
Transaction Processing Facility

Transmission Control Protocol/Internet
Protocol
Version 4 Release 1

SH31-0120-12

���

Transaction Processing Facility

Transmission Control Protocol/Internet
Protocol
Version 4 Release 1

SH31-0120-12

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page xvii.

Thirteenth Edition (June 2002)

This is a major revision of, and obsoletes, SH31-0120-11 and all associated technical newsletters.

This edition applies to Version 4 Release 1 Modification Level 0 of IBM Transaction Processing Facility, program
number 5748-T14, and to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. Address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . xiii

Tables . xv

Notices . xvii
Trademarks . xvii

About This Book . xix
Before You Begin . xix
Who Should Read This Book xix
How This Book Is Organized. xix
Conventions Used in the TPF Library xx
Related Information . xxi

IBM Transaction Processing Facility (TPF) 4.1 Books. xxi
IBM Transmission Control Protocol/Internet Protocol (TCP/IP) Books xxi
IBM Common Link Access to Workstation (CLAW) Books xxi
IBM 3172 Interconnect Controller Books xxi
Online Information . xxii

How to Send Your Comments xxii

Part 1. TCP/IP Support Overview. 1

Networking Protocols Introduction 3
TPF System Support of Transmission Control Protocol/Internet Protocol 3

TCP/IP Native Stack Support 4

TCP/IP Network Overview . 7
Network Requirements . 7

Industry-Standard Transport Application Programming Interface (API) 7
Open Network Connectivity . 7
Client/Server Environment . 7
Enhanced Role in the Internet 7
Porting Socket Applications . 7

Part 2. TCP/IP Offload Support. 9

TCP/IP Internals . 11
IBM 3172 Model 3 Interconnect Controller Overview 11
Configuration Characteristics of TCP/IP Offload Devices. 12
Data Flow between the Offload Device and the TPF System 12
Sample Transmission Control Protocol/Internet Protocol Network 13
Components of TCP/IP Support. 16
Outbound Message Flow through the Socket/CLAW Interfaces 17
Inbound Message Flow through the Socket/CLAW Interfaces 18
Nonsocket User Exits . 20

Nonsocket Activation . 20
Nonsocket Connect . 20
Nonsocket Deactivation. 20
Nonsocket Message . 21

TPF Control Block Structures 23
CLAW Device Table (CDT) and Related Control Block Structures 23

© Copyright IBM Corp. 1996, 2002 iii

||

Contents of the CLAW Device Table 23
Related Control Block Structures 23

Determining the Value for the CLAWADP Parameter 23
File Descriptor Table and Related Control Block Structures. 24

Contents of the File Descriptor Table 24
Related Control Block Structures 24

Determining the Value for the CLAWFD Parameter 25
Internet Protocol Address Table 25

Contents of the Internet Protocol Address Table 26
Related Control Block Structures 26

Determining the Value for the CLAWIP Parameter 26
Maximum Value for the IP Parameter. 26

Storage Considerations . 26
SNAKEY Parameters . 27
Miscellaneous Control Block Structures 27
Socket Thread Control Blocks 27
Calculating the Approximate Total Number of TCP/IP Bytes 27
Example Calculating the Approximate Total Number of TCP/IP Bytes 27

Tuning and Performance . 28

Operator Procedures for TCP/IP Offload Support 29
Configuring a TCP/IP System 29
Defining the CLAW Host Name 29

Considerations for IBM 3172 Model 3 Interconnect Controllers 29
Defining CLAW Workstations for a TPF Host Processor 29

Considerations for IBM 3172 Model 3 Interconnect Controllers 30
Activating and Deactivating CLAW Workstations. 30
Displaying Information about TCP/IP Support 31
Deleting a CLAW Workstation 31
Moving a CLAW Workstation from One TPF Host Processor to Another 31
Performing a Hardware Switchover 32
Using the CLAW Data Trace Function 32

Starting the CLAW Data Trace Function. 32
Stopping the CLAW Data Trace Function 32

Using the CLAW Process Trace Function 33
Starting the CLAW Process Trace Function 33
Stopping the CLAW Process Trace Function 33

Resetting the ZCLAW Command Lock 33

Part 3. TCP/IP Native Stack Support . 35

TCP/IP Native Stack Support Internals 39
TCP/IP Layers . 39
Using CDLC IP Routers . 41

Configuration Characteristics of CDLC IP Routers 41
Data Flow between the CDLC IP Router and the TPF System 41
Sample TCP/IP Networks . 41

Using OSA-Express Support . 43
Configuration Characteristics of the OSA-Express Card 43
Data Flow between the OSA-Express Card and the TPF System 44

Components of TCP/IP Native Stack Support. 44
Policy Agent . 46
Outbound Message Flow . 46

Outbound Message Flow for CDLC 47
Outbound Message Flow for OSA-Express 48

Inbound Message Flow . 48

iv TPF V4R1 TCP/IP

||

TPF Control Block Structures 51
Socket Block Table Structure . 51

Defining the Socket Block Table 51
CDLC IP Configuration Record 51

Defining the CDLC IP Network Configuration 52
CDLC IP CCW Area Table. 52

Defining CDLC IP CCW Area Table Resources 52
OSA Configuration Record . 52
OSA Control Block Table . 52
OSA Shared IP Address Table 52
OSA Read Buffers . 53

Defining OSA Read Buffers 53
IP Message Table . 53

Defining the IP Message Table 54
IP Routing Table . 54

Defining the IP Routing Table 54
Tuning TCP/IP Native Stack Support 54

Tuning Major Control Block Structures 55
Tuning the IP over CDLC Link Layer 55
Tuning the IP Network . 55

Performance . 56
TCP/IP Network Configurations 56

Selecting the Local IP Address 56
Defining Gateways . 58

Operator Procedures for TCP/IP Native Stack Support 59
Configuring a TPF System . 59
Enabling TCP/IP Native Stack Support 60
Local IP Addresses . 60

Default Local IP Address . 61
Maximum Packet Size . 61

Types of TPF Local IP Addresses 62
CDLC Addresses . 62
Real OSA IP Addresses . 63
Virtual IP Addresses (VIPAs) 63

CDLC IP Connections . 65
Defining CDLC IP Connections 65
Activating and Deactivating CDLC IP Routers 65
Deleting CDLC IP Routers. 66

OSA-Express Connections . 66
Defining OSA-Express Cards to the Processor 66
Defining OSA-Express Connections to TPF 67
Activating and Deactivating OSA-Express Connections 67
Displaying OSA-Express Connections 67
Deleting OSA-Express Connections 67

Gateways . 68
Routing Information Protocol 68

How Network and Processor Failures Affect VIPAs. 68
Swinging VIPAs to an Alternate OSA-Express Connection 68
Moving VIPAs from One Processor to Another 68
Workload Balancing Using Movable VIPAs. 69

Configuration Examples . 71
Managing IP Routing Table Entries 74
Displaying TCP/IP Native Stack Support 75
Starting and Stopping the IP Trace Function 75
Displaying IP Trace Information 75

Contents v

Using the Individual IP Trace Function 76
Displaying Individual IP Trace Tables 77
Deactivating Sockets. 77
Displaying Socket Control Block Information 78

Socket Application Design Considerations 79
Sharing Sockets . 79
Using Existing Socket Applications. 79
New Socket Options Supported 80

Send Buffer and Receive Buffer Sizes 80
Timeouts . 81
Low-Water Marks . 81
activate_on_accept API . 82

Local Sockets . 82

Simple Network Management Protocol Agent Support 85
SNMP Overview . 85

SNMP Manager . 85
SNMP Agent. 85
Management Information Base (MIB). 85
Interaction between SNMP Components 86

Protocol Data Units (PDUs) . 87
Structure and Fields of SNMP PDUs 87

TPF SNMP Agent Support. 89
Implementing Management Information Base-II (MIB-II) 90

Processing SNMP Requests . 91
Message Processing . 91
User MIB Variables . 93

SNMP Traps . 93
Installing TPF SNMP Agent Support 96

Installing and Defining TPF TCP/IP Native Stack Support 96
Installing the SNMP Agent. 96
Creating the SNMP Configuration File 96
Coding the UCOM and UMIB User Exits 98
Defining and Starting the SNMP Agent Server 98
Defining IP Routing Table Entries 99
Defining the TPF System to the SNMP Manager 99

Domain Name System Support 101
DNS Server . 101

TPF Host Name Table . 101
IP Address Selection . 102

DNS Client . 103

Internet Security . 105
Denial-of-Service Attacks. 105
Packet Filtering . 105

Packet Filtering Rules File Syntax 106
Considerations for Packet Filtering Rules 108
Examples of Packet Filtering Rules 108
Problem Diagnosis . 109

TCP/IP Network Services Database Support 111
Quality of Service . 111
Data Collection and Reduction. 112

Message Counts by Application 112

vi TPF V4R1 TCP/IP

||
||
||
||
||
||
||

||
||
||
||

TCP/IP Network Services Database File 113
TCP/IP Network Services Database File Syntax 113
TCP/IP Network Services Database File Example. 114

Part 4. Socket Application Programming Interface Overview. 117

Socket Overview . 119
Sockets . 119

Types of Sockets Supported by TCP/IP 119
Socket Address for the Internet Domain 119

Port Numbers . 120
Standard Dotted Decimal Formats 120

Mapping Address Parts . 120
Integer Byte Order Conversion 120

Blocking and Nonblocking . 121
Out-Of-Band Data . 121
TPF Socket Application Programming Interface (API) Support 122

Socket API Functions Using TCP/IP Offload Support 122
Socket API Functions Using TCP/IP Native Stack Support 122

Socket User Exits . 122
Socket Accept for TCP/IP Offload Support 123
Socket Activation. 123
Socket Connect . 123
Socket Cycle-Up When Using TCP/IP Offload Support 123
Socket Deactivation. 123
Socket System Error . 124
TCP/IP Native Stack Support Accept Connection 124
Select TCP/IP Support . 124
Socket Cycle-Up When Using TCP/IP Native Stack Support 124

Full-Duplex Socket Support . 124
Using activate_on_receipt . 125
Socket Sweeper Support to Close Inactive Sockets 125

Sample Socket Sessions . 127
Function Calls Used in a Sample TCP Session 127
Using the activate_on_receipt Function Call 129
Function Calls Used in a Sample UDP Session 131
Main Socket Function Calls . 132

Socket Application Programming Interface Functions Reference 137
General Function Information 137
accept — Accept a Connection Request 138
activate_on_accept — Activate a Program When the Client Connects 141
activate_on_receipt — Activate a Program after Data Received 144
activate_on_receipt_with_length — Activate a Program after Data of Specified

Length Received . 148
bind — Bind a Local Name to the Socket. 152
close — Shut Down a Socket 155
connect — Request a Connection to a Remote Host 157
gethostbyaddr — Get Host Information for IP Address 160
gethostbyname — Get IP Address Information by Host Name 162
gethostid — Return Identifier of Current Host 164
gethostname — Return Host Name 166
getpeername — Return the Name of the Peer 168
getservbyname — Get Server Port by Name 170
getservbyport — Get Server Name by Port 172

Contents vii

||
||
||

||

||
||

getsockname — Return the Name of the Local Socket 174
getsockopt — Return Socket Options 176
htonl — Translate a Long Integer. 180
htons — Translate a Short Integer 181
inet_addr — Construct Internet Address from Character String 182
inet_ntoa — Return Pointer to a String in Dotted Decimal Notation 184
ioctl — Perform Special Operations on Socket 185
listen — Complete Binding, Create Connection Request Queue 189
ntohl — Translate a Long Integer. 191
ntohs — Translate a Short Integer 192
read — Read Data on a Socket 193
recv — Receive Data on a Connected Socket 196
recvfrom — Receive Data on Connected/Unconnected Socket 199
recvmsg — Receive Message on Connected/Unconnected Socket 202
select — Monitor Read, Write, and Exception Status 205
send — Send Data on a Connected Socket 206
sendmsg — Send Message on a Socket 210
sendto — Send Data on an Unconnected Socket 212
setsockopt — Set Options Associated with a Socket. 216
shutdown — Shut Down All or Part of a Duplex Connection 220
sock_errno — Return the Error Code Set by a Socket Call 222
socket — Create an Endpoint for Communication. 223
write — Write Data on a Connected Socket 226
writev — Write Data on a Connected Socket 229

Part 5. Operator Procedures for Internet Server Applications 233

Operator Procedures for the Internet Daemon 235
Internet Daemon . 235

Internet Daemon Configuration File 235
Internet Daemon Control . 236

Internet Server Application . 237
Internet Server Application Control 238

Trivial File Transfer Protocol (TFTP) Server 239
Adding the Trivial File Transfer Protocol (TFTP) Server. 239
Directives for the TFTP Configuration File 240
Creating the TFTP Configuration File 241
Transferring and Maintaining the TFTP Configuration File 241

File Transfer Protocol (FTP) Server 243
FTP Server LOG File . 243
Adding the File Transfer Protocol (FTP) Server 243

Syslog Daemon . 245
Files . 245
Syslog Daemon Configuration File 246

Modifying the Syslog Daemon Configuration File 249
Adding the Syslog Daemon Server 249
Operating the Syslog Daemon 250

Starting the Syslog Daemon 250
Stopping the Syslog Daemon 250
Offloading Log Files . 251

Diagnosing Syslog Daemon Configuration Problems. 251
Application Considerations . 251

viii TPF V4R1 TCP/IP

TPF Internet Mail Server Support 253
TPF Internet Mail Server Overview 253

Mail Database Layout . 255
Recoup Considerations for the Mail Database 258
TPF Internet Mail Server Configuration Files 259

SMTP Configuration File Parameters 259
IMAP/POP Configuration File Parameters 262
TPF Configuration File Parameters 263
Access List Configuration Parameters 264

TPF Internet Mail Server Administrator or Operator Tasks. 265
Configuring the TPF System for TPF Internet Mail Server Support 265
Adding a Domain to an Existing TPF Internet Mail Server Configuration 267
Adding New Users to an Existing TPF Internet Mail Server Configuration 268
Controlling the TPF Internet Mail Servers 268
Managing Client Mailboxes 269

TPF Internet Mail Server Client Tasks 269

Part 6. Secure Sockets Layer (SSL) Support 271

Secure Sockets Layer (SSL) Support 273
SSL_accept . 274
SSL_aor . 275
SSL_check_private_key . 277
SSL_connect . 279
SSL_CTX_check_private_key 280
SSL_CTX_free . 281
SSL_CTX_load_and_set_client_CA_list 282
SSL_CTX_load_verify_locations 283
SSL_CTX_new . 285
SSL_CTX_new_shared . 287
SSL_CTX_set_cipher_list . 289
SSL_CTX_set_client_CA_list 292
SSL_CTX_set_default_passwd_cb_userdata 293
SSL_CTX_set_verify . 294
SSL_CTX_use_certificate_chain_file 296
SSL_CTX_use_certificate_file 298
SSL_CTX_use_PrivateKey_file 300
SSL_CTX_use_RSAPrivateKey_file 302
SSL_free . 304
SSL_get_cipher . 305
SSL_get_error . 307
SSL_get_peer_certificate. 309
SSL_get_session . 310
SSL_get_verify_result . 311
SSL_get_version. 313
SSL_library_init . 314
SSL_load_and_set_client_CA_list 315
SSL_load_client_CA_file . 316
SSL_new . 317
SSL_pending . 318
SSL_read . 319
SSL_renegotiate . 320
SSL_set_cipher_list. 321
SSL_set_client_CA_list . 324
SSL_set_fd . 325
SSL_set_session . 326

Contents ix

SSL_set_verify . 327
SSL_shutdown . 329
SSL_use_certificate_file . 330
SSL_use_PrivateKey_file. 332
SSL_use_RSAPrivateKey_file 333
SSL_write . 334
SSLv2_client_method . 335
SSLv2_server_method . 336
SSLv23_client_method . 337
SSLv23_server_method . 338
SSLv3_client_method . 339
SSLv3_server_method . 340
TLSv1_client_method . 341
TLSv1_server_method . 342

Appendix A. CLAW Trace Postprocessor 343
Sample JCL for the CLAW Data Trace Postprocessor 343
CLAW Data Trace Postprocessor. 344
Sample JCL for the CLAW Process Trace Postprocessor 350
CLAW Process Trace Postprocessor 350

Appendix B. ISO-C Structures Called by Socket API Functions 363
Structures Defined in the socket.h Header File 363
Additional Structures . 363

Appendix C. Socket Error Return Codes 365

Appendix D. Sample Application Driver Code 367
activate_on_receipt Transmission Control Protocol (TCP) Server 367
activate_on_receipt Transmission Control Protocol (TCP) Child Server 369
Transmission Control Protocol (TCP) Server 371
Transmission Control Protocol (TCP) Client 373
User Datagram Protocol (UDP) Server. 376
User Datagram Protocol (UDP) Client 378

Appendix E. TCP/IP Restricted CLAW C Functions: Reference 385
claw_accept — Accept a CONNECT Request from the Workstation 386
claw_closeadapter — Terminate CLAW Activity on Subchannel Pair 388
claw_connect — Initiate a Request to Open a Logical Link 390
claw_disconnect — Remove a Logical Link from an Adapter. 393
claw_end — Terminate All CLAW Activity 395
claw_initialization — Prepare for CLAW Activity 396
claw_openadapter — Initialize an Adapter 397
claw_query — Get the Status of CLAW Adapter or Logical Links 400
claw_send — Send a Message on an Active Logical Link 403
CLAW Return Codes . 405

Appendix F. Using the Internet Protocol Trace Facility. 407
About the IP Trace Table . 407
Starting the IP Trace Facility and Specifying Which Data to Trace. 407
Stopping the IP Trace Facility 408
Defining How Much Data to Store in the IP Trace Table 408
Writing the IP Trace Table to a Real-Time Tape 409
Displaying Information about the IP Trace Facility. 409
Displaying the IP Trace Table Online 409

Creating a Compacted Display of the IP Trace Table 410

x TPF V4R1 TCP/IP

Creating a Formatted Display of the IP Trace Table 410
Using the Offline IPTPRT Utility to Create an IPTPRT Report 410

Sample JCL for the IPTPRT Utility 411
Defining the IPTPRT Report 411
IPTPRT Messages . 421

Including the IP Trace Table in System Error Dumps 421

Appendix G. Management Information Base Variables 423
MIB Variable Types . 423

Index . 429

Contents xi

xii TPF V4R1 TCP/IP

Figures

1. TCP/IP Sample Computer Network . 4
2. TCP/IP Native Stack Support Sample Computer Network Using Channel Data Link Control (CDLC) 5
3. TCP/IP Native Stack Support Sample Computer Network Using the OSA-Express Interface. . . . 6
4. TCP/IP Native Stack Support Sample Computer Network Using Combined CDLC and

OSA-Express Interfaces. 6
5. Two IBM 3172 Model 3 Interconnect Controller Offload Devices Connected to a Host Transaction

Processing Facility Processor . 12
6. TPF Implementation of the IBM 3172 Model 3 Interconnect Controller with the Offload Program 13
7. Network Overview . 15
8. TCP/IP Support Components Overview . 16
9. Outbound Message Flow . 18

10. Inbound Message Flow . 19
11. TCP/IP Layers . 39
12. TCP/IP Layers with OSA-Express Support . 40
13. One TPF Host Connected to One IP Network . 42
14. Three TPF Hosts Connected to Two IP Networks 43
15. TCP/IP Native Stack Support Components . 45
16. TCP/IP Native Stack Support Sample Computer Network Using OSA-Express with Static and

Movable VIPAs . 72
17. TCP/IP Native Stack Support Sample Computer Network Using OSA-Express with Swinging

VIPAs . 73
18. TCP/IP Native Stack Support Sample Computer Network Using OSA-Express with Movable VIPAs 74
19. Interaction between SNMP Components . 86
20. SNMP Agent Sending a Trap Message. 87
21. IPTPRT Report Example . 110
22. /etc/services File Example . 115
23. Sample Socket Session Using TCP Protocol . 128
24. Using the activate_on_receipt Function Call . 130
25. Sample Socket Session Using UDP Protocol . 131
26. Relationship of the Internet Daemon Monitor and Internet Daemon Listeners 237
27. Syslog Daemon Operation . 245
28. Sample /etc/syslog.conf File . 248
29. TPF Internet Mail Server Overview . 254
30. TPF Internet Mail Server Database — Accessing Mail 255
31. TPF Internet Mail Server Database — Accepting and Delivering Mail 257
32. Sample JCL for the CLAW Data Trace Postprocessor 343
33. Sample Output from the CLAW Data Trace Postprocessor 346
34. Sample JCL for the CLAW Process Trace Postprocessor 350
35. Sample Output from the CLAW Process Trace Postprocessor 352
36. JCL for the IPTPRT Utility . 411
37. Compacted IPTPRT Report . 418
38. Formatted IPTPRT Report . 421

© Copyright IBM Corp. 1996, 2002 xiii

||
||

xiv TPF V4R1 TCP/IP

Tables

1. Assumed TCP/IP Values . 27
2. GETREQUEST, GETNEXTREQUEST, SETREQUEST, GETRESPONSE PDU Format 88
3. Trap PDU Format . 88
4. Variable Binding Format . 89
5. SNMP Network Management Protocol Packet . 91
6. Message Definitions for TPF TCP/IP Server Applications 115
7. Socket Types and Associated Data . 119
8. Relationship of STATE and ACT Parameters with the TPF System State 238
9. Socket Error Return Codes . 365

10. CLAW Query Level 1 Buffer . 400
11. CLAW Query Level 2 Buffer . 400
12. CLAW Query Level 3 Buffer . 401
13. CLAW Return Codes Defined for CLAW Functions 405
14. MIB Variables Supported by the TPF System . 423

© Copyright IBM Corp. 1996, 2002 xv

||

xvi TPF V4R1 TCP/IP

Notices

References in this book to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service in this book is not intended to
state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
IBM’s intellectual property rights may be used instead of the IBM product, program,
or service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department 830A
Mail Drop P131
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Any pointers in this book to non-IBM Web sites are provided for convenience only
and do not in any way serve as an endorsement. IBM accepts no responsibility for
the content or use of non-IBM Web sites specifically mentioned in this book or
accessed through an IBM Web site that is mentioned in this book.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX
Enterprise Systems Connection Architecture
ESCON
IBM
MQSeries
OS/2
OS/390
System/390
VisualAge.

© Copyright IBM Corp. 1996, 2002 xvii

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

xviii TPF V4R1 TCP/IP

About This Book

This book provides an overview of the Internet, Transaction Processing Facility
(TPF) support of Transmission Control Protocol/Internet Protocol (TCP/IP), and the
socket application programming interface (API) functions used by application
programmers.

In this book, abbreviations are often used instead of spelled-out terms. Every term
is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, Systems Network Architecture (SNA). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in the TPF
Library Guide.

Before You Begin
You should have a basic knowledge of the TPF system and some knowledge of
system communication and network protocols.

Who Should Read This Book
This book is written primarily for application programmers who will be accessing the
API functions provided.

This book can also be used by system programmers and system operators who
need an overview of this support and more detailed information for their particular
area of expertise.

How This Book Is Organized
This book has the following parts:

v Part 1 of this book provides an overview of the Internet and information
concerning the TPF system implementation of TCP/IP including internal
structures and procedural information for performing specific operations.

v Part 2 of this book provides TCP/IP offload support information.

v Part 3 of this book provides TCP/IP native stack support information.

v Part 4 of this book provides an overview of sockets, definitions of terms related to
sockets, procedural information, and examples. Part 4 also contains a detailed
reference section containing the socket functions implemented by the TPF
system.

v Part 5 of this book provides information about operator procedures for Internet
server applications.

v Part 6 of this book provides information about Secure Sockets Layer (SSL)
support.

v The appendixes contain the following information:

– Appendix A - sample output from the postprocessor used to print ZCLAW
trace data

– Appendix B - sample ISO-C structures used by the socket API

– Appendix C - socket error return codes

– Appendix D - sample drivers that provide examples of code that application
programmers can customize for their own use

© Copyright IBM Corp. 1996, 2002 xix

– Appendix E - restricted TCP/IP Common Link Access to Workstation (CLAW)
ISO-C functions.

– Appendix F - Internet protocol (IP) trace facility information

– Appendix G - Management Information Base (MIB) variables.

In addition, an index is provided to help you find information in this book.

Conventions Used in the TPF Library
The TPF library uses the following conventions:

Conventions Examples of Usage

italic Used for important words and phrases. For example:

A database is a collection of data.

Used to represent variable information. For example:

Enter ZFRST STATUS MODULE mod, where mod is the module for which you want
status.

bold Used to represent text that you type. For example:

Enter ZNALS HELP to obtain help information for the ZNALS command.

Used to represent variable information in C language. For example:

level

monospaced Used for messages and information that displays on a screen. For example:

PROCESSING COMPLETED

Used for C language functions. For example:

maskc

Used for examples. For example:

maskc(MASKC_ENABLE, MASKC_IO);

bold italic Used for emphasis. For example:

You must type this command exactly as shown.

Bold underscore Used to indicate the default in a list of options. For example:

Keyword=OPTION1 | DEFAULT

Vertical bar | Used to separate options in a list. (Also referred to as the OR symbol.) For example:

Keyword=Option1 | Option2

Note: Sometimes the vertical bar is used as a pipe (which allows you to pass the output of
one process as input to another process). The library information will clearly explain
whenever the vertical bar is used for this reason.

CAPital LETters Used to indicate valid abbreviations for keywords. For example:

KEYWord=option

xx TPF V4R1 TCP/IP

Conventions Examples of Usage

Scale Used to indicate the column location of input. The scale begins at column position 1. The
plus sign (+) represents increments of 5 and the numerals represent increments of 10 on the
scale. The first plus sign (+) represents column position 5; numeral 1 shows column position
10; numeral 2 shows column position 20 and so on. The following example shows the
required text and column position for the image clear card.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

LOADER IMAGE CLEAR

Notes:

1. The word LOADER must begin in column 1.

2. The word IMAGE must begin in column 10.

3. The word CLEAR must begin in column 16.

Related Information
A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM Transaction Processing Facility (TPF) 4.1 Books
v TPF ACF/SNA Network Generation, SH31-0131

v TPF C/C++ Language Support User’s Guide, SH31-0121

v TPF Concepts and Structures, GH31-0139

v TPF Database Reference, SH31-0143

v TPF General Macros, SH31-0152

v TPF Operations, SH31-0162

v TPF System Generation, SH31-0171

v TPF System Installation Support Reference, SH31-0149

v TPF System Macros, SH31-0151

IBM Transmission Control Protocol/Internet Protocol (TCP/IP) Books
v International Technical Support Centers TCP/IP Tutorial and Technical Overview,

GG24-3376.

v TCP/IP for MVS: Offloading TCP/IP Processing, Version 3, Release 1,
SC31-7133, See this book for information about installing the 3172 Model 3
Interconnect Controller with the offload program and related diagnostics.

v TCP/IP Version 2 Release 2.1 for MVS: Programmer’s Reference, SC31-6087.

v Transmission Control Protocol/Internet Protocol Version 2.0 for OS/2:
Programmer’s Reference, SC31-6077.

IBM Common Link Access to Workstation (CLAW) Books
v AIX Block Multiplexor Channel Adapter User’s Guide and Service Information,

SC23-2427.

IBM 3172 Interconnect Controller Books
v 3172 Interconnect Controller Program, Version 3.3 User’s Guide, SC30-3572.

About This Book xxi

Online Information
v Messages (Online)

v Messages (System Error and Offline)

v SSL for the TPF 4.1 System: An Online User’s Guide.

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

v If you prefer to send your comments electronically, do either of the following:

– Go to http://www.ibm.com/tpf/pubs/tpfpubs.htm.

There you will find a link to a feedback page where you can enter and submit
comments.

– Send your comments by e-mail to tpfid@us.ibm.com

v If you prefer to send your comments by mail, address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

v If you prefer to send your comments by FAX, use this number:
– United States and Canada: 1 + 845 + 432 + 9788
– Other countries: (international code) + 845 + 432 +9788

xxii TPF V4R1 TCP/IP

|

|

|

|

http://www.ibm.com/tpf/pubs/tpfpubs.htm

Part 1. TCP/IP Support Overview

Networking Protocols Introduction 3
TPF System Support of Transmission Control Protocol/Internet Protocol 3

TCP/IP Native Stack Support 4

TCP/IP Network Overview . 7
Network Requirements . 7

Industry-Standard Transport Application Programming Interface (API) 7
Open Network Connectivity . 7
Client/Server Environment . 7
Enhanced Role in the Internet 7
Porting Socket Applications . 7

© Copyright IBM Corp. 1996, 2002 1

2 TPF V4R1 TCP/IP

Networking Protocols Introduction

When networking protocols were being developed in the 1960s through the 1980s,
expensive, dedicated hardware was required to transfer data over the network. Both
protocol and hardware were proprietary and required special skills and tools to
perform problem determination.

Today, this has changed dramatically with the standard protocol and technology that
emerged during the early 1980s. This new technology, called internetworking, or
internetting, accommodates multiple, diverse underlying hardware technologies by
adding both physical connections and a new set of conventions. Internet technology
hides the details of network hardware and permits computers to communicate
independently of their physical network connections. One example of this is
Transmission Control Protocol/Internet Protocol, also known as TCP/IP.

TPF System Support of Transmission Control Protocol/Internet
Protocol

Transmission Control Protocol/Internet Protocol (TCP/IP) supports an
interconnection of computer networks that provides universal communication
services.

A computer network is a group of connected nodes used for data communication. A
computer network configuration contains:

v Data processing devices

v Software

v Transmission media linked for information interchange.

Figure 1 on page 4 shows how the TPF system, running on a host processor and
using an IBM 3172 Model 3 Interconnect Controller has access to local area
networks (LANs), a wide area network (WAN), and remote applications.

A local area network (LAN) is a computer network that connects computer systems
that are in a limited geographical area. A LAN has distance limitations.

A wide area network (WAN) is a computer network that is usually in different cities
or even different countries and, therefore, provides communication services to a
geographic area larger than that served by a local area network (LAN).

© Copyright IBM Corp. 1996, 2002 3

TCP/IP Native Stack Support
The original TCP/IP support required an offload device (IBM 3172). That support
enabled TPF applications to use the socket application programming interface (API)
to talk to remote socket applications. The socket calls were passed to the 3172 by
using the Common Link Access to Workstation (CLAW) protocol. The offload server
code in the 3172 would then run the socket call. In this environment, a thin socket
layer existed in the TPF system. The full socket layer TCP, UDP, and IP layers
existed in the 3172. Later, support was added to allow TPF to connect to another
offload device, specifically the Cisco 7500 router.

With TCP/IP native stack support, the stack is incorporated in the TPF system itself.
The IP over channel data link control (CDLC) link layer is included with this support,
enabling TPF to connect to more IP router boxes in addition to continuing to support
offload devices (see Figure 2 on page 5).

TPF 1 TPF 2

3172
Model 3

Interconnect
Controller

3172
Model 3

Interconnect
Controller

ESCON
Channel

LAN
(Token Ring)

Parallel
Channel

LAN
(Token Ring)

LAN
(Token Ring)

PC PC RS/6000 RS/6000PC PC

Wide Area
Network

Figure 1. TCP/IP Sample Computer Network

4 TPF V4R1 TCP/IP

With the introduction of an integrated hardware feature called the Open Systems
Adapter (OSA) card, direct connectivity between IBM System/390 applications and
remote TCP/IP applications is provided. Now, with the third generation
OSA-Express card, OSA-Express support is enabled on the TPF system, allowing
you to connect to high-bandwidth networks such as the Gigabit Ethernet (GbE or
GENET) or Fast Ethernet (FENET). Queued direct I/O (QDIO) protocol is used to
communicate between the TPF system and the OSA-Express card, enabling
memory to be shared and reducing I/O. See Figure 3 on page 6 for an example of
TCP/IP native stack support and the OSA-Express interface. See Figure 4 on
page 6 for an example of TCP/IP native stack support combining both CDLC and
OSA-Express interfaces.

Wide Area
Network

ESCON
Channels

LAN
(Token Ring)

Parallel
Channels

LAN
(Token Ring)

LAN
(Token Ring)

PC PC RS/6000 RS/6000PC PC

TPF 1 TPF 2

3745 3746

Figure 2. TCP/IP Native Stack Support Sample Computer Network Using Channel Data Link
Control (CDLC)

Networking Protocols Introduction 5

TPF

APPL

TCP/IP
STACK

OSA-
Express

GbE
Switch

IP Router IP Router IP Router

OSA-
Express

GbE
Switch

IP Network

QDIO

Figure 3. TCP/IP Native Stack Support Sample Computer Network Using the OSA-Express
Interface

QDIOCDLC

OSA-
Express

GbE
Switch

IP Router IP Router IP Router

OSA-
Express

GbE
Switch374x374x

IP Network

TPF

APPL

TCP/IP
STACK

Figure 4. TCP/IP Native Stack Support Sample Computer Network Using Combined CDLC
and OSA-Express Interfaces

6 TPF V4R1 TCP/IP

TCP/IP Network Overview

This chapter discusses customer requirements for a TCP/IP network.

Network Requirements
As more and more applications are added to networks, we must consider customer
requirements regarding these applications. The TPF implementation of Transmission
Control Protocol/Internet Protocol (TCP/IP) meets customers requirements in the
following areas:

v Industry-standard transport application programming interface (API)

v Open network connectivity

v Client/server environment

v Enhanced role in the Internet

v Porting socket applications.

Industry-Standard Transport Application Programming Interface (API)
TCP/IP support provides a set of ISO-C functions, called socket APIs, that TPF
applications use to access the Internet to take advantage of TCP/IP.

Open Network Connectivity
TCP/IP allows communication between IBM systems or non-IBM systems on the
same computer network or on other computer networks. TCP/IP is not
vendor-specific and can be implemented on everything from the smallest personal
computer to the largest mainframe.

Client/Server Environment
User-written ISO-C socket applications can run in the TPF system to provide
access to TPF data. These socket applications can be a client, a server, or both
depending on whether they request or provide a service.

Enhanced Role in the Internet
By using the transport and network interfaces in the offload device or IP router, the
TPF system can receive and send data from remote socket applications.

Porting Socket Applications
TCP/IP follows industry standards for all the socket ISO-C application programming
interface (API) functions. This allows the porting of any application program that
follows the industry standard for using socket interfaces.

© Copyright IBM Corp. 1996, 2002 7

8 TPF V4R1 TCP/IP

Part 2. TCP/IP Offload Support

TCP/IP Internals . 11
IBM 3172 Model 3 Interconnect Controller Overview 11
Configuration Characteristics of TCP/IP Offload Devices. 12
Data Flow between the Offload Device and the TPF System 12
Sample Transmission Control Protocol/Internet Protocol Network 13
Components of TCP/IP Support. 16
Outbound Message Flow through the Socket/CLAW Interfaces 17
Inbound Message Flow through the Socket/CLAW Interfaces 18
Nonsocket User Exits . 20

Nonsocket Activation . 20
Nonsocket Connect . 20
Nonsocket Deactivation. 20
Nonsocket Message . 21

TPF Control Block Structures 23
CLAW Device Table (CDT) and Related Control Block Structures 23

Contents of the CLAW Device Table 23
Related Control Block Structures 23

Determining the Value for the CLAWADP Parameter 23
File Descriptor Table and Related Control Block Structures. 24

Contents of the File Descriptor Table 24
Related Control Block Structures 24

CLAW Send Message Block 24
Socket Thread Control Blocks 24

Determining the Value for the CLAWFD Parameter 25
Internet Protocol Address Table 25

Contents of the Internet Protocol Address Table 26
Related Control Block Structures 26

Determining the Value for the CLAWIP Parameter 26
Maximum Value for the IP Parameter. 26

Storage Considerations . 26
SNAKEY Parameters . 27
Miscellaneous Control Block Structures 27
Socket Thread Control Blocks 27
Calculating the Approximate Total Number of TCP/IP Bytes 27
Example Calculating the Approximate Total Number of TCP/IP Bytes 27

Tuning and Performance . 28

Operator Procedures for TCP/IP Offload Support 29
Configuring a TCP/IP System 29
Defining the CLAW Host Name 29

Considerations for IBM 3172 Model 3 Interconnect Controllers 29
Defining CLAW Workstations for a TPF Host Processor 29

Considerations for IBM 3172 Model 3 Interconnect Controllers 30
Activating and Deactivating CLAW Workstations. 30
Displaying Information about TCP/IP Support 31
Deleting a CLAW Workstation 31
Moving a CLAW Workstation from One TPF Host Processor to Another 31
Performing a Hardware Switchover 32
Using the CLAW Data Trace Function 32

Starting the CLAW Data Trace Function. 32
Stopping the CLAW Data Trace Function 32

Using the CLAW Process Trace Function 33

© Copyright IBM Corp. 1996, 2002 9

Starting the CLAW Process Trace Function 33
Stopping the CLAW Process Trace Function 33

Resetting the ZCLAW Command Lock 33

10 TPF V4R1 TCP/IP

TCP/IP Internals

This chapter provides:

v An overview of the IBM 3172 Model 3 Interconnect Controller

v Configuration characteristics of TCP/IP offload devices

v Data flow between the offload device and the TPF system

v An overview of the TCP/IP offload support components

v A description of the inbound and outbound message flow

v A description of the nonsocket user exits.

IBM 3172 Model 3 Interconnect Controller Overview
The 3172 Model 3 Interconnect Controller with the Offload program, or a similar
workstation, is integral to TCP/IP support. The 3172 Model 3 Interconnect Controller
is configured as an offload device between the TPF host and local area networks
(LANs).

Figure 5 on page 12 shows two 3172 Model 3 Interconnect Controllers with the
Offload program defined to a TPF system. The following naming conventions are
used:

v The socket application programming interface (API) support program in the TPF
host has the TPF host application name of TCP/IP. This name is predefined by
the 3172 Model 3. The socket API support program in the TPF host processor
packages the socket API requests and sends them to the 3172 Model 3
Interconnect Controller for processing.

v The socket offload program in the 3172 Model 3 has the workstation application
(WSA) name of API. This name is predefined by the 3172 Model 3. It processes
the socket API requests sent from the TPF host. When communicating with the
TPF host, it uses Common Link Access to Workstation (CLAW) protocol.

v The symbolic device address (SDA) represents a pair of subchannels connecting
the TPF host processor to the TCP/IP offload device. The even-numbered
subchannels are the read subchannels, while the odd-numbered subchannels are
the write subchannels.

v If there is only one workstation, the name can be OS2TCP. If there is more than
one workstation the additional names must be OS3172xx where xx is 2 unique
alphabetical characters. In this figure, the names OS317201 and OS31702 are
used.

© Copyright IBM Corp. 1996, 2002 11

Configuration Characteristics of TCP/IP Offload Devices
TCP/IP offload devices have the following configuration characteristics:

v Each TCP/IP offload device is connected to the host processor through a pair of
subchannels. The even-numbered subchannel on the host side is the read
subchannel, and the odd-numbered subchannel of the even-odd subchannel pair
is the write subchannel.

v You can connect as many as 84 TCP/IP offload devices to each TPF host
processor.

v TCP/IP offload devices provide effective use of subchannels by executing
Common Link Access to Workstation (CLAW) commands only when there is data
to transfer between the host and the TCP/IP offload device.

Data Flow between the Offload Device and the TPF System
The TPF system implementation of TCP/IP support is based on the IBM 3172
Model 3 Interconnect Controller with the TCP/IP Offload program and supports
applications using the Berkeley Software Distribution (BSD) standard socket API
functions to communicate with the Internet.

See “Socket Overview” on page 119 for a discussion of socket programming
concepts used by TCP/IP support. Figure 6 on page 13 shows the data flow
between the TPF system and the IBM 3172 Model 3 Interconnect Controller. The
following steps correspond to numbers in Figure 6:

1. An application in the TPF system issues a socket API function and the socket
API is forwarded to the TPF socket API support component.

2. The TPF socket API support component builds an inter-user communication
vehicle (IUCV) message that contains the socket API function call, parameters,
and user data. This message is transmitted through the TPF CLAW device
interface to the IBM 3172 Model 3 Interconnect Controller.

3. The return code from the IBM 3172 Model 3 Interconnect Controller is returned
to the application.

TPF Host Application:
TCP/IP

TPF System

3172 Model 3
Interconnect
Controllers

WSA: API WSA: API

OS317201 OS317202

SDA
(read)
220

(write)
221

SDA
(read)
300

(write)
301

Figure 5. Two IBM 3172 Model 3 Interconnect Controller Offload Devices Connected to a
Host Transaction Processing Facility Processor

12 TPF V4R1 TCP/IP

Sample Transmission Control Protocol/Internet Protocol Network
TCP/IP builds an interconnection of networks that provides universal communication
services.

The service performed by TCP/IP support is transparent to the application and is
comparable to services performed from other platforms.

An application can be either a client, server, or both, depending on whether the
application requests or provides a service. Program TPF servers with special
consideration to reduce resource usage and to handle messages most effectively.
Figure 7 on page 15 shows the TPF system as the host with two IBM 3172 Model 3
offload devices.

The following steps correspond to the numbers in Figure 7 on page 15:

3172 Model 3
Interconnect Controller

with the
Offload Program

TPF System

Socket Application

1.

Socket API
Support

Component

CLAW Device Interface

2.

3.

Figure 6. TPF Implementation of the IBM 3172 Model 3 Interconnect Controller with the
Offload Program

TCP/IP Internals 13

1. The TPF host is connected to both token-ring and fiber distributed data interface
(FDDI) networks through the IBM 3172 Model 3 Interconnect Controller with the
Offload program, and is able to forward or receive data from clients on any
connected network.

2. Parallel or Enterprise Systems Connection (ESCON) channels connect the TPF
host to the IBM 3172 Model 3 Interconnect Controller.

3. Each TPF host can connect to more than one IBM 3172 Model 3 Interconnect
Controller.

The IBM 3172 Model 3 Interconnect Controller with the Offload program allows
the TPF system to communicate with remote TCP/IP hosts through socket
application program interface (API) functions. See “Socket Overview” on
page 119 for a detailed description of sockets.

4. The 3172 Model 3 Interconnect Controllers send information packets between
local area networks (LANs) and the TPF host processor. IBM recommends that
all 3172 Model 3 Interconnect Controllers are connected to the same local area
network (LAN). The 3172 Model 3 Interconnect Controller can connect to the
following LANs:

v Fiber distributed data interface (FDDI)

v Ethernet

v Token-ring.

5. Routers distribute information packets of data directly when the destination and
source are on the same TCP/IP network or indirectly when the destination and
source are on two different networks.

6. The information packets are routed to the Internet.

14 TPF V4R1 TCP/IP

Socket
API

Support

Socket
Applications

CLAW Device Interface

TPF Host
Processor

(1)

Router

FDDI

Token
Ring

CLAW

Device Driver
CLAW Driver

Offload
Server

Sockets

UDP

IP

TCP

CLAW

Device Driver
CLAW Driver

Offload
Server

Sockets

IP

UDPTCP

(2) (2)

(4)

(5)

(6)

3172
Model 3

Interconnect
Controller

(3)

Internet

Figure 7. Network Overview

TCP/IP Internals 15

Components of TCP/IP Support
Figure 8 provides an overview of the TCP/IP support components using the
socket/CLAW interfaces.

In Figure 8, the TCP/IP support components send socket API functions to the
TCP/IP offload device to complete the processing of the functions and return
responses for the functions to the TPF system. The TCP/IP support components
that interface with the TCP/IP offload device are as follows:

Socket application
Issues the standard ISO-C interface functions, called socket API functions,
which enable data to be sent and received across the Internet.

Socket API support
Provides the socket API functions and issues the CLAW API function needed to
send the socket functions to the TCP/IP offload device. See “Socket Application
Programming Interface Functions Reference” on page 137 for a description of
the socket API functions.

CLAW API
Provides restricted ISO-C interface functions to communicate with any CLAW
workstation, such as the TCP/IP offload device. See Appendix E, “TCP/IP
Restricted CLAW C Functions: Reference” on page 385 for a description of
these functions.

TPF CLAW services
Provides the control program service routines for the CLAW API functions and
enters the TPF CLAW device interface to complete the processing of the CLAW
functions.

Socket API Support

ECB Domain

CP Domain

CLAW API
Generic EP

Socket OPZERO

TPF CLAW System Services

TPF CLAW Services

TPF CLAW Device Interface

Socket Application

Figure 8. TCP/IP Support Components Overview

16 TPF V4R1 TCP/IP

TPF CLAW system services
Provides system services to the TPF CLAW device interface and TPF CLAW
services including, control block management, message dispatching, and
post-interrupt handling.

TPF CLAW device interface
Provides CLAW I/O functions, manages I/O queues, and handles I/O
completions using the Common Link Access to Workstation (CLAW) protocol.

Socket OPZERO
A post-interrupt routine that receives inbound messages from TPF CLAW
system services and forwards the messages to the socket application or to
socket API support by creating new entry control blocks (ECB)s or posting
ECBs that have been suspended by socket API support.

Generic EP
Provides entry points for receiving CLAW messages and enters the appropriate
entry point program to display information regarding the message on the TPF
console.

Outbound Message Flow through the Socket/CLAW Interfaces
When a socket application issues a socket API function, socket API support
determines whether the function needs to be sent to the TCP/IP offload device to
complete the processing of the function. If the function needs to be sent to the
TCP/IP offload device, socket API support issues a claw_send function call to send
the socket API call to the Common Link Access to Workstation (CLAW) API. After
CLAW API and TPF CLAW services have processed the claw_send function call, the
TPF CLAW device interface issues the I/O function needed to send the socket API
call to the TCP/IP offload device. See “claw_send — Send a Message on an Active
Logical Link” on page 403 for a description of the claw_send function.

Figure 9 on page 18 shows the outbound message flow through the TCP/IP support
components of a socket API function that is being sent to the TCP/IP offload device.

TCP/IP Internals 17

The following describes the outbound message flow for a socket API function that is
being sent to the TCP/IP offload device:

v A socket application program issues a socket API function.

v Socket API support issues a claw_send function call to send the socket API call
to the CLAW API.

v The CLAW API issues a supervisor call (SVC) to enter TPF CLAW services and
to process the claw_send function call.

v TPF CLAW services processes the claw_send function call and issues a CLNKC
macro to go to the TPF CLAW device interface.

v The TPF CLAW device interface manages the I/O queues and builds the channel
program needed to send the socket API call to the TCP/IP offload device.

Inbound Message Flow through the Socket/CLAW Interfaces
TPF Common Link Access to Workstation (CLAW) system services enables the
TPF CLAW device interface to receive inbound messages from the TCP/IP offload
device by sending an internal RECEIVE request to the TPF CLAW device interface.
When TPF CLAW system services receives a message from the TCP/IP offload
device, TPF CLAW system services forwards the message to TPF CLAW system
services. TPF CLAW system services determines whether the message is to be
forwarded to socket OPZERO or to the generic entry point (EP). If TPF CLAW
system services forwards the message to socket OPZERO, socket OPZERO
returns the message to the socket application either directly or through socket API
support. If TPF CLAW system services forwards the message to the generic EP,
generic EP enters the appropriate CLAW EP program to display information
regarding the message on the TPF console.

Socket API Function

CLAW Interface

CLNKC

SVC

Socket Application

Socket API Support

CLAW API

TPF CLAW Services

TPF CLAW Device Interface

Figure 9. Outbound Message Flow

18 TPF V4R1 TCP/IP

Figure 10 shows an inbound message flow through the TCP/IP support components
from the TCP/IP offload device.

The following describes the inbound message flow for a message received from the
TCP/IP offload device:

v TPF CLAW system services issues an internal RECEIVE request to the TPF
CLAW device interface.

v When the TPF CLAW device interface receives an inbound message from the
TCP/IP offload device, the TPF CLAW device interface issues a CLNKC macro to
TPF CLAW system services to begin processing the message.

v TPF CLAW system services determines whether the message is to be forwarded
to socket OPZERO or the generic entry point (EP). If TPF CLAW system services
determines that the message is to be forwarded to socket OPZERO, it schedules
the socket OPZERO post-interrupt routine on the input list to continue processing
the message.

v If TPF CLAW system services determines that the message is to be forwarded to
the generic EP, it issues the CXFRC and ENTNC macros to enter that
component.

The generic EP forwards the unsolicited message to the appropriate CLAW EP
program, which displays information regarding the message on the TPF console.
The following CLAW EP programs are entered from the generic EP.

– The CLAW device failure EP is entered when the CLAW device interface
detects an unrecoverable error and must shut down a subchannel pair to a
CLAW workstation (TCP/IP offload device). See “claw_openadapter —
Initialize an Adapter” on page 397 for additional information on this CLAW EP.

READ, RECV,
or RECVFROM

CXFRC and
ENTNC

CXFRC and
ENTNC

Input List

CLNKC

POSTC

Socket API Support

Socket OPZERO

TPF CLAW System Services

CLAW Device Interface

Socket Application

RETURN

Generic EP

Figure 10. Inbound Message Flow

TCP/IP Internals 19

– The CLAW DISCONNECT EP is entered when a DISCONNECT request is
issued from a CLAW workstation to the host TPF system. See “claw_accept
— Accept a CONNECT Request from the Workstation” on page 386 or
“claw_connect — Initiate a Request to Open a Logical Link” on page 390 for
additional information on this CLAW EP.

– The CLAW CONNECT EP is entered when a CLAW workstation initiates a
CONNECT request on the workstation’s subchannel pair. This CLAW EP
issues a claw_accept request to complete the connection. See
“claw_openadapter — Initialize an Adapter” on page 397 for additional
information on this CLAW EP.

v Socket OPZERO issues the CXFRC and ENTNC macros to create an entry
control block (ECB) and enter a socket application if a socket message was
received and an ECB was not waiting for the message. If the socket application
is entered in this manner, an activate_on_receipt function call had been
previously issued by a socket application.

v To complete the processing of the message and to receive the message, the
socket application issues a read, recv, or recvfrom socket API function call to
socket API support. See “activate_on_receipt — Activate a Program after Data
Received” on page 144 for a description of the activate_on_receipt socket
function.

v Socket OPZERO issues a POSTC macro if a socket message was received and
an ECB was waiting for the message. The POSTC macro enters socket API
support by activating the ECB that had been previously suspended by socket API
support.

v Socket API support returns the message to the socket application program that
had been waiting for the message. When the socket application is entered this
way, the processing of the message is completed.

Nonsocket User Exits
TCP/IP support provides the following nonsocket user exits:

v Nonsocket activation

v Nonsocket connect

v Nonsocket message

v Nonsocket deactivation.

Nonsocket Activation
The nonsocket activation user exit is entered for the following conditions:

v When CLAW workstations are being connected during system cycle-up and the
CLAW workstation application name is not API

v During ZCLAW ACTIVATE processing when the workstation application name of
the CLAW workstation being activated is not API.

Nonsocket Connect
The nonsocket connect user exit is activated during CLAW connect processing and
allows nonsocket Common Link Access to Workstation (CLAW) applications to be
activated.

Nonsocket Deactivation
The nonsocket deactivation user exit is entered for the following reasons:

20 TPF V4R1 TCP/IP

v When CLAW workstations are being disconnected during system cycle-down and
the CLAW workstation application name is not API

v During ZCLAW INACTIVATE processing when the workstation application name
of the CLAW workstation being deactivated is not API.

Nonsocket Message
Socket OPZERO enters the nonsocket message user exit when a nonsocket
message arrives from the TCP/IP offload device.

See TPF System Installation Support Reference for additional information about the
nonsocket user exits. See “Socket Overview” on page 119 and the TPF System
Installation Support Reference for information about the socket user exits.

TCP/IP Internals 21

22 TPF V4R1 TCP/IP

TPF Control Block Structures

This chapter discusses the following:

v The control block structures used by TCP/IP support.

v The CLAWADP, CLAWFD, and CLAWIP SNAKEY parameters. See TPF
ACF/SNA Network Generation for information about coding these parameters
(and the SOCKSWP parameter) in the SNAKEY macro.

v Storage considerations for TCP/IP support.

v Tuning and performance.

CLAW Device Table (CDT) and Related Control Block Structures
The Common Link Access to Workstation (CLAW) device table is a TCP/IP control
block structure located in main storage that contains information about each CLAW
workstation defined in the TPF system. The CDT is also saved on file to preserve
changes made to the core copy of the CDT across an initial program load (IPL).
Whenever a CLAW workstation is added to the TPF system using a ZCLAW ADD
command, an entry is added to the CLAW device table.

See TPF Operations for more information about the ZCLAW ADD command and for
restrictions on its use.

Contents of the CLAW Device Table
The CLAW device table contains information such as adapter ID, workstation name,
workstation application, host application, symbolic device address (SDA), and
device status.

An entry is deleted from the CDT by using the ZCLAW DELETE command.

Each TPF host processor in the TPF system has its own unique CDT. Therefore,
the CDT contents are not necessarily consistent across all of the processors in a
loosely coupled TPF system.

See TPF Operations for more information about the ZCLAW DELETE command
and for restrictions on its use.

Related Control Block Structures
There are many CLAW control block structures associated with the CDT. These
control blocks are obtained by the TCP/IP support during CLAW I/O processing and
returned to the system at various times during the I/O processing using a
claw_closeadapter feature. See “claw_closeadapter — Terminate CLAW Activity on
Subchannel Pair” on page 388 for a description of the claw_closeadapter function.

Determining the Value for the CLAWADP Parameter
The number of CLAW device entries and associated CLAW control blocks are
defined using the CLAWADP parameter of the SNAKEY macro. In choosing a
CLAWADP value for a particular processor use the following:
CLAWADP = Number TCP/IP offload devices attached to a processor

Note: The maximum value for CLAWADP is 84 because a maximum of 84 CDT
entries can be saved on file for a particular processor.

© Copyright IBM Corp. 1996, 2002 23

For example, if you plan to attach 10 IBM 3172 Model 3 Interconnect Controllers to
processor A, set CLAWADP for that processor to 10. When defining CLAWADP for
a processor, do not set the value larger than the number of TCP/IP offload devices
you will be attaching to that processor because the amount of storage needed for
the CLAW control blocks increases significantly as the CLAWADP value is
increased. See “Storage Considerations” on page 26 for a discussion of storage.

File Descriptor Table and Related Control Block Structures
The file descriptor table (FDT) is a TCP/IP control block structure located in main
storage that contains information about each file descriptor defined in the TPF
system. A file descriptor, which contains socket status information, is obtained by
TCP/IP support when a socket application issues a socket or accept function call.
For every socket descriptor returned to the socket application with a function call,
such as the socket or accept function call, there is one file descriptor entry
associated with the socket descriptor integer value. In addition, each file descriptor
is associated with one TCP/IP offload device.

Contents of the File Descriptor Table
The file descriptor table contains information such as local socket descriptor, remote
socket description, adapter ID, path ID, address domain, socket type, protocol, and
socket status.

A file descriptor is returned to the system when:

v A socket application issues a close of its associated local socket descriptor.

v The TCP/IP offload device associated with the file descriptor is disconnected
from the TPF system.

v A system error occurs, and the ECB that obtained the file descriptor exits.

Each processor in the TPF system has its own unique FDT. Therefore, the FDT
contents are not necessarily consistent across all of the processors in a loosely
coupled TPF system.

Related Control Block Structures
The following control blocks are related to the file descriptor table:

v CLAW send message block

v Socket thread control blocks.

CLAW Send Message Block
The CLAW send message block (ICMSGB) is obtained during the processing of a
claw_send function call. A claw_send function call is issued by TCP/IP support when
a socket API function call will be processed by the TCP/IP offload device. Each
ICMSGB used is returned to the system when claw_send function call has been
completed. See “claw_send — Send a Message on an Active Logical Link” on
page 403 for a description of the claw_send function.

Socket Thread Control Blocks
Different types of socket thread control blocks are chained off individual file
descriptors. A type represents a unique function, such as the accept function to
accept a connection request, or the connect function to request a connection to a
remote host.

24 TPF V4R1 TCP/IP

Most of the events associated with each of the offload devices are thread control
blocks chained off any one file descriptor. The different types of socket thread
control blocks that can be chained off a file descriptor are:

v accept

v read, or recv, or recvfrom

v send, or sendto, or write, or writev, chained only when they are written to a
datagram socket.

v connect

v shutdown

v close

v listen

v bind or socket

v gethostid

v gethostname

v getpeername

v getsockname

v getsockopt

v ioctl

v setsockopt.

Determining the Value for the CLAWFD Parameter
The number of file descriptor entries and CLAW send message blocks is defined
using the CLAWFD parameter of the SNAKEY macro. The value of the CLAWFD
parameter for a particular processor depends on the CLAWADP value you are
defining for that processor and the number of file descriptors you define for each
TCP/IP offload device. Increasing the CLAWFD value does not significantly raise
the amount of main storage needed, so set the number of file descriptors you
define for each TCP/IP offload device equal to the maximum number of socket
descriptors which can be created for each TCP/IP offload device. The maximum
number of socket descriptors which can be created for the IBM 3172 Model 3
Interconnect Controller is 2000. In choosing a CLAWFD value for a particular
processor, use the following:
CLAWFD = Number of file descriptors × number

of TCP/IP offload devices attached to a processor

Note: To avoid the depletion of file descriptors when you are running your socket
applications, set the number of file descriptors to the maximum value.

Example: If you plan to use three IBM 3172 Model 3 Interconnect Controllers on
processor A, set the CLAWFD parameter for that processor as follows:
2000 × 3 = 6000

Internet Protocol Address Table
The Internet Protocol address table (IPT) is a TCP/IP control block structure that
contains information about each TCP/IP offload device interface address and is
located in main storage. Each TCP/IP offload device may define one or more
interfaces with the Internet or IP addresses. One or more IPT entries are obtained
whenever TCP/IP support connects a TCP/IP offload device to the TPF system.
TCP/IP support saves each address in the IPT so that it can be obtained when a
socket application issues a bind API function call. When a socket application issues

TPF Control Block Structures 25

a bind for a specific IP address, TCP/IP support compares the IP address coded by
the application with the one saved in the IPT to ensure that it is valid.

Contents of the Internet Protocol Address Table
Each Internet Protocol (IP) entry contains information such as IP address, adapter
ID, and path ID.

An IP entry is returned to the system when its associated TCP/IP offload device is
disconnected from the system.

Each processor in the TPF system has its own unique IPT. Therefore, the IPT
contents are not necessarily consistent across all of the processors in a loosely
coupled TPF system.

Related Control Block Structures
There are no related control block structures for the Internet Protocol address table
(IPT).

Determining the Value for the CLAWIP Parameter
The number of IP entries is defined using the CLAWIP parameter of the SNAKEY
macro. Like the CLAWFD value, increasing the CLAWIP value does not significantly
raise the amount of main storage needed. In choosing a CLAWIP value for a
particular processor, use the following:
CLAWIP = Total number of IP addresses for each TCP/IP offload device

attached to a processor

Maximum Value for the IP Parameter
The maximum value that you can define for the IP parameter is:
The sum of 81 + 81 + ...
up to 84 TCP/IP offload devices attached to processor = 6804

where:

v The maximum number of IP addresses that can be defined on one TCP/IP
offload device is 81.

v The maximum number of TCP/IP offload devices that can be attached per
processor is 84. See “Determining the Value for the CLAWADP Parameter” on
page 23.

Example: For example, if you are attaching TCP/IP offload device 1 with 3 IP
addresses and TCP/IP offload device 2 with 2 IP addresses to processor B, set
CLAWIP to 5 for processor B.
3 + 2 = 5

Storage Considerations
To calculate the number of bytes you will need for TCP/IP control block structures,
you must consider:

v The control block structures identified in the SNAKEY macro

v Miscellaneous control blocks not associated with SNAKEY parameters

v Socket thread control blocks.

26 TPF V4R1 TCP/IP

SNAKEY Parameters
The following list shows the approximate number of bytes of storage allocated for
TCP/IP control block structures for SNAKEY parameters:

Parameter Approximate Number of Bytes

CLAWADP 303 220

CLAWFD 280

CLAWIP 64

Miscellaneous Control Block Structures
There are approximately 4 120 bytes allocated for additional TCP/IP control block
structures whose size does not depend on the values of any of the three SNAKEY
values described in this chapter.

Socket Thread Control Blocks
There are 32 bytes allocated for each socket thread control block. The number of
socket thread control blocks allocated is equal to the total number of entry control
blocks (ECBs) in the system.

Calculating the Approximate Total Number of TCP/IP Bytes
The following formula calculates the approximate total number of bytes required for
the TCP/IP control block structures:
(303 220 × clawadp) + (280 × clawfd) + (64 × clawip) +
miscellaneous + (32 × ecbs) = the total number of bytes

where:

clawadp
is the value set for the CLAWADP parameter in the SNAKEY macro.

clawfd
is the value set for the CLAWFD parameter in the SNAKEY macro.

clawip
is the value set for the CLAWIP parameter in the SNAKEY macro.

miscellaneous
is 4120 bytes in block structures not associated with the SNAKEY macro.

ecbs
is the total number of ECBs in the system.

Example Calculating the Approximate Total Number of TCP/IP Bytes
Table 1 assumes values for the given SNAKEY parameters. Based on these values,
the table shows the total number of bytes required for TCP/IP.

Table 1. Assumed TCP/IP Values

Parameter Approximate Number of
Bytes for Each Value

Value
Used

Total Number of Bytes for
Each Parameter

CLAWADP 303 220 2 606 440

CLAWFD 280 4000 1 120 000

CLAWIP 64 3 192

ECBs 32 200 6 400

TPF Control Block Structures 27

Table 1. Assumed TCP/IP Values (continued)

Parameter Approximate Number of
Bytes for Each Value

Value
Used

Total Number of Bytes for
Each Parameter

Miscellaneous 4 120 N/A 4 120

Total N/A N/A 1 737 152

The approximate total number of bytes allocated for the control block structures
allocated by SNAKEY parameters, socket thread control blocks, and miscellaneous
bytes required for TCP/IP support for this example is:
(303 220 × 2) + (280 × 4000) + (64 × 3)
+ (200 × 32) + 4120 = 1 737 752 total bytes

Tuning and Performance
The values assigned to CLAWADP, CLAWFD, CLAWIP, and SOCKSWP do not
affect the performance of the TCP/IP offload device. TCP/IP support does not have
the ability to improve the performance of any TCP/IP offload device.

28 TPF V4R1 TCP/IP

Operator Procedures for TCP/IP Offload Support

This chapter describes the tasks that an operator can perform for TCP/IP support.

Configuring a TCP/IP System
To use TCP/IP support on your TPF system you must:

1. Install the IBM 3172 Model 3 Interconnect Controller following the installation
instructions in TCP/IP for MVS: Offloading TCP/IP Processing, Version 3,
Release 1.

2. Define the host name for the TPF host processor using the ZCLAW ADD
command. See “Defining the CLAW Host Name”.

3. Define the CLAW workstations using the ZCLAW ADD command. See “Defining
CLAW Workstations for a TPF Host Processor”.

4. Activate the CLAW workstation using the ZCLAW ACTIVATE command. See
“Activating and Deactivating CLAW Workstations” on page 30.

Defining the CLAW Host Name
When you install TCP/IP support on a TPF host processor, you must define the
Common Link Access to Workstation (CLAW) host name for that processor. The
CLAW host name is the name assigned to a TPF host processor that is used by a
CLAW workstation to identify that TPF host processor.

To define the CLAW host name for a TPF host processor, enter the ZCLAW ADD
command with the HOSTNAME parameter specified. See TPF Operations for more
information about the ZCLAW ADD command.

Considerations for IBM 3172 Model 3 Interconnect Controllers
If you are using an IBM 3172 Model 3 Interconnect Controller for your TCP/IP
offload device, the CLAW host name for the TPF host processor must be TCPIP.
Otherwise, you cannot activate the TCP/IP offload device.

Defining CLAW Workstations for a TPF Host Processor
When you IPL a TPF host processor, that supports TCP/IP, you must define the
Common Link Access to Workstation (CLAW) workstation for that processor using
the ZCLAW ADD command. As you define CLAW workstations, they are added to
the CLAW device table (CDT) and filed out to fixed file. On subsequent IPLs the
table is read back into storage and you do not have to reissue the ZCLAW
command.

A CLAW workstation is a device that communicates with the TPF system using the
Common Link Access to Workstation (CLAW) protocol. The IBM 3172 Model 3
Interconnect Controller is an example of a CLAW workstation.

A CLAW workstation definition consists of the following:

v Name of the CLAW workstation

v Symbolic device address (SDA) of the read channel unit for the CLAW
workstation

v Name of the CLAW host application

v Name of the CLAW workstation application.

© Copyright IBM Corp. 1996, 2002 29

The CLAW host application is the application on the TPF host processor that is
used to establish a CLAW connection with the CLAW workstation application.

The CLAW workstation application is the application on the CLAW workstation that
is used to establish a CLAW connection with the CLAW host application.

To define a CLAW workstation, enter the ZCLAW ADD command. See TPF
Operations for more information about the ZCLAW ADD command.

Considerations for IBM 3172 Model 3 Interconnect Controllers
If you are using an IBM 3172 Model 3 Interconnect Controller for your TCP/IP
offload device, you must specify the following values for the CLAW workstation
definition:

CLAW workstation name
Each workstation attached to the TPF host processor must have a unique name
according to the following conventions:

v If there is only one workstation, the name of that workstation can be
OS2TCP.

v If there is more than one workstation, the name of the additional workstations
must have the format: OS3172xx, where xx is 2 unique alphanumeric
characters (for example, OS317201).

CLAW workstation application name
Must be API.

CLAW host application name
Must be TCPIP.

Activating and Deactivating CLAW Workstations
After you define the CLAW workstations for a TPF host processor, you must
activate them. Activating a CLAW workstation allows socket applications on the TPF
host processor to establish connections with other socket applications on a remote
TCP/IP device when the TPF system is cycled to CRAS state or higher.

To activate a CLAW workstation, enter the ZCLAW ACTIVATE command. See TPF
Operations for more information about the ZCLAW ACTIVATE command.

Use the ZCLAW INACTIVATE command to deactivate a CLAW workstation and the
application sessions that were established through that CLAW workstation. See TPF
Operations for more information about the ZCLAW INACTIVATE command.

Note: If the TPF system is cycled below CRAS state, the application sessions are
automatically deactivated even though the CLAW workstation is still active.

If you perform an initial program load (IPL) while one or more CLAW workstations
are active, the TPF system will automatically try to reactivate those CLAW
workstations when it cycles to 1052 state. Socket connections can be established
again when the TPF system cycles to CRAS state or higher.

30 TPF V4R1 TCP/IP

Displaying Information about TCP/IP Support
Use the ZCLAW DISPLAY command to display the following information:

v CLAW workstation definitions

v Status of a CLAW workstation (not active, active, or connected)

v List of the active CLAW workstations

v CLAW host name for the TPF host processor.

A CLAW workstation is active if you entered the ZCLAW ACTIVATE command for
that CLAW workstation. In addition, a CLAW workstation is connected when the
socket client has issued a CLAW connect to the offload application on the offload
box.

Use the ZCLAW STATUS command to display the traffic load for a particular CLAW
workstation. The traffic load is the number of bytes and messages sent and
received for a CLAW workstation during a given period of time.

See TPF Operations for more information about the ZCLAW DISPLAY, ZCLAW
STATUS, and ZCLAW ACTIVATE commands.

Deleting a CLAW Workstation
You can delete a CLAW workstation if you no longer want to use it in your network
configuration. To delete a CLAW workstation, do the following:

1. If the CLAW workstation is active, enter the ZCLAW INACTIVATE command to
deactivate it.

See TPF Operations for more information about the ZCLAW INACTIVATE
command.

2. Enter the ZCLAW DELETE command to delete the CLAW workstation.

See TPF Operations for more information about the ZCLAW DELETE
command.

Moving a CLAW Workstation from One TPF Host Processor to Another
If you are expanding or collapsing your loosely coupled TPF system and need to
move a CLAW workstation from one TPF host processor to another TPF host
processor, do the following:

1. From the TPF host processor where the CLAW workstation is currently
connected, enter the ZCLAW INACTIVATE command to deactivate the CLAW
workstation if the CLAW workstation is active.

See “Activating and Deactivating CLAW Workstations” on page 30 for more
information about deactivating a CLAW workstation. See TPF Operations for
more information about the ZCLAW INACTIVATE command.

2. Physically connect the CLAW workstation to the new TPF host processor.

3. If you have not already defined the CLAW workstation to the new TPF host
processor, enter the ZCLAW ADD command to define the CLAW workstation to
the new TPF host processor.

See “Defining CLAW Workstations for a TPF Host Processor” on page 29 for
more information about defining a CLAW workstation. See TPF Operations for
more information about the ZCLAW ADD command.

4. From the new TPF host processor, enter the ZCLAW ACTIVATE command to
activate the CLAW workstation.

Operator Procedures for TCP/IP Offload Support 31

See “Activating and Deactivating CLAW Workstations” on page 30 for more
information about activating a CLAW workstation. See TPF Operations for more
information about the ZCLAW ACTIVATE command.

Performing a Hardware Switchover
If you are performing a hardware switchover (that is, moving a TPF host processor
to a new physical hardware device), use the same processor ID in the new physical
hardware device for the TPF host processor.

If you use the same processor ID, you do not need to redefine the CLAW host
name for the TPF host processor. In addition, if you use the same SDAs to connect
the CLAW workstations to the new physical hardware device, you do not need to
redefine the CLAW workstations to the TPF host processor, and the CLAW
workstations will automatically be reactivated when the TPF system reaches 1052
state (if they were active before the hardware switchover was performed).

Using the CLAW Data Trace Function
Use the CLAW data trace function to trace the messages that are sent and received
between the TPF host processor and one or more CLAW workstations. This trace
information can be useful when you are debugging your TPF socket applications
because the messages that are traced include the requests from and the
responses to the TPF socket applications.

See Part 4, “Socket Application Programming Interface Overview” on page 117
for more information about socket applications.

See Appendix A, “CLAW Trace Postprocessor” on page 343 for sample JCL as
well as sample data trace output.

You can write the CLAW trace information to the real-time (RTA or RTL) tape and
then use the CLAW trace postprocessor (CLTD) to format and print data trace
information.

Starting the CLAW Data Trace Function
To start the CLAW data trace function, do the following:

1. Enter the ZCLAW TRACE command with the START parameter specified. Also
specify the WS parameter or the ALL parameter to indicate which CLAW
workstations you want to trace.

2. Enter the ZCLAW TRACE command with the START TAPE parameters
specified to start writing the CLAW data trace information to the real-time (RTA
or RTL) tape.

See TPF Operations for more information about the ZCLAW TRACE command.

Stopping the CLAW Data Trace Function
To stop the CLAW data trace function (and stop writing the trace information to
tape), do the following:

1. Enter the ZCLAW TRACE command with the STOP ALL parameters specified.

2. Enter the ZTOFF command to remove the tape.

See TPF Operations for more information about the ZCLAW TRACE and ZTOFF
commands.

32 TPF V4R1 TCP/IP

Using the CLAW Process Trace Function
Use the process trace function to trace system routines in the CCLAW1 CSECT.
The process trace function is more of a system programming tool that you can use
to debug any problems with the CLAW system process. Use the process trace
function to debug CLAW APIs.

See Appendix E, “TCP/IP Restricted CLAW C Functions: Reference” on
page 385 for more information about CLAW C functions.

See Appendix A, “CLAW Trace Postprocessor” on page 343 for sample JCL as
well as sample process trace output.

You can write the CLAW process trace information to the real-time (RTA or RTL)
tape and then use the CLAW process trace postprocessor (CLTP) to format and
print the trace information.

Starting the CLAW Process Trace Function
To start the CLAW process trace function, do the following:

1. Enter the ZCLAW TRACE command with the START parameter specified. Also
specify the PROCESS parameter.

2. Enter the ZCLAW TRACE command with the START TAPE parameters
specified to start writing the CLAW process trace information to the real-time
(RTA or RTL) tape.

See TPF Operations for more information about the ZCLAW TRACE command.

Stopping the CLAW Process Trace Function
To stop the CLAW process trace function (and stop writing the trace information to
tape), do the following:

1. Enter the ZCLAW TRACE command with the STOP ALL parameters specified.

2. Enter the ZTOFF command to remove the tape.

See TPF Operations for more information about the ZCLAW TRACE and ZTOFF
commands.

Resetting the ZCLAW Command Lock
Each time you enter a ZCLAW command, a lock is set by the TPF system that
prevents you from entering another ZCLAW command until processing is completed
for the first ZCLAW command.

If the TPF system cannot complete processing for a ZCLAW command (that is,
processing is hung), enter the ZCLAW RESET command to reset the ZCLAW
command lock. This will allow you to enter other ZCLAW commands even though
processing for the first ZCLAW command never completed.

Attention: Use the ZCLAW RESET command only in a test environment because
the results cannot be predicted.

See TPF Operations for more information about the ZCLAW RESET command.

Operator Procedures for TCP/IP Offload Support 33

34 TPF V4R1 TCP/IP

Part 3. TCP/IP Native Stack Support

TCP/IP Native Stack Support Internals 39
TCP/IP Layers . 39
Using CDLC IP Routers . 41

Configuration Characteristics of CDLC IP Routers 41
Data Flow between the CDLC IP Router and the TPF System 41
Sample TCP/IP Networks . 41

Using OSA-Express Support . 43
Configuration Characteristics of the OSA-Express Card 43
Data Flow between the OSA-Express Card and the TPF System 44

Components of TCP/IP Native Stack Support. 44
Policy Agent . 46
Outbound Message Flow . 46

Outbound Message Flow for CDLC 47
Outbound Message Flow for OSA-Express 48

Inbound Message Flow . 48

TPF Control Block Structures 51
Socket Block Table Structure . 51

Defining the Socket Block Table 51
CDLC IP Configuration Record 51

Defining the CDLC IP Network Configuration 52
CDLC IP CCW Area Table. 52

Defining CDLC IP CCW Area Table Resources 52
OSA Configuration Record . 52
OSA Control Block Table . 52
OSA Shared IP Address Table 52
OSA Read Buffers . 53

Defining OSA Read Buffers 53
IP Message Table . 53

Defining the IP Message Table 54
IP Routing Table . 54

Defining the IP Routing Table 54
Tuning TCP/IP Native Stack Support 54

Tuning Major Control Block Structures 55
Tuning the IP over CDLC Link Layer 55
Tuning the IP Network . 55

Performance . 56
TCP/IP Network Configurations 56

Selecting the Local IP Address 56
Choosing Network Paths 57

Defining Gateways . 58
Choosing a Gateway. 58

Operator Procedures for TCP/IP Native Stack Support 59
Configuring a TPF System . 59
Enabling TCP/IP Native Stack Support 60
Local IP Addresses . 60

Default Local IP Address . 61
Maximum Packet Size . 61

Types of TPF Local IP Addresses 62
CDLC Addresses . 62

Defining CDLC IP Addresses. 62
Deleting CDLC Local IP Addresses 62

© Copyright IBM Corp. 1996, 2002 35

||

Restricting CDLC IP Addresses 63
Real OSA IP Addresses . 63

Defining Real OSA IP Addresses 63
Deleting Real OSA IP Addresses 63

Virtual IP Addresses (VIPAs) 63
Types of VIPAs . 64
Defining VIPAs to an OSA-Express Connection 64
Displaying VIPAs . 65
Deleting VIPAs . 65

CDLC IP Connections . 65
Defining CDLC IP Connections 65
Activating and Deactivating CDLC IP Routers 65
Deleting CDLC IP Routers. 66

OSA-Express Connections . 66
Defining OSA-Express Cards to the Processor 66
Defining OSA-Express Connections to TPF 67
Activating and Deactivating OSA-Express Connections 67
Displaying OSA-Express Connections 67
Deleting OSA-Express Connections 67

Gateways . 68
Routing Information Protocol 68

How Network and Processor Failures Affect VIPAs. 68
Swinging VIPAs to an Alternate OSA-Express Connection 68
Moving VIPAs from One Processor to Another 68

Processor Deactivation . 69
The Operator and the ZVIPA Command. 69
Moving a VIPA by an Application Program 69

Workload Balancing Using Movable VIPAs. 69
Configuration Examples . 71
Managing IP Routing Table Entries 74
Displaying TCP/IP Native Stack Support 75
Starting and Stopping the IP Trace Function 75
Displaying IP Trace Information 75
Using the Individual IP Trace Function 76
Displaying Individual IP Trace Tables 77
Deactivating Sockets. 77
Displaying Socket Control Block Information 78

Socket Application Design Considerations 79
Sharing Sockets . 79
Using Existing Socket Applications. 79
New Socket Options Supported 80

Send Buffer and Receive Buffer Sizes 80
Timeouts . 81
Low-Water Marks . 81
activate_on_accept API . 82

Local Sockets . 82

Simple Network Management Protocol Agent Support 85
SNMP Overview . 85

SNMP Manager . 85
SNMP Agent. 85
Management Information Base (MIB). 85
Interaction between SNMP Components 86

Protocol Data Units (PDUs) . 87
Structure and Fields of SNMP PDUs 87

36 TPF V4R1 TCP/IP

TPF SNMP Agent Support. 89
Implementing Management Information Base-II (MIB-II) 90

Processing SNMP Requests . 91
Message Processing . 91
User MIB Variables . 93

SNMP Traps . 93
Installing TPF SNMP Agent Support 96

Installing and Defining TPF TCP/IP Native Stack Support 96
Installing the SNMP Agent. 96
Creating the SNMP Configuration File 96
Coding the UCOM and UMIB User Exits 98
Defining and Starting the SNMP Agent Server 98
Defining IP Routing Table Entries 99
Defining the TPF System to the SNMP Manager 99

Domain Name System Support 101
DNS Server . 101

TPF Host Name Table . 101
IP Address Selection . 102

DNS Client . 103

Internet Security . 105
Denial-of-Service Attacks. 105
Packet Filtering . 105

Packet Filtering Rules File Syntax 106
Packet Filtering Default Rule 107

Considerations for Packet Filtering Rules 108
Order of Rules . 108
Performance Considerations 108

Examples of Packet Filtering Rules 108
Problem Diagnosis . 109

TCP/IP Network Services Database Support 111
Quality of Service . 111
Data Collection and Reduction. 112

Message Counts by Application 112
TCP/IP Network Services Database File 113

TCP/IP Network Services Database File Syntax 113
TCP/IP Network Services Database File Example. 114

Part 3. TCP/IP Native Stack Support 37

||
||
||
||
||
||
||
||
||
||

||
||
||
||
||
||
||

38 TPF V4R1 TCP/IP

TCP/IP Native Stack Support Internals

This chapter provides:

v Configuration characteristics of IP routers

v Data flow between the IP router and the TPF system

v An overview of the TCP/IP native stack support components

v A description of the inbound and outbound message flow.

TCP/IP Layers
Figure 11 shows the TCP/IP layers that reside in the TPF host and those that reside
in the 3745 or 3746 IP router.

Figure 12 on page 40 shows the TCP/IP layers that reside in the TPF host and
those that reside in the 374x Internet Protocol (IP) routers and the Open Systems
Adapter (OSA)-Express card.

TPF

3745/3746
IP Router

IP Layer

IP over CDLC
Link Layer

Other
Link Layers

Application

Socket Layer

TCP UDP

IP Layer

IP over CDLC
Link Layer

IP Network

Socket API

Figure 11. TCP/IP Layers

© Copyright IBM Corp. 1996, 2002 39

The following layers reside in the TPF system:

v The socket layer

v The protocol layers, which are Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP)

v The IP layer

v Two link layers:

– IP over channel data link control (CDLC) protocol, which is used to
communicate with the IBM 374x routers.

– The queued direct I/O (QDIO) protocol, which is used to communicate with
the Open Systems Adapter (OSA)-Express card.

The following layers reside in the IP router:

v The IP layer

v Multiple link layers.

The IP router performs standard IP routing. The IP routers have no knowledge of
sockets. Instead, the routers just forward packets based on the destination IP
address of the packet.

TPF

OSA-Express Card

374x
IP Router

IP Layer

IP over CDLC
Link Layer

Other
Link Layers

Application

Socket Layer

TCP

QDIO
Link Layer

QDIO
Link Layer

UDP

IP over
CDLC

Link Layer

Ethernet
Link Layer

IP Layer

IP Network

Socket API

Figure 12. TCP/IP Layers with OSA-Express Support

40 TPF V4R1 TCP/IP

Using CDLC IP Routers
One link layer in the TPF system is the IP over channel data link control (CDLC)
protocol.

Configuration Characteristics of CDLC IP Routers
The 3745 and 3746 IP routers have the following configuration characteristics:

v Each connection between the IP router and host processor is through a single
subchannel. Data is sent and received through this single subchannel.

v An IP router can have one or more connections (links) to a host processor. If
there is more than one connection between a 374x device and a host processor,
the TPF host will handle these as connections to different IP routers even though
the connections are to the same physical 374x device.

v An IP router can have connections to one or more host processors. This includes
connections to multiple host processors in the same loosely coupled complex.

v You can have as many as 200 IP router connections on each TPF host
processor.

v A TPF host processor can send both IP traffic and Systems Network Architecture
(SNA) traffic to the same 374x device. When this occurs, different subchannels
are needed. Across a given subchannel, only one type of traffic can flow (IP or
SNA, but not both).

