK parameter must be a valid EVM
address. The block address passed in the ADDRESS parameter must be a valid
SVM address.

The BLOCK and ADDRESS parameters are mutually exclusive. If neither is
coded, the default is BLOCK=RO.

If the PIADDR parameter is not used, the postinterrupt status halfword at relative
location 6 and 7 in the block must contain a valid branch vector address.

Return Conditions

Control is returned to the next sequential instruction.

* When called from a real-time segment, the contents of all user registers are

preserved across the macro call. When invoked from the control program (CP),

102 TPF V4R1 System Macros

ADDLC

the registers specified on the WKREG parameter will be used to save the
contents of any volatile registers specified on the SAVREG parameter. All other
registers will be returned intact.

The condition code is not saved across this macro call.

Programming Considerations

Examples

This macro can be run on any I-stream.

When ADDLC is called from a real-time segment and the BLOCK parameter is
used, ADDLC disconnects the block from the ECB’s private area. Upon return the
real-time segment must clear the block held indicator, from the core block
reference word, to prevent double release problems in EXITC processing.

When the ADDRESS parameter is used instead of the BLOCK parameter, it is
assumed that the block is not attached and no attempt is made to disconnect it.

This macro cannot be used to add a block to the cross list. To add to the cross
list, use the $ADPC macro.

The WKREG and SAVREG parameters are only used on macro invocations from
the control program (CP). These parameters have no effect on the macro
expansions in real-time programs.

See the prologue of the #SBRC macro for more information about the WKREG
and SAVREG parameters.

None.

System Macros 103

BBEWP

BBEWP—-Recoup Error Item Setup

Format

Use this system macro to set up the correct parameters and activate the recoup
error wait program (BEWP). The program must specify the location of the error item
as well as the data level or data event control block (DECB) on which the error
occurred.

Note: If this macro is activated for a timeout condition, do not code either the
DECB or LEVEL parameter.

,DECB=decbaddr—

»—ZabeZ—BBEWP—[ITEM=location <
ITEM=CURR4 E,LEVELﬂevel—
,DECB=(Rx)

label
is a symbolic name that can be assigned to the macro statement.

ITEM
specifies one of the following:

location
specifies the location of the error item to process.

CURR
specifies that the error item is located in the current slot in the recoup stack
block attached to the entry control block (ECB) on data level D.

LEVEL=level
specifies the ECB data level on which the find error occurred in the TPF
Database Facility (TPFDF) recoup environment, where level is a number from 0
to 7.

Note: Specify the LEVEL parameter when the ECB level is passed from the
TPFDF product.

DECB
specifies one of the following:

decbaddr
specifies a core location containing the address of a DECB that will be used
to determine the type of FINDC error that occurred.

(Rx)
specifies a general register (R0O—-R7) containing the address of a DECB that
will be used to determine the type of FINDC error that occurred.

Entry Requirements

* Register 9 (R9) must contain the address of the ECB being processed.

* When ITEM=location, registers R14 and R15 must be available for use. Their
contents are not saved.

104 TPF V4R1 System Macros

BBEWP

Return Conditions

» Control is returned to the next sequential instruction (NSI).

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

Programming Considerations
* The BBEWP macro can be used only by recoup segments.
* The ECB is used and modified by this macro.

Examples

BBEWP ITEM=EBWOO8,LEVEL=2
BBEWP ITEM=CURR

System Macros 105

BBPDH

BBPDH-Recoup Record Find and Count Interface

Use this system macro to provide settings that are used by the recoup and program
directory update (PDU) online pool directory handler (BPDH) and the record ID
update table (BRID or BRV?7).

Format

»»—abel—BBPDH— |_ _| ERROR=errloc ,LEVEL=level ><
NOPROC=nextaddr, E,DECB=decbaddr—
,DECB=(Rx)

label
is a symbolic name that can be assigned to the macro statement.

NOPROC=nextaddr
specifies that the address being chain chased is an RCI candidate that should
not be processed if it has already been chain chased, where nextaddr is the
location in which to branch if the address has already been chain chased. If the
NOPROC parameter is not specified, the address will be chain chased even if it
has already been chased.

ERROR-=errloc
specifies the location in which to be branched if an error is detected by BPDH,
where errloc is the location in which to branch.

LEVEL=level
specifies the level on which to run the FINDC macro in the TPF Database
Facility (TPFDF) recoup environment, where level is a number from 0 to 7.

Note: Specify the LEVEL parameter when the entry control block (ECB) level is
passed from the TPFDF product.

DECB
specifies one of the following:

decbaddr
specifies a core location containing the address of a data event control
block (DECB) that will be used in the processing of a FINDC macro.

(Rx)
specifies a general register (R1-R7) containing the address of a DECB that
will be used in the processing of a FINDC macro.

Entry Requirements

* Register 9 (R9) must contain the address of the ECB being processed.

* The LEVEL parameter must be specified if the BBPDH macro is called from the
TPFDF product.

* Registers R14 and R15 must be available for use. Their contents are not saved.

» Label EBWO061 in the ECB contains a recoup restart area index. When the DECB
parameter is coded, the item containing the file address to be processed is
located in the recoup stack area (BCOSA)

106 TPF V4R1 System Macros

BBPDH

Return Conditions

» If an error occurs while interfacing with BPDH, the BBPDH macro branches to
the location specified with the ERROR parameter. Otherwise, control is returned
to the next sequential instruction (NSI).

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

Programming Considerations
* The BBPDH macro can only be used by recoup segments.
* The BBPDH macro uses and modifies the ECB.
* The BBPDH macro enters BPDH to interface with the recoup pseudo directories.

* The BBPDH macro enters BRID to interface with the recoup record ID counts
table.

* When DECB=(RXx), general registers R1 to R7 are valid.
* The BBPDH macro enters BRV7 to handle alternate ID processing.

Examples

BBPDH ERROR=ERRLOC, LEVEL=0,NOPROC=DUPLOC
BBPDH ERROR=ERRLOC,DECB=(R3)
BBPDH ERROR=ERRLOC,DECB=BCORDCB

System Macros 107

BBWRT

BBWRT—-Recoup Logging Item Setup

Use this system macro to place recoup items in the RCP tape logging block.

Format

E0J=N ITEM=CURR— NBR=1
»>—label—BBWRT |_ O_| |_ |_

|—E0J=YES—| |—ITEM=logZoc— l—NBR=itemnbr— |—SAVME)3=NO—I

SAVMO3=YES
[]

TPFCS=NO WRANY=NO WRFULL=NO
[1 1] e

|—TPFCS=YESJ |—WRANY=YESJ |—WFULL=YESJ

label
is a symbolic name that can be assigned to the macro statement.

EOJ
specifies the end-of-job (EOJ) indicator.

NO
specifies that the end of job has not been reached and the calling segment
is passing items to be written to the RCP tape.

YES
specifies that the end of job has been reached and there are no more items
to be written to the RCP tape.

ITEM
specifies one of the following:

CURR
specifies that the location of the recoup logging item is the current slot in
the recoup save area (BCOSA).

logloc
specifies the work location of a recoup logging item.

NBR=itemnbr
specifies the number of items starting at the location specified with the ITEM
parameter, where itemnbr is a number greater than 0.

SAVMO03
specifies whether to save the previous EBCMO03 value and restore this value
across this macro call.

YES
saves and restores the previous EBCMO03 value across the macro call.

NO
does not save and restore the previous EBCMO03 value across the macro
call.

TPFCS
specifies whether the recoup logging item is a TPF collection support (TPFCS)
item.

108 TPF V4R1 System Macros

BBWRT

YES
specifies the recoup logging item is a TPFCS item.

NO
specifies the recoup logging item is not a TPFCS item.

WRANY
specifies whether the current RCP tape block is written if there are any items in
the block but no current item is passed.

NO
does not write the current RCP tape block if there are any items in the
block but no current item is passed.

YES
writes the current RCP tape block if there are any items in the block but no
current item is passed.

WRFULL
specifies whether the current RCP tape block is written if the block is
completely full.

NO
does not write the current RCP tape block if the block is completely full.

YES
writes the current RCP tape block if the block is completely full.

Entry Requirements

* Register 9 (R9) must contain the address of the ECB being processed.

* The recoup logging item must be formatted according to the BCOSA data
structure.

* The recoup logging item must be set up in the current slot in the recoup stack
save area unless the item is specified in another work location.

* Registers R14 and R15 must be available for use. Their contents are not saved.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

* The contents of R14 and R15 are unknown. The contents of registers RO—R7 are
preserved across this macro call.

Programming Considerations

Examples

* The BBWRT macro can be used only by recoup segments.

BBWRT
BBWRT ITEM=CURR

BBWRT ITEM=EBWOOO,NBR=2,SAVMO3=N0O,E0J=YES

System Macros 109

BRPRO

BRPRO-Query Recoup Options

Use this system macro to query the status of current recoup run options that are
held as bit settings at BKOAPIS in the recoup keypoint (BKORP). These recoup run
options are set by using the ZRECP PROFILE command. See [[BE QOperationd for
more information about recoup run-time options and the ZRECP PROFILE
command.

Format

A\
\

|_ | Branch_on_Condition_Variables I—,IFTRUE=ZabeZ >
ZabeZ—BRPROJ Return_Value_Variables }
URID=register,IFTRUE=Label ,BASE=register

Branch_on_Condition_Variables:

——ADR_YES |
—ADR_NO
—ERRLOG_RCP—
—ERRLOG_BOTH—
—FARF_3
—FARF_4
—FARF_5
—FARF_6
—FSC_YES
—FSC_NO
—RCP_NONE
—RCP_ALL
—REFFROM_YES—
—REFFROM_NO—|
—STATUSCON_YES—
—STATUSCON_NO—

Return_Value Variables:

ADRNUM=register |
BCHMAX=register
DIRTIM=register
EALOSTMAX=register—
FIXERMAX=register—
REFFMMAX=register—

label
is a symbolic name that can be assigned to the macro statement.

IFTRUE=label
specifies a user-defined label in which to branch if a condition is true.

CURID=register
specifies a register that contains the record ID of a record that you want to
compare to the recoup keypoint record. The register specified with the BASE
parameter points to the recoup keypoint.

110 TPF V4R1 System Macros

BRPRO

Notes:
1. Register 14 (R14) and R15 must not be used for this parameter.
2. Data level D must contain the save area (BCOSA) block.

BASE-=reqgister
specifies a register that contains the address of the recoup keypoint.

ADR_YES
checks the status of the ADR_YES option bit and, if the option bit is set on,
branches to the label specified by the IFTRUE parameter.

ADR_NO
checks the status of the ADR_NO option bit and, if the option bit is set on,
branches to the label specified by the IFTRUE parameter.

ERRLOG_RCP
checks the status of the ERRLOG_RCP option bit and, if the option bit is set
on, branches to the label specified by the IFTRUE parameter.

ERRLOG_BOTH
checks the status of the ERRLOG_BOTH option bit and, if the option bit is set
on, branches to the label specified by the IFTRUE parameter.

FARF_3
checks the status of the REFFROM_FARF3 option bit and, if the option bit is
set on, branches to the label specified by the IFTRUE parameter.

FARF_4
checks the status of the REFFROM_FARF4 option bit and, if the option bit is
set on, branches to the label specified by the IFTRUE parameter.

FARF_5
checks the status of the REFFROM_FARF5 option bit and, if the option bit is
set on, branches to the label specified by the IFTRUE parameter.

FARF_6
checks the status of the REFFROM_FARF6 option bit and, if the option bit is
set on, branches to the label specified by the IFTRUE parameter.

FSC_YES
checks the status of the FSC_YES option bit and, if the option bit is set on,
branches to the label specified by the IFTRUE parameter.

FSC_NO
checks the status of the FSC_NO option bit and, if the option bit is set on,
branches to the label specified by the IFTRUE parameter.

RCP_NONE
checks the status of the RCP_NONE option bit and, if the option bit is set on,
branches to the label specified by the IFTRUE parameter.

RCP_ALL
checks the status of the RCP_ALL option bit and, if the option bit is set on,
branches to the label specified by the IFTRUE parameter.

REFFROM_YES
checks the status of the REFFROM_DEACTIVATION option bit and, if the
option bit is set on, branches to the label specified by the IFTRUE parameter.

REFFROM_NO
checks the status of the REFFROM_DEACTIVATION option bit and, if the
option bit is set off, branches to the label specified by the IFTRUE parameter.

System Macros 111

BRPRO

STATUSCON_YES
checks the status of the STATUSCON option bit and, if the option bit is set on,
branches to the label specified by the IFTRUE parameter.

STATUSCON_NO
checks the status of the STATUSCON option bit and, if the option bit is set off,
branches to the label specified by the IFTRUE parameter.

ADRNUM=register
returns the ADRNUM value in the specified register.

BCHMAX=register
returns the BCHMAX value in the specified register.

DIRTIM=register
returns the directory capture timeout (DIRTIM) value in the specified register.

EALOSTMAX=register
returns the EALOSTMAX value in the specified register.

FIXERMAX=register
returns the FIXERMAX value in the specified register.

REFFMMAX=register
returns the REFFMMAX value in the specified register.

Entry Requirements

* Register 9 (R9) must contain the address of the ECB being processed.
* The recoup keypoint (BKORP) has a general register pointing to it so this macro
can use the labels in the keypoint.

e Scratch registers R14 and R15 must be available for use. Their contents are
preserved across this macro call.

Return Conditions

« Control is returned to the next sequential instruction (NSI).
* The contents of all registers are preserved across this macro call.

Programming Considerations

Examples

» The BRPRO macro can be used only by recoup segments.
* Use the BRPRO macro only on the main I-stream.

BRPRO DIRTIM=R15
BRPRO CURID=R6,IFTRUE=CURLOC,BASE=R3
BRPRO ADR_YES,IFTRUE=GENLOC

112 TPF V4R1 System Macros

BRSTR

BRSTR—-Recoup Register and Entry Control Block (ECB) Work Area
Restore

Use this system macro to restore registers and sections of the ECB from the recoup
stack save area.

Format
CL=D———— —,EBW=Y— LREG=Y
»>—label—BRSTR [|_ E] ><
CL=datalevel— s EBW=N— ,REG=N
, EBW=0—
, EBW=4—
, EBW=F—
label
specifies a symbolic name that can be assigned to the macro statement.
CL

specifies that the recoup stack save area is on an ECB data level, where
datalevel is a hexadecimal value in the range 0-F.

EBW
specifies one of the following:

Y specifies that EBWO000 to EBW096 is restored from the recoup stack save
area.

N specifies that EBW00O to EBW103 is not restored.

specifies that EBWO000 to EBWO039 is restored from the recoup stack save
area.

4 specifies that EBW040 to EBWO095 is restored from the recoup stack save
area.

F specifies that EBW00O to EBW103 is restored from the recoup stack save
area.

REG
specifies one of the following:

Y specifies that general registers RO—R7 are restored from the recoup stack
save area.

N specifies that no general registers are restored.

Entry Requirements
* R9 must contain the address of the ECB being processed.

» A valid recoup stack block must be on the data level specified by the CL
parameter.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

System Macros 113

BRSTR

* The contents of R14 and R15 are unknown. The contents of registers RO—R7 are
restored from the recoup stack save area unless you specify REG=N in which
case the current contents of RO—R7 remain unchanged across the macro call.

Programming Considerations
* This macro is used in conjunction with BSAVE.

Examples
BRSTR

BRSTR CL=5,EBW=0,REG=N

114 TPF V4R1 System Macros

BSAVE

BSAVE—-Recoup Register and Work Area Save

Use this system macro to save registers and sections of the entry control block
(ECB) work area on the recoup stack save area.

Format
CL=D———— L EBW=Y— ,REG=Y
»>—label—BSAVE [|_ [] >
ClL=datalevel— , EBW=N—| ,REG=N
,EBW=0—
,EBW=4—
,EBW=F—
label
specifies a symbolic name that can be assigned to the macro statement.
CL

specifies that the recoup stack save area is on an ECB data level where
datalevel is a hexadecimal value in the range 0-F.

EBW
specifies one of the following:

Y specifies that EBWO000 to EBW096 is saved in the recoup stack save area.
This is the default.

N specifies that EBW000 to EBW103 is not saved.

0 specifies that EBWO000 to EBWO039 is saved in the recoup stack save area.

4 specifies that EBW040 to EBWO095 is saved in the recoup stack save area.

F specifies that EBWO000 to EBW103 is saved in the recoup stack save area.
REG

specifies one of the following:

Y specifies that general registers RO—R7 are saved in the recoup stack save
area.

N specifies that no general registers are saved.

Entry Requirements
* R9 must contain the address of the ECB being processed.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

* R14 points to the start recoup stack block (BCOSA). R15 points to the start of the
heap save area (BC2HDR). The contents of all other registers are preserved
across this macro call.

Programming Considerations
* This macro is used in conjunction with BRSTR.

System Macros 115

BSAVE

Examples
BSAVE

BSAVE CL=5,EBW=0,REG=N

116 TPF V4R1 System Macros

BSCQC

BSCQC—-Release Core Blocks That Are Not Attached to an ECB

Use this system macro to release core blocks that are not attached to an entry
control block (ECB). This macro is called from an E-type program that has the
system virtual address (SVA) of the first or only core block being released.

Required Authorizations

Key0 Restricted System Common Storage
X

Format

,HPRCHAIN=NO
BSCQC—BLOCK=Rx |_ _l >

|:Zabel:| |—,HPRCHAIN=YESJ

label
A symbolic name can be assigned to the macro statement.

BLOCK=Rx
A register, RO—R7, containing the SVA of the first or only core block being
released.

HPRCHAIN=YES|NO
Specifies whether a chain of core blocks used for high-performance routing
(HPR) support is being released.

Entry Requirements
* This macro must be called from the ECB virtual memory (EVM).

* The register specified for the BLOCK parameter must contain the SVA of the first
or only core block being released.

* If HPRCHAIN=YES is coded, the register specified for the BLOCK parameter
must point to the first of the chained core blocks being released. These core
blocks must be chained together using the NLP1FWD field contained in the core
block. The end of the core block chain is indicated by NLP1FWD=0.

Return Conditions

» Control is returned to the next sequential instruction.
* Registers remain unchanged.

* The core block pointed to by the register specified for the BLOCK parameter will
be released.

* |f HPRCHAIN=YES is coded, all of the chained core blocks will be released.

Programming Considerations
None.

Examples
None.

System Macros 117

BSTAK
BSTAK—-Recoup Stack

Use this system macro to control the recoup stack area.

Format

,SIZE=L4 ,REG=R14
|_ |_ —l , TYPE=CURR:

|—CL=D—
»»—[abe | —BSTAK <
|—CL=datulevel— I—,SIZE=blktype— I—,REG=reg—| t,TYPEﬂNITi
, TYPE=POP.
,TYPE=PUSH—

label
specifies a symbolic name that can be assigned to the macro statement.

CL
specifies that the recoup stack save area is on an entry control block (ECB)
data level, where datalevel is a hexadecimal value in the range 0—F.

SIZE

specifies the size of the core block to use for a stack block, where blktype is
one of the following valid sizes:

L1 is for 381-byte
L2 is for 1055-byte
L4 is for 4095-byte

REG
specifies the register to which you want a pointer to the top of the recoup stack

area block returned, where reg is one of the following valid registers: R1-R7 or
R14.

TYPE
specifies one of the following:

CURR
verifies that a recoup stack area block exists on the ECB data level
specified by the CL parameter and returns a pointer to the top of the recoup
stack area block in the register specified by the REG parameter.

INIT
gets and initializes a recoup stack area block on the ECB data level
specified by the CL parameter.

POP
pops (removes) the stack or moves data on the stack up one entry. This is
used when the contents of the current stack slot are no longer needed. The
first previous stack slot entry is set as the current entry.

PUSH
pushes the stack or moves data on the stack down one entry. This is used
to save the contents of the current stack slot and make room for additional
data.

Entry Requirements
* R9 must contain the address of the ECB being processed.

118 TPF V4R1 System Macros

BSTAK
* For PUSH, POP, and CURR, a valid recoup stack block must reside on the
selected data level.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

* The register specified by the REG parameter contains a pointer to the start of the
recoup stack block. The contents of all other registers are preserved across this
macro call.

Programming Considerations
* This macro is used with BRSTR and BSAVE.
* This macro can only be used in the recoup package.

Examples
BSTAK TYPE=INIT

BSTAK CL=D,TYPE=PUSH
BSTAK CL=D,TYPE=POP

BSTAK TYPE=CURR,REG=R7

System Macros 119

BSYNC
BSYNC-Recopy SYNCC Facility

This system macro provides a way to synchronize important recoup control
information across processors that are in a loosely coupled TPF complex.

Format

»>—Ilabel—BSYNC— LOCK: <
EUNLK:‘
SYNC

label
is a symbolic name that can be assigned to the macro statement.

LOCK
requests exclusive use of the recoup control record or data. The core copy of
the data will be refreshed.

UNLK
releases the exclusive use of the recoup control record. The control record must
have been locked before the UNLK request.

SYNC
requests synchronization of recoup data in active loosely coupled processors.
The control record is filed and unheld. An interprocessor communications (IPC)
message is sent to the active processors to refresh their copies of the data. The
control record must have been locked before the SYNC request.

Entry Requirements

* Register 9 (R9) must contain the address of the entry control block (ECB) being
processed.

* The entry must not be holding the recoup data at the time of a LOCK request.

* The entry must be holding the recoup data at the time of a UNLK or SYNC
request.

* There should not be any outstanding I/O requests for this ECB.
* The LOCK condition should not be carried across an ENTxC macro.

Return Conditions

e The contents of R14 and R15 are unknown. The contents of RO—R7 are
preserved across this macro call.

* LOCK option:

— Control is returned to the next sequential instruction (NSI).

— The program status word (PSW) protect key of the ECB equals X'C'.
* SYNC option:

— The PSW protect key of the ECB equals X'1'.
* UNLK option:

— The PSW protect key of the ECB equals X'1'.

120 TPF V4R1 System Macros

BSYNC
Programming Considerations
None.

Examples

The following example shows recoup data being locked before processing user
code and synchronizing recoup data after the code has completed processing.
BSYNC LOCK

BEGIN PROCESSING CODE

END PROCESSING CODE

BYSNC SYNC

System Macros 121

CEBIC

CEBIC-Change MDBF Subsystem/Subsystem User ID

Format

Use this system macro to change the identifiers (IDs) in the ECB CE1SSU and
CE1DBI fields, which allows access to the databases of other subsystems (SSs)
and subsystem users (SSUs). You can use this macro and the UATBC macro
together to obtain information about any SS or SSU in the TPF system. See the
examples that follow. Also see ITPE General Macrod for more information about the
UATBC macro.

The CEBIC macro has the following functions:

* Changes the current database ID (DBI) and the current subsystem user ID (SSU
ID).

» Saves the DBI and SSU ID before modification so it can return to the originating
SS or SSU.

» Restores the previously saved DBI and SSU ID for return to the originating SS
and SSU.

In a multiple database function (MDBF) environment, the SSU and the parent SS to
which an entry control block (ECB) belongs are specified by the IDs in the ECB
CE1SSU and CELDBI fields, respectively. A program can access only the database
of the SS or SSU to which its ECB belongs. That is, global and fixed file accesses
are based on the SSU ID specified in the CE1SSU field. Other main storage data
and random pool accesses are based on the SS ID specified in the CE1DBI field.

Required Authorizations

KeyO Restricted System Common Storage

X

(1) (2)
CEBIC——DBI “«
label —Essu:‘ |—, s:IJ l—,CPREG=Rx—| |—, ERR=Label—
L taper T

BSS

Notes:
1 id

2 saverestore

label
A symbolic name can be assigned to the macro statement.

id This is a required parameter.

This specifies whether the current subsystem data base ID or the current
subsystem user ID (or both) are to be changed.

DBl
Specifies that the current subsystem data base ID and the current
subsystem user ID are to be changed. For type E programs, register 14
contains the MDBF ID to which the DBI is to be changed. For C-type

122 TPF V4R1 System Macros

CEBIC

programs, the CPREG parameter contains the MDBF ID to which the DBI is
to be changed. The subsystem user ID is changed to the first or only SSU
ID in the new subsystem.

SSuU
Specifies that the current subsystem user ID is to be changed. If the new
SSU ID does not reside within the current subsystem data base ID
(CE1DBI) then the DBI is changed to the parent subsystem of the new
SSuU.

BSS
Specifies that the current subsystem data base ID is to be changed to the
BSS data base ID and the current subsystem user ID is to be changed to
the first or only SSU in the basic subsystem (BSS). For E-type programs,
any other parameters coded on the macro call will cause assembly errors.
For C-type programs, the ERR parameter is required and the CPREG
parameter is optional. If coded, the CPREG parameter is ignored. Any other
parameters coded on the C-type macro call will cause assembly errors.

saverestore
This optional parameter indicates whether the current DBI and SSU ID are to
be saved or restored during this macro call.

S This specifies that the current DBI and SSU ID are to be saved prior to
modification. This option is independent of the request type coded for the
id. No mechanism is provided for saving only the DBI or only the SSU ID.

R Specifies that the current DBI and/or SSU ID are to be restored with the
DBI and/or SSU ID last saved by a CEBIC macro call, respectively. If ‘id’ is
DBI, both the DBI and SSU ID are restored. If ‘id’ is SSU, only the SSU ID
is restored.

CPREG=Rx
This parameter is required on C-type macro calls unless id is BSS or
saverestore is R. (In these two cases this parameter is optional, and it is
ignored if coded.) It specifies the register containing the SS or SSU ID to which
the current DBI/SSU ID is to be changed. The CPREG parameter is not valid
on E-type macro calls and use of this parameter by an E-type program will
result in an assembly error.

ERR=label
This parameter is required on all C-type macro calls and is not valid on all
E-type macro calls. It specifies the label to be used for error exit. Use of this
parameter by an E-type program will result in an assembly error.

Entry Requirements
e E-Type Programs:
R9 must contain the address of the ECB being processed.

R14 must contain a 2 byte MDBF ID, right-justified (1-byte complement and
1-byte ordinal number) on all calls except when id is BSS or saverestore is R.
The high-order 2 bytes of the register are irrelevant.

* C-Type Programs:

The issuing program must be in supervisor state.
R9 must contain an ECB address.

System Macros 123

CEBIC

Return Conditions

The register specified in CPREG must contain a 2-byte MDBF ID,
right-justified (1-byte complement and 1-byte ordinal number) on all calls
except when id is BSS or saverestore is R. The high-order 2 bytes of the
specified register are irrelevant.

¢ Normal Return Condition:

e Err

124 TPF V4R1 System Macros

Control is returned to the next sequential instruction following the macro call.
RO through R9 are unchanged.

The contents of general registers 14 and 15 are unknown.

The ECB fields CE1DBI and CE1SSU are changed to the requested

subsystem and subsystem user as defined in lEarmat” on page 122,

If the original SSU ID is changed, the global base addresses CE1GLA and
CE1GLY in the ECB are modified to reflect the new SSU.

If the DBI is changed, its active ECB counter (CA2NEB) is decreased by 1
and the active ECB counter of the new SS is increased by 1.

or Return:

If an error is encountered while servicing a CEBIC macro issued from a
C-type segment, a branch is taken to the label specified on the ERR
parameter.

No fields are modified.

If an error is encountered while servicing a CEBIC macro issued from an
E-type segment, a system error is issued and the ECB is exited.

No fields are modified.
The following lists error conditions that produce system errors:
- MDBF ID is not valid

CE1DBI or CE1SSU upon input to the CEBIC service routine failed the
integrity check (that is, the sum of the ordinal number and complement byte
was not equal to X'FF").

The DBI or SSU ID supplied in R14 or the specified CPREG failed the
integrity check.
The DBI or SSU ID to be restored failed the integrity check.

- CEBIC CP register save area in use

The CEBIC macro was issued from a C-type segment when the CEBIC CP
register save area was in use. This condition should not occur and causes
a catastrophic error. Only one CEBIC macro issued from a C-type segment
can be serviced at a time.

- MDBF ID out of range

CE1DBI or CE1SSU upon input to the CEBIC service routine references a
SS/SSU, which was not included in the last IPL.

The DBI or SSU ID provided in R14 or the specified CPREG references a
DBI or SSU ID that was not included in the last IPL.

The DBI or SSU ID to be restored references a DBI or SSU ID that was not
included in the last IPL.

- Subsystem inactive

CE1DBI upon input to the CEBIC service routine references a subsystem
that is indicated as inactive in CTKM.

The DBI provided in R14 or the specified CPREG references a subsystem
that is indicated as inactive in CTKM.

CEBIC
The parent subsystem of the SSU provided in R14 or the specified CPREG
references a subsystem that is indicated as inactive in CTKM.

The DBI to be restored references a subsystem that is indicated as inactive
in CTKM.

- Subsystem User ID does not reside within Subsystem
The current SSU ID does not reside within the current DBI.

On a DBI,R request, the SSU ID to be restored does not reside within the
DBI to be restored.

On a SSU,R request, the SSU ID to be restored does not reside within the
current DBI (CE1DBI).

Programming Considerations

Examples

This macro can be run on any I-stream.

This macro can be called from either E-type or C-type programs.
— The macro expands to an SVC for E-type programs.

— The macro expands to a BASSM for C-type programs.

This macro does not alter the program base identifier (CE1PBI).

The CEBIC macro expansion is independent of the operating environment.
However, the macro service routine provided for a system generated with a
MDBF environment is different from that generated for a system without such an
environment.

Data base destruction can occur if care is not exercised in the use of this macro.
If, for example, a record was found with an SSU ID and later filed after the SSU
ID was changed, data base destruction may occur.

The SAVE option is independent of the request type. That is, on both DBI and
SSU requests, the SAVE option causes both the current DBI and the current
SSU to be saved before modification.

There is no mechanism for restoring only the DBI. On a DBI request, the restore
option restores both the DBI and SSU. On an SSU request, the restore option
restores only the SSU ID.

Valid registers for the CPREG parameter are RO through R8.

To avoid the condition that raises a system error the CEBIC macro should not be
issued from a CP program that is interruptible.

The following example from an E-type segment is based on a MDBF system
configured as follows.

SS Name SS MDBF ID SSU Name SSU Mass ID
BSS FFOO SSU1 FFOO
SSuU2 FEO1
SS1 FEO1 SSU3 FDO02
SSuU4 FCO03
SSU5 FBO4
SS2 FDO02 SSuU6 FAO5

Assume that upon entry to the code sequence CE1DBI FF0OO0 (BSS) and CE1SSU
FEO1 (SSU2), and that these fields must be unchanged upon exit. The example
illustrates one method of how the CEBIC macro can be used with the UATBC
macro to obtain the names of all subsystem users in the next active subsystem.

System Macros 125

CEBIC

MSouT
LEBIC

REG=R2
DBI,R2,CHECK=NO

06-SSUT ADDRESSABILITY
GET CURRENT SSORDINAL NUMBER
(See Note 1)

NEXT LA R2,1(,R2) BUMP TO NEXT SS
(See Note 2)
UATBC IDLOC=(R,SSI,R2), CHECK VALIDITY OF NEXT SS
EXCD=SSTOOBIG, ..T00 BIG, WE ARE FINISHED
INVLID=SSNEG, ..SS IS INVALID
NOTAVL=SSINACT, ..SS IS INACTIVE
COUNT=R3 ..NUMBER OF SSUs IN SS
(See Note 3)
LH R14,MUGDPI SS ID OF NEXT SS
(See Note 4)
CEBIC DBI,S SAVE CURRENT SS &
..BUMP ENTRY TO NEXT SS
(See Note 5)
LOOP UATBC IDLOC=(E,SSU,R2), GET THE SSUT ADDRESS FOR ID
NOTAVL=SSUDORM ..IN CE1SSU
(See Note 6)
WTOPC TEXT='SSU NAME IS....',
SUB=(CHARA ,MUONAM)
SSUDORM DS OH
LA R2,MUOLEN(,R2) BUMP TO NEXT SSUT SLOT
(See Note 7)
BCT R3,L0OP LOOP THRU ALL SSUs FOR THIS
SS (See Note 8)
CEBIC DBI,R RESTORE DBI & SSU ID TO
ORIGINAL (See Note 9)
SSTOOBIG DS OH THIS SS IS LAST, NEXT IS
TOO BIG
SSNEG DS OH INPUT SS IS INVALID
EXITC
SSINACT DS OH SS IS INACTIVE;
B NEXT ...TRY NEXT ONE
Notes:
1. The following shows the input and the output for Note 1.
Input: CE1DBI FFOO0
Output: R2 00 (high-order 3 bytes irrelevant)
2. The following shows the input and the output for Note 2.
Input: R2 00 (first time through loop)
Output: R2 01
3. The following shows the input and the output for Note 3.
Input: R2 01 R3 irrelevant
Output: R3 3 (humber of SSus in SS1)
4. The following shows the input and the output for Note 4.
Output: R14 FEO1
5. The following shows the input and the output for Note 5.
Input:
CE1SDBI irrelevant
CE1DBI FFOO
CE1SSU FEO1
R14 FEO1
Output:

126 TPF V4R1 System Macros

CEBIC

CE1SDBI FF00O FEO1
CE1DBI FEO1
CE1SSU FDO02

The following shows the input and the output for Note 6.

Input:
R2 irrelevant
CE1SSU FDO02
Output: R2 SSUT slot address of SSU3
The following shows the input and the output for Note 7.
Input: First time through loop R2 SSU slot address of SSU3
Output: First time through loop R2 SSUT slot address of SSU4
The following shows the input for Note 8.
Input: First time through loop R3 3
The following shows the input and the output for Note 9.
Input:
CE1DBI FEO1
CE1SSU FB0O4
CE1SDBI FF00 FEO1
Output:

CE1DBI FFO00
CE1SSU FEO1

System Macros 127

CFCONC

CFCONC-Connect to a Coupling Facility List or Cache Structure

Use this system macro to allocate and connect to a coupling facility (CF) list or
cache structure on a CF, or to connect to a CF list or cache structure that is
allocated already. A CF list or cache structure is a named piece of storage on a CF.

The first user to connect to a CF list or cache structure allocates the structure on a
CF and defines the structure attributes, including the type of CF structure (list or
cache). Other users can connect to the CF structure by name, but cannot change
the structure attributes of the CF structure as long as it remains allocated. All
connectors, whether the first or subsequent, are informed of the structure attributes
through the CFCONC answer area, which is mapped by the ICFCAA DSECT. Users
are responsible for checking the structure attributes to verify that they are
acceptable.

See [[PE Database Referencd for more information about connecting to a CF list or
cache structure.

128 TPF V4R1 System Macros

CFCONC
Format

,CONDATA=ALL_ZEROQS
r ER0S

»»—CFCONC—CFNAME=c fname—, STRNAME=s trname—,STRS1ZE=strsize |_
, CONDATA=condataJ

|—, CONNAME=GENERATED_NAME—

»—,STRDISP=——KEEP
—[DELETE—l L,CONNAME=conname— l—,CFLEVEL=cfZeveZ—|

>—,TYPE=—|:CACHE,VECTORLEN=vectorlen ,ANSAREA=ansarea—,ANSLEN=anslen—>»=
LIST—I CF List Structure Parameters |:|

CF List Structure Parameters:

| >

i:,ELEMCHAR=eZemchar— I—,MAXELEMNUM=maxelemnum—|
,ELEMINCRNUM=elemincrnum—

,ADJUNCT=NO—|

».

l—,ELEMENTRATIO=eZementratio—| l—,ENTRYRATIO=entryratio—| I—,ADJUNCT=YES—|

r, LISTCNTLTYPE=ENTRY—| l—, REFOPTION=NOKEYNAME—

l—,LISTCNTLTYPE=ELEMENT—| ,REFOPTION=KEY———
, REFOPTION=NAME

\4

l_ | ,LISTHEADERS=[istheaders——»
,VECTORLEN=vectorlen

I—, LISTTRANEXIT=! isttranexitJ

l—, LOCKENTRI ES=lockentries—|

Parameters Common to Both Structure Types

CFNAME=cfname
Specifies the CF name, which is needed to allocate the CF list or cache
structure. The CF name must be a 5- to 8-character alphanumeric name, and
the first character must be an alphabetic character.

To code, specify the name or address of the 8-character field that contains the
CF name in which the CF list or cache structure is to be allocated.

STRNAME=strname
Specifies the name of the CF list or cache structure to which you want to
connect. The name you specify must meet the following requirements:

* The name must begin with an uppercase alphabetic character. TPF-defined
structure names begin with | or TPF.

System Macros 129

CFCONC

* The name must be 16 characters long and padded on the right with blanks if
necessary.

* The name can contain numeric characters, uppercase alphabetic characters,
and underscores.

To code, specify the name or address of the 16-character input field that
contains the CF list or cache structure name.

STRSIZE=strsize
Specifies the size of the CF list or cache structure in 4-KB blocks. This is a
required parameter.

Note: If there are limited CF resources available, the CF list or cache structure
can be allocated with less space than you requested. The actual size of
the CF list or cache structure allocated is returned in the
ICFCAASTRSIZE field of the CFCONC answer area.

To code, specify the name or address of the fullword input field that contains
the number of 4-KB blocks that make up the CF list or cache structure.

CONDATA
Specifies the connect data to pass to your exit routines, where:

ALL_ZEROS
Sets the field to zeros.

condata
The 8 bytes of connection data.

The connection data is passed to all of the connector exits and is for your use
only; the TPF system does not use this information. A possible use for the
connection data is as a pointer to a control block that represents the connector.

To code, specify the name or address of the 8-character input field that contains
the connect data.

STRDISP
Specifies the disposition or persistence attribute of the CF list or cache structure
when all connections are released.

The structure disposition determines whether the CF list or cache structure
remains allocated or not when there are no connections to the CF list or cache
structure.

Specify one of the following:

KEEP
Indicates that when there are no connections to the CF list or cache
structure, it remains allocated. For example, if the data structure must be
kept permanently on a CF, specify a structure disposition of KEEP. A CF list
or cache structure that remains allocated when there are no connections is
called a persistent structure.

DELETE
Indicates that the CF list or cache structure becomes unallocated when
there are no connections to the CF list or cache structure.

CONNAME
Specifies a connection name that identifies your connection to the CF list or
cache structure where:

130 TPF V4R1 System Macros

CFCONC

GENERATED_NAME
Indicates a unique connection name to be generated by the TPF system.

conname
Indicates a unique name for each connection to a CF list or cache structure
and meets the following requirements:

* The name must begin with an uppercase alphabetic character.

* The name must be 16 characters long and padded on the right with
blanks if necessary.

* The name can contain numeric characters, uppercase alphabetic
characters, and underscores.

To code, specify the name or address of a 16-character field that contains the
unigue connection name to identify your connection to the CF list or cache
structure.

CFLEVEL=cflevel
Specifies the CF level of the CF. The connector requires the CF list or cache
structure to be allocated in at least this specified CF level. If you specified a CF
level that is higher than that supported by the TPF system on which the
requester runs, the connection is not successful.

The ICFCAATPFMAXCFLEYV field of the CFCONC answer area contains the

maximum CF level supported by the TPF system. The ICFCAACFLEVEL field
contains the actual CF level of the CF in which the CF list or cache structure

was allocated.

To change to a different CF level, you must disconnect from the CF list or
cache structure and then connect to it again, specifying a different CF level.
See ICEDISC-Discannect from a Coupling Facility | ist or Cache Structure” on
hage 143 for more information about disconnecting from a CF list or cache
structure.

To code, specify the name or address of the fullword input field that contains
the CF level required.

TYPE
Identifies the type of CF structure in the CF to which you want to connect.

Specify one of the following:

LIST
Indicates that the structure is a CF list structure.

CACHE
Indicates that the structure is a CF cache structure.

ANSAREA=ansarea
Specifies the address of the CFCONC answer area. When the CFCONC macro
has been completed, it returns information to the caller in the CFCONC answer
area. The requester can use the ICFCAA DSECT to map the CFCONC answer
area. The CFCONC answer area must begin on a doubleword boundary and
storage for this parameter must be in the same 4 K page.

To code, specify the name or address of the CFCONC answer area.

ANSLEN=anslen
Specifies the length of the CFCONC answer area. The length should be long
enough to accommodate the ICFCAA DSECT mapping of the CFCONC answer
area.

System Macros 131

CFCONC

132

To code, specify the name or address of a fullword input field that contains the
length of the CFCONC answer area.

Parameter for CF Cache Structures (TYPE=CACHE)
VECTORLEN=vectorlen

Specifies the number of cache buffers in the local storage of the requester that
require concurrent registration. The requester uses the vector length to map
each local cache buffer to a named data entry in the CF cache structure. The
value you specify must be a multiple of 32 or the TPF system rounds up the
value to a multiple of 32.

To code, specify the name or address of the fullword field that contains the
number of cache buffers in the local storage of the requester.

Parameters for CF List Structures (TYPE=LIST)
ELEMCHAR=elemchar

Specifies the value of the element characteristic, which is used to determine the
CF list structure element size. This size is calculated with the formula 256 x
(2**ELEMCHAR), where ELEMCHAR is used as the power of 2. For example, if
the value referenced by the ELEMCHAR parameter is 0, the size of each CF
list structure element is 256 bytes.

Valid values for the ELEMCHAR parameter range from 0 to a maximum
determined by the CF model limitation on the CF list structure element size.

Note: The CF list structure element size determines the size of the data entry,
which is the data written to and read from the CF list structure. A data
entry can be up to 16 times the data element size as indicated by the
element characteristic.

Specify either the ELEMCHAR or ELEMINCRNUM parameter to define the CF
list structure element size. If neither parameter is specified, the CF list structure
is allocated as if the value of the ELEMCHAR parameter was specified as 0.

To code, specify the name or address of the 1-byte field that contains the value
of the element characteristic.

ELEMINCRNUM=elemincrnum

Specifies the element increment number that is used to determine the CF list
structure element size. This size is calculated with the formula 256 x
ELEMINCRNUM. For example, if the value referenced by the ELEMCHAR
parameter is 1, the size of each CF list structure element is 256 bytes.

The valid values for ELEMINCRNUM range from 1 to a maximum determined
by the CF model limitation on the size of the CF list structure element. The
value you specify must be a power of 2.

Note: The CF list structure element size determines the size of the data entry,
which is the data written to and read from the CF list structure. A data
entry can be up to 16 times the data element size as indicated by the
element increment number.

Specify either the ELEMCHAR or the ELEMINCRNUM parameter to define the
CF list structure element size. If neither parameter is specified, the CF list
structure is allocated as if the value of the ELEMCHAR parameter was specified
as 0.

TPF V4R1 System Macros

CFCONC

To code, specify the name or address of the 1-byte field that contains the value
of the element increment number.

MAXELEMNUM=maxelemnum
Specifies a value that determines the maximum number of data elements for
each list entry in the CF list structure. The value you specify can be from 1 to
16 bytes. If you do not specify a value, a value of 16 is provided as the default.
The maximum list entry size, in bytes, equals the value specified for the
MAXELEMNUM parameter multiplied by the CF list structure element size
obtained from the value you specified for either the ELEMCHAR or
ELEMINCRNUM parameter. For example, if the value referenced by the
ELEMCHAR parameter is 0 and the value referenced by the MAXELEMNUM
parameter is 1, the maximum list entry size is 256 bytes. If the value referenced
by the ELEMCHAR parameter is 4 and the value referenced by the
MAXELEMNUM parameter is 16, the maximum list entry size is 65 536.

To ensure that the CF can assign all possible data elements allocated in a CF
list structure to a list entry, the value specified for this parameter must be
greater than or equal to the value specified for the ELEMENTRATIO parameter
divided by the value specified for the ENTRYRATIO parameter. The
MAXELEMNUM parameter is ignored if the value referenced by the
ELEMENTRATIO parameter is 0.

If this parameter is not specified, the CF list structure is allocated as if the value
of the MAXELEMNUM parameter was specified as 16.

To code, specify the name or address of the 2-byte field that contains a value
that determines the maximum number of data elements for each list entry in the
CF list structure.

ELEMENTRATIO=elementratio
Specifies a value to express the data element portion of the entry-to-element
ratio of the CF list structure. If a value of 0 is specified for the ELEMENTRATIO
parameter, the CF list structure is allocated without data elements. If this
parameter is not specified, the CF list structure is allocated as if the value of the
ELEMENTRATIO parameter was specified as 1.

To code, specify the name or address of the 2-byte field that contains a value to
express the data element portion of the entry-to-element ratio of the CF list
structure.

ENTRYRATIO=entryratio
Specifies a value to express the list entry portion of the entry-to-element ratio of
the CF list structure.

To code, specify the name or address of the 2-byte field that contains a value to
express the list entry portion of the entry-to-element ratio.

ADJUNCT
Specifies whether adjunct data areas are associated with each list entry in the
CF list structure. Each adjunct data area can contain 64 bytes of user-defined
data such as information about the status of the data entry or time stamp. You
can specify one of the following:

NO
Indicates that there are no adjunct data areas specified for the CF list
structure.

YES
Indicates that each list element in the CF list structure has an associated
adjunct data area of 64 bytes.

System Macros 133

CFCONC

LISTCNTLTYPE

Specifies whether the CF maintains and tracks list limits based on the number
of list entries or the number of data elements for each list.

Specify one of the following:

ENTRY
Specifies that the list limits are identified and tracked as limits on the
number of entries that may reside on the list. For example, if your main
concern is to limit the number of entries that might build up on a list, limit
the number of list entries for each list.

ELEMENT
Specifies that the list limits are identified and tracked as limits on the total
number of data elements that may be associated with entries on the list.
For example, if your main concern is to prevent the entries on a given list
from consuming too much of the storage in a CF list structure, limit the
number of data elements on a list.

REFOPTION

Specifies how to reference list entries in the CF list structure. Specify one of the
following:

NOKEYNAME
Indicates that the list entry is located by the list entry identifier (LEID). The
LEID is assigned for each list entry that is in use in the CF list structure.
Keys or names are not used to reference list entries.

KEY
Indicates that the list entry is located by a key value. When creating the list
entry, you can assign a key value to one or more list entries. Keyed entries
allow users to maintain list entries in a keyed order. For example, if the list
entries represent units of work ordered by priority, you could choose keyed
entries.

NAME
Indicates that the list entry is located by a uniqgue name. When creating the
list entry, you can assign a unigue name to each list entry. Named entries
allow users to reference list entries by a user-defined name. If the list
entries represent customer records in a particular order, you could choose
named entries.

VECTORLEN=vectorlen

Specifies the number of list notification vector entries in the vector that this
connection will be monitoring for list transitions. A list transition occurs when an
empty list in the CF list structure becomes nonempty (changes from an empty
state to a nonempty state). This value is rounded up to a multiple of 32.

To code, specify the name or address of the fullword field that contains the
number of list notification vector entries in the vector.

LISTTRANEXIT=listtranexit

Identifies the address of the list transition exit routine for the requester. The list
transition exit routine notifies you when one or more lists that you are
monitoring changed from an empty state to a nonempty state.

To code, specify the name or address of the list transition exit for the requester.

LISTHEADERS=listheaders

Specifies the number of lists to be allocated in the CF list structure. This
number must be greater than 0.

134 TPF V4R1 System Macros

CFCONC

To code, specify the name or address of the fullword input field that contains
the number of list headers you want allocated.

LOCKENTRIES=lockentries
Specifies the number of lock entries for the CF list structure. If this value is not
a power of 2, it is rounded up to the nearest power of 2. If you do not specify a
value or the requester specifies 0, the CF does not support serialization for the
allocated CF list structure.

To code, specify the name or address of the fullword field that contains the
number of lock entries for the CF list structure.

Entry Requirements

* The CFCONC macro must be issued from an E-type program.

* The maximum number of connections to a CF list or cache structure on a CF is
set by the CF control code. This limit depends on the CF model. CFs at level 6
allow up to 32 connections to a CF list or cache structure.

* The combination of the MAXELEMNUM parameter and either the ELEMCHAR or
ELEMINCRNUM parameter must define a data entry size less than or equal to
64 K.

Return Conditions

When control returns to the caller of the CFCONC macro, the general-purpose
registers (GPRs) contain the following:

Register Contents
15 Return code in the high-order 2 bytes and a reason code in the
low-order 2 bytes.

All other registers remain unchanged. [[ahle 1 shows the hexadecimal return code,
reason code, and equate symbol associated with each reason code. The ICFEQ
DSECT provides equate symbols for the return and reason codes. The following are
the equate symbols associated with each hexadecimal return code:

Return Code Equate Symbol

0000 ICFRRCOK

0004 ICFRRCWARNING
0008 ICFRRCPARMERROR
00oC ICFRRCENVERROR
0010 ICFRRCCOMPONENT.

Table 1. Return and Reason Codes for the CFCONC Macro

Hexadecimal Return
Code

Hexadecimal Reason |Equate Symbol Meaning and Action
Code

0000

None Equate Symbol: None.

Meaning: The function is completed successfully and the TPF
system returns data to the CFCONC answer area. Use the ICFCAA
DSECT to map the CFCONC answer area.

Action: None. It is the responsibility of the user to verify that the
structure attributes, as recorded in the CFCONC answer area, are
acceptable.

System Macros 135

CFCONC

Table 1. Return and Reason Codes for the CFCONC Macro (continued)

Hexadecimal Return
Code

Hexadecimal Reason
Code

Equate Symbol Meaning and Action

0008

0801

Equate Symbol: ICFRRCBADPARMLIST

Meaning: A program error occurred because the address of the
CFCONC parameter list is zero.

Action: Verify that the address is not corrupted.

0008

0804

Equate Symbol: ICFRRCBADVERSIONNUM

Meaning: A program error occurred because the version number
found in the CFCONC parameter list is not valid.

Action: Do the following:

1. Verify that your program did not overlay the parameter list
storage.

2. Verify that your program was assembled with the correct macro
library for the release of the TPF system on which your program
is running.

0008

080D

Equate Symbol: ICFRRCAREATOOSMALL

Meaning: A program error occurred because the CFCONC answer
area is too small as indicated by the length of the CFCONC answer
area specified on the ANSLEN parameter.

Action: Do the following:

1. Ensure that the value specified on the ANSLEN parameter
correctly reflects the size of the CFCONC answer area. The size
of the CFCONC answer area is specified on the ANSLEN
parameter.

2. Ensure that the length of the CFCONC answer area is large
enough to contain the data returned.

0008

080E

Equate Symbol: ICFRRCBADAREA

Meaning: A program error occurred because a pointer to the
CFCONC answer area is null.

Action: Provide a valid pointer in your program.

0008

081B

Equate Symbol: ICFRRCNOLENTRIES

Meaning: A program error occurred because the number of lock
entries specified on the LOCKENTRIES parameter is 0.

Action: If the lock entries are in use, ensure that the value specified
on the LOCKENTRIES parameter is greater than 0.

0008

081C

Equate Symbol: ICFRRCNOLISTHDRS

Meaning: A program error occurred because the number of list
headers specified on the LISTHEADERS parameter is 0.

Action: Ensure that the value specified on the LISTHEADERS
parameter is greater than O.

136 TPF V4R1 System Macros

CFCONC

Table 1. Return and Reason Codes for the CFCONC Macro (continued)

Hexadecimal Return
Code

Hexadecimal Reason
Code

Equate Symbol Meaning and Action

0008

081F

Equate Symbol: ICFRRCCONNAME

Meaning: A program error occurred because the connection name
specified for the CONNAME parameter matches the connection
name of another active connection to the same CF structure. The
connection name you specify must be unique for each connection to
a CF structure.

Action: Ensure that the connection name specified for the
CONNAME parameter is unique and not already connected to the
CF structure or allow the TPF system to generate a unique
connection name.

0008

0820

Equate Symbol: ICFRRCSTRTYPE

Meaning: A program error occurred because the CF structure type
specified does not match the CF structure type allocated previously.
When you connect to an allocated CF structure, you cannot change
the structure type attribute. The request fails.

Action: Specify a value for the TYPE parameter that matches the
CF structure type specified for the original CF structure.

0008

0821

Equate Symbol: ICFRRCSTRSERIAL

Meaning: A program error occurred because the serialization
attribute for a CF list structure, which is specified on the
LOCKENTRIES parameter, does not match the previously allocated
CF list structure. When you connect to an allocated CF list structure,
you cannot change the structure attributes.

Action: Specify a value on the LOCKENTRIES parameter that
matches the value originally specified for the CF list structure.

0008

0823

Equate Symbol: ICFRRCCONNAMEERR

Meaning: A program error occurred because the connection name
specified on the CONNAME parameter is not valid.

Action: Verify that the connection nhame specified is valid.

0008

0824

Equate Symbol: ICFRRCCFNAMEERR

Meaning: A program error occurred because the CF name specified
on the CFNAME parameter is not valid.

Action: Verify that the CF name specified is valid.

0008

0825

Equate Symbol: ICFRRCSTRNAMEERR

Meaning: A program error occurred because the structure name
specified on the STRNAME parameter is not valid.

Action: Verify that the structure name specified is valid.

System Macros 137

CFCONC

Table 1. Return and Reason Codes for the CFCONC Macro (continued)

Hexadecimal Return
Code

Hexadecimal Reason
Code

Equate Symbol Meaning and Action

0008

085A

Equate Symbol: ICFRRCINVALIDCACHEPARM

Meaning: A parameter that is only valid for a CF list structure was
specified for a CF cache structure. See Parameter for CF Cache
Structures (TYPE=CACHE) for information about valid CF cache
parameters.

Action: Verify that the parameters specified are valid for a CF
cache structure.

0008

085F

Equate Symbol: ICFRRCINVALIDVECTORLEN

Meaning: A program error occurred because the value specified for
the VECTORLEN parameter for a CF cache structure was equal to
zero. The request fails.

Action: Specify a nonzero value for the VECTORLEN parameter for
a CF cache structure.

0008

0861

Equate Symbol: ICFRRCENTRYRATIO

Meaning: A program error occurred because the values specified on
the ELEMENTRATIO and ENTRYRATIO parameters are not valid.
When the value specified for the ELEMENTRATIO parameter is
greater than 0, the value specified for the ENTRYRATIO parameter
must also be greater than 0.

Action: Ensure you specify a value that is greater than O for the
ENTRYRATIO parameter.

0008

0862

Equate Symbol: ICFRRCMAXELEMNUM

Meaning: A program error occurred because the values specified for
the ELEMENTRATIO and MAXELEMNUM parameters are not valid.
When allocating a CF list structure, if the value specified for the
ELEMENTRATIO parameter is not 0, the value specified for the
MAXELEMNUM parameter must be greater than or equal to that
value, divided by the value specified for the ENTRYRATIO
parameter.

Action: Ensure you modify the value specified for the
MAXELEMNUM parameter so that it meets these requirements.

0008

0864

Equate Symbol: ICFRRCELEMINCRNUMELEMCHAR

Meaning: A program error occurred because both the ELEMCHAR
and ELEMINCRNUM parameters were specified. Only one of these
parameters can be specified.

Action: Issue the CFCONC macro again, specifying either the
ELEMCHAR or ELEMINCRNUM parameters.

0008

086B

Equate Symbol: ICFRRCELEMINCRNUM

Meaning: A program error occurred because the value specified on
the ELEMINCRNUM parameter is not valid.

Action: Ensure you specify a value greater than 0 and a power of
2.

138 TPF V4R1 System Macros

CFCONC

Table 1. Return and Reason Codes for the CFCONC Macro (continued)

Hexadecimal Return
Code

Hexadecimal Reason
Code

Equate Symbol Meaning and Action

0008

0871

Equate Symbol: ICFRRCMAXELEMNUMELEMCHAR

Meaning: A program error occurred because the values specified on
the MAXELEMNUM parameter and either the ELEMCHAR or
ELEMINCRNUM parameter will result in a list entry having a
maximum data entry size greater than the 64-KB limit.

Action: Ensure you change the values specified on the
MAXELEMNUM and ELEMCHAR parameters, as appropriate, to
meet the 64-KB limit.

0008

0881

Equate Symbol: ICFRRCBADCFLEVEL

Meaning: A program error occurred because you tried to use a
function that is not supported by the CF level specified on the
CFLEVEL parameter. The connector requires that the CF list
structure be allocated in at least this specified CF level. If you
specify a CF level that is higher than that supported by the TPF
system on which the requester runs, the connection is not
successful.

Action: Issue the CFCONC macro again specifying, a value for the
CFLEVEL parameter that supports the functions you want to use.

0008

08F2

Equate Symbol: ICFRRCRESTARTINCOMPLETE

Meaning: A program error occurred because the TPF system has
not yet completed CF restart.

Action: Ensure that you wait until CF restart is completed.

0008

08F3

Equate Symbol: ICFRRCCONAUTHERR

Meaning: An attempt was made to connect to a CF locking
structure, but another processor is connected to the structure with
the processor ID of this processor.

Action: Do the following:
1. Ensure that no other processor performs an initial program load
(IPL) with the processor ID of this processor.

2. Enter ZPSMS PR FORCE DEACT processor ID to ensure that
any processor that was previously IPLed with the processor ID
of this processor has been deactivated.

000C

0C02

Equate Symbol: ICFRRCNOMORECONNS

Meaning: This is an environmental error that occurred because the
CF structure already has the maximum number of allowed
connections.

Action: Try your request again at a later time.

00oC

0CO03

Equate Symbol: ICFRRCNOMORESTRUCTS

Meaning: This is an environmental error that occurred because the
CF cannot allocate a spare CF structure identifier (ID).

Action: Try your request again at a later time.

System Macros 139

CFCONC

Table 1. Return and Reason Codes for the CFCONC Macro (continued)

Hexadecimal Return
Code

Hexadecimal Reason
Code

Equate Symbol Meaning and Action

0ooC

0CO06

Equate Symbol: ICFRRCNOCONN

Meaning: This is an environmental error that occurred because the
TPF system has not established a connection to the CF that
contains the specified CF list structure. Issuing CF commands such
as VARY PATH OFFLINE or CONFIG CHP OFFLINE and hardware
errors such as CF failures or path failures, may prevent this
connection from being established.

Action: Determine why the connectivity was not established and try
your request again.

0ooC

0C11

Equate Symbol: ICFRRCDEFINE

Meaning: This is an environmental error that occurred because the
local list notification vector could not be defined.

Action: Try your request again at a later time.

000C

0C24

Equate Symbol: ICFRRCINVSTRSIZE

Meaning: This is an environmental error that occurred because the
size specified for the CF structure was not valid.

Action: Do the following:
1. Specify a valid value for the size of the CF structure.

2. Try your request again, specifying a valid CF structure size for
the STRSIZE parameter.

0ooC

0C25

Equate Symbol: ICFRRCSTRFAILURE

Meaning: This is an environmental error that occurred because of a
CF structure failure.

Action: See your system programmer for more information.

000C

0C26

Equate Symbol: ICFRRCREALLOCERROR

Meaning: This is an environmental error that occurred because a
second allocation to change the CF structure name to the requested
name was not successful.

Action: See your system programmer for more information.

0ooC

0C53

Equate Symbol: ICFRRCCFLEVEL

Meaning: The CF level you specified is greater than the current CF
level supported.

Action: See your system administrator for more information.

000C

OCFO

Equate Symbol: ICFRRCAUTHLOCKERROR

Meaning: The connect request was rejected because the CF lock
was not obtained because of an error that occurred. This error
occurs when the CF fails to respond to CF commands.

Action: None.

140 TPF V4R1 System Macros

CFCONC

Table 1. Return and Reason Codes for the CFCONC Macro (continued)

Hexadecimal Return |Hexadecimal Reason |Equate Symbol Meaning and Action

Code Code

0oocC 0CF2 Equate Symbol: ICFRRCSYNCERROR
Meaning: Your request to connect to a CF list structure on the CF
was not successful because the time stamp in the structure user
controls did not match the time stamp found in the coupling facility
structure block (CFSB). The CFSB is deleted.
Action: Try to connect to the CF list structure again.

0oocC 0CF3 Equate Symbol: ICFRRCCFNOTADDED
Meaning: A program error occurred because the specified CF was
not added to the processor configuration.
Action: Do the following:
1. Enter the ZMCFT ADD command to add the specified CF to the

processor configuration.

2. Issue your request again.
See m for more information about the ZMCFT ADD
command.

0oocC OCF4 Equate Symbol: ICFRRCCFNOTACTIVE
Meaning: A program error occurred because the specified CF was
not added to the processor configuration.
Action: Do the following:
1. Enter the ZMCFT ADD command to add the specified CF to the

processor configuration.

2. Issue your request again.
See m for more information about the ZMCFT ADD
command.

0oocC 0CF5 Equate Symbol: ICFRRCCFSBFILEERROR
Meaning: The connect request was not successful because the TPF
system could not create the coupling facility structure block (CFSB)
or update it on file. This error may be accompanied by additional
error messages that provide more information about the error.
Action: Determine the cause of the error and try your connect
request again.

0010 1000 Equate Symbol: ICFRRCCOMPERROR
Meaning: A component error occurred because a CF command was
not successful.
Action: See your system programmer for more information.

Programming Considerations

* The ICFAA data macro generates the ICFCAA DSECT, which maps the area
identified by the ANSAREA parameter.

* Applications should use the newCache function with the processor shared
(Cache_ProcS) parameter specified to create a CF cache structure rather than

System Macros 141

CFCONC

using the CFCONC macro. See [[PE C/C++ | anguage Support User's Guidd for

more information about the newCache function.

Examples
None.

142 TPF V4R1 System Macros

CFDISC

CFDISC-Disconnect from a Coupling Facility List or Cache Structure

Use this system macro to disconnect from a coupling facility (CF) list or cache
structure on a CF when you no longer require access to it. See

for more information about disconnecting from a CF list or cache
structure.

Format

»»—CFDISC—CONTOKEN=contoken ><

CONTOKEN=contoken
Specifies the connect token that was returned by the CFCONC macro. The
connect token uniquely identifies the connection to a CF list or cache structure

in your processor configuration. See LCECONC-—Caonnect ta a Coupling Eacility
List or Cache Structure” on page 124 for more information about the CFCONC

macro.

To code, specify the name or address of the 16-character field that contains the
connect token.

Entry Requirements
The CFDISC macro must be issued from an E-type program.

Return Conditions

When the CFDISC macro returns control to your program you will receive a return
code in the high-order 2 bytes of register 15 (R15) and a reason code in the
low-order 2 bytes of R15. All other registers remain unchanged.

[Cable 2 on page 144 shows the hexadecimal return code, reason code, and equate
symbol associated with each reason code. The ICFEQ DSECT provides equate
symbols for the return and reason codes. The following are the equate symbols
associated with each hexadecimal return code:

Return Code Equate Symbol

0 ICFRRCOK

4 ICFRRCWARNING

8 ICFRRCPARMERROR
C ICFRRCENVERROR
10 ICFRRCCOMPONENT.

System Macros 143

CFDISC

Table 2. Return and Reason Codes for the CFDISC Macro

Hexadecimal Return
Code

Hexadecimal Reason
Code

Equate Symbol Meaning and Action

0000

0000

Equate Symbol: None.

Meaning: The request to disconnect from a CF structure is
successful. The connect token is no longer valid and will be rejected
for any subsequent disconnect requests.

Action: None.

0008

0801

Equate Symbol: ICFRRCBADPARMLIST

Meaning: A program error occurred because the address of the
CFDISC parameter list is zero.

Action: Verify that the address of the CFDISC parameter list is not
corrupted.

0008

0804

Equate Symbol: ICFRRCBADVERSIONNUM

Meaning: A program error occurred because the CFDISC parameter
list contains a version number that is not valid.

Action: Do the following:

1. Verify that your program did not overlay the CFDISC parameter
list storage.

2. Verify that your program was assembled with the correct macro
library for the TPF system.

0008

080A

Equate Symbol: ICFRRCBADCONTOKEN

Meaning: A program error occurred because the requesting
processor specified a connect token that is not valid.

Action: Correct your program to use the original connect token that
was received in the CFCONC answer area after the connection
request was issued.

See [CECONC-—Connect to a Coupling Facility | ist or Cachel
Structiire” on page 124 for more information about the CFCONC

macro.

0008

080B

Equate Symbol: ICFRRCCONNINUSE

Meaning: A program error occurred because the requesting
processor tried to disconnect from a CF structure that was still in
use.

Action: Do the following:
1. Let all outstanding requests for the CF structure end.
2. lIssue the CFDISC macro again.

0008

08F2

Equate Symbol: ICFRRCRESTARTINCOMPLETE

Meaning: An error occurred because CF restart has not yet
completed. The disconnect request is rejected because the TPF
system has not yet completed CF restart.

Action: Do the following:
1. Wait until CF restart has completed successfully.
2. lIssue the disconnect request again.

144 TPF V4R1 System Macros

CFDISC

Table 2. Return and Reason Codes for the CFDISC Macro (continued)

Hexadecimal Return
Code

Hexadecimal Reason |Equate Symbol Meaning and Action
Code

000C

0CFO Equate Symbol: ICFRRCAUTHLOCKERROR

Meaning: The disconnect request was rejected because the CF lock
was not obtained because of an error that occurred. This error
occurs when the CF fails to respond to CF commands.

Action: None.

Programming Considerations

Examples

* You can disconnect from only one CF list or cache structure at a time. If you
want to disconnect from multiple CF list or cache structures, issue the CFDISC
macro once for each CF list or cache structure.

* Applications should use the deleteCache function to discontinue use of a CF
cache structure by a processor rather than using the CFDISC macro. See [iW=Tz]

C/C++ | anguage Support User's Guide| for more information about the

deleteCache function.

None.

System Macros 145

CFISVC

CFISVC-Find Entry in the Macro Information Tables

Use this system macro to store the address of an entry in the macro decoder table.
The entries in this table are used by the macro decoder itself, test tools, and
various dump routines.

Each entry is one of the following:
* Primary supervisor call (SVC)

* Vectored SVC

* Indexed SVC

» Afast link macro.

Each macro must be defined with an appropriate call to the CRESVC macro in the

IBMSVC or USRSVC macros. The ISVOSV data macro maps the data at the
address provided.

Format

»»—CFISVC—REG=Rx ,SVC=——addrl ><
—[regl—l l—,SVC2L=—|:tJddr2jJ I—,NOTFND=addr3—|

,SVCX=reg3 reg2

REG=Rx
This parameter specifies a general register that, upon return from this macro
call, contains the location of the SVC table entry for the requested SVC. R14 is
not valid.

SvC
This parameter specifies the location of the halfword SVC or fast link number.
Specify one of the following..

addrl
An address.

regl
A register that contains the SVC number.

Note: Either the SVC parameter or the SVCX parameter must be coded, but
not both.

SVCX=reg3
This parameter is a register containing the address of an SVC expansion. If this
parameter is coded, then CFISVC uses the SVC and index number from the
expansion, and returns the address of the corresponding macro information
table entry. If the expansion is not an SVC expansion, the error path (see the
NOTFND parameter) will be taken. If this parameter is coded, SVC and SVC2L
cannot be coded. SVCX and REG cannot use the same register. R14 cannot be
used in online code, and R2 is not valid for offline code.

SVC2L
This optional parameter contains the location of the halfword index number for
the indexed SVC. Specify one of the following:

146 TPF V4R1 System Macros

CFISvC

addr2
An address.
reg2
A register that contains the index number.
NOTFND=addr3
This optional parameter specifies the location where control is transferred if the

SVC is not found. If NOTFND is omitted, control is passed to the next
sequential instruction (NSI).

Entry Requirements
None.

Return Conditions
 REG will contain zero if the SVC number is not found.

* R14 will not be saved when called from C-type or E-type programs. If called from
the system test post processor (STPP) or from the in-core dump formatter
(ICDF), R2 is not saved across the macro call.

Programming Considerations
* This macro may be processed on any I-stream online.

* CFISVC is used offline by STPP and online by real-time trace (RTT) among other
programs.

Examples
CFISVC SVC=EBWO40,REG=R5,NOTFND=ERROR

This invocation returns the address in R5 of the macro decoder entry for the SVC
specified in ECB location EBWO040. If the SVC specified is not found, processing
resumes at location ERROR.

CFISVC SVC=EBW0O40,SVC2L=EBWOOO,REG=R6

This invocation returns the address in R6 of the macro decoder entry for the SVC
specified in ECB location EBW040 and indexed by the halfword residing in ECB
location EBWO0O0O.

CFISVC SVC=(R3),SVC2L=(R5) ,REG=R6

This invocation returns the address in R6 for the macro decoder entry specified by
the SVC in R3 and indexed by the halfword in register R5.

CFISVC SVCX=R3,REG=R4,NOTFND=ERROR
This invocation returns the address in R4 for the macro decoder entry indicated by

the SVC expansion addressed by R3. If there is an error, processing resumes at
location ERROR.

System Macros 147

CFRQC

CFRQC—-Coupling Facility Request

Use this system macro to access coupling facility (CF) control program (CP)
routines for entry control block segments that are controlled by the entry control
block (ECB). The CF CP routines allow these segments to:

» Activate a CF symbolic device address (SDA)

* Read CF parameters

* Set the CF lock

* Read a structure identifier (ID) vector

» Allocate a CF list structure.

» Attach a list structure user to a CF list structure
» Detach a list structure user from a CF list structure
* Read CF list structure controls

» Define a list naotification vector

* Release a list notification vector

* Remove CF structures.

Format

>>—L——|—CFRQC—REQUEST=——ACTSDA——,BLOCK=—|:addr _| »><
label —READFP— (reg)

- SETLOCK—
-READSID—
-ALLOC—
- ATTUSER—
-DETUSER—
| READLSC—
DEFVECT—
- RELVECT—
- CLEAN—
—(reg)—

label
A symbolic name can be assigned to the macro statement.

REQUEST
Indicates the type of request you want to perform. The type must be one of the
following values:

ACTSDA
Activates the CF SDA.

READFP
Reads the parameters for a CF.

SETLOCK
Locks or unlocks the CF lock. The CF lock is used to serialize operations
on the CF.

READSID
Allows the list structure user to read the structure ID vector.

ALLOC
Allocates a CF list structure.

148 TPF V4R1 System Macros

CFRQC

ATTUSER
Attaches a list structure user to a CF list structure.

DETUSER
Detaches a list structure user from a CF list structure.

READLSC
Reads list structure controls for a CF list structure and returns user
structure controls and the user ID vector.

DEFVECT

Defines a list notification vector.
RELVECT

Releases a list notification vector.
CLEAN

Removes CF list structures that are not allocated fully.

Note: If you specify ALLOC, ATTUSER, CLEAN, or DETUSER for the
REQUEST parameter, the CF lock must be held.

(reg)

Register (RO-R7) that contains the value for the type of request you want to
perform. The request type must be one of the these values:

ICFREQACTSDA ICFREQREADFP
ICFREQSETLOCK ICFREQALLOC
ICFREQATTUSER ICFREQDETUSER
ICFREQREADLSC ICFREQDEFVECT
ICFREQRELVECT ICFREQCLEAN

Equates for these values are defined in the ICFEQ DSECT.

BLOCK

Specifies the address of the data block for your request. The format of the input
data block is provided with the IFAPI data macro. See that data macro for the
correct parameter format.

Specify one of the following:

addr
The address of the RS-type name or address of a data block.

reg
A pointer to a data block.

Entry Requirements
None.

Return Conditions

Control is returned to the next sequential instruction (NSI).

The condition code (CC) is not preserved across this macro call.

The contents of R14 are unknown. The contents of RO—R7 are preserved across
this macro call.

A return code is returned in R15 as follows.

Request Type Condition Code

System Macros 149

CFRQC
ACTSDA

READFP

SETLOCK

ALLOC

ATTUSER

DETUSER

READLSC

DEFVECT

RELVECT

CLEAN

ICF_SUCCESS

ICF_ERROR

ICF_SUCCESS

ICF_ERROR

ICF_SUCCESS

ICF_ERROR
ICF_INVALID_CPUID
ICF_SUCCESS
ICF_SUCCESS_AND_ALLOCATED
ICF_SUCCESS_AND_RENAMED
ICF_NO_FREE_SIDS
ICF_SYNC_ERROR
ICF_INVALID_STRUCTURE_SIZE
ICF_ERROR

ICF_SUCCESS
ICF_ATTACH_FAILED
ICF_NAME_NOT_UNIQUE
ICF_VECTOR_UNAVAILABLE
ICF_SUCCESS
ICF_SUCCESS_AND_DEALLOC
ICF_SUCCESS_AND_ZERO
ICF_ERROR

ICF_SUCCESS

ICF_ERROR

ICF_SUCCESS
ICF_FEWER_VECTOR_ENTRIES
ICF_VECTOR_UNAVAILABLE
ICF_SUCCESS
ICF_TOKEN_NOT_ASSIGNED
ICF_SUCCESS

ICF_ERROR

Programming Considerations

None.

Examples

» The following shows an example of how to activate a CF SDA:
CFRQC REQUEST=ACTSDA,BLOCK=ACTSDADB

The data block is found at the location indicated by the ACTSDADB label.

150 TPF V4R1 System Macros

CFRQC

» The following shows an example of how to read the parameters for a CF:
CFRQC REQEST=READFP,BLOCK=(R7)

A pointer to the data block is found in register 7 (R7).

System Macros 151

CFVCTC
CFVCTC-Check or Modify a List Notification Vector

Use this system macro to perform the following operations on your list notification
vector:

* Modify the number of entries in your list notification vector.

» Test a range of list notification vector entries to determine whether the associated
lists are empty or not empty.

» Test whether a list is empty or not empty.

Format

»»—CFVCTC—VECTORTOKEN=vectortoken— ,WORKAREA=workarea >
»— REQUEST=——MODIFYVECTORSIZE Parameters 1 i »><
—ELTVECENTRIES—| Parameters 2

TESTLISTSTATE—| Parameters 3 '—

Parameters 1:

|—, VECTORLEN=vectorlen—,ACTUALVECTORLEN=actualvectorlen—,MODIFYDONE=modifydone———— >

»—,LESSTHAN=Lessthan— ,NOSTORAGE=nostorage—, INVALIDTOKEN=invalidtoken >

»—, INVALIDLEN=invalidlen |

Parameters 2:

|—, VECTORINDEX=vectorindex—,BITSTRING=bitstring—,ALLEMPTY=allempty >

»—,SOMENONEMPTY=somenonempty—, INVALIDINDEX=invalidindex—, INVALIDTOKEN=inval idtoken—|

Parameters 3:

|—, VECTORINDEX=vectorindex—,LISTEMPTY=1istempty—,LISTNONEMPTY=1istnonempty—— X X >

»—, INVALIDINDEX=invalidindex—,INVALIDTOKEN=invalidtoken I

VECTORTOKEN=vectortoken
Identifies the list notification vector on which you want the specified request
(using the REQUEST parameter) performed. This list notification vector was
initially created by the CFCONC macro, if the VECTORLEN parameter was
coded, and the vector token was returned in the ICFCAAVECTOK field of the

CFCONC answer area. See lCECQNC-—Connect ta a Coupling Facility | ist of
Cache Structure” an page 124 for more information about the CFCONC macro.

152 TPF V4R1 System Macros

CFVCTC

To code, specify the name or address of an 8-byte field that contains the token
for the list notification vector.

WORKAREA=workarea
Specifies a work area that is used by the CFVCTC macro. The minimum
required length for the work area is defined by the ICFVWALEN equate. This
equate is defined by the IFAPI data macro.

To code, specify the name or address of a work area that begins on a word
boundary.

REQUEST
Allows you to manage the list notification vector, vector entries, and a list.

Specify one of the following:

MODIFYVECTORSIZE
Modifies the size of your list notification vector.

LTVECENTRIES
Loads and tests a range of vector entries associated with a list notification
vector for a CF list structure.

TESTLISTSTATE
Tests whether a list you are monitoring is empty or not empty.

VECTORLEN=vectorlen
Specifies a fullword field that contains the new total number of vector entries in
the list notification vector. The new number of vector entries can be greater than
or less than the current number of vector entries, but must be greater than 0. If
you specify a number that is not a multiple of 32, the TPF system will round up
the number to a multiple of 32.

The TPF system tries to expand or contract your list notification vector to the
size you specify.

To code, specify the name or address of the fullword field that contains the
requested list notification vector length.

ACTUALVECTORLEN=actualveclen
Specifies a fullword field to receive the count of the new number of vector
entries for the list notification vector after the
REQUEST=MODIFYVECTORSIZE parameter is processed. The fullword field is
valid only when control is passed to the routine specified by the LESSTHAN
parameter.

To code, specify the name or address of the fullword field to contain the new list
notification vector length if it differs from the requested list notification vector
length.

MODIFYDONE=modifydone
Specifies the label to branch to if the CFVCTC macro is able to modify the list
notification vector.

To code, specify the name or address of the label.

LESSTHAN=lessthan
Specifies the label to branch to if the CFVCTC macro cannot obtain enough
storage to enlarge your list notification vector to the size you requested.

To code, specify the name or address of the label.

NOSTORAGE=nostorage
Specifies the label to branch to if the CFVCTC macro cannot obtain any storage

System Macros 153

CFVCTC

to enlarge your list notification vector to the size you requested. The list
notification vector size remains the same.

To code, specify the name or address of the label.

INVALIDTOKEN-=invalidtokn
Specifies the label to branch to if the vector token you specified on the
VECTORTOKEN parameter is not valid.

To code, specify the name or address of the label.

INVALIDLEN=invalidlen
Specifies the label to branch to if the value you specified on the VECTORLEN
parameter is not valid.

To code, specify the name or address of the label.

VECTORINDEX=vectorindex
If REQUEST=LTVECENTRIES is coded, specifies the starting index of the
range of vector entries that you want loaded and tested. The index you specify
must be evenly divisible by 32. Thirty-two consecutive vector entries will be
loaded and tested. The vector indexes for a specific vector of size N range from
0 to N-1.

If REQUEST=TESTLISTSTATE is coded, this parameter specifies a fullword
field that contains the vector index entry associated with the list of interest. For
a vector with N entries, valid vector index values range from 0 to N-1.

To code, specify the name or address of the label.

BITSTRING=hitstring
This is a required output field that contains vector entry state information for the
range of vector entries specified. This field contains 32 bits. The first bit
represents the first vector entry specified on the VECTORINDEX parameter and
continues up to a maximum of 32 vector index entries. The bits are interpreted
as follows:

0 The vector entry that corresponds to this bit position indicates that the
monitored list is not empty

1 The vector entry that corresponds to this bit position indicates that the
monitored list is empty.

To code, specify the name or address of a fullword field.

ALLEMPTY=allempty
Specifies the label to branch to if all associated lists in the range of the vector
entries are empty.

To code, specify the name or address of the label.

SOMENONEMPTY=somenonempty
Specifies the label to branch to if some of the associated lists in the range of
vector entries are not empty.

To code, specify the name or address of the label.

INVALIDINDEX=invalidindex
Specifies the lable to branch to if the CFVCTC macro detects that the index
value you specified is not valid.

To code, specify the name or address of the label.

154 TPF V4R1 System Macros

CFVCTC

LISTEMPTY=Istempty
Specifies the label to branch to if the CFVCTC macro finds the list of interest
empty.

To code, specify the name or address of the label.

LISTNONEMPTY=Isthonempty
Specifies the label to branch to if the CFVCTC macro finds the list of interest
not empty.

To code, specify the name or address of the label.

Entry Requirements
None.

Return Conditions

When the CFVCTC macro returns control to your program, register 15 (R15) is
undefined and all remaining registers are unchanged.

The following tables contain the reasons for which each branch routine may be
called and the suggested recovery actions.

Table 3. Branch Routines for the CFVCTC Macro with REQUEST=MODIFYVECTORSIZE
Coded

Routine Meaning and Action

MODIFYDONE Meaning: The list notification vector was modified as requested.

Action: None.

LESSTHAN Meaning: This is a system error. The list notification vector is smaller
than the size you requested because there was not enough storage
available. The new number of vector entries is returned in the field
specified by the ACTUALVECTORLEN parameter.

Action: Do the following:

1. If you need a larger list notification vector, try the request later
when more storage is available.

2. If the problem continues, see your system programmer to
determine the cause of the problem and to correct it.

NOSTORAGE Meaning: This is a system error. Storage could not be obtained to
increase the list notification vector size. The size remains unchanged.

Action: Do the following:

1. If you need a larger list notification vector, try the request later
when more storage is available.

2. If the problem continues, see your system programmer to
determine the cause of the problem and to correct it.

System Macros 155

CFVCTC

Table 3. Branch Routines for the CFVCTC Macro with REQUEST=MODIFYVECTORSIZE

Coded (continued)

Routine

Meaning and Action

INVALIDTOKEN

Meaning: This is a program error because the vector token you
specified on the VECTORTOKEN parameter is not valid.

Action: Do the following:
1. Check your program for errors such as the following:
* You specified the address of the vector token incorrectly.

* The vector token was overlaid or corrupted between the time
you received it and the time you specified it.

* You disconnected from the CF list structure using the CFDISC
macro before issuing the CFVCTC macro. You must be

connected to the CF list structure to issue the CFVCTC macro.
See b =Dj i ity Li

Cache Structure” on page 143 for more information about the

CFDISC macro.
2. Correct the error.

3. Run the program again.

INVALIDLEN

Meaning: This is a program error because the list notification vector
length you specified on the VECTORLEN parameter is not valid. The
list notification vector length must be greater than or equal to 1.

Action: Do the following:

1. Correct the error by ensuring the list notification vector length
specified is greater than O.

2. Run your program again.

Table 4. Branch Routines for the CFVCTC Macro with REQUEST=LTVECENTRIES Coded

Routine

Meaning and Action

ALLEMPTY

Meaning: All associated lists in the range of vector entries are empty.

Action: None.

SOMENONEMPTY

Meaning: A list in the range of vector entries is not empty.

Action: None.

INVALIDINDEX

Meaning: This is a program error because the vector index you
specified on the VECTORINDEX parameter is not valid.

Action: Do the following:
1. Check your program for errors such as the following:
* You specified a vector index value that is not a multiple of 32.

* You specified a vector index value greater than or equal to the
number of vector entries. Vector index values for a vector with
N entries range from zero to N-1.

* You specified the address of the vector index value incorrectly.
2. Correct the error.

3. Run the program again.

156 TPF V4R1 System Macros

Table 4. Branch Routi
Coded (continued)

CFVCTC
ines for the CFVCTC Macro with REQUEST=LTVECENTRIES

Routine

Meaning and Action

INVALIDTOKEN

Meaning: This is a program error because the vector token you
specified on the VECTORTOKEN parameter is not valid.

Action: Do the following:
1. Check your program for errors such as the following:
* You specified the address of the vector token incorrectly.

* The vector token was overlaid or corrupted between the time
you received it and the time you specified it.

* You disconnected from the CF list structure using the CFDISC
macro before issuing the CFVCTC macro. You must be
connected to the CF list structure to issue the CFVCTC macro.
See L =Di i ility Li

Cache Structure” on page 143 for more information about the

CFDISC macro.
Correct the error.

3. Run the program again.

Table 5. Branch Routi

ines for the CFVCTC Macro with REQUEST=TESTLISTSTATE Coded

Routine

Meaning and Action

LISTEMPTY

Meaning: This list is empty.

Action: None.

LISTNONEMPTY

Meaning: The list is not empty.

Action: None.

INVALIDINDEX

Meaning: This is a program error because the vector index you
specified on the VECTORINDEX parameter is not valid.

Action: Do the following:
1. Check your program for errors such as the following:

* You specified a vector index value greater than or equal to the
number of vector entries. Vector index values for a vector with
N entries range from zero to N-1.

* You specified the address of the vector index value incorrectly.

* Another unit of work modified the vector size while the
REQUEST=TESTLISTSTATE parameter was being processed.

2. Correct the error.

3. Run the program again.

System Macros 157

CFVCTC

Table 5. Branch Routines for the CFVCTC Macro with REQUEST=TESTLISTSTATE
Coded (continued)

Routine Meaning and Action

INVALIDTOKEN Meaning: This is a program error because the vector token you
specified on the VECTORTOKEN parameter is not valid.

Action: Do the following:
1. Check your program for errors such as the following:
* You specified the address of the vector token incorrectly.

* The vector token was overlaid or corrupted between the time
you received it and the time you specified it.

* You disconnected from the CF list structure using the CFDISC
macro before issuing the CFVCTC macro. You must be

connected to the CF list structure to issue the CFVCTC macro.
See b =Dj i ity Li

Cache Structure” on page 143 for more information about the

CFDISC macro.
2. Correct the error.

3. Run the program again.

Programming Considerations

* When the CFVCTC macro is called from an entry control block (ECB) routine, all
addresses must be ECB virtual memory (EVM) addresses. When this macro is
called from a control program (CP), all addresses must be system virtual memory
(SVM) addresses.

* The vector indexes are local to the central processing complex (CPC) you are
running and do not reside on the CF.

Examples
None.

158 TPF V4R1 System Macros

ClosC

CIOSC-Request a Mount, Dismount or Status of an SDA
Use this system macro to:

* Mount or dismount a symbolic device address (SDA)
* Request the status of an SDA mount.

Format

>>—l_——|—cIOSC—FUNCT= MOUNT: ,PARM=label >«
label —EDISMOUNT}
S

STATU

label
A symbolic name can be assigned to the macro statement.
FUNCT
This is the name of the function to be performed. It must be one of the following
values:
MOUNT
Specified SDA is to be mounted
DISMOUNT
Specified SDA is to be dismounted
STATUS
Return the mount status of the specified SDA
PARM
This is the required parameter for the function to be performed.
MOUNT
This is a label assigned to an area of storage containing a MDR or a
register containing the address of a MDR as defined by the DCTMDR
DSECT. See IMSDAC-Mount a Symhalic Device Address (SDA)” od
for more information.
DISMOUNT

This is the label of a halfword field containing the SDA or a register with the
SDA in bytes 2-3 and zeros in bytes 0-1. See the FDSDAC-Dismount d
Bymbolic Device Address (SDA)” on page 217 for more information.

STATUS

This is a label assigned to an area of storage containing a DDB or a
register containing the address of a DDB as defined by the DCTDDB

DSECT. See ISDAC—Interrogate Symhalic Device Address (SDA) Status]
for more information.

Entry Requirements
R9 must contain the address of the ECB being processed.

Return Conditions

» Control is returned to the next sequential instruction.

System Macros 159

CIOSC

* The contents of R14 are unknown. The contents of RO — R7 are preserved
across this macro call.

e A code is returned in R15 as follows.
MOUNT:

0 SDA mount was successful.
4 SDA is in-use.
8 SDA is not valid.

DISMOUNT:
0 Dismount was successful.

4 Dismount was unsuccessful.

STATUS:
0 SDA is in-use.
4 SDA is available.

8 SDA is not valid.

 If the extended option is set in the DDB (DDBX = 1) for STATUS, the path
management control words and the subchannel status words are returned in the
area defined by the DCTDDB DSECT.

* The path available mask is returned on a successful mount in the area defined
by the DCTMDR DSECT.

* For MOUNT and STATUS requests, the channel path identifier (CHPID) type
indicator is returned.

Programming Considerations

* This macro can be run only on an I-stream having affinity with the specified SDA.
* An SDA specification that is not valid for a dismount results in a return code of 0.
* This macro is for use in a real-time program only.

Examples
None.

160 TPF V4R1 System Macros

CiloucC

CIOUC-Initialize and Reset Communication Lines

Use this system macro to initialize and reset or stop input/output (I/O) on any
communication line.

Format

(1) (2)

»—L——'—CIOUC AL ,——E03 ><
label —EO3R—

L D3—
—03R—
L F3—
—E3R—

P.
P

STOP—]
L STOPR—
L HALTR-

(1) (2)
8BS ,——E

Pp.
p

—STOP—]
L HALT

(1) (2)
Lc LHALT

Notes:
1 line type

2 function

label
A symbolic name can be assigned to the macro statement.

line type
Type of communication line must be specified as parameter one.

Al ATAJIATA SLC lines (SLC)

BS
Binary Synchronous Lines (BSC)

LC
3270 Local Lines (LC)

function
Initialize and reset functions required must be specified as parameter two.

E Enable

EO03
Enable 3705 EP send side

EO3R
Enable 3705 EP receive side

D3
Disable 3705 EP send side

System Macros 161

CciloucC

03R
Disable 3705 EP receive side

E3
Disable then enable 3705 EP send side

E3R
Disable then enable 3705 EP receive side

P Prepare or Poll

R Release
HALT
Stop I/O to end a Prepare or Poll command.
HALTR
Stop /O to end a Prepare or Poll command on the receive side.
STOP
Stop I/O due to a suspected error condition. On 3705 EP stop on send
side.
STOPR

Stop 3705 EP 1/O due to a suspected error condition on receive side.

Notes:
1. Some of the previous functions are invalid for certain line types.

2. Depending on the line type, a combination of functions could be performed by
using more than one symbol for parameter two.

3. On some of the functions, it is possible to concatenate an R suffix, to denote
that the operation applies to a Receive subchannel.

4. The following is a list of the function combinations and valid line types.
« ATA/IATA SLC (IBM 3705 EP):

162

TPF V4R1 System Macros

Al, EO3 Enable only, send side

Al, EO3R Enable only, receive side

Al, D3 Disable only, send side

Al, O3R Disable only, receive side

Al, E3 Disable then eanble, send side

Al, E3R Disable then enable, receive side

Al, P Issue Prepare command

Al, STOP Halt 1/0 due suspected error, send side

Al, STOPR Halt 1/0 due suspected error, receive side

Al, HALTER Halt I/O to end Prepare command
*» BSC:

BS, E Enable

BS, P Issue Prepare or Poll command

BS, STOP Halt 1/0 due to suspect error

BS, HALT Halt I/O to end Prepare or Poll command
e 3270 Local:

LC, HALT Halt 1/O to end activity

CiloucC

Entry Requirements
R14 must contain the symbolic line number (SLN).

Return Conditions

Control is returned to the next sequential instruction.

The contents of scratch registers R14 and R15 are unknown. The contents of the
remaining operational registers and the condition code are saved during
processing of this macro.

Programming Considerations

Examples

This macro is used exclusively by the communications control program.
The CIOUC macro should only be used on the main I-stream.

The ECB reference register (R9) contains the address of the ECB before this
macro is used.

The symbolic line number given in R14 is checked. If the line number does not
fall within the range of lines in the TPF system a system error is generated and
the ECB is forced to EXIT.

The status of the CIOUC operation can never be determined by the initiating
program.

This macro is for use in the control program (CP) only.

None.

System Macros 163

CLAWCC

CLAWCC-CLAW API Linkage

Use this system macro to perform the following services:

» Define the code generation for interfacing with Common Link Access to
Workstation (CLAW) application programming interface processing in the control
program (CP).

* Generate a dummy control section (DSECT) to describe the code generation.

Required Authorizations

Key0 Restricted System Common Storage

X

Format

»>—CLANCC—TYPE=——ACCEPT ,GEN=—|:DATA _| >
—BLOCK DSECT,REG=Rx

—CLOSE
—CONNECT
—DISCONNECT—
—END
—INIT
—OPEN
—QUERY
—SEND

TYPE
The CLAW service to be performed.

ACCEPT
Accepts a connection request

BLOCK
Starts a CLAW block function for GCLAC or RCLAC

CLOSE
Shuts down a logical link

CONNECT
Requests a CLAW connection to a remote workstation

DISCONNECT
Disconnects a connection to a remote workstation

END
Stops CLAW activity

INIT
Prepare for CLAW activity

OPEN
Initialize an adapter

QUERY
Get the status of an adapter or logical links

SEND
Send a message on an active logical link

164 TPF V4R1 System Macros

CLAWCC

GEN

Indicates the type of generation required.

DATA
Generates the code to link to the CLAW service routines.

DSECT
Generates a DSECT that defines the linkage code associated with the
generation type.

REG=Rx
Specifies a register for DSECT generation. This parameter is required if
you code GEN=DSECT.

Entry Requirements
None.

Return Conditions

The generated code returns to the calling routine using the linkage information in
R2. The contents of R2 are unknown.

Programming Considerations

Examples

This macro can be run on any I-stream. However, CLAWCC is a restricted use
macro and is intended only for use by the CLAW library functions.

This macro cannot be implemented inline. To avoid reentry problems, macro
generation is moved to a stack area modified by the routine and branched to by
R2.

If you code GEN=DSECT, you must also specify a register for the DSECT by
using REG=RXx.

This call generates the code necessary to link to the CLAW ACCEPT service
routine.

CLAWCC TYPE=ACCEPT,GEN=DATA

This call generates the DSECT used for the CLAW ACCEPT service routine
using register R1.

CLAWCC TYPE=ACCEPT,GEN=DSECT,REG=R1

System Macros 165

CLNKC

CLNKC—-Control Program (CP) Call and Link

Use this system macro to generate the standardized linkage to call a control
program (CP) routine. This macro is used with other standardized linkage macros
such as the DLNKC, RLNKC, and SLNKC macros. See the following for more
information about these macros:

o FDLNKC—Define Stack DSECT for Control Drngmm ((‘D) Raoutine” an page 214

o ESLNKC—Control Program ((‘D) Save Link Data & Set Stack Pointer” on

bage dad.

Format

,BASE=R15 ,LINK=R14
»»—Label—CLNKC—RTN=——address , TYPE=——POINTER [1 [il >
LOCAL— |—, BASE=Rx—) |—, LI N|<=RyJ
—EXT——
L INT—

(Rn)
l—,TYPE=——POINTER——|
- LOCAL—
- EXT———
L INT——

label
A symbolic name can be assigned to the macro statement.

BASE=R15|Rx
The register specified, default R15, will be used as the link-to register between
the routines. The called routine will use this register as its base register.

LINK=R14|Ry
The register specified, default R14, will be used as the link-from register
between the routines. The called routine will use this register as the return
register. This register is NOT saved and restored over the call.

RTN=address|(Rn)
This parameter can be either a label or a register specified as (Rn). This
parameter must be the base of the called routine except when
TYPE=POINTER. In this case, the parameter will point to the address of the
routine. If the register specification is used and the TYPE parameter is omitted,
the proper address is assumed to be in the register. If the address specification
is used, the TYPE parameter must be specified as EXT, INT, LOCAL, or
POINTER.

TYPE
This parameter specifies the type of addressability this routine has to the called
routine identified by the RTN parameter. If the TYPE parameter is not specified,
the required address is assumed not to be a POINTER. The TYPE parameter
must be specified when the RTN parameter specifies an address.

POINTER
The called control program (CP) routine’s address is a pointer.

LOCAL
The called control program (CP) routine’s address is within the current base
register addressability.

166 TPF V4R1 System Macros

CLNKC

EXT
The called control program (CP) routine’s address is located in a different
CSECT than this routine. The address is resolved through a Vcon.

INT
The called control program (CP) routine’s address is within the current
CSECT but not within the current base register addressability. The address
is resolved through an Adcon.

Entry Requirements
R13 must contain the correct stack pointer.

Return Conditions

= Control is normally returned to the next sequential instruction, but need not be.

* The contents of the registers are determined by the interface between this
routine and the called routine.

Programming Considerations
* This macro can be run on any I-stream.
* R13 must point to a valid stack.

* The condition code is determined as part of the interface between the two
routines.

* The program invoked by this macro should use the other linkage and stack
manipulation macros (SLNKC, DLNKC, RLNKC) to save and restore the proper
registers and stack base.

* This macro is for use in the control program (CP) only.

* The contents of the register specified by BASE will be saved on the stack and
restored by the called routine.

Examples
None.

System Macros 167

CPDSC

CPDSC-Generate Control Program (CP) DSECT

Use this system macro to produce the low core DSECT area for common reference
by the control program (CP) CSECTS. The content is dependent on conditional
code in the macro.

Format

, IBM=N
»»—CPDSC—name |_ 0_| ><

|— IBM=YESJ

name
The symbolic name of the CSECT.

Entry Requirements
None.

Return Conditions
None.

Programming Considerations
» |-stream restrictions are not applicable to this macro.
e This macro is for use in the control program (CP) only.

Examples
None.

168 TPF V4R1 System Macros

CPLKC

CPLKC - Link to CP Routines

Format

Use this system macro to permit an entry control block (ECB) program to call a
service routine in the control program (CP) to perform a specific task.

»»—CPLKC—FUNCTION=——TMSTART———, PARMLIST=—|:symbo1 ><

L TMEND
- TMSUSPND—
- TMRESUME—|
L RMSTART——|
—RMSUSPND—
L RMRESUME—|
_RMPREP
L RMROLLBK—|
L RMCOMMIT—|
DBUG_RTN—|
| CDBUGPER—|
-ADD_PET——|
L REMOVE_PET—|
L SETASMBKPT—|
-ADD_LOB——|
L REMOVE_LOB—|
L INITASMDBG—|
L MQPRECMT—|
L TMADDCCR—

(Rx)

FUNCTION

The name of the CP function to be called. The function name is not the entry
point name in the CP; it is used as an ordinal number to locate the entry point
defined in the branch table in the CPLKC service routine. The following
functions are valid:

TMSTART
Creates and initializes a transaction manager control record (TMCR). No
parameter is required for this function.

TMEND
Releases the TMCR. No parameter is required for this function.

TMSUSPND
Updates the suspend count in the TMCR. No parameter is required for this
function.

TMRESUME
Updates the suspend count in the TMCR. No parameter is required for this
function.

RMSTART
Performs the xa_start, flags=TMNOFLAGS process. RMSTART requires
the resource manager ID (RMID) as a parameter.

RMSUSPND
Performs the xa_end flags=TMSUSPEND process. RMSUSPND requires
the RMID as a parameter.

System Macros 169

CPLKC

RMRESUME
Performs the xa_start, flags=TMRESUME process. RMRESUME requires
the RMID as a parameter.

RMPREP
Performs the xa_prepare, flags=TMNOFLAGS process. RMPREP requires
the RMID as a parameter.

RMROLLBK
Performs the xa_rollback, flags=TMNOFLAGS process. RMROLLBK
requires the RMID as a parameter.

RMCOMMIT
Performs the xa_commit, flags=TMNOFLAGS process. RMCOMMIT requires
the RMID as a parameter.

DBUG_RTN
Returns to the TPF Assembler Debugger for VisualAge Client intercept
point. No parameter is required for this function.

CDBUGPER
Requests the program event recording (PER) facility bracket override for
the TPF Assembler Debugger for VisualAge Client.

ADD_PET
Adds the program entry to the PER exclusion table for the TPF Assembler
Debugger for VisualAge Client. The ADD_PET function requires the
program allocation table (PAT) slot address as a parameter.

REMOVE_PET
Removes the program entry from the PER exclusion table for the TPF
Assembler Debugger for VisualAge Client. The REMOVE_PET function
requires the PAT slot address as a parameter.

SETASMBKPT
Sets the breakpoint table in the TPF Assembler Debugger for VisualAge
Client.

ADD_LOB
Adds a program entry to the load occurrence breakpoint table. The
ADD_LOB function requires an entry structure pointer as a parameter.

REMOVE_LOB
Removes a program entry from the load occurrence breakpoint table. The
REMOVE_LOB function requires an entry structure pointer as a parameter.

INITASMDBG
Initializes the TPF Assembler Debugger for VisualAge Client.

MQPRECMT
Performs the internal pre_commit function (which performs preliminary
functions necessary for ending the current transaction scope) for an
MQSeries resource managetr.

TMADDCCR
Adds a commit control record (CCR) to a specified resource manager that
is participating in a transaction. The TMADDCCR function requires a pointer
to the CCR and RMID as parameters.

PARMLIST

An optional parameter list is defined by each function. The CPLKC service
routine will not verify the parameter list.

170 TPF V4R1 System Macros

CPLKC

Entry Requirements
R9 must contain the address of the ECB being processed.

Return Conditions

Control is returned to the next sequential instruction.

The contents of RO-R7 are preserved across this macro call. The contents of all
other registers are unknown.

The condition code (CC) is not preserved across the macro call.

The macro service routine will set R14 to contain a hexadecimal return code that
can be used by the calling program. Return conditions may vary depending on
the function requested. See the [TRPE C/C++ | anguage Support User's Guidd for
more information about the xa_start, xa_end, xa_prepare, xa_commit,
xa_rollback, and xa_recover C functions and the related return codes.

A return code is not set for the DBUG_RTN, ADD_PET, and REMOVE_PET
functions.

A return code of 0 for the ADD_LOB function means that the entry was added
successfully to the load occurrence breakpoint table. A return code of 1 for the
ADD_LOB function means that the entry was not added to the load occurrence
breakpoint table because the entry is already in the table. A return code of 2
means there is not enough heap storage to add another entry.

A return code of 1 for the REMOVE_LOB function means that the entry was not
found in the load occurrence breakpoint table. The entry structure contains the
entry that was removed.

Programming Considerations
This macro can be run from any I-stream.

Examples

The following shows an example of a process using commit processing.

CI;LKC FUNCTION=TMSTART

System Macros 171

CPRND

CPRND-Control Program (CP) Rounding

Use this system macro to increase the size of a control program (CP) CSECT to
the next 256-byte boundary.

Format

»»—CPRND e

Entry Requirements
None.

Return Conditions
None.

Programming Considerations

» This macro should be placed in a control program (CP) SECT segment after all
code statements.

* This macro rounds up the size of a CSECT to the next 256-byte boundary. This
is done to keep the size relatively constant as code changes and for patching
purposes.

It identifies the source of the object code produced by placing the assembly date,
the assembly time and the CSECT name in the object code just ahead of the
256-byte boundary.

Note: In many installations it is customary to define the CSECT name with a
version number.

* This macro is for use in the control program (CP) only.

Examples
None.

172 TPF V4R1 System Macros

CRASC

CRASC-Send Message to CRAS

Format

Use this system macro to send a message to the computer room agent set (CRAS).

Note: The CRASC macro should not be used by system programs and
applications. System programs and applications must use the ROUTC
macro. All replies must be made with the WTOPC macro.

»—L—_|—CRASC—symboZI ><
label

label
A symbolic name can be assigned to the macro statement.

symboll
A data level in the ECB must be specified as parameter one.

Entry Requirements

* R9 must contain the address of the ECB being processed.
* Messages for the computer room console must be contained in a 381-byte block.
* The message format for the computer room console follows here.

E

Standard Character Symbolic 0
Header__ Count*___ Address= Text M
/o

Bytes: 0----15 16---17 18----20 21

Where:

* The character count includes the 3-byte device address, the text field, and
the EOM character.

= This field contains the symbolic address of the computer room console. For
the RO (Receive Only) CRAS bytes 18 through 20 should contain the value
X'000000'. For the prime CRAS bytes 18 through 20 should contain the value
X'010000'. The appropriate physical device address will be resolved by the
control program (CP).

* The messages must be in internal EBCDIC, including function characters such as
New Line (#LFEED), which serves the purpose of carriage return and line feed.
The EOM character serves no functional purpose for a 1052 terminal and is not a
required special character. However, for a clear indication of end-of-message and
for message compatibility, the normal high-speed EOM character (#EOM) should
be used.

» Bit 1 of CE1CPA must be set to 1 for the send intercept routine to be bypassed
for the messages that already have the 3270 data stream format.

* Only valid 1977 characters should be used in the message as 1052 CRAS

terminal is to fallback to 1977 terminal. See [[RE Programming Standardd for

more information about the character sets provided. The reason for this
restriction is that when a 1052 prime CRAS, 1052, 3215, or 3270 Local CRT is

System Macros 173

CRASC

inoperable the TPF system looks for a substitute. First it tries an alternate
1052/3215 from the line status table. If not available, it tries for a local 3270 CRT
and RO. If not available as well, it looks for a 1977/2915/4505 or 3270 with RO
printer in the CRAS Status Table. Because a 1977/2915/4505 terminal might be
used during extraordinary error conditions the messages should be limited to
characters valid for these devices.

* The messages destined for the Send Intercept Routine must ensure that the
CE1FMx field associated with the input message is zeroed.

Return Conditions

» Control is returned to the next sequential instruction.

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

* The specified data level (CBRW) is available.

Programming Considerations

Examples

* This macro can be run from the main I-stream only.

* The message to be sent is contained in a storage block held by the entry control
block.

* A check is made by the control program (CP) to determine whether the ECB is
holding a block of storage at the specified level. If a block is not held, control is
transferred to the system error routine.

* The block of storage containing the message to be sent is no longer available to
the operational program.

* The status of the sending operation can never be determined by the operational
program.

* The operational program may use the specified level immediately upon return
from this macro.

Send message to the prime CRAS.

GETCC D3,L1
MvC 16 (CRASCMSGL-CRASCMSG-1,R14) ,CRASCMSG
CRASC D3

CRASMSG DC AL2(CRASMSGL-CRASMSG-3)

DC XL3'010000'

DC C'TEXT OF THE MESSAGE',AL1(#EOM)
CRASMSGL EQU =

174 TPF V4R1 System Macros

CRATC

CRATC-Search CRAS Status Table

Use this system macro to:

» Verify that a terminal address (line number, interchange address, and terminal
address (LNIATA)/CPUID) is in the CRAS status table (CROAT)

e Obtain the LNIATA and CRAS table slot address of:
— A functional support console (FSC)

— An alternate CRAS workstation given an alternate CRAS slot number or
associated printer index.

Format

>> |_ _| CRATC VERIFY >
label i:LOCATE—
FSC——

label
A symbolic name can be assigned to the macro statement.

VERIFY
Is used to determine if a given LNIATA/CPUID is present in the CRAS table.

LOCATE
Is used to find the CRAS slot address for one of the following:

» A functional support console when given a routing code indicator and a CPU
ID or

* A an alternate CRAS terminal when given an Axx slot number or a printer
index number.

FSC
Is used to find the CRAS slot address of a functional support console when
given the routing index located at the beginning of the CRAS table.

Entry Requirements
* R9 must contain the address of the ECB being processed.
* RO must contain the input in one of the following formats:
— For the VERIFY option:

Bytes 0-2 contains LNIAT
3 contains CPUID (optional)

— For the LOCATE option:

- To return the CRAT slot address for each functional support console (FSC)
type as follows.

Bytes 0 contains zeros
1-2 contains console type (as defined in RTCEQ)
3 contains CPUID (optional)

- To return the CRAT slot address for each printer index or alternate CRAS
slot number (Axx) as follows.

Bytes 0 contains the index
1-3 contains zeros

— For the FSC option:

System Macros 175

CRATC

Bytes 0 contains the index
1-3 contains zeros

If the CPUID is omitted, byte 3 of RO must contain zeros and the CPUID will
default to that of the ECB (CE1CPD).

Return Conditions

Control is returned to the next sequential instruction (NSI).
The following output is placed in general register O:
— For VERIFY option:

- If the LNIATA is not found, RO will contain zeros.

- If the LNIATA is found, bytes 0-2 of RO will remain unchanged. Byte 3 of RO
will contain the CPUID used in processing the macro request (unchanged if
a CPUID was supplied on input; CE1CPD if the CPUID was omitted).

— For the LOCATE and FSC Options:
- If the FSC/printer/Alternate CRAS is found, RO will contain the following.

Bytes 0-2 contains LNIATA
3 contains CPUID (optional)

- If a request is made for an FSC that is not valid or an unused printer/Axx
slot, RO will contain zeros.

R15 will contain the CRAS table slot address.

The contents of R14 are unknown. The contents of all other registers are
preserved across this macro call.

Programming Considerations

This macro can be run on any I-stream.

The CRATC macro expands to a fast link macro for E-type segments; it expands
to a BASSM for C-type segments.

This macro requires 6 bytes of storage when issued by a E-type segment and 10
bytes of storage when issued by a C-type segment.

The CRATC macro should not be issued from a C-type segment, which is
interruptible.

General register 9 (R9) must contain the address of the ECB before processing
the macro.

General register 0 (RO) is used for all input and output for this macro.

If a successful search is completed, general register 15 (R15) will contain the
storage address of the CRAS table slot.

Examples
Reference macro RTCEQ for the functional support console definitions.
Bit Console Type Label
0 RO RTCDRO
1 PRC RTCDPRC
2 TAPE RTCDTA
3 DASD RTCDDA
4 COMM RTCDCOM
5 AUDIT RTCDAUD

176 TPF V4R1 System Macros

CRATC

Bit Console Type Label
6 TPFAR RTCDRDB
7-15 Reserved for Use by IBM

Usage examples:

» Verify that the terminal with LNIATA 4A1713 is in the CRAS table as follows.

Input: RO = | 4A | 17 | 13 | 00 |

Code: CRATC VERIFY

Output: RO = | 4A | 17 | 13 | c2 |

Return Code Meaning

RO Shows that 4A1713 is in the CRAS table with an ECB CPUID of
B.
R15 The CRAT slot address of terminal 4A1713B.

Determine where the COMM console is located in CPU A as follows.

put: Ro=| 00 | 08 | 00 | c1 |

Code: CRATC LOCATE

output: Ro=| 51 | 00 | 00 | c1 |

The LNIATA of the COMM console is returned in the high-order 3 bytes of RO.
Return Code Meaning

R15 The CRAT slot address of terminal 510000A.

To return a LNIATA given a printer/Axx slot number (for example, A10) as follows.

input: Ro=| 0a | 00 | 00 | oo |

Code: CRATC LOCATE

ouput: Ro=| N | 1a | 7a | x | wherex=cpuiD

Return Code Meaning

R15 The CRAT slot address of terminal LNIATAX.

To find a FSC using the routing code indices located at the beginning of the
CRAS table (label CROACRI in CROAT) as follows.

mput: Ro=| 16 | 00 | 00 | oo |

Code: CRATC LOCATE

Output: RO = | LN | 1A | TA | X | where X = CPUID

System Macros 177

CRATC
Return Code Meaning

RO Shows that LNIATAX is the terminal address of the FSC in the
CRAS table slot A22 (X'16").
R15 The CRAT slot address of terminal LNIATAX.

178 TPF V4R1 System Macros

CREGPC

CREGPC-Create a Macro Group Definition

Use this system macro to create a macro group definition. Macro groups permit you
to set debugger macro breakpoints to trap a group of supervisor calls (SVC) or fast

link macros.

Format

»—L—_I—CREGPC—NAME=name—, NUMBER=number-
label

label
is a symbolic name that can be assigned to the macro statement.

NAME=name

specifies the macro group, where name is the 8-character macro group name.

NUMBER=number
specifies the number that is assigned to the macro group, where number is a

macro group number (0 through 16 for IBM groups or 17 through 32 for user
groups) that is associated with the GRPCODE or ADDGRP parameter on the

CRESVC macro.

Entry Requirements
This macro can be coded only in the IBMSVC or USRSVC macros.

Return Conditions
None.

Programming Considerations
None.

Examples
The following example creates a macro group definition called find; the find macr

(0]

group definition is associated with a test tool group code that is specified with the

GRPCODE parameter on the CRESVC macro.
CREGPC NAME=FIND,NUMBER=6

System Macros

179

CRESVC
CRESVC-Create an SVC/Fast-Link Table Entry

Use this system macro to centralize the process of adding a macro interface system
service to the TPF system. This macro generates data necessary for defining to the
TPF system a primary or indexed supervisor call (SVC), or a fast link macro.

Format

»»—CRESVC—MACRO=svcnam—, ROUTINE=—|:s vcloc ,NUMBER=svcnum— ,GRPCODE=n2———
A (svcloc):|

|—,SVCTYPE=IBM_I , ISTREAM=ALL:

I—,SVCTYPE= IBM I—,ISTREAM=MAIN—| l—,CKMAC=(opt1,opt2,...optn)—l
1BM_V—|
1BM_I—|
IBM_F—|
USER—
USER_V—
USER_I—
TEST—

, PARMTYP=F

\
v

l—PTV=service routine—l l— PARMTYP=—V l— PARMLN=n1—| l— MAXLNG=n3—|
_ s —[:l— s s

U

|—,FILE=N—| |—,WAIT=N—| |—,SEND=N—| |—,ECBSYS=(0,0)

7

I—,FILE=Y—| I—,WAIT=Y—| I—,SEND=Y—| l—,ECBSYS=(start,Zength)—

|—,ECBAPP=(0,0)

I—,ECBAPP=(start,Zength)— I—,ADDGRP=(group],groupZ,group3)—|

MACRO=svcnam
This parameter specifies the macro name for the SVC. Specify a one- to
six-character macro name for SVCs and a five- or six-character name for
fast-link macros. If the names are not unique, an assembly error will be
generated. For fast-link macros, the first four letters of the name must be
different.

ROUTINE
This parameter specifies the location of the SVC service code. For SVCs that
are pointers to indexed tables (when SVCTYPE=IBM_V or USER_V), this
parameter is optional since the address of the driver is given automatically. This
parameter is also optional for SVCTYPE=TEST as well.

svcloc
A VCON to the entry point for the macro service is generated.

A(svcloc)
An address constant is generated for the SVC location.

180 TPF V4R1 System Macros

CRESVC

NUMBER=svcnum

This parameter specifies the SVC, index or fast-link number. It is the index into

the appropriate macro table as defined by the SVCTYPE parameter. The macro

definition is automatically placed in the proper macro table in the appropriate

entry:

» For indexed tables, the range of numbers for a table with n sequential
elements must be 0 to n-1 with no gaps; otherwise, an error is generated.

* For indexed SVCs, the highest value of svcnhum is 32767.

» For user SVCs, the numbers are restricted to numbers 97, 127, 162, and odd
numbers from 197 to 253.

* For primary and vectored SVCs, the number must be in the range 1-255. A
vectored SVC is one that points to the driver code for an indexed table.

» For fast-link macros, the number specified must be between 256 and 32767.

* The numbers from 500 to 599 are reserved for user specification (that is,
SVCTYPE=USER_F).

CKMAC=(opt1,0pt2,...0ptn)
This parameter is used to specify that this macro requires an authorization
check when it is called by an E-type program. Valid options are:

RESTR
Restricted use macro check

KEYO
Key0 write authorization check

MONTC
Supervisor state authorization check

CMB
Common block authorization check.

One or more of these options may be specified in any order. If no options are
specified, the parameter is ignored. See LSCKMAC-Validate Use of Restricted
Macra” on page 14 for more information.

PTV=service_routine
This parameter specifies the PTV service routine. The address is switched with
the address specified by the ROUTINE parameter when PTV is active. There is
no default.

PARMTYP
This parameter specifies the type of parameter(s) to be passed.

F The parameter length is fixed. This is the default.

V The parameter length is variable. The length is contained in a halfword
following the SVC number (for primary SVCs) or the SVC index number (for
indexed SVCs).

U The parameter length is unknown. It is be calculated by the service routine.
Use PARMTYP=U for fast-link type macros.

PARMLN=Nn1
This parameter specifies the parameter length used with fixed parameter types
(PARMTYP=F). The length does not include the SVC opcode nor the SVC
number. Specify a decimal number in the range 0-32767.

SVCTYPE
This parameter specifies the table in which the macro definition will reside.

System Macros 181

CRESVC

The following are supported macro service types for IBM-defined macros and
their supporting service routines.

IBM
An IBM-defined SVC for the primary table (0-255).

IBM_V
An SVC that points to an indexed table containing IBM-defined SVC
services. Vectored SVCs must have PARMTYP=U.

IBM_|
An IBM-indexed SVC. This is the default.

IBM_F
A fast-link SVC (humbers 256-32767 except 500-599).

The following are supported macro service types for user-defined macros and
their supporting service routines.

USER

A user-defined SVC for use in the primary table (restricted to numbers 97,
127, 162, and odd numbers from 197 to 253).

USER_V
An SVC that points to an indexed table that contains user SVCs (restricted
to numbers 97, 127, 162, and odd numbers from 197 to 253).

USER_|
A user-indexed SVC.

USER F
A user-defined fast-link macro. Numbers 500-599 are reserved for users.

Used by the Test Tools functions.

TEST
SVCs that are used by test tools to overlay the fast-link macros to enable
proper tracing and/or trapping. These can only be used in the primary table.

ISTREAM
This parameter specifies whether the SVC runs on the main I-stream or all
I-streams.

ALL
Indicates that the SVC runs on all I-streams. This is the default.

MAIN
Indicates that the SVC runs on the main I-stream only.

GRPCODE=n2
This parameter specifies the proper test tools group code. See the fred
Program Development Support Reference for details. This is an optional
parameter for TEST, IBM_V and USER_V SVC types, but is mandatory for all
other types. The user groups can be assigned as additional groups in IBMSVC
by using the ADDGRP parameter. Specify a decimal number from 0 to 15.
There is no default.

MAXLNG=n3
This optional parameter specifies the maximum parameter length, in bytes, to
be dumped in RTT. Specify a number from 0O to 8.

182 TPF V4R1 System Macros

CRESVC

FILE
This optional parameter indicates if the macro is a file macro or unit record
macro. RTT uses this parameter to determine whether a data block should be
dumped when the macro is traced.

N Do not dump the data block. This is the default.
Y Dump the data block.

WAIT

This optional parameter indicates if the SVC macro implies a wait (for example,
FINWC and FIWHC). It is used exclusively by real-time trace (RTT).

N This macro does not imply a wait. This is the default.
Y This macro implies a wait.

SEND

This optional parameter indicates if the macro is a communication send type for
which real-time trace (RTT) should dump data blocks.

N This macro is not a send type, data blocks should not be dumped. This is
the default.

Y This macro is a send type, data blocks should be dumped.

ECBSYS=(start,length)
This optional parameter specifies the ECB data area associated with a given
macro to be dumped by Realtime Trace (RTT). The starting location in the ECB
and the length (in bytes) of the area to be dumped can be specified by an ECB
field name or can be a hardcoded, decimal number. The default is
ECBSYS=(0,0). For example,

(CE1FAQ,CE1SUG+1-CE1FAD)

This specifies that RTT should begin dumping at ECB location CE1FAO and
continue dumping between CE1FAO and CE1SUG (inclusive).

ECBAPP=(start,length)
This optional parameter specifies the ECB data area associated with an
application to be dumped by Realtime Trace (RTT). The starting location in the
ECB and the length (in bytes) of the area to be dumped can be specified by an
ECB field name or can be a hardcoded, decimal number. The default is
ECBAPP=(0,0). For example,

(EBWOOO, EBWO64-EBWOOO)

This specifies that RTT should begin dumping at ECB location EBW000 and
continue dumping between EBW000 and EBWO064.

ADDGRP=(group1,group2,group3)
This optional parameter allows the macro to be assigned to more than one
group. The additional groups are used by the macro breakpoint support for TPF
C Debugger for VisualAge Client and TPF Assembler Debugger for VisualAge
Client. A maximum of three additional groups can be specified, up to a total of
four groups. The group numbers must be from 0 to 32. The additional groups
are not used by RTT.

Entry Requirements

* There will be one CRESVC for each primary SVC, each indexed SVC and each
fast link macro defined for the TPF system.

System Macros 183

CRESVC

This macro must only be used within the IBMSVC and USRSVC macros. These
macros define the application programming interface (API) between the users
and system services. Serious errors can occur if this macro is given semantically
incorrect (but syntactically correct) parameters.

See HBMSVC-—Generate IBM SVC and Fast-Link Tables” on page 282 and

FUSRSV/C—Generate the User SVC Tahles” on page 504 for more information
about the IBMSVC and USRSVC macros, respectively.

Return Conditions
None.

Programming Considerations

Examples

Thirty-two primary SVC numbers are reserved for users. See the NUMBER
parameter for more information about SVC number restrictions.

This is a declarative macro.

Only one vector SVC is permitted for each valid vector SVCTYPE (that is, one
for SVCTYPE=IBM_V and one for SVCTYPE=USER_V).

This should not be used outside the proper location in the CCMCDC CSECT.
CRESVC places the specified data in the primary, indexed, or fast-link table at
the location determined by the NUMBER parameter.

If TYPE=EQU is coded for IBMSVC or USRSVC, but CRESVC creates only the
defined equate for the macro.

For indexed SVC macros, the equate contains both the primary number and the
index number.

Example of an IBM-defined SVC:

CRESVC MACRO=FINWC,ROUTINE=CPMFIW,NUMBER=38,
SVCTYPE=IBM, PARMTYP=F, PARMLN=2,
GRPCODE=05,MAXLNG=02,WAIT=Y,ECBSYS=(CE1FA@,CEISUG+1-CE1FAD)

CRESVC MACRO=PROGC,ROUTINE=CCECPROG,NUMBER=000,
SVCTYPE=IBM_I,PARMTYP=F,PARMLN=10,
GRPCODE=11,MAXLNG=10,CKMAC=RESTR

Example of a fast-link SVC:

CRESVC MACRO=TIMEC,NUMBER=383,GRPCODE=11,MAXLNG=02,
ROUTINE=CPTMRT,SVCTYPE=IBM_F

Example of a user SVC:

CRESVC MACRO=HVSVC,ROUTINE=LOCATION,PARMTYP=V,NUMBER=162,
SVCTYPE=USER,GRPCODE=3,MAXLNG=5,ECBSYS=(CE1FAQ,CE1SUG1+1-CE1FAQ)

Example of a user indexed SVC:

CRESVC MACRO=SUNCC,ROUTINE=CICRRRR,PARMTYP=V,SVCTYPE=USER_I,
NUMBER=68, ISTREAM=MAIN,GRPCODE=5,MAXLNG=5,ECBAPP=(EBWO000,
EBWO64-EBWOOO)

184 TPF V4R1 System Macros

CROSC

CROSC-Cross-Subsystem Access Service Request

Use this system macro to obtain various types of functional access to a user’'s
program base or database. The access types are:

* Program access
e Global area database access.

In a multiple database function (MDBF) environment, the CROSC macro is the
interface between common or user-shared TPF programs and unique
user-associated data and programs. Through the macro services facilities,
user-sensitive TPF programs can access programs and databases that are
necessarily user-dependent.

Required Authorizations

Key0 Restricted System Common Storage
X

Format

(1)

>>_|_—_|_CROSC |_ ,IDLOC= DBI >
label ENTRC , PROGRAM= prog:lJ —EPBI
Ry

ENTDC (Rx)
ENTNC
GLBAC

BSS

, EXEC=NORM
|_

l—,EXEC=0PTNJ l—,INVAL=proglab1—| l—,NOTAVL=progZab2—| I—,EP=entry—|

Notes:

1 accesstype

label
A symbolic name can be assigned to the macro statement.

accesstype
A positional parameter specifying the access type to be defined or obtained.
This is required in all macro calls.

ENTDC
Enter a program and release all previous programs attached to the ECB.

ENTNC
Enter a program with no return expected.

ENTRC
Enter a program with return expected (not allowed from control program
(CP) when EXEC=NORM is specified).

GLBAC
Obtain subsystem global area update service (not allowed from the control
program (CP)).

System Macros 185

CROSC

PROGRAM
The program name that is to be accessed when the access type is ENTDC,
ENTNC, or ENTRC.

prog
The name of the program that is to be entered.

(Rx)
A register (R0-R7) that contains the address of where the program name
can be found.

IDLOC
A keyword operand specifying the location of the identifier to be used in
selecting the table access definitions. This is required in all macro calls.

DBI
Use database ID field (CE1DBI)

PBI
Use program base ID field (CE1PBI)

Ry Use the value in the specified register. When Ry is coded, it must be the
symbolic name of (RO-R7) that contains the 2-byte MDBF identifier if the
accesstype was GLBAC. Otherwise, it contains the 2-byte MDBF identifier
for the target PBI. Note that not all valid MDBF identifiers are valid PBIs.

BSS
Use the BSS (Basic Subsystem) program base.

INVAL=proglabl
A keyword operand identifying the routine label to be given control if the
identifier fails the MDBF ID integrity check (ordinal number plus complement not
equal to X'FF"), if the designated subsystem was not included in the last IPL, or
if the designated subsystem is inactive. This operand is required if IDLOC=Rx
and EXEC=0OPTN are specified in the macro call. The operand is optional in
other macro calls, but if it is omitted and an error condition is raised, the ECB
will be exited with a system error (for integrity check failure, or for inactive or
not included in last IPL).

NOTAVL=proglab2
A keyword operand identifying the routine label to be given control if the
CROSC global interface program, GLBL, has not been locked in storage by
segment GOGO. If not defined and the condition is raised, a system error with
exit is taken.

EP=entry
A keyword operand specifying the desired entry point into the global area
update program. This operand is required in macro calls requesting global
access (access type GLBAC). Entry point equates are defined in the equate
macro GLBEQ.

EXEC
Specify one of the following:

OPTN
OPTN specifies that optional servicing of the specified access request is
needed in lieu of normal servicing. This is optional in macro calls requesting
program base access. If OPTN is specified, control is returned to the caller
with R14 containing the address of the enter expansion; the enter
expansion is not processed.

OPTN is not available when doing a global area database access.

186 TPF V4R1 System Macros

CROSC

NORM
If NORM is specified or left to default and the program is a form of Enter,
the requested function is activated.

Entry Requirements

The control program (CP) can request program base access (except through
ENTRC), but not global area access.

The control program (CP) can request a program base access without supplying
the address of an ECB in R9. To accomplish this IDLOC=Rx and EXEC=0OPTN
must be specified in the macro call.

If the operand IDLOC=RXx is coded, the general register specified by Rx must
contain the identifier to be used in selecting the access table.

If you want control returned to an error routine when the identifier contained in
Rx is incorrect or valid but not available, you must specify the INVAL parameter.

If you want control returned to an error routine when the function requested is not
available, you must specify the NOTAVL parameter.

The entry must not have a record held if update to CE1DBI is requested.

The entry reference register (R9) contains the address of the ECB prior to using
this macro if the service is requested by an ECB level entry.

Return Conditions

Normal Return:

— If EXEC=NORM is coded and the function is ENTRC, ENTNC, or ENTDC,
then activate the requested function.

— Return to next sequential instruction (NSI) after processing the GLBAC
functions.

— If EXEC=0OPTN is coded return to the NSI with a condition code of 0 and R14
set to the address of the ENTER expansion in the CROSC expansion.

— The content of R15 is unknown.

— The contents of the remaining general registers are saved during processing
of this macro.

— The ECB fields CE1DBI, CE1PBI, CE1SSU*, CE1GLA*, and CE1GLY* are
updated according to the following matrix:

EXEC=0OPTN EXEC=NORM
FUNCTION IDLOC= IDLOC=
TYPE

Rx DBI PBI BSS Rx DBI PBI BSS

ENTR/ENTN/ PBI —» DBI PBI PBI
ENTD —» PBI

GLOBALACCES | N/A N/A N/A N/A (Rx) - PBI N/A
'GLBAC' —» DBl —» DBI

Note: Whenever the field CE1DBI (DBI) is modified the value in CE1DBI will
be used to locate, and decrease by one, the number of active ECBs for

System Macros 187

CROSC

that subsystem. The value with which it is being replaced will be used
to locate, and increase by one, the number of active ECBs for the
subsystem.

In conjunction with the modification of CE1DBI, the field CE1SSU will
be changed to reflect the identification of the first or only subsystem
user of the subsystem in question. The values in CE1GLA and
CE1GLY will be changed to reflect the base and address of GLOBAL
areas A and Y for the subsystem user.

* Error Returns:

— If the INVAL operand is supplied and the SS ID is found to be incorrect or not
included in this IPL, return to the next sequential instruction with CC=1. R14
will be set to zero if the SS ID is incorrect, and nonzero if the SS ID is not
included in the IPL. If the error routine address is not specified, a system error
is taken.

— If the NOTAVL operand is supplied and the requested function is not defined
for the subsystem, return to the next sequential instruction with CC=2. If the
error routine address was not specified, a system error is taken.

Note: All system errors are with EXIT if the calling routine is an ECB level
entry, otherwise the system error is catastrophic.

Programming Considerations

e This macro can be run on any I-stream.

* The CROSC macro should be used only when it is necessary to cross
subsystem boundaries.

« ENTRC to FACE or FACS is a special type of enter and can not be used on the
CROSC macro. Attempting to CROSC to FACE or FACS will result in a system
error dump.

* The CROSC access type ENTNC cannot be called from an ISO-C segment
(coded with BEGIN TPFISOC=YES).

Examples
None.

188 TPF V4R1 System Macros

CTKL

CTKL-SLC Channel Keypoints Setup

Format

Use this system macro to generate the link keypoint (LK4KC) and channel
keypoints (LK5LC) that are required to operate and control TPF synchronous links.
These keypoints are stored on file as program records and assembled by using one
or more CTKL statements.

If you want to generate a link keypoint, use the following format. The parameters
required in each case are listed separately.

>>—L——|—CTKL—TYPE=LK4—, P1024=—|:YES ,CHANS=literall—,RELSLN=literal2————>
label NO

NEXT=symbol1 ,— >
LAST=YES Block Oriented Parameters '—
Character Oriented Parameters |—

Timing Oriented Parameters '—

Control Oriented Parameters

Block Oriented Parameters:

—RSTBQ=2
L MAXBQ=3

L ENQREP=ACK
L ILB=NO

L TSIEXH=5

5—_|
—TSIEXH=J:ZiteraZ9
—AML=——YES
—[NO
—SPREAD=——YES
—[NO
—ILB=——YES
—[NO
J:ACK
—ENQREP= RSM]—
3—_|
—MAXBQ=£Ziteralll
2—_|
—RSTBQ=J:ZiteraZ]2

System Macros 189

CTKL

Timing Oriented Parameters:

e L oterati
o Diiterats
e Dl ierats
e Ltierarr |
—MBIXDLY=£?i terall@j—

—T6=Lliteralls
—T7=literall6

3
- L iverais ||
4
Ls7-Literatio ||
15
se= L titeratzo ||
60
Ls10-Ltiteratzs 1|

Character Oriented Parameters:

—EXSYN=0
—HEN=0
—MAXBLK=255
|
[
255
—MAXBLK= Zitm—
0
| hen=—1iterats |
0
—EXSYN=——4
g |
12
“N3=literall7

190 TPF V4R1 System Macros

CTKL

Control Oriented Parameters:

~25=3
—ORIGID=0000
—RETRANS=NO——

—HDR=——YES
Lo

0000
otgio-—Lticerats-]

—DESTID=literall4

—ACI=——O0MIT
—[INCLUDE

—LINCODE=——CCITT#5
CCITT#2—
EXITT#5—

ALC——

3
25— titeratzr L]
—LOOPTST=——YES
—[NO
—LOOPBST=——0NE
—[ZERO

NO
—RETRANS=J:YES_—|—

Each program record (segment) comprises one link keypoint and hence only one
CTKL macro is required within the envelope of BEGIN/FINIS statements.

TYPE=LK4
Causes expansion of a link keypoint.

P1024=YES|NO
Defines whether the link operates according to the SITA link control procedure
P1024 or the ATA/IATA synchronous link control contained in ATA/IATA interline
communications manual DOC/GEN 1840, Chapter V.

CHANS=literall
Defines the number of full duplex pairs (Al lines) comprising the link. Its value
can range from 1 to 7.

RELSLN=literal2
All lines attached to the TPF system are allocated sequential symbolic line
numbers defined in SYCON. Literal 2 defines the lowest numbered Al line
assigned to this link relative to the minimum symbolic line number assigned to
Al lines in SYCON. The lowest RELSLN value is 0 (zero).

NEXT=symboll

LAST=YES
These parameters are mutually exclusive and either provide, through symbol1l,
the name of the next program record (segment) in the chain of keypoints or
else indicate, through LAST=YES, that this program record is the last one in the
chain.

MAXBLK=literal3
Defines the maximum number of characters in data message blocks exchanged
on the link from DLE to ETB inclusive. It does not include BCC. The default
value is 255.

System Macros 191

CTKL

192

Tl=literal4
Defines the NAK/ENQ/Data Procedure timeout and repetition frequency. The
default value is 3 seconds.

T2=literal5
Defines the idle line timeout and repetition frequency. The default value is 3
seconds.

P=literal6

Defines the frequency of acknowledging data message blocks (notwithstanding
the fact that all blocks of multiblock messages will be acknowledged
individually). The default value is 1.

N2=literal7

Defines the number of consecutive idle line or ENQ timeouts that cause the line

to be out of service (LOS). The default value is 3.

HEN=literal8
If the link is connected at its other end to a high level network (for example
SITA HLN) literal8 must be four hexadecimal characters defining the address of

entry centre (HEN) to that network. This parameter must be included if P1024 =

YES, otherwise a default value of zero is assumed.

TSIEXH=literal9
Defines the number of outstanding TSIs not acknowledged that causes the TPF
system to inhibit data message block transmission and enter the enquiry
procedure (TSI Exhaustion). The default value is 5.

AML=YES|NO
Defines whether AML link control blocks are exchanged when all blocks of a
multiblock message have been correctly received and acknowledged to clear
that message label for reuse by the transmitting center.

If the parameter is omitted, the value assigned depends on the parameter
P1024:

* P1024=YES generates AML=YES

* P1024=NO generates AML=NO.

If P1024=YES and AML=NO is coded, the parameter is accepted and a warning

message generated.

SPREAD=YES|NO
Defines whether blocks of multiblock messages can be transmitted on different
channels of a multichannel link (also called scatter).

If the parameter is omitted, the value assigned depends on the parameter
P1024:

* P1024=YES generates SPREAD=NO

* P1024=NO generates SPREAD=YES.

If P1024=YES and SPREAD=YES is coded, the parameter is accepted and a
warning message generated.

ILB=YES|NO
Defines whether ILB link control blocks are exchanged in idle line conditions.
The default value is ILB=NO

If P1024=YES and ILB=YES is coded the parameter is accepted and a warning
message generated.

TPF V4R1 System Macros

CTKL

ENQREP=ACK|RSM
Defines whether the response to ENQ and ILB link control blocks are ACK in
addition to RSM or STP or are restricted to RSM or STP. The default value is
ENQREP = ACK.

EXSYN=*|4|8|12
Defines the number of extra SYN characters at the start of a data transmission
additional to the number generated automatically by the hardware. The default
value is O (zero).

MBIXDLY=literal10
Defines the time delay after discovering MBI exhaustion for A-type messages
before attempting further processing by the output message handler. The
default value is 6.

MAXBQ=literalll
Defines the maximum number of message blocks on the link B-type output
message queue which inhibits the output message handler from adding further
original message blocks. The default value is 3.

RSTBQ-=literal12
Defines the minimum number of message blocks on the link B-type output
message queue which allows the CCP to control transfer to the output message
handler. The default value is 2.

HDR=YES|NO
Defines whether all A-type traffic on this link, with the exception of traffic that
originated from a pseudo high-speed line, contains routing information in a
standard message header, or not.

If this parameter is omitted, it is assumed that the message will not contain
routing information.

ORIGID=literal13
This parameter defines the symbolic origin application name assigned to
nonPLN, A-type traffic on a link that does not support the message routing
header. Literal 13 must be four decimal characters. A default of 0000 is
generated if this parameter is required, but not included.

DESTID=literal14
This parameter defines the symbolic destination application name assigned to
nonPLN, A-type traffic on a link that does not support the TPF message routing
header. Literal 14 must be four decimal characters. A default of 0000 is
generated if this parameter is required, but not included.

ACI=OMIT|INCLUDE
Defines whether the optional additional characteristics indicator (ACI) byte is to
be included in the control character envelope which accompanies each
information block. If the parameter is omitted, the value assigned is dependent
upon the P1024 specification:
* P1024=NO generates ACI=OMIT

* P1024=YES generates ACI=INCLUDE.

When actually coding the ACI parameter, the validity of the definition is
dependent upon the P1024 parameter. Therefore, P1024=NO, ACI=OMIT,
P1024=NO, ACI=INCLUDE, and P1024=YES, ACI=INCLUDE are valid
combinations while P1024=YES, ACI=OMIT are not valid combinations.

LINCODE=CCITT#5|CCITT#2|EXITT#5|ALC
Defines the code translation to be performed on message block text when the

System Macros 193

CTKL

optional ACI character is not a component of the control character envelope
(ACI=OMIT). If the parameter is omitted, the value generated is
LINCODE=CCITT#5. The text translation specifications follow here.

CCITT#5 CCITT No. 5 code (ASCII/ISO 7 bit code)
CCITT#2 Padded CCITT No. 2 code (Padded Baudot)
EXITT#5 Extended CCITT No. 5 code

ALC Padded 6 bit code (Padded ALC).

Only one translation code can be specified for each link when using this
parameter.

T6=literall5

Defines the time interval allowed between receipt of the last ACK of a multiblock
message and the acknowledge message label (AML) LCB before the entire
message will be retransmitted. T6 is an alternate value to T1 and overrides the
latter when defined. The T6 parameter is invalid for P1024 = YES.

When the alternate AML timer, T6, is defined, the value must be between 1 and
63 inclusive. When T6 is not to be defined, omit the parameter.

T7=literal1l6

Defines the time interval allowed between receipt of successive blocks of a
multiblock message before the partially received message is discarded. This
parameter is invalid for P1024 = YES.

When a message discard timer value, T7, is used, the value must be between 1
and 63 inclusive. When T7 is not used, omit the parameter. This implies that
partially received messages will not undergo a "time out” and be discarded.

N3=literal17

Defines the number of times a multiblock message is retransmitted in its
entirety when no Acknowledge Message Label (AML) LCB has been received.
This parameter is invalid for P1024 = YES.

When message retransmission is to occur, N3 must be a value specified
between 1 and 12 inclusive. When no message retransmission is to occur, the
N3 parameter must be omitted.

Si=literall8

No ACK received timer. After a message block has been sent, an ENQ is
generated by the link control handler if an ACK is not received within S1
seconds. The S1 timer is reset after an LCB with parity errors is received and
after a message block has been sent. Default value is 3.

S7=literal19

No block received timer. When no data or control block has been received for
more than S7 seconds, the link control handler generates an ENQ. The S7
timer is reset upon receipt of a control or data block and after an ENQ has
been generated. Default value is 4.

S8=literal20

Channel down timer. When a channel is declared to be down, the link control
handler starts the channel down timer (S8). This timer is reset should the link
control handler declares the link down. While the S8 timer is running, the link
control handler does not generate or accept data or control blocks. When the
timer expires an ENQ is generated. Default value is 15.

S10=literal21

Multiblock message timer. If, during reception of a multiblock message S10

194 TPF V4R1 System Macros

CTKL

seconds have elapsed during which another block of that message has not
been received, the link control handler gives to the supervisor those blocks so
far received and clears the message label. Default value is 60.

Z5=literal22
STP N/M repetitions. If, after a channel has been declared down, other
channels of the link remain operative, the link control handler sends Z5 SXTs at
intervals of T1 seconds. Default value is 3.

LOOPTST=YES|NO
To describe whether or not a loop test configuration between two centers will be
established. Default is no.

LOOPBIT=0ONE|ZERO
Subject to bilateral agreement between centers, bit 6 of the TSI in link control
blocks can be used to indicate the center originating the control block. It is set
to 1 at one end of the link and to O (zero) at the other.

RETRANS=YES|NO
Indicator as to whether or not to retransmit complete message on channel down
condition. Default is no.

If you want to generate a channel keypoint, use the following format.

>>—L—_|—CTKL—TYPE=LK5—, CHANS=1—,RESLN=[iterall4—,RELKCN=literall—,——
label

,P=1 |—,TSTEXH=5

NEXT=symboll <
LAST=YES4 |—,P=liter016— L,TSIEXH=Ziter029—

Each program record (segment) makes up one channel keypoint. Hence, only one
CTKL macro is required between BEGIN and FINIS statement.

TYPE=LK5
Causes expansion of one channel keypoint

CHANS=1
Defines one channel keypoint to be generated by this CTKL statement.

RELSLN=literal14
Literal14 defines the lowest numbered Al line whose keypoint is being
generated by this CTKL statement relative to the minimum symbolic line
number assigned to Al lines in SYCON. The lowest RELSLN value is O (zero).

RELKCN=literall5
Literall5 defines the lowest numbered Al line whose keypoint is being
generated by this CTKL statement relative to the first Al line comprising the link.
The lowest RELKCN value (for the first channel assigned to this link) is 0
(zero).

NEXT=symboll

LAST=YES
See the previous section for information about the RELKCN parameter and
generating a LINK keypoint.

System Macros 195

CTKL

Note: When more than one CTKL statement is necessary in one program
assembly, each requires this parameter.

P=literal 6
See the previous section for information about the P parameter and generating
a LINK keypoint.

Note: When more than one CTKL statement is necessary in one program
assembly, each requires this parameter.

TSIEXH=literal9
See the previous section for information about the TSIEXH parameter and
generating a LINK keypoint.

Note: Where more than one CTKL statement is necessary in one program
assembly, each requires this parameter.

Entry Requirements

SYGLB, SYSET, SYCON, and CAIEQ must be called before issuing the CTKL
macro.

Return Conditions
This is not an executable macro, therefore return conditions are not applicable.

Programming Considerations
* Only one link keypoint or up to three channel keypoints can be accommodated in
one program segment.

» Prior to loading the program segments containing the CTKL statements it is
necessary to allocate file storage space for them. This is performed by assigning
four character segment names and inserting them into the system allocator.

» If these constitute the first special program records in the system, the
programmer must ensure that the name of the first segment in the chain is
correctly assembled into the CIJH program. If these records extend to an existing
chain, the forward chain field of the previous last-in-chain must be updated to
reflect the new next-in-chain.

* The macro defining the Global 3 Directory (GLOBY) must be updated to reflect
these special program records.

» |-stream restrictions are not applicable to this macro.

Examples
None.

196 TPF V4R1 System Macros

CVTPC

CVTPC-Convert Tape Status Table Pointer

Format

Use this system macro to convert a tape status table (the ITSTB DSECT) pointer of
one type to a pointer of another type. There are 4 types of pointers:

* Module number pointer

» Tape status table section 1 pointer, which provides access to device address,
volume serial number (VSN), symbolic tape name, and tape status

* Tape status table section 2 pointer, which provides access to error counters,
channel status words (CSWs), tape densities, device types, module queue
pointers, and error recovery information

» Tape status table section 3 pointer, which provides access to the main storage
copy of the tape label directory and tape label maintenance records, and buffer
control information.

TSTB2 TSTB2
TSTB3 TSTB3

>>—L——|—CVTPC—FROMTYPE= MODNUM ,TOTYPE= ODNU , FROMADDR= RX——|-—>
label —ETSTBli‘ TSTBlg —[(RX)

,WORKAREA=R14

»—, TOADDR=

|—InJR —| l— WORKAREA=——R. ——|—
(.V) s —[(Z

Rz)

label
A symbolic name can be assigned to the macro statement.

FROMTYPE
Specifies the type of pointer to be converted.

MODNUM
Converts from a module number

TSTB1
Converts from a Tape Status Table section 1 pointer

TSTB2
Converts from a Tape Status Table section 2 pointer

TSTB3
Converts from a Tape Status Table section 3 pointer

TOTYPE
Specifies the type of pointer to which the given pointer is converted.

MODNUM
Converts to a module number

TSTB1
Converts to a Tape Status Table section 1 pointer

TSTB2
Converts to a Tape Status Table section 2 pointer

System Macros 197

CVTPC

TSTB3
Converts to a Tape Status Table section 3 pointer

FROMADDR
Specifies the fullword pointer to be converted. Parentheses distinguish whether
the specified register contains the pointer or the address of the pointer.

Rx Indicates the pointer is in the specified register

(Rx)
Indicates the register points to the specified pointer

TOADDR
Specifies the converted fullword pointer. Parentheses distinguish whether the
specified register contains the pointer or the address of the pointer.

Ry Indicates the pointer is in the specified register

(Ry)
Indicates the register points to the specified pointer

WORKAREA
Specifies a two word work area that can be used during the conversion.
Parentheses distinguish whether the register specifies an even-odd pair or point
to a doubleword location in storage.

Rz Indicates an even-odd register pair

(Rz)
Indicates the register points to a doubleword in storage.

RO cannot be specified for the WORKAREA parameter.

Entry Requirements
* RO cannot be specified for the WORKAREA parameter.

* The same register cannot be specified for the WORKAREA and TOADDR
parameters.

* The registers specified for the WORKAREA and TOADDR parameters must
satisfy several conditions:

— If WORKAREA is Rx then TOADDR cannot be (Rx).
— If WORKAREA is Rx then TOADDR cannot be (Rx+1).
— If WORKAREA is (Rx) then TOADDR cannot be Rx.
— If WORKAREA is (Rx) then TOADDR cannot be (Rx).

Return Conditions

» The contents of the register pair or the doubleword specified by the register of
the WORKAREA parameter are unpredictable when this macro ends.

* The contents of all registers (except for the WORKAREA register) are preserved
across this macro call.

Programming Considerations
* This macro can be run on any I-stream.

* This macro does not perform validity checking for input parameters. Ensure that
all values specified fall in acceptable ranges for the parameter in question.

198 TPF V4R1 System Macros

CVTPC

Examples
None.

System Macros 199

CWRTC

CWRTC-Write Critical Message to the System Console

Format

Use this system macro to:
* Send critical messages to the system consoles

» Write critical messages to the system consoles through the common input/output
(I/O) priority request (PIOFC).

Mainline communications queuing is bypassed and the messages are written
through the preemptive 1/O facility. You can call this macro only in C-type (control
program) modules. All CWRTC messages are preceded by the CSMP971 header if
the SYSTC SBPRMSG switch is set.

Normal I/O for the central processor complex (CPC) is suspended until the console
write operations are complete.

The macro function varies slightly, depending on whether the system includes
1052/3215 console support, or (3270) native console support. If 1052 support has
been generated, then the macro will write to the 1052 console, and sound the
alarm. If native console support has been generated, then the macro will write to
the 327x CRT system console, sound the alarm, and also copy the message on the
associated 328x printer (RO).

, TIME=NO , ENDOFM=YES—
[1

label —Elabel ,TIME=YES i:, ENDOFM=NO——

"Titeral” — ,ENDOFMR=(Rn)—

,CSMP971=N ,ROUT=—(PRC,RO,AUDT
i 0 oRour=t)

I—,CSMP97I=YES—| \\ E— J I—,DSECT=YES—|

,ROUT=(—X——PRC L)
ERO
AUDT

label
A symbolic name can be assigned to the macro statement.

MSG

It must be coded in one of the following ways;
MSG=(register)
MSG=label
MSG='literal’

(register)
The specified general register must point to the message formatted as
below:

DC AL1(Length of message)
DC C' .. message text ..’

200 TPF V4R1 System Macros

CWRTC

The TEXTONLY option of the GENMSG macro may be used to generate
the text in the required format.

label
If coded, then at that location must be the message formatted as above.

‘literal’
The macro will generate (inline) a correctly formatted message.

TIME=YES|NO
It may be coded as YES or NO. NO is the default. If YES is specified, an 8-byte
time stamp (of the HH.MM.SS format) will be inserted ten bytes into the
message text.

If NO is specified or defaulted, the message will be sent unaltered.

ENDOFM
It may be coded as YES or NO. If neither ENDOFM nor ENDOFMR is
specified, YES is the default. This parameter only affects 1052/3215 console
support. This parameter is mutually exclusive with the ENDOFMR parameter.

YES
An end-of-message-complete character (EOMC) is added at the end of the
message.

NO
An EOMC character is not added at the end of the message.

ENDOFMR=(Rn)
This parameter only affects 1052/3215 console support. If the right-most byte of
the specified register is 0, an EOMC character is added at the end of the
message. Otherwise, no EOMC is added at the end of the message. This
parameter is mutually exclusive with the ENDOFM parameter.

CSMP97I=YES|NO
Specifies whether the message will be preceded by the CSMP971 header if the
appropriate SYSTC switches are set. This facility is intended for use when
writing multiline messages. The default is CSMP97I=YES.

CSMP97I=NO should not be coded for the first line of a message, unless the
calling program has verified through the SYSTC switches that the CSMP97I
header is not required.

ROUT=(codel [,code2 [,code3]])
Up to three routing codes, as defined in the Functional Support Console
Routine Codes segment (RTCEQ), may be specified. This facility is intended for
use in writing status messages which need not be logged to all three operator
consoles. Only the codes PRC, RO and AUDT are supported. The default is
ROUT=(PRC,RO,AUDT).

DSECT=YES
This form of the macro is used to generate a DSECT which describes the
macro parameters. It is intended for use in the system error CSECT only.

Entry Requirements
» General register 14 must be available.

* The TPF system should be masked so that no I/O interrupts will be processed
during the processing of this macro.

System Macros 201

CWRTC

Return Conditions

Control is returned to the next sequential instruction.
The condition code is unknown.
There is no indication as to whether the attempted console write was successful.

The contents of R14 is unknown. The contents of all other registers are
preserved across this macro call.

Programming Considerations

This macro must be processed on the main I-stream only.

This macro may be called only by the main storage resident control program
(CP), and should be used only for messages of the highest priority. This macro is
for use in the control program (CP) only.

General register 14 is used in the macro expansion and may not be used to
specify the address of the message or as the ENDOFMR register.

The storage key in the PSW must be such that alteration of protected storage is
permitted (that is, Key 0 or F).

The length of the message may be no more than 255 characters. If an EOMC is
to be added (see the ENDOFM/ENDOFMR parameters), the message may be no
more than 254 characters. If CSMP97I=YES is coded, the message may be no
more than 200 characters.

If native console support is included, or the 1052/3215 console has been
replaced by a local 3270 type device through the ZACRS command, then the
message will be reformatted appropriately.

Only locally attached console devices are supported by the CWRTC macro, that
is, subchannel attached 1052/3215, native console, and local 3270s. Network
devices are NOT supported. The macro service routine will determine whether or
not the console is a network device, and if it is, no message will be sent.

The CWRTC macro cannot be issued until after the required tables have been
initialized by segment CT60 of CTIN. (LINEQ, SLSTL, CROAT, CX7CW, CX8CW)

If the MSG parameter is coded as (register), the macro will generate relocatable
code. If the MSG parameter is not coded as (register), the macro expansion will
include a relocatable address constant.

Examples
* An example showing a warning message with the identifying message code
WARN96W and text WARNING. The time shown by 00.00.00 is replaced by the
actual time the message is issued.
CWRTC MSG='WARN96W 00.00.00 WARNING',TIME=YES
* An example showing a line of message text with no time stamp. An end of
message character is appended to the end of the text.
CWRTC MSG='JUST LIKE THIS',TIME=NO,ENDOFM=YES
* An example showing the use of register RO to point to the message text.
LA RO,ERROR
CWRTC MSG=(RO)
ERROR DC AL1(L'ERRMSG) LENGTH OF THE TEXT
ERRMSG DC ~ C'THIS IS AN ERROR MESSAGE' MESSAGE TEXT
202 TPF V4R1 System Macros

CWRTC

* An example showing two messages being sent. At the end of the first one
(LINE1) there is no end of message character applied, while there is one applied
at the end of the second (LINE2) due to the O in the rightmost byte of R4.

LA R4,1
CWRTC MSG=LINE1,ENDOFMR=(R4)
SR R4 ,R4

CWRTC MSG=LINE2,ENDOFMR=(R4)

* An example showing two messages being sent. On the first line (TESTMSG1)
the time is replaced for 00.00.00 and the message code CSMP97I is appended
on the front of the message (CSMP971 ABCDOOOLE ...). This assumes the proper
SYSTC switch is set. The message is sent to the prime CRAS console. The
second message consists only of the message text and this too is sent to the
prime CRAS.

(5) CWRTC MSG=TESTMSG1,TIME=YES,CSMP97I=YES,ROUT=(PRC)
CWRTC MSG=TESTMSG2,TIME=NO,CSMP97I=N0O,ROUT=(PRC)

TESTMSG1 DC ALI(L'MSGLTXT)

MSG1TXT DC C'ABCDOOO1E 00.00.00 ERROR IN TEST CASE 1!
TESTMSG2 DC AL1(L'MSG2TXT)

MSG2TXT DC C'XYZ TABLE NOT INITIALIZED'

producing the message

CSMP971 ~ ABCDOOO1E xx.yy.zz ERROR IN TEST CASE 1'
XYZ TABLE NOT INITIALIZED'

System Macros 203

CXFRC
CXFRC—-Create a New ECB and Transfer Control

Use this system macro to create an entry control block (ECB) and permit the control
program (CP) to transfer control to another program that is then free to use any CP
macros.

Format

R6

>>—L——|—CXFRC—EXEC=~ERZ_| >
label NONEJ L,LOWCORE=$ymboZJJ I—,CBRW=RyJ

,PRIORITY=LOW , LIST=READY
i 1

,ECB=DEFER ,BLOCK=R6
[1 [il .

,PRIORITY=HIGHJ I—,LIST= INPUT I—,ECB=IMMEDJ I—,BLOCK=RWJ
NONE

, FORMFLAG=CFFCXE—|

I—,PIADDR=RV—| l—,UEXIT=eXit_lubel—| l—,FORMFLAG=serdef—|

.]
e I P I PO I o I
T, J L]
Rx |_’_|
,DSECT=NO

i I—,SAVREG=(LR@_l , |_R1_| , |_R2_|)—| I—,DSECT=YES—|)
S P
RO]

label

A symbolic name may be assigned to the macro statement.

EXEC=R6|Rz|NONE
This parameter specifies the code (if any) to be processed after the ECB is
dispatched. The parameter specifies a register that contains the address of 8
bytes of code to be processed (normally an enter expansion) or the value
NONE, which indicates that the calling program will perform appropriate ECB
formatting and scheduling). If the parameter is omitted, the default value is
register R6. The NONE option is restricted to ECB=IMMED, LIST=NONE type
calls.

LOWCORE=symboll
Symbolic name of the user’s routine for use in case of a low-core condition. If
no routine is supplied, no check will be performed for the low-core condition.
This parameter is only meaningful with DEFERred ECBs. See

Considerations” on page 207 for more information.

204 TPF V4R1 System Macros

CXFRC

CBRW=Ry
When no core block reference word (CBRW) is specified, the macro service
routine will initialize CBRW 0 in the created ECB to empty.

When CBRW=RYy is specified, Rx designates a general purpose register which
must point to an 8-byte field formatted as a CBRW. The block address in the
CBRW must be a system virtual memory (SVM) address that will be valid on
the target I-stream.

When CXFRC macro processing is complete, the 8-byte field pointed to by Ry
will be formatted as an empty CBRW.

The CXFRC post interrupt will attach the storage at the SVM address to the
address space of the created ECB (the ECB virtual memory), and initialize
CBRW 0 with the data passed. The SVM address in the CBRW will be
converted to the appropriate ECB virtual address.

PRIORITY=LOW|HIGH
Normally, a transfer block created to temporarily contain information relating to
the ECB will be added to the bottom of the Ready List. This mode of processing
reflects PRIORITY=LOW (ECB=DEFER, and LIST=READY), the defaults for
each of these parameters. If the block (or ECB) is to be added to the top of the
desired list, specify PRIORITY=HIGH.

LIST
The transfer block (or ECB) is added to the list specified for subsequent
dispatching by the CPU loop.

READY,
Requests that the block be added to the Ready List.

INPUT
Requests that the block be added to the Input List.

NONE
Requests that the transfer block or ECB be created and its address be
returned to the caller, and that the block is not to be added to any CPU
loop lists at this time.