Data Flow between the CDLC IP Router and the TPF System
The link layer protocol that is used to communicate between the IP router and host
processor is IP over CDLC, which is very similar to the SNA over CDLC protocol
that TPF host processors use to connect to SNA networks.

The exchange identification (XID) process that is used to activate the connection
between the IP router and the TPF system is the same as activating a SNA PU 2.1
link connection. Although the process is the same, the information exchanged is
different. Instead of SNA information (for example, control point (CP) name and
transmission group (TG) number), IP information (for example, IP addresses) is
exchanged.

After the connection is activated, data is transferred using separate read and write
channel programs. Multiple packets can be sent or received in a single channel
program.

I/O interrupts from IP routers are enabled on all I-streams in the TPF host
processor. This allows the interrupt to be processed faster and allows you to take
full advantage of TPF tightly coupled support.

Sample TCP/IP Networks
Figure 13 on page 42 shows a uniprocessor TPF system connected to three IP
routers. The IP routers are then connected to the remainder of the IP network.

In this example, there is only one IP address needed for the TPF host
(9.123.145.111). Every remote client that wants to connect to the TPF system
specifies that IP address on its connect request. A Domain Name System (DNS)
round-robin of IP addresses or other load balancing methods are not needed for
this. The same is true for loosely coupled TPF systems that have only one TPF
host processor connected to the IP network.

TCP/IP Native Stack Support Internals 41

If the connection to an IP router fails, no sockets are lost because other paths still
exist from the TPF host to the remote clients. IP routers are not single points of
failures in this example.

Figure 14 on page 43 shows a three-way loosely coupled TPF complex connected
to two separate IP networks: one being a private intranet and the other the Internet.
IP routers 1 and 2 are connected to the intranet. IP routers 3 and 4 are connected
to the Internet.

Each TPF host processor must have a unique IP address for each IP network to
which it connects. For example, host TPFA uses IP address 25.111.222.82 when
connecting to the intranet and IP address 9.123.145.201 when connecting to the
Internet. The IP addresses of hosts TPFA, TPFB, and TPFC must all be unique.

When a remote client wants to connect to the TPF system, a DNS round-robin of IP
addresses or other load balancing method is needed. For example, if a remote
client in the Internet wants to connect to the TPF system and does not care which
TPF host is selected, you can select IP address 9.123.145.201 (TPFA),
9.123.145.205 (TPFB), or 9.123.145.210 (TPFC). The decision of which IP address
to use is done at the client end before the first packet flows into the TPF system.

TPF

9.123.145.111

IP Router 1

IP Router 2

IP Router 3

IP Network

Figure 13. One TPF Host Connected to One IP Network

42 TPF V4R1 TCP/IP

Using OSA-Express Support
Another link layer in the TPF system is the queued direct I/O (QDIO) link layer,
which enables communication with the OSA-Express card.

Configuration Characteristics of the OSA-Express Card
The OSA-Express card has the following configuration characteristics:

v OSA-Express cards are supported by IBM Generation 5 (G5) or later servers.
The G5 or G6 server can support a maximum of 12 OSA-Express cards. The
zSeries 900 (z900) server can support a maximum of 24 OSA-Express cards.
The host (for example, TPF or OS/390) can connect to multiple OSA-Express
cards. When the server is logically partitioned (in LPAR mode), all the host
LPARs in that server can share the same OSA-Express card.

v Each OSA-Express card supports 240 symbolic device addresses (SDAs). Each
connection between the TPF system and OSA-Express requires three SDAs: a
write control path, a read control path, and a data path. Each connection
between OS/390 and OSA-Express requires at least three SDAs; however, more
are allowed because you can define multiple data paths. The unit addresses of
the SDAs must be defined in a specific manner; see “Defining OSA-Express
Cards to the Processor” on page 66.

TPFA

TPFB

TPFC

Intranet

Internet

IP Router 1

IP Router 2

IP Router 3

IP Router 4

25.111.222.82

9.123.145.201

25.111.222.77

9.123.145.205

25.111.222.84

9.123.145.210

Figure 14. Three TPF Hosts Connected to Two IP Networks

TCP/IP Native Stack Support Internals 43

v Each OSA-Express card supports a total of 512 IP addresses for all the hosts
that share that card.

Note: If the total of 512 IP addresses is exceeded, results cannot be predicted.

v You can configure the OSA-Express card by entering the ZOSAE command. See
TPF Operations for more information on the ZOSAE command.

Note: You do not need the OSA/SF feature to configure or use the OSA-Express
card.

v Each OSA-Express card has a single port that connects to a Gigabit Ethernet
(GbE or GENET) or Fast Ethernet (FENET).

Data Flow between the OSA-Express Card and the TPF System
Queued direct I/O (QDIO) is the link layer protocol that is used to communicate
between the OSA-Express card and host processor (the TPF system). QDIO
enables the OSA-Express card and the TPF system to share memory; therefore
data transfer does not require channel programs or use the I/O subsystem. IP
packets are sent or received on any I-stream.

Components of TCP/IP Native Stack Support
Figure 15 on page 45 provides an overview of the TCP/IP native stack support
components.

44 TPF V4R1 TCP/IP

Socket application
The user application or TPF middleware that issues socket application
programming interface (API) functions.

Socket API processing
Processes socket API functions. For calls that require packets to be sent out,
the IP send component is called. For calls to read data, and the necessary data
has already been received from the network, the call is processed completely
by this layer.

IP send
Builds all packets and adds them to the IP output queue to send them to the
network, or sends the packets directly to the OSA-Express card. If a large
amount of CDLC output packets exist, a write channel program will be issued if
an available IP router is found to write out the packets immediately (rather than
wait for polling to write out the packets).

IP scan
Activated several times per second to poll the network (send and receive
packets) and retransmit lost TCP output messages.

IP trace read processing
Activated when packets are received from the IP network. Initial processing of a
packet is done to identify the socket that the packet is destined for, process

TPF

TCP Opzero UDP Opzero

IP Opzero

IP Trace Read
Processing

RAW Opzero

IP
Send

IP
Scan

Socket Application

Socket API

Socket API Processing

IP Network

Figure 15. TCP/IP Native Stack Support Components

TCP/IP Native Stack Support Internals 45

TCP connection requests, and stand-alone acknowledgments of TCP data.
Packets containing user data are passed via the TPF input list to IP Opzero for
further processing.

IP Opzero
Reassembles fragmented packets and then passes the entire message to the
appropriate protocol layer.

TCP Opzero
Processes data received for stream sockets. This includes processing
out-of-order data and acknowledging the receipt of data.

UDP Opzero
Processes data received for datagram sockets.

RAW Opzero
Processes data received for RAW sockets. This includes processing ICMP
requests (like PING requests), ICMP error messages, and user-created RAW
sockets.

Policy Agent
The policy agent is a component in the TCP/IP stack that enforces policy decisions
regarding network resources, including access, connection load balancing, and
message prioritization. The TPF policy agent provides the following functions:

v Connection load balancing by using the TPF Domain Name System (DNS)
server. See “Domain Name System Support” on page 101 for more information.

v Packet filtering to verify that a particular remote client attempting to access a
TPF application is allowed to access that application. See “Internet Security” on
page 105 for more information about TCP/IP packet filtering firewall support for
the TPF system.

v Quality of service (QoS) support for differentiated services. See “TCP/IP Network
Services Database Support” on page 111 for more information about support for
differentiated services in the TPF system.

Outbound Message Flow
Outbound message flow involves the following steps:

1. The socket application issues a send-type API function call.

2. One or more IP packets are built in the send buffer of the socket.

3. The IP packets are added to the IP output queue, or sent directly to the
OSA-Express card.

4. The IP packets are sent to the IP routers connected to the TPF system.

When a socket application issues an API call to send user data, the socket API
processing layer verifies to see if the send call can be processed at this time. There
is a send buffer associated with each socket, and the size of the send buffer is
controlled by the application. If there is enough available space in the send buffer of
the socket to build the packets containing the user data, the packets are built and
control is immediately passed back to the application with a good return code on
the API call.

If there is not enough available space in the send buffer of the socket, the action to
take is based on the mode in which the socket is running. If the socket is running in
nonblocking mode, control is immediately passed back to the application with a
return code indicating that the send operation could not be completed at this time. If

46 TPF V4R1 TCP/IP

|

|
|
|

|
|

|
|
|
|

|
|
|

the socket is running in blocking mode, the application entry control block (ECB) is
suspended until enough space becomes available in the send buffer of the socket,
or until the send times out (based on the send timeout value of the socket).

The type of socket determines when space becomes available in the send buffer for
a socket:

v For UDP and RAW sockets, output messages are removed from the send buffer
of the socket once the messages have been sent to the network.

v For TCP sockets, output messages remain in the send buffer of the socket until
the remote end acknowledges receipt of the data.

Once an output message (IP packet) has been built, control is returned to the
application that issued the socket API call. When the packets are actually sent to
the network is an independent process. The socket type determines whether or not
a packet can be sent to the network right away:

v For UDP and RAW sockets, there is no end-to-end flow control; therefore, output
messages are always added to the IP output queue or sent directly to the
OSA-Express card when they are built.

v For TCP sockets, the remote end controls the rate at which packets are sent.
Each time an acknowledgement is received, it includes a window size indicating
how much data on this socket can be sent at this time. When a TCP output
message is built, it is added to the IP output queue immediately or sent directly
to the OSA-Express card only if the amount of data in the packet is less than or
equal to the window size advertised by the remote end.

The TPF system supports differentiated services for outbound messages on an
application basis. See “TCP/IP Network Services Database Support” on page 111
for more information.

Outbound Message Flow for CDLC
Packets are added to the IP output queue when they are ready to be sent to the
network and, for TCP sockets, when the remote end is willing to accept the packets.
The actual sending of the packets to the network is an independent process that
may or may not be triggered by adding a packet to the IP output queue. The I/O
write initiate routine is called for the following:

v A packet is added to the IP output queue and the size of the IP output is now
large, which means that there are enough packets to fill up a write channel
program.

v An I/O operation (read or write) is completed successfully and the size of the IP
output queue is large, which means that there are enough packets to fill up a
write channel program

v An I/O operation (read or write) is completed successfully, there are messages
on the IP output queue but the size of the IP output queue is not large, and the
IP router has not indicated that it has many messages to send to the TPF
system.

v By the IP scan routine, several times per second, to send output messages so
the size of IP output queue never becomes too large.

For a write operation to start, an active IP router must exist that is not in slowdown
mode and does not have any I/O operation already in progress. Packets are
removed from the IP output queue and sent to the IP router. When the write
operation is completed successfully, the packets are copied to the IP trace table if
the IP trace function is active for those sockets.

TCP/IP Native Stack Support Internals 47

|
|
|

Outbound Message Flow for OSA-Express
If the OSA-Express connection is active, packets are sent directly to the
OSA-Express card by using the QDIO link layer and are not placed on the IP output
queue unless the destination is in a remote network and there is no active gateway
to that network. In this case, packets are placed on the IP output queue.

If the OSA-Express connection is not active or if all gateways to the remote network
are not active, packets are placed on the IP output queue until the connection and
gateway become active.

See Defining Gateways on page 58 for more information about gateways.

Inbound Message Flow
Inbound message flow involves the following steps:

1. The CDLC IP router or the OSA-Express card sends packets to the TPF
system.

2. The IP trace read processing routine starts to process the packets and,
sometimes, processes packets completely.

3. IP Opzero continues processing packets that contain user data.

4. The protocol layer (TCP Opzero, UDP Opzero, or RAW Opzero) either queues
the input message off the socket or passes the data to the application if a
read-type API call is pending.

5. If a read-type API call is not pending when the data is processed by Opzero, the
socket API processing layer dequeues the data and passes it to the application
later on when the application does issue a read-type API.

When packets are received from a CDLC IP router or OSA-Express card, each
packet is passed to the IP trace read processing routine. This routine determines
which socket the packet is for and completely processes certain control information,
such as TCP connection requests and standalone acknowledgements of TCP data.
Packets are added to the IP trace table if the IP trace function is active for those
sockets.

Packets that are not completely processed by the IP trace read processing routine
(which includes all packets that contain user data), are passed via the TPF input list
to IP Opzero. The main function of IP Opzero is to put fragmented messages back
together. When a packet is too large to be sent across a physical network, the
packet is split into smaller packets. The final destination must then put the pieces
back together before delivering the message to the protocol layer. Whenever
possible, tune your network to avoid IP fragmentation to prevent the overhead
involved in the IP router splitting up the packet and the IP Opzero overhead
involved in reassembling the message.

The protocol layer (TCP Opzero, UDP Opzero, or RAW Opzero) is responsible for
queuing the input message or passing it directly to the application if a read-type API
call is pending on the socket.

TCP Opzero does the following:

1. If the data is old (which means this is a duplicate packet), the data is discarded.

2. If the data is received out of order (which means the sequence number of the
start of this data is not the next expected sequence number), the data is queued
until it becomes the next expected piece of data.

48 TPF V4R1 TCP/IP

3. If there is a read, recv, or recvfrom API call pending for this socket, the
suspended ECB is posted. When the application ECB is reactivated, the socket
API processing layer copies the data from the link layer read buffer to the
application work area specified on the read-type API call. If more data is in the
packet than will be received by the application, the excess data is queued in the
receive buffer of the socket.

4. If there is an activate_on_receipt API call pending for the socket, a new ECB
is created, the data is copied to the new ECB, and the application program
specified on the activate_on_receipt API call is activated. If more data is in the
packet than will be received by the application, the excess data is queued in the
receive buffer of the socket.

5. If there is no read, recv, recvfrom, or activate_on_receipt API call pending for
the socket, the data is queued in the receive buffer of the socket.

UDP Opzero does the following:

1. If there is no available space in the receive buffer of the socket to queue the
input message, the input message is discarded. Remember, there is no flow
control for UDP sockets.

2. If there is a read, recv, or recvfrom API call pending for this socket, the
suspended ECB is posted. When the application ECB is reactivated, the socket
API processing layer copies the input message from the link layer read buffer to
the application work area specified on the read-type API call.

3. If there is an activate_on_receipt API call pending for the socket, a new ECB
is created, the input message is copied to the new ECB, and the application
program specified on the activate_on_receipt API call is activated.

4. If there is no read, recv, recvfrom, or activate_on_receipt API call pending for
the socket, the input message is queued in the receive buffer of the socket.

RAW Opzero does the following:

1. Processes control messages; for example, ICMP ECHO requests (PING
messages) and ICMP errors.

2. Copies the input message to the receive buffer of each RAW socket whose
protocol matches the protocol of the input message.

3. After copying the input message, if there is a read, recv, or recvfrom API call
pending for this socket, the suspended ECB is posted.

4. If there is an activate_on_receipt API call pending for the socket, a new ECB
is created, the input message is copied to the new ECB, and the application
program specified on the activate_on_receipt API call is activated.

TCP/IP Native Stack Support Internals 49

50 TPF V4R1 TCP/IP

TPF Control Block Structures

This chapter discusses the following:

v The control block structures used by TCP/IP native stack support

v How to define TCP/IP native stack support to the TPF system

v Storage considerations for TCP/IP native stack support

v Performance and tuning of TCP/IP native stack support

v TCP/IP network configurations.

Socket Block Table Structure
The socket block table consists of four parts:

1. The socket block table header, which contains pointers and statistical
information about resources used by TCP/IP native stack support

2. Hash buckets for the IP hash table, which allow a socket block table entry to be
easily found, given its IP addresses and port numbers as input

3. Hash buckets for the file descriptor hash table, which allow a socket block entry
to be easily found, given its file descriptor as input

4. Socket block table entries, which contain one entry for each active socket that is
using TCP/IP native stack support.

The socket block table resides in main storage and is the table accessed and
updated most frequently by the TCP/IP native stack support code. All of the
information about an active socket is maintained in its socket block table entry.

When the TPF system is brought up, all socket block table entries are in the
available pool of resources. Socket block table entries are assigned dynamically as
sockets are created. When a socket closes, its socket block table entry is returned
to the pool of available resources so that it can be reused.

Defining the Socket Block Table
The MAXSOCK parameter on the SNAKEY macro in keypoint 2 (CTK2) defines the
number of socket block table entries. One socket block table entry is needed for
each active socket that uses TCP/IP native stack support.

See TPF ACF/SNA Network Generation for more information about the SNAKEY
macro.

CDLC IP Configuration Record
The channel data link control (CDLC) IP configuration record contains the following
tables:

v The CDLC IP address table, which contains the definitions for each local CDLC
IP address associated with this TPF processor

v The CDLC IP device table, which contains the definitions for, and status of, each
IP router defined to this TPF processor.

The CDLC IP configuration record resides in main storage and on file. Whenever
the record is updated in main storage, the information is also saved on file.

© Copyright IBM Corp. 1996, 2002 51

Defining the CDLC IP Network Configuration
Use the ZTTCP commands to define, display, change, or delete CDLC IP network
configuration information.

See “Local IP Addresses” on page 60 and “Defining CDLC IP Connections” on
page 65 for more information about defining the CDLC IP network configuration to
the TPF system.

See TPF Operations for more information about the ZTTCP commands.

CDLC IP CCW Area Table
The CDLC IP channel command word (CCW) area table contains one entry for
each active IP router that uses CDLC protocol. Channel programs, device status,
and read buffer information reside in this table.

Defining CDLC IP CCW Area Table Resources
The MAXIPCCW parameter on the SNAKEY macro in CTK2 defines the number of
IP CCW area table entries. The size of each IP CCW area is 4096 bytes.

Each active IP router has two sets of read buffers assigned to it for reading packets
from the network. The IPRBUFFS parameter on the SNAKEY macro in CTK2
defines the number of read buffers in each set. The IPRBUFSZ parameter on the
SNAKEY macro in CTK2 defines the size of read buffer.

OSA Configuration Record
The OSA configuration record (OCR) consists of the following tables:

v The OSA definition table, which contains the definitions and status of the
OSA-Express connections on this processor.

v The OSA IP address table, which contains the definitions and status of the IP
addresses associated with the OSA-Express connections on this processor.

The OSA configuration record resides in main storage and on file. Whenever the
record is updated in main storage, the information is also saved on file.

OSA Control Block Table
The OSA control block table resides in main storage and is the table accessed and
updated most frequently by the OSA-Express support code. All the information
about an active OSA-Express connection is maintained in its control block table
entry.

The MAXOSA parameter on the SNAKEY macro in keypoint 2 (CTK2) defines the
maximum number of OSA-Express connections that can be active on the TPF
system. One OSA control block table entry is needed for each active OSA-Express
connection on this processor.

OSA Shared IP Address Table
The OSA shared IP address table (OSIT) resides only on file and contains the
status of all OSA IP addresses in the complex. To define the #OSIT fixed file
records, see TPF System Generation.

52 TPF V4R1 TCP/IP

OSA Read Buffers
The OSA read buffers are used to transfer data to the TPF system from an
OSA-Express connection. Each OSA-Express connection has its own set of read
buffers allocated in main storage.

Defining OSA Read Buffers
The OSABUFF parameter on the SNAKEY macro in CTK2 defines the number of
64-KB read buffers assigned for each OSA-Express connection. You can specify a
value of 16, 32, or 64 for the OSABUFF parameter. See TPF ACF/SNA Network
Generation for more information about the SNAKEY macro.

The amount of storage required for each valid OSABUFF value is as follows:

Number of OSA Read Buffers (OSABUFF) Storage Required

16 1 MB × MAXOSA parameter value

32 2 MB × MAXOSA parameter value

64 4 MB × MAXOSA parameter value

Consider the following when determining how many OSA read buffers to define:

v The number of messages received per second

v The average size of the messages received.

Increasing the OSABUFF parameter is only necessary for systems with significant
message rates. In a low-volume TPF system, the default of 16 buffers should be
enough. However, in a high-volume production system (for example, a system that
receives more than 2000 messages per second), it is best to increase the number
of buffers.

The message rate at which you decide to increase the number of buffers can vary
based on processor speed, number of I-streams, and the environment in which the
TPF system is running. One way to determine whether you need to increase the
number of buffers is to look at the number of messages that are received out of
order. If the percentage of messages received out of order increases as the
message rate increases, it can be an indication that the buffers currently available
to the OSA are being filled and the value of the OSABUFF parameter should be
increased.

IP Message Table
The IP message table (IPMT) contains the following:

v IP packets built by the TPF system that have not yet been sent to the network

v IP packets for TCP sockets that have been sent to the network and are waiting
for an acknowledgment from the remote end

v IP packets received from the network that have not been delivered to the socket
application yet

v TCP data received out of order from the network

v IP fragments received from the network.

The IPMT resides in main storage and consists of a pool of 4-KB entries that are
assigned dynamically on demand.

TPF Control Block Structures 53

Output messages reside in the send buffer of a socket. Input messages reside in
the receive buffer of a socket. The IPMT is the physical storage used by send and
receive buffers. IPMT entries are not preallocated to send and receive buffers.
Instead, IPMT entries are assigned only when needed. For example, assume the
receive buffer size for a socket is 100 KB and there are no input messages queued
for this socket. For this, there are no IPMT entries being used for input messages.
Next, assume a 500-byte message arrives for this socket. An IPMT entry will be
assigned to the receive buffer of the socket and the 500-byte message will be
copied into that entry. When the application reads the 500-byte message, the IPMT
entry will be returned to the system.

Defining the IP Message Table
The IPMTSIZE parameter on the SNAKEY macro in CTK2 defines the number of
4-KB entries in the IPMT. The IPMT is usually the TCP/IP native stack support table
that requires the most main storage. The following factors must be taken into
consideration when determining the size of the IPMT:

v Message rate (number of packets sent and received per second)

v Average size of a packet

v Round-trip time for TCP sockets, which means how long it takes, on average, to
receive responses from remote partners.

IP Routing Table
The IP routing table (IPRT) contains the following:

v The IP routing table header, which provides pointers and statistical information
about the IP routing table and its core and fixed file entries.

v Unique IP routing table entries, each associating a remote IP address or subnet
with a local TPF IP address or a next hop gateway. The size of each IP routing
table entry is 64 bytes.

The IPRT resides in main storage and is filed out to DASD whenever entries are
added, deleted, or modified. During an initial program load (IPL), the IPRT is rebuilt
from the #IPRTE fixed file records. See TPF ACF/SNA Network Generation for
more information about the #IPRTE 4-KB fixed file records.

Defining the IP Routing Table
The MAXRTE parameter of the SNAKEY macro in keypoint record 2 (CTK2) defines
the number of IP routing table entries. You can change the MAXRTE parameter by
entering the ZNKEY command; the new values will be used when the TPF system
is IPLed. The ZTRTE command manages the IP routing table entries, giving you the
ability to add, delete, modify, and display them.

See TPF Operations for more information about the ZNKEY and ZTRTE
commands. See TPF ACF/SNA Network Generation for more information about the
SNAKEY macro.

Tuning TCP/IP Native Stack Support
This section describes how to tune parameters in the TPF system and in the
network.

54 TPF V4R1 TCP/IP

Tuning Major Control Block Structures
The ZTTCP DISPLAY STATS command display includes the maximum number of
socket block entries and maximum number of IPMT entries that were in use at any
time since the last IPL of the TPF system. Monitor this information to see if either
control block is approaching the limit that you defined and, if so, increase the
number of control block entries:

v To increase the number of socket block entries, increase the value of the
MAXSOCK parameter on the SNAKEY macro in CTK2.

v To increase the number of IPMT entries, increase the value of the IPMTSIZE
parameter on the SNAKEY macro in CTK2.

Tuning the IP over CDLC Link Layer
Examine IP trace data during a peak traffic period to see how many IP packets are
sent and received in each write and read channel program. The value of the
IPRBUFFS parameter on the SNAKEY macro in CTK2 defines the maximum
number of packets that can be sent or received in one channel program. Packets
that were sent or received in the same channel program will have the same time
stamp in the IP trace display. If the average number of packets in each write or
read channel program is at or near the maximum that you defined, increase the
value of the IPRBUFFS parameter so more data can be sent in each channel
program.

The value of the IPRBUFSZ parameter on the SNAKEY macro in CTK2 defines the
maximum size of a packet that can be sent or received. For stream sockets, the
maximum amount of user data that can be sent or received in a packet is the value
of IPRBUFSZ minus the combined size of the link header, IP header, and TCP
protocol header. Code IPRBUFSZ based on the average size of TCP messages
(amount of user data in each message) in your network as follows:

Average Message Size IPRBUFSZ Value

1–976 1024

977–2000 bytes 2048

Over 2000 bytes 4096

Even if you set IPRBUFSZ to a value that is smaller than your average message
size, you can still send large messages. However, those messages will be sent in
smaller pieces causing more packets to flow.

Setting IPRBUFSZ to a large value does not guarantee that large packets will flow.
When a stream socket is started, the two sides negotiate the maximum size of a
packet that can be sent on the socket. If the remote node suggests a maximum
packet size that is less than the value of IPRBUFSZ, the value suggested by the
remote node is used.

Tuning the IP Network
The ZTTCP DISPLAY STATS command display shows the number of IP fragments
received. If the display shows that a large amount of fragmented messages are
being received, examine the network and take the following actions to avoid IP
packets from being fragmented:

1. Identify the intermediate network device that is fragmenting the packets and
increase the maximum packet size of that network device to a value large
enough to avoid fragmentation.

TPF Control Block Structures 55

2. Lower the value of the maximum packet size used by TCP connections with the
TPF system by doing the following:

v For CDLC, enter the ZTTCP CHANGE command, specifying a value for the
maximum packet size (MPS) parameter that is small enough to avoid IP
packet fragmentation.

v For OSA, enter the ZOSAE command with the MODIFY parameter specified,
specifying a value for the maximum transmission unit (MTU) parameter that is
small enough to avoid IP packet fragmentation.

The ZTTCP DISPLAY STATS command display also shows the number of TCP
packets that were retransmitted by the TPF system. If the number of retransmitted
packets is high, this usually indicates congestion problems in the network that
should be investigated.

Performance
There are counters that provide information about the number of messages, bytes,
and packets sent and received for each TCP/IP application. This information is
provided in the reports that are generated by data collection and reduction. The
counts are incremented differently based on whether or not the application is
defined in the TCP/IP network services database. See “TCP/IP Network Services
Database Support” on page 111 for more information about this data collection and
how to define your applications in the TCP/IP network services database. See TPF
System Performance and Measurement Reference for more information about data
collection and reduction in general.

The ZSTAT command display shows the total number of weighted TCP/IP
messages. See “TCP/IP Network Services Database Support” on page 111 for more
information about weighted TCP/IP messages. See TPF Operations for more
information about the ZSTAT command.

The ZTTCP DISPLAY STATS command display shows the total number of packets
sent and received by the TPF system. You can display this information periodically
and calculate the rate at which packets are transferred between the TPF system
and IP routers.

The ZVIPA command displays statistical information about your TPF system and
can be used to balance the OSA TCP/IP workload. For more information, see
“Workload Balancing Using Movable VIPAs” on page 69.

TCP/IP Network Configurations
To connect the TPF system to multiple TCP/IP networks, you can use the IP routing
table (IPRT). You can set up IPRT entries to associate local IP addresses with a
remote IP address or subnet of addresses.

When you use OSA-Express support, you can set up IPRT entries to associate
remote networks and the gateways to them.

Selecting the Local IP Address
When a TPF TCP client application attempts to connect to a remote server, a bind
function for a local TPF IP address may not have been explicitly issued. If this
occurs, TCP/IP native stack support uses the IPRT to select a local IP address.
This local IP address determines the set of channel-attached IP routers or
OSA-Express connections that can be used for the connection to the remote server.

56 TPF V4R1 TCP/IP

|
|
|
|
|
|
|
|
|

|
|
|
|

The IPRT entry that contains the best match for the IP address of the remote server
is used. The IPRT entry with the most specific network mask becomes the best
match for the IP address. The network mask represents a subnet of IP addresses
or a specific IP address if it is equal to 255.255.255.255. If multiple entries qualify
as the best match, the TPF system selects one entry on a round-robin basis. If a
best match cannot be found, the default local IP address is used. If an entry is the
best match, but it has a local TPF IP address that does not have active IP routers
or OSA-Express connections, the entry is not selected.

Choosing Network Paths
In the following example, the TPF system is connected to two IP routers. IP router A
has a local IP address of 4.4.4.4 and is connected to a remote network having a
subnet IP address of 8.8.8.0. IP router B has a local IP address of 5.5.5.5 and is
connected to a different remote network that has a subnet IP address of 10.10.10.0.
The default local address is 5.5.5.5. There are no entries in the IPRT.

A client application wants to establish a connection to a remote server that has an
IP address of 8.8.8.1. The client application issues a connect function without
issuing a bind function. The TPF system searches the IP routing table for a remote
address of 8.8.8.1 to determine which local IP address to use when sending the
packet. The TPF system determines that the IPRT is empty and continues
processing using the default local IP address of 5.5.5.5. The packet for the remote
server is sent out across IP router B (5.5.5.5.); however, a connection is not
established because IP router B is not connected to the 8.8.8.0. network.

You can use the IP routing table to resolve this condition. Enter the ZTRTE
command with the ADD parameter specified to add two entries to the IPRT.

ZTRTE ADD RIP-8.8.8.1 LIP-4.4.4.4 NETMASK-255.255.255.255
ZTRTE ADD RIP-10.10.10.0 LIP-5.5.5.5 NETMASK-255.255.255.0

The IPRT now contains the following information:

Remote IP Address Network Mask Local IP Address

8.8.8.1 255.255.255.255 4.4.4.4

10.10.10.0 255.255.255.0 5.5.5.5

The client application again tries to establish a connection to the remote server that
has an IP address of 8.8.8.1. The client application issues a connect function
without issuing a bind function. The TPF system searches the IP routing table for a
remote address of 8.8.8.1 to determine which local IP address to use when sending
the packet. The TPF system finds an entry in the IPRT indicating that the local IP
address of 4.4.4.4 is associated with IP router A and should be used for this
connection. The packet for the remote server is sent out across IP router A (4.4.4.4)
and a successful connection is established between the client application (4.4.4.4)
and the remote server (8.8.8.1).

If more than one entry exists for a remote IP address or subnet of remote IP
addresses, the TPF system will search through the IPRT entries for each
connection. It is possible to have more than one entry for the same IP address only
if the local IP address is unique from all other entries with the same remote IP
address. For example, a third IP router, IP router C, with an IP address of 7.7.7.7 is
added to the TPF system. IP router C is also connected to the remote network of
8.8.8.0. Another entry can be added to the IPRT for the remote server (8.8.8.1).
Now you have multiple paths in the IP routing table to get to the remote server with

TPF Control Block Structures 57

the IP address of 8.8.8.1. The IPRT now looks like this:

Remote IP Address Network Mask Local IP Address

8.8.8.1 255.255.255.255 7.7.7.7

8.8.8.1 255.255.255.255 4.4.4.4

10.10.10.0 255.255.255.0 5.5.5.5

The IPRT can be created and managed by the ZTRTE command. See TPF
Operations for more information about the ZTRTE command.

Defining Gateways
When the TPF system sends an IP packet to a destination that is on the network
where the OSA-Express card is connected, the packet is sent directly to the
destination. However, if the destination of the packet is a remote network, the TPF
system must inform the OSA-Express card through which gateway to send the
packet. For this, a gateway is a router that connects the local network (to which the
OSA-Express card is attached) to remote networks. You can define up to two
default gateways for each OSA-Express connection to your TPF system by entering
the ZOSAE command specifying the DEFINE or MODIFY parameters and the
GATEWAY1 or GATEWAY2 parameter.

For complex networks where you want to use specific gateways based on the
remote destination, you can define IP routing table entries to specify which
gateways the TPF system will use when sending packets to a specific remote node
or network. Enter the ZTRTE command with the following parameters to define an
IP routing table entry:

v NEXTHOP, specifies the IP address of the gateway on the local network

v RIP, specifies the IP address of the remote node or network

v NETMASK, specifies the subnet mask that is applied to the RIP parameter.

For example, your local network is 1.1.1.x and has five gateways whose IP
addresses are 1.1.1.10, 1.1.1.11, 1.1.1.30, 1.1.1.40, and 1.1.1.43. You want all
traffic destined for remote network 3.3.3.x to go through gateways 1.1.1.30 and
1.1.1.40. To do this, enter the following:
ZTRTE ADD RIP-3.3.3.0 NETMASK-255.255.255.0 NEXTHOP-1.1.1.30
ZTRTE ADD RIP-3.3.3.0 NETMASK-255.255.255.0 NEXTHOP-1.1.1.40

When multiple IP routing table entries exist for the same destination, the TPF
system will use a round-robin method for selecting a gateway.

Choosing a Gateway
When a socket is created with a node that resides in a remote network and the TPF
system has the first packet to send on that socket, a gateway is selected as follows:

1. The IP routing table is searched to find an entry that matches the remote
destination and whose gateway resides on the same local network to which the
OSA-Express card is connected. If a match is found, that gateway is used.

2. If an IP routing table entry is not found, one of the two default gateways for the
OSA-Express connection is used if there is an active default gateway.

3. If an active gateway does not exist, the packet is queued until one of the default
gateways becomes active or until you add a new default gateway. Once a
gateway is selected, that gateway is used for the life of the socket unless the
gateway fails; however, that gateway can direct the TPF system to use a
different gateway by sending an ICMP redirect message.

58 TPF V4R1 TCP/IP

Operator Procedures for TCP/IP Native Stack Support

This chapter describes the tasks that an operator can perform for TCP/IP native
stack support.

Configuring a TPF System
To use TCP/IP native stack support, you must do the following:

v If you are using channel data link control (CDLC), do the following:

1. Code the MAXSOCK, MAXIPCCW, IPRBUFFS, IPRBUFSZ, IPMTSIZE, and
SOCKSWP parameters of the SNAKEY macro and reload keypoint 2 (CTK2).
See “Enabling TCP/IP Native Stack Support” on page 60.

2. Define the local IP addresses by entering the ZTTCP DEFINE command.

3. Define the IP routers by entering the ZTTCP DEFINE command.

4. Activate the IP routers by entering the ZTTCP ACTIVATE command.

v If you are using Open Systems Adapter (OSA)-Express, do the following:

1. Code the MAXSOCK, IPMTSIZE, SOCKSWP, and MAXOSA parameters of
the SNAKEY macro and reload keypoint 2 (CTK2). See “Enabling TCP/IP
Native Stack Support” on page 60.

2. Define and allocate the #OSIT fixed file record. For more information about
calculating the number of records to allocate, see TPF System Generation.

3. Define the OSA-Express connections to the TPF system by entering the
ZOSAE command with the DEFINE or MODIFY parameter specified.

4. Define the virtual IP addresses (VIPAs) by entering the ZOSAE command
with the ADD parameter specified.

5. Activate the OSA-Express connections by entering the ZTTCP ACTIVATE
command.

To use IP routing table support, you must do the following:

1. Have TCP/IP native stack support defined on your TPF 4.1 system.

2. Code the new MAXRTE parameter of the SNAKEY macro and reload keypoint 2
(CTK2). See “Enabling TCP/IP Native Stack Support” on page 60.

3. Define and allocate the #IPRTE fixed file record. For more information about
calculating the number of records to allocate, see TPF ACF/SNA Network
Generation.

4. Define the IP routing table entries by entering the ZTRTE command with the
ADD parameter specified.

5. Activate the IP routers or OSA-Express connections by entering the ZTTCP
ACTIVATE command.

6. Activate TCP client socket applications on the TPF 4.1 system to use IP routing
table support.

For more information about the ZTTCP and ZTRTE commands, see TPF
Operations.

To use individual IP trace support, you must do the following:

1. Have TCP/IP native stack support defined on your TPF 4.1 system.

2. Code the IPTRCNUM and IPTRCSIZ parameters of the SNAKEY macro and
reload keypoint 2 (CTK2). See “Enabling TCP/IP Native Stack Support” on
page 60 for more information.

© Copyright IBM Corp. 1996, 2002 59

3. Define the individual IP traces by entering the ZINIP command.

For more information about the SNAKEY macro, see TPF ACF/SNA Network
Generation. For more information about the ZINIP command, see TPF Operations.

Enabling TCP/IP Native Stack Support
To enable TCP/IP native stack support, code the following SNAKEY macro
parameters in CTK2:

MAXSOCK
The number of socket block entries. See “Defining the Socket Block Table” on
page 51.

MAXIPCCW
The number of IP channel command word (CCW) area entries. See “Defining
CDLC IP CCW Area Table Resources” on page 52.

IPRBUFFS
The number of read buffers per IP router. See “Defining CDLC IP CCW Area
Table Resources” on page 52 for more information.

IPRBUFSZ
The size of each read buffer for IP routers. See “Defining CDLC IP CCW Area
Table Resources” on page 52.

IPMTSIZE
The size of the IP message table (IPMT). See “Defining the IP Message Table”
on page 54.

IPTRCNUM
The maximum number of individual IP traces you can define. See “Using the
Individual IP Trace Function” on page 76.

IPTRCSIZ
The size of each individual IP trace. See “Using the Individual IP Trace
Function” on page 76.

SOCKSWP
The socket sweeper interval. See “Socket Sweeper Support to Close Inactive
Sockets” on page 125.

MAXRTE
The maximum number IP routing table (IPRT) entries. See “Defining the IP
Routing Table” on page 54.

MAXOSA
The maximum number of OSA-Express connections that can be active on the
TPF system. See “OSA Control Block Table” on page 52.

Local IP Addresses
Your network administrator must assign at least one IP address to each TPF host
that connects to an IP network. If a TPF host connects to only one IP network, only
one IP address is needed for the TPF host. However, you can assign multiple IP
addresses to a TPF host even if the TPF host connects to only one IP network.

In a loosely coupled TPF system, each TPF processor must have unique IP
addresses so that packets are routed to the correct TPF processor. However,
movable VIPAs can be defined on every processor but a given VIPA can only be
active on one processor at a time.

60 TPF V4R1 TCP/IP

If a TPF host connects to more than one physically separate IP network, the TPF
host will have a different IP address for its connections to the different networks.
For example, if a TPF host connects to three physically separate IP networks, that
TPF host will have at least three IP addresses defined.

Default Local IP Address
The first local IP address that you define to a TPF host becomes the default local IP
address for that host. The default local IP address is used when a socket client
application in the TPF system sends data and has not informed the TPF system
which local IP address to use. For example, a TCP client application running in the
TPF system issues a connect call without issuing a bind call first. When this occurs,
the TPF system must select a local IP address to use. The IPRT is searched to find
a local IP address to use that is based on the destination. If an entry for the
destination does not exist, the default local IP address is used.

If a TPF host has more than one local IP address defined and you have socket
client applications running in your TPF system, any client application that needs to
use a local IP address other than the default must issue a bind call to bind that
socket to the desired local IP address or to define entries in the IPRT. Client
applications that want to use the default local IP address do not need to issue the
bind call.

For information about local IP addresses, see Selecting the Local IP Address on
page 56.

To define the default local IP address, specify the DEFAULT parameter on the
ZTTCP DEFINE command or specify the ZOSAE command with the DEFINE,
MODIFY, or ADD parameter. These define the local IP address to the TPF system.
You can change which IP address is the default by entering the ZTTCP CHANGE
command and specifying the DEFIP parameter.

Maximum Packet Size
When a TCP connection is started, part of the handshake process determines the
maximum packet size (MPS) that can be sent on the socket. Typically, when the
client sends the connection request, the suggested MPS sent is the smaller of the
following values:

v The buffer size in the node where the client resides

v The maximum size packet supported by the network to which the client directly
connects.

When the server receives the connection, the MPS value that will be used by the
socket is the smallest of the following values:

v The suggested MPS value sent by the client

v The buffer size in the node where the server resides

v The maximum size packet supported by the network to which to server directly
connects.

Assume the client and server nodes both support 4-KB buffer sizes and the
networks to which they are directly connected support 4-KB packets. However, an
intermediate network along this connection supports only 1-KB packets. If the TCP
handshake process does not account for the intermediate network, the MPS value
for the socket will be 4 KB. Every 4-KB packet sent by the client to the server will
be fragmented by the intermediate network into four 1-KB packets and the server
node will have to put the pieces back together before delivering the data to the

Operator Procedures for TCP/IP Native Stack Support 61

application. Because this is an expensive process that can impact throughput and
network performance, IP fragmentation should be avoided whenever possible.

When you define a local IP address to your TPF system, you can define the upper
limit for the MPS value used by TCP connections connected to a local IP address.
When you define an OSA-Express connection, you can define the upper limit for the
maximum transmission unit (MTU) value used by all IP addresses defined to that
OSA-Express connection. In the previous example, because the intermediate
network supports only 1-KB packets, enter the ZOSAE command with the DEFINE
parameter specified and a value of 1024 specified for the MTU parameter; or enter
the ZTTCP DEFINE command, which defines the local IP address. You can change
the MTU parameter value by entering the ZOSAE command with the MODIFY
parameter specified, or you can enter the ZTTCP CHANGE command and specify
the MPS parameter. This change does not affect existing sockets; it only applies to
subsequently created sockets.

Types of TPF Local IP Addresses
The three types of local IP addresses are:

v Channel data link control (CDLC)

v Real OSA IP address

v Virtual IP address (VIPA).

A maximum of 250 IP addresses can be defined for all OSA-Express connections in
the TPF system. This includes real OSA IP addresses and VIPAs. You can define
as many as 16 local CDLC IP addresses for each TPF host. A TPF IP address is
associated with either 374x IP routers or with an OSA-Express card; therefore, a
socket which is bound to a specific local IP address uses either 374x connections
or OSA-Express connections, but not both.

CDLC Addresses
CDLC local IP addresses are associated with 374x IP routers.

Defining CDLC IP Addresses
Enter the ZTTCP DEFINE command to define the IP addresses of the TPF host.
You must do this before you define the IP routers to the TPF system.

Deleting CDLC Local IP Addresses
If your network configuration changes and you need to delete a local IP address on
your TPF host, enter the ZTTCP DELETE command. See TPF Operations for more
information about the ZTTCP DELETE command.

To delete the local IP address, no IP router can be associated with this local IP
address. If there are IP routers associated with this local IP address, you must first
change or delete the IP router definitions before you delete the local IP address.

The default local IP address cannot be deleted if one or more local IP address is
defined. If more than one local IP address (including CDLC, real OSA, and VIPA) is
defined and you want to delete the IP address that is currently the default, do the
following:

1. Change which local IP address is the default by entering the ZTTCP CHANGE
command specifying the DEFIP parameter.

2. Delete the desired local IP address by entering the ZTTCP DELETE command.

62 TPF V4R1 TCP/IP

Restricting CDLC IP Addresses
When a TPF host connects to more than one physically separate IP network, the
TPF host has more than one local IP address defined. You can define a CDLC local
IP address to be restricted to prevent remote clients in one IP network from
accessing TPF applications that reside in a different IP network.

For example, assume a TPF host is connected to a private intranet and to the
Internet. The TPF system uses IP address 1.1.1.1 to connect to the intranet and IP
address 2.2.2.2 to connect to the Internet. IP address 1.1.1.1, port 5001, represents
a server application in your TPF system that can be accessed only by clients in the
intranet. To prevent clients in the Internet from accessing this application, define IP
address 1.1.1.1 as restricted in your TPF system. For example, if an IP packet is
received by the TPF system with a destination in the packet of IP address 1.1.1.1
and the packet is not received by an IP router connected to IP address 1.1.1.1, the
TPF system will then reject the IP packet.

To define an IP address as restricted, specify RESTRICT=YES on the ZTTCP
DEFINE command. You can change an IP address to be restricted by specifying
RESTRICT=YES on the ZTTCP CHANGE command.

See TPF Operations for more information about the ZTTCP commands.

Real OSA IP Addresses
Real OSA IP addresses are associated with OSA-Express connections.

Defining Real OSA IP Addresses
You must define one unique real OSA IP address of the TPF system for each
OSA-Express connection and this IP address must be in the subnet of the Ethernet
connected to the OSA-Express card. For example, if the Ethernet is network
9.117.249.x (with a subnet mask of 255.255.255.0), the real OSA IP address of the
TPF host could be 9.117.249.31 but could not be 9.117.222.31. The real OSA IP
address of the TPF host is defined to the TPF system by entering the ZOSAE
command with the DEFINE or MODIFY parameter specified.

Real OSA IP addresses are tied to a fixed connection and cannot be moved. TPF
applications can bind to a local IP address that is either a real OSA IP address or a
VIPA. A real OSA IP address for an OSA-Express connection or a VIPA can also be
defined as the default local IP address of the TPF system. If sockets are bound to a
real OSA IP address and the OSA-Express connection fails, the sockets will fail.
Therefore, it is recommended that you use VIPAs in your production system.

Deleting Real OSA IP Addresses
You can delete the real OSA IP address of the TPF host and all of the VIPAs
associated with the connection by entering the ZOSAE command with the DELETE
parameter specified. When the ZOSAE command is entered, the OSA-Express
connection must be inactive, and must not have a backup defined. If the real OSA
IP address or any VIPA associated with the OSA-Express connection is defined as
the default IP address, and there are other local IP addresses (CDLC or OSA)
defined, you cannot delete it. See TPF Operations for more information about the
ZOSAE command.

Virtual IP Addresses (VIPAs)
In addition to CDLC and real OSA IP addresses, VIPAs can be associated with the
TPF system across an OSA-Express connection. VIPAs are not fixed and can be

Operator Procedures for TCP/IP Native Stack Support 63

moved from one OSA-Express connection to another or from one physical
processor to another in the same loosely coupled complex.

If an OSA-Express card fails, or the switch or router connected to the card fails, any
TPF VIPAs assigned to that card automatically swing to the alternate OSA-Express
connection on the same processor if one is defined and is active. This enables
sockets to remain active and eliminates single points of failure in network-attached
hardware. The VIPAs cannot reside in the same subnet as the real IP address of
the OSA-Express connection or the real IP address of the alternate OSA-Express
connection if one is defined.

Types of VIPAs

Static VIPAs: A static VIPA always resides on one specific TPF processor in the
loosely coupled complex. A static VIPA can swing from one OSA-Express
connection to another, but always on the same processor. Use static VIPAs to
access processor unique TPF applications.

Movable VIPAs: A movable VIPA can be defined on more than one processor in a
loosely coupled complex, but is active on only one TPF processor at a time. You
must define the VIPA as movable to all the processors that may potentially use it.
Use movable VIPAs to access processor shared applications and to load balance
TCP/IP traffic in the complex.

If you move a VIPA from one processor to another, all existing sockets using that
VIPA will fail; when the remote clients reconnect to that VIPA, new sockets will be
established on the new processor where that VIPA is now active. By moving a
VIPA, you move all traffic for the remote users connected to that VIPA from one
processor to another. A VIPA can be moved in the following ways:

v Automatically, when a TPF processor fails if directed to do so by the UVIP user
exit

v Manually, through one of the following methods:

– By an operator entering the ZVIPA command

– By an application program using the VIPAC macro

– By an application program using the tpf_vipac C function.

Note: You cannot use movable VIPAs to communicate between processors in the
same loosely coupled complex if both processors have the same movable
VIPA defined.

Defining VIPAs to an OSA-Express Connection
To define a VIPA to an OSA-Express connection, enter the ZOSAE command with
the ADD parameter specified and then specify the type of VIPA you want by doing
the following:

v To define a static VIPA, specify the STATIC parameter.

v To define a movable VIPA, do not specify the STATIC parameter.

v Use the DEFAULT parameter to indicate that the VIPA is the default local IP
address.

When you define a VIPA, it is defined to a pair of OSA-Express connections
(primary and alternate, if the alternate is defined), but it is only active on one
OSA-Express connection at a time.

VIPAs can be defined to an active OSA-Express connection and the VIPAs can be
used immediately.

64 TPF V4R1 TCP/IP

Displaying VIPAs
To display a VIPA, do one of the following:

v Enter the ZVIPA command with the DISPLAY parameter specified to display one
or more VIPAs and to display which TPF processor currently owns the VIPAs.

v Enter the ZVIPA command with the IP parameter specified to display on which
CPUs the VIPA is currently defined.

See TPF Operations for more information about the ZVIPA command.

Deleting VIPAs
To delete a VIPA definition on a processor, enter the ZOSAE command with the
REMOVE parameter specified. Once you do this, that VIPA is disassociated from its
OSA-Express connection and is deleted from the processor on which the message
was issued. Enter the ZOSAE command with the REMOVE parameter specified
only when the OSA-Express connection associated with the VIPA and its backup
OSA-Express connection are not active.

You cannot delete a VIPA when it is defined as the default local IP address.

See TPF Operations for more information about the ZOSAE and ZVIPA commands.

CDLC IP Connections
After you have defined the local IP addresses for your TPF system, you must define
the IP routers.

Defining CDLC IP Connections
You can define the IP routers by entering the ZTTCP DEFINE command. For each
IP router, specify its symbolic device address (SDA) and the local (TPF) IP address
to which it connects. The IP address of the IP router itself is not defined to the TPF
system. Instead, this information is found dynamically when the connection to the IP
router is activated.

Refer to an IP router by its SDA. The SDA is the unique token that identifies an IP
router and is used as input to the ZTTCP commands, which define, change, display,
delete, activate, trace, or deactivate an IP router.

Multiple IP routers can be connected to the same local IP address in a TPF host.
This enables a TPF host to present a single interface (one IP address) to the
remainder of the network.

You can change the TPF IP address associated with the IP router by entering the
ZTTCP CHANGE command. However, the IP router must be deactivated before
making this change. You can define as many as 200 IP routers per TPF host.

Activating and Deactivating CDLC IP Routers
IP routers are activated by entering the ZTTCP ACTIVATE command and they are
deactivated by entering the ZTTCP INACTIVATE command. You can activate or
deactivate all IP routers, one specific IP router, or all IP routers associated with a
specific TPF IP address.

When you enter a ZTTCP ACTIVATE command, the IP router is marked as active in
the IP configuration record. This causes the TPF system to activate the IP router,
reactivate the IP router after a network failure, and reactivate the IP router after an

Operator Procedures for TCP/IP Native Stack Support 65

IPL of the TPF system. The TPF system will try to keep the IP router active until
you issue a ZTTCP INACTIVATE command.

When you enter a ZTTCP INACTIVATE command, a flag is set in the entry for IP
router in the IP configuration record. This prevents the IP router from always
becoming active, including across an IPL of the TPF system.

In a TPF production system environment where you want all IP routers active,
include the ZTTCP ACTIVATE ALL command with your cycle-up procedures.

Deleting CDLC IP Routers
Enter the ZTTCP DELETE command to delete an IP router; however, you must
deactivate the IP router before it can be deleted by entering the ZTTCP
INACTIVATE command.

OSA-Express Connections
You must define an OSA-Express card to the processor and also define an
OSA-Express connection to the TPF system before you can use OSA-Express
support.

Defining OSA-Express Cards to the Processor
Each OSA-Express card is defined to the processor in the Input/Output
Configuration Program (IOCP) and includes the following information:

v The channel path identifier (CHPID) on which the OSA-Express card resides.

v The CHPID type, which is OSD for OSA-Express.

v The list of LPARs that will be using this OSA-Express card. An OSA-Express
card can be dedicated to one LPAR, shared by a subset of the LPARs, or shared
by all LPARs. If more than one LPAR will be sharing the card, the CHPID must
be defined as SHARED.

v The SDAs that each LPAR sharing the card can use for connections to the card.
The ADDRESS parameter on the IODEVICE statement specifies the first SDA
and the number of sequential SDAs starting from that point. The maximum
number of SDAs per LPAR is 240 divided by the number of LPARs sharing the
card.

v The unit addresses of the SDAs.

Note: The value of the UNITADD parameter must be equal to the last 2 digits of
the first SDA defined by the ADDRESS parameter. For example, if
ADDRESS=(E00,080) is coded, the value of UNITADD must be 00.

The following example shows the IOCP definitions for an OSA-Express card that is
shared by three LPARs called TPFTEST, TPFPROD, and MVS1. Each of these
LPARs can use SDAs E00 to E4F for connections to the card.
CHPID PATH=F9,TYPE=OSD,SHARED,PARTITION=(TPFTEST,TPFPROD,MVS1)

CNTLUNIT CUNUMBR=F900,UNIT=OSA,PATH=(F9)

IODEVICE UNIT=OSA,ADDRESS=(E00,080),CUNUMBR=F900,UNITADD=00,
PARTITION=(TPFTEST,TPFPROD,MVS1)

Note: You must code TYPE=OSD on the CHPID statement to use OSA-Express
support on the TPF system.

66 TPF V4R1 TCP/IP

Defining OSA-Express Connections to TPF
An OSA-Express connection is defined by entering the ZOSAE command with the
DEFINE and OSA parameters specified. The name of the OSA-Express connection
must not have been previously defined to this processor.

Because of the number of parameters needed for OSA-Express, some are defined
to the processor by first entering the ZOSAE command with the DEFINE parameter
specified, while others are defined with subsequent entries of the ZOSAE command
with the MODIFY parameter specified.

By entering the ZOSAE command with the MODIFY parameter specified, you can
also change existing definitions. With the following exceptions, the OSA-Express
connection must not be active when changing existing definitions:

v MTU size

v Gateways.

Activating and Deactivating OSA-Express Connections
An OSA-Express connection is activated by entering the ZTTCP command with the
ACTIVATE parameter specified. It takes at least 16 seconds for the activation
process between the host and the OSA-Express card to be completed. This
activation includes registering the real OSA IP address and any VIPAs defined to
this OSA-Express connection. When the host registers its IP addresses, the
OSA-Express card verifies that the real OSA IP address is unique in the network.

Activate alternate OSA-Express connections the same way before they are needed.
If you do not have an active alternate OSA-Express connection and your primary
OSA-Express connection fails, network traffic will be delayed for the additional 16
seconds or more it takes for the activation of the alternate OSA-Express connection
to be completed. The TPF system does not automatically activate an alternate
OSA-Express connection if an OSA-Express connection fails.

An OSA-Express connection can be deactivated manually by entering the ZTTCP
command with the INACTIVATE parameter specified. If you enter the ZTTCP
command with either the ACTIVATE or INACTIVATE parameter specified, you can
specify either one connection or all connections. If you manually deactivate a
connection, TPF does not swing the VIPAs to the alternate connection.

Displaying OSA-Express Connections
To display OSA-Express connections, do one of the following:

v Enter the ZOSAE command with the DATAFLOW parameter specified to display
whether there is traffic flowing across OSA-Express connections

v Enter the ZOSAE command with the DISPLAY parameter specified to display all
information for one specific OSA-Express connection

v Enter the ZTTCP DISPLAY command with the ALL parameter specified to display
all OSA-Express connections defined to the TPF system and the status of those
connections.

Deleting OSA-Express Connections
An OSA-Express connection is deleted by entering the ZOSAE command with the
DELETE parameter specified when the OSA-Express connection is in an inactive
state. The primary OSA-Express connection cannot be deleted if there is an
alternate OSA-Express connection defined for it; you must delete the definition of
the alternate connection before you delete the primary connection.

Operator Procedures for TCP/IP Native Stack Support 67

Deleting an OSA-Express connection deletes all the VIPAs associated with it. See
TPF Operations for more information about the ZOSAE command.

Gateways
Typically, a gateway is a router that connects networks. With an OSA-Express
connection, the default gateway to be used as the first hop of a route for outbound
packets is defined or modified by entering the ZOSAE command with the DEFINE
or MODIFY parameter specified. A maximum of two default gateways for each
OSA-Express connection can be defined, which prevents the network from having a
single point of failure. You can define other gateways (besides the default gateway)
by setting up IP routing table entries. See Defining Gateways on page 58 for more
information.

Routing Information Protocol
If you want to use VIPAs, gateways that are on the network to which the
OSA-Express card connects must support Routing Information Protocol (RIP)
Version 2 on the interfaces connected to that network. RIP informs the IP routers of
the path to take to reach a specific TPF VIPA. The connections to other networks
can use routing protocols other than RIP. The TPF system only uses RIP to
broadcast VIPA information to the gateways.

All hosts and routers in a network can use RIP to share routing information. RIP
uses User Datagram Protocol (UDP) well-known port 520. RIP messages are sent
using the multicast protocol, which is a protocol that allows a single packet to be
sent to all hosts and routers on the network that may need to receive the packet.
However, responses to RIP requests are sent only to the node that sent the
request. The TPF system sends out RIP messages to inform the network about
path activations and failures. The TPF system is an IP host and not an IP router;
therefore, the TPF system does not maintain routing tables or save RIP information
that is received from the gateways.

How Network and Processor Failures Affect VIPAs
When an OSA-Express connection fails, it causes a swing to an alternate card on
that processor, if one is defined and active. If a processor fails, you can move the
movable VIPAs to another processor in the loosely coupled complex.

Swinging VIPAs to an Alternate OSA-Express Connection
If an OSA-Express connection fails and its alternate connection is active, the VIPAs
automatically swing to the alternate connection on the same processor. This
process, known as swinging VIPAs, also occurs when the alternate connection fails
and the VIPAs return to their primary OSA-Express connection, if the connection is
still active. You can swing VIPAs manually by entering the ZOSAE command with
the SWING parameter specified. See TPF Operations for more information about
the ZOSAE command.

Moving VIPAs from One Processor to Another
Movable VIPAs are moved from one processor to another by:

v Processor deactivation, if directed to do so by the UVIP user exit

v The operator, by entering the ZVIPA command for load balancing traffic through
the complex

v Application program, by using one of the following:

68 TPF V4R1 TCP/IP

– VIPAC macro

– tpf_vipac C function.

Processor Deactivation
The VIPA processor deactivation user exit, (UVIP) allows you to specify if a
movable VIPA that is currently owned by a failing processor should be moved to
another processor in the complex. When a processor is deactivated, UVIP is called
once for each movable VIPA that meets any of the following conditions:

v The movable VIPA is owned by the deactivated processor, and the VIPA is not
already in the process of being moved

v The VIPA is owned by the deactivated processor and is moving to an inactive
processor

v The VIPA is being moved to the deactivated processor.

If UVIP is not coded, the VIPA is not moved.

For more information about the UVIP user exit, see TPF System Installation Support
Reference.

The Operator and the ZVIPA Command
Enter the ZVIPA command with the MOVE parameter specified to transfer a
movable VIPA to a different processor in the same loosely coupled TPF
environment. To move a VIPA, you must define it as movable to the processor
where you want it moved, as described in Defining VIPAs to an OSA-Express
Connection on page 64.

Moving a VIPA by an Application Program
An application program can move a VIPA from one processor to another processor
in the same loosely coupled TPF environment. To move a VIPA, you must define
the VIPA as movable to the processor where you want it moved as described in
Defining VIPAs to an OSA-Express Connection on page 64, and then use the
VIPAC macro or the tpf_vipac C function to move the VIPA.

Workload Balancing Using Movable VIPAs
Workload balancing with movable VIPAs is useful for the following:

v When taking a central processing unit (CPU) out of the complex and moving its
IP addresses.

v When moving a processor out of the complex and adding another processor.
Adding a CPU with movable VIPAs guarantees that the workload is moved over.

v When network traffic is not balanced.

Enter the ZVIPA command with the SUMMARY parameter specified to display
system and VIPA statistics and to determine the balance of network traffic in your
TPF system. If you determine that your network is not balanced, you can move the
movable VIPAs from an overloaded processor to a more available one. This is
shown in the following example, where:

CPU
is the processor.

PACKETS/SEC
indicates the number of messages sent and received per second as determined
by the traffic for the previous minute.

Operator Procedures for TCP/IP Native Stack Support 69

CPU UTIL
shows the immediate CPU utilization averaged over the I-streams for the
designated processor.

User: ZVIPA SUM

System: VIPA0003I 13.03.03 OSA IP ADDRESS SUMMARY DISPLAY BEGINS

CPU PACKETS/SEC CPU UTIL
--- ----------- --------
A 2300 76.9
B 290 12.1
C 650 1.2
E 122 21.2

END OF DISPLAY

The summary display shows that processor A is overloaded while processor C has
a light load. To balance the network traffic, enter the ZVIPA command with the
DISPLAY parameter specified to see IP activity on a per OSA IP address basis for
the complex. This will help you determine which VIPAs on processor A should be
moved to processor C. Before moving the VIPAs, ensure that they are defined on
processor C. The following example displays OSA IP information, where:

CPU
is the processor that currently owns the IP address.

IP is the IP address.

TYPE
is the type of IP address, where type is one of the following:

MOVABLE
specifies an IP address that is defined as a movable VIPA.

STATIC
specifies an IP address that is defined as a static VIPA.

REAL
specifies a real OSA IP address.

MOVING TO CPU
is the CPU to which the movable VIPA is in the process of moving.

ACTIVE
indicates whether the IP address is active.

PACKETS/SEC
indicates the number of messages sent and received per second as determined
by the traffic for the previous minute.

70 TPF V4R1 TCP/IP

User: ZVIPA DISP ALL

System: VIPA0002I 13.03.04 OSA IP ADDRESS DISPLAY BEGINS
MOVING

CPU IP TYPE TO CPU ACTIVE PACKETS/SEC
--- --------------- --------- ------ ------ -----------
A 1.001.001.001 REAL YES 0
A 1.001.002.001 MOVABLE YES 700
A 1.001.002.002 MOVABLE YES 900
A 1.001.002.003 STATIC YES 700
B 1.001.003.001 REAL YES 0
B 1.001.002.004 MOVABLE YES 290
C 1.001.004.001 REAL YES 0
C 1.001.002.005 MOVABLE YES 650
E 1.001.005.001 REAL YES 0
E 1.001.002.006 MOVABLE YES 122

END OF DISPLAY

You can also view statistics for a specific OSA IP address or CPU by entering the
ZVIPA command with those parameters specified instead of the ALL parameter.

To move VIPAs 1.1.2.2 from processor A to processor C, enter the ZVIPA command
with the MOVE parameter specified, as shown in the following example:

User: ZVIPA MOVE VIPA-1.1.2.2 CPU-C

System: VIPA0004I 13.16.38 VIPA-1.001.002.002 MOVING FROM CPU-A TO CPU-C
VIPA0001I 13.16.38 VIPA-1.001.002.002 MOVED FROM CPU-A TO CPU-C

END OF DISPLAY

Enter the ZVIPA command with the SUMMARY parameter specified to see if the
load is now balanced, as shown in the following example:

User: ZVIPA SUM

System: VIPA0003I 13.26.29 OSA IP ADDRESS SUMMARY DISPLAY BEGINS

CPU PACKETS/SEC CPU UTIL
--- ----------- --------
A 1400 18.5
B 290 12.1
C 1550 10.2
E 122 21.2

END OF DISPLAY

For more information about the ZVIPA command, see TPF Operations.

Configuration Examples
Figure 16 on page 72 shows a two-way loosely coupled complex, TPFA and TPFB.
OSA-Express connections have been defined by entering the ZOSAE command.
Each TPF processor connects to the IP network through two OSA-Express cards.
Each OSA-Express card connects to its associated Gigabit Ethernet (GbE) switch.
Each TPF processor has one static VIPA. A movable VIPA (3.3.3.4) is defined on
both processors but is owned by TPFA.

This environment was set up on TPFA by entering the following:

Operator Procedures for TCP/IP Native Stack Support 71

ZOSAE DEFINE OSA-TPFAOSA1 IP-1.1.1.1 MASK-255.255.255.0 PORT-OSAPORT1 READ-E00 DATA-E02
ZOSAE MODIFY OSA-TPFAOSA1 GATEWAY1-1.1.1.3 GATEWAY2-1.1.1.4 NET-GENET
ZOSAE DEFINE OSA-TPFAOSA2 IP-2.2.2.2 MASK-255.255.255.0 PORT-OSAPORT2 READ-722 DATA-725
ZOSAE MODIFY OSA-TPFAOSA2 GATEWAY1-2.2.2.8 GATEWAY2-2.2.2.6 PRIMARY-TPFAOSA1 NET-GENET
ZOSAE ADD OSA-TPFAOSA1 VIPA-3.3.3.3 STATIC
ZOSAE ADD OSA-TPFAOSA1 VIPA-3.3.3.4

This environment was set up on TPFB by entering the following:
ZOSAE DEFINE OSA-TPFBOSA1 IP-1.1.1.2 MASK-255.255.255.0 PORT-OSAPORT1 READ-806 DATA-804
ZOSAE MODIFY OSA-TPFBOSA1 GATEWAY1-1.1.1.3 GATEWAY2-1.1.1.4 NET-GENET
ZOSAE DEFINE OSA-TPFBOSA2 IP-2.2.2.26 MASK-255.255.255.0 PORT-OSAPORT2 READ-920 DATA-922
ZOSAE MODIFY OSA-TPFBOSA2 GATEWAY1-2.2.2.8 GATEWAY2-2.2.2.6 PRIMARY-TPFBOSA1 NET-GENET
ZOSAE ADD OSA-TPFBOSA1 VIPA-3.3.3.8 STATIC
ZOSAE ADD OSA-TPFBOSA1 VIPA-3.3.3.4

Note: Figure 16 shows GbE networks. If you are using Fast Ethernet (FENET)
networks, do the following:

1. Replace the GbE switches with FENET hubs.

2. Code NET-FENET to replace NET-GENET to define or modify the
OSA-Express connections by entering the ZOSAE command with the
DEFINE or MODIFY parameter specified.

Figure 17 on page 73 shows VIPAs that have been swung from connection
TPFAOSA1 to TPFAOSA2 on the TPFA processor by entering the following:
ZOSAE SWING OSA-TPFAOSA2

The ZOSAE command with the SWING parameter specified must be entered from
the processor where the OSA-Express card exists.

TPFA TPFB

3.3.3.3 3.3.3.4

1.1.1.1
TPFAOSA1

1.1.1.2
TPFBOSA1

3.3.3.4 3.3.3.8

2.2.2.2
TPFAOSA2

VIPAs

Real IP
Address

2.2.2.26
TPFBOSA2

OSA-
Express

OSA-
Express

OSAPORT1 OSAPORT1

OSA-
Express

OSA-
Express

OSAPORT2 OSAPORT2

GbE
Switch

GbE
Switch

IP Router

1.1.1.4 2.2.2.6

IP Router

1.1.1.3 2.2.2.8

IP Network

Figure 16. TCP/IP Native Stack Support Sample Computer Network Using OSA-Express with
Static and Movable VIPAs

72 TPF V4R1 TCP/IP

Figure 18 on page 74 shows a movable VIPA (3.3.3.4) that has been moved from
processor TPFA to processor TPFB by entering the following:
ZVIPA MOVE VIPA-3.3.3.4 CPU-B

The ZVIPA command with the MOVE parameter specified can be issued from any
processor in the loosely coupled complex.

TPFA TPFB

3.3.3.3 3.3.3.4

1.1.1.1
TPFAOSA1

1.1.1.2
TPFBOSA1

3.3.3.4 3.3.3.8

2.2.2.2
TPFAOSA2

VIPAs

Real IP
Address

2.2.2.26
TPFBOSA2

OSA-
Express

OSA-
Express

OSAPORT1 OSAPORT1

OSA-
Express

OSA-
Express

OSAPORT2 OSAPORT2

GbE
Switch

GbE
Switch

IP Router

1.1.1.4 2.2.2.6

IP Router

1.1.1.3 2.2.2.8

IP Network

Figure 17. TCP/IP Native Stack Support Sample Computer Network Using OSA-Express with
Swinging VIPAs

Operator Procedures for TCP/IP Native Stack Support 73

Managing IP Routing Table Entries
Enter the ZTRTE command to manage the IP routing table (IPRT) entries. With this
command you can do the following:

v Add IPRT entries that map either a local IP address or an address of a next-hop
IP router to a remote IP address or subset of remote IP addresses

v Delete IPRT entries

v Modify IPRT entries

v Display IPRT entries

v Display IPRT statistics.

See TPF Operations for more information about the ZTRTE command.

The remote IP address or subset of remote IP addresses must be associated with a
network mask. A default network mask of 255.255.255.255 is used if the network
mask is not specified when adding an IPRT entry. A network mask must consist of
contiguous ones followed by contiguous zeros at the bit level, for example:

v 255.255.255.128 is X'FFFFFF80' and is a valid network mask.

v 255.255.255.64 is X'FFFFFF40' and is not a valid network mask.

Each time there is an addition, deletion, or modification of an IPRT entry, the IPRT
entry is filed out. On an initial program load (IPL), the IPRT is built using these
IPRT entries.

Use the ZTRTE command with the DISPLAY parameter specified to display IP
routing table entries.

TPFA TPFB

3.3.3.3 3.3.3.4

1.1.1.1
TPFAOSA1

1.1.1.2
TPFBOSA1

3.3.3.4 3.3.3.8

2.2.2.2
TPFAOSA2

VIPAs

Real IP
Address

2.2.2.26
TPFBOSA2

OSA-
Express

OSA-
Express

OSAPORT1 OSAPORT1

OSA-
Express

OSA-
Express

OSAPORT2 OSAPORT2

GbE
Switch

GbE
Switch

IP Router

1.1.1.4 2.2.2.6

IP Router

1.1.1.3 2.2.2.8

IP Network

Figure 18. TCP/IP Native Stack Support Sample Computer Network Using OSA-Express with
Movable VIPAs

74 TPF V4R1 TCP/IP

Use the ZTRTE command with the STAT parameter specified to display IP routing
table entries including the total number of entries, the number of active entries, and
the number of available entries.

Displaying TCP/IP Native Stack Support
Enter the ZTTCP DISPLAY command to display information about:

v One or more IP routers, OSA-Express connections, or both. The display includes
the current status and desired status of the IP routers and OSA-Express
connections.

v The local IP addresses defined to this host. Specify the LOCIPS parameter to
display the local IP addresses defined and their characteristics.

v Resource usage and statistical information. Specify the STATS parameter.

Starting and Stopping the IP Trace Function
The IP trace function allows you to trace some or all IP packets sent and received
by the TPF system. The information is saved in the main storage copy of the IP
trace table and optionally written to the real-time tape to be processed offline.

Use the ZTTCP TRACE command to start or stop the IP trace function and to
control its properties. You can trace:

v All IP packets

v IP packets to and from a specific TPF IP address

v IP packets to and from a specific IP router or OSA-Express card.

v Routing Information Protocol (RIP) messages, or you can select not to trace RIP
messages.

Multiple traces can be active at the same time.

If an IP packet is traced, the entire IP header and protocol header (TCP header or
UDP header) are saved in the trace table. If data also exists in the packet, the SIZE
parameter of the ZTTCP TRACE command controls the amount of data in the
packet that is also added to the trace table.

Displaying IP Trace Information
Use the ZIPTR command to display the IP trace table online. The table wraps;
therefore, only the most recent packets are in main storage. Use the offline IPTPRT
facility to process the IP trace data that is written to the real-time tape.

The online and offline displays both have a compact and a format option. The
compact option displays one packet per line. The format option displays the entire
packet that was traced and translates key fields to readable text.

See Appendix F, “Using the Internet Protocol Trace Facility” on page 407 for more
information.

Operator Procedures for TCP/IP Native Stack Support 75

Using the Individual IP Trace Function
In addition to a systemwide IP trace table displayed by the ZIPTR command or
processed offline using the IPTPRT facility, there is an individual IP trace function
that allows you to trace all the packets to and from specific remote terminals in the
network. The individual IP trace function is an online trace facility that allows you to
define the following individual IP traces:

v All packets to and from a specific remote node

v All packets to and from a local server application

v All packets to and from a remote server application.

However, Individual IP trace support does not affect the function of the systemwide
trace table.

You can define an individual IP trace by entering the ZINIP command with the
DEFINE parameter specified. Assign the individual IP trace a trace name, which is
used for accessing the trace for other functions (displaying the trace table, for
example). The following example defines an individual IP trace:
ZINIP DEFINE NAME-MARDI RIP-9.117.249.58

You can specify the maximum number of individual IP traces you can define by
using the keypoint 2 (CTK2) parameter, IPTRCNUM. You can specify the size of
each individual IP trace that is defined by using the CTK2 parameter, IPTRCSIZ.

Individual IP trace support has the following capabilities:

v The individual IP trace table wraps so only the most recent packets are in main
storage. Many times when tracing specific remote terminals, you want to see the
initial data flows in the trace table. You can do this by entering the ZINIP
command with the NOWRAP parameter specified, which allows you to stop
tracing once the trace table becomes full.

To continue tracing after the trace table is full, do one of the following:

– Enter the ZINIP command with the RESET parameter specified to clear the
table and to continue tracing.

– Enter the ZINIP command with the MODIFY and WRAP parameters specified
to continue the tracing.

v The individual IP trace function allows you to pause an individual IP trace so you
can examine what has been traced to a certain point. You can resume the trace
by entering the ZINIP command with the RESUME parameter specified.

v Entering the ZINIP command with the SIZE parameter specified controls the
amount of data in the packet that is added to the trace table.

v Entering the ZINIP command with the SUMMARY parameter specified allows you
to see what individual IP traces are currently defined and their status, as shown
in the following example.

User: ZINIP SUMMARY

System: INIP0005I 11.43.04 INDIVIDUAL IP TRACE SUMMARY
NAME REMOTE IP PORT SIZE WRAP PAUSED STATUS
-------- --------------- ----- ---- ---- ------ ------
MARDI 9.117.249.058 3840 NO NO EMPTY
MQSERV 1414 3840 YES NO EMPTY
END OF DISPLAY

See TPF Operations for more information about the ZINIP command.

76 TPF V4R1 TCP/IP

Displaying Individual IP Trace Tables
Enter the ZINIP command with the DISPLAY parameter specified to display the
packets in an individual IP trace table as formatted or nonformatted online output.
Specifying the FORMAT parameter displays the entire packet that was traced and
translates key fields to readable text, while not specifying the FORMAT parameter
displays one packet per line.

The following example shows a formatted display of packets in an individual IP
trace table:

User: ZINIP DISP NAME-MARDI 3 FORMAT
System: INIP0007I 13.55.27 INDIVIDUAL IP FORMATTED TRACE MARDI DISPLAY

RWI-32 IPCCW-01 SOURCE IP-9.117.249.58 DEST IP-9.117.249.59 LEN-1040
TOD-B5553A79A25E2700 PROTOCOL-06 (TCP) SOURCE PORT-1025 DEST PORT-9999
SEQ-2786811134 ACK-2788236297 WINDOW-8192 URGENT OFFSET-0
TCP FLAG BYTE-18 (ACK, PSH)
IP HEADER 45000410 D0B30000 3B06A5D4 0975F93A 0975F93B
TCP HEADER 0401270F A61B5CFE A6311C09 50182000 07D00000

RWI-32 IPCCW-01 SOURCE IP-9.117.249.58 DEST IP-9.117.249.59 LEN-1040
TOD-B5553A7A06FB6E87 PROTOCOL-06 (TCP) SOURCE PORT-1024 DEST PORT-9999
SEQ-1063223070 ACK-1064793518 WINDOW-8192 URGENT OFFSET-0
TCP FLAG BYTE-18 (ACK, PSH)
IP HEADER 45000410 D0B40000 3B06A5D3 0975F93A 0975F93B
TCP HEADER 0400270F 3F5F7F1E 3F7775AE 50182000 59820000

RWI-32 IPCCW-01 SOURCE IP-9.117.249.58 DEST IP-9.117.249.59 LEN-1040
TOD-B5553A7A06FB6E87 PROTOCOL-06 (TCP) SOURCE PORT-1025 DEST PORT-9999
SEQ-2786812134 ACK-2788237297 WINDOW-8192 URGENT OFFSET-0
TCP FLAG BYTE-18 (ACK, PSH)
IP HEADER 45000410 D0B50000 3B06A5D2 0975F93A 0975F93B

TCP HEADER 0401270F A61B60E6 A6311FF1 50182000 00000000
119 ENTRIES IN IP TRACE TABLE

See TPF Operations for more information about the ZINIP command.

Deactivating Sockets
Use the ZTTCP INACTIVATE command, specifying the SOCKETS parameter to
deactivate all of the sockets on a TPF host. When a TPF host processor is being
deactivated, deactivate all sockets before cycling down below CRAS state.

When the TPF system is cycled below CRAS state, all sockets are cleaned up. For
each connected TCP socket, a reset (RST) message is built to inform the remote
end that the connection is being cleaned up. However, it is not guaranteed that the
reset messages will be sent out before the TPF system cycles down. For this
reason, enter the ZTTCP INACTIVATE command with the SOCKETS parameter
specified before you cycle down your TPF system.

If the TPF system cleans up TCP sockets internally without notifying the remote
partners (for example, during an unplanned TPF outage), one of two actions will
occur:

1. The remote end will send data while the TPF system is IPLing. No
acknowledgments will be received, causing the remote end to detect the failure
of the TPF system and clean up the sockets on the remote end.

2. The TPF system is cycled up after the IPL and the remote end cleans up the
socket when it sends the next message. The first message sent to the TPF
system on any of these old sockets will cause a reset message to be sent to
the remote end causing the remote end to clean up the old socket.

Operator Procedures for TCP/IP Native Stack Support 77

Enter the ZSOCK command with the INACT parameter specified to deactivate a
specific socket or all sockets that have matching values for the selection criteria.
The selection criteria can be any of the following:

v Local TPF IP address

v Local port number

v Remote IP address

v Remote port number

v Socket protocol.

See TPF Operations for more information about the ZSOCK command.

Displaying Socket Control Block Information
Enter the ZSOCK command with the DISPLAY parameter specified to display a
socket descriptor or a summary table of all socket descriptors matching specified
selection criteria. The selection criteria can be any of the following:

v Local TPF IP address

v Local port number

v Remote IP address

v Remote port number

v Socket protocol.

Enter the ZSOCK command with the FORMAT parameter specified if you want a
formatted version of the socket control block information.

Enter the ZSOCK command with the CONVERT parameter specified to find a
specified socket descriptor.

Enter the ZSOCK command with the DATAFLOW parameter specified to see if any
data is flowing on the specified socket.

See TPF Operations for more information about the ZSOCK command.

78 TPF V4R1 TCP/IP

Socket Application Design Considerations

This chapter discusses:

v Sharing of sockets by multiple entry control blocks (ECBs)

v Using existing socket applications

v New socket options supported by TCP/IP native stack support

v A new socket application programming interface (API) call supported by TCP/IP
native stack support.

Sharing Sockets
Sockets that use TCP/IP native stack support are not limited to a single ECB,
subsystem, or I-stream. For example, an ECB running in subsystem ABC on
I-stream 2 creates a socket. The file descriptor of this socket is then saved in a
user table and the ECB exits. Next, an ECB running in subsystem XYZ on I-stream
4 retrieves the file descriptor of the socket from the user table and issues a socket
API call. This is allowed.

Multiple ECBs can issue socket API calls for the same socket at the same time. For
example, one ECB can issue a read API call for a socket at the same time that
another ECB issues a send API call for this socket. You can even have multiple
ECBs issue send API calls for the socket at the same time. The TCP/IP native stack
support code handles the necessary serialization. You can issue any combination of
socket API calls for a given socket with the following restrictions:

1. Only one activate_on_receipt API call can be pending. If an
activate_on_receipt API call is issued for a socket, that activate_on_receipt
call must be completed successfully before you issue the next
activate_on_receipt call for this socket.

2. An activate_on_receipt API call cannot be issued if a read, recv, or recvfrom
API call is in progress for the socket. These operations are mutually exclusive.

3. Only one activate_on_accept API call can be pending. If an
activate_on_accept API call is issued for a socket, that activate_on_accept call
must be completed successfully before you issue the next activate_on_accept
call for this socket.

4. An activate_on_accept API call cannot be issued if an accept API call is in
progress for the socket. These operations are mutually exclusive.

Using Existing Socket Applications
Socket applications that were developed and run by using TCP/IP offload support
will run using TCP/IP native stack support. The new code is designed to be
backward compatible. There are additional socket options and a new API call
supported now, but your application has to code these new options for them to
work.

You can use the newly supported socket options to make your application more
effective. For example, if your existing applications previously needed a timeout
capability when reading data, you had to code a select for read API function before
each read API function. With TCP/IP native stack support, the read function now
has a timeout capability; therefore, you can delete the select for read calls in your
application and use the read timeout capability instead. This decreases the number

© Copyright IBM Corp. 1996, 2002 79

of socket API calls issued, can cause data to be delivered faster to your application,
and can decrease the number of times the data is copied.

Server applications that needed the timeout capability were also forced to code a
select for read API function before their accept call. The select call is no longer
needed for this because accept now has a timeout capability.