ECB
Specify one of the following:

DEFER
Specifies whether a transfer block is to be created to temporarily hold ECB
information for later ECB creation, or whether the ECB is to be created
immediately. The default is DEFER. If the ECB is created immediately, its
address is returned to the caller in the register specified by the BLOCK
parameter. If ECB creation is deferred, the address returned is that of the
transfer block.

IMMED
Is restricted to code processing in the system virtual memory (SVM).

BLOCK=R6|Rw
Upon return from CXFRC macro processing, the register specified will contain
either the address of the transfer block created to hold ECB information or the
address of the ECB if the caller requested immediate ECB creation. The default
value is register R6.

PIADDR=Rv
Upon return from CXFRC macro processing, the register specified will contain
the address of CXFRC Post Interrupt Routine. If LIST=NONE was specified,

System Macros 205

CXFRC

this address may be used in a subsequent ADDXC macro call to request that
the block being added to the desired list be processed by the appropriate Post
Interrupt Routine. There is no default value for this parameter.

FORMFLAG=selfdef
A one-byte self-defining term may be supplied to be used to initialize the
FORMAT FLAG field of the ECB. If the parameter is omitted, a default value of
CFCXE will be provided by the TPF system.

UEXIT=exit_label
This parameter specifies a label used in the CXFRC expansion to identify the
origin of the control transfer. The label is used in the UCCCMXF user exit.

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

RTTMSG=Ru
The RTTMSG parameter passes the address of the message block to the
Realtime Trace (RTT) interface.

There is no default. RTTMSG has no meaning when ECB=DEFER is used.

DSECT=NO|YES
Optional parameter used to request the generation of a DSECT describing the
parameter list generated for the CXFRC call. The use of this parameter should
be limited to the CXFRC service routines. If DSECT=YES is coded, no CXFRC
expansion is generated. The default is DSECT=NO.

Entry Requirements

The EXEC parameter must specify a general purpose register that contains the
address of 8 bytes of code (normally an enter expansion) that will be processed
when the ECB is selected for processing.

Return Conditions
» Control is returned to the next sequential instruction (NSI).
* Register contents will be preserved, except as noted below.

» If deferred ECB creation is requested, the BLOCK register contains the address
of a transfer block which has bytes 8 through 114 (equivalent to the 107 bytes of
the ECB work area) available. The complete format of this block is described by
the IDSXFC DSECT. If LIST=NONE was not specified, this block is added to the
requested CPU loop list. If this block is to be modified further, consideration

206 TPF V4R1 System Macros

CXFRC

should be given to using the LIST=NONE option. The modified block can
subsequently be added to the appropriate list through the use of one of the
ADDxC macros.

If immediate ECB creation is requested, the BLOCK register contains the
address of the created ECB. If LIST=NONE was not specified the ECB is added
to the requested CPU loop list. Similar consideration should be given as noted
previously when the ECB is modified while residing on the requested list.

If LIST=NONE was specified, the PIADDR=Rx parameter should be used to
obtain the address of the appropriate Post Interrupt Routine which is to complete
processing of the CXFRC request.

Programming Considerations

Examples

This macro may be processed on any I-stream.

This macro is used only by the control program (CP) and certain test tool
routines.

ECBs that are created by the CXFRC macro will use the version of the program
that was most recently activated. If this program is incompatible with the program
that issued the CXFRC call, an interface problem may occur.

Use of IMMED processing for ECBs is restricted to code processing in the
system virtual memory (SVM).

Use of EXEC=NONE is restricted to ECB=IMMED, LIST=NONE calls.

If you have defined a lowcore routine, the number of available transfer blocks is
compared against the number needed to service the CREDC macro. If the
number available is less than the number specified on the LOWCORE parameter,
a low-core situation is assumed and control relinquished to the user’s error
routine. If no lowcore routine is supplied, this processing is bypassed. The
LOWCORE parameter has no meaning for IMMEDiate ECBs processing.

In addition to the normal macro trace information the macro trace entry contains
the transfer type, IMMED or DEFER address of the transfer block and the
associated format flag.

If you use this macro to create an ECB that will enter a dynamic load module
(DLM) with an entry point defined by the C language main function, the TPF
system assumes that any core block attached to data level 0 (DO) contains a
command string that will be parsed into argc and argv parameters for the main

function. See [[TPE Application Programming for more information about the main

function.

DSECT for the Parameter List:

Requests a DSECT describing the parameter list for the CXFRC call. No code is
generated.

CXFRC DSECT=YES

Simple Control Transfer:

An example from the 37x5 interrupt handler shows passing control to a routine
for a specific interrupt. The address for the routine to be transferred to
(CS05_CCIM) is specified in R6, the default register. ECB creation is deferred, so
when the transfer returns, R6 contains the address of the transfer block (SWB)
created and IDSXFC is a DSECT mapping this block. The transfer block will be

added to the bottom of the Ready list. Registers R0O-R2 are specified as being
volatile and are saved on the stack.

System Macros 207

CXFRC

LA R6,CS05_CCIM GET ADDR OF 3705 MSG ROUTINE

CXFRC EXEC=R6,BLOCK=R6,
PRIORITY=LOW,LIST=READY,ECB=DEFER,
SAVREG=(RO,R1,R2)

IDSXFC REG=R6 Describe Transfer Block

» Transfer Call Using a Core Block Reference Word:

An example from a MPIF path error routine illustrates the use of the CBRW.
Request an activation of a broadcast program (CBM6_CBBO) specified in R14
with R3 pointing at a core block reference word formatted field (CBM6_CRO0). R4
is used to put the block type and size into a storage location (CBM6_CTO) as a
part of the field formatted as a core block reference word.

Upon return from the control transfer R14 contains the address of the transfer
block created to hold ECB information, since ECB creation is deferred. When the
ECB is activated, it is put on the bottom (low priority) of the Ready list. Register
R1 is specified as a volatile register and is saved in the stack area. When the
transfer returns, the IDSXFC DSECT is used to map the transfer block.

CBM6_CRO DS F CBRW BLOCK ADDRESS (FOR CXFRC)
CBM6_CTO DS F CBRW TYPE & SIZE (FOR CXFRC)
ST R4,CBM6_CRO SET CBRW ADDRESS FOR CXFRC
LR RO,R15 SAVE BASE ACROSS MACROS
LA R4,L4 4K BLOCK TYPE
TYPBC TYPE=R4 GET BLOCK TYPE AND SIZE
LR R15,R0 RESTORE BASE REGISTER
ST R4,CBM6_CTO SET TYPE & SIZE FOR CXFRC
L R4,CBM6_CRO RELOAD BASE OF 4K BLOCK
LA R14,CBM6_CBBO LOAD BASE OF BROADCAST
* ROUTINE
LA R3,CBM6_CRO SET CBRW POINTER

CXFRC EXEC=R14,BLOCK=R14,CBRW=R3, PASS BLOCK TO CBBO
PRIORITY=LOW,LIST=READY,ECB=DEFER,
SAVREG=(R1)

IDSXFC REG=R14 DESCRIBE TRANSFER BLOCK

¢ Transfer Call with a LOWCORE Condition:

When this transfer block is taken off the Ready list, it will enter segment COSK.
This transfer sets up a call to the program at CPMFRI and creates a deferred
ECB. When the transfer is complete, R14 contains the address of the transfer
block. If a lowcore condition is detected, control is transferred to the CPMPIND1
routine to either preserve a prior error code or indicate the current error code
before returning.

LA R14,CPMFRI load COSK ENTNC address
CXFRC EXEC=R14, get transfer block for TZEC
BLOCK=R14, function

LOWCORE=CPMPIND1,
PRIORITY=LOW,
LIST=READY,

ECB=DEFER,
SAVREG=(RO,R1,R2)
SPACE 1

LA R15,CT7KEC load TZEC branch vector

**xxx*k%*x% CXFRC unable - set up WAITC error

SPACE 1
CPMPIND1 DS OH
CLI CE1SUC(R9),X'00' previous error
BNE CPMPIND2 yes - do not clear SUG and SUD

208 TPF V4R1 System Macros

CXFRC

SPACE 1

XC CE1SUD(CE1SUG-CE1SUD+1,R9),CEISUD(R9) clear SUG / SUD
SPACE 1

MVI ~ CE1SUC(R9),X'30' set I/0 error flag

SPACE 1

*x*kxkkx% return from macro

Transfer Call Using Postinterrupt Address:

This transfer to routine CPMCPSI creates the ECB but since there is no list
specified, the address of the ECB is returned in R14 and the address of the post
interrupt routine is returned in R2. Observe that the ECB address is put into R9
for use as an ECB.

LA R14,CPMCPSI Locate 'ENTNC CPSI'

CXFRC EXEC=R14, Pass ENTNC addr in R14,
BLOCK=R14, Return ECB addr in R9,
PIADDR=R2, CXFRC PIA in R2,
ECB=IMMED, Make ECB now
LIST=NONE, But don't add to Tlist
SAVREG=(RO,R1)

LR R9,R14 ECB address to R9

The value specified on the PIADDR parameter is used later as input to the
$ADPC macro, which adds the acquired ECB to the ready list. See

Mmmmmnﬁpmﬂﬂusneam_an_paguﬂ for more information about the

$ADPC macro.

System Macros 209

CYDNC

CYDNC-Cycle Down Utility CP Interface

Use this system macro to provide an interface between cycle down routines in
CVCW and cycle down subroutines that reside in the control program (CP).

Format
,DSECT=NO
»—L——'—CYDNC—,FUNCTION= CLES, LIST=Rx——,RETURN=Ry [il >e
label —EETES— L,DSECT=YESJ
ETCT
label
A symbolic name may be assigned to the macro statement.

FUNCTION

This required parameter specifies which of the Cycle Down subroutines is to be
invoked by this macro.

CLES
This option selects the routine that scans a selected CPU loop list to detect
the presence of at least one ECB that is not related to IPC or MPIF internal
processing.

ETES
This option selects the routine that scans the physical ECB table, searching
for lost ECBs. These ECBs will be identified through a message and will
otherwise be ignored. The cycle-down process will continue in spite of their
presence in the TPF system.

ETCT
This option selects the routine that scans the physical ECB table to
determine an accurate count of the non-system ECBs remaining in the
subsystem in which the cycle ECB is running.

LIST=Rx
The register specified on this input parameter is expected to contain a CPU
loop list equate value as defined in the CLHEQ macro. This parameter defines
the 'dispatch list" which will be searched in this macro invocation. The register
specified must be in the range RO-R7 or R14-R15.

The parameter is required for the CLES function and is otherwise ignored.

RETURN=Ry
The register specified on this output parameter will contain a value indicating
the results of the function. The register specified must be in the range RO-R7 or
R14-R15. The exact meaning is unique to each function:

When FUNCTION=CLES, a value of zero indicates that no ECBs for the calling
ECB subsystem were found on the requested dispatch list which satisfied the
remaining selection criteria. A value of one indicates that at least one such ECB
was found.

When FUNCTION=ETES, the parameter is ignored.

When FUNCTION=ETCT, the value returned is the count of non-system ECB in
the subsystem.

210 TPF V4R1 System Macros

CYDNC

DSECT
Optional parameter that may be used to request the generation of a DSECT
that describes the parameter list generated by the normal CYDNC macro
expansion. The use of this parameter should be limited to the CYDNC service
routines.

YES
A DSECT describing the parameters to be passed to the SVC service
routine is generated.

NO
The normal macro expansion is generated (an SVC for IBM vectored SVC
processing, the second level SVC (index) number, and parameters being
passed to the SVC service routine). The default is DSECT=NO.

Entry Requirements

The register specified by the LIST= parameter must contain a CLH List value as
noted above (for the CLES function only).

Return Conditions

» Control is returned to the next sequential instruction (NSI).
* Register contents will be preserved.

* The register specified by the RETURN= parameter will contain the function
results, as specified above.

Programming Considerations

* This macro may only be processed on the main I-stream.

* This macro is used only by the cycle down utility (currently limited to the CVCW
segment).

Examples
None.

System Macros 211

DHASHC
DHASHC—-Hash Resource Name

Use this system macro to hash a resource name to obtain one or more of the

following:

* Ordinal number of the node control block (NCB) directory record for the resource
name

* Address of the resource name hash prime table (RNHPT) entry for the resource
name.

Format

—, PRIME=NO—

»»—L——I—DHASHC—LUNAME=RV—,—[HASHSL0T=R" >
label RNHPTADR=RX—I —, PRIME=Ry—

|—,NORKREG=NO—

(1)

L,WORKREG=RZ

Notes:
1 Required if LUNAME=R1.

label
A symbolic name can be assigned to the macro statement.

LUNAME=Rv
A register (R1 through R7, or R14) that contains the address of a 16-byte
resource name to hash.

HASHSLOT=Rw
A register (R1 through R7, or R14) that receives the ordinal number of the NCB
directory record.

RNHPTADR=Rx
A register (R1 through R7, or R14) that receives the address of the RNHPT
entry.

PRIME
A register that points to the fullword that contains the prime hash number.

NO
Use the largest prime number that is less than the value specified for the
MAXPRIM parameter in the SNAKEY macro, which is the number of
RNHPT entries defined in the TPF system. This is the default.

Note: Use the default value when you specify the RNHPTADR parameter.
Ry A register (R2 through R7) that contains the address of the prime hash
number.

Note: If you specified the RNHPTADR parameter, the prime hash number
cannot be greater than the largest prime number that is less than the
value specified for the MAXPRIM parameter in the SNAKEY macro.

212 TPF V4R1 System Macros

DHASHC

WORKREG
A register to preserve R1 across calls to the DHASHC macro. This parameter
must be coded if LUNAME=R1 is specified.

NO
R1 is not preserved across calls to the DHASHC macro. This is the default.

Rz A register (R2 through R7) that preserves R1 across calls to the DHASHC
macro.

Entry Requirements
R9 must contain the address of the requesting ECB.

Return Conditions

» Control is returned to the next sequential instruction (NSI).
» R15 contains a return code, which indicates the following:

0 Successful call.

4 Value specified for the LUNAME parameter was not valid. The value
cannot be all blanks or X'FFFFFFFFFFFFFFFF'.

8 Hash value specified is greater than the allowed maximum value, which is
the largest prime number that is less than the value specified for the
MAXPRIM parameter in the SNAKEY macro.

Note: This condition can be returned only when you specify the
RNHPTADR parameter. There is no maximum hash value defined
for the HASHSLOT parameter.

Programming Considerations
* This macro can be run on any I-stream.

* On return, the contents of RO and R1 are destroyed and R15 contains the return
code.

Note: R1 is preserved if you specify the WORKREG parameter.

* The DHASHC macro does not verify that the specified resource actually exists. It
simply returns the ordinal number of the NCB directory record or the address of
the RNHPT entry for the resource, regardless of whether the resource exists or
not.

Examples
None.

System Macros 213

DLCKC
DLCKC-Modify Lock and I/O Interrupt Status

Use this system macro to:

» Disable input/output (1/O) interrupts and lock a resource
* Unlock a resource and enable I/O interrupts.

Required Authorizations

Key0 Restricted System Common Storage
X X

Format

>>—L——|—DLCKC—LKWORD= (reg)—, FUNC=——LOCK ><
label —[UNLOCK—l

label
An optional label can be used with this macro.

LKWORD=(reg)
A register containing the address of a doubleword lock field. RO through R7 are
valid registers. This parameter is required.

FUNC
Specify one of the following:

LOCK
The lockword specified by the LKWORD parameter will be locked and 1/0
interrupts will be disabled on the I-stream issuing this macro.

UNLOCK
The lockword specified by the LKWORD parameter will be unlocked and 1/0
interrupts will be enabled on the I-stream issuing this macro.

Entry Requirements
» This macro should only be issued by ECB-controlled programs.

* The register referred to by the LKWORD parameter must contain the address of
a valid lockword name.

Return Conditions
* Control is returned to the next sequential instruction.

* Registers RO through R7 are saved. The contents of other registers cannot be
predicted.

Programming Considerations
This macro can only be used by ECB-controlled programs.

Examples

* To disable I/O interrupts and lock the SSST in memory:

LA R2,SSTHLCK
DLCKC LKWORD=(R2) ,FUNC=LOCK

214 TPF V4R1 System Macros

DLCKC

This causes /O interrupts on this I-stream to be disabled and the SSST to be
locked. R2 points to the SSST lock (SSTHLCK).
To enable I/O interrupts and unlock the SSST in memory:

LA R5,SSTHLCK
DLCKC LKWORD=(R5) , FUNC=UNLOCK

System Macros 215

DLNKC

DLNKC-Define Stack DSECT for Control Program (CP) Routine

Use this system macro to generate the stack DSECT for a routine that uses the

standardized linkage macros. This macro is used with other standardized linkage
macros such as the DLNKC, RLNKC, and SLNKC macros. See the following for
more information about these macros:

o FDLNKC—Define Stack DSECT for Control Drngmm ((‘D) Routine’

o ESLNKC—Control Program ((‘D) Save Link Data & Set Stack Pointer” on

bage dad.

Format

»»—DLNKC ,a

Entry Requirements
None.

Return Conditions
None.

Programming Considerations

* This macro must be used in conjunction with SLNKC to establish the stack
DSECT where registers and data may be saved by this routine.

* Any data areas which reside in the stack for this routine must be defined
between SLNKC and DLNKC.

* This macro can be run on any I-stream.
* Related macros are SLNKC, CLNKC, RLNKC.
e This macro is for use in the control program (CP) only.

Examples
None.

216 TPF V4R1 System Macros

DSDAC

DSDAC-Dismount a Symbolic Device Address (SDA)

Use this system macro to perform a software dismount of a symbolic device
address (SDA) that is associated with an input/output (1/0O) device. Once this macro
is processed for an SDA, the SDA is unavailable for any additional I/O until another
MSDAC macro is issued for the SDA.

See IMSDAC—Mount a Symbalic Device Address (SDA)” on page 356 for more

information about the MSDAC macro.

Format

»—L——'—DSDAC—SDA= labell «
label —[(reg)J

label
A symbolic name can be assigned to the macro statement.

SDA
The SDA, which can be either of the following:

labell
A halfword field that contains an SDA.

(reg)
A register that contains an SDA in bytes 2—3 and zeros in bytes 0-1.

Entry Requirements
* The TPF system must be disabled for interrupts.
* The TPF system must be running with PSW key 0.

Return Conditions
» Control is returned to the next sequential instruction (NSI).
» One of the following return codes is returned in register 15 (R15):

Return Code Meaning
0 The dismount is successful.

4 The dismount is not successful.
» The contents of all other registers are preserved across this macro call.

Programming Considerations
* This macro can only be run on an I-stream having affinity with the specified SDA.
* This macro can be used only to dismount SDAs associated with 1/0 devices.
* This macro is for use in the control program (CP) only.

Examples
None.

System Macros 217

ECBLC

ECBLC-Remove IOBs Associated with an ECB Address

Format

Use this system macro to release input/output blocks (IOBs) associated with the
specified entry control block (ECB). IOBs created by the macros that request file
address holds will be found and removed from the related queue. The IOBs can be
on the record hold table wait queue, the concurrency filter lock facility (CFLF)
asynchronous queue, the limited lock facility (LLF) attention queue, or the coupling
facility (CF) asynchronous queue.

label , FILEADDR=Ry , TIMESTAMP=RZz

label
specifies a symbolic name that can be assigned to the macro statement.

ECB=Rx
specifies the system virtual memory (SVM) address of the ECB, where Rx is a
register from RO-R7.

FILEADDR=Ry
specifies the pointer to a file address associated with a deadlock condition,
where Ry is a register from RO-R7.

TIMESTAMP=Rz
specifies the pointer to a time stamp associated with a deadlocked file address,
where Rz is a register from RO-R7.

Note: Rx, Ry, and Rz must be unique registers.

Entry Requirements

* Register 9 (R9) must contain the address of the ECB being processed.

Return Conditions

« Control is returned to the next sequential instruction (NSI).
* R14 will contain the return code:

— 0 if IOBs were found and removed

— 1 if no 10Bs were found for the input ECB.

* The contents of R15 are unknown. The contents of all other registers are
preserved across this macro call.

Programming Considerations

Examples

This macro can be run on any I-stream.

ECBLC ECB=R3

ECBLC ECB=R1,FILEADDR=R2,TIMESTAMP=R3

218 TPF V4R1 System Macros

ELLEC

ELLEC-Schedule an ECB to Exit or Resume

Use this system macro to schedule an entry control block (ECB) to exit or to
resume a suspended ECB. The exiting ECB may be running or locked. This macro
is used by the lock management program and by the ZECBL command with the E
or U parameters specified.

Required Authorizations

Key0 Restricted System Common Storage
X

Format
|—REASON=LOOP
»>—label—ELLEC >
LREASON=—|:LOCK
UNSUSP
label
A symbolic name can be assigned to the macro statement.
REASON
Specify one of the following:
LOOP
The ECB is being exited due to a ZECBL command request.
LOCK
The ECB is being exited because of a lock failure.
UNSUSP

The suspended ECB is being dispatched to resume operation by a ZECBL
command request.

Entry Requirements

* R1 must contain the address of the ECB scheduled to exit or be dispatched to
resume operation.

* R9 must contain the address of the ECB that is issuing the ELLEC macro.

Return Conditions

= Control is returned to the instruction following the macro expansion.

* The contents of R14 and R15 cannot be predicted after you run the ELLEC
macro.

Programming Considerations

* The ELLEC macro is issued when the operator requests that an ECB be
scheduled for exit or dispatched to resume operation (using the ZECBL
command).

* The lock management program issues the ELLEC macro when a record ID that
is being held by an ECB is being deleted.

System Macros 219

ELLEC

 If the entry that has been scheduled to exit regains control, the entry will be
dumped and exited by the system error routines.

Note: RO and R10 are modified by the routine used to send the entry to exit,
and their contents, as shown in the system error dump, are not relevant.

 If the entry is not sent to exit one to 2 minutes after the ELLEC macro is run, it is
flagged as hung, and a message is sent to the operator. No further attempt can
be made to remove the entry from the TPF system.

e The ELLEC macro can be used on any I-stream.

Examples
None.

220 TPF V4R1 System Macros

ENATC

ENATC-Activate or Deactivate C Function Trace for an ECB

Use this system macro to activate or deactivate C function trace for the specified
entry control block (ECB).

Format

>>—L—_|—ENATC—ECB=RX—,ENTRY= ON ,EXIT=——0N ,OTHERS=—0ON <
label —EOFFq —EOFFq —EOFF
SAME SAME SAME

label
A symbolic name can be assigned to the macro statement.

ECB=RXx
Enables or disables C function trace for the ECB whose system virtual address
(SVA) is specified in a register in the range RO through R6.

ENTRY
Specify one of the following:

ON
Enables the C function trace of program entry breakpoints for the specified
ECB.

OFF
Disables the C function trace of program entry breakpoints for the specified
ECB.

SAME
Does not change the current setting of the C function trace of program
entry breakpoints for the specified ECB.

EXIT
Specify one of the following:

ON
Enables the C function trace of program exit breakpoints for the specified
ECB.

OFF
Disables the C function trace of program exit breakpoints for the specified
ECB.

SAME
Does not change the current setting of the C function trace of program exit
breakpoints for the specified ECB.

OTHERS
Specify one of the following:

ON
Enables the C function trace of breakpoints other than program entry
breakpoints and program exit breakpoints for the specified ECB.

OFF
Disables the C function trace of breakpoints other than program entry
breakpoints and program exit breakpoints for the specified ECB.

System Macros 221

ENATC

SAME
Inherits the C function trace setting most recently set by the ZSTRC
command with the ALTER parameter specified and the
CDEBUG/NOCDEBUG or XHOOKS/NOXHOOKS keywords specified for
system-wide tracing or by the ENATC macro for individual entry control
block (ECB) tracking. See W for more information about the
ZSTRC command.

See the [[RE Program Development Suppart Referencd for more information about

C function trace.

Entry Requirements

For C-type code, code must be in key of zero and supervisor state when
processing this macro, and R13 must point to a valid system stack area.

For E-type programs, R9 must contain the ECB virtual address (EVA) of the ECB
issuing the macro.

The code issuing the ENATC macro must be on the same I-stream as the target
ECB.

The TPF system should be paused before issuing this macro on behalf of
another ECB.

Return Conditions

222

Control is returned to the next sequential instruction.

For E-type code, the contents of R10 and R14 are unknown; R15 contains the
return code.

For C-type code, register 15 contains the return code.

The contents of all other registers are preserved across this macro call.

Return codes in R15:

— If no error occurs, R15 contains zero.

— If an error occurs, the C function trace settings are not changed and an error
indication code is returned in register 15. If there are multiple errors, control is
returned to the caller after the first error is found.

An error indication code is returned in register 15 when the ECB address in
the register specified by the ECB parameter is not a valid system virtual
address (SVA) ECB address.

The following tags are generated by the ENATC macro and should be used for
interrogating the error indication code:

IT_ENATC_BAD_CID_ERR An incorrect SVM address of the C
implementation data area (CID) of the target
ECB was detected by the $GSVAC macro. The
C function trace settings are not changed.

IT_ENATC_BAD_CTTA_ERR An incorrect SVM address of the C function trace
table of the target ECB was detected by the
$GSVAC macro. The C function trace settings
are not changed.

IIT_ENATC BAD _ECB_ERR The address in the ECB parameter register is not
a valid system virtual address (SVA) ECB
address. The C function trace settings are not
changed.

IT_ENATC_BAD_TCA_ERR An incorrect SVM address of the trace

TPF V4R1 System Macros

ENATC

communications area (TCA) of target ECB
detected by $GSVAC macro. The C function
trace settings are not changed.

IT_ENATC_VA DEBUG_ERR This call is not valid when the ECB is being
debugged using TPF C Debugger for VisualAge
Client.

» Trace hook settings on return.

At the completion of the macro, C function trace hook settings have been
changed.

— An ENTRY parameter of:

ON
Changes the C function trace program entry breakpoint trace hook
instruction for the specified ECB to branch to the C function trace program
entry service routine.

A trace table entry is created on entry to a C function after the trace is
started.

OFF
Changes the C function trace program entry breakpoint trace hook
instruction for the specified ECB to a no-operation instruction.

A trace table entry is not created on entry to a C function.

SAME
Does not change the C function trace program entry breakpoint trace
hook instruction for the specified ECB, but retains its current setting.

— An EXIT parameter of:

ON
Changes the C function trace program exit breakpoint trace hook
instruction for the specified ECB to branch to the C function trace program
exit service routine.

A trace table entry is created on exit from a C function.

OFF
Changes the C function trace program exit breakpoint trace hook
instruction for the specified ECB to a no-operation instruction.

A trace table entry is not created on exit from a C function.

SAME
Does not change the C function trace program exit breakpoint trace hook
instruction for the specified ECB, but retains its current setting.

— An OTHERS parameter of:

ON
Changes the other C function trace breakpoint trace hook instructions for
the specified ECB to branch to the C function trace other breakpoints
service routine.

A trace table entry is created for the breakpoint when the breakpoint
instruction is invoked after the trace is started.

The program entry breakpoint trace hook instruction and the program exit
breakpoint trace hook instruction for the specified ECB are not changed
by ENATC OTHERS=ON. All other trace hook instructions for the
specified ECB are changed.

System Macros 223

ENATC

OFF
Changes the other C function trace breakpoint trace hook instructions for
the specified ECB to a no-operation instruction.

A trace table entry is not created on the invocation of any of the other
breakpoints.

The program entry breakpoint trace hook instruction and the program exit
breakpoint trace hook instruction for the specified ECB are not changed
by ENATC OTHERS=O0OFF. All other trace hook instructions for the
specified ECB are changed.

SAME
Inherits the C function trace setting most recently set by the ZSTRC
command with the ALTER parameter specified and the
CDEBUG/NOCDEBUG or XHOOKS/NOXHOOKS keywords specified for
system-wide tracing or by the ENATC macro for individual entry control
block (ECB) tracking. See W for more information about the
ZSTRC command.

The program entry breakpoint trace hook instruction and the program exit
breakpoint trace hook instruction for the specified ECB are not changed
by ENATC OTHERS=SAME.

Programming Considerations

* When an ECB is created, it inherits the system-wide C function trace setting. The

ENATC macro allows you to enable or disable C function trace for program entry,

program exit, and other breakpoint instructions for an individual ECB.

Code ENTRY=SAME, EXIT=SAME, and OTHERS=0ON when you want to enable

C function trace for extra or other breakpoints, but do not want to change the

current setting of the program entry or program exit breakpoints.

You should code OTHERS=0ON or OTHERS=0OFF rather than OTHERS=SAME

because OTHERS=SAME is dependent on inherited conditions while

OTHERS=ON and OTHERS=OFF are independent of inherited conditions.

Coding OTHERS=SAME inherits the C function trace setting most recently set by

the ZSTRC command with the ALTER parameter specified and the

CDEBUG/NOCDEBUG or XHOOKS/NOXHOOKS keywords specified for

system-wide tracking or by the ENATC macro for individual ECB tracking.

For example:

— Coding OTHERS=SAME disables the C function trace of breakpoints other
than program entry breakpoints and program exit breakpoints for the specified
ECB when:

- The ZSTRC command is entered with the ALTER parameter and the
NOHOOKS keyword specified, system-wide tracking of extra or other hooks
is disabled

- OTHERS=OFF was coded previously, ECB tracing of extra or other hooks
for an individual ECB is disabled.

— Coding OTHERS=SAME enables C function trace of breakpoints other than
program entry breakpoints and program exit breakpoints for the specified ECB
when:

- The ZSTRC command is entered with the ALTER parameter and the
CDEBUG and XHOOKS keywords specified, system-wide tracing of extra
or other hooks is enabled

- OTHERS=ON was coded previously, ECB tracing of extra or other hooks
for an individual ECB is enabled.

224 TPF V4R1 System Macros

Examples

ENATC

If all of the ENTRY, EXIT, and OTHERS parameters are coded with the SAME
parameter, a macro error message occurs because the macro effectively
becomes a no-operation (you have not modified any breakpoint).

The CTRC user exit is provided for you to trace additional information.

Use the ENATC macro to trace 1ISO-C programs that have been compiled using
the TEST option of one of the IBM C/370 family of compilers supported by the
TPF 4.1 system.

ENATC ECB=R6,ENTRY=0N,EXIT=0ON,OTHERS=0FF
This invocation:

— Changes the C function trace for the ECB whose SVA is contained in register
6.

— Enables the C function trace at function entry point.
— Enables the C function trace at function exit point.

— Disables the C function trace breakpoints for the BLOCK, LINE, PATH, and so
on.

— For E-type programs, R9 must contain the ECB virtual address (EVA) of the
ECB issuing the macro.

ENATC ECB=R5,ENTRY=0FF,EXIT=SAME,OTHERS=0N
This invocation:

— Changes the C function trace for the ECB whose SVA is contained in register
5.

— Disables the C function trace at function entry point.
— Does not change C function trace at the function exit point.
— Enables C function trace breakpoints for the BLOCK, LINE, PATH, and so on.

— For E-type programs, R9 must contain the ECB virtual address (EVA) of the
ECB issuing the macro.

ENATC ECB=R4,ENTRY=0FF,EXIT=0FF,0THERS=0N
This invocation:

— Changes the C function trace for the ECB whose SVA is contained in register
4.

— Disables the C function trace at the function entry point.
— Disables the C function trace at the function exit point.
— Enables the C function trace breakpoints for BLOCK, LINE, PATH, and so on.

— For E-type programs, R9 must contain the ECB virtual address (EVA) of the
ECB issuing the macro.

System Macros 225

ESFAC

ESFAC-Obtain Symbolic File Address Information

Use this system macro to obtain information about the characteristics of a specific
symbolic file address as follows:

* The address is a fixed or pool address.
* The record is small, large or 4 K in size.
* The record is duplicated or nonduplicated.

» For a pool file address reference format (FARF) address, the address is
short-term or long-term.

» If a fixed FARF address is common to all processors, I-streams, and users of the
subsystem, or is unique to a combination of processors, I-streams, and users of
the subsystem.

* |f the address is a FARF3, FARF4, FARF5, or FARF6 address.

Required Authorizations

Key0 Restricted System Common Storage
X
Format
(1) (2)
>> ESFAC s >
|—ZabeZJ DX—————— (Ry)
(Rx) ———MMM8 scon_label—
,ADDR= (Rz)—_l—
—[Zabell
Notes:
1 file_address
2 extended_info_address

label
A symbolic name can be assigned to the macro statement.

file_address
Location of the file address.

Dx A file address reference word (DO-DF) which contains the file address.

(Rx)
A register that contains the file address. For E-type programs this may be
RO-R7. For control programs (CPs), this may be R1-R10, R14, or R15.

ADDR=(Rz)|labell
This parameter specifies the general register containing the location, or a
label indicating the location, of an 8-byte file address. For E-type programs,
this can be R1-R7. For CPs, this can be R1-R10, R14, or R15.

extended_info_address

This parameter specifies the address of where the extended information is to be
returned.

226 TPF V4R1 System Macros

ESFAC

(Ry)
A register specifying the address where the extended information is to be
returned. For E-type programs this may be R1-R7. For CPs, this may be
R0-R10, R14, or R15.

scon_label
A label that is resolvable as an S-type constant. For E-type programs, the
SCON base must be in the range R1-R7 or R9 if an entry control block
(ECB) work area is used. For CPs, the SCON base may be any register.

The address specified by the second positional parameter points to a data area
structured according to DSECT DCTSON.

Entry Requirements

» If an ECB data level is specified to hold the file address, R9 must contain the
address of an ECB.

* The symbolic file address must be contained in file address reference word
(FARW) CE1FMx, where x is the specified ECB data level or it must be
contained in a register. If this information is not provided, the ADDR parameter
must be coded to point to an 8-byte file address.

Return Conditions
» Control is returned to the next sequential instruction.

» Condition code 0 is returned if the file address is successfully decoded; condition
code 1 if it is not.

* The FARW at the specified level, if used, is unchanged.

* For E-type programs, RO—R7 are saved in the ECB at CELSVR and restored on
return from the service routine. For CP programs, all registers are preserved
across the macro call except RO and R1 that are used for parameters and R14
and R15 that are used for linkage to the service routine.

Programming Considerations
This macro can be run on any I-stream.

Examples
None.

System Macros 227

FACZC
FACZC-Compute File Address

Use this system macro to provide the interface to file address compute program
(FACE) address generation routines. The service is similar to calling the FACS
segments or the FAC8C macro service routine, but additionally this service allows
access to records that are unique to a subsystem user (SSU), processor, or
I-stream (within a given subsystem).

If defaults are taken, an entry control block (ECB) must be available because the
subsystem, DBI, and I-stream of the current ECB are used. Control program (CP)
routines with no associated ECB can take defaults for only the processor and
I-stream, and must provide subsystem and SSU information.

Required Authorizations

KeyO Restricted System Common Storage

X

Format

,DEFSS=YES ,DEFSSU=YES ,DEFPROC=YES
[1 1]

>>—L——|—FACZC—PARMS=RX
label I—,DEFSS=NO—I l—,DEFSSU=N0—I l—,DEFPR0C=NO—I

|—,DEFISN=YES—I |—,TYPE=FACS—| |—,DSECT=N0—|
I—,DEFISN=N0—I ,TYPE=FACE l—,DSECT=YES—|
,TYPE=USER
,TYPE=FACE8
,TYPE=FACS8
label
A symbolic name may be assigned to the macro statement.
PARMS=Rx

Rx specifies a register (RO through R7 for E-type segments, any register except
RO, R11 through R13 for CP segments) containing the starting address of a
parameter block, as described by the IDSFCZ macro. Fields in the input area of
this block that are to be provided by the caller must be initialized before
invocation of the macro. Output area fields will be filled in by the macro service
routine. In particular, the return code field should be inspected to determine the
results of the call.

Note: The IFCZREC field must contain an 8-byte character string record type
name, padded on the right with blanks.

DEFSS
Specify one of the following:

YES
Sets a parameter block value so that the current DBI is used to find the
FACE table. The caller must ensure an ECB address is contained in R9.

228 TPF V4R1 System Macros

FACZC

NO
Indicates that the correct subsystem index will be provided in the parameter

block by the caller.

DEFSSU
Specify one of the following:

YES
Sets the parameter block value for SSU to the current SSU from the ECB.
This value is then used to locate the proper record for fixed record types for
which any SSU/processor/l-stream uniqueness exists. The caller must
ensure an ECB address is contained in R9.

NO
Indicates that the correct subsystem user index will be provided in the
parameter block by the caller.

DEFPROC
Specify one of the following:

YES
Sets the parameter block value for processor to the current processor
ordinal from the TPF system. This (zero-relative) value is then used to
locate the proper record for fixed record types for which any
SSU/processor/I-stream unigqueness exists.

NO
Indicates that the processor ordinal will be provided in the parameter block

by the caller.

DEFISN
Specify one of the following:

YES
Sets the parameter block value for I-stream to the current I-stream number
from the ECB, if an E-type call otherwise the current I-stream number is
used. This (one-relative) value is then used to locate the proper record for
fixed record types for which any SSU/processor/I-stream unigueness exists.
The caller must ensure an ECB address is contained in R9.

NO
Indicates that the I-stream number will be provided in the parameter block
by the caller.
TYPE
Specify one of the following:
FACE

Sets a parameter block value to indicate a FACE-type call. The record type
number must be placed in the IDSFCZ parameter block input area prior to
macro invocation.

FACS
Sets a parameter block value to indicate a FACS-type call. The symbolic
record type name must be placed in the IDSFCZ parameter block input
area prior to macro invocation. The default value is TYPE=FACS.

USER
The appropriate entry type information must be set prior to calling FACZC.
The entry type flag must be set. The record type field must be initialized to
either a 8-character symbolic record type name (FACS interface) or a
2-byte record type number (FACE interface).

System Macros 229

FACZC

FACES
Sets a parameter block value to indicate an 8-byte file address type of call.
An 8-byte ordinal number and record type number must be supplied on
input, and an 8-byte file address and an 8-byte maximum ordinal number
are provided on output in the IDSFCZ parameter block. This call only
supports the record-type number interface (similar to the FACE interface).

FACSS8
Sets a parameter block value to indicate an 8-byte file address type of call.
An 8-byte ordinal number and the symbolic type name must be supplied on
input, and an 8-byte file address and an 8-byte maximum ordinal number
are provided on output in the IDSFCZ parameter block. This call only
supports the symbolic record-type interface (similar to the FACS interface).

DSECT=NO|YES

Optional parameter used to request the generation of a DSECT describing the
parameter list generated for the FACZC call rather than the generation of
service routine linkage. The use of this parameter should be limited to the
FACZC service routine. If DSECT=YES is coded, no FACZC expansion will be
generated. The default is DSECT=NO.

Entry Requirements

PARMS=Rx must specify a register containing the address of a block of
contiguous, addressable storage as described by the IDSFCZ macro. These
input area fields must be filled in with correct values or the default must be
specified on the FACZC macro.

The ordinal requested and either symbolic record type or record type number
fields are required (depending on the FACE or FACS interface chosen). All other
fields are optional, except for CP routines with no associated ECB. These
routines must supply all the SSI and SSU values, since there is no ECB from
which to take default values.

If these values are to be defaulted, an ECB must be addressable in the calling
routine. To provide one of these values, DEFxxxx=NO must be coded, in addition
to field initialization before the call.

Return Conditions

Control is returned to the next sequential instruction (NSI).

For ECB-controlled segments, the contents of registers RO through R7 will be
preserved. The contents of R14, and R15 are unpredictable.

For unique records the IFCZUNIQ bit in the IFZCUNIQ field of DSECT IDSFCZ is
set. Bits IFCZPID, IFCZIID, IFCZSID, and IFCZUND in field IFCZUNQ of IDSFCZ
are set indicating the owning processor, I-stream, ssu and uniqueness type
respectively.

For CP segments, the contents of registers R1 through R13 and R15 will be
preserved; RO will be used for parameter passing; the contents of R14 is
unpredictable.

Output area fields will be filled in by the macro service routine, as specified in the
IDSFCZ definition.

The FARFx file address will be returned if the return code in the parameter block
indicates a normal return.

If TYPE=FACES8 or TYPE=FACSS, an 8-byte file address and an 8-byte
maximum ordinal number are returned.

230 TPF V4R1 System Macros

FACZC

The following return conditions are found in the IFCZRET field.

Field Name Condition Value Description of Error

IFCZNRM 0 Normal Return

IFCZNIU 1 Record Type is Not In Use

IFCZRTH 2 Record Type does not exist or exceeds
FACE table limit

IFCZROR 3 Record ordinal number is outside allowable
range

IFCZNSP 4 No split chain for record

IFCZPOR 5 Input parameter is outside of allowable
range.

Field IFCZMNX contains the largest ordinal number for the referenced record
type. If IFCZMNX is zero, an error occurred that is reported in IFCZRET. If
TYPE=FACES or if FACS8 was used for this call, the maximum 8-byte ordinal
number is in field IFCZMXS8. If IFCZMX8 is zero, an error occurred.

The FARF address for that record type and ordinal (for the subsystem and SSU,
processor, |-stream) will be returned, unless an error has occurred.

If the return code indicates an error, it will also specify what type of error
occurred.
If the error is an ordinal range error, the next available ordinal number will be

returned, unless the requested ordinal is higher than the record type allows, in
which case zero is returned.

Programming Considerations

This macro can be run on any I-stream.
This macro may be used by E-type programs or control program (CP) code.

If used by CP routines which do not have access to an ECB, the SSUI and SSU
values must be provided. This is done by initializing the input fields of the
IDSFCZ parameter block before the FACZC macro is issued.

A symbolic record type (FACS interface) or record type number (FACE interface)
and an ordinal in that record type must be provided. The type of call (FACS, the
default, FACE, FACES, or FACSS) is specified using the TYPE parameter.
Optionally, a subsystem, subsystem user, processor, and I-stream (or any
combination of these) can be provided.

Pool FARF addresses can be generated just like fixed file addresses by using
FACZC as well as FACE and FACS. The following record type names are
predefined for the various pool types.

Pool Type Description

#IPSLT Small Long-Term Non-Duplicated
#IPSST Small Short-Term

#IPSDP Small Long-Term Duplicated
#IPLLT Large Long-Term Non-Duplicated
#IPLST Large Short-Term

#IPLDP Large Long-Term Duplicated
#IPALT 4 K Long-Term Non-Duplicated

System Macros 231

FACZC

#IPAST 4 K Short-Term
#IP4DP 4 K Long-Term Duplicated.
#IP4D6 4 K Long-Term Duplicated FARF6.

This interface is not a substitute for the GETFC interface. Pool file addresses
must be obtained initially using the GETFC macro. See [[RE_General Macrad for
more information about the GETFC macro.

Examples
The following is an example of a FACZC macro call.

XC IFCZORD,IFCZORD ORDINAL ZERO

MVC IFCZREC(8),=CL8'#PDREU' FACE TYPE

XC IFCZPRO,IFCZPRO CLEAR OUT

MVC IFCZPRO+1(1),PI1IPT SET UP PROCESSOR ORDINAL

FACZC PARMS=R5, GET FILE ADDRESS
DEFSS=YES, USING DEFAULT SS
DEFSSU=YES, SSU
DEFISN=YES, I-STREAM
DEFPROC=NO,

TYPE=FACS, USING FACS INTERFACE
DSECT=NO

CLI ~ IFCZRET,IFCZNRM OK RETURN?

BNE CBR1ERRI NO, ERROR

L R2, TFCZMNX SAVE MAXIMUM RECORD

MVC CELFM2(4),IFCZADR MOVE ADDRESS TO LEVEL 2
XC CE1FA2(4),CE1FA2 CLEAR ID, RCC
FIWHC D2,CBR1ERR2

232 TPF V4R1 System Macros

FCTLC

FCTLC-File Control

Format

Use this system macro to request control program (CP) DASD services from the
CCSONS CP segment. This macro is restricted to specific use by the DASD
support routines because the services provided are a code continuation of the
issuing real-time program.

Required Authorizations

Key0 Restricted System Common Storage
X

>>—L——|—FCTLC—TYPE=——LOCK1,—PARM1= label »><
label —[(Rx)—l

-LOCK2 ,~PARM1=——from_label——,-PARM2=——to_label
(Rx) —[(Ry)——l_

—ATTNQ,—PARM1= label ,—PARM2= Zabel_—li
Lo Ly

—PURGE ,—PARM1= label
—[(Rx)—l

—ENMSG,—-PARM1=Dx
—EMMSG,—PARM1=Dx
—CRCJIX ,—PARM1=DX—,—PARM2=—|:Z abel_l

(x)
—MODDOWN ,—PARM1=—|:Z abel
(Rx)—

—LOSTINT

—READMSG,—PARM1= label
—[(RX)J

—CUNLOCK:
—STRUCT ,—PARM1=—|:labe l

(Rx)—]

—CFLKSPAV,—PARM1= label
—[(Rx)—l

label
A symbolic name can be assigned to the macro statement.

TYPE
The name of the process to be supplied by CCSONS. The values of PARM1
and PARMZ2, if used, depend on the service being requested. TYPE is one of
the following:

LOCK1
Lock phase 1 processing for move locks support. This causes CCSONS to
move any hold-type requests from the module queue to the module control
unit attention queue. If a hold-type request is active, the request is halted.

PARM1
The label of a halfword that contains the relative module number or a
register value in the format (Rx) that contains the relative module
number. The MFST entry of the subject module must be marked in
LOCK SUSPENDED state.

System Macros 233

FCTLC

LOCK2
Lock phase 2 processing for move locks support. This causes CCSONS to
move any requests on attention queue of the FROM module to the attention
queue of the TO module.

PARM1
The relative module number of the FROM module. This must be
specified as either the label of a halfword that contains the relative
module number or a register value in the format (Rx) which contains the
relative module number. The MFST entry of the subject module must be
marked in LOCK SUSPENDED state.

PARM2
The relative module number of the TO module. This must be specified
as either the label of a halfword that contains the relative module
number or a register value in the format (Ry) which contains the relative
module number. Register 14 cannot be used for PARM2 value. The
MFST entry of the subject module must be marked in LOCK
SUSPENDED state.

ATTNQ
Process the attention queue and attempt to schedule all pending requests.

PARM1
Either the label of a halfword that contains the relative module number

or a register value in the format (Rx) that contains the relative module
number.

PARM2
Specify the relative module number of the target module. Specifying a
-1 indicates a lock recovery request for a CFLF control unit (CU). The
specification must be either the label of a halfword or a register (other
than R14) containing the module number.

PURGE

Stop any active request and purge the rest of the device queue for the
specified module.

PARM1
Either the label of a halfword that contains the relative module number
or a register value in the format (Rx) that contains the relative module
number. The MFST entry of the subject module must be marked as
unavailable to normal system requests.

ENMSG
Call CJIW to create the appropriate text for a module down message based
on the information provided by the input work block (ICIXWK).

On return, the ICIXWK block contains the message at CJXWKMSG.

PARM1
The data level index that contains the initialized ICIXWK block. PARM1
is specified as a character string of Dx, where x is the hexadecimal
data level number (0—F).
EMMSG

Call CJIW to create the appropriate text for a device error message based
on the information provided by the input work block (ICIXWK).

On return, the ICIXWK block contains the message at CJXWKMSG.

234 TPF V4R1 System Macros

FCTLC

PARM1
The data level index that contains the initialized ICIXWK block. PARM1
is specified as a character string of Dx, where x is the hexadecimal
data level number (0—F).

CRCJIX
Allocate and initialize an ICIXWK block to use for error recording and

logging.

On return, an initialized ICIXWK block is attached to the data level
specified by PARM1 for the module specified by PARM2. The address of
the block is at CE1CRXx, where x is the data level (0-F).

PARM1
An available data level index on which the initialized ICIXWK block will
be returned. PARM1 is specified as a character string of Dx, where X is
the hexadecimal data level number (0 through F).

PARM?2
Either the label of a halfword that contains the relative module number
or a register value in the format (Rx) which contains the relative module
number of the module whose block is being initialized.

MODDOWN
Force the specified module offline.

PARM1
The label of a halfword that contains the relative module number or a
register value in the format (Rx) that contains the relative module
number of the module that is to be forced down.

LOSTINT
Scan for lost interrupts.

READMSG
Request a Read Attention I/O operation to the specified device.

PARM1
The label of a halfword that contains the relative module number or a
register value in the format (Rx) that contains the relative module
number of the module that is to be used to perform the read attention
message |/O operation.

CUNLOCK
Issue any cached unlocks.

STRUCT
Process the coupling facility (CF) list structure queue and attempt to
schedule all pending requests.

PARM1
Either the label of a halfword that contains the relative module number
or a register value in the format (Rx) that contains the relative module
number.

CFLKSPAV
Process the CF list structure queue used by CF record lock support to
reschedule all pending requests that were queued because of a lock table
full condition.

PARM1
The label of a halfword or register value in the format (Rx) that contains
the index (0—31) in the CF locking table (CFLT) for the CF whose

System Macros 235

FCTLC

structure queue must be examined so that the input/output blocks
(IOBs) can be restarted if they were queued because of a lock space
full condition.

Entry Requirements
R9 must contain the address of the ECB that is being processed.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

* The contents of R14 and R15 are unknown. The contents of registers RO—R7 are
preserved across this macro call.

¢ The condition code on return from this macro is unknown.

Programming Considerations
* This macro can be run on the main I-stream only.
* To ensure completion of the operation, a WAITC macro must be issued.

* Only system programmers should use this macro. This macro is designed to be
an extension of real-time code sequences.

Examples
None.

236 TPF V4R1 System Macros

FDCTC

FDCTC-File Data Chain Transfer

Use this system macro to process a chain of user-defined format-0 or format-1
channel command words (CCWSs) to:

* Read records from a file into processor storage

* Write records from processor storage to a file.

This is a single instance FIND or FILE macro. Only the copy of the record specified
by the user-defined address will be read or written regardless of the record’s
duplication factor. This macro does not obtain storage from or return storage to any
storage pool.

Required Authorizations

KeyO Restricted System Common Storage
X

Format

(1) ,CCW1=NO
>>—L——|—FDCTC—DX l_ _l >
label i:,E— l—,CCWl=YES—|

,ASYNC—

Notes:
1 Options
label

A symbolic name may be assigned to the macro statement.
Dx A file address reference word (DO-DF) must be specified.

options
The following options are available:

E Extended status and error data are requested.

ASYNC
Requests that the 1/O operation receive asynchronous notification of
completion for operations that may take a long time to complete. Operations
in this category are associated with the Perform Subsystem Function and
Set Subsystem Mode CCW.

CCW1=NOJ|YES
This parameter is used to indicate the CCW format in the specified data level. If
CCWI1=YES, the CCW is treated as CCW format-1, otherwise CCW format-0 is
assumed. CCW1=NO is the default.

Entry Requirements
* R9 must contain the address of the ECB being processed.

* A module number and the storage location of the first user-supplied CCW must
be contained in the file address reference word (FARW) for the specified data
level. The format follows here.

System Macros 237

FDCTC

CE1FAX Bytes 0-3

Storage address of first CCW.

CE1FMx Bytes 0-1

2-byte module number (general data sets
use byte 0 only).

You must specify all fully constructed chained CCWs desired, including the SEEK
command, before processing of this macro.

Storage locations into which data is to be read to or written from must be
obtained by you and inserted into the CCWs before processing of this macro.

If E is specified, the core block reference word, CELCRX, associated with the
FARW, must contain a storage block formatted using the FIOCB DSECT:

— The channel address word (CAW) stored in FIOCAW. The storage key must
be in the high order byte of the FIOCAW.

— The FIOFLG set so that:

Bit0=0 SONS will retry the error.

Bit0=1 SONS will not retry the error.
Bit1=0 Return sense data from the last retry.
Bitl=1 Return sense data from the first retry.

Bits 2 through 7

Reserved for use by IBM.

— FIOPATH field indicates the user specified path for SONS to use. If FIOPATH
is 0, SONS will use the logical path mask indicated in the MFST (MF1LPM).

— Minimum size 40 hexadecimal bytes (64 decimal) reserved.

If ASYNC is specified, the core block reference word, CELCRX, associated with
the FARW (FIOCB), must contain a core block formatted as follows.

token num flag time

time ///7 1111 1117

cCCcw

— The channel address word (CAW) stored at location FIOCAW
— The asynchronous event token number stored at location FIOTKN
— The flag byte at location FIOAIND, set so that

bits

01234567

L\ A J VF

reserved for IBM use
error completion bit
successful completion bit
interrupt processing bit

Bit0=0 The asynchronous event lost interrupt processing is allowed.

Bit0=1 The asynchronous event lost interrupt processing is inhibited.

238 TPF V4R1 System Macros

FDCTC

Bit1=0 The attention message buffer is kept on successful
completion.

Bitl=1 The attention message buffer is discarded on successful
completion.

Bit2=0 The attention message buffer is kept on error completion.

Bit2=1 The attention message buffer is discarded on error
completion.

Bits 3 through 7
Reserved for use by IBM.

— The asynchronous event timeout value (in seconds) should be stored at
location FIOTIME if a long event is expected. The default timeout value is 5
minutes.

FIOLIT DS H ASYNC LOST INTERRUPT TIMEOUT VALUE

FIOTIME EQU (5%60) DEFAULT TIMEOUT VALUE (5 MINUTES)

— The CCW chain must contain a single Set Subsystem Mode or Perform
Subsystem Function CCW.

Return Conditions

Control is returned to the next sequential instruction (NSI).

The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

If this macro is called from a program running in 24-bit mode, the condition code
is saved across this macro call. If the macro is called from a program running in
31-bit mode, the condition code upon return from this macro is unknown.

The status of the operation is unknown, unless E or ASYNC is specified.

The contents of the core block reference word (CBRW) at the specified level is
unchanged, unless E or ASYNC is specified.

The FARW at the specified level is unchanged, on a normal return. On an error
condition, the address portion of the channel status word (CSW) is saved at
CE1FAX, unless E or ASYNC is specified.

If E or ASYNC is specified and no error occurs, the CSW is returned at location 8
in the area pointed to by CE1CRx.

Programming Considerations

This macro can be run on any I-stream.

This macro is restricted to system use only. Use caution when using this macro,
as it is possible to destroy data on the random access files.

No check of record type or record code check is made.

The operational program may not use the specified level upon return from the
control program (CP).

To ensure completion of the operation, a WAITC macro must be issued.
The control program (CP) will;

— Translate CKD CCWs to ECKD (*) CCWs if the device is buffered or cached
and the E or ASYNC option is not specified

— Transfer control to the user-supplied CCWs
— Handle the following error conditions:
- Device not ready or intervention required

System Macros 239

FDCTC

- Defective track condition

- Seek check or data check
- No record found

- Unit exception.

— Upon noncorrectable error conditions, the gross error indicator for the
specified level will be set, and the detailed error indicator’s bit zero will be set
to 1. Also, the address portion of the CSW will be inserted into the first 4
bytes of the FARW for the specified level, unless E or ASYNC is specified.

* The CCW prefetch bit in the operation request block (ORB) is not enabled for
FDCTC channel programs.

Examples
None.

240 TPF V4R1 System Macros

FLFAC

FLFAC-Flush a Record from VFA Buffers

Use this system macro to flush a record from the virtual file access (VFA) buffers.
The next request for this record will force a read from file.

Required Authorizations

Key0 Restricted System Common Storage
X
Format
,FILE=YES ,REG=R14
s []
label l—,FILE= NO l—,REG=Rx—|
ONLY
label
A symbolic name can be assigned to the macro statement.
FILE
Specify one of the following:
YES
Requests the flushed record be filed out to DASD if the record is delayed
pending a file. YES option is assumed when the FILE parameter is omitted.
NO
Indicates the record should not be filed out to DASD, even if it is delayed
file pending.
ONLY

The flushed record is filed out to DASD only if it is delayed file pending. If it
is not delayed file pending, no change is to be made to the record’s VFA
residence (and it is available in VFA).

REG=R14|Rx
A general register, one of RO through R7 or R14 through R15, containing the
address of a parameter list consisting of:

* FARF address of the record to be flushed. (4 bytes)
* DBI and complement of record to be flushed. (2 bytes)

Note: If issuing this on a program record, the PBI and compliment of the
issuing ECB should be used.

* SSU and complement of record to be flushed. (2 bytes)
» File byte indicator (1 byte set up by the macro itself)

When the REG parameter is omitted, R14 is assumed.

Entry Requirements
* This macro can only be called from E-type programs.

System Macros 241

FLFAC

The routine calling the FLFAC macro must set up the file address reference
format (FARF) address, DBI and complement, and subsystem user (SSU) and
complement, as well as provide space for the file byte indicator.

Return Conditions

Control is returned to the next sequential instruction (NSI).
The contents of RO through R7 are preserved across this macro call.

The macro service routine will set R14 to contain a hexadecimal return code that
can be used by the calling program.

R14 = 00 » Record was successfully flushed from VFA
R14 = 04 » Record not in VFA

R14 = 08 » Record found but was not filed

R14 = OC » Invalid file address

The contents of R15 are unknown.

Programming Considerations

This macro can be run on any I-stream.

When issuing a FLFAC on a program record the PBI and compliment should be
used rather than the DBI and compliment. The record was brought into VFA
using the PBI and compliment to access the correct control tables so the same
should be used to flush the program record.

If the program to be flushed has been locked in memory (using the GETPC
macro), the FLFAC macro will not flush the program until it is unlocked (by using
the RELPC macro).

If a FLFAC macro is issued within a commit scope, the effect of the FLFAC
macro is deferred until the root scope commits the transaction.

The processing sequence of file-type macros and FLFAC macros is important. In
a commit scope, the FLFAC macro preserves the logical sequence of files and
FLFACs. The following sequence results in a value of 2 in record X:

1. Begin the transaction.

2. FILEC record X with a value of 1.
3. FLFAC FILE=NO for record X.
4. FILEC record X with a value of 2.
5. Commit the transaction.
Examples
None.

242 TPF V4R1 System Macros

FLSPC

FLSPC-File a Special Record

Use this system macro to write a single non-TPF-type record that is no longer than
4095 bytes to any cylinder or from main storage to a disk module. The storage
block at the specified entry control block (ECB) data level or data event control
block (DECB) is not disassociated from the ECB.

The FLSPC macro causes virtual file access (VFA) to be searched for the record. If
the record is in VFA, it is forced out of VFA before the new data is written to the

DASD.
Required Authorizations
Key0O Restricted System Common Storage
X

Format

(1)
>>—l_—_|_FLSPC Dx ,—FE >
label ,DECB=—|:(R)<)‘<|J
labell

Notes:
1 symboll
label

A symbolic name can be assigned to the macro statement.

symboll
Specifies the ECB data level (DO-DF) to be used by the service routine.

DECB=(Rx)|labell
The label or general register (RO—R7) containing the address of the DECB,
which contains the file address of the record to be filed.

E This parameter is required. The file address is in extended mode and contained
in the extended file address word defined by symboll or the DECB parameter.

Entry Requirements
* This macro is intended only for control program (CP) support usage.
* R9 must contain the address of the ECB being processed.

* A block of storage must be held by the ECB at the specified core block reference
word (CBRW) (CE1CRn) or DECB (IDECDAD).

* The file address must be contained in the specified file address reference word
(FARW) (CE1FAN) or DECB (IDECFRW). The record type and record code check
(RCC) are optional.

* When accessing a general data set, the appropriate GDSNC or GDSRC macro
must be issued to set up the file address before using the FLSPC macro.

* The file address must be in the form BBCCHHR and contained in the extended
FARW (CE1FXn) for the ECB data level or DECB (IDECFXO0). The bin number

System Macros 243

FLSPC

(BB) should be zeroed and the module number will be the normal halfword
number stored in field CELFMn or field IDECFMOD for the DECB.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

» If this macro is called from a program running in 24-bit mode, the condition code
will be saved across this macro call. If the macro is called from a program
running in 31-bit mode, the condition code upon return from this macro is
unknown.

* The FARW at the specified ECB data level (symboll) or DECB is unchanged.
» The status of the operation is unknown.

* The block of storage at the specified ECB data level (symboll) or DECB is not
available.

Programming Considerations
* This macro can be run on any I-stream.
* This macro is the only file type macro available for use on cylinder 0, head 0.

* A check is made by the control program (CP) to determine if the ECB is holding
a block of storage at the specified ECB data level (symboll) or DECB and if the
file address at the specified ECB data level or DECB is valid.

* The operational program may not use the specified level (symboll) or DECB on
return from the CP.

* To ensure completion of the operation, a WAITC macro must be issued.

* The number of bytes to be written is located in the byte count field of the CBRW
at the specified ECB data level or DECB.

* The core block is available to the operational program upon successful I/O
completion.

 If this macro is used on a record defined as a VFA synchronization candidate, the
record update will not be synchronized with other processors. The record will
only be flushed from VFA on the processor from which the macro was issued.

 If the location of the data event control block specified by the DECB parameter
does not refer to a valid DECB, control is transferred to the system error routine.

Examples

The input to write record type SlI, with a code check of X'01"' and file address of M-
20, C- 02, H- 04, R- 09 from data level 1 follows in this example.

CEICR1- 00012480 0031041F (attached block)
CE1FAl- E2C901.. (record type, code check)
CE1FM1- 0014.... (module number—mm)
CE1IFX1- 00000002 000409.. (bbcchhr.)

FLSPC D1,E

The input to the Sl write record type, with a code check of X'01' and file address of
M- 20, C- 02, H- 04, R- 09 from data level 1 follows in this example.

244 TPF V4R1 System Macros

FLSPC

CE1CRI- 00012480 0031041F (attached block)
CE1IFAl- E2C901.. (record type, code check)
CE1FM1- 0014.... (module number—mm)
CEIFX1- 00000002 000409.. (bbcchhr.)

LABEL FLSPC D1,E

The input to the SI write record type with a code check of X'01' and file address of
M- 20, C- 02, H- 04, R- 01 from a DECB follows in this example.

IDECCTO- 00982000 0031041F (attached block)

IDECRID- E2C901.. (record ID, record code check)
IDECFMO- 0014.... (module number—mm)

IDECFX0- 00000002 000401.. (bbcchhr.)

FLSPC DECB=(R7),,E

System Macros 245

FLVFC
FLVFC—Flush a Record from VFA Buffers

Use this system macro to flush a record from virtual file access (VFA). The next
request for this record may force a read from file depending on the options used.

Required Authorizations

Key0 Restricted System Common Storage
X
Format
LFILE=YES——— ,MCHR=NO ,GDS=NO
»>—label—FLVFC |_ |_ _| |_ >
l—,FILE= NO l—,MCHR=YES—| l—,GDS= YES
—EONLY ALLBLKS
RECORD
,REG=R14 L, TYPE=FA4
i 1 []
I—,REG=RX—| l—,TYPE=FA8—|
label
A symbolic name can be assigned to the macro statement.
FILE
Specify one of the following:
YES
Requests that the flushed record be filed out to DASD if the record is
delayed file pending before it is deleted from VFA. This is a purge with file
down.
NO

Requests the record not be filed out to DASD even if it is delayed file
pending. This is a purge without file down.

ONLY
Requests the flushed record be filed out to DASD if the record is delayed
file pending. Otherwise no change is to be made to the record’s VFA
residence. It will be left as available in VFA. This is only a file down if
delayed filing is pending.

RECORD
Requests a copy of the record, if the record is delay file pending, be passed
to the exception recording routines to be exception recorded. The record
will remain in VFA in delay file pending status.

If the FILE parameter is omitted, the YES option is assumed.

MCHR
Specify one of the following:

YES
Requests the flushed record be located using the specified hardware
address.

246 TPF V4R1 System Macros

FLVFC

NO
Requests the record be located using the supplied FARF address with its
associated DBl and SSU values.

When the MCHR parameter is omitted, NO is assumed.

GDS=NO|YES|ALLBLKS
This parameter specifies that the file address that is passed is for a general file
(GF) or general data set (GDS) record. The ALLBLKS option specifies that all
blocks for the data set will be flushed.

When the GDS parameter is omitted, NO is the default.

REG=R14|Rx
A general register, one of RO through R7 or R14 through R15, containing the
address of the parameter list defined by the IDSFLV macro.

TYPE

Indicates the length of the file address to be flushed. Specify one of the

following:

FA4
Indicates that the address of the file record to be flushed is a 4-byte file
address. The address is located in field IFLVFARF of the parameter list
defined by the IDSFLV macro.

FA8

Indicates that the address of the file record to be flushed is an 8-byte file
address. The address is located in field IFLVFA8 of the parameter list
defined by the IDSFLV macro.

Entry Requirements

* The routine invoking the FLVFC macro must build a parameter list as defined by
the IDSFLV macro and pass the parameter list address in the register specified
by the REG parameter.

* If MCHR=YES is specified, the TYPE parameter is ignored because the record is
specified in the hardware address format and must be present in fields IFLVMOD
and IFLVCHR as defined in the IDSFLV macro.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

» For a CP invocation, the contents of RO—R13 are preserved across this macro
call.

* For a ECB invocation, the contents of RO—R7 are preserved across this macro
call.

¢ The macro service routine will set R14 to contain a hexadecimal return code that
can be used by the calling program as follows.

R14 = 00 » Record was successfully flushed from VFA
R14 = 04 » Record not in VFA

R14 = 08 » Record found but was not filed

R14 = OC » Invalid file address

¢ The contents of R15 are unknown.

Programming Considerations
* This macro can be run on any I-stream.
* This macro can be called from E-type or C-type programs.

System Macros 247

FLVFC

 If the program to be flushed has been locked in memory (using the GETPC
macro), the FLVFC macro will not flush the program until it is unlocked (by using
the RELPC macro).

* If a FLFVC macro is issued within a commit scope, the effect of the FLFVC
macro is deferred until the root scope commits the transaction.
The processing sequence of file-type macros and FLFVC macros is important. In
a commit scope, the FLFVC macro preserves the logical sequence of files and
FLFVCs. The following sequence results in a value of 2 in record X:

1. Begin the transaction.

2. FILEC record X with a value of 1.
3. FLFVC FILE=NO for record X.
4. FILEC record X with a value of 2.
5. Commit the transaction.
Examples
None.

248 TPF V4R1 System Macros

FNSPC

FNSPC-Find a Special Record

Use this system macro to read a single non-TPF-type record no longer than 4095
bytes from any cylinder. The control program (CP) obtains a 4095-byte block of
storage and the address of the block is placed in the core block reference word
(CBRW).

The FNSPC macro causes virtual file access (VFA) to be searched for the record. If
the record is in VFA, it is forced out of VFA before the record is read from the
specified DASD.

Required Authorizations

Key0O Restricted System Common Storage
X

Format

(1)

FF—m—FNSPC datalevel ,—E >«
label ,DECB=—|:(reg)~<|J
labell

Notes:

1 data level

label
A symbolic name can be assigned to the macro statement.

datalevel
Specifies the entry control block (ECB) data level (DO-DF) that will be used by
the service routine.

DECB=(reg)|labell
The label or general register (RO—R7) containing the address of the data event
control block (DECB), which contains the file address of the record that will be
read.

E This parameter is required. The file address must be in extended mode and
contained in the extended file address word (FAWX) defined by datalevel or
DECB.

Entry Requirements
* This macro is for use in the control program (CP) only.
* R9 must contain the address of the ECB being processed.

» A block of storage must not be held by the ECB at the specified ECB data level
(CE1CRnN) or DECB (IDECDAD) when the macro is issued.

* The file address must be contained in the specified file address reference word
(FARW) (CE1FAN) or DECB (IDECFRW). The record type and record code check
(RCC) are optional.

* When accessing a general data set the appropriate GDS macro must be issued
to set up the file address before using FNSPC.

System Macros 249

FNSPC

* The file address must be in the form BBCCHHR and contained (left-justified) in
the FAWX (CE1FXn) for the ECB data level or DECB (IDECFX0). The bin
number (BB) must be zeros. The module number will be the normal halfword
number stored in CE1FMn for the ECB data level or IDECFMOD for the DECB.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

* If this macro is called from a program running in 24-bit mode, the condition code
will be saved across this macro call. If the macro is called from a program
running in 31-bit mode, the condition code upon return from this macro is
unknown.

* The contents of the CBRW at the specified ECB data level (datalevel) or DECB
is unknown.

* The FARW at the specified ECB data level or DECB is unchanged.

Programming Considerations

* This macro can be run on any I-stream.

* This macro is the only FIND-type macro available for use on cylinder 0, head 0.

* The control program (CP) checks to determine that the ECB is not holding a
block of storage at the specified ECB data level or DECB and that the file
address specified is valid. If either condition is violated, control is transferred to
the system error routine.

* This macro places the core block size of 4095 in the CBRW. The byte count field

contains the size of the record actually read. The data obtained is always placed
in a 4095-byte core block.

* To ensure that the operation is completed, a WAITC macro must be issued
before referencing the data that is read. After WAITC macro processing is
completed, the CBRW at the specified ECB data level or DECB contains the
address of the record.

« If this macro is used on a record defined as a VFA synchronization candidate, the
record update will not be synchronized with other processors. The record will
only be flushed from VFA on the processor from which the macro was issued.

 If the location of the data event control block specified by the DECB parameter
does not refer to a valid DECB, control is transferred to the system error routine.

Examples

The input to retrieve the Sl record type, with a code check of X'01' and file address
of M- 20, C- 02, H- 04, R- 01 follows in this example.

CEICR1- vvn. .. 01.... (no attached block)
CEIFAl- E2C901.. (record type, code check)
CE1FM1- 0014.... (module number—mm)
CEIFX1- 00000002 000401.. (bbcchhr.)

FNSPC D1,E

The input to retrieve the Sl record type with a code check of X'01' and file address
of M- 20, C- 02, H- 04, R- 01 for a DECB follows in this example.

250 TPF V4R1 System Macros

FNSPC

IDECCTO- v.vuuvnn .. 01.... (no attached block)
IDEIRID- E2C901.. (record ID, record code check)
IDECFMO- 0014.... (module number—mm)

IDDECFX0- 00000002 000401.. (bbcchhr.)

FNSPC DECB=(R7),,E

System Macros 251

FTSTC

FTSTC-Find/File

Format

252

Use this system macro to provide parameter validation and transformation, as well
as to build the correct linkage for a specific macro. This macro is used by all DASD
FIND and FILE-type macros for performing this common processing.

>>—L—_|—FTSTC—VALID=n—, ACTUAL=m— ,MACRO=macroname— ,LEVEL=]—, GDS=—|:Y:|-—>
label N

»—, TAG=—-Y , TYPE=——P ,DECB=d—,PIA=p
—[Nj_ —I:D—l I—,EXTEND=E—| l—,ERROR=Zabe21—|

»—,ENTRY=rtn ><

label
The symbolic name from the subject macro statement.

VALID=n
The number of valid positional parameters for the subject macro. This
parameter is required.

ACTUAL=m
The number of actual positional parameters entered for the subject macro. The
value from the assembler statement N'&SYSLIST, the number of items in the
SYSLIST. This parameter is required.

MACRO=macroname
The name of the subject macro (for example the FINDC macro). This parameter
is required.

LEVEL=I
The value specified for the data level parameter. DO-DF are the only valid
values.

GDS=Y|N
The value specified for the GDS parameter, provided the subject macro
supports the GDS parameter. Only Y or N are valid values for the GDS
parameter.

TAG=Y|N
The value specified for the TAG parameter, provided the subject macro
supports the TAG parameter. Only Y or N are valid values for the TAG
parameter.

TYPE=P|D
The value specified for the positional parameter that describes the type of
record (primary or duplicate) required for the FINSC and FILSC macros. Only P
or D are valid values for the TYPE parameter.

EXTEND=E
The value specified for the positional parameter that indicates the use of the
extended file address reference word for the FNSPC and FLSPC macros. Only
E is a valid value for the EXTEND parameter.

TPF V4R1 System Macros

FTSTC

ERROR-=labell
The value specified for the error label (labell) positional parameter if the subject
macro supports the error label positional parameter.

DECB=d
The value specified for the DECB parameter if the subject macro supports the
DECB parameter.

PIA=p
The value specified for the PIA parameter if the subject macro supports the PIA
parameter.

ENTRY=rtn
The control program (CP) entry point that the macro is supposed to call.

Entry Requirements
See the applicable macro for more information.

Return Conditions
See the applicable macro for more information.

Programming Considerations

* This macro does not validate that the specified parameters are valid for the
subject macro. The coder of the subject macro must not specify parameters that
are not supported by the subject macro. For example, do not specify the TAG
parameter for a FINDC macro.

* The FTSTC macro can be used on any I-stream.

Examples
None.

System Macros 253

GCFBC

GCFBC-Get Coupling Facility Work Block Address

Use this system macro to get an available coupling facility work block and return
the address.

Format

>>—L—_|—GCFBC—TYPE=typc ><
label

label

specifies a symbolic name that can be assigned to the macro statement.

TYPE=type

specifies the type of coupling facility work block to get, where type is CFCB,
CFRB, CFSB, or CFVB.

Entry Requirements
None.

Return Conditions

Control is returned to the next sequential instruction (NSI).

TPF system processing ends with a catastrophic error if there are no coupling
facility work blocks available.

Register 15 (R15) contains the coupling facility work block address.

The coupling facility work block type is inserted into the first 4 bytes of the
obtained block. The remaining bytes in the block are set to zeros.

Programming Considerations

Examples

This is a restricted use macro.
This macro can be processed on any I-stream.

Enter the RCFBC macro to release the coupling facility work block when you are
done using it.

None.

254 TPF V4R1 System Macros

GCLAC

GCLAC-Get a Specified CLAW Block Type

Use this system macro inline to establish addressability to the Common Link Access
to Workstation (CLAW) control blocks.

Format

>>—L——|—GCLAC—BLKNAME=blkname—,ADDR= addr >
label —[(Rx)—l I—,RADDR= ddr:l—l

(Ry)

] |—, ERROR= ddr:l—l)
(Rz)

label
A symbolic name can be assigned to the macro statement.

BLKNAME=blkname
The name of the block being requested. BLKNAME is a required parameter.

FOURKF
Locked page for channel control word (CCW)

ICADAP
Adapter control block

ICLAWB
CLAW device interface block

ICLAWG
CLAW page structure

ICLCON
Connection control table

ICLIBK
Client control block

ICLIOI
Extension block for CLAW 1/O interrupt

ICLTRB
Transaction control block

ICMSGB
Message control block

ICNBLK
Extension block for CLAW initialization

ICPATH
Path control block

ICPERM
Permanent work area

ICPOLL
POLL request extension block

System Macros 255

GCLAC

ICQBLK
Message queue element structure
ICRBLK
Extension block for returning CLAW page
ICRCCW
Read channel CCW area
ICTRCE
Trace data structure
ICWCCW
Write channel CCW area
ISCCDT
CLAW device table
ISCFDT
File descriptor
ISCIPT
Internet Protocol (IP) address table.
ADDR
The SVM address of the requested block. The ADDR parameter is required.
addr
An address.
(Rx)
A register containing the address.
RADDR

The system virtual memory (SVM) address of the requested block. The RADDR
parameter is optional.

addr
The SVM address.

(Ry)
A register containing the address.

ERROR
If an error occurs, processing resumes at the specified address. The ERROR
parameter is optional.

addr
An address.

(Rz)
The register containing the address of the error.

Entry Requirements
This macro is for use in the control program (CP) only.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

» If an error occurs (for example, if no blocks of the specified type are available),
control resumes with the address specified by the ERROR parameter or the
program exits.

256 TPF V4R1 System Macros

GCLAC

* The contents of all registers, except RO, R14, and R15, are preserved across this
macro call.

¢ RO contains the return code. A zero return code indicates success and a nonzero
return code indicates an error.

Programming Considerations
This macro can be run on any I-stream.

Examples
* This call shows block ICLAWG being requested for address VCTADDR.
GCLAC BLKNAME=ICLAWG,ADDR=VCTADDR

* This call shows block ICLAWG being requested for the address found in register
R3.

GCLAC BLKNAME=ICLAWG,ADDR=(R3)

System Macros 257

GDSCC

GDSCC-General Data Set (GDS) Control

Use this system macro to:

* Maintain a control structure for general data sets (GDSSs)
* Locate, add, and delete data sets, volumes, and data definition names from the

GDS storage structure

* Inquire about data sets, volumes, and data definition names.

Format

bﬁGDSCC_TYPE=_
label

B

—DDN, ACTION=———INQ, P1=address ,P2=address
EDEL ,Pl=address, P2=address:‘
LOC,Pl=address,P2=address

B

—VOL,ACTION=—|:v DEL,Pl=address,P2=address
LOC,P1=address,P2=address—-|
—DSN,ACTION=LOC,Pl=address,P2=address

—DSCB,ACTION=ADD,Pl=address

—VCB,ACTION=ADD,Pl=address

label

A symbolic name can be assigned to the macro statement.

TYPE

The object that is being acted upon. Valid values are:

DDN

A 16-character data definition name (DDNAME)

VOL

A volume number

DSN

A data set name (DSNAME)

DSCB

A data set control block (IDSDSB)

VCB

A volume control block (IDSDSB).

ACTION

The action to be performed. Valid values are:

INQ

Retrieve information about a specific DDNAME from the GDS control

structure. The valid type is DDN.

This value of the ACTION parameter is available for general use.

P1=address

The address of the DDNAME for which information is to be retrieved.
The DDNAME field must be 16 bytes in length and be padded on the
right with blanks.

258 TPF V4R1 System Macros

GDSCC

P2=address
The address of a control block, as defined in the IDSINQ macro, that is
to be used by the TPF system to return information about the specified
DDNAME.

ADD

Add the specified control block to the GDS structure. Valid type codes are
DSCB or VCB.