Another example would be for TCP applications that receive large messages. Your
existing applications probably issue multiple read API calls and receive the
message a small piece at a time, and the application has to put the message back
together. Because the receive low-water mark socket option is now supported, you
can have the TCP/IP native stack support code put the pieces of the message back
together and then deliver the entire message to your application on a single read
API call. This again reduces the number of socket API calls issued.

New Socket Options Supported
TCP/IP native stack support supports socket options on the setsockopt API call that
were not previously supported. These new options give application programmers
more capability and can improve application productivity. The new options are:

SO_RCVBUF
Sets the receive buffer size for the socket.

SO_RCVLOWAT
Sets the receive low-water mark for the socket.

SO_RCVTIMEO
Sets the receive timeout value for the socket.

SO_SNDBUF
Sets the send buffer size for the socket.

SO_SNDLOWAT
Sets the send low-water mark for the socket.

SO_SNDTIMEO
Sets the send timeout value for the socket.

Send Buffer and Receive Buffer Sizes
The SO_RCVBUF option sets the receive buffer size and the SO_SNDBUF option
sets the send buffer size. These options allow you to limit the amount of IP
message table (IPMT) storage used by a given socket and are a primary flow
control mechanism.

For TCP sockets, each packet that is sent includes a window size indicating how
much more data the remote end is allowed to send. The TPF system sets the
window size to the amount of available space in the receive buffer of the socket.
When the TPF application can process the data faster than it is sent, flow control is
not really an issue. However, if the data arrives faster than the TPF application can
process it, the rate at which the remote end sends data needs to be controlled.

Set the receive buffer size to a value just large enough that the TPF application has
data to process, which means that when the TPF application issues a read API call,
there is data available. The goal is to read the data fast enough so the next piece
of data is always ready when the TPF application requests (reads) the next
message. Reading data too fast can cause the IPMT to become full because many
messages will be queued while waiting for the TPF application to process them.

80 TPF V4R1 TCP/IP

For UDP sockets, controlling the send and receive buffer sizes is the only flow
control mechanism available unless you include application-level acknowledgments
into your application design.

Timeouts
Before TCP/IP native stack support, select was the only socket API call that had a
timeout capability. For all other socket API calls, if the socket is running in blocking
mode, control would not be returned to the application until the operation was
completed successfully, which could take minutes or even hours on a read API call
(for example, if the remote end has no data to send).

The SO_RCVTIMEO option defines the receive timeout value, which is how long
the TPF system waits for certain socket API calls to be completed before the
operation times out. The SO_RCVTIMEO value is used for socket API calls that are
waiting for data to arrive. These include read, recv, recvfrom, activate_on_receipt,
activate_on_receipt_with_length, accept, activate_on_accept, and connect. For
example, assume the SO_RCVTIMEO value for a socket is 5 seconds. If a read
API call is issued for the socket and no data arrives in 5 seconds, control will be
passed back to the application with a return code indicating that the operation timed
out.

The SO_SNDTIMEO option defines the send timeout value, which is how long the
TPF system waits for send-type API calls to be completed before the operation
times out. These include send, sendto, write, and writev. A send-type operation is
blocked when there is not enough room in the send buffer of the socket to build the
packets for the new data passed on this send-type API call. For TCP sockets, this
can happen when you send data faster than the remote end can process it.

The default for both the SO_RCVTIMEO and SO_SNDTIMEO values is 0, which
means do not time out. If your application does not change these values, the code
will operate as it did before TCP/IP native stack support. If your application does
change the SO_RCVTIMEO or SO_SNDTIMEO option to a nonzero value, the
application must be prepared to get back a timeout return code.

Low-Water Marks
When a read API call is issued for a TCP socket, the application specifies the
maximum amount of data to read. If, for example, the maximum amount of data to
read is x, the application could receive x or fewer bytes of data on its read API call
because TCP does not have any concept of a message. If the application wants
exactly x bytes of data, it often has to issue multiple read calls because the data is
received in multiple packets from the network. For example, the TPF application
issues a read call specifying a maximum length of 10 000 bytes. The remote
application sends 10 000 bytes of data; however, the data is sent as five 2000-byte
packets. When the first packet arrives, the read call is completed and the
application is passed 2000 bytes. The application must then issue another read call,
specifying a maximum of 8000 bytes this time to read in the remaining data.
Depending on the timing of when the packets arrive, the application might have to
issue five read calls to read in all of the data.

The SO_RCVLOWAT option allows a TCP application to indicate the minimum
amount of data to pass to the application. Using the same example, the application
would set the SO_RCVLOWAT value to 10 000 and issue one read call. The
TCP/IP native stack support code will wait for 10 000 bytes of data to arrive and
then pass all 10 000 bytes to the application. This reduces the number of socket
API calls issued.

Socket Application Design Considerations 81

|
|
|
|
|
|
|
|
|

A socket application uses the select for write API to see if a socket is writable. If
there is at least 1 byte of available space in the send buffer of the socket, the
socket is considered writable. If an application has a 4000-byte message to send, it
really wants to know if there are at least 4000-bytes available in the send buffer of
the socket. The SO_SNDLOWAT option allows the application to set the minimum
amount of space that must be available in the send buffer before a select for write
operation will consider the socket to be writable.

The default values for the SO_RCVLOWAT and SO_SNDLOWAT options are both
set to 1. This means that if your application does not change these values, the code
will operate as it did before TCP/IP native stack support.

activate_on_accept API
The new activate_on_accept API call is available for sockets that use TCP/IP
native stack support. This API call performs the same function as the accept API
call, but does so in a way that no ECBs are tied up while waiting for remote clients
to be connected.

When a TCP server application issues an accept API call, the ECB is suspended
until a remote client connects or until the accept operation times out (if the
SO_RCVTIMEO option is enabled on the listener socket). In addition, many server
designs have an ECB in a loop issuing accept, passing the connection to a new
ECB and then the original ECB issues another accept call. This results in
long-running ECBs. If you have many TCP server applications active, you can end
up with many suspended ECBs as well, all waiting for the accept call to be
completed successfully.

The activate_on_accept API function allows a TCP server application to indicate
which TPF program to activate when a remote client connects. Control is always
returned immediately to the ECB that issued activate_on_accept, allowing it to exit.
While we are waiting for a remote client to be connected, there are no ECBs tied up
in the TPF system. When a remote client does connect, a new ECB is created and
the specified TPF program is activated.

The activate_on_accept API allows you to specify the I-stream on which to activate
the TPF program in the new ECB. The default is 0, which means select the least
busy I-stream. This enables you to load balance instances of your server
application by using the TPF I-stream scheduler logic.

Local Sockets
Local sockets is a form of loopback processing that allows you to test a socket
client and server application running in the same TPF system without using or
needing a real network.

When an IP packet is built by the TPF system, the destination IP address in the
packet is examined and, if it is a local IP address of this TPF host, the packet is
placed on the input list to make it look like the packet was received from the
network. When this occurs the packet is not added to the IP output queue to be
sent to the network.

To use local sockets, you do not need to have any IP routers active or even defined
to your TPF system.

82 TPF V4R1 TCP/IP

Local sockets can be used in TPF test systems to test new socket applications.
Local sockets can also be used in a TPF production system environment. For
example, if you have a socket client application on your TPF system that sends
messages to server applications that reside in different locations (one of which is in
the same TPF system as the client), the client application can use the same socket
interface to communicate with remote servers as well as the local server.

Socket Application Design Considerations 83

84 TPF V4R1 TCP/IP

Simple Network Management Protocol Agent Support

This chapter describes Simple Network Management Protocol (SNMP) agent
support for the TPF system.

SNMP Overview
As Transmission Control Protocol/Internet Protocol (TCP/IP) networks have become
increasingly diverse and complex with many different types of devices and network
nodes connected to them, it has become more challenging to manage them. SNMP
is a standard protocol that was developed to provide an effective way to centralize
the management of TCP/IP networks. SNMP consists of three major components
that communicate with each other to manage and monitor TCP/IP networks:

v SNMP managers

v SNMP agents

v Management Information Bases (MIBs).

SNMP is defined by a series of Request for Comments (RFC) documents that
describe the specifications for network management including the protocol itself, the
definition of data structures, and associated concepts. The architecture for standard
TCP/IP network management protocols is defined by the following RFC documents:

v RFC 1155 Structure and Identification of Management Information for
TCP/IP-based internets

v RFC 1157 A Simple Network Management Protocol (SNMP)

v RFC 1213 Management Information Base for Network Management of
TCP/IP-based internets: MIB-II

v RFC 2233 The Interfaces Group MIB using SMIv2.

Go to http://www.ietf.org for more information about these RFCs and any related
extensions.

SNMP Manager

The SNMP manager consists of a set of applications that monitor all the other
nodes (SNMP agents) in the network and send requests for information to SNMP
agents in the network. The SNMP manager requests TCP/IP information from the
SNMP agents in the network by requesting the variables from each agent’s MIB
database. The manager also receives and processes unsolicited messages from
the agents, which indicate that a significant event has occurred at a specific
network node. These unsolicited messages are called traps.

SNMP Agent

An SNMP agent is an entity on the network that supplies the SNMP manager with
TCP/IP network information. An SNMP agent maintains the MIB database of TCP/IP
network information pertaining to its network node. The SNMP agent responds to
requests from the SNMP manager for information from its MIB and sends traps to
SNMP managers when significant events occur.

Management Information Base (MIB)
The MIB is a database of variables and their associated values that is maintained
by the SNMP agent about the node on which it resides. The SNMP manager solicits

© Copyright IBM Corp. 1996, 2002 85

http://www.ietf.org

information from the MIB of the SNMP agent. Each piece of information in the MIB
database is called an MIB variable. See Appendix G, “Management Information
Base Variables” on page 423 for a list of all the MIB-II variables supported by the
TPF system.

Use the ZSNMP command to display the MIB variables from the TPF system. You
can also save the display information to a file. See TPF Operations for more
information about the ZSNMP command.

Interaction between SNMP Components

Figure 19 shows a high-level view of the interaction between the three major
components of SNMP. Specifically, this figure shows an SNMP agent with its MIB
database of TCP/IP networking information being monitored by an SNMP manager.
Queries can be issued from an SNMP manager to obtain statistical information
about TCP/IP native stack support networks.

Figure 20 on page 87 shows an example of an SNMP trap message being sent by
an SNMP agent to the SNMP managers. When the SNMP agent system loses one
of its TCP/IP links, it notifies the SNMP managers that a link went down.

SNMP
Manager

Applications

SNMP
Agent

MIB

Fragments received at the SNMP agent?
ipReasmReqds (1.3.6.1.2.1.4.14)

73

4

32

Number of interfaces (IP addresses) defined
at the SNMP agent

IfNumber (1.3.6.1.2.1.2.1.2.1)

Number of TCP-connected sockets
at this SNMP agent

tcpCurrEstab (1.3.6.1.2.1.6.9)

Figure 19. Interaction between SNMP Components

86 TPF V4R1 TCP/IP

|
|
|

Protocol Data Units (PDUs)
Each SNMP message contains a protocol data unit (PDU). These SNMP PDUs are
used for communication between SNMP managers and SNMP agents. The SNMP
Version 1 architecture defines the following types of PDUs that flow between SNMP
managers and SNMP agents:

GETREQUEST PDU
Sent by the SNMP manager to retrieve one or more requested MIB variables
specified in the PDU.

GETNEXTREQUEST PDU
Sent by the SNMP manager to retrieve the next MIB variable that is specified in
the PDU. You can have multiple requests in the PDU. This PDU is primarily
used by the SNMP manager to walk through the SNMP agent MIB.

SETREQUEST PDU
Sent by the SNMP manager to set one or more MIB variables specified in the
PDU with the value specified in the PDU.

GETRESPONSE PDU
Sent by the SNMP agent in response to a GETREQUEST,
GETNEXTREQUEST, or SETREQUEST PDU.

TRAP PDU
An unsolicited message sent by the SNMP agent to notify the SNMP manager
about a significant event that occurred in the agent.

Structure and Fields of SNMP PDUs

There are many types of structures and fields contained in the PDUs supported by
the TPF system. Table 2 on page 88 shows the format of the SNMP PDUs.

SNMP
Agent

MIB

Network B

X

SNMP
Manager

Applications

SNMP
Manager

Applications

TRAP
(Lost link to Network B)

Network A

Figure 20. SNMP Agent Sending a Trap Message

Simple Network Management Protocol Agent Support 87

Table 2. GETREQUEST, GETNEXTREQUEST, SETREQUEST, GETRESPONSE PDU Format

Version Community
name

PDU type Request ID Error status Error index Variable
binding list

Version
The version of the SNMP message. The TPF system supports version 1.

Community name
An ASCII display string of the name of the community from where the PDU
originated. This value can be up to 255 characters in length.

PDU type
The type of PDU contained by the SNMP message. PDU type can be one of
the following:

v GETREQUEST

v GETNEXTREQUEST

v SETREQUEST

v GETRESPONSE

Request ID
A unique number that is used to distinguish between different requests and to
associate them with the corresponding response.

Error status
Used to indicate that an error occurred while the agent was processing a
request.

Error index
Used to provide additional information by identifying which variable in the list
caused an error.

Variable binding list
A simple list of variable bindings, which are pairings of the names of MIB
variables with their corresponding values.

Table 3 shows the format of the trap PDUs.

Table 3. Trap PDU Format

Version Community
name

PDU type Enterprise
object
identifier

Network
address

Trap type Specific
trap type

Time stamp Variable
binding list

PDU type
The type of PDU contained by the SNMP message; in this case, a trap PDU.

Enterprise object identifier
The unique identifier of the SNMP agent that is sending the trap. This value can
be up to 255 characters in length.

Network address
The default IP address of the SNMP agent that is sending the trap.

Trap type
The type of trap PDU being sent. The following trap values can be defined:

v Authentication failure

v Coldstart

v EgpNeighborLoss

v Enterprise-specific

88 TPF V4R1 TCP/IP

v Linkdown

v Linkup

v Warmstart

For more information, see “SNMP Traps” on page 93.

Specific trap type
A user-defined value for an enterprise-specific trap.

Time stamp
The system up time, in hundredths of a second, for the system generating the
trap.

All SNMP PDUs can contain a list of variable bindings. Table 4 shows the format of
the variable binding.

Table 4. Variable Binding Format
Variable binding
type:
SEQUENCE_OF

Length of the
variable binding

Type of object
identifier

Length of object
identifier

Value of object
identifier

Type of value for
this object identifier

Length of value for
this MIB variable

Value for this MIB
variable

TPF SNMP Agent Support
TPF support for the SNMP agent is a User Datagram Protocol (UDP) server that
responds to requests received from SNMP managers. The TPF Internet daemon
monitors the network for SNMP requests destined for the SNMP agent server.
SNMP requires the agent to be bound to well-known port 161.

The TPF SNMP agent supports SNMP Version 1. The TPF SNMP agent supports
and maintains the Management Information Base-II (MIB-II) database of network
statistics and data for TCP/IP native stack support networks. The MIB-II database
splits the MIB variables into groups, and only the groups pertaining to TPF are
supported by TPF. You must define some MIB variables in the SNMP configuration
file, which resides on the TPF file system as /etc/snmp.cfg. See “Creating the
SNMP Configuration File” on page 96 for more information about creating the
/etc/snmp.cfg SNMP configuration file, and see Appendix G, “Management
Information Base Variables” on page 423 for a detailed list of all the MIB-II groups
and variables that the TPF system supports.

In addition to the predefined MIB-II variables supported by the TPF system, you can
provide your own enterprise-specific MIB variables. These enterprise-specific MIB
variables allow you to track information that is of specific interest to you in
managing your network. A user exit, UMIB, is provided to allow you to process
these enterprise-specific MIB requests. See “User MIB Variables” on page 93 for
more information about enterprise-specific MIB variables. See TPF System
Installation Support Reference for information about the UMIB user exit.

The TPF system can also send the following predefined SNMP trap PDUs:

v Authentication failure trap

v Coldstart trap

v Linkdown trap

v Linkup trap

Note: In TPF SNMP agent support, the Warmstart and EgpNeighborLoss traps are
not applicable and are not supported.

See “SNMP Traps” on page 93 for more information about SNMP traps.

Simple Network Management Protocol Agent Support 89

TPF SNMP agent support also allows you to send your own enterprise-specific trap
PDUs by using the ITRPC macro or the tpf_itrpc C/C++ function. You can send
enterprise-specific traps to one or more SNMP managers defined in the
/etc/snmp.cfg SNMP configuration file. If desired, you can disable SNMP traps,
which prevents all SNMP traps from being sent to the network. See TPF General
Macros for more information about the ITRPC macro and see the TPF C/C++
Language Support User’s Guide for more information about the tpf_itrpc C/C++
function.

The TPF system processes and responds to all GETREQUEST and
GETNEXTREQUEST PDUs received. All SETREQUEST PDUs received by TPF are
rejected with a NOSUCHNAME error code because of the security risk involved
when allowing MIB variables in TPF to be set by a remote SNMP manager.

Implementing Management Information Base-II (MIB-II)
The TPF system uses the MIB-II database to provide its MIB variables and
maintains it in a core memory table. Core memory for the MIB is allocated during
restart and reinitialized after an IPL. Each processor in a loosely coupled complex
has and maintains its own MIB. See Appendix G, “Management Information Base
Variables” on page 423 for a list of all the MIB-II variables supported by the TPF
system.

The MIB-II database consists of many units of information that provide performance
and statistical information about the TCP/IP networks connected to the TPF system.
The TPF system updates and maintains the MIB-II variables for networks
established with TPF TCP/IP native stack support. Each MIB-II variable has a
unique name in Abstract Syntax Notation One (ASN.1) format called an object
identifier, or object ID, that is used when a request PDU is received from the
network to retrieve the MIB-II variable information. The MIB-II database defines the
following SNMP groups:

Address translation group
Not supported by the TPF system because TPF does not translate addresses.

EGP group
Not supported by the TPF system because TPF is not a gateway.

ICMP group
Contains statistical and error information related to the Internet Control
Message Protocol (ICMP) layer.

Interfaces group
Contains statistical information about Internet Protocol (IP) interfaces or
addresses.

IP group
Contains statistical and error information related to the IP layer.

SNMP group
Contains statistical and error information related to SNMP.

System group
Contains administrative information about the TPF system.

TCP group
Contains statistical and error information related to the Transmission Control
Protocol (TCP) layer.

Transmission group
Not supported by the TPF system because it does not apply to TPF.

90 TPF V4R1 TCP/IP

UDP group
Contains statistical and error information related to the UDP layer.

Some of these groups contain table variables, and the variables in the table pertain
to multiple entities. For example, the interfaces group mentioned previously contains
an interface table with statistical information for each interface or IP address in the
TPF system.

Processing SNMP Requests
You communicate between the SNMP manager and SNMP agent through the
exchange of messages, each within a single UDP packet. The TPF system supports
a maximum SNMP packet size of 548 bytes (excluding the IP and UDP headers).
One SNMP agent server can be started per processor in a loosely coupled TPF
complex by using the Internet daemon to monitor the network for SNMP packets.

As shown in the following table, an SNMP message consists of a version identifier,
an SNMP community name, and a PDU.

Table 5. SNMP Network Management Protocol Packet

SNMP version Community name PDU=PDU type, MIB variable 1, MIB variable 2, MIB
variable 3,MIB variable n

All units of data in an SNMP message are encoded using a subset of the basic
encoding rules (BER). See ISO 8825 Part 1: Basic Encoding Rules for more
information. Go to http://www.iso.ch/ to view ISO 8825.

Message Processing

The processing of an SNMP message begins when TPF receives an SNMP packet
on well-known port 161. Message processing then continues as follows:

1. The Internet daemon activates the SNMP agent when a packet is received from
the network.

2. The SNMP agent parser examines the SNMP packet for required fields. Each
SNMP packet that the TPF system receives must contain the SNMP version,
community name, and PDU. If the message that is received cannot be parsed
because it is not in the correct format, the message is discarded.

3. The version field of the SNMP packet is validated for SNMP Version 1. Any
packet that is not from SNMP Version 1 is discarded by the TPF system.

4. The TPF system passes the community name received in the SNMP message
and the remote IP address of the SNMP manager that sent the SNMP request
to the UCOM user exit. The UCOM user exit validates the SNMP manager from
which the message was received. If an SNMP agent receives a request from an
SNMP manager that is not authorized, the request from that manager is
rejected and one of the following actions occurs:

v The SNMP packet is discarded.

v The SNMP packet is discarded and a trap message is sent to all SNMP
managers defined in the SNMP configuration file to notify them that there has
been an authentication failure.

You can select one of these actions by specifying the appropriate return code
when coding the UCOM user exit. See “Coding the UCOM and UMIB User
Exits” on page 98 and TPF System Installation Support Reference for more
information about coding the UCOM user exit.

Simple Network Management Protocol Agent Support 91

http://www.iso.ch/

5. Once the community name is validated, the PDU section of the packet is parsed
to determine the type of PDU request that was received and which MIB
variables are being requested.

6. If the PDU is a GETREQUEST or GETNEXTREQUEST PDU, the TPF system
extracts the object identifiers from the PDU to determine which MIB variables to
retrieve. The TPF system then attempts to retrieve the values for each
requested variable from the MIB. Multiple variables may be requested in a
single PDU.

Note: If the PDU is a SETREQUEST PDU, the TPF system rejects
SETREQUEST by sending a GETRESPONSE PDU with an error status
code of NOSUCHNAME.

7. If it is determined that the requested object identifier is not part of the
system-controlled MIB, the request is sent to the UMIB user exit to retrieve your
own enterprise-specific MIB variables. The object identifier is provided as input
to the UMIB user exit, so the user exit can do Step 1 or Step 2.

Step 1:

v Retrieve the MIB variable

v Correctly encode the MIB variable and the value

v Return the MIB variable to the SNMP agent parser.

Step 2:

v Return an error that causes the SNMP agent to reject the request with an
error status code of NOSUCHNAME if the enterprise-specific MIB variable
cannot be retrieved by the UMIB user exit.

See “User MIB Variables” on page 93 for more information.

8. For each variable (object identifier) requested, its value is retrieved from either
the system-controlled MIB or from the UMIB user exit and a variable binding is
built. A variable binding is the unique object identifier of an encoded variable
followed by its encoded value.

The following example shows a variable binding requesting variable ifNumber from
the TPF system.
300B 06072B06010201020100 0500

|
Variable Encoded object ID for ifNumber NULL Value
Binding
Length encoded
as type
SEQUENCE_OF

The following example shows a variable binding response of variable ifNumber.
300D 06072B06010201020100 020104

|
Variable Encoded object ID for ifNumber 4 interfaces encoded
Binding as an integer
Length encoded
as type
SEQUENCE_OF

An SNMP manager can make a request for the value of more than one MIB
variable in an SNMP packet. The TPF system retrieves the value for each
requested MIB variable and builds a variable binding. All the variable bindings are
then packaged together by encoding them as a variable binding list, which is a

92 TPF V4R1 TCP/IP

simple list of variable names and their corresponding values. The variable binding
list is included in the PDU section of the SNMP response packet and sent to the
SNMP manager.

Note: If any variables cannot be retrieved by either the TPF system or by the UMIB
user exit, the entire variable binding list is rejected.

User MIB Variables
As stated previously, the SNMP architecture allows you to have your own
enterprise-specific MIB variables through the use of the UMIB user exit. When an
SNMP request is received by the TPF system and the requested MIB variable is not
one of the SNMP system MIB variables, the UMIB user exit is called to provide the
value for the specified variable or to indicate that the specified variable is not an
enterprise-specific MIB variable. If you or the TPF system could not retrieve any of
the requested MIB variables, the SNMP request is rejected.

Each MIB variable has an object identifier, which is BER-encoded and passed as
input to the UMIB user exit. If the specified object identifier is known to you and is
coded in the UMIB user exit, the UMIB user exit returns the BER-encoded object
identifier and value for the requested MIB variable. The tpf_snmp_BER_encode
C/C++ function allows you to encode a subset of the MIB variable types. See the
TPF C/C++ Language Support User’s Guide for more information about the
tpf_snmp_BER_encode C/C++ function. See ISO 8825 Part 1: Basic Encoding Rules
for more information about BER encoding. Go to http://www.iso.ch/ to view ISO
8825.

The UMIB user exit retrieves enterprise-specific MIB variables. You must maintain
these variables and allocate and maintain your own storage for them. The SNMP
architecture has created the iso.org.dod.internet.private.enterprises
(1.3.6.1.4.1) portion of the SNMP hierarchical tree specifically for
enterprise-specific MIB variables. Object identifiers that the SNMP architecture has
set aside for the various system-controlled SNMP groups cannot be used for
enterprise-specific purposes.

See “Coding the UCOM and UMIB User Exits” on page 98 and TPF System
Installation Support Reference for more information about the UMIB user exit.

SNMP Traps
The SNMP architecture defines a set of system traps, which are the unsolicited
messages that are sent out when a significant event occurs on the TCP/IP network
node on which the SNMP agent resides. You have the ability to generate your own
enterprise-specific traps.

The TPF system sends traps to remote SNMP managers on well-known port 162.
You can specify to which managers to send traps by coding them in the
/etc/snmp.cfg SNMP configuration file. Traps can be suppressed by specifying a
value of NONE on the TRAPIP keyword in the /etc/snmp.cfg SNMP configuration
file. The TPF system can send out the following types of SNMP traps:

Authentication failure trap
Generated by the TPF system when an SNMP message is received and
verification of the SNMP manager failed. By specifying the appropriate return
code when the UCOM user exit is called to validate the SNMP manager, you
can choose whether or not the TPF system should send out an authentication
failure trap.

Simple Network Management Protocol Agent Support 93

http://www.iso.ch/

Coldstart trap
Generated by the TPF system when you first cycle-up after an IPL when the
MIB database is initialized. At this time, notification is sent to the SNMP
managers.

Enterprise-specific trap
You have the ability to send enterprise-specific traps by issuing the ITRPC
macro or the tpf_itrpc C/C++ function. When you send an enterprise-specific
trap by issuing the ITRPC macro or tpf_itrpc C/C++ function, a variable
binding list can be supplied to send with the trap. You must correctly encode the
variable binding list when issuing the C/C++ function. See TPF General Macros
for more information about the ITRPC macro and see the TPF C/C++ Language
Support User’s Guide for more information about the tpf_itrpc C/C++ function.

Linkdown trap
Generated by the TPF system when an IP address changes from active to
inactive state. The linkdown trap includes the interface index from the interface
table that has become inactive. This trap is sent for the following conditions:

v For CDLC IP addresses, when the last IP router associated with this IP
address becomes inactive

v For OSA real IP addresses, when the OSA connection for the real IP address
becomes inactive

v For VIPAs, when the OSA-Express connection that is currently associated
with the VIPA becomes inactive and the VIPA is not swung to the alternate
OSA-Express connection, or when a VIPA currently associated with an active
OSA-Express connection is moved to another processor.

See “Operator Procedures for TCP/IP Native Stack Support” on page 59 for
more information about CDLC IP addresses and OSA-Express and VIPA
support.

Linkup trap
Generated by the TPF system when an IP address changes its state from
inactive to active. The linkup trap includes the interface index from the interface
table that has become active. This trap is sent for the following conditions:

v For channel data link control (CDLC) IP addresses, when the first IP router
associated with the IP address becomes active

v For Open Systems Adapter (OSA)-Express connection real IP addresses,
when the OSA-Express connection for the real IP address becomes active

v For virtual IP addresses (VIPAs), when the OSA-Express connection
currently associated with the VIPA becomes active, or when the VIPA is
moved to an active OSA-Express connection on another processor or swung
from an inactive OSA-Express connection to an active OSA-Express
connection.

The following example sends the enterprise-specific trap defined in spectrap, and
containing the variable binding list pointed to by encoded_list, to all the SNMP
managers specified in the /etc/snmp.cfg SNMP configuration file.
/**/
/* Include files */
/**/
#include <c$snmp.h>
#include <stdlib.h>
#include <string.h>
/**/
/* #DEFINES */
/**/
#define SPECTRAP 4

94 TPF V4R1 TCP/IP

/***/
/***/
extern "C" void QZZ2()
{

int varlen = 0, spectrap = 0, rc;
char object_id[24] = "\x2b\x6\x1\x4\x1\x1";
char *temp;
char encoded_var[100];
int encoded_var_len = 0;
char encoded_bind[100];
int encoded_bind_len;
char encoded_list[100];
int encoded_list_len
int value=100;
struct snmp_struct encode_struct;

temp = encoded_var;

/* Encode the OBJECT ID for the Variable Binding */

encode_struct.snmp_input_value = object_id
encode_struct.snmp_input_length = strlen(object_id);
encode_struct.snmp_input_type = ISNMP_TYPE_OBJECTID;
encode_struct.snmp_output_value = encoded_var;

if (tpf_snmp_BER_encode(&encode_struct) != 0)
exit(0);

encoded_var_len += encode_struct.snmp_output_length;
temp += encode_struct.snmp_output_length;

/* Encode the value and copy the encoded value after the */
/* OBJECT ID. Increment the size of the VAR-BIND */

encode_struct.snmp_input_value = &value;
encode_struct.snmp_input_length = sizeof(int);
encode_struct.snmp_input_type = ISNMP_TYPE_INTEGER;
encode_struct.snmp_output_value = temp;

if (tpf_snmp_BER_encode(&encode_struct) != 0)
exit(0);

encoded_var_len = encode_struct.snmp_output_length;

/* Encode the variable bind as a SEQUENCE_OF */

encode_struct.snmp_input_value = encoded_var;
encode_struct.snmp_input_length = encoded_var_len;
encode_struct.snmp_input_type = ISNMP_TYPE_SEQUENCE_OF;
encode_struct.snmp_output_value = encoded_bind;

if (tpf_snmp_BER_encode(&encode_struct) != 0)
exit(0);

encoded_bind_len = encode_struct.snmp_output_length;

/* Variable Binding complete. Encode the entire */
/* variable binding list as a sequence of */

encode_struct.snmp_input_value = encoded_bind;

Simple Network Management Protocol Agent Support 95

encode_struct.snmp_input_length = encoded_bind_len;
encode_struct.snmp_input_type = ISNMP_TYPE_SEQUENCE_OF;
encode_struct.snmp_output_value = encoded_list;

if (tpf_snmp_BER_encode(&encode_struct) != 0)
exit(0);

encoded_list_len = encode_struct.snmp_output_length;

/* Fill in the specific TRAP information and call */
/* tpf_itrpc passing the variable binding list and */
/* length */

spectrap = SPECTRAP;

rc = tpf_itrpc(encoded_list, encoded_list_len, spectrap);

exit(0);
}

Installing TPF SNMP Agent Support
To install the SNMP agent server, do the following:

1. Install and define TPF TCP/IP native stack support.

2. Install the TPF SNMP agent.

3. Create the /etc/snmp.cfg SNMP configuration file and enter the ZSNMP
command with the REFRESH parameter specified to refresh the configuration
file and copy it into core storage.

4. Code the UCOM user exit and the UMIB user exit, if needed.

5. Define and start the SNMP agent server to the Internet daemon.

6. Define IP routing table entries, if needed to define alternate paths between TPF
and the SNMP managers.

7. Define the TPF system to SNMP managers.

Installing and Defining TPF TCP/IP Native Stack Support
TPF SNMP agent support requires TCP/IP native stack support. Ensure that TCP/IP
native stack support is defined on your TPF 4.1 system before attempting to use
SNMP agent support. See “TCP/IP Native Stack Support Internals” on page 39 and
“Operator Procedures for TCP/IP Native Stack Support” on page 59 for more
information about TCP/IP native stack support.

Installing the SNMP Agent
Install SNMP agent support.

Creating the SNMP Configuration File
The TPF system needs specific information to run correctly as an SNMP agent,
including the values needed for the MIB. For example, there is a MIB value for the
system name (sysName) that is supplied in the /etc/snmp.cfg SNMP configuration
file. Specific keywords for the values are coded, followed by the values. Most of the
information in the configuration file is not processor-unique information. However,
the system name (sysName) and system object identifier (sysObjectID) are
processor-unique. Because the file resides on the TPF file system that is shared by
all processors, the TPF system needs a way to distinguish this information between
processors. The TPF system does this by appending the processor ID to the

96 TPF V4R1 TCP/IP

keyword for the value. So, if there are three processors in the complex, there can
be three statements defining the system names for each processor.

To create the /etc/snmp.cfg SNMP configuration file, do the following:

1. Create the snmp.cfg SNMP configuration file.

2. Using the File Transfer Protocol (FTP), transfer the file to the /etc directory of
the basic subsystem (BSS) file system.

3. From the BSS, enter the ZSNMP command with the REFRESH parameter
specified to refresh the configuration file and copy it into core storage.

The following shows an example of an SNMP configuration file.
* SNMP SAMPLE CONFIG FILE *

SysDescription: "TPF Test System"
SysContact: "TPF Administrator"
SysLocation: "Poughkeepsie, NY"
*
SysNameA: "TPF A"
SysNameB: "TPF B"
SysObjIDA: 1.3.6.1.4.1.1.1
SysObjIDB: 1.3.6.1.4.1.1.2
*
CommName: "public"
*
TrapIP: 19.17.153.14 * MANAGER 1 *
TrapIP: SNMP.MANAGER.COM * MANAGER 2 *
TrapIP: 2.26.7.114 * MANAGER 3 *

The SNMP configuration file contains keywords for identifying and describing your
SNMP agent. Each keyword must be on its own line and must start at the first
column of that line. Lines that do not start with a valid keyword are treated as
comments. The keywords are not case-sensitive. The value of a keyword cannot
exceed 255 characters in length. The keywords and their descriptions follow:

SYSDESCRIPTION:
A textual description of the TCP/IP network node (in this case, the TPF system)
that contains the full name and version identification of the type of system
hardware, the software operating system, and the networking software. This
keyword value must be in quotes.

SYSCONTACT:
A textual description of the person who manages this TCP/IP network node, as
well as information about how to contact this person. This keyword value must
be in quotes.

SYSLOCATION:
The physical location of this TCP/IP network node. This keyword value must be
in quotes.

SYSNAME:
An administratively assigned name for this managed TCP/IP network node. By
convention, this is the fully-qualified domain name of the network node. Each
processor in a loosely coupled system can have its own SYSNAME keyword.
The CPU ID is appended to the end of SYSNAME. This keyword value must be
in quotes.

SYSOBJID:
The enterprise-specific authoritative description of the network management

Simple Network Management Protocol Agent Support 97

subsystem contained in the TCP/IP network node. Each processor in a loosely
coupled system may have its own SYSOBJID keyword. The processor ID is
appended to the end of SYSOBJID.

COMMNAME:
The name of the community where the TPF SNMP agent resides. This keyword
value must be in quotes.

TRAPIP:
The IP address or host name of the SNMP managers. This keyword is used to
determine where to send traps. If the TRAPIP keyword is coded as NONE, no
traps will be sent by the TPF system. You can code as many as 10 TRAPIP
keywords. You can only specify one IP address or one host name per keyword.

The information in the SNMP configuration file is read into core storage during
system cycle-up or when you enter the ZSNMP command with the REFRESH
parameter specified. SNMP agent support does not work unless the SNMP
configuration file is loaded into core storage. See TPF Operations for more
information about the ZSNMP command.

Coding the UCOM and UMIB User Exits
For an SNMP request to be accepted and processed by the TPF system, the SNMP
manager must be verified. You must decide which SNMP managers are allowed to
submit requests to your TPF system. The UCOM user exit validates the SNMP
manager. You must add the necessary code to the UCOM user exit to determine
which SNMP manager is allowed to view information in the TPF MIB database. The
default system action is to reject all SNMP requests if the UCOM user exit is not
coded.

The UMIB user exit is required for users who want to provide their own
enterprise-specific MIB variables. For this, logic has to be added to the UMIB user
exit to retrieve and then BER-encode enterprise-specific MIB variables. Input to the
UMIB user exit is the unique object identifier of the variable being queried. The
UMIB user exit returns the encoded object identifier of the variable returned,
followed by the encoded value. Use the tpf_snmp_BER_encode C/C++ function to do
this. See the TPF C/C++ Language Support User’s Guide for more information
about the tpf_snmp_BER_encode C/C++ function. See ISO 8825 Part 1: Basic
Encoding Rules for more information about BER encoding. Go to http://www.iso.ch/
to view ISO 8825.

For example, if object ID 1.3.6.1.4.1.20 is passed to the UMIB user exit and the
value of the user MIB variable is found to be an integer of 20, the following must be
returned:
06062B0601040114 020114

Encoded Object ID Encoded Value

The default coding for the UMIB user exit is to not acknowledge any MIB variable it
is asked about. See TPF System Installation Support Reference for more
information about the UCOM and UMIB user exits.

Defining and Starting the SNMP Agent Server
The SNMP agent must be defined and started by the Internet daemon. The Internet
daemon monitors the network for packets destined for the SNMP agent server on
well-known port 161. Define the SNMP agent server to the Internet daemon by

98 TPF V4R1 TCP/IP

http://www.iso.ch/

entering the ZINET command. To define the SNMP agent server to the Internet
daemon and then start it, do the following:

1. From the BSS, define the SNMP agent server by entering:

ZINET ADD SERVER-SNMP PGM-CNMA PROTOCOL-UDP MODEL-WAIT
PORT-161

2. From the BSS, start the SNMP agent server by entering:

ZINET START SERVER-SNMP

See TPF Operations for more information about the ZINET commands.

Defining IP Routing Table Entries
An important consideration when installing your TPF SNMP agent support is to
define it in a way that eliminates single points of failure in the network between TPF
and the SNMP managers. Do this by using VIPAs or by defining multiple routers to
CDLC IP addresses. However, you can set up multiple local IP interfaces to send
the trap message across, by setting up routing table entries for the remote manager
IP address. You can also use routing table entries when multiple SNMP managers
reside on different networks. Routing table entries can be defined to reach
managers on different networks by sending out the trap message to different
interfaces in the TPF system.

To define routing table entries, enter ZTRTE ADD. See “Operator Procedures for
TCP/IP Native Stack Support” on page 59 for more information about defining VIPAs
and routing table entries and see TPF Operations for more information about the
ZTRTE command.

Defining the TPF System to the SNMP Manager
To function as an SNMP agent, the TPF system must be part of an SNMP-managed
network. The remote SNMP manager must be configured with the TPF system IP
address and community name. To configure the SNMP manager with the IP
address and community name, review your SNMP manager product information or
see your system administrator.

Simple Network Management Protocol Agent Support 99

100 TPF V4R1 TCP/IP

Domain Name System Support

The Domain Name System (DNS) enables a client to dynamically determine the IP
address of a server by providing the host name of the server as input. The DNS
also allows you to pass an IP address as input to get the host name associated
with that IP address as output.

DNS support on the TPF system contains both client and server functions.

DNS Server
A TPF complex can have many different host names. For example, you can assign
a different host name to each TPF application. Each of these TPF host names can
be associated with one or more local IP addresses. DNS support enables the TPF
system to be a DNS server for the host names that reside in your TPF complex.

When a remote client wants to start a connection with a TPF server application
across a TCP/IP network, the client needs to get the IP address of the server.
Typically, this is done by the client application issuing the gethostbyname function
call, passing the host name of the server application as input. The request will be
sent to the local DNS server of the client, which in turn will communicate with
remote DNS servers to obtain the requested information. The request will eventually
flow into the TPF system and be processed by the TPF DNS server code. This
code will look up the requested host name in the TPF host name file, select one of
the available IP addresses assigned to that host name (which also determines
which TPF host will get this connection), and send the response to the DNS query
back to the client.

In the DNS hierarchy, you must define the TPF system as the authoritative DNS
server for all the host names in your TPF complex. This way, requests for
information about TPF host names will be sent to the TPF system. Responses sent
by the TPF system always indicate that the information should not be cached. This
forces subsequent requests for the same host name to flow into TPF as well. This
enables load balancing of TCP/IP connections to be done by the TPF system
because every request for a connection to TPF flows into TPF. If information is
cached by remote DNS servers or clients, the information can become out of date
(for example, if an IP address fails). Another problem with allowing remote nodes to
cache information is that load balancing would be very difficult to control because
the decision for which TPF host a socket is assigned to is not centralized in one
place.

The TPF DNS server will only respond to queries for host names that reside in the
TPF system. The TPF DNS server is designed to load balance TCP/IP connections
in your TPF complex. It cannot be used to manage host names external to the TPF
system.

TPF Host Name Table
The TPF host name table is created from information you define in the
/etc/host.txt file that must be created in the basic subsystem (BSS). Each line in
the file contains a TPF host name followed by zero or more local IP addresses that
can be used for connections with this host name. If you do not specify any local IP
addresses, all local IP addresses are candidates for use for connections with that
host name. The same local IP address can be assigned to multiple host name
entries. Blank characters are the only delimiter characters allowed in the file

© Copyright IBM Corp. 1996, 2002 101

between a host name and an IP address, or between IP addresses. Host names in
the file can contain a wildcard character, which you can use only at the beginning of
the host name. For example, *.tpf.com is a valid host name but tpf.*.com is not.
You can also specify a host name that contains only a wildcard character. This entry
will meet the criteria for any host name that is received, so you must place the entry
last in the file; otherwise, all host name entries after the entry with the wildcard
character will never be selected. Host names in the file can be lowercase or
uppercase characters, but when the file is copied into the TPF host name table
(THNT), they are converted to all uppercase characters.

The following shows an example of a TPF host name file:
Buytickets.com 1.1.1.2 1.1.2.6 1.1.4.9
Overcharge.org
US.SPEEDTRAPS.COM 111.111.111.111
NYR1940.org 1.1.2.6 2.2.2.222
res0.tpf.com 1.1.1.1
*.tpf.com 3.3.3.3 4.4.4.4

The following shows an example of a TPF host name file that is coded incorrectly.
In this example, host name res0.tpf.com will never be selected because host name
*.tpf.com will be found first. The first matching host name in the TPF host name
table will be the one selected even if there is a more exact match later in the table.
Buytickets.com 1.1.1.2 1.1.2.6 1.1.4.9
Overcharge.org
*.tpf.com 3.3.3.3 4.4.4.4
US.SPEEDTRAPS.COM 111.111.111.111
NYR1940.org 1.1.2.6 2.2.2.222
res0.tpf.com 1.1.1.1

The TPF host name table is created from the /etc/host.txt file. If you update the
/etc/host.txt file, the TPF host name table is automatically refreshed in 1 minute
after the update is made. You do not need to stop and restart the TPF DNS server
to use information in the updated file.

IP Address Selection
When a DNS request is received, the TPF host name table is examined to find the
host name entry that matches the DNS request. If no match is found, the TPF
system will reject the DNS request.

Once the TPF host name table entry is located, the DNS server code will construct
a list of local IP addresses that are candidates for the answer to this DNS request.
Initially, the list contains all the IP addresses listed in the TPF host name table
entry. Next, the list is compacted so that only active IP addresses remain. For
example, the TPF host name table entry could indicate that IP addresses X, Y, and
Z are candidates; however IP address Y resides on a TPF processor that is not
active. Only IP addresses X and Z then remain in the list.

After the final list has been constructed, the action to take is based on how many IP
addresses are in the list:

v If there are no IP addresses in the list and the host name does not exist, the TPF
system will reject the DNS request. If the host name does exist on the TPF
system, but there are no active IP addresses to use, the TPF system sends back
a positive DNS response indicating the host name was located, but the response
does not contain the IP address to use.

v If there are two or more IP addresses in the list, the DNS select IP address user
exit (UDNS) is called to select the IP address to use.

102 TPF V4R1 TCP/IP

If the UDNS user exit is called, the input includes the TPF host name and the list of
local IP addresses that can be used. Each IP address in the list also includes the
CPU on which that IP address is active. The UDNS user exit does one of the
following:

v Selects an IP address from the list

v Selects a CPU, where the TPF system will select an IP address from the list that
resides on the specified CPU

v If there are no active IP addresses in the list for the selected CPU, the TPF
system will send a positive DNS response, but not include any IP address in that
response.

v Instructs the TPF system to select the IP address from the list.

If the TPF system selects the IP address, a round-robin algorithm is used.

DNS Client
When a client application in the TPF system wants to start a connection with a
remote server across a TCP/IP network and the client does not know the IP
address of the server, it issues the gethostbyname function call. Before DNS support
for PUT 13, the TPF system always sent a request to an external DNS server to
obtain the IP address. DNS support enhances the DNS client function of the TPF
system by providing a caching function. Now, whenever a gethostbyname function
call is issued and information is received from an external DNS server, the
information is saved in TPF DNS host name cache IDNSHOSTNAME. If
subsequent gethostbyname calls are made for the same host name and the
information is still in the cache, control is returned to the client application
immediately and no flows to external DNS servers are needed. If you have many
TPF client applications that constantly start connections with the same remote
server applications, the DNS host name cache will improve the performance of
those applications.

When the TPF system receives a DNS response from an external DNS server, the
response indicates how long the information is valid. That value determines how
long the information remains in the cache. After that time limit ends, the next
gethostbyname request from that host name will cause another flow to the external
DNS server.

If a DNS response from an external DNS server contains more than one IP
address, all the IP addresses in the response are saved in the cache entry. Each
time the cache entry is accessed, the order of the IP addresses passed back to the
client application changes. For example, assume the cache entry for a given host
name contains IP addresses X, Y, and Z. The first TPF client that issues a
gethostbyname request for that host name will get back a list containing X, Y, and
then Z. The next client to request this host name will get back a list containing Y, Z,
and then X. The client after that will get back Z, X, and then Y. The list of IP
addresses changes for load balancing purposes because it is common practice in
applications to select the first IP address in the list.

In addition to the DNS host name cache, there is also a DNS IP address cache
(IDNSHOSTADDR) that is used by the gethostbyname function call. For this, the
client passes an IP address as input and requests the corresponding host name as
output.

Domain Name System Support 103

The quantity of entries in the DNS caches can be changed by using the ZCACH
command. The name of the DNS host name cache is IDNSHOSTNAME. The name
of the DNS IP address cache is IDNSHOSTADDR. See TPF Operations for more
information about the ZCACH command.

If the TPF system is unable to obtain the gethostbyname or gethostbyaddr function
information from the DNS local caches or the external DNS server, the system will
attempt to obtain the information from the core copy of the optional /etc/hosts file
if one has been set up. There can be only one IP address per host name entry and
one entry per line in the /etc/hosts file. The /etc/hosts file must be created in the
basic subsystem (BSS). Host names in the file can be lowercase or uppercase
characters, but when the file is copied into the TPF host name table (THNT) they
are converted to all uppercase. A sample /etc/hosts file is as follows:
Buytickets.com 1.1.1.2
Overcharge.org 1.2.3.4
US.SPEEDTRAPS.COM 111.111.111.111
NYR1940.org 1.1.2.6

104 TPF V4R1 TCP/IP

Internet Security

With growing TCP/IP networks, Internet security has become an important issue.
There are two well-known types of security for the Internet:

v Secure Sockets Layer (SSL) allows applications to communicate in a secure
manner over a TCP/IP network. Go to http://www.ibm.com/tpf/pubs/tpfpubs.htm
and click SSL for the TPF 4.1 System: An Online User’s Guide for more
information.

v Firewall support, which includes the following functions:

– Protection against denial-of-service attacks

– Proxies

– Packet filtering.

The following information focuses on denial-of-service attacks and packet filtering.
Proxies are application-specific and do not reside or belong on an application server
(such as the TPF system).

Denial-of-Service Attacks
Denial-of-service attacks are aimed at exposing weaknesses in an effort to take
down an entire network or a particular server. The attacks that are of primary
concern for the TPF system are those that attempt to take down a particular server.
These attacks are an attempt to cripple a server by sending the server a packet or
series of packets that will cause the server to crash or run out of memory or
buffers. Some attacks are directed at specific applications, while others are aimed
at the TCP/IP stack itself. Common denial-of-service attacks include:

v The PING of death; that is, sending a very large Internet Control Message
Protocol (ICMP) echo message

v Sending IP fragments with overlapping sequence numbers

v SYN attack or SYN flood; that is, sending many TCP connection requests, but
never completing the handshake.

The TPF system provides protection against known denial-of-service attacks
directed toward TCP/IP stacks, along with safeguards to prevent many potential
denial-of-service attacks in the future.

Packet Filtering
The concept behind packet filtering is to examine each packet for an approved
source and destination (that is, application). Packet filtering can be done in routers,
but there are known ways to bypass packet filtering in routers by using
fragmentation. The most secure implementation is to implement distributed packet
filtering in both routers and hosts.

TCP/IP packet filtering firewall support allows you to define rules to filter inbound
packets destined for TPF applications. The packets are filtered based on the source
Internet Protocol (IP) address of the packet, the destination port of the packet, the
protocol of the packet, and the action to take if the packet fits the rule.

The packet filtering rules are defined in a file called /etc/iprules.txt. To set up or
modify the packet filtering rules, do the following:

1. Create or modify the /etc/iprules.txt file by doing one of the following:

© Copyright IBM Corp. 1996, 2002 105

|

|

|
|

|
|
|
|

|

|

|

|

|
|
|

|
|

|
|
|
|
|
|
|

|
|

|

|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

|

http://www.ibm.com/tpf/pubs/tpfpubs.htm

v Use the ZFILE commands to create or update the file directly on your TPF
system.

v Create or modify the file on another system and use Trivial File Transfer
Protocol (TFTP) or File Transfer Protocol (FTP) to transfer the file to the
basic subsystem (BSS) of your TPF system.

2. From the BSS, enter ZFILT REFRESH to refresh the file and copy it to core
storage. The rules take effect immediately after you enter this command.

Note: Information from the packet filtering rules file is also read into core
storage during system restart.

You can display the packet filtering rules that are defined in the TPF system by
entering ZFILT DISPLAY. The display shows what rules are defined, as well as the
number of packets that have applied to that rule. See TPF Operations for
information about the ZFILE and ZFILT commands.

Packet Filtering Rules File Syntax
Each line of the /etc/iprules.txt file can have a maximum of 300 characters and
has the following syntax:

YY
(1)

ACTION- ALLOW
REJECT
DENY

FROM-ipaddr/mask
Y

Y

PROTO-ALL
PORT-portnum

PROTO-TCP
PROTO-UDP PORT-portnum

PROTO-ICMP
ICMPTYPE-type

#comment
YZ

Notes:

1 You must specify at least one additional parameter (FROM, PROTO, or
PORT) with the ACTION parameter.

ACTION
specifies the action to take if the packet matches the rule. Specify one of the
following:

ALLOW
allows the packet to be processed by the TPF system.

DENY
discards the packet and takes no further action.

REJECT
discards the packet and responds to the remote client with a negative
response. For TCP packets, the TPF system sends a reset (RST) message.
For UDP or RAW packets, the TPF system sends an ICMP destination
unreachable message.

106 TPF V4R1 TCP/IP

|
|

|
|
|

|
|

|
|

|
|
|
|

|

|
|
|

|||||||||||||||||||||||||||
|

|
|||

|

|

||
|
|

|
|
|

|
|

|
|

|
|
|
|
|

Note: Certain ICMP messages defined by the ICMP architecture are not
allowed to be rejected. The TPF system discards these messages.

FROM-ipaddr/mask
specifies the IP network for the source of the packet, where:

ipaddr
is an IP address of the remote network in dotted decimal format.

mask
is a number, from 1 to 32, that represents the number of bits in ipaddr that
represent the network portion of the address.

If you do not specify the FROM parameter, the rule applies to all IP addresses.

PROTO
specifies the protocol of the packet. Specify one of the following:

TCP
specifies the Transmission Control Protocol (TCP).

UDP
specifies the User Datagram Protocol (UDP).

ICMP
specifies the Internet Control Message Protocol (ICMP).

ALL
specifies all protocols.

PORT-portnum
specifies the destination port of the packet, which is the port of the TPF
application, where portnum is a decimal port number from 1 to 65535. If you do
not specify this parameter, the rule applies to all port numbers.

ICMPTYPE-type
specifies the type of ICMP message, where type is a decimal number from 1 to
255. For example, ICMPTYPE-8 is an echo request (or PING message).

#comment
is a comment associated with this entry. You can also code a comment on a
separate input line. In general, blank lines and lines beginning with a # symbol
are ignored.

Packet Filtering Default Rule
The last line of the /etc/iprules.txt file can be the default rule for the TPF
system. The default rule is applied if no other rules apply to the packet. The default
rule has the following syntax:

YY
DEFAULT-ALLOW

DEFAULT- REJECT
DENY

YZ

DEFAULT
specifies the action to take for any packets that do not match the other packet
filtering rules. Specify one of the following:

Internet Security 107

|
|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

||||||||||||||||||||||

|
|

|
|
|

ALLOW
allows the packet to be processed by the TPF system.

DENY
discards the packet and takes no further action.

REJECT
discards the packet and responds to the remote client with a negative
response. For TCP packets, the TPF system sends a reset (RST) message.
For UDP or RAW packets, the TPF system sends an ICMP destination
unreachable message.

Note: Certain ICMP messages defined by the ICMP architecture are not
allowed to be rejected. The TPF system discards these messages.

If you do not code a default rule, the default action is set to ALLOW.

Considerations for Packet Filtering Rules
You can define a maximum of 120 rules in the /etc/iprules.txt file. Code the
rules that are most likely to be used at the start of the file. Keep the following in
mind as you define the packet filtering rules for your TPF system:

v The order of the rules in the file will determine whether you get the results you
expect.

v The number of rules defined in the file can affect performance if the majority of
traffic is not TCP.

Order of Rules
The order of the rules in the /etc/iprules.txt file is very important. Consider the
following example:
ACTION-ALLOW PORT-1414
ACTION-REJECT FROM-9.117.249.0/24

In this example, all packets from network 9.117.249.0 will be rejected except those
whose destination is port 1414. If the rules are reversed, all packets from network
9.117.249.0 will be rejected, including those whose destination is port 1414.

Performance Considerations
To reduce packet filtering overhead, most TCP messages bypass packet filtering.
Input messages received for existing TCP connections bypass packet filtering
because the remote user has already been approved by packet filtering code when
the connection was established. If a TCP input message other than a new
connection request (that is, if it is not a SYN message) is received and the
connection does not exist, packet filtering rules will be examined to determine if the
packet should be rejected or discarded.

For non-TCP traffic, the more rules that you define, the more overhead there will be
for packet filtering processing. The packet filtering rules are scanned for every UDP
or RAW input packet.

Examples of Packet Filtering Rules
The following are various examples of packet filtering rules.

v The following example rejects all packets whose destination is for port number 21
and received from the 9.117.249.0 network:
ACTION-REJECT FROM-9.117.249.0/24 PORT-21

108 TPF V4R1 TCP/IP

|
|

|
|

|
|
|
|
|

|
|

|

|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|

|
|

|

v The following example allows a specific user with an IP address of 9.117.249.23
to access the TPF application at port 5600 using the UDP protocol:
ACTION-ALLOW FROM-9.117.249.23/32 PORT-5600 PROTO-UDP

v The following example discards packets from all users in network 9.121.0.0:
ACTION-DENY FROM-9.121.0.0/16

v The following example allows PING requests from users in network 9.117.249.0
and discards PING requests from users in other networks:
ACTION-ALLOW FROM-9.117.249.0/24 PROTO-ICMP ICMPTYPE-8
ACTION-DENY PROTO-ICMP ICMPTYPE-8

v The following example:
– Allows all packets whose destination is port 1414
– Allows all packets from the 9.117.249.0 network
– Denies all ICMP packets that are type 8, except those from the 9.117.249.0

network
– Rejects all other packets.
ACTION-ALLOW PORT-1414
ACTION-ALLOW FROM-9.117.249.0/24
ACTION-DENY PROTOCOL-ICMP ICMPTYPE-8
DEFAULT-REJECT

Problem Diagnosis
You can use the IP trace facility to identify packets that violate the packet filtering
rules. If an exception condition is associated with a packet, a reason code is added
to the entry in the IP trace table. You can use the IP trace facility to search for
packets with specific reason codes. Consider the following example.

Assume you entered ZFILT DISPLAY and received the following:

FILT0001I 11.05.14 DISPLAY PACKET FILTERING RULES

RULE ACTION REMOTE NETWORK PORT PROTO ICMPTYPE PACKETS
---- ------ ------------------ ----- ----- -------- ----------

1 REJECT 9.117.249.0/24 224
2 ALLOW 21 TCP 5087
3 ALLOW ICMP 87
4 ALLOW 520 21

DEF DENY 14

END OF DISPLAY+

This display indicates that a number of packets from network 9.117.249.0 have
been passed to the TPF system and rejected. You can use the offline IP trace
facility to determine the IP addresses of the remote nodes that violated this rule and
the TPF applications that the nodes were attempting to reach.

To find all the sent packets that have been rejected by the firewall, code an RC
value of 01 on the PARM parameter of the IPTPRT JCL. For example:
PARM="RC 01"

The statement specifies that all packets with a reason code of REJECTED BY
FIREWALL will be included in the IPTPRT report.

Figure 21 on page 110 shows an example of the resulting IPTPRT report:

Internet Security 109

|
|

|

|

|

|
|

|
|

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|

|
|

|

|
|

|
|

This report shows that the intruding IP address is 9.117.249.52, and that it is
destined for the TPF server application with port 1414. With this information, you
can take any appropriate action to resolve the problem.

See Appendix F, “Using the Internet Protocol Trace Facility” on page 407 for more
information about the IP trace facility and for a complete description of the reason
code values that you can specify.

Note: You can also use the ZIPTR or ZINIP command to display the IP trace
information. See TPF Operations for more information about the ZIPTR and
ZINIP commands and for examples of the displays.

**
TRANSACTION PROCESSING FACILITY TCP/IP TRACE OUTPUT

**
RECORDS MATCHING THE FOLLOWING SELECTION CRITERIA WILL BE PRINTED:
PROTOCOLS: ALL
SOURCE PORTS: ALL
DESTINATION PORTS: ALL
SOURCE IP ADDRESSES: . . . ALL
DESTINATION IP ADDRESSES: ALL
REASON CODES: 01
IP CCW: ALL
DATE: FROM JAN01 TO DEC31
TIME: FROM 00:00:00 TO 23:59:59
TOD (FIRST WORD): FROM 00000000 TO FFFFFFFF
TCP FLAGS: ALL
WIDE LAYOUT
IP FORMATTED TRACE
RWI-02 IPCCW-D1 SOURCE IP-9.117.249.52 DEST IP-9.117.241.12 LEN-48

TOD-B6FA5951E20BF04E PROTOCOL-06 (TCP) SOURCE PORT-1029 DEST PORT-1414
SEQ-2491461275 WINDOW-65535 URGENT OFFSET-0
TCP FLAG BYTE-02 (SYN)
REASON CODE - REJECTED BY FIREWALL
IP HEADER 45000030 A70E0000 3906DD8E 0975F934 0975F10C
TCP HEADER 04050586 9480AE9B 00000000 7002FFFF 30FD0000 02040F00 01030304

RWI-01 IPCCW-D1 SOURCE IP-9.117.241.12 DEST IP-9.117.249.52 LEN-40
TOD-B6FA5951E6AC964F PROTOCOL-06 (TCP) SOURCE PORT-1414 DEST PORT-1029
SEQ-0 ACK-2802712577 WINDOW-0 URGENT OFFSET-0
TCP FLAG BYTE-14 (ACK, RST)
REASON CODE - REJECTED BY FIREWALL
IP HEADER 45000028 4B780000 3C06362D 0975F10C 0975F934
TCP HEADER 05860405 00000000 A70E0001 50140000 020B0000

RWI-02 IPCCW-D1 SOURCE IP-9.117.249.52 DEST IP-9.117.241.12 LEN-48
TOD-B6FA595AC1082B43 PROTOCOL-06 (TCP) SOURCE PORT-1030 DEST PORT-1414
SEQ-2511008644 WINDOW-65535 URGENT OFFSET-0
TCP FLAG BYTE-02 (SYN)
REASON CODE - REJECTED BY FIREWALL
IP HEADER 45000030 A70F0000 3906DD8D 0975F934 0975F10C
TCP HEADER 04060586 95AAF384 00000000 7002FFFF EAE80000 02040F00 01030304

RWI-01 IPCCW-D1 SOURCE IP-9.117.241.12 DEST IP-9.117.249.52 LEN-40
TOD-B6FA595AC489E66C PROTOCOL-06 (TCP) SOURCE PORT-1414 DEST PORT-1030
SEQ-0 ACK-2802778113 WINDOW-0 URGENT OFFSET-0
TCP FLAG BYTE-14 (ACK, RST)
REASON CODE - REJECTED BY FIREWALL
IP HEADER 45000028 4B7A0000 3C06362B 0975F10C 0975F934
TCP HEADER 05860406 00000000 A70F0001 50140000 02090000

:
:

Figure 21. IPTPRT Report Example

110 TPF V4R1 TCP/IP

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|

|
|
|

|
|
|

TCP/IP Network Services Database Support

The TCP/IP network services database contains information about TCP/IP server
applications such as name, port, and protocol. This information is used by the
getservbyname and getservbyport TCP/IP socket APIs, which allow you to retrieve
the socket application port by passing the name and vice versa.

The TPF system supports an extended network services database. TCP/IP network
services database support allows you to:

v Define quality of service (QoS) properties, including a differentiated services
codepoint value for outbound messages.

v Define a weighting factor to allow messages for each application to be weighted
differently when using data collection.

Note: The TCP/IP network services database is not a replacement for the Internet
daemon. The application definitions in the TCP/IP network services database
are independent from the definitions in the Internet daemon configuration file
(IDCF); therefore, you need to define an application in both places if you
want the Internet daemon to manage the application and if you want to also
collect statistical data for the application. See “Operator Procedures for the
Internet Daemon” on page 235 for more information about the Internet
daemon and the IDCF.

Quality of Service
The TCP/IP network services database uses quality of service (QoS) information to
provide differentiated services for outbound messages, allowing the TPF system to
mark outbound packets for each application to determine per hop behavior for
routers.

The IP architecture, defined by Request for Comments (RFC) 791, originally defined
a type of service (TOS) field in the IP header. This TOS field was redefined as a
differentiated services field by RFC 2475. Each outbound TPF message has a
differentiated services codepoint value that specifies the network priority. You can
define this differentiated codepoint value for each application defined in the TCP/IP
network services database by specifying the TOS parameter. You can also define a
default value in keypoint 2 (CTK2) by using the IPTOS parameter on the SNAKEY
macro. If you do not specify the TOS parameter for a particular application, the TPF
system will use the default value defined in CTK2. If the outbound message is from
a RAW socket, the TPF system will use the value of the IPTOS parameter unless it
has already been filled in by the application. See TPF ACF/SNA Network
Generation for more information about the SNAKEY macro.

See the following RFC documents for more information about the quality of service
(QoS) architectures supported by the TPF system:

v RFC 2474 Definition of the Differentiated Services Field (DS Field) in the IPv4
and IPv6 Headers

v RFC 2475 An Architecture for Differentiated Services.

Go to http://www.ietf.org for more information about these RFCs and any related
extensions.

© Copyright IBM Corp. 1996, 2002 111

|

|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|
|

http://www.ietf.org

Data Collection and Reduction
Information about the number of messages, bytes, and packets that are sent and
received is collected for each TCP/IP application. This information is provided in the
reports that are generated by data collection and reduction. These counters are
updated and displayed differently based on whether or not the application is defined
in the TCP/IP network services database, as well as how the application is defined
in the database.

The byte and packet counts are updated by the TCP/IP stack. These counts are
only updated for packets that contain data. Control messages such as SYN,
SYN/ACK, and stand-alone ACKs are not counted.

If an application is defined in the TCP/IP network services database and has a
weight parameter specified, the input and output message counts are updated by
each individual TCP/IP application. See “Message Counts by Application” for more
information about how to gather message counts on an application-by-application
basis.

If an application is not defined in the TCP/IP network services database or does
not have the weight parameter specified, the input and output message counts are
updated as follows:

v The input message count is incremented each time a socket application issues a
read, recv, recvfrom, activate_on_receipt, or
activate_on_receipt_with_length function call and data is returned to the
application.

v The output message count is incremented each time a socket application issues
a write, writev, send, or sendto function call.

The number of TCP/IP weighted input messages is shown in the system summary
report. In addition, there is a TCP/IP weighted input messages by application report
and a TCP/IP message summary report. In these reports, the count information is
shown for each individual application that is defined in the TCP/IP network services
database. If an application is not defined in the database, the counts for that
application are shown in a single category in the report called OTHER. See TPF
System Performance and Measurement Reference for more information about data
collection and reduction and for an example of the reports.

Message Counts by Application
If you want to gather input and output message counts on an application-by-
application basis, do the following:

1. Define each TCP/IP application for which you want message counts in the
TCP/IP network services database and specify the weight parameter. See
“TCP/IP Network Services Database File” on page 113 for more information
about how to define applications for the database.

The weight parameter specifies a weighting factor for each message sent or
received by a particular application. A value of 100 is equal to 1 message.
Therefore, if you specify 50 for the weight parameter for an application, the
messages for that application will count half as much. For example, if this
application receives 50 messages per second, the input message count will
indicate that the application received 25 weighted messages per second.
Similarly, if you specify 200 for the weight parameter for an application, the
messages for that application will count twice as much. For example, if this

112 TPF V4R1 TCP/IP

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|

|
|
|
|
|
|
|
|

application sends 50 messages per second, the output message count will
indicate that the application sent 100 weighted messages per second.

2. Update your TCP/IP applications to call the tpf_tcpip_message_cnt function.

The TCP architecture does not have a single definition for a message; therefore,
the definition of a message can be different for each application. For example, a
single socket send can be considered to be one complete message, multiple
messages, or part of a message. Use the tpf_tcpip_message_cnt function to
increment the input or output message counters for your TCP/IP applications
based on the definition of a message for that application. This function requires
the port number and protocol of the application as input. If the application does
not know the port number, the application can issue a call to the getservbyname
socket API to get the port number. See the TPF C/C++ Language Support
User’s Guide for more information about the tpf_tcpip_message_cnt function.

The TCP/IP applications that are shipped with the TPF system (MQSeries, the
TPF Internet mail servers, and so on) include calls to the
tpf_tcpip_message_cnt function to increment the message counters. To count
messages for these applications, you only need to define them in the TCP/IP
network services database. See “TCP/IP Network Services Database File
Example” on page 114 for an example of the definitions you can add for these
applications and for information about how a message is defined for each of
these applications.

TCP/IP Network Services Database File
The TCP/IP network services database is created from information you define in a
file called /etc/services. The /etc/services file contains entries for each
application in the database. To set up or modify the TCP/IP network services
database, do the following:

1. Create or modify the /etc/services file by doing one of the following:

v Use the ZFILE commands to create or update the file directly on your TPF
system.

v Create or modify the file on another system and use Trivial File Transfer
Protocol (TFTP) or File Transfer Protocol (FTP) to transfer the file to the
basic subsystem (BSS) of your TPF system.

2. From the BSS, enter ZIPDB REFRESH to refresh the file and copy it to core
storage. The definitions take effect immediately after you enter this command.

Note: Information from the TCP/IP network services database file is also read
into core storage during system restart.

See TPF Operations for information about the ZFILE and ZIPDB commands.

To prevent port number conflicts with client sockets, define all TPF TCP/IP server
applications that have a port number in the range 1024–5000 in the TCP/IP network
services database.

TCP/IP Network Services Database File Syntax
You can define a maximum of 1000 applications in the TCP/IP network services
database file. Each line of the /etc/services file has the following syntax:

TCP/IP Network Services Database Support 113

|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|

|
|
|

|
|

|
|

|

|
|
|

|

|
|
|

YY applname port/protocol
tos-tosval weight-weightval

Y

Y
#comment

YZ

applname
is the 1- to 9-character name of the application to be defined in the TCP/IP
network services database. Do not define an application with the name of
OTHER; this name is reserved for IBM use.

port
is the port associated with the specified application.

protocol
is the protocol associated with the specified application. Specify one of the
following:

TCP
specifies the Transmission Control Protocol (TCP).

UDP
specifies the User Datagram Protocol (UDP).

tos-tosval
specifies the differentiated services codepoint value to use for the network
priority of outbound TPF IP packets for the specified application, where tosval is
a value from 0 to 255. If you do not specify this parameter, the value defined by
the IPTOS parameter on the SNAKEY macro is used.

weight-weightval
specifies the weighting factor to use when counting the messages for the
specified application, where weightval is a value from 1 to 1000. A value of 100
equals one message. If you do not specify this parameter, messages will be
counted as socket reads and writes. See “Data Collection and Reduction” on
page 112 for more information about how TCP/IP messages are counted.

#comment
is a comment associated with this entry. You can also code a comment on a
separate input line. In general, blank lines and lines beginning with a # symbol
are ignored.

The following shows some sample entries:
rip 520/udp weight-50 #RIP
smtp 25/tcp #Simple Mail Transfer Protocol
mq 1414/tcp tos-5 weight-100 #MQ Series
dns 53/udp tos-10 #DNS

TCP/IP Network Services Database File Example
Figure 22 on page 115 shows an example of a TPF /etc/services file with
definitions for the TCP/IP server applications that are shipped with the TPF system.
Table 6 on page 115 provides information about the definition of input and output
messages for each of these applications.

114 TPF V4R1 TCP/IP

|||||||||||||||||||||||||||
|

|
||||||||||||||

|
|

|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

Table 6. Message Definitions for TPF TCP/IP Server Applications

Application Input Message Definition Output Message Definition

FTP-DATA File transferred to the TPF system
by using FTP

File sent from the TPF system by
using FTP

FTP-CTL FTP connection request received FTP connection request accepted

SMTP Mail message received Mail message sent

DNS DNS request received Response to a DNS request sent

TFTP File transferred to the TPF system
by using TFTP

File sent from the TPF system by
using TFTP

HTTP Each HTTP request received Response to an HTTP request sent

POP3 POP3 command received POP3 command response sent

IMAP IMAP command received IMAP command response sent

SNMP SNMP request received SNMP response sent

SNMP-TRAP N/A SNMP trap sent to the SNMP
manager

MATIPA Each MATIP Type A message
received

Each MATIP Type A message sent

MATIPB Each MATIP Type B message
received

Each MATIP Type B message sent

HTTPS Each secure HTTP request
received

Response to a secure HTTP
request sent

RIP RIP request received RIP response or unsolicited RIP
message sent

MQ Each MQSeries message received Each MQSeries message sent

IPBRIDGE Each input message sent over the
IP bridge

Each output message sent over the
IP bridge

RPC Each RPC message received from
the client

Each RPC message sent to the
client

TPFAR SQL response received from DB2 SQL request that causes a flow to
DB2

ftp-data 20/tcp weight-100 #FTP data
ftp-ctl 21/tcp weight-100 #FTP control
smtp 25/tcp weight-100 #Simple Mail Transfer Protocol
dns 53/udp weight-100 #DNS
tftp 69/udp weight-100 #Trivial File Transfer
http 80/tcp weight-100 #World Wide Web
pop3 110/tcp weight-100 #Post Office Protocol - Version 3
imap 143/tcp weight-100 #Internet Message Access Protocol
snmp 161/udp weight-100 #SNMP
snmp-trap 162/udp weight-100 #SNMP trap
matipa 350/tcp weight-100 #MATIP Type A
matipb 351/tcp weight-100 #MATIP Type B
https 443/tcp weight-100 #Secure HTTP
rip 520/udp weight-100 #RIP
mq 1414/tcp weight-100 #MQ
ipbridge 9500/tcp weight-100 #IPBRIDGE
rpc port1/tcp weight-100 #RPC
tpfar port2/tcp weight-100 #TPFAR

Figure 22. /etc/services File Example. In this example, port1 and port2 represent the server
ports that are defined for the RPC and TPFAR applications in your TPF system.

TCP/IP Network Services Database Support 115

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
||

|||

||
|
|
|

|||

|||

|||

||
|
|
|

|||

|||

|||

|||

|||
|

||
|
|

||
|
|

||
|
|
|

|||
|

|||

||
|
|
|

||
|
|
|

|||
|

116 TPF V4R1 TCP/IP

Part 4. Socket Application Programming Interface Overview

Socket Overview . 119
Sockets . 119

Types of Sockets Supported by TCP/IP 119
Socket Address for the Internet Domain 119

Port Numbers . 120
Standard Dotted Decimal Formats 120

Mapping Address Parts . 120
Integer Byte Order Conversion 120

Blocking and Nonblocking . 121
Out-Of-Band Data . 121
TPF Socket Application Programming Interface (API) Support 122

Socket API Functions Using TCP/IP Offload Support 122
Socket API Functions Using TCP/IP Native Stack Support 122

Socket User Exits . 122
Socket Accept for TCP/IP Offload Support 123
Socket Activation. 123
Socket Connect . 123
Socket Cycle-Up When Using TCP/IP Offload Support 123
Socket Deactivation. 123
Socket System Error . 124
TCP/IP Native Stack Support Accept Connection 124
Select TCP/IP Support . 124
Socket Cycle-Up When Using TCP/IP Native Stack Support 124

Full-Duplex Socket Support . 124
Using activate_on_receipt . 125
Socket Sweeper Support to Close Inactive Sockets 125

Sample Socket Sessions . 127
Function Calls Used in a Sample TCP Session 127
Using the activate_on_receipt Function Call 129
Function Calls Used in a Sample UDP Session 131
Main Socket Function Calls . 132

Socket Application Programming Interface Functions Reference 137
General Function Information 137
accept — Accept a Connection Request 138
activate_on_accept — Activate a Program When the Client Connects 141
activate_on_receipt — Activate a Program after Data Received 144
activate_on_receipt_with_length — Activate a Program after Data of Specified

Length Received . 148
bind — Bind a Local Name to the Socket. 152
close — Shut Down a Socket 155
connect — Request a Connection to a Remote Host 157
gethostbyaddr — Get Host Information for IP Address 160
gethostbyname — Get IP Address Information by Host Name 162
gethostid — Return Identifier of Current Host 164
gethostname — Return Host Name 166
getpeername — Return the Name of the Peer 168
getservbyname — Get Server Port by Name 170
getservbyport — Get Server Name by Port 172
getsockname — Return the Name of the Local Socket 174
getsockopt — Return Socket Options 176
htonl — Translate a Long Integer. 180

© Copyright IBM Corp. 1996, 2002 117

||

||
||

htons — Translate a Short Integer 181
inet_addr — Construct Internet Address from Character String 182
inet_ntoa — Return Pointer to a String in Dotted Decimal Notation 184
ioctl — Perform Special Operations on Socket 185
listen — Complete Binding, Create Connection Request Queue 189
ntohl — Translate a Long Integer. 191
ntohs — Translate a Short Integer 192
read — Read Data on a Socket 193
recv — Receive Data on a Connected Socket 196
recvfrom — Receive Data on Connected/Unconnected Socket 199
recvmsg — Receive Message on Connected/Unconnected Socket 202
select — Monitor Read, Write, and Exception Status 205
send — Send Data on a Connected Socket 206
sendmsg — Send Message on a Socket 210
sendto — Send Data on an Unconnected Socket 212
setsockopt — Set Options Associated with a Socket. 216
shutdown — Shut Down All or Part of a Duplex Connection 220
sock_errno — Return the Error Code Set by a Socket Call 222
socket — Create an Endpoint for Communication. 223
write — Write Data on a Connected Socket 226
writev — Write Data on a Connected Socket 229

118 TPF V4R1 TCP/IP

Socket Overview

This chapter:

v Describes the types of data that the socket API functions handle

v Explains the characteristics of each socket type

v Describes commonly used socket programming concepts

v Discusses TPF socket application programming interface (API) support

v Discusses the socket user exits

v Discusses the TPF-unique activate_on_receipt and activate_on_accept socket
functions

v Discusses socket sweeper support (closing inactive sockets).

Sockets
Transmission Control Protocol/Internet Protocol (TCP/IP) support provides a set of
C functions that applications can use to access the Internet for transferring or
receiving data called socket APIs.

Types of Sockets Supported by TCP/IP
Table 7 shows the types of sockets supported by TCP/IP and the related protocol
generally associated with each protocol.

Table 7. Socket Types and Associated Data

Socket type Protocol Description

SOCK_STREAM Transmission Control
Protocol (TCP)

The stream socket (SOCK_STREAM) interface defines a reliable
connection-oriented service. Data is sent without errors or
duplication and is received in the same order as it is sent.

SOCK_DGRAM User Datagram
Protocol (UDP)

The datagram socket (SOCK_DGRAM) interface defines a
connectionless service for datagrams, or messages. Datagrams are
sent as independent packets. The reliability is not guaranteed, data
can be lost or duplicated, and datagrams can arrive out of order.
However, datagram sockets have improved performance capability
over stream sockets and are easier to use.

SOCK_RAW IP, ICMP, RAW The raw socket (SOCK_RAW) interface allows direct access to
lower-layer protocols such as Internet Protocol (IP).

Note:

The type of socket you use is determined by the data you are transmitting:

v When you are transmitting data where the integrity of the data is high priority, you must use stream sockets.

v When the data integrity is not high priority (for example, for terminal inquiries), use datagram sockets because of
their ease of use and higher performance capability.

Socket Address for the Internet Domain
A socket address for the internet domain is made up of 4 distinct parts defined by
16 bytes:

1. The first 2 bytes contain the domain parameter, which indicates the address
space where communication is taking place.

2. The next 2 bytes contain the port number, which the TCP/IP software used to
differentiate between different applications using the same protocol (TCP or
UDP).

© Copyright IBM Corp. 1996, 2002 119

3. The next 4 bytes contain the internet address, which represents a unique
network interface.

4. The remaining bytes in the 16-byte structure are not used.

The internet domain is the only address domain supported by TCP/IP support.

Port Numbers
A port is an endpoint for communication between applications, generally referring to
a logical connection. A port provides queues for sending and receiving data. Each
port has a port number for identification.

v Port numbers 0 to 1023 are used for well-known ports.

v Port numbers 1024 to 65535 are available for the following user applications:

– Port numbers 1024 to 5000 are reserved for clients.

– Port numbers 5001 to 65535 are reserved for user server applications.

Standard Dotted Decimal Formats
Values specified in standard dotted decimal notation take one of the following
forms:
a.b.c.d
a.b.c
a.b
a

Mapping Address Parts
v When a four-part address is specified, each part is interpreted as a byte of data

and assigned, from left to right, to one of the 4 bytes of an internet address.

v When a three-part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the 2 rightmost bytes of the network address. This makes
the three-part address format convenient for specifying Class B network
addresses as 128.net.host.

v When a two-part address is specified, the last part is interpreted as a 24-bit
quantity and placed in the 3 rightmost bytes of the network address. This makes
the two-part address format convenient for specifying Class A network addresses
as net.host.

v When a one-part address is specified, the value is stored directly in the network
address space without any rearrangement of its bytes.

v Numbers supplied as address parts in standard dotted decimal notation can be
decimal, hexadecimal, or octal. Numbers are interpreted in C language syntax:

– A leading 0x implies hexadecimal.

– A leading 0 implies octal.

– A number without a leading 0 implies decimal.

Integer Byte Order Conversion
The following calls provide integer byte order conversions:

v htonl converts from host-to-network byte order operating on long
unsigned_integers.

v htons converts from host-to-network byte order operating on short
unsigned_integers.

120 TPF V4R1 TCP/IP

v ntohl converts from network-to-host byte order operating on long
unsigned_integers.

v ntohs converts from network-to-host byte order operating on short
unsigned_integers.

Notes:

1. A long integer is 32 bits: for example, an internet address.

2. A short integer is 16 bits: for example, a port number.

3. The TPF system does not use the integer byte order conversion functions
because the host byte order used in the TPF system is equivalent to the
network byte order.

Blocking and Nonblocking
Sockets can be set to either blocking or nonblocking I/O mode. The FIONBIO
option on the ioctl call determines the mode. When FIONBIO is set, the socket is
marked nonblocking. If a read, recv, or recvfrom function is tried and the desired
data is not available, the socket does not wait for the data to become available but
returns immediately with the SOCWOULDBLOCK secondary error code.

When FIONBIO is not set, the socket is in blocking mode. If a read, recv, or
recvfrom function is tried and the desired data is not available, the calling process
waits for the data. When a socket is created, the default mode is blocking.

Calls that are affected by the FIONBIO flag are:

v accept

v connect

v read

v recv

v recvfrom

v recvmsg

v send

v sendmsg

v sendto

v write

v writev.

Out-Of-Band Data
The MSG_OOB flag is set using the send call on stream sockets. It indicates the
presence of additional data being sent on a different channel and also indicates a
change in the order in which data is read. For example, if you send a buffer of data,
but want other data read first, you can send the data out-of-band (OOB).
Out-of-band data is always read before buffered data and, by using the OOB mark,
you can indicate the exact sequence in which you want the data read. Therefore,
the OOB mark allows the receiver to synchronize with the sender the order to read
data in the normal data stream.

The MSG_OOB flag sends out-of-band data on sockets that support it. This option
is only applicable to stream sockets. The sending side, using the send call, sends
this data before any buffered data. Similarly, the receiving side, using the recv or
recvfrom call, receives this data before any data that it might have buffered.

Socket Overview 121

TPF Socket Application Programming Interface (API) Support
Socket API support consists of:

v Socket API functions

v Socket user exits.

Socket API Functions Using TCP/IP Offload Support
Socket API functions, which are issued by the socket application, enter socket API
support to start the processing of the functions. If the socket is using offload
support, socket API support either passes a return code back to the application or
sends the function to the TCP/IP offload device to obtain the return code for the
application.

If socket API support sends the function to the TCP/IP offload device, it builds a
request in inter-user communication vehicle (IUCV) format and sends the function
through the TPF CLAW device interface to the TCP/IP offload device, using
Common Link Access to Workstation (CLAW) protocol. While it is waiting for the
response from the TCP/IP offload device, socket API support issues EVNTC and
EVNWC macros to suspend the ECB unless the function call was an
activate_on_receipt. In the activate_on_receipt case, socket API support returns
to the socket application after sending the function to the TCP/IP offload device.

If the function call issued to the TCP/IP offload device was not an
activate_on_receipt, the return code from the TCP/IP offload device is passed to
socket OPZERO by the TPF CLAW device interface. Socket OPZERO posts the
suspended ECB to reactivate socket API support, which returns the return code
back to the application. See “TCP/IP Internals” on page 11 for additional information
about the TCP/IP internals and see “Socket Application Programming Interface
Functions Reference” on page 137 for a complete description of the socket API
calls.

Socket API Functions Using TCP/IP Native Stack Support
Socket API functions, which are issued by the socket application, enter socket API
support to start the processing of the functions. If the socket is using TCP/IP native
stack support, the function is processed locally by the TPF system. If the operation
can be completed immediately or the socket is running in nonblocking mode, control
is returned to the application without a loss of control. If the operation cannot be
completed immediately and the socket is running in blocking mode, the application
ECB is suspended until the function is completed successfully, fails, or times out.

Socket User Exits
Socket user exits allow you to activate and deactivate socket applications, and
verify remote clients. TCP/IP offload support provides the following user exits:

v Socket accept for TCP/IP offload support

v Socket activation

v Socket connect

v Socket cycle-up

v Socket deactivation

v Socket system error

TCP/IP native stack support provides the following user exits:

v Socket cycle-up

122 TPF V4R1 TCP/IP

v TCP/IP native stack support accept connection

v Select TCP/IP support.

See TPF System Installation Support Reference for additional information about the
socket user exits.

Socket Accept for TCP/IP Offload Support
The socket accept for TCP/IP offload support user exit (C542) provides a
centralized program to screen all connection requests before they are returned to
the server application. C542 is entered each time the accept() API function call
receives a connection request from a client by using TCP/IP offload support.

Socket Activation
The socket activation user exit is entered during system cycle-up and during
ZCLAW ACTIVATE processing at or above CRAS state. This user exit activates
socket server applications and is called for each TCP/IP offload device connected
to the TPF system.

Socket Connect
The socket connect user exit is called during CLAW connect processing and allows
Common Link Access to Workstation (CLAW) applications to be activated.

Socket Cycle-Up When Using TCP/IP Offload Support
The socket cycle-up TCP/IP offload support user exit is entered only once during
system cycle-up after all active offload devices are connected to the TPF system.
When the TPF system successfully issues the socket cycle-up user exit, this user
exit activates server applications for all TCP/IP offload devices that are connected
to the TPF system.

Following are the major differences between the socket activation user exit and the
socket cycle-up user exit:

v When the exit is called.

The socket activation user exit is called during system cycle-up and during
processing of the ZCLAW ACTIVATE Command at CRAS state or above. The
socket cycle-up user exit is called only during system cycle-up.

v The number of offload devices affected.

The socket activation user exit is called for each offload device while the socket
cycle-up user exit is called once to activate servers on all offload devices that
are connected to the TPF system.

Socket Deactivation
The socket deactivation user exit is entered:

v When the operator issues a ZCLAW INACTIVATE Command to deactivate a
TCP/IP offload device logical link on an adapter

v During system cycle-down when all TCP/IP offload devices are disconnected

v When the CLAW device failure entry point (EP) is entered during the failure of a
TCP/IP offload device

v When the CLAW DISCONNECT entry point (EP) is entered during the
DISCONNECT of a TCP/IP offload device.

Socket Overview 123

For each TCP/IP offload device disconnected from the TPF system, socket
deactivation enters the socket deactivation user exit to deactivate socket
applications associated with the TCP/IP offload device.

Socket System Error
The socket system error user exit is entered when a socket application must exit as
a result of a system error.

TCP/IP Native Stack Support Accept Connection
The TCP/IP native stack support accept connection (UACC) user exit allows you to
verify a remote client connection request. UACC is called when an accept or
activate_on_accept request is made for a socket that uses TCP/IP native stack
support.

Select TCP/IP Support
The select TCP/IP support (USOK) user exit is called whenever a TPF application
issues the socket call to create a new socket and both TCP/IP offload support and
TCP/IP native stack support are defined. USOK decides whether the socket being
created will use TCP/IP offload support or TCP/IP native stack support. The default
will be to use TCP/IP offload support.

Socket Cycle-Up When Using TCP/IP Native Stack Support
The socket cycle-up (CLCV) user exit is called once during system cycle-up and
allows you to activate your socket server applications from a central point.

Full-Duplex Socket Support
The TCP/IP system allows up to 16 different type calls to be outstanding for a
particular socket descriptor. A different type call is a call that performs a different
specific function. Following is a list of these different types of function calls:

v accept or activate_on_accept (for TCP/IP native stack support only)

v read, or recv, or recvfrom, or activate_on_receipt

v send, or sendto, or write, or writev

v connect

v shutdown

v close

v listen

v bind or socket

v gethostid

v gethostname

v getpeername

v getsockname

v getsockopt

v ioctl

v select

v setsockopt.

Full-duplex socket support allows data to be sent and received on the same socket
from different ECB programs without being blocked by the TPF system, the TCP/IP
offload device, or the IP router.

124 TPF V4R1 TCP/IP

If function calls from more than one ECB to the same socket are of the same type,
blocking occurs. For example, if one ECB issues a read function call and another
ECB issues a recv function call to the same socket, the second call is blocked until
processing of the first function call is completed successfully.

Using activate_on_receipt
When many applications issue blocked read, recv, or recvfrom calls, there could be
many ECBs suspended at the same time if no data is available to be returned to
the application. To reduce the number of ECBs suspended at the same time, a
unique TPF socket API function called activate_on_receipt is available. This
function allows an ECB to continue processing or to exit while the application waits
for data to arrive from the TCP/IP network. When data arrives, another ECB is
created to read the message. See “activate_on_receipt — Activate a Program after
Data Received” on page 144 for more information about the activate_on_receipt
API function.

Socket Sweeper Support to Close Inactive Sockets
If communication across a socket stops, the socket will still stay open until one of
the following occurs:

v The TCP/IP offload device associated with the socket is deactivated (only for
offload sockets).

v System cycle-down below CRAS state.

v The socket is closed by the application.

Socket sweeper support closes inactive socket descriptors after a specified period
of time so the inactive socket descriptors can be free for another communication
session.

You can specify the period of time with the SOCKSWP parameter of the SNAKEY
macro, and change the period of time online with the ZNKEY command using the
SOCKSWP parameter.

The SOCKSWP parameter specifies, in minutes, the interval for the socket
sweeper. Socket application programs that do not use a particular socket descriptor
in the period of time that you specify will be closed by the socket sweeper program.

If you specify zero, the socket sweeper does not close any inactive socket
descriptors. For this, the socket application code must close inactive sockets.

For sockets using TCP/IP native stack support, the socket sweeper will also close
sockets if all IP routers that could be used by the socket are not active for an
extended period of time.

Socket Overview 125

126 TPF V4R1 TCP/IP

Sample Socket Sessions

This chapter:

v Shows the general sequence of calls for socket sessions using Transmission
Control Protocol (TCP)

v Shows the general sequence of calls using the activate_on_receipt function call

v Shows the general sequence of calls for socket sessions using User Datagram
Protocol (UDP)

v Discusses the input and output for the more commonly used socket API
functions.

Function Calls Used in a Sample TCP Session
In a TCP connected stream socket session, the roles of server and client are more
clearly defined than in a datagram socket session. Once you make the connection,
the connection exists until you close the socket. A connected socket, as used in
TCP protocol, sends data to and receives data from only one server because it has
a dedicated destination. The following steps correspond to the numbers in Figure 23
on page 128:

1. The server is started first by issuing a socket call to create socket s. The client
then issues a socket call and creates its own socket s. A socket is initially
created in the unconnected state, which means that the socket is not associated
with any remote destination.

2. The server issues a bind call to a local address to be positioned for a
subsequent connection.

The client can issue an optional bind call to a local address.

3. Using the listen function, the server waits for a connection from the client.

4. The connect call places the socket in the connected state. The client must
issue the connect call before being able to transfer data through a reliable
stream socket.

5. The server issues an accept call to accept an incoming connection. To allow the
server socket s to remain available for the next client connection, the accept
call creates a new socket ns, which is dedicated to the client.

6. The read and write calls between the client and server continue until all the
data is transferred.

7. The client closes socket s and the server closes the related socket, socket ns.

8. The server can continue to accept other connections on the original socket s or
close it by using the close function.

© Copyright IBM Corp. 1996, 2002 127

Create a stream socket.
Use the socket call.

Server

Create a stream socket.
Use the socket call.

Client

Bind socket to a
local address. Use
the bind call.

s
Bind socket to a local
address using the bind
call.

s

(Optional)

Indicate willingness to
accept connections.
Use the listen call.

Connect socket to the
server host. Use the
connect call.

s

Accept connection and
create a new socket, ,
using the accept call.

ns

Read and write data on
socket .ns

Read and write data on
socket .s

Close socket .
Use the close call.

ns Close socket . Use
the close call.

s

Close socket . Use
the close call.

s

1.

2.

3.

4.

5.

6.

7.

8.

Figure 23. Sample Socket Session Using TCP Protocol

128 TPF V4R1 TCP/IP

Using the activate_on_receipt Function Call
The TPF system provides the activate_on_receipt function, a unique TPF socket
API function designed to prevent many ECBs from being suspended at the same
time. See the drivers in Appendix D, “Sample Application Driver Code” on page 367
for an example of how to use the activate_on_receipt function. The following
steps correspond to the numbers in Figure 24 on page 130:

1. The server is started first by issuing a socket call to create socket s. The client
then issues a socket to create its own socket s. A socket is initially created in
the unconnected state, which means that the socket is not associated with any
remote destination.

2. Using the listen function, the server issues a bind call to a local address to be
positioned for a subsequent connection.

The client can issue an optional bind call to a local address.

3. The server waits for a connection from the client.

4. The connect call places the socket in the connected state. The client must
issue the connect call before being able to transfer data through a reliable
stream socket.

5. The server issues an accept call to accept an incoming connection. To allow the
server socket s to remain available for the next client connection, the accept
call creates a new socket ns, which is dedicated to the client.

6. The server issues an activate_on_receipt function to create a new ECB and
activate a new child server program when data is received from the client. The
original server becomes a parent server.

7. When the child server program is activated, the read and write calls between
the client and child server continue until all the data is transferred.

8. The client closes socket s and the child server closes the related socket, socket
ns. The parent server can continue to accept other connections on the original
socket s or close it.

Sample Socket Sessions 129

Create a stream socket.
Use the socket call.

Server Child Server

Create a stream socket.
Use the socket call.

Client

Bind socket to a
local address. Use
the bind call.

s

Indicate willingness to
accept connections.
Use the listen call.

Connect socket to the
server host. Use the
connect call.

s

Accept connection and
create a new socket, ,
using the accept call.

ns

Issue activate_on_receipt
call to create a new ECB.

Read and write data on
socket using the read
and write calls.

ns
Read and write data
on socket using the
read and write calls.

s

Close socket . Use
the close call.

sClose socket . Use
the close call.

s Close socket . Use
the close call.

ns

1.

2.

3.

4.

5.

6.

7.

8.

Bind socket to a local
address using the bind
call.

s

(Optional)

Figure 24. Using the activate_on_receipt Function Call

130 TPF V4R1 TCP/IP

Function Calls Used in a Sample UDP Session
User Datagram Protocol (UDP) is not clearly distinguished by server and client
roles. The distinction is between connected and unconnected sockets. UDP uses an
unconnected socket to communicate with any host. Data is sent in independent
packets. Once the data has been accepted by the UDP interface, the arrival and
integrity of the data is not guaranteed. Unlike connected Transmission Control
Protocol (TCP) sockets, connectionless sockets can communicate with any server.

Figure 25 shows a general sequence of function calls used in a connectionless
socket session and indicates the calls issued by the server and by the client.

The following steps correspond to the numbers in Figure 25:

1. The server and client both create a socket s.

2. The server uses the bind call to associate a local address to the socket.

The client can issue an optional bind call to a local address.

3. The sendto and recvfrom calls between the client and server continue until all
the data has been transferred.

4. Both the server and client end the session using the close call.

Create datagram socket
using the socket call.s

Server

Create datagram socket
using the socket call.s

Client

Send and receive data on
socket using the sendto
and recvfrom calls.

s

Bind socket to a
local address using
the bind call.

s

Close socket and
end the session using
the close call.

s

Send and receive data on
socket using the sendto
and recvfrom calls.

s

Close socket and
end the session using
the close call.

s

1.

2.

3.

4.

Bind socket to a local
address using the bind
call.

s

(Optional)

Figure 25. Sample Socket Session Using UDP Protocol

Sample Socket Sessions 131

Main Socket Function Calls
Following are examples of code segments showing the main socket function calls
and the input and output for the calls.

1. Allocate a socket descriptor:

socket function call
int socket(int domain, int type, int protocol);...
int server_sock;...
server_sock = socket(AF_INET, SOCK_STREAM, 0);

The previous example allocates socket descriptor server_sock in the internet
addressing family, AF_INET, using a socket stream type and the default protocol
TCP indicated by 0.

2. You can bind an address to a socket in two ways:

a. Explicitly bind a unique address to the socket:

bind function call
int bind(int s, struct sockaddr *name, int namelen);...
int rc;
int server_sock;
struct sockaddr_in myname;...
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_port = 5001;
myname.sin_addr.s_addr = inet_addr("129.5.24.1");...
rc = bind(server_sock, (struct sockaddr *) &myname,

sizeof(myname));

The previous example binds socket server_sock to internet address
129.5.24.1 and port 5001.

In this example, the network address and the port address were in the
network byte order:

inet_addr was used to convert a character internet address to network
byte order.

See each of these functions in the alphabetic reference section of “Socket
Application Programming Interface Functions Reference” on page 137.

b. Bind an address to the socket using a wild card:

132 TPF V4R1 TCP/IP

bind function call
int bind(int s, struct * *name, int namelen);...
int rc;
int server_sock;
struct *_in myname;...
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_port = 5001;
myname.sin_addr.s_addr = INADDR_ANY; /* all interfaces */
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

Note: If a socket application with the wildcard option issues a bind to an offload
device in a multiple offload device configuration, and the offload device is
deactivated, the socket application remains active if there is another
active offload device in the configuration.

3. The server indicates its readiness to accept connections from clients:

listen function call
int listen(int s, int backlog);...
int rc;
int server_sock;...
rc = listen(server_sock, 5);

This example indicates that the server is ready to accept calls, and that a
maximum of 5 connect requests can be queued for the server. Additional
requests are ignored.

Note: If the backlog is less than 0, it is set to 0. The backlog value is set in
SOMAXCONN.

4. The client starts a connection request:

connect function call
int connect(int s, struct sockaddr *name, int namelen);...
int rc;
int client_sock;
struct sockaddr_in servername;...
memset(&servername, 0, sizeof(servername));
servername.sin_family = AF_INET;
servername.sin_port = 5001;
servername.sin_addr.s_addr = inet_addr("129.5.24.1");...
rc = connect(server_sock, (struct socaddr *) &servername,

sizeof(servername));

This example connects socket client_sock to the server with an address
servername. This is the same server that was shown in the previous bind. The

Sample Socket Sessions 133

client could optionally be blocked until the connection is accepted by the server.
On a successful return, socket server_sock is associated with the connection to
the server.

5. The server accepts the client’s connection request:

accept function call
int accept(int s, struct sockaddr *addr, int *addrlen);...
int addrlen;
int newclient_sock;
int server_sock;
struct sockaddr client_addr;...
addrlen = sizeof(client_addr);
newclient_sock = accept(server_sock, &client_addr, &addrlen);

When the server accepts a connection request on socket server_sock, the
name of the client and the length of the client name are returned, along with a
new socket descriptor. The new socket descriptor is associated with the client
that began the connection, and server_sock is available to accept new
connections.

6. The client and server transmit data in the connected state:

send and recv function calls
int send(int s, char *msg, int len int flags);
int recv(int s, char *msg, int len, int flags);...
int client_sock;
int bytes_sent;
int bytes_recv;
char data_sent[256];
char data_recv[256];...
bytes_sent = send(client_sock, data_sent, sizeof(data_sent), 0);...
bytes_recv = recv(client_sock, data_recv, sizeof(data_recv), 0);

The previous example shows an application sending data on a connected
socket and receiving data in response. The flag fields can be used to specify
additional options for send or recv.

Clients and servers can use many function calls to transfer data, such as:

v The read, write, writev, send, and recv calls. However, these function calls
can be used only on sockets in the connected state.

v The sendto and recvfrom function calls can be used in the unconnected
state.

7. The client and server transmit data when they are in the connectionless state:

134 TPF V4R1 TCP/IP

sendto and recvfrom function calls
int sendto(int socket, char *buf, int buflen, int flags;

struct sockaddr *addr, int addrlen);
int recvfrom(int socket, char *buf, int buflen, int flags;

struct sockaddr *addr, int addrlen);...
int addrlen;
int client_sock;
int bytes_sent;
int bytes_recv;
char data_send[256];
char data_recv[256];
struct sockaddr_in from_addr;
struct sockaddr_in to_addr;...
addrlen = sizeof(struct sockaddr_in);
memset(&to_addr, 0, addrlen);
to_addr.sin_family = AF_INET;
to_addr.sin_port = 5001;
to_addr.sin_addr.s_addr = inet_addr("129.5.24.1");...
bytes_sent = sendto(client_sock, data_sent, sizeof(data_sent), 0,

(struct sockaddr *)&to_addr, addrlen);...
bytes_recv = recvfrom(client_sock, data_recv, sizeof(data_recv),

0,(struct sockaddr *)&from_addr, &addrlen);

If the socket is not connected, additional socket address information must be
passed to sendto and can be optionally returned from recvfrom. The caller must
specify the recipient of the data or to be notified of the sender of the data.

Usually, sendto and recvfrom are used for datagram sockets; read, send, and
recv are used for stream sockets.

8. Client and server can receive data using a special TPF function call called
activate_on_receipt:

activate_on_receipt function call issued from ECB 1
int accept(int s, struct sockaddr *addr, int *addrlen);
int activate_on_receipt(unsigned int s,

unsigned char *parm,
unsigned char *pgm);...

int addrlen;
int newclient_sock;
int server_sock;
char aorparm[8];
char aorpgm[4] = "abcd";...
newclient = accept(server_sock, (struct sockaddr *)0, (int *)0);...
/* No parameters will be passed to the new ECB */
memset(aorparm,0,sizeof(aorparm));
rc = activate_on_receipt(newclient, aorparm, aorpgm);

The activate_on_receipt function call allows the issuing ECB to exit and
activates a different ECB at program abcd. After the information has been

Sample Socket Sessions 135

received, the activated program, called the child server program, must issue a
read, recv, or recvfrom function call to receive the information. See
“activate_on_receipt — Activate a Program after Data Received” on page 144
for more information.

read function call issued from ECB 2
:
abcd()
{

...
int bytes_recv;
int newclient_sock;
int msg_length;
char *read_addr;

...
/* socket descriptor, buffer address, and message */
/* length are returned in ECB */
newclient_sock = (int)ecbptr()->ebrout;
memcpy(&read_addr,&(ecbptr()->ebw012),sizeof(read_addr));
memcpy(&msg_length,&(ecbptr()->ebw016),sizeof(msg_length));
bytes_recv = read(newclient_sock,read_addr,msg_length);

...
}

9. Deallocate the socket descriptor:

close function call
int close(int s);...
int rc;
int server_sock;...
rc = close(server_sock);

In the previous example socket server_sock is closed. The close call shuts
down the socket descriptor server_sock and frees up its resources.

136 TPF V4R1 TCP/IP

Socket Application Programming Interface Functions
Reference

This chapter documents socket functions. TCP/IP support provides a set of ISO-C
functions, called socket APIs, that application programs use to access the Internet.
The set of interfaces that the TPF system implements is based on the industry
standard.

General Function Information
The functions in this section are listed alphabetically and contain the following
information:

Description The service that the function provides.

Format The function prototype and a description of any parameters.

Normal Return
What is returned when the requested service has been performed.

Error Return What is returned when the requested service cannot be performed.
A system error with exit occurs when incorrect function parameters
are specified.

Programming Considerations
Remarks that help the programmer to understand the correct use of
the function and any side effects that may occur when the function
is run. Also, if the use of a particular function affects the use of
another function, that is described.

Examples A code segment that shows a sample function call.

Related Information
Where to find additional information that pertains to this function.

© Copyright IBM Corp. 1996, 2002 137

|

|
|

||

||

|
|

||
|
|

|
|
|
|
|

||

|
|

accept — Accept a Connection Request
The accept function is used by a server to accept a connection request from a
client.

Format
#include <socket.h>
int accept(int s,

struct sockaddr *addr,
int *addrlen);

s The socket descriptor. The s parameter is a stream socket descriptor created
with the socket function. It is bound to an address with the bind function. The
listen function marks the socket as one that accepts connections and allocates
a queue to hold ending connection requests. The listen function allows the
caller to place an upper boundary on the size of the queue.

addr
The socket address of the connecting client that is filled in by accept before it
returns. The format of addr is determined by the domain in which the client
resides. This parameter can be NULL if the caller is not interested in the
address of the client. If the addr parameter is not NULL, it points to a sockaddr
structure.

addrlen
Must initially point to an integer that contains the size, in bytes, of the storage
pointed to by addr. On return, that integer contains the size of the data returned
in the storage pointed to by addr. If addr is NULL, addrlen is ignored and can
be NULL.

Normal Return
A nonnegative socket descriptor indicates that the call was successful.

Error Return
A socket descriptor of −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCACCES The socket accept user exit has rejected an
incoming connection request.

SOCINVAL The listen function was not called for socket s or
an incorrect length was passed on the addrlen
parameter.

SOCNOBUFS There is not enough buffer space available to
create the new socket. This error code is returned
only for TCP/IP offload support.

SOCSOCKTNOSUPPORT The s parameter is not of type SOCK_STREAM.

SOCFAULT Using addr and addrlen would result in an attempt
to copy the address into a protected address space.

accept

138 TPF V4R1 TCP/IP

SOCWOULDBLOCK The socket s is in nonblocking mode and no
connections are in the queue.

SOCCONNABORTED The software caused a connection abend. This
error code is returned only for TCP/IP offload
support.

EIBMIUCVERR The accept function was not successful because an
error was received from the offload device. This
error code is returned only for TCP/IP offload
support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.

SOCTIMEDOUT The operation timed out. The socket is still
available. This error code is returned only for
TCP/IP native stack support.

Programming Considerations
v The accept function creates a new socket descriptor with the same properties as

s and returns it to the caller. Do not use the new socket to accept new
connections. The original socket, s, remains available to accept more connection
requests.

v The accept function accepts the first connection on its queue of pending
connections. If the queue has no pending connection requests, accept blocks the
caller unless s is in nonblocking mode. If no connection requests are queued and
s is in nonblocking mode, accept returns −1 and sets sock_errno to
SOCWOULDBLOCK.

v The accept function is used only with SOCK_STREAM sockets. There is no way
to screen requesters without calling accept. The application cannot tell the
system from which requesters it accepts connections. However, the caller can
choose to close a connection immediately after determining the identity of the
requester. If a connection request is rejected by the socket accept user exit, the
accept function returns −1 and sets sock_errno to SOCACCES.

v Check a socket for incoming connection requests by using the select for read
function.

v For sockets using TCP/IP native stack support, the receive timeout value (the
SO_RCVTIMEO setsockopt option) determines how long to wait for a remote
client to connect before the accept function times out.

v The accept function cannot be issued if an activate_on_accept call is pending
for the socket. These operations are mutually exclusive.

v For sockets using TCP/IP native stack support, the socket accept connection
user exit is UACC.

accept

Socket Application Programming Interface Functions Reference 139

Examples
Following are two examples of the accept function. In the first example, the caller
wants to have the address of the requester returned. In the second example, the
caller does not want to have the address of the requester returned.
#include <socket.h>...
int newclient_sock;
int server_sock;
struct sockaddr client_addr;
int addrlen;
/* socket, bind, and listen have been called */

1. I want the address now:
addrlen = sizeof(client_addr);
newclient_sock = accept(server_sock, &client_addr, &addrlen);

2. I can get the address later using getpeername:
addrlen = 0;
newclient_sock = accept(server_sock, (struct sockaddr *) 0, (int *) 0);

Related Information
v “activate_on_accept — Activate a Program When the Client Connects” on

page 141

v “bind — Bind a Local Name to the Socket” on page 152

v “connect — Request a Connection to a Remote Host” on page 157

v “getpeername — Return the Name of the Peer” on page 168

v “getsockname — Return the Name of the Local Socket” on page 174

v “listen — Complete Binding, Create Connection Request Queue” on page 189

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223.

accept

140 TPF V4R1 TCP/IP

activate_on_accept — Activate a Program When the Client Connects
The activate_on_accept function allows the issuing entry control block (ECB) to
exit and activate a different ECB in the program specified when a remote client is
connected.

Format
#include <socket.h>
int activate_on_accept(unsigned int s,

unsigned char *parm,
unsigned char *pgm,
unsigned int istream);

s The socket descriptor.

parm
A pointer to an 8-byte field. The data in this field is saved and passed to a new
ECB starting at equate EBW016. This new ECB is created when a remote client
is connected.

pgm
A pointer to a 4-byte field that contains the name of the TPF real-time program
to be activated when a remote client is connected.

istream
The I-stream number on which to activate the program specified by the pgm
parameter. If the value is 0, the TPF scheduler selects the I-stream.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
Return code −1 indicates an error. You can get the specific error code by calling
sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for more
information about socket errors.

Value Description

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCINVAL The listen function was not called for socket s, or
the activate_on_accept or accept function is
already pending for socket s, or the I-stream value
supplied for activate_on_accept was not valid.

SOCINPROGRESS Socket s is marked nonblocking, and the
connection cannot be completed immediately. The
SOCINPROGRESS value does not indicate an
error condition.

SOCSOCKTNOSUPPORT Socket s is not a stream socket.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

ESYSTEMERROR The system closed the socket because pgm is not
a valid program name.

Programming Considerations
v This API is available only to sockets that use TCP/IP native stack support.

activate_on_accept

Socket Application Programming Interface Functions Reference 141

v This unique TPF API function can be issued instead of the accept function. When
a remote client is connected, the TPF system creates a new ECB and activates
the program specified by the pgm parameter.

v Starting at equate EBW000, data is passed to the program specified by the pgm
parameter in the following format:

ECB Equates Length Description

EBW000 4 Contains the name of the program specified
by the pgm parameter.

EBW004 4 The socket descriptor of the listener socket,
which is the value of the s parameter.

EBW008 4 The return code, which is −1 if an error
occurred; otherwise, the return code is the
socket descriptor of the socket that was just
accepted.

EBW012 4 The address of a SOCKADDR structure that
contains the address of the remote client
whose connection is being accepted.

EBW016 8 The data passed by the original ECB on the
parm parameter.

v If the return code passed to pgm is −1 , you can get the specific error code by
calling sock_errno.

Value Description

SOCNOTSOCK Socket s has been cleaned up.

SOCACCES The socket accept user exit rejected the
connection request.

SOCTIMEDOUT The operation timed out.

v The program specified by the pgm parameter is activated in the same subsystem
as the program that issued the activate_on_accept call.

v If the value of the istream parameter is not 0, the program specified by the pgm
parameter is activated on the I-stream specified by the istream parameter. If the
value of the istream parameter is 0, the TPF scheduler selects the I-stream on
which to activate the program specified by the pgm parameter.

v The ECB in which pgm is activated is assigned the current system activation
number, not the activation number of the ECB that issued activate_on_accept.

v The receive timeout value (the SO_RCVTIMEO setsockopt option) determines
how long the TPF system waits for a remote client to be connected before the
activate_on_accept function times out.

v The activate_on_accept function cannot be issued if an accept call is pending
for the socket. These operations are mutually exclusive.

v The activate_on_accept function cannot be issued if another
activate_on_accept call is already pending for this socket.

Examples
After accepting a connection from a new client, an activate_on_accept function is
issued so that server_sock can accept the next client request.
#include <types.h>
#include <socket.h>...
int newclient_sock;

activate_on_accept

142 TPF V4R1 TCP/IP

int server_sock;
int i_stream;
u_char aoaparm[8];
u_char aoapgm[4] = "abcd";...

/* No parameters will be passed to the new ECB */
memset(aoaparm,0,sizeof(aoaparm));
rc = activate_on_accept(newclient_sock,aoaparm,aoapgm) i_stream);

...

Related Information
v “accept — Accept a Connection Request” on page 138

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223.

activate_on_accept

Socket Application Programming Interface Functions Reference 143

activate_on_receipt — Activate a Program after Data Received
The activate_on_receipt function allows the issuing ECB to exit and activate a
different ECB at the program specified after information has been received.

Format
#include <socket.h>
int activate_on_receipt(unsigned int s,

unsigned char *parm,
unsigned char *pgm);

s The socket descriptor.

parm
A pointer to an 8-byte field. The data in this field is saved and passed to a new
ECB starting at EBW004. This new ECB is created after information has been
received.

pgm
A pointer to a 4-byte field that contains the name of the TPF real-time program
to be activated after information has been received.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
Return code −1 indicates an error. You can get the specific error code by calling
sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for more
information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCNOTSOCK The s parameter is not a valid socket descriptor.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR The system closed the socket because pgm is a
program name that does not exist.

SOCNOBUFS There is not enough buffer space to issue the
function call. This error code is returned only for
TCP/IP offload support.

SOCNOTCONN The s socket is a stream socket, but the socket is
not connected.

activate_on_receipt

144 TPF V4R1 TCP/IP

SOCINVAL The listen function was not called for socket s or
the read, recv, or recvfrom function is already
pending for socket s.

EIBMIUCVERR The activate_on_receipt function was not
successful because an error occurred when the
message was sent to the offload device. This error
code is returned only for TCP/IP offload support.

SOCTIMEDOUT The operation timed out. The socket is still
available. This error code is returned only for
TCP/IP native stack support.

Programming Considerations
v This unique TPF API function can be issued instead of the read, recv, or

recvfrom function. When the information arrives, TPF socket support creates a
new ECB and activates the program specified by the pgm parameter.

v If TCP/IP activate on receipt load balancing (set by the AOR_BALANCE option of
the ioctl function) is set on, the ECB is created on the least busy I-stream. If
load balancing is set off, the ECB is created on the I-stream of the ECB that
issued the activate_on_receipt function.

v When the program specified by the pgm parameter is activated, the socket
descriptor is passed in the 3 bytes at the EBROUT label in the ECB, and the
address and length of the data that has been received is passed in the ECB
work area fields EBW012–EBW019. The program must then issue a read or recv
socket API function for stream sockets or a recvfrom socket API function for
datagram sockets to receive the data.

v When receiving the data, the program can either use the address passed to it in
the ECB work area or provide its own storage area to obtain the data. The length
specified in the read, recvfrom, or recv function must equal the value passed to
it in the ECB work area. If the value specified in the read, recv, or recvfrom
function is less than the value in the ECB work area, the message is truncated. If
the application program activated supplies its own buffer to read the data, the
system buffer address in EBW012–EBW015 is released on the ensuing read,
recv, or recvfrom function. The MSG_OOB and MSG_PEEK flags cannot be
used for the subsequent recv or recvfrom function.

v Starting at EBW000, data is passed to the program specified by the pgm
parameter in the following format:

ECB Equates Length Description

EBW000 4 Contains the name of the program specified
by the pgm parameter. For system use only.

EBW004 8 The data passed by the original ECB
pointed to by parm.

EBW012 4 The address of the data that was received.

EBW016 4 Length of the data that has been received
by the system and should be received by
the application.

EBW020 16 If a datagram socket was used, this field will
contain the source address of the message.

activate_on_receipt

Socket Application Programming Interface Functions Reference 145

Note: Information returned from an activate_on_receipt function is only
returned to the program specified in the activate_on_receipt function; it
is not returned to the program that issued the activate_on_receipt.

v If EBW012–EBW019 is equal to zero, the activate_on_receipt function was
issued on a socket that is shut down or closed. If EBW012–EBW015 is equal to
0 and EBW016–EBW019 is equal to −1, the activate_on_receipt function
resulted in an error return from the TCP/IP offload device. For both conditions,
the application program that was activated must still issue a read, recvfrom, or
recv socket API function to enable socket API support to complete the
processing of the activate_on_receipt function.

v If the return code is −1, the ECB is still connected to the program. However,
because it indicates a serious error, the ECB cannot issue any more socket API
functions for this socket but can issue socket API functions for other sockets.

v For sockets using TCP/IP native stack support, the receive timeout value (the
SO_RCVTIMEO setsockopt option) determines how long to wait for data to be
received before the activate_on_receipt function times out.

v For TCP sockets using TCP/IP native stack support, the receive low-water mark
(the SO_RCVLOWAT setsockopt option) determines the minimum amount of
data that must be received before the activate_on_receipt function is
completed. If the activate_on_receipt function times out, any data that was
received is returned to the application even if the amount of data received is less
than the receive low-water mark value.

v The activate_on_receipt function cannot be issued if an
activate_on_receipt_with_length, read, recv, or recvfrom call is pending for the
socket. These operations are mutually exclusive.

v For both TCP/IP offload support and TCP/IP native stack support, the
activate_on_receipt function cannot be issued if another activate_on_receipt
call is pending for this socket.

Examples
After accepting a connection from a new client, an activate_on_receipt function is
issued so that server_sock can accept the next client request.
#include <types.h>
#include <socket.h>...
int newclient_sock;
int server_sock;
u_char aorparm[8];
u_char aorpgm[4] = "abcd";...
for(;;)
{

newclient_sock = accept(server_sock,(struct sockaddr *)0,(int)0);

...
/* No parameters will be passed to the new ECB */
memset(aorparm,0,sizeof(aorparm));
rc = activate_on_receipt(newclient_sock,aorparm,aorpgm);

...
}

Related Information
v “read — Read Data on a Socket” on page 193

v “recv — Receive Data on a Connected Socket” on page 196

activate_on_receipt

146 TPF V4R1 TCP/IP

v “recvfrom — Receive Data on Connected/Unconnected Socket” on page 199

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223.

activate_on_receipt

Socket Application Programming Interface Functions Reference 147

activate_on_receipt_with_length — Activate a Program after Data
of Specified Length Received

The activate_on_receipt_with_length function allows the issuing entry control
block (ECB) to exit and activate a different ECB at the program specified after
information with a specified length has been received.

Format
#include <socket.h>
int activate_on_receipt_with_length(unsigned int s,

unsigned char *parm,
unsigned char *pgm,
unsigned int len);

s The socket descriptor.

parm
A pointer to an 8-byte field. The data in this field is saved and passed to a new
ECB starting at EBW004. This new ECB is created after information has been
received.

pgm
A pointer to a 4-byte field that contains the name of the TPF real-time program
to be activated after information has been received.

len
The length of data to be read before giving control to the new ECB.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno . See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCNOTSOCK The s parameter is not a valid socket descriptor.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.

activate_on_receipt_with_length

148 TPF V4R1 TCP/IP

SOCNOBUFS There is not enough buffer space to issue the
function call. This error code is returned only for
TCP/IP offload support.

SOCNOTCONN The s socket is a stream socket, but the socket is
not connected.

EIBMIUCVERR The activate_on_receipt_with_length function
was not successful because an error occurred
when the message was sent to the offload device.
This error code is returned only for TCP/IP offload
support.

SOCTIMEDOUT The operation timed out. The socket is still
available. This error code is returned only for
TCP/IP native stack support.

Programming Considerations
v This unique TPF application programming interface (API) function can be issued

instead of the read, recv, or recvfrom function. When the information arrives,
TPF socket support creates a new ECB and activates the program specified by
the pgm parameter.

v If TCP/IP activate on receipt load balancing (set by the AOR_BALANCE option of
the ioctl function) is set on, the ECB is created on the least busy I-stream. If
load balancing is set off, the ECB is created on the I-stream of the ECB that
issued the activate_on_receipt_with_length function.

v When the program specified by the pgm parameter is activated, the socket
descriptor is passed in the 3 bytes at the EBROUT label in the ECB, and the
address and length of the data that has been received is passed in the ECB
work area fields EBW012–EBW019. The program must then issue a read or recv
socket API function for stream sockets or a recvfrom socket API function for
datagram sockets to receive the data.

v The number of bytes received (in EBW016) will be as many as the number of
bytes of data specified by the len parameter. If fewer than the number of bytes
requested is available, the function returns the number currently available.

v When receiving the data, the program can either use the address passed to it in
the ECB work area or provide its own storage area to obtain the data. The length
specified in the read, recvfrom, or recv function must equal the value passed to
it in the ECB work area. If the value specified in the read, recv, or recvfrom
function is less than the value in the ECB work area, the message is truncated. If
the application program that is activated supplies its own buffer to read the data,
the system buffer address in EBW012–EBW015 is released on the ensuing read,
recv, or recvfrom function. The MSG_OOB and MSG_PEEK flags cannot be
used for the subsequent recv or recvfrom function.

v Starting at EBW000, data is passed to the program specified by the pgm
parameter in the following format:

ECB Equates Length Description

EBW000 4 Contains the name of the program specified
by the pgm parameter. For system use only.

EBW004 8 The data passed by the original ECB
pointed to by the parm parameter.

EBW012 4 The address of the data that was received.

activate_on_receipt_with_length

Socket Application Programming Interface Functions Reference 149

ECB Equates Length Description

EBW016 4 Length of the data that has been received
by the system and should be received by
the application.

EBW020 16 If a datagram socket was used, this field will
contain the source address of the message.

Note: Information returned from an activate_on_receipt_with_length function
is only returned to the program specified in the
activate_on_receipt_with_length function; it is not returned to the
program that issued the activate_on_receipt_with_length function.

v If EBW012–EBW019 is equal to zero, the activate_on_receipt_with_length
function was issued on a socket that is shut down or closed. If
EBW012–EBW015 is equal to 0 and EBW016–EBW019 is equal to −1, the
activate_on_receipt_with_length function resulted in an error return from the
TCP/IP offload device. For both conditions, the application program that was
activated must still issue a read, recvfrom, or recv socket API function to enable
socket API support to complete the processing of the
activate_on_receipt_with_length function.

v If the return code is −1, the ECB is still connected to the program. However,
because it indicates a serious error, the ECB cannot issue any more socket API
functions for this socket, but can issue socket API functions for other sockets.

v For sockets using TCP/IP native stack support, the receive timeout value (the
SO_RCVTIMEO setsockopt option) determines how long to wait for data to be
received before the activate_on_receipt_with_length function times out.

v For TCP sockets using TCP/IP native stack support, the receive low-water mark
(the SO_RCVLOWAT setsockopt option) determines the minimum amount of
data that must be received before the activate_on_receipt_with_length function
is completed. If the activate_on_receipt_with_length function times out, any
data that was received is returned to the application even if the amount of data
received is less than the receive low-water mark value.

v The activate_on_receipt_with_length function cannot be issued if an
activate_on_receipt, read, recv, or recvfrom call is pending for the socket.
These operations are mutually exclusive.

v The activate_on_receipt_with_length function cannot be issued if another
activate_on_receipt_with_length call is already pending for this socket.

Examples
After accepting a connection from a new client, an
activate_on_receipt_with_length function is issued so that server_sock can
accept the next client request.
#include <types.h>
#include <socket.h>...
int newclient_sock;
int server_sock;
int aor_len = 4;
u_char aorparm[8];
u_char aorpgm[4] = "abcd";...
for(;;)
{

newclient_sock = accept(server_sock,(struct sockaddr *)0,(int)0);

activate_on_receipt_with_length

150 TPF V4R1 TCP/IP

...
/* No parameters will be passed to the new ECB */
memset(aorparm,0,sizeof(aorparm));
/* read 1st 4 bytes of message. This can be useful, for */
/* example, if the application puts the message length in the */
/* first 4 bytes of message. The aor will read the 1st 4 */
/* bytes to get the message length, then issue subsequent */
/* reads for the rest of the data. */
rc = activate_on_receipt_with_length(newclient_sock,aorparm,aorpgm,aor_len);

...
}

Related Information
v “activate_on_receipt — Activate a Program after Data Received” on page 144

v “read — Read Data on a Socket” on page 193

v “recv — Receive Data on a Connected Socket” on page 196

v “recvfrom — Receive Data on Connected/Unconnected Socket” on page 199

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223.

activate_on_receipt_with_length

Socket Application Programming Interface Functions Reference 151

bind — Bind a Local Name to the Socket
The bind function binds a unique local name to the socket with descriptor s.

Format
#include <socket.h>
int bind(int s,

struct sockaddr *name,
int namelen);

s The socket descriptor.

name
Pointer to a sockaddr structure (buffer) containing the name that is to be bound
to s.

namelen
Size of the buffer pointed to by name, in bytes.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
The return code −1 indicates an error. You can get the specific error code by calling
sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for more
information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCADDRINUSE The address is already in use. See “setsockopt —
Set Options Associated with a Socket” on page 216
for more information on the SO_REUSEADDR
option.

SOCADDRNOTAVAIL The address specified is not valid on this host.

SOCAFNOSUPPORT The address family is not supported.

SOCFAULT Using name and namelen would result in an
attempt to copy the address into a protected
address space. This error code is returned only for
TCP/IP offload support.

SOCINVAL The socket is already bound to an address. For
example, you cannot bind a name to a socket that
is in the connected state. This value is also
returned if namelen is not the expected length.

SOCNOBUFS There is not enough buffer space. This error code
is returned only for TCP/IP offload support.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCIPNOTFOUND The TPF system could not locate the Internet
Protocol (IP) table header. This error code is
returned only for TCP/IP offload support.

EIBMIUCVERR An error occurred when the function call was sent

bind

152 TPF V4R1 TCP/IP

to the offload device. This error code is returned
only for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.
This error code is returned only for TCP/IP offload
support.

OFFLOADTIMEOUT No response was received from the offload device
in a specified time period. This error code is
returned only for TCP/IP offload support.

Programming Considerations
v The bind function binds a unique local name to the socket with descriptor s. After

calling socket, a descriptor does not have a name associated with it. The bind
procedure also allows servers to specify from which network interfaces they want
to receive UDP packets and TCP connection requests.

v The binding of a stream socket is not complete until a successful call to bind,
listen, or connect is made. Applications using stream sockets must check the
return values of bind, listen, and connect before using any function that
requires a bound stream socket.

v When binding a socket using TCP/IP native stack support to all local IP
addresses (that is, INADDR_ANY is specified), the socket is bound to all IP
routers that are currently active, as well as to any IP routers that are
subsequently activated.

Examples
1. Bind to a specific interface in the internet domain and make sure the sin_zero

field is cleared:
#include <socket.h>...
int rc;
int s;
struct sockaddr_in myname;...
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_port = 5001;
myname.sin_addr.s_addr = inetaddr("129.5.24.1"); /*specific interface*/
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

2. Bind to all network interfaces in the internet domain.
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_port = 5001;
myname.sin_addr.s_addr = INADDR_ANY; /* all interfaces */
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

bind

Socket Application Programming Interface Functions Reference 153

3. Bind to a specific interface in the internet domain and let the system choose a
port.
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_port = INADDR_ANY;
myname.sin_addr.s_addr = inetaddr("129.5.24.1"); /*specific interface*/
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

Related Information
v “connect — Request a Connection to a Remote Host” on page 157

v “getsockname — Return the Name of the Local Socket” on page 174

v “htons — Translate a Short Integer” on page 181

v “listen — Complete Binding, Create Connection Request Queue” on page 189

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223.

bind

154 TPF V4R1 TCP/IP

close — Shut Down a Socket

Note
This description applies only to sockets. See TPF C/C++ Language Support
User’s Guide for more information about the close function for files.

The close function shuts down a socket and frees resources allocated to that
socket.

Format
#include <socket.h>
int close(int s);

s The descriptor of the socket to be closed.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCALREADY Socket s is marked nonblocking and a previous
connection attempt has not been completed. This
error code is returned only for TCP/IP offload
support.

SOCNOTCONN The socket is not connected. This error code is
returned only for TCP/IP offload support.

SOCNOBUFS There is not enough buffer space to satisfy request.
This error code is returned only for TCP/IP offload
support.

EIBMIUCVERR An error occurred while the message was sent to
the offload device. This error code is returned only
for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

close

Socket Application Programming Interface Functions Reference 155

ESYSTEMERROR A system error has occurred and closed the socket.
This error code is returned only for TCP/IP offload
support.

OFFLOADTIMEOUT A response was not received from the offload
device in a specified time period. This error code is
returned only for TCP/IP offload support.

Programming Considerations
The close function shuts down the socket associated with socket descriptor s, and
frees resources allocated to the socket. If s refers to an open TCP connection, the
connection is closed. If a stream socket is closed when there is input data queued,
the TCP connection is reset rather than being cleanly closed.

Examples
The following example closes server_sock and exits the ECB.
#include <socket.h>...
int rc;
int server_sock;...
rc = close(server_sock);
exit(0);

Related Information
v “accept — Accept a Connection Request” on page 138

v “getsockopt — Return Socket Options” on page 176

v “setsockopt — Set Options Associated with a Socket” on page 216

v “socket — Create an Endpoint for Communication” on page 223.

close

156 TPF V4R1 TCP/IP

connect — Request a Connection to a Remote Host
The connect function requests a connection to a remote host.

Format
#include <socket.h>
int connect(int s,

struct sockaddr *name,
int namelen);

s The socket descriptor. The s parameter is the socket used to originate the
connection request.

name
Pointer to a sockaddr structure that contains the address of the socket to
which a connection will be attempted.

namelen
Size, in bytes, of the sockaddr structure pointed to by name.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCADDRNOTAVAIL The calling host cannot reach the specified
destination.

SOCAFNOSUPPORT The address family is not supported.

SOCALREADY Socket s is marked nonblocking and a previous
connection attempt has not completed.

SOCCONNREFUSED The connection request was rejected by the
destination host.

SOCFAULT Using name and namelen would result in an
attempt to copy the address into a protected
address space. This error code is returned only for
TCP/IP offload support.

SOCINPROGRESS Socket s is marked nonblocking, and the
connection cannot be completed immediately. The
SOCINPROGRESS value does not indicate an
error condition.

SOCISCONN Socket s is already connected.

SOCNETUNREACH You cannot get to the network from this host. This
error code is returned only for TCP/IP offload
support.

connect

Socket Application Programming Interface Functions Reference 157

SOCTIMEDOUT A timeout occurred before the connection was
made. This error code is returned only for TCP/IP
native stack support.

SOCNOBUFS There is not enough buffer space to start a new
connection.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCOPNOTSUP The operation is not supported on the socket. This
error code is returned only for TCP/IP offload
support.

SOCIPNOTFOUND The TPF system could not locate the IP table
header. This error code is returned only for TCP/IP
offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.

EIBMIUCVERR An error occurred while the function call was being
sent to the offload device. This error code is
returned only for TCP/IP offload support.

SOCINVAL The namelen parameter is not a valid length. This
error code is returned only for TCP/IP native stack
support.

Programming Considerations
v For stream sockets, the connect call attempts to establish a connection between

two sockets. For UDP sockets, the connect function specifies the peer for a
socket.

v The connect function performs two tasks when called for a stream socket. First, it
completes the binding necessary for a stream socket (if it has not been
previously bound using the bind function). Second, it attempts to make a
connection to another socket.

v The connect function on a stream socket is used by the client application to
establish a connection to a server. The server must have a passive open binding.
If the server is using sockets, the server must successfully call bind and listen
before a connection can be accepted by the server with accept. Otherwise,
connect returns −1 and sets the error code to SOCCONNREFUSED.

v If s is in blocking mode, the connect function blocks the caller until the
connection is set up, or until an error is received. If the socket is in nonblocking
mode, connect returns −1 with the error code set to SOCINPROGRESS if the
connection can be started (no other errors occurred). For this condition, this
return code does not indicate an error condition. The caller can test the
completion of the connection setup by calling the select for write function and
testing for the ability to write to the socket.

connect

158 TPF V4R1 TCP/IP

v When called for a datagram or raw socket, the connect function specifies the
peer with which this socket is associated. This lets the application use data
transfer calls reserved for sockets that are in the connected state. For this
condition, the send and recvfrom functions are available. Stream sockets can call
the connect function only once, but datagram sockets can call the connect
function multiple times to change their association. Datagram sockets can end
their association by connecting to an incorrect address such as the null address
(all fields zeroed).

v For sockets using TCP/IP native stack support, the receive timeout value (the
SO_RCVTIMEO setsockopt option) determines how long to wait for the
connection to be established before the connect function times out.

Examples
The following example connects to a server application that has IP address
129.5.24.1 and port number 5001.
#include <socket.h>...
int rc;
int client_sock;
struct sockaddr_in server_addr;...
memset(&server_addr, 0,sizeof(server_addr));
server_addr.sin_family = AF_INET;
server_addr.sin_port = 5001;
server_addr.sin_addr.s_addr = inet_addr("129.5.24.1");
rc = connect(client_sock, (struct sockaddr *) &server_addr,

sizeof(server_addr));

Related Information
v “accept — Accept a Connection Request” on page 138

v “bind — Bind a Local Name to the Socket” on page 152

v “htons — Translate a Short Integer” on page 181

v “listen — Complete Binding, Create Connection Request Queue” on page 189

v “select — Monitor Read, Write, and Exception Status” on page 205

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223.

connect

Socket Application Programming Interface Functions Reference 159

|
|
|

gethostbyaddr — Get Host Information for IP Address
The gethostbyaddr function returns information about a host specified by an
Internet Protocol (IP) address.

Format
#include <netdb.h>
struct hostent *gethostbyaddr(char *addr,

int addrlen,
int domain);

addr
A pointer to an IP address in network byte order.

addrlen
The size of the Internet address in bytes.

domain
The address domain supported (AF_INET).

Normal Return
This function returns a pointer to a hostent structure for the host name specified on
the call. The netdb.h header file defines the hostent structure, which contains the
following elements:

Element Description

h_name Official name of the host.

h_aliases Zero-terminated array of alternative names for the host.

h_addrtype Type of address being returned, always set to AF_INET.

h_length Length of the address in bytes.

h_addr Pointer to the network address of the host in network byte order.

Note: Subsequent gethostbyaddr calls overwrite the data in the hostent structure.

Error Return
A NULL pointer indicates an error. The value of h_errno indicates the specific error.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

HOST_NOT_FOUND The host name specified by the addr parameter
was not found.

TRY_AGAIN The local server did not receive a response from an
authorized server. Try again later.

NO_RECOVERY An irrecoverable error has occurred.

NO_DATA The host name is a valid name, but there is no
corresponding IP address.

Programming Considerations
The gethostbyaddr function tries to resolve the host Internet address through a
name server if one is present.

gethostbyaddr

160 TPF V4R1 TCP/IP

|

Examples
The following example obtains the host name associated with a given IP address.
#include <types.h>
#include <socket.h>
#include <netdb.h>...
struct hostent *h;
struct sockaddr_in sin;
char domain[512];
sin.sin_addr.s_addr=gethostid();
h = gethostbyaddr((char *)&sin.sin_addr.s_addr,
sizeof(struct in_addr), AF_INET);
if (h!=(struct hostent *)0)
{

strcpy(domain,h->h_name);
printf("gethostbyaddr was successful\n");

}
else

printf("gethostbyaddr failed\n");

Related Information
“gethostname — Return Host Name” on page 166.

gethostbyaddr

Socket Application Programming Interface Functions Reference 161

gethostbyname — Get IP Address Information by Host Name
The gethostbyname function returns information about a host specified by a host
name.

Format
#include <netdb.h>
struct hostent *gethostbyname(char *name);

name
The name of the host being queried.

Normal Return
This function returns a pointer to a hostent structure for the host name specified on
the call. The netdb.h header file defines the hostent structure, which contains the
following elements:

Element Description

h_name Official name of the host.

h_aliases Zero-terminated array of alternative names for the host.

h_addrtype Type of address being returned, always set to AF_INET.

h_length Length of the address in bytes.

h_addr Pointer to the network address of the host in network byte order.

Note: Subsequent gethostbyname calls overwrite the data in the hostent structure.

Error Return
A NULL pointer indicates an error. The value of h_errno indicates the specific error.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

HOST_NOT_FOUND The host name specified by the name parameter
was not found.

TRY_AGAIN The local server did not receive a response from an
authorized server. Try again later.

NO_RECOVERY An irrecoverable error has occurred.

NO_DATA The host name is a valid name, but there is no
corresponding Internet Protocol (IP) address.

Programming Considerations
The gethostbyname function tries to resolve the host name through a name server if
one is present.

Examples
The following example obtains the IP address associated with a given host name.
#include <types.h>
#include <socket.h>
#include <netdb.h>

gethostbyname

162 TPF V4R1 TCP/IP

|

...
struct sockaddr whereto;
struct hostent *hp;
struct sockaddr_in *to;
char *target;
char *hostname;

memset(&whereto, 0, sizeof(struct sockaddr));
to = (struct sockaddr_in *)&whereto;
to->sin_family = AF_INET;
to->sin_addr.s_addr = inet_addr(target);
if (to->sin_addr.s_addr != -1)

hostname = target;
else
{

hp = gethostbyname(target);
if (!hp)

printf("unknown host %s\n", target);
else
{

to->sin_family = hp->h_addrtype;
memcpy(&(to->sin_addr.s_addr), hp->h_addr, hp->h_length);
hostname = hp->h_name;
printf("gethostbyname was successful\n");

}
}

Related Information
“gethostbyaddr — Get Host Information for IP Address” on page 160.

gethostbyname

Socket Application Programming Interface Functions Reference 163

gethostid — Return Identifier of Current Host
The gethostid function gets the unique 32-bit identifier for the current host.

Format
#include <types.h>
#include <socket.h>
int gethostid(void);

Normal Return
Return code 0 indicates that the function was successful. The gethostid call returns
the 32-bit identifier, in host byte order of the current host, which must be unique
across all hosts.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCNOBUFS There is not enough buffer space to process this
function. This error code is returned only for TCP/IP
offload support.

EIBMIUCVERR An error occurred when the function was sent to the
offload device. This error code is returned only for
TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.
This error code is returned only for TCP/IP offload
support.

OFFLOADTIMEOUT A response was not received from the offload
device in a specified time period. This error code is
returned only for TCP/IP offload support.

SOCFAULT There are no IP addresses defined to the TPF
system. This error code is returned only for TCP/IP
native stack support.

gethostid

164 TPF V4R1 TCP/IP

Programming Considerations
The output of gethostid is either X or Y, where X is the default local IP address
(see “Default Local IP Address” on page 61 for more information) and Y is the IP
address of the first active and connected offload device. To determine the output of
gethostid, consider the following:

v If TCP/IP native stack support is defined and TCP/IP offload support is not
defined, the output of gethostid is X.

v If TCP/IP offload support is defined and TCP/IP native stack support is not
defined, the output of gethostid is Y.

v If both TCP/IP native stack support and TCP/IP offload support are defined, and
the last time that this entry control block (ECB) called USOK it picked TCP/IP
native stack support, the output of gethostid is X.

v If both TCP/IP native stack support and TCP/IP offload support are defined, and
the last time that this ECB called USOK it picked TCP/IP offload support, the
output of gethostid is Y.

Examples
The following example obtains the host Internet Protocol (IP) address.
#include <types.h>
#include <socket.h>...
u_long hostid;...
hostid = gethostid();

Related Information
None.

gethostid

Socket Application Programming Interface Functions Reference 165

gethostname — Return Host Name
The gethostname function returns the host name.

Format
#include <socket.h>
int gethostname(char *name,

int namelen);

name
Pointer to a buffer.

namelen
Length of the buffer.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCNOBUFS There is not enough buffer space to process this
function. This error code is returned only for TCP/IP
offload support.

EIBMIUCVERR An error occurred when the function was sent to the
offload device. This error code is returned only for
TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.

OFFLOADTIMEOUT A response was not received from the offload
device in a specified time period. This error code is
returned only for TCP/IP offload support.

SOCINVAL The namelen parameter is not a valid length. This
error code is returned only for TCP/IP native stack
support.

SOCFAULT Using buf and len results in an attempt to access a

gethostname

166 TPF V4R1 TCP/IP

protected address space. This error code is
returned only for TCP/IP native stack support.

Programming Considerations
v The output of gethostname is either X or Y, where X is the complex name suffixed

with the CPU identifier of the TPF host and Y is the host name of the first active
and connected offload device. To determine the output of gethostname, consider
the following:

– If TCP/IP native stack support is defined and TCP/IP offload support is not
defined, the output of gethostname is X.

– If TCP/IP offload support is defined and TCP/IP native stack support is not
defined, the output of gethostname is Y.

– If both TCP/IP native stack support and TCP/IP offload support are defined,
and the last time that this entry control block (ECB) called USOK it picked
TCP/IP native stack support, the output of gethostname is X.

– If both TCP/IP native stack support and TCP/IP offload support are defined,
and the last time that this ECB called USOK it picked TCP/IP offload support,
the output of gethostname is Y.

v When TCP/IP native stack support is defined, the length of the buffer must be a
minimum of 10 bytes.

Examples
The following example obtains the host Internet Protocol (IP) address.
#include <types.h>
#include <socket.h>...
int rc;
int server_sock;
u_char hostname[50];...
rc = gethostname(&hostname,sizeof(hostname));
printf("hostname = %s\n",hostname);

Related Information
“gethostid — Return Identifier of Current Host” on page 164.

gethostname

Socket Application Programming Interface Functions Reference 167

getpeername — Return the Name of the Peer
The getpeername function returns the address of the peer connected to socket s.

Format
#include <socket.h>
int getpeername(int s,

struct sockaddr *name,
int *namelen);

s The socket descriptor.

name
Pointer to the sockaddr buffer. On return, the buffer contains the name of the
remote peer of the socket.

namelen
Size of the address structure pointed to by name, in bytes. The namelen
parameter must be initialized to indicate the size of the space pointed to by
name and is set to the number of bytes copied into the space before the call
returns. If the buffer of the local host is too small, the peer name is truncated.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCFAULT Using name and namelen would result in an
attempt to access a protected address space. This
error code is returned only for TCP/IP offload
support.

SOCNOBUFS There is not enough buffer space. This error code
is returned only for TCP/IP offload support.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCNOTCONN The socket is not in the connected state.

EIBMIUCVERR An error occurred while the function was sent to the
offload device. This error code is returned only for
TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket

getpeername

168 TPF V4R1 TCP/IP

descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.
This error code is returned only for TCP/IP offload
support.

SOCINVAL The namelen parameter is not a valid length. This
error code is returned only for TCP/IP native stack
support.

OFFLOADTIMEOUT The offload device did not issue a response to the
function call in a specified time period. This error
code is returned only for TCP/IP offload support.

Programming Considerations
v This function applies to all connected sockets for both TCP and UDP protocols.

v When TCP/IP native stack support is defined, the length passed must be a
minimum of 32 bytes.

Examples
The following example obtains the peer socket address.
#include <socket.h>...
int addrlen;
int rc,
int newclient_sock;
int server_sock;
struct sockaddr_in client_addr;...
newclient_sock = accept(server_sock, (struct sockaddr *) 0, (int) 0);...
addrlen = sizeof(client_addr);
rc = getpeername(newclient_sock, (struct sockaddr *)&client_addr,

&addrlen);

Related Information
v “accept — Accept a Connection Request” on page 138

v “connect — Request a Connection to a Remote Host” on page 157

v “getsockname — Return the Name of the Local Socket” on page 174

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223.

getpeername

Socket Application Programming Interface Functions Reference 169

getservbyname — Get Server Port by Name
The getservbyname function returns the port number for a specified server
application name.

Format
#include <netdb.h>
struct servent *getservbyname(const char *name, const char *proto);

name
The name of the server application.

proto
The protocol of the server application.

Normal Return
This function returns a pointer to a servent structure for the server application
specified on the call. The netdb.h header file defines the servent structure, which
contains the following elements:

Element Description

s_name Official name of the server application.

s_aliases Null pointer.

s_port Port number of the server application.

s_proto Protocol that the server application uses.

Note: Subsequent getservbyname or getservbyport calls overwrite the data in the
servent structure.

Error Return
A NULL pointer indicates an error.

Programming Considerations
v The application must be defined in the TCP/IP network services database.

v This function is valid only for TCP/IP native stack support.

v The s_name and s_proto values that are returned in the servent structure are in
uppercase.

Examples
The following example obtains the port associated with a specified server
application name.
#include <types.h>
#include <socket.h>
#include <netdb.h>...
struct servent *appl_name;
char name[4] = "FTP";
char proto[4] = "TCP";
int port;

appl_name = getservbyname(name, proto);

if (!appl_name)
printf("unknown application %s\n", name);

else

getservbyname

170 TPF V4R1 TCP/IP

|
|

|
|

|

|
|

|
|

|
|

|

|
|
|

||

||

||

||

||

|
|

|

|

|

|

|

|
|

|

|
|

|
|
||||
|
|
|
|
|
|
|
|
|
|

{
port = appl_name->s_port;

printf("getservbyname was successful\n");
}

Related Information
v “TCP/IP Network Services Database Support” on page 111

v “getservbyport — Get Server Name by Port” on page 172.

getservbyname

Socket Application Programming Interface Functions Reference 171

|
|
|
|

|

|

|

getservbyport — Get Server Name by Port
The getservbyport function returns the server application name based on a
specified server port number.

Format
#include <netdb.h>
struct servent *getservbyport(int port, const char *proto);

port
The port number of the server application.

proto
The protocol of the server application.

Normal Return
This function returns a pointer to a servent structure for the server application
specified on the call. The netdb.h header file defines the servent structure, which
contains the following elements:

Element Description

s_name Official name of the server application.

s_aliases Null pointer.

s_port Port number of the server application.

s_proto Protocol that the server application uses.

Note: Subsequent getservbyname or getservbyport calls overwrite the data in the
servent structure.

Error Return
A NULL pointer indicates an error.

Programming Considerations
v The application must be defined in the TCP/IP network services database.

v This function is valid only for TCP/IP native stack support.

v The s_name and s_proto values that are returned in the servent structure are in
uppercase.

Examples
The following example obtains the port associated with a specified server
application name.
#include <types.h>
#include <socket.h>
#include <netdb.h>...
struct servent *appl_name;
int port;
char proto[4] = "TCP";
char *name;

port = 21;

appl_name = getservbyport(port, proto);

if (!appl_name)

getservbyport

172 TPF V4R1 TCP/IP

|
|

|
|

|

|
|

|
|

|
|

|

|
|
|

||

||

||

||

||

|
|

|

|

|

|

|

|
|

|

|
|

|
|
||||
|
|
|
|
|
|
|
|
|
|

printf("unknown application %s\n", name);
else
{

name = appl_name->s_name;
printf("getservbyport was successful\n");

}

Related Information
v “TCP/IP Network Services Database Support” on page 111

v “getservbyname — Get Server Port by Name” on page 170.

getservbyport

Socket Application Programming Interface Functions Reference 173

|
|
|
|
|
|

|

|

|

getsockname — Return the Name of the Local Socket
The getsockname returns the name of the local socket.

Normal Return
#include <socket.h>
int getsockname(int s,

struct sockaddr *name,
int *namelen);

s The socket descriptor.

name
Address of a sockaddr buffer into which getsockname copies the local address
of the socket.

namelen
Must initially point to an integer that contains the size, in bytes, of the storage
pointed to by name. On return, that integer contains the size of the data
returned in the storage pointed to by name.

Format
Return code 0 indicates that the function was successful.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCFAULT Using name and namelen would result in an
attempt to access a protected address space. This
error code is returned only for TCP/IP offload
support.

SOCNOBUFS There is not enough buffer space. This error code
is returned only for TCP/IP offload support.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

EIBMIUCVERR An error occurred while the function call was sent to
the offload device. This error code is returned only
for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

getsockname

174 TPF V4R1 TCP/IP

ESYSTEMERROR A system error has occurred and closed the socket.
This error code is returned only for TCP/IP offload
support.

OFFLOADTIMEOUT The offload device did not respond to the function
call in a specified time period. This error code is
returned only for TCP/IP offload support.

SOCNOTCONN The socket is not bound to an IP address. This
error code is returned only for TCP/IP native stack
support.

SOCINVAL The namelen parameter is not a valid length. This
error code is returned only for TCP/IP native stack
support.

Programming Considerations
v The getsockname function stores the current name for the socket specified by the

s parameter into the structure pointed to by the name parameter. It returns the
address to the socket that has been bound. If the socket is not bound to an
address, the call returns with the family set, and the rest of the structure is set to
0.

v Stream sockets are not assigned a name until after a successful call to the bind,
connect, or accept function.

v The getsockname function is often used to find the port assigned to a socket after
the socket has been implicitly bound to a port. For example, an application can
call connect without previously calling bind. In this case, the connect function
completes the binding necessary by assigning a port to the socket. This
assignment can be found with a call to getsockname.

Examples
The following example obtains its socket address information.
#include <socket.h>...
int addrlen;
int rc;
int server_sock;
struct sockaddr_in server_addr;...
addrlen = sizeof(server_addr);
rc = getsockname(server_sock,(struct sockaddr *)&server_addr, &addrlen);

Related Information
v “accept — Accept a Connection Request” on page 138

v “bind — Bind a Local Name to the Socket” on page 152

v “connect — Request a Connection to a Remote Host” on page 157

v “getpeername — Return the Name of the Peer” on page 168

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223.

getsockname

Socket Application Programming Interface Functions Reference 175

getsockopt — Return Socket Options
The getsockopt function gets options associated with a socket.

Format
#include <socket.h>
int getsockopt(int s,

int level,
int optname,
char *optval,
int *optlen);

s The socket descriptor.

level
Level for which the option is set. Use the value SOL_SOCKET.

optname
Name of a specified socket option. Use one of the following values:

SO_BROADCAST
Returns the value of the broadcast messages. Enabling this option lets the
application send broadcast messages over s if the interface specified in the
destination supports broadcasting of packets. This option has no meaning
for stream sockets.

SO_DONTROUTE
Returns the value of the outgoing messages. When you enable this option,
outgoing messages bypass the standard routing algorithm and are directed
to the appropriate network interface according to the network portion of the
destination address. When enabled, this option lets you send packets only
to directly connected networks (networks for which the host has an
interface). This option has no meaning for stream sockets.

SO_ERROR
Returns any pending error on the socket and clears the error status. You
can use it to check for asynchronous errors on connected datagram sockets
or for other asynchronous errors (errors that are not returned explicitly by
one of the socket calls).

SO_KEEPALIVE
Sends probes on idle sockets to verify that the socket is still active. This
option has meaning only for stream sockets.

SO_LINGER
Waits to complete the close function if data is present. When you enable
this option and there is unsent data present when close is called, the
calling application is blocked during the close function until the data is
transmitted or the connection has timed out. The close function returns
without blocking the caller. This option has meaning only for stream
sockets.

SO_OOBINLINE
Toggles reception of out-of-band data. Enabling this option causes
out-of-band data to be placed in the normal data input queue as it is
received, making it available to recvfrom and recv without having to specify
the MSG_OOB flag in those calls. Disabling this option causes out-of-band
data to be placed in the priority data input queue as it is received, making it
available to recvfrom and recv only by specifying the MSG_OOB flag in
these functions. This option has meaning only for stream sockets.

getsockopt

176 TPF V4R1 TCP/IP

SO_RCVBUF
Returns the size of the receive buffer. This option has meaning only for
sockets that are using TCP/IP native stack support.

SO_RCVLOWAT
Returns the receive buffer low-water mark, which is the minimum amount of
data that must be received before a read, recv, recvfrom,
activate_on_receipt, activate_on_receipt_with_length, or
activate_on_receipt_with_length function is completed successfully. This
option has meaning only for TCP sockets that are using TCP/IP native
stack support.

SO_RCVTIMEO
Returns the receive timeout value, which is how long the system will wait
for a read, recv, recvfrom, activate_on_receipt,
activate_on_receipt_with_length, accept, activate_on_accept, or connect
function to be completed successfully before timing out the operation. A
returned value of 0 indicates the system will not time out. This option has
meaning only for sockets that are using TCP/IP native stack support.

SO_REUSEADDR
Toggles local address reuse. Enabling this option allows local addresses
that are already in use to be bound. This changes the normal algorithm
used in the bind function. At connect time, the system checks that no local
address and port have the same remote address and port, and returns error
code SOCADDRINUSE if the association already exists.

SO_SNDBUF
Allows you to set the size of the send buffer to a value to suit your
application needs.

SO_SNDLOWAT
Returns the send buffer low-water mark, which is the minimum amount of
space that must be available in the send buffer to allow a select for write
function to be processed. This option has meaning only for sockets that are
using TCP/IP native stack support.

SO_SNDTIMEO
Returns the send timeout value, which is how long the system will wait for a
send, sendto, write, or writev function to be completed before timing out
the operation. A returned value of 0 indicates the system will not time out.
This option has meaning only for sockets that are using TCP/IP native stack
support.

SO_TYPE
Returns the type of the socket. On return, the integer pointed to by optval
is set to one of the following values:

v SOCK_STREAM

v SOCK_DGRAM

v SOCK_RAW.

optval
Pointer to option data. The optval and optlen parameters return data used by
the particular get command. The optval parameter points to a buffer that is to
receive the data requested by the get command.

optlen
Pointer to the length of the option data. The optlen parameter points to the size

getsockopt

Socket Application Programming Interface Functions Reference 177

|
|
|
|
|
|

of the buffer pointed to by the optval parameter. It must be initially set to the
size of the buffer before calling getsockopt. On return, it is set to the actual size
of the data returned.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCFAULT Using optval and optlen parameters would result in
an attempt to copy the address into a protected
address space. This error code is returned only for
TCP/IP offload support.

SOCNOPROTOOPT The optname parameter is not recognized, or the
level parameter is not SOL_SOCKET.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCNOBUFS There is not enough buffer space available to
process the message. This error code is returned
only for TCP/IP offload support.

EIBMIUCVERR An error occurred while the function call was sent to
the offload device. This error code is returned only
for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.
This error code is returned only for TCP/IP offload
support.

OFFLOADTIMEOUT The offload device did not respond to the function
call in a specified time period. This error code is
returned only for TCP/IP offload support.

SOCINVAL The socket type is incorrect for the option passed.
This error code is returned only for TCP/IP native
stack support.

getsockopt

178 TPF V4R1 TCP/IP

Programming Considerations
v The getsockopt function gets options associated with a socket.

v When manipulating socket options, you must specify the name of the option and
the level at which the option resides.

v When TCP/IP native stack support is defined, the length passed by the optlen
parameter must be a minimum of 4 bytes.

v All of the socket-level options except SO_LINGER expect optval to point to an
integer and optlen to be set to the size of an integer. When the integer is
nonzero, the option is enabled. When it is 0, the option is disabled. The
SO_LINGER option expects optval to point to a linger structure. The linger
structure is defined in the following example:
struct linger

int l_onoff; /* option on/off */
int l_linger; /* linger time */...

v The l_onoff is set to 0 if the SO_LINGER option is being disabled. A nonzero
value enables the option. The l_linger field specifies the amount of time to wait
before completing a close when there is still data to be sent.

v The getsockopt function is rejected if the socket and the bind function has not
been issued.

Examples
The following example obtains out-of-band information.
#include <socket.h>...
int optval;
int optlen;
int rc;
int server_sock;...
/* Is out of band data in the normal input queue? */
optlen = sizeof(optval);
rc = getsockopt(server_sock, SOL_SOCKET, SO_OOBINLINE,

(char *)&optval, &optlen);
if (rc == 0)

if (optlen == sizeof(int))
{

if (optval)
/* yes it is in the normal queue */

else
/* no it is not */

}

Related Information
v “setsockopt — Set Options Associated with a Socket” on page 216

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223.

getsockopt

Socket Application Programming Interface Functions Reference 179

htonl — Translate a Long Integer
The htonl function translates a long integer from host byte order to network byte
order.

Format
#include <types.h>
#include <socket.h>
u_long htonl(u_long a);

a Unsigned long integer to be put into network byte order.

Normal Return
Returns the translated long integer.

Error Return
None.

Programming Considerations
None.

Examples
The following example converts the information from host byte order to network
byte order.
#include <types.h>
#include <socket.h>...
u_long a;
u_long n;...
n = htonl(a);

Related Information
v “htons — Translate a Short Integer” on page 181

v “ntohl — Translate a Long Integer” on page 191

v “ntohs — Translate a Short Integer” on page 192.

htonl

180 TPF V4R1 TCP/IP

htons — Translate a Short Integer
The htons function translates a short integer from host byte order to network byte
order.

Format
#include <types.h>
#include <socket.h>
u_short htons(u_short a);

a Unsigned short integer to be put into network byte order.

Normal Return
Returns the translated short integer.

Error Return
None.

Programming Considerations
None.

Examples
The following example converts the information from host byte order to network
byte order.
#include <types.h>
#include <socket.h>...
u_short a;
u_short n;...
n = htons(a);

Related Information
v “htonl — Translate a Long Integer” on page 180

v “ntohl — Translate a Long Integer” on page 191

v “ntohs — Translate a Short Integer” on page 192.

htons

Socket Application Programming Interface Functions Reference 181

inet_addr — Construct Internet Address from Character String
The inet_addr function interprets character strings representing numbers expressed
in standard dotted decimal notation and returns numbers suitable for use as an
internet address.

Format
#include <types.h>
#include <socket.h>
u_long inet_addr(char *cp);

cp A character string in standard dotted decimal notation.

Normal Return
The internet address is returned in network byte order.

Error Return
A return code equal to −1 indicates a character string that is not valid.

Programming Considerations
v Values specified in standard dotted decimal notation take one of the following

forms:
a.b.c.d
a.b.c
a.b
a

v When you specify a four-part address, each part is interpreted as a byte of data
and assigned, from left to right, to one of the 4 bytes of an internet address.

v When you specify a three-part address, the last part is interpreted as a 16-bit
quantity and placed in the 2 rightmost bytes of the network address. This makes
the three-part address format convenient for specifying Class B network
addresses as 128.net.host.

v When you specify a two-part address, the last part is interpreted as a 24-bit
quantity and placed in the 3 rightmost bytes of the network address. This makes
the two-part address format convenient for specifying Class A network addresses
as net.host.

v When you specify a one-part address, the value is stored directly in the network
address space without any rearrangement of its bytes.

v Numbers supplied as address parts in standard dotted decimal notation can be
decimal, hexadecimal, or octal. Numbers are interpreted in C language syntax. A
leading 0x implies hexadecimal; a leading 0 implies octal. A number without a
leading 0 implies decimal.

Examples
The following example converts character IP address to network byte order.
#include <types.h>
#include <socket.h>...
struct sockaddr_in server_addr;...
servername.sin_addr.s_addr = inet_addr("129.5.24.1");

inet_addr

182 TPF V4R1 TCP/IP

Related Information
None.

inet_addr

Socket Application Programming Interface Functions Reference 183

inet_ntoa — Return Pointer to a String in Dotted Decimal Notation
The inet_ntoa function returns a pointer to a string in dotted decimal notation.

Format
#include <types.h>
#include <socket.h>
char *inet_ntoa(struct in_addr in);

in The host Internet address.

Normal Return
This function returns a pointer to a string expressed in dotted decimal notation. The
call accepts an Internet address expressed as a 32-bit quantity in network byte
order and returns a string expressed in dotted decimal notation. Storage pointed to
exists on an entry control block (ECB) basis and is overwritten by subsequent calls.

Error Return
None.

Programming Considerations
None.

Examples
The following example returns a pointer to the input address in dotted decimal
notation.
#include <types.h>
#include <socket.h>...
struct in_addr in;
char *inetadd;

in = 0x975C645;
inetadd = inet_ntoa(in);
printf("IP address is %s\n",inetadd);

Related Information
“inet_addr — Construct Internet Address from Character String” on page 182.

inet_ntoa

184 TPF V4R1 TCP/IP

ioctl — Perform Special Operations on Socket
The ioctl function performs special operations on socket descriptor s.

Format
#include <types.h>
#include <socket.h>
#include <ioctl.h>
int ioctl(int s,

int cmd,
char *arg);

s The socket descriptor.

cmd
Command to perform. Use one of the following values:

AOR_BALANCE
Sets TCP/IP activate on receipt load balancing on or off for a socket. If load
balancing is set on, the ECB is created on the least busy I-stream when an
activate_on_receipt or activate_on_receipt_with_length function is
completed. If load balancing is set off, the ECB is created on the I-stream of
the ECB that issued the activate_on_receipt or
activate_on_receipt_with_length function request. The arg parameter is a
pointer to an integer. If the integer is nonzero, load balancing is set on;
otherwise, load balancing is set off.

Notes:

1. TCP/IP activate on receipt load balancing can be set on only for
applications that run on any I-stream.

2. TCP/IP activate on receipt load balancing is only available for sockets
that use TCP/IP native stack support.

3. The AOR_BALANCE parameter is unique to the TPF 4.1 system.

FIONBIO
Sets or clears nonblocking input/output for a socket. The arg parameter is a
pointer to an integer. If the integer is 0, nonblocking input/output on the
socket is cleared. Otherwise, the socket is set for nonblocking input/output.

FIONREAD
Gets the number of immediately readable bytes for the socket. The arg
parameter is a pointer to an integer. Sets the value of the integer to the
number of immediately readable characters for the socket.

SIOCADDRT
Adds a routing table entry. The arg parameter is a pointer to a rtentry
structure as defined in ioctl.h. The routing table entry, passed as an
argument, is added to the routing tables. This option is for IBM use only.

SIOCATMARK
Queries whether the current location in the data input is pointing to
out-of-band data. The arg parameter is a pointer to an integer. Sets the
argument to 1 if the socket points to a mark in the data stream for
out-of-band data. Otherwise, sets the argument to 0.

SIOCDELRT
Deletes a routing table entry. The arg parameter is a pointer to a rtentry
structure. If it exists, the routine table entry, passed as an argument, is
deleted from the routing tables. This option is for IBM use only.

ioctl

Socket Application Programming Interface Functions Reference 185

SIOCGIFADDR
Gets the network interface address. The arg parameter is a pointer to an
ifreq structure, as defined in ioctl.h. The interface address is returned in
the field in the ifreq structure that has the result.

SIOCGIFBRDADDR
Gets the network interface broadcast address. The arg parameter is a
pointer to an ifreq structure as defined in ioctl.h. The interface broadcast
address is returned in the argument.

SIOCGIFCONF
Gets the network interface configuration. The arg parameter is a pointer to
an ifconf structure as defined in ioctl.h. The interface configuration is
returned in the argument. The length must be at least 32 bytes.

SIOCGIFDSTADDR
Gets the network interface destination address. The arg parameter is a
pointer to an ifreq structure as defined in ioctl.h. The interface
destination (point-to-point) address is returned in the argument.

SIOCGIFFLAGS
Gets the network interface flags. The arg parameter is a pointer to an ifreq
structure as defined in ioctl.h. The interface flags are returned in the
argument.

SIOCGIFMETRIC
Gets the network interface routing metric. The arg parameter is a pointer to
an ifreq structure as defined in ioctl.h. The interface routine metric is
returned in the argument. This option is for IBM use only.

SIOGIFNETMASK
Gets the network interface network mask. The arg parameter is a pointer to
an ifreq structure as defined in ioctl.h. The interface network mask is
returned in the argument.

SIOCSIFDSTADDR
Sets the network interface destination address. The arg parameter is a
pointer to an ifreq structure as defined in ioctl.h. Sets the interface
destination (point-to-point) address to the value passed in the argument.
This option is for IBM use only.

SIOCSIFFLAGS
Sets the network interface flags. The arg parameter is a pointer to an ifreq
structure as defined in ioctl.h. Sets the interface flags to the values
passed in the argument. This option is for IBM use only.

SIOCSIFMETRIC
Sets the network interface routing metric. The arg parameter is a pointer to
an ifreq structure as defined in ioctl.h. Sets the interface routing metric
to the value passed in the argument. This option is for IBM use only.