This value of the ACTION parameter is restricted to system only use.

Pl=address
The address of the DSCB/VCB (IDSDSB) block to be added.

P2=address
Not used

DEL

Delete specified control information from the GDS control structure. The
valid types are DDN or VOL.

This value of the ACTION parameter is restricted to system only use.

Pl=address
The address of the DDNAME to be acted on for types DDN and VOL.
The DDNAME field must be 16 bytes in length and be padded on the
right with blanks.

P2=address
The address of a fullword volume number is required for type VOL.

LOC

Entry Requirements

Locate specified control information for the specified input. Valid types are
DDN, VOL, or DSN.

This value of the ACTION parameter is restricted to system only use.

Pl=address
The address of the DDNAME or DSNAME to be acted on for types
DDN, DSN, and VOL. The DDNAME field must be 16 bytes in length
and be padded on the right with blanks. The DSNAME field must be 44
bytes in length and be padded on the right with blanks.

P2=address
The address of a fullword volume number for type VOL.

R9 must contain the address of the ECB being processed.

Return Conditions

» Control is returned to the next sequential instruction (NSI).
* R14 contents is dependent on the action code.

Action Code Description

ADD

DEL

The address of the system block for the DSCB for type DDN,
DSN, or DSCB.

The address of the system block for the VCB for type VOL or
VCB.

The remaining count of mounted data set volumes.

System Macros 259

GDSCC

INQ Unpredictable.
LOC The address of the system block for the DSCB for type DDN or
DSN.

The address of the system block for the VCB for TYPE or VOL.
¢ R15 contains the return code.
Information about the ADD, DEL, and LOC action codes follows.

Action Code Description

0 If successful.

4 If the name was not found.
8 If the volume was not found.
12 If there was a logic error.

Information about the INQ action code follows.
Action Code Description
0 If successful.

4 If the name was not found.

Programming Considerations

When the ADD, DEL, or LOC actions are performed, this macro can be run only on
the main I-stream. When the INQ action is performed, this macro can be run on any
I-stream.

Examples
None.

260 TPF V4R1 System Macros

GNAMC

GNAMC-Get Program Prolog Area (PPA) Functional Name Information

Use this system macro to find information about the following from the program
prolog area-1 (PPA1):

Format

Address of the PPA1

Address of the PPAL1 field that contains the function name
Length of the function name

Address of the timestamp block

Address of the PPA2

Address of the PPA3.

»—L—_I—GNAMC—FUNC=—RX—, NAME=-Ry—, LENGTH=-RZz >
label I—,TSTAMP=—Ru—|

I—, PPA2=—RVJ I—, PPA3=—RWJ

label

A symbolic name assigned to the macro statement.

FUNC=RX

This input parameter register, other than register 0, contains the address of an
ISO-C function.

On output, this register contains one of the following:
* The address of the PPA1L
» Zeroes when the contents of the PPA1 are not valid.

Note: The address of a valid PPAL1 is returned for both the Language
Environment and for the non-Language Environment. For the
Language Environment, the Language Environment routine layout
entry is used to find the address of the valid Language Environment
PPAL.

NAME=Ry

This output parameter register, other than register 0, contains one of the
following:

* The address of the first character of the function name

» Zeroes when the function name does not exist or when the contents of the
PPAL1 are not valid.

LENGTH=Rz

This output parameter register, other than register 0, contains one of the
following:

* The length of the function name

e Zeroes when the function name does not exist or when the contents of the
PPAL1 are not valid.

System Macros 261

GNAMC

TSTAMP=Ru
This optional output parameter register, other than register 0, contains one of
the following:

* The address of the timestamp block
» Zeroes when the timestamp block is not available or when the contents of
the PPA1 or the PPA2 are not valid.

PPA2=Rv
This optional output parameter register, other than register 0, contains one of
the following:

* The address of the PPA2 (Compile Unit Block)
» Zeroes when the PPA2 is not available or the PPA1 is not valid.
PPA3=Rv

This optional output parameter register, other than register 0, contains one of
the following:

* The address of the PPA3 (Debug Unit Block)
« Zeroes when the PPA3 is not available or the PPA1 is not valid.

Entry Requirements

The GNAMC macro does not support the TARGET(TPF) compiler.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

» All registers are preserved across this macro call with the exception of the
registers specified on the parameters.

Programming Considerations

Examples

* The FUNC parameter register must point to a valid ISO-C function, for example:
— Avalid Language Environment routine layout entry
— Avalid PPA1 area in a non-Language Environment.
« If a valid PPA1 is not found, zeroes are returned in the:
— FUNC parameter register
— NAME parameter register
— LENGTH parameter register
— TSTAMP parameter register if specified
— PPA2 parameter register if specified
— PPAS3 parameter register if specified.
 If a function name does not exist in the PPAL, zeroes are returned in the:
— NAME parameter register
— LENGTH parameter register.

* In this example, register 15 contains the address of an ISO-C function. This
address is the address of a Language Environment routine entry layout.

GNAMC FUNC=R15,NAME=R4,LENGTH=R6

This invocation returns the following:
— The address of the PPAL in register 15.

262 TPF V4R1 System Macros

GNAMC

— The address of the first character of the function name in register 4.

In this example, register 15 contains the address of an ISO-C function. This

The length of the function name in register 6.

address is the address of a non-Language Environment PPA1 area.

GNAMC FUNC=R15,NAME=RZ,LENGTH=R7,TSTAMP=R4,PPA2=R5,PPA3=R6

This invocation returns the following:

The address of the PPAL in register 15.

The address of the function name in register 2.
The length of the function name in register 7.
The address of the timestamp area in register 4.
The address of the PPA2 in register 5.

The address of the PPA3 in register 6.

System Macros

263

GROUP

GROUP-Recoup Descriptor Record Access
Use this system macro to do the following:
» Calculate fixed file addresses
* Find main storage records
* Locate records using globals.

Together, the GROUP and INDEX macros are used offline to build descriptor (BKD)
records, which can be loaded to the online TPF system. These descriptors provide
instructions, values, and displacements that are used by recoup proce?sﬁq to chain
chase data structures and check which file pools are being used. See

for more information about descriptors.

Note: Be careful when you use the GROUP and INDEX macros because these
macros are required for recoup processing. Coding the GROUP or INDEX
macro incorrectly can result in the loss of pool records that contain valid
data.

264 TPF V4R1 System Macros

GROUP
Format

,CPUID=ANY

>>—L——|—GROUP
label |—BCH=Zocati0nJ ,CPUID=PRIME:‘ |—,ECB=nJ |—,ENT=ZabeZJ

,CPUID=0THER:
,CPUID=cpuid—

,FAT=FA4—

l—,EXT=ZabeZJ |—,FAT=FA8— |—,FVN=versionner |—,GC0DE=ZabeZJ

—,1D=X"0000" —

L,GRP=—|:grpidﬁ—‘ —,ID=id" i:,IDCOMP=r‘eCid—
(grpid,RCI)

,IDCOMP=(recid,versionnbr)—

|—,IDFIRST=N0—| |—,IND=NONE—
I—,IDFIRST=YESJ i:,IDNEXT=r‘eCid— i:,IND=I— l—,INDX=pointer—|
,IDNEXT=(recid,versionnbr)— ,IND=C——

l—,MAC= acroname l—,MET= COR |
T
NONE: DBREF:

(SEQ,firstord,lastord,nbrofords)—
(FON,Days ,Alpha)
(PROG, ProgName)

(——GY——,globname ,——F—)——
—an LT
GZ

l—,NBR=1— ,RCC=YES

I—,NBR=count— I—,OFL=location—| I—,RCC=N0—I l—,REG=Rx—| l—,SUFFIX=symboZ—|

l—,VER=00
> B T] ,USE=—BASE ><
,TIME=seconds ,TYP=recordtype DSCR: SVER=ALL————

DATA. ,VER=versionnbr—
TPFCS

label

specifies a symbolic name that can be assigned to the macro statement.
BCH-=location

specifies the location of the backward chain, where location is a field name or
an absolute displacement as shown in the following examples:

BCH=TAGLOC
BCH=(N, 32)

BCH is specified only when the backward chain is the last-in chain and when
the OFL parameter is coded.

System Macros 265

GROUP

CPUID

specifies the ID of the processor where chain chase processing is to be
performed. If the specified CPU is not active, the primary processor performs
the chain chase at the end of recoup phase 1.

The CPUID parameter can specify one of the following:

ANY
specifies that chain chase processing for this record ID occurs on any
processor that is used in the recoup run.

PRIME
specifies that chain chase processing for this record ID occurs on the
primary recoup processor.

OTHER
specifies that chain chase processing for this record ID occurs on any
processor other than the primary processor that is used in the recoup run.

cpuid
is the specific processor where chain chase processing for this record 1D
occurs.

ECB=n

specifies the maximum number of entry control blocks (ECB) that will be active
to chain chase the primary (or anchor) records for this descriptor number, where
n is a decimal number.

The actual number of ECBs that may be active for this descriptor may be
greater depending on how the descriptor macros are coded.

Note: The number assigned to this parameter must be less than the maximum
number of ECBs that recoup will allow to be active (values BZNESR and
BZNEST in the BRPEQ macro)

If USE=BASE is specified and no ECB parameter is specified, n defaults to
BZNESR-1.

If USE=DSCR is specified and no ECB parameter is specified, n defaults to
0.

ENT=label

specifies exit code to run before processing the record type, where label is the
label of the start of the exit code. You can use user exit code to do the
following:

* To set a global variable indicating that processing has started for a particular
record type

* To set a global variable indicating to the queue package that get file storage
(GFS) will be used when moving a message from one queue to another

» To set the recoup keypoint (BKOEEX) bit to zero to prevent chain chasing a
descriptor

» To do anything else before processing the record.

Note: You can only use the ENT parameter with the USE=BASE parameter.

EXT=label

specifies code to run when record type processing is completed, where label is
the label of the start of the code. One use of the EXT parameter is to run code
to reverse an indicator set by the code called with the ENT parameter.

Note: You can only use the EXT parameter with the USE=BASE parameter.

266 TPF V4R1 System Macros

GROUP

FAT
specifies the format of the file address located by the OFL and BCH
parameters. The FAT parameter can be used only when the OFL parameter is
coded. The following options can be coded:

FA4
specifies a 4-byte file address.

FA8
specifies an 8-byte file address.

FVN=versionnbr
specifies the file version number used by the TPFDF product to identify file
structures that have blocks with different layouts than the prime block, where
versionnbr is a number from 0 to 254. You can only specify the FVN parameter
when MET=DBREF is specified.

GCODE=label

specifies code that will be run for fixed file records only, where label is the label
of the start of the code.

Example: A fixed record contains some data indicating that there is no active
structure (of pool records) currently attached to the fixed record. You can
bypass chain chase processing from this particular fixed record for this recoup
run.

GRP

specifies that this and all other descriptors with the same group ID are chain
chased on the same processor.

grpid
is the 2-character EBCDIC or 4-character hexadecimal group ID that is
assigned to a specific group of record IDs.

RCI
specifies that the related group is chain chased using recoup chain chasing
indicator (RCI) processing. RCI processing uses a special set of pseudo
directories and a different chain chase algorithm.

Notes:
1. You can only use the RCI parameter with the USE=BASE parameter.
2. Specify the DUPEELIM=YES parameter on the associated INDEX
macro.
ID=id
specifies the ID of the fixed record, where id is a 2-character EBCDIC or
4-character hexadecimal record ID.

IDCOMP
specifies the ID of the record for which chain chasing must be completed before
chain chasing this descriptor.

recid
is a 2-character EBCDIC or 4-character hexadecimal record ID.

versionnbr

is a version number, from 0 to 254, used to identify file structures that have
different layouts.

IDFIRST
specifies one of the following:

System Macros 267

GROUP

NO
specifies that this record will be chain chased after all records with
IDFIRST=YES specified.

YES
specifies that this record and any other records with IDFIRST=YES
specified must be chain chased before other records are chased.

IDNEXT
specifies the ID of the record for which chain chasing will start when chain
chasing is completed for this record.

IND
specifies the following indicators:

NONE
specifies that there are no indicators.

| instructs the chain chase scheduler to ignore this GROUP macro and all
statements associated with it.

C specifies that the recoup descriptor belongs to TPF collection support
(TPFCS) and only TPFCS will process this descriptor.

INDX=pointer
specifies a pointer to a common INDEX statement. This applies only when there
is one INDEX statement per GROUP macro.

The INDX parameter can only be used when USE=BASE is coded on the
GROUP macro.

When the DSCR parameter in the INDEX macro points to a GROUP macro, it
indicates that a pool record has embedded pool addresses and needs
additional description by a new set of descriptor parameters. When this occurs,
the only parameters necessary on the GROUP macro are MAC, ID, and NBR.

MAC
specifies one of the following:

macroname
is the name of the data macro describing the data record containing
embedded addresses. The MAC parameter is required when USE=BASE is
specified and can be used when USE=DATA is specified.

NONE
specifies that no data macro describes the data record containing
embedded addresses.

MET
specifies the method used for chain chasing. You must specify the MET
parameter when USE=BASE is specified, but it is not necessary when
USE=DSCR is specified.

COR
specifies that the fixed record is located in main storage and loaded by the
primary loading segment for globals (GOGO) using the global allocator
record (GO1GO). The correct global ordinal number for the global storage
allocator record (GOA) must be in BAM1. No additional information is
needed when MET=COR.

DBREF
specifies that the record is a TPFDF record to be chain chased by TPFDF
recoup.

268 TPF V4R1 System Macros

GROUP

Notes:
1. You can only specify MET=DBREF when USE=DSCR is specified.
2. TPFDF recoup runs under the control of TPF recoup.

3. You may need TPFDF DBDEF user exit code to prevent the TPFDF
product from chain chasing this structure more than once.

SEQ
specifies that the fixed records are sequential and are incremented by 1 to
obtain the next ordinal number.

firstord
is the first ordinal number. The default is 0.

lastord
is the last ordinal number. If the lastord parameter value is not
specified, processing continues until a file address compute (FACE)
program error is indicated.

nbrofords
is the total number of ordinals to process. If the nbrofords value is not
specified, processing continues until a FACE program error is indicated.

(FON,Days,Alpha)
specifies the flight ordinal number (FON), where Days is the number of
days in the current or gross period and Alpha is the number of alpha
groups. The following table shows an example of variable values that could
be used for record types that are unique to a programmed airline
reservation system (PARS) application.

Record Days Alpha

Type

PNID and |1 Total number of ING records assigned for each flight.
ING

IND 1 Number of days in the detail period.

INM 1 1

PNIG 1 Number of Alpha groups in the TPF system (#ALPHA)
TSS 1 1

(PROG,ProgName)
specifies the name of the program that will be entered to process the fixed
record. This will be a special user-written program. The name must be 4
characters long.

Gz
specifies that the address of the record is in global 1.

GY
specifies that the address of the record is in global 3.

GC
specifies that the address of the record is in the common global (P or Q).

globname
is the global name that has the address of the record; for example,
@NSCKAD.

F specifies that the address is a file address.

C specifies that the address is a main storage (core) address.

System Macros 269

GROUP

NBR=count

specifies the number of INDEX macros to follow the GROUP macro, or the
number of different record structures whose addresses are chained from or
embedded into the fixed record, where count is a decimal number.

Note: Do not include in the count, INDEX macro statements that specify the
ALTID parameter.

OFL=location

specifies the location that contains the file address of the overflow of the fixed
record, where location is a field name or an absolute displacement as shown in
the following examples:

OFL=TAGLOC
OFL=(N,24)

Note: If the overflow is not identical in format to the prime or fixed record,
describe the overflow with an INDEX macro.

RCC

specifies the record code check indicator (RCC). If the value specified with the
RCC parameter is not YES or NO, YES is assumed. If the RCC parameter is
not specified, NO is assumed.

YES
specifies that the RCC of the prime record is copied to the file address
reference word (FARW) before searching for the overflow records in
segments BRFM and BPMO.

NO
specifies that the RCC of the prime record is not copied to the FARW in the
same segments.

REG=Rx

specifies the base register used during online processing when USE=DATA is
specified.

SUFFIX=symbol

specifies a symbol to use during online processing to tell the difference between
DSECTS. The default is a blank character.

TIME=seconds

specifies the amount of time to allow all the ECBs to complete chain chasing
this structure before starting timeout processing, where seconds is a nhumber of
seconds from 0 to 32 767. This parameter is required when USE=BASE is
specified and defaults to 0 when USE=DSCR is specified.

Note: Timeout processing will not occur if you are running recoup in 1052
state. Operator intervention is required to stop processing a descriptor
that takes too long to be completed.

TYP=recordtype

specifies the symbolic FACE record type (for example, #WAARI) of the fixed

record.

Notes:

1. You must specify the TYP parameter when MET=SEQ or MET=FON is
specified.

2. If you specify USE=BASE without specifying the TYP parameter, the record
type defaults to 0.

270 TPF V4R1 System Macros

GROUP

USE
specifies one of the following:

BASE
specifies that the GROUP macro describes a record that is a fixed record or
the anchor record of the data structure being chain chased.

DSCR
specifies that the GROUP macro describes a record that was retrieved as
an embedded pool address of another record that was defined previously.

DATA
specifies that the GROUP macro is used online and is generating the group
macro data DSECT only.

Note: USE=DATA is used only for online processing.

TPFCS
specifies that the GROUP macro is used for TPFCS recoup only.

Note: TPF recoup will ignore these group descriptors while doing chain
chasing. You must ensure that all IDs used with USE=TPFCS are
unique.

VER
specifies the ID version number of a TPF file; used for chain chasing records
with the same ID but different data. You cannot specify the VER parameter if
MET=DBREF is specified.

00 specifies that version 0 of the file is chain chased.

ALL
specifies that all versions of the file are chain chased.

versionnbr
is a version number from 0 to 254 of the file that is chain chased.

Entry Requirements
Because this macro is declarative, there are no entry requirements.

Return Conditions
None.

Programming Considerations
* This macro can be run from any I-stream.
* The GROUP macro can be used only by recoup segments.
* Observe the following for offline programs:

— This macro is used to create descriptor segments with the USE=BASE or
USE=DSCR parameters. These segments are loaded to the TPF system by
using the ZOLDR LOAD command.

— All parameters appropriate to the record being defined by this GROUP macro
must be included in the macro statement.

— Ensure that the DSECT referred to by the MAC parameter describes the
subject record and uses register RO as its base register.

* For online programs:

— This macro is used to describe the different fields in the BKD record by using
the USE=DATA and REG=Rx parameters.

System Macros 271

GROUP

Examples

272

The BKD records created by GROUP and INDEX macros are moved into the
BKD load control record (BKOLC) by the ZRBKD command and read by the
remaining recoup segments.

Register 9 (R9) must contain the address of the ECB being processed.

* The following example shows online use of the GROUP macro:

GROUP REG=R7,USE=DATA

REG=R7 Base register for the online use.
USE=DATA Indication that this GROUP call is for online use.

* The following examples show offline use of the GROUP macro.

TPF V4R1 System Macros

The following example shows the GROUP macro describing a fixed or anchor
record of the data structure being chain chased:

GROUP MAC=LK4KC,ID=00FF,ECB=10,MET=(GY,@NSCKAA,F),
TIME=420,NBR=4,GCODE=LINKCHK,USE=BASE,VER=11

MAC=LK4KC LK4KC is the name of data macro describing the record.

ID=00FF 00FF is the record identification of the fixed record.

ECB=10 No more than 10 ECBs to chase the anchor records

MET=(GY,@NSCKAA,F) GY is the address of a global record and
ONSCKAA is the global name that has the address.
F indicates the address is a file address.

TIME=420 420 seconds will be allowed for all ECBs to complete

processing of this structure.

NBR=4 4 INDEX statement will follow this GROUP statement.

GCODE=LINKCHK LINKCHK is the label of user exit code.

USE=BASE This GROUP macro is describing a fixed record.

VER=11 This is version 11 of this record.

The following example shows the GROUP macro describing a record that
was an embedded pool of another record defined previously:

GROUP MAC=MCOMC, ID=MC,NBR=1,USE=DSCR

MAC=MCOMC MCOMC is the name of data macro describing the record.

I1D=MC MC is the record identification of the pool record.

NBR=1 1 INDEX statement will follow this GROUP statement.

USE=DSCR This GROUP macro is describing a record that was
retrieved as an embedded pool address of another record.

The following example shows the GROUP macro describing a record that
was an embedded pool of another record defined previously but defaults are
used:

GROUP ID=0M,USE=DSCR

1D=0M OM is the record identification of the pool record.
USE=DSCR This GROUP macro is describing a record that was
retrieved as an embedded pool address of another record.
Defaults were used were ECB=0, MAC=Same data macro of previous
record, NBR=1, SUFFIX=' ', TIME=0.

The following example shows the GROUP macro describing a fixed or anchor
record sequential in nature.

GROUP MAC=CIOCO,ID=C0O,ECB=10,MET=SEQ,TYP=#RCBRA,
NBR=4,TIME=480,USE=BASE

MAC=CIOCO CIOCO is the name of data macro describing the record.

1D=CO CO is the record identification of the fixed record.

ECB=10 No more than 10 ECBs to chase the anchor records

MET=SEQ The method of access is sequential and defaults are used
for first, last and ord subparameters. Starts with
ordinal 0 and ends with a FACE error. Processing

GROUP

will continue until a FACE error is indicated.
TYP=#RCBRA #RCBRA is the FACE record type.
TIME=480 480 seconds will be allowed for all ECBs to complete
processing of this structure.
NBR=4 4 INDEX statement will follow this GROUP statement.
USE=BASE This GROUP macro is describing a fixed record.
* The following examples show the GROUP and INDEX macros being used
together.

The following example shows how the GROUP and INDEX macros are used
together online:

GROUP REG=R7,USE=DATA
INDEX REG=R2

This example shows the use of the GROUP and INDEX to access
different fields in the BKDx records.

» The following examples show how the GROUP and INDEX macros are used
offline to build BKDx records. The emphasis of these examples is on the
relationship between the GROUP and INDEX macros to logically describe a
structure.

GROUP and INDEX macros are combined to describe fixed and pool record
structures currently existing on a user database. Together, they logically
describe a structure.
AAA GROUP USE=BASE,NBR=2

INDEX TYP=C

INDEX TYP=F,DSCR=BBB
BBB GROUP USE=DSCR,NBR=2

INDEX TYP=C

INDEX TYP=F,DSCR=CCC
CCC GROUP USE=DSCR,NBR=1

INDEX TYP=C

In offline programs, GROUP and INDEX macros are used to build BKDx
records.

The USE parameter on the GROUP macro establishes a particular data
record as either fixed (USE=BASE) or pool (USE=DSCR). Subsequent INDEX
macros related to the GROUP macro immediately preceding it describe
additional embedded pools that are chained together by coding its DSCR
parameter. This DSCR parameter points to a subsequent GROUP macro with
its USE parameter coded as USE=DSCR. The subsequent GROUP macro
would then have related INDEX macros that would either continue the
chained data record structure by using its DSCR parameter coded to point to
a subsequent group (for example, AAA to BBB to CCC), or would end the
chain of data records by eliminating the DSCR parameter from the
subsequent INDEX macro at any point in a data record chain.

The following example has two anchor chains, XRRT and NCB, indicated by
the USE=BASE parameter.

BEGIN NAME=xxxx,VERSION=zz,IBM=YES

DC AL2(2) NUMBER OF DESCRIPTORS
DC S(XRRT) FIRST DESCRIPTOR
DC S(NCB) SECOND DESCRIPTOR

XRRT GROUP MAC=UT2RT,ID=UT,ECB=31,TYP=#UT2RT,MET=SEQ,
NBR=1,TIME=240,USE=BASE
INDEX TYP=V,FI=UT2DAT,FA=(,UT2RRS-UT2DAT),CNT=(2,UT2EID),
ID=US,DSCR=XRRS, LI=L"'UT2DAT
XRRS GROUP ID=US,NBR=1,USE=DSCR
INDEX TYP=C,ID=US
NCB GROUP MAC=NCOCB,USE=BASE,ID=CB,ECB=32,MET=SEQ,
TYP=#NCBRI,NBR=2,TIME=600

System Macros 273

GROUP

oM

INDEX TYP=F,FA=NCOFRST, ID=MI

INDEX TYP=F,FA=NCOCUR,I1D=0M,DSCR=0M

GROUP USE=DSCR,NBR=1,ID=0M

INDEX TYP=C,ID=0M

FINIS

END
The MAC parameter indicates the DSECT that describes this record and
the TYP parameter describes the FACE record type.

The NBR=1 parameter on the XRRT GROUP and NBR=2 on the NCB
GROUP indicate the number of INDEX statements associated with this
GROUP macro.

Anchor XRRT has one INDEX statement, which is TYP=V. Type V
describes a group of embedded addresses and can be one of three
variations defined by other parameters on the INDEX statement.

The FA parameter describes the displacement to the address in the anchor.

The FI parameter describes the displacement to the first item. This INDEX
describes an address embedded in a record in the anchor.

The DSCR=XRRS parameter on this INDEX statement indicates that a
GROUP macro with the name XRRS will define the structure of the pool
record and GROUP XRRS has parameter USE=DSCR referring to this.

The XRRS GROUP does not have a MAC parameter, so it will be
described by the same macro that was used by the previous GROUP
macro. The NBR=1 parameter for this GROUP macro indicates it will have
an INDEX statement following. The INDEX statement is TYP=C. TYPE C
describes the embedded pool address contained at location 8.

Anchor NCB has two INDEX statements which are both TYP=F. Type F
indicates that the file address is at a certain displacement in the fixed
record. In this example, the two locations are NCOFRST and NCOCUR.
Parameter DSCR=0OM on the INDEX statement associated with location
NCOCUR indicates that the GROUP with the name OM will define the
structure of the pool record and GROUP OM has parameter USE=DSCR
referring to this. The OM GROUP does not have a MAC parameter, so it
will be described by the same DSECT that was used by the previous
GROUP.

The NBR=1 parameter for this GROUP indicates that it will have an INDEX
statement following. This INDEX statement is TYP=C, which describes the
embedded pool address contained at location 8 in the record.

* The following example shows the GROUP macro with the USE=TPFCS and
IND=C parameters specified, which indicates that the GROUP macro is used for
TPFCS recoup only:

TPFCS5

274 TPF V4R1 System Macros

GROUP ID=FC13,NBR=1,IND=C,USE=TPFCS
INDEX TYP=F,FA=(,8),ID=FC13

GRRTC

GRRTC-Get Record Code Check (RCC) Reference Table

Use this system macro to obtain attributes of pool types and pool sections. This
macro returns a pointer to an item in the record code check reference table
(IRCCR). Attributes of the item include the following:

* Pool section name

* Pool section device type name

* Whether the pool section is active

* Whether the pool section is long-term or short-term
* Whether the pool section is duplicated records.

Format

»—L—_|—GRRTC—|:RCC=rchoc—_|—, RETURN=(reg) <
label TYPE=poolloc

RCC-=rccloc
specifies the location of the 1-byte RCC.

TYPE=poolloc
specifies the location of the 3-byte pool type name.

RETURN=(reqg)
specifies the register that will contain the address of the IRCCR item whose
address is to be returned. The address returned in this register points to a data
area structure according to DSECT IRCCR. The specified register cannot be
used as a base register for the TYPE or RCC parameters.

Entry Requirements
This macro will not run when the caller is in 24-bit mode.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

 If the requested pool section or pool type does not exist, the register coded in
parameter RETURN=(reg) will contain 0.

* The contents of register 14 (R14) and register 15 (R15) are unknown unless
specified as the return register

* On return, the register specified in the RETURN parameter will be mapped to the
IRCCR DSECT.

Programming Considerations
This macro can be run on any I-stream.

Examples
None.

System Macros 275

GSVAC
GSVAC-Convert an EVM Address to an SVM Address

Use this system macro to convert a specified entry control block (ECB) virtual
memory (EVM) address (EVA) in a specified EVM to the corresponding system
virtual memory (SVM) address (SVA).

An ECB-controlled program can issue this macro to convert any valid EVA in any
active EVM on any active |-stream, and the SVA returned is valid for the SVM of the

I-stream on which the issuing program is active.

Required Authorizations

Key0 Restricted System Common Storage

X

Format

,ERROR=symbo[3———»

»—L——'—GSVAC—ECB= symboll ,ADDRESS=——symbo12:
label (Rx) (Ry)

,DSECT=NO
i] e

I—,DSECT=YESJ

label
A symbolic name can be assigned to the macro statement.

ECB
This required parameter designates the target EVM and determines the

segment and page tables that will be used for conversion. The SVM address of
the target ECB may be passed either in a register or in an addressable 4-byte
field. The parameter is not modified.

symboll
If specified, it is the label of the field that contains the SVM address of the
target ECB.

(Rx)
If specified, it is the general register (RO through R7) that contains the SVM
address of the target ECB.

ADDRESS
This required parameter specifies the EVM address to be converted. This

address may be passed either in a register or in an addressable 4-byte field.
The converted address will replace the input parameter.

symbol2
If specified, it is the label of the field that contains the EVM address to be
converted.

(Ry)
If specified, it is the general register (RO through R7) that contains the EVM

address to be converted. It can not be the same register as coded for Rx.

276 TPF V4R1 System Macros

GSVAC

ERROR=symbol3
This required parameter specifies a program label, in the issuing program,
where control is transferred when the designated address cannot be converted.
Register R15 will contain an error code indicating the type of error.

DSECT=NO|YES
The DSECT parameter is used to generate the DSECT that describes the
macro expansion, and certain equates associated with the macro. It is intended
for CP use only. The default is NO.

Entry Requirements
» The ECB-controlled program must be authorized to issue restricted use macros.

* The TPF system should be paused during processing of this macro in order to
assure the validity of the converted address. The pause should be ended as
soon as possible following processing of the macro.

If an ECB-controlled program issues the GSVAC macro to convert an EVA in its
own EVM, the TPF system need not be paused.

* The target EVM can be processing on any I-stream.

Return Conditions

* When conversion is successful, control is returned to the next sequential
instruction (NSI). The converted address is returned in the field or register
designated by the ADDRESS parameter.

* When conversion is unsuccessful, processing continues with the routine specified
by the ERROR parameter and error conditions are posted in the low-order byte
of general register 15. The specific error can be determined by storing the error
byte and testing it with the equate symbols that follow. The following equates are
generated with the first use of the macro:

GSVA_ECB_INACT Target ECB is inactive
GSVA_INVAL_ECB_ADDR ECB address is not valid.

GSVA _INVAL_EVM_ADDR EVM address is not valid.

* The contents of registers R14 and R15 are unknown, except on an error
condition as described previously.

Programming Considerations

* In general, the SVM address returned by this macro may not be directly usable
by the requesting program. It is recommended that you use this macro with the
MOVEC macro.

* When using the SVM address returned by this macro, do not attempt to cross a
page boundary without issuing another GSVAC macro. Conversion of the EVM
address for the next page will avoid errors caused by discontiguous SVM
storage.

* The macro can return incorrect results if addresses passed to it have their high
order bit (X'80") set. The technique of loading a zero address, such as,

LA Rx,0(Rx)

before the macro call clears out registers in the way required.

Examples
None.

System Macros 277

GSWBC

GSWBC-Get a System Work Block (SWB) Address

Use this system macro to obtain an available system work block (SWB) storage

address.

Required Authorizations
Key0 Restricted System Common Storage
X
Format
FF—I_——|—GSWBC—BL0CK=Y‘EQ ><
label
label
A symbolic name can be assigned to the macro statement.
BLOCK-=reg

Specifies where the SWB address will be placed after the macro completes
processing, where reg is a register from RO — R7.

Entry Requirements
This macro is restricted to ECB-controlled programs.

Return Conditions
None.

Programming Considerations

* An SWB is not released when the entry control block (ECB) exits. To prevent the
TPF system from running out of SWBs, the application program that issues the
GSWBC macro must also release the SWB by issuing the RSWBC macro. See
'RSWBC-Release a System Work Block (SWB)” on page 412 for more

information about the RSWBC macro.

* The address returned is a 31-bit address and may point to an SWB allocated
above the 16-MB boundary. The application program must be running in 31-bit
mode to access data above the 16-MB boundary.

Examples

The following example gets an SWB and places the address in register 5 (R5).
GSWBC BLOCK=R5

278 TPF V4R1 System Macros

GSYSC

GSYSC-Get System Heap Storage

Use this system macro to allocate the specified humber of 4 KB frames as
contiguous storage in the system heap. This macro is used by applications while
the $GSYSC macro is used by the control program (CP). See

Bystem Heap Storage” on page 5d for more information about the $GSYSC macro.

Format

>>—l_——|—GSYSC—FRAMES=RX,TOKEN=RJ »><
label

label
A symbolic name may be assigned to the macro statement.

FRAMES=Rx
The FRAMES parameter specifies the number of contiguous 4 KB frames to be
allocated. The general register used must be RO through R7 or R14.

TOKEN=Ry
The TOKEN parameter specifies the address of an 8-character string that the
TPF system uses to identify the allocated storage. The general register used
must be RO through R7, R14, or R15.

Entry Requirements
R9 must contain the address of a valid ECB.

Return Conditions

* The register specified by FRAMES contains the starting address of the allocated
storage.

* The register specified by FRAMES contains zero if:
— The FRAMES parameter register contains zero.

— The system heap does not contain enough storage to satisfy the allocation
request.

— The address specified by the TOKEN parameter is not in the range of
addressable memory.

» All registers are preserved across the macro call except for the registers used for
the FRAMES and TOKEN parameters.

» Control is not returned if there is not enough real storage to satisfy the request.
The TPF system issues an error and recovers through an automatic IPL.

Programming Considerations
» Real storage may not be contiguous.
* The amount of virtual storage available for the system heap is defined in CTKA.

+ Storage must be released by the RSYSC or $RSYSC macro when it is no longer
needed. If the storage is not released, it remains in use until you IPL the TPF
system again.

¢ The address returned is a 31-bit address.
* The storage key is set to X'C'.

System Macros 279

GSYSC

* When the macro completes processing successfully, the macro trace entry
contains the size (in number of frames) and address of the allocated area in
addition to the normal macro trace information.

Examples
The following example shows how the length of a block is converted into a number
of 4 —KB frames before requesting storage from the system heap. The return code
is checked before trying to use the address in R14.

ITUUTL REG1=R14 CONNECT WITH TABLE UPDATE DSECT
LA R14,ITULEN GET THE LENGTH OF A BLOCK

LA R14,4095(R14) ROUND TO THE NEXT 4 KB

LR R7,R14 SAVE NUMBER OF FRAMES

SRL R14,12 DETERMINE NUMBER OF 4 KB FRAMES
LA R6,MY_TABLE

GSYSC FRAMES=R14,TOKEN=R6 ALLOCATE THE STORAGE

LTR R14,R14 CHECK THE RETURN CODE

BZ NO_STORAGE_AVAIL BRANCH TO PROCESS ERROR
routine that uses the storage

RELEASE_STORAGE DS OH
LA R6,MY_TABLE
RSYSC ADDRESS=R14,FRAMES=R7,TOKEN=R6 RELEASE THE STORAGE
LTR R15,R15 CHECK THE RETURN CODE
BNZ RELEASE_ERROR BRANCH TO PROCESS ERROR

MY_TABLE DC CL8'MY_TABLE'

280 TPF V4R1 System Macros

HIOSC

HIOSC—-Halt an I/O Operation

Use this system macro to halt a current active input/output (1/0O) request for a
symbolic device address (SDA).

Format

»—L——I—HIOSC—SDA= label ><
label —[(Rx)—l

label
A symbolic name may be assigned to the macro statement.

SDA=label|(Rx)
Is either a label of a halfword field containing an SDA or a register that contains
an SDA in bytes 2—3 and zeros in bytes 0-1.

Entry Requirements
* The TPF system must be disabled for interrupts.
* The TPF system must be running with PSW Key 0.

Return Conditions

» Control is returned to the next sequential instruction (NSI) with the condition code
set as follows.

Condition Code Meaning

0 No active request to stop.
2 Halt in progress.

3 An SDA that is not valid.

* The contents of all registers are preserved across this macro call.

Programming Considerations
* This macro can be run on the main I-stream only.
* This macro is for use in the control program (CP) only.

Examples
None.

System Macros 281

IBMSVC

IBMSVC—-Generate IBM SVC and Fast-Link Tables

Use this system macro to generate all the IBM fast-link tables and the IBM primary
and indexed supervisor call (SVC) tables. This macro also contains the CRESVC
macro calls that create the IBM primary table, fast-link table, and the IBM indexed
table.

See lCRESVC—Create an SVC/East-Link Table Entry” on page 18d for more
information about the CRESVC macro.

Format

>>—L——|—IBMSVC—TYPE= CpP J >
label EQU

TYPE
This parameter specifies whether tables or equates should be generated.

CP
Using this parameter creates the actual primary, indexed, and fast link
tables. It is used for the table in CCMCDC.

EQU
Using this parameter creates a set of symbolic equates for the macro SVC,
index or fast-link numbers for use in CPSEQ and other areas.

Entry Requirements
None.

Return Conditions
None.

Programming Considerations

TYPE=CP should be used only once, in the CCMCDC CSECT. TYPE=EQU should
only be used in CPSEQ.

Examples
None.

282 TPF V4R1 System Macros

ICELOG

ICELOG-TARGET(TPF) C Language Support Epilog

Use this system macro only with TARGET(TPF) support to return from a
TARGET(TPF) assembler C library function or external function that begins with the
ICPLOG macro by generating code to restore the registers saved by the preceding
ICPLOG macro call. If a TARGET(TPF) stack frame was allocated by the ICPLOG
macro, it is released by the ICELOG macro.

The ICELOG macro calls are required for writing TARGET(TPF) C library functions
in assembler language and for external functions written in assembler that need to
manage TARGET(TPF) stack storage.

See HUCPLOG-TARGET(TPE) C | anguage Suppart Praolog” on page 284 for more

information about the ICPLOG macro.

Format

LIBRARY=YES
[]

»>—Ilabel—ICELOG <
|—LIBRARY=N0—|

label
A symbolic name can be assigned to the macro statement.

LIBRARY
Specify one of the following:

YES
Indicates that the function is a TARGET(TPF) C library function. This is the
default.

NO
Indicates that the function is an external function.

Entry Requirements
R9 must contain the address of the current ECB.

Return Conditions
Control is never returned to the program that issues the ICELOG macro.

Programming Considerations
» Use this macro only in TARGET(TPF) C applications.
* This macro can be run on any I-stream.

» After the ICELOG runs, the program that called this function regains control. R7
and CE1STK will contain the address of the TARGET(TPF) stack frame that
belongs to the program that called this function. The contents of RO through the
register specified by the HIGHREG parameter of the ICPLOG macro will be
restored to the values they contained on entry to the function.

» This macro can be coded more than once in the same source file even though
good coding practice normally encourages a single exit point from a function.

System Macros 283

ICELOG

* When coding this function, you are responsible for ensuring that the function’s
value, if any, is returned properly. There are several possibilities based on the
data type of the return value:

— R6 itself contains the value if the return value is an integer, a character, or a
pointer.

— If the return value is a float or double word, the value is accessed through a
pointer contained in the first word of the parameter list.

— ICELOG cannot be called from an ISO-C segment (coded with BEGIN
TPFISOC=YES). The TMSEC macro should be used instead. See fred
General Macras for more information about the TMSEC macro.

See HICPLQG-TARGET(TPF) C | anguage Suppart Pralag” on page 284 for

examples.

Examples
None.

284 TPF V4R1 System Macros

ICLANC

ICLANC—Call a Secondary Library Routine

Format

Use this system macro with C language support to:

* Produce a table of V-type address constants (VCONS) that contain the entry
points to the secondary library routines. This option is valid only in the control
program (CP) and is restricted to the CCLANG CSECT.

» Generate linkage to a particular secondary library routine from its corresponding
TPF-written library function.

label LINK=fname

label
A symbolic name can be assigned to the macro statement.

GEN
This option is coded in the C language support CSECT (CCLANG) to generate
a table of VCONSs used to link to the secondary library routines.

LINK=fname
The name of a service routine using MVS-style parameter and register
conventions. Code is produced to save registers, convert to IBM MVS-style
register conventions, generate the quick enter linkage for the secondary library
routines, and to convert back to TPF register conventions on return.

Entry Requirements

R9 must contain the address of the current ECB.

Return Conditions

TPF register contents are restored. Registers R10 through R13 remain unchanged.

Programming Considerations

Examples

This macro can be run on any I-stream.

This example generates the table of VCONs for secondary library routines:
ICLANC GEN

This example generates linkage to the secondary library routine called by the sin

(sine) function:
ICLANC LINK=SIN

System Macros 285

ICPLOG

ICPLOG-TARGET(TPF) C Language Support Prolog

Format

Use this system macro with TARGET(TPF) C language support to allocate a
TARGET(TPF) stack frame for the function from the current TARGET(TPF) stack
block. If there is no current TARGET(TPF) stack block or if the requested stack
frame does not fit in the current block, the TARGET(TPF) stack exception routine in
the control program (CP) is activated.

This macro is required for writing TARGET(TPF) C library functions in assembler
language and for assembler external functions that need to manage TARGET(TPF)
stack storage. It must be the first instruction coded after the BEGIN macro. See
[CPE General Macros for more information about the BEGIN macro.

The ICPLOG macro generates code that stores specified registers in the:

» Stack frame of the TARGET(TPF) calling program and saves the calling
program’s R14 used as the return linkage register by library functions

» Calling program’s TARGET(TPF) C language stack frame, and saves the calling
program’s R14 used as the return linkage register.

The ICPLOG macro allocates a TARGET(TPF) stack frame for the function from the
current TARGET(TPF) stack block. If there is no current TARGET(TPF) stack block
or if the requested stack frame does not fit in the current block, the TARGET(TPF)
stack exception routine in the control program (CP) is activated.

HIGHREG=R5 , FRAMESIZE=0
»>—Llabel—ICPLOG |_ —l |_

|—H IGHREG=R)(J I—, FRAMESIZE=—|:n
ol

label
A symbolic name can be assigned to the macro statement.

HIGHREG=reg
The prolog stores registers R14-reg into the caller's TARGET(TPF) stack frame,
where reg is in the RO-R5 range. The default is R5.

FRAMESIZE
Specify one of the following:

0 Indicates that the function does not use the TARGET(TPF) C language
stack for its own purposes, but calls another function that requires a
TARGET(TPF) stack frame to save and restore registers and the return z
address. ICPLOG allocates the minimum size stack frame. This is the
default.

n The number of bytes of storage in the new TARGET(TPF) stack frame to be
reserved for the function’s use, which is added to the size of the minimum
stack frame.

NO
Indicates no stack frame is to be allocated.

286 TPF V4R1 System Macros

ICPLOG

Entry Requirements

R9 must contain the address of the current ECB.

Return Conditions

* R7 and CE1STK will contain the address of the newly acquired TARGET(TPF)
stack frame unless FRAMESIZE=0 is coded.

* R14 and the registers requested by the macro call are saved in the caller's
TARGET(TPF) stack frame.

Programming Considerations

Examples

* Use this macro only in TARGET(TPF) C language applications.
* This macro can be run on any I-stream.

» If there is no TARGET(TPF) stack block when the macro is called, the stack
exception routine is called, which acquires a TARGET(TPF) stack block and
initializes it. If the stack exception routine is unable to acquire a stack block, the
appropriate dump is issued and the ECB is exited.

* Ensure that the minimum stack frame size plus the size requested by the
FRAMESIZE parameter do not exceed the maximum TARGET(TPF) stack frame
size. See data macro ICSOTK for the equates corresponding to minimum
(CSTKMIN) and maximum (CSTKFRSZ) stack frame size.

* ICPLOG should be issued only once in a given source module.

* |CPLOG cannot be called from an ISO-C segment (coded with BEGIN
TPFISOC=YES). Use the TMSPC macro instead.

This example creates a prolog that saves registers R14 through R5 and does not
change the size of the function stack frame. R5 is required by the TIMEC macro.
The registers are set up with R5 pointing at the stack frame and R8 operating as
the application base register. The C library base previously in R8 is saved. After the
TPF macro returns, the C library base is restored and the address of the timestamp
provided by TIMEC is placed in the return register (R6) for TARGET(TPF) C. The
ICELOG macro stores the C environment and returns to the calling C program.

ICPLOG HIGHREG=R5,FRAMESIZE=NO R5 needed for TIMEC interface
L R5,CE1TCA points to first stack frame
SL R5,=A(CSTKTCA-ICSOTK) compute base of first frame

L R5,CSTKUEXP-ICSOTK(,R5) get address of user exp. area
ST R8,CSTKLBAS save Tibrary base

L R8,CELSVP get application base

TIMEC , get the timestamp

L R8,CSTKLBAS restore library base

LR R6,R5 return the address in R6
ICELOG , return to C application

The following example creates a prolog that saves registers R14 through R3 and
reserves 66 bytes of storage in the stack frame for the function:

ICPLOG HIGHREG=R3,FRAMESIZE=66

The following example creates a prolog that saves registers R14 through R2, and
allocates a minimal stack frame:

ICPLOG HIGHREG=R2,FRAMESIZE=0

The following example creates a prolog that saves registers R14 through R5
(because R5 is the default), and reserves 212 bytes of storage in the stack frame:

System Macros 287

ICPLOG
ICPLOG FRAMESIZE=212

The following example creates a prolog that saves registers R14 through R5, and
does not allocate a stack frame:

ICPLOG FRAMESIZE=0

The following example has the same effect as the previous one — it creates a
prolog that saves registers R14 through R5, and does not allocate a stack frame
(because FRAMESIZE=0 is the default):

ICPLOG

The following example is a TARGET(TPF library function that calls a TPF macro to
put a time stamp in the stack frame. The function returns a pointer to the time
stamp as its value.

PRINT NOGEN
BEGIN NAME=C001,VERSION=31

ICPLOG HIGHREG=R5,FRAMESIZE=NO R5 needed for TIMEC interface
L R5,CEITCA points to first stack frame
SL R5,=A(CSTKTCA-ICSOTK) compute base of first frame
L R5,CSTKUEXP-ICSOTK(,R5) get address of user exp. area
ST R8,CSTKLBAS save library base
L R8,CE1SVP get application base
TIMEC , get the timestamp
L R8,CSTKLBAS restore library base
LR R6,R5 return the address in R6
ICELOG , return to C application

*
LTORG
FINIS
END

288 TPF V4R1 System Macros

IDATB

IDATB-Build Selective Memory Dump Table

Use this system macro as the repository for all information about the selective
memory dump table (SMDT). This macro contains a set of IDATG macro calls, each
of which defines a unique parameter and its associated main storage area. The
IDATB macro can be used anywhere in the TPF system to obtain information about
the large data areas defined to the TPF system that are not normally included in a
dump of system storage.

Format

EBCDIC
DEFAULTS-

>>—L——|—I DATB—FUNC=——SMDT ><
label EQUATES:‘

label
A symbolic name can be assigned to the macro statement.

FUNC
One of four values can be assigned:

SMDT
This option is used by copy member CPST of the CCCPSE CSECT to
actually construct the selective memory dump table in main storage.

EQUATES
This option is used by the IDOTB macro and the system initializer
(CCCTIN) to generate a set of equates, one for each parameter. It is used
by IDOTB so that the assembler will recognize the values specified for the
INCLUDE parameter. It is used by the system initializer (CCCTIN) to access
the correct SMDT entry for a specific parameter so that the starting and
ending address pairs for a particular parameter can be stored in the entry.

EBCDIC
This option is used by the ZIDOT command processor to construct a table
linking EBCDIC values to SMDT index values and uniqueness indicators.
The table is mapped by the IDSEBC macro.

DEFAULTS
This option is used by the ZIDOT command processor to construct a default
bitmap with bits already set on for values defined as REQUIRED=YES on
the IDATG macro calls.

Entry Requirements
None.

Return Conditions
None.

Programming Considerations

» Additions to or deletions from the list of IDATG macro calls in the IDATB macro
will cause any ZIDOT overrides that are stored on the online system to be

System Macros 289

IDATB

deleted when the TPF system is IPLed. When items are added or deleted, you
clear the existing overrides using the ZIDOT CLEAR command. Care should be
exercised when changing DUMMY entries, because there can be hidden
dependencies on them.

» The following programs must be reassembled whenever IDATG macro calls are
added, removed, or changed in any way in the IDATB macro.

When Updating Reassemble Link Edit
IDATB/UDATB CCCTIN CPSO
CCUEXT
ICDF
STPP PPCP
CIDP CCCPSE CPSO
CUDP CCCPSE CPSO
CCUEXT

* The IDATB calls required by the TPF system are already in place. Normally you
do not need to code the IDATB macro explicitly.

» User-defined parameters are defined in the UDATB copy member, which is called
by the IDATB macro.

» The following parameters are predefined. All parameters defined by IBM begin
with the character I; otherwise, the parameter can begin with any alphabetic

character.
Parameter
IACN

IAET
ICAPT
ICCT
ICILT
ICIOLDV
ICIOLIT
ICIOLMP
ICLAW
ICLH
ICNFTBL
ICOMMON
ICORND
ICP
ICPCM
ICPLC
ICPLKMP
ICPSE

290 TPF V4R1 System Macros

Description

Current Activation Number

RCS Asynchronous Event Table
Low Memory (CAPT)
Communication Configuration Table
Internal Line Number Table
Common 1/O (CIO) Idevbks
CIO Lost Interrupt Tables

CIO Logical Device Map

CLAW Tables

CLH Block Management Tables
BSS CINFC Table

4 K Common Blocks

All of Memory

Control Program (CP)

CCP Common Area

CCP Low Core Trace Blocks
CP Linkage Map

CPSE Internal Entry Trace

ICRH
ICRPGM
ICTK2
IDCLS
IDDMFDO
[EAT
IECBS
IELDR
IEPOL
IEVMDAT
IFACE
IFRM
IGAT
IGLBLI
IOBS
[1ISG1
1SG2
[ISG3
1SG4
NUG1
HuG2
NUG3
uG4
ILCPT
ILRT
IMFST
IMPIF
IPAT
IPATHSH
IPATIST
IPATXTP
IPLMT
IPOOL
IRCSB
IRCSH
IRCSO
IRIAT

IDATB
31-bit Core Resident Program Area (CRPA)
24-bit Core Resident Program Area (CRPA)
SNA Keypoint/ncst
CLH Dispatch Control Lists
TFPAR DDM FDOCA Tables
ECB Activation Table
Entry Control Blocks (ECBSs)
E-Type Loader Indicators
E-Type Loader Policing Values
ECB Virtual Memory (EVM) Page and Segment Tables
File Address Compute Program (FACE) Table
4 K Frames
Global Attribute Table
High Storage Primary Globals
I/O Control Blocks
I-Stream (IS)-Shared Global Area 1
I-Stream (IS)-Shared Global Area 2
I-Stream (IS)-Shared Global Area 3
I-Stream (IS)-Shared Global Area 4
I-Stream (IS)-Unique Global Area 1
I-Stream (IS)-Unique Global Area 2
I-Stream (IS)-Unique Global Area 3
I-Stream (S)-Unique Global Area 4
Low Core Patch Area
Link Routing Table
Module File Status Table
Multi-Processor Interconnect Facility (MPIF) Control Tables
Program Allocation Table (PAT)
PAT Hash Table
IS-Unique PAT Entries
E-Type Loader Extra PAT Entries
Pool Management Table
Pool Directories
Record Cache Subsystem (RCS) Subsystem Status Table Base
RCS Subsystem Status Table Header
RCS Subsystem Status Table Overflow
Record ID Attribute Table (RIAT)

System Macros 291

IDATB

ISMDT Selective Memory Dump Table (SMDT)

ISNA System Network Architecture (SNA) Tables
ISNL SNA Local Element Bit Map

ISNPT System Ordinal Number (SON) Pointers
ISNTB SON Tables

ISVMDAT System Virtual Memory (SVM) Page and Segment Tables
ISWBS System Work Blocks (SWBSs)

ITAR TPFAR Tables

ITCP TCP/IP Native Stack Support Tables
IUSREXT User Exit Table

IVFABUF Virtual Vile Access (VFA) Buffers

IVFA1 VFA RSHT Area

IVFA2 VFA RSTBCA Area

IWGTA WGTA Tables

IWRT E-Type Loader Working Record Table
IXGLB1 Extended Global Area 1

IXGLB2 Extended Global Area 2

IXGLB3 Extended Global Area 3

IXGLB4 Extended Global Area 4

IXID Exchange Identification (XID) 1/O Trace Table.

Examples

* Build the Selective Memory Dump Table (SMDT)
IDATB FUNC=SMDT

* Build the EBCDIC keyword table
IDATB FUNC=EBCDIC

* Make keyword equates available
IDATB FUNC=EQUATES

* Define the default bit map
IDATB FUNC=DEFAULT

292 TPF V4R1 System Macros

IDATG

IDATG—Generate Selective Memory Dump Table Entry

Format

Use this system macro to:

* Map a user-defined parameter to a particular region of main storage. The
parameter identifies main storage regions for inclusion in dumps through the
IDOTB macro, the ZIDOT command, or in every dump (REQUIRED=YES).

 |dentify very large data areas that are not needed in every dump. The areas
identified by the IDATG macro will not be dumped, unless a dump override is
created for a particular system error that requests that a storage area be
included.

This macro is only coded within the IDATB or UDATB macros. It is never used in
open code. Each IDATG call results in the creation of a selective memory dump
table (SMDT) entry in the CPST copy member of the CCCPSE CSECT.

See U.DOIB_Dum.p_OMemde_Ta.ble_Bde_on_pa.ge_ZQd for more mformatlon about

the IDOTB macro. See
for more information about the IDATB macro. See
information about the ZIDOT command.

TPE Qperations

for more

»»—IDATG—KEYWORD= DUMMY—_|—,LOC=(staddr,endaddr)
—[cccccccc I—,staddr,endaddr—|

l—,FORMAT=HEX— |—,REQUIRED=N0

I—,FORMAT= EBCDIC I—,UNIQUE= SS I—,REQUIRED=YES—|
—EDOUB] —EIS
BOTH BOTH

»—,TEXT=descriptor:

KEYWORD
Required. Specify one of the following:

keyword
Identifies the area of main storage. The value specified can be no longer
than 8 alphanumeric characters, and the first character must be a letter.

DUMMY
This form of the macro generates a dummy SMDT entry that will be
available for use when creating temporary keywords using the ZIDOT
command. The number of KEYWORD=DUMMY calls determines how many
temporary keywords can be created. If DUMMY is coded no other
parameters are allowed.

LOC=(staddr,endaddr [,...])
Required. The starting address and ending address of the storage area. If the
area resides in the control program (CP), an address may specified as either a
VCON or an ADCON. If the area resides outside of the control program (CP),
the addresses must be specified as ADCONSs - A(0),A(0) - and code must be
added to CCCTIN to store the starting and ending addresses of the storage

System Macros 293

IDATG

area in the Selective Memory Dump Table Entry. Multiple pairs of
starting/ending addresses may be specified, unless the UNIQUE parameter is
coded.

Note: If WXTRNSs are required they must be included in the IDATB macro. See

IDATB_Build Selective Memory Dump Table” on page 289 for more

information about the IDATB macro.

TEXT=descriptor
Required. A text description of the storage area. This is displayed in the dump,
and in ZIDOT command responses. The description is limited to 36 characters,
and must not contain control characters.

FORMAT
Optional. One of four possible values which specifies how the data in the area
of storage being defined should be formatted in the dump. Valid parameters
are:

HEX
Format the data in hex.

EBCDIC
Convert the data to printable characters.

DOUBLE
Format data in hex, followed by a second line in EBCDIC.

BOTH
Format data in both hex and EBCDIC on the same print line. Causes
printing of dump labels to be suppressed.

The default is FORMAT=HEX.

UNIQUE
Optional. Specifies that multiple copies of the storage area exist, as follows:

SS
Generate multiple selective memory dump table entries for this keyword,
one for each subsystem.

IS Generate multiple selective memory dump table entries for this keyword,
one per |-stream.

BOTH
Generate multiple selective memory dump table entries for this keyword,
one for each I-stream and subsystem.

There is no default.

Note: This keyword cannot be coded if control program (CP) VCONSs are used
to identify the storage area or if more than one pair of start/end
addresses was coded on the LOC parameter.

REQUIRED
Optional. Specify one of the following:

YES
This storage area is unconditionally included in all dumps.

NO
The area only appears in a given dump if an override has been created for
the dump via the IDOTB macro or ZIDOT command.

294 TPF V4R1 System Macros

IDATG

The default is REQUIRED=NO.

Entry Requirements

None.

Return Conditions

None.

Programming Considerations

The IDATG calls need not be coded in ascending address order. The initializer
program will sort the SMDT entries according to whether the data areas are present
in the user’s configuration.

Examples

IDATG

IDATG
IDATG
IDATG

IDATG

Note:

KEYWORD=I-CP, the control program
FORMAT=HEX, format in hex
LOC=(V(CPMEXR) ,V(CPLKM2)), start/end addresses
TEXT="'CONTROL PROGRAM' text for display
KEYWORD=DUMMY reserve some dummy entries
KEYWORD=DUMMY

KEYWORD=DUMMY

KEYWORD=I-MFST, Module File Status Table
FORMAT=BOTH, format hex and EBCDIC
LOC=(A(0),A(0)), CCCTIN will initialize
TEXT='MODULE FILE STATUS TABLE', text for display
UNIQUE=SS TPF subsystem unique

All parameters defined by IBM begin with the character I.

System Macros 295

IDOTB
IDOTB-Dump Override Table Build

Use this system macro to identify main storage areas for inclusion in a dump for a
particular system error or range of system errors. These areas are in addition to
those specified in the SLIST parameter of the SERRC macro. The areas are
identified by means of a bitmap.

Each IDOTB macro call generates an entry in a portion of the dump override table

called the static override bitmap table (SOBT). The dump overrides are defined by

means of a bitmap. There are two sets of IDOTB macro calls in the TPF system:

* The CIDP copy member of the CCCPSE CSECT contains the dump overrides for
IBM system errors

* The CUDP copy member of the CCUEXT CSECT contains the dump overrides
for user system errors.

See [[PE General Macrod for more information about the SERRC macro.

Format

»»—IDOTB PREFIX=——Letter ,—INCLUDE=(Lk;|~
NONE——I_
BUILD

) L‘ Optional ’J)

Optional:

-

—SENUM=——senum
—Esenuml -senum2—
MD.

ONE
—COPIES= |_ALL—|
—DSECT=YES

PREFIX
This parameter is required. Specify one of the following:

letter
An uppercase alphabetic character, coded on the SERRC macro, that is
concatenated with the system error number in the console message and in
the dump. The letters | and W through Z are reserved for IBM use.

NONE
The designated override will take effect only if no prefix appears in the
SERRC macro expansion; that is, the SERRC macro call resulted from a C
language perror or exit function call.

296 TPF V4R1 System Macros

IDOTB

SENUM=senum | (senuml-senum2) | MD
The six-digit system error number used to identify the dump. The values
specified may be coded two ways:
* A symbolic system error equate; for example, CA9T51.

* A self-defining hexadecimal value; for example, X'123456'.

Use MD to define the overrides for a manual dump. If this parameter is coded,
the override will only take effect if the system error number for the error
matches the value specified, or falls within the range senuml1-senum2.

Note: No check is made to ensure that senum2 is greater than senum1.

PGMS=(pgml [,...,pgmn])
One or more ECB-controlled program names to be associated with this
override. If this parameter is coded, the override will only take effect if the
system error was issued by one or more ECB-controlled programs specified.

Each program name must consist of a four-character segment name and a
2-character version code. A version code of ** will cause the override to be in
effect for all program versions.

Notes:

1. Due to a limitation of the macro language, only 255 characters may be input
per macro call. If more program names are required, code multiple IDOTB
macros.

2. Overrides having an exact match on the failing program version code will
take priority over those coded with **,

INCLUDE=(key1 [,...,keyn])
The selective memory dump table (SMDT) values that identify the areas of main

stora%e to be included. See [IDATB—BRuild Selective Memary Dump Tahle” on

for a list of valid values. This parameter is required.

Because of macro language limitations, only 255 characters may be coded. If
you want more characters, use the INCLUD2 parameter.

INCLUD2=(key1 [,....keyn])
This handles the overflow from the INCLUDE parameter. See the INCLUDE
parameter for more information.

COPIES
A single copy or multiple copies of a storage area can be specified, when there
are multiple copies for each I-steam or MDBF subsystem.

ONE
Only the copy for the subsystem or I-stream where the error occurred will
appear in the dump.

ALL
All copies of the storage area will appear in the dump.

The default is COPIES=ONE.

Note: This parameter also applies to storage areas defined using more than
one pair of start/end addresses on the IDATG macro.

DSECT=YES
This form of the macro is used to generate DSECTs and equates describing the
SOBT data structure. It is intended for CP use only.

System Macros 297

IDOTB

BUILD

This parameter must be coded by itself and is used to identify the end of the
set of IDOTB macro calls. It causes the previous calls to be validated, and if no
errors are detected, the static override table will be built.

Entry Requirements
None.

Return Conditions
None.

Programming Considerations

Examples

See HIDATR-Ruild Selective Memory Dump Tahle” on page 289 for more

information about valid parameters.

The following priority sequence determines which overrides apply to an error
(from highest to lowest):

1. An override specifies a system error number and a program name list.

2. An override specifies a range of system error numbers and a program name
list.

An override specifies a system error number.
An override specifies a range of system error numbers.
An override specifies a program name list, but no system error numbers.

An override specifies neither a program name list nor system error numbers.
(for example, the prefix character only).

o0k~ w

The operands on multiple IDOTB calls may overlap. When this occurs, system error
processing will determine which override to use based on an established priority.
Consider the following:

IDOTB PREFIX=Q,INCLUDE=(I-MFST)
Include the MFST in the dump for all system errors having a prefix of Q.
IDOTB PREFIX=Q,PGMS=(CVFE**,CNPU**),INCLUDE=(I-GAT)

Include the GAT (and not the MFST) if the system error has a prefix of Q and the
SERRC was issued by programs CVFE or CNPU.
IDOTB PREFIX=Q,SENUM=(X'101"-X"1FF’),INCLUDE=(I-MPIF,I-LSWB)

Include the MPIF control tables and SWBs (and not the GAT or MFST) if the
system error number has a prefix of Q and the system error number falls within
the range shown.

IDOTB PREFIX=Q,SENUM=X"1F0",INCLUDE=(I-CIOLDV)

Include the CIO LDEV blocks (and none of the previous areas) if the system
error has a prefix of Q and the system error number is X'1FO'".

Note: This falls in the range X'101' through X'1FF' specified on the previous
IDOTB call.

IDOTB PREFIX=Q,SENUM=X"1F0’,PGMS=(CYEA**,CYEM**),INCLUDE=(l-
LIOCB)
Include the IOCBs (and none of the previous areas) if the system error has a

prefix of Q, the system error number equals X'1F0', and the SERRC was issued
by program CYEA or CYEM.

298 TPF V4R1 System Macros

IDOTB

In these situations system error processing will identify all of the overrides that
may apply to the error. Then an override is selected using the priority scheme
discussed previously.

When the same priority level is defined by two or more applicable overrides,
system error processing will use the first override found in the table.

XYZ IDOTB BUILD construct the SOBT

XYZ IDOTB DSECT=YES generate the SOBT DSECTs

System Macros 299

IFRVTC

IFRVTC-Test RID/RVT Address
Use this system macro to distinguish between:
* Aresource identifier (RID) and an SCBID
* An RVT1 address and an SCB1 address
* An RVT2 address and an SCB2 address.

This macro causes a conditional branch depending on whether the tested value
refers to a resource vector table (RVT) or a session control block (SCB).

Format

>>—L——|—I FRVTC—INPUT= symbol ,TYPE= I . IFRVT=Zabell:|-—><
label (Rx)——l— —EI? |:IFSCB=labell
2

INPUT
This parameter specifies the location of the input to be tested.

symbol
The symbolic address of the input. If the input is an RID or an SCBID,
symbol is a 3-byte field; if the input is an RVT1, RVT2, SCB1, or SCB2
address, symbol is a 4-byte field.

(Rx)
The register containing the input. If the input is an RID or an SCBID, it is
right-justified in (Rx) with the high-order bits set to zeros; if the input is an
RVT1, RVT2, SCB1, or SCB2 address, (Rx) contains the 4-byte address.
Valid registers are RO—R7 and R15.

TYPE
This parameter specifies the type of input.

ID The input is either an RID or an SCBID.
1 The input is either an RVT1 address or an SCB1 address.
2 The input is either an RVT2 address or an SCB2 address.

IFRVT=labell
This parameter specifies the symbolic label to which control is transferred if the
input refers to an RVT.

IFSCB=labell
This parameter specifies the symbolic label to which control transferred if the
input refers to an SCB.

Entry Requirements

* The input value must be a valid RID, SCBID, RVT1 address, SCB1 address,
RVT2 address, or SCB2 address, corresponding to the value of the TYPE
parameter.

» Specify only the IFRVT parameter or the IFSCB parameter; do not specify both.

» If the input is specified as a register, it must be one of RO through R7 or R15,
enclosed in parentheses.

300 TPE V4R1 System Macros

IFRVTC

* All labels specified as operands must be addressable using a register other than
R14.

Return Conditions

 If the input references an RVT and a label is coded with the IFRVT parameter, a
branch is taken to the specified label; otherwise, processing continues following
the macro expansion.

 If the input references an SCB and a label is coded with the IFSCB parameter, a
branch is taken to the specified label; otherwise, processing continues following
the macro expansion.

* The contents of R14 are unknown. All other registers are unchanged.

Programming Considerations

Examples

* This macro is for use by systems programs only.
* This macro does not validate the input value.

INPUT_RID_OR_SCBID EQU EBROUT

IFRVTC INPUT=INPUT_RID OR_SCBID,TYPE=ID,IFSCB=FLAG_SCBID
MVI ID_FLAG,IS A RID
B NOW_WE_KNOW
FLAG_SCBID DS OH
MVI ID_FLAG,IS AN _SCBID
NOW_WE_KNOW DS OH

IFRVTC INPUT=(R2),TYPE=1,IFRVT=ITS AN RVT1 ADDRESS
BAS R7,PROCESS_SCB1
B RESOURCE_HAS_BEEN_PROCESSED
ITS_AN_RVT1_ADDRESS DS OH
BAS R7,PROCESS_RVT1
RESOURCE_HAS_BEEN_PROCESSED DS OH

System Macros 301

IGATC

IGATC—-Get Global Attribute Table Entry

Use this system macro to obtain addressability for the attributes of globals.

Format

(1)

|—,REGO=RX

»—L—_I—IGATC—REGI=RX |_ ,ERR=label >
label ,REGO=Ry

Notes:

1 If REGO is not coded, the register used is the same as that used for REGI.

label
A symbolic name may be assigned to the macro statement.

REGI=Rx
Input register, required. REGI must specify a register from R14 through R7 that
contains the address of a global directory slot. For C-type programs only, you
must specify R1.

REGO=Rx
Output register, optional.

If coded, you must specify a register from R14 through R7 that will contain the
address of the corresponding global attribute table entry.

If not coded, REGI will be used for both input and output. If the TPF system
does not contain extended globals, the value returned in REGO will be the
same as the value received in REGI. In C-type programs this parameter is not
needed because R1 is always used.

ERR=label
Error routine, optional.

If coded, must specify a label where control will be transferred if the contents of
REGI are note valid.

Entry Requirements

* REGI must contain the address of a global directory slot.

* For C-type programs only: RO must contain the SSU ID in bytes 0-1 and the
I-stream number in bytes 2-3.

Return Conditions

* The address of the corresponding Global Attribute Table entry will be returned in
the output register. If there are no extended globals in the TPF system, the
output register will be set equal to the input register.

» For C-type programs only, the address of the corresponding Global Attribute
Table entry for the main I-stream is returned in R2.

302 TPE V4R1 System Macros

IGATC

Programming Considerations

Examples

* This macro obtains the address of the attributes of any global in any system. Its
use is optional in systems that do not contain extended globals.

* This macro is intended for use by system programs only. Application programs
have no need for the information contained within the indicator byte associated
with each global record.

Application programs should normally use GLOUC, KEYUC, or FILKW to request
keypointing of global records and fields.

IGATC REGI=R1

This invocation specifies that the input register is R1. The output register defaults to
R1 as well.

IGATC REGI=R14,REGO=R4,ERR=GATERR
This invocation specifies that the input register is R14 but the output register is R4.

C-type programs cannot use this invocation, since they are limited to R1. If the
contents of R14 are invalid, control is transferred to the label GATERR.

System Macros 303

ILCKCB

ILCKCB-Lock a Control Block Area Macro

Use this system macro to allow an entry control block (ECB) to gain exclusive
control of a control block area.

Format

>>—L——|—ILCKCB—TYPE= CCB »><
label —[SCB—l

label
A symbolic name can be assigned to the macro statement.

TYPE
The name of the control block area to be locked.

CCB
The TPF/APPC conversation control block (CCB) area is to be locked.

SCB
The TPF/APPC session control block (SCB) area is to be locked.

Entry Requirements
* R9 must contain the address of the ECB being processed.

* The calling segment must have write access (using CINFC W) to the control
block to be locked.

Return Conditions
» Control is returned to the next sequential instruction (NSI) after the control block
is locked.

* After the control block is locked, the lock field in the control block contains the
address of the ECB that holds this lock.

* The contents of R14 and R15 are destroyed across this macro call. The contents
of all other registers are preserved across this macro call.

Programming Considerations
* You can run this macro on any I-stream.

» Control must not be given up between a ILCKCB macro and a I[ULKCB macro.
Use the IULKCB macro to unlock the control block that was locked by the
ILCKCB macro.

« If the control block is already held by the issuing ECB, the system error routine
issues a dump with return.

 If the control block to be locked is currently held by another ECB, the code spins,
waiting for the lock to be freed. If the lock is not freed, the ECB may be canceled
by a timeout dump.

* Any other lock should not be held by this ECB since a lock-out condition could
occur.

* This macro is restricted to real-time programs, or CP programs with a valid ECB
in RO.

304 TPE V4R1 System Macros

ILCKCB

Examples
ILCKCB TYPE=CCB

This invocation requests that the conversation control block (CCB) be locked.

System Macros 305

INDEX

INDEX—Recoup Descriptor Record Structure
Use this system macro to do the following:

* Describe the location of embedded record references and the method to chain
chase them.

» Code recoup descriptor container records (BKDs).

This macro is used both offline and online with the GROUP macro. INDEX macros
are associated with the GROUP macro that immediately precedes them.

The offline process uses the INDEX and GROUP macros to create recoup
descriptor container records.

The DSECT part of the GROUP and INDEX macros is used to access the different
fields in the BKD record online.

See [[PE Database Reference for more information about online recoup. See
lGROUP-Recoup Descriptor Record Access” an page 264 for more information

about the GROUP macro.

The following table shows the specification of the TYPE parameter and the
requirements of the remaining parameters used with the INDEX macro.

Table 6. Specification of the TYPE Parameter for the INDEX Macro and Parameter
Requirements

Parameter TYP=F TYP=C TYP=V TYP=L TYP=M TYP=S
ACODE Optional | Error Optional | Error Optional | Ignored
ALTID Optional | Optional |Optional |Optional |Optional |Ignored
BCH Ignored Optional | Ignored Ignored Ignored Ignored
CNT Ignored Ignored Optional | Optional | Optional |Ignored
CODE Optional |Optional |Optional |Optional |Optional |[Optional
CREATE Ignored Ignored Optional | Optional |Optional |Ignored
DSCR Optional | Error Optional | Optional |Optional |Ignored
DUPEELIM Optional | Optional |Optional |Optional |Optional [Ignored
FA Required |Optional |Optional |Ignored Optional | Ignored
FAT Optional | Optional |Optional |Ignored Optional | Optional
FCOD Ignored Ignored Optional | Optional |Optional |Ignored
Fl Ignored Ignored Required |Required |Required |[Ignored
Fll Ignored Ignored Optional | Ignored Optional | Ignored
FVN Ignored Ignored Ignored Ignored Ignored Optional
ID Optional | Optional |Optional |Optional |Optional |Ignored
LI Ignored Ignored Required |Required |Required |[Ignored
LIl Ignored Ignored Optional | Ignored Optional | Ignored
LSI Ignored Ignored Optional | Optional |Optional |Ignored
MAC Optional | Optional |Optional |Optional |Optional [Ignored
NAB Ignored Ignored Optional | Optional |Optional |Ignored
ORD Ignored Ignored Ignored Required |Ignored Ignored
RCC Optional |Optional |Optional |Optional |Optional [Ignored

306 TPF V4R1 System Macros

INDEX

Table 6. Specification of the TYPE Parameter for the INDEX Macro and Parameter
Requirements (continued)

Parameter TYP=F TYP=C TYP=V TYP=L TYP=M TYP=S
REG Ignored Ignored Ignored Ignored Ignored Ignored
SFA Ignored Ignored Optional | Optional |Optional |Ignored
Sl Ignored Ignored Optional | Optional |Optional |Ignored
SIC Ignored Ignored Optional | Optional |Optional |Ignored
SUFFIX Ignored Ignored Ignored Ignored Ignored Ignored

The following identifies the symbolic notation found in the previous table and also in
the syntax information that follows.

Error
Ignored
Required
Optional

Parameter is not applicable and a message will be produced.
Parameter is ignored (not required).
Parameter is required.

Parameter is not required.

System Macros 307

INDEX
Format

v

>>—L——|—INDEX—TYP=
label

Item_Variables
Item_Variables
Item Variables

—,0RD=(rectype,length,address)—

i:, ID=recordid

,ALTID=altidlbl-

|—,ACODE=acodeZocJ |—,BCH=backcth |—,CODE=r:odelocJ

,DUPEELIM=NO

I—,DSCR=dscrloc—| I—,DUPEELIM=YES—| l—,FA

faloc:lJ l— ,FUN= verszonnbr—l

fbptr

Item_Variables:

l—,MAC=macro_name—| I—,RCC=

,CREATE=YES

(P,dtag) l— ,REG=reg |)
(I,dtag) l— ,SUFFIX= sufflx—|
(C,x)

,FAT=FA4
.

|
[
I—,CNT=1’1.‘emcnt—| I—,CREATE=N0—I

fi Zoc:l—>
,FAT=FA8:‘ l—,FCOD=fcodloc —[flptr
,FAT=PID

l—,FII

fzznbr

,LI=
fzzdzsij —[letr—l I—,LII=

liinbr lsiptr

I—,NAB naij l— ,SFA=
nabptr

sfaloc:l—l l— ,SI= —[szloc:lJ
sfaptr siptr

l—,SIC

1
szcnth
szcntptr

label

is a symbolic name that can be assigned to the macro statement.

TYP

specifies the type of file.

C specifies a standard forward chaining file, where the file address is
contained in a standard header (at location 8). If the file address is not at
location 8, code the FA parameter.

308 TPF V4R1 System Macros

INDEX

F specifies a fixed address file, where the file address or persistent identifier
(PID) is at a fixed location. (Do not use for forward chaining.)

S specifies that the file is a TPF Database Facility (TPFDF) file described by
DBDEF macro statements and chain chased by TPFDF recoup.

L specifies an embedded ordinal number file, where a group of ordinal
numbers are described.

M specifies a variable item file, where file addresses are contained in
variable-length items or subitems.

V specifies a fixed item file, where file addresses or persistent identifiers
(PIDs) are contained in fixed-length items, subitems, or PIDs.

ORD

specifies the ordinal description if chained records contain an ordinal number,

where:

rectype
The file address compute (FACE) program record type used to convert the
ordinal number to a file address.

length
The length of the field containing the ordinal number.

address

The location relative to the first item (FI) of the ordinal number; for example:
ORD= (#PNDRI,1,TAGE)

Note: If the FI parameter resolves to a value that cannot be relocated or
pointer value, the ORD parameter must also be a value that cannot be
relocated or pointer value.

ID=recordid
specifies the record ID used to retrieve the record; for example:
ID=AA

Note: If omitted, no record ID check is done and a warning message is
produced.

ALTID=altidIbl
specifies the label of a statement that expands to an alternate ID table that is
used for recoup chain chase processing. Recoup processing chases the first
record ID that matches the information supplied in the table. The statement at
the specified label must have the following format:

altidlbl INDEX TYP=AIDTBL, (rid,rcc,dscrloc),(rid,rcc,dscrloc),....

Where;
rid is a 2-character or 4-hexadecimal alternate record ID.

rcc
is a 1-character or 2-hexadecimal record code check (RCC) of the alternate
record ID.

dscrloc
specifies the location of the GROUP macro statement that also describes
the data record when retrieved (located in the same descriptor container
record). If the record contains no more references to chain chasing
(including overflow or forward chaining), dscrloc can be omitted, but the
preceding comma must still be specified.

System Macros 309

INDEX

Recoup processing compares the record ID and RCC of a record to the
information found in the alternate ID table. If the information matches an item,
the record is chain chased using the GROUP macro statement at the descriptor
location (dscrloc). In the following example, assume that recoup processing
found the record ID of JJ with an RCC of 01 in the record that was at label
JXOFAD. This matches the first ID in the alternate record table; therefore, the
record is chain chased using the GROUP macro statement at label JURECL1.

INDEX TYP=F,ALTID=TEST,FA=JXOQFAD)
TEST INDEX TYP=AIDTBL, (JJ,01,JUREC1), (FCO1,1,FCTAG), (BB,,)

JUREC1 GROUP USE=DCSR,

Note: You cannot specify the ALTID parameter with the ID, RCC, or DSCR
parameter.

ACODE=acodeloc

specifies the label where there is code to run after finding the pool address; for
example:

ACODE=PD3AR

BCH=backchn

specifies the label of the backward chain address from the last record in the
chain; for example:

BCH=NCOBCH

CODE=codeloc

specifies the location within the descriptor container record of code to run prior
to locating imbedded file addresses; for example:

CODE=PREFIND

This is useful in cases where certain fields in a data record can be tested to
determine if the data record has no imbedded addresses.

DSCR=dscrloc

specifies the location of the GROUP macro statement that also describes the
data record when retrieved (located in the same descriptor container record).
The following example shows the DSCR parameter pointing to GROUP3, which
is a GROUP macro statement that also describes the data record:

INDEX TYP=F, DSCR=GROUP3, ...

GROUP3 ~ GROUP USE=DCSR, ...

DUPEELIM

specifies whether or not to use the special recoup chain-chasing indicator (RCI)
algorithm that eliminates duplicate chain chasing.

NO
does not check pseudo directories to prevent finding a pool that has already
been chain chased.

YES
checks pseudo directories to prevent finding a pool that has already been
chain chased.

Note: DUPEELIM=YES can only be specified when USE=BASE and
GRP=(grpid,RCI) are specified in the associated GROUP macro
statement, where grpid is the group name that is assigned to a
specific group of record IDs.

310 TPE V4R1 System Macros

INDEX
INDEX TYP=F,FA=AAOAG1,ID=CC,DUPEELIM=YES

INDEX TYP=V,ID=CA,FI=I80IFA,LI=L"'I80IFA,
CNT=(N, IBONENT) ,DSCR=XXXX,DUPEELIM=YES

INDEX TYP=M,ID=CA,FI=I80IFA,LI=L"'I80IFA,
NAB=(N,I8ONENT) ,DSCR=YYYY,DUPEELIM=YES

INDEX TYP=C,ID=FC32,DUPEELIM=YES

FA
specifies the location of the file address, where:

faloc
is a displacement to the file address, where faloc is one of the following:

* A DSECT tag representing the location of the file address; for example:
FA=PD1IFA
* An absolute displacement from the start of the first item, expressed as

(alpha,disp), where alpha is any alphabetic character and disp is the
displacement to the file address; for example:

FA=(N,40)

faptr

is the size and location of the 1- to 4-byte field that contains the pointer to

the file address, where faptr is one of the following:

* An absolute size and DSECT tag of the location of the file address
pointer; for example:

FA=(2,VR1FAP)

* A calculated size and DSECT tag of the location of the file address
pointer; for example:
FA=(L'VR1FAP,VR1FAP)

* An absolute displacement from the start of the first item, expressed as
(alpha,size,disp), where alpha is any alphabetic character, size is the size
of the field that contains the pointer, and disp is the displacement to the

pointer field. The absolute displacement to the 2-byte pointer field is 16 in
the following example:

FA=(N,2,16)

Note: If the FI parameter is specified and resolves to a value that cannot be
relocated or pointer value, the FA parameter must also resolve to a value
that cannot be relocated or pointer value.

FVN=versionnbr
specifies the file version number used by the TPFDF product to identify file

structures that have blocks with different layouts than the prime blocks; for
example:

INDEX TYP=S,FVN=1

MAC=macro_name

specifies the name of the data macro describing the data record containing
embedded addresses.

RCC
specifies the location of the record code check (RCC).

(P.dtag)
If the RCC is at a location in the prime record; for example:
RCC=(P,NCORCC)

System Macros 311

INDEX

(I,dtag)
If the RCC is at a displacement in an item; for example:

RCC=(I,TAG1)

C,x
(I)f the RCC is a constant (any number from 0 to 255); for example:
RCC=(C,246)
REG=reg
specifies the register to be used as the base for the DSECT specification; for
example:
REG=R7

Note: If the REG parameter is specified, the macro generation assumes that
the request is to generate the DSECT only.

SUFFIX=suffix
specifies the suffix to be used on the DSECT definition, where suffix is an
alphabetic character; for example:

SUFFIX=Q

CNT=itemcnt
specifies the item count, where itemcnt is specified as an absolute value or
specified as a length and location that contains the item count value.

The following example shows an item count specified as an absolute value:
CNT=(N,20)

The following example shows an item count specified as a value specified for 2
bytes starting at location PD1TAG:

CNT=(2,PD1TAG)

CREATE
specifies whether an entry control block (ECB) is to be created with the
retrieved record.

YES
specifies that an ECB is created with the retrieved record, which provides
faster processing time and sometimes avoids single threading (usually
where there is only one fixed level record with many embedded addresses
that also may have many embedded addresses).

If you specify CREATE=YES, more ECBs are created than were specified
with the ECB parameter in the primary GROUP macro.

NO
specifies that an ECB is not created with the retrieved record.

FAT
specifies the type of file address specified with the FA parameter.

FA4
specifies a 4-byte file address.

FA8
specifies an 8-byte file address.

PID
specifies a TPF collection support (TPFCS) persistent identifier (PID).

312 TPE V4R1 System Macros

INDEX

FCOD=fcodloc

Fl

specifies the location in the descriptor container record of code to be processed
for every item in a data record; for example

FCOD=ITEMCODE

This is used for testing fields in items where the file addresses can be for
different record types, or if item is inactive, but file address not cleared.

Notes:

1. Register 1 (R1) contains the base of data record.

2. R2 points to item.

3. When TYP=L, R3 has the address of the current ordinal slot, and R2 points
to the current item.

4. When TYP=V or TYP=M, R7 has the address of the current subitem, and
R2 points to the current item.

specifies the location of the first item in a record, where:

filoc
is a displacement to the first item relative to the start of the record, where
filoc is one of the following:

* A DSECT tag representing the location of the first item; for example:
FI=PD1ITM
* An absolute displacement from the start of the record, expressed as

(alpha,disp), where alpha is any alphabetic character and disp is the
displacement to the first item; for example:

FI=(N,40)

fiptr

is the size and location of the 1- to 4-byte field that contains the pointer to

the first item in the record, where fiptr is one of the following:

* An absolute size and DSECT tag of the location of the first item pointer;
for example:

FI=(2,VR1IPT)

* A calculated size and DSECT tag of the location of the first item pointer;
for example:
FI=(L'VR1IPT,VR1IPT)

* An absolute displacement from the start of the record, expressed as
(alpha,size,disp), where alpha is any alphabetic character, size is the size
of the field that contains the pointer, and disp is the displacement to the
pointer field. The absolute displacement to the 2-byte pointer field is 16 in
the following example:

FI=(N,2,16)

Note: If the FI parameter is specified and resolves to a value that cannot
be relocated or pointer value, the FA, LI, ORD, SFA, SI, or SIC
parameter must also resolve to a value that cannot be relocated or
pointer value.

FlIl specifies the first item index that is used to locate the first valid item in a record,

where:
fiidisp
is a field that contains the absolute displacement from the start of the

record to the first item in a record, expressed as (alpha, size, namefield),
where alpha is any alphabetic character, size is the size of the field, and

System Macros 313

INDEX

namefield is the name field that contains the displacement. In the following
example, the 2-byte field, TAGB, contains the absolute displacement from
the start of the record to the first item :

FII=(D,2,TAGB)

fiinbr
is a field that contains the item number of the first item in a record,
expressed as (size, namefield), where size is the size of the field, and
namefield is the name of the field that contains the item number of the first
item. The first item is item number O; therefore, the last item number is one
less than the number of items. In the following example, the 2-byte field,
TAGB, contains the number of the last item in a record:

FII=(2,TAGB)

Note: The FIl parameter is used only for fixed-length items.

LI specifies the length of an item or the location of a field that contains the length
of an item in a record, where:

li is the length of an item in a record, where li is one of the following:
* An assembler expression that resolves to an absolute value; for example:
LI=L'PD1ITM
* An absolute value; for example:
LI=32

liptr
is the size and location of the 1- to 4-byte field that contains the pointer to
the length of an item, where liptr is one of the following:

* An absolute size and DSECT tag of the location of the item length; for
example:

LI=(2,VRLIPT)

* A calculated size and DSECT tag of the location of the item length; for
example:

LI=(L'VRLIPT,VRIIPT)

* An absolute displacement from the start of the record, expressed as
(alpha,size,disp), where alpha is any alphabetic character, size is the size
of the field that contains the pointer, and disp is the displacement to the
pointer field. The absolute displacement to the 2-byte pointer field is 12 in
the following example:

LI=(N,2,12)

Note: If the FI parameter is specified and resolves to a value that cannot
be relocated or pointer value, the LI parameter must also resolve to
a value that cannot be relocated or pointer value.

LIl specifies the last item index that is used to locate the last valid item in a record
is in a field that contains the absolute displacement to the last item in a record
or the location of a field that contains the item number of the last used item in a
record, where:
liidisp

is a field that contains the absolute displacement from the start of the
record to the last item in a record, expressed as (alpha,size,namefield),
where alpha is any alphabetic character, size is the size of the field, and
namefieldis the name field that contains the displacement. In the following
example, the 2-byte field, TAGB, contains the absolute displacement from
the start of the record to the last item :

314 TPE V4R1 System Macros

INDEX
LII=(D,2,TAGB)
liinbr
is a field that contains the item number of the last item in a record,
expressed as (size,namefield), where size is the size of the field, and
namefield is the name of the field that contains the item number of the last
item. The first item is item number O; therefore, the last item number is one

less than the number of items. In the following example, the 2-byte field,
TAGB, contains the number of the last item in a record:

LII=(2,TAGB)

Note: The LII parameter is only used for fixed-length items.

LSI

specifies the length of a subitem or the location of a field that contains the
length of a subitem in a record, where:

Isi is the length of a subitem in a record, where Isi is one of the following:
* An assembler expression that resolves to an absolute value; for example:
LSI=L'PD1ITM
* An absolute value; for example:
LSI=32

Isiptr
is the size and location of the 1- to 4-byte field that contains the pointer to
the length of a subitem, where Isiptr is one of the following:

* An absolute size and DSECT tag of the location of the subitem length;
for example:

LSI=(2,VRLIPT)
* A calculated size and DSECT tag of the location of the subitem length;
for example:
LSI=(L'VRLIPT,VRLIPT)
* An absolute displacement from the start of the record, expressed as
(alpha,size,disp), where alpha is any alphabetic character, size is the size
of the field that contains the pointer, and disp is the displacement to the

pointer field. The absolute displacement to the 2-byte pointer field is 12 in
the following example:

LSI=(N,2,12)

Note: If the SFA parameter is specified and resolves to a value that cannot be
relocated or pointer value, the LS| parameter must also resolve to a
value that cannot be relocated or pointer value.

NAB

specifies the next available byte or the location of a field that contains the next

available byte, where:

nab

is the next available byte in a record, where nab is an absolute value; for
example:

NAB=(N,20)
nabptr

is the size and location of the 1- to 4-byte field that contains the pointer to
the next available byte, where nabptr is one of the following:

* An absolute size and DSECT tag of the location of the next available
byte; for example:

System Macros 315

INDEX

NAB=(2,VRINAB)

* A calculated size and DSECT tag of the location of the next available
byte; for example:

NAB= (L' VRINAB, VRINAB)

SFA
specifies the location of the subitem file address, where:
sfaloc
is a displacement to the subitem file address, where sfaloc is one of the
following:
* A DSECT tag representing the location of the subitem file address; for
example:
SFA=TAGA

* An absolute displacement to the subitem file address relative to the start
of the first item, expressed as (alpha,disp), where alpha is any alphabetic
character and disp is the displacement to the subitem file address; for
example:

SFA=(G,40)

sfaptr

is the size and location of the 1- to 4-byte field that contains the pointer to

the subitem file address, where sfaptr is one of the following:

* An absolute size and DSECT tag of the location of the subitem file
address pointer; for example:

SFA=(2,VR1IPT)

* A calculated size and DSECT tag of the location of the subitem file
address pointer; for example:
SFA=(L'VR1IPT,VR1IPT)

* An absolute displacement from the start of the first item, expressed as
(alpha,size,disp), where alpha is any alphabetic character, size is the size
of the field that contains the pointer, and disp is the displacement to the

pointer field. The absolute displacement to the 2-byte pointer field is 16 in
the following example:

SFA=(N,2,16)

Note: If the FI or SI parameter is specified and resolves to a value that cannot
be relocated or pointer value, the SFA parameter must also resolve to a
value that cannot be relocated or pointer value.

S| specifies the location of the first subitem in an item, where:

siloc
is a displacement to the first subitem, where siloc is one of the following:

* A DSECT tag representing the location of the subitem file address; for
example:
SI=TAGA
* An absolute displacement to the first subitem relative to the start of the
first item, expressed as (alpha,disp), where alpha is any alphabetic
character and disp is the displacement to the first subitem; for example:
SI=(G,40)

siptr
is the size and location of the 1- to 4-byte field that contains the pointer to
the first subitem, where siptr is one of the following:

316 TPE V4R1 System Macros

INDEX

* An absolute size and DSECT tag of the location of the first subitem
pointer; for example:

SI=(2,VR1IPT)
* A calculated size and DSECT tag of the location of the first subitem
pointer; for example:
SI=(L'VRLIPT,VRLIPT)
* An absolute displacement from the start of the first item, expressed as
(alpha,size,disp), where alpha is any alphabetic character, size is the size
of the field that contains the pointer, and disp is the displacement to the

pointer field. The absolute displacement to the 2-byte pointer field is 16 in
the following example:

S1=(N,2,16)

Note: If the FI or SFA parameter is specified and resolves to a value that
cannot be relocated or pointer value, the SI parameter must also resolve
to a value that cannot be relocated or pointer value.

SIC

specifies the subitem count (that is, the number of subitems), where:

sicnt
is the subitem count, where sicnt is an absolute value; for example:
SIC=(N,32)

sicntptr

is the size and location of the 1- to 4-byte field that contains the pointer to
the subitem count, where sicnt is one of the following:

* An absolute size and DSECT tag of the location of the subitem count; for
example:

LI=(2,VRISIC)

* A calculated size and DSECT tag of the location of the subitem count; for
example:

LI=(L'VRISIC,VRISIC)

* An absolute displacement from the start of the item, expressed as
(alpha,size,disp), where alpha is any alphabetic character, size is the size
of the field that contains the pointer, and disp is the displacement to the
pointer field. The absolute displacement to the 2-byte pointer field is 12 in
the following example:

LI=(D,2,12)
Notes:
1. When SIC is specified, the LS| parameter is required.

2. If the FI parameter is specified and resolves to a value that cannot be
relocated or pointer value, the SIC and LSI parameters must also resolve to
values that cannot be relocated or pointer values.

Entry Requirements

* This macro is required for recoup.

* Online use of this macro is for data use only.

» Offline use of this macro is to create BKDI records on the RCP tape.

* Register 9 (R9) must contain the address of the ECB being processed.

» All parameters that apply to the record structure must be specified during offline
use of this macro.

System Macros 317

INDEX

Return Conditions

» Control is returned to the next sequential instruction.

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

Programming Considerations
* This macro must be processed on the main I-stream.
* This macro will be used for recoup only.

» For all exits coded it is the users responsibility to establish addressability to the
data DSECT concerned.

Examples

* The following example shows the online use of the INDEX macro.
INDEX REG=R7

REG=R7 R7 is the register to be used as the base for the DSECT
specification.

* The following example indicates that a pool address is located at some
displacement in a data record by the FA parameter.

INDEX TYP=F,FA=PD1WLP,DSCR=PWGP,ID=PW,CODE=PWCODE
TYP=F File address or persistent identifier (PID) at a fixed location.
FA=PD1WLP Displacement of 4-byte file address.

DSCR=PD1WLP
When the record is retrieved at PD1WLP, this field is a pointer to
another GROUP macro that defines embedded addresses in the
data record.

ID=PW Record ID.

CODE=PWCODE
Pointer to code that is run before finding the data record at
PD1WLP.

Example:

™ PD1ID1-PD1PD(R1),X'01'

Bz 0(R6) not an alpha.

B 8(R6) yes, find record.

Where:

0(R6) Return if conditions are not met; the item will be bypassed and the
record not retrieved.

8(R6) Return if conditions are met; the record will be retrieved.

R1 Base of record containing the pool addresses.
* File addresses at fixed locations.
1. TYP=F
INDEX TYP=F,FA=PD1WLP,1D=PW,DSCR=PWGP,CODE=TEST
TYP=F Branch Vector.

FA=PD1WLP Displacement to file address.

318 TPE V4R1 System Macros

INDEX
ID=PW ID of the record found at FA.
DSCR=PWGP Displacement to descriptor for record found at FA.

CODE=TEST Pointer to executable code.
2. Explanation: CODE=TEST

The CODE parameter is used to determine if a file address is active or present at
FA.

Example:

™ PD1ID1-PD1PD(R1),X'01"

B 8(R6) FA is present—process
B 0(R6) Not active bypass

Note: Register 1 (R1) points to the beginning of the data record, and R6 is the
return register.

e Data Records with Standard Headers

This covers data records with a forward chain address at location 8 in the data
record and a back chain at location 12. The back chain address must be the last
data record in the chain when included as the BCH parameter. Nonstandard
headers may be described with this statement also.

1. Example:
INDEX TYP=C,ID=AT
TYP=C Standard forward chain chase.
ID=AT Record ID.

Note: If the forward chain is at a location other than 8, the file address may
be described with the FA parameter. However, every chain has to be
at the same location described by FA. The same applies to the BCH
parameter.

2. Example:
INDEX TYP=C,FA=TI1FOR,BCH=TI1BAC,ID=TM

FA=TI1FOR is the nonstandard first in the chain

BCH=TI1BAC is the nonstandard last in the chain
» Standard Forward Chain Chase
TYP = C
1. INDEX TYP=C,ID=PR
2. INDEX TYP=C,FA=PROFCH,ID=PR
3. INDEX TYP=C
4. INDEX TYP=C,FA=PROFCH,BCH=PROBCH,ID=PR

All parameters other than the TYP=C are optional with the following exceptions:

1. If the forward chain address is at a location other than 8, the FA parameter
must specify the nonstandard location.

2. The BCH parameter is used only when the back chain field specifies the last
chain. This is used to stop when a closed loop is found.

3. The ID parameter is not used; the ID of the prime record is used to retrieve
all subsequent records.

* Groups of Embedded Pool Addresses

System Macros 319

INDEX

The following example describes a group of embedded pool addresses with a
starting location, the length of an item to be used to increment from item to item,
and a method to calculate the number of items or file addresses.

INDEX TYP=V,FI=EGOADR,LI=L'EGOADR,CNT=(N,261),
ID=E0,DSCR=EOID,CODE=NOLAST

TYP=V V indicates a group of embedded addresses or persistent
identifiers (PIDs).

FI=EGOADR Displacement to the first item.

FA=0 This parameter is not coded because the items are 4 bytes in
length. The FA is added to FI to calculate the final displacement
to the file address. Therefore the parameter could be coded as
FA=0 or it could be left out and defaulted to 0.

LI=L'EGOADR Increment to step to the next file address location.

CNT=(N,261) Number of file addresses is fixed at 261. N means the value 261
is used as a counter.

ID=EO Record identification.
DSCR=EQOID Pointer to a descriptor record of the record when retrieved.

CODE=NOLAST
Pointer to code before indexing through the data record. R1 at
this point will have the base address of the data record.

* Groups of Addresses

INDEX TYP=V,NAB=(2,PDINX),FI=PDI1ITM,LI=L'PD1ITM,
FA=PD9ADD, ID=PR,CODE=PDITM, FCOD=TEST,DSCR=PNR

TYP=V Branch vector.

NAB=(2,PD1NX)
Displacement to the next available byte.

FI=PD1ITM Displacement to the first item.

LI=L*PD1ITM Length of one item.

FA=PD9ADD Displacement from FI to the file address.

ID=PR PR record ID used to retrieve the record at FA.
CODE=PDITM Displacement to executable code.

FCOD=TEST Displacement to executable code.

DSCR=PNR Pointer to the descriptor of the record found at FA.

Explanation:

1. The next available byte is used to calculate the number of items to process.
NAB-FI = 07A-03E = 2 items active

2. CODE=PD1ITM

Registers R1 contains the address of the beginning of the data record
R6 return register
0(R6) means to end processing the data record

8(R6) means to continue processing the data record

320 TPE V4R1 System Macros

INDEX

The CODE parameter is used primarily for examining a field in the data
record to determine whether the data record is empty or inactive.

3. FCOD=TEST
Registers R1 contains the address of the beginning of the data record

R14 is the address of the current item, which is incremented
by the item length to find the address of next item.

R6 is the return register.

Example:

CLI 0(R2),x'80' 80=item inactive

BO 0(R6) Bypass this item

B 8(R6) Process this item

B 16 (R6) Write item to RCP tape

Note: The write item to RCP tape does not FIND the record from file. This is
used when you do not want to find the record at this time. For PNRs,
this is used with the MET switch and MET TAPE to speed up
processing.

* Groups of Addresses in Groups of ltems

INDEX TYP=V,FI=PG1LST,NAB=(2,PG1DII),LI=L'PG1LST,ID=PD,
SIC=PGIDCT,SFA=PGIDPI,LSI=L'PG1IT2,DSCR=PNID

TYP=V Branch vector.
FI=PG1LST The displacement to the first item.

NAB=(2,PG1DII)
The displacement to the next available byte.

LI=L'PG1LST The length of one item.

ID=PD The PD record ID used to retrieve the record.
SIC=PG9DCT The displacement (relative to FI) of the count of subitems.
SFA=PG9DPI The displacement (relative to Fl) of the first file address.
LSI=L'PG1IT2 The length of the subitem.

DSCR=PNID The pointer to the descriptor of the record found at the file
address.

Explanation:

1. The first item may be at the end of a data record, which means that the
length of the item (L'PG1LST) is decremented from the first item. The first
item may be at the beginning of the record, which means that the length of
the item is added to the FI value to process from item to item.

2. The CODE and FCOD parameters have the same conventions as when used
with the TYP=V group of addresses or persistent identifiers (PIDs).

* Groups of Ordinal Numbers

The following statement is used to describe data records with groups of ordinal
numbers. These fixed records then, in turn, have embedded pool addresses.

1. TYP=L

INDEX TYP=L,FI=PQ5ITM,LI=L"'PQ5SLT,0RD=(17,1,PQIQGN),
FCOD=TAGQC,DSCR=QCR, ID=QC,CNT=(1,PQ5CNT)

TYP=L L indicates a group of ordinal numbers.

System Macros 321

INDEX

322

FI=PQ5ITML The first item starts at PQ5ITM (a displacement from the
beginning of the data record).

LI=L'PQ5SLT The length of the item.

ORD=(17,1,PQ9QGN)
17 is the file address compute (FACE) program equate of the
record type.

1 is the length of the field containing the ordinal number.

PQ9QGN is the displacement from the item (PQ5ITM) of the
ordinal.

TYP =L

INDEX TYP=L,FI=QC1UIN,LI=L'QC1UIN,ID=QX,O0RD=(#QXRNO,2,QC1UX1),
CNT=(N,29) , FCOD=QUE,, DSCR=QXR

TYP=L Branch vector.

FI=QC1UIN The displacement to the first item.
LI=L‘QCL1UIN The length of one item.

ID=QX C'QX’ ID for retrieval.
ORD=(#QXRNO,2,QC1UX1)

#QXRNO FACE equate this record type.
2 The length of the field containing an ordinal number.
QC1UX1 The displacement (relative to FI) of an ordinal number.

CNT=(N,29) The number of items is fixed at 29.
FCOD=QUE The pointer to code to test if item is active.
DSCR=QXR The pointer to the descriptor of the record retrieved.

Explanation: FCOD=QUE parameter is used to examine some field relative to the
beginning of each and every item. (See the previous conventions.)

TPF V4R1 System Macros

IOIRC

IOIRC—Return from CIO Input/Output (I/O) Interrupt Processing

Use this system macro to return control from the device input/output (1/O) interrupt
handler to the point of the 1/O interrupt.

Format

>

I0IRC -
|—label—|

label
A symbolic name can be assigned to the macro statement.

Entry Requirements
* The TPF system must be disabled for interrupts.
* The TPF system must be running with the program status word (PSW) key 0.

Return Conditions

There is no return from the IOIRC macro as such. The macro processes an orderly
return to the point of interrupt by reloading the PSW from the low core save area.

Programming Considerations
This macro can be run on the main I-stream only.

Examples
None.

System Macros 323

IPSDC

IPSDC-Call TCP/IP Native Stack Common Service Routine

Use this system macro to allow real-time and control program TCP/IP native stack
support code to call common TCP/IP service routines that reside in the control
program. These routines build and send IP packets, activate and deactivate IP
connections, and manage the IP routing table. The interface to IPSDC differs for

each service routine.

Note: Syntax and parameter descriptions are not provided because this is an
object code only (OCO) macro.

324 TPE V4R1 System Macros

IPURGE

IPURGE—-Purge Data from Queue

Use this system macro to purge the presentation services input list queue.

Format

, SUFX=P
|_

>>—L—_|—IPURGE—DLEV=heX_digit—,REG=Rn |_ »><
label ,SUFX=character—

DLEV=hex_digit
The variable level indicates a free data level to be used in purging the queue.
Specify this as a hexadecimal digit from O to F.

REG=Rn
The variable Rn indicates the base register to be used for the Half Session
Processing Record (DSECT IHPR). The valid range is R1 through R7, and R14
through R15.

SUFX=P|character
This is an optional parameter that specifies the suffix to be used in the IHPR
macro call.

Entry Requirements

* The calling segment must have set up addressability for the Conversation Control
Block (CCB) before invoking this macro.

* The level passed on the DLEV parameter must be free for use.

Return Conditions
* The level passed on the DLEV parameter is free for use.
* The register passed on the REG parameter is available for use.

Programming Considerations

» Each invocation of this macro within a segment must have a unique suffix.

* The addressability of the CCB must be set up by the calling segment before
invoking this macro.

Examples

Purge the queue using data level C, specifying the IHPR DSECT in register R5 and
associating the letter A as a suffix for the IHPR macro.

IPURGE DLEV=C,REG=R5,SUFX=A

IPURGE DLEV=B,REG=R5

System Macros 325

ISDAC

ISDAC—Interrogate Symbolic Device Address (SDA) Status

Use this system macro to return the subchannel number, status, and (if mounted)
the mount parameters passed by the MSDAC macro, which is the mount symbolic
device address (SDA) macro. Optionally, the path management control words and
the subchannel status words will be returned.

See IMSDAC—Mount a Symboalic Device Address (SDA)” on page 356 for more

information about the MSDAC macro.

Format

>>—L——|—ISDAC—DDB= labell >
label —[(reg)J

label
A symbolic name can be assigned to the macro statement.

DDB
The device data block (DDB), which can be either of the following:

labell
A symbol can be assigned to an area of memory that contains a DDB as
defined by the DCTDDB DSECT.

(reg)
A register with the address of the area of memory that contains the DDB.

Entry Requirements
* The TPF system must be disabled for interrupts.
* The TPF system must be running with PSW key 0.

* The DDBSDA field must be set with the device address of an input/output (I/O)
address.

* The DDBX flag in the DDBFGO field must be set to 1 when the path
management control words and the subchannel status words are to be returned
in the DDB.

Return Conditions
« Control is returned to the next sequential instruction (NSI).
* Register 15 (R15) will contain one of the following return codes:

Return Code Meaning

0 The SDA is in use.
4 The SDA is available.
8 The SDA is not valid.

* RO-R14 are unchanged.

» If DDBX=1 and the return code is not 8, the path management control words and
subchannel status words are returned in the extended area of the DDB.

* The channel path identifier (CHPID) type indicator is returned in the DDB.

326 TPE V4R1 System Macros

ISDAC

Programming Considerations
* This macro can be run only on an I-stream having affinity with the specified SDA.
* This macro can be used only to interrogate SDAs associated with 1/0O devices.
* This macro is for use in the control program (CP) only.

Examples
None.

System Macros 327

ISNSE
ISNSE-Add an Entry to the Sense Table

Use this system macro to add an entry to the sense (SNS) table that counts the
number of resources receiving the same sense code on the same command issued.

Format

»—L—_|—I SNS E—SCODE=—|:address ,CMD= ddress ,NOMSG=——address >
label (reg) 1 (reg) 1 |—(reg) —

»— ,MSG=——address ,WKREG=RX—,DL=DX—,RIDE=—|:oddress >
—[(reg)——l— (reg)—|

label
A symbolic name can be assigned to the macro statement.

SCODE
This specifies the sense code that is to be updated in the sense table. The
format of the SCODE operand is:

address
The symbolic address of a two byte field containing the sense code.

(reg)
A register containing the sense code right justified.

CMD
This specifies the command that the sense code was received on. The format
of the CMD operand is:

address
The symbolic address of a one byte field containing the command.

(reg)
A register containing the command right justified.

NOMSG
This specifies the return address when no message is to be issued. The format
of the NOMSG operand is:

address
The symbolic address of the next instruction to process when no message
is to be issued.

(reg)
A register containing the address of the next instruction to process when no
message is to be issued.

MSG
This specifies the return address when a message is to be issued. The format
of the MSG operand is:

address
The symbolic address of the next instruction to process when a message is
to be issued.

328 TPE V4R1 System Macros

ISNSE

(reg)
A register containing the address of the next instruction to process when a

message is to be issued.

WKREG=Rx
This specifies a work register for use by the macro. The contents of the register
are unknown upon return. This register must not be RO, R14, or R15.

DL=Dx
This specifies a data level that the macro can use to get a RID block. This data
level must be free on input and will be returned free on exit from the macro.

RIDE
This specifies the RID of the RVT involved. This will be added to the RID block
when the sense is already in the sense table. The format of the RID operand is:

address
The symbolic address of a two byte field containing the RID.

(reg)
A register containing the RID right justified.

Entry Requirements

* R9 must contain the address of the ECB being processed.
*+ The WRKREG must not be RO, R14, or R15.
» The DL specified must not already be holding a block.

Return Conditions

» Control is returned to the MSG label when the sense is not in the table or the
table is full. Control is returned to NOMSG label when the sense is already in the
table.

* The contents of R14, R15, and the register specified on the WKREG parameter
are unknown. The contents of all other registers are preserved across this macro
call.

Programming Considerations

Examples

* This macro can be run on any I-stream.
* This macro should only be used when processing a negative response.

* This macro issues a CRETC for wait time. System message rates may slow the
receipt of the summary message.

* When a register is selected as a parameter it must be in the range RO through
R7 and take the form (RX).

None.

System Macros 329

IULKCB

IULKCB-Unlock a Control Block Area

Format

Use this system macro to unlock a control block area previously locked by the
ILCKCB macro.

See LILCKCB-Lack a Control Block Area Macro” on page 304 for more information

about the ILCKCB macro.

>>—L—_|—IULKCB—TYPE= CCB »><
label —[SCB—l

label
A symbolic name can be assigned to the macro statement.

TYPE
The name of the control block area to be unlocked.

CCB
The TPF/APPC conversation control block (CCB) is to be unlocked.

SCB
The TPF/APPC session control block (SCB) is to be unlocked.

Entry Requirements

* R9 must contain the address of the ECB being processed.

* The calling segment must have write access (using CINFC W) to the control
block to be unlocked.

Return Conditions

» Control is returned to the next sequential instruction (NSI) after control block is
unlocked.

e After the control block is unlocked, the lock fields in the control block contain
Zeros.

* The contents the R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

Programming Considerations

Examples

e This macro can be run on any I-stream.

» Control must not be given up between the ILCKCB and IULKCB macros.
 If the lock is not held by this ECB, the TPF system issues a dump.

 If the lock is not held by any ECB, the TPF system issues a dump.

* This macro is restricted to real-time programs, or CP programs with a valid ECB
in RO.

MYLABEL IULKCB TYPE=CCB

330 TPE V4R1 System Macros

IVTYPE

IVTYPE—-GETCC Block Type Verification

Use this system macro to validate the block type parameter for the GETCC macro.
This macro contains an AlF statement that you can modify to contain user-defined
block types as valid block type equates for the GETCC macro calls.

See [[PE General Macrod for more information about the GETCC macro.

Format

»»—IVTYPE ><

Entry Requirements
This macro can only be called from the GETCC macro.

Return Conditions

Returns to the next sequential instruction (NSI) in the GETCC macro, if the block
type is valid, or to the ERR7 label in the GETCC macro call if the block type is not
valid.

Programming Considerations

* This is an assembly time macro.

* You can add the block type equates to the list of types in the macro. This will
avoid assembly errors when using non-standard equates in the GETCC macro.
The addition is done by modifying the AIF test for legitimate types, for example:
AIF ('&P2' NE 'LO' AND '&P2' NE 'L1' AND '&P2' NE 'L2' AND

'&P2' NE 'L4' AND '&P2' NE '#TPFDBSW' AND
'&P2' NE '#SWOOSRS' AND '&P2' NE '#UIQOMS').ERR7

The types provided by the TPF system (LO, L1, L2, and L4) must not be
changed.

Examples
None.

System Macros 331

KEYCC

KEYCC-Change Protection Key

Use this system macro to modify a protected main storage area by an application
program.

Format

>>—L—_|—KEYCC—area >«
label I—, KEY=reg—| I—, KEYA=—|:symbEJ
reg2

label
A symbolic name can be assigned to the macro statement.

symboll

GLOBALN
To unprotect the global area of n

APLnN
To unprotect the application program area of n in permanent storage.

KEY=reg

Optional parameter. If coded, the general register specified will contain the

protect key value. Valid registers are R1 through R7, R14, and R15.
KEYA=symbol2|(reg2)

Optional parameter. If coded, the address referenced will contain the protect

key value. Valid registers are R1 through R7, R14, and R15.

Entry Requirements
R9 must contain the address of the ECB being processed.

Return Conditions

« Control is returned to the next sequential instruction (NSI).

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

* The condition code is saved during processing of this macro.

* On return, the current PSW protection key is identical to the protection key
assigned to the specified core area.

Programming Considerations
e This macro can be run on any I-stream.

* The KEYCC macro requires 4 bytes of storage if the KEY parameter is coded,
and 6 bytes of storage if the KEYA parameter is coded.

* The core area is unprotected for the ECB issuing the change protect key
(KEYCC) macro.

» After the macro has been issued, no store can be processed in any of the
previously unprotected areas (ECB, held data blocks, fixed unprotected core)
without first issuing the restore protect key (KEYRC) macro.

332 TPE V4R1 System Macros

KEYCC

* Neither the WAITC macro or any macros with implied waits can be issued
between the KEYCC and KEYRC macros.

¢ No fast-link macro can be issued between the KEYCC and KEYRC macros.

Examples
None.

System Macros 333

KEYUC
KEYUC—-Keypoint Update

Use this system macro to request an update of keypoint records through a service
call to the control program (CP) KEYUC macro. Up to 8 requests may be entered at
any one time.

Format

|—IS=current I1S—

>

KEYUC——keypointn
l—label—l |—IS=ALL

label
A symbolic name can be assigned to the macro statement.

keypointl through keypoint8
These are keypointable records as defined in slots 1 through 48 in GLOBA.

IS ALL - an optional parameter if the keypoint record is to be updated on all
I-streams. The default is the current I-stream only.

Entry Requirements
R9 must contain the address of the ECB being processed.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

* The global directory item for each keypoint record referenced with
keypointl....keypoint8, will have an indicator bit set to request filing by the control
program (CP).

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

Programming Considerations
* This macro can be run on any I-stream.

» KEYUC requires 8 bytes of storage when issued only for the current I-stream.
When the IS=ALL option is used, KEYUC will expand to 14 bytes.

Examples
None.

334 TPE V4R1 System Macros

LCPCC

LCPCC-Low Address Protect Set and Restore

Use this system macro to set the low address protect hardware feature. This
feature protects the first 512 bytes of storage against alteration by a program
regardless of the storage key used by the program.

Format

—CROSAVE=label ><

OFF——

>>—LCPCC—PR0TECT=—EON
RESTORE—

PROTECT
Specifies if low address protect should be turned on, turned off, or restored to
its previous setting.

ON
Turns on the low address protect feature.

OFF
Turns off the low address protect feature. Control register 0 is saved in the
location given by the CROSAVE parameter.

RESTORE
Restores the protect key to that given in the address contained in the
CROSAVE parameter.

It is assumed that a call to LCPCC to turn off the low address protection bit
is issued with the same save area as that used by a call to LCPCC to
obtain status for the low address protect bit.

It is assumed that an LCPCC call was issued turning off the low address
protection bit, using the same save area as the LCPCC call that obtained
the low address protect status.

The low address protect bit is retrieved from CROSAVE and loaded into
control register 0. The other bits in the control register are unchanged. If
other bits were modified in control register 0 between when LCPCC
PROTECT=0OFF was issued and when LCPCC PROTECT=RESTORE was
issued, these bits are not be affected by this macro.

CROSAVE-=label
This label must refer to a 5-byte area beginning on a fullword boundary. It is
used to save control register 0 when PROTECT=0ON or PROTECT=0OFF as well
as to restore bit 3 of control register 0 when PROTECT=RESTORE.

Entry Requirements

E-type programs must be in supervisor state to run this macro. This requires a
MONTC call and authorization to use it through correct program allocation.

Return Conditions
None.

System Macros 335

LCPCC

Programming Considerations
* This macro can be coded in the CP or in E-type programs. It uses an inline
expansion.
* This macro is restricted to system use only.

Examples
* This example turns off low address protection and stores control register 0 in the
ECB work area.

* TURN LOW CORE PROTECTION OFF
LCPCC PROTECT=0FF,CROSAVE=EBWOOO

* This example resumes the protection setting of the control register stored in the
ECB work area.

* RESTORE LOW CORE PROTECTION
LCPCC PROTECT=RESTORE,CROSAVE=EBWOOO

* This example sets on the low address protection and saves control register 0 in
the ECB work area.

* TURN LOW CORE PROTECTION ON
LCPCC PROTECT=ON,CROSAVE=EBWOOO

336 TPF V4R1 System Macros

LEBIC

LEBIC-Load and Shift SS/SSU ID

Use this system macro to do:
* Table Indexing

In a multiple database function (MDBF) environment, several tables are indexed
on a subsystem (SS) or subsystem user ID (SSUID) basis through CE1DBI,
CE1PBI, CE1SSU, or general registers. If the table element size is a power of 2,
you can use this macro to obtain the index value for a specific ID.

* MDBF ID Integrity Checking

This is an option. If CHECK=YES (default) is specified, the specified SS or
SSUID is first checked for integrity. If the integrity check fails, (ordinal number
plus complement not equal to X'FF'), a system error is issued. For E-type
programs, the entry control block (ECB) is exited. The error is exited for C-type
programs unless (ENTRY=NO) is specified. If so, a catastrophic system error is
issued.

e Conversions of a SS/SSU ID to the SS/SSU Ordinal Number

This is a modification of function 1. If you omit or specify 0 for leftshift, the
specified register will contain the ordinal number of the input SS or SSUID.

The reverse case is not supported.

The LEBIC macro expands to inline code for both C-type and E-type programs.

(1) ()
>>—L——|—LEBIC DBI sR >
label —EPBj ' l—

|
SSU l—self—defining ztermJ L’ﬁJ
Rz

Rx

,CHECK=YES ,ENTRY=YES
[1 [

l—,CHECK=N0—I I—,ENTRY=NO—I I—,ERR0R=ZabeZ—|

Notes:
1 inputid

2 operationreg

label
A symbolic name can be assigned to the macro statement.

inputid
Specify one of the following:

DBI
If CE1DBI is the source of the input ID.

PBI
If CELPBI is the source of the input ID.

SSuU
If CE1SSU is the source of the input ID.

System Macros 337

LEBIC

REG
If the general register specified by REG contains the input ID. See

[Programming Considerations” on page 339 for more information. REG
must contain a SS or SSU ID in the third and fourth bytes. The first two
bytes in the register are irrelevant.

operationreg
REG or (,) See Programming Considerations” on page 339 for more
information. lif specified, REG will contain the operation result upon return to
the macro caller. If operationreg is not specified and inputid is DBI or SSU, an
assembly error is generated. If inputid is a general register and operationreg is
not specified, the operation result is returned in the general register specified by
inputid.

leftshift
NUM or (,)-where NUM is the number of bits (decimal specification) to be
shifted left. If specified, the maximum number of bits to be shifted is 24 when
inputid is DBI, PBI, or SSU. If inputid is a general register, then the maximum
number of bits to be shifted is 8.

Specifying 0 or (,) for leftshift will cause the specified SS/SSU ID to be
converted to the SS/SSU ordinal number.

ecbreg
REG or (,)-where REG specifies the base register of the ECB if other than R9
for C-type macro calls when the DBI, PBI, or SSU is specified for inputid. See
LEmgxa.mmmg.Cn.nsxde.taﬂansLon_pa.g&SBQ for more information. If () is
specified, R9 is used as the ECB base register when DBI, PBI, or SSU is
specified for inputid. For E-type macro calls this positional parameter must be

().
CHECK
Specify one of the following:
YES
Specifies integrity checking is required (YES is the default). If the SS or
SSU ID given by the macro caller is not valid, the error path is determined
by the ENTRY parameter. See the ENTRY parameter for more information.
NO
Specifies integrity checking is not required.
ENTRY

Is valid only if CHECK=YES and called by C-type programs. If this parameter is
coded for an E-type program, an assembly error will occur.

YES
Specifies ECB is exited with a system error. YES is the default.
NO
Specifies that a catastrophic system error is issued.
ERROR=label

Specifies a label to which the control will be passed if an error was detected.

Entry Requirements
« CE1PBI if PBI is specified.
« CELDBI if DBI is specified.
* CEL1SSU if SSU is specified.

338 TPE V4R1 System Macros

LEBIC

* A general register if REG is specified for inputid, which must contain a SS/SSU

ID in the third and fourth bytes.

For E-type programs, if inputid is DBI, PBI, or SSU R9 must contain an ECB
address.

For C-type programs when inputid is DBI, PBI, or SSU, if ecbreg is specified, it

must specify the general register that contains the ECB address. If ecbreg is not
specified, R9 must contain the ECB address.

Return Conditions

Control is returned to the next sequential instruction (NSI).

The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

Programming Considerations

Examples

This macro can be run on any I-stream.

The following general registers are valid for the macro parameters:
— For E-type, use RO through R7, R14, R15

— For C-type, use RO-R7, R9(*), R14, R15

(*) R9 is valid only if it does not contain an ECB address.

E-type programs must have an ECB.

C-type programs must have an ECB if inputid is not a register.

The issuing program must not contain the labels CLEBERRE and CLEBPASS.
Maximum shift is 24 bits if inputid is DBI, PBI, or SSU.

Maximum shift is 8 bits if inputid is a general register.

LEBIC SSU,R4,,R9,CHECK=YES
LEBIC SSU,R4,CHECK=NO

System Macros 339

LEMIC

LEMIC-Lock Entry Management Interface

Use this system macro to issue one or more service requests to a coupling facility
(CF) that you are using as an external locking facility (XLF).

Format

»»—L——I—LEMIC—BLOCK= (reg)—,0PERATION=——CLEARUSER——, ERROR=1abe | 2——— >
labell —DELETE
—DELETESET—
—LOCATELOCK—
—LOCATEMOD—
—MANAGE
—MONITOR——
—READ
—READUSER—
—VERIFYCF—

labell
A symbolic name can be assigned to the macro statement.

BLOCK
This specifies the block of storage that is mapped by the ICFLP DSECT and
must reside in a single page, and that is passed to the service routine. The
format of the BLOCK parameter is:

(reg)
A register containing the address of the storage area where the data is
placed.

OPERATION
The type of service request being performed:

CLEARUSER
Clears all locks, any held lock requests, or any queued lock requests for a
particular user from a CF.

DELETE
Removes one or more held locks from a CF.

DELETESET
Removes a set of locks associated with a particular CF list structure from a
CF.

LOCATELOCK
Locates a CF and list number where each lock resides for one or more lock
names.

LOCATEMOD
Locates a CF and the starting and ending list numbers that are used for
locking by a particular module.

MANAGE
Sends one or more set, release, or withdraw lock commands, in any
combination, to a CF.

MONITOR
Registers a user for lock granted and contention notification.

340 TPE V4R1 System Macros

LEMIC

READ
Reads one or more locks in a CF.

READUSER
Reads all locks that are held by a particular user on a CF.

VERIFYCF
Verifies the connectivity between a processor and a CF.

ERROR=label2
This label specifies the symbolic name of an error routine in which to branch if
any error indicators were set.

Entry Requirements

See the ICFLP DSECT to determine the required input fields and the information
included on return in the ICFLP_DATA control area.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

* The contents of register 14 (R14) and R15 are unknown. The contents of all
other registers are preserved across this macro call.

* The reply code for individual requests must be checked to determine the success
or failure of that specific request.

» The following response codes are returned to the caller in the ICFLP_RSC field..
Use this information to interpret those response codes.

COMPLETED_OK
The requested operation was completed successfully.

TIMEOUT The requested operation was not able to be completed because
a timeout occurred.

Submit the operation again using the CF locking restart token
provided in the ICFLP_RT field.

INV_RESTOK A program error occurred because a CF locking restart token that
is not valid was provided for an operation that was resubmitted.
Do the following:
1. Correct the CF locking restart token.
2. Enter the LEMIC macro again.

DB_FILLED The data block provided with either a READ or READUSER
operation is filled and there are more locks to read.

Submit the READ or READUSER operation again using the CF
locking restart token provided in the ICFLP_RT field, as well as a
data block that no longer contains critical data.

LN_MM A list number mismatch occurred.

Do the following:

1. Submit a new operation (such as LOCATELOCK,
LOCATEMOD, READ, or READUSER) that will return a valid
list number.

2. Submit the original operation again using a valid list number.
LN_DNX The list number does not exist.

Do the following:

System Macros 341

LEMIC

INS_SPACE

GLBL_MM

LCL_MM

LAU_MM

1. Submit a new operation (such as LOCATELOCK,
LOCATEMOD, READ, or READUSER) that will return a valid
list number.

2. Submit the original operation again using a valid list number.

An error occurred during a read operation because there is not
enough space in the data block.

A global lock manager mismatch occurred.

Exit the application. If necessary, see your IBM service
representative for more information.

A lock manager mismatch occurred.

Exit the application. If necessary, see your IBM service
representative for more information.

A list authority mismatch error occurred.

Exit the application. If necessary, see your IBM service
representative for more information.

INS_MB_SPACE

ABNORMAL

RRC_ERROR

CVCF_ERROR

CMD_SUPPR

CMD_TERM

A program error occurred because there is not enough message
buffer space available to read the locks in a CF or to read all
locks held by a particular user on a CF.

Exit the application. If necessary, see your IBM service
representative for more information.

A program error occurred because of an abnormal locking
condition. Some of the set, release, or withdraw commands were
not processed by a CF.

Exit the application. If necessary, see your IBM service
representative for more information.

An error occurred while processing a MONITOR operation.

Exit the application. If necessary, see your IBM service
representative for more information.

The CCCFLC service routines were unable to determine the CF
or the list number from the information provided with the
operation.

Exit the application and review the application code to ensure the
operation was set up correctly. If necessary, see your IBM
service representative for more information.

A program error occurred because the function call was
suppressed.

Exit the application and review the console logs to determine if
the CF specified in the operation was correctly added to the CF
locking configuration. If necessary, see your IBM service
representative for more information.

A program error occurred because the function call ended.

Programming Considerations
* This macro can be run on any I-stream.

342

TPF V4R1 System Macros

Examples

LEMIC

» Attention: Using this macro can cause corruption of the locking control
information on the CF. This corruption can lead to errors that cannot be predicted
and online database integrity problems.

* A WAITC macro is issued implicitly with this macro.

* The calling program returns storage (specified on the BLOCK parameter) when it
is no longer needed.

If the specified CF or CF locking structure is not valid, a system error is issued.

None.

System Macros 343

LMONC
LMONC-Reset Supervisor State (Problem State)

Use this system macro to change the operating state of the central processing unit
(CPU) from supervisor state to problem state. The normal use for this macro is to
reset the CPU state following a MONTC macro.

See IMQONTC-_Set Supervisor State (Monitor Made)” on page 348 for more

information about the MONTC macro.

Format

>>—l_—_|_LMONC »><
label

label
A symbolic name can be assigned to the macro statement.

Entry Requirements
R9 must contain the address of the ECB being processed.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

* The contents of R14 and R15 are unknown. The contents of registers RO through
R7 are preserved across this macro call. If R10 or R13 are needed by the calling
program, they must be saved and restored across the macro call.

* The CPU is in problem state (PSW bit 15 = 1).
* The storage protect key is one (PSW bits 8 - 11 = 1).

Programming Considerations

* This macro can be run on any I-stream.
* This macro is for system programming use only.

Examples
None.

344 TPE V4R1 System Macros

MAXBC

MAXBC-Get Maximum Number of Storage Blocks

Use this system macro to return the total number of certain storage blocks allocated
by the TPF system. The size of the physical data table and the equate for the block
are used to determine the size. The allocations of traditional TPF blocks (LO or 128,
L1 or 381, L2 or 1055, L4 or 4 K) can not be queried because these block are not
implemented as independent block types. The block types supported are LIOCB,
LECB (L3), LSWB, LCOMMON, and LFRAME.

Required Authorizations

Key0 Restricted System Common Storage

X

Format

»>—MAXBC—TYPE=Rn ><

TYPE=Rn

The register that contains the physical storage block type equate. RO is not
valid for all calls and R8 through R13 are not valid for all E-type calls.

Valid types, as defined in CLHEQ, are:

LIOCB
I/0O control block

LECB
Entry control block (ECB)

LSWB
System work block (SWB)

LCOMMON
Shared working storage block

LFRAME
ECB unique working storage block
The MAXBC macro does not support logical blocks carved from other blocks.
The block type values for MAXBC that are not valid follow here.
LO 128 Byte Block
L1 381 Byte Block
L2 1055 Byte Block
L4 4 K Block

Entry Requirements

The register specified on the TYPE parameter must contain the value for the
block type desired.

RO cannot be specified.
For E-type programs R10 must be available as a scratch register.

System Macros 345

MAXBC

Return Conditions

Control is returned to the next sequential instruction (NSI).

The register specified on the TYPE parameter contains the number of blocks
allocated for the specified block type. The contents of all other registers are
preserved across this macro call.

The condition code is not saved across the macro call.

If the block type requested is determined to be in error at run time, the 00074D
system error is issued and the ECB is exited.

Programming Considerations

Examples

This macro can be run on any I-stream.

This macro may be called by E-type programs or from control program (CP)
code.

RO cannot be specified for the TYPE parameter.

All logical blocks are carved from 4 K blocks. Because of this, it is impossible to
specify the number of available storage blocks, except 4 K blocks, at any given
point.

The usage of the MAXBC macro requires authorization to issue a restricted
macro (CHECK=RESTR) by the $CKMAC macro.

A system error dump can occur when servicing a MAXBC request. See

Messages (System Frrar and Offline) for more information.

None.

346 TPE V4R1 System Macros

MODEC

MODEC-Change Addressing Mode

Use this system macro to set the TPF system to 24-bit addressing mode or 31-bit
addressing mode.

Format

,REG=R1

|_
»—L——'—MODEC—MODE= 31 ><
label 24J |—,REG.=RXJ

label
A symbolic name can be assigned to the macro statement.

MODE
Specify one of the following:

31 This argument indicates that 31-bit addressing mode is to be set.
24 This argument indicates that 24-bit addressing mode is to be set.

REG=Rx
This parameter is optional. It provides a work register for the macro to use.
When coded in a real-time program, valid registers are: R1 through R7, R14,
and R15. When coded in any other type of program, any register except RO can
be used. If the REG parameter is not coded the register defaults to R1.

Entry Requirements
All entr¥ requirements are fulfilled by the proper use of the parameters as defined in

Return Conditions
» Control is returned to the next sequential instruction (NSI).
* Upon return, the requested addressing mode is set in the PSW.

* The work register specified by the REG parameter is not saved. The contents of
the remaining registers are unchanged.

* The condition code is only changed when the parameter MODE=31 is used. The
condition code remains unchanged when the parameter MODE=24 is used.

Programming Considerations
* This macro can be run on any I-stream.
* This macro is intended for system use, not for general purpose use.
* The contents of the work register specified by the REG parameter are not saved.

* MODEC cannot be called from an ISO-C segment (coded with BEGIN
TPFISOC=YES).

Examples
None.

System Macros 347

MONTC

MONTC-Set Supervisor State (Monitor Mode)

Use this system macro to change the operating state of the central processing unit

(CPU) from problem state to supervisor state. Supervisor state allows processing of
privileged instructions such as set system mask (SSM) and start input/output (SIO).
Use of this macro is restricted to utility type programs (such as disk copy and tape

switch) that have special requirements for this state (system programming use

only).
Required Authorizations
Key0 Restricted System Common Storage
X X

Format

>>—m—MONTC »><
label

label
A symbolic name can be assigned to the macro statement.

Entry Requirements
R9 must contain the address of the ECB being processed.

Return Conditions
» Control is returned to the next sequential instruction (NSI).
* The contents of R14 and R15 are unknown.
* The contents of registers RO through R7 are preserved across this macro call.
* The CPU is in supervisor state (PSW bit 15 = 0).
* The storage protect key is zero (PSW bits 8 through 11).

Programming Considerations
* This macro can be run on any I-stream.

» Care should be exercised when operating in this state. Any area above the
512-byte line can be modified in low main storage with just a MONTC. If low
main storage below the 512-byte line is to be modified, the LCPCC macro with
low memory protection disabled must be issued first. Afterward LCPCC must be
issued to re-enable low memory protection.

* A program should operate in this state for the shortest possible time and then
issue a LMONC macro to return to problem state.

* Supervisor state is maintained across all other macros, which can be issued by
the program.

* Registers R10 and R13 must be saved and restored if required by the calling
program.

Examples
None.

348 TPE V4R1 System Macros

MONWC

MONWC-Suspend ECB, Pending I/O Completion

Use this system macro to enable the WAITC service routine to suspend the entry
control block (ECB) until all pending input/output (I/O) for the ECB completes. This
macro is processed only by the WAITC service routine.

Format

>

MONWC <
I—Z abe Z—|

label
A symbolic name may be assigned to the macro statement.

Entry Requirements
* R9 must contain the address of the ECB being processed.

* This macro is called by the WAITC service code only when pending 1/O exists for
an ECB.

Return Conditions

» Control is returned to the next sequential instruction (NSI) in the WAITC service
routine.

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

Programming Considerations

* This macro is for use in the control program (CP) only, and is used by the
WAITC macro. See [[PE _General Macrad for more information about the WAITC
macro.

* This macro can be run on any I-stream.
* This macro is for use only by the WAITC service routine.

* The service routine will save the current SVC_OLD_PSW and the calling
program’s return address in ECB field CE1PSW prior to transferring control to the
system task dispatcher (CPU loop).

* The calling program regains control at the location saved in field CEIPSW when
all pending I/O completes.

Examples
None.

System Macros 349

MOVEC
MOVEC—-Move Data Between EVM and SVM

Use this system macro to move date between an entry control block (ECB) virtual
memory (EVM) address space and a system virtual memory (SVM) address space.
This macro allows an ECB-controlled program to read and modify storage that is
not part of its own address space.

Required Authorizations

Key0 Restricted System Common Storage
X

Format

>>—L——|—M0VEC—FR0M= (Rx, EVK:I—)—, TO=(Ry, EVM:l—)—, LENGTH=RZz: »><
label SV SVM

label
A symbolic name may be assigned to the macro statement.

FROM
This parameter specifies the location of the data from which data will be moved.
You must specify both a register, and EVM or SVM.

Rx Specifies a general purpose register from RO through R7. It contains the
31-bit address from which data will be moved.

EVM
Specifies that the address is in the ECB virtual memory (EVM).

SVM
Specifies that the address is in the system virtual memory (SVM).
TO

This parameter specifies the location where the data specified by the FROM
parameter will be placed. You must specify both a register, and EVM or SVM.

Ry Specifies a general purpose register from RO through R7. It contains the
31-bit address to which data will be moved.

EVM
Specifies that the address is in the ECB virtual memory (EVM).

SVM
Specifies that the address is in the system virtual memory (SVM).

LENGTH=Rz

This parameter specifies a general purpose register from RO through R7 that
contains the number of bytes of data that will be moved from the FROM
location to the TO location.

Entry Requirements

* Any program issuing the MOVEC macro must be allocated with authorization to
process with protect key zero (CINFC WRITE capability).

* This macro must be called from an ECB-controlled program.

350 TPE V4R1 System Macros

MOVEC

* The value you specify for the FROM and TO parameters must be a valid data
address; that is, the high order bit must not be turned on.

Return Conditions
» Control is returned to the next sequential instruction (NSI).
e The data is moved from the FROM location to the TO location.

Programming Considerations

* The usage of the MOVEC macro requires key 0 write authorization
(CHECK=KEYO0) and authorization to issue a restricted macro
(CHECK=RESTRICT) by the $CKMAC macro.

* This macro may be processed on any I-stream.
* The following combinations are valid:

From EVM to SVM

From SVM to EVM

From EVM to EVM

From SVM to SVM.

Note: The EVM-EVM combination is restricted to movement within ECB virtual
memory (EVM), not between EVMs.

» System error dumps can occur when servicing a MOVEC request. See

Messages (System Frrar and Offline) for more information about system errors.

Examples

This code shows the FROM address being taken from a DSECT field, the TO
address being taken from a core block reference work, and the length being
calculated as the difference between two addresses. The next address in the chain
is loaded and the data moved.

LA R6,LK40BF TOP OF LINK QUEUE ADDRESS (LK4KC)
L R3,CE1CRO A(block) to use for MOVEC (EBOEB)
LA R7,CM8TXTA-CM8CHNA Need only a few bytes (CM8CM)
ICM R6,B'1111',0(R6) LOAD BASE WITH NEXT IN CHAIN
BZ CMMMDONE We've gone through queue
SPACE
CMMMTEST DS OH
MOVEC FROM=(R6,SVM),T0=(R3,EVM),LENGTH=R7

System Macros 351

MPIFC

MPIFC—-Request MPIF Service

Use this system macro to request Multi-Processor Interconnect Facility (MPIF)
services. See FEarmat] for more information about the valid request types.

Required Authorizations

Key0 Restricted System Common Storage

X

Format

,REG=R1 ,ADSPACE=EV
»»—MPTFC—RTYPE=——IDENTIFY |_ —l |_ M—l ><

CONNECT—— l—, REG=RX—| I—,ADSPACE=SVMJ

ACCEPT

DISCONNECT—

FORGET
UERY

SEND

RTYPE
This required parameter specifies the type of request being made by the user.
The valid options are:

IDENTIFY
This function establishes the existence of a unique, named user that will
communicate with other users of MPIF.

RTYPE=IDENTIFY means that REG contains a pointer to a parameter list
containing the user identification. If REG is not specified, R1 is assumed.
The parameter list is in the form of the DCTMUP DSECT.

An IDTOK is assigned using the IDENTIFY function. It associates the user
with MPIF resources and is required for other MPIF functions. The token is
returned in the IDTOK field in the user’s parameter list.

CONNECT
This function attempts to establish a logical connection between the calling
user and the user named in the parameter list.

ACCEPT
This function attempts to complete a logical connection between the calling
user and the user name in the parameter list.

DISCONNECT
This function breaks a logical connection between the calling user and the
user named in the parameter list.

FORGET
This function is the opposite of IDENTIFY. Any connections involving the
calling user are disconnected. All knowledge of the user is eliminated.

QUERY
This function formats directory information into an area of storage provided
by you.

352 TPE V4R1 System Macros

MPIFC

SEND
This function normally schedules the transfer of data across a logical
connection. SEND is also used to control pacing values to the other side of
a connection.

REG=R1|Rx
The symbolic name of a general register (RO through R7 inclusive) which
contains the address of the parameter list, defined in DCTMUP, associated with
the service request. R1 is the default.

ADSPACE
This parameter is only valid when issued by C-type code and is used to indicate
the address space in which the code is processing.

EVM
The program that issued the MPIFC is running in the ECB virtual memory
(EVM). This is the default.

SVM
The program that issued the MPIFC is running in the system virtual memory
(SVM).

Entry Requirements
R14 and R15 must be available for use by this macro.

Return Conditions
» Control is returned to the next sequential instruction (NSI).
* IDENTIFY:
— R15 contains a return code describing the completion of the IDENTIFY
processing using the following indications.

Return Code Meaning

00 Normal completion. The MPIF IDENTIFY token (IDTOK) is
returned in field IDTOK of the user’s parameter list.
04 The user name (MYNAME of the IDENTIFY parameter list) is
in use.
12 Unable to process due to lack of MPIF control storage.
20 At least one parameter value is not valid.
* CONNECT:

— R15 contains a return code describing the completion of the CONNECT
processing using the following indications.

Return Code Meaning

00 Normal completion; request proceeding.
04 Connections between 2 users exist over all paths (used when
multipathing is selected).
08 No active paths exist to the specified user.
208 At least one parameter value is not valid.
* ACCEPT:

— R15 contains a return code describing the completion of the ACCEPT
processing using the following indications.

Return Code Meaning

System Macros 353

MPIFC
00 Normal completion; request proceeding.

20 At least one parameter value is not valid.
* DISCONNECT:
— R15 contains a return code describing the completion of the DISCONNECT
processing using the following indications.

Return Code Meaning

00 Normal completion; request proceeding.
00 At least one parameter value is not valid.
+ FORGET:

— R15 contains a return code describing the completion of the FORGET
processing using the following indications.

Return Code Meaning

00 Normal completion; request proceeding. No further reference
to the entity is possible.
20 20-At least one parameter value is not valid.
* QUERY:

— R15 contains a return code describing the completion of the QUERY
processing using the following indications.

Return Code Meaning

00 Normal completion (for example, a successful QUERY).
04 Feedback area too small, contains partial response.
20 At least one parameter value is not valid or a format problem

with the parameter list.
— The address of the QUERY reply parameter area will be returned in the user
specified register (REG parameter).
* SEND:

— R15 contains a return code describing the completion of the SEND processing
using the following indications.

Return Code Meaning

00 Normal completion; the SEND is scheduled. The SEND
parameter list contains the connection sequence number
assigned to the SEND. The initial SEND will be assigned a
sequence number of 1. The sequence number is a 32 bit
logical value and will wrap to zero.

04 MPIF output queue has exceeded the maximum depth. Retry
this SEND request again shortly.

08 The path or connection is not active.

12 Currently unused. Reserved for IBM use only.

16 No pacing credit available. The buffer has not been sent. It is

returned to the caller.

20 At least one parameter value is not valid.
* The contents of all other registers are preserved across this macro call.

354 TPE V4R1 System Macros

MPIFC

Programming Considerations
* This macro may be processed on any I-stream.

* The MPIFC macro has an interface that is not guaranteed across releases of the
TPF system. Unauthorized use of this macro may expose you to interface or
processing errors.

* This macro is intended for use by system programmers doing system level
coding for support or utility programs.

* You cannot include the parameter list in the same core block with data area 2.

Examples
None.

System Macros 355

MSDAC
MSDAC—-Mount a Symbolic Device Address (SDA)

Use this system macro to perform a software mount of a symbolic device address
(SDA) that is associated with an input/output (I/O) device. This allows the SDA to
be used by the TPF system to perform 1/O operations through common 1/0O (CIO).

Format

»—L—_I—MSDAC—MDR= label ><
label —[(reg)—l

label
A symbolic name can be assigned to the macro statement.

MDR
The mount device request (MDR) block, which can be either:

label
A symbol can be assigned to an area of memory that contains an MDR as
defined by the DCTMDR DSECT.

(reg)
A register that contains the address of the MDR.

Entry Requirements

* The MDR parameter must be coded with the SDA address and parameters
required to do the mount.

* The overlay option may be specified to switch the SDA parameters by setting the
MDROVL bit in field MDRFG1 of the DCTMDR mount device request block
DSECT. The code overlays the old parameters with the new parameters, except
for the 1/O interruption subclass, which cannot be changed. With overlay the code
does not replace individual parameters but does a complete replace. Those
parameters that are not to be replaced must still be specified in the MDR.

Note: If the SDA is not already mounted then the overlay option is ignored and
the mount is treated as a normal mount request.

* The caller may request that program-controlled interrupts (PCIs) for this device
are to be treated as normal interrupts by setting the MDRNOPCI bit in field
MDRFGL1 of the DCTMDR mount device request block DSECT. This causes PCls
that are received while PIO is active to be stacked and presented after PIO
completes, rather than presented immediately. This option may be requested for
devices that can receive PCls but whose interrupt handlers are not coded to
handle interrupts presented during system error processing.

* 1/O interrupts must be masked before macro invocation.

Return Conditions

» Control is returned to the next sequential instruction (NSI).
* R15 will contain one of the following return codes:

Return Code Meaning

0 The SDA mount was successful.

356 TPF V4R1 System Macros

MSDAC
4 The SDA is in use.

8 The SDA is not valid.
* RO-R14 are unchanged.

If the mount is successful, the channel path identifier (CHPID) type and the
subchannel path-available mask are returned to you through the MDR block.

Programming Considerations

* This macro can be run only on an I-stream having affinity with the specified SDA.
* This macro can be run only to mount SDAs that are associated with 1/O devices.

Examples
None.

System Macros 357

MSPIC
MSPIC—Control MPIF Device

Use this system macro with the Multi-Processor Interconnect Facility (MPIF) support
programs to schedule device control functions other than the normal read or write
channel programs generated by MPIF itself.

Required Authorizations

Key0 Restricted System Common Storage
X

Format

, TIMEOUT=0
[il

»>—MSPIC—LEVEL=Dx—,SUBREG=sda_reg—, TYPE=——READ
HDEV— |—,TIMEOUT=nJ
PRIME—
RELCC—
CCW—

,CLEANUP=N
C - g

I—, CLEANU P=YESJ

LEVEL=Dx

A core block reference word and associated file address reference word
(DO-DF) must be specified.

SUBREG=sda_reg
This required parameter specifies the general register (RO through R6) which
contains the relevant symbolic device address (SDA).

TYPE
This required parameter specifies one of the following options of the MSPIC
macro:

READ
Read Buffer.

HDEV
Deactivate the channel program for the specified SDA pair.

PRIME
Prime the specified SDA.

RELCC
Release the multiple system request block (MSRB).

CCWwW

Process the user-defined channel program (CCW). CCWs must be Format
1.

Note: This option requires processing of a WAITC macro to very the
results, and is therefore restricted to E-type programs.

358 TPE V4R1 System Macros

MSPIC

TIMEOUT
Timeout value for SENSE ID channel program. 0 is the default value. This
parameter must be O unless the TYPE parameter is coded as CCW.

CLEANUP
Specify one of the following:
YES
Clean-up all resources associated with a path.
NO

No cleanup requested.

NO is the default option. YES is only valid when the TYPE parameter is coded
as HDEV.

Entry Requirements

» For the RELCC option, the core block reference word of the specified data level
must contain the address of the MSRB to be released.

» For the CCW option, the core block reference word of the specified data level
must contain the address of the channel program (that is, CCWSs) to be
processed.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

* Following the CCW option the contents of the core block reference word at the
specified data level is unchanged.

¢ R15 contains a return code as follows.

Return Code Meaning

00 Successful processing.
00 A value in the SUBREG register is not valid.
08 Subchannel not attached.

* Following a WAITC, for the CCW option, the following parameters will be
returned on 1/O error conditions:

— The error reporting fields in the ECB (CE1SUD, CE1SUG, or CE1SUC)
identify the I/O error.

— The channel status word (CSW) will be contained in the second ECB work
area starting at location CE1WKB.

— The sense data will be contained in the second ECB work area starting at
location CE1IWKB+8. 32 bytes are reserved for this sense data field.

* The contents of all other registers are preserved across this macro call.

Programming Considerations
* This macro can only be run on the I-stream where MPIF is active.

» The CCW option requires that a WAITC macro be issued following the MSPIC
macro processing. This restricts the use of the CCW option to E-type programs
only.

Examples
None.

System Macros 359

NUMBC

NUMBC-Query Number of Storage Blocks Available

Use this system macro to return the number of blocks available for a specified
physical block type.

Required Authorizations
Key0 Restricted System Common Storage
X
Format
»»—NUMBC—TYPE=Rx >
TYPE=RX

The specified register must contain the physical storage block type value. Valid
physical storage block types are defined in CLHEQ. LO, L1, L2, and L4 are no
longer valid. RO is not valid for all calls and R8 through R13 is not valid for all

E-type calls.

Entry Requirements

* The register specified on the TYPE parameter must contain a valid storage block
type.
* In E-type programs R10 must be available as a scratch register.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

* The contents of the register specified by TYPE contains the number of available
storage blocks for this block type.

* The contents of register R10 is unpredictable.
e The condition code is not saved across this macro call.

Programming Considerations
* This macro can be run on any I-stream.
* RO and R13 cannot be specified for TYPE.

* The usage of the NUMBC macro requires authorization to issue a restricted
macro (CHECK=RESTR) by the $CKMAC macro.

* A system error dump can occur when servicing a NUMBC request. See

Messages (System Error and Offline) for more information.

Examples
None.

360 TPF V4R1 System Macros

NUMLC

NUMLC-Get Count of Blocks Queued on a Dispatch List

Format

Use this system macro to return to the caller the number of blocks currently queued
on the specified system task dispatcher list.

Required Authorizations

Key0 Restricted System Common Storage
X X
,LIST=RO
»»—NUMLC—ISN=Rx >
L LIST=RX—| L WKREG=()—I
Cod Tod Lol
Rx,
“Ted L]
R
“TJ
i L SAVREG=()—| 2
’ Leo 7 Laid ™ Lo
RO,
Cod L
RO
L]
ISN=Rx

The register specified on this input parameter contains the I-stream number for
the CPU whose system task dispatcher list is to be queried. If this parameter is
omitted, the I-stream that the request is issued on will be queried.

LIST=RO|Rx
The register specified on this input parameter contains a list equate value.
Equate values are assigned to the cross, ready, input, and defer lists. If the
parameter is left out, the default assignment is RO. Valid equate values are:

#CLHCRS
Cross List

#CLHRDY
Ready List

#CLHINP
Input List

#CLHDEF
Defer List

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you

System Macros 361

NUMLC

expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG

The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements

If the macro is coded in a real-time segment, R9 must contain the address of the
ECB being processed.

Return Conditions

Control is returned to the next sequential instruction (NSI).

The register used on the LIST parameter will contain the number of blocks found
on the specified system task dispatcher list. When invoked from a real-time
segment, all other user registers are preserved across this macro call. When
invoked from the control program (CP), the registers specified on the WKREG
parameter will be used to save the contents of any volatile registers specified on
the SAVREG parameter. All other registers will be returned intact.

The condition code is not saved across this macro call.

Programming Considerations

Examples

This macro can be run on any I-stream.

If LOCK=YES and the specified program is file resident, then the program
remains in storage until the RELPC macro is issued.

NUMLC can be used either by realtime programs or by the control program. It is
a restricted use macro and requires KEYO authorization when used by a realtime
program.

The WKREG and SAVREG parameters are used only on macro invocations from

the control program (CP). These parameters have no effect on the macro
expansions in real-time programs.

None.

362 TPF V4R1 System Macros

NXTLC

NXTLC-Get Address of Next Block Queued on a Dispatch List

Use this system macro to return to the caller the address of the next storage block
queued on the specified system task dispatcher list.

Format
L [’BLOCK=R1] [,LIST=R0J L J R
,BLOCK=Rx: ,LIST=Rx ,WKREG= (I—Rx—l) I—Ry—l s |—Rz—|)
) P
Rx I_,J
». L - _l 2 |
T Do Tl e |
S P
T3
BLOCK=R1|Rx

On input, the register specified contains a value indicating whether to get the
address of the first block or the next block on the specified system task
dispatcher list. The value 0 means get the address of the first block. Any other
value means get the address of the next block on the list following the address
specified (as the value).

On output, the register specified contains either the same value or the address
of the requested block (for example, the first one or the next one) on the
specified system task dispatcher list. The value is unchanged when one of the
following occurs:

* The address of the first block was requested but the specified list is empty

* The address of the next block was requested but there are no more blocks
on the specified list

* The address of the next block was requested but the specified block is not
on the specified list.

The default is R1.

LIST=RO|Rx
The register specified on this input parameter contains a list equate value as
defined in macro CLHEQ. Equate values are assigned to the Cross, Ready,
Input, and Defer lists. If the parameter is omitted, the default assignment is RO.
Valid equate values are:

#CLHCRS
Cross List

#CLHRDY
Ready List

System Macros 363

NXTLC

#CLHINP
Input List

#CLHDEF
Defer List

SAVREG
The specified volatile registers will be saved by the macro in the stack area or
in the registers specified by the WKREG parameter. Up to 3 registers can be
specified. Those registers are RO, R1, R2. If this keyword is omitted, none of
the 3 registers will be saved. You should not save a volatile register if you
expect it to contain an output parameter. The register will be overwritten with its
original contents, since the reload is the last thing performed by the macro.

WKREG
The specified symbolic register names are free to be used by the macro to save
the volatile registers coded on the SAVREG parameter. Up to 3 registers can be
specified, but the standard linkage registers R13 through R2 cannot be used
here. This parameter is used in conjunction with the SAVREG parameter to
generate efficient code and enhance the performance of the macro. The
number of registers specified by WKREG should be less than or equal to the
number of registers specified by SAVREG. If this parameter is omitted or not
used to its maximum capacity, code optimization is sacrificed.

Entry Requirements

The register specified on the LIST parameter must contain a value that corresponds
to one of the system task dispatcher lists.

Return Conditions
» Control is returned to the next sequential instruction (NSI).
* The condition code is set to 0, 1, or 2 as follows.
Condition Code Meaning
0 The requested block was found successfully.

Its address is in the register specified on the
BLOCK parameter.

It is the last block on the specified list.
1 The requested block was found successfully.

Its address is in the register specified on the
BLOCK parameter.

It is not the last block on the specified list.
2 The specified list is empty.

The specified block (for example, the block
whose address is specified on the BLOCK
parameter) is not on the specified list.

* The register specified on the BLOCK parameter contains either the same value
(in the condition code 2 case) or the address of the requested block (for
example, the first one or the next one) on the specified system task dispatcher
list (in the condition code O or 1 cases). The value is unchanged when the
address of the:

— First block was requested but the specified list is empty

— Next block was requested but there are no more blocks on the specified list

364 TPE V4R1 System Macros

NXTLC
— Next block was requested but the specified block is not on the specified list.

* The registers specified on the WKREG parameter will be used to save the

contents of any volatile registers specified on the SAVREG parameter. All other
registers will be returned intact.

Programming Considerations

* This macro can be run on any I-stream.
* This macro is for use in the control program (CP) only.

Examples

None.

System Macros 365

NXTPC

NXTPC—-Chain Chase through Prefix Pages

Use this system macro to return the real address of the next prefix page.

Format

»>—NXTPC—REG=Rx- »<

REG=Rx
Register that contains the real or absolute address of a prefix page. RO cannot
be used.

Entry Requirements
e The caller must be in 31-bit mode.

* The caller must be executing in a virtual address space; that is, the dynamic
address translation hardware (DAT) must be activated.

Return Conditions
* Control is returned to the next sequential instruction (NSI).

* The contents of specified register will contain the real address of the next prefix
page. The contents of all other registers are preserved across this macro call.

Programming Considerations
» All the prefix pages may be visited using the following procedure:
1. Load the REG specified register with X'00's indicating the real address of the
I-stream prefix page.
2. Call NXTPC to return a new prefix page address.
3. Perform whatever prefix page operations are required.

4. Repeat the calls to NXTPC using the prefix page addresses returned, until
NXTPC returns X'00's. This condition indicates that the I-stream prefix page
has been looped back to with all prefix pages visited.

* This macro may be processed on any I-stream.
* This macro is for use in the control program (CP) only.

Examples
None.

366 TPF V4R1 System Macros

NXTRC

NXTRC-Get next TPF Trace Table Entry

Use this system macro to compute the address of the next available trace entry for
the entry control block (ECB) trace table, the TPF log table, and the LDEVBK
input/output (1/0) trace table.

Format

»»>—NXTRC—ENTRY=Rx—BASE=Ry—TYPE= ECB <
P’ﬂ
LOG

ENTRY=Rx
On return, the general register specified will contain the address of the
requested trace entry. RO is not valid.

BASE=Ry
The specified general register will be used to get the base address of the
requested trace table. RO is not valid.

TYPE
This parameter identifies the trace table whose entry is to be computed.

ECB
Identifies the ECB macro trace table.

10 Identifies the LDEVBK /O trace table.

LOG
Identifies the system log table.

Entry Requirements
When TYPE=ECB:
* R9 must contain a valid ECB address for the current address space.
* R11 must contain X'1000'.
* R12 must contain X'2000'.

* When TYPE=IO the LDEVBK for the device being traced must be directly
addressable through a previously declared USING statement.

Return Conditions
» Control is returned to the next sequential instruction (NSI).
* RXx contains the address of the assigned trace entry.
* Ry contains the base address of the requested trace table.
* The contents of all other registers are preserved across this macro call.

Programming Considerations
* This macro should only be used by the appropriate trace monitor routines.
* This macro may be processed on any I-stream.

* When a register is selected as a parameter it must be in the range R1 through
R15.

System Macros 367

NXTRC

Examples
None.