TPF_NOSWEEP
Skips the socket sweeper processing for this socket. The socket sweeper
facility monitors open sockets and closes those that are idle. An idle socket
is one that has had no socket application programming interfaces (APIs)
issued recently by any application. The arg parameter is a pointer to an
integer. If the integer is any nonzero value, the socket sweeper facility will
skip monitoring the socket descriptor supplied by the s parameter for socket
API activity. If the arg parameter is set to zero, the socket sweeper
monitors the socket descriptor.

ioctl

186 TPF V4R1 TCP/IP

Note: The TPF_NOSWEEP parameter is unique to the TPF 4.1 system.

arg
Pointer to the data associated with cmd, and its format depends on the
command that is requested.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCOPNOTSUP The operation is not supported on the socket.

SOCNOTCONN The socket is not connected.

SOCINVAL The request is not valid or not supported or the
buffer passed was not the required minimum length.

SOCFAULT Using buf and len would result in an attempt to
access a protected address space. This error code
is returned only for TCP/IP native stack support.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCNOBUFS There is not enough buffer space available to
process the message. This error code is returned
only for TCP/IP offload support.

EIBMIUCVERR An error occurred while the function call was sent to
the offload device. This error code is returned only
for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.
This error code is returned only for TCP/IP offload
support.

OFFLOADTIMEOUT The offload device did not respond to the function
call in a specified time period. This error code is
returned only for TCP/IP offload support.

ioctl

Socket Application Programming Interface Functions Reference 187

Programming Considerations
v The operating characteristics of sockets can be controlled with the ioctl

function. The operations to be controlled are determined by the cmd parameter.
The arg parameter is a pointer to data associated with the particular command.

v For sockets using TCP/IP native stack support, the TPF_NOSWEEP parameter
only affects socket sweeper processing based on application idle timeouts.
Sockets that issue this cmd parameter value can still be swept because of
network idle timeouts.

v TPF_NOSWEEP has no effect when the TPF socket sweeper facility is not
active. ZNKEY SOCKSWP displays the current sweep timeout; a timeout of 0
indicates the sweeper is not active. When the socket sweeper facility is activated,
the latest value for TPF_NOSWEEP determines whether the socket sweeper
monitors the socket descriptor.

v Open sockets are subject to socket sweeper monitoring by default.

Examples
The following example sets server_sock to be in nonblocking mode.
#include <types.h>
#include <socket.h>
#include <ioctl.h>...
int dontblock;
int rc;
int server_sock...
/* Place the socket into nonblocking mode */
dontblock = 1;
rc = ioctl(server_sock, FIONBIO, (char *) &dontblock);

Related Information
“sock_errno — Return the Error Code Set by a Socket Call” on page 222.

ioctl

188 TPF V4R1 TCP/IP

listen — Complete Binding, Create Connection Request Queue
The listen function completes the binding necessary for a socket and creates a
connection request queue for incoming requests.

Format
#include <socket.h>
int listen(int s,

int backlog);

s The socket descriptor.

backlog
Maximum length for the queue of pending connections. If backlog is less than
0, its value is set to 0. For sockets using TCP/IP offload support, if backlog is
greater than SOMAXCONN or 5, its value is set to SOMAXCONN. For sockets
using TCP/IP native stack support, the maximum value for backlog is 32 767. If
the value passed is greater than 32 767, the value is set to 32 767.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCOPNOTSUP The s parameter is not a socket descriptor that
supports the listen function.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCINVAL The socket is not in the correct state for listening.

EIBMIUCVERR An error occurred when the function call was sent
to the offload device. This error code is returned
only for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.
This error code is returned only for TCP/IP offload
support.

OFFLOADTIMEOUT The offload device did not respond to the function

listen

Socket Application Programming Interface Functions Reference 189

call in the requested time period. This error code is
returned only for TCP/IP offload support.

Programming Considerations
v The listen function applies only to stream sockets. The function performs the

following tasks:

– It completes the binding necessary for socket s if bind has not been called for
s.

– It creates a connection request queue, which is the length of the backlog
parameter, to queue incoming connection requests. After the queue is full,
additional connection requests are ignored.

v The listen function indicates a readiness to accept client connection requests.
This function transforms an active socket into a passive socket. Once called, s
can never be used as an active socket to start connection requests. Calling
listen is the third of four steps that a server performs to accept a connection.
This function is called after allocating a stream socket with socket, and after
binding a name to s with bind. The listen function must be called before calling
accept.

Examples
The following example sets up itself to be a server and it also creates a client
request queue of size 5.
#include <socket.h>...
int rc;
int server_sock;...
rc = listen(server_sock, 5);

Related Information
v “accept — Accept a Connection Request” on page 138

v “bind — Bind a Local Name to the Socket” on page 152

v “connect — Request a Connection to a Remote Host” on page 157

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223.

listen

190 TPF V4R1 TCP/IP

ntohl — Translate a Long Integer
The ntohl function translates a long integer from network byte order to host byte
order.

Format
#include <types.h>
#include <socket.h>
u_long ntohl(u_long a);

a Unsigned long integer to be put into host byte order.

Normal Return
Returns the translated long integer.

Error Return
None.

Programming Considerations
None.

Examples
The following example converts the information from network byte order to host
byte order.
#include <types.h>
#include <socket.h>...
u_long a;
u_long n;...
n = ntohl(a);

Related Information
v “htons — Translate a Short Integer” on page 181

v “htonl — Translate a Long Integer” on page 180

v “ntohs — Translate a Short Integer” on page 192.

ntohl

Socket Application Programming Interface Functions Reference 191

ntohs — Translate a Short Integer
The ntohs function translates a short integer from network byte order to host byte
order.

Format
#include <types.h>
#include <socket.h>
u_short ntohs(u_short a);

a Unsigned short integer to be put into host byte order.

Normal Return
Returns the translated short integer.

Error Return
None.

Programming Considerations
None.

Examples
The following example converts the information from network byte order to host
byte order.
#include <types.h>
#include <socket.h>...
u_short a;
u_short n;...
ntohs(a);

Related Information
v “htonl — Translate a Long Integer” on page 180

v “htons — Translate a Short Integer” on page 181

v “ntohl — Translate a Long Integer” on page 191.

ntohs

192 TPF V4R1 TCP/IP

read — Read Data on a Socket

Note
This description applies only to sockets. See TPF C/C++ Language Support
User’s Guide for more information about the read function for files.

The read function reads data on a socket with descriptor s and stores it in a buffer.

Format
#include <socket.h>
int read(int s,

char *buf,
int len);

s The socket descriptor.

buf
Pointer to the buffer that receives the data.

len
Length, in bytes, of the buffer pointed to by the buf parameter. The maximum
amount of data that can be received is 32 768 bytes.

Normal Return
If successful, the number of bytes copied into the buffer is returned. If an end-of-file
condition is received or the connection is closed, 0 is returned.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCFAULT Using buf and len results in an attempt to access a
protected address space.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCWOULDBLOCK The s parameter is in nonblocking mode and no
data is available to read.

SOCNOTCONN The socket is not connected.

SOCNOBUFS There is not enough space available to process the
function call. This error code is returned only for
TCP/IP offload support.

EIBMIUCVERR An error occurred when the function call was sent
to the offload device. This error code is returned
only for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket

read

Socket Application Programming Interface Functions Reference 193

descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.

SOCTIMEDOUT The operation timed out. The socket is still
available. This error code is returned only for
TCP/IP native stack support.

Programming Considerations
v This function applies only to connected sockets.

v This function returns up to the number of bytes of data specified by the len
parameter. If fewer than the number of bytes requested is available, the function
returns the number currently available.

v If data is not available for the sockets s, and s is in blocking mode, the read
function blocks the caller until data arrives. If data is not available, and s is in
nonblocking mode, read returns a −1 and sets sock_errno to
SOCWOULDBLOCK.

v For sockets using TCP/IP native stack support, the receive timeout value (the
SO_RCVTIMEO setsockopt option) determines how long to wait for data to be
received before the read function times out.

v For TCP sockets using TCP/IP native stack support, the receive low-water mark
(the SO_RCVLOWAT setsockopt option) determines the minimum amount of
data that must be received before the read function is completed. If the read
function times out, any data that was received is returned to the application even
if the amount of data received is less than the receive low-water mark value.

v The read function cannot be issued if an activate_on_receipt or
activate_on_receipt_with_length call is pending for the socket. These
operations are mutually exclusive.

Examples
After the server accepts a client connection, it reads in a message from its client.
#include <socket.h>...
int rc;
int newclient_sock;
int server_sock;
char recv_client_msg[100];...
newclient_sock = accept(server_sock, (struct sockaddr *) 0, (int) 0);
rc = read(newclient_sock,recv_client_msg,sizeof(recv_client_msg));

Related Information
v “activate_on_receipt — Activate a Program after Data Received” on page 144

v “connect — Request a Connection to a Remote Host” on page 157

v “getsockopt — Return Socket Options” on page 176

v “ioctl — Perform Special Operations on Socket” on page 185

v “recv — Receive Data on a Connected Socket” on page 196

read

194 TPF V4R1 TCP/IP

v “recvfrom — Receive Data on Connected/Unconnected Socket” on page 199

v “select — Monitor Read, Write, and Exception Status” on page 205

v “send — Send Data on a Connected Socket” on page 206

v “sendto — Send Data on an Unconnected Socket” on page 212

v “setsockopt — Set Options Associated with a Socket” on page 216

v “socket — Create an Endpoint for Communication” on page 223

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “write — Write Data on a Connected Socket” on page 226.

read

Socket Application Programming Interface Functions Reference 195

recv — Receive Data on a Connected Socket
The recv function receives data on a socket with descriptor s and stores it in a
buffer.

Format
#include <socket.h>
int recv(int s,

char *buf,
int len,
int flags);

s The socket descriptor.

buf
Pointer to the buffer that receives the data.

len
Length, in bytes, of the buffer pointed to by the buf parameter. The maximum
number of bytes that can be received is 32 768.

flags
Must be set to 0 or one or more of the following flags. If you specify more than
one flag, use the logical OR operator (|) to separate them:

MSG_OOB
Reads any out-of-band data on the socket.

MSG_PEEK
Peeks at the data present on the socket; the data is returned but not
consumed, so a later receive operation sees the same data.

Normal Return
If successful, the function returns the length, in bytes, of the message or datagram.

In addition, the number of bytes copied into the buffer is returned. If an end-of-file
condition is received or the connection is closed, 0 is returned.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCFAULT Using buf and len would result in an attempt to
access a protected address space.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCWOULDBLOCK The s parameter is in nonblocking mode, and no
data is available to read.

SOCNOBUFS There is not enough space available to process the
function call. This error code is returned only for
TCP/IP offload support.

recv

196 TPF V4R1 TCP/IP

SOCNOTCONN A stream socket was used to issue the recv
function, and the socket was not connected.

EIBMIUCVERR An error occurred while the function call was sent to
the offload device. This error code is returned only
for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.

SOCTIMEDOUT The operation timed out. The socket is still
available. This error code is returned only for
TCP/IP native stack support.

SOCINVAL The MSG_OOB option was specified for a socket
other than a stream socket or the MSG_OOB
option was specified, but out-of-band data is
queued inline for this socket. This error code is
returned only for TCP/IP native stack support.

Programming Considerations
v This function applies only to connected sockets.

v This function returns up to len bytes of data. If there are fewer than the
requested number of bytes available, the function returns the number currently
available.

v If data is not available for socket s, and s is in blocking mode, the recv function
blocks the caller until data arrives. If data is not available, and s is in nonblocking
mode, recv returns a −1 and sets sock_errno to SOCWOULDBLOCK.

v If a bind has not yet been issued to the socket, a bind is issued on behalf of the
application for a non-stream socket.

v For sockets using TCP/IP native stack support, the receive timeout value (the
SO_RCVTIMEO setsockopt option) determines how long to wait for data to be
received before the recv function times out.

v For TCP sockets using TCP/IP native stack support, the receive low-water mark
(the SO_RCVLOWAT setsockopt option) determines the minimum amount of
data that must be received before the recv function is completed. If the recv
function times out, any data that was received is returned to the application even
if the amount of data received is less than the receive low-water mark value.

v The recv function cannot be issued if an activate_on_receipt or
activate_on_receipt_with_length call is pending for the socket. These
operations are mutually exclusive.

Examples
The following example reads in 1 byte of out-of-band data.

recv

Socket Application Programming Interface Functions Reference 197

#include <socket.h>...
int rc;
int server_sock;
char oob_data;...
rc = recv(server_sock,oob_data,sizeof(oob_data),MSG_OOB);
if (rc > 0)
{

/* Process the oob data from the sender */...
}

Related Information
v “activate_on_receipt — Activate a Program after Data Received” on page 144

v “getsockopt — Return Socket Options” on page 176

v “ioctl — Perform Special Operations on Socket” on page 185

v “read — Read Data on a Socket” on page 193

v “recvfrom — Receive Data on Connected/Unconnected Socket” on page 199

v “select — Monitor Read, Write, and Exception Status” on page 205

v “send — Send Data on a Connected Socket” on page 206

v “sendto — Send Data on an Unconnected Socket” on page 212

v “setsockopt — Set Options Associated with a Socket” on page 216

v “socket — Create an Endpoint for Communication” on page 223

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “write — Write Data on a Connected Socket” on page 226.

recv

198 TPF V4R1 TCP/IP

recvfrom — Receive Data on Connected/Unconnected Socket
The recvfrom function receives data on a socket with descriptor s and stores it in a
buffer.

Format
#include <socket.h>
int recvfrom(int s,

char *buf,
int len,
int flags,
struct sockaddr *name,
int *namelen);

s The socket descriptor.

buf
Pointer to the buffer that receives the data.

len
Length, in bytes, of the buffer pointed to by the buf parameter. The maximum
number of bytes that can be received is 32 768.

flags
Must be set to 0 or one or more of the following flags. If you specify more than
one flag, use the logical OR operator (|) to separate them:

MSG_OOB
Reads any out-of-band data on the socket.

MSG_PEEK
Peeks at the data present on the socket; the data is returned but not
consumed so a later receive operation sees the same data.

name
This is a pointer to a socket address from which data is received.

namelen
Pointer to the size of name in bytes.

Normal Return
If successful, the function returns the length, in bytes, of the message or datagram.

If an end-of-file condition is received or the connection is closed, 0 is returned.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCFAULT Using buf and len would result in an attempt to
access a protected address space.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCWOULDBLOCK The s parameter is in nonblocking mode and no
data is available to read.

recvfrom

Socket Application Programming Interface Functions Reference 199

SOCNOBUFS There is not enough space available to process the
function call. This error code is returned only for
TCP/IP offload support.

SOCNOTCONN A stream socket was used to issue the recvfrom
function, and the socket was not connected.

EIBMIUCVERR An error occurred while the function call was sent to
the offload device. This error code is returned only
for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.

SOCTIMEDOUT The operation timed out. The socket is still
available. This error code is returned only for
TCP/IP native stack support.

SOCINVAL The value of the namelen parameter is not valid,
the MSG_OOB option was specified for a socket
that is not a stream socket, or the MSG_OOB
option was specified, but out-of-band data is
queued inline for this socket. This error code is
returned only for TCP/IP native stack support.

Programming Considerations
v The recvfrom function receives data on a socket with descriptor s and stores it in

the caller’s buffer.

v If the name is nonzero, the source address of the message is returned. The
namelen parameter is first initialized by the caller to the size of the buffer
associated with name; on return, it is modified to indicate the actual number of
bytes stored there.

v The recvfrom function returns the length of the incoming message or data. If a
message is too long to fit in the supplied buffer, the message is truncated. If a
message is not available at the socket with descriptor s, the recvfrom function
waits for a message to arrive and blocks the caller unless the socket is in
nonblocking mode. See “ioctl — Perform Special Operations on Socket” on
page 185 for a description of how to set nonblocking mode.

v If a bind has not yet been issued to the socket, a bind is issued on behalf of the
application for a non-stream socket.

v For sockets using TCP/IP native stack support, the receive timeout value (the
SO_RCVTIMEO setsockopt option) determines how long to wait for data to be
received before the recvfrom function times out.

v For TCP sockets using TCP/IP native stack support, the receive low-water mark
(the SO_RCVLOWAT setsockopt option) determines the minimum amount of
data that must be received before the recvfrom function is competed. If the

recvfrom

200 TPF V4R1 TCP/IP

recvfrom function times out, any data that was received is returned to the
application even if the amount of data received is less than the receive low-water
mark value.

v The recvfrom function cannot be issued if an activate_on_receipt or
activate_on_receipt_with_length call is pending for the socket. These
operations are mutually exclusive.

Examples
In the following example, the application issues a recvfrom to receive a message
but does not request the address of the source of the message.
int bytes_recv;
int server_sock;
char data_recv[256];...
bytes_recv = recvfrom(server_sock, data_recv, sizeof(data_recv), 0,

(struct sockaddr *) 0, (int *) 0);

Related Information
v “activate_on_receipt — Activate a Program after Data Received” on page 144

v “getsockopt — Return Socket Options” on page 176

v “ioctl — Perform Special Operations on Socket” on page 185

v “read — Read Data on a Socket” on page 193

v “recv — Receive Data on a Connected Socket” on page 196

v “select — Monitor Read, Write, and Exception Status” on page 205

v “send — Send Data on a Connected Socket” on page 206

v “sendto — Send Data on an Unconnected Socket” on page 212

v “setsockopt — Set Options Associated with a Socket” on page 216

v “socket — Create an Endpoint for Communication” on page 223

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “write — Write Data on a Connected Socket” on page 226.

recvfrom

Socket Application Programming Interface Functions Reference 201

recvmsg — Receive Message on Connected/Unconnected Socket
The recvmsg function receives messages on a socket with descriptor s and stores
them in an array of message headers.

Format
#include <socket.h>
ssize_t recvmsg(int s,

struct msghdr *msg,
int flags);

s The socket descriptor.

msg
A pointer to the message header that receives the messages.

flags
Must be set to 0 or one or more of the following flags. If you specify more than
one flag, use the logical OR operator (|) to separate them:

MSG_OOB
Reads any out-of-band data on the socket.

MSG_PEEK
Peeks at the data that is present on the socket; the data is returned but not
changed so a later receive operation sees the same data.

Note: Setting this parameter is supported for sockets in the AF_INET domain,
but not supported for sockets in the AF_IUCV domain.

Normal Return
If successful, the function returns the length of the data received or the entire
datagram (provided the datagram fits into the specified buffer).

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: The following error codes can be returned for either TCP/IP offload support
or TCP/IP native stack support.

Value Description

EINVAL msg_namelen is not the size of a valid address for
the specified address family.

EMSGSIZE Either the message is too big to be received as a
single datagram or the iovector count is greater
than or equal to UIO_MAXIOV, as defined in
socket.h.

ENOBUFFS Buffer space is not available to receive the
message.

ENOMEM There is no memory allocating buffer space to hold
all messages in the iovec array.

EWOULDBLOCK The s parameter is in nonblocking mode and data
is not available to read.

recvmsg

202 TPF V4R1 TCP/IP

SOCBADF The s parameter is not a valid socket descriptor.

SOCFAULT Using msg would result in an attempt to access
memory outside the address space of the caller..

SOCNOTSOCK The s parameter is not a valid socket descriptor.

Programming Considerations
v The recvmsg function receives messages on a socket with descriptor s and

stores them in an array of message headers as defined by the msghdr structure
in the socket.h header file.

v The recvmsg function applies to sockets whether they are in connected or
unconnected state.

v If the data is not available for socket s and s is in blocking mode, the recvmsg
function blocks the caller until data arrives; if s is in nonblocking mode, −1 is
returned and sock_errno is set to EWOULDBLOCK.

v Applications using stream sockets must place the recvmsg function in a loop until
all data has been received.

v For sockets using TCP/IP native stack support, the receive timeout value (the
SO_RCVTIMEO setsockopt option) determines how long to wait for data to be
received before the recvmsg function times out.

v For TCP sockets using TCP/IP native stack support, the receive low-water mark
(the SO_RCVLOWAT setsockopt option) determines the minimum amount of
data that must be received before the recvmsg function ends. If the recvmsg
function times out, any data that was received is returned to the application even
if the amount of data received is less than the receive low-water mark value.

v The recvmsg function cannot be issued if an activate_on_receipt call is pending
for the socket. These operations are mutually exclusive.

Examples
In the following example, the application issues a recvmsg function to receive
messages on a socket.
#include <socket.h>

struct msghdr msg;
int sock; /* UNIX socket handle */
rpc_socket_iovec_p_t iovp; /* array of bufs for rec’d data */
int iovlen; /* number of bufs */
rpc_addr_p_t addrp; /* address of sender */
int *ccp; /* returned number of bytes actually rec’d */...
msg.msg_iov = (struct iovec *) iovp;
msg.msg_iovlen = iovlen;
msg.msg_accrights = NULL;
msg.msg_name = (caddr_t) &(addrp)->sa:
msg.msg_namelen = (addrp)->len;
*(ccp) = recvmsg ((int) sock, (struct msghdr *) &msg, 0);

Related Information
v “connect — Request a Connection to a Remote Host” on page 157

v “getsockopt — Return Socket Options” on page 176

v “ioctl — Perform Special Operations on Socket” on page 185

v “read — Read Data on a Socket” on page 193

v “recv — Receive Data on a Connected Socket” on page 196

v “recvfrom — Receive Data on Connected/Unconnected Socket” on page 199

recvmsg

Socket Application Programming Interface Functions Reference 203

v “select — Monitor Read, Write, and Exception Status” on page 205

v “send — Send Data on a Connected Socket” on page 206

v “sendmsg — Send Message on a Socket” on page 210

v “sendto — Send Data on an Unconnected Socket” on page 212

v “setsockopt — Set Options Associated with a Socket” on page 216

v “socket — Create an Endpoint for Communication” on page 223

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “write — Write Data on a Connected Socket” on page 226

v “writev — Write Data on a Connected Socket” on page 229.

recvmsg

204 TPF V4R1 TCP/IP

select — Monitor Read, Write, and Exception Status
The select function monitors a list of file descriptors for readability, readiness for
writing, and exception pending conditions. The list can contain nonsocket file
descriptors, socket descriptors, or a combination of both. See the TPF C/C++
Language Support User’s Guide for details about the select function.

select

Socket Application Programming Interface Functions Reference 205

send — Send Data on a Connected Socket
The send function sends packets on the socket with descriptor s. The send function
applies to all connected sockets.

Format
#include <socket.h>
int send(int s,

char *msg,
int len
int flags);

s The socket descriptor.

msg
Pointer to the buffer containing the message to transmit.

len
Length of the message pointed to by the msg parameter.

When using TCP/IP offload support:

v The maximum send buffer size is 32 767 bytes when the SO_SNDBUF
option of the setsockopt function is used to increase the send buffer size.

v The default maximum size is 28 672 bytes.

v The maximum size for datagram sockets is 32 000 bytes when the
SO_SNDBUF option of the setsockopt function is used to increase the send
buffer size.

v The default maximum size for datagram sockets is 9216 bytes.

v The length cannot be larger than the maximum send buffer size for this
socket, which is defined by the SO_SNDBUF option of the setsockopt
function.

When using TCP/IP native stack support:

v The maximum send buffer size is 1 048 576 bytes.

v The default value of the SO_SNDBUF option is 32 767.

v For a TCP socket, the maximum length that you can specify is 1 GB.

v For a UDP or RAW socket, the maximum length that you can specify is the
smaller of the following values:
– 32 KB
– The send buffer size defined by the SO_SNDBUF option.

flags
Must be set to 0 or one or more of the following flags. If you specify more than
one flag, use the logical OR operator (|) to separate them:

MSG_OOB
Sends out-of-band data on sockets that support it.

MSG_DONTROUTE
The SO_DONTROUTE option is turned on for the duration of the operation.

Normal Return
No indication of failure to deliver is implicit in a send routine. However, if it
succeeds, the number of characters sent is returned.

send

206 TPF V4R1 TCP/IP

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCFAULT Using msg and len results in an attempt to access
a protected address space. This error code is
returned only for TCP/IP offload support.

SOCINVAL The value of the len parameter is not valid, the
MSG_OOB option was specified for a socket that is
not a stream socket, or the MSG_OOB option was
specified, but out-of-band data is queued inline for
this socket. This error code is returned only for
TCP/IP native stack support.

SOCNOBUFS Buffer space is not available to send the message.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCWOULDBLOCK The s parameter is in nonblocking mode and no
buffer space is available to hold the message to be
sent.

SOCMSGSIZE The message was too large to be sent. This error
code is returned only for TCP/IP native stack
support.

SOCNOTCONN The socket is not connected.

EIBMIUCVERR An error occurred while the message was sent to
the offload device. This error code is returned only
for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.

SOCTIMEDOUT The operation timed out. The socket is still
available. This error code is returned only for
TCP/IP native stack support.

send

Socket Application Programming Interface Functions Reference 207

Programming Considerations
v If buffer space is not available at the socket to hold the message to be sent, the

send function normally blocks, unless the socket is in nonblocking mode. See
“ioctl — Perform Special Operations on Socket” on page 185 for a description of
how to set nonblocking mode.

v Use the select function to determine when to send more data.

v For sockets using TCP/IP native stack support, the send timeout value (the
SO_SNDTIMEO setsockopt option) determines how long to wait for space to
become available in the send buffer before the send function times out.

v For sockets using TCP/IP native stack support:

– For TCP sockets, if the value you specify for the len parameter is less than or
equal to the send buffer size of the socket, the send process will be atomic;
that is, either all of the data will be sent or none of it will be sent. If all of the
data is sent, the return code is set to the value of the len parameter. If none
of the data is sent, the return code is set to −1.

– For TCP sockets, if the value you specify for the len parameter is greater than
the send buffer size of the socket, the TPF system will take as much data as
possible and return to the application indicating that only part of the data was
processed. The application must issue more send calls for the remaining data
and the application must serialize the send calls if the socket is being shared
by multiple ECBs. If the send call is successful, the return code is set to a
value from 1 to the value of the len parameter, which indicates how much
data was sent.

Examples
The following example sends 256 bytes. No flag is used.
#include <socket.h>...
int bytes_sent;
int server_sock;
char data_sent[256];...
bytes_sent = send(server_sock, data_sent, sizeof(data_sent), 0);

The following example sends 64 000 bytes. No flag is used.
#include <socket.h>...
#define MESSAGE_SIZE 64000

int bytes_sent;
int server_sock;
int send_left;
int send_rc;
char *message_ptr;...
message_ptr = malloc (MESSAGE_SIZE);
send_left = MESSAGE_SIZE;

while (send_left > 0)
{
send_rc = send(server_sock, message_ptr, send_left, 0);
if send_rc == -1

break;

send_left -= send_rc;
message_ptr += send_rc;
} /* End While Loop */

send

208 TPF V4R1 TCP/IP

Related Information
v “connect — Request a Connection to a Remote Host” on page 157

v “getsockopt — Return Socket Options” on page 176

v “ioctl — Perform Special Operations on Socket” on page 185

v “read — Read Data on a Socket” on page 193

v “recv — Receive Data on a Connected Socket” on page 196

v “recvfrom — Receive Data on Connected/Unconnected Socket” on page 199

v “select — Monitor Read, Write, and Exception Status” on page 205

v “sendto — Send Data on an Unconnected Socket” on page 212

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223

v “write — Write Data on a Connected Socket” on page 226.

send

Socket Application Programming Interface Functions Reference 209

sendmsg — Send Message on a Socket
The sendmsg function sends messages on a socket with descriptor s passed in an
array of message headers.

Format
#include <socket.h>
int sendmsg(int s,

struct msghdr *msg,
int flags);

s The socket descriptor.

msg
A pointer to the message header that receives the messages.

flags
Must be set to 0 or one or more of the following flags. If you specify more than
one flag, use the logical OR operator (|) to separate them:

MSG_OOB
Reads any out-of-band data on the socket.

MSG_DONTROUTE
The SO_DONTROUTE option is turned on for the duration of the operation.
This is mainly used by diagnostic or routing programs.

Note: Setting this parameter is supported for sockets in the AF_INET domain,
but not supported for sockets in the AF_IUCV domain.

Normal Return
If successful, the function returns the length of the data sent.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: The following error codes can be returned for either TCP/IP offload support
or TCP/IP native stack support.

Value Description

EINVAL msg_namelen is not the size of a valid address for
the specified address family.

EMSGSIZE Either the message is too big to be sent as a single
datagram or the iovector count is greater than or
equal to UIO_MAXIOV as defined in socket.h.

ENOBUFFS Buffer space is not available to send the message.

ENOMEM There is no memory allocating buffer space to hold
all messages in the iovec array.

EWOULDBLOCK The s parameter is in nonblocking mode and data
cannot be sent.

SOCBADF The s parameter is not a valid socket descriptor.

SOCFAULT Using msg would result in an attempt to access
memory the address space of the caller.

sendmsg

210 TPF V4R1 TCP/IP

SOCNOTSOCK The s parameter is not a valid socket descriptor.

Programming Considerations
v The sendmsg function sends messages on a socket with descriptor s passed in

an array of message headers as defined by the msghdr structure in the socket.h
header file.

v The sendmsg function applies to sockets whether they are in connected or
unconnected state.

v If there is not enough available buffer space to hold the socket data to be sent
and socket s is in blocking mode, the sendmsg function blocks the caller until data
arrives; if s is in nonblocking mode, −1 is returned and sock_errno is set to
EWOULDBLOCK.

v Applications using stream sockets must place the sendmsg function in a loop until
all data has been received.

Examples
In the following example, the application issues a sendmsg function to send
messages on a socket.
#include <socket.h>
struct msghdr msg;
int sock; /* UNIX socket handle */
rpc_socket_iovec_p_t iovp; /* array of bufs of data to send */
int iovlen; /* number of bufs */
rpc_addr_p_t addrp; /* address of sender */
int *ccp; /* returned number of bytes actually sent */...
msg.msg_name = (caddr_t) &(addrp)->sa:
msg.msg_namelen = (addrp)->len;
msg.msg_iov = (struct iovec *) iovp;
msg.msg_iovlen = iovlen;
msg.msg_accrights = NULL;
msg.msg_accrightslen = 0;
*(ccp) = sendmsg ((int) sock, (struct msghdr *) &msg, 0);

Related Information
v “connect — Request a Connection to a Remote Host” on page 157

v “getsockopt — Return Socket Options” on page 176

v “ioctl — Perform Special Operations on Socket” on page 185

v “read — Read Data on a Socket” on page 193

v “recv — Receive Data on a Connected Socket” on page 196

v “recvfrom — Receive Data on Connected/Unconnected Socket” on page 199

v “recvmsg — Receive Message on Connected/Unconnected Socket” on page 202

v “select — Monitor Read, Write, and Exception Status” on page 205

v “send — Send Data on a Connected Socket” on page 206

v “sendto — Send Data on an Unconnected Socket” on page 212

v “setsockopt — Set Options Associated with a Socket” on page 216

v “socket — Create an Endpoint for Communication” on page 223

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “write — Write Data on a Connected Socket” on page 226

v “writev — Write Data on a Connected Socket” on page 229.

sendmsg

Socket Application Programming Interface Functions Reference 211

sendto — Send Data on an Unconnected Socket
The sendto function sends data on unconnected sockets.

Format
#include <socket.h>
int sendto(int s,

char *msg,
int len,
int flags;
struct sockaddr *to,
int tolen);

s The socket descriptor.

msg
Pointer to the buffer containing the message to transmit.

len
Length of the message pointed to by the msg parameter.

When using TCP/IP offload support:

v The maximum send buffer size is 32 767 bytes when the SO_SNDBUF
option of the setsockopt function is used to increase the send buffer size.

v The default maximum size is 28 672 bytes.

v The maximum size for datagram sockets is 32 000 bytes when the
SO_SNDBUF option of the setsockopt function is used to increase the send
buffer size.

v The default maximum size for datagram sockets is 9216 bytes.

v The length cannot be larger than the maximum send buffer size for this
socket, which is defined by the SO_SNDBUF option of the setsockopt
function.

When using TCP/IP native stack support:

v The maximum send buffer size is 1 048 576 bytes.

v The default value of the SO_SNDBUF option is 32 767.

v For a TCP socket, the maximum length that you can specify is 1 GB.

v For a UDP or RAW socket, the maximum length that you can specify is the
smaller of the following values:
– 32 KB
– The send buffer size defined by the SO_SNDBUF option.

flags
Set to 0 the following value:

MSG_DONTROUTE
The SO_DONTROUTE option is turned on for the duration of the operation.
This is usually used only by diagnostic or routing programs.

to Address of the target.

tolen
Size of the address pointed to by the to parameter.

Normal Return
If it succeeds, sendto returns the number of characters sent.

sendto

212 TPF V4R1 TCP/IP

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors. The return value of this function when used
with datagram sockets does not imply failure to deliver.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCDESTADDRREQ Destination address is required.

SOCFAULT Using msg and len results in an attempt to copy
the address into a protected address space. This
error code is returned only for TCP/IP offload
support.

SOCINVAL The value of the tolen parameter is not the size of
a valid address for the specified address family.

SOCMSGSIZE The message was too large to be sent. This error
code is returned only for TCP/IP native stack
support.

SOCNOBUFS There is no buffer space available to send the
message.

SOCNOTCONN A stream socket was used to issue the sendto
function, and the socket was not connected.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCWOULDBLOCK The s parameter is in nonblocking mode and no
buffer space is available to hold the message to be
sent.

EIBMIUCVERR An error occurred while the message was sent to
the offload device. This error code is returned only
for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.

SOCTIMEDOUT The operation timed out. The socket is still
available. This error code is returned only for
TCP/IP native stack support.

Programming Considerations
v The sendto function applies to any unconnected socket.

sendto

Socket Application Programming Interface Functions Reference 213

v Use the send or write function instead of the sendto function for connected
sockets.

v If buffer space is not available at the socket to hold the message to be sent, the
sendto function normally blocks, unless the socket is in nonblocking mode. See
“ioctl — Perform Special Operations on Socket” on page 185 for a description of
how to set nonblocking mode. If the socket is in nonblocking mode, sendto
returns a −1 and sets sock_errno to SOCWOULDBLOCK.

v For datagram sockets, this function sends the entire datagram, providing the
datagram fits into the TCP/IP buffers.

v If a bind has not yet been issued to the socket, a bind is issued on behalf of the
application for a non-stream socket.

v For sockets using TCP/IP native stack support, the send timeout value (the
SO_SNDTIMEO setsockopt option) determines how long to wait for space to
become available in the send buffer before the sendto function times out.

v For RAW sockets using TCP/IP native stack support, applications are required to
send complete messages. Sending a message in fragments on a RAW socket is
not supported.

v For sockets using TCP/IP native stack support:

– For TCP sockets, if the value you specify for the len parameter is less than or
equal to the send buffer size of the socket, the send process will be atomic;
that is, either all of the data will be sent or none of it will be sent. If all of the
data is sent, the return code is set to the value of the len parameter. If none
of the data is sent, the return code is set to −1.

– For TCP sockets, if the value you specify for the len parameter is greater than
the send buffer size of the socket, the TPF system will take as much data as
possible and return to the application indicating that only part of the data was
processed. The application must issue more send calls for the remaining data
and the application must serialize the send calls if the socket is being shared
by multiple ECBs. If the send call is successful, the return code is set to a
value from 1 to the value of the len parameter, which indicates how much
data was sent.

Examples
In the following example, 100 bytes are sent to an application with IP address
129.5.24.1 and port number 5001.
#include <socket.h>...
int bytes_sent;
int server_sock;
char send_msg[100];
struct sockaddr_in to_addr;...
to_addr.sin_family = AF_INET;
to_addr.sin_port = 5001;
to_addr.sin_addr.s_addr = inet_addr("129.5.24.1");
bytes_sent = sendto(server_sock, send_msg, sizeof(send_msg), 0,

(struct sockaddr *)&to_addr, sizeof(to_addr));...

Related Information
v “read — Read Data on a Socket” on page 193

v “recv — Receive Data on a Connected Socket” on page 196

v “recvfrom — Receive Data on Connected/Unconnected Socket” on page 199

v “send — Send Data on a Connected Socket” on page 206

sendto

214 TPF V4R1 TCP/IP

v “select — Monitor Read, Write, and Exception Status” on page 205

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223

v “write — Write Data on a Connected Socket” on page 226.

sendto

Socket Application Programming Interface Functions Reference 215

setsockopt — Set Options Associated with a Socket
The setsockopt function sets options associated with a socket.

Format
#include <socket.h>
int setsockopt(int s,

int level,
int optname,
char *optval,
int optlen);

s The socket descriptor.

level
Level for which the option is set. Use the value SOL_SOCKET.

optname
Name of a specified socket option. Use one of the following values:

SO_BROADCAST
Toggles the ability to broadcast messages. Enabling this option lets the
application send broadcast messages over s if the interface specified in the
destination supports broadcasting of packets. This option has no meaning
for stream sockets.

SO_KEEPALIVE
Toggles the ability to send probes on idle sockets to verify that the socket is
still active. This option has meaning only for stream sockets. The
KEEPALIVE option is valid only for TCP/IP native stack support when the
socket sweeper is active.

SO_LINGER
Waits to complete the close function if data is present. When this option is
enabled and there is unsent data present when the close function is called,
the calling application is blocked during the close function until the data is
transmitted or the connection has timed out. The close function returns
without blocking the caller. This option has meaning only for stream
sockets.

SO_OOBINLINE
Toggles reception of out-of-band data. Enabling this option causes
out-of-band data to be placed in the normal data input queue as it is
received, making it available to recvfrom without having to specify the
MSG_OOB flag in those calls. Disabling this option causes out-of-band data
to be placed in the priority data input queue as it is received, making it
available to recvfrom only by specifying the MSG_OOB flag in these calls.
This option has meaning only for stream sockets.

SO_RCVBUF
Allows you to set the size of the receive buffer to a value to suit your
application needs. The minimum size is 512 bytes. The maximum size is
1 048 576 bytes. This option has meaning only for sockets that are using
TCP/IP native stack support.

SO_RCVLOWAT
Allows you to set the receive buffer low-water mark, which is the minimum
amount of data that must be received before a read, recv, recvfrom,
activate_on_receipt, or activate_on_receipt_with_length function will be
completed. This option has meaning only for TCP sockets that are using
TCP/IP native stack support.

setsockopt

216 TPF V4R1 TCP/IP

SO_RCVTIMEO
Defines the receive timeout value, which is how long the system will wait for
a read, recv, recvfrom, activate_on_receipt,
activate_on_receipt_with_length, accept, activate_on_accept, or connect
function to be completed before timing out the operation. A returned value
of 0 indicates the system will not time out. The maximum value is 32 767
seconds. This option has meaning only for sockets that are using TCP/IP
native stack support.

SO_REUSEADDR
Toggles local address reuse. Enabling this option lets local addresses that
are already in use to be bound. This changes the normal algorithm used in
the bind function. At connect time, the system checks that no local address
and port have the same remote address and port and returns error code
SOCADDRINUSE if the association already exists.

SO_DONTROUTE
Toggles the routine bypass for outgoing messages. When you enable this
option, outgoing messages bypass the standard routing algorithm and are
directed to the appropriate network interface according to the network
portion of the destination address. When enabled, this option lets you send
packets only to directly connected networks (networks for which the host
has an interface). This option has no meaning for stream sockets.

SO_SNDBUF
Allows you to set the size of the send buffer to a value to suit your
application needs. For sockets using TCP/IP native stack support, the
minimum size is 512 bytes and the maximum size is 1 048 576 bytes.

SO_SNDLOWAT
Allows you to set the send buffer low-water mark, which is the minimum
amount of space that must be available in the send buffer to allow a select
for write function to be processed. This option has meaning only for sockets
that are using TCP/IP native stack support.

SO_SNDTIMEO
Defines the send timeout value, which is how long the system will wait for a
send, sendto, write, or writev function to be completed before timing out
the operation. A returned value of 0 indicates the system will not time out.
The maximum value is 32 767 seconds. This option has meaning only for
sockets that are using TCP/IP native stack support.

optval
Pointer to option data. The optval and optlen parameters are used to pass
data used by a particular command. The optval parameter points to a buffer
containing the data needed by the command. The optval parameter is optional
and can be set to the NULL pointer if data is not needed by the command.

optlen
Length of the option data. The optlen parameter must be set to the size of the
data pointed to by optval.

Normal Return
Return code 0 indicates that the function was successful.

setsockopt

Socket Application Programming Interface Functions Reference 217

|
|
|
|
|
|
|

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCADDRINUSE The address is already in use. This error code is
returned only for TCP/IP offload support.

SOCFAULT Using the optval and optlen parameters results in
an attempt to access a protected address space.
This error code is returned only for TCP/IP offload
support.

SOCNOPROTOOPT The optname parameter is not recognized, or the
level parameter is not valid.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCINVAL The value of the optlen parameter is not a valid
size.

SOCNOBUFS There is not enough buffer space to satisfy the
setsockopt function. This error code is returned
only for TCP/IP offload support.

SOCIPNOTFOUND The TPF system could not locate the header for the
IP table (IPT). This error code is returned only for
TCP/IP offload support.

EIBMIUCVERR An error occurred while the message was sent to
the offload device. This error code is returned only
for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.
This error code is returned only for TCP/IP offload
support.

OFFLOADTIMEOUT The offload device did not respond to the function
call in the requested time. This error code is
returned only for TCP/IP offload support.

Programming Considerations
v The setsockopt function sets options associated with a socket.

setsockopt

218 TPF V4R1 TCP/IP

v When specifying socket options, you must specify the name of the option and the
level at which the option resides.

v For TCP/IP native stack support, the length passed must be a minimum of 4
bytes.

v When you use socket level options other than SO_LINGER, optval points to an
integer and optlen is set to the size of the integer. When the integer is nonzero,
the option is enabled. When the integer is 0, the option is disabled. The
SO_LINGER option expects optval to point to a linger structure. This structure
is defined in the following example:
struct linger

int l_onoff; /* option on/off */
int l_linger; /* linger time */...

v The l_onoff is set to 0 if the SO_LINGER option is being disabled. A nonzero
value enables the option. The l_linger field specifies the amount of time to wait
before completing a close when there is still data to be sent. The units of l_linger
are seconds.

Examples
In the following example, out-of-band data is set in the normal input queue.
#include <socket.h>...
int rc;
int server_sock;
int optval;...
optval = 1;
rc = setsockopt(server_sock, SOL_SOCKET, SO_OOBINLINE,

(char *)&optval, sizeof(int));...

Related Information
v “getsockopt — Return Socket Options” on page 176

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223.

setsockopt

Socket Application Programming Interface Functions Reference 219

shutdown — Shut Down All or Part of a Duplex Connection
The shutdown function shuts down all or part of a duplex connection.

Format
#include <socket.h>
int shutdown(int s,

int how);

s The socket descriptor.

how
Condition of the shutdown. Use one of the following values:

0 No more data can be received on socket s.

1 No more data can be sent on socket s.

2 No more data can be sent or received on socket s.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCINVAL The how parameter was not set to a valid value.

SOCNOTCONN The socket was not connected.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

EIBMIUCVERR Error occurred when the function call was sent to
the offload device. This error code is returned only
for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.
This error code is returned only for TCP/IP offload
support.

OFFLOADTIMEOUT The offload device did not respond to the function

shutdown

220 TPF V4R1 TCP/IP

call in the requested time period. This error code is
returned only for TCP/IP offload support.

Programming Considerations
None.

Examples
In the following example, the read and write half of a duplex connection are shut
down.
#include <socket.h>...
int rc;
int server_sock;...
rc = shutdown(s, 2); /*shutdown both ends */

Related Information
v “accept — Accept a Connection Request” on page 138

v “close — Shut Down a Socket” on page 155

v “connect — Request a Connection to a Remote Host” on page 157

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223.

shutdown

Socket Application Programming Interface Functions Reference 221

sock_errno — Return the Error Code Set by a Socket Call
The sock_errno function returns the error code set by a socket call.

Format
#include <socket.h>
int sock_errno(void);

Normal Return
A nonnegative error code is returned.

Error Return
None.

Programming Considerations
None.

Examples
The following example prints out the socket error number if an error occurs in the
socket function.
#include <socket.h>...
int rc;
int server_sock;...
server_sock = socket(AF_INET, SOCK_STREAM, 0);
if (server_sock == -1)
{

printf("Error in socket - %d\n",sock_errno());
exit(0);

}

Related Information
None.

sock_errno

222 TPF V4R1 TCP/IP

socket — Create an Endpoint for Communication
The socket function creates an endpoint for communication and returns a socket
descriptor representing the endpoint. Different types of sockets provide different
communication services.

Format
#include <socket.h>
int socket(int domain,

int type,
int protocol);

domain
The address domain requested. Use the value AF_INET. The domain
parameter specifies a domain in which communication is to take place.

type
Specifies the type of socket created. The type is analogous with the semantics
of the communication requested. Use one of the following values:

SOCK_STREAM
Provides sequenced, duplex byte streams that are reliable and
connection-oriented. They support a mechanism for out-of-band data.

SOCK_DGRAM
Provides datagrams, which are connectionless messages of a fixed
maximum length whose reliability is not guaranteed. Datagrams can be
corrupted, received out of order, lost, or delivered multiple times.

SOCK_RAW
Provides the interface to internal protocols (such as IP).

protocol
The protocol requested. Use one of the following values:

0 Default protocol based on the domain and type.

IPPROTO_IP
Specifies the Internet Protocol.

IPPROTO_ICMP
Specifies the Internet Control Message protocol.

IPPROTO_TCP
Specifies the Transmission Control Protocol (TCP). This is the default for a
type of SOCK_STREAM.

IPPROTO_UDP
Specifies the User Datagram Protocol (UDP). This is the default for a type
of SOCK_DGRAM.

IPPROTO_RAW
Specifies a raw IP packet.

The protocol parameter specifies a particular protocol to be used with the
socket. In most cases, a single protocol exists to support a particular type of
socket in a particular addressing family (not true with raw sockets). If the
protocol field is set to 0, the system selects the default protocol number for the
domain and socket type requested. Currently, protocol defaults are TCP for
stream sockets and UDP for datagram sockets. There is no default for raw
sockets.

socket

Socket Application Programming Interface Functions Reference 223

Normal Return
A nonnegative socket descriptor indicates success.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCNOBUFS There is not enough space to create a new socket
because the socket block table is full. This error
code is returned only for TCP/IP native stack
support.

SOCPROTONOSUPPORT The protocol is not supported in this domain or this
protocol is not supported for this socket type.

SOCPROTOTYPE The protocol is the wrong type for the socket. This
error code is returned only for TCP/IP offload
support.

SOCAFNOSUPPORT The address family is not supported.

SOCSOCKTNOSUPPORT The socket type is not supported.

E1052STATE The socket was not created because the system
was in or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

Programming Considerations
When both TCP/IP native stack support and TCP/IP offload support are defined in
the TPF system, the select TCP/IP support (USOK) user exit is called to select the
appropriate TCP/IP support to use when a socket function is called. See TPF
System Installation Support Reference for information about the select TCP/IP
support user exit.

Examples
In the following example, a stream socket is created.
#include <socket.h>...
int server_sock;...
server_sock = socket(AF_INET, SOCK_STREAM, 0);

Related Information
v “accept — Accept a Connection Request” on page 138

v “bind — Bind a Local Name to the Socket” on page 152

v “close — Shut Down a Socket” on page 155

v “connect — Request a Connection to a Remote Host” on page 157

socket

224 TPF V4R1 TCP/IP

v “getsockname — Return the Name of the Local Socket” on page 174

v “getsockopt — Return Socket Options” on page 176

v “ioctl — Perform Special Operations on Socket” on page 185

v “recvfrom — Receive Data on Connected/Unconnected Socket” on page 199

v “select — Monitor Read, Write, and Exception Status” on page 205

v “send — Send Data on a Connected Socket” on page 206

v “sendto — Send Data on an Unconnected Socket” on page 212

v “shutdown — Shut Down All or Part of a Duplex Connection” on page 220

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “write — Write Data on a Connected Socket” on page 226

v “writev — Write Data on a Connected Socket” on page 229.

socket

Socket Application Programming Interface Functions Reference 225

write — Write Data on a Connected Socket

Note
This description applies only to sockets. See TPF C/C++ Language Support
User’s Guide for more information about the write function for files.

The write function writes data on a socket with descriptor s. The write function
applies only to connected sockets.

Format
#include <socket.h>
int write(int s,

char *buf,
int len);

s The socket descriptor.

buf
Pointer to the buffer holding the data to be written.

len
Length of the message pointed to by the msg parameter.

When using TCP/IP offload support:

v The maximum send buffer size is 32 767 bytes when the SO_SNDBUF
option of the setsockopt function is used to increase the send buffer size.

v The default maximum size is 28 672 bytes.

v The maximum size for datagram sockets is 32 000 bytes when the
SO_SNDBUF option of the setsockopt function is used to increase the send
buffer size.

v The default maximum size for datagram sockets is 9216 bytes.

v The length cannot be larger than the maximum send buffer size for this
socket, which is defined by the SO_SNDBUF option of the setsockopt
function.

When using TCP/IP native stack support:

v The maximum send buffer size is 1 048 576 bytes.

v The default value of the SO_SNDBUF option is 32 767.

v For a TCP socket, the maximum length that you can specify is 1 GB.

v For a UDP or RAW socket, the maximum length that you can specify is the
smaller of the following values:
– 32 KB
– The send buffer size defined by the SO_SNDBUF option.

Normal Return
If it succeeds, the function returns the number of bytes.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

write

226 TPF V4R1 TCP/IP

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCFAULT Using buf and len results in an attempt to access a
protected address space. This error code is
returned only for TCP/IP offload support.

SOCNOBUFS Buffer space is not available to send the message.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCINVAL An invalid length was specified.

SOCWOULDBLOCK The s parameter is in nonblocking mode and no
buffer space is available to hold the message to be
sent.

SOCNOTCONN The socket is not connected.

EIBMIUCVERR An error occurred when the function call was sent
to the offload device. This error code is returned
only for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT All offload devices associated with the socket
descriptor have been disconnected. The socket is
closed. This error code is returned only for TCP/IP
offload support.

EINACTWS An offload device associated with the socket
descriptor has been disconnected. The socket is
still available. This error code is returned only for
TCP/IP offload support.

ESYSTEMERROR A system error has occurred and closed the socket.

SOCMSGSIZE The message was too large to be sent. This error
code is returned only for TCP/IP native stack
support.

SOCTIMEDOUT The operation timed out. The socket is still
available. This error code is returned only for
TCP/IP native stack support.

Programming Considerations
v This function writes up to len bytes of data.

v If there is no available buffer space to hold the socket data to be transmitted, and
the socket is in blocking mode, write blocks the caller until additional buffer
space becomes available. If the socket is in nonblocking mode, write returns a
−1 and sets sock_errno to SOCWOULDBLOCK. See “ioctl — Perform Special
Operations on Socket” on page 185 for a description of how to set the
nonblocking mode.

v For sockets using TCP/IP native stack support, the send timeout value (the
SO_SNDTIMEO setsockopt option) determines how long to wait for space to
become available in the send buffer before the write function times out.

v For sockets using TCP/IP native stack support:

write

Socket Application Programming Interface Functions Reference 227

– For TCP sockets, if the value you specify for the len parameter is less than or
equal to the send buffer size of the socket, the send process will be atomic;
that is, either all of the data will be sent or none of it will be sent. If all of the
data is sent, the return code is set to the value of the len parameter. If none
of the data is sent, the return code is set to −1.

– For TCP sockets, if the value you specify for the len parameter is greater than
the send buffer size of the socket, the TPF system will take as much data as
possible and return to the application indicating that only part of the data was
processed. The application must issue more send calls for the remaining data
and the application must serialize the send calls if the socket is being shared
by multiple ECBs. If the send call is successful, the return code is set to a
value from 1 to the value of the len parameter, which indicates how much
data was sent.

Examples
In the following example, a 100-byte message is written to socket server_sock.
#include <socket.h>...
int server_sock;
char send_msg[100];...
if (write(server_sock,send_msg,sizeof(send_msg)) < 0)

printf("error in writing on stream socket\n");

Related Information
v “connect — Request a Connection to a Remote Host” on page 157

v “getsockopt — Return Socket Options” on page 176

v “ioctl — Perform Special Operations on Socket” on page 185

v “recvfrom — Receive Data on Connected/Unconnected Socket” on page 199

v “select — Monitor Read, Write, and Exception Status” on page 205

v “send — Send Data on a Connected Socket” on page 206

v “sendto — Send Data on an Unconnected Socket” on page 212

v “setsockopt — Set Options Associated with a Socket” on page 216

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223.

write

228 TPF V4R1 TCP/IP

writev — Write Data on a Connected Socket
The writev function writes data on a socket with descriptor s.

Format
#include <socket.h>
int writev(int s,

struct iovec *iov,
int iovcnt);

s The socket descriptor.

iov
The pointer to an array of iovec buffers.

iovcnt
Number of buffers pointed to by the iov parameter.

Normal Return
If it succeeds, the function returns the number of bytes written from the buffer.

Error Return
A return code equal to −1 indicates an error. You can get the specific error code by
calling sock_errno. See Appendix C, “Socket Error Return Codes” on page 365 for
more information about socket errors.

Note: Unless otherwise stated in the description, the following error codes can be
returned for either TCP/IP offload support or TCP/IP native stack support.

Value Description

SOCFAULT Using iov and iovcnt results in an attempt to
access memory outside the caller’s address space.
This error code is returned only for TCP/IP offload
support.

SOCNOBUFS Buffer space is not available to send the message.

SOCNOTSOCK The s parameter is not a valid socket descriptor.

SOCWOULDBLOCK The s parameter is in nonblocking mode and no
buffer space is available to hold the message to be
sent.

SOCINVAL The iovcnt parameter was not valid or one of the
fields in the iov array was not valid.

SOCMSGSIZE The message was too large to be sent. This error
code is returned only for TCP/IP native stack
support.

SOCNOTCONN The socket is not connected.

EIBMIUCVERR An error occurred when the function call was sent
to the offload device. This error code is returned
only for TCP/IP offload support.

E1052STATE The socket was closed because the system was in
or cycling down to 1052 state.

EINACT An offload device associated with the socket
descriptor has been disconnected. The socket is

writev

Socket Application Programming Interface Functions Reference 229

closed except in the following cases where the API
function call must be reissued to determine if the
socket is available:

v “accept — Accept a Connection Request” on
page 138

v “recvfrom — Receive Data on
Connected/Unconnected Socket” on page 199

v “socket — Create an Endpoint for
Communication” on page 223

v “activate_on_receipt — Activate a Program after
Data Received” on page 144.

This error code is returned only for TCP/IP offload
support.

ESYSTEMERROR A system error has occurred and closed the socket.

SOCTIMEDOUT The operation timed out. The socket is still
available. This error code is returned only for
TCP/IP native stack support.

Programming Considerations
v The data is gathered from the buffers specified by iov[0]..iov[iovcnt−1].

The iovec structure is called by the writev function.
struct iovec
{

char *iov_base;
int iov_len;

}

The iovec structure contains the following fields:

Element Description

iov_base Pointer to the buffer

iov_len Length of the buffer.

The writev function applies only to connected sockets.

v This function writes iov_len bytes of data. If there is not enough available buffer
space to hold the socket data to be transmitted, and the socket is in blocking
mode, writev blocks the caller until additional buffer space becomes available. If
the socket is in nonblocking mode, writev returns a −1 and sets sock_errno to
SOCWOULDBLOCK. See “ioctl — Perform Special Operations on Socket” on
page 185 for a description of how to set nonblocking mode.

v For sockets using TCP/IP native stack support, the send timeout value (the
SO_SNDTIMEO setsockopt option) determines how long to wait for space to
become available in the send buffer before the writev function times out.

Examples
The following example sends data in two buffers of 10 bytes each.
#include <socket.h>...
int bytes_sent;
int server_sock;
int wv_count;
char msg1[10] = "aaaaa";

writev

230 TPF V4R1 TCP/IP

char msg2[10] = "bbbbb";
struct iovec wv[2];...
wv[0].iov_base = msg1;
wv[1].iov_base = msg2;
wv[0].iov_len = sizeof(msg1);
wv[1].iov_len = sizeof(msg2);
wv_count = 2;
bytes_sent = writev(server_sock,wv,wv_count);

Related Information
v “connect — Request a Connection to a Remote Host” on page 157

v “getsockopt — Return Socket Options” on page 176

v “ioctl — Perform Special Operations on Socket” on page 185

v “read — Read Data on a Socket” on page 193

v “recv — Receive Data on a Connected Socket” on page 196

v “recvfrom — Receive Data on Connected/Unconnected Socket” on page 199

v “select — Monitor Read, Write, and Exception Status” on page 205

v “send — Send Data on a Connected Socket” on page 206

v “sendto — Send Data on an Unconnected Socket” on page 212

v “setsockopt — Set Options Associated with a Socket” on page 216

v “sock_errno — Return the Error Code Set by a Socket Call” on page 222

v “socket — Create an Endpoint for Communication” on page 223

v “write — Write Data on a Connected Socket” on page 226.

writev

Socket Application Programming Interface Functions Reference 231

writev

232 TPF V4R1 TCP/IP

Part 5. Operator Procedures for Internet Server Applications

Operator Procedures for the Internet Daemon 235
Internet Daemon . 235

Internet Daemon Configuration File 235
Adding an Internet Server Application 235
Updating the IDCF . 235

Internet Daemon Control . 236
Starting the Internet Daemon 237
Stopping the Internet Daemon 237

Internet Server Application . 237
Internet Server Application Control 238

Trivial File Transfer Protocol (TFTP) Server 239
Adding the Trivial File Transfer Protocol (TFTP) Server. 239
Directives for the TFTP Configuration File 240
Creating the TFTP Configuration File 241
Transferring and Maintaining the TFTP Configuration File 241

File Transfer Protocol (FTP) Server 243
FTP Server LOG File . 243
Adding the File Transfer Protocol (FTP) Server 243

Syslog Daemon . 245
Files . 245
Syslog Daemon Configuration File 246

Modifying the Syslog Daemon Configuration File 249
Adding the Syslog Daemon Server 249
Operating the Syslog Daemon 250

Starting the Syslog Daemon 250
Stopping the Syslog Daemon 250
Offloading Log Files . 251

Diagnosing Syslog Daemon Configuration Problems. 251
Application Considerations . 251

TPF Internet Mail Server Support 253
TPF Internet Mail Server Overview 253

Mail Database Layout . 255
Recoup Considerations for the Mail Database 258
TPF Internet Mail Server Configuration Files 259

SMTP Configuration File Parameters 259
IMAP/POP Configuration File Parameters 262
TPF Configuration File Parameters 263
Access List Configuration Parameters 264

TPF Internet Mail Server Administrator or Operator Tasks. 265
Configuring the TPF System for TPF Internet Mail Server Support 265
Adding a Domain to an Existing TPF Internet Mail Server Configuration 267
Adding New Users to an Existing TPF Internet Mail Server Configuration 268
Controlling the TPF Internet Mail Servers 268
Managing Client Mailboxes 269

TPF Internet Mail Server Client Tasks 269

© Copyright IBM Corp. 1996, 2002 233

234 TPF V4R1 TCP/IP

Operator Procedures for the Internet Daemon

This chapter describes considerations and procedures for the Internet daemon and
Internet server applications.

Internet Daemon
The behavior of the Internet daemon is controlled by the Internet daemon
configuration file (IDCF). Use the ZINET commands to update the IDCF and control
the Internet daemon process. See TPF Operations for more information about the
ZINET commands.

Internet Daemon Configuration File
The IDCF contains data needed to start and control an Internet server application.
The IDCF is subsystem unique and processor shared. It is stored in #IDCF1 fixed
file records using 128 records.

There is an entry in the IDCF for every Internet server application that can be
started by the Internet daemon. The entries are uniquely identified by the name of
the Internet server application and processor ID (CPU ID). Duplicate entries (the
same name and processor ID) are not allowed.

Adding an Internet Server Application
Use the ZINET ADD command to add an Internet server application to the IDCF.
Some of the parameters for this command are discussed in “Internet Server
Application” on page 237.

After adding an Internet server application, enter the ZINET START command so
that the Internet daemon starts an Internet daemon listener to listen on the specified
port for your Internet server application. If you specified that listening is automatic
for your Internet server application, you do not have to enter the ZINET START
command for the Internet server application.

For every Internet server application that you add to the IDCF, ensure that the
program specified by the PGM parameter in the ZINET ADD command is loaded.

For the WAIT, NOWAIT, and AOR process models, if you want to run the same
Internet server application on multiple subsystems, you must do one of the
following:

v Activate one Internet server application at a time

v Use a different Internet Protocol (IP) address or port number for each subsystem.

TCP/IP allows only one socket to be bound to a specific port number for an IP
address. If you define an Internet server application with IP=ANY and you want to
activate the application on multiple subsystems concurrently, you must define the
Internet server application with a different port number in each subsystem.

See TPF Operations for more information about the ZINET ADD and ZINET START
commands and for restrictions on their use.

Updating the IDCF
Use the ZINET ALTER and ZINET DELETE commands to modify data pertaining to
an Internet server application already in the IDCF. After the modifications are done,
stop the Internet daemon (ZINET STOP command) and then restart the Internet
daemon (ZINET START command) for the changes to take effect.

© Copyright IBM Corp. 1996, 2002 235

See TPF Operations for more information about the ZINET ALTER, ZINET DELETE,
ZINET START, and ZINET STOP commands and for restrictions on their use.

Internet Daemon Control
When the Internet daemon is started, a long-running process called the Internet
daemon monitor is created. The primary functions of the Internet daemon monitor
are to:

v Start Internet daemon listeners as processes for Internet server applications

v Restart an Internet daemon listener if an error causes the listener process to
end.

Note: The Internet daemon monitor attempts to restart an Internet daemon
listener a maximum of five times.

v Recycle all Internet daemon listener processes if the system activation number
changes to allow an online program load (OLDR functions) to occur. Recycling
includes stopping and then restarting listener processes without disrupting
network traffic.

The Internet daemon listeners monitor Internet server applications, and create and
monitor sockets for Internet server applications based on the process model defined
for the Internet server application. For each Internet server application defined with
the WAIT, NOWAIT, or AOR process model, the Internet daemon listener creates
and monitors one or more sockets. For each Internet server application defined with
the WAIT, NOWAIT, or DAEMON process model, the Internet daemon listener
monitors the Internet server application. For each Internet server application defined
with the NOLISTEN or RPC process model, the Internet daemon only starts the
Internet server application; the Internet daemon listener does not create or monitor
sockets, nor does it monitor the server application.

If an Internet server application is defined with multiple IP addresses in the IDCF,
there is an Internet daemon listener process for each IP address. For an Internet
server application defined with IP-ANY in the IDCF, there is only one Internet
daemon listener process.

All the threshold and error controls defined in the IDCF for an Internet server
application, such as the maximum number of Internet server application instances
and the maximum number of times an Internet server application can end because
of an error (MAXPROC and SERVERRORS parameters, respectively, in the ZINET
ADD and ZINET ALTER commands), are tracked by the individual Internet daemon
listener processes. For example, if you define an Internet server application to use
two IP addresses, MAXPROC-1, SERVERRORS-3, and SERVETIME-10, then:

v Two Internet daemon listener processes are created when the Internet server
application is started (because the Internet server application is defined to use
two IP addresses).

v Each listener process only allows one instance of the Internet server application
to run at a time (because you specified MAXPROC-1). This results in a maximum
of two Internet server application processes active at any time in the TPF
system.

v If an Internet server application instance ends because of an error three times in
a 10-second interval (because you specified SERVERRORS-3 and
SERVETIME-10), the associated Internet daemon listener process is stopped.
The other Internet daemon listener process is not affected.

236 TPF V4R1 TCP/IP

See TPF Operations for more information about the ZINET ADD and ZINET ALTER
commands.

Figure 26 shows the relationship of the Internet daemon monitor and Internet
daemon listeners.

Starting the Internet Daemon
The Internet daemon is started in each subsystem by the cycle-up scheduler when
it cycles to CRAS state or above. However, if the Internet daemon is stopped, it can
be restarted by the ZINET START command. See TPF Operations for more
information about the ZINET START command.

Stopping the Internet Daemon
Whenever a subsystem is cycled below CRAS state, the Internet daemon is
stopped. However, if the Internet daemon must be stopped, use the ZINET STOP
command. See TPF Operations for more information about the ZINET STOP
command.

Internet Server Application
This section provides a discussion of some of the parameters in the ZINET ADD
and ZINET ALTER commands that you must consider when adding an Internet
server application or subsequently changing its characteristics. See TPF Operations
for more information about the ZINET ADD and ZINET ALTER commands. The
USER parameter must specify one of the TPF-supplied user IDs listed in the TPF
C/C++ Language Support User’s Guide.

For each Internet server application, the Internet daemon either automatically starts
the listener process or the operator manually starts the Internet daemon listener.
Use the ACTIVATION parameter, which can be abbreviated to ACT, to specify
whether listening is automatic or manual.

v When you specify ACT-AUTO, the Internet daemon starts the listener process for
the Internet server application as soon as the Internet daemon is active, unless
you specify STATE-NORM.

Internet
Daemon
Monitor

Internet
Daemon
Listener

SERVER - HTTPSERV1
IP - 9.117.199.22

Internet
Daemon
Listener

SERVER - RES0IP
IP-ANY

Internet
Daemon
Listener

SERVER - HTTPSERV1
IP - 9.117.199.21

Figure 26. Relationship of the Internet Daemon Monitor and Internet Daemon Listeners.
SERVER and IP are parameters in the ZINET ADD and ZINET ALTER commands.

Operator Procedures for the Internet Daemon 237

v When you specify ACT-OPER, use the ZINET START command to start the
Internet daemon listener process for an incoming message for the Internet server
application. See TPF Operations for more information about the ZINET START
command.

The Internet daemon is active starting from CRAS state, so you must decide the
appropriate state in which to start your Internet server application. The STATE
parameter can be specified as STATE-CRAS or STATE-NORM. Table 8 shows the
interaction of the STATE and ACT parameters with the state of the TPF system.

Table 8. Relationship of STATE and ACT Parameters with the TPF System State

STATE ACT System State Comment

CRAS AUTO CRAS or NORM Internet server application is started
automatically.

OPER CRAS or NORM Internet server application can be started
manually.

NORM AUTO CRAS Internet server application is not started
automatically and cannot be started
manually.

OPER CRAS Internet server application cannot be
started manually.

AUTO NORM Internet server application is started
automatically.

OPER NORM Internet server application can be started
manually.

Internet Server Application Control
Use the ZINET START command to allow the Internet daemon to start an Internet
daemon listener process for the specified Internet server application. Use the ZINET
STOP command to stop the Internet daemon from starting Internet daemon listener
processes for the specified Internet server application. See TPF Operations for
more information about the ZINET START and ZINET STOP commands.

Note: After an Internet server application is added to the IDCF, use the ZINET
START command to start an Internet daemon listener process for the
Internet server application.

238 TPF V4R1 TCP/IP

Trivial File Transfer Protocol (TFTP) Server

The behavior of the TFTP server is controlled by TFTP configuration file
/etc/tftp.conf. This file is an EBCDIC file that is composed of directives, which
are a series of interpreted commands that specify:

v The directories that the TFTP server can and cannot access in the TPF file
system

v The access permissions for a file that is stored in the file system by the TFTP
server on behalf of a TFTP client.

You can create and update the TFTP configuration file using one of the following:

v Your TPF system

v Another system; when you use another system, you must transfer the file to your
TPF system.

There must be a TFTP configuration file for the TFTP server to process. If you
create the file on another system, it must be the first file that you transfer to the
TPF system using the TFTP server.

Note: See “Adding the Trivial File Transfer Protocol (TFTP) Server” for information
about how to add the TFTP server to the Internet daemon configuration file
(IDCF).

The TFTP server uses values equivalent to the following directives:
LOG=/tmp/tftp.log
AUTH=444
allow:/etc

Adding the Trivial File Transfer Protocol (TFTP) Server
To add the TFTP server to the IDCF, enter:

ZINET ADD S-TFTP PGM-CTFT MODEL-model PORT-69 P-UDP IP-ipaddr
ACT-acttype STATE-state USER-NOBODY

Where:

model
is the process model to be used by the TFTP server. Specify WAIT if you want
only one occurrence of the TFTP server running at a time. Specify NOWAIT if
you want multiple occurrences of the TFTP server running.

ipaddr
is a local intranet IP address or the value ANY. Typically, this type of address is
assigned by a local network administrator.

Note: If you are using TCP/IP offload support, specify ANY only if there is just
one offload device attached. If there is more than one offload device
attached, you must specify the specific IP address for the device that
you want to use.

acttype
is how you want to start the Internet server application. Specify OPER if you
want to start and stop the TFTP server manually. Specify AUTO if you want the
TFTP server to be automatically started when the Internet daemon is started.

© Copyright IBM Corp. 1996, 2002 239

state
is the lowest TPF system state in which the TFTP server can be started.
Specify CRAS or NORM.

See TPF Operations for more information about the ZINET ADD command.

Directives for the TFTP Configuration File
Each line of the TFTP configuration file must contain an EBCDIC string starting in
column 1 and ending with a line-feed character (X'0A'), which is the format of a
normal text file from UNIX.

Note: A DOS-based editor ends lines with both the carriage-return and line-feed
characters (X'0D0A'). The TFTP server turns this character combination into
just the line-feed character; therefore, files from either DOS or UNIX are
acceptable.

The allow and deny directives control which directories and subdirectories are
accessible to TFTP clients. If there are allow and deny directives for the same
directory, access is denied.

Specifies a comment line. Use comment lines sparingly because like all other
lines in the configuration file, they are processed.

AUTH
Specifies the file access permissions that are set for all files written by the
TFTP server on behalf of TFTP clients using a TFTP write request. The access
permissions must be three octal characters (0–7); for example, AUTH=444.

If an AUTH directive is not specified or is not specified correctly in the TFTP
configuration file, access permissions are set to 444 octal. This allows owner,
group, and other read access.

The access permissions for a particular file can subsequently be modified by
the ZFILE chmod command. See TPF Operations for more information about
the ZFILE chmod command.

LOG
Specifies the name of a file in the file system where the TFTP server records
status lines. If the specified file does not already exist in the TPF file system, it
is created. The file name must be a fully qualified path name that begins with a
slash (/).

If a LOG directive is not specified in the TFTP configuration file, the
/tmp/tftp.log file is used for logging.

allow
Specifies a directory where files can be accessed (read or write). All
subdirectories are also accessible unless specifically prohibited with a deny
directive. You must specify the path file name; that is, the path name must start
with a slash (/).

deny
Specifies a directory where files cannot be accessed. All subdirectories are also
not accessible unless there is an allow directive for the subdirectory. You must
specify the full path name; that is, the path name must start with a slash (/).

The following is an example of allow and deny directives:
allow:/a
deny:/a/b

240 TPF V4R1 TCP/IP

The /a/filename.type and /a/c/filename.type files are accessible because the
allow directive grants access and there is no deny directive that prevents access.

The /filename.type and /e/filename.type files are not accessible because they
are not explicitly granted access by the allow directive. The /a/b/filename.type file
is not accessible because access is prevented by the deny directive.

Creating the TFTP Configuration File
The primary factor to consider when designing the TFTP configuration file is the
scope of access permissions that a TFTP client can have; that is, do you want the
client to be able to write in any directory and if existing files can be overwritten.

Use the following commands to create the TFTP configuration file on your TPF
system:
zfile cat /etc/tftp.conf
zfile echo log=/tmp/tftp.log > /etc/tftp.conf
zfile echo auth:444 >> /etc/tftp.conf
zfile echo allow:/tmp >> /etc/tftp.conf
zfile cat /etc/tftp.conf

To create the TFTP configuration file on another system, create a file with the
directives that you require and transfer the file to your TPF system. The file is
automatically translated from ASCII to EBCDIC by the TFTP server when you use
the ASCII or NETASCII transfer mode.

Transferring and Maintaining the TFTP Configuration File
To transfer the TFTP configuration file to the TPF system, use the command that is
appropriate to the system where you maintain your TFTP configuration file and
specify the to file as /etc/tftp.conf.

For example, to send the TFTP configuration file to your TPF system from a
personal computer (PC) Windows NT system, use the command prompt:

TFTP tpf.inet.addr put c.fil /etc/tftp.conf

Where:

tpf.inet.addr
is the Internet address for the TPF system or its dotted decimal equivalent.

c.fil
is the file name of the TFTP configuration file on your PC.

The TFTP configuration file is stored in the TPF file system with access permissions
of 444 octal. This allows owner, group, and other read access. Use the ZFILE
chmod command to change the access permissions for the TFTP configuration file.
See TPF Operations for more information about the ZFILE chmod command.

To update the TFTP configuration file that already exists on your TPF system, but is
maintained on another system:

1. Update the TFTP configuration file on the other system.

2. Delete the existing copy on the TPF system using the command:

zfile rm -f /etc/tftp.conf

Note: The -f parameter removes the file even though write mode is set off.

Trivial File Transfer Protocol (TFTP) Server 241

3. Transfer the updated TFTP configuration file to the TPF system as previously
described.

242 TPF V4R1 TCP/IP

File Transfer Protocol (FTP) Server

The FTP server establishes two connections between the client and server
processes; one connection for control information (commands and responses), and
the other connection for the data that is transferred.The FTP server can handle both
binary and text files.The files can be transferred in both directions.

The FTP client on the remote host is prompted for access information, such as the
login name and password (if required), on the remote system.

The FTP server authenticates users according to the following rules:

v The login name must be in the etc/passwd database and cannot be a null
password. A password must be provided by the client before any file operations
can be performed.

v The login name must not be in the etc/ftpusers file.

v If the user name is anonymous or ftp, an anonymous ftp account must be
present in the password file (the (user ftp). You are allowed to log in by
specifying any password (by convention, an e-mail address for the user should
be used as the password).

FTP Server LOG File
Each time a client logs on to FTP, a LOG file is created under the /tmp directory to
retain FTP-related messages. Enter the ZFILE rm command to delete the logged
records. See TPF Operations for more information about the ZFILE rm command.

Adding the File Transfer Protocol (FTP) Server
To add the FTP server to the IDCF, enter:

ZINET ADD S-FTPD PGM-CFTP MODEL-NOWAIT PORT-21 P-TCP IP-ipaddr
ACT-acttype STATE-state USER-ROOT

Where:

ipaddr
is a local intranet IP address or the value ANY. Typically, this type of address is
assigned by a local network administrator.

Note: If you are using TCP/IP offload support, specify ANY only if there is just
one offload device attached. If there is more than one offload device
attached, you must specify the specific IP address for the device that
you want to use.

acttype
is how you want to start the Internet server application. Specify OPER if you
want to start and stop the FTP server manually. Specify AUTO if you want the
FTP server to be automatically started when the Internet daemon is started.

state
is the lowest TPF system state in which the FTP server can be started. Specify
CRAS or NORM.

See TPF Operations for more information about the ZINET ADD command.

© Copyright IBM Corp. 1996, 2002 243

244 TPF V4R1 TCP/IP

Syslog Daemon

The syslog daemon is a server process that provides a message logging facility for
application and system processes. The syslog daemon must be started before any
application program or system process that uses it starts. Internet server
applications and components use the syslog daemon for logging purposes and can
also send trace information to the syslog daemon. Servers on the local system use
FIFO special files (also referred to as named pipes) to communicate with the syslog
daemon; remote servers use TCP/IP sockets.

The syslog daemon reads and logs system messages to log files or to tape as
specified by the configuration file. Remote syslog daemons can also log messages
to the local syslog daemon through remote sockets. Figure 27 shows how the
syslog daemon operates in the TPF environment.

The syslog daemon reads the configuration file when the daemon starts and
whenever the hangup signal (SIGHUP) is received. See “Syslog Daemon
Configuration File” on page 246 for more information about the configuration,
including the syntax for the configuration statements. See “Adding the Syslog
Daemon Server” on page 249 for information about how to add the syslog daemon
to the Internet daemon configuration file (IDCF).

Files
The syslog daemon uses the following files, which reside in the basic subsystem
(BSS):

File Name Description

Remote
SyslogD

Remote
SyslogD

TCP/IP Socket

FIFO Special File

FIFO Special File

TCP/IP Socket

/etc/syslog.conf

/tmp/syslog.log

/tmp/???.syslog

/tmp/???.syslog

SyslogD Process

Server
Process 2

Server
Process 1

UDP Port 514

IP Network

RTA
Tape

Figure 27. Syslog Daemon Operation

© Copyright IBM Corp. 1996, 2002 245

/etc/syslog.pid Contains the location of the process ID. This file is
created by the TPF system; do not modify this file.

/etc/syslog.conf Default configuration file. You can modify this file as
needed for your environment. See “Syslog Daemon
Configuration File” for more information.

Syslog Daemon Configuration File
The syslog daemon processing is controlled by a configuration file called
/etc/syslog.conf in which you define logging rules and output destinations for error
messages, authorization violation messages, and trace data. Logging rules are
defined by using a facility name and a severity level. The facility name and severity
level are passed on the logging request from an application when it wants to log a
message. See Figure 28 on page 248 for an example of a configuration file.

Each statement of the configuration file has the following syntax:

YY ^ ^

;
;

facility . severity \t destination YZ

facility
is the name of the system process that is sending the message. The following
facility names are supported and predefined in the syslog daemon
implementation.

Note: The TPF system does not have a server for all of these facilities;
however, the syslog daemon will accept messages if your environment
has such a server.

auth
Messages generated by authorization programs.

daemon
Messages generated by system server processes.

local0–7
Names reserved for user-defined facilities.

mail
Messages generated by a mail system.

news
Messages generated by a news system.

syslog
Messages generated by the syslog daemon.

user
Messages generated by a process (user).

mark
Messages generated by a mark signal from the syslog daemon. See
“Adding the Syslog Daemon Server” on page 249 for more information
about defining the syslog daemon for mark messages.

* Placeholder used to represent all facilities.

246 TPF V4R1 TCP/IP

severity
is the severity level of the message. The following severity levels, shown in
order of importance, are supported:

emerg
An emergency condition; that is, the system cannot be used. This is
normally broadcast to all processes.

alert
A condition that must be corrected immediately, such as a corrupted system
database.

crit
A critical condition, such as a hard device error.

err(or)
An error message.

warn(ing)
A warning message.

notice
A condition that is not an error condition, but that may require special
handling.

info
An informational message.

debug
A message that contains information normally of use only when debugging
a program.

none
Do not log any messages for the facility.

\t represents the tab character.

destination
is the destination to which the log message will be sent. The following
destinations are supported. You must use lowercase for all file names, users,
and hosts.

/file
A specific file (for example, /tmp/syslogd/error.log). All log files used by
the syslog daemon must be created in the hierarchical file system (HFS)
before the syslog daemon is started.

@host
A syslog daemon on another host (for example, @mya1xserver).

tape
A TPF RTA tape.

Note: If you direct the data to an RTA tape, you must postprocess the data
offline. The data is written as null terminated strings in 4K blocks.
Each block contains a header with the tape record ID of X'EA00'.

Figure 28 on page 248 shows an example of a syslog daemon configuration file.
See “Modifying the Syslog Daemon Configuration File” on page 249 for information
about how to modify the configuration file.

Syslog Daemon 247

Configuration Notes:

v Comments can be added to the configuration file by placing the hashmark (#)
character in column 1 of the comment line. Everything following the hashmark
character will be handled as a comment.

v When you specify a severity level, all messages with that severity and higher
are logged at the specified destination. For example, if you specify a severity
level of error, all messages having error, crit, alert, and emerg severities are
logged. To send all messages with a severity of error or higher to a file named
/tmp/syslogd/error.log, you can specify the following rule in the
/etc/syslog.conf file:
*.err /tmp/syslogd/error.log

v You can combine logging rules and destinations in different ways. For example,
to send all messages from the facility named daemon into one file and all
messages with a severity level of crit or lower into another file, enter the
following:
daemon.emerg /tmp/syslogd/daemon.log
*.crit /tmp/syslogd/crit.log

Note: If a server sends a message to the syslog daemon with a facility name of
daemon and a severity level of crit, messages will be logged in both the
daemon.log and crit.log files. Likewise, if a server sends a message to
the syslog daemon with a facility name of daemon and a severity level of
error, the message will be logged in both files.

v If the severity level is none, the syslog daemon does not select any messages.
For example, if you want to log all messages from facility name local1 into one
file, all messages from the daemon into another file, and all remaining messages
into a third file, use the following:
local1.emerg /tmp/syslogd/local1.log
daemon.emerg /tmp/syslogd/daemon.log
*.emerg;local1.none;daemon.none /tmp/syslogd/the_rest.log

#
facility.severity destination
----------------- -----------
Note: The facility.severity and destination must be separated by tabs.
#
Uncomment the following to log all messages to the /dev/null file.
#*.emerg /dev/null
#
Uncomment the following to log all error messages (and lower)
to the error.log file
#*.err /tmp/syslogd/error.log
#
Uncomment the following to log all debug messages to tape
#*.debug tape
#
Uncomment the following to log all local0 informational messages (and lower)
and local1 error messages (and lower) to a remote host
#local0.info;local1.err @remote.host.com
#
Uncomment the following to log all daemon server debug messages
to the server.debug file
#daemon.debug /tmp/syslogd/server.debug
#
Uncomment the following to log everything except local0, local1, and daemon
messages to the garbagecan.log file
#*.emerg;local0.none;local1.none;daemon.none /tmp/syslogd/garbagecan.log

Figure 28. Sample /etc/syslog.conf File

248 TPF V4R1 TCP/IP

v You cannot define logging conditions related to a process name or process ID. All
messages that belong to the same facility or severity class are logged in the
same syslog daemon logging file whether the server task has issued the
message or not.

v If the syslog daemon is running in debug mode, configuration file errors are
written to the operator console because initialization is not completed until the
entire configuration file has been read. See “Adding the Syslog Daemon Server”
for more information about defining the syslog daemon to run in debug mode.