368 TPF V4R1 System Macros

PAUSC

PAUSC-Control System MP Environment

Use this system macro to enable:

* An E-type program to request that the control program (CP) establish a
uniprocessor (UP) environment or reestablish the multiple processor (MP)
environment in a TPF system running on a multiple I-stream central processing
complex (CPC). This macro can only be run from a program that operates on the
main I-stream. This macro enables a program that is not capable of processing in
an MP environment to complete its processing in a UP environment.

* The time-of-day (TOD) clock synchronization services to be invoked when a TPF
system has been paused.

Required Authorizations

KeyO Restricted System Common Storage
X X

Format

>>_m_PAUSC_FUNC= BEGIN >«
label —EEND—

SYNC,RQST=—-VAL
B
SSYN

label
A symbolic name can be assigned to the macro statement.

FUNC
Specify one of the following:

BEGIN
Establish a UP environment.

END
Reestablish the MP environment.

SYNC
Invoke the TOD synchronization services. The TPF system must be in a UP
environment at this time.

RQST
The RQST parameter is required when the FUNC=SYNC is specified.

VAL
Determine and save status of all TOD clocks in the CPC. Restart any
stopped clocks.

SET
Synchronize the main I-stream TOD clock to a requested time. Synchronize
all other I-stream TOD clocks to the main I-stream clock value.

Notes:

1. If the TPF system is in a loosely coupled environment, the main
I-stream is synchronized to the external source of clock pulses. This
synchronization is via the TOD RPQ or the sysplex timer (STR). All

System Macros 369

PAUSC

other I-streams are synchronized to the main I-stream. If the TPF
system is not in a loosely coupled environment, then the main I-stream
is either synchronized to a sysplex timer or it remains in local mode. All
other I-streams are synchronized to the main |-stream.

2. The IBM 9037 Sysplex Timer is part of IBM Enterprise Systems
Connection (ESCON).

SSYN
Disable sync checks on all I-streams and for the TOD RPQ sets the sync
selection register on the main I-stream.

Note: If the TPF system is in a loosely coupled environment with the High
Performance Option (HPO) feature installed, all I-streams are
synchronized to the external source of clock pulses (TOD RPQ or STR).
If the TPF system is not in a loosely coupled environment with the HPO
feature installed, then the main I-stream remains in local mode, providing
clock synchronization pulses for the other I-streams.

Entry Requirements

This macro can be run on the main I-stream only.
R9 must contain the address of the entry control block (ECB) being processed.

Return Conditions

Control is returned to the next sequential instruction (NSI).

The contents of all user registers are preserved across this macro call (RO
through R7, R14 through R15).

The condition code upon return from this macro is unknown.

Programming Considerations

Examples

This macro can be run on the main I-stream only.

Use this macro with discretion. Processing in a UP environment can seriously
impact performance on an MP CPC. The time spent in the UP environment must
be kept to a minimum.

The same ECB must stop and restart the MP environment.

No memory locks or record holds are permitted while the system is in a UP
environment (paused).

The TPF system must be paused by requesting FUNC=BEGIN before any other
function request. If the TPF system is not paused, the entry is exited and a
system error dump is issued. If another request is active, the entry is exited and
a system error dump is taken.

When requesting a system UP pause, this ECB must not have previously paused
the TPF system. If it has, a system error dump is taken and control is returned to
the program.

When requesting a system MP restart, this ECB must have previously paused
the TPF system. If not, the entry is exited and a system error dump is issued.

None.

370 TPE V4R1 System Macros

PERCC

PERCC-Enable/Disable Program Event Recording (PER)

Use this system macro to enable or disable the TPF system for program event

recording (PER).

Required Authorizations

Format

Key0 Restricted System Common Storage
X
(1)
»—L—_|—PERCC ENABLE ><
label [DISABLE—l

Notes:
1 parm
label

A symbolic name can be assigned to the macro statement.

parm

This positional parameter must specify one of the following:

ENABLE

PERCC sets the PER control bit on in selected program masks and new

PSWs.
DISABLE

The PER control bit is set off in the program masks and PSWs.

See [Return Conditions’] for more information about program masks selection.

Entry Requirements

The ECB-controlled program must be authorized to issue restricted use macros.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

* The following masks and PSWSs are enabled or disabled for PER:

— SVC New PSW
/0 New PSW

Programming Considerations
None.

Selected mask bytes in CAPT at label CPMSMKS
The mask byte at CPM1PSW, used during ECB initialization
* The contents of RO through R7 are preserved.

System Macros 371

PERCC

Examples
None.

372 TPE V4R1 System Macros

PFSWC

PFSWC-Reset Pool Function Switch

Format

Use this system macro to generate inline code to reset (that is, set to zero) a pool
function switch.

A bit switch is assigned to various mutually exclusive pool functions. A pool function
switch is set on (that is, set to 1) by the file pool maintenance and initialization
scheduler (CYAA) when activating the associated function. The program performing
the pool function resets the switch when appropriate.

These switches provide the means of preventing an operator from inadvertently
cycling the TPF system when a pool function is active.

(1) (2) (3)
>>—L—_|—PFSWC——LIST— ,—TCPFDFPC W >
label W —CPFGAFA— e
R —CPFRECP—
—CPFDEAC—
—CPFRFPC—
—CPFDUPD—
—CPFSDEA—
—CPFGFSP—
—CPFRADM—
—CPFPOOL—

Notes:

1 symboll also called P1
2 symbol2 also called P2
3 symbol3 also called P3

label
A symbolic name can be assigned to the macro statement.

symboll
This positional parameter can be coded as LIST, W, or R.

LIST
Only a list of equates as required by the file pool maintenance and
initialization scheduler (CYAA) is generated

W Indicates that storage is unprotected and may be written to.
R Indicates that storage is protected and must be unprotected.

symbol2
This parameter is coded as one of the pool function switches.

CPFDFPC
Display File Pool Counts.

CPFGAFA
CRAS-Get File Pool Address.

System Macros 373

PFSWC

CPFRECP
RECOUP.

CPFDEAC
Pool Directory Capture.

CPFRFPC
Reconcile File Pool Counts.

CPFDUPD
Pool Directory Update.

CPFSDEA
Son Pool Area Deactivation.

CPFGFSP
GFS Parameter Program.

CPFRADM
STA/STP 2314 GFS Randomizer.

CPFPOOL
Miscellaneous SON Pool Functions.

symbol3
Specify one of the following:

W Storage is left unprotected.

R Storage is left protected.

Entry Requirements
R9 must contain the address of the ECB being processed.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

* For symbol3=R or W, the specified pool function switch is OFF (that is, the bit is
0).

* For symbol3=R, the storage protect key is set to that of the application core.

» For symbol3=W, the storage protect key remains at zero (0).

Programming Considerations
This macro can be run on the main I-stream only.

Examples
PESWC LIST

This invocation only generates a list of equates.
PFSWC W,CPFPOOL,W

This invocation indicates that the switch for SON POOLs is unprotected. It is reset
and left unprotected upon completion.

PFSWC W,CPFPOOL,R

This invocation indicates that the switch for SON POOLs is unprotected. It is reset
but protected again upon completion.

374 TPE V4R1 System Macros

PFSWC

PFSWC R,CPFPOOL,W

This invocation indicates that the switch for SON POOLs is protected. The switch is
unprotected, reset, and left unprotected upon completion.

PFSWC R,CPFPOOL,R

This invocation indicates that the switch for SON POOLs is protected. The switch is
unprotected, reset, and made protected again upon completion.

System Macros 375

PHYBC

PHYBC—-Return

Physical Size of Storage Block

Use this system macro to return the physical size of a storage block.

Note: You cannot use all of the available physical storage in a block. You can only

use the user size of the block, which is available from the SIZBC macro. The
remaining portion of the block is available for system use only. This portion
will not be saved on DASD if a block is filed.

See [TPE_General Macrod for more information about the SIZBC macro.

Required Authorizations

KeyO Restricted System Common Storage

X

Format

TYPE=R1
»—PHYBC |_ —l

|—TYPE=Rr7—|

TYPE=R1|Rn

The specified register contains the logical storage block type value. Register R1
is the default value. RO is not valid for all calls and R8 through R13 are not
valid for E-type calls.

Sizes are returned for the following block type equates:

LECB (or L3)
Entry Control Block

LIOCB
I/O Control Block

LSWB
System Work Block

LCOMMON
Common frame

LFRAME
Frame

Entry Requirements

R9 must contain the address of the entry control block (ECB) if this macro is
called from a ECB-controlled program.

For E-type programs R10 must be available as scratch register.

The specified register must contain the desired storage block type. The valid
block types are listed above. These types are defined in the CLHEQ macro.

This macro can be run in the EVM or the SVM, in either 24-bit or 31-bit
addressing mode.

376 TPE V4R1 System Macros

PHYBC

Return Conditions

Control is returned to the next sequential instruction (NSI).
The specified register contains the desired physical storage block size.

The contents of all other registers are preserved across the macro call (except
for R10 on an ECB-controlled program call).

The condition code is not preserved across the macro call.

Programming Considerations

Examples

This macro can be run on any I-stream.
RO may not be specified.
This macro is for use in the control program (CP) or an ECB-controlled program.

The usage of the PHYBC macro requires authorization to issue a restricted
macro (CHECK=RESTR) by the $CKMAC macro.

A system error dump can occur when servicing a PHYBC macro request. See

Messages (System Errar and OQffline) for more information.

None.

System Macros 377

PIOFC

PIOFC-Initiate a Preemptive I/O Request

Use this system macro to start an input/output (1/0O) request while in preemptive 1/O
mode. This mode is activated and normal system 1/O processing is suspended
through the SPNDC macro.

A parameter area, which is called device operation request block (DOR)
(DCTDOR), is used to define the request. The DOR contains fields for information
such as the:

* Address of the channel program

* Device

» Device interrupt handler

* Protect key for the channel program.

A request-unique parameter can be passed to the preemptive input/output (PIO)
device interrupt handler upon completion of the I/O using the DOR.

This macro returns a condition code to indicate acceptance of the I/O request. If the
request is accepted, the success or failure of the ensuing 1/O operation is then
determined and handled by the PIO device interrupt handler.

See LSPNDC-Suspend Normal CIQ Processing” an page 457 for more information

about the SPNDC macro.

Format

»—L—_I—PIOFC—DOR= label ><
label RX—l

label
A symbolic name can be assigned to the macro statement.

DOR=label|Rx
This is either a label assigned to the area containing the DOR as defined by the
DSECT DCTDOR or a register that contains the address of the DOR.

Entry Requirements
* The TPF system must be disabled for interrupts.
* The TPF system must be running with PSW key 0.
* The DOR must have the following fields filled in:

DORSDA Symbolic address of the device.
DORCAW Address of the channel program.
DORKEY Protect key for operation.

DORLPM Logical path mask for the operation.
DORFG1 Option flag byte for this request.
DORPRM Unique request parameter (optional).

378 TPE V4R1 System Macros

PIOFC

DORINT@ Address of device interrupt handler to process interrupts for this

request.

Return Conditions

» Control is returned to the next sequential instruction (NSI) with a condition code

as follows.
Condition Code
0

1

Meaning
Request accepted.

Request not accepted because PIO has not been
activated by a SPNDC macro. See
I‘QDNDF—QHQppnd Naormal Cl1O Dmr‘pcqing" ard
M for more information about the SPNDC
macro.

Request not accepted because a PIOFC request
is already active for the specified device.

Request not accepted because the specified
device is not usable; possible reasons:

— DORLPM is zero

— the SDA is not defined

— the SDA is not mounted

— the SDA is not operational.

* RO through R15 will not be altered.

Programming Considerations

» This macro can be run on the main I-stream only.
* This macro is for use in the control program (CP) only.

Examples
None.

System Macros 379

PIORC

PIORC—-Return from PIO 1I/O Interrupt Processing

Use this system macro, which is issued by a device handler after processing an
input/output (I/O) interrupt for a PIOFC operation, to cause control to return to the
point of interrupt.

See LBLDEC:anaIe_a_ELeemptue_uo_Request_on_pagﬁlQ for more information

about the PIOFC macro.

Format

label

label
A symbolic name can be assigned to the macro statement.

Entry Requirements
* The TPF system must be disabled for interrupts.
* The TPF system must be running with the program status word (PSW) key 0.

Return Conditions
There is no return from the PIORC macro.

Programming Considerations
e This macro can be run on the main I-stream only.
* This macro is for use in the control program (CP) only.

Examples
None.

380 TPE V4R1 System Macros

PKEYC

PKEYC—-Keypoint Communication Data

Use this system macro to identify which communication keypoint data is to be
prepared for an update to the file-resident copy. The keypointable data is specified
in the macro expansion.

Required Authorizations

Key0 Restricted System Common Storage
X

Format

(1)

P’—l———|—PKEYC—TYPE=KX >«
label

Notes:
1 symboll
label

A symbolic name can be assigned to the macro statement.

TYPE=symboll
A symbolic keypoint reference label (KO through K5) must be specified. The
symbolic label Kx is used to identify specific keypointable data as indicated by
the alphameric value of x.

KO
Line Status Keypoint

K1
Terminal Interchange Status Keypoint

K4
Communication Control Unit Keypoint

K5
Symbolic Line Status Table Keypoint.

Entry Requirements

* R9 must contain the address of the ECB being processed.

* For a line, terminal interchange, or keypoint directly controlled by the TPF
system, the symbolic line number of the communication line must be
right-justified in R14.

* For a communication control unit keypoint, the symbolic communication control
unit number must be right-justified in R14.

* For a keypoint of the first word of the symbolic line status table (SLST), the
symbolic line number must be right-justified in R14.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

System Macros 381

PKEYC

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.
Programming Considerations

* This macro can be run on the main I-stream only.

* This macro records a request to keypoint communication data residing in host

core storage. The request will be honored by the system communication keypoint
program.

Examples
None.

382 TPE V4R1 System Macros

PLNAC

PLNAC—-Check Symbolic Line Type

Use this system macro to check a symbolic line status table (SLST) entry for one or
more specific line types.

Format
»»—L—_|—PLNAC—CHK= BS >
label SLC ,FIND—Llabell
PRC —ENSIJ L,NOFIND—[Zabﬁ—‘
LC NSI
LIST— L NOFIND——label2
Lhsr—
LTYPE=(Ln:|~)J
label
A symbolic name can be assigned to the macro statement.
CHK
A symbolic line discipline must be specified. The values and their use are as
follows:
BS
Check for a BSC line
SLC
Check for a Synchronous Link Control line
Co3
Check for a 2703 controlled line (SLC)
PRC
Check for a Prime CRAS terminal
LC
Check for a 3270 Local line
LIST
Check for a list of line disciplines specified in the TYPE parameter
FIND

This parameter is optional if NOFIND is coded, but must be coded if NOFIND is
not. The possible values are:

labell

A user-defined label to be branched to if a requested line discipline is
found.

NSI
The default of next sequential instruction (NSI) may be explicitly specified.

Note: FIND cannot equal NOFIND.

System Macros 383

PLNAC

NOFIND
This parameter is optional if FIND is coded but must be coded if FIND is not.
The possible values are:

label2
A user-defined label to be branched to if a requested line discipline is not
found.

NSI
The default of next sequential instruction (NSI) may be explicitly specified.

Note: NOFIND cannot equal FIND.

TYPE
This parameter is required if CHK=LIST. It is a list of line type suffixes to tag
CXELTY defined in LINEQ. These suffixes are separated by commas and
enclosed in parentheses. The CXELTY tags in LINEQ follow here.
XCELTYn Description
CXELTYO RESERVED
CXELTY1 LOCAL 1052-7/3215 CONSOLE-TYPEWRITER
CXELTY9 SLC
CXELTY10 PSEUDO ALC LINE

CXELTY17 BSC
CXELTY18 3272 (LOCAL 3270)

Entry Requirements

* The communication line equate macro (LINEQ) must be called to resolve the line
type labels generated by the PLNAC macro.

* The DSECT macro SLSTL for the symbolic line status table (SLST) must have
been called.

* The base register specified on the SLSTL macro must be pointing to the SLST
entry to be checked.

Return Conditions

» Control is returned to the next sequential instruction (NSI) if one of the following
occurs:

— FIND defaults to or is specified as NSI and the line type is found.
— NOFIND defaults to or is specified as NSI and the line type is not found.
« Control is returned to the FIND label if specified and the line type is found.

« Control is returned to the NOFIND label if specified and the line type is not
found.

* The contents of all registers are preserved across this macro call.

Programming Considerations
* This macro can be run on any I-stream.
* The storage requirements are summarized in fable 4.

Table 7. Storage requirements for the PLNAC Macro

FIND or NOFIND but Not Both FIND and NOFIND
Both Specified Specified

CHK=C03 16 bytes 20 bytes

CHK=LIST, TYPE=(t1,...,tn) n*8 bytes n*8+4 bytes

384 TPE V4R1 System Macros

Examples

Table 7. Storage requirements for the PLNAC Macro (continued)

PLNAC

FIND or NOFIND but Not Both FIND and NOFIND
Both Specified Specified

CHK=all other options 8 bytes 12 bytes

Checking for line disciplines:

Check whether 3270 local line discipline is being used. If it is, branch to a user
routine at CPMAC10. If not, branch to a user routine at CPMAC20.

ABC PLNAC CHK=LC,FIND=CPMAC10,NOFIND=CPMAC20

+ABC DS OH SYMBOLIC LINE TYPE SEARCH
+ CLI ~ SLSTTYP,CXELTY18

+ BE CPMAC10

+ B CPMAC20

+PLNAGO77 DS OH

CPMAC10 DS OH
user routine for FIND

CPMAC20 DS OH

user routine for NOFIND
Check for low-speed free-running discipline
Check for line disciplines using TYPE parameter:

Check for line disciplines CXELTY9 and CXELTY17 specified

in the TYPE

parameter. If either is found, control is transferred to location LABEL10. If

neither is found, processing continues with the NSI.

CDE PLNAC CHK=LIST,FIND=LABEL10,TYPE=(9,17)
+CDE DS OH SYMBOLIC LINE TYPE SEARCH
+ CLT ~ SLSTTYP,CXELTY9
+ BE LABEL10
+ CLT SLSTTYP,CXELTY17
+ BE LABEL10

+PLNA0O79 DS OH
next sequential instruction

LABEL10 DS OH
user routine for FIND

System Macros

385

PLNSC

PLNSC-Find SLST Entry

Use this system macro to find the address of a symbolic line number entry in the
symbolic line status table (STSTL).

Format

»—L——'—PLNSC—REG=RX—, ERR=label <
label |—,SPO=WJ

label
A symbolic name can be assigned to the macro statement.

REG=Rx
A general register (R0-R7) containing an input symbolic line number.

ERR=label
This is an error return label that is defined within the user program. A branch to
this label will occur if the symbolic line number is not found.

SPO
Storage protect option.

R Allows you only to read the SLST entry. This is the default option.
W Allows you to write to the SLST entry.

Entry Requirements
* R9 must contain the address of the ECB being processed.

* R14 are R15 are reserved for use by this macro and cannot be used as the
general input register.

* The input register must contain a valid symbolic line number.

* An error routine must be defined within the user program, to handle the error
return for a line number that is not valid.

Return Conditions

« If the line number specified is valid, control is returned to the next sequential
instruction (NSI). The general register used as input will point to the proper entry
in the SLST table. The USING statement for the SLSTL DSECT will have been
issued.

 If the line number is not valid, control is returned to the label specified on the
ERR parameter.

* The contents of R14 and R15 are unknown. The contents of RO through R9
(other than the input register) are preserved across this macro call.

* If the line number is valid, the Write option (SPO=W) will set the storage key to
allow modifications of the SLST table.

Programming Considerations
* This macro can be run on any I-stream.

386 TPF V4R1 System Macros

PLNSC

* The storage requirements depend on the SPO parameter. If the Read (R) option
is specified, 34 bytes are required. For the Write (W) option, only 30 bytes are
required.

 If the program had issued a USING statement for the SLSTL DSECT prior to
using this macro, and the register is not the same as specified in the macro call,
DROP the register specified by the PLNSC macro and reissue the USING
statement for the previous SLSTL DSECT.

Examples
None.

System Macros 387

PLONC
PLONC-Place on Queue

Use this system macro to:

» Place output messages or link control blocks on CCP queues for transmission on
synchronous link lines.

* Restart (wake up) data transmissions by the output CCP after interruption of data
transmissions across a link.

Note: The link control block (LCB) transmissions had not necessarily been
interrupted.

Format

(1) (2) (3)

»—L—_I—PLONC——MSG ,Dx: ,——TOP ><
label —[BOT—l
(1) (2)
—LCB ,——LNK
—[CHNJ
(1) (2)
WKP- ,——LNK
—[CHN—l

Notes:

1 symboll
2 symbol2
3 symbol3

label
A symbolic name can be assigned to the macro statement

symboll
This identifies the class of PLONC macro, which are:
MSG
LCB
WKP.
symbol2
If symboll is MSG, a core block reference word (DO-DF) must be specified as

parameter two. If symboll is LCB or WKP, the queue identity (LNK or CHN)
must be specified as parameter two.

symbol3
This is relevant only if symboll MSG and specifies that the message block is to
be added to the TOP or BTM (bottom) of the queue.

Entry Requirements

* If symboll is WKP, then the symbolic line number of the channel must be right
justified in R14.

« If symboll is LCB, then additionally R15 must contain the link control block.

388 TPE V4R1 System Macros

PLONC

If symboll is MSG, the message to be sent must be contained in a block of core
storage attached to the ECB at the specified level (symbol2).

Return Conditions
» Control is returned to the next sequential instruction (NSI).

The contents of scratch registers (R14, R15) are unknown. The contents of the
remaining operational registers and the condition code are saved during
processing of this macro.

If symboll is MSG, the specified core block reference word (CBRW) is initialized
to indicate that a block of storage is no longer held.

Programming Considerations

Examples

This macro can only be run on the main I-stream.
This macro must be used only by synchronous link control (SLC).

The CAIEQ macro must also be called by the program issuing the PLONC macro
so that the assembler may be able to resolve the labels within the PLONC macro
expansion.

The line number is checked to ensure that it is valid and within the legal range
for Al lines. If the line number is out of range, control is transferred to the system
error routines and the ECB is forced to exit.

If symboll is MSG, a check is made by the control program (CP) to determine if
the ECB is holding a block of storage at the specified level. If a block is not held,
control is transferred to the system error routines and the ECB is exited.

None.

System Macros 389

PROGC

PROGC-Return Program Information

Use this system macro to return the address of a program’s program allocation
table (PAT) entry. This macro searches the PAT for the program name specified
and, if a match occurs, returns the address of the program’s entry in the PAT. If the
program name specified is not found in the PAT, no address is returned and the
macro branches to the label specified in the ERROR parameter of the macro.

Required Authorizations

Key0 Restricted System Common Storage
X
Format
r IDLOC=PBI
»»—PROGC—NAME=——prog——, PAT=Rx—, ERROR=1abe >

(Rx) L, tococ-oe1 L, parent=no—!

NAME=prog|(Rx)
This parameter specifies the name of the program to be located. The name is 4
alphanumeric characters that should have been allocated at system generation
time.

prog
The name of the program whose PAT entry is to be located.

(Rx)
A register (RO through R7) that contains the name of the program whose
PAT entry is to be located.

PAT=Rx
This parameter specifies the general register (RO through R7) that will contain
the address of the requested program’s PAT entry on output.

ERROR-=label
This parameter, a symbolic name, specifies the location to which control will be
given if no match is found.

IDLOC
Specifies whether the request will be serviced using the program base ID or the
database ID.

PBI
The request will be serviced using the program base ID located in CE1PBI.
This is the default.

DBl
The request will be serviced using the database ID located in CE1DBI.

PARENT=NO
Specifies that the request will return the transfer vector PAT address if the
program is a transfer vector. Otherwise, the PAT address of the parent is
returned.

390 TPF V4R1 System Macros

PROGC

Entry Requirements
R9 must contain the address of the ECB being processed.

Return Conditions

» Control is returned to the next sequential instruction (NSI) if the program name
was found. If the program name was not found, control is transferred to the label
specified by the ERROR parameter.

* The general register specified on the PAT parameter contains the PAT address of
the requested program if the program was found or zero if the search was
unsuccessful.

* The contents of RO through R7 are preserved with the exception of the register
specified on the PAT parameter.

» If the program name specified is a transfer vector, the address of the PAT entry
of the parent program will be returned unless PARENT=NO is coded. For this
condition, the address of the transfer vector PAT entry will be returned.

Programming Considerations

» This macro is restricted for use by E-type programs only. C-type programs can
issue the PROGC macro to generate a DSECT for the PROGC parameter list.

» If the program specified is I-stream unique, the PAT entry address returned will
be the program’s PAT entry unique to the I-stream from which the macro was
invoked.

Examples
None.

System Macros 391

QASNC
QASNC—-Query Asynchronous I/O Event Facility

Use this system macro to create an event, close an event, and query the status of
an event created for asynchronous input/output (1/0O) operations. These operations
are associated with the perform subsystem function or set subsystem mode channel
control words (CCWs) issued to record cache subsystem (RCS) devices where
asynchronous notification is requested.

See [TPE_General Macrod for more information about the FDCTC macro.

Format

,WAIT=YES
_|

QASNC—FUNC=——CREATE ,LEVEL=Dx—,ERROR=1abel [_|
label —ECLOSE{ ,WAIT=NO

QUERY

l—, RETURN=ALL

I—, RETURN=—|:PENDING
COMPLETE

label
A symbolic name can be assigned to the macro statement.

FUNC
The function to be performed. This parameter is required.

CREATE
Create an event token for asynchronous I/O operations.

CLOSE
Close an event token for asynchronous I/O operations.

QUERY
Query asynchronous 1/O event operations status.

WAIT
Wait for completion of 1/0O operations for the event:

YES
Wait until all asynchronous operations for the event are complete before

returning. YES is the default.

NO
Return current status of operations for event.

RETURN
The type of status to be returned to the user in the RCS asynchronous event

status block (IDSAOS):

ALL
Return status of all operations. ALL is the default.

PENDING
Return status for pending operations only.

COMPLETE
Return status for all completed operations only.

392 TPE V4R1 System Macros

QASNC

LEVEL=Dx

The data level of the IDSAOS block. Acceptable levels range from DO to DF.

ERROR-=label

The label of a routine where processing is to continue in the event of an error
condition.

Entry Requirements

A valid token must exist in the ECB field CE1TKN for the QUERY and CLOSE
functions.

A CLOSE function must be performed before a second CREATE may be issued
by an ECB.

Return Conditions
One of the following return codes will be provided in RO.

Return Code Meaning

0
4
8
12
16
20
24

Successful completion.

Token already active.

The asynchronous event table is full.

Operations pending for a token.

ECB does not own token.

A token number that is not valid. This token number is 0.
Core block (IDSAQOS) full.

Programming Considerations

Examples

This macro can be run on any I-stream.
Specifying RETURN=PENDING is not valid when WAIT=YES is specified.

LEVEL, WAIT and RETURN parameters can only be specified when
FUNC=QUERY is specified.

The LEVEL parameter is required when FUNC=QUERY is specified.

A data block, mapped by IDSAOS, must be attached on the specified data level
to return status information for FUNC=QUERY.

None.

System Macros 393

QGDSQ

QGDSQ-Query General Data Set (GDS) Input/Output

(I/0O) Queue
Use this system macro to determine the number of input/output (1/0O) requests that
are queued to the device that is associated with a general data set (GDS) mounted
to the TPF system.
Required Authorizations
Key0O Restricted System Common Storage
X
Format

QGDSQ B <
label DSB= NOjJ
YES

label
An optional label can be used with this macro.

DSB
This parameter specifies if the first data set control block (DSCB) address that
is associated with the input data set name will be returned in register 1 (R1)
when macro processing is completed successfully.

NO
This parameter indicates that the first DSCB address is not returned to the
caller.

YES
This parameter indicates that the first DSCB address is returned to the
caller.

Entry Requirements
* This macro can be run only by ECB-controlled programs.

* R1 must contain the address of the 16-character data definition (DD) name to
query.

Return Conditions

 If the queue is queried successfully, RO contains the number of requests that are
queued to the device that is associated with the input DD name. R1 contains the
address of the first DSCB associated with the data set if you specify YES for the
DSB parameter.

» If the queue is not queried successfully, R1 contains -1.
Programming Considerations

If multiple data sets are on the device, the queue count that is returned includes all
queued requests for all data sets on the device.

394 TPE V4R1 System Macros

QGDSQ

Examples
In the following example, a QGDSQ macro request is made to get the number of
I/0O requests that are queued for a device that is associated with an input data
definition (DD) name of 'INPUTDDNAME'. The first DSCB that is associated with
the data set is returned to the caller.

LA R1,INPUTDD Point to DDNAME for data set

QGDSQ DSB=YES Check DDNAME and count of requests
LTR RO,RO Successful return?

BM NOT MOUNTED No, data set not mounted

Bz NO_REQUESTS Yes, but no queued requests

Otherwise I/0 requests queued...
RO contains the count of requests
R1 points to first DSCB for data set

INPUTDD DC CL16'INPUTDDNAME' DDName to query

System Macros 395

RCFBC

RCFBC-Release Coupling Facility Work Block Address

Use this system macro to release the coupling facility work block.

Format

>>—l_——|—RC FBC—BLOCK=Rx »><
label

label
specifies a symbolic name that can be assigned to the macro statement.

BLOCK=Rx
specifies the address of a coupling facility work block to be released, where Rx
is a register from RO to R7.

Entry Requirements
None.

Return Conditions
Control is returned to the next sequential instruction (NSI).

Programming Considerations
* This is a restricted use macro.
* This macro can be processed on any I-stream.

Examples
None.

396 TPF V4R1 System Macros

RCLAC

RCLAC—-Release a Specified CLAW Block Type

Use this system macro inline to release addressability to the Common Link Access
to Workstation (CLAW) control blocks.

Format

>>—L——|—RCLAC—BLKNAME=blkname—,ADDR= addr »><
label —[(Rx)—l l—, RADDR= ddr:l—l

(Ry)

label
A symbolic label can be assigned to this macro statement.

BLKNAME=blkname
The name of the block being returned. BLKNAME is a required parameter.

FOURKF
Locked page for channel control word (CCW)

ICADAP
Adapter control block

ICLAWB
CLAW device interface block

ICLAWG
CLAW page structure

ICLCON
Connection control table

ICLIBK
Client control block

ICLIOI
Extension block for CLAW 1/O interrupt

ICLTRB
Transaction control block

ICMSGB
Message control block

ICNBLK
Extension block for CLAW initialization

ICPATH
Path control block

ICPERM
Permanent work area

ICPOLL
POLL request extension block

ICQBLK
Message queue element structure

System Macros 397

RCLAC

ICRBLK
Extension block for returning CLAW page

ICRCCW
Read channel CCW area

ICTRCE
Trace data structure

ICWCCW
Write channel CCW area

ISCCDT
CLAW device table

ISCFDT
File descriptor

ISCIPT
Internet Protocol (IP) address table.

ADDR
The system virtual memory (SVM) address of the returned block. ADDR is a
required parameter.

addr
An address.

(Rx)
A register containing the address.

RADDR
The SVM address of the returned block. RADDR is an optional parameter.

addr
The address.

(Ry)
A register containing the address.

Entry Requirements
This macro is for use in the control program (CP) only.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

* The contents of all registers, except R14 and R15, are preserved across this
macro call.

Programming Considerations
This macro can be run on any I-stream.

Examples
* This call releases block ICTRCE located at SVM address VCPTRCBK.
RCLAC BLKNAME=ICTRCE,ADDR=VCPTRCBK
* This call releases block ICLTRB located at the address found in register R10.
RCLAC BLKNAME=ICLTRB,ADDR=(R10)

398 TPF V4R1 System Macros

RCRTC

RCRTC-Clean Up Blocks in the CRET

Use this system macro to clean up blocks in the CRET. The supervisor call (SVC)
will loop through the CRET table entries. If it finds a block attached to the entry and
the entry cannot survive cycle down, use the $RELBC macro to release the block.

See [$RELBC-_Release Storage Block” on page 68 for more information about the
$RELBC macro.

Format

>>—l_—_|_RCRTC >«
label

label
A symbolic name may be assigned to the macro statement.

Entry Requirements
R3 — CRET table address.

Return Conditions

» Control is returned to the next sequential instruction (NSI).
* No value is returned.

Programming Considerations
This macro can be run on any I-stream.

Examples
None.

System Macros 399

RCSSC

RCSSC-Access the Record Cache Subsystem Status Table

Use this system macro to access the record cache (RSC) subsystem status table
(SSST) and make updates to the it. Using this macro insulates routines that
process the RCS SSST from changes in the data structure of the table.

Format

FIL
>>—L——|—RCSSC—FUNC= GET—————, TYPE=——HDR ,REF=H,SSID=RX—>
label PUT—— —ESI MEM

DEL——— RC
CLEANUP-

l—,OPTIONS=DF

I—,OPTIONS= Dx
LOCK—
UNLOCK—

SEQq—

»—, LIST=Rx—,RECNO=Rx—, ERROR=1abe!

label
A symbolic name can be assigned to the macro statement.

FUNC
The function to be performed. This parameter is required.

GET
Retrieve SSST information

PUT
Update SSST information

DEL
Invalidate SSST information

CLEANUP
Release SSST information

TYPE
The type of data requested. This parameter is required.

HDR
Header

SID
SSID (subsystem status ID) entry

RCD
File record

REF
The SSST structure to be used for the request. This parameter is required.

FIL
Read in SSST block from DASD and establish pointers to the memory and
file structures. The default is FIL.

MEM
Establish memory pointers only. CP segments must code REF=MEM.

400 TPF V4R1 System Macros

RCSSC

SSID
The record cache subsystem status identifier (SSID) value for the request. This
parameter is required.

Rx Register containing the SSID value. Valid values range from RO through
R15.

LIST
The RCSSC macro parameter list (IDSCSO0) pointer. This parameter is required.
The RCSSC macro uses IDSCSO0 to pass requested information to the service
routines. The RCSSC macro generates the code necessary to build the
parameter list and invokes the CP and real-time service routines.

Rx Register containing the address of the request parameter list (IDSCSO).
The parameter list will be filled out by the RCSSC macro. Valid values
range from RO through R15. The default is R1.

RECNO
The file SSST ordinal number for the request (required only when TYPE=RCD
is specified):
Rx Register containing the file ordinal. Valid values range from RO through
R15.
ERROR
The label of a routine where processing continues on an error condition.
label
Label of a program statement that gains control on an error return from
RCSSC.
OPTIONS

The processing options associated with the request:
Dx Use data levels DO through DF for file operations. DF is the default.

LOCK
Lock IDSSST file data structure.

UNLOCK
Unlock IDSSST file data structure.

SEQ
Access data type in sequential mode.

Entry Requirements

The register to point to the parameter area using the LIST parameter. R1 is the
default. The macro itself will fill in the parameter area with the values coded on the
macro call.

Return Conditions

» Control is returned to the next sequential instruction (NSI) unless the ERROR
parameter is coded and an error condition occurs.

* A parameter list is set up to access the requested portions of SSST. A parameter
list return code is set if errors are detected.

* The return code modifier field of the parameter list (IDSCSO0) should be examined
on each return from the RCSSC macro when using SSID requests. When the
SSID does not exist, the macro will set the EOF condition and return with the slot
pointer pointing to the first available overflow slot. If this slot is to be filled in, the
SSST header needs to be updated to reflect the new count of active slots.

System Macros 401

RCSSC

Programming Considerations

Examples

402

This macro can only be run on the main I-stream.
FUNC, TYPE and REF are required parameters.
RECNO parameter is required only when TYPE=RCD is specified.

Registers RO through R7 will be saved and restored by the macro. Other
registers can be used for the LIST, RECNO, and SSID parameters but they may
be corrupted by the macro. All registers are saved during control program (CP)
calls.

The options LOCK and UNLOCK are mutually exclusive.

CP programs are restricted to memory requests only. ECB programs may specify
memory or file requests.

REF=FIL must be specified when updating the SSST.

All updates must be made in the file entry. The macro will reflect the changes in
the memory entry on the subsequent PUT request.

When using the CLEANUP function, the UNLOCK option must be specified and
REF=FIL must be coded as it was on the RCSSC macro that retrieved the lock.

SSID parameter is required with TYPE=SID unless the SEQ option is specified.
The SSID parameter cannot be used with the SEQ option.

The macro processor will try to use the SSID passed with this parameter as the
starting point of the sequential search but the parameter list will not be set up
with the pointers to this SSID in the SSST.

The SEQ option is used to process the entire SSST structure.

You must clear the CSOSSID field of the RCSSC parameter list before the first
RCSSC invocation. This field will be used by the macro processor on subsequent
calls as the starting point to scan for the next active SSID.

In general, for CP segments, R1 is used to pass information to the RCSSC
service and RO is used to pass return code information to the user. The
exception to this is for a header request where the address of the RCSSC
header is returned in the register specified by the LIST parameter.

The SSST is a basic subsystem (BSS) resident table. All RCSSC calls must be
made from the BSS.

None.

TPF V4R1 System Macros

RDCTC

RDCTC-3705 Communications

Use this system macro to process a chain of user-defined channel command words
(CCWs) so you can communicate with a 3705 Communications Controller over its
native subchannel (NSC).

Format

(1)

”—l———|—RDCTC—DX >«
label

Notes:
1 symboll
label

A symbolic name can be assigned to the macro statement.

symboll
A file address reference word (DO to DF) must be specified for this parameter.

Entry Requirements

* R9 must contain the address of the ECB being processed.

» A 3705 native subchannel address (SIO address) and the core location of the
first user-defined CCW must be contained in the FARW for the specified level as

follows.
CELIFAx Bytes 0-3 Storage address of first CCW
CE1FMx Byte 2 Channel address

Byte 3 NSC address
* You must define all fully constructed CCWs needed.
* CCW operation codes must be valid for the 3705.
» Storage locations in which data is accessed are your responsibility.

Return Conditions
» Control is returned to the next sequential instruction (NSI).
* The status of the operation is unknown.

* The contents of the core block reference word at the specified level are
unchanged.

* Byte 0 of the file address reference word is cleared; the remainder is unchanged.

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

Programming Considerations
* This macro can be run on the main I-stream only.
* A check is made by the TPF system to determine that the NSC is valid.
* No check is made to verify the validity of the CCW operation codes.

* The operational program may not use the specified level until the operation is
complete.

System Macros 403

RDCTC

* A WAITC macro must be issued to ensure completion of the operation.

The control program (CP) will transfer control to the user-defined CCWS and
handle the following error conditions:

— Equipment or Bus Out Check
— Intervention Required or CA Not Initialized Indication
— Abort.

On uncorrectable error conditions the gross error indicator and the detailed error
indicator for the specified level will be set, and the channel status word will be
inserted into the file address reference word for the specified level.

* This macro is restricted to use by the 3705 load and dump programs.

Examples
LABEL RDCTC D2

404 TPF V4R1 System Macros

RESMC

RESMC-Resume Normal CIO I/O Processing

Use this system macro to enable the user of the preemptive input/output (1/0) (PIO)
facility to resume normal system 1/O processing (CIO). When the user is finished
with PIO, the TPF system issues this macro specifying the registers to be loaded
and the program status word (PSW) to be used when passing control back to
normal system operation.

Before normal system operation is resumed, PIO dispatches the queued interrupts
to the CIO device interrupt handlers. These are the interrupts received by PIO for
I/O operations initiated by CIO before normal system operations were suspended.

If the resume PSW shows that the TPF system is disabled for interrupts, the
queued interrupts are not dispatched. PIO sets a trap to determine when the TPF
system becomes enabled at which time the queued interrupts are dispatched.

Format
,SAVE=(R1)
> RESMC >
|—label—| |— SAVE= (Rx)—_|—
—[label
label
A symbolic name can be assigned to the macro statement.

SAVE

This is either a label assigned to the save area or a register other than RO that
contains the address of the area. If SAVE is not coded, the area address
defaults to R1.

Entry Requirements
* The TPF system must be disabled for interrupts.
* The TPF system must be running with PSW key 0.

* The save area, containing the information required to resume normal TPF
processing, must have the following format:

Words 1-2 The resume PSW.
Words 3-18 Values to be reloaded into RO through R15.

Return Conditions
There is no return from processing this macro.

Programming Considerations

* This macro can be run on the main I-stream only.
* This macro is for use in the control program (CP) only.

Examples
None.

System Macros 405

RIOSC

RIOSC-Reset an I/O Operation

Use this system macro to issue the necessary instructions to halt and clear any
input/output (I/O) for a specific symbolic device address (SDA). The SDA is
available for further 1/0O use upon return from this macro.

Format

,NOTE=N
|_

>>—L——|—RIOSC—SDA= label >
label RxJ |—,NOTE=YJ

label
A symbolic name can be assigned to the macro statement.

SDA=label|Rx

This is either a label of a halfword field containing the SDA or a register which
contains the SDA in bytes 2 and 3 and zeros in bytes 0 and 1.

NOTE
This denotes whether a notification interrupt is to be created and presented to
the device handler if an active I/O request is cleared. The notification interrupt

consists of an interrupt with device status of zero and interface control check
set in channel status.

N No notification is to be generated (default)

Y Notification interrupt is to be generated.

Entry Requirements

* The TPF system must be disabled for interrupts.
* The TPF system must be running with PSW Key 0.

Return Conditions

» Control is returned to the next sequential instruction (NSI).
* The contents of all registers are preserved across this macro call.

Programming Considerations

* This macro must be processed only on an I-stream having affinity with the
specified SDA.

* RIOSC cannot be processed from a real-time program.

Examples
None.

406 TPF V4R1 System Macros

RITID

RITID—Access RIAT Entry

Format

Use this system macro to access a specific record identifier (ID) in the record ID
attribute table (RIAT). If the specified record ID is in the RIAT, this macro moves the
RIAT record to the caller’s work area. If the specified record ID is not found in the
RIAT, this macro sets the address of the RIAT section in the caller’s work area to
zero (the DCTRIT RITADDR field).

CHK=NO ,XBI=DBI ,FADC=N——— ,FAST=N
»»—RITID |_ _l |_ —l |_ |_ —l >

|—CHK=YESJ I— XBI=PBIJ I— FADC=Y,DEFAULT=——Y I— FAST=YJ
s s s —[N:l_ s

CHK
Parameter used for LEBIC call. This parameter is valid only when RITID is
invoked by a CP segment.

YES
Integrity checking is required on the LEBIC macro call.

NO
Integrity checking is not required on the LEBIC macro call.

XBI
Program/data base index, used by LEBIC macro. The default is DBI. This
parameter is valid only when RITID is invoked by a CP segment.

DBI
CE1DBI is to be used as first parameter in LEBIC macro.

PBI
CE1PBI is to be used as first parameter in LEBIC macro.

FADC=N|Y
FADC=Y is used by the CP file access code to generate module specific RIAT
support code. The default is FADC=N. FADC=Y is restricted to the control
program (CP).

Note: The interface requirements when this parameter is specified as Y are
module specific.

DEFAULT=Y|N
DEFAULT=Y or DEFAULT=N along with FADC=Y is used by the CP file access
code to generate module specific RIAT support code. DEFAULT has no
meaning when FADC=Y is not coded.

FAST=N|Y
Specifies whether control program (CP) routines are used for processing. This
parameter is ignored unless used within the control program (CP) and FADC=1.
The default is FAST=N.

Entry Requirements

There are two sets of entry requirements:

System Macros 407

RITID

1. The first set, the work area option, can be used by real-time programs or by the
control program. R1 points to the caller's work area. The minimum length of the
work area must be RITIDLN as defined in DCTRIT. The RITRID field in the work
area must be set to the record ID to be searched for in the RIAT. This ID must
be in hexadecimal format (for example, X'1355’) or character format (for
example, C'AS’).

2. The second set, the FADC option, can be used only by the control program.
The CHK, XBI, DEFAULT, and FAST parameters apply to the FADC option.

Return Conditions
1. Work area option

The work area passed by the caller will contain the RIAT item. The RIAT item in
the work area maps to the RTID DSECT (contained in DCTRIT). RITADDR will
contain the address of the item in the RIAT table.

If the specified ID is not found in the RIAT, the address of the ID entry in the
RIAT (accessed by field RITADDR in the RTID DSECT) in the work area will be
set to zero. The RIAT item in the work area will contain all the default values
located in the RIAT header.

Registers 0 to 15 are preserved across this macro call.
2. FADC option
The appropriate fields in the MIOB block will be set.

Programming Considerations
The RITID macro can be processed on any I-stream.

Examples
None.

408 TPF V4R1 System Macros

RLNKC

RLNKC-Return to CP Calling Routine and Reset Stack Pointer

Use this system macro to reload the linkage data from the stack, reset the stack
pointer, and return to the calling control program (CP) routine. This macro is used
with other standardized linkage macros such as the CLNKC, DLNKC, and SLNKC
macros. See the following for more information about these macros:

o FDLNKC—Define Stack DSECT for Contral Drngrnm ((‘D) Raoutine” an page 214

o ESILNKC—Control Program ((‘D) Save Link Data & Set Stack Pointer” on

bage 4ad.

Format

,BASE=R15 , LINK=R14 ,POP=YES
[[1]

>>—L—_|—RLNKC—LOREG= Rn
label NO—| I—,BASE=RXJ |—,LINK=RyJ I—,POP=N0J

g l—, PARMS= an—‘
LI

label
A symbolic name can be assigned to the macro statement.

BASE=R15|Rx
The register specified, default R15, was used as the link-to register by the
calling routine (CLNKC).

LINK=R14|Ry
The register specified, default R14, will be used as the link register from this
routine. The calling routine used this register as its link-from register.

LOREG=Rn|NO
Required. If a register Rn is specified, all registers, beginning with the specified
register, will be reset from the stack. If NO is specified, no registers are reset
from the stack.

POP
Specify one of the following:

YES
The stack register will be popped, that is, adjusted by the length of this
routine’s stack area.

NO
The stack register will not be ‘popped,’ since there is no stack area used by
this routine and it does not call any routine.

Used in conjunction with the PUSH parameter on the SLNKC macro.

PARMS=Rn|(Rm,...,Rn)
This is optional. The register (or registers) specified by this parameter will not
be reset from the stack since it is assumed to contain data.

System Macros 409

RLNKC

Entry Requirements

R13 must contain the stack address.
The LINK= register must contain the address of the link-from routine.

Return Conditions

The macro generates code to load the appropriate registers from the stack,
excluding the parameter registers. It adjusts the stack register by the size of the
stack area for this routine and returns to the calling routine via the LINK register.

Programming Considerations

Examples

This macro can be run on any I-stream.
R13 must point to a valid stack area.

This macro, in conjunction with the SLNKC macro, is used to manipulate the
stack register.

The condition code setting is determined by the interface defined for the routines
using the linkage macros.

The LOREG parameter must match with the corresponding parameter on the
SLNKC macro. If they do not match, the LOREG parameter is used on the
RLNKC macro.

The POP parameter must match with the corresponding PUSH parameter on the
SLNKC macro. If they do not match, the POP parameter on the RLNKC macro is
used, but errors may occur if there is a mismatch on R13 usage.

This macro is for use in the control program (CP) only.

None.

410 TPF V4R1 System Macros

RPVRC

RPVRC-Read and Process Program Version Record

Use this system macro to read all the program version records (PVRs) from file into
main storage and to add the appropriate information from each PVR entry to the
corresponding program allocation table (PAT) entry.

Format

»>—Ilabel—RPVRC >

label
A symbolic name can be assigned to the macro statement.

Entry Requirements
The RPVRC macro is restricted to ECB-controlled programs.

Return Conditions
» Control is returned to the next sequential instruction (NSI).
» All registers are preserved across the macro call.

Programming Considerations

If unable to process all the PVRs for a subsystem, then state change will be
disabled for the subsystem.

Examples
The following example shows the RPVRC macro being issued for each subsystem
in the complex.

ICM R14,3,CE1DBI
CEBIC DBI,S

CEBIC BSS
CTKSPVR DS OH

RPVRC
LEBIC DBI,R4,CHECK=NO
PVRSSID DS OH

RESTORE DBI AND SSU ID TO BSS

PROCESS PVRS FOR THIS SS
GET SS ID WITHOUT COMPLEMENT

LA R4,1(,R4) NEXT DBI

LR R6,R4

UATBC IDLOC=(R,SSI,R6), SS ID
EXCD=PVRDONE, FINISHED
INVLID=PVRSSID, NEXT
NOTAVL=PVRSSID NEXT

MSOUT REG=R6
ICM R14,3,MUGDPI

CEBIC DBI 07240000
B CTKSPVR

PVRDONE DS OH

LOAD SS ID WITH COMPLEMENT

FOUND - DO NEXT SS
FINISHED - CONTINUE

System Macros

411

RSWBC

RSWBC-Release a System Work Block (SWB)

Use this system macro to release a system work block (SWB) address.

Required Authorizations

Key0

Restricted

System

Common Storage

X

Format

>F—m—RSWBC—B LOCK=reg
label

label

A symbolic name can be assigned to the macro statement.

BLOCK-=reg

Specifies the address of the SWB to be released, where reg is a register from

RO - R7.

Entry Requirements

This macro is restricted to ECB-controlled programs.

Return Conditions
None.

Programming Considerations
None.

Examples

The following example releases the SWB specified in register 5 (R5).

RSWBC BLOCK=R5

412 TPF V4R1 System Macros

RSYSC

RSYSC-Release System Heap Storage

Use this system macro to return frames to the TPF system that were allocated to
the system heap by the $GSYSC or GSYSC macros.

See [$GSYSC_Get System Heap Storage” on page 50 and LGSYSC—Get Systen]
I:Ieapsmtage_an_pagelld for more information about the $GSYSC and GSYSC

macros, respectively.

Format

>>—L——|—RSYSC—ADDRESS=RX,FRAMES=Ry,TOKEN=Rz >
label

label
A symbolic name may be assigned to the macro statement.

ADDRESS=Rx
The ADDRESS parameter specifies the register containing the starting address
of the storage being returned. This address must be:
* Avalid system heap address

* On a 4 KB boundary.

The general register used must be RO through R12, R14, or R15.

FRAMES=Ry
The FRAMES parameter specifies the number of 4 KB frames to be returned to
the TPF system. The number of frames requested for release must be the
same number of frames requested on the $GSYSC or GSYSC macro. The
general register used must be RO through R7, R14, or R15.

TOKEN=Rz
The TOKEN parameter specifies the address of an 8-character string that the
TPF system uses to identify the allocated storage. This string must match the
string specified on the $GSYSC or GSYSC macro. The general register used
must be RO through R7, R14, or R15.

Entry Requirements

* The general register indicated by ADDRESS must contain the starting address of
storage allocated using the GSYSC or $GSYSC macro (or the C language
functional equivalent).

* R9 must contain the address of a valid ECB.

Return Conditions
* The TPF system always returns control to the application.
* R15 contains the following return codes.

Return Code Meaning

0 The TPF system has successfully released all
specified storage.

RSYSC _ERROR The address specified is not valid, the storage is

System Macros 413

RSYSC

not in use, and the starting address, size, and
token do not match current storage allocations.
No storage is released.

» All registers except R15 are preserved.

Programming Considerations

Examples

e This macro must use the same FRAMES and TOKEN parameters as specified
on the GSYSC or $GSYSC macros. See lGSYSC-—Get System Heap Starage” od
b_ag,e_ﬂd and F4GSYSC-_Get Q\J/Qtpm I—lnaln Qtnmgp" Qn page 5d for more
information about the GSYSC and $GSYSC macros, respectively. For example, if
12 KB of storage is allocated with a token of TABLE, the release macro must be
coded to release 12 KB of storage with a token of TABLE.

* When the macro successfully completes processing, the macro trace entry
contains the size (in number of frames) and address of the allocated area in
addition to the normal macro trace information.

* The $RSYSC macro is used only by the control program (CP) while this macro is
used by application programs. See ISRSYSC_Release System Heap Storage” an

for more information about the $RSYSC macro.

Return system storage allocated for use as MY_TABLE.

ITUUTL REG1=R14 CONNECT WITH TABLE UPDATE DSECT
LA R14,ITULEN GET THE LENGTH OF A BLOCK

LA R14,4095(R14) ROUND TO THE NEXT 4 KB

LR R7,R14 SAVE NUMBER OF FRAMES

SRL R14,12 DETERMINE NUMBER OF 4 KB FRAMES

LA R6,MY_TABLE

GSYSC FRAMES=R14,TOKEN=R6 ALLOCATE THE STORAGE
LTR R14,R14 CHECK THE RETURN CODE
BNZ HAVE_STORAGE CONTINUE PROCESSING

process error for no storage
HAVE_STORAGE DS OH
routine that uses the storage

RELEASE_STORAGE DS OH
LA R6,MY_TABLE
RSYSC ADDRESS=R14,FRAMES=R7,TOKEN=R6 RELEASE THE STORAGE
LTR R15,R15 CHECK THE RETURN CODE
BNZ RELEASE_ERROR BRANCH TO PROCESS ERROR

MY_TABLE DC CL8'MY_TABLE'

414 TPF V4R1 System Macros

RVTCC

RVTCC-Search RVT Entries

Format

Use this system macro to compute the RVT1 or SCB1 address, the RVT2 or SCB2
address, and the resource identifier (RID) or SCBID for the next or previous
resource in the hierarchy of the network configuration.

Note: If you specify an SCB1 or SCB2 address, this address must reference a
session control block (SCB) that is anchored off an entry in the resource
vector table (RVT).

Required Authorizations

Key0O Restricted System Common Storage

X

»—RVTCC EOT=eot , IN1=Rx Al <
ETOR=RV:| [1 N2=Rx—| J:NEXT
—STEP=——PREV

—ARG=——CDRM
e
LOCAL—

—RVT1=Rz
—RVT2=Ry:
—RID=Rw:

—SCBIND=Rv

EOT=eot
This parameter specifies that a branch is to be taken to the label eot if the input
or stepped entry is the delimiting entry of the table.

EOTR=Rv
This parameter specifies that a branch is to be taken to the address specified in
register Rv if the input or stepped entry is the delimiting entry of the table.

IN1=Rx
This indicates that the address passed in register Rx as input to the macro is
an RVT1 or SCB1 address. If it is an SCB1 address, it must reference an SCB
that is anchored to the RVT.

IN2=Rx
This indicates that the address passed in register Rx as input to the macro is
an RVT2 or SCB2 address. If it is an SCB2 address, it must reference an SCB
that is anchored to the RVT.

STEP
This parameter specifies which resource in the table is to be retrieved.

NEXT
The next resource in the table is to be retrieved.

PREV
The previous resource in the table is to be retrieved.

System Macros 415

RVTCC

ARG
This parameter can be used to key the searching on a particular RVT entry
value.

CDRM
When STEP=NEXT, the entry of the next resource owned by the CDRM is
retrieved. When STEP=PREYV, the entry for the CDRM is retrieved.

CCw
When STEP=NEXT, the entry for the next resource whose session runs
through the ALS/NCP/CTC is retrieved. When STEP=PREYV, the entry for
the ALS/NCP/CTC is retrieved.

LOCAL
When STEP=NEXT, the entry of the next local resource is retrieved. When
STEP=PREYV, the entry for the local SSCP is retrieved, with one exception:
if the input entry is an SLU thread, the entry of the application PLU is
retrieved.

If you do not specify the ARG parameter, the next (previous) resource of any
type is retrieved.

RVT1=Rz
Register Rz contains the RVT1 or SCB1 address for the stepped resource on
return.

RVT2=Ry
Register Ry contains the RVT2 or SCB2 address for the stepped resource on
return.

RID=Rw
Register Rw contains the RID or SCBID of the stepped resource on return.

SCBIND=Rv
Register Rv contains an indicator of whether the values returned through RVT1,
RVT2, and RID reference an RVT or an SCB. If they refer to an SCB, Rv
contains one (X'00000001"; if they refer to an RVT, Rv contains zero.

Entry Requirements

* The input register specified by IN1 or IN2 must contain a valid RVT1 (or SCB1)
or RVT2 (or SCB2) address, respectively.

» Operands specifying input registers can use RO through R7, R14, or R15.

Return Conditions
* The registers specified in the macro call are set appropriately.

* Processing continues following the macro expansion, unless a delimiting entry is
found. In that case, a branch is taken to the label specified by the EOT
parameter or to the address in the register specified by the EOTR parameter.

» Delimiting entries are detected under the following conditions:
— For all entry conditions:
- When the entry retrieved is the first entry in the table
- When the entry retrieved is the end of table entry.
— For STEP=NEXT and any ARG settings:

- When the input entry is either the last RVT (if there are no SCBs anchored
off it) or the last SCB in the chain anchored off the last RVT.

— For STEP=PREV and any ARG settings:

416 TPF V4R1 System Macros

RVTCC

- When the input RVT entry is the first entry in the table.
— For STEP=PREV and ARG=CDRM:

- When the entry for the CDRM cannot be found.
— For STEP=PREV and ARG=CCW:

- When the entry for the ALS/NCP/CTC cannot be found.
— For STEP=PREV and ARG=LOCAL.:

- When the entry for the local SSCP cannot be found

- When the entry for the application PLU cannot be found.

* The contents of registers R14, R15, and RO through R7 are unchanged, except
as requested by the macro call.

Programming Considerations

» This macro is for use by systems programs only.

* At assembly time the macro call is checked for:
— A STEP parameter that is not valid or is missing
— A ARG parameter that is not valid
— AIN1 or IN2 parameter that is not valid or is missing
— AEOT or EOTR label that is not valid or is missing.

* The registers specified by RVT1, RVT2, and RID are checked for validity.

Examples
None.

System Macros 417

RWGTC

RWGTC-Release a Lock on a WGTA Entry

Use this system macro to release a lock on an entry in the terminal address table
(WGTA) that was locked previously by the LWGTC macro.

Format

»»>—RWGTC ><
|—SU FFIX=character—|

SUFFIX=character
The argument specifies the suffix to be used for WGTA addressing. This is an
optional parameter.

Entry Requirements
R9 must contain the address of the ECB being processed.

Return Conditions

» Control is returned to the next sequential instruction (NSI).
» Upon return, the WGTA entry is released.

Programming Considerations
* This macro can be run on any I-stream.

* The RWGTC must be issued on the same I-stream as the corresponding
LWGTC.

* Addressability to the WGTA item must have been established prior to the use of
this macro.

* The name of the WGTA lock byte is WGOLCK.

¢ The RWGTC macro must be issued in 31-bit mode since the WGTA can lie
above 16 MB.

Examples
None.

418 TPF V4R1 System Macros

SANQC

SANQC-Define and Enqueue Resource, Signal Aware

Use this system macro to define a shared resource to the control program and to
control access to the resource among entry control blocks (ECBs). The SANQC
macro is similar to the ENQC macro. However, if the caller of the SANQC macro
has to wait for access to the shared resource, the caller can be interrupted by a
signal. This macro is used with the DEQC macro.

Required Authorizations

Key0 Restricted System Common Storage
X
Format
,QUAL=U
»—L—_I—SANQC BLOCK=address >
label LEVEL=DX—| i:,WAIT=Zabe11i‘ |—,QUAL=$J
,NOWAIT=label2

»—,EINTR=1abel3 ><

label
A symbolic name can be assigned to the macro statement.

BLOCK=address
If specified, this is the address of an 8-byte area that contains the name of the
resource. BLOCK and LEVEL are mutually exclusive.

LEVEL=Dx
If specified, this is a file address reference word (DO-DF) that contains the
name of the resource. BLOCK and LEVEL are mutually exclusive.

WAIT=labell
The label of an instruction that is given control if the ECB waited before gaining
control of the resource. Otherwise, SANQC macro processing returns control to
the next sequential instruction (NSI). WAIT and NOWAIT are mutually exclusive.

NOWAIT=label2
The label of an instruction to be given control if the named resource is already
in use by another ECB. If specified and the resource is already in use, control is
passed to the specified label without the ECB giving up control. NOWAIT and
WAIT are mutually exclusive.

QUAL
Quialification of the resource name. The default value is U.

U Subsystem qualification applies. The resource name is subsystem unique
and is qualified by the database index (DBI) value for the subsystem.

S Systemwide qualification applies. The resource name is not subsystem
unique; that is, all ECBs in the TPF system that issue a SANQC macro with
the same resource name and QUAL=S coded are enqueued on the same
resource. If two SANQC or ENQC macros are issued with the same
resource name, but different QUAL values are coded, two different

System Macros 419

SANQC

resources are assumed to exist. The SANQC macro and its corresponding
DEQC macro must have the same QUAL value coded.

EINTR=label3

The label of an instruction to be given control if SANQC macro processing is
interrupted by a signal. When control is given to the instruction specified by the
EINTR keyword, the caller does not have access to the shared resource.
Because the caller does not have access to the shared resource, a system
error results if the DEQC macro is called.

Entry Requirements

Register 9 (R9) must contain the address of the ECB being processed.

When the LEVEL keyword is specified, the caller must store the 1-8 character
symbolic name of the shared resource in file address reference word CE1FAX,
where x is a data level (0—F).

When BLOCK is specified, the caller must store the 1-8 character symbolic
name of the shared resource in the 8-byte area pointed to by the address
specified for the BLOCK keyword.

Return Conditions

If neither the WAIT or NOWAIT keyword is specified, control is returned to the
next sequential instruction (NSI) when the ECB owns the resource.

If the resource is already in use and the NOWAIT keyword is specified, control is
given to the label specified by the NOWAIT keyword without the ECB losing
control, but the ECB does not own the resource.

If the resource is already in use and the WAIT keyword is specified, control is
given to the label specified by the WAIT keyword when the ECB owns the
resource.

If the calling process receives a signal before the resource becomes available,
control is given to the label specified by the EINTR keyword, but the ECB does
not own the resource.

The contents of R14 and R15 are unknown. The contents of RO—R7 are
preserved across this macro call.

Programming Considerations

This macro can run on any |-stream.

If the LEVEL keyword is specified, the ECB must not hold a block on the data
level. If a block is held, a system error occurs and the ECB exits.

When the resource is no longer needed, the ECB must issue a DEQC macro. If
an ECB exits while holding a resource, a system error occurs and the resource is
freed. See [[PE General Macrod for information about the DEQC macro.

There is no timeout feature available on the SANQC macro as there is on the
ENQC macro. However, the calling process can use the alarm function to specify
a time period to wait for the resource to become available. If the resource does
not become available in this time period, SANQC macro processing is interrupted
by a SIGALRM signal.

See [TPE General Macrod for information about the ENQC macro. See the fred
C/C++ L anguage Suppart User's Guidel for information about the alarm function.

SANQC macro processing does not handle signals. When a signal interrupts
SANQC macro processing, control is passed to the instruction specified by the
EINTR keyword.

420 TPF V4R1 System Macros

SANQC

* Both the ENQC macro and the SANQC macro can be used by different
processes to access the same shared resource.

Examples
None.

System Macros 421

SENDC

SENDC-Send Message to Terminal

Use this system macro to transmit the following types of messages:
* Messages to high-speed display and printer terminals
* Messages to 3270 local terminals

* Messages to another system through binary synchronous communication lines
(BSC) or synchronous link control (SLC)

» ATA/IATA format telegrams

* Messages to terminals supported by the Network Extension Facility (NEF)/ALCI,
AX.25, and XALCI.

High-speed display and printer terminals attached to their terminal interchange units
may be connected to the TPF system in one of the following ways:

* The terminal interchange can be connected to a high-speed (ALC) line into a
transmission control unit attached directly to a subchannel of the multiplexor
channel. This is referred to as a directly attached terminal.

* The terminal interchange can be connected through a high level network (for
example, SITA HLN) that is attached to the TPF system through a synchronous
link (Al). This is referred to as an indirectly attached terminal.

In a TPF system with NEF, the terminal interchange can be connected to a
high-speed (ALC) line that in turn is connected to a 3725 with the NEF2 PRPQ.

Messages to directly attached display terminals and short reply messages to
directly attached printer terminals are sent to the communication control program
(CP) for code translation and initiation of output transmission.

Messages to indirectly attached display terminals, short reply messages to indirectly
attached printer terminals and messages to another system through a synchronous
link (Al) are sent through an intermediate queue mechanism to the TPF
synchronous link control output interface programs.

Long and unsolicited messages to printer terminals (directly or indirectly attached)
are passed by the control transfer mechanism to the long message transmitter
program.

ATA/IATA format telegrams are passed by the control transfer mechanism to the
message switching system.

Note: The SENDC macros are restricted to system program use. Applications
should use the ROUTC macro to transmit all messages. Any SENDC macro
(class A, C, L, or B) issued by an application program is intercepted and
converted to a ROUTC macro. The control program (CP) sets the CELACVT
bit in the entry control block(ECB) control byte CE1CPA to indicate the
conversion. When the control program (CP) issues a SENDC macro, the
CE1AINT bit in CELCPA must be set if the SENDC intercept routine
(CCPNUC) is to be bypassed.

See [[PE_General Macrod for more information about the ROUTC macro.

422 TPF V4R1 System Macros

SENDC
Format

(1) (2)

>>—L——|—S ENDC—Dx s
label

—A - X WO >

Notes:
1 symboll
2 symbol2

label
A symbolic name can be assigned to the macro statement.

symboll
Data level (DO through DF) containing message segment to be sent.

symbol2
A message class, one of the following:

AorC
Display Terminal reply messages or short Printer Terminal reply messages.

Messages to another system through a binary synchronous (BSC) line.
Messages to another system through a synchronous link.

Long reply or unsolicited messages to printer terminals.

ATA/IATA format telegrams

- r X @

Entry Requirements
* R9 must contain the address of the ECB being processed.

* The message segment must be contained in a block of storage held by the ECB
at the specified level (symboll).

* The maximum number of bytes in the segment depends on the message class.
For class A, C, L, or B messages to terminals, only 381-byte file storage blocks
are allowed.

* The format of a message segment follows.
No. of Bytes 4 4 4 4 2

AAB C D E F

Where:

A Contains record ID, RCC and control byte.
Is the program ID field.

Is the forward chain field.

Is the backward chain field.

m O O @

Is the count of characters in Section F.

System Macros 423

SENDC

F The contents of this section vary according to the class of message.
A,C.L

Terminal Address.

Text. See the UIOOM data macro for the OMSG format.
Symbolic Line Number (SLN).

Symbolic Station Number

Three reserved bytes (bytes 20 through 22).

Text of the data for transmission over the BSC line. See the AMOSG data
macro for the AMSG format.

Symbolic Link Number (SKN).

Text. See the XMORL data macro for the XMSG format. The format is
defined by the XMORL data macro only in so far as the first byte
following the SKN is the text.

Line Number-not used. The routing information is contained in the text.
Text. See the XMORL data macro.

» If an application issues its own SENDC A, C, or L (bypassing the router and send
intercept routine) byte B+2 of the message must be initialized with the terminal
type indicator as defined in the TRMEQ macro.

* Class C-requires that the agents assembly area (the WAOAA data macro) be
attached to the entry control block (ECB) on level 1.

» Class K-messages require additional information as follows:
1st Status Byte in Byte D

Bit 0

0 Low Integrity Message. The message is not stored on file and cannot
be regenerated in case of transmission errors.

1 High Integrity. The message is stored on file and can be regenerated
in case of transmission errors.

Bit 1

0 Reference is the F.A. of the message itself.

1 Reference is the F.A. of an assembly area.

Bit 2

o

Type A message-short transit time required, for example,
conversational messages.

Type B message-longer transit time.

Bit 3

Assembly area is an XLMA.

Assembly area is an AAA or RCB.

Bit 4

Do not release file address after transmission.

Rrlo|lr|o]|r

Control program (CP) will release the message file address after
successful transmission.

Bit 5,6,7

Defines transmission code across the link.

000 Padded CCITT No. 2 (Padded Baudot)
010 Padded 6 bit code (Padded Sabre)
100 CCITT No. 5 (ASCII/ISO, 7 bit)

110 Extended CCITT No. 5

2nd Status Byte in Byte D+1

424 TPF V4R1 System Macros

SENDC

If the link connects to a high level network (HLN), additional routing information is
required.

Bit O Reserved, must be set to 0.
Bit 1 Reserved, must be set to 0.
Bit 2 0 Normal message block chaining.
1 Intermediate Prime Block. This is a technique intended for use by the

message router package.

Bit 3 0 No rerouting of this message is required.
1 Rerouting required.
Bit 4 0 Message to another system.
1 Message to an indirectly coupled terminal.
Bit 5 0 Existing message format.
1 AMSG format message.
Bit 6 Reserved.
Bit 7 Reserved.

Byte B+2-Hex 2-byte address of Exit Center

If the message is high integrity then the file address reference word of the ECB
level to which the prime message block is attached must contain the file address
of that block or an assembly area.

For class B messages, the Record ID, RCC and control byte in the block are
used to retrieve and dispose of any message segments chained on file. The
low-order three bits of the control byte (byte 3) are used as indicators.

Bit 5 For normal messages.

If the message is an online test message.

Bit 6 for normal messages.

0
1
0
1 If this is a priority message such messages are placed at the front of

the line queue. The use of this bit should be restricted to system
control messages.

Bit 7 0 If file storage blocks (overflow message segments) should be
released after the message is sent.

1 If file storage blocks should not be released after the message is
sent.

If a message is destined for a 3270 device, the high-order bit of the character
count field must be set to one. This directs the CCP translation process.

Return Conditions

Control is returned to the next sequential instruction (NSI).

The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

The specified CBRW is initialized to indicate that a block of storage is no longer
held.

For class K messages, bit 3 of the second status byte is reserved for use by the
message router package. If bit 3 of the second status byte = 1, then R15

System Macros 425

SENDC

contains a return code: 0 = line is operative, 4 = line is inoperative (in which case
the core block specified is still attached to the appropriate level). In addition, if
the link subsequently becomes inoperative, any link A-type messages (first status
byte, bit 2=0) that have not been transmitted will be returned to the message
router package.

Programming Considerations

Except for SENDC message class K, this macro can be run on any I-stream.
SENDC K can be processed on the main I-stream only.

Class A, C, L, or B messages are intercepted and converted to ROUTCs for
processing by the message router (ROUT). If the calling ECB is in a commit
scope, a system error is issued because the ROUTC macro is not supported by
TPF transaction services.

Class A or C messages to display terminals may exceed the capacity of one
message segment. In this case, the macro must be issued once for each block of
core comprising the complete logical message. No WAITCs are allowed between
successive SENDCs for the same logical message.

Class B, K, L, or T messages may be any length in which case only the first
message segment is in main storage and presented to the control program (CP)
by the SENDC macro; the remaining message segments are on file, chained to
the prime segment in the standard way.

Class K messages that overflow to file must contain in the prime block a
character count, greater than LK4AMXT (field in LK4KC link keypoint which
defines the maximum text allowed in each link information block) +1 (for the one
byte SLN character).

A check is made by the control program (CP) to determine if the ECB is holding
a block of storage at the specified level. If not, control is transferred to the
operational system error routine and the ECB exited.

For Class A, B, C and L messages the line number in the message block is
checked to ensure that it is within the range of existing lines in the TPF system.
If not an existing line, it is checked to see if it is a pseudo line corresponding to a
terminal supported by NEF/ALCI, AX.25 or XALCI. If not, a system error is issued
and the ECB is exited.

For Class K messages, the Link identification is checked to ensure that it is
within the range of existing links in the TPF system. If it is not, control is
transferred to the operational system error routine and the ECB is exited.

The Send routine checks that the specified line is usable. If not, a system error is
generated, the output operation is ignored and a normal macro return is used. If
the line is usable the last character is checked for an EOM character. If it is not,
control is transferred to the operational system error routine and the ECB exited.
Messages destined for NEF/ALCI, AX.25, and XALCI pseudo lines are processed
by ALC via the SNA output interface. This routine verifies that the SNA link
supporting this terminal is available. If not, a system error is taken and the ECB
is exited.

The status of the sending operation can never be determined by the operational
program.

The operational program may use the specified level immediately upon return
from this macro.

Unsolicited messages to RO or Prime CRAS should contain LN,IA of X'0000' or
X'0100' respectively and be sent using Class L.

Class L messages are passed to program XLMT.
Class T messages are passed to program XHAP.

426 TPF V4R1 System Macros

SENDC

* Class K messages cause program CMS to be activated.

» If a class B message cannot be sent, it is given to the Router alternate line
selector (RALS).

Examples
None.

System Macros 427

SETOC

SETOC-Set Maximum Times to Avoid Application Timeout for an ECB

Use this system macro to set the maximum times that an application can avoid a
timeout between loss of control for the specified entry control block (ECB).

Format

FF—I_——|—SET0C—ECB=RX—,AVOIDT=R] >
label

label
A symbolic name can be assigned to the macro statement.

ECB=Rx
The system virtual address (SVA) of the target ECB that is to avoid application
timeout. The SVA is specified in a register in the range RO through R6.

AVOIDT=Ry
The maximum times the application is to avoid timeout. This is in addition to the
one time for the standard system timeout. The value is specified in a register in
the range RO through R6.

The value acts as a multiplier of the standard system timeout value.
Specify a value of 0-32766.

A value of 0 means the ECB will use the standard application timeout.

Entry Requirements

* C-type programs must be in key 0 and supervisor state when processing this
macro, and R13 must point to a valid system stack area.

* For E-type programs, R9 must contain the ECB virtual address (EVA) of the ECB
issuing the macro.

Return Conditions
» Control is returned to the next sequential instruction (NSI).
* Return codes in R15:

— If no error occurs, R15 contains zero, and the timeout for this ECB is
changed.

— If an error occurs, an error indication code is returned in R15, and the timeout
is not changed. Control is returned to the caller after the first error is found.

» For E-type programs, the contents of R10 and R14 are unknown.

* The contents of all other registers are preserved across this macro call.

* The following tags are generated by the SETOC macro and should be used for
interrogating the error indication code returned in R15.

IT_ SETOC BAD _ECB_ERR The address in the ECB parameter register is not
a valid system virtual address (SVA) ECB
address. The timeout for the ECB is not
changed.

IT_SETOC_BAD_AVOIDT_ERR
The value in the AVOIDT parameter register is a

428 TPF V4R1 System Macros

SETOC

negative number or a number greater than
32766. The timeout for the ECB is not changed.

Programming Considerations

* The contents of the AVOIDT parameter register acts as a multiplier of the
standard system timeout value.

For example, if the standard system timeout value is 500 milliseconds, a value of
3 causes the ECB to wait 3 times in addition to the 1 time for the standard
system application timeout. The ECB will wait ((3 times 500) plus (1 times 500)),
or 2000 milliseconds, before timing out.

» Specify the minimum AVOIDT value needed. A large value can cause system
performance problems or lockout problems.

* The ECB issuing the SETOC macro must be on the same I-stream as the target
ECB, or the ECB should pause the TPF system before issuing the SETOC macro
on behalf of another ECB.

* You can use the ZCTKA command to change the value in keypoint A for the
number of times to avoid an application timeout. TPF system code can use the
contents of the CINFC CMMAVMAX field for the contents of the SETOC macro
AVOIDT parameter register when issuing the SETOC macro.

* The SETOC macro does not affect the CTL-2010 time slice timeout.

* The APL user exit is provided for you to issue the SETOC macro to set the
maximum times to avoid timeout for an ECB right before the ECB is about to be
timed out with a CTL-10.

* The C function trace CDEB, CEXP, and CTRC user exits are provided for you to
issue the SETOC macro to set the maximum timeout value for ISO-C programs
that have been compiled using the TEST compiler option of one of the IBM
C/370 family of compilers supported by the TPF 4.1 system.

* The SETOC macro sets R15 with a return code. If the SETOC macro is used in
the CDEB, CEXP, CTRC, or APL user exits, a base register other than R15
should be established for addressability.

Examples

In the following examples, the standard application timeout value is assumed to be
500 milliseconds. For E-type programs, R9 must contain the ECB virtual address
(EVA) of the ECB issuing the macro.

* AVOIDT parameter register contents of 2:

(R6 contains the SVM address of an active ECB in the TPF system)
LA R3,2
SETOC ECB=R6,AVOIDT=R3

This invocation:

— Changes the timeout for the ECB whose SVA is contained in register 6. The
ECB will wait 2 times the standard timeout in addition to the 1 time for the
standard timeout. The number of milliseconds the ECB will wait before timing
out is
- ((2 times 500) plus (1 times 500)), or 1500 milliseconds.

* AVOIDT parameter register contents of 32767:

(R6 contains the SVM address of an active ECB in the TPF system)
LA R3,=X"'00007FFF"' VALUE IS 32767
SETOC ECB=R6,AVOIDT=R3

System Macros 429

SETOC

This invocation causes an error condition to be returned in R15 because an
AVOIDT value greater than 32766 is an error condition. The timeout is not
changed.

* AVOIDT parameter register contents of 0:

(R6 contains the SVM address of an active ECB in the TPF system)
LA R3,0
SETOC ECB=R6,AVOIDT=R3

This invocation resets the timeout to the standard application timeout for the ECB

whose SVA is contained in register 6. If the standard application timeout is 500
milliseconds, the ECB will wait 500 milliseconds before timing out.

430 TPF V4R1 System Macros

SETTC

SETTC-Set C Function Trace Information for an ECB

Format

Use this system macro to change C function trace information for the specified
entry control block (ECB). By using this macro you can:

» Specify a particular ECB to change

» Specify the size of the C function trace table to allocate

» Specify the size of the C function trace user area to allocate
» Change the subtrace of stack data.

» Change the subtrace of static data.

After a C function trace table has been allocated for an ECB, this macro has no
effect, except that an error indication code is returned in register 15 (R15).

>>—L——|—SETTC—ECB=RX—,SIZE= Ry ,USERSIZE=——Rz
label —ESYSTEga i:NON E:I

SAME SAME
>, STACK=—0N ,STATIC=——0N >
—EOFF:J —EOFF
SAME SAME
label
A symbolic name assigned to the macro statement.
ECB=Rx

Changes the C function trace settings for the ECB with its system virtual
address (SVA) specified in a register in the range RO — R6.

SIZE
Specifies the size of the C function trace table to allocate for the specified ECB.
The size is saved and used later when the C function trace table is created.

If a C function trace table already exists for the specified ECB, the value
specified by the SIZE parameter is not saved and an error indication code is
returned in register R15.

Ry A register in the range RO — R6 containing the number of 4096-byte (4 KB)
blocks of heap storage to allocate for the C function trace table. This
number is from 1 to a maximum of 256 (X'100').

If the value in the register does not fall within the 1 — 256 range, the value
is not saved and an error indication code is returned in register R15.

SYSTEM
The TPF system value for the trace table size is one 4 KB block (4096
bytes).

SAME
Do not change the size of the C function trace table. If the size has not
been specified by a previous SETTC macro, a value of one 4 KB block
(4096 bytes) is used when the C function trace table is created.

System Macros 431

SETTC

USERSIZE

Specifies the size of the C function trace user area to allocate when tracing
starts for the specified ECB.

If a C function trace user area already exists for the specified ECB, the value
specified by the USERSIZE parameter is not saved and an error indication code
is returned in register R15.

Rz A register in the range RO — R6 containing the number of 4096-byte blocks
of heap storage to allocate for the C function trace user area. This number
is in the 1 to 256 (X'100") range.

If the value in the register does not fall in the 1 to 256 range, the value is
not saved and an error indication code is returned in register R15.

NONE
Do not allocate a C function trace user trace table.

SAME
Do not change the existing size of the C function trace user area. If the size
has not been specified by a previous SETTC macro, a C function trace user
area will not be created.
STACK
Changes tracing of C stack data for the specified ECB.

ON
Specifies that 68 bytes of the stack user information are placed into the
trace table entry.

OFF
Specifies that the address of the stack area is placed into the trace entry
and no C stack information is placed in the trace table.

SAME
Do not change the current setting of C function trace stack data. If the
setting of STACK has not been specified by a previous SETTC macro, the
current system STACK value is used.

STATIC

Changes tracing of C static data for the specified ECB.

ON
Specifies that 68 bytes of the C static information are placed into the trace
table.

OFF
Specifies that the address of the static area is placed into the trace entry,
but no C static data is placed in the trace table.

SAME
Do not change the current setting of C function trace of static data. If the

setting of STATIC has not been specified by a previous SETTC macro, the
current system STATIC value is used.

Entry Requirements

» For C-type code, the code must be in key of zero and supervisor state when
executing this macro, and R13 must point to a valid system stack area.

* For E-type programs, R9 must contain the ECB virtual address (EVA) of the ECB
issuing the macro.

432 TPF V4R1 System Macros

SETTC
The code issuing the SETTC macro must be on the same I-stream as the target
ECB.

The TPF system should be paused before issuing this macro on behalf of
another ECB.

Return Conditions

Control is returned to the next sequential instruction (NSI).

For C-type code, register R15 contains the return code, and the contents of all
other registers are preserved across this macro call.

For E-type code, the contents of R10 and R14 are unknown, R15 contains the
return code and the contents of all other registers are preserved across this
macro call.

If no errors occur, register R15 contains zero.

If an error occurs, no C function trace information is saved and an error
indication code is returned in register R15. If there are multiple errors, control is
returned to the caller after the first error is found.

An error indication code is returned in register R15 when:
— The ECB address in the register specified by the ECB parameter is not a valid
system virtual address (SVA) ECB address.

— The C function trace table or the user area already exists for the specified
ECB.

— Arregister is used with the SIZE parameter and the value in the register does
not fall in the 1 to 256 range.

— Arreqister is used with the USERSIZE parameter and the value in the register
does not fall in the 1 to 256 range.

The following tags are generated by the SETTC macro and should be used for

interrogating the error indication code.

IT_BAD_CID_ERR Incorrect CID SVM address in target ECB
detected by $GSVAC macro.

IT BAD_ECB _ERR Not a valid system virtual address (SVA) ECB
address.

IT_BAD_TCA_ERR Incorrect TCA SVM address in target ECB
detected by $GSVAC macro.

IT_SIZE_ERR The value in the SIZE register is not in the range
of 1 to 256.

IT_ TRACE_TABLE_ERR C function trace table already exists.

IT_ USER_AREA ERR C function trace user area already exists.

IT_USER_SIZE_ERR The value in the USERSIZE register is not in the

range of 1 to 256.

Programming Considerations

Once a C function trace table has been allocated for an ECB, the SETTC macro
cannot change the C function trace settings and returns an error indication code
in register R15.

* On any error, the SETTC macro does not change the C function trace settings

and returns an error indication code in register R15.

System Macros 433

SETTC

Examples

The C function trace user area is an optional storage area, unique per ECB, the
contents of which are controlled by the user. Its purpose is to provide a user area
to store additional information beyond what is stored in the C function trace table.

This invocation:

(R4 contains the SVM address of an active ECB in the TPF system)
LA R5,11

LA R6,3

SETTC ECB=R4,SIZE=R5,USERSIZE=R6,STATIC=0N,STACK=0FF

— Changes the C function trace information for the ECB whose SVA is specified
in register 4.

— Specifies the size of 11 (45 056 bytes, or X'BO00' bytes) for the C function
trace table.

— Specifies the size of 3 (12 288 bytes, or X'3000' bytes) for the C function trace
user area.

— Starts the sub-tracing of static data when C function trace is later activated
through the ENATC macro or the ZSTRC command.

— Stops the sub-tracing of stack data (only the stack address is traced) when C
function trace is later activated via the ENATC macro or the ZSTRC
command.

— For E-type programs, R9 must contain the ECB virtual address (EVA) of the
ECB issuing the macro.

This invocation:

LA R5,4
SETTC ECB=R6,SIZE=R5,USERSIZE=NONE,STATIC=ON,STACK=0N

— Changes the C function trace information for the ECB whose SVA is specified
in register 6.

— Specifies the size of 4 (16 384 bytes, or X'4000' bytes) for the C function trace
table.

— Specifies that there should be no C function trace user area.

— Starts the sub-tracing of static and stack data when C tracing is later activated
via the ENATC macro or the ZSTRC operator command.

— For E-type programs, R9 must contain the ECB virtual address (EVA) of the
ECB issuing the macro.

This invocation:

(R4 contains the SVM address of an active ECB in the TPF system)
LA R6,8192
SETTC ECB=R4,SIZE=R6,USERSIZE=SAME,STATIC=0N,STACK=0FF

— Does not save any C function trace information.
— Returns the error indication code IT_SIZE_ERR in register R15.

Reason: 8192 is greater than the maximum value of 256 (X'100"). The
specified value should be the number of 4096-byte blocks to allocate.

If the caller wanted to specify a C function trace table size of 8192 (X'2000")
bytes, the caller should load register R6 with the value 2.

— For E-type programs, R9 must contain the ECB virtual address (EVA) of the
ECB issuing the macro.

434 TPF V4R1 System Macros

SICFC

SICFC-IPC Service Request

Use this system macro to request special system inter-processor communication
function services.

Format

»>—SICFC—RTYPE=FLUSHQ—, REQ=Rx ><

RTYPE
This required parameter specifies the type of request you are making. The only
valid request is:

FLUSHQ
This service will send all SIPC items that have been queued for a specific
processor.

REG=Rx
This parameter specifies a register containing the address of the entry for the
specific processor in the IPC global table (IGT). Specify a general register in the
range RO through R7. The IGT is defined by the DCTIGT DSECT.

Entry Requirements
R14 and R15 must be available for use by this macro.

Return Conditions
» Control is returned to the next sequential instruction (NSI).
* The contents of RO through R13 are preserved across this macro call.

Programming Considerations
* This macro can only be run on the main I-stream only.

* The SICFC macro has an interface that is not guaranteed across releases of the
TPF system. Unauthorized use of this macro may expose you to interface and/or
processing errors.

* This macro is intended to be used by system IPC support programs only.

Examples
None.

System Macros 435

SIOSC

SIOSC-Start an Input/Output (I1/0O) Operation

Format

Use this system macro to start a normal input/output (1/O) operation to a specific
symbolic device address (SDA).

>>—L——|—SIOSC—DOR= label > <
label —[(Rx)—l

label
A symbolic name can be assigned to the macro statement.

DOR=label|(Rx)
This is either a label assigned to an area defined by the device operation
request block (DCTDOR) DSECT or a register containing the address of a
DOR.

Entry Requirements

* The TPF system must be disabled for interrupts.
* The TPF system must be running with PSW Key 0.
* The DCTDOR DSECT completed with:

SDA address

Protect key for data area

CCW format flag

Logical path mask

Channel program address.
* And optionally set:

Lost interrupt timeout value

Request-unique parameter.

Return Conditions

» Control is returned to the next sequential instruction (NSI).
* The condition code will be set as follows.

Condition Code Meaning

0 The request was accepted.

2 A request was already active.
3 The SDA is not valid.

* The contents of all registers are preserved across this macro call.

Programming Considerations

Examples

This macro is for use in the control program (CP) only.

None.

436 TPF V4R1 System Macros

SIPCC

SIPCC-System Interprocessor/Inter-I-Stream Communication

Use this system macro to provide communication among processors in a TPF
loosely coupled environment and among instruction streams in a tightly coupled
environment.

This macro causes an interprocessor communication (IPC) item to be transmitted to
a specified program segment in one or more active |-streams, in one or more active
processors. The destination processors can be targeted individually, in various
combinations or in a broadcast request. The destination I-streams can be targeted
as the main I-stream or all I-streams in the destination processors.

An IPC item contains the following information:
* An 8-byte user control area
* A 24-byte IPC control area
» 2 variable length data areas (this is optional).

Data area 1 (DA1) can be no more than 104 bytes while data area 2 (DA2) can be
any length that fits in a single 128, 381, 1055, or 4 K byte storage block.

Required Authorizations

Key0 Restricted System Common Storage
X

Format
,TYPE=IP ,CREG=R14——
»—L—_'—SIPCC—PGM=progl—,RETURN=pr092 [J l_ >
label ,TYPE=IS ,CREG=Rx
,CLBL=labell-
r,DREG=R15— l—,LEV=D0
I:,DREG=Ry l—,LEV=Dn—| I—,LIST=1abe13—|
,DLBL=label2—
label
A symbolic name can be assigned to the macro statement.
PGM=progl

This is a 4-character name identifying the program segment invoked in the
receiving processors or |-streams for which this item is intended.

RETURN=prog2
This is a 4-character name identifying the program segment in this processor to
be given control for each active destination processor that reads or fails to read
this processor’s transmission.

TYPE
This parameter is used to specify the type of processing requested.

IP Indicates interprocessor communication is requested and will transmit the

System Macros 437

SIPCC

SIPCC request to the specified processors. The request will not be
transmitted to the originating processor. This is the default.

IS Indicates inter-l-stream communication is requested and will transmit the
SIPCC request to the main I-stream or all I-streams on the specified
processors including the originating processor. The request will not be
transmitted to the originating I-stream.

CLBL=labell
This is a symbolic name identifying the location of an 8-byte control area.

CREG=R14|Rx
This is a symbolic name identifying the register that contains the address of an
8-byte control area.

Default: If neither CLBL nor CREG is specified, register R14 is assumed to
have a pointer to the control area.

DLBL=label2
This is a symbolic name identifying the location of a variable length data area
(DAL).

DREG=R15|Ry
This is a symbolic name identifying the register that contains the address of a
variable length data area (DA1).

Default: If neither DLBL nor DREG is specified and the SI3LENL1 field in the
control area (SI3CT) is not zero, register R15 is assumed to have a pointer to
data area 1.

LEV=DQ|...|DF
This is a symbolic value, DO-DF, which identifies the ECB level containing the
storage block to be transmitted (DA2).

Default: If LEV is not specified and the SIBLENZ2 field in the control bytes is not
zero, a level of zero is assumed.

LIST=label3
This is a symbolic name that identifies the name of a variable list of destination
processors.

The LIST parameter can be specified with all destination types. If specified, the
SIPCC macro service routine returns a list of all processors to which
transmission was started.

Entry Requirements
* R9 must contain the address of the entry control block (ECB) being processed.

* You must set up an 8-byte control area. Optionally, you can set up one or two
data areas and a list of destination processors. The setup includes initializing the
destination, flag, and length fields in the control area, as well as establishing the
data areas.

* The address of the control area must be put in R14 or be specified with the
CLBL or CREG parameter.

* The address of the optional first data area, DAL, must be put in R15 or specified
with the DLBL or DREG parameter.

* The address of the optional second data area, DA2, is specified in the storage
block reference word of the ECB at the level specified by the LEV parameter.
DA2 must reside in a storage block and LEV must be specified if the length field
for DA2 is not zero. If DA2 exists, the data transmitted will begin at byte 0 of the
storage block for the specified length.

438 TPF V4R1 System Macros

SIPCC

Processor destination information is specified in the IPC control area (SI3CT).
Destination types are specified by setting the destination field (SISBDEST) to the
following values:

— Broadcast destination (SI3BDEST = X'FF')

— Destination processor list (SI3DEST = X'FE")

Note: The list of destination processors is specified by the LIST parameter.
To generate a list of destination processors, use the GENLC macro.

See [[PE_General Macrad for information about the GENLC macro.

— Specific destination processor (SISBDEST = X'nn', where nn is the processor
ordinal number).

Return Conditions

Control is returned to the next sequential instruction (NSI).

The contents of R14 and R15 and the condition code are unknown. The contents
of all other registers are preserved across this macro call.

The activity field (SISACT) in the control area is set to the number of active
destination processors for which the transmission was started. The system
interprocessor communications facility (SICF) uses the Processor Status Table
(PI1DT) to determine processor activity. If there are no other active processors
when SIPCC is requested, SIBACT is set to zero.

If the destination was selective and the LIST parameter was specified, the
returned list contains the ordinal numbers of the destination processors for which
the transmission was started.

Note: The original contents of the list are not preserved. The list is overlaid by
the SIPCC macro service routine on return to the user.

If the destination was broadcast (sent to all active processors) and the LIST
parameter was specified, the returned list contains the ordinal numbers of the
destination processors for which the transmission was started.

The destination field (SISBDEST) in the user control area is unchanged.

A flag (SISINAC) is turned on in the control area if any destination processor
specified in SI3BDEST is not active when SIPCC macro processing begins.

The storage block provided for data area 2 will remain attached to the ECB upon
return of control at NSI.

SICF will invoke the program segment specified by the RETURN parameter for
each destination processor that:

— Reads this processor’s transmission if the SI3CT flag SISXMIT is set (=1)
— Fails to read this processor’s transmission if the SISCT flag SISXERR is set

(=1).

The control fields and data areas will be set up by SICF in the same format as
for a receiving program. The SISBRETD flag identifies the invocation as a
RETURN. The SI3BRERR flag will be off (=0) if the transmission completed
successfully and the SI3XMIT flag was set (=1). SIBRERR will be on (=1) if the
transmission failed to be completed and SI3BXERR was set (=1). SISPROC
contains the ordinal number of the destination processor that read or failed to
read the transmission.

System Macros 439

SIPCC

Note: Special considerations exist when RETURN and TYPE=IS are specified.
I-streams on the originating processor may receive transmissions but,
since the originating processor is not considered an IPC destination, will
not invoke a program RETURN.

Programming Considerations

This macro may be processed on any I-stream.
The SIPCC macro can be issued only by a E-type program.

The ECB reference register (R9) must contain the address of the ECB before
issuing the SIPCC macro.

ECBs created by the SIPCC macro use the version of the program most recently
activated on the specified processor. If this program is incompatible with the
program that issued the SIPCC call, an interface problem may occur.

The CREG and DREG parameters must be coded or defaulted to different
registers.

The user of SIPCC can be notified of successful and/or unsuccessful
transmissions, for each active destination processor, by coding the macro
RETURN parameter and setting the SI3SXMIT and/or SI3XERR flags in the user
control area (SI3CT). See the previous note for TYPE=IS considerations.

When using the I-stream routing request the user will specify the I-stream
destination by setting the SIBALL_IS flag in the user flag byte (SI3FLGU). When
routing to the main I-stream set SIBALL_IS to 0. When routing to all I-streams set
SI3ALL_IS to 1. Requests will not be routed to the originating I-stream.

No attempt is made to transmit to an inactive processor. If the request was a
broadcast to all processors in the complex and any processor is not active, flag
SI3INACT is set (=1).

IPC items that require expedited handling are identified by setting the priority flag
(SI3PRTY) in the control area to 1. Priority requests cause incore staging to be
halted and transmission for all available items to be initiated. In the receiving
processors, priority items are placed on the ready list.

The program segment named in the PGM and RETURN parameters must reside
on the data base indicated by the PBI field in the requestor’'s ECB. That is, the
program must have been allocated using the system allocator and loaded to the

system files. See [[PE System Installation Suppart Referencd for more

information about the system allocator.

The PBI and SSUID fields in the requestors ECB will be transmitted to the
destinations. There, they will be used to initialize the ECB and invoke the
specified program.

The format of an IPC item as seen by the destination program segment and the
program segment specified in the RETURN parameter is as follows:

— The 8-byte control area will be placed in the second work area of the ECB
beginning at location EBX000.

— Data area 1 will be placed in the first work area of the ECB beginning at
location EBWOOO.

— Data area 2 will be placed in a storage block on level 0 of the ECB. The size
of the storage block will be the same as the sender’s block size.

In addition to the normal macro trace information, the SIPCC macro trace entry
will contain the destination processor indicator, the origin I-stream, the system
flag field, and the user flag field.

440 TPF V4R1 System Macros

Examples

SIPCC

Broadcast data from location EBW008 to segment CDEF in all active processors.
The control area is defined at location EBW0O0O.

SIPCC PGM=CDEF,CLBL=EBWO00O,DLBL=EBWOO8

Note: Since the control area will be modified by SICF, it must reside in
modifiable storage.

Same as previously except that the address of the control area has been placed
in register 2.
SIPCC PGM=CDEF,CREG=R2,DLBL=EBWO08

Note: SICF will load R15 with the address of EBW008. R15 could not, therefore,
have been used for CREG.

Broadcast data from location EBWO008 to segment CDEF in all active I-streams in
all active processors.
SIPCC PGM=CDEF,TYPE=IS,CREG=R2,DLBL=EBWOO8

For this example the user has set SISALL_IS to '1". Also, SIBDEST can be set to
'FF’ to indicate all processors.

The data being transmitted has now been moved to a storage block and its
address loaded in register R15. The user wishes to have this data appear in the
destination segment’s ECB.

SIPCC PGM=CDEF,CREG=R2

Note: Neither DREG nor DLBL had to be specified since R15, the default
register, contains the address of the data.

In this example, the data is in the same storage block (on level 4) but you want
the destination segment to receive it in an equivalent storage block.
SIPCC PGM=CDEF,CREG=R2,LEV=D4

Note: Destination segment CDEF will receive the storage block on level 0.

Having preloaded R14 and R15 with the control area and data area addresses,
you may want to notify the KLMN segment of successful transmissions to each of
the destination processors.

SIPCC PGM=CDEF,RETURN=KLMN

Note: The SI3SXMIT control area flag had to be set before issuing the SIPCC
macro.

You may want a response from the destination segment. There are to be no data
areas transmitted.
SIPCC PGM=CDEF

Note: The SI3LEN1 control area field must be zero otherwise SICF will assume
R15 contains the address of a data area. You must also have preloaded
R14 with the address of the control area. The SIEREQR control area flag
may be used to request a response. SICF does not make use of this flag.

You can specify a set of destination processors by using a data list contructed by
the GENLC macro. For this, the SISBDEST control area field is set to X'FE' and
the address of the list is passed to the SIPCC service routine by the LIST
parameter.

SIPCC PGM=CDEF,CREG=R2,LEV=D4,LIST=EVNBKLW

System Macros 441

SIPCC

Note: On return, the contents of the list block are modified to hold a list of the
processors to which transmission was started. The list block can be empty
(list count of 0).

* When specifying a broadcast transmission (SIBDEST=X'FF'), you can have the
SIPCC macro service routine return a list of processors to which the transmission
was started. This returned list can be used with the Internal Event Facility (LIST
type event).

SIPCC PGM=CDEF,CREG=R2,LEV=D4,LIST=EBX000

442 TPF V4R1 System Macros

sLCQC

SLCQC-SLC Queue Handling

Use this system macro to have an entry control block (ECB)-controlled program
request that the control program (CP) manipulate the synchronous link control
(SLC) queues and release storage in the system virtual memory (SVM).

Required Authorizations

Key0 Restricted System Common Storage
X

Format

>>—L—_|—SLCQC—FUNCT= GET_TOP,QANCHOR1=Rx, LEVEL=Dy ><

label PUT_TOP,QANCHOR1=Rx , LEVEL=Dy
PUT_BOTTOM, QANCHOR1=Rx , LEVEL=Dy——
GET_MCR,QANCHOR1=Rx, LEVEL=Dy-
JOIN_QUEUES,QANCHOR1=Rx ,QANCHORZ=Rx—
REL_MSG,QANCHOR1=Rx ,MSGADDR=Rx:
PURGE_QUEUE,QANCHOR1=Rx
REL_CORE ,MSGADDR=Rx

label
A symbolic name can be assigned to the macro statement.

FUNCT
Name of function to be performed. This required parameter must be one of the
following values:

GET_TOP
Retrieve a message from the top of the queue.

PUT_TOP
Place a message at the top of the queue.

PUT_BOTTOM
Place a message at the end of the queue.

GET_MCR
Retrieve a queued message which qualifies for placement in the message
control record (MCR).

JOIN_QUEUES
Adds a channel queue to the front of a link queue.

REL_MSG
Removes a message from the queue and releases the core block.

PURGE_QUEUE
Purge the queue. R15 contains the number of messages purged.

REL_CORE
Releases a core block residing in the SVM.

QANCHOR1=Rx
Specifies a register (RO through R7) that contains the address of the anchor of
the queue to be manipulated. It is required for all functions except REL_CORE.

System Macros 443

SLCQC

LEVEL=symbol
Specifies a core block reference word (DO-DF). It must be specified for the
following functions:

« GET_TOP
* PUT_TOP
« PUT_BOTTOM
* GET_MCR.
QANCHOR2=Rx
Specifies a register (RO through R7) that contains the address of the anchor of

the queue to be added to the top of the queue referenced by QANCHORL1. It is
required for the JOIN_QUEUES function.

MSGADDR=Rx
Specifies a register (RO through R7) that contains the system virtual address
(SVA) of a message to be released. It is required for REL_MSG and
REL_CORE.

Entry Requirements
* This macro must be called from the ECB virtual memory (EVM).
* R9 must contain the address of the program’s ECB.

Return Conditions
» Control is returned to the next sequential instruction NSI.
* The message that was dequeued is attached to the data level specified.
» R15 contains a return code as follows.

Return Code Function Meaning

0 GET_TOP Message returned on data level specified.
GET_MCR
REL_MSG

Queue empty or message not found.

PUT_TOP Processing complete.
PUT_BOTTOM

JOIN_QUEUES

REL_CORE

Programming Considerations

* This macro is restricted to SLC ECB-controlled program usage on the main
[-stream only.

* The GET_MCR function searches the queue for a message with the following
characteristics:

— High integrity
— Not a duplicate
— Not being retransmitted because of an earlier problem.

444 TPF V4R1 System Macros

sLCQC

Examples
MYLABEL SLCQC FUNCT=GET_TOP,QANCHOR1=R3,LEVEL=DO

The first message on the queue pointed to by the address in register R3 is
detached from the queue (dequeued) and attached to ECB data level 0.

MYLABEL SLCQC FUNCT=PUT_TOP,QANCHOR1=R1,LEVEL=D3

The message attached to data level 3 is detached and added to the top of the
queue pointed to by the address in register R1.

MYLABEL SLCQC FUNCT=JOIN_QUEUES,QANCHOR1=R1,QANCHOR2=R2

The channel queue pointed to by the address in R2 is placed at the beginning of
the link queue pointed to by the address in register R1.

System Macros 445

SLMTC

SLMTC-Send LMT High Speed Transmission

Format

Use this system macro to differentiate those messages that are destined for
high-speed terminals from those messages that are destined for the console.
Nonconsole messages are routed to the SENDA macro while console messages
are sent through the console input/output (1/0O) routines and a software answerback
is generated to the long message transmitter (LMT).

This macro is used exclusively by the LMT for all its high-speed transmission,
including transmission to a high-speed device supported by the Network Extension
Facility (NEF).

Required Authorizations

KeyO Restricted System Common Storage

X

(1)
SLMTC—Dx <
I—l abe Z—|

>

Notes:
1 level
label

A symbolic name can be assigned to the macro statement.

level
A core block reference word (DO-DF).

Entry Requirements

* The message to be sent is contained in a block of storage held by the ECB at
the specified level.

* The message to be sent contains the message header as described in the SEND
macro, and is ended by the EOM character.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

* The specified core block reference word (CBRW) is initialized to indicate that a
block of storage is no longer held.

* The contents of scratch registers R14 and R15 are unknown. The contents of the
remaining operational registers and the condition code are saved during
processing of this macro.

Programming Considerations

* The ECB reference register (R9) contains the address of the ECB.

446 TPF V4R1 System Macros

Examples

SLMTC

A check is made by the control program (CP) to determine if the ECB is holding
a block of storage at the specified level. If a block is not held, control is
transferred to the operational system error routine.

The block of storage containing the message to be sent is no longer available to
the operational program.

The status of the sending operation can never be determined by the operational
program except through the use of an answerback timeout feature.

Messages sent with the SLMTC macro are queued by LMT waiting an
answerback acknowledgement. After a specified time passes without an
answerback being received, a message is retransmitted. LMT retransmits 3 times
before sending a reset message. The LMT timeout runs every 9 seconds or the
number of intervals specified on an XSOOTM REP card in the XLMA/XLMT
section of the STC input deck used to create the UAT/XLMA/XLMT records.

The operational program may use the specified level immediately upon return
from this macro.

This macro can be run on the main I-stream only.

None.

System Macros 447

SLNKC

SLNKC—-Control Program (CP) Save Link Data & Set Stack Pointer

Use this system macro to save the caller’s registers and, optionally, push the stack
pointer to provide the called routine with a save area and a work area with its
corresponding DSECT and USING statements.

This macro is used with other standardized linkage macros such as the CLNKC,
DLNKC, and RLNKC macros. See the following for more information about these
macros:

o FDLNKC—Define Stack DSECT for Control Drngmm ((‘D) Raoutine” an page 214

Format

PUSH=YES l—,LOREG=R0

SLNKC
I—Zabel—| |—PUSH= YES I—,LOREG=—|:N
I—,DSECT=—|:name‘4|J Rx:
(name ,G)

>

NO

,BASE=R15
i]

l—, BAS E=Ry—I

label
A symbolic name can be assigned to the macro call.

PUSH=YES|NO
Specifies whether or not the stack pointer will be pushed. DSECT and
PUSH=NO are mutually exclusive. YES is the default.

DSECT=name]|(name,G)
The name of the DSECT to be used in mapping a work area. The name must
be no longer than 4 characters. If DSECT=(name,G) is coded, then space will
be allocated on the stack for the DSECT, but no DSECT or USING statement
will be generated. This allows multiple SLNKC macros in a given assembly to
refer to the same DSECT. Specification of DSECT is optional. DSECT and
PUSH=NO are mutually exclusive.

LOREG
This is NO or the lowest numbered register that is altered by the routine issuing
this SLNKC macro. NO indicates that no registers are to be saved. All the
registers from the one specified to R15 (except for the register specified by the
BASE parameter) are saved on the stack. A self-defining term cannot be used
to specify a register. RO is the default.

BASE=R15|Ry
This means the base register of the routine issuing this SLNKC macro. A
self-defining term cannot be specified. RO and R13 must not be specified. R15
is the default.

448 TPF V4R1 System Macros

SLNKC

Entry Requirements
* R13 must point to the appropriate stack.

* You must code this macro at the beginning of a called control program (CP)
routine.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

* If PUSH=YES, then R13 points to this routine's stack. The contents of all other
registers are preserved across this macro call.

Programming Considerations

* This macro can be run on any I-stream, in a control program (CP) routine only.
When DSECT=name is specified the DLNKC macro must also be coded.

* This macro is for use in the control program (CP) only.

Examples
SLNKC DSECT=ABC,BASE=R10

In this example a USING statement and a DSECT named ABC will be generated,
registers RO through R9 and R11 through R15 will be saved, and R13 will be set to
the appropriate stack address. The lines immediately following the invocation of
SLNKC would typically look like the following.

ABC1 DS F 1st field of DSECT ABC
ABCn DS F Last field of DSECT ABC
DLNKC , End of DSECT ABC, resumption of CSECT

System Macros 449

SNDLC

SNDLC-Send Control Message to 3270

Use this system macro to allow the communication control program (CCP) to send
control or multiple segment core-chained messages to a 3270 local device.

Required Authorizations

Key0 Restricted System Common Storage

X

Format

»—L—_I—SNDLC—TYPE= HPR ,LEVEL=Dx ><
label LPR—

RST—
LNG—
CLR—
DLT-

label
A symbolic name may be assigned to the macro statement.

TYPE
The type of control message to send:

HPR
This is high priority. Place this message on top of the queue of messages
for this terminal and control unit.

LPR
This is low priority. Place this message on the bottom of the queue of
messages for this terminal.

RST
This restarts a terminal’'s queues.

LNG
This is a long (multiple segment) message. Place this message on the
bottom of the queue of messages for this terminal.

CLR
This clears a terminal’s device queue, releasing all blocks back to the TPF
system.

DLT
This releases messages on a terminal’'s device queue, until an Erase/Write
message is found.

LEVEL=DO|...|DF
This is a core block reference word (DO-DF) where the message to be sent is
referenced.

Entry Requirements

* The message to be sent must be contained in a block of storage held by the
ECB on the specified level (LEVEL parameter).

450 TPF V4R1 System Macros

SNDLC

A restart or clear request does not require any data to be in the block other than
a valid character count (greater than 5 and less than the block size) and the LIT
(Inf/ia/ta) of the terminal whose queues are to be restarted or cleared.

For long multisegment messages (LNG option), the forward chain field of each
message block must contain the address of the block containing the next
segment except for the last block, which should contain zeroes.

The message character count in the message block must include the line number
(In/ia/ta), the number of text characters in the message segment, and the end of
message sequence (for example, #EOM or #EOI).

The LIT (In/ia/ta) must address an existing 3270 local line (symbolic line number).

Return Conditions

Control is returned to the next sequential instruction (NSI).

The specified core block reference word (CBRW) is initialized to indicate that the
block of storage is no longer held.

The contents of registers R14 and R15 are unknown. The contents of the
remaining operational registers and the condition code are saved during
processing of this macro.

CE1SUG will be set to X'01' if an intervention required condition occurred on the
specified device for a SNDLC with the HPR/LPR option.

Programming Considerations

Examples

The ECB reference register (R9) contains the address of the ECB (EBOEB)
before this macro is used.

A check is made by the control program (CP) to determine if the ECB is holding
a block of storage at the specified level. If a block is not held, control is
transferred to the operational system error routine.

The block of storage containing the message to be sent is no longer available to
the operational program.

The status of the sending operation can be determined by the operational
program by issuing a WAITC macro. This is not necessary for a restart, a clear, a
long or a delete request.

An intervening WAITC is necessary, if multiple SNDLC macros are to be issued
for an HPR or an LPR request.

The operational program may use the specified level immediately upon return
from this macro.

This macro is for use in the control program (CP) only.

High Priority

LABEL SNDLC TYPE=HPR,LEVEL=D1
Low Priority

LABEL SNDLC TYPE=LPR,LEVEL=D1
Restart

LABEL SNDLC TYPE=RST,LEVEL=D1
Long

LABEL SNDLC TYPE=LNG,LEVEL=D2
Clear

LABEL SNDLC TYPE=CLR,LEVEL=D6

System Macros 451

SNDLC

e Delete
LABEL SNDLC TYPE=DLT,LEVEL=D6

452 TPF V4R1 System Macros

SOUTC

SOUTC-Write Path Information Unit (PIU) Systems Network
Architecture (SNA) Input/Output (I/O)

Format

Use this system macro to send data to a systems network architecture (SNA)
logical unit (LU) or a SNA resource.

Required Authorizations

Key0 Restricted System Common Storage
X
»—S0UTC ADSPACE=—EVM ><
Dx, l—TYPE= F ,—| —[SVM—l
RX ,————— X
BLOCK=Rx ,— L
H

Dx|Rx

An optional data block is attached to a specified core block reference word
(CBRW). The data level may be coded directly (DO|...|DF) or may be contained
in a register (RO|...|R6).

This parameter is positional and, when coded, must be the first parameter. This
parameter is required when the passed data block is attached to an entry
control block (ECB).

BLOCK=RXx

The data to be sent resides in a data block that is not attached to an ECB. The
register specified (RO|...|R6|R14) contains the address of the block. The data
block must be either a 4-KB block or a system work block (SWB). The address
in the specified register must be consistent with the ADSPACE parameter, ECB
virtual memory or system virtual memory (SVM). This parameter is only valid
when issued by C-type code.

TYPE

An optional parameter used to denote special processing.
F Indicates that RID to SID conversion will be bypassed.

X Indicates a channel contact operation (prenegotiation XID, negotiation XID,
nonactivation XID contact, or discontact) is to be initiated. No other
parameters except ADSPACE parameter are valid when TYPE=X is
coded. When called from a C-type program, the ADSPACE parameter is
required.

Indicates that a core chained PIU is being sent.

H Indicates that a network layer packet (NLP) is being sent over a rapid
transport protocol (RTP) connection for one of the following conditions:
* Retransmit a message that was lost in the network
* Send a message that was dequeued from the RTP output queue
* Send a high-performance routing (HPR) control message

System Macros 453

SOUTC

* Send an NLP, but bypass session address (SA) to resource identifier
(RID) conversion

» Send an NLP that is completely built.

ADSPACE
This parameter is required and is only valid when issued by C-type code. It is
used to indicate the address space in which the code is executing in the ECB
virtual memory (EVM) or system virtual memory (SVM).

EVM
The program that processed the SOUTC is running in the EVM.

SVM
The program that processed the SOUTC is running in the SVM.

Entry Requirements

* When the operational program is running in the EVM, R9 must contain the ECB
virtual address (EVA) of the ECB being processed.

* When the operational program is running in the SVM and the output block is
attached to a data level, R9 must contain the system virtual address (SVA) of the
ECB being processed.

* When TYPE=X is coded, R14 must point to a parameter list with the following
format.

Byte 0 SDA of adjacent link station (ALS) or NCP with which channel contact
operation is to be performed

Byte 2 Indicator byte (corresponds to SNACCIND in CWOCC) and indicates
which operation is to be performed

Byte 3 Indicator byte for FID4 PIU or X'00' for FID2 PIU

Byte 4 SNA channel command word (CCW) area address for ALS (not needed
for prenegotiation XID)

* When TYPE=L is coded, the following is assumed by the SOUTC processing
routine:

— The message block on the level specified, referred to as the prime block,
must be in (FID1) PIU format. This means field TH1DCF is the count of the
Request Header plus all the text (including those in the chained blocks). In
addition, field CS1CNT (2 bytes) contains a count which is the number of
bytes of text (starting at RU1IBGN, beginning of the request unit) in this block.
Field CS1FCH (4 bytes) of this block contains either zero, indicating this is the
last block, or nonzero. When nonzero, this field contains the address of the
next storage block.

— For storage blocks pointed to by field CS1FCH of a previous block, field
CSI1CNT contains the text count in this block starting at field AMOTXT
(AMOSG). Field CS1FCH has the same meaning as in the prime block.

— Although no restriction is placed on the size of blocks used, all the blocks
must be of the same size.

— A maximum of 8 chained blocks may be used.

* When TYPE=F is coded, the PIU pad area must contain the session ID
(PIU1SID) and CCW area index (PIULCCWN) to be used to route this PIU.

* The format of the message passed to this macro is described in the PIUEQ
DSECT.

* When TYPE=H is coded, the following lists the various conditions with their entry
requirements:

454 TPF V4R1 System Macros

SOUTC

— When retransmitting a message that was lost in the network:
- The following information must be specified in the NLP pad area:
* The NLP1SOUTC_H field must contain X'01".

* The NLP1RTP field must contain the rapid transport protocol control
block (RTPCB) index.

- The block passed to the SOUTC macro must be in HPR SOUTC type-B
format.

- The header in the RTPCB table must be locked.
- You must code ADSPACE=SVM.
— When sending a message that was dequeued from the RTP output queue:
- The following information must be specified in the NLP pad area:
* The NLP1SOUTC H field must contain X'02'".
* The NLP1RTP field must contain the RTPCB index.

- The block passed to the SOUTC macro must be in HPR SOUTC type-B
format.

- The header in the RTPCB table must be locked.
- You must code ADSPACE=SVM.
— When sending an HPR control message:
- The following information must be specified in the NLP pad area:
* The NLP1SOUTC H field must contain X'03'".
* The NLP1RTP field must contain the RTPCB index.

- The block passed to the SOUTC macro must be in HPR SOUTC type-B
format.

- The header in the RTPCB table must be locked.
- You must code ADSPACE=SVM.
— When sending an NLP and bypassing SA to RID conversion:
- The following information must be specified in the NLP pad area:
* The NLP1SOUTC H field must contain X'04'.
* The NLP1RTP field must contain the RTPCB index.
* The NLP1SA field must contain the session address.

- The block passed to the SOUTC macro must be in HPR SOUTC type-A
format.

— When sending an NLP that is completely built:
- The following information must be specified in the NLP pad area:
* The NLP1SOUTC_H field must contain X'05'.
- The following information must be specified in the PIU pad area:
* The CCW area index must be specified in the PIULCCWN field.

- The block passed to the SOUTC macro must be in HPR SOUTC type-C
format.

See the [[PE_ ACE/SNA Data Communications Referencd for more information
about HPR support.

Except when TYPE=H is coded, there is no restriction on the size of the block
used for the SOUTC macro when the block is attached to an ECB. When the
block is specified using the BLOCK parameter, it must be either a 4-KB block or
an SWB and the logical block type must be stored in the block (in the CS1BLK
field).

System Macros 455

SOUTC

Return Conditions

Control is returned to the next sequential instruction (NSI).

For E-type code, the contents of R14 and R15 are unknown. The contents of all
other registers are preserved across this macro call.

For C-type code, the contents of all registers are preserved across this macro
call.

The specified core block reference word is initialized to indicate that a storage
block is no longer held.

The register specified in the BLOCK parameter is set to zero. The passed block
will be used and released by the SOUTC service routine.

Programming Considerations
This macro can be run on any I-stream.

Examples

A data block is to be attached to data level 1.
SOUTC D1

A channel contact operation is being initiated by a C-type program. The address
space is the ECB virtual memory.

SOUTC TYPE=X,ADSPACE=EVM
The block attached to data level 2 is the prime block of a chain in PIU format.
SOUTC D2,TYPE=L

The PIU is in a block specified by register 3. The address space is the system
virtual memory (SVM).

SOUTC BLOCK=R3,ADSPACE=SVM

456 TPF V4R1 System Macros

SPNDC

SPNDC-Suspend Normal CIO Processing

Format

Use this system macro to suspend normal common input/output (CIO) processing
and save any outstanding interrupts until ClIO processing resumes. With the
suspension of normal CIO, preemptive 1/0 (PI1O) is activated.

While in the suspended state, it is possible to allow normal CIO processing for any
pure PCI-I/O interrupts. You can do this by specifying the ALLOW parameter on the
SPNDC macro. When ALLOW=PCI is specified, any queued or received PCl-only
I/O interrupts are dispatched to their corresponding CIO device interrupt handler.
Any device handler that expects PCl-only interrupts must be able to process while a
system error dump is issued. This means that the device handler on the PCl-only
path cannot use system services or try to lock any system resources because those
services or resources may already be locked. The device handler should not issue
any SERRC macros while processing a PCI interrupt.

Whenever ALLOW=NONE is changed to ALLOW=PCI, PIO dispatches any queued
PCl-only interrupts before returning to the caller.

During IPL processing an ALLOW-IPL is supported by PIO to allow IPLB to
communicate with the consoles on logical channel 0. Whenever ALLOW-IPL is
specified, PIO dispatches any interrupts pending for devices on logical channel 0.
Any symbolic device address (SDA) in the range 001 through OFF is on logical
channel 0. After completion of IPL processing, ALLOW=IPL is forced by PIO to
ALLOW=NONE.

ALLOW=NONE
> SPNDC ><
I—label—| I—ALLOW=—|:PCI

IPL

label
A symbolic name can be assigned to the macro statement.

ALLOW
Specify one of the following:

NONE
All /O interrupts received from CIO initiated operations will be queued for
dispatch until normal CIO interrupt processing is resumed. When the
ALLOW parameter is not coded, this is the default value.

PCI
Any PCl-only interrupts will be immediately dispatched to the CIO device
interrupt handler. Interrupts from all other devices will be handled as
described under ALLOW=NONE.

IPL
This parameter is only supported during IPL. If used after IPL, PIO will
assume ALLOW=NONE. ALLOW=IPL is used by IPLB to enable and
dispatch any interrupts from devices on logical channel 0.

System Macros 457

SPNDC

Entry Requirements
* The TPF system must be disabled for interrupts.
* The TPF system must be running with PSW Key 0.

Return Conditions

» Control is returned to the next sequential instruction (NSI).
* Areturn code is specified in R15 as follows.

Return Code Meaning

0 The TPF system was not suspended previously.

4 The TPF system was suspended previously with ALLOW=NONE
coded.

8 The TPF system was suspended previously with ALLOW=PCI
coded.

12 The TPF system was suspended previously with ALLOW=IPL
coded.

* The contents of RO, R1, R14, and R15 are unpredictable. All other registers are
preserved.

Programming Considerations
* This macro can be run on the main I-stream only.
e This macro is for use in the control program (CP) only.

Examples
None.

458 TPF V4R1 System Macros

SSMMC

SSMMC-Set System Mask

Use this system macro to allow an operational program to change the operating

state of the central processing unit (CPU) from problem state to supervisor state.
Supervisor state allows processing of privileged instructions such as set system

mask (SSM) and start input/output (SIO).

Format

>

SSMMC <
l—label—l

label
A symbolic name can be assigned to the macro statement.

Entry Requirements
* R9 must contain the address of the ECB being processed.

* Only use this macro with utility-type programs such as disk copy and tape reel
switch that have special requirements for supervisor state.

Return Conditions
= Control is returned to the next sequential instruction (NSI).
* The contents of R14 and R15 are unknown.
* The contents of all other registers are preserved across this macro call.
» The CPU is in supervisor state (PSW bit 15 = 0).
* The storage protect key is zero (PSW bits 8 through 11).

Programming Considerations
* This macro can be run on any I-stream.

» Use caution when operating in this state. Any location in storage can be modified
by the operational program. A program should operate in this state for the
shortest possible time and then issue a LMONC macro to return to problem
state.

» Supervisor state is maintained across all other macros, which can be issued by
the program.

Examples
None.

System Macros 459

STIMC

STIMC-Time-Initiated CP Routine Execution

Format

Use this system macro to request processing of a specified routine in the control
program (CP) after a specific time interval has elapsed.

The address of a core block that contains the CP routine address and time interval
is placed in a table maintained by the CP. When the specific time has elapsed, the
core block is placed on the ready list of the I-stream that issued the request. The
request can be a one-time request or can be dispatched repetitively each time the
interval has expired.

»—labeZ—STIMC—BLOCK=—|:(RX)—_|—,DISP=—|:S:|—,TYPE=—|:SEC_| <
label R INT

label
A symbolic name can be assigned to the macro statement.

BLOCK
Specifies the address of a core block of any valid size.

(Rx)
A register containing the address of a core block. It must be coded in
parentheses.

label
The symbolic address of the location containing the core block address.

DISP
Specifies single or repetitive dispatch.

S The request will be dispatched once.

R The request will be dispatched repetitively, each time the interval has

elapsed.
TYPE
Specifies the format of the time interval.
SEC
The time interval is specified in seconds.
INT

The time interval is specified in CPU timer intervals.

Entry Requirements

Bytes 0-3 and 8-11 of the core block specified in the block parameter must be
initialized with the time interval and CP routine address to be dispatched.

Bytes 0-3 The number of seconds or CPU timer intervals that will elapse
before the request is dispatched.

Bytes 4-7 Used by the STIMC service routine to save the caller’s I-stream
address.

Bytes 8-11 The address of the CP routine to receive control when the specified

time has elapsed.

460 TPF V4R1 System Macros

STIMC
Bytes 12-15 Reserved for IBM use.

The remainder of the core block is available to the user to pass data, parameters,
and so on.

Return Conditions
» Control is returned to the next sequential instruction (NSI).
* The contents of RO through R15 are preserved across this macro call.

* The request is added to a table maintained by the STIMC service routine. When
the specified time has elapsed, the core block will be placed on the ready list of
the I-stream that issued the request. If DISP=S was coded, the request will be
deleted from the table. If DISP=R was coded, the request will remain on the table
for repetitive processing.

Programming Considerations
* This macro can be run on any I-stream.

» This macro can be run only after CTIN has initialized the timer tables and started
the CPU timer.

* This macro is for use in the control program (CP) only.

Examples
None.

System Macros 461

STLUC

STLUC-Send LU 6.2 Message from OMT

Format

Use this system macro to interface between the output message transmitter (OMT)
and ROUTC for TPF/APPC.

Required Authorizations

Key0 Restricted System Common Storage

X

>>—l_——|—ST|_UC—REG=RX >«
label

label
A symbolic name can be assigned to the macro statement.

REG=Rx
The argument required for this parameter is a symbolic register (RO through R7
inclusive) that points to a parameter list to be used by the TPF/APPC code.

Entry Requirements

* This macro is for the exclusive use of TPF/APPC.
* R9 must contain the address of the ECB being processed.
* A message block must be held by the ECB at data level 0.

* The register specified by the REG parameter must point to the parameter list.
The format of the parameter list follows.

Byte 0 Bit 0-7 Reserved
Byte 1 Bit 0-7 Reserved

Byte 2 Indicator 1
Bit 0 On = First or Middle RU
0ff = Last RU
Bit 1-7 Reserved
Byte 3-7 Reserved

Note: All reserved fields must contain zeroes.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

* The core block reference word (data level 0) is initialized to indicate that a
storage block is no longer held.

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

Programming Considerations

* This macro can be run on any I-stream.
* This macro is restricted to system use for TPF/APPC.

462 TPF V4R1 System Macros

STLUC

Examples
None.

System Macros 463

SWCHC

SWCHC-Set and Test Lethal Utility Switch

Format

Use this system macro to set, reset, and test the bit switches contained in the
CK9@SW system control field in keypoint B. These bit switches are interrogated by
the state change modules to determine if a state change request can be honored.
The bit switches serve the same function formerly provided by the global area set of
32 switches within the area labeled @SWITCH. The switches in @SWITCH are still
available but can only be used by user-defined application programs.

All bit positions formerly associated with the system utilities such as capture and
restore are now contained in CK9@SW. All bit positions formerly associated with
user-defined application programs have been retained in @SWITCH. Bits for all
other utilities in @SWITCH are now available for use by user-defined application
programs.

All of the switches in CK9@SW and in @SWITCH are checked at cycle change
request time.

(1) , REG=R14—|
> SWCHC ,swname ><
|—Zabe Z—| ON— I—, REG.=Rx—I
OFF—
TST—
LIST-

Notes:
1 op
label

A symbolic name can be assigned to the macro statement.
op The operation to be performed on the switch. It must be one of the following:

ON
Turn the switch on

OFF
Turn the switch off

TST
Test the switch

omitted
Test the switch (without issuing a CINFC call for keypoint B addressability,
which is valid only when a previous SWCHC with the TST option has been
processed).

LIST
Produce only a list of EQU statements defining each bit within CK9@SW.

swname
This is the switch name of the bit switch contained within CK9@SW. Following
is the list of valid names:

464 TPF V4R1 System Macros

SWCHC

SW@RECP
Recoup Utility

SW@SFT
Selective File Trace Utility

SW@FIL
Record Cache Subsystem (RCS) File

SW@ENA
Record Cache Subsystem (RCS) Enable

SW@IMP
Record Cache Subsystem (RCS) Implement

SW@DCOL
Data Collection Utility

SW@RTT
Real Time Trace Utility

SW@CAPT
Capture Utility

SW@REST
Restore Utility

SW@SCPY
SON Copy

SW@CCE
3705 Dump

SW@DBR
Database Reorganization Utility

SW@CCP
CCP Trace

SW@LKTR
Link Trace

The 32 remaining bit switches are named for the bit they represent, such as
SW@02 or SW@03. If a new utility is to be monitored during cycle change in
addition to those currently being monitored, the associated switch should be
renamed to reflect the new function symbolically.

REG=R14|Rx
This is the designated register to be loaded with the address of the selected
switch bank. If omitted, the register defaults to R14. If present, the register must
have been loaded with the appropriate SS/SSU ID.

Entry Requirements

* The bits in CK9@SW can only be used by the system control program (CP) of
the main |-stream.

* R9 must contain the address of the ECB being processed.

* When the request is ON or OFF, part of the generated code includes a CINFC
macro call with the W (write) option. A TST request generates a CINFC macro
call with an R (read) option. If the fast-path form of the macro is desired, a
register preloaded with the appropriate SS/SSU ID must be specified as the REG
parameter.

System Macros 465

SWCHC

» If several switches are to be tested, the TST parameter may be omitted from all
but the first macro call.

Return Conditions
» Control is returned to the next sequential instruction (NSI).
* The contents of registers RO through R13 are preserved across this macro call.

* The designated register or the default register, R14, points to the appropriate
switch bank.

* The designated bit-switch has been turned ON or OFF, or in the case of TST, the
condition code is set according to the result of a test-under-mask instruction.

Programming Considerations

This macro can be run on the main I-stream only. This macro is intended for use on
behalf of system utility programs (as distinct from utilities on behalf of user
applications).

Examples
None.

466 TPF V4R1 System Macros

SWISC

SWISC-Switch Entry to Another I-Stream

Use this system macro to:
» Switch an existing entry control block (ECB) to another I-stream
» Create a new ECB on another I-stream.

, LEV=NONE
»—L—_I—SWISC name ,IS= AIN >
label PROGRAM= prong PIF:‘ , LEV=——Dn
(Rx) Ry —[Ry:l
,DECB=—|:reg
labell
l—,BYPASS=NO
»—, LIST=——#CLHINP , TYPE=——ENTER ><
—E#CLHRDY} —[CREATE—l l—,BYPASS=YES—|
#CLHDEF

label
A symbolic name can be assigned to the macro statement.

name
The name of the program to activate (same as for ENTDC macros).

PROGRAM
The name of the program to activate.

prog
The name of the program to be activated.

(Rx)
A register (RO through R7) that contains the address of where the program
name can be found.

BYPASS
Specify one of the following:

NO
The default. The IS value is limited to the I-streams usable by applications,
as controlled by the ZCNIS command.

YES
The IS value is limited to all the I-streams online (active) in the CPC.

DECB=(reg)|labell
A register (RO-R7) or a label containing the address of a data event control
block (DECB), which contains the data to be passed to the new ECB.

When a DECB is specified, the data block is attached to data level DO of the
created ECB.

IS Specify one of the following:

MAIN
The main I-stream is the target.

System Macros 467

SWISC

MPIF
The MPIF I-stream is the target.

Ry The specified register, RO through R7, is set to the target I-stream number.
At run time the register must contain the I-stream number where the ECB is
to be created or switched. If the register contains zero, load balancing is
used and the ECB is created or switched to the least busy I-stream.

LEV
Specify one of the following:

NONE
No data level is to be passed to the new ECB.

Dn
The data on data level Dn is to be passed to the new ECB.

Ry The data level equate value specified in Ry is to be passed to the new
ECB.

When a data level is specified by either Dn or Ry, the data block is attached
to data level DO of the created ECB.

LIST
Specify one of the following:

#CLHINP
Will get the entry added to the input list.

#CLHRDY
Will get the entry added to the ready list.

#CLHDEF
Will get the entry added to the deferred list.

TYPE
Specify one of the following:

ENTER
This entry is switched through an ENTDC macro.

CREATE
An entry is created on the dispatch list specified by the LIST parameter.

Entry Requirements
* R9 must contain the address of the ECB being processed.

* When TYPE=CREATE is specified R14 must have the length of passed data and
R15 must have the address of passed data subject to the restrictions of Create
macros. A variable number of bytes (1-104) is passed to the created ECB work
area.

Return Conditions
= Control is returned to the next sequential instruction (NSI).

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

Programming Considerations
* This macro can be run on any I-stream.
* Use of the SWISC macro is not supported in the control program (CP).

468 TPF V4R1 System Macros

Examples

SWISC

* If TYPE=ENTER, this entry will be switched to the target I-stream and all
program nesting will be cleared when control is passed to the new program.

* The value of LIST is restricted to those dispatch list values defined in CLHEQ.

* If LEV or DECB is coded for TYPE=CREATE, the data level or DECB specified
must have an attached block. This block will be unhooked from the calling ECB
on return from the macro service.

* No I/O should be outstanding when calling this macro.

* The system functions required to act on physical I-streams must specify
BYPASS=YES.

» If the target I-stream is zero, the TPF scheduler will be invoked.

* In addition to the normal macro trace information the SWISC trace entry will
contain the activation type, ENTER or CREATE, the name of the target program
and the target I-stream number.

 If the data event control block address specified by the DECB parameter does
not refer to a valid DECB, control is transferred to the system error routine and
the entry is exited.

» If you use this macro to create an ECB that will enter a dynamic load module
(DLM) with an entry point defined by the C language main function, the TPF
system assumes that any core block attached to data level 0 (DO) contains a
command string that will be parsed into argc and argv parameters for the main

function. See [[RPE Application Programming for more information about the main

function.

This example creates a new ECB that initially enters the WXYZ segment.
hhhkkhkhkhkhhhhhkhkdhhhhhdhhhhdhhhhdhhhrhhhhhhdhhdrhdhhhhdhhkdrhdrhrhhrhdrdx

SWISC to WXYZ
Registers:
1. R5 is set to point to the name 'WXYZ'.

2. R3 is set to zero to request that load balancing will schedule
the created ECB to run on the Teast busy I-stream.

3. A core block is set up on data level D5. A copy of this core
bTock will be attached to the created ECB on DO. R4 is set up
to point to the core block's CBRW.

4. R14 and R15 are set up to contain the length and address of the
the parameter string. The created ECB will be initialized with
this string starting in EBWOOO.

5. The SWISC macro specifies that the new ECB will be added to the
CPU Ready 1ist for the selected I-stream.
kkhkkkkhkkhkhkkhkhkhkkhhkkhkhkkhhkkhhkhhhkkhhkkhhkkhhkhkhkkhkhkkhhkhkkhhkhkhkkhkhkkhhkhkhkkhkhkkhkhkkhkkhkhkkhkkk*x
LA R5,NEWPGM Use PROGRAM=R5 interface to specify
* the first program segment that the
* created ECB will enter.

EE I R R R R S B T
E R I B R R R R

SLR R3,R3 Use IS=R3 interface to select Toad
* balancing.

GETCC D5,L0 Get core block to pass via SWISC.
MVC O(MSGSIZ,R14),MSG Move message into core block.
LA R4,CEL1CR5 Use LEV=R4 interface to pass block.

LA R14,PARMSIZ Length of parameter.
LA R15,PARM Address of parameter.

System Macros 469

SWISC

SWISC TYPE=CREATE,

PROGRAM=(R5) ,

IS=R3,

LEV=R4,

LIST=#CLHRDY,

BYPASS=NO
Kok ko Kk Kk ok ok ok Kk ok ok Kk Kk Kk ok Kk kK kK ok ok ok ok ok ok ok ok X ok ok ok ok ok Kk ok ok %
NEWPGM DC C'WXYZ'
MSG DC C'HELLO TO WXYZ FROM ABCD'
MSGSIZ EQU *-MSG
PARM DC C'THIS ECB WAS CREATED BY SWISC'
PARMSIZ EQU *-PARM

470 TPF V4R1 System Macros

— = =

SYCON

SYCON-System Configuration

Use this system macro to define a TPF system and its file configuration. This macro
contains equates that fall into the following categories:

« Communication equates
» DASD variables

* General file variables

» SIPC general file equates
* Tape information

* Miscellaneous equates

* Non-SNA line types.

Optional parameters, specified as keyword operands, evoke various macro
expansions that define the:

* DASD module configuration table
» DASD pool directory generation table.

Format

,CON=9 ,DIR=NO
»>—SYCON |_ —l |_ _l ><

I—, CON=3J |—, DIR=MAPJ

CON
This is the selection switch for the DASD module configuration table (CYMZ40).
CON is mutually exclusive with DIR.

9 Bypasses DASD table generation.
3 Expands the DASD Module Configuration Table (CYMZ40).

DIR
This is the selection switch for the DASD pool directory generation table. DIR is
mutually exclusive with CON.

NO
Bypasses DASD Pool table generation.

MAP
Defines storage for the old and new pool mapping. New users and existing
users of FARF3 must not code DIR=MAP.

Entry Requirements
None.

Return Conditions
Control is returned to the next sequential instruction (NSI).

Programming Considerations
* This macro can be run on any I-stream.
* This macro is created by SIP and the FACE table generator.

System Macros 471

SYCON

Examples

SYCON should be used to contain all configuration-dependent constants and
equates.

SYCON generates no branches. If SYCON is called to generate a table inline, it
is the user's responsibility to branch around the table.

When the System Initialization Package (SIP) is used, the key SYCON entries
are initialized automatically. See IFTRE System Generatiod for more information.

Any segment that references SYCON becomes configuration-dependent. To
avoid unnecessary assemblies, SYCON should not be called when the needed
information can be provided by the CINFC or CONKC macros.

In order to minimize the number of online programs that must be reassembled
should SYCON values change, the CONKC macro, the configuration constants
data record (CONKC), CINFC macro and the communications keypoint (CK6KE)
have been provided to permit real-time access to SYCON-specified values.

Macro Call (define equates only)
SYCON

Macro Call (define equates and DASD Configuration Table)
SYCON CON=3

472 TPF V4R1 System Macros

TANCC

TANCC-Transaction Anchor Table Control (TANC)

Use this system macro to add, delete, or locate a transaction manager control
record (TMCR) in the transaction anchor table (TANC).

Required Authorizations

Key0 Restricted System Common Storage
X

Format

»»—TANCC—ACTION=——LOCATE, TID=Ry——, TMCR=Rx ><
—ADD
—DELETE

ACTION
Defines the type of action requested. This parameter is required. The following
actions are valid:

ADD
To add a TMCR pointer to the TANC.

DELETE
To remove a TMCR pointer from the TANC.

LOCATE
To locate a TMCR pointer for a given transaction ID (TID).

TMCR=Rx
A register (RO—-R7, R15) that contains the address of a TMCR. This is a
required input parameter when ADD or DELETE are specified, and is also a
required output parameter when LOCATE is specified.

TID=Ry
A register (RO—R7, R15) that contains the address of the TID that is used to
locate the TMCR pointer in the TANC. This parameter is required only when
locating a TMCR pointer.

Entry Requirements

* When adding or deleting a TMCR pointer, the register must point to the TMCR
that will be added to or removed from the TANC.

* When locating a TMCR pointer, the register must point to the TID that will be
used to locate the TMCR in the TANC. R9 must point to a valid entry control
block (ECB).

Return Conditions
» Control is returned to the next sequential instruction (NSI).
* The contents of RO—R7 are preserved across this macro call.
* The condition code (CC) is not preserved across the macro call.

¢ The macro service routine will set R14 to contain a hexadecimal return code that
can be used by the calling program.

System Macros 473

TANCC

R14=00 Request is completed successfully.

R14=-2 Input TMCR parameter is O.

R14=-3 Input TID parameter is 0.

R14=-4 Adding a TMCR pointer was not successful because the TID in

the input TMCR already exists.

R14=-5 Deleting or locating a TMCR pointer was not successful because
no matching TID exists in the TANC.

Programming Considerations

e This macro can be run from any I-stream.

* This macro can be run by both ECB-controlled programs and control program
(CP) programs.

If a log takeover occurs, there will be more than one TANC in the TPF system.
The TANCC macro will use a processor index value that is kept in the TMCR (for
adding or deleting) or in the ECB (for locating) to perform the function on the
correct TANC.

Examples
The following example shows how to add a TMCR into the TANC.
TANCC ACTION=ADD,TMCR=R2

474 TPF V4R1 System Macros

TASBC

TASBC-Turn Off Time Available Supervisor Switch

Use this system macro to turn off the time available supervisor (TAS) demand
switch in the system task dispatcher. Turning off the TAS demand switch indicates
that there are no low priority tasks to be handled by the time available supervisor.

Required Authorizations

Key0 Restricted System Common Storage
X

Format

»>—Ilabel—TASBC ><

label
A symbolic name can be assigned to the macro statement.

Entry Requirements
R9 must contain the address of the ECB being processed.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

Programming Considerations
* This macro can be run on any I-stream.
* The TAS demand switch remains reset until set by the TASTC macro.

Examples
None.

System Macros 475

TASTC

TASTC-Turn on Time Available Supervisor Switch

Use this system macro to turn on the time available supervisor (TAS) demand
switch in the system task dispatcher. Turning on the TAS demand switch activates
the supervisor that schedules the processing of low priority tasks such as teletype
reservation messages.

Required Authorizations

Key0 Restricted System Common Storage

X

Format

»>—label—TASTC >

label
A symbolic name can be assigned to the macro statement.

Entry Requirements
R9 must contain the address of the ECB being processed.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

* The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

Programming Considerations
e This macro can be run on any I-stream.

* When the TAS demand switch is set, the time available supervisor can gain
control every 250 milliseconds.

* The TAS demand switch remains set until reset by the TASBC macro.

Examples
None.

476 TPF V4R1 System Macros

TCLAC

TCLAC-Write a CLAW Error Log

Use this system macro inline to write a specified error log record using the SNAPC
conventions. Common Link Access to Workstation (CLAW) control program (CP)
segments use this macro.

Format

|—, FAI L=N0—|
»»—TCLAC—PRC=Rx—, SRC=Ry ><

I—,FAIL=YESJ

PRC=RXx
This required register contains the primary return code indicating the primary
reason for the log error subrequest.

SRC=Ry
This required register contains the secondary return code indicating the
secondary reason for the log error subrequest.

FAIL
This optional parameter determines if the adapter is to be closed.

YES
The error log is written and the adapter is closed.

NO
The error log is written and the adapter is not closed.

Entry Requirements
This macro is for use in the control program (CP) only.

Return Conditions

» Control is returned to the next sequential instruction (NSI).

* The contents of all registers, except R14 and R15, are preserved across this
macro call.

Programming Considerations

* This macro can be run on any I-stream.
* The FAIL option sets the fail option bit. The fail bit must be set for CLAW to fail.

Examples

This call indicates a primary return code is in register R6 and a secondary return
code is in RO. The FAIL option indicates the trace record will be written and the
adapter will be closed.

TCLAC PRC=R6,SRC=RO,FAIL=YES

System Macros 477

TDCTC
TDCTC-General Tape Data Chain Transfer

Use this system macro to address a general tape and read or write a single record
into or from a specific storage area using a series of data chained channel
command words (CCWSs).

Required Authorizations

Key0 Restricted System Common Storage

X

Format

,AUTO=NO ,CCW1=NO
>>—L——|—TDCTC—NAME= yyy , LEVEL=Dx |_ _| |_ _I >
label (Rn) I—,AUTO=YESJ |—,CCWI=YESJ

A

label
A symbolic name may be assigned to the macro statement.

NAME
Specifies the symbolic general tape name. It can be:

yyy
A 3-character string representing a symbolic general tape name. The first

two characters must be alphabetic, and the third character must be
alphabetic or numeric. The first two characters cannot be RT.

(Rn)
The number of a register containing a pointer to the symbolic real-time tape
name. n must be a decimal number from 0 through 7, 14, or 15.

LEVEL=Dx
A symbolic data level (DO—DF) must be specified.

AUTO=NO|YES
Specifies whether an automatic tape switch occurs for end-of-tape,
end-of-volume, or hardware error conditions.

Notes:

1. |If the tape is blocked, TPF tape support will force AUTO=YES regardless of
how this parameter is entered.

2. If the tape is blocked or AUTO=YES is specified, an end-of-tape or
hardware error from a tape write operation, or an end-of-volume error from
a tape read operation causes an automatic tape switch to occur. End-of-file
and hardware errors from tape read operations do not cause an automatic
tape switch to occur.

3. If the tape is not blocked and AUTO=NO is specified, end-of-tape,
end-of-volume, and hardware errors are indicated in the ECB.

CCW1=NO|YES
This optional parameter is used to indicate the CCW format in the specified
data level. If CCW1=YES, the CCW is treated as CCW format-1, otherwise
CCW format-0 is assumed. CCW1=NO is the default.

478 TPF V4R1 System Macros

TDCTC

The following macro format is still supported.

»—L——'—TDCTC—name—,—Zevel |
label |—,AUTO=YESJ |—,CCW1=YESJ

,AUTO=NO ,CCH1=NO
[1 [] b

name

A 3-character symbolic general tape name must be specified as the first
parameter.

level

A symbolic data level (DO-DF) must be specified as the second parameter.

Entry Requirements

R9 must contain the address of the entry control block (ECB) being processed.

The general tape specified by tape name must be open when this macro is
issued.

The first 4 bytes of the file address reference word (FARW) of the data level
specified by level must contain the address of the channel program. The channel
program must only refer to addresses above X'1000'.

The CCWs you provide must be data chained to ensure a single block transfer.

Return Conditions

Control is returned to the next sequential instruction (NSI).

The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

The status of the data transfer operation is unknown.

Programming Considerations

This macro can be run on any I-stream.

Although both keyword and positional parameters may be used in the same
macro call this method is not recommended.

Tape data transfer depends on various conditions:

— For a blocked tape, a WAITC call ensures that the data has been transferred
to the blocking buffer. This is true whether the tape is mounted on a buffered
device or an unbuffered device.

— For an unblocked tape mounted on a buffered device that is operating in
buffered mode, a WAITC call guarantees that the data has been written to the
control unit buffer.

— For any other unblocked tape, a WAITC guarantees that the data has been
written to the tape.

For devices operating in buffered mode, a hardware error reported to the ECB
may indicate a loss of buffered data. See the TOPNC macro in

for more information about the buffered mode.
When an unusual condition is detected that causes processing of the CCW chain
to be halted before completion of the last CCW, the address portion of the
resultant channel status word will be stored in the last four bytes of the FARW of
the data level specified by level.

System Macros 479

TDCTC

Examples

The storage area on the CCW chain containing the data being written or read
must remain unchanged until the operation is complete.

This macro should not be run to write heap storage areas to a blocked tape.

The command code in the first CCW must be either a Write, Read, Read
Backwards, or Synchronize. This macro cannot be used to run a Read
Backwards command to a blocked tape. If this is attempted with a blocked tape,
a system error is issued.

For write operations, the Suppress Length Indication flag should be set in the last
CCw.

For write operations to a blocked tape, the maximum byte count of the record
being written is 32 752. For write operations to an unblocked tape, the maximum
byte count of the record being written is 65 535. If an attempt is made to write a
record longer than the maximum length, a system error is issued.

For write operations, if the tape is mounted in unblocked mode, the mode of
operation (buffered or Tape Write Immediate) is determined by the entry in the
tape status table. If the tape is mounted in blocked mode, the mode of operation
is always buffered.

For write commands issued to a 3480 device, bit O of the secondary indicator
byte in the corresponding tape status table entry will determine the operating
mode (buffered or tape write immediate). This bit is initially set when the tape is
opened using the TOPNC macro.

None.

480 TPF V4R1 System Macros

TDTAC

TDTAC—-General Tape Data (GDS) Transfer

Use this system macro to address a general tape and perform a single data transfer

operation.
Required Authorizations
Key0 Restricted System Common Storage
X
Format
,CCW1=NO
»—L——I—TDTAC—NAME= ccc—_l—,LEVEL=DX [il ><
label (Rn) l—,CCW1=YES—|
label
A symbolic name can be assigned to the macro statement.
NAME

Specifies the symbolic general tape name. It can be:

cce
A 3-character string representing a symbolic general tape name. The first
two characters must be alphabetic, and the third character must be
alphabetic or numeric. The first two characters cannot be RT.
(Rn)
The number of a register containing a pointer to the symbolic general tape
name. n must be a decimal number from 0 through 7, 14, or 15.
LEVEL=Dx
A symbolic data level (DO-DF) must be specified.

CCW1=NO|YES
This parameter is used to indicate the format of the channel control word

(CCW) in the specified data level. If CCW1=YES, the CCW is treated as CCW
format-1, otherwise CCW format-0 is assumed. NO is the default.

The following macro format is still supported.

(1) ,CCW1=NO
>>—L——|—TDTAC—tapename—,—Dx [_l_l ><
label ,CCW1=YES

Notes:
1 level
label

A symbolic name may be assigned to the macro statement.

System Macros 481

TDTAC

tapename

A 3-character symbolic general tape hame must be specified as the first
parameter.

level

A symbolic data level (DO-DF) must be specified as the second parameter.

Entry Requirements

R9 must contain the address of the ECB being processed.

The file address reference word (FARW) for the data level specified by the
LEVEL parameter (level) must contain the data transfer CCW. The channel
program must only refer to addresses above X'1000'.

The general tape specified by the NAME parameter (tape_name) must be open
when this macro is issued.

Return Conditions

Control is returned to the next sequential instruction (NSI).

The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

The status of the data transfer operation is unknown.

During normal processing of this function, the CCW contained in the FARW is not
modified. If an incorrect record length is found, the length field will be in the last
2 bytes of the FARW on the data level specified by the macro.

During the processing of blocked tapes when a condition such as end-of-volume
(EQV) or permanent error occurs, a tape switch will automatically occur. For
unblocked tapes the automatic tape switch will not occur. For blocked tapes
AUTO=YES is implied and for unblocked tapes AUTO=NO is implied. See
'TDCTC—General Tape Data Chain Transfer” on page 479 for more information.
Also see [TPE General Macrod for more information about TSYNC and the
synchronize tape macro.

The storage area containing the data that is being written or read must remain
unchanged until the operation is complete.

Programming Considerations

This macro can be run on any I-stream.

Although both keyword and positional parameters may be used in the same
macro call this method is not recommended.

For blocked tapes, a WAITC call will ensure that the data has been transferred to
the blocking buffer.

For buffered devices, a WAITC call guarantees that the data has been written to
the control unit buffer.

For non-blocked tapes on devices operating in tape write immediate mode, a
WAITC guarantees that the data has been written to the tape.

This macro executes independently of normal tape macro handling and volume
switching facilities. When an unusual condition such as end-of-file, end-of-tape,
or hardware error is encountered, return is made to the operational program
through the system error WAITC return mechanism. All subsequent 1/O requests
are processed normally and are also flagged appropriately at WAITC return. It
should be noted that write operations are allowed to complete when an
end-of-tape condition is detected, and the operation is appropriately flagged to

482 TPF V4R1 System Macros

TDTAC

indicate this condition. For this macro only, an end-of-tape condition on a write
operation is flagged by the same indicator bit as an end-of-file condition on a
read operation.

For device operating in buffered mode, a hardware error reported to the ECB
may indicate a loss of buffered data. See TPE General Macrod for more
information about TOPNC and the open a general tape macro, as well as
information about buffered mode.

The storage area containing the data that is being written or read must remain
unchanged until the operation is complete.

This macro should not be used to write Heap storage areas to a blocked tape.
For write operations to a blocked tape, the maximum byte count of the record
being written is 32 752.

For write operations to an unblocked tape, the maximum byte count of the record
being written is 65 535. If an attempt is made to write a record longer than the
maximum length, a system error is issued.

The minimum record size that can be written or read is 16 bytes.

For write and sense commands, the suppress length indication flag is
automatically set by the control program (CP).

This macro cannot be used to run a Read Backwards command to a blocked
tape. If this is attempted with a blocked tape, a system error is issued.

No check is made by the control program (CP) to see if the command is
supported by the device. For example, a command code to read configuration
data can be sent to a 3480 tape device, even though it is undefined for that
device type.

The supported channel commands for this macro follow here.

Hexadecimal Code Channel Command Action on Tape Drive
01 Write

02 Read forward

03 No operation (NOP)

04 Sense

ocC Read backward

22 Read block ID

24 Read buffered log

34 Sense path group ID

43 Synchronize

4F Locate block

E4 Sense ID

64 Read device characteristics
77 Perform subsystem function
9F Load display

AF Set path group ID

B7 Assign

C7 Unassign

E3 Control access

System Macros 483

TDTAC

FA Read configuration data.

Examples
None.

484 TPF V4R1 System Macros

TERMC

TERMC-KIill a Threaded Process

Use this system macro to allow an entry control block (ECB) that is not in a thread
process to get information about the number of threads in a process, and to force
the ECBs running inside the process to exit. TERMC will pass an event nhame to the
process to allow threads to post the event when exiting.

Note: Syntax and parameter descriptions are not provided because this is an
object code only (OCO) macro.

System Macros 485

TIOSC

TIOSC-Test Input/Output (I/O) Service

Format

Use this system macro to request the following services.
Service Description

PEEK It looks at the synchronous and asynchronous interrupts queued for
a specific symbolic device address (SDA). The data for the queued
interrupts is placed in an area provided by the requestor in
accordance with the DCTTIO DSECT.

DISPATCH It dispatches the synchronous and asynchronous interrupts queued
for a specific SDA. When an interrupt is dispatched, it is sent to the
common input/output (CIO) device interrupt handler as specified in
the mount request.

DELETE It deletes the synchronous and asynchronous interrupts for a
specific SDA.
SDA=(R1) l—TYPE=PEEK,AREA=(R0)
> B] TI0SC B ><
label SDA=——label TYPE=PEEK,AREA= label
Lirg Lry)—]
TYPE=DELETE—, INTRPT=—ALL
—ESYNC:J
ASYNC
TYPE=DISPATCH
label
A symbolic name can be assigned to the macro statement.
SDA

This is either the label of a halfword field that contains the SDA, or a register
that contains the SDA in bytes 2 and 3 and zeros in bytes 0 and 1. The default
is SDA in R1.

TYPE
This is the function that is requested by the caller:
* PEEK (default)
* DISPATCH
* DELETE.
AREA
AREA is only valid for TYPE=PEEK. AREA is either the label assigned to an

area defined by the DCTTIO DSECT or a register that contains the address of
the area. If AREA is not specified, the default register is RO.

INTRPT
This is the interrupt type to be deleted. INTRPT is required for TYPE=DELETE.

ALL
Both synchronous and asynchronous interrupts

SYNC
Synchronous interrupt only

486 TPF V4R1 System Macros

ASYNC
Asynchronous interrupt only

Entry Requirements
* The TPF system must be disabled for interrupts.
* The TPF system must be running with PSW key 0.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

* RO through R15 will be unchanged.

TIOSC

* A condition code will be set depending on the value specified for the TYPE

parameter.

— PEEK, which is the area pointed to by the AREA parameter and described by
the DCTTIO DSECT will be filled in. The condition code will be set as follows.

Condition Code
0
1
2
3

Meaning

No active request

Interrupt information returned
Device currently active

A request that is not valid

— DISPATCH for which the condition code will be set as follows.

Condition Code
0
2

3
— DELETE for which the condition

Condition Code
0
2
3

Programming Considerations
* This macro can be run on the main I-stream only.

Examples

» If the TYPE=DISPATCH, the macro user should not be holding any locks that

may be required by the specified S

Meaning
No active request or operation performed
Device currently active

A request that is not valid
code will be set as follows.

Meaning
No active request or operation performed
Device currently active

A request that is not valid

DA device interrupt handler.

» If only one of the interrupt types is to be dispatched, the other, if it exists, must

first be deleted.
¢ This macro is for use in the control

None.

program (CP) only.

System Macros

487

TMSLC

TMSLC-Time Slice an ECB

Format

Use this system macro to:
* Enable or disable time slicing for an entry control block (ECB)
» Assign time-slicing attributes to a time-slice name.

When an ECB is enabled for time slicing, it loses control at defined time intervals.
This allows other tasks in the TPF system to receive control.

Required Authorizations

Key0 Restricted System Common Storage

X

NO
ASSIGN ,ﬂ Assign_Params |—

»—L——'—TMSLC ENABLE,ﬂ Enable_Params i >«
label EDISABLE,LETRUN=—[YES

Enable_Params:

|—NAME=name—,HOLD=—|:YES ,EXCD=labell—,NOTFND=1abel2 I
NO

Assign_Params:

|—NAME=name—, RUNTIME=rt ime— ,MAXTIME=mt ime— ,MINSUSP=minsusp—, MAXECB=maxecb4|

label
A symbolic name can be assigned to the macro statement.

ENABLE
Allow the ECB to time slice.

When the entry control block (ECB) reaches the RUNTIME value without giving
up control, it gets suspended. The ECB will remain suspended for the value
specified in the MINSUSP parameter.

Note: RUNTIME and MINSUSP are values defined with the NAME parameter.
If you specify HOLD=NO and the ECB is holding a resource, the ECB
will not get suspended.