Modifying the Syslog Daemon Configuration File
A default syslog daemon configuration file is provided with examples of logging
rules that you can specify. You can modify this configuration file as needed for your
environment. If you do not modify the configuration file, no messages will be logged
(that is, all messages will be sent to the /dev/null file and thrown away).

To modify the syslog daemon configuration file, do the following:

1. Use TFTP or FTP to transfer the /etc/syslog.conf file to another system.

2. Modify the configuration file to include the logging rules that you require. You
can uncomment and change the sample lines that are in the default file or just
add new lines as needed.

3. Use TFTP or FTP to transfer the configuration file back to your TPF system.

Adding the Syslog Daemon Server
To add the syslog daemon server to the Internet Daemon Configuration File (IDCF),
enter the following from the basic subsystem (BSS):

ZINET ADD S-SYSLOGD PGM-CSYL MODEL-DAEMON ACT-acttype STATE-state
USER-ROOT XPARM-args

Where:

acttype
is how you want to start the Internet server application. Specify OPER if you
want to start and stop the syslog daemon server manually. Specify AUTO if you
want the syslog daemon to be started automatically when the Internet daemon
is started.

state
is the lowest TPF system state in which the syslog daemon can be started.
Specify CRAS or NORM.

args
is a string of parameter data that will be passed to the argv parameter of the
main function defined in the specified Internet server application program.
Specify one or more of the following:

-f path
specifies the configuration file, where path is the path name of the
configuration file. If you do not specify this value, the default syslog daemon
configuration file name of /etc/syslog.conf is used.

-d runs the syslog daemon in debugging mode. See “Diagnosing Syslog
Daemon Configuration Problems” on page 251 for more information about
this option.

Syslog Daemon 249

-m time
specifies a time interval that you want to log mark messages, where time is
the time interval in minutes. A mark message is a time stamp labeled with
MARK. These messages can be used to verify that the syslog daemon was
operational during a specific time interval. If you do not specify this option,
mark messages will not be logged.

-p pidpath
specifies the file that contains the process ID of the syslog daemon server,
where pidpath is the path name of the process ID file. If you do not specify
this value, the default syslog daemon process ID file name of
/etc/syslog.pid is used.

Note: The XPARM parameter is optional. If you specify this parameter, it must
be the last parameter in the command entry and you must specify a
string of parameter data; specifying a NULL string will cause problems
when starting the syslog daemon.

See TPF Operations for more information about the ZINET ADD command.

Operating the Syslog Daemon
Use the ZINET and ZFILE commands to operate and maintain the syslog daemon.

Starting the Syslog Daemon
If you specify AUTO for the ACTIVATION parameter when adding the syslog
daemon to the IDCF, the syslog daemon will start automatically when the Internet
daemon is started. If you specify OPER for the ACTIVATION parameter, you must
start the syslog daemon manually. To start the syslog daemon manually, enter the
following from the BSS:

ZINET START S-SYSLOGD

When the syslog daemon is defined to start automatically, if there is no TCP/IP
transport active when the syslog daemon starts or if TCP/IP is recycled, the syslog
daemon will not establish or re-establish communication with TCP/IP when it
becomes available. If this occurs, you can use the syslog daemon only for local
applications.

Stopping the Syslog Daemon
To stop the syslog daemon, enter the following from the BSS:

ZINET STOP S-SYSLOGD

To force the syslog daemon to read its configuration file again and activate any
modified parameters without stopping, enter the following to send a SIGHUP signal:

ZFILE kill -s SIGHUP $(cat /etc/syslog.pid)

The syslog daemon will continue to append log messages to the files you specify in
the /etc/syslog.conf file.

Messages are read from the FIFO special file and the Internet domain datagram
socket.

250 TPF V4R1 TCP/IP

Offloading Log Files
To periodically offload log files to another location and delete unwanted messages
without stopping the syslog daemon, do the following:

1. Create two syslog daemon configuration files called /etc/syslog.conf.a and
/etc/syslog.conf.b. These two files will be identical except that all log files end
with either a or b.

2. If your current /etc/syslog.conf file was created from your syslog.conf.a file,
enter the ZFILE cp command to copy your syslog.conf.b file to the
/etc/syslog.conf file.

3. Enter ZFILE kill -s SIGHUP $(cat /etc/syslog.pid) to send a SIGHUP signal to
the syslog daemon. This stops the syslog daemon from writing to the a log files
and forces it to write to the b log files.

4. Offload the a files using TFTP or FTP and delete their current contents.

Diagnosing Syslog Daemon Configuration Problems
The syslog daemon supports a debug mode, which is selected using the -d
argument with the XPARM parameter of the ZINET ADD command. In this debug
mode, the syslog daemon writes a large number of trace messages to the standard
output (stdout) stream. You can use these messages to diagnose problems in the
syslog daemon configuration or to collect documentation when reporting a syslog
daemon problem to IBM support.

Note: Do not use the -d argument for normal operations.

To turn off debug mode, do one of the following:

v If you do not want to specify other values for the XPARM parameter, do the
following:

1. Enter the ZINET DELETE command to delete the syslog daemon server.

2. Enter the ZINET ADD command to add the syslog daemon server again and
do not specify the XPARM parameter.

v If you do want to specify other values for the XPARM parameter, enter the
ZINET ALTER command with the XPARM parameter specified, but do not include
the -d argument in the parameter string.

Note: If you specify the XPARM parameter, you must provide a string of
parameter data. Do not specify a NULL string for the XPARM parameter;
this will cause problems when starting the syslog daemon.

Application Considerations
You can use the logging facilities of the syslog daemon server with your TPF
application programs. Include the syslog.h header file with C programs so that
these programs can open a log facility, send log messages to the syslog daemon,
and close the facility:
#include <syslog.h>

�1� openlog("tpf", LOG_PID, LOG_LOCAL0);
�2� syslog(LOG_INFO, "Hello from tpf");
�3� closelog();

�1� Open a log facility with a facility name of local0. Prefix each line in the log file
with the program name (tpf) and the process ID.

Syslog Daemon 251

�2� Log an informational message with the specified content.

�3� Close the log facility name.

The preceding statements created the following line in the log file:
<May 26 11:27:51>tpf[3014660]: Hello from tpf

See TPF C/C++ Language Support User’s Guide for more information about the
syslog function.

252 TPF V4R1 TCP/IP

TPF Internet Mail Server Support

TPF Internet mail server support provides a set of servers that implement the
standard Internet mail protocols on the TPF system. Users, or mail clients, interact
with the TPF Internet mail servers to send and retrieve Internet mail, also known as
electronic mail (e-mail). The TPF system supports the following standard Internet
protocols:

v Simple Mail Transfer Protocol (SMTP)

v Internet Message Access Protocol (IMAP) Version 4

v Post Office Protocol (POP) Version 3.

SMTP describes how mail messages are delivered from one computer user to
another. IMAP and POP describe how mail messages that are received on a
computer (that is, the mail server) are retrieved by a mail client (usually another
computer, such as a workstation).

The standard Internet protocols are defined by the following Request for Comments
(RFC) documents:

v RFC 821 Simple Mail Transfer Protocol

v RFC 2060 Internet Message Access Protocol - Version 4rev1

v RFC 1939 Post Office Protocol - Version 3

v RFC 822 Standard for the Format of ARPA Internet Text Messages.

For more information about these RFCs and any related extensions, go to:
http://www.ietf.org

TPF Internet Mail Server Overview
Figure 29 on page 254 shows the interrelationships of the actions and protocols that
are involved when sending and receiving Internet mail on the TPF system.

© Copyright IBM Corp. 1996, 2002 253

http://www.ietf.org

When sending mail to another user, the mail client (Mail Client 1 in this figure) must
use SMTP to put mail in the Internet mail system. Typically, the mail client uses a
mail server client program such as Microsoft Outlook, Netscape, or other client
program. This mail server client program connects to the SMTP server on
well-known port 25 and sends the mail. On the TPF system, the SMTP server is
based on the Secure Mailer, also known as Postfix. For more information about
Postfix, go to: http://www.postfix.org.

Once the SMTP server stores the mail, the server indicates to Mail Client 1 that it
has received the mail so that the client can disconnect or send more mail. The
SMTP server must determine if this mail is destined for a user on a local domain
(where the SMTP server is running) or for a user on a remote domain. If the mail is
for a user on the local domain, the SMTP server calls the local delivery function. If

Remote
Server

Mail Client 2Mail Client 1

Remote
Server

Remote
Server

Mail
Items

Mailboxes
Users

Internet mail exchange name,
such as tpf.com

SMTP Port 25

Remote
Delivery
SMTP

Remote
Delivery
SMTP

Local
Delivery

Local
Delivery

Internet mail exchange name,
such as tpf.com

IMAP Port 143
POP Port 110

Reads
Mail

Sends
Mail

TPF

Mail Database

Receives and
Forwards Mail

Receives and
Forwards Mail

Mail Database

SMTP
Server

IMAP/POP
Server

Receives and
Forwards Mail

Accepts Logon
Examines Mailbox
Fetches Mail

Figure 29. TPF Internet Mail Server Overview

254 TPF V4R1 TCP/IP

http://www.postfix.org

the mail is for a user on a remote domain, the SMTP server becomes an SMTP
client and attempts to contact the server for that domain to transfer the mail item
and delete it from local storage.

At some point, the receiving mail client (Mail Client 2) attempts to check the mail.
Similarly to Mail Client 1 with SMTP, Mail Client 2 uses a mail server client program
that connects to the IMAP server on well-known port 143, or to the POP server on
well-known port 110, and retrieves the mail. On the TPF system, the IMAP and
POP servers are based on the Cyrus project. For more information about the Cyrus
project, go to: http://www.cmu.edu/computing/cyrus.

POP retrieves the mail item, sends the mail to the user and, optionally, deletes the
copy from the mail server to free the resources of the server. IMAP allows the client
to keep the mail in mailboxes on the server, and provides operations for creating,
deleting, and renaming mailboxes, as well as other mail and mailbox management
functions.

Mail Database Layout
Figure 30 shows how the IMAP and POP servers access mail in mailboxes.

Each user has a user profile record (UPR), which is accessed through a #MAILxx
fixed file record on a subsystem of your choice, where xx is a 2-character
alphanumeric string. The #MAILxx record provides a first-level index to the UPR
and contains pointers to either a UPR or to a second-level index record. If there are
few users, the first-level index points directly to the UPRs. At some point, a
second-level index is automatically created to provide better scalability for a very
large number of mail clients.

There is a different #MAILxx record type associated for each domain in your mail
system. For example, you can associate #MAIL01 with the mail.site1.ibm.com

User Profile
Record

Fixed

Legend:

Long-Term Pool (Singular)

Long-Term Pool (with Chained Overflow)

Second-Level
Index

First-Level
Index

Mail
Box

Mail
Box

User Profile
Record

Access
Control Lists

Access
Control Lists

Mail
Item

Mail
Item

Figure 30. TPF Internet Mail Server Database — Accessing Mail

TPF Internet Mail Server Support 255

http://www.cmu.edu/computing/cyrus

domain and #MAIL02 with the mail.site2.com domain. This is defined in the TPF
configuration file named /etc/tpf_mail.conf. See “TPF Configuration File
Parameters” on page 263 for more information about the TPF configuration file.
Allocate 1000 #MAILxx records for each domain that you define. See TPF System
Generation for more information about allocating fixed file records.

The UPR contains the access control information for the user and pointers to the
mailbox records. Users can have more than their inbox, which is the mandatory
mailbox, and can have submailboxes defined in a naming hierarchy, such as
user1.inbox.projects.work.mail or user1.inbox.projects.fun.swingset. Each
mailbox contains pointers to mail items; that is, messages that have been received
and moved to the mailbox. All incoming mail from other users is pointed to from the
inbox.

The access control information for each user is kept with the mailbox pointer in the
UPR. For accountability, the access rights that the owner has given to each user is
kept in a separate record called the access control list (ACL). For example, user1
can authorize user2 to read mail items in the user1.inbox.projects.fun.swingset
mailbox.

Figure 31 on page 257 shows how the SMTP server accepts and delivers mail to
the mailboxes.

256 TPF V4R1 TCP/IP

As mail items are sent to the SMTP server, the server puts a pointer to the mail
item on file in the active mail queue for delivery. There is also a deferred mail
queue, similar in structure to the active mail queue, which is used to hold mail that
currently cannot be delivered. Both the active and deferred mail queues are
accessed through #IBMMP4 fixed file records, referred to as the active queue index
record and the deferred queue index record, respectively. There is one active queue
index record and one deferred queue index record for each queue. The mail
queues are processor unique; therefore, if you run TPF Internet mail server support
on more than one processor, mail items from a failing processor can be moved to
another TPF processor in your complex and continue to be delivered.

When a new mail message is sent to the SMTP server for delivery, a pointer to the
new mail item is added to an active queue record. An active queue record contains
multiple pointers to mail items. When one active queue record is full, another one is
created. The pointer to a new active queue record is added to an active queue
control record. An active queue control record contains pointers to multiple active

Active
Queue
Control
Record

Active
Queue
Index

Tail Head

Active
Queue
Control
Record

Active
Queue
Record

Active
Queue
Record

Active
Queue
Record

Active
Queue
Record

Fixed

Legend:

Long-Term Pool (Singular)

Long-Term Pool (with Chained Overflow)

Mail
Item

Mail
Item

Mail
Item

Mail
Item

Mail
Item

Mail
Item

Mail
Item

Mail
Item

Figure 31. TPF Internet Mail Server Database — Accepting and Delivering Mail

TPF Internet Mail Server Support 257

queue records. As the active queue control records fill up, they are added to the
end of a chain of active queue control records. Each active queue control record
has a forward and backward pointer.

The active queue index record points to the head of the queue, which is the first
active queue control record in the chain, and to the end of the queue, which is the
last active queue control record in the chain. Mail deliveries are processed from the
head of the chain, but there are additional pointers in the active queue index record
that further indicate where local and remote delivery agents are currently
processing. The number of these different delivery agents can be independently
configured in the TPF configuration file (/etc/tpf_mail.conf). See “TPF
Configuration File Parameters” on page 263 for more information about the
configuration parameters available for the TPF configuration file.

The deferred queue index record performs similarly to the active queue index
record, but uses only one delivery agent because it only delivers remote mail.

Recoup Considerations for the Mail Database
Before you run recoup for the TPF Internet mail server database, ensure the mail
server recoup descriptor is defined correctly, and loaded on the TPF subsystem in
which you plan to run the TPF Internet mail servers. Do not load the mail server
recoup descriptor to subsystems in which the TPF Internet mail servers will not run.

The mail server recoup descriptor must contain a GROUP and INDEX macro pair
for each #MAILxx record that you define. Segment BKD1 is initially shipped with the
macro statements needed for a mail domain associated with a #MAIL01 fixed file
record type, as follows:

SYSEQC
DC AL2(3) NUMBER OF PRIMARY GROUPS IN THIS CONTAINER
DC S(IAQ,IDQ,IMAI) PRIME GROUPS...

IMAI GROUP MAC=IMAIL,ID=FC55,ECB=10,MET=(SEQ,0),NBR=1,TYP=#MAIL01, X
TIME=900,USE=BASE,VER=0,GRP=FC50,IDCOMP=(FC66,0), X
ENT=INDON55,EXT=INDOFF55

INDEX TYP=V,FI=IMAIL_LVL1_ENTY,FA=IMAIL_LVL1_ENTY+4, X
LI=L’IMAIL_LVL1_ENTY,CNT=(N,500),ALTID=IMAI_ALT

If you define additional #MAILxx fixed file record types (such as, #MAIL02,
#MAIL03, and so on) or want to use a record type value other than #MAIL01, you
must update segment BKD1. For example, if you want one mail domain and define
the fixed file record type for that mail domain as #MAILAB instead of #MAIL01,
update the value specified for the TYP parameter in the GROUP macro statement
to #MAILAB, as follows:

SYSEQC
DC AL2(3) NUMBER OF PRIMARY GROUPS IN THIS CONTAINER
DC S(IAQ,IDQ,IMAI) PRIME GROUPS...

IMAI GROUP MAC=IMAIL,ID=FC55,ECB=10,MET=(SEQ,0),NBR=1,TYP=#MAILAB, X
TIME=900,USE=BASE,VER=0,GRP=FC50,IDCOMP=(FC66,0), X
ENT=INDON55,EXT=INDOFF55

INDEX TYP=V,FI=IMAIL_LVL1_ENTY,FA=IMAIL_LVL1_ENTY+4, X
LI=L’IMAIL_LVL1_ENTY,CNT=(N,500),ALTID=IMAI_ALT

If you define more than one mail domain, you must add additional GROUP and
INDEX macro statements to BKD1. For example, if you want two mail domains and
define fixed file record types #MAIL01 and #MAIL02, update BKD1 as follows:

258 TPF V4R1 TCP/IP

SYSEQC
DC AL2(4) NUMBER OF PRIMARY GROUPS IN THIS CONTAINER
DC S(IAQ,IDQ,IMAI,IMAJ) PRIME GROUPS...

IMAI GROUP MAC=IMAIL,ID=FC55,ECB=10,MET=(SEQ,0),NBR=1,TYP=#MAIL01, X
TIME=900,USE=BASE,VER=0,GRP=FC50,IDCOMP=(FC66,0), X
ENT=INDON55,EXT=INDOFF55

INDEX TYP=V,FI=IMAIL_LVL1_ENTY,FA=IMAIL_LVL1_ENTY+4, X
LI=L’IMAIL_LVL1_ENTY,CNT=(N,500),ALTID=IMAI_ALT

IMAJ GROUP MAC=IMAIL,ID=FC55,ECB=10,MET=(SEQ,0),NBR=1,TYP=#MAIL02, X
TIME=900,USE=BASE,VER=1,GRP=FC50,IDCOMP=(FC66,0), X
ENT=INDON55,EXT=INDOFF55

INDEX TYP=V,FI=IMAIL_LVL1_ENTY,FA=IMAIL_LVL1_ENTY+4, X
LI=L’IMAIL_LVL1_ENTY,CNT=(N,500),ALTID=IMAI_ALT

See TPF Database Reference for more information about recoup. See TPF System
Macros for more information about the GROUP and INDEX macros.

TPF Internet Mail Server Configuration Files
The behavior of the TPF Internet mail servers is controlled by the following
configuration files, which must be located in the basic subsystem (BSS):

v /etc/postfix/main.cf, which specifies the configuration parameters for the
SMTP server

v /etc/imapd.conf, which specifies the configuration parameters for the IMAP and
POP servers

v /etc/tpf_mail.conf, which specifies the configuration parameters for TPF-unique
information.

You can also create an optional access list configuration file, named
/etc/postfix/access. An access list is a file that directs the SMTP server to
selectively accept or reject mail from or to specific hosts, domains, networks, host
addresses, or mail addresses.

Each configuration file is an EBCDIC file that defines the configuration parameters
for that server. Blank lines and lines beginning with a # symbol are ignored. You
can create and update the configuration files by doing one of the following:

v Use the ZFILE commands to create and update the files directly on your TPF
system.

v Create and update the files on another system and use Trivial File Transfer
Protocol (TFTP) or File Transfer Protocol (FTP) to transfer the files to your TPF
system.

SMTP Configuration File Parameters
Each line of SMTP configuration file /etc/postfix/main.cf must be in the following
format:

smtpparm = value

where smtpparm is the name of the configuration parameter and value is the
parameter value that you want to specify. The following describes the configuration
parameters for the /etc/postfix/main.cf file.

myhostname = name
Specifies the Internet host name of the TPF Internet mail system, where name
is the host name in fully qualified domain name format. You must specify this

TPF Internet Mail Server Support 259

configuration parameter. $myhostname, which represents the value of the
myhostname configuration parameter, is used as the default value in many
other configuration parameters.

mydomain = domain
Specifies the local Internet domain name of the TPF Internet mail system,
where domain is the local domain name. If you do not specify this parameter,
the value for mydomain is derived from the value defined for the myhostname
parameter by stripping off the first component. For example, if the value of
myhostname is defined as tpf01.tpfmail.com, the default value for mydomain
is tpfmail.com. $mydomain, which represents the value of the mydomain
configuration parameter, is used as a default value for many other configuration
parameters.

mynetworks = ipaddr/mask
Lists all the networks that are attached to the TPF Internet mail system, where

ipaddr
is an Internet Protocol (IP) address of the host in dotted decimal format.

mask
is a number, from 0 to 32, that represents the number of bits in the network
part of the host address that are to be compared when checking the
address.

For example, if you specify 172.123.255.255/8 for this parameter, any
connecting client with an IP address that begins with 172 is considered local
and does not require additional restriction testing. However, any connecting
client whose IP address does not match 172 is considered to be remote and
will continue through additional restriction testing based on other configuration
parameter settings. In this example, specifying 172.0.0.0/8 for this parameter
has the same effect.

You must specify this parameter. If you specify more than one network,
separate each with a comma; for example:
mynetworks = 172.0.0.0/8, 192.255.0.0/16

mail_name = name
Specifies the mail system name that is used in headers of received mail, in the
SMTP greeting banner, and in undeliverable (also known as bounced) mail,
where name is any character string. If you do not specify this configuration
parameter, mail_name is set to Postfix.

smtpd_banner = $myhostname text
A line of text that the TPF Internet mail server sends to the SMTP client, where
text is any character string. You must specify $myhostname at the start of the
text. If you do not specify this configuration parameter, smtpd_banner is set to
$myhostname ESMTP $mail_name. For example, if you specify
tpf01.tpfmail.com for the myhostname parameter and TPF Mail for the
mail_name parameter, the default smtpd_banner will be:

tpf01.tpfmail.com ESMTP TPF Mail

maximal_queue_lifetime = numdays
Specifies the maximum amount of time that a mail item can stay in the deferred
queue before it is sent back as undeliverable, where numdays is the number of
days. If you do not specify this parameter, a value of 5 days is used.

minimal_backoff_time = sec
Specifies the minimum amount of time between delivery attempts of a deferred

260 TPF V4R1 TCP/IP

mail item, where sec is the number of seconds. If you do not specify this
parameter, a value of 1000 seconds is used.

ignore_mx_lookup_error = mxerror
Specifies how you want the delivery manager to handle errors from a mail
exchange (MX) query, where mxerror is one of the following:

YES
Ignores an MX query error and proceeds to search for an address record.

NO
Does not ignore an MX query error and puts the mail item on the deferred
queue.

If you do not specify this parameter, the value is set to NO.

smtpd_helo_required = helomsg
Specifies whether or not the connecting client is required to send a HELO (or
EHLO) command at the beginning of a session, where helomsg is either YES or
NO. If you do not specify this parameter, the value is set to YES.

smtpd_helo_restrictions = helorstr
Specifies the kind of restrictions that you want to apply when the client sends a
HELO command, where helorstr is one or more of the following:

check_helo_acl
Checks the access list file (/etc/postfix/access) for the host name
specified by the client and accepts or rejects the request based on the
setting in the access list.

permit_mynetworks
Allows the request when the client address matches the value of the
mynetworks configuration parameter. If the check passes this restriction,
any subsequent checks are ignored.

reject_invalid_hostname
Rejects the request if the syntax of the host name specified by the client is
not valid.

Specify zero or more restrictions, separated by commas. Each restriction is
applied one at a time, in the order in which you specify them. If you do not
specify this configuration parameter, all of these restrictions are enabled in the
following order:
v check_helo_acl
v permit_mynetworks
v reject_invalid_hostname

smtpd_client_restrictions = clientrstr
Specifies the kind of restrictions you want to apply when the client connects,
where clientrstr is one or more of the following:

check_client_acl
Checks the access list file (/etc/postfix/access) for the host name of the
client and accepts or rejects the request based on the setting in the access
list.

permit_mynetworks
Allows the request when the client address matches the value of the
mynetworks configuration parameter. If the check passes this restriction,
any subsequent checks are ignored.

TPF Internet Mail Server Support 261

reject_unknown_client
Rejects the request if the syntax of the host name of the client is not valid.

Specify zero or more restrictions, separated by commas. Each restriction is
applied one at a time, in the order in which you specify them. If you do not
specify this configuration parameter, all of these restrictions are enabled in the
following order:
v check_client_acl
v permit_mynetworks
v reject_unknown_client

smtpd_sender_restrictions = sendrstr
Specifies the kind of restrictions that you want to apply when the client sends a
MAIL FROM command, where sendrstr is one or more of the following:

check_sender_acl
Checks the access list file (/etc/postfix/access) for the host name of the
sending client and accepts or rejects the request based on the setting in the
access list.

reject_unknown_sendom
Rejects the request if the domain portion of the host name of the sending
client is not valid.

Specify zero or more restrictions, separated by commas. Each restriction is
applied one at a time, in the order in which you specify them. If you do not
specify this configuration parameter, all of these restrictions are enabled in the
following order:
v check_sender_acl
v reject_unknown_sendom

IMAP/POP Configuration File Parameters
Each line of IMAP/POP configuration file /etc/imapd.conf must be in the following
format:

imapparm: value

where imapparm is the name of the configuration parameter and value is the
parameter value that you want to specify.

The following lists the configuration parameters for the /etc/imapd.conf file.

Note: All the parameters for the IMAP/POP configuration file are optional. If you
choose to use all the default settings, you must still create the
etc/imapd.conf file. The file can be empty or it can contain one or more of
the configuration parameters, but it must exist on the BSS; otherwise, the
TPF Internet mail servers will not run.

quotawarn: qstor
Specifies the percent of storage that can be used for a mailbox or mailbox
hierarchy before the TPF Internet mail server will send a warning message to
the client, where qstor is the percent of storage. If you do not specify this
configuration parameter, a value of 90 is used. Use the ZMAIL SETQUOTA
commandto set the storage limit for a mailbox.

timeout: tmin
Specifies how long the IMAP server will wait before logging off because of

262 TPF V4R1 TCP/IP

inactivity, where tmin is the number of minutes that you want the IMAP server to
wait. If you do not specify this parameter, the value is set to 30.

poptimeout: popmin
Specifies how long the POP server will wait before logging off because of
inactivity, where popmin is the number of minutes that you want the POP server
to wait. If you do not specify this parameter, the value is set to 10.

popminpoll: pollmin
Specifies the minimum amount of time that the server forces users to wait to
check mail since the last time mail was checked, where pollmin is the number
of minutes you want users to wait. If you do not specify this parameter, the
value is set to 0.

autocreatequota: astor
Specifies the quota value (that is, storage limit) for a user mailbox when it is
first created, where astor is the maximum number of 4-K records that the
mailbox can use. If you do not specify this parameter, the value is set to 256. A
quota value of 0 indicates that there is no storage limit. You can change this
quota value by using the ZMAIL SETQUOTA command. See TPF Operations
for more information about the ZMAIL SETQUOTA command.

TPF Configuration File Parameters
Each line of TPF configuration file /etc/tpf_mail.conf must be in the following
format:

tpfparm: value

where tpfparm is the name of the configuration parameter and value is the
parameter value that you want to specify.

The following lists the configuration parameters for the /etc/tpf_mail.conf file.

MAIL_SSID: ss
Specifies the name of the TPF subsystem in which you want the TPF Internet
mail servers to run, where ss is the subsystem name. You must specify this
configuration parameter.

MAX_LOCAL_DELIVERY_MANAGERS: maxlocal
Specifies the maximum number of concurrent entry control blocks (ECBs) that
can deliver mail to the local mailboxes, where maxlocal is a decimal number.
You must specify this parameter. If you do not specify this parameter, the value
is set to 0, which means no mail will be delivered.

MAX_REMOTE_DELIVERY_MANAGERS: maxremote
Specifies the maximum number of concurrent ECBs that can deliver mail to
remote mail domains, where maxremote is a decimal number. You must specify
this parameter. If you do not specify this parameter, the value is set to 0, which
means no mail will be delivered.

MAX_DEFERRED_DELIVERY_MANAGERS: maxdefer
Specifies the maximum number of concurrent ECBs that can process items on
the deferred mail queue, where maxdefer is a decimal number. You must
specify this parameter. If you do not specify this parameter, the value is set to
0, which means no mail will be delivered.

MAX_HANGING_RECEIVE_MANAGERS: maxrcvmgr
Specifies the maximum number of concurrent ECBs that can accept mail, where
maxrcvmgr is a decimal number. You can use this parameter to help improve

TPF Internet Mail Server Support 263

|
|
|

performance. For example, if you specify a value of 50, the TPF Internet mail
server will start 50 permanent mail ECBs to accept mail items and put them on
the delivery queue. These ECBs will remain active unless you stop the mail
server. This parameter is optional; if you do not specify this parameter, the
value is set to 0. There is no maximum value, and the TPF system does not
validate the number you specify.

Note: Each ECB requires about 40 frames; therefore, if you specify too many,
the TPF system can enter input list shutdown.

AQ_ACK_TIMER_INTERVAL: aqacksec
Specifies the maximum amount of time for the TPF system to acknowledge the
receipt of mail items from a remote client, where aqacksec is the number of
seconds. You must specify this parameter; the minimum value is 1.

DQ_ACK_TIMER_INTERVAL: dqacksec
Specifies how often the TPF system will process mail items on the deferred
mail queue, where dqacksec is the number of seconds. You must specify this
parameter; the minimum value is 1.

DEFER_Q_BACKOFF: qbackoffsec
Specifies the minimum amount of time that the server will wait before
attempting to deliver mail from the deferred queue after a previous attempt that
failed, where qbackoffsec is the number of seconds. For example, assume this
parameter is set to 1800 seconds. If an attempt to deliver mail failed, the server
will wait at least 1800 seconds (or 30 minutes) before attempting to deliver that
mail item again. You must specify this parameter; the minimum value is 0.

MAIL_DOMAINxx: prime domain ipaddr
Specifies the following:

xx The fixed file record type associated with this domain. For example, if you
define the #MAIL01 fixed file record type, specify this configuration
parameter as MAIL_DOMAIN01.

prime
A large prime number to help distribute user accounts evenly across the
database. Specify the number 249999991.

domain
The mail domain.

ipaddr
One or more Internet Protocol (IP) addresses for this domain in dotted
decimal format. You can specify as many as 256 IP addresses. You must
specify a unique value for each domain.

You can use the information in the TPF Internet mail server summary report that is
generated from data collection and data reduction to tune some of the values in the
TPF configuration file, such as the number of delivery managers. See TPF System
Performance and Measurement Reference for more information about the TPF
Internet mail server summary report.

Access List Configuration Parameters
Each line of access list configuration file /etc/postfix/access must be in the
following format:

pattern action

264 TPF V4R1 TCP/IP

|
|
|
|
|
|

|
|

When pattern matches a mail address, domain, or host address, the SMTP server
performs the corresponding action.

Specify pattern in one of the following ways:

user@domain
Matches a specific mail address.

domain.name
Matches the domain name itself and any subdomains of that domain, either in
host names or in mail addresses. Top-level domains (such as domains that end
in .com or .org) will never be matched.

user@
Matches all mail addresses with the specified user part.

net.work.addr.ess
Matches any host address in the specified network. A network address is a
sequence of one or more octets separated by a period (.). You can specify all or
part of a network address; for example:

v net.work.addr

v net.work

v net

Specify one of the following for action:

ACCEPT
Accepts mail from the address that matches the specified pattern.

REJECT
Rejects mail from the address that matches the specified pattern.

DUNNO
Continues checking other restrictions specified for this area. See the
smtpd_helo_restictions, smtpd_client_restrictions and smtpd_sender_restrictions
parameters in the SMTP configuration file (/etc/postfix/mail.cf) for more
information about other restrictions.

TPF Internet Mail Server Administrator or Operator Tasks
As an administrator or operator, you can perform tasks related to:

v Controlling and configuring the mail servers

v Controlling and configuring the user accounts and user mailboxes.

Configuring the TPF System for TPF Internet Mail Server Support
The following shows an example of how to configure the TPF system for TPF
Internet mail server support. Consider the following scenario:

v Your mail system will have one mail domain named flyair.tpfmail.com, running
in the basic subsystem (BSS).

v The fixed file record type associated with domain flyair.tpfmail.com will be
#MAIL01.

v You have three employees that will be using this mail system.

v Your mail system needs to be able to receive mail from another domain named
www.greatstuff.com, but cannot accept mail from www.nogood.com.

1. Update the SIP RAMFIL macro input statements to define fixed file record type
#MAIL01 and allocate 1000 records of that type.

TPF Internet Mail Server Support 265

2. Run the FACE table generator (FCTBG) to create a new FACE table (FCTB).

3. Assemble the SIP stage I deck to create a SIP stage II deck.

4. Run SIP stage II.

5. Verify that recoup descriptor BKD1 is defined correctly for fixed file record type
#MAIL01. The GROUP and INDEX macro statements will look as follows:

SYSEQC
DC AL2(3) NUMBER OF PRIMARY GROUPS IN THIS CONTAINER
DC S(IAQ,IDQ,IMAI) PRIME GROUPS...

IMAI GROUP MAC=IMAIL,ID=FC55,ECB=10,MET=(SEQ,0),NBR=1,TYP=#MAIL01, X
TIME=900,USE=BASE,VER=0,GRP=FC50,IDCOMP=(FC66,0), X
ENT=INDON55,EXT=INDOFF55

INDEX TYP=V,FI=IMAIL_LVL1_ENTY,FA=IMAIL_LVL1_ENTY+4, X
LI=L’IMAIL_LVL1_ENTY,CNT=(N,500),ALTID=IMAI_ALT

6. IPL your TPF system and cycle the system to CRAS state or higher.

7. Enter ZIFIL MAIL01/FC55/00/0/999/NNN/N to initialize the #MAIL01 records.

8. Enter the following on every processor to initialize the mail-related IBMMP4
records:

ZIFIL IBMMP4/FC63/00/20/20/NNN/N

ZIFIL IBMMP4/FC66/00/21/21/NNN/N

Note: You only need to do this the first time you set up a mail server.

9. Enter ZMAIL FLUSH to initialize the database queue pointers.

Note: You only need to do this the first time you set up a mail server.

10. Create the SMTP configuration file (/etc/postfix/main.cf); for example:
#---#
SMTP Configuration File
File Name: /etc/postfix/main.cf
#---#
myhostname = tpf01.tpfmail.com
mydomain = tpfmail.com
mynetworks = 172.0.0.0/8, 192.0.0.0/8
mail_name = TPF Mail
smtpd_banner = $myhostname ESMTP $mail_name
maximal_queue_lifetime = 4
minimal_backoff_time = 1000
ignore_mx_lookup_error = YES
smtpd_helo_required = YES
smtpd_helo_restrictions = check_helo_acl,permit_mynetworks,reject_invalid_hostname
smtpd_client_restrictions = check_client_acl,permit_mynetworks,reject_unknown_client
smtpd_sender_restrictions = check_sender_acl,reject_unknown_sendom

Note: Ensure that the domain name is a valid, registered domain.

11. Create the IMAP/POP configuration file (/etc/imapd.conf); for example:
#---#
IMAP/POP Configuration File
File Name: /etc/imapd.conf
#---#
quotawarn: 90
timeout: 30
poptimeout: 10
popminpoll: 5
autocreatequota: 256

12. Create the TPF configuration file (/etc/tpf_mail.conf); for example:
#---#
TPF Configuration File
File Name: /etc/tpf_mail.conf
#---#

266 TPF V4R1 TCP/IP

MAIL_SSID: BSS
MAX_LOCAL_DELIVERY_MANAGERS: 10
MAX_REMOTE_DELIVERY_MANAGERS: 10
MAX_DEFERRED_DELIVERY_MANAGERS: 10
AQ_ACK_TIMER_INTERVAL: 30
DQ_ACK_TIMER_INTERVAL: 30
DEFER_Q_BACKOFF: 1800
MAIL_DOMAIN01: 249999991 flyair.tpfmail.com 192.168.135.55
192.168.100.200 172.234.255.88 172.234.245.20 192.221.117.23

13. Create the access list configuration file (/etc/postfix/access); for example:
#---#
Access List Configuration File
File Name: /etc/postfix/access
#---#
www.greatstuff.com ACCEPT
www.nogood.com REJECT

14. Update the external DNS servers with the domain names and IP addresses.

15. Add the SMTP, IMAP, and POP servers to the Internet daemon configuration
file (IDCF) by entering the following:

ZINET ADD S-SMTP PGM-CMNS MODEL-DAEMON ACT-OPER

ZINET ADD S-IMAP PGM-CMNM MODEL-DAEMON ACT-OPER

ZINET ADD S-POP3 PGM-CMNP MODEL-DAEMON ACT-OPER

16. Enter ZMAIL START READ to start the IMAP and POP servers.

17. Enter ZFILE export MAILDOMAIN=flyair.tpfmail.com to set the
MAILDOMAIN environment variable.

18. Create an account for your three users by entering the following:

zmail cm larry

zmail password larry larrypwd

zmail cm curly

zmail password curly curlypwd

zmail cm moe

zmail password moe moepwd

19. Enter ZMAIL START ALL to start all the TPF Internet mail servers.

See TPF System Generation for more information about defining and allocating
fixed file records. See TPF Operations for more information about the ZIFIL, ZINET
ADD, and ZMAIL commands.

Adding a Domain to an Existing TPF Internet Mail Server Configuration
Assume you configured your TPF system for one mail domain, but now your
business has expanded and there is a requirement to add another mail domain
called trainride.tpfmail.com.

1. Update the SIP RAMFIL macro input statements to define fixed file record type
#MAIL02 and allocate 1000 records of that type.

2. Run the FCTBG to create a new FACE table.

3. Assemble the SIP stage I deck to create a SIP stage II deck.

4. Run SIP stage II.

5. Update the TPF configuration file (/etc/tpf_mail.conf); for example:
#---#
TPF Configuration File
File name: /etc/tpf_mail.conf
#---#
MAIL_SSID: BSS

TPF Internet Mail Server Support 267

MAX_LOCAL_DELIVERY_MANAGERS: 10
MAX_REMOTE_DELIVERY_MANAGERS: 10
MAX_DEFERRED_DELIVERY_MANAGERS: 10
AQ_ACK_TIMER_INTERVAL: 30
DQ_ACK_TIMER_INTERVAL: 30
DEFER_Q_BACKOFF: 1800
MAIL_DOMAIN01: 249999991 flyair.tpfmail.com 192.168.135.55
192.168.100.200 172.234.255.88 172.234.245.20 192.221.117.23
MAIL_DOMAIN02: 249999991 trainride.tpfmail.com 172.118.255.77

6. Update recoup descriptor BKD1 to include the GROUP and INDEX macro
pairs for the #MAIL02 fixed file record type, as follows:

SYSEQC
DC AL2(4) NUMBER OF PRIMARY GROUPS IN THIS CONTAINER
DC S(IAQ,IDQ,IMAI,IMAJ) PRIME GROUPS...

IMAI GROUP MAC=IMAIL,ID=FC55,ECB=10,MET=(SEQ,0),NBR=1,TYP=#MAIL01, X
TIME=900,USE=BASE,VER=0,GRP=FC50,IDCOMP=(FC66,0), X
ENT=INDON55,EXT=INDOFF55

INDEX TYP=V,FI=IMAIL_LVL1_ENTY,FA=IMAIL_LVL1_ENTY+4, X
LI=L’IMAIL_LVL1_ENTY,CNT=(N,500),ALTID=IMAI_ALT

IMAJ GROUP MAC=IMAIL,ID=FC55,ECB=10,MET=(SEQ,0),NBR=1,TYP=#MAIL02, X
TIME=900,USE=BASE,VER=1,GRP=FC50,IDCOMP=(FC66,0), X
ENT=INDON55,EXT=INDOFF55

INDEX TYP=V,FI=IMAIL_LVL1_ENTY,FA=IMAIL_LVL1_ENTY+4, X
LI=L’IMAIL_LVL1_ENTY,CNT=(N,500),ALTID=IMAI_ALT

7. Enter ZMAIL STOP ALL to stop the TPF Internet mail servers.

8. IPL your TPF system and cycle to CRAS state or higher.

9. Enter ZIFIL MAIL02/FC55/00/0/999/NNN/N to initialize the #MAIL02 records.

10. Enter ZMAIL START ALL to restart the TPF Internet mail servers and read the
updated configuration file.

See TPF System Generation for more information about defining and allocating
fixed file records. See TPF Operations for more information about the ZIFIL and
ZMAIL commands.

Adding New Users to an Existing TPF Internet Mail Server
Configuration

Assume you have a working TPF Internet mail system with three users. With your
business continuing to expand, you have hired two new people and need to add
new accounts.

1. Enter the following to create the new user accounts:

zmail cm steveu

zmail password steveu netwalk

zmail cm katej

zmail password katej tigger

See TPF Operations for more information about the ZMAIL commands.

Controlling the TPF Internet Mail Servers
Use the ZMAIL command to control the TPF Internet mail servers.

The ZMAIL command allows you to:

v Start or stop the SMTP, IMAP, and POP servers

v Start or stop delivery of Internet mail to other servers

268 TPF V4R1 TCP/IP

v Flush the TPF Internet mail server mail queue; that is, delete any mail that is in
the active or deferred queues waiting to be delivered

Managing Client Mailboxes
There are a number of ZMAIL commands that allow you to manage client
mailboxes. With these commands you can:

v Create a new user account.

v Create or delete a mailbox.

v Display the users for a mailbox

v Display a list of mailboxes

v Display or set the storage available for a mailbox

v Change the name of a mailbox

v Set or change the access control list for a mailbox.

See TPF Operations for more information about the ZMAIL commands.

TPF Internet Mail Server Client Tasks
As a client, you can send and receive Internet mail by doing the following:

v Configure a PC-based client, such as Netscape or Microsoft Outlook, to point to
the TPF system.

v Write an application program using the mail function to access mail from the TPF
system. See the TPF C/C++ Language Support User’s Guide for more
information about the mail function.

You can also control and configure submailboxes by using the ZMAIL commands.

TPF Internet Mail Server Support 269

270 TPF V4R1 TCP/IP

Part 6. Secure Sockets Layer (SSL) Support

Secure Sockets Layer (SSL) Support 273
SSL_accept . 274
SSL_aor . 275
SSL_check_private_key . 277
SSL_connect . 279
SSL_CTX_check_private_key 280
SSL_CTX_free . 281
SSL_CTX_load_and_set_client_CA_list 282
SSL_CTX_load_verify_locations 283
SSL_CTX_new . 285
SSL_CTX_new_shared . 287
SSL_CTX_set_cipher_list . 289
SSL_CTX_set_client_CA_list 292
SSL_CTX_set_default_passwd_cb_userdata 293
SSL_CTX_set_verify . 294
SSL_CTX_use_certificate_chain_file 296
SSL_CTX_use_certificate_file 298
SSL_CTX_use_PrivateKey_file 300
SSL_CTX_use_RSAPrivateKey_file 302
SSL_free . 304
SSL_get_cipher . 305
SSL_get_error . 307
SSL_get_peer_certificate. 309
SSL_get_session . 310
SSL_get_verify_result . 311
SSL_get_version. 313
SSL_library_init . 314
SSL_load_and_set_client_CA_list 315
SSL_load_client_CA_file . 316
SSL_new . 317
SSL_pending . 318
SSL_read . 319
SSL_renegotiate . 320
SSL_set_cipher_list. 321
SSL_set_client_CA_list . 324
SSL_set_fd . 325
SSL_set_session . 326
SSL_set_verify . 327
SSL_shutdown . 329
SSL_use_certificate_file . 330
SSL_use_PrivateKey_file. 332
SSL_use_RSAPrivateKey_file 333
SSL_write . 334
SSLv2_client_method . 335
SSLv2_server_method . 336
SSLv23_client_method . 337
SSLv23_server_method . 338
SSLv3_client_method . 339
SSLv3_server_method . 340
TLSv1_client_method . 341
TLSv1_server_method . 342

© Copyright IBM Corp. 1996, 2002 271

272 TPF V4R1 TCP/IP

Secure Sockets Layer (SSL) Support

This chapter documents the Secure Sockets Layer (SSL) functions. The information
in this chapter is also delivered as browser-readable hypertext markup language
(HTML) files. To view this information, go to
http://www.ibm.com/tpf/pubs/tpfpubs.htm, click SSL for the TPF 4.1 System: An
Online User’s Guide, and click Using SSL APIs from the left navigation bar.

© Copyright IBM Corp. 1996, 2002 273

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_accept
The SSL_accept function accepts a Secure Sockets Layer (SSL) session connection
request from a remote client application.

Format
#include <openssl/ssl.h>
int SSL_accept(SSL *ssl)

ssl
A pointer to a token returned on the SSL_new call.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 or a negative number indicates an error. Issue the
SSL_get_error function to obtain specific information about the error.

Programming Considerations
v The server application uses the SSL_accept function to accept an SSL session

from a client application. This function does not return to the application until the
SSL handshake process is completed successfully or fails.

v If you are assigning many SSL sessions to the same context (CTX) structure and
all of the sessions will use the same certificate, issue the
SSL_CTX_use_certificate_file and SSL_CTX_use_PrivateKey_file functions
once to assign the certificate to the CTX structure rather than issuing the
SSL_use_certificate_file once for each SSL session.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_connect” on page 279

v “SSL_new” on page 317

v “SSL_CTX_use_certificate_chain_file” on page 296

v “SSL_CTX_use_certificate_file” on page 298.

SSL_accept

274 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_aor
The SSL_aor function allows the issuing entry control block (ECB) to exit and the
specified program to be activated in a new ECB when data is available for reading
on a shared Secure Sockets Layer (SSL) session.

Format
#include <openssl/ssl.h>
int SSL_AOR(SSL *ssl, unsigned char *parm,

unsigned char *pgm, unsigned int istream)

ssl
A pointer to a token returned on the SSL_new call for the shared SSL session.

parm
A pointer to an 8-byte field. The 8 bytes of data are passed to the new ECB.

pgm
A pointer to a 4-byte field that contains the name of the TPF real-time program
to activate when the new ECB is created.

istream
The I-stream number on which to activate the specified program in the new
ECB. If you specify a value of 0, the least busy I-stream is selected.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error. The following are the most likely causes
of errors:

v The TPF real-time program specified for the pgm parameter does not exist.

v The value specified for the istream parameter is not valid.

v The value specified for the ssl parameter is not a token that represents a shared
SSL session.

Programming Considerations
v This function is unique to the TPF system.

v When the specified program is activated in the new ECB, it must issue an
SSL_read call. Unlike the socket activate_on_receipt function that does pass
data to the new ECB, this function does not.

v When the specified program is activated, the following ECB fields are set up:

EBW004–EBW011 The 8 bytes of data passed from the original
ECB on the parm parameter.

EBW012–EBW015 The SSL token for this SSL session.

EBW016–EBW019 The socket descriptor associated with the SSL
session.

EBW020 The timeout flag. If this is equal to 1, the SSL_aor
function timed out and no data was received.

v The SSL_aor function cannot be issued if an SSL_read or another SSL_aor call is
pending for this SSL session.

SSL_aor

Secure Sockets Layer (SSL) Support 275

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_new” on page 317

v “SSL_read” on page 319

v See TPF Transmission Control Protocol/Internet Protocol for more information
about the activate_on_receipt function.

SSL_aor

276 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_check_private_key
The SSL_check_private_key function verifies that the private key agrees with the
corresponding public key in the certificate that is associated with the Secure
Sockets Layer (SSL) structure.

Format
#include <openssl/ssl.h>
int SSL_check_private_key(SSL *ssl)

ssl
A pointer to a token returned on the SSL_new call.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error. The following are the most likely causes
of errors:

v The private key file does not match the corresponding public key in the
certificate.

v A certificate file was not loaded.

v A key file was not loaded.

Programming Considerations
Before you can call the SSL_check_private_key function, one of the following
functions must be issued to set up a private key to the SSL session:

v SSL_CTX_use_PrivateKey_file

v SSL_CTX_use_RSAPrivateKey_file

v SSL_use_PrivateKey_file

v SSL_use_RSAPrivateKey_file.

Before you can call the SSL_check_private_key function, one of the following
functions must be issued to set up a certificate to the SSL session:

v SSL_CTX_use_certificate_file

v SSL_CTX_use_certificate_chain_file

v SSL_use_certificate_file.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_check_private_key” on page 280

v “SSL_CTX_use_certificate_chain_file” on page 296

v “SSL_CTX_use_certificate_file” on page 298

v “SSL_CTX_use_PrivateKey_file” on page 300

v “SSL_CTX_use_RSAPrivateKey_file” on page 302

v “SSL_use_certificate_file” on page 330

SSL_check_private_key

Secure Sockets Layer (SSL) Support 277

http://www.ibm.com/tpf/pubs/tpfpubs.htm

v “SSL_use_PrivateKey_file” on page 332

v “SSL_use_RSAPrivateKey_file” on page 333.

SSL_check_private_key

278 TPF V4R1 TCP/IP

SSL_connect
The SSL_connect function starts a Secure Sockets Layer (SSL) session with a
remote server application.

Format
#include <openssl/ssl.h>
int SSL_connect(SSL *ssl)

ssl
A pointer to a token returned on the SSL_new call.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 or a negative number indicates an error. Issue the
SSL_get_error function to obtain specific information about the error.

Programming Considerations
v The client application uses the SSL_connect function to start an SSL session with

the server application. This function starts the SSL handshake process across
the socket and does not return to the client application until the SSL handshake
process is completed successfully or fails.

v If you are assigning many SSL sessions to the same context (CTX) structure and
all of the sessions will use the same certificate, issue the
SSL_CTX_use_certificate_file and SSL_CTX_use_PrivateKey_file functions
once to assign the certificate to the CTX structure rather than issuing the
SSL_use_certificate_file once for each SSL session.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_accept” on page 274

v “SSL_CTX_use_certificate_chain_file” on page 296

v “SSL_CTX_use_certificate_file” on page 298

v “SSL_use_certificate_file” on page 330.

SSL_connect

Secure Sockets Layer (SSL) Support 279

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_CTX_check_private_key
The SSL_CTX_check_private_key function verifies that the private key agrees with
the corresponding public key in the certificate associated with a specific context
(CTX) structure.

Format
#include <openssl/ssl.h>
int SSL_CTX_check_private_key(SSL_CTX *ctx)

ctx
A pointer to a token returned on the SSL_CTX_new call or the SSL_CTX_new_shared
call.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error. The following are the most likely causes
of errors:

v The private key file does not match the corresponding public key in the
certificate.

v A certificate file was not loaded.

v A key file was not loaded.

Programming Considerations
You must assign a private key to the CTX structure using one of the following
functions before calling the SSL_CTX_check_private_key function:

v SSL_CTX_use_PrivateKey_file

v SSL_CTX_use_RSAPrivateKey_file.

You must assign a certificate to the CTX structure using one of the following
functions before calling the SSL_CTX_check_private_key function:

v SSL_CTX_use_certificate_chain_file

v SSL_CTX_use_certificate_file.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287

v “SSL_CTX_use_certificate_chain_file” on page 296

v “SSL_CTX_use_certificate_file” on page 298

v “SSL_CTX_use_PrivateKey_file” on page 300

v “SSL_CTX_use_RSAPrivateKey_file” on page 302.

SSL_CTX_check_private_key

280 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_CTX_free
The SSL_CTX_free function returns to the TPF system a context (CTX) structure
associated with one or more SSL sessions.

Format
#include <openssl/ssl.h>
void SSL_CTX_free(SSL_CTX *ctx)

ctx
A pointer to a token returned on the SSL_CTX_new call or the SSL_CTX_new_shared
call.

Normal Return
None.

Error Return
None.

Programming Considerations
From the application’s perspective, the CTX structure no longer exists after you
issue the SSL_CTX_free function. However, the CTX structure is not actually
returned to the TPF system until all SSL structures associated with this CTX
structure have been returned.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287

v “SSL_free” on page 304.

SSL_CTX_free

Secure Sockets Layer (SSL) Support 281

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_CTX_load_and_set_client_CA_list
The SSL_CTX_load_and_set_client_CA_list function loads certificates from a
specific file and places the issuer name of each certificate in a specific context
(CTX) structure. Each certificate is for a certificate authority (CA) that the server
application trusts and is willing to accept as the CA that issued the certificate of the
remote client.

Format
#include <openssl/ssl.h>
int SSL_CTX_load_and_set_client_CA_list(SSL_CTX *ctx, const char *file)

ctx
A pointer to a token returned on the SSL_CTX_new call or the SSL_CTX_new_shared
call.

file
A pointer to the file that contains the certificates. The file must be in PEM
(base64 encoded) format. The maximum length is 255 characters.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
If unsuccessful, the SSL_CTX_load_and_set_client_CA_list function returns NULL.
The following are the most likely causes of errors:

v The certificate authority (CA) file does not exist or you do not have permission to
read that file.

v The CA file that contains the certificate chain is not in PEM (base64 encoded)
format.

Programming Considerations
v This function is unique to the TPF system.

v This function combines the SSL_load_client_CA_file and
SSL_CTX_set_client_CA_list functions into one function. For shared SSL
sessions, you must use this function rather than the SSL_load_client_CA_file
and SSL_CTX_set_client_CA_list functions.

v This function is needed only by server applications that verify the identity of
remote client applications when SSL sessions are started.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287

v “SSL_CTX_set_client_CA_list” on page 292

v “SSL_load_client_CA_file” on page 316.

SSL_CTX_load_and_set_client_CA_list

282 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_CTX_load_verify_locations
The SSL_CTX_load_verify_locations function loads the certificates of the certificate
authorities (CAs) that are trusted by this application and that will be used to verify
certificates that are received from remote applications. Certificate revocation lists
(CRLs) are also loaded if any exist.

Format
#include <openssl/ssl.h>
int SSL_CTX_load_verify_locations(SSL_CTX *ctx,

const char *CAfile,
const char *CApath)

ctx
A pointer to a token returned on the SSL_CTX_new call or the SSL_CTX_new_shared
call.

CAfile
A pointer to the name of the file that contains the certificates of the trusted CAs
and CRLs. The file must be in PEM (base64 encoded) format. The value of this
parameter can be NULL if the value of the CApath parameter is not NULL. The
maximum length is 255 characters.

CApath
A pointer to the name of the directory that contains the certificates of the trusted
CAs and CRLs. The files in the directory must be in PEM (base64 encoded)
format. The value of this parameter can be NULL if the value of the CAfile
parameter is not NULL. The maximum length is 255 characters.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error. The following are the most likely causes
of errors:

v The certificate authority (CA) file and the CA path are both NULL.

v If the CA file is not NULL, either the file does not exist or you do not have
permission to read that file.

v If the CA path is not NULL, the path does not exist.

Programming Considerations
v You must issue the SSL_CTX_load_verify_locations function if your application is

going to verify certificates received from remote applications.

v The values of the CAfile and CApath parameters cannot both be NULL. You can
specify a value of NULL for only one parameter or set both parameters to values
other than NULL.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

SSL_CTX_load_verify_locations

Secure Sockets Layer (SSL) Support 283

http://www.ibm.com/tpf/pubs/tpfpubs.htm

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287.

SSL_CTX_load_verify_locations

284 TPF V4R1 TCP/IP

SSL_CTX_new
The SSL_CTX_new function creates a new context (CTX) structure for use by one or
more Secure Sockets Layer (SSL) sessions that are not shared. Use the
SSL_CTX_new_shared function to create a CTX structure for shared SSL sessions.

Format
#include <openssl/ssl.h>
SSL_CTX *SSL_CTX_new(SSL_METHOD *meth)

meth
A pointer to the connection method that indicates which SSL versions are
supported and whether the new CTX structure is for a client application or a
server application.

Normal Return
Returns a pointer to the new CTX token.

Error Return
A NULL pointer indicates an error.

Programming Considerations
v Before calling the SSL_CTX_new function, you must call one of the following

functions to set up the connection method:

– SSLv2_client_method

– SSLv2_server_method

– SSLv3_client_method

– SSLv3_server_method

– SSLv23_client_method

– SSLv23_server_method

– TLSv1_client_method

– TLSv1_server_method.

v Use the output of this function as input to subsequent functions that require a
CTX structure as input.

v Issue the SSL_CTX_new_shared function to use shared SSL sessions.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_free” on page 281

v “SSL_CTX_new_shared” on page 287

v “SSL_new” on page 317

v “SSLv2_client_method” on page 335

v “SSLv2_server_method” on page 336

v “SSLv23_client_method” on page 337

v “SSLv23_server_method” on page 338

SSL_CTX_new

Secure Sockets Layer (SSL) Support 285

http://www.ibm.com/tpf/pubs/tpfpubs.htm

v “SSLv3_client_method” on page 339

v “SSLv3_server_method” on page 340

v “TLSv1_client_method” on page 341

v “TLSv1_server_method” on page 342.

SSL_CTX_new

286 TPF V4R1 TCP/IP

SSL_CTX_new_shared
The SSL_CTX_new_shared function creates a new context (CTX) structure for use by
shared Secure Sockets Layer (SSL) sessions.

Format
#include <openssl/ssl.h>
SSL_CTX *SSL_CTX_new_shared(SSL_METHOD *meth, const char *name)

meth
A pointer to the connection method that indicates which SSL versions are
supported and whether the new CTX structure is for a client application or a
server application.

name
A pointer to the name to look up in the shared SSL configuration file
(/etc/sslshared.txt) to determine which SSL daemon processes manage the
SSL sessions assigned to the CTX structure created. If you specify a NULL
pointer, the TPF system selects an SSL daemon process that has the least
number of SSL sessions to manage the sessions for this CTX structure.

Normal Return
Returns a pointer to a CTX token.

Error Return
A NULL pointer indicates an error. The most likely cause of this error is that a name
parameter that does not exist in the shared SSL configuration file
(/etc/sslshared.txt) was passed in.

Programming Considerations
v Before calling the SSL_CTX_new function, you must call one of the following

functions to set up the connection method:

– SSLv2_client_method

– SSLv2_server_method

– SSLv3_client_method

– SSLv3_server_method

– SSLv23_client_method

– SSLv23_server_method

– TLSv1_client_method

– TLSv1_server_method.

v This function is unique to the TPF system.

v Use this function rather than the SSL_CTX_new function when the application wants
its SSL sessions to be shared. Any SSL sessions assigned to the CTX structure
created by this function will be shared SSL sessions.

v Use the output of this function as the input to subsequent SSL function calls that
require a pointer to a CTX structure.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

SSL_CTX_new_shared

Secure Sockets Layer (SSL) Support 287

http://www.ibm.com/tpf/pubs/tpfpubs.htm

Related Information
v “SSL_CTX_new” on page 285

v “SSLv2_client_method” on page 335

v “SSLv2_server_method” on page 336

v “SSLv23_client_method” on page 337

v “SSLv23_server_method” on page 338

v “SSLv3_client_method” on page 339

v “SSLv3_server_method” on page 340

v “TLSv1_client_method” on page 341

v “TLSv1_server_method” on page 342.

SSL_CTX_new_shared

288 TPF V4R1 TCP/IP

SSL_CTX_set_cipher_list
The SSL_CTX_set_cipher_list function sets ciphers for use by Secure Sockets
Layer (SSL) sessions that are started using the specified context (CTX) structure. A
CTX structure is needed for each application that is running SSL. Each SSL session
has an SSL structure that points to a CTX structure.

Format
#include <openssl/ssl.h>
int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)

ctx
A pointer to a token returned on the SSL_CTX_new call or the SSL_CTX_new_shared
call.

str
A pointer to a string that contains one or more ciphers separated by a colon,
comma, or blank. The maximum length is 255 characters.

You must specify the ciphers in order of preference from highest to lowest. The
TPF system supports the following SSL version 3 and Transport Layer Security
(TLS) version 1 ciphers for use by the SSL sessions established from this CTX
structure. The Rivest-Shamir-Adelman (RSA) key exchange is used.

NULL-MD5 No data encryption; MD5 for message integrity.

NULL-SHA No data encryption; SHA for message integrity.

EXP-RC4-MD5 Export RC4 (40-bit key) for data encryption;
MD5 for message integrity.

RC4-MD5 RC4 (128-bit key) for data encryption; MD5 for
message integrity.

RC4-SHA RC4 (128-bit key) for data encryption; SHA for
message integrity.

EXP-RC2-CBC-MD5 Export RC2 (40-bit key) for data encryption;
MD5 for message integrity.

EXP-DES-CBC-SHA Export DES (40-bit key) for data encryption;
SHA for message integrity.

DES-CBC-SHA DES (56-bit key) for data encryption; SHA for
message integrity.

DES-CBC3-SHA Triple-DES (168-bit key) for data encryption;
SHA for message integrity.

The TPF system supports the following SSL version 2 ciphers for use by the
SSL sessions established from this CTX structure. The RSA key exchange is
used.

RC4-MD5 RC4 (128-bit key) for data encryption; MD5 for
message integrity.

EXP-RC4-MD5 Export RC4 (40-bit key) for data encryption;
MD5 for message integrity.

RC2-CBC-MD5 RC2 (128-bit key) for data encryption; MD5 for
message integrity.

EXP-RC2-CBC-MD5 Export RC2 (40-bit key) for data encryption;
MD5 for message integrity.

SSL_CTX_set_cipher_list

Secure Sockets Layer (SSL) Support 289

DES-CBC-MD5 DES (56-bit key) for data encryption; MD5 for
message integrity.

DES-CBC3-MD5 Triple-DES(168-bit key) for data encryption;
MD5 for message integrity.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error.

Programming Considerations
v When an SSL structure is first created using the SSL_new function, the structure

inherits the cipher list assigned to the context (CTX) structure that was used to
create the SSL structure. The SSL_set_cipher_list function overrides that cipher
list for a specific SSL structure.

v If you are assigning many SSL sessions to the same CTX structure and each
session will use the same cipher list, issue the SSL_CTX_set_cipher_list function
once to assign the cipher list to the CTX structure rather than issuing the
SSL_set_cipher_list function once for each SSL session.

v If you start an SSL session without issuing the SSL_CTX_set_cipher_list or the
SSL_set_cipher_list functions, the system default cipher list is used.

The default ciphers for SSL version 2 are:

– DES-CBC-MD5

– DES-CBC3-MD5

– EXP-RC2-CBC-MD5

– EXP-RC4-MD5

– RC2-CBC-MD5

– RC4-MD5.

The default ciphers for SSL version 3 are:

– DES-CBC-SHA

– DES-CBC3-SHA

– EXP-DES-CBC-SHA

– EXP-RC2-CBC-MD5

– EXP-RC4-MD5

– RC4-SHA.

The default ciphers for TLS version 1 are:

– DES-CBC3-SHA

– DES-CBC-SHA

– EXP-DES-CBC-SHA

– EXP-RC2-CBC-MD5

– EXP-RC4-MD5

– RC4-MD5

– RC4–SHA.

SSL_CTX_set_cipher_list

290 TPF V4R1 TCP/IP

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new_shared” on page 287

v “SSL_new” on page 317

v “SSL_set_cipher_list” on page 321.

SSL_CTX_set_cipher_list

Secure Sockets Layer (SSL) Support 291

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_CTX_set_client_CA_list
The SSL_CTX_set_client_CA_list function identifies the list of certificate authorities
(CAs) that will be sent to the remote client application when requesting the client
certificate for any Secure Sockets Layer (SSL) session associated with a specific
context (CTX) structure. The client application must provide a certificate that was
signed by one of the CAs in the list.

Format
#include <openssl/ssl.h>
void SSL_CTX_set_client_CA_list(SSL_CTX *ctx,STACK_OF(X509_NAME) *list)

ctx
A pointer to a token returned on the SSL_CTX_new call.

list
A pointer to a stack of CA names.

Normal Return
None.

Error Return
None.

Programming Considerations
v The SSL_CTX_set_client_CA_list function is only needed by server applications

that verify the identity of remote client applications when SSL sessions are
started.

v Issue the SSL_load_client_CA_file function to create the list of CA names that
are passed to the SSL_CTX_set_client_CA_list function.

v If the SSL_CTX_set_client_CA_list function is not used and you request a client
certificate, the list of CA names that get passed to the client application are the
CAs from the SSL_CTX_load_verify_locations function.

v You cannot use the SSL_CTX_set_client_CA_list function for shared SSL
sessions. You must use the SSL_CTX_load_and_set_client_CA_list function.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_load_and_set_client_CA_list” on page 282

v “SSL_CTX_load_verify_locations” on page 283

v “SSL_CTX_new_shared” on page 287

v “SSL_load_client_CA_file” on page 316.

SSL_CTX_set_client_CA_list

292 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_CTX_set_default_passwd_cb_userdata
The SSL_CTX_set_default_passwd_cb_userdata function identifies the password that
is used to access data in a private key file that is in PEM (base64 encoded) format.

Format
#include <openssl/ssl.h>
void SSL_CTX_set_default_password_cb_userdata(SSL_CTX *ctx, void *password)

ctx
A pointer to a token returned on the SSL_CTX_new call or the SSL_CTX_new_shared
call.

password
A pointer to the password. The maximum length is 255 characters.

Normal Return
None.

Error Return
None.

Programming Considerations
You must use the SSL_CTX_set_default_passwd_cb_userdata function if your
application is going to load a private key file that contains encrypted data.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new_shared” on page 287

v “SSL_CTX_use_PrivateKey_file” on page 300

v “SSL_CTX_use_RSAPrivateKey_file” on page 302

v “SSL_use_PrivateKey_file” on page 332

v “SSL_use_RSAPrivateKey_file” on page 333.

SSL_CTX_set_default_passwd_cb_userdata

Secure Sockets Layer (SSL) Support 293

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_CTX_set_verify
The SSL_CTX_set_verify function indicates whether or not to verify the identity of
remote peers starting Secure Sockets Layer (SSL) sessions associated with a
specific context (CTX) structure.

Format
#include <openssl/ssl.h>
void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, int (*cb)

(int, X509_STORE_CTX*))

ctx
A pointer to a token returned on the SSL_CTX_new call or the SSL_CTX_new_shared
call.

mode
One or more of the following verify options:

SSL_VERIFY_NONE
Use this option if you do not want to verify the identity of the remote
peer. This option must be used alone; no other options can be
specified. Consider the following when using this option:

v If the application is a server, the application will not request the
certificate for the remote client application when the SSL session is
started.

v If the application is a client, the certificate for the remote server
application will be validated; however, the SSL session will be started
regardless of whether or not the certificate for the remote server
application is valid. Issue the SSL_get_verify_result function to
check whether or not the certificate for the server application is valid.

SSL_VERIFY_PEER
Use this option to verify the identify of the remote peer when the SSL
session is started. Consider the following when using this option:

v If the application is a server, the application will request and verify
the certificate for the remote client application when the SSL session
is started. If the remote client application provides a certificate that is
not valid, the SSL session fails.

v If the application is a client, the certificate for the remote server
application is validated. If the certificate for the remote server
application is not valid, the SSL session fails.

SSL_VERIFY_FAIL_IF_NO_PEER_CERT
Use this option to request that the remote client application send its
certificate when the SSL session is starting, and to end the SSL session
if no certificate is provided. This option only has meaning if the
SSL_VERIFY_PEER option is also set. Do not use this option when
your application is the client.

SSL_VERIFY_CLIENT_ONCE
Use this option to verify the identity of the remote client application
when the SSL session is first started. If the SSL session is
renegotiated, do not verify the identify of the client application again.
This option only has meaning if the SSL_VERIFY_PEER option is also
set. Do not use this option when your application is the client.

cb A pointer set to NULL.

SSL_CTX_set_verify

294 TPF V4R1 TCP/IP

Normal Return
None.

Error Return
None.

Programming Considerations
The default value for the verify mode is SSL_VERIFY_NONE when the CTX
structure is created. You must use the SSL_CTX_set_verify function or the
SSL_set_verify function with the SSL_VERIFY_PEER option if you want to
authenticate remote peers when SSL sessions are started.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287

v “SSL_get_verify_result” on page 311

v “SSL_set_verify” on page 327.

SSL_CTX_set_verify

Secure Sockets Layer (SSL) Support 295

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_CTX_use_certificate_chain_file
The SSL_CTX_use_certificate_chain_file function loads the chain of certificates
for use with a Secure Sockets Layer (SSL) session using a specific context (CTX)
structure.

Format
#include <openssl/ssl.h>
int SSL_CTX_use_certificate_chain_file(SSL_CTX *ctx, const char *file)

ctx
A pointer to a token returned on the SSL_CTX_new call or the SSL_CTX_new_shared
call.

file
A pointer to the name of the file that contains the chain of certificates. The file
that contains the certificate chain must be in PEM (base64 encoded) format.
The maximum length is 255 characters.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error. The following are the most likely causes
of errors:

v The certificate file does not exist or you do not have permission to read that file.

v The certificate file that contains the certificate chain is not in PEM (base64
encoded) format.

v If you loaded a private key file before issuing this function, the private key in that
file does not match the corresponding public key in the certificate.

Programming Considerations
v The first certificate in the file must be the certificate for your application. The next

certificate in the file must be the certificate for the certificate authority (CA) that
signed the certificate for your application. Subsequent certificates, if any exist,
are for the CAs in the signing sequence.

v The entire list of certificates is passed to the remote node during the SSL
handshake.

v Each SSL structure that is created from this CTX structure (by issuing the
SSL_new function) inherits the certificates of that CTX structure.

v If you need only one certificate rather than a chain of certificates, you can use
either the SSL_CTX_use_certificate_file or SSL_use_certificate_file function.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287

v “SSL_CTX_use_certificate_file” on page 298

SSL_CTX_use_certificate_chain_file

296 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

v “SSL_new” on page 317

v “SSL_use_certificate_file” on page 330.

SSL_CTX_use_certificate_chain_file

Secure Sockets Layer (SSL) Support 297

SSL_CTX_use_certificate_file
The SSL_CTX_use_certificate_file function loads the certificate for use with
Secure Sockets Layer (SSL) sessions using a specific context (CTX) structure.

Format
#include <openssl/ssl.h>
int SSL_CTX_use_certificate_file(SSL_CTX *ctx,const char *file,int type)

ctx
A pointer to a token returned on the SSL_CTX_new call or the SSL_CTX_new_shared
call.

file
A pointer to the name of the file that contains the certificate. The maximum
length is 255 characters.

type
The file type, which is one of the following:

SSL_FILETYPE_ASN1 The file is in abstract syntax notation 1 (ASN.1)
format.

SSL_FILETYPE_PEM The file is in PEM (base64 encoded) format.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error. The following are the most likely causes
of errors:

v The certificate file does not exist or you do not have permission to read that file.

v The file type is not valid. The file type must be abstract syntax notation 1 (ASN.1)
or PEM (base64 encoded).

v If you loaded a private key file before issuing this function, the private key in that
file does not match the corresponding public key in the certificate.

Programming Considerations
v Each SSL structure that is created from this CTX structure using the SSL_new

function inherits the certificate of the CTX structure. You can override the
certificate used by an individual SSL session by issuing the
SSL_use_certificate_file function.

v If you are assigning many SSL sessions to the same CTX structure and all the
sessions will use the same certificate, issue the SSL_CTX_use_certificate_file
function once to assign the certificate to the CTX structure rather than issuing the
SSL_use_certificate_file once for each SSL session.

v If you need to pass a chain of certificates rather than just one certificate, you
must issue the SSL_CTX_use_certificate_chain_file function.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

SSL_CTX_use_certificate_file

298 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287

v “SSL_CTX_use_certificate_chain_file” on page 296

v “SSL_CTX_use_certificate_file” on page 298

v “SSL_new” on page 317

v “SSL_use_certificate_file” on page 330.

SSL_CTX_use_certificate_file

Secure Sockets Layer (SSL) Support 299

SSL_CTX_use_PrivateKey_file
The SSL_CTX_use_PrivateKey_file function loads the private key for use with
Secure Sockets Layer (SSL) sessions using a specific context (CTX) structure.

Format
#include <openssl/ssl.h>
int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const char *file, int type)

ctx
A pointer to a token returned on the SSL_CTX_new call or the SSL_CTX_new_shared
call.

file
A pointer to the name of the file that contains the private key.

type
The file type, which must be the following:

SSL_FILETYPE_PEM The file is in PEM (base64 encoded) format.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error. The following are the most likely causes
of errors:

v The private key file does not exist or you do not have permission to read that file.

v The private key file is not in PEM (base64 encoded) format.

v If the private key file is encrypted, the password is not correct or no password
was provided.

v If you loaded a certificate file before issuing this function, the public key in that
certificate does not match the corresponding private key in the private key file.

Programming Considerations
v Before calling the SSL_CTX_use_PrivateKey_file function, you must identify the

password for the private key file by issuing the
SSL_CTX_set_default_passwd_cb_userdata function. Do this only if the private key
file has been encrypted.

v If you are assigning many SSL sessions to the same CTX structure and all the
sessions will use the same private key file, issue the
SSL_CTX_use_PrivateKey_file function once to assign the certificate to the CTX
structure rather than issuing the SSL_CTX_use_PrivateKey_file function once for
each SSL session.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287

SSL_CTX_use_PrivateKey_file

300 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

v “SSL_CTX_set_default_passwd_cb_userdata” on page 293

v “SSL_CTX_use_certificate_chain_file” on page 296

v “SSL_use_certificate_file” on page 330.

SSL_CTX_use_PrivateKey_file

Secure Sockets Layer (SSL) Support 301

SSL_CTX_use_RSAPrivateKey_file
The SSL_CTX_use_RSAPrivateKey_file function loads the Rivest-Shamir-Adelman
(RSA) private key for use with a Secure Sockets Layer (SSL) session using a
specific context (CTX) structure.

Format
#include <openssl/ssl.h>
int SSL_CTX_use_RSAPrivateKey_file(SSL_CTX *ctx, const char *file, int type)

ctx
A pointer to a token returned on the SSL_CTX_new call or the SSL_CTX_new_shared
call.

file
A pointer to the name of the file that contains the RSA private key. The
maximum length is 255 characters.

type
The file type, which is one of the following:

SSL_FILETYPE_ASN1 The file is in abstract syntax notation 1 (ASN.1)
format.

SSL_FILETYPE_PEM The file is in PEM (base64 encoded) format.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error. The following are the most likely causes
of errors:

v The private key file does not exist or you do not have permission to read that file.

v The private key file is not in PEM (base64 encoded) format.

v If the private key file is encrypted, the password is not correct or no password
was provided.

v If you loaded a certificate file before issuing this function, the public key in that
certificate does not match the corresponding private key in the private key file.

Programming Considerations
v Before calling the SSL_CTX_use_RSAPrivateKey_file function, you must identify

the password for the private key file, if the file is in PEM (base64 coded) format,
by issuing the SSL_CTX_set_default_passwd_cb_userdata function. Do this only if
the private key file has been encrypted.

v If you are assigning many SSL sessions to the same CTX structure and all the
sessions will use the same private key file, issue the
SSL_CTX_use_RSAPrivateKey_file function once to assign the certificate to the
CTX structure rather than issuing the SSL_CTX_use_RSAPrivateKey_file function
once for each SSL session.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

SSL_CTX_use_RSAPrivateKey_file

302 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287

v “SSL_CTX_set_default_passwd_cb_userdata” on page 293

v “SSL_CTX_use_certificate_chain_file” on page 296

v “SSL_use_certificate_file” on page 330.

SSL_CTX_use_RSAPrivateKey_file

Secure Sockets Layer (SSL) Support 303

SSL_free
The SSL_free function returns to the TPF system the Secure Sockets Layer (SSL)
structure associated with an SSL session.

Format
#include <openssl/ssl.h>
void SSL_free(SSL *ssl)

ssl
A pointer to a token returned on the SSL_new call.

Normal Return
None.

Error Return
None.

Programming Considerations
None.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
“SSL_new” on page 317.

SSL_free

304 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_get_cipher
The SSL_get_cipher function returns the name of the cipher associated with a
specific Secure Sockets Layer (SSL) session.

Format
#include <openssl/ssl.h>
const char *SSL_get_cipher(SSL *ssl)

ssl
A pointer to a token returned on the SSL_new call.

Normal Return
Returns a pointer to the cipher name. Possible values are:

NULL-MD5
No data encryption; MD5 for message integrity.

NULL-SHA
No data encryption; SHA for message integrity.

EXP-RC4-MD5
Export RC4 (40-bit key) for data encryption; MD5 for message integrity.

RC4-MD5
RC4 (128-bit key) for data encryption; MD5 for message integrity.

RC4-SHA
RC4 (128-bit key) for data encryption; SHA for message integrity.

EXP-RC2-CBC-MD5
Export RC2 (40-bit key) for data encryption; MD5 for message integrity.

EXP-RC4-MD5
Export RC4 (40-bit key) for data encryption; MD5 for message integrity.

EXP-DES-CBC-SHA
Export DES (40-bit key) for data encryption; SHA for message integrity.

DES-CBC3-SHA
Triple-DES (168-bit key) for data encryption; SHA for message integrity.

DES-CBC-MD5
DES (56-bit key) for data encryption; MD5 for message integrity.

DES-CBC3-MD5
Triple-DES (168-bit key) for data encryption; MD5 for message integrity.

RC2-CBC-MD5
RC2 (128-bit key) for data encryption; MD5 for message integrity.

Error Return
Returns a pointer to the text string unknown.

Programming Considerations
The SSL session must be started before this function is issued, which means that
the SSL_connect and SSL_accept functions must be issued before this function is
issued.

SSL_get_cipher

Secure Sockets Layer (SSL) Support 305

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_accept” on page 274

v “SSL_connect” on page 279

v “SSL_new” on page 317.

SSL_get_cipher

306 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_get_error
The SSL_get_error function returns information about why the previous Secure
Sockets Layer (SSL) application programming interface (API) call resulted in an
error return code.

Format
#include <openssl/ssl.h>
int SSL_get_error(SSL *ssl,int ret)

ssl
A pointer to a token returned on the SSL_new call.

ret
The return code from the previous SSL API call.

Normal Return
Returns one of the following values:

SSL_ERROR_NONE
No error to report. This is set when the value of the ret parameter is greater
than 0.

SSL_ERROR_SSL
An error occurred in the SSL library.

SSL_ERROR_WANT_READ
Processing was not completed successfully because there was no data
available for reading, and the socket available for the SSL session is in
nonblocking mode. Try the function again at a later time.

SSL_ERROR_WANT_WRITE
Processing was not completed successfully because the socket associated
with the SSL session is blocked from sending data. Try the function again at
a later time.

SSL_ERROR_SYSCALL
An I/O error occurred. Issue the sock_errno function to determine the cause
of the error.

SSL_ERROR_ZERO_RETURN
The remote application shut down the SSL connection normally. Issue the
SSL_shutdown function to shut down data flow for an SSL session.

SSL_ERROR_WANT_CONNECT
Processing was not completed successfully because the SSL session was
in the process of starting the session, but it has not completed yet. Try the
function again at a later time.

Error Return
None.

Programming Considerations
v If an SSL API call results in an error return code, issue the SSL_get_error

function for the following functions to obtain the reason for the error:

– SSL_accept

– SSL_connect

– SSL_read

SSL_get_error

Secure Sockets Layer (SSL) Support 307

– SSL_shutdown

– SSL_write.

v Do not use errno or the sock_errno function to determine the cause of an SSL
API error. Instead, you must use the SSL_get_error function. However, if you
received the SSL_ERROR_SYSCALL return code after issuing the
SSL_get_error function, it is appropriate to use the sock_errno function.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_accept” on page 274

v “SSL_connect” on page 279

v “SSL_read” on page 319

v “SSL_shutdown” on page 329

v “SSL_write” on page 334

v See TPF Transmission Control Protocol/Internet Protocol for more information
about the errno and sock_errno functions.

SSL_get_error

308 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_get_peer_certificate
The SSL_get_peer_certificate function returns the peer certificate that was
received when the Secure Sockets Layer (SSL) session was started.

Format
#include <openssl/ssl.h>
X509 *SSL_get_peer_certificate(SSL *ssl)

ssl
A pointer to a token returned on the SSL_new call.

Normal Return
Returns one of the following:

v A pointer to the certificate.

v NULL if no certificate was received when the SSL session started or the
certificate is no longer available.

v NULL if issued with a shared SSL session as input.