NAME=name
The time-slice name parameter is a 1-8 character name. The time-slice
name has four time-slice parameters associated with it. The four
parameters are RUNTIME, MAXTIME, MINSUSP, and MAXECB.

The predefined time slice hames and values of the parameters associated
with them are given in

488 TPF V4R1 System Macros

TMSLC

HOLD=YES|NO
Indicates if the ECB can be suspended while holding a resource (FIWHC,
CORHC, ENQC, EVNWC, TASNC, SYNCC LOCK).

Note: This does not apply to resources that are held with the SLOCKC
macro.

EXCD=labell
The address to which control is passed if the maximum number of ECBs
that can be time sliced are already active for the specified time-slice name.

NOTFND=label2
The address to which control is passed if the NAME parameter contains a
name that is not recognized.

DISABLE
Disable time slicing. Return the ECB to normal operation.

LETRUN
Used with the DISABLE parameter to determine if the ECB continues to run
or gives up control.

YES
The ECB will not lose control.

NO
The ECB will lose control unless time slicing is enabled with HOLD=NO
and the ECB is currently holding a resource.

ASSIGN
Assign time-slicing attributes to a time-slice name.

NAME=name
The time-slice name parameter is a 1 to 8 character name. The time-slice
name has four time-slice parameters associated with it. The four
parameters are RUNTIME, MAXTIME, MINSUSP, and MAXECB.

The predefined time-slice names and values of the parameters associated
with them are given in

RUNTIME=rtime
The amount of CPU time (from 10 through 500 ms) the ECB is allowed to
use without giving up control before it is time-sliced.

Note: This value cannot exceed the value that is generated by the system
initialization program (SIP) for the application timeout counter (set by
IBM to 500 ms).

MAXTIME=mtime
The maximum amount of accumulated runtime (from 0 ms through
9 999 999 ms) the ECB can use before taking a system error. A value of 0
means the ECB can run indefinitely.

MINSUSP=minsusp
The minimum amount of time (from through 9999 ms) that the ECB will be
suspended if it is time sliced.

MAXECB=maxecb
The maximum number of ECBs (from through 9999) that can be active and
enabled for time slicing with this time-slice name.

System Macros 489

TMSLC

Entry Requirements

R9 contains the address of the ECB.

This macro can only be run if the issuing program has restricted macro usage
authorization.

The ASSIGN parameter can only be used by segment CTMS.

Return Conditions
Control returns to the next sequential instruction (NSI).

Programming Considerations

This macro can run on any I-stream.
This macro cannot be run while the TPF system is in restart.

Time slicing should not be enabled throughout the life of the transaction because
there is no protection against an ECB that allows time slicing calling a segment
which does not allow time slicing.

Time slicing should be enabled only in specific CPU-intensive code paths. Time
slicing is not supported across TPF services such as the following because these
services may be referencing shared memory, issuing $LOCKC macros, or
holding critical resources:

— SVC and fast-link macro calls
— Enters to TPF real-time segments (CYYM, CYYA, BPKD, and others)
— TPF Database Facility (TPFDF) functions.

You must ensure that time slicing is disabled before calling such system services.
An ECB that is enabled for time slicing must never issue a $LOCKC macro.

An ECB enabled for time slicing must never update a global field or other storage
areas that can be updated simultaneously by other ECBs.

Coding LETRUN=YES is advantageous only in a highly repetitive loop where
time slicing is enabled and disabled frequently. Otherwise, to avoid timeout
errors, specify LETRUN=NO.

The ECB will exit with a system error if the ECB is not forced to give up control
and the ECB continues to run for 500 ms without giving up control.

An ECB enabled for time slicing and running with the HOLD=YES parameter can
hold a resource while suspended. This can cause hang conditions. Resources
held by an ECB enabled for time slicing should not be needed elsewhere.

An ECB enabled for time slicing can exit with a system error if the HOLD=NO
parameter is specified. This can occur if the ECB is holding a resource (which
prevents time slicing) and has been running without giving up control for greater
than the time allowed by the application timeout value (500 ms).

The maximum amount of accumulated runtime that an ECB enabled for time
slicing is allowed before exiting with a system error is not reset each time a
TMSLC call with the ENABLE parameter is issued. The amount of time set with
the MAXTIME parameter must allow the ECB to complete its task.

ECBs that are suspended because of a TMSLC call will be purged during system
cycle-down to 1052 state unless they have been previously identified to survive
cycle-down.

Resource control is shipped with three predefined time-slice names. franle d
shows the predefined time-slice names and values of the parameters associated
with them.

490 TPF V4R1 System Macros

Examples

Table 8. Time Slice Name Table

TMSLC

Time Slice Name Values
RUNTIME MAXTIME MINSUSP MAXECB
IBMLOPRI 50 ms 20000 ms 1000 ms 50
IBMHIPRI 100 ms 10000 ms 100 ms 50
IBMINDEF 50 ms 0 ms 2000 ms 20
Notes:

1. These are the values for the time-slice name parameters as shipped by IBM.
2. IBMLOPRI, IBMHIPRI, and IBMINDEF are reserved for use by IBM.

3. To add new time-slice names, use the ZTMSL command or the TMSLC
macro with the ASSIGN parameter. The ZTMSL command can also be used
to display, change, and remove time-slice names.

This call to the TMSLC macro:

— Enables the ECB for time slicing based on the parameters associated with the
time-slice name of BIGSORT,

— Returns control to label WARNUSER if too many ECBs are enabled for time
slicing under the time-slice name BIGSORT,

— Indicates the ECB is not allowed to be suspended while holding a resource,
and

— Branches to BADNAME, if the TMSLC macro does not recognize the
time-slice name BIGSORT.

TMSLC ~ ENABLE,NAME=BIGSORT,HOLD=NO, EXCD=WARNUSER,NOTFND=BADNAME

This call to the TMSLC macro creates an entry for the IBMXYZ name in the

time-slice name table during system restart. The entry is initialized with the

following attributes:

— Set the maximum time that ECBs can run continuously to 300 ms.

— Set the maximum amount of accumulated runtime that ECBs can use to 5000
ms.

— If suspended because of a time slice, suspend ECBs for 1000 ms.

— Allow no more than 500 ECBs to be enabled for time slicing with the IBMXYZ
time-slice name.

TMSLC ~ ASSIGN,NAME=IBMXYZ,RUNTIME=300,MAXTIME=5000,MINSUSP=1000,MAXECB=500

This call to the TMSLC macro does not allow the ECB to be time sliced. Upon

return, the ECB will not be able to be time sliced and will act as a normal
transaction ECB.

The ECB will lose control unless it was enabled with HOLD=NO and is currently

holding a resource. Time-slicing is disabled when updating global storage, when

entering $3LOCKC macro calls, when holding performance-critical records, and so
on.

TMSLC DISABLE,LETRUN=NO

System Macros 491

TMTKC
TMTKC-Get the Unique Token for the Current Transaction

Use this system macro to get the unique token for the current transaction.

Format

PF—m—TMTKC—TOKEN=tOk€n <
label

label
A symbolic name can be assigned to the macro statement.

TOKEN=token
Gets the unique token for the current transaction, where token is the symbolic
name of a field or a register pointing to a field. The field is an 8-byte storage
area in which the token will be stored. If you specify a register, the register must
be enclosed in parentheses and in the range RO-R7.

Entry Requirements
None.

Return Conditions
» Control is returned to the next sequential instruction (NSI).

* The storage area pointed to by the TOKEN parameter contains one of the
following:

— A nonzero unique transaction token for the current transaction in which the
entry control block (ECB) is running.

— A zero, which indicates that the ECB is not currently in an active transaction.
* The contents of R14 and R15 cannot be predicted.

Programming Considerations
e This macro can be run on any I-stream.

* This macro does not verify if the ECB has the protection key to write to the
storage area where the token will be stored. The calling program must ensure
that the area specified with the TOKEN parameter can be updated.

Examples

The following example gets the unique token for the current transaction and stores
the token in the area to which R5 points.

TMTKC TOKEN=(R5)

492 TPF V4R1 System Macros

TPCNC

TPCNC-Tape Control

Use this system macro to process certain tape control channel command words
(CCWs) that are not included in the normal macro set (for example, forward space

block).
Required Authorizations
Key0 Restricted System Common Storage
X
Format
,CCW1=NO
[] e

»—L——'—TPCNC—NAME=tape_name—, LEVEL=level |_ J <
label ,CCW1=YES

label
A symbolic name may be assigned to the macro statement.

NAME=tape_name
A 3-character symbolic general tape name must be specified as the first
parameter.

LEVEL=level
A symbolic data level (DO-DF) must be specified as the second parameter.

CCW1=NOJ|YES
This parameter is used to indicate the format of CCW in the specified data
level. If CCWI1=YES, the CCW is treated as CCW format-1, otherwise CCW
format-0 is assumed. CCW1=NO is the default.

The following format is still supported.

,CCW1=N
»—L—_|—TPCNC—tape_name—,—leveZ |_ O_| »><
label I—,CCWl=YES—|

label
A symbolic name may be assigned to the macro statement.

tape_name
A 3-character symbolic general tape name must be specified as the first
parameter.

level
A symbolic data level (DO-DF) must be specified as the second parameter.

CCW1=NOJ|YES
This parameter is used to indicate format of CCW in the specified data level. If
CCWI1=YES, the CCW is treated as CCW format-1, otherwise CCW format-0 is
assumed. The default is CCW1=NO is the default.

System Macros 493

TPCNC

Entry Requirements

R9 must contain the address of the entry control block (ECB) being processed.

The general tape specified by tape_name must be open when this macro is
issued.

The file address reference word (FARW) for the data level specified by level must
contain a modified tape control CCW. The format of the CCW follows.

CE1FAX Byte 0 Command Code
Bytes 1-3 Not Used
CE1FMx Byte 4 Command Flags
CELIFCx Byte 5 Not Used
CE1FCx Bytes 6 and 7 Count of Operation Executions

Return Conditions

Control is returned to the next sequential instruction (NSI).

The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

The status of the control operation is unknown.

Programming Considerations

Examples

This macro can be run on any I-stream.

To ensure completion of the control operation, a WAITC macro should be coded
after this macro.

Only the data chain, suppress incorrect length indication, and suspend flags may
be set in the CCW.

During normal processing of this macro the CCW contained in the FARW is not
modified. If an unusual condition is encountered, however, the operation count in
the CCW will be adjusted to reflect the actual number of operations successfully
processed.

When an unusual condition such as end-of-file or end-of-tape is encountered
return is made to the operational program through the system error WAITC return
mechanism. All subsequent 1/O requests are processed normally and are also
flagged appropriately at WAITC return.

None.

494 TPF V4R1 System Macros

TPINC

TPINC-Special Tape Interface

Use this system macro to provide an interface to certain tape control program (CP)
routines for entry control block (ECB)-controlled segments in the tape handling
area. These routines allow the ECB routine to:

* Restart input/output (I/O) operations for a specific tape

* Quiesce /O operations for a specific tape

» Purge I/0O requests for a specific tape to a specific postinterrupt routine
 Initiate a CP-controlled tape switch from active to standby for a specific tape
* Initiate processing to mount an alternate (ALT) tape on the specific device

* Locate an ALT tape when required for a tape switch

» Get blocking buffer for a blocked tape

* Release blocking buffer for a blocked tape.

Required Authorizations
Key0 Restricted System Common Storage
X
Format
(1)
> TPINC——RESTART ><
Liaper (2)
—QUIESCE— OFFLINE
—ENORMAL—
AUXQ—
(1) (2)
—PURGE——, —[ERROR
EOF
(1)
—SWITCH
(1)
—MOUNT
(1)
—FINDALT
(1) (2)
—ACTIVATE ,ABORT
(1)
—GETBUF
(1)
LRELBUF

Notes:

1 symboll

2 symbol2
label

A symbolic name can be assigned to the macro statement.

symboll
An interface function must be specified as symboll. The interface functions are:

System Macros 495

TPINC

RESTART
Restart I/O operations for the specified tape.

QUIESCE
Set appropriate tape status as specified by symbol2 and await completion
of outstanding 1/O operations for the specified tape.

PURGE
Purge all outstanding 1/O requests for the specified tape to the postinterrupt
routine specified by symbol2.

SWITCH

Initiate a tape switch from active to standby for a specified tape.
MOUNT

Initiate processing to mount an ALT tape on the specified device.
FINDALT

Locate an ALT tape for a tape switch when no standby is available.
ACTIVATE

Activate a specific ECB or all ECBs currently on the tape wait list.
GETBUF

Get the blocks required for the buffer of a blocked tape.
RELBUF

Release the blocks from the buffer of a blocked tape.

symbol2

A tape status must be specified as the second parameter when the QUIESCE
function is specified as symboll. A postinterrupt routine must be specified as
the second parameter when the PURGE function is specified as symboll.

The tape statuses for the QUIESCE function are:

OFFLINE
Mark the specified tape offline prior to quiescing the tape.

AUXQ
Mark the specified tape auxiliary queued prior to quiescing the tape.
Auxiliary queued is a term that describes temporary suspension of normal
tape I/O operations due to conditions unique to tape processing. For
example, when an end-of-volume condition is detected for an output tape,
special handling is required to write trailer records, rewind the tape, and
initialize a new tape.

When a tape is auxiliary queued, normal I/O requests are queued but no
I/O is performed. Tape handling routines can force processing, however, by
requesting a bypass of this suspension. An I/O request of this type is said
to be a bypass auxiliary queue request.

NORMAL
Do not alter the status of the specified tape prior to quiescing the tape.

The postinterrupt routines for the PURGE function are:

ERROR
Hardware error post-interrupt routine.

EOF
End-of-file post-interrupt routine.

The option available with the ACTIVATE function is:

496 TPF V4R1 System Macros

TPINC

ABORT
The specified ECB will be removed from the tape wait list and exited.

Entry Requirements

R9 must contain the address of the ECB being processed.
CELTAP must contain the module number of the tape specified by symbol1.

The entry must have seized the tape specified by symboll (that is, CPMTIF must
have been set to X'FF').

Return Conditions

Control is returned to the next sequential instruction (NSI).

The contents of R14 and R15 are unknown. The contents of all other registers
are preserved across this macro call.

The status of the operation is unknown.

If TPINC QUIESCE,NORMAL or TPINC QUIESCE,OFFLINE was coded, then
CE1TIN will have been set to X'FF' Otherwise, CEL1TIN will have been set to
X'00'".

Programming Considerations

This macro can be run only on the main I-stream.

To ensure completion of this operation, a WAITC macro must be issued. Usage
of the WAITC error branch depends on the function specified by symboll as
described below.

A check is made by the tape control program (CP) to ensure that the segment
issuing the macro is an ECB-controlled system segment (that is, the first
character of the segment name is C). If this condition is not met, control is
transferred to the system error routines.

The following considerations are specific to the function specified by symbol1l.
Purge

Any 1/O request for the specified device that is already in progress at the time the
macro is issued will be allowed to complete. Any I/O requests for the specified
device that are not already in progress will be ended without I/O initiation. After
completion of any 1/O operation already in progress, the ECB 1/O counter will be
decremented. No error indicators will be set.

The module queue is considered to have been successfully purged if no I/O
requests have been added to the queue between the time the TPINC PURGE
was issued and the time any 1/O operation already in progress has completed. If
the module queue has not been successfully purged, then the WAITC error
branch will be taken.

If an uncorrectable hardware error occurs for the operation currently in progress,
or if the device is not operational, then the hardware error indicator (CXSGHE) in
the ECB gross error indicator byte will be set and the WAITC error branch will be
taken.

Note: The entry issuing the TPINC PURGE can set the tape name in the tape
status table to YYY to prevent normal queuing of I/O requests for the
device, but this will not inhibit queuing of 1/0 requests from macros using
a tape name of XXX with auxiliary queue bypass. Any 1/O requests which
are queued after the TPINC PURGE is issued must be correctly
processed, that is, if the tape is auxiliary queued when the TPINC PURGE
is issued, then the tape queue must be restarted using TPINC RESTART.

System Macros 497

TPINC

Restart

Following normal completion of the I/O operation already in progress (or
immediately if there is none), the auxiliary queued indicator in the Tape Status
Table will be set off and the ECB 1/0O counter will be decremented. No error
indicators will be set and the WAITC error branch will not be taken.

If an uncorrectable hardware error occurs for the operation currently in progress
or if the device is not operational, then the hardware error indicator (CXSGHE) in
the ECB gross error indicator byte will be set and the WAITC error branch will be
taken.

Quiesce

For NORMAL or OFFLINE status, CELTIN will be set to X'FF' (no auxiliary queue
bypass). For AUXQ status, CELTIN will be set to X'00' (auxiliary queue bypass).

For OFFLINE status the offline indicator in the tape status table will be set,
preventing any further queuing of normal I/O requests for this module. However,
that this will not inhibit I/O requests from auxiliary queue bypass macros using a
tape name XXX. For AUXQ status the auxiliary queued indicator in the tape
status table will be set. For NORMAL status the tape indicators will not be
modified.

Following completion of all I/O requests (or, in the case of AUXQ status, following
completion of all auxiliary queue bypass I/O requests) that were queued at the
time the TPINC QUIESCE was issued, the ECB /O counter will be decremented.
No error indicators will be set.

The module queue is considered to have been successfully quiesced if no I/O
requests have been added to the queue between the time the TPINC QUIESCE
was issued and the time any I/O operation already in progress has completed. If
the module queue has not been successfully quiesced, then the WAITC error
branch will be taken.

If an uncorrectable hardware error occurs for any operation that was queued at
the time the macro was issued or if the device is not operational, then the
hardware error indicator (CSXGHE) in the ECB gross error indicator byte will be
set and the WAITC error branch will be taken.

Switch

The status of the standby tape is checked. If a standby is not available or the
status is found to be unsafe, a search is made for a suitable ALT tape. If an ALT
tape is found, an attempt will be made to convert the ALT tape to a standby tape.

The available standby tape will become the active tape and 1/0O requests queued
for the old active tape will now be queued for the new active tape. If no errors
were encountered during the switch, processing continues at the next sequential
instruction (NSI) with X'00' in R15. The ECB may then exit. The switch will
continue, asynchronously.

If a standby tape could not be found and it was not possible to convert an ALT
tape to a standby, processing continues at the next sequential instruction (NSI)
with X'04" in R15.

498 TPF V4R1 System Macros

Examples

TPINC

If a TPINC SWITCH request is issued while there is DDR recovery in progress
for the tape specified, processing continues at the next sequential instruction with
X'08' in R15.

Mount

The status of the tape is checked. If there is a tape mounted on that device
already, or if the tape status table entry has not been seized, then R15 will
contain X'04' on return from the macro and no mount will be performed.

If there is not a tape already mounted, then X'00" will be returned in R15 and
mount processing for that device will begin to mount an ALT tape. An ECB will be
obtained and control transferred to the tape mount processing segments to
complete the request. The final outcome of the request is unknown.

Findalt

The TLMR entry for the tape mounted on the device specified will be used to
locate a suitable ALT tape to switch to.

If a suitable ALT tape was found, the module number will be returned in R14 and
the TSTB section 1 address will be returned in R15. The TSTB2 entry will also
be seized.

If no suitable tape was found, then R14 will contain X'00'".

Activate

This function will activate an ECB, currently on the tape wait-list. It begins by
scanning the ECBs on the tape wait-list. If an ECB is found waiting for the tape
name specified in EBTTNM, it is removed from the tape wait-list. An $ADPC
macro is issued placing the ECB on the ready-list of the I-stream which originally
placed it on the tape wait-list.

Getbuf

This function gets eight 4 KB blocks to make up the blocking buffer and saves
the block addresses in the tape status table as well as in the buffer block table.

Relbuf
This function deletes the addresses of the eight 4 KB blocks for the block buffer

from the block buffer table and the tape status table and returns them to the TPF
system.

None.

System Macros 499

TYPBC
TYPBC-Obtain Block Type and Size

Use this system macro to obtain the logical block type and logical size of a storage
block in a format suitable for storing in a core block reference word (CBRW).

Format

TYPE=R1
o TYPBC— |] >

|—TYPE=RnJ

TYPE=R1|Rn
This register contains the logical storage block type equate value. RO can not
be assigned. The default is R1. RO is not valid for all calls and R8 through R13
are not valid for E-type calls.

On return the block type and logical size are in this register. Supported types
are:

LO 128-byte block
L1 381-byte block
L2 1055-byte block
L4 4095-byte block.

Entry Requirements
The specified register must contain a valid block type.

Return Conditions

« Control is returned to the next sequential instruction (NSI).

* The register specified in the TYPE parameter contains the logical block type and
the logical size of the storage block in a format suitable for storing in a CBRW.

Programming Considerations
e This macro may be processed on any I-stream.

* The program invoking this macro is not required to be in a privileged mode of
operation. It is not required to change the protect key, since the instructions used
in the inquiry do not modify storage outside the routine’s protect key.

* A system error dump can occur when servicing a TYPBC request. See @

(System Errar and Qffline) for more information.

Examples
None.

500 TPFE V4R1 System Macros

USATC

USATC-Create User Storage Allocation Table Entry

Format

Use this system macro to create an entry in the user storage allocation table
(USAT). The system initializer (CT26) uses the contents of the USAT to carve user
space in main storage. The USAT information is used only when the CCCTIN user
exit is active. The table is mapped by the DSECT IUSAT.

See [TPE System Installation Support Referencd for more information about the

CCCTIN user exit.

»—USATC—I:I! Allocation Parameters i | ><
ND:

Allocation Parameters:

,TAGF=00— —,SIZE=0 ,LOC=HIGH ,ALLOCATE=YES
[[1 [1 []

l—,TAGF=XX— I—,SIZE=n—| I—,L0C=LOW—I l—,ALLOCATE=N0—I

—TAG=ccc

l—, KEYWORD=keywordJ |—, CINFC=in1:erface_ZabelJ

TAG=ccc
Specifies the 3-character dump tag used to identify this area of storage. This
parameter is required.

TAGF=xx
Specifies the 2-hex digit format indicator. This parameter is optional. The default
is 00. The format indicators are described in the code for the DLTEC macro.

SIZE=n
The size, in number of bytes, of the area to be allocated. If size is set to zero,
ALLOCATE is set to NO. The parameter is optional and the default is 0.

The area is allocated by CT26 so that it starts and ends on a 4 KB boundary.
Aligning the area on 4 KB gives users the ability to key protect their tables.

LOC
The location where storage is allocated.

HIGH
Indicates that the area resides in storage above 16 MB.

LOW
Indicates the area resides in storage below 16 MB.
The default is 31BIT.

ALLOCATE=YES|NO
Indicates whether or not the area is to be allocated. ALLOCATE=NO can be
used to define spare USAT slots. The default is YES.

System Macros 501

USATC
Spare table slots allow new user areas to be created by manipulating the table
size using ZAPGM and then reinitializing the TPF system.

KEYWORD=keyword
Specifies the keyword used to identify the area of storage on the IDOTB macro

and the ZIDOT command. The default is no keyword.

CINFC=interface_label
Specifies the label used to identify the associated CINFC entry. The default is

no label. The label must be defined in UCNFEQ.

END
Specifies the end of the USAT build sequence. When specified, this parameter

is the only one invoked; other parameters are ignored.

Note: If the END parameter is not coded, the TPF system interprets material
following proper table entries as though they were also table entries.
This results in unpredictable behavior.

Entry Requirements
None.

Return Conditions
Control is returned to the next sequential instruction (NSI).

Programming Considerations
* Inline code is generated.
* The CINFC tag CMUSER points at the beginning of the table.
* This macro can be run on any I-stream.

Examples
The following example shows three entries being built in an allocation table. The
table created by the three USATC calls is represented by the following.

USAT
CMUSER P
TL1
size 32000
start address
20
TL2
size 40000
0
40
SP1
size 0
0

1. The following call defines and allocates 32 MB of user storage below 16 MB
with a dump tag (TL1), a IDOTB keyword (MYTBL), and a CINFC keyword
(UMMYTBL).

502 TPE V4R1 System Macros

USATC

USATC TAG=TL1, Dump tag TL1
SIZE=32000, 32K user area
LOC=LOW, Allocated below the 16MB
KEYWORD=MYTBL, IDOTB keyword is MYTBL
CINFC=UMMYTBL, Reference label is UMMYTBL

The next call defines a USAT slot above 16 MB but without allocating it. This is
a dummy slot. Such a slot might be used during development that is not ready
to be activated.

USATC TAG=TL2, Dump tag TL2
SIZE=40000, 40K user area
LOC=HIGH, Defined above 16MB
ALLOCATE=NO, But the area is not allocated
KEYWORD=HITBLI, IDOTB keyword is HITBL1
CINFC=UMHITBL1 Label is UMHITBL1

This allocates a spare entry with SP1 as the its tag. When SIZE=0 (the default),
the ALLOCATE parameter is NO.

USATC TAG=SP1 Defines a spare entry

This ends a series of USATC specifications. An END parameter must conclude
the USATC calls.

USATC END Indicates the end of the USAT build

System Macros 503

USRSVC

USRSVC-Generate the User SVC Tables

Format

Use this system macro to create the user indexed supervisor call (SVC) table and
the user entries for the primary SVC table. This macro contains the CRESVC macro
calls but you can modify the macro to contain the new SVCs.

See lCRESVC—Create an SVC/East-Link Table Entry” on page 18d for more
information about the CRESVC macro.

»»—USRSVC—TYPE=—CP <
g
Qu

TYPE
This parameter specifies whether tables or equates should be generated.

CP
CP is used for the table in CCMCDC, and creates the actual primary,
secondary, and fast link tables.

EQU
EQU creates a set of equates for use in CPSEQ and other areas.

Entry Requirements

None.

Return Conditions

None.

Programming Considerations

Examples

e TYPE=CP should only be used in CCMCDC.
* TYPE=EQU should only be used in CPSEQ.

The following set of CRESVC macro invocations define various user SVCs.
* Sample User defined Primary SVCs (USER, USER_V)

CRESVC MACRO=USER1,NUMBER=97,PARMTYP=U,GRPCODE=00,
ROUTINE=A(CPMCIT-CPMAAA),SVCTYPE=USER

CRESVC MACRO=USER2,NUMBER=127,PARMTYP=U,GRPCODE=00,
ROUTINE=A(CPMCIT-CPMAAA) ,SVCTYPE=USER

CRESVC MACRO=USER7,NUMBER=253,PARMTYP=U,GRPCODE=00,
ROUTINE=A(CPMCIT-CPMAAA),SVCTYPE=USER

*

« Sample User defined Indexed SVCs (USER_]I)

*
CRESVC MACRO=USERI1,NUMBER=000,PARMTYP=F,GRPCODE=00,
ROUTINE=A(CPMCIT-CPMAAA) ,ECBSYS=(CE1FA®,CE1SUG+1-CE1FAQ),
PARMLN=10,SVCTYPE=USER_I

504 TPE V4R1 System Macros

USRSVC

CRESVC MACRO=USERI2,NUMBER=001,PARMTYP=F,GRPCODE=00,
ROUTINE=A(CPMCIT-CPMAAA) ,ECBSYS=(CE1FA®,CEISUG+1-CE1FAQ),
PARMLN=10,SVCTYPE=USER_I

System Macros 505

UXITC

UXITC-User Exit Interface Linkage

Use this system macro to generate the linkage to a user exit routine from a user
exit point (UEP) in the control program (CP).

Format

, ISOC=NO
»»—UXITC XP=name |_ _| ><
—|: |—, ISOC=YESJ

,WKREG=R15

CHECK=name—|:,ACTIVE=labell
,NOTACTIVE=ZabeZZ—| I—,WKREG=RXJ

XP=name
This is the name of the user exit, as many as 4 characters. It must satisfy the
requirements described in the DCTUCL DSECT. To add an exit point, its name
must be added to the exit point list array (UEP) and corresponding entries must

be added to the exit point status array (ATT) and to the exit point description
array (DESC).

ISOC

Specifies whether the user exit point is being called from an 1SO-C
environment.

YES

TPF 1SO-C register conventions must be set up by the user. In particular
R13 should be the address of the ISO-C stack.

NO
R9 is restored upon return from the exit. NO is the default.

CHECK=name

This is the name of the user exit, as many as 4 characters, to be checked to
determine if the user exit is active.

ACTIVE=labell
This is a label to branch to if the specified user exit is active.

NOTACTIVE=label2
This is a label to branch to if the specified user exit is not active.

WKREG=RX

This is a register that CHECK parameter processing uses as a work register
when one is required.

Entry Requirements
None.

Return Conditions
None.

506 TPE V4R1 System Macros

UXITC
Programming Considerations

* This macro is only used in the control program (CP) and 1SO-C startup routines
at defined user exit points. If called from ISO-C startup routines, register R9 must
be saved before to the call.

Note: CHECK parameter processing can be used by E-type programs to check
the status of a user exit.

» |-stream considerations do not apply to the UXITC macro.

Examples

The following describes how to check the status of a user exit and call it.

UXITC CHECK=SVC,NOTACTIVE=SKIPEXIT
UXITC XP=SVC
SKIPEXIT DS OH

System Macros 507

WLOGC

WLOGC-Write to the Recovery Log

Format

Use this system macro to permit the transaction manager (TM) and resource
managers (RMs) to control the writing of information to the recovery log. The
recovery log is used by the TPF system in association with TPF transaction
services. Recovery log support is general in nature and is designed to be extended
to support the recovery of additional resources such as message and tape
processing. Application-specific resources can also use the recovery log to become
part of the recoverable resources.

Required Authorizations

Key0 Restricted System Common Storage
X

WAKEUP=WAITERS,BUFFER=RZ
WAKEUP=UNBLOCK:

%WLOGC—ECONTROERX,DATALIST=R} I_ J >
, TMCR=Rz

CONTROL=Rx
A register (R1-R6, R14) that contains the address of the control or header
information that is part of the transaction log record. This parameter is required.

DATALIST=Ry
A register (R1-R6, R14) that contains the address of a list of data elements that
will be written to the transaction log. This parameter is required.

TMCR=Rz
A register (R1-R6, R14) that contains a pointer to the transaction manager
control record (TMCR) associated with this write request. This parameter is
optional and, if not coded, will cause the WLOGC service to calculate the
address of the TMCR.

WAKEUP
This is a special parameter whose use is restricted to the CL22 program. This
parameter permits the CL22 program to link to the WLOGC service routine to
reactivate resources that are waiting. The following resources are processed:

WAITERS
Wake up WLOGC requesters, which are waiting for buffer input/output (1/0)
to be completed.

UNBLOCK
Wake up WLOGC requesters, which are waiting for WLOGC processing to
continue. WLOGC processing is blocked when all buffers are in use.

BUFFER=Rz
A register (R1-R6, R14) that contains a pointer to the buffer associated with the
WAKEUP request. This parameter is required when you code
WAKEUP=WAITERS.

508 TPF V4R1 System Macros

Entry Requirements

WLOGC

* For control program (CP) calls, R9 must point to the ECB that is being processed
unless you coded the TMCR parameter.

* The control area is defined by ILHDR(ICRCT) and requires that the caller initiate

the following fields.

— For Both the ECB-Controlled and CP Program Calls:

Field
ILH_FLAG

ILH_XID
ILH_PROG

Description

A flag field that identifies the set of WLOGC requests
associated with the commit scope and requests services from
the log manager. The following indicators are required.

Indicator Description
ILH_FWR First WLOGC request for the commit scope.
ILH_LWR Last WLOGC request for the commit scope.

Single requests must have both ILH_FWR
and ILH_LWR set on.

Middle requests must have both ILH_FWR
and ILH_LWR set off.

ILH_WAIT Indicates that the log manager is to flush the
current log buffers out to the recovery log and
that the caller wants to wait until all 1/O is
completed successfully.

Commit scope or global transaction ID.

The name of the TM or RM program that will be activated
during log recovery.

— For the CP Program Calls:

Field
ILH_PIA

Description

The postinterrupt address of the RM routine to get control
when WLOGC becomes unblocked.

— For the CP Program Calls With ILH_WAIT Indicated:

Field
ILH_PIA2

ILH_TOK

ILH_PIN

ILH_ISN

Description

The postinterrupt address of the RM routine to get control
when WLOGC /O is completed successfully.

A 4-byte token that will be returned to the postinterrupt
routine, which is defined by ILH_PIA2, on activation.

An index value (processor ordinal number X 4) for the
processor to write to.

The I-stream number on which the postinterrupt routine gets
control.

* The data list is defined by ILRDA(ICRCT) and requires the caller to initialize the

following fields.
Field
ILR_CNT

Description

Count of data items to log with this request. Multiple data items
may exist, giving the RM the ability to log multiple pieces of a
data with one WLOGC call.

System Macros 509

WLOGC

ILR_LEN The length of the data item to log.
ILR_LOC The location of the data item to log.

Return Conditions

Control is returned to the next sequential instruction (NSI).

The contents of RO-R7 are preserved across this macro call.

The condition code (CC) is not preserved across the macro call.

For CP program calls, the macro service routine sets R14 to contain a
hexadecimal return code.

Return Code Meaning

R14=0 The recovery log write has been completed successfully.

R14=-1 The request was rejected; the WLOGC macro is blocked
because of an out-of-buffer condition.

Programming Considerations

This macro can be run from any I-stream.

This macro can be run by both ECB-controlled programs and CP programs.

The amount of data that can be written with one WLOGC request is limited to 32
KB.

The caller loses control when ILH_WAIT is indicated; it will not be reactivated
until I/O is completed successfully on the associated buffer and all buffers before
it.

Reactivation differs depending on the residency of the caller.

— When the caller is E-type code, control is returned at the next sequential
instruction (NSI) after the supervisor call (SVC).

— When the caller is CP code, control is returned to ILH_PIA2 on the indicated
[-stream with the value of ILH_TOK passed back.

- R1 contains the address of a system work block (SWB) with ILH_TOK
stored in location 0. The SWB must be released by the post interrupt
routine.

- R2 contains ILH_PIA2, the address of the post interrupt routine.

Processing can be delayed if a WLOGC request is issued and there are no
buffers available (WLOGC processing is blocked). Processing differs depending
on the residency of the caller:

— When the caller is E-type code, the ECB is forced to wait and the WLOGC
SVC is issued again. The ECB waits until WLOGC processing is unblocked.

— When the caller is CP code, the WLOGC request is rejected and the WLOGC
blocked return code is returned. The caller must suspend processing until it
receives a wakeup call from the log manager. The log manager saves the
passed postinterrupt address and wakes up the caller when WLOGC
processing becomes unblocked.

Return Code Meaning

R1 Contains the address of a system work block (SWB) that must
be released by the post interrupt routine.

R2 Contains ILH_PIA, the address of the post interrupt routine.

510 TPE V4R1 System Macros

WLOGC

Examples
The following is an example of how to write to the recovery log.
WLOGC CONTROL=R2,DATALIST=R3

System Macros 511

WRSTC

WRSTC-Get Load Module Writable Static Data Length

Use this system macro to get the writable static data length from a load module’s

IDSLST.
Required Authorizations
Key0 Restricted System Common Storage
X

Format

IFNONE=nonelabel

FF—m—WRSTC—REG#?X IFANY=anyZabeZ I_ _|
label ,IFNONE=nonelabel

I—,IFANY=cmylabeZ—|

REG=Rx
A register other than RO in which the length of the writable static data is
returned. This is a required input parameter.

IFANY=anylabel
The symbolic name of a label to which control is transfered if writable static
data is present.

IFNONE=nonelabel
The symbolic name of a label to which control is transfered if writable static

data is not present.

Entry Requirements

* A base register must address the IDSLST of the load module for which the
writable static data length is required.

Return Conditions
 If the load module contains writable static data:
— If IFANY=anylabel is specified, control branches to anylabel.
— If IFANY=anylabel is not specified, control is returned to the next sequential

instruction (NSI).

 If the load module does not contain writable static data:
— If IFNONE=nonelabel is specified, control branches to nonelabel.

— If IFNONE=nonelabel is not specified, control is returned to the next
sequential instruction (NSI).

* Register Rx contains the writable static data length. If there is no writable static

data, Rx contains zero.

* The contents of all other registers are preserved across the macro call.
* The condition code (CC) is not preserved across the macro call.

Programming Considerations

512

e This macro can be run from any I-stream.

TPF V4R1 System Macros

WRSTC

* This macro can be run by both ECB-controlled programs and control program
(CP) programs.

Examples
The following example shows how to get a load module’s writable static data length.

kkhkkkkhkkhkkhkkhkhkhkkhhkkhkhkkhhkkhhkhkhhkkhhkkhhkkhhkhkhkkhkhkhkkhhkkhhkhkhhkhkhkkhhkhkhkkhkhkkhkhkkhkkhkhkkhkk**x
* Register R4 points to the beginning of the Toad module. *
kkhkkkkhkkhkhkkhkhkhkkhhkkhkkhkkhhkkhhkhhhkkhhkkhhkkhhkhkhkkhkhkkhhkkhhkhkhkkhkhkkhkhkhkhkkhkhkkhkhkkhkkhkhkkhkk**
IDSLST REG=R4
WRSTC REG=R15,IFNONE=NOSTATIC

R R R R R R R R R R R L S R L R R R AXKXh kA kA hhkhhhhhhhhhhhhhkhk*k KX Xhkhk*kkhhkhkhhhhhhkhkhkhkkx
= If control falls through to here, R15 contains the writable static =
* data Tength. *

B R
NOSTATIC DS OH

AR AR AR A A A A A A A A A A A A A A A AR ARk hhhhhhhhhhhhhhhhhdhdhdhdhkhhhkhhhhkhhdkx%
* If control branches to here, there is no writable static data. RI15 *
* contains zero. *
hhkhkhkhkhhkhkhhhkhhhhhhhhhhdhhhdhhdhdhddhhdhdhdhhhhhhhhhhhhhhhhdhhhhdhhhdhhhhdhkkdkkkx

System Macros 513

YIELDC

YIELDC-Yield Control

Use this system macro to yield control of the processor and allow processing of
other entries. The entry is placed on the specified processor list.

Required Authorizations

Key0 Restricted System Common Storage

X

Format

>

YIELDC READY <
l—label—| |—VCT—I

label
A symbolic name assigned to the macro statement.

READY
Assigns the entry to the ready list. This is the highest priority list available to
which the entry can be assigned. Assigning the entry to this list prevents any
new work from being processed by this I-stream before the entry is dispatched
again. Any entries that are already on the ready list will be allowed to process.

VCT
Assigns the entry to the virtual file access count (VCT) list. This list is used to
delay the processing of an entry until all work on the ready list has been
processed. Any entry on the VCT list is interleaved with new work. Entries on
the VCT list will still be processed even when the system has stopped
processing new work because a shutdown condition (low resource condition)
has occurred.

Entry Requirements

R9 must contain the address of the entry control block (ECB) that is being
processed.

Return Conditions
« Control returns to the next sequential instruction (NSI).

* The contents of register 14 (R14) and register 15 (R15) are unknown. The
contents of all other registers are preserved across this macro call.

¢ The condition code is not saved across this macro call.

Programming Considerations

e Use of this macro should be limited; excessive use macro will cause a low-core
condition in the real-time system.

* This macro can be run on any I-stream.

« After this macro runs, the ECB is added to the specified CPU list. Accordingly,
control can be transferred for processing of another entry.

514 TPF V4R1 System Macros

Examples

YIELDC

Records must not be held by the ECB when the YIELDC macro is issued. If the
entry that is issuing YIELDC is holding a record, a number of entries (also
holding storage blocks) can be queued for that record. This can lead to a lockout
condition.

When you run this macro, the 500-millisecond program timeout is reset.

The macro trace collection for YIELDC compresses multiple occurrences of
YIELDC into two entries. This prevents programs that are issuing successive
YIELDC macros from filling up the macro trace table by keeping only the first and
last YIELDC trace information. In addition to the normal macro trace information,
the first YIELDC trace entry contains a count of suppressed entries.

When it is run during system cycle down, this macro is handled like a DEFRC
macro by the TPF system and the entry is placed on the defer list.

You call YIELDC in order to add the ECB thread to the VCT list.
YIELDC VCT

The output from YIELDC VCT will look similar to the following:

YIELDC VCT
00CBBOOO = YIELDC QPN2 +0AA
050C0000 003880AC 003B 0026 AE405F11 6760BEQ9

You call YIELDC in order to add the ECB thread to the ready list
YIELDC READY

The output from YIELDC READY will look similar to the following:

YIELDC READY
006D9000 * YIELDC QPN2 +1CA
050C0000 003891CC 003B 0026 AE405F1B D887CA00

You call YIELDC in order to add the ECB thread to the VCT list; it loops 5
times:

YIELDC VCT

The output from YIELDC VCT will look similar to the following:

YIELDC VCT
0072A000 = YIELDC QPN2 +18E 000004 ENTRIES SUPPRESSED
050C0000 0038A190 003B 0026 AE405F2B 5414AE02

You call YIELDC in order to add the ECB thread to the ready list; it loops twice:
YIELDC READY

The output from YIELDC READY will look similar to the following:

YIELDC READY
004054A0 ISO1 YIELDC QPN2 +1AA 000001 ENTRIES SUPPRESSED
050C2000 0038CIAC 003B 0026 AE41633E AC6F9CO8

System Macros 515

YIELDC

516 TPE V4R1 System Macros

Index

Special Characters
$ADPC macro 12
$CKMAC macro 14
$CONBC macro 16
$CPUC macro 19
$CRISC macro 22
$DCOLC macro 24
$DISBC macro 27
$FINDC macro 29
$FORKC macro 32
$GCOMC macro 33
$GETBC macro 35
$GETRC macro 38
$GEVAC macro 40
$GIOBC macro 42
$GMNBC macro 44
$GSVAC macro 46
$GSWBC macro 48
$GSYSC macro 50
$GTSTC macro 53
$LCKRC 55
$LOCKC macro 56
$MASKC macro 58
$MONTC macro 61
$MOVEC macro 62
$RCOMC macro 64
$RECVC macro 66
$RELBC macro 68
$RELRC macro 70
$RETRC macro 72
$RIOBC macro 75
$RMNBC macro 77
$RSWBC macro 79
$RSYSC macro 81
$SWSPC macro 84
$TCPLC macro 87
$ULKRC 90
$UNLKC macro 91
$VALEC macro 93
#IPxxx 232

#SBRC macro 94

Numerics

3705 Communications macro 403

A

access recoup descriptor record for recoup 264

Access RIAT Entry macro 407

Access the Record Cache Subsystem Status Table

macro 400

access the subsystem status table (SSST) 400

acquired storage
release 77, 81

Activate or Deactivate C Function Trace for an ECB

macro 221

© Copyright IBM Corp. 1994, 2002

Add a Block to Top of a Dispatch List macro 98
Add an Entry to the Sense Table macro 328

Add Block to the End of a Dispatch List macro 101
Add Work to a List on Specified I-stream macro 12

ADDFC macro 98
ADDLC macro 101
address

conversion 40

conversion between EVM and SVM 276

conversion of EVM to SVM 46

for RNHPT entry 212

get block 48

release 1/0 control block 75

space switch 84

validation for EVM 93
allocation

create storage table 501

of user storage 501
application timeout 428
area deactivation switch

capture switch 373

update switch 373
asynchronous I/O 392
ATA/IATA format telegram 422
authorization

for macro use 14

MOVEC 351

protect key zero

MOVEC 350

authorize macro use 14

B

BACKC macro
data collection for 24
BBEWP macro 104
BBWRT macro 108
BKDx record initialization 306
block
address
get available /0 42
get size 376
getting a CLAW block 255
getting a coupling facility block 254
release storage 64
release system work 79
releasing a CLAW block 397
releasing a coupling facility block 396
return storage 68
type and size
get 500
block address
get 48
block types supported 500
BRSTR macro 113
BSAVE macro 115
BSC message 422
BSCQC macro 117

517

BSTAK macro 118
buffers
flush a record from VFA 241, 246
Build Selective Memory Dump Table macro 289
BXDx records 264

C

C function trace 221
C function trace information for an ECB 431
Call a Secondary Library Routine macro 285
CCSONS DASD services 233
CEBIC macro 122
CF asynchronous queue 218
CFCONC macro 128
CFDISC macro 143
CFISVC macro 146
CFLF asynchronous queue 218
CFRQC macro 148
CFVCTC macro 152
Chain Chase

example 270, 306

scheduler 268

through Prefix Pages macro 366
Chain Chase through Prefix Pages macro 366
Change Addressing Mode macro 347
Change MDBF Subsystem/Subsystem User ID

macro 122

Change Protection Key macro 332
Change the System Mask macro 58
change to another i-stream 467
channel keypoint setup 189
characteristics of file addresses 226
check a list notification vector 152
Check or Modify a List Notification Vector macro 152
Check Symbolic Line Type macro 383
CIO 323
CIO /O processing 405
CIO processing suspend 457
CIO resume 405
CIOSC macro 159
CIOUC macro 161
CLAW API Linkage macro 164
CLAW block type 255
CLAW device support

API linkage 164

code generation 164

get CLAW block type 255

release CLAW block type 397

write a CLAW error log 477
CLAW trace record 477
CLAWCC macro 164
Clean Up Blocks in the CRET macro 399
CLH

ADDLC 101

NUMLC 361

NXTLC 363
CLNKC macro 166
CMB authorization 14
code generation for CLAW API 164
Common Block authorization 14

518 TPF V4R1 System Macros

common |/O processing suspend 457
Common Link to Access Workstation (CLAW) 164
common storage block
get 33
release 64
communicate with processors 435
communication
3705 403
between processors 437
data 381
line management 161
line status 386
Compute File Address macro 228
CONBC
See $CONBC
Connect Block to ECB Virtual Memory macro 16
Connect to a Coupling Facility List or Cache Structure
macro 128
contiguous EVM storage
get 44
control block area lock 304
Control MPIF Device macro 358
Control Program (CP) Call and Link macro 166
Control Program (CP) Rounding macro 172
Control Program (CP) Save Link Data and Set Stack
Pointer macro 448
Control Program (CP) Tape Logging macro 87
Control Program Linkage 1
control record modification 72
control record retrieval 38, 72
Control the TPF System MP Environment macro 369
control transfer 204
convert
EVM address to SVM address 46
ITSTB pointer 197
SVM address to EVM address 40
Convert an EVM Address to an SVM Address
macro 276
Convert EVM Address to SVM Address macro 46
Convert SVM Address to EVM Address macro 40
Convert Tape Status Table Pointer macro 197
core blocks
releasing 117
count queued blocks 361
coupling facility
getting a work block address 254
releasing a work block address 396
Coupling Facility Request macro 148
CP calling routine return 409
CP dsect 168
CP Find a File Record macro 29
CP linkage 166
CP subroutine interface 210
CPDSC macro 168
CPLKC macro 169
CPRND macro 172
CRAS - get file pool address switch 373
CRAS status table 175
CRASC macro 173
CRATC macro 175

create

ECB 204, 467

user storage allocation table 501
create a macro group definition 179

Create a New ECB and Transfer Control macro 204

Create an Asynchronous ECB macro 32

Create an SVC/Fast-Link Table Entry macro 180
Create User Storage Allocation Table macro 501
CREGPC macro 179

CRESVC macro 180

critical message macro 200

CROSC macro 185

Cross Over to Another I-stream macro 22

Cross-Subsystem Access Service Request macro 185

CT26 initialization 501

CTKL macro 189

CVTPC macro 197

CWRTC macro 200

CXELTY tags 384

CXFRC macro 204

Cycle Down Utility CP Interface macro 210
CYDNC macro 210

D

DASD services 233
DAT mode 58
data
collection
control with ZMEAS 24
hook insertion macro 24
control during recoup 264
control for CP 448
movement between EVM and SVM 62, 350
purge from queue 325
transfer
tape 478, 481
data chain transfer
file 237
Data Collection Hook Insertion macro 24
data definition names for GDS
locating 258
data event control block (DECB) 29
DECB DSECT 29
define a macro group 179
Define and Enqueue Resource, Signal Aware
macro 419

Define Stack DSECT for Control Program (CP) Routine

macro 216

descriptor record access for recoup 264

device handler 323

DHASHC macro 212

diagrams for macro models xv

disable C function trace 221

DISBC macro

See $DISBC macro

Disconnect A Block from the ECB Virtual Memory
macro 27

Disconnect from a Coupling Facility List or Cache
Structure macro 143

Dismount a Symbolic Device Address (SDA)
macro 217
dismount an SDA 159
dismount tape 495
dispatch
task 12, 98
dispatch list
count blocks queued 361
management 101
dispatch suspended ECB 219
display file pool counts switch 373
DLCKC macro 214
DLNKC macro 216
DSDAC macro 217
dump
override table
building 296
table 289
Dump Override Table Build macro 296
dynamic address translation mode 58

E

ECB
suspend for /0 349
trace information 431
virtual memory 84
connecting 16
disconnect block 27
ECBLC macro 218
ELLEC macro 219
enable C function trace 221
Enable/Disable Program Event Recording (PER)
macro 371
ENATC macro 221
entry
in the macro information tables 146
ENTxC macros
data collection for 24
error
log for CLAW
TCLAC macro 477
ESFAC macro 226
events
asynchronous /0 392
EVM 84
EVM Address 40
EVM address conversion 276
EVM address to SVM address conversion 46
EVM address validation 93
EVM storage
get contiguous 44
EVM to SVM data movement 62, 350
Example of an IBM indexed SVC: 184
exit interface linkage 506
External interrupts 58

F

FACE interface 228
FACS interface 228

Index

519

FACZC macro 228
fast link macros in macro decoder 146
fast-link macro table
creation 180
FCTLC macro 233
FDCTC macro 237
file
storage activity data collection 24
File a Special Record macro 243
file address
characteristics 226
computation 228
computation for fixed 264
information
getting 218, 226
File Control macro 233
File Data Chain Transfer macro 237
file macro
data collection 24
file record find 29
Find a Special Record macro 249
Find Entry in the Macro Information Tables macro 146
find macro
data collection 24
Find SLST Entry macro 386
Find/File macro 252
fixed file address computation 264
FLFAC macro 241
FLSPC macro 243
Flush a Record from VFA Buffers macro 241, 246
FLVFC 246
FNSPC macro 249
FTSTC macro 252
function trace for C 221
Functional Areas
Area 03B — Recoup
BBEWP 104
BBWRT 108
GROUP 264
INDEX 306
Area 21A — User Exits
UXITC 506

G

GCFBC macro 254
GCLAC macro 255
GCOMC macro
See $GCOMC macro

GDSCC macro 258
General Data Set (GDS) Control macro 258
General Tape Data (GDS)Transfer macro 481
General Tape Data Chain Transfer macro 478
Generate Control Program (CP) DSECT macro 168
Generate IBM SVC and Fast-Link Tables macro 282
Generate Selective Memory Dump Table Entry

macro 293
Generate the User SVC Tables macro 504
Get a Control Record macro 38
Get a Specified CLAW Block Type macro 255
Get a System Work Block (SWB) Address macro 278

520 TPF V4R1 System Macros

Get Address of Next Block Queued on a Dispatch List
macro 363
Get Available I/O Control Block Address macro 42
get common storage block 33
Get Contiguous EVM Stack Storage macro 53
Get Contiguous EVM Storage macro 44
Get Count of Blocks Queued on a Dispatch List
macro 361
Get Coupling Facility Work Block Address macro 254
Get Global Attribute Table Entry macro 302
get hash address for resource name 212
Get Load Module Writable Static Data Length
macro 512
Get Maximum Number of Storage Blocks macro 345
Get next TPF Trace Table Entry macro 367
Get Program Prolog Area (PPA) Functional Name
Information macro 261
get record code check (RCC) reference table 275
Get System Heap Storage macro 50, 279
Get System Work Block Address macro 48
get the unique token for the current transaction 492
GETCC Block Type Verification macro 331
getting
system work block address 48
GFS Parameter Program switch 373
GNAMC macro 261
GROUP macro 264
GRRTC macro 275
GSVAC macro 276
GSWBC macro 278
GSYSC macro 279

H

Halt an 1/0 Operation macro 281
Hash Resource Name macro 212
heap storage
getting 50, 279
releasing 81, 413
high speed transmission for LMT 446
high-performance routing (HPR) support
core blocks
releasing 117
high-speed display message 422
HIOSC macro 281
hook insertion for data collection 24
HPR control message
sending 453
writing 453
HPR support
core blocks
releasing 117

i-stream change 467
I/O block address
get available 42
I/O completion
suspend ECB 349

I/O control block address
release 75
I/O events 392
I/O Interrupt Status Update 214
I/O interrupts 58
I/O operation
resetting 406
I/O Operation
starting 436
I/O processing 405
I/O request
preemptive 378
return from 380
IBMSVC macro 282
ICELOG macro 283
ICLANC macro 285
ICPLOG macro 286
ID shift for SS/SSUs 337
IDATB macro 289
IDATG macro 293
IDOTB macro 296
IDSDEC 29
IFRVTC macro 300
IGATC macro 302
ILCKCB macro 304
INDEX macro 264, 306
indexed SVC 180

Initialize and Reset Communication Lines macro 161

Initiate A Preemptive I/O Request macro 378
insert hook for data collection 24

intercepts for data collection 24

Interface for SIGP Services macro 19
interface to data collection 24

interprocessor communications 437

Interrogate Symbolic Device Address (SDA) Status

macro 326
interrupt processing for CIO 323
Interrupt Status Update 214

Invoke TCP/IP Native Stack Common Service Routine

macro 324
IOBs 218
IOCB address

get 42

release 75
IOIRC macro 323
IPC 437
IPC service 435
IPC Service Request macro 435
IPSDC macro 324
IPURGE macro 325
ISDAC macro 326
ISNSE macro 328
ITSTB pointers 197
IULKCB macro 330
IVTYPE macro 331

K

key 0 61
KeyO authorization 14
KEYCC macro 332

Keypoint Communication Data macro 381
keypoint setup for SLC channels 189
Keypoint Update macro 334

KEYUC macro 334

L

LCPCC macro 335
LEBIC macro 337
LEMIC macro 340
line type checking 383
line type suffixes 384
link data control for CP 448
Link to CP Routines macro 169
linkage
example 1
Linkage 1
linkage for CP 409
linkage for CP routine 166
linkage for user exits 506
linkage routine 94
LLF attention queue 218
LMONC macro 344
LMT high speed transmission 446
Load and Shift SS/SSU ID macro 337
local terminal message 422
Lock a Resource macro 56
lock a VFA exclusive lock 55
lock a VFA shared lock 55
Lock a Virtual File Access (VFA) Shared Lock or
Exclusive Lock macro 55
Lock Control Block Area macro 304
Lock Entry Management Interface macro 340
lock management 219
lock release on WGTA entry 418
Lock resource 214
locked program exit 219
Lockword update 214
log an error for CLAW 477
long life entry detection 219
long running ECB 488
looping program exit 219
low address protect 335

Low Address Protect Set and Restore macro 335

low core dsect 168

M

macro decoder table address 146

macro group definition 179

macro information table entries 146

macro model diagrams xv

macro use authorization 14

main storage record location 264

main storage records 264

MAXBC macro 345

MDBF SSID/SSUID macro 122

memory dump table 289
generating 293

message to terminal 422

message traffic data collection 24

Index

521

miscellaneous SON pool functions switch 373
MODEC macro 347
models of macro invocations xv
modify a control record macro 72
modify a list notification vector 152
Modify Lock and I/O Interrupt Status macro 214
MONTC authorization 14
MONTC macro 348
MONWC macro 349
Mount a Symbolic Device Address (SDA) macro 356
mount an SDA 159
move data between 2 different EVMS 62
move data between EVM and SVM 62, 350
Move Data Between EVM and SVM macro 62, 350
MOVEC macro 350
MPIFC macro 352
MSDAC 356
MSGIN macro
data collection 24
MSPIC macro 358

N

native subchannel communications for 3705 403
NCB directory record
getting ordinal number of 212
network layer packet (NLP)
retransmitting 453
sending 453
writing 453
NSC communication for 3705 403
NUMBC macro 360
number of storage blocks
getting 345
number of storage blocks available 360
NUMLC macro 361
NXTLC macro 363
NXTPC macro 366
NXTRC macro 367

O

Obtain Block Type and Size macro 500
Obtain Common Storage Block macro 33
Obtain Storage Block macro 35
Obtain Symbolic File Address Information macro 226
OMT message 462
ordinal number
for NCB directory record 212
output message queuing 388
override dump bitmap table macro 296

P

path information unit (PIU)
sending 453
writing 453

PAUSC macro 369

PER interrupts 58

PERCC 371

perform subsystem function 392

522 TPE V4R1 System Macros

PFSWC macro 373
PHYBC macro 376
PIO 405
PIOFC macro 378
PIORC macro 380
PIU to SNA NCP data 453
PKEYC macro 381
Place on Queue macro 388
PLNAC macro 383
PLNSC macro 386
PLONC macro 388
pointer conversion for ITSTB 197
pool

FARF address generation 231
pool directory 373
predefined record type names 232
preemptive 1/O request 378
preemptive 1/O return 380
prefix page chain chase 366
presentation services input list queue purge 325
printer message 422
problem state 344
processor communications 437
PROGC macro 390
program activity

ENTxc/BACKC 24
program activity data collection 24
Program Check recovery 66
program prolog area function name information 261
protect low core addresses 335
PSW access 61
Purge Data from Queue macro 325
purge tape operations 495

Q

QASNC macro 392

QGDSQ 394

Query Asynchronous I/0 Event Facility macro 392

Query General Data Set (GDS) Input/Output (I/O)
Queue 394

query general data set device I/O queue macro 394

Query Number of Storage Blocks Available macro 360

gueue data purge 325

gueue manipulation for SLC 443

quiesce tape operations 495

R

railroad tracks xv

RCFBC macro 396

RCLAC macro 397

RCRTC macro 399

RCS device notification 392

RCS status table access 400

RCSSC macro 400

RDCTC macro 403

Read and Process Program Version Record
macro 411

reconcile file pool counts switch 373

record cache subsystem device notification 392

record cache subsystem status table 400
record hold table wait queue 218
Record ID attribute table access 407
record type names 232
records
reading non-TPF 249
writing non-TPF 243
Recoup Descriptor Record Access macro 264
Recoup Descriptor Record Structure macro 306
Recoup Error Item Setup macro 104
recoup keypoint for chain-chasing 266
recoup Logging Item Setup macro 108
recoup pool function switch 373
Recoup Register and Work Area Save macro 115
Recoup Register Restore macro 113
recoup stack area
controlling 118
Recoup Stack macro 118
Recover from Program Check macro 66
Release a Control Record macro 70
Release a Lock on a WGTA Entry macro 418
Release a Specified CLAW Block Type macro 397
Release a System Work Block (SWB) macro 412
Release Acquired Storage macro 77
Release Common Storage Block macro 64
Release Core Blocks That Are Not Attached to an ECB
macro 117
Release Coupling Facility Work Block Address
macro 396
Release Input/Output Control Block (IOCB) Address
macro 75
release storage block 68
Release Storage Block macro 68
Release System Heap Storage macro 81, 413
Release System Work Block macro 79
releasing
I/O control block address 75
Remove |0Bs Associated with an ECB Address
macro 218
Request a Mount, Dismount or Status of an SDA
macro 159
request IPC service 435
Request MPIF Service macro 352
Reset an I/0O Operation macro 406
reset communication lines 161
Reset Pool Function Switch macro 373
Reset Supervisor State (Problem State) macro 344
RESMC macro 405
resource locking 56
resource name hash prime table (RNHPT) entry
obtaining address of 212
restart tape operations 495
Restricted authorization 14
restricted macro authorization 14
resume a suspended ECB 219
Resume Normal CIO I/O Processing macro 405
retrieve a control record macro 72
Retrieve or Modify a Control Record macro 72
Return from CIO Input/Output (I/O) Interrupt Processing
macro 323
Return from PIO I/O Interrupt Processing macro 380

return program information 371
Return Program Information macro 390
Return the Physical Size of a Storage Block
macro 376
Return to CP Calling Routine and Reset Stack Pointer
macro 409
RIAT access 407
RIOBC macro
See $RIOBC macro
RIOSC macro 406
RITID macro 407
RLNKC macro 409
RNHPT entry
obtaining address of 212
ROUTC macro
data collection 24
RPVRC macro 411
RSWBC macro 412
RSYSC macro 413
RVT entry search 415
RVTCC macro 415
RWGTC macro 418

S

SANQC macro 419
save link data and set stack pointer 448
Schedule an ECB to Exit or Resume macro 219
SDA 281, 326
SDA halt and clear /O 406
SDA /O 436
Search CRAS Status Table macro 175
Search RVT Entries macro 415
selective memory dump table
building 289
generating entries 293
Send Control Message to 3270 macro 450
send data to SNA LU 453
Send LMT High Speed Transmission macro 446
Send LU 6.2 Message from OMT macro 462
Send Message to CRAS macro 173
Send Message to Terminal macro 422
SENDC macro 422
data collection 24
service for subsystem access 185
service request for MPIF 352
Set and Test Lethal Utility Switch macro 464
Set C Function Trace Information for an ECB
macro 431
Set Maximum Times to Avoid Application Timeout for an
ECB macro 428
set stack pointer and save link 448
set subsystem mode CCW 392
Set Supervisor State (Monitor Mode) macro 348
Set Supervisor State (Monitor Mode) with PSW Return
macro 61
Set System Mask macro 459
SETOC macro 428
SETTC macro 431
shift SS/SSU IDs 337
SICFC macro 435

Index 523

SIGP services interface 19
SIOSC macro 436
SIPCC macro 437
data collection 24
size
get block 500
size of storage blocks
get 376
SLC Channel Keypoints Setup macro 189
SLC message 422
SLC Queue Handling macro 443
SLC transmission 388
SLCQC macro 443
SLMTC macro 446
data collection 24
SLNKC macro 448
SLST 383
SLST entry
finding 386
SNA I/O
writing 453
SNA NCP from PIU data 453
SNDLC macro 450
SOUTC macro 453
Special Tape Interface macro 495
spin lock 56
SPNDC macro 457
SS/SSU ID shift 337
SSID/SSUID macro 122
SSMMC macro 459
SSST access 400
STA/STP 2314 GFS randomizer switch 373
stack area use
sample 1
stack definition
example 1
stack pointer reset for calls 409
stack storage
get contiguous EVM 53
Standard Linkage Macro Subroutine macro 94
Start an Input/Output (I/O) Operation macro 436
start task 12, 98
status of an SDA 159
STIMC macro 460
STLUC macro 462
storage
get contiguous EVM 44
release acquired 77, 81
system heap 50, 81, 279
storage allocation table creation 501
storage blocks
available 360
connecting 16
disconnecting 27
get 33
get size 376
getting 345
release 64, 68
subsystem access request 185
subsystem id/subsystem user id 122
subsystem status table (SSST) access 400

524 TPF V4R1 System Macros

supervisor state 61, 344, 348, 459
supported block types 500
Suspend ECB, Pending I/O Completion macro 349
suspend long running ECB 488
Suspend Normal CIO Processing macro 457
SVC definition 180
SVC numbers in macro decoder 146
SVM 84
SVM Address 40
SVM address conversion 276
SWCHC macro 464
SWISC macro 467
Switch Address Space macro 84
Switch Entry to Another I-Stream macro 467
SYCON macro 471
symbolic device address (SDA) 281, 436
symbolic device address (SDA) status 326
symbolic file address information
getting 218, 226
symbolic line status table 386
symbolic line type checking 383
syntax diagrams xv
System authorization 14
System Configuration macro 471
system heap storage
getting 50, 279
releasing 81, 413
System Interprocessor/Inter—I|—Stream Communication
macro 437
System Macros
INDEX 306
macros for miscellaneous packages
BBEWP 104
BBWRT 108
GROUP 264
system mask 459
changing 58
system virtual memory (SVM) 84
system work block (SWB)
getting 278
releasing 412
system work block release 79

T

table addess for record ID attributes 407
TANCC macro 473
Tape Control macro 493
tape data transfer 478, 481
tape operation interface 495
tape switch initiation 495
TARGET(TPF) C Language Support Epilog macro 283
TARGET(TPF) C Language Support Prolog macro 286
TASBC macro 475
TASTC macro 476
TCLAC macro 477
TCP/IP native stack
invoking the common service routine 324
TDCTC macro 478
TDTAC macro 481
TERMC macro 485

terminal message 422
Test Input/Output (I/O) Service macro 486
Test RID/RVT address macro 300
threaded processes
ending 485
Time Slice an ECB macro 488
Time-Initiated CP Routine Execution macro 460
timeout 270
TIOSC macro 486
TMSLC macro 488
TMTKC macro 492
TPCNC macro 493
TPINC macro 495
trace information for an ECB 431
transaction anchor table 473
Transaction Anchor Table Control (TANC) macro 473
transfer
file data chain 237
transfer control 204
Transmission Control Protocol/Internet Protocol
(TCP/IP)
CLAWCC macro 164
GCLAC macro 255
RCLAC macro 397
TCLAC macro 477
Turn Off Time Available Supervisor Switch macro 475
Turn on Time Available Supervisor Switch macro 476
TYPBC macro 500
type
get block 500
types of blocks supported 500

U

Unlock a Control Block Area macro 330

unlock a record hold table (RHT) 90

Unlock a Resource macro 91

unlock a virtual file access (VFA) 90

Unlock a Virtual File Access (VFA) or Record Hold Table
(RHT) Lock macro 90

Unlock resource 214

USATC macro 501

User Exit Interface Linkage macro 506

user storage allocation 501

USRSVC macro 504

UXITC macro 506

V

Validate Entry Control Block (ECB) Virtual Memory
(EVM) Address macro 93
Validate Use of Restricted Macro macro 14
validation of EVM addresses 93
VFA 29
VFA buffers
flush a record 241, 246

W

WGTA entry lock release 418
WLOGC 508

work block
release system 79
work block address
get 48
Write a CLAW Error Log macro 477
Write Critical Message to the System Console
macro 200
Write Path Information Unit (PIU) Systems Network
Architecture (SNA) Input/Output (1/0) macro 453
Write to the Recovery Log macro 508
WRSTC 512

Y

Yield Processing macro 514
YIELDC macro 514

Z

ZMEAS data collection control 24

Index

525

526 TPE V4R1 System Macros

File Number: S370/30XX-40
Program Number: 5748-T14

on recycled paper containing 10%

@ Printed in the United States of America
recovered post-consumer fiber.

SH31-0151-13

	Contents
	Tables
	Notices
	Trademarks

	About This Book
	Who Should Read This Book
	How This Book Is Organized
	Conventions Used in the TPF Library
	How to Read the Syntax Diagrams
	Related Information
	IBM Transaction Processing Facility (TPF) 4.1 Books
	Miscellaneous IBM Books
	Online Information

	How to Send Your Comments

	System Macros Introduction
	Control Program (CP) Linkage
	Overview
	Register Defaults
	The Stacks
	Initialization
	DCTSTK Data Area
	User-Defined Area

	Linkage
	Initial Linkage
	Calling Linkage
	Linkage upon Entry to a Routine
	Linkage to Return
	Linkage Notes

	Sample Stack Area Use
	Coding Example for Control Program (CP) Linkage
	Stack Definition Example
	Equates

	System Macros
	$ADPC–Add Work to a List on Specified I-Stream
	$CKMAC–Validate Use of Restricted Macro
	$CONBC–Connect Block to ECB Virtual Memory
	$CPUC–Interface for SIGP Services
	$CRISC–Cross Over to Another I-Stream
	$DCOLC–Data Collection Hook Insertion
	$DISBC–Disconnect A Block from the ECB Virtual Memory
	$FINDC–CP Find A File Record
	$FORKC–Create an Asynchronous ECB
	$GCOMC–Obtain Common Storage Block
	$GETBC–Obtain Storage Block
	$GETRC – Get a Control Record
	$GEVAC–Convert SVM Address to EVM Address
	$GIOBC–Get Available I/O Control Block Address
	$GMNBC–Get Contiguous EVM Storage
	$GSVAC–Convert EVM Address to SVM Address
	$GSWBC–Get System Work Block Address
	$GSYSC–Get System Heap Storage
	$GTSTC–Get Contiguous EVM Stack Storage
	$LCKRC–Lock a Virtual File Access (VFA) Shared Lock or Exclusive Lock
	$LOCKC–Lock a Resource
	$MASKC–Change the System Mask
	$MONTC–Set Supervisor State (Monitor Mode) with PSW Return
	$MOVEC–Move Data Between EVM and SVM
	$RCOMC–Release Common Storage Block
	$RECVC–Recover from Program Check
	$RELBC–Release Storage Block
	$RELRC – Release a Control Record
	$RETRC – Retrieve or Modify a Control Record
	$RIOBC–Release Input/Output Control Block (IOCB) Address
	$RMNBC–Release Acquired Storage
	$RSWBC–Release System Work Block
	$RSYSC–Release System Heap Storage
	$SWSPC–Switch Address Space
	$TCPLC–Control Program (CP) Tape Logging
	$ULKRC–Unlock a Virtual File Access (VFA) or Record Hold Table (RHT) Lock
	$UNLKC–Unlock a Resource
	$VALEC–Validate Entry Control Block (ECB) Virtual Memory (EVM) Address
	#SBRC–Standard Linkage Macro Subroutine
	ADDFC–Add a Block to the Top of a Dispatch List
	ADDLC–Add Block to the End of a Dispatch List
	BBEWP–Recoup Error Item Setup
	BBPDH–Recoup Record Find and Count Interface
	BBWRT–Recoup Logging Item Setup
	BRPRO–Query Recoup Options
	BRSTR–Recoup Register and Entry Control Block (ECB) Work Area Restore
	BSAVE–Recoup Register and Work Area Save
	BSCQC–Release Core Blocks That Are Not Attached to an ECB
	BSTAK–Recoup Stack
	BSYNC–Recopy SYNCC Facility
	CEBIC–Change MDBF Subsystem/Subsystem User ID
	CFCONC–Connect to a Coupling Facility List or Cache Structure
	CFDISC–Disconnect from a Coupling Facility List or Cache Structure
	CFISVC–Find Entry in the Macro Information Tables
	CFRQC–Coupling Facility Request
	CFVCTC–Check or Modify a List Notification Vector
	CIOSC–Request a Mount, Dismount or Status of an SDA
	CIOUC–Initialize and Reset Communication Lines
	CLAWCC–CLAW API Linkage
	CLNKC–Control Program (CP) Call and Link
	CPDSC–Generate Control Program (CP) DSECT
	CPLKC – Link to CP Routines
	CPRND–Control Program (CP) Rounding
	CRASC–Send Message to CRAS
	CRATC–Search CRAS Status Table
	CREGPC–Create a Macro Group Definition
	CRESVC–Create an SVC/Fast-Link Table Entry
	CROSC–Cross-Subsystem Access Service Request
	CTKL–SLC Channel Keypoints Setup
	CVTPC–Convert Tape Status Table Pointer
	CWRTC–Write Critical Message to the System Console
	CXFRC–Create a New ECB and Transfer Control
	CYDNC–Cycle Down Utility CP Interface
	DHASHC–Hash Resource Name
	DLCKC–Modify Lock and I/O Interrupt Status
	DLNKC–Define Stack DSECT for Control Program (CP) Routine
	DSDAC–Dismount a Symbolic Device Address (SDA)
	ECBLC–Remove IOBs Associated with an ECB Address
	ELLEC–Schedule an ECB to Exit or Resume
	ENATC–Activate or Deactivate C Function Trace for an ECB
	ESFAC–Obtain Symbolic File Address Information
	FACZC–Compute File Address
	FCTLC–File Control
	FDCTC–File Data Chain Transfer
	FLFAC–Flush a Record from VFA Buffers
	FLSPC–File a Special Record
	FLVFC–Flush a Record from VFA Buffers
	FNSPC–Find a Special Record
	FTSTC–Find/File
	GCFBC–Get Coupling Facility Work Block Address
	GCLAC–Get a Specified CLAW Block Type
	GDSCC–General Data Set (GDS) Control
	GNAMC–Get Program Prolog Area (PPA) Functional Name Information
	GROUP–Recoup Descriptor Record Access
	GRRTC–Get Record Code Check (RCC) Reference Table
	GSVAC–Convert an EVM Address to an SVM Address
	GSWBC–Get a System Work Block (SWB) Address
	GSYSC–Get System Heap Storage
	HIOSC–Halt an I/O Operation
	IBMSVC–Generate IBM SVC and Fast-Link Tables
	ICELOG–TARGET(TPF) C Language Support Epilog
	ICLANC–Call a Secondary Library Routine
	ICPLOG–TARGET(TPF) C Language Support Prolog
	IDATB–Build Selective Memory Dump Table
	IDATG–Generate Selective Memory Dump Table Entry
	IDOTB–Dump Override Table Build
	IFRVTC–Test RID/RVT Address
	IGATC–Get Global Attribute Table Entry
	ILCKCB–Lock a Control Block Area Macro
	INDEX–Recoup Descriptor Record Structure
	IOIRC–Return from CIO Input/Output (I/O) Interrupt Processing
	IPSDC–Call TCP/IP Native Stack Common Service Routine
	IPURGE–Purge Data from Queue
	ISDAC–Interrogate Symbolic Device Address (SDA) Status
	ISNSE–Add an Entry to the Sense Table
	IULKCB–Unlock a Control Block Area
	IVTYPE–GETCC Block Type Verification
	KEYCC–Change Protection Key
	KEYUC–Keypoint Update
	LCPCC–Low Address Protect Set and Restore
	LEBIC–Load and Shift SS/SSU ID
	LEMIC–Lock Entry Management Interface
	LMONC–Reset Supervisor State (Problem State)
	MAXBC–Get Maximum Number of Storage Blocks
	MODEC–Change Addressing Mode
	MONTC–Set Supervisor State (Monitor Mode)
	MONWC–Suspend ECB, Pending I/O Completion
	MOVEC–Move Data Between EVM and SVM
	MPIFC–Request MPIF Service
	MSDAC–Mount a Symbolic Device Address (SDA)
	MSPIC–Control MPIF Device
	NUMBC–Query Number of Storage Blocks Available
	NUMLC–Get Count of Blocks Queued on a Dispatch List
	NXTLC–Get Address of Next Block Queued on a Dispatch List
	NXTPC–Chain Chase through Prefix Pages
	NXTRC–Get next TPF Trace Table Entry
	PAUSC–Control System MP Environment
	PERCC–Enable/Disable Program Event Recording (PER)
	PFSWC–Reset Pool Function Switch
	PHYBC–Return Physical Size of Storage Block
	PIOFC–Initiate a Preemptive I/O Request
	PIORC–Return from PIO I/O Interrupt Processing
	PKEYC–Keypoint Communication Data
	PLNAC–Check Symbolic Line Type
	PLNSC–Find SLST Entry
	PLONC–Place on Queue
	PROGC–Return Program Information
	QASNC–Query Asynchronous I/O Event Facility
	QGDSQ–Query General Data Set (GDS) Input/Output (I/O) Queue
	RCFBC–Release Coupling Facility Work Block Address
	RCLAC–Release a Specified CLAW Block Type
	RCRTC–Clean Up Blocks in the CRET
	RCSSC–Access the Record Cache Subsystem Status Table
	RDCTC–3705 Communications
	RESMC–Resume Normal CIO I/O Processing
	RIOSC–Reset an I/O Operation
	RITID–Access RIAT Entry
	RLNKC–Return to CP Calling Routine and Reset Stack Pointer
	RPVRC–Read and Process Program Version Record
	RSWBC–Release a System Work Block (SWB)
	RSYSC–Release System Heap Storage
	RVTCC–Search RVT Entries
	RWGTC–Release a Lock on a WGTA Entry
	SANQC–Define and Enqueue Resource, Signal Aware
	SENDC–Send Message to Terminal
	SETOC–Set Maximum Times to Avoid Application Timeout for an ECB
	SETTC–Set C Function Trace Information for an ECB
	SICFC–IPC Service Request
	SIOSC–Start an Input/Output (I/O) Operation
	SIPCC–System Interprocessor/Inter-I-Stream Communication
	SLCQC–SLC Queue Handling
	SLMTC–Send LMT High Speed Transmission
	SLNKC–Control Program (CP) Save Link Data & Set Stack Pointer
	SNDLC–Send Control Message to 3270
	SOUTC–Write Path Information Unit (PIU) Systems Network Architecture (SNA) Input/Output (I/O)
	SPNDC–Suspend Normal CIO Processing
	SSMMC–Set System Mask
	STIMC–Time-Initiated CP Routine Execution
	STLUC–Send LU 6.2 Message from OMT
	SWCHC–Set and Test Lethal Utility Switch
	SWISC–Switch Entry to Another I-Stream
	SYCON–System Configuration
	TANCC–Transaction Anchor Table Control (TANC)
	TASBC–Turn Off Time Available Supervisor Switch
	TASTC–Turn on Time Available Supervisor Switch
	TCLAC–Write a CLAW Error Log
	TDCTC–General Tape Data Chain Transfer
	TDTAC–General Tape Data (GDS) Transfer
	TERMC-Kill a Threaded Process
	TIOSC–Test Input/Output (I/O) Service
	TMSLC–Time Slice an ECB
	TMTKC–Get the Unique Token for the Current Transaction
	TPCNC–Tape Control
	TPINC–Special Tape Interface
	TYPBC–Obtain Block Type and Size
	USATC–Create User Storage Allocation Table Entry
	USRSVC–Generate the User SVC Tables
	UXITC–User Exit Interface Linkage
	WLOGC–Write to the Recovery Log
	WRSTC–Get Load Module Writable Static Data Length
	YIELDC–Yield Control

	Index