Error Return
None.

Programming Considerations
The SSL_get_peer_certificate function checks to determine whether a peer
certificate exists. Issue the SSL_get_verify_result function to determine whether
the certificate is valid.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_get_verify_result” on page 311

v “SSL_new” on page 317.

SSL_get_peer_certificate

Secure Sockets Layer (SSL) Support 309

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_get_session
The SSL_get_session function returns a copy of the Secure Sockets Layer (SSL)
session information for a specific SSL structure.

Format
#include <openssl/ssl.h>
SSL_SESSION *SSL_get_session(SSL *ssl);

ssl
A pointer to a token returned on the SSL_new call.

Normal Return
Returns a pointer to an SSL_SESSION structure that contains information about the
SSL session.

Error Return
Returns NULL when no SSL session exists.

Programming Considerations
v This function is useful only for client applications that want to use an SSL session

again.

v Use the output of this function as input to the SSL_set_session function.

v You cannot use this function for shared SSL sessions.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_new” on page 317

v “SSL_set_session” on page 326.

SSL_get_session

310 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_get_verify_result
The SSL_get_verify_result function returns the result of the remote peer certificate
validation.

Format
#include <openssl/ssl.h>
long SSL_get_verify_result(SSL *ssl)

ssl
A pointer to a token returned on the SSL_new call

Normal Return
Returns one of the following values:

X509_V_OK
The certificate was valid or no certificate was provided. Use the
SSL_get_peer_certificate function to determine whether the certificate was
provided or not.

X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT
Unable to find the certificate for one of the certificate authorities (CAs) in
the signing hierarchy and that CA is not trusted by the local application.

X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE
Unable to decrypt the signature of the certificate.

X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY
The public key in the certificate could not be read.

X509_V_ERR_CERT_SIGNATURE_FAILURE
The signature of the certificate is not valid.

X509_V_ERR_CERT_NOT_YET_VALID
The certificate is not valid until a date in the future.

X509_V_ERR_CERT_HAS_EXPIRED
The certificate has expired.

X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD
There is a format error in the notBefore field of the certificate.

X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD
There is a format error in the notAfter field of the certificate.

X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT
The passed certificate is self-signed and the same certificate cannot be
found in the list of trusted certificates.

X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN
A self-signed certificate exists in the certificate chain. The certificate chain
could be built up using the untrusted certificates, but the root CA could not
be found locally.

X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY
The issuer certificate of a locally looked up certificate could not be found.
This normally means that the list of trusted certificates is not complete.

X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE
No signatures could be verified because the certificate chain contains only
one certificate, it is not self-signed, and the issuer is not trusted.

SSL_get_verify_result

Secure Sockets Layer (SSL) Support 311

X509_V_ERR_INVALID_CA
A CA certificate is not valid because it is not a CA or its extensions are not
consistent with the intended purpose.

X509_V_ERR_PATH_LENGTH_EXCEEDED
The basicConstraints pathlength parameter was exceeded.

X509_V_ERR_INVALID_PURPOSE
The certificate that was provided cannot be used for its intended purpose.

X509_V_ERR_CERT_UNTRUSTED
The root CA is not marked as trusted for its intended purpose.

X509_V_ERR_CERT_REJECTED
The root CA is marked to reject the purpose specified.

X509_V_ERR_SUBJECT_ISSUER_MISMATCH
The issuer certificate was rejected because its subject name did not match
the issuer name of the current certificate.

X509_V_ERR_AKID_SKID_MISMATCH
The issuer certificate was rejected because its subject key identifier was
present and did not match the authority key identifier of the current
certificate.

X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH
The issuer certificate was rejected because its issuer name and serial
number was present and did not match the authority key identifier of the
current certificate.

X509_V_ERR_KEYUSAGE_NO_CERTSIGN
The issuer certificate was rejected because its keyUsage extension does
not permit certificate signing.

X509_V_ERR_CERT_REVOKED
The certificate was revoked by the issuer.

Error Return
None.

Programming Considerations
Client applications that have a verify mode of SSL_VERIFY_NONE must use the
SSL_get_verify_result function to determine whether the certificate for the server
application is valid or not.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_get_peer_certificate” on page 309

v “SSL_new” on page 317.

SSL_get_verify_result

312 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_get_version
The SSL_get_version function returns the protocol version of the current Secure
Sockets Layer (SSL) connection.

Format
#include <openssl/ssl.h>
const char * SSL_get_version(SSL *ssl)

ssl
A pointer to a token returned on the SSL_new call

Normal Return
Returns a character pointer to the name of the protocol version in use. Possible
values are:

SSLv2
SSL version 2

SSLv3
SSL version 3

TLSv1 TLS version 1

Error Return
If the SSL session has not been started, it returns a pointer to the character string
(NONE).

Programming Considerations
Issue this call only after the SSL handshake has been completed.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
“SSL_new” on page 317.

SSL_get_version

Secure Sockets Layer (SSL) Support 313

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_library_init
The SSL_library_init function registers the available ciphers and message digests.

Format
#include <openssl/ssl.h>
int SSL_library_init(void)

Normal Return
Return code 1 indicates that the function was successful.

Error Return
None.

Programming Considerations
This is the first SSL function that an application issues before issuing any other SSL
function.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
None.

SSL_library_init

314 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_load_and_set_client_CA_list
The SSL_load_and_set_client_CA_list function loads certificates from a specific file
and places the issuer name of each certificate in a specific Secure Sockets Layer
(SSL) structure. Each certificate is for a certificate authority (CA) that the server
application trusts and is willing to accept as the CA that issued the certificate of the
remote client.

Format
#include <openssl/ssl.h>
int SSL_load_and_set_client_CA_list(SSL *ssl, const char *file)

ssl
A pointer to a token returned on the SSL_new call.

file
A pointer to the file that contains the certificates. The file must be in PEM
(base64 encoded) format. The maximum length is 255 characters.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
If unsuccessful, the SSL_load_and_set_client_CA_list function returns NULL. The
following are the most likely causes of errors:

v The certificate authority (CA) file does not exist or you do not have permission to
read that file.

v The CA file that contains the certificate chain is not in PEM (base64 encoded)
format.

Programming Considerations
v This function is unique to the TPF system.

v This function combines the SSL_load_client_CA_file and
SSL_set_client_CA_list functions into one function. For shared SSL sessions,
you must use this function rather than the SSL_load_client_CA_file and
SSL_set_client_CA_list functions

v This function is needed only by server applications that verify the identity of
remote client applications when SSL sessions are started.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_load_client_CA_file” on page 316

v “SSL_new” on page 317

v “SSL_set_client_CA_list” on page 324.

SSL_load_and_set_client_CA_list

Secure Sockets Layer (SSL) Support 315

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_load_client_CA_file
The SSL_load_client_CA_file function loads certificates from a specific file and
returns the issuer name of each certificate.

Format
#include <openssl/ssl.h>
STACK_OF(X509_NAME) *SSL_load_client_CA_file(const char *file)

file
A pointer to the name of the file that contains the certificates. The file must be
in PEM (base64 encoded) format.

Normal Return
Returns a stack of certificate issuer names. The names include each certificate
authority (CA) that signed any of the certificates in the file.

Error Return
If unsuccessful, the SSL_load_client_CA_file function returns NULL. The following
are the most likely causes of errors:

v The certificate authority (CA) file does not exist or you do not have permission to
read that file.

v The CA file that contains the certificate chain is not in PEM (base64 encoded)
format.

Programming Considerations
v The SSL_load_client_CA_file function is needed only by server applications that

verify the identity of remote client applications when Secure Sockets Layer (SSL)
sessions are started.

v The file must contain certificates for all CAs that the server application will accept
as the CA that signed the certificate for the client application. This list of CAs is
not necessarily the same list of CAs that the server application trusts.

v Pass the output of the SSL_load_client_CA_file function to the
SSL_CTX_set_client_CA_list or the SSL_set_client_CA_list functions. The list
of CAs will be sent to the client application when requesting its certificate.

v This function does not have an SSL or CTX structure as input. In addition, the
SSL_set_client_CA_list function cannot be issued with a shared SSL session as
input; therefore, you must use the SSL_load_and_set_client_CA_list function for
shared SSL sessions.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_set_client_CA_list” on page 292

v “SSL_load_and_set_client_CA_list” on page 315

v “SSL_set_client_CA_list” on page 324.

SSL_load_client_CA_file

316 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_new
The SSL_new function creates a new Secure Sockets Layer (SSL) structure for use
with an SSL session.

Format
#include <openssl/ssl.h>
SSL *SSL_new(SSL_CTX *ctx)

ctx
A pointer to a token returned on the SSL_CTX_new call or the SSL_CTX_new_shared
call.

Normal Return
Returns a token that represents a new SSL structure.

Error Return
A NULL pointer indicates an error.

Programming Considerations
v Before calling the SSL_new function, you must call one of the following functions

to set up the connection method:

– SSLv2_client_method

– SSLv2_server_method

– SSLv3_client_method

– SSLv3_server_method

– SSLv23_client_method

– SSLv23_server_method

– TLSv1_client_method

– TLSv1_server_method.

v Use the output of this function as input to subsequent functions that require an
SSL structure as input.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287

v “SSLv2_client_method” on page 335

v “SSLv2_server_method” on page 336

v “SSLv23_client_method” on page 337

v “SSLv23_server_method” on page 338

v “SSLv3_client_method” on page 339

v “SSLv3_server_method” on page 340

v “TLSv1_client_method” on page 341

v “TLSv1_server_method” on page 342.

SSL_new

Secure Sockets Layer (SSL) Support 317

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_pending
The SSL_pending function returns the amount of data in the current Secure Sockets
Layer (SSL) data record that is immediately available for reading on an SSL
session.

Format
#include <openssl/ssl.h>
int SSL_pending(SSL *ssl)

ssl
A pointer to a token returned on the SSL_new call.

Normal Return
Returns the number of bytes that are pending, which can be zero.

Error Return
None.

Programming Considerations
v Application data for an SSL session flows in SSL data records. An entire data

record must be received from the network and processed by the SSL code
before any data in that data record can be passed to the application when the
SSL_read function is issued. If the amount of data in the data record is greater
than the buffer size specified on the SSL_read function, only part of the data in
the data record is passed to the application. The remaining data in that data
record is pending and the amount of data that remains in the data record is the
return code for the SSL_pending function.

v If the SSL_pending function returns a return code of 0, it does not necessarily
mean that there is no data immediately available for reading on the SSL session.
A return code of 0 indicates that there is no more data in the current SSL data
record. However, more SSL data records may have been received from the
network already. If the SSL_pending function returns a return code of 0, issue the
select function, passing the file descriptor of the socket to check if the socket is
readable. Readable means more data has been received from the network on
the socket.

If the socket is readable, it does not necessarily mean that application data is
available. The data on the socket could be SSL control information (such as an
alert) rather than application data. The select function will also indicate that the
socket is readable even if a partial SSL data record was received from the
network.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_new” on page 317

v “SSL_read” on page 319

v See TPF Transmission Control Protocol/Internet Protocol for more information
about the select function.

SSL_pending

318 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_read
The SSL_read function reads application data from a Secure Sockets Layer (SSL)
session.

Format
#include <openssl/ssl.h>
int SSL_read(SSL *ssl,char *buf,int num)

ssl
A pointer to a token returned on the SSL_new call.

buf
A pointer to the buffer into which to read the data.

num
The maximum number of bytes of data that the application can read.

Normal Return
Returns the number of bytes of data (from 1 to the value specified on the num
parameter) that are read.

Error Return
A return code equal to 0 or a negative number indicates an error. Issue the
SSL_get_error function to obtain specific information about the error.

Programming Considerations
If this is a shared SSL session, the socket will be changed to nonblocking mode
when the SSL_read function is completed.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_get_error” on page 307

v “SSL_new” on page 317

v “SSL_pending” on page 318.

SSL_read

Secure Sockets Layer (SSL) Support 319

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_renegotiate
The SSL_renegotiate function creates a new set of cipher keys for an existing
Secure Sockets Layer (SSL) session.

Format
#include <openssl/ssl.h>
int SSL_renegotiate(SSL *ssl)

ssl
A pointer to a token returned on the SSL_new call

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error.

Programming Considerations
This function is useful for long-running SSL sessions to create a new set of cipher
keys periodically.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
“SSL_new” on page 317.

SSL_renegotiate

320 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_set_cipher_list
The SSL_set_cipher_list function sets the ciphers for use by a specific Secure
Sockets Layer (SSL) session that session that is started using the specified SSL
structure.

Format
#include <openssl/ssl.h>
int ssl_set_cipher_list(SSL *ssl,const char *str)

ssl
A pointer to a token returned on the SSL_new call.

str
A pointer to a string that contains one or more ciphers separated by a colon,
comma, or blank. The maximum length is 255 characters.

You must specify the ciphers in order of preference from highest to lowest. The
TPF system supports the following SSL version 3 and Transport Layer Security
(TLS) version 1 ciphers that are used by the Rivest-Shamir-Adelman (RSA) key
exchange:

NULL-MD5 No data encryption; MD5 for message integrity.

NULL-SHA No data encryption; SHA for message integrity.

EXP-RC4-MD5 Export RC4 (40-bit key) for data encryption;
MD5 for message integrity.

RC4-MD5 RC4 (128-bit key) for data encryption; MD5 for
message integrity.

RC4-SHA RC4 (128-bit key) for data encryption; SHA for
message integrity.

EXP-RC2-CBC-MD5 Export RC2 (40-bit key) for data encryption;
MD5 for message integrity.

EXP-DES-CBC-SHA Export DES (40-bit key) for data encryption;
SHA for message integrity.

DES-CBC-SHA DES (56–bit key) for data encryption; SHA for
message integrity.

DES-CBC3-SHA Triple-DES (168-bit key) for data encryption;
SHA for message integrity.

The TPF system supports the following SSL version 2 ciphers that are used by
the RSA key exchange:

RC4-MD5 RC4 (128-bit key) for data encryption; MD5 for
message integrity.

EXP-RC4-MD5 Export RC4 (40-bit key) for data encryption;
MD5 for message integrity.

RC2-CBC-MD5 RC2 (128-bit key) for data encryption; MD5 for
message integrity.

EXP-RC2-CBC-MD5 Export RC2 (40-bit key) for data encryption;
MD5 for message integrity.

DES-CBC-MD5 DES (56-bit key) for data encryption; MD5 for
message integrity.

SSL_set_cipher_list

Secure Sockets Layer (SSL) Support 321

DES-CBC3-MD5 Triple-DES (168-bit key) for data encryption;
MD5 for message integrity.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error.

Programming Considerations
v When an SSL structure is first created using the SSL_new function, the structure

inherits the cipher list assigned to the context (CTX) structure that was used to
create the SSL structure. The SSL_set_cipher_list function overrides that cipher
list for a specific SSL structure.

v If you are assigning many SSL sessions to the same CTX structure and each
session will use the same cipher list, issue the SSL_CTX_set_cipher_list function
once to assign the cipher list to the CTX structure rather than issuing the
SSL_set_cipher_list function once for each SSL session.

v If you start an SSL session without issuing the SSL_CTX_set_cipher_list or the
SSL_set_cipher_list function, the system default cipher list is used.

The default ciphers for SSL version 2 are:

– DES-CBC-MD5

– DES-CBC3-MD5

– EXP-RC2-CBC-MD5

– EXP-RC4-MD5

– RC2-CBC-MD5

– RC4-MD5.

The default ciphers for SSL version 3 are:

– DES-CBC-SHA

– DES-CBC3-SHA

– EXP-DES-CBC-SHA

– EXP-RC2-CBC-MD5

– EXP-RC4-MD5

– RC4-SHA.

The default ciphers for TLS version 1 are:

– DES-CBC3-SHA

– DES-CBC-SHA

– EXP-DES-CBC-SHA

– EXP-RC2-CBC-MD5

– EXP-RC4-MD5

– RC4-MD5

– RC4–SHA.

SSL_set_cipher_list

322 TPF V4R1 TCP/IP

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_set_cipher_list” on page 289

v “SSL_new” on page 317.

SSL_set_cipher_list

Secure Sockets Layer (SSL) Support 323

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_set_client_CA_list
The SSL_set_client_CA_list function identifies the list of certificate authorities
(CAs) that are sent to the remote client application when requesting the client
certificates for a specific Secure Sockets Layer (SSL) session. The client application
must provide a certificate that was signed by one of the CAs in the list.

Format
#include <openssl/ssl.h>
void SSL_set_client_CA_list(SSL *ssl,STACK_OF(X509_NAME) *list)

ssl
A pointer to a token returned on the SSL_new call.

list
A pointer to a stack of CA names.

Normal Return
None.

Error Return
None.

Programming Considerations
v The SSL_set_client_CA_list function is needed only by server applications that

verify the identity of remote client applications when SSL sessions are started.

v Use the output from the SSL_load_client_CA_file function as input to this
function.

v If the SSL_set_client_CA_list function is not used and you request a client
certificate, the list of CA names that get passed to the client application are the
CAs from the SSL_CTX_load_verify_locations function.

v This function cannot be issued with a shared SSL session as input. In addition,
the SSL_load_client_CA_file function does not have an SSL or CTX structure as
input; therefore, you must use the SSL_load_and_set_client_CA_list function for
shared SSL sessions.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_load_verify_locations” on page 283

v “SSL_load_client_CA_file” on page 316

v “SSL_load_and_set_client_CA_list” on page 315

v “SSL_new” on page 317.

SSL_set_client_CA_list

324 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_set_fd
The SSL_set_fd function assigns a socket to a Secure Sockets Layer (SSL)
structure.

Format
#include <openssl/ssl.h>
int SSL_set_fd(SSL *ssl,int fd)

ssl
A pointer to a token returned on the SSL_new call.

fd The file descriptor of the socket.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error.

Programming Considerations
Assign the socket to an SSL structure before starting the SSL session with the
SSL_connect or SSL_accept function. You can assign the socket to an SSL structure
anytime after the Transmission Control Protocol (TCP) connection is established,
meaning after the connect or accept functions is completed successfully.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_accept” on page 274

v “SSL_connect” on page 279

v “SSL_new” on page 317

v See the Socket Application Programming Interface Overview section of TPF
Transmission Control Protocol/Internet Protocol for more information about the
connect and accept functions.

SSL_set_fd

Secure Sockets Layer (SSL) Support 325

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_set_session
The SSL_set_session function sets up Secure Sockets Layer (SSL) session
information for use by the SSL_connect function when reusing an SSL session.

Format
#include <openssl/ssl.h>
int SSL_set_session(SSL *ssl, SSL_SESSION *session);

ssl
A pointer to a token returned on the SSL_new call.

session
A pointer to the SSL_SESSION structure.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error.

Programming Considerations
v This function is useful only for client applications that want to reuse an SSL

session.

v The output of the SSL_get_session function is an SSL_SESSION structure. Use
the output of the SSL_get_session function as input to the SSL_set_session
function.

v You cannot use this function for shared SSL sessions.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_connect” on page 279

v “SSL_get_session” on page 310

v “SSL_new” on page 317.

SSL_set_session

326 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_set_verify
The SSL_set_verify function indicates whether to verify the identity of the remote
application or not when the Secure Sockets Layer (SSL) session is started.

Format
#include <openssl/ssl.h>
void SSL_set_verify(SSL *ssl, int mode, int (*cb)

(int ok,X509_STORE_CTX *ctx))

ssl
A pointer to a token returned on the SSL_new call.

mode
One or more of the following verify options:

SSL_VERIFY_NONE
Use this option if you do not want to verify the identity of the remote
peer. This option must be used alone; no other options can be
specified. Consider the following when using this option:

v If the application is a server, the application will not request the
certificate for the remote client application when the SSL session is
started.

v If the application is a client, the certificate for the remote server
application will be validated; however, the SSL session will be started
regardless of whether or not the certificate for the remote server
application is valid. Issue the SSL_get_verify_result function to
check whether or not the certificate for the server is valid.

SSL_VERIFY_PEER
Use this option to verify the identify of the remote peer when the SSL
session is started. Consider the following when using this option:

v If the application is a server, the application will request and verify
the certificate for the remote client application when the SSL session
is started. If the remote client application provides a certificate that is
not valid, the SSL session fails.

v If the application is a client, the certificate for the remote server
application is validated. If the certificate for the remote server
application is not valid, the SSL session fails.

SSL_VERIFY_FAIL_IF_NO_PEER_CERT
Use this option to request that the remote client application send its
certificate when the SSL session is starting, and to end the SSL session
if no certificate is provided. This option only has meaning if the
SSL_VERIFY_PEER option is also set. Do not use this option when
your application is the client.

SSL_VERIFY_CLIENT_ONCE
Use this option to verify the identity of the remote client application
when the SSL session is first started. If the SSL session is
renegotiated, do not verify the identify of the client application again.
This option only has meaning if the SSL_VERIFY_PEER option is also
set. Do not use this option when your application is the client.

cb A pointer set to NULL.

Normal Return
None.

SSL_set_verify

Secure Sockets Layer (SSL) Support 327

Error Return
None.

Programming Considerations
The default value for the verify mode is SSL_VERIFY_NONE when the CTX
structure is created. You must issue the SSL_set_verify function or the
SSL_CTX_set_verify function with the SSL_VERIFY_PEER option if you want to
authenticate remote peers when SSL sessions are started.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_set_verify” on page 294

v “SSL_get_verify_result” on page 311

v “SSL_new” on page 317.

SSL_set_verify

328 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_shutdown
The SSL_shutdown function shuts down data flow for a Secure Sockets Layer (SSL)
session.

Format
#include <openssl/ssl.h>
int SSL_shutdown(SSL *ssl)

ssl
A pointer to a token returned on the SSL_new call.

Normal Return
v Return code 0 indicates that the application issued the SSL_shutdown function

first. Continue issuing the SSL_shutdown function until you receive return code 1,
which indicates the remote application has also shut down.

v In SSL version 3 and TLS version 1, return code 1 indicates that both the client
and server applications have issued the SSL_shutdown function.

v In SSL version 2, a return code of 1 is always returned.

Error Return
A return code equal to −1 indicates an error. Issue the SSL_get_error function to
obtain specific information about the error.

Programming Considerations
v The SSL_shutdown function is the normal way to shut down an SSL session. It is

a good idea that you shut down an SSL session before the socket is shut down
and closed.

v An alert is sent to the remote partner to notify it that the connection is ending
normally. Normal shutdown is required if you want to resume the SSL session
across a different socket at a later time.

v Both the client and server applications must issue the SSL_shutdown function to
shut down the connection normally.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_get_error” on page 307

v “SSL_new” on page 317.

SSL_shutdown

Secure Sockets Layer (SSL) Support 329

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_use_certificate_file
The SSL_use_certificate_file function loads the certificate for use with a Secure
Sockets Layer (SSL) session.

Format
#include <openssl/ssl.h>
int SSL_use_certificate_file(SSL *ssl,const char *file,int type)

ssl
A pointer to a token returned on the SSL_new call.

file
A pointer to the name of the file that contains the certificate. The maximum
length is 255 characters.

type
The file type, which is one of the following:

SSL_FILETYPE_ASN1 The file is in abstract syntax notation 1 (ASN.1)
format.

SSL_FILETYPE_PEM The file is in PEM (base64 encoded) format.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
v A return code equal to 0 indicates an error. The following are the most likely

causes of errors:

– The certificate file does not exist or you do not have permission to read that
file.

– The file type is not valid. The file type must be ASN.1 or PEM.

v If you loaded a private key file before issuing this function, the private key in that
file does not match the corresponding public key in the certificate.

Programming Considerations
v When an SSL structure is first created using the SSL_new function, the structure

inherits the certificate (if any exists) that is assigned to the context (CTX)
structure that was used to create the SSL structure. The
SSL_use_certificate_file function allows you to use a certificate other than the
one assigned to the CTX structure.

v If you are assigning many SSL sessions to the same CTX structure and all
sessions will use the same certificate, issue the SSL_CTX_use_certificate_file
function once to assign the certificate to the CTX structure rather than issuing the
SSL_use_certificate_file once for each SSL session.

v If you need to pass a chain of certificates rather than just one certificate, you
must issue the SSL_CTX_use_certificate_chain_file function.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

SSL_use_certificate_file

330 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

Related Information
v “SSL_CTX_use_certificate_chain_file” on page 296

v “SSL_CTX_use_certificate_file” on page 298

v “SSL_new” on page 317.

SSL_use_certificate_file

Secure Sockets Layer (SSL) Support 331

SSL_use_PrivateKey_file
The SSL_use_PrivateKey_file function loads the private key for use with a Secure
Sockets Layer (SSL) session.

Format
#include <openssl/ssl.h>
int SSL_use_PrivateKey_file(SSL *ssl, const char *file, int type)

ssl
A pointer to a token returned on the SSL_new call.

file
A pointer to the name of the file that contains the private key. The maximum
length is 255 characters.

type
The type of file, which must be the following:

SSL_FILETYPE_PEM The file is in PEM (base64 encoded) format.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error. The following are the most likely causes
of errors:

v The private key file does not exist or you do not have permission to read that file.

v The private key file is not in PEM (base64 encoded) format.

v If the private key file is encrypted, the password is not correct or no password
was provided.

v If you loaded a certificate file before issuing this function, the public key in that
certificate does not match the corresponding private key in the private key file.

Programming Considerations
Before calling the SSL_use_PrivateKey_file function, you must identify the
password for the private key file by issuing the
SSL_CTX_set_default_passwd_cb_userdata function. Do this only if the private key
file has been encrypted.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_set_default_passwd_cb_userdata” on page 293

v “SSL_new” on page 317.

SSL_use_PrivateKey_file

332 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_use_RSAPrivateKey_file
The SSL_use_RSAPrivateKey_file function loads the Rivest-Shamir-Adelman (RSA)
private key for use with a Secure Sockets Layer (SSL) session.

Format
#include <openssl/ssl.h>
int SSL_use_RSAPrivateKey_file(SSL *ssl, const char *file, int type)

ssl
A pointer to a token returned on the SSL_new call.

file
A pointer to the name of the file that contains the RSA private key. The
maximum length is 255 characters.

type
The file type, which is one of the following:

SSL_FILETYPE_ASN1 The file is in abstract syntax notation 1 (ASN.1)
format.

SSL_FILETYPE_PEM The file is in PEM (base64 encoded) format.

Normal Return
Return code 1 indicates that the function was successful.

Error Return
A return code equal to 0 indicates an error. The following are the most likely causes
of errors:

v The private key file does not exist or you do not have permission to read that file.

v The private key file is not in PEM (base64 encoded) format.

v If the private key file is encrypted, the password is not correct or no password
was provided.

v If you loaded a certificate file before issuing this function, the public key in that
certificate does not match the corresponding private key in the private key file.

Programming Considerations
Before calling the SSL_use_RSAPrivateKey_file function, you must identify the
password for the private key file, if the file is in PEM (base64 coded) format, by
issuing the SSL_CTX_set_default_passwd_cb_userdata function. Do this only if the
private key file has been encrypted.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_set_default_passwd_cb_userdata” on page 293

v “SSL_new” on page 317.

SSL_use_RSAPrivateKey_file

Secure Sockets Layer (SSL) Support 333

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSL_write
The SSL_write function writes application data across a Secure Sockets Layer
(SSL) session.

Format
#include <openssl/ssl.h>
int SSL_write(SSL *ssl,const char *buf,int num)

ssl
A pointer to a token returned on the SSL_new call.

buf
A pointer to the data to send.

num
The number of bytes of data to send. The maximum number of byte that can be
sent is 32 000 for sessions using SSL version 2.

Normal Return
Returns the number of bytes of data (from 1 to the value specified on the num
parameter) sent.

Error Return
A return code equal to 0 or a negative number indicates an error. Issue the
SSL_get_error function to obtain specific information about the error.

Programming Considerations
v Normally, the SSL_write function processes all data passed by the application, in

which case the return code is equal to the value specified for the num
parameter. However, if the socket becomes blocked during processing, it is
possible that only some of the data will be processed, in which case the return
code is greater than 0, but less than the value specified for the num parameter.
When this occurs, you must adjust the value specified on the buf parameter and
the value specified for the num parameter, and then issue the SSL_write function
again to send the remaining data.

v If this is a shared SSL session, the socket will be changed to nonblocking mode
when the SSL_write function is completed.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
“SSL_new” on page 317.

SSL_write

334 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSLv2_client_method
The SSLv2_client_method function is used to indicate that the application is a client
and supports Secure Sockets Layer version 2 (SSLv2).

Format
#include <openssl/ssl.h>
SSL_METHOD *SSLv2_client_method(void)

Normal Return
A pointer to the appropriate connection method.

Error Return
None.

Programming Considerations
v When an SSL session is started, an SSLv2 CLIENT_HELLO command is sent to

indicate that the client application only supports SSL version 2. The remote
server application must also support SSL version 2 for the SSL session to be
established.

v Use the output of this function as input to the SSL_CTX_new function or the
SSL_CTX_new_shared function.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287.

SSLv2_client_method

Secure Sockets Layer (SSL) Support 335

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSLv2_server_method
The SSLv2_server_method function indicates that the application is a server and
supports Secure Sockets Layer version 2 (SSLv2).

Format
#include <openssl/ssl.h>
SSL_METHOD *SSLv2_server_method(void)

Normal Return
A pointer to the appropriate connection method.

Error Return
None.

Programming Considerations
v The server application only understands SSLv2 CLIENT_HELLO commands;

therefore, the remote client applications must support SSL version 2 and send
SSLv2 CLIENT_HELLO commands to the server application. The server
application will send back a SERVER_HELLO command that indicates that it only
supports SSL version 2.

v Use the output of this function as input to the SSL_CTX_new function or the
SSL_CTX_new_shared function.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287.

SSLv2_server_method

336 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSLv23_client_method
The SSLv23_client_method function indicates that the application is a client and
supports Secure Sockets Layer version 2 (SSLv2), Secure Sockets Layer version 3
(SSLv3), and Transport Layer Security version 1 (TLSv1).

Format
#include <openssl/ssl.h>
SSL_METHOD *SSLv23_client_method(void)

Normal Return
A pointer to the appropriate connection method.

Error Return
None.

Programming Considerations
v When an SSL session is started, an SSLv2 CLIENT_HELLO command is sent

and indicates that the client application also supports SSLv3 and TLSv1. This
client application can establish connections with any remote server application
that supports SSLv2 and, optionally, other versions.

v Issue the SSLv23_client_method function if you do not know which SSL versions
the remote server application supports, or if the SSL versions supported by the
server application are likely to change.

v Use the output of this function as input to the SSL_CTX_new function or the
SSL_CTX_new_shared function.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287.

SSLv23_client_method

Secure Sockets Layer (SSL) Support 337

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSLv23_server_method
The SSLv23_server_method function indicates that the application is a server and
supports Secure Sockets Layer version 2 (SSLv2), Secure Sockets Layer version 3
(SSLv3), and Transport Layer Security version 1 (TLSv1).

Format
#include <openssl/ssl.h>
SSL_METHOD *SSLv23_server_method(void)

Normal Return
A pointer to the appropriate connection method.

Error Return
None.

Programming Considerations
v The server application understands SSLv2, SSLv3, and TLSv1 CLIENT_HELLO

commands; therefore, any remote client application that supports SSL can
connect to the server application.

v Use the SSLv23_server_method function when remote client applications using
different SSL versions will be connecting to the server application.

v Use the output of this function as input to the SSL_CTX_new function or the
SSL_CTX_new_shared function.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287.

SSLv23_server_method

338 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSLv3_client_method
The SSLv3_client_method function indicates that the application is a client and
supports Secure Sockets Layer version 3 (SSLv3).

Format
#include <openssl/ssl.h>
SSL_METHOD *SSLv3_client_method(void)

Normal Return
A pointer to the appropriate connection method.

Error Return
None.

Programming Considerations
v When an SSL session is started, an SSLv3 CLIENT_HELLO command is sent

and indicates that the client application only supports SSL version 3. The remote
server application must also support SSLv3 for the SSL session to be
established. If the remote server application only supports SSL version 2
(SSLv2), the SSL session will fail.

v Use the output of this function as input to the SSL_CTX_new function or the
SSL_CTX_new_shared function.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287.

SSLv3_client_method

Secure Sockets Layer (SSL) Support 339

http://www.ibm.com/tpf/pubs/tpfpubs.htm

SSLv3_server_method
The SSLv3_server_method function indicates that the application is a server and
supports Secure Sockets Layer version 3 (SSLv3).

Format
#include <openssl/ssl.h>
SSL_METHOD *SSLv3_server_method(void)

Normal Return
A pointer to the appropriate connection method.

Error Return
None.

Programming Considerations
v The server application only understands SSLv3 CLIENT_HELLO commands;

therefore, remote client applications must support SSL version 3 and send SSLv3
CLIENT_HELLO commands to the server application. The server application
sends back a SERVER_HELLO command that indicates that it only supports
SSLv3. Remote client applications that only support SSL version 2 (SSLv2)
cannot connect to this server application.

v Use the output of this function as input to the SSL_CTX_new function or the
SSL_CTX_new_shared function.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287.

SSLv3_server_method

340 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

TLSv1_client_method
The TLSv1_client_method function indicates that the application is a client and
supports Transport Layer Security version 1 (TLSv1).

Format
#include <openssl/ssl.h>
SSL_METHOD *TLSv1_client_method(void)

Normal Return
A pointer to the appropriate connection method.

Error Return
None.

Programming Considerations
v When a Secure Sockets Layer (SSL) session is started, a TLSv1

CLIENT_HELLO command is sent to indicate that the client application only
supports TLSv1. The remote server application must also support TLSv1 for the
SSL session to be established.

v Use the output of this function as input to the SSL_CTX_new function or the
SSL_CTX_new_shared function.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287.

TLSv1_client_method

Secure Sockets Layer (SSL) Support 341

http://www.ibm.com/tpf/pubs/tpfpubs.htm

TLSv1_server_method
The TLSv1_server_method function indicates that the application is a server and
supports Transport Layer Security version 1 (TLSv1).

Format
#include <openssl/ssl.h>
SSL_METHOD *TLSv1_server_method(void)

Normal Return
A pointer to the appropriate connection method.

Error Return
None.

Programming Considerations
v The server application only understands TLSv1 CLIENT_HELLO commands;

therefore, remote client applications must support TLSv1 and send TLSv1
CLIENT_HELLO commands to the server application. The server application will
not understand or accept SSLv2 and SSLv3 CLIENT_HELLO commands.

v Use the output of this function as input to the SSL_CTX_new function or the
SSL_CTX_new_shared function.

Examples
For sample SSL applications, go to http://www.ibm.com/tpf/pubs/tpfpubs.htm, click
SSL for the TPF 4.1 System: An Online User’s Guide, and click Examples from
the left navigation bar.

Related Information
v “SSL_CTX_new” on page 285

v “SSL_CTX_new_shared” on page 287.

TLSv1_server_method

342 TPF V4R1 TCP/IP

http://www.ibm.com/tpf/pubs/tpfpubs.htm

Appendix A. CLAW Trace Postprocessor

This appendix provides the following information:

v Sample job control language (JCL) for the Common Link Access to Workstation
(CLAW) data trace postprocessor

v Sample data trace output

v Sample JCL for the CLAW process trace postprocessor

v Sample process trace output.

Sample JCL for the CLAW Data Trace Postprocessor
The CLAW data trace postprocessor (CLTD) program reads an RTA/RTL log tape
created by the CLAW online trace function. The CLAW online trace function is
activated by the ZCLAW TRACE command. The CLTD program is designed to run
in an offline environment.

Use the CLTD program to generate a report of logged message entries to an output
device such as a printer. Figure 32 contains sample JCL that you can use to run the
CLAW data trace postprocessor.

Input parameters to the CLTD program must be in 80-column format starting with
column 1. You can enter the following parameters as the JCL input data set:

PRINT
The PRINT parameter must be displayed in column 1 using a space to separate
it from its keyword = argument options list. Each parameter must be separated
by a comma. The PRINT parameter is required if you want to specify the
following options:

BLK=nnnn
Block record criteria, where nnnn is a number from 0001 to 9999. Each
block element must be right-justified with zero padding. The program
processes only the first nnnn CLAW 4-K trace blocks. The default block
record criteria is 1000.

//FORMAT JOB (GM1CO,5991C),B117,MSGLEVEL=(1,1),CLASS=A
/*ROUTE PRINT SYSTEM(USERID)
/*ROUTE PUNCH SYSTEM(USERID)
//***
//*** ***
//*** ***
//*** ***
//***
//A EXEC PGM=CLTD40
//STEPLIB DD DSN=ACP0000.DEVP.TEST.LK,DISP=SHR
//LOGTAPE DD DISP=OLD,UNIT=VTAPE,VOL=SER=A00147,
// DSN=RTA.TAPE
//REPORT DD SYSOUT=A
//TERM#OUT DD SYSOUT=A
//TERM#IN DD *
PRINT BLK=1000,MSG=43,DATE=11FEB,TIME=19.27.58,DUR=00.06
//TERM#IN DD *
DEFAULT

Figure 32. Sample JCL for the CLAW Data Trace Postprocessor

© Copyright IBM Corp. 1996, 2002 343

MSG=nn
Message entry criteria, where nn is a number from 01 to 63. Each message
element must be right-justified with zero padding. As many as nn messages
in each 4-K trace block is processed.

DATE=ddmmm
Date criteria, where dd is day 01 to 31 of a month and mmm is the month
in 3-character format (for example, JAN, FEB, MAR, APR, MAY, JUN JUL,
AUG, SEP, OCT, NOV, DEC). The CLTD program processes only those
CLAW trace blocks that match the date requested. If the date is not
provided, all blocks are processed in the BLK and MSG parameters.

TIME=hh.mm.ss
Start time criteria, where hh.mm.ss is hours, minutes, and seconds in
continental time format (for example, 15.00.00). Each time element must be
right-justified with zero padding. The CLTD program processes only those
CLAW trace blocks traced at or after the requested time. The DATE
parameter is a prerequisite. If the TIME parameter is not provided, all
blocks in the specified date are processed in the BLK and MSG
parameters.

DUR=mm.ss
Duration criteria, where mm is minute 00 to 59 and ss is second 00 to 59.
Each time element must be right-justified with zero padding. If requested,
the DATE and TIME parameters are required. You can specify an ending
time to be used once the program starts processing the CLAW trace blocks
that meet the start time criteria. Processing ends once a CLAW trace block
whose 4-K block time stamp exceeds the duration period. A duration of
minutes that carries to the next day will be set to the maximum of 59
minutes of the 23rd hour of the requested day. If the DUR parameter is not
specified and the TIME parameter is specified, all blocks whose date and
time stamps meet the criteria are processed.

DEFAULT
Use the DEFAULT parameter if you do not want to specify the PRINT
parameter with options.

CLAW Data Trace Postprocessor
Figure 33 on page 346 provides a sample of data output that is created by the
Common Link Access to Workstation (CLAW) data trace postprocessor.

The output contains 64-byte entries of trace data, each representing data that has
been sent to, or received from, the TCP/IP offload device.

v The 64-byte entries whose first 4 bytes are equal to X'00010001' represent
socket application programming interface (API) requests sent to the TCP/IP
offload device from the TPF system.

v The 64-byte entries whose first 4 bytes are equal to X'00010002' represent
socket API responses received from the TCP/IP offload device by the TPF
system.

v The 64-byte entries whose first 4 bytes are equal to X'00010009' represent
unsolicited messages received from the TCP/IP offload device by the TPF
system.

The trace data for this particular report represents a stream socket session in which
the TPF system is the server and an OS/2 workstation is the client. During this
session, a TPF socket application has issued socket, bind, listen, accept, read,

344 TPF V4R1 TCP/IP

send, write, shutdown, and close socket API functions to the TCP/IP offload device.
The trace data shows that each socket API request sent to the TCP/IP offload
device is associated with a socket API response from the TCP/IP offload device.
During this session, the TCP/IP offload device has also sent several unsolicited
messages to the TPF system to indicate a change in the state of the stream socket
connection. The c$isiucv.h header file and the ISIUCV data macro provide
information about how to interpret the individual 64-byte trace entries printed by the
CLAW data trace postprocessor.

See “Using the CLAW Data Trace Function” on page 32 for more information about
the CLAW data trace function.

Appendix A. CLAW Trace Postprocessor 345

CLAW Trace / Log Tape Report

The parameters identified below were provided
on your input as report generation criteria:

PRINT BLK = 1000
MSG = 43
DATE = 11FEB
TIME = 19.27.58
DUR = 00.13, STOP TIME = 19.28.11

1 CLAW Trace / Log Tape Report
ADDR:

DATE: 11FEB ID: TD, x’E3C4’ LAST: 3848
TIME: 19.27.58 SWITCH: x’F0’ NEXT: 3996

|---|
| |
| XMIT TIME: 46.24 READ ADDR:0200 |
|MSG=x’0001000101A52D000073C0000019000000000000000000000000001000000008’|
|MSG=x’0000000200000001000000060000001E00000000000000000000000000000000’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.24 READ ADDR:0200 |
|MSG=x’0001000201A52D000073C0000019000000000000000000000000000812000000’|
|MSG=x’000001980000000100’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.24 READ ADDR:0200 |
|MSG=x’0001000101A52D000073C0000002019800000000000000000000001000000008’|
|MSG=x’0002138C00’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.24 READ ADDR:0200 |
|MSG=x’0001000201A52D000073C0000002019800000000000000000000000801000000’|
|MSG=x’000000000000000000008000’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.24 READ ADDR:0200 |
|MSG=x’0001000101A52D000073C000000D0198000000000000000A0000000000000008’|
|MSG=x’00’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.24 READ ADDR:0200 |
|MSG=x’0001000201A52D000073C000000D0198000000000000000A000000080A000000’|
|MSG=x’00000000B700400100’|
| SIZE = 0148 |

Figure 33. Sample Output from the CLAW Data Trace Postprocessor (Part 1 of 5)

346 TPF V4R1 TCP/IP

1 CLAW Trace / Log Tape Report
ADDR:

DATE: 11FEB ID: TD, x’E3C4’ LAST: 3848
TIME: 19.27.58 SWITCH: x’F0’ NEXT: 3996

|---|
| |
| XMIT TIME: 46.24 READ ADDR:0200 |
|MSG=x’000100090B0072005A29EF0000000198000001001E00000000000010F3030000’|
|MSG=x’0000001E00000001000000000000019800000000000000000000000000000000’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.25 READ ADDR:0200 |
|MSG=x’0001000101A52D000073C0000001019800000000000000210000000000000018’|
|MSG=x’00’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.36 READ ADDR:0200 |
|MSG=x’0001000201A52D000073C0000001019800000000000000210000001800000000’|
|MSG=x’00000197019800000200041209756B56C0000021CDB508A03061626364656667’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.36 READ ADDR:0200 |
|MSG=x’0001000101A5300000000000000E019700000000000000000000000000008000’|
|MSG=x’00’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.36 READ ADDR:0200 |
|MSG=x’0001000101A52D000073C0000001019800000000000000220000000000000018’|
|MSG=x’00’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’0001000201A5300000000000000E01970000000000000000000000250B000000’|
|MSG=x’0000000500FFFFFFFF01000000’|
| SIZE = 0148 |

Figure 33. Sample Output from the CLAW Data Trace Postprocessor (Part 2 of 5)

Appendix A. CLAW Trace Postprocessor 347

1 CLAW Trace / Log Tape Report
ADDR:

DATE: 11FEB ID: TD, x’E3C4’ LAST: 3848
TIME: 19.28.11 SWITCH: x’F0’ NEXT: 3996

|---|
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’0001000101A530000081D0000014019700000000000000000000001800000008’|
|MSG=x’00’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’0001000201A530000081D000001401970000000000000000000000080E000000’|
|MSG=x’0000000400’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’0001000101A530000081D000000E019700000000000000000000000000008000’|
|MSG=x’00’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’0001000201A530000081D000000E01970000000000000000000005D40B000000’|
|MSG=x’000005B40000B7A4F9FF00000021CC7E4D7A000000000000FFFFFFFF01000000’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’0001000101A530000081D000000E019700000000000000000000000000008000’|
|MSG=x’00’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’0001000201A530000081D000000E01970000000000000000000005D40B000000’|
|MSG=x’000005B4000201A530000081D000000E0197000000000000FFFFFFFF01000000’|
| SIZE = 0148 |

Figure 33. Sample Output from the CLAW Data Trace Postprocessor (Part 3 of 5)

348 TPF V4R1 TCP/IP

1 CLAW Trace / Log Tape Report
ADDR:

DATE: 11FEB ID: TD, x’E3C4’ LAST: 3848
TIME: 19.28.11 SWITCH: x’F0’ NEXT: 3996

|---|
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’0001000101A530000081D000000E019700000000000000000000000000008000’|
|MSG=x’00’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’0001000201A530000081D000000E01970000000000000000000004580B000000’|
|MSG=x’00000438000201A530000081D000000E0197000000000000FFFFFFFF01000000’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’0001000101A530000081D000001A0197000000000000000000000FB400000008’|
|MSG=x’00203430303061626364656667’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’0001000201A530000081D000001A019700000000000000000000000813000000’|
|MSG=x’00000FA0000000006C616E302020202020202020202020207F0101027F010101’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’0001000101A530000081D0000018019700000000000000020000000000000008’|
|MSG=x’00’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’0001000201A530000081D0000018019700000000000000020000000811000000’|
|MSG=x’00’|
| SIZE = 0148 |

Figure 33. Sample Output from the CLAW Data Trace Postprocessor (Part 4 of 5)

Appendix A. CLAW Trace Postprocessor 349

Sample JCL for the CLAW Process Trace Postprocessor
Use the CLAW process trace postprocessor (CLTP) to format and print the CLAW
process trace information. Figure 34 contains sample JCL that you can use to run
the CLAW process trace postprocessor.

CLAW Process Trace Postprocessor
Figure 35 on page 352 provides a sample of process output that is created by the
Common Link Access to Workstation (CLAW) process trace postprocessor (CLTP).
The process trace postprocessor indicates the system routines in the CCLAW1
CSECT that were entered during system cycle-up.

1 CLAW Trace / Log Tape Report
ADDR:

DATE: 11FEB ID: TD, x’E3C4’ LAST: 3848
TIME: 19.28.11 SWITCH: x’F0’ NEXT: 3996

|---|
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’000100090B0072005A29EF000000FFFF000001002100000000000010F4030000’|
|MSG=x’000000210000000400000000FFFFFFFF00000000000000000000000000000000’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’0001000101A530000081D0000003019700000000000000000000000000000008’|
|MSG=x’00’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.37 READ ADDR:0200 |
|MSG=x’000100090B0072005A29EF000000FFFF000001002100000000000010F5030000’|
|MSG=x’000000210000000000000000FFFFFFFF00000000000000000000000000000000’|
| SIZE = 0148 |
| |
| XMIT TIME: 46.38 READ ADDR:0200 |
|MSG=x’0001000201A530000081D0000003019700000000000000000000000802000000’|
|MSG=x’00000000B7008001000000000000019800000000000000000000000000000000’|
| SIZE = 0148 |

Figure 33. Sample Output from the CLAW Data Trace Postprocessor (Part 5 of 5)

//FORMAT JOB (GM1CO,5991C),B117,MSGLEVEL=(1,1),CLASS=A
/*ROUTE PRINT SYSTEM(USERID)
/*ROUTE PUNCH SYSTEM(USERID)
//***
//*** ***
//*** ***
//*** ***
//***
//A EXEC PGM=CLTP40
//STEPLIB DD DSN=ACP0000.DEVP.TEST.LK,DISP=SHR
//RTL DD DISP=OLD,UNIT=VTAPE,VOL=SER=A00147,
// DSN=RTA.TAPE
//PRINT DD SYSOUT=A,DCB=BLKSIZE=81

Figure 34. Sample JCL for the CLAW Process Trace Postprocessor

350 TPF V4R1 TCP/IP

CLTP reads CLAW process trace output that has been written to the RTA/RTL tape
from the ICTRCE trace block and prints it. Each page of the trace output starts with
a header followed by variable entry or exit data depending on the presence or
absence of trace information associated with the given routine.

The conventions used in the trace are as follows:

v The entry and exit for all routines start with a hyphen (-).

-routine STRT Routine starts.

-routine END Routine ends.

v Some codes have been added to the sample trace to help you find the
referenced information.

Code Description of Information in the Process Trace

[A] Routine CLXAMAIN starts. Because there are other nested calls in this
routine, it is not followed immediately by END.

[B] Routine CLXATRANS starts and the contents of pertinent control blocks
or data areas are shown.

[C] Routine CLXTCONN starts and calls routine CLXTSEND.

[D] Routine CLXTSEND starts. No trace data is available for the pertinent
control blocks or data areas and routine CLXTSEND ends.

[D₂] Routine CLXTSEND ends.

[C₂] Routine CLXTCONN ends.

[B₂] Routine CLXTRANS ends.

[A₂] Routine CLXAMAIN ends.

Appendix A. CLAW Trace Postprocessor 351

1CLAW PROCESS TRACE DATE TIME OFFLOAD SDA PAGE#
0 17SEP 11.10.01 OS2TCP 0240 001
-CLXAMAIN STRT [A]
0VCLTYPE
04

-CLXTRANS STRT [B]
0CLTRBK
00000000030000000000000000000000007A4000 O S 2 T C P4040 A P I40404040400000000
0VCTFUNC
03

0VCTPATH
0000

-CLXTCONN STRT [C]
-CLXTSEND STRT [D]
-CLXTSEND END [D₂]
00(,R0)
00000000

-CLXTCONN END [C₂]

00(,R0)
00000000

-CLXTRANS END [B₂]
0VCTRC
00000000

-CLXAMAIN END [A₂]
0VCLRC
00000000

-CLXAMAIN STRT
0VCLTYPE
05

-CLXPOLL STRT
0CLPOLL
8000000000000000

-CLXPOLL END
0VCLRC
00000000

Figure 35. Sample Output from the CLAW Process Trace Postprocessor (Part 1 of 11)

352 TPF V4R1 TCP/IP

1CLAW PROCESS TRACE DATE TIME OFFLOAD SDA PAGE#
0 17SEP 11.10.01 OS2TCP 0240 002
-CLXWVCCC STRT
-CLXWVCCC END
00(,R0)
00000000
-CLXAMAIN END
0VCLRC
00000000
-CLXAMAIN STRT
0VCLTYPE
03
-CLXIOI STRT
0CLWIOI
008040070198B0300C0000000241000000000000
-CLXIOI END
00(,R0)
00000000
-CLXWTRRT STRT
-CLXISUB STRT
0VCUFUNC
07
-CLXISUB END
00(,R0)
00000000
-CLXWTRRT END
00(,R0)
00000000
-CLXISUB STRT
0VCUFUNC
07
-CLXTRECV STRT
-CLXTRECV END

Figure 35. Sample Output from the CLAW Process Trace Postprocessor (Part 2 of 11)

Appendix A. CLAW Trace Postprocessor 353

1CLAW PROCESS TRACE DATE TIME OFFLOAD SDA PAGE#
0 17SEP 11.10.01 OS2TCP 0240 003
00(,R0)
00000000

-CLXISUB END
00(,R0)
00000000

-CLXWVCCC STRT
-CLXWVCCC END
00(,R0)
00000000

-CLXRVCCC STRT
-CLXRVCCC END
00(,R0)
00000000

-CLXAMAIN END
0VCLRC
00000000

-CLXAMAIN STRT
0VCLTYPE
03

-CLXIOI STRT
0CLWIOI
008040 I01988068008000100240000001000000

-CLXIOI END
00(,R0)
00000000

-CLXAMAIN END
0VCLRC
00000000

-CLXAMAIN STRT
0VCLTYPE
05

Figure 35. Sample Output from the CLAW Process Trace Postprocessor (Part 3 of 11)

354 TPF V4R1 TCP/IP

1CLAW PROCESS TRACE DATE TIME OFFLOAD SDA PAGE#
0 17SEP 11.10.01 OS2TCP 0240 004
-CLXPOLL STRT
0CLPOLL
8000000000000000
-CLXPOLL END
0VCLRC
00000000
-CLXAMAIN END
0VCLRC
00000000
-CLXAMAIN STRT
0VCLTYPE
03
-CLXIOI STRT
0CLWIOI
008040 I019880A8008000100240000001000000
-CLXIOI END
00(,R0)
00000000
-CLXISUB STRT
0VCUFUNC
07
-CLXTRECV STRT
-CLXTRECV END
00(,R0)
00000000
-CLXISUB END
00(,R0)
00000000
-CLXRVCCC STRT
-CLXRVCCC END
00(,R0)
00000000

Figure 35. Sample Output from the CLAW Process Trace Postprocessor (Part 4 of 11)

Appendix A. CLAW Trace Postprocessor 355

1CLAW PROCESS TRACE DATE TIME OFFLOAD SDA PAGE#
0 17SEP 11.10.01 OS2TCP 0240 005
-CLXAMAIN END
0VCLRC
00000000

-CLXAMAIN STRT
0VCLTYPE
04

-CLXTRANS STRT
0CLTRBK
00000000080100000004000

0VCTFUNC
08

0VCTPATH
0004

-CLXTRECV STRT
-CLXTRECV END
00(,R0)
00000000

-CLXTRANS END
0VCTRC
00000000

-CLXAMAIN END
0VCLRC
00000000

-CLXAMAIN STRT
0VCLTYPE
05

-CLXPOLL STRT
0CLPOLL
8000000000000000

-CLXPOLL END
0VCLRC
00000000

-CLXAMAIN END

Figure 35. Sample Output from the CLAW Process Trace Postprocessor (Part 5 of 11)

356 TPF V4R1 TCP/IP

1CLAW PROCESS TRACE DATE TIME OFFLOAD SDA PAGE#
0 17SEP 11.10.01 OS2TCP 0240 006
0VCLRC
00000000
-CLXAMAIN STRT
0VCLTYPE
03
-CLXIOI STRT
0CLWIOI
008040 I019880 Y008000100240000001000000
-CLXIOI END
00(,R0)
00000000
-CLXAMAIN END
0VCLRC
00000000
-CLXAMAIN STRT
0VCLTYPE
05
-CLXPOLL STRT
0CLPOLL
8000000000000000
-CLXPOLL END
0VCLRC
00000000
-CLXAMAIN END
0VCLRC
00000000
-CLXAMAIN STRT
0VCLTYPE
06
-CLXPAGR STRT
-CLXPAGR END
00(,R0)

Figure 35. Sample Output from the CLAW Process Trace Postprocessor (Part 6 of 11)

Appendix A. CLAW Trace Postprocessor 357

1CLAW PROCESS TRACE DATE TIME OFFLOAD SDA PAGE#
0 17SEP 11.10.01 OS2TCP 0240 007
00000000

-CLXRVCCC STRT
-CLXRVCCC END
00(,R0)
00000000

-CLXAMAIN END
0VCLRC
00000000

-CLXAMAIN STRT
0VCLTYPE
04

-CLXTRANS STRT
0CLTRBK
00000000080100000004000

0VCTFUNC
08

0VCTPATH
0004

-CLXTRECV STRT
-CLXTRECV END
00(,R0)
00000000

-CLXTRANS END
0VCTRC
00000000

-CLXAMAIN END
0VCLRC
00000000

-CLXAMAIN STRT
0VCLTYPE
05

-CLXPOLL STRT

Figure 35. Sample Output from the CLAW Process Trace Postprocessor (Part 7 of 11)

358 TPF V4R1 TCP/IP

1CLAW PROCESS TRACE DATE TIME OFFLOAD SDA PAGE#
0 17SEP 11.10.01 OS2TCP 0240 008
0CLPOLL
8000000000000000
-CLXPOLL END
0VCLRC
00000000
-CLXAMAIN END
0VCLRC
00000000
-CLXAMAIN STRT
0VCLTYPE
04
-CLXTRANS STRT
0CLTRBK
0000000007020000000400010000000001AA5800003740000000003000000000000000000000000
0VCTFUNC
07
0VCTPATH
0004
-CLXTSEND STRT
-CLXTSEND END
00(,R0)
00000000
-CLXTRANS END
0VCTRC
00000000
-CLXWVCCC STRT
-CLXWVCCC END
00(,R0)
00000000
-CLXAMAIN END
0VCLRC
00000000

Figure 35. Sample Output from the CLAW Process Trace Postprocessor (Part 8 of 11)

Appendix A. CLAW Trace Postprocessor 359

1CLAW PROCESS TRACE DATE TIME OFFLOAD SDA PAGE#
0 17SEP 11.10.01 OS2TCP 0240 009
-CLXAMAIN STRT
0VCLTYPE
05

-CLXPOLL STRT
0CLPOLL
8000000000000000

-CLXPOLL END
0VCLRC
00000000

-CLXAMAIN END
0VCLRC
00000000

-CLXAMAIN STRT
0VCLTYPE
03

-CLXIOI STRT
0CLWIOI
008040070198B0500C0000000241000000000000

-CLXIOI END
00(,R0)
00000000

-CLXWTRRT STRT
-CLXWTRRT END
00(,R0)
00000000

-CLXWVCCC STRT
-CLXWVCCC END
00(,R0)
00000000

-CLXAMAIN END
0VCLRC
00000000

Figure 35. Sample Output from the CLAW Process Trace Postprocessor (Part 9 of 11)

360 TPF V4R1 TCP/IP

1CLAW PROCESS TRACE DATE TIME OFFLOAD SDA PAGE#
0 17SEP 11.10.01 OS2TCP 0240 010
-CLXAMAIN STRT
0VCLTYPE
05
-CLXPOLL STRT
0CLPOLL
8000000000000000
-CLXPOLL END
0VCLRC
00000000
-CLXAMAIN END
0VCLRC
00000000
-CLXTRANS STRT
0CLTRBK
00000000050000000004000
0VCTFUNC
05
0VCTPATH
0004
-CLXTDISC STRT
-CLXDCLI STRT
0CLIBLK
01A51FA801A51FA800040140000000000
-CLXDWCAL STRT
-CLXTSEND STRT
-CLXTSEND END
00(,R0)
00000000
-CLXDWCAL END
00(,R0)
00000000
-CLXDCLI END

Figure 35. Sample Output from the CLAW Process Trace Postprocessor (Part 10 of 11)

1CLAW PROCESS TRACE DATE TIME OFFLOAD SDA PAGE#
0 17SEP 11.10.01 OS2TCP 0240 011
00(,R0)
00000000
-CLXTDISC END
00(,R0)
00000000
-CLXTRANS END
0VCTRC
00000000
-CLXWVCCC STRT
-CLXWVCCC END
00(,R0)
00000000
-CLXAMAIN END
0VCLRC
00000000
-Trace completed successfully

Figure 35. Sample Output from the CLAW Process Trace Postprocessor (Part 11 of 11)

Appendix A. CLAW Trace Postprocessor 361

362 TPF V4R1 TCP/IP

Appendix B. ISO-C Structures Called by Socket API Functions

The parameter lists for some C language socket calls include a pointer to a data
structure defined by a C structure. Listed below are some of the C structures called
by the socket API functions defined in this publication. These structures are defined
in the socket.h header file, which needs to be included by any socket application
program that uses these structures.

Structures Defined in the socket.h Header File
The following structures are used by the accept, bind, connect, gethostname,
getpeername, getsockname, recvfrom, and sendto socket API functions.

v struct sockaddr
struct sockaddr
{

unsigned short integer sa_family; /* address family */
char sa_data[14]; /* up to 14 bytes of direct address */

};

v struct in_addr
struct in_addr
{

unsigned long integer s_addr;
};

v struct sockaddr_in
struct sockaddr_in
{

short sin_family;
unsigned short integer sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

Additional Structures
Additional structures defined in the socket.h header file are:

v struct linger
The linger structure is called by the getsockopt and setsockopt
socket API functions.

struct linger
{

int l_onoff; /* option on/off */
int l_linger; /* linger time */

};

v struct iovec
The iovec struct is called by the writev socket API function.

struct iovec
{

char *iov_base;
int iov_len;

}

© Copyright IBM Corp. 1996, 2002 363

364 TPF V4R1 TCP/IP

Appendix C. Socket Error Return Codes

This appendix contains socket error return codes that apply to the socket APIs. See
Table 9 for the error codes, message names, and error code descriptions. The table
is sorted numerically by error code number.

Table 9. Socket Error Return Codes

Error Codes Symbolic Name Description

1 SOCPERM Not owner

3 SOCSRCH No such process

4 SOCINTR Interrupted system call

6 SOCNXIO No such device or address

9 SOCBADF Bad file number

13 SOCACCES Permission denied

14 SOCFAULT Bad address

22 SOCINVAL Invalid argument

24 SOCMFILE Too many open files

32 SOCPIPE Broken pipe

35 SOCWOULDBLOCK Operation would block

36 SOCINPROGRESS Operation now in progress

37 SOCALREADY Operation already in progress

38 SOCNOTSOCK Socket operation on non-socket

39 SOCDESTADDRREQ Destination address required

40 SOCMSGSIZE Message too long

41 SOCPROTOTYPE Protocol wrong type for socket

42 SOCNOPROTOOPT Protocol not available

43 SOCPROTONOSUPPORT Protocol not supported

44 SOCSOCKTNOSUPPORT Socket type not supported

45 SOCOPNOTSUP Operation not supported on socket

47 SOCAFNOSUPPORT Address family not support by protocol family

48 SOCADDRINUSE Address already in use

49 SOCADDRNOTAVAIL Can’t assign requested address

50 SOCNETDOWN Network is down

51 SOCNETUNREACH Network is unreachable

52 SOCNETRESET Network is dropped connection on reset

53 SOCCONNABORTED Software caused connection abort

54 SOCCONNRESET Connection reset by peer

55 SOCNOBUFS No buffer space available

56 SOCISCONN Socket is already connected

57 SOCNOTCONN Socket is not connected

58 SOCSHUTDOWN Can’t send after socket shutdown

59 SOCTOOMANYREFS Too many references: can’t splice

60 SOCTIMEDOUT Connection timed out

© Copyright IBM Corp. 1996, 2002 365

Table 9. Socket Error Return Codes (continued)

Error Codes Symbolic Name Description

61 SOCCONNREFUSED Connection refused

62 SOCLOOP Too many levels of symbolic links

63 SOCNAMETOOLONG File name too long

64 SOCHOSTDOWN Host is down

65 SOCHOSTUNREACH No route to host

66 SOCNOTEMPTY Directory not empty

100 SOCOS2ERR OS/2 Error

251 EINACTWS Offload device deactivated

252 E1052STATE System cycling to 1052 state

253 EINACT All offload devices deactivated

254 ESYSTEMERROR Socket system error

1000 OFFLOADTIMEOUT Offload device time-out

1004 EIBMIUCVERR Failure with offload device

2000 SOCFDNOTFOUND FD entry cannot be found

2001 SOCIPNOTFOUND IP entry cannot be found

366 TPF V4R1 TCP/IP

Appendix D. Sample Application Driver Code

This appendix lists sample socket drivers to use with TCP/IP support. Use these
drivers as sample code when you write your own socket applications. The drivers
are:

v activate_on_receipt Transmission Control Protocol (TCP) server

v activate_on_receipt Transmission Control Protocol (TCP) child

v Transmission Control Protocol (TCP) server

v Transmission Control Protocol (TCP) client

v User Datagram Protocol (UDP) server

v User Datagram Protocol (UDP) client.

activate_on_receipt Transmission Control Protocol (TCP) Server
/**/
/* This is a stream socket server sample program that */
/* accepts a connect request from a client program */
/* and issues an activate_on_receipt socket API call to */
/* create a child program. When the message from the */
/* client program is received, the child program is */
/* activated with a new ECB. */
/**/

/**/
/* TPF Standard Header Files */
/**/
#include <tpfeq.h>
#include <tpfio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <types.h>
#include <socket.h> /* Socket API Header File */

#define return_error -1

qxye()
{

struct sockaddr_in server_sockaddr_in, name_sockaddr_in;

char server_name[50];

int client_sock;
int rc;
int server_sock;
int sockaddr_in_length;
int num_of_clients;
unsigned char aorparm[8];
unsigned char aorpgm[4]= {’Q’,’X’,’Y’,’K’};

sockaddr_in_length = sizeof(struct sockaddr_in);

/**************************/
/* Create a stream socket */
/**************************/
server_sock = socket(AF_INET,SOCK_STREAM,0);
if (server_sock == return_error)
{

printf("Error in opening stream socket\n");
exit(0);

© Copyright IBM Corp. 1996, 2002 367

}

/***********/
/* Bind it */
/***********/
server_sockaddr_in.sin_family = AF_INET;
server_sockaddr_in.sin_addr.s_addr = INADDR_ANY;
server_sockaddr_in.sin_port = 5003;
rc = bind(server_sock,(struct sockaddr *)&server_sockaddr_in,

sockaddr_in_length);
if (rc == return_error)
{

printf("Error in binding stream - %d\n",sock_errno());
close(server_sock);
exit(0);

}

/********************************/
/* Listen to any socket clients.*/
/********************************/
rc = listen(server_sock,5);
if (rc == return_error)
{

printf("Error in listening client socket - %d\n",sock_errno());
close(server_sock);
exit(0);

}

/**/
/* Call gethostname to obtain the server name.*/
/**/
rc = gethostname(server_name,sizeof(server_name));
if (rc == return_error)
{

printf("Error in getting host name - %d\n",sock_errno());
}

/********************************/
/* Print out server information.*/
/********************************/
printf("\nServer Information\n");
printf("-----------------------------------\n");
printf("Socket = %d\n",server_sock);
printf("Host ID = %x\n",gethostid());
printf("Host Name = %s\n",server_name);
printf("Host Family = %x\n",name_sockaddr_in.sin_family);
printf("Host Address = %x\n",name_sockaddr_in.sin_addr.s_addr);
printf("Host Port No = %d\n",name_sockaddr_in.sin_port);
printf("-----------------------------------\n\n");

num_of_clients = 0;

/**/
/* Accept a socket client. */
/**/
client_sock = accept(server_sock,(struct sockaddr *)&name_sockaddr_in,

&sockaddr_in_length);
if (client_sock == return_error)
{

printf("Cannot accept any new clients - %d\n",sock_errno());
close(server_sock);
exit(0);

}
else
{

(void)memcpy(aorparm,&server_sock,sizeof(server_sock));
(void)memcpy(aorparm+sizeof(server_sock),&client_sock,

368 TPF V4R1 TCP/IP

sizeof(client_sock));
rc = activate_on_receipt(client_sock,aorparm,aorpgm);
if (rc == -1)
{

printf("error in activate_on_receipt - %d\n",sock_errno());
close(server_sock);
exit(0);

}
else
{
num_of_clients = num_of_clients + 1;
}

}

rc = close(server_sock);
if (num_of_clients == 1)

printf("%d Client was activated\n\n", num_of_clients);
else

printf("%d Clients were activated\n\n", num_of_clients);
printf("Terminated communication normally\n");

exit(0);
}

activate_on_receipt Transmission Control Protocol (TCP) Child Server
/**/
/* This is a stream child server sample program which is activated*/
/* when a message is received from the client program. */
/**/

/**/
/* TPF Standard Header Files */
/**/

#include <tpfeq.h>
#include <tpfio.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <socket.h> /* Socket API Header File */
#include <types.h>

#define PRIMECRAS 0x010000

#define return_error -1

#define MAX_BUFFER_LEN 32 * 1024

qxyk()
{

struct sockaddr_in name_sockaddr_in;

char *read_addr;

int client_sock;
int optlen;
int optval;
int rc;
int read_len;
int sockaddr_in_length;
int echo_len;

sockaddr_in_length = sizeof(struct sockaddr_in);

Appendix D. Sample Application Driver Code 369

(void)memcpy(&read_addr,&(ecbptr()->ebw012),
sizeof(read_addr));

(void)memcpy(&read_len, &(ecbptr()->ebw016),sizeof(read_len));

client_sock = (int)ecbptr()->ebrout;
ecbptr()->ebrout = PRIMECRAS;

optval = MAX_BUFFER_LEN;
optlen = sizeof(optval);
rc = setsockopt(client_sock,SOL_SOCKET,SO_SNDBUF,(char *)&optval,

optlen);

/***/
/* Call getpeername() to obtain client’s information.*/
/***/
rc = getpeername(client_sock,(struct sockaddr *)&name_sockaddr_in,

&sockaddr_in_length);
if (rc == return_error)
{

printf("Error in getting peer name\n",sock_errno());
close(client_sock);
exit(0);

}

/********************************/
/* Print out client information.*/
/********************************/
printf("Client Information\n");
printf("-----------------------------------\n");
printf("Socket = %d\n",client_sock);
printf("Client Address = %x\n",name_sockaddr_in.sin_addr.s_addr);
printf("Client Port No = %d\n",name_sockaddr_in.sin_port);
printf("-----------------------------------\n");

/****************************/
/* Read client’s message. */
/****************************/
echo_len = read(client_sock,read_addr,read_len);
if (echo_len == return_error)
{

printf("Error in reading a msg - %d\n",sock_errno());
close(client_sock);
exit(0);

}
else
{

printf("messages = %s\n",read_addr);
}
rc = write(client_sock,read_addr,echo_len);
if (rc == return_error)
{

printf("Error in sending echo - %d\n",sock_errno());
(void)close(client_sock);
exit(0);

}

/***/
/* Shutdown the communication link between client and server.*/
/***/
rc = shutdown(client_sock,2);
if (rc == return_error)
{

printf("Error in shutting down the client - %d\n",
sock_errno());

}

370 TPF V4R1 TCP/IP

/***/
/* Clean up all sockets and exit the program.*/
/***/
rc = close(client_sock);
if (rc == return_error)
{

printf("Error in closing client socket - %d\n",
sock_errno());

}
printf("Terminated communication normally-stream AOR child\n");
exit(0);

}

Transmission Control Protocol (TCP) Server
/**/
/* This is a stream socket server sample program that */
/* accepts a connect request from a client program. */
/* When a message from the client program is received, */
/* the TCP server program echoes back the message to the */
/* client program. */
/**/

/**/
/* TPF Standard Header Files */
/**/
#include <tpfeq.h>
#include <tpfio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <socket.h> /* Socket API Header File */

#define return_error -1

#define MAX_BUFFER_LEN 1024

qxyd()
{

struct sockaddr_in server_sockaddr_in, name_sockaddr_in;

char *recv_client_msg;
char server_name[50];

int client_sock;
int echo_len;
int rc;
int server_sock;
int sockaddr_in_length;

recv_client_msg = malloc(MAX_BUFFER_LEN);
sockaddr_in_length = sizeof(struct sockaddr_in);

/**************************/
/* Create a stream socket.*/
/**************************/
server_sock = socket(AF_INET,SOCK_STREAM,0);
if (server_sock == return_error)
{

printf("Error in opening stream socket\n");
exit(0);

}

/***********/

Appendix D. Sample Application Driver Code 371

/* Bind it.*/
/***********/
server_sockaddr_in.sin_family = AF_INET;
server_sockaddr_in.sin_addr.s_addr = INADDR_ANY;
server_sockaddr_in.sin_port = 5003;
rc = bind(server_sock,(struct sockaddr *)&server_sockaddr_in,

sockaddr_in_length);
if (rc == return_error)
{

printf("Error in binding stream - %d\n",sock_errno());
close(server_sock);
exit(0);

}

/********************************/
/* Listen to any socket clients.*/
/********************************/
rc = listen(server_sock,5);
if (rc == return_error)
{

printf("Error in listening client socket - %d\n",sock_errno());
close(server_sock);
exit(0);

}

/**/
/* Call gethostname to obtain the server name */
/**/
rc = gethostname(server_name,sizeof(server_name));
if (rc == return_error)
{

printf("Error in getting host name - %d\n",sock_errno());
}

/********************************/
/* Print out server information.*/
/********************************/
printf("\nServer Information\n");
printf("-----------------------------------\n");
printf("Socket = %d\n",server_sock);
printf("Host ID = %x\n",gethostid());
printf("Host Name = %s\n",server_name);
printf("Host Family = %x\n",name_sockaddr_in.sin_family);
printf("Host Address = %x\n",name_sockaddr_in.sin_addr.s_addr);
printf("Host Port No = %d\n",name_sockaddr_in.sin_port);
printf("-----------------------------------\n\n");

/**/
/* Accept a socket client. */
/**/
client_sock = accept(server_sock,(struct sockaddr *)&name_sockaddr_in,

&sockaddr_in_length);
if (client_sock == return_error)
{

printf("Cannot accept any new clients - %d\n",sock_errno());
close(server_sock);
exit(0);

}

/********************************/
/* Print out client information.*/
/********************************/
printf("Client Information\n");
printf("-----------------------------------\n");
printf("Socket = %d\n",client_sock);
printf("Client Family = %x\n",name_sockaddr_in.sin_family);
printf("Client Address = %x\n",name_sockaddr_in.sin_addr.s_addr);

372 TPF V4R1 TCP/IP

printf("Client Port No = %d\n",name_sockaddr_in.sin_port);
printf("-----------------------------------\n");

/**/
/* Read client’s message to find out how many messages the*/
/* server is receiving. */
/**/
echo_len = read(client_sock,recv_client_msg,MAX_BUFFER_LEN);
if (echo_len == return_error)
{

printf("Error in reading message - %d\n",sock_errno());
(void)close(client_sock);
(void)close(server_sock);
exit(0);

}
else
{

printf("messages = %s\n",recv_client_msg);
}

rc = write(client_sock,recv_client_msg,echo_len);
if (rc == return_error)
{

printf("Error in sending echo - %d\n",sock_errno());
(void)close(client_sock);
(void)close(server_sock);
exit(0);

}

/***/
/* Shutdown the communication link between client and server.*/
/***/
rc = shutdown(client_sock,2);
if (rc == return_error)
{

printf("Error in shutting down the client - %d\n",
sock_errno());

}

/***/
/* Clean up all sockets and exit the program.*/
/***/
rc = close(client_sock);
if (rc == return_error)
{

printf("Error in closing client socket - %d\n",sock_errno());
}

(void)close(server_sock);
printf("Terminated communication normally\n");
exit(0);

}

Transmission Control Protocol (TCP) Client
/**/
/* This is a stream socket client sample program that sends a */
/* connect socket API request to the server program to bring up */
/* the connection between the server and client. The TCP server */
/* also sends a message and receives an echo from the server. */
/**/

#include <tpfeq.h>
#include <tpfio.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

Appendix D. Sample Application Driver Code 373

|
|
|
|
|
|
|
|
|
|
|
|

#include <types.h>
#include <socket.h>

#define MAX_BUFFER_LEN 1024
#define NUM_PARAMETER 4
#define SEND_MSG_LEN 5

#define return_ok 0
#define return_error -1

#define read_buffer 0
#define use_previous_buffer 1

qxyh(char *argv[], u_short num_arg)
{

struct sockaddr_in client_sockaddr_in;
struct sockaddr_in server_sockaddr_in;

char *recv_client_message;
char *send_client_message;

short dest_portnum;

int client_sock;
int dest_address;
int rc;
int sockaddr_in_length;

/**/
/* Check the argument count. */
/**/

if (num_arg != NUM_PARAMETER)
{

printf("Invalid parameters :\n");
printf("ztest sock client stream block <server IP addr> \

<server port no.> <no. of msg> <msg size>\n");
exit(0);

}

dest_address = inet_addr(argv[0]);
dest_portnum = atoi(argv[1]);

/***/
/* Print out the client’s parameter list.*/
/***/
printf("Parameter List :\n");
printf("----------------------------------\n");
printf("Dest address = %x\n",dest_address);
printf("Dest portnum = %d\n",dest_portnum);
printf("-----------------------------------\n\n");

/***************************************/
/* Initialize input/output buffer size.*/
/***************************************/
send_client_message = (char *)malloc(MAX_BUFFER_LEN);
recv_client_message = (char *)malloc(MAX_BUFFER_LEN);
sockaddr_in_length = sizeof(struct sockaddr_in);

/**************************/
/* Create a stream socket.*/
/**************************/
client_sock = socket(AF_INET,SOCK_STREAM,0);
if (client_sock == return_error)
{

printf("Error in opening a stream socket\n");
return(return_error);

374 TPF V4R1 TCP/IP

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}

/***/
/* Bind a local name to the socket. When using the IP routing */
/* table, this bind API should be skipped. */
/***/
client_sockaddr_in.sin_family = AF_INET;
client_sockaddr_in.sin_port = 0;
client_sockaddr_in.sin_addr.s_addr = 0;
rc = bind(client_sock,(struct sockaddr *)&client_sockaddr_in,

sockaddr_in_length);
if (rc == return_error)
{

printf("Error in binding - %d\n",sock_errno());
rc = close(client_sock);
exit(0);

}

/********************************/
/* Print out client information.*/
/********************************/
printf("Client Information\n");
printf("-----------------------------------\n");
printf("Client sock = %d\n",client_sock);
rc = getsockname(client_sock,(struct sockaddr *)&client_sockaddr_in,

&sockaddr_in_length);
if (rc == return_ok)
{

printf("Client Address =%x\n",client_sockaddr_in.sin_addr.s_addr);
printf("Client Port No = %d\n",client_sockaddr_in.sin_port);

}
printf("-----------------------------------\n\n");

/***/
/* Connect to a connection-oriented server.*/
/***/
server_sockaddr_in.sin_family = AF_INET;
server_sockaddr_in.sin_port = dest_portnum;
server_sockaddr_in.sin_addr.s_addr = dest_address;
rc = connect(client_sock,(struct sockaddr *)&server_sockaddr_in,

sockaddr_in_length);
if (rc == return_error)
{

printf("Error in connecting - %d\n",sock_errno());
rc = close(client_sock);
exit(0);

}

printf("Server Information\n");
printf("-----------------------------------\n");
printf("Server Address = %x\n",server_sockaddr_in.sin_addr.s_addr);
printf("Server Port No = %d\n",server_sockaddr_in.sin_port);
printf("-----------------------------------\n\n");

/*****************************/
/* Send the server a message.*/
/*****************************/
(void)memset(send_client_message,’a’,SEND_MSG_LEN - 1);
*(send_client_message+SEND_MSG_LEN) = 0;
rc = send(client_sock,send_client_message,SEND_MSG_LEN,0);
if (rc == return_error)
{

printf("Error in sending message - %d\n",sock_errno());
rc = close(client_sock);
exit(0);

}
else

Appendix D. Sample Application Driver Code 375

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("send msg = %s\n",send_client_message);

/***/
/* Receive an echo message from the server. */
/***/
rc = recv(client_sock,recv_client_message,MAX_BUFFER_LEN,0);
if (rc == return_error)
{

printf("Error in receiving message - %d\n",sock_errno());
rc = close(client_sock);
exit(0);

}
else

printf("recv msg = %s\n",recv_client_message);

/************************************/
/* Clean up the connection and exit */
/************************************/
rc = shutdown(client_sock,2);
if (rc == return_error)
{

printf("Error in shutting down - %d\n",sock_errno());
}

rc = close(client_sock);
if (rc == return_error)
{

printf("Error in closing the socket - %d\n",sock_errno());
exit(0);

}

printf("Terminated communication normally-stream client\n");
exit(0);

}

User Datagram Protocol (UDP) Server
/**/
/* This is a datagram socket server sample program. */
/* When a message from the client program is received, */
/* it echoes back the message to the client program. */
/**/

/**/
/* TPF Standard Header Files */
/**/
#include <tpfeq.h>
#include <tpfio.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <types.h>
#include <socket.h> /* Socket API Header File */

#define return_error -1

qxyb()
{

const message_size = 32 * 1024;

struct sockaddr_in client_sockaddr_in;
struct sockaddr_in server_sockaddr_in;

char *recv_client_message;

376 TPF V4R1 TCP/IP

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char *send_client_message;

int echo_len;
int optlen;
int optval;
int rc;
int server_sock;
int sockaddr_in_length;

send_client_message = malloc(message_size);
recv_client_message = malloc(message_size);
sockaddr_in_length = sizeof(struct sockaddr_in);

/****************************/
/* Create a datagram socket.*/
/****************************/
server_sock = socket(AF_INET,SOCK_DGRAM,0);
if (server_sock == return_error)
{

printf("Error in opening a datagram socket\n");
exit(0);

}
printf("Host sock = %d\n",server_sock);

/***********************************/
/* Bind a local name to the socket.*/
/***********************************/
server_sockaddr_in.sin_family = AF_INET;
server_sockaddr_in.sin_port = 5001;
server_sockaddr_in.sin_addr.s_addr = INADDR_ANY;
rc = bind(server_sock,(struct sockaddr *)&server_sockaddr_in,

sockaddr_in_length);
if (rc == return_error)
{

printf("Error in binding - %d\n",sock_errno());
(void)close(server_sock);
exit(0);

}

/**/
/* Get the server information, and print its data out.*/
/**/
rc = getsockname(server_sock,(struct sockaddr *)&server_sockaddr_in,

&sockaddr_in_length);
if (rc != return_error)
{

printf("Server Information\n");
printf("--------------------------------\n");
printf("Server sock - %d\n",server_sock);
printf("Server IP address - %x\n",

server_sockaddr_in.sin_addr.s_addr);
printf("Server port # - %d\n\n",

server_sockaddr_in.sin_port);
}

optval = message_size;
optlen = sizeof(optval);
rc = setsockopt(server_sock,SOL_SOCKET,SO_SNDBUF,(char *)&optval,

optlen);
if (rc == return_error)
{

printf("Error in setsockopt - %d\n",sock_errno());
(void)close(server_sock);
exit(0);

}

Appendix D. Sample Application Driver Code 377

printf(".... Ready for clients\n");

/****************/
/* Loop forever */
/****************/
for (;;)
{

/*******************************/
/* Monitor incoming buffers. */
/*******************************/
rc = recvfrom(server_sock,recv_client_message,message_size,0,

(struct sockaddr *)&client_sockaddr_in,
&sockaddr_in_length);

if (rc == return_error)
{

printf("Error in receiving message - %d\n",sock_errno());
break;

}
else
{

/**/
/* Print out the client information and message length*/
/* and then echo the same message back to that client.*/
/**/
echo_len = rc;
(void)memcpy(send_client_message,recv_client_message,echo_len);
rc = sendto(server_sock,send_client_message,echo_len,0,

(struct sockaddr *)&client_sockaddr_in,
sockaddr_in_length);

if (rc == return_error)
printf("Error in sending message to a client - %d\n",

sock_errno());
}

} /* end of for(;;) */

/**/
/* Return the socket back to the system and exit normally. */
/**/
rc = close(server_sock);
if (rc == return_error)
{

printf("Error in closing the socket - %d\n",sock_errno());
printf("DATAGRAM NOAOR server terminated\n");
exit(0);

}

printf("Datagram server terminated\n");
exit(0);

}

User Datagram Protocol (UDP) Client
/**/
/* This is a datagram socket client sample program which sends a */
/* request to the server program and receives an echo message */
/* back from the server. */
/**/
#include <tpfeq.h>
#include <tpfio.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

#include <types.h>
#include <socket.h>

qxyg(char *argv[], u_short num_arg)

378 TPF V4R1 TCP/IP

{

#define NUM_PARAMETER 5

#define return_ok 0
#define return_error -1

#define no 0
#define yes 1

/***/
/* This is the maximum message size that will be supported */
/***/
const max_msg_size = 32 * 1024;

struct sockaddr_in client_sockaddr_in; /* Client internet addr */
struct sockaddr_in server_sockaddr_in; /* Server internet addr */

char msg = ’0’;
char *recv_client_message;
char *send_client_message;

int client_sock;
int msg_lost;
int msg_recv;
int msg_resend;
int msg_resyn;
int rc;
int redo_select;
int sockaddr_in_length;
int sock_list[1];
/********************/
/** Argument List **/
/********************/
int dest_ip;
int dest_port;
int num_msg;
int siz_msg;
int num_rsend;

/***/
/* Check the input argument list. If the number of arguments is */
/* incorrect, print out the help message. */
/***/

if (num_arg != NUM_PARAMETER)
{

printf("Invalid parameter(s) :\n");
printf("ztest sock client datagram block <IP addr> <port #> \

<no. of msg> <msg size> <resend>\n");
printf("ip addr - Server’s IP address\n");
printf("port # - Server’s port number\n");
printf("num of msg - Number of messages to be sent to \

the server \n");
printf("msg size - Size of each message to be sent\n");
printf("resend - Number of times to resend the lost message \

\n\n");
exit(0);

}
else
{

/**/
/* Extract the IP address, port number, number of messages, */
/* size of each message, and number of resends. */
/**/
dest_ip = inet_addr(argv[0]);
dest_port = atoi(argv[1]);

Appendix D. Sample Application Driver Code 379

num_msg = atoi(argv[2]);
siz_msg = atoi(argv[3]);
num_rsend = atoi(argv[4]);

}
if (siz_msg < 0)

printf("qxyg: %d is an invalid message size\n",siz_msg);

/**/
/* Create send/receive buffer based on user defined buffer size.*/
/**/
send_client_message = (char *)malloc(max_msg_size);
recv_client_message = (char *)malloc(max_msg_size);

msg_resend = 0;
msg_resyn = 0;
msg_lost = 0;
sockaddr_in_length = sizeof(struct sockaddr_in);

/****************************/
/* Create a datagram socket.*/
/****************************/
client_sock = socket(AF_INET,SOCK_DGRAM,17);
if (client_sock == return_error)
{

printf("qxyg: Error in opening a datagram socket\n");
exit(0);

}

/***********************************/
/* Bind a local name to the socket.*/
/***********************************/
client_sockaddr_in.sin_family = AF_INET;
client_sockaddr_in.sin_port = 0;
client_sockaddr_in.sin_addr.s_addr = 0;
rc = bind(client_sock,(struct sockaddr *)&client_sockaddr_in,

sockaddr_in_length);
if (rc == return_error)
{

printf("qxyg: Error in binding - %d\n",sock_errno());
(void)close(client_sock);
exit(0);

}

/**/
/* Set socket to send/receive more than max_buffer_size.*/
/**/
rc = setsockopt(client_sock,SOL_SOCKET,SO_SNDBUF,
(char *)&max_msg_size,sizeof(max_msg_size));
if (rc != return_ok)
{

printf("qxyg: Error in setsockopt-SO_SNDBUF-%d\n",sock_errno());
(void)close(client_sock);
exit(0);

}

/***/
/* Define server’s internet address which is used for sendto() and */
/* recvfrom(). */
/***/
server_sockaddr_in.sin_family = AF_INET;
server_sockaddr_in.sin_port = dest_port;
server_sockaddr_in.sin_addr.s_addr = dest_ip;

rc = connect(client_sock,(struct sockaddr *)&server_sockaddr_in,
sockaddr_in_length);

if (rc == return_error)
{

380 TPF V4R1 TCP/IP

printf("qxyg: Error in connecting - %d\n",sock_errno());
(void)close(client_sock);
exit(0);

}

/***/
/* Get the client information, and print client/server data out. */
/***/
rc = getsockname(client_sock,(struct sockaddr *)&client_sockaddr_in,

&sockaddr_in_length);
if (rc != return_error)
{

printf("Client Information\n");
printf("--------------------------------\n");
printf("Client sock - %d\n",client_sock);
printf("Client IP address - %x\n", \

client_sockaddr_in.sin_addr.s_addr);
printf("Client port # - %d\n",client_sockaddr_in.sin_port);
printf("Server IP address - %x\n", \

server_sockaddr_in.sin_addr.s_addr);
printf("Server port # - %d\n\n",server_sockaddr_in.sin_port);

}

/**/
/* Set up the first message to send to the server.*/
/**/
(void)memset(send_client_message,msg,siz_msg);
send_client_message[siz_msg - 1] = 0;

/***/
/* Set up the sock_list for select() - use it for testing time out.*/
/***/
sock_list[0] = client_sock;

/************************************/
/* Loop until all messages are sent.*/
/************************************/
for (msg_recv = 1; msg_recv <= num_msg;)
{

/********************************/
/* Send a message to the server.*/
/********************************/

rc = send(client_sock,send_client_message,siz_msg,0);
if (rc == return_error)
{

/***/
/* If an error occurred, resend the message. */
/***/
printf("qxyg: Error in sending message to server-try again- \

%d\n",sock_errno());
msg_resend++;

}
else
{

/**/
/* A message was successfully sent, so monitor the read. */
/* If a message arrives within 15 seconds, read it in. */
/* Otherwise, a message was lost, so send it again. */
/**/
redo_select = yes;
for (;redo_select;)
{

rc = select(sock_list,1,0,0,15000);
if (rc >= 1)

Appendix D. Sample Application Driver Code 381

{
/**/
/* Read the message. If there is a problem, resend again.*/
/**/
rc = read(client_sock,recv_client_message,max_msg_size);
if (rc == return_error)
{

printf("qxyg : Error in receiving message from server - \
%d\n", sock_errno());

msg_resend++;
}
else
{

/***/
/* If the received message is correct, then process the */
/* message. Otherwise, throw the message out and wait */
/* for the next incoming message. */
/***/
if (*recv_client_message == msg)
{

printf("Recv Msg %d - len = %d Source address = %x\n",
msg_recv,rc,server_sockaddr_in.sin_addr.s_addr);

msg_recv++;
msg_lost += msg_resend;
msg_resend = 0;
redo_select = no;

/***********************************/
/* Set up the next message to send.*/
/***********************************/
msg ++;
if (msg > ’9’)
{

msg = ’0’;
}
(void)memset(send_client_message,msg,siz_msg);
send_client_message[siz_msg - 1] = 0;

}
else
{

printf("qxyg: Received unexpected data. 1st character = \
%c\n", *recv_client_message);

msg_resyn++;
}

}
}
else
{

/***/
/* If a time-out or an error in select() occurred, resend */
/* the message. */
/***/
msg_resend++;
redo_select = no;
if (rc == 0)

printf("qxyg: Possible lost message# %d resend\n",
msg_recv);

else
{

printf("qxyg: error in select() - %d\n",sock_errno());
printf("Server IP address - %x\n", \

server_sockaddr_in.sin_addr.s_addr);
printf("Server port # - %d\n\n",

server_sockaddr_in.sin_port);
printf("Client terminates abnormally\n");
rc = close(client_sock);
if (rc == return_error)

382 TPF V4R1 TCP/IP

{
printf("qxyg: Error in closing the socket - %d\n",

sock_errno());
}
exit(0);

}
} /* end of else (select) */

} /* end of for (;redo_select;) */
} /* end of else (sendto) */

/**/
/* If the number of times we resent the message exceeds the */
/* resend count, terminate this program abnormally. */
/**/
if (msg_resend >= num_rsend)
{

printf("\n");
printf("qxyg: MSG %d has been resent %d times without any \

response from the server.\n",msg_recv,msg_resend);
printf("This could be caused by busy server or unreachable IP add\

ress or port number.\n");
printf("Server IP address - %x\n", \

server_sockaddr_in.sin_addr.s_addr);
printf("Server port # - %d\n\n", \

server_sockaddr_in.sin_port);
printf("Client terminates abnormally\n");
(void)close(client_sock);
exit(0);

}
}

/***/
/* Print out the status. Close down socket and exit this program */
/***/
msg_recv--;
printf("\n");
printf("qxyg: MSG Send/Recv = %d, MSG Resyn = %d, Total MSG Lost = \

%d\n\n", msg_recv,msg_resyn,msg_lost-msg_resyn);

rc = close(client_sock);
if (rc == return_error)
{

printf("qxyg: Error in closing the socket - %d\n",sock_errno());
exit(0);

}
printf("Client terminates normally\n");
printf("Server IP address - %x\n", \

server_sockaddr_in.sin_addr.s_addr);
printf("Server port # - %d\n\n",server_sockaddr_in.sin_port);
exit(0);

}

Appendix D. Sample Application Driver Code 383

384 TPF V4R1 TCP/IP

Appendix E. TCP/IP Restricted CLAW C Functions: Reference

This appendix contains the restricted Common Link Access to Workstation (CLAW)
C functions. The TPF system provides these CLAW C functions to communicate to
the IBM 3172 Model 3 Interconnect Controller, or similar workstation, to provide a
Transmission Control Protocol/Internet Protocol (TCP/IP) environment. These
functions are restricted to system use only. If applications use these restricted
functions, the results cannot be predicted.

© Copyright IBM Corp. 1996, 2002 385

claw_accept — Accept a CONNECT Request from the Workstation

ISO-C only
The claw_accept function is not available in the TARGET(TPF) C library.

The claw_accept function completes the construction of a logical link that was
started by a CONNECT request from the workstation.

Format
#include <claw.h>
int claw_accept(unsigned int adapter_id,

unsigned int path_id,
const char *disconn_ep,
const char *msg_ep,
enum s_recv_method recv_method);

adapter_id
A 4-byte field that contains the adapter ID for this adapter that was returned
from the claw_openadapter function request.

path_id
A 4-byte field that contains the path ID, which indicates the same path over
which a connection request was received from a CLAW workstation.

disconn_ep
A pointer to a 4-byte field that contains the character string CLA2. This entry
point is called asynchronously if the workstation starts a disconnect request to
the host. This routine is defined as a TPF real-time program.

msg_ep
A pointer to a 4-byte field that contains the character string CLA4. This user
exit, which is a nonsocket message user exit, is called asynchronously
whenever a message is sent on this path from the workstation to the host, if the
path ID is defined with a recv_method of PAGERECV. This routine is defined
as a TPF real-time program.

recv_method
A variable specifies how messages are to be received on this path. This
variable must belong to the enumeration type s_recv_method defined in claw.h.
PAGERECV is the only recv_method supported.

PAGERECV
CLAW calls msg_ep with the address and length of the data that was just
received. The application does not need to issue a RECEIVE to receive the
data.

SYNCRECV_FLUSH
Reserved for future IBM use.

SYNCRECV_HOLD
Reserved for future IBM use.

ASYNCRECV_FLUSH
Reserved for future IBM use.

ASYNCRECV_HOLD
Reserved for future IBM use.

AUTORECV
Reserved for future IBM use.

claw_accept

386 TPF V4R1 TCP/IP

Normal Return
Return code 0 indicates that the function was successful.

Error Return
Following is a list of return conditions that are returned to programs that call
claw_accept. See “CLAW Return Codes” on page 405 for a complete list of the
return codes and their definitions.

RC_CLAW_INVALID_FUNCTION
RC_CLAW_NOT_INITED
RC_CLAW_ADAPTER_NOT_OPEN
RC_CLAW_ACQUIRE_ERROR
RC_CLAW_PATH_NOT_THERE
RC_CLAW_BAD_RECV_METHOD

Programming Considerations
v If the program is not ready to accept an incoming CONNECT, issue

claw_disconnect instead of claw_accept.

v Activating disconn_ep indicates that a DISCONNECT request is issued from the
workstation to the host. No corresponding DISCONNECT request to a CLAW
workstation is required. If any SEND or RECEIVE requests are active on the
logical link, they end with a return code indicating a nonexistent path. A new ECB
is created and the parameter list is passed to the program starting at EBW000.

v Activating msg_ep, which is a nonsocket message user exit (CLA4), indicates an
incoming CLAW message from the workstation for the paths using the
recv_method of PAGERECV. A new ECB is created and the parameter list is
passed to the program starting at EBW000. See TPF System Installation Support
Reference for additional information about CLA4, including the length and
address of the data.

Examples
The following example issues the claw_accept function to accept a CONNECT
request from the workstation.

#include <claw.h>

unsigned int adapter_id;
unsigned int path_id;
char disconn_ep[5] = "CLA2";
char msg_ep[5] = "CLA4";
int claw_rc;

/* Set up adapter_id with the value returned from the
claw_openadapter and path_id with the value returned from the
claw_connect */...
claw_rc = claw_accept(adapter_id,path_id,disconn_ep,msg_ep,PAGERECV);

/*normal processing path */...

Related Information
v “claw_openadapter — Initialize an Adapter” on page 397

v “claw_connect — Initiate a Request to Open a Logical Link” on page 390

v “claw_disconnect — Remove a Logical Link from an Adapter” on page 393.

claw_accept

Appendix E. TCP/IP Restricted CLAW C Functions: Reference 387

claw_closeadapter — Terminate CLAW Activity on Subchannel Pair

ISO-C only
The claw_closeadapter function is not available in the TARGET(TPF) C
library.

The claw_closeadapter function ends all CLAW activity on a given subchannel pair.

Format
#include <claw.h>
int claw_closeadapter(unsigned int adapter_id);

adapter_id
A 4-byte field that contains the adapter ID for the adapter that was returned
from the claw_openadapter request.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
Following is a list of return conditions that can be returned to the program that calls
the claw_closeadapter function. See “CLAW Return Codes” on page 405 for a
complete list of the return codes and their definitions.

RC_CLAW_INVALID_FUNCTION
RC_CLAW_NOT_INITED
RC_CLAW_ADAPTER_NOT_OPEN
RC_CLAW_ACQUIRE_ERROR
RC_CLAW_INIT_ERROR
RC_CLAW_CLOSEDEVICE_ERROR

Programming Considerations
All logical links are broken and the CLAW device no longer monitors the subchannel
addresses for activity when the claw_closeadapter function is issued. If there are
any active logical links open on the subchannel pair, all active SEND and RECEIVE
requests end with an error return code and the logical links are disconnected. The
appropriate disconn_ep, CLA2, is called for each logical link.

Examples
The following example issues the claw_closeadapter function to close the adapter.

#include <claw.h>

unsigned int adapter_id;
int claw_rc;

/* Set up adapter_id with the value returned from the
claw_openadapter function */

.
claw_rc = claw_closeadapter(adapter_id);

claw_closeadapter

388 TPF V4R1 TCP/IP

/*normal processing path */...

Related Information
v “claw_openadapter — Initialize an Adapter” on page 397

v “claw_end — Terminate All CLAW Activity” on page 395.

claw_closeadapter

Appendix E. TCP/IP Restricted CLAW C Functions: Reference 389

claw_connect — Initiate a Request to Open a Logical Link

ISO-C only
The claw_connect function is not available in the TARGET(TPF) C library.

The claw_connect function starts a request to open a logical link on an active
CLAW adapter.

Format
#include <claw.h>
int claw_connect(unsigned int adapter_id,

unsigned int *path_id,
const char *disconn_ep,
const char *msg_ep,
enum s_recv_method recv_method,
void *path_anchor,
const char *hostappl,
const char *wsappl);

adapter_id
A 4-byte field that contains the adapter ID for the adapter that was returned
from the claw_openadapter request.

path_id
A pointer to a 4-byte field that contains the unique value that will be filled in by
the CLAW workstation to identify this path. This path_id value must be used on
subsequent claw_send and claw_disconnect requests for this path.

disconn_ep
A pointer to a 4-byte field that contains the character string CLA2. This entry
point is called asynchronously if the workstation starts a disconnect request to
the host. This routine is defined as a TPF real-time program.

msg_ep
A pointer to a 4-byte field that contains the character string CLA4. This user
exit, which is a nonsocket message user exit, is called asynchronously
whenever a message is sent on this path from the workstation to the host if the
path is defined with a recv_method of PAGERECV. This routine is defined as
a TPF real-time program.

recv_method
A variable specifies how messages are to be received on this path. This
variable must belong to the enumeration type s_recv_method defined in claw.h.
PAGERECV is the only recv_method supported.

PAGERECV
CLAW calls msg_ep with the address and length of the data just received.
The application does not need to issue a RECEIVE to receive the data.

SYNCRECV_FLUSH
Reserved for future IBM use.

SYNCRECV_HOLD
Reserved for future IBM use.

ASYNCRECV_FLUSH
Reserved for future IBM use.

ASYNCRECV_HOLD
Reserved for future IBM use.

claw_connect

390 TPF V4R1 TCP/IP

AUTORECV
Reserved for future IBM use.

path_anchor
A pointer to the address of an anchor word that is unique to this particular path.
This field is filled in by TPF CLAW services upon successful completion of the
claw_connect request. The caller may use that anchor word for whatever
purpose it chooses as long as the path remains connected. The address of this
anchor word is passed by TPF CLAW system services as an argument in calls
to the disconn_ep, msg_ep, and connect_ep exits.

hostappl
A pointer to an 8-byte field that contains the host application name to be passed
to the workstation on the CONNECT request.

wsappl
A pointer to an 8-byte field that contains the workstation application name to be
passed to the workstation on the CONNECT request.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
Following is a list of return codes that can be returned to the program that calls the
claw_connect function. See “CLAW Return Codes” on page 405 for a complete list
of the return codes and their definitions.

RC_CLAW_INVALID_FUNCTION
RC_CLAW_NOT_INITED
RC_CLAW_ADAPTER_NOT_OPEN
RC_CLAW_ACQUIRE_ERROR
RC_CLAW_CONNECT_ERROR
RC_CLAW_BAD_RECV_METHOD

Programming Considerations
v The claw_connect request is blocked until the workstation issues an ACCEPT or

the logical link is disconnected. An application that wants to perform a CONNECT
asynchronously can create a separate task to issue the claw_connect function.

v If an application wants to time out a CONNECT request that was not accepted, it
can create an asynchronous task to set a timer and issue a DISCONNECT
request when the timer expires. The CONNECT request ends with return code
RC_CLAW_CONNECT_ERROR. TPF CLAW services fills in the path_id field
immediately, before blocking.

v Activating disconn_ep indicates that a DISCONNECT request is issued from the
workstation to the host. No corresponding DISCONNECT request to CLAW
workstation is required. The application notes that the path no longer exists. If
any SEND or RECEIVE requests are active on the logical link, they are ended
with a return code indicating a nonexistent path.

v Activating msg_ep, which is a nonsocket message user exit (CLA4), indicates an
incoming CLAW message from the workstation for the paths using the
PAGERECV recv_method. A new ECB is created and the parameter list is
passed to the program starting at EBW000. See TPF System Installation Support
Reference for additional information about CLA4.

Examples
The following example issues the claw_connect function to open a logical link.

claw_connect

Appendix E. TCP/IP Restricted CLAW C Functions: Reference 391

#include <claw.h>

unsigned int adapter_id;
unsigned int path_id;
char disconn_ep[5] = "CLA2";
char msg_ep[5] = "CLA4";
unsigned int pathanchor;
char host_appl[8] = "TCPIP ";
char ws_appl[8] = "API ";
int claw_rc;

/* Set up adapter_id with the value returned from the
claw_openadapter and pathid functions with the value returned from the
claw_connect function */...
claw_rc = claw_connect(adapter_id,&path_id,disconn_ep,

msg_ep,PAGERECV,&pathanchor,
host_appl,ws_appl);

/*normal processing path */...

Related Information
v “claw_openadapter — Initialize an Adapter” on page 397

v “claw_accept — Accept a CONNECT Request from the Workstation” on page 386

v “claw_disconnect — Remove a Logical Link from an Adapter” on page 393

v “claw_send — Send a Message on an Active Logical Link” on page 403.

claw_connect

392 TPF V4R1 TCP/IP

claw_disconnect — Remove a Logical Link from an Adapter

ISO-C only
The claw_disconnect function is not available in the TARGET(TPF) C library.

The claw_disconnect function removes a logical link from an adapter.

Format
include <claw.h>
int claw_disconnect(unsigned int adapter_id,

unsigned int path_id);

adapter_id
A 4-byte field that contains the adapter ID for the adapter that was returned
from the claw_openadapter request.

path_id
A 4-byte field that contains the path ID assigned to this path when the
claw_connect function was issued.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
Following is a list of return codes that can be returned to the program that calls the
claw_disconnect function. See “CLAW Return Codes” on page 405 for a complete
list of the return codes and their definitions.

RC_CLAW_INVALID_FUNCTION
RC_CLAW_NOT_INITED
RC_CLAW_ADAPTER_NOT_OPEN
RC_CLAW_ACQUIRE_ERROR
RC_CLAW_DISCONNECT_ERROR
RC_CLAW_PATH_NOT_THERE

Programming Considerations
v The claw_disconnect function can be used to end an active logical link, to reject

a pending CONNECT request from the workstation, or to end a pending
CONNECT request issued from the host.

v The claw_connect function immediately stores the assigned path_id in the
path_id variable supplied in the claw_connect function call before waiting for the
workstation to accept the call. This makes it possible for another task to retrieve
that value and use it in claw_disconnect to end the claw_connect function.

v After the claw_disconnect function is issued, the logical link is gone, as far as
the application is concerned. No confirmation is received from the workstation.

v If any SEND or RECEIVE requests are active on the logical link, they end with
return code RC_CLAW_PATH_NOT_THERE.

Examples
The following example issues the claw_disconnect function to deactivate a logical
link.

claw_disconnect

Appendix E. TCP/IP Restricted CLAW C Functions: Reference 393

#include <claw.h>

unsigned int adapter_id;
unsigned int path_id;
int claw_rc;

/* Set up adapter_id with the value returned from the
claw_openadapter function and path_id with the value returned from
the claw_connect function */...

claw_rc = claw_disconnect(adapter_id,path_id);

/*normal processing path */...

Related Information
v “claw_connect — Initiate a Request to Open a Logical Link” on page 390

v “claw_openadapter — Initialize an Adapter” on page 397

v “claw_accept — Accept a CONNECT Request from the Workstation” on
page 386.

claw_disconnect

394 TPF V4R1 TCP/IP

claw_end — Terminate All CLAW Activity

ISO-C only
The claw_end function is not available in the TARGET(TPF) C library.

The claw_end function ends all CLAW activity and returns all CLAW-related
structures.

Format
#include <claw.h>
int claw_end(void);

Normal Return
Return code 0 indicates that the function was successful.

Error Return
Following is a list of return codes that can be returned to the program that calls the
claw_end function. See “CLAW Return Codes” on page 405 for a complete list of the
return conditions and their definitions.

RC_CLAW_INVALID_FUNCTION
RC_CLAW_NOT_INITED

Programming Considerations
After the claw_end function is called, a claw_initialization request must be
issued before any CLAW functions can be used.

Examples
The following example issues the claw_end function to end all CLAW activity.

#include <claw.h>

int claw_rc;
claw_rc = claw_end();

/*normal processing path */...

Related Information
v “claw_initialization — Prepare for CLAW Activity” on page 396

v “claw_closeadapter — Terminate CLAW Activity on Subchannel Pair” on
page 388.

claw_end

Appendix E. TCP/IP Restricted CLAW C Functions: Reference 395

claw_initialization — Prepare for CLAW Activity

ISO-C only
The claw_initialization function is not available in the TARGET(TPF) C
library.

The claw_initialization function prepares the program for CLAW activity.

Format
#include <claw.h>
int claw_initialization(const char hostname[8]);

hostname
A pointer to an 8-byte array that contains the host system name by which this
host will be known to the workstation.

Normal Return
Return code 0 indicates that the function was successful.

Error Return
Following is a list of return codes that can be returned to the program that calls the
claw_initialization function. See “CLAW Return Codes” on page 405 for a
complete list of the return codes and their definitions.

RC_CLAW_INVALID_FUNCTION
RC_CLAW_INITED_ALREADY

Programming Considerations
v The claw_initialization function must be issued before any CLAW functions

are requested.

v The claw_initialization function can be reversed only with the claw_end
function.

Examples
The following example issues the claw_initialization function to prepare for
CLAW activity.
#include <claw.h>
int claw_rc;
char hostsys[8]= "TCPIP ";...
claw_rc = claw_initialization(hostsys);

/*normal processing path */...

Related Information
v “claw_openadapter — Initialize an Adapter” on page 397

v “claw_end — Terminate All CLAW Activity” on page 395.

claw_initialization

396 TPF V4R1 TCP/IP

claw_openadapter — Initialize an Adapter

ISO-C only
The claw_openadapter function is not available in the TARGET(TPF) C library.

The claw_openadapter function initializes an adapter for CLAW communications.

Format
#include <claw.h>
int claw_openadapter(unsigned int *adapter_id,

const char *wsname,
unsigned int sda_dev,
const char *connect_ep,
const char *fail_ep,
unsigned int *glb_anchor)

adapter_id
A pointer to a 4-byte field that contains an adapter ID with a unique 32-bit
integer value that is returned by CLAW when the claw_openadapter function is
requested. This adapter ID must be used on all subsequent CLAW requests
pertaining to that subchannel pair.

wsname
A pointer to an 8-byte field that contains the system name by that the
workstation knows itself. This name is used in the system validation process.

sda_dev
A 2-byte field that contains the symbolic device address (SDA) on that CLAW
read channel programs are processed. The SDA for the read channel is always
an even number. Zero is not a valid SDA number. The SDA number for
write_dev is equal to sda_dev plus one.

connect_ep
A pointer to a 4-byte field that contains the character string CLA3. This entry
point is called asynchronously if the workstation starts a CONNECT request on
this subchannel pair. This routine is defined as a TPF real-time program.

fail_ep
A pointer to a 4-byte field that contains the character string CLA1. This entry
point is called asynchronously if the CLAW device interface detects an
unrecoverable error and must shut down a subchannel pair. This call informs
the caller that the adapter is no longer active. This routine is defined as a TPF
real-time program.

glb_anchor
A pointer to the address of an anchor word unique to this particular subchannel
pair that is filled in by the CLAW workstation when the claw_openadapter
function has completed successfully. The caller may use that anchor word for
whatever purpose it chooses for as long as the subchannel pair stays open.
This anchor word is passed as a parameter on connect_ep (CLA3), fail_ep
(CLA1), disconn_ep (CLA2), and msg_ep (CLA4) calls.

Normal Return
Return code 0 indicates that the function was successful.

claw_openadapter

Appendix E. TCP/IP Restricted CLAW C Functions: Reference 397

Error Return
See “CLAW Return Codes” on page 405 for a complete list of the return codes and
their definitions.

RC_CLAW_INVALID_FUNCTION
RC_CLAW_NOT_INITED
RC_CLAW_ACQUIRE_ERROR
RC_CLAW_INIT_ERROR
RC_CLAW_OPENDEVICE_ERROR

Programming Considerations
v Under error conditions, calls to the fail_ep (CLA1) entry points can be generated

before control returns to the caller from the claw_openadapter function. When this
happens, the caller will not have had a chance to store anything in the anchor
word. To handle this condition, the claw_openadapter function immediately saves
the value of glb_anchor in the anchor word before beginning other processing.
When the claw_openadapter function is about to return control to the calling
program, it stores the address of the anchor word in glb_anchor. By loading the
desired contents of the anchor word into this variable before the call, the
application can save itself the additional step of saving the value after the call.
The application can also ensure that a correct anchor word will be passed to
fail_ep (CLA1) if fail_ep is called during processing of the claw_openadapter
function.

v When the program specified by connect_ep (CLA3) is activated, it issues a
claw_accept request to complete the connection. It may also use a
claw_disconnect request to reject the connection.

v When the CLAW workstation detects an unrecoverable internal error, it shuts
itself down automatically. The program specified by fail_ep is activated to notify
the user that a particular adapter has ended itself. This program is not activated
when a adapter is shut down as a result of a claw_closeadapter call, or if an
adapter shuts down before initialization has completed and gives an error return
code from claw_openadapter. The application program does not have to issue a
claw_closeadapter adapter call when this program is activated. Any connected
paths on the adapter are disconnected and disconn_ep (CLA2) is activated.

Examples
The following example issues the claw_openadapter function to initialize an adapter.

#include <claw.h>

unsigned int adapter_id;
char workstation[9] = "OS2TCP ";
unsigned int sdadev;
char connectep[5] = "CLA3";
char failep[5]; = "CLA1";
unsigned int glbl_anchor;
int claw_rc;
.
.

glb_anchor = sdadev; /* setup glb_anchor value */
claw_rc = claw_openadapter(&adapter_id,workstation,

sdadev,connectep,failep,&glbl_anchor);

claw_openadapter

398 TPF V4R1 TCP/IP

/*normal processing path */...

Related Information
v “claw_closeadapter — Terminate CLAW Activity on Subchannel Pair” on

page 388.

claw_openadapter

Appendix E. TCP/IP Restricted CLAW C Functions: Reference 399

claw_query — Get the Status of CLAW Adapter or Logical Links

ISO-C only
The claw_query function is not available in the TARGET(TPF) C library.

The claw_query function gets information about the status of active CLAW adapters
or logical links.

Format
#include <claw.h>
int claw_query(unsigned int adapter_id,

enum query_level query_lvl,
union query_return *buffer_addr);

adapter_id
A 4-byte field that contains the adapter ID for the adapter that was returned
from the claw_openadapter request.

query_lvl
One of the following values that describes the type of QUERY:

QTYPE_LEVEL1
Returns the adapter ID of the next active adapter control block on the active
queue. See Table 10 for more information about QTYPE_LEVEL1.

QTYPE_LEVEL2
Obtains information about active CLAW adapters. See Table 11 for more
information about QTYPE_LEVEL2.

QTYPE_LEVEL3
Obtains information about active logical path 1 on an open CLAW adapter.
See Table 12 on page 401 for more information about QTYPE_LEVEL3.

buffer_addr
The pointer to a structure of type query_return, which is defined in claw.h
where the query response will placed. The size and format of this buffer
depends on the query_lvl value.

Following is the buffer returned for query level 1:

Table 10. CLAW Query Level 1 Buffer

Offset Length Name Description

0 4 CLAW_Q1_ADAPID Returned adapter ID

Following is the buffer returned for query level 2:

Table 11. CLAW Query Level 2 Buffer

Offset Length Name Description

0 8 CLAW_Q2_HOSTNAME Host system name

8 8 CLAW_Q2_WSNAME Workstation system name

10 4 CLAW_Q2_MSENT Total messages sent

14 4 CLAW_Q2_MRECV Total messages received

18 4 CLAW_Q2_BSENTHI Total bytes sent (high-order
fullword)

claw_query

400 TPF V4R1 TCP/IP

Table 11. CLAW Query Level 2 Buffer (continued)

Offset Length Name Description

1C 4 CLAW_Q2_BSENTLO Total bytes sent (low-order
fullword)

20 4 CLAW_Q2_BRECVHI Total bytes received
(high-order fullword)

24 4 CLAW_Q2_BRECVLO Total bytes received
(low-order fullword)

28 4 CLAW_Q2_TIME Time of last STAT

2C 4 CLAW_Q2_PATHS Number of open paths

30 4 CLAW_Q2_STATUS Status bits (not used)

34 4 CLAW_Q2_READPAGES Pages allocated for reads

38 4 CLAW_Q2_WRITEPAGES Pages allocated for writes

3C 4 CLAW_Q2_READDEV SDA (Must be an even
number)

40 4 CLAW_Q2_RESERVE IBM Reserved

Following is the buffer returned for query level 3:

Table 12. CLAW Query Level 3 Buffer

Offset Length Name Description

0 8 CLAW_Q3_HOSTAPPL Host application

8 8 CLAW_Q3_WSAPPL Workstation application

10 4 CLAW_Q3_MSENT Total messages sent

14 4 CLAW_Q3_MRECV Total messages received

18 4 CLAW_Q3_BSENTHI Total bytes sent (high-order
fullword)

1C 4 CLAW_Q3_BSENTLO Total bytes sent (low-order
fullword)

20 4 CLAW_Q3_BRECVHI Total bytes received
(high-order fullword)

24 4 CLAW_Q3_BRECVLO Total bytes received
(low-order fullword)

28 4 CLAW_Q3_TIME Time of last STAT

2C 4 CLAW_Q3_PATHID Path ID

30 1 CLAW_Q3_STATUS Status bits

CLAW_Q3_CLPTSFRE X'00'–Path is free

CLAW_Q3_CLPTSHO X'01'–Host connect pending

CLAW_Q3_CLPTSWCO X'02'–Workstation connect
pending

CLAW_Q3_CLTSACT X'03'–Path is connected
pending

31 3 CLAW_Q3_MISC IBM reserved

34 4 CLAW_Q3_PENDSENDS Active send request

38 4 CLAW_Q3_PENDRECVS Receive request active

claw_query

Appendix E. TCP/IP Restricted CLAW C Functions: Reference 401

Normal Return
Return code 0 indicates that the function was successful.

Error Return
Following is a list of return codes that can be returned to the program that calls the
claw_query function. See “CLAW Return Codes” on page 405 for a complete list of
the return codes.

RC_CLAW_INVALID_FUNCTION
RC_CLAW_NOT_INITED
RC_CLAW_ADAPTER_NOT_OPEN
RC_CLAW_BAD_QUERY_TYPE

Programming Considerations
Following are the programming considerations for CLAW query levels 1 and 3.
There are no programming considerations for CLAW query level 2.

QTYPE_LEVEL1

v If the supplied adapter ID parameter is zero, the adapter ID of the first open
adapter is returned in CLAW_Q1_ADAPID. If there is no open adapter, zero is
returned in CLAW_Q1_ADAPID.

v If the supplied adapter ID parameter is the adapter ID of the valid open adapter,
the adapter ID of the next open adapter in the list is returned. If this is the last
adapter in the list, zero is returned.

v If the supplied adapter ID parameter is not a valid adapter ID for any adapter in
the list, -1 is returned.

QTYPE_LEVEL3

If logical path 1 is not active for the corresponding adapter ID (that is, CLPTSFRE
in CLAW_Q3_STATUS is on), no other fields in the structure are valid.

Examples
The following example returns the information about active CLAW adapters.

include <claw.h>

unsigned int adapter_id;
union query_return buffer;
int claw_rc;

/* Set up adapter_id with the value returned from the
claw_openadapter function */

claw_rc = claw_query(adapter_id,QTYPE_LEVEL2,&buffer);

/*normal processing path */...

Related Information
None.

claw_query

402 TPF V4R1 TCP/IP

claw_send — Send a Message on an Active Logical Link

ISO-C only
The claw_send function is not available in the TARGET(TPF) C library.

The claw_send function sends a message on an active logical link.

Format
#include <claw.h>
int claw_send(unsigned int adapter_id,

unsigned int path_id,
char *msg_addr,
int msg_len,
enum s_send_method send_method);

adapter_id
A 4-byte field that contains the adapter ID for this adapter that was returned by
the claw_openadapter request.

path_id
A 4-byte field that contains the path ID assigned to this path at claw_connect
time.

msg_addr
A pointer to a data buffer or a list of discontiguous buffers. If send_method for
this message is SEND_LIST, this field contains the address of the first element
in an array of CLAWPAGE structures. This structure describes the address, length,
and more-to-come bit status of a page frame to be transferred. If send_method
for this message is SEND_NOLIST, this field contains the address of the
message to be sent.

msg_len
A 4-byte field that contains the number of bytes in a data buffer or the number
of elements in an array of pointers. If send_method for this message is
SEND_LIST, this field contains the number of elements in an array of CLAWPAGE
structures. If send_method for this message is SEND_NOLIST, this field
contains the length of the message to be sent up to 4 KB.

send_method
A variable specifying how messages are to be sent on this path. This variable
must belong to the enumeration type s_send_method, defined in the claw.h
header file. The following values may be specified:

SEND_LIST
The application passes an array of descriptors to TPF CLAW services, each
containing the address, length, and status of a message or portion of a
message. A message or portion of a message described by one of these
descriptors can be any length but it must not cross a 4 KB boundary
(thereby effectively limiting its length to 4096 bytes).

SEND_NOLIST
The application passes the address and length of the message to CLAW.
The message must not cross a 4 KB boundary.

Normal Return
Return code 0 indicates that the function was successful.

claw_send

Appendix E. TCP/IP Restricted CLAW C Functions: Reference 403

Error Return
Following is a list of return codes that can be returned to the program that calls the
claw_send function. See “CLAW Return Codes” on page 405 for a complete list of
the return codes.

RC_CLAW_INVALID_FUNCTION
RC_CLAW_NOT INITED
RC_CLAW_ADAPTER_NOT_OPEN
RC_CLAW_ACQUIRE_ERROR
RC_CLAW_PATH_NOT_THERE
RC_CLAW_BAD_SEND_METHOD

Programming Considerations
v The claw_send request is blocked until all requested data has been transferred.

An active claw_send request can be ended by the claw_disconnect or
claw_closeadapter functions, but some or all of the message may be sent
anyway. If SEND_LIST is used for send_method, a logical message consists of
a series of possible discontiguous blocks, as specified in the list, until one without
the more-to-come bit set on is found. It is possible to have one logical message
span several claw_send requests. It is also possible to have one claw_send
request include multiple messages.

v The CLAWPAGE structure ICLAWG DSECT is used to communicate between the
CLAW application and CLAW when the send_method is SEND_LIST. See the
ICLAWG DSECT for more information.

Examples
The following example issues the claw_send function to send the message to the
workstation.
#include <claw.h>

unsigned int adapter_id;
unsigned int path_id;
char *msg;
int length;
int claw_rc;

/* Set up adapter_id with the value returned from the claw_openadapter function
and path_id with the value returned from the claw_connect function */...
claw_rc = claw_send(adapter_id,path_id,msg,length,SEND_NOLIST);

/*normal processing path */...

Related Information
v “claw_closeadapter — Terminate CLAW Activity on Subchannel Pair” on

page 388

v “claw_connect — Initiate a Request to Open a Logical Link” on page 390

v “claw_disconnect — Remove a Logical Link from an Adapter” on page 393

v “claw_openadapter — Initialize an Adapter” on page 397.

claw_send

404 TPF V4R1 TCP/IP

CLAW Return Codes
The following table shows the return codes defined for calls to the CLAW
workstation.

Table 13. CLAW Return Codes Defined for CLAW Functions

Symbolic Name Hex Value Description

RC_CLAW_GOOD_RETURN 0000 The return is correct.

RC_CLAW_INVALID_FUNCTION 0001 CLAW was called with a first argument that is not valid.
This argument must be one of the CLAW restricted
functions.

RC_CLAW_INIT_ALREADY 0006 A claw_initialization function was issued, but a
previous claw_initialization had already been issued.

RC_CLAW_NOT_INITED 0007 A function was issued before the claw_initialization
function.

RC_CLAW_ADAPTER_NOT_OPEN 000A The caller must specify an adapter ID parameter on
several CLAW calls. This must be the value that was
returned on a claw_openadapter call. If an incorrect value
is specified, TPF CLAW services returns this error code.

RC_CLAW_ACQUIRE_ERROR 000B During the processing of a CLAW function call to a
CLAW workstation, TPF CLAW system services was
unable to obtain a control block needed to process the
function call.

RC_CLAW_CONNECT_ERROR 000D An internal error occurred during processing of a
claw_connect request.

RC_CLAW_DISCONNECT_ERROR 000E An internal error occurred during processing of a
claw_disconnect request.

RC_CLAW_PATH_NOT_THERE 000F An incorrect path ID was specified for a CLAW request
for that this parameter is required. Valid path IDs are
passed to the user program in the connect_ep exit or
returned to it after a claw_connect call, and remain valid
until the path is ended using a DISCONNECT request.
This return code may also be generated for a
claw_connect request if the host or the workstation ends
the pending path with a DISCONNECT request.

RC_CLAW_BAD_SEND_METHOD 0010 A claw_send request was issued with a send_method
that was not valid.

RC_CLAW_BAD_RECV_METHOD 0011 A claw_connect or claw_accept request was issued with
a recv_method value that was not valid.

RC_CLAW_SEND_ERROR 0019 A claw_send request encountered an error condition from
the CLAW device interface.

RC_CLAW_INIT_ERROR 001B This error is returned from a claw_openadapter request.
It indicates that the CLAW system validate processing
did not complete successfully. A CLAW error log is
generated, providing more information about the error.

RC_CLAW_BAD_QUERY_TYPE 001C This error is returned from a claw_query request. It
indicates that the query_lvl parameter in the request
was not valid.

RC_CLAW_DUPLICATE_ADAPTER 001D The call specified an adapter ID on the
claw_openadapter function and the adapter is already
active.

RC_CLAW_IO_OUTSTANDING 001E A claw_send request was issued and there is an I/O
outstanding on the ECB.

claw_send

Appendix E. TCP/IP Restricted CLAW C Functions: Reference 405

Table 13. CLAW Return Codes Defined for CLAW Functions (continued)

Symbolic Name Hex Value Description

RC_CLAW_FAIL_DURING_OPEN 001F An error occurred in the CLAW device interface that
caused the adapter to close.

RC_CLAW_OPENDEVICE_ERROR 1000 TPF CLAW services uses the MSDAC macro call to
mount the Read and Write devices specified in the
claw_openadapter call. If MSDAC returns an error return
code, this error code is returned as the return code from
claw_openadapter.

claw_send

406 TPF V4R1 TCP/IP

Appendix F. Using the Internet Protocol Trace Facility

The Internal Protocol (IP) trace facility provides a detailed trace of the data
transferred between the TPF system and remote resources connected through IP
networks. Each time the TPF system sends or receives data, some, all, or none of
that data is stored in an entry in the IP trace table depending on the resources that
you are tracing. Later, you can display the entries in the IP trace table online or
write the IP trace table to a real-time tape and create a report by using the IPTPRT
program to view or print offline.

The data stored in an IP trace table entry includes the following parts of the IP
packet:

v The entire IP header

v The entire protocol (Transmission Control Protocol (TCP) or User Datagram
Protocol (UDP)) header, if one exists

v A user-defined amount of the user data in the packet.

You can trace the data for all of the resources in the network or for only specific
resources in the network. In addition, you can set up an individual IP trace. See
“Using the Individual IP Trace Function” on page 76.

About the IP Trace Table
The IP trace table resides in core storage in the TPF system. The number of entries
in the trace table varies depending on how many bytes of user data from each IP
packet are being stored in the trace table.

The IP trace table operates in wraparound mode; that is, once all of the entries in
the IP trace table are used, the TPF system begins to overwrite the oldest entries
with the new data entries.

To store data in the IP trace table, you must first start the IP trace facility and
specify which resources you want to trace. When you no longer want to trace data,
you can stop the IP trace facility.

Starting the IP Trace Facility and Specifying Which Data to Trace
Use the ZTTCP TRACE command to start the IP trace facility and specify which
resources to trace. The TPF system stores the data being traced in entries in the IP
trace table.

You can use the IP trace facility to trace the following:

v Routing Information Protocol (RIP) messages, or you can select to not trace
them

v All the data transferred between the TPF system and remote resources

v Only data for a specific channel data link control (CDLC) IP router

v Only data for a specific OSA-Express connection

v Only data for sockets associated with a specific local IP address.

You can start more than one trace at the same time; for example, you can trace the
data for IP router X and local IP address 1.1.1.1. Depending on how you define
your traces, some traces may overlap other traces. For example, if you start tracing

© Copyright IBM Corp. 1996, 2002 407

the data for IP router X and then start tracing the data for the local IP address later,
the trace defined for the local IP address will overlap the trace defined for IP router
X. In addition, if you have traces defined for specific resources and then start
tracing all resources later, the trace defined for all resources will overlap the traces
defined for specific resources.

At any time, you can display information about the status of the IP trace facility and
the data being traced. See “Displaying Information about the IP Trace Facility” on
page 409 for more information.

To start the IP trace facility, do the following:

1. Enter one or more ZTTCP TRACE commands with the START parameter
specified to start the IP trace facility and specify which resources you want to
trace.

2. Enter the ZTTCP TRACE command with the SIZE parameter specified to
specify how many bytes of user data in each IP packet to store in the IP trace
table. See “Defining How Much Data to Store in the IP Trace Table” for more
information.

3. Enter ZTTCP TRACE START TAPE to start writing the IP trace table to a
real-time tape. See “Writing the IP Trace Table to a Real-Time Tape” on
page 409 for more information.

Stopping the IP Trace Facility
Use the ZTTCP TRACE command with the STOP parameter specified to stop the
IP trace facility. You can stop the IP trace facility for particular traces that you
defined. See “Starting the IP Trace Facility and Specifying Which Data to Trace” on
page 407 for more information about defining traces.

To stop tracing all resources in the TPF system, but to continue the traces that you
defined for specific resources, enter ZTTCP TRACE STOP ALL. For example,
assume you were tracing data for IP router X and then started tracing all resources
in the TPF system. After you enter ZTTCP TRACE STOP ALL, the IP trace facility
continues to trace data for only IP router X.

To stop a trace that was defined for a specific resource, enter the ZTTCP TRACE
command with the STOP parameter and the IP or SDA parameter specified. If the
trace that you stopped overlapped with another trace, the IP trace facility will
continue that other trace. For example, assume you were tracing IP router X and
then started tracing the local IP address associated with IP router X. If you stop the
trace for that local IP address, the IP trace facility will continue tracing IP router X.

Defining How Much Data to Store in the IP Trace Table
For each IP packet that is traced, the IP trace facility saves the following in the IP
trace table entry:

v The entire IP header

v The entire protocol (TCP or UDP) header, if one exists

v A user-defined amount of the user data in the packet.

Use the ZTTCP TRACE command with the SIZE parameter specified to increase or
decrease how much user data in each IP packet is traced. If an IP packet is traced
and the amount of user data in the packet is more than the maximum size specified
on the ZTTCP TRACE command, only the first n bytes of user data are placed in

408 TPF V4R1 TCP/IP

the IP trace table (where n is the size specified for the ZTTCP TRACE command).
See TPF Operations for more information about the ZTTCP TRACE command.

Writing the IP Trace Table to a Real-Time Tape
Before you can create an IPTPRT report to view or print offline, you must write the
IP trace table to a real-time tape. See “Using the Offline IPTPRT Utility to Create an
IPTPRT Report” on page 410 for more information about creating an IPTPRT report.

To write the IP trace table to a real-time tape, do the following:

1. Ensure you have a real-time tape mounted for the TPF system. See TPF
Operations for more information about mounting a tape.

2. Enter one or more ZTTCP TRACE commands with the START parameter
specified to start the IP trace facility and specify which data you want to trace.
See “Starting the IP Trace Facility and Specifying Which Data to Trace” on
page 407 for more information.

3. Enter ZTTCP TRACE START TAPE to start writing the IP trace table to the
real-time tape.

The IP trace facility will automatically write each 4-KB block of the IP trace table to
the real-time tape when that 4-KB block becomes full. If the length of the queue to
the real-time tape becomes too large, the IP trace facility stops writing the IP trace
table to tape until the queue becomes smaller.

When you are ready to create an IPTPRT report, remove the real-time tape so that
it can be processed by the IPTPRT utility. See TPF Operations for more information
about the ZTTCP TRACE command or removing a real-time tape.

Displaying Information about the IP Trace Facility
Use the ZTTCP DISPLAY command to display information about the IP trace facility.

Enter ZTTCP DISPLAY ALL to display the status of each IP router. The TRACE
column of the output display shows whether IP trace is active for a given IP router.

Enter ZTTCP DISPLAY LOCIPS to display the status of each local IP address. The
TRACE column of the output display shows whether IP trace is active for a given
local IP address.

See TPF Operations for more information about the ZTTCP DISPLAY command
and for an example of the informational display.

Displaying the IP Trace Table Online
Use the ZIPTR command to display the IP trace table online. You can display all of
the trace table or only part of the trace table. You can also display formatted entries
in the IP trace table.

Enter the ZIPTR command with the ALL parameter specified to display all of the IP
trace table entries. When you display all of the trace table entries, the oldest entry
(that is, the entry with the oldest time stamp) is displayed first, followed by the next
oldest entry, and so on. Therefore, the last entry displayed is the newest entry in
the IP trace table.

Appendix F. Using the Internet Protocol Trace Facility 409

You can also enter the ZIPTR command with the num parameter specified to
specify the number of IP trace table entries that you want to display. When you do
this, the newest entries in the trace table are displayed.

Remember that the IP trace facility can continue to store new data in the IP trace
table while you are displaying entries from the trace table. Therefore, the newest
entries continue to change as more data is stored in the trace table. For example, if
you display 11 entries from the IP trace table, wait a few seconds while data
continues to flow, and then you display 11 entries from the IP trace table again, the
11 entries displayed the second time are different from the 11 entries displayed the
first time.

When you enter the ZIPTR command to display the IP trace table, the last line of
the information displayed tells you how many entries are in the trace table.

There are two formats in which you can display the IP trace table. You can create a
compacted display of the trace table or a formatted display of the trace table.

Creating a Compacted Display of the IP Trace Table
To create a compacted display of the IP trace table, enter the ZIPTR command
without the FORMAT parameter specified.

In the compacted display of the IP trace table, each trace table entry is displayed
on a separate line and only part of the user data being traced is included.

Creating a Formatted Display of the IP Trace Table
To create a formatted display of the IP trace table, enter the ZIPTR command with
the FORMAT parameter specified.

In the formatted display of the IP trace table, each trace table entry is formatted and
all the user data being traced is displayed.

Different information is displayed depending on the protocol of the packet (TCP,
UDP, or others).

See TPF Operations for more information about the ZIPTR command and for an
example of the informational display.

Using the Offline IPTPRT Utility to Create an IPTPRT Report
Use the offline IPTPRT utility to create an IPTPRT report, which you can view or
print offline. Unlike using the ZIPTR command to display the IP trace table online,
the IPTPRT utility offers you more flexibility in selecting the information to include in
the IPTPRT report. For example, you can print in the IPTPRT report only the data
transferred between the TPF system and a specific IP router, or only the data
between the TPF system and a specific remote resource. See “Defining the IPTPRT
Report” on page 411 for more information.

Another difference between creating an IPTPRT report and using the ZIPTR
command to display the IP trace table online is that you create an IPTPRT report
from the IP trace table on a real-time tape rather than in core storage. If you enter
the ZIPTR command to display the IP trace table online while you are tracing active
resources, the oldest entries in the IP trace table may be overwritten with new data.

410 TPF V4R1 TCP/IP

Therefore, after this happens, you cannot display those entries online. However,
because you create an IPTPRT report from the IP trace table on a real-time tape,
you never have this problem.

The IPTPRT utility runs on an MVS system. Before you can use the IPTPRT utility
to create an IPTPRT report, you must do the following:

1. Compile the IPTPRT utility.

2. Submit the object code to the object library.

3. Link the object code to the link library.

To create an IPTPRT report, do the following:

1. Follow the steps in “Starting the IP Trace Facility and Specifying Which Data to
Trace” on page 407 to start the IP trace facility and specify which data you want
to trace.

2. When you are ready to create an IPTPRT report, perform a tape switch for the
real-time tape. See TPF Operations for more information about performing a
tape switch.

3. Create the job control language (JCL) needed to run the IPTPRT utility. See
“Sample JCL for the IPTPRT Utility” for an example.

4. Define the IPTPRT report by updating the PARM= parameter in the IPTPRT
JCL. This allows you to specify the format of the IPTPRT report and the data
you want to include in it. See “Defining the IPTPRT Report” for more
information.

5. Submit the IPTPRT JCL to the MVS system to run the IPTPRT utility and create
the IPTPRT report. See “IPTPRT Messages” on page 421 for information on
possible return codes.

6. View or print the IPTPRT report.

Sample JCL for the IPTPRT Utility
Figure 36 shows an example of the JCL that you can use to run the IPTPRT utility.
Change the tape number, shown as XXXXXX, to the tape number for the real-time
tape that contains the IP trace table. Change the link library name, shown as
NNN.NNNN.NNNN.NN, to the name of your link library.

Defining the IPTPRT Report
Use the PARM= parameter in the IPTPRT JCL to define the IPTPRT report. You
can specify the data that you want to print in the IPTPRT report as well as how you
want to format the IPTPRT report.

Unlike using the ZIPTR command to display a specific number of entries from the
IP trace table, you can actually define the type of data that you want to print in an
IPTPRT report. For example, you can print the entire IP trace table on the real-time

//IP EXEC PGM=IPTPRT,PARM=’ALL COMPACT’
//STEPLIB DD DISP=SHR,DSN=NNN.NNNN.NNNN.NN
//PRINT DD SYSOUT=A,DCB=(LRECL=133,BLKSIZE=3990,RECFM=FBA)
//IPTR DD DSN=RTL,DCB=(LRECL=4095,BLKSIZE=32760,RECFM=U),
// DISP=OLD,LABEL=(2,BLP),UNIT=TAPE,VOL=SER=XXXXXX
//SYSUDUMP DD SYSOUT=A
/*
//* RECFM=VB FOR TAPES CREATED IN BLOCKED FORMAT.

Figure 36. JCL for the IPTPRT Utility

Appendix F. Using the Internet Protocol Trace Facility 411

tape or you can print only the data that flowed over an IP router. You can also print
only the data for a remote resource or print only the data that has a time stamp in a
specified range.

There are two formats in which you can create the IPTPRT report. Use the PARM=
parameter to specify whether you want to create a compacted IPTPRT report or a
formatted IPTPRT report.

See “Sample Compacted IPTPRT Report” on page 416 for an example of a
compacted IPTPRT report and “Sample Formatted IPTPRT Report” on page 418 for
an example of a formatted IPTPRT report.

PARM= Parameter for the IPTPRT JCL
Many values are available in the IPTPRT JCL for the PARM= parameter that allow
you to change the contents of the IPTPRT report to your specific needs. The
following shows the syntax for the PARM= parameter and describes the values.

412 TPF V4R1 TCP/IP

YY IPTPRT EXEC PGM=IPTPRT PARM YZ

PARM:

,PARM='All'
,PARM=' Opts '

ASCII FILE filename NARROW
COMPACT

Opts:

^

All

DATE ddmmm
DIP destip
DPORT destport
FLAG ACK

FIN
PSH
RST
SYN
URG

ICCW ipccw
IP ip
PORT port
PROT ICMP

TCP
UDP

RC reasoncode
SIP sourceip
SPORT sourceport
TIME time1 time2
TOD tod1 tod2

ALL
includes all of the IP packets in the IP trace table in the IPTPRT report.

ASCII
displays the data portion of the output in ASCII format. This value applies only
to a formatted IPTPRT report.

COMPACT
creates a compacted IPTPRT report in which each entry is printed on a single
line. See “Sample Compacted IPTPRT Report” on page 416 for an example of a
compacted IPTPRT report. If you do not specify this value, a formatted IPTPRT
report is created.

DATE ddmmm
includes in the IPTPRT report only the IP packets that flowed on the specified
date, where dd is the day and mmm is the first 3 characters of the name of the
month.

Appendix F. Using the Internet Protocol Trace Facility 413

|

|

|||

|
|
|

DIP destip
includes in the IPTPRT report only the IP packets whose destination IP address
is destip.

DPORT destport
includes in the IPTPRT report only the IP packets whose destination port is
destport.

FILE filename
writes the IPTPRT report to the specified file.

FLAG flagname
includes in the IPTPRT report only the IP packets for TCP sockets that have the
specified flags set in the TCP header of the packet.

ICCW ipccw
includes in the IPTPRT report only the IP packets that flowed between the TPF
system and the IP router or OSA-Express connection whose IP CCW index is
ipccw.

IP ip
includes in the IPTPRT report only the IP packets whose destination IP address
is ip, or whose source IP is ip.

NARROW
creates the IPTPRT report in a narrow format (80 columns wide). If you do not
specify this value, the default is to create an IPTPRT report that is 132 columns
wide.

PORT port
includes in the IPTPRT report only the IP packets whose destination port is
port, or whose source PORT is port.

PROT protocol
includes in the IPTPRT report only the IP packets whose protocol is protocol.

RC reasoncode
includes in the IPTPRT report only the IP packets that contain a predefined
reason code that indicates an exception condition is associated with the packet,
where reasoncode is one of the following:

00 includes all possible reason codes.

01 includes all packets with the REJECTED BY FIREWALL reason code value.
This reason code occurs when a packet is rejected based on a packet
filtering rule. This reason code is shown in the IPTPRT report for both the
input packet that generated the exception condition and the output packet
that is sent as a result of the exception condition.

02 includes all packets with the DISCARDED BY FIREWALL reason code
value. This reason code occurs when a packet is discarded based on a
packet filtering rule.

03 includes all packets with the SERVER NOT ACTIVE reason code value.
This reason code occurs when a TCP connection request is received for a
server that is not active. This reason code is shown in the IPTPRT report
for both the input packet that generated the exception condition and the
output packet that is sent as a result of the exception condition.

04 includes all packets with the SOCKET DOES NOT EXIST reason code
value. This reason code occurs when a TCP message (not a connection
request) was received, but the specified socket does not exist. This reason

414 TPF V4R1 TCP/IP

|
|
|
|

||

||
|
|
|
|

||
|
|

||
|
|
|
|

||
|
|

code is shown in the IPTPRT report for both the input packet that generated
the exception condition and the output packet that is sent as a result of the
exception condition.

05 includes all packets with the BACKLOG LIMIT EXCEEDED reason code
value. This reason code occurs when the remote client tries to start a
connection with a TCP server on the TPF system, but the backlog limit for
this application has been exceeded. This reason code is shown in the
IPTPRT report for both the input packet that generated the exception
condition and the output packet that is sent as a result of the exception
condition.

06 includes all packets with the NO SOCKETS AVAILABLE reason code value.
This reason code occurs when a TCP connection request was received, but
no socket block entries are available in the TPF system to start a new
socket. This reason code is shown in the IPTPRT report for both the input
packet that generated the exception condition and the output packet that is
sent as a result of the exception condition.

07 includes all packets with the POSSIBLE SYN ATTACK reason code value.
This reason code occurs when the TPF system is running out of socket
blocks and the connection request from this remote client has been pending
for a long period of time. The connection request is cleaned up to free
socket block entries.

08 includes all packets with the CLOSED BY APPLICATION reason code
value. This reason code occurs when the close function was issued for this
socket. The socket was either starting, ending, or had input messages
queued that have not been processed.

09 includes all packets with the CLOSED BY SOCKET SWEEPER reason
code value. This reason code occurs when the socket sweeper program
closes a socket because the socket is no longer being used.

10 includes all packets with the RETRANSMIT LIMIT EXCEEDED reason code
value. This reason code occurs when the TPF system closes the socket
because the TPF system retransmitted messages that have not been
acknowledged by the remote client and the retransmit limit has been
reached.

11 includes all packets with the ZTTCP INACTIVATE SOCKETS reason code
value. This reason code occurs when the ZTTCP INACTIVATE command is
entered with the SOCKETS parameter specified to deactivate the socket.

12 includes all packets with the ZSOCK INACTIVATE SOCKETS reason code
value. This reason code occurs when the ZSOCK command was entered
with the INACT parameter specified to deactivate one or more sockets.

13 includes all packets with the NOT AUTHORIZED reason code value. This
reason code occurs when the TCP/IP native stack support accept
connection user exit, UACC, rejected the connection request.

14 includes all packets with the CYCLE DOWN reason code value. This
reason code occurs when a socket is closed because the TPF system is
cycling down to 1052 state.

15 includes all packets with the TCP OPTIONS NOT VALID reason code
value. This reason code occurs when the connection request was received,
but was rejected because the TCP options specified by the remote client
are not valid. This reason code is shown in the IPTPRT report for both the

Appendix F. Using the Internet Protocol Trace Facility 415

|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|

||
|
|
|

||
|
|

||
|
|
|
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|
|

input packet that generated the exception condition and the output packet
that is sent as a result of the exception condition.

16 includes all packets with the SSL DAEMON SHUTDOWN reason code
value. This reason code occurs when the socket is associated with a
shared SSL session and the SSL daemon processes are shutting down and
closing their sockets.

17 includes all packets with the APPLICATION NOT ACTIVE reason code
value. This reason code occurs when a UDP message was received, but
the specified application (port) is not active. This reason code is shown in
the IPTPRT report for both the input packet that generated the exception
condition and the output packet that is sent as a result of the exception
condition.

18 includes all packets with the DESTINATION NOT TPF reason code value.
This reason code occurs when a packet is received from the network, but
the destination is not an IP address in the TPF system and the message is
discarded.

19 includes all packets with the RESTRICTED CDLC IP ADDRESS reason
code value. This reason code occurs when the packet is discarded by the
TPF system because the packet was received on a restricted IP address,
but across the wrong symbolic device address (SDA).

20 includes all packets with the RETRANSMITTED MESSAGE reason code
value. This reason code occurs when the message is retransmitted by the
TPF system.

SIP sourceip
includes in the IPTPRT report only the IP packets whose source IP address is
sourceip.

SPORT sourceport
includes in the IPTPRT report only the IP packets whose source port is
sourceport.

TIME time1 time2
includes in the IPTPRT report only the IP packets in the specified time-stamp
range, where time1 and time2 are the beginning and ending times in the format
hh.mm.ss.

TOD tod1 tod2
includes in the IPTPRT report only the IP packets in the specified time-stamp
range, where tod1 and tod2 are the beginning and ending times in time-of-day
clock format.

Sample PARM= Parameters for the IPTPRT JCL
A compacted IPTPRT report of all the data in the IP trace table is created in the
following example.
//IP EXEC PGM=IPTPRT,PARM=’ALL COMPACT’

A formatted IPTPRT report is created in the following example. The report includes
all data transferred between the TPF system and the remote resource whose IP
address is 9.117.102.113.
//IP EXEC PGM=IPTPRT,PARM=’IP 9.117.102.113’

Sample Compacted IPTPRT Report
To create a compacted IPTPRT report, specify the COMPACT value in the PARM=
parameter of the IPTPRT JCL.

416 TPF V4R1 TCP/IP

|
|

||
|
|
|

||
|
|
|
|
|

||
|
|
|

||
|
|
|

||
|
|

In a compacted IPTPRT report, each IP packet is printed on a single line and only
part of the user data that was traced is included. The following information is
displayed:

RW The read/write operation code, where:

EVEN Even numbers represent read operations.

ODD Odd numbers represent write operations.

IN The IP channel command word (IPCCW) area index, where:

01–C7 CDLC IP routers.

D1–EE OSA-Express connections.

FF Local sockets.

SOURCE IP The source IP address.

DEST IP The destination IP address.

SPORT The source port. This field has meaning only for packets using TCP
or UDP.

DPORT The destination port. This field has meaning only for packets using
TCP or UDP.

PR The protocol. Sample values are as follows:

01 ICMP

06 TCP

11 UDP

FG The TCP flag byte. This field has meaning only for packets using
TCP.

DATA The user data in the IP packet.

Figure 37 on page 418 shows a narrow format example of a compacted IPTPRT
report.

Appendix F. Using the Internet Protocol Trace Facility 417

Sample Formatted IPTPRT Report
To create a formatted IPTPRT report, do not specify the COMPACT value in the
PARM= parameter of the IPTPRT JCL.

In a formatted IPTPRT report, each IP packet is formatted and all the user data that
was traced is printed.

Different information is displayed depending on the protocol of the packet (TCP,
UDP, or others).

v For IP packets using TCP, the following information is displayed:

RWI
The read/write operation code, where:

EVEN Even numbers represent read operations.

ODD Odd numbers represent write operations.

IPCCW
The IP channel command word (IPCCW) area index, where:

01–C7 CDLC IP routers.

D1–EE
OSA-Express connections.

FF Local sockets.

SOURCE IP
The source IP address.

DEST IP
The destination IP address.

**
TRANSACTION PROCESSING FACILITY TCP/IP TRACE OUTPUT

**
RECORDS MATCHING THE FOLLOWING SELECTION CRITERIA WILL BE PRINTED:
PROTOCOLS: ALL
SOURCE PORTS: ALL
DESTINATION PORTS: ALL
SOURCE IP ADDRESSES: . . . ALL
DESTINATION IP ADDRESSES: ALL
REASON CODES: ALL
IP CCW: ALL
DATE: FROM JAN01 TO DEC31
TIME: FROM 00:00:00 TO 23:59:59
TOD (FIRST WORD): FROM 00000000 TO FFFFFFFF
TCP FLAGS: ALL
NARROW LAYOUT
COMPACT FORMAT
RW IN SOURCE IP DEST IP SPORT DPORT PR FG DATA
32 03 9.117.249.50 9.117.249.51 1024 9999 06 02
31 03 9.117.249.51 9.117.249.50 9999 1024 06 12
52 03 9.117.249.50 9.117.249.51 1024 9999 06 10
32 03 9.117.249.50 9.117.249.51 1024 9999 06 18 D7C9D5C760D7D6D5
32 03 9.117.249.50 9.117.249.51 1024 9999 06 18 4040F1F0F0818181
51 03 9.117.249.51 9.117.249.50 9999 1024 06 10
31 03 9.117.249.51 9.117.249.50 9999 1024 06 18 4040F1F0F0828282
52 03 9.117.249.50 9.117.249.51 1024 9999 06 18 4040F1F0F0818181

Figure 37. Compacted IPTPRT Report

418 TPF V4R1 TCP/IP

|

LEN
The length of the IP packet.

TOD
The time stamp.

PROTOCOL
The protocol of the IP packet, which for TCP is X'06'.

SOURCE PORT
The source port.

DEST PORT
The destination port.

SEQ
The sequence number in the TCP header.

ACK
The acknowledgment number in the TCP header.

WINDOW
The window size in the TCP header.

URGENT OFFSET
The urgent offset field in the TCP header. If this value is not 0, the packet
contains out-of-band (OOB) data.

TCP FLAG BYTE
The flag byte in the TCP header. The numeric value is displayed along with
the names of each bit that is set in the flag byte.

REASON CODE
The reason code provided if an exception condition is associated with a
packet.

IP HEADER
The entire IP header of the packet.

TCP HEADER
The entire TCP header of the packet.

DATA
The user data in the packet that was traced.

v For IP packets using UDP, the following information is displayed:

RWI
The read/write operation code, where:

EVEN Even numbers represent read operations.

ODD Odd numbers represent write operations.

IPCCW
The IP channel command word (IPCCW) area index, where:

01–C7 CDLC IP routers.

D1–EE
OSA-Express connections.

FF Local sockets.

SOURCE IP
The source IP address.

Appendix F. Using the Internet Protocol Trace Facility 419

|
|
|

DEST IP
The destination IP address.

LEN
The length of the IP packet.

TOD
The time stamp.

PROTOCOL
The protocol of the IP packet, which for UDP is X'11' .

SOURCE PORT
The source port.

DEST PORT
The destination port.

IP HEADER
The entire IP header of the packet.

UDP HEADER
The entire UDP header of the packet.

DATA
The user data in the packet that was traced.

v For IP packets using a protocol other than TCP or UDP, the following information
is displayed:

RWI
The read/write operation code, where:

EVEN Even numbers represent read operations.

ODD Odd numbers represent write operations.

IPCCW
The IP channel command word (IPCCW) area index, where:

01–C7 CDLC IP routers.

D1–EE
OSA-Express connections.

FF Local sockets.

SOURCE IP
The source IP address.

DEST IP
The destination IP address.

LEN
The length of the IP packet.

TOD
The time stamp.

PROTOCOL
The protocol of the IP packet.

IP HEADER
The entire IP header of the packet.

DATA
The user data in the packet that was traced.

420 TPF V4R1 TCP/IP

Figure 38 shows an example of a formatted IPTPRT report.

IPTPRT Messages
When you submit the IPTPRT JCL to run the IPTPRT utility, the report will include a
list of detected errors. For more information about the error message numbers
shown in the report, see Messages (System Error and Offline) and Messages
(Online).

Including the IP Trace Table in System Error Dumps
To include the IP trace table in system error dumps, use the ZIDOT command to
specify the TCP/IP keyword (ITCP) in the dump override table. See TPF Operations
for more information about the ZIDOT command.

**
TRANSACTION PROCESSING FACILITY TCP/IP TRACE OUTPUT

**
RECORDS MATCHING THE FOLLOWING SELECTION CRITERIA WILL BE PRINTED:
PROTOCOLS: ALL
SOURCE PORTS: ALL
DESTINATION PORTS: ALL
SOURCE IP ADDRESSES: . . . ALL
DESTINATION IP ADDRESSES: ALL
REASON CODES: ALL
IP CCW: ALL
DATE: FROM JAN01 TO DEC31
TIME: FROM 00:00:00 TO 23:59:59
TOD (FIRST WORD): FROM 00000000 TO FFFFFFFF
TCP FLAGS: ALL
WIDE LAYOUT
IP FORMATTED TRACE
RWI-52 IPCCW-01 SOURCE IP-9.117.107.167 DEST IP-9.117.249.50 LEN-48

TOD-B70C206B31D6FB20 PROTOCOL-06 (TCP) SOURCE PORT-1865 DEST PORT-21
SEQ-102459496 WINDOW-16384 URGENT OFFSET-0
TCP FLAG BYTE-02 (SYN)
IP HEADER 45000030 7F254000 7D0606DF 09756BA7 0975F932
TCP HEADER 07490015 061B6868 00000000 70024000 55DD0000 02040551 01010402

RWI-51 IPCCW-01 SOURCE IP-9.117.249.50 DEST IP-9.117.107.167 LEN-44
TOD-B70C206B3254DA00 PROTOCOL-06 (TCP) SOURCE PORT-21 DEST PORT-1865
SEQ-112401775 ACK-102459497 WINDOW-32767 URGENT OFFSET-0
TCP FLAG BYTE-12 (ACK, SYN)
IP HEADER 4500002C 9E070000 3C066901 0975F932 09756BA7
TCP HEADER 00150749 06B31D6F 061B6869 60127FFF 06B20000 02040551

RWI-32 IPCCW-01 SOURCE IP-9.117.107.167 DEST IP-9.117.249.50 LEN-40
TOD-B70C206B371FE785 PROTOCOL-06 (TCP) SOURCE PORT-1865 DEST PORT-21
SEQ-102459497 ACK-112401776 WINDOW-17693 URGENT OFFSET-0
TCP FLAG BYTE-10 (ACK)
IP HEADER 45000028 7F264000 7D0606E6 09756BA7 0975F932
TCP HEADER 07490015 061B6869 06B31D70 5010451D 58EE0000

Figure 38. Formatted IPTPRT Report

Appendix F. Using the Internet Protocol Trace Facility 421

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

422 TPF V4R1 TCP/IP

Appendix G. Management Information Base Variables

This appendix lists the variables defined by the Management Information Base
(MIB) that are supported by the Simple Network Management Protocol (SNMP)
agent on the TPF system. The MIB variable types are defined using the following
fields:

Variable Descriptor
A textual name for the variable.

Object Identifier
The name for the variable in Abstract Syntax Notation (ASN.1) format.

MIB Variable Types
The MIBs supported by the TPF system reside in core storage. The TPF system
supports the MIB-II structure except for certain values (routing tables and physical
address tables, for example) that do not apply to TPF. All MIBs supported by the
TPF system are defined by the following Request for Comments (RFC) documents:

v RFC 1155 Structure and Identification of Management Information for
TCP/IP-based internets

v RFC 1213 Management Information Base for Network Management of
TCP/IP-based internets: MIB-II

v RFC 2233 The Interfaces Group MIB using SMlv2.

Go to http://www.ietf.org for more information about these RFCs and any related
extensions.

All MIB variables supported by TPF have read-only access. The following table
shows the MIB-II variables defined by RFC 1213 that are supported by the TPF
system. MIB variables that are not accessible are shown in bold italic font. The
variables are listed in each SNMP group in the numeric order of their object
identifiers.

Table 14. MIB Variables Supported by the TPF System

Variable Descriptor Object Identifier

System Group

sysDescr 1.3.6.1.2.1.1.1

sysObjectID 1.3.6.1.2.1.1.2

sysUpTime 1.3.6.1.2.1.1.3

sysContact 1.3.6.1.2.1.1.4

sysName 1.3.6.1.2.1.1.5

sysLocation 1.3.6.1.2.1.1.6

sysServices 1.3.6.1.2.1.1.7

Interfaces Group

ifNumber 1.3.6.1.2.1.2.1

ifTable 1.3.6.1.2.1.2.2

ifEntry 1.3.6.1.2.1.2.2.1

ifIndex 1.3.6.1.2.1.2.2.1.1

ifDescr 1.3.6.1.2.1.2.2.1.2

© Copyright IBM Corp. 1996, 2002 423

http://www.ietf.org

Table 14. MIB Variables Supported by the TPF System (continued)

Variable Descriptor Object Identifier

ifType 1.3.6.1.2.1.2.2.1.3

ifMtu 1.3.6.1.2.1.2.2.1.4

ifSpeed 1.3.6.1.2.1.2.2.1.5

ifPhysAddress 1.3.6.1.2.1.2.2.1.6

ifAdminStatus 1.3.6.1.2.1.2.2.1.7

ifOperStatus 1.3.6.1.2.1.2.2.1.8

ifLastChange 1.3.6.1.2.1.2.2.1.9

ifInOctets 1.3.6.1.2.1.2.2.1.10

ifInUcastPkts 1.3.6.1.2.1.2.2.1.11

ifInNUcastPkts 1.3.6.1.2.1.2.2.1.12

ifInDiscards 1.3.6.1.2.1.2.2.1.13

ifInErrors 1.3.6.1.2.1.2.2.1.14

ifInUnknownProtos 1.3.6.1.2.1.2.2.1.15

ifOutOctets 1.3.6.1.2.1.2.2.1.16

ifOutUcastPkts 1.3.6.1.2.1.2.2.1.17

ifOutNUcastPkts 1.3.6.1.2.1.2.2.1.18

ifOutDiscards 1.3.6.1.2.1.2.2.1.19

ifOutErrors 1.3.6.1.2.1.2.2.1.20

ifOutQLen 1.3.6.1.2.1.2.2.1.21

ifSpecific 1.3.6.1.2.1.2.2.1.22

IP Group

ipForwarding 1.3.6.1.2.1.4.1

ipDefaultTTL 1.3.6.1.2.1.4.2

ipInReceives 1.3.6.1.2.1.4.3

ipInHdrErrors 1.3.6.1.2.1.4.4

ipInAddrErrors 1.3.6.1.2.1.4.5

ipForwDatagrams 1.3.6.1.2.1.4.6

ipInUnknownProtos 1.3.6.1.2.1.4.7

ipInDiscards 1.3.6.1.2.1.4.8

ipInDelivers 1.3.6.1.2.1.4.9

ipOutRequests 1.3.6.1.2.1.4.10

ipOutDiscards 1.3.6.1.2.1.4.11

ipOutNoRoutes 1.3.6.1.2.1.4.12

ipReasmTimeout 1.3.6.1.2.1.4.13

ipReasmReqds 1.3.6.1.2.1.4.14

ipReasmOKs 1.3.6.1.2.1.4.15

ipReasmFails 1.3.6.1.2.1.4.16

ipFragsOKs 1.3.6.1.2.1.4.17

ipFragsFails 1.3.6.1.2.1.4.18

ipFragCreates 1.3.6.1.2.1.4.19

424 TPF V4R1 TCP/IP

Table 14. MIB Variables Supported by the TPF System (continued)

Variable Descriptor Object Identifier

ipAddrTable 1.3.6.1.2.1.4.20

ipAddrEntry 1.3.6.1.2.1.4.20.1

ipAdEntAddr 1.3.6.1.2.1.4.20.1.1

ipAdEntIfIndex 1.3.6.1.2.1.4.20.1.2

ipAdEntNetMask 1.3.6.1.2.1.4.20.1.3

ipAdEntBcastAddr 1.3.6.1.2.1.4.20.1.4

ipAdEntReasmMaxSize 1.3.6.1.2.1.4.20.1.5

ICMP Group

icmpInMsgs 1.3.6.1.2.1.5.1

icmpInErrors 1.3.6.1.2.1.5.2

icmpInDestUnreachs 1.3.6.1.2.1.5.3

icmpInTimeExcds 1.3.6.1.2.1.5.4

icmpInParmProbs 1.3.6.1.2.1.5.5

icmpInSrcQuenchs 1.3.6.1.2.1.5.6

icmpInRedirects 1.3.6.1.2.1.5.7

icmpInEchos 1.3.6.1.2.1.5.8

icmpInEchoReps 1.3.6.1.2.1.5.9

icmpInTimestamps 1.3.6.1.2.1.5.10

icmpInTimestampReps 1.3.6.1.2.1.5.11

icmpInAddrMasks 1.3.6.1.2.1.5.12

icmpInAddrMaskReps 1.3.6.1.2.1.5.13

icmpOutMsgs 1.3.6.1.2.1.5.14

icmpOutErrors 1.3.6.1.2.1.5.15

icmpOutDestUnreachs 1.3.6.1.2.1.5.16

icmpOutTimeExcds 1.3.6.1.2.1.5.17

icmpOutParmProbs 1.3.6.1.2.1.5.18

icmpOutSrcQuenchs 1.3.6.1.2.1.5.19

icmpOutRedirects 1.3.6.1.2.1.5.20

icmpOutEchos 1.3.6.1.2.1.5.21

icmpOutEchoReps 1.3.6.1.2.1.5.22

icmpOutTimestamps 1.3.6.1.2.1.5.23

icmpOutTimestampReps 1.3.6.1.2.1.5.24

icmpOutAddrMasks 1.3.6.1.2.1.5.25

icmpOutAddrMaskReps 1.3.6.1.2.1.5.26

TCP Group

tcpRtoAlgorithm 1.3.6.1.2.1.6.1

tcpRtoMin 1.3.6.1.2.1.6.2

tcpRtoMax 1.3.6.1.2.1.6.3

tcpMaxConn 1.3.6.1.2.1.6.4

tcpActiveOpens 1.3.6.1.2.1.6.5

Appendix G. Management Information Base Variables 425

Table 14. MIB Variables Supported by the TPF System (continued)

Variable Descriptor Object Identifier

tcpPassiveOpens 1.3.6.1.2.1.6.6

tcpAttemptFails 1.3.6.1.2.1.6.7

tcpEstabResets 1.3.6.1.2.1.6.8

tcpCurrEstab 1.3.6.1.2.1.6.9

tcpInSegs 1.3.6.1.2.1.6.10

tcpOutSegs 1.3.6.1.2.1.6.11

tcpRetransSegs 1.3.6.1.2.1.6.12

tcpConnTable 1.3.6.1.2.1.6.13

tcpConnEntry 1.3.6.1.2.1.6.13.1

tcpConnState 1.3.6.1.2.1.6.13.1.1

tcpConnLocalAddress 1.3.6.1.2.1.6.13.1.2

tcpConnLocalPort 1.3.6.1.2.1.6.13.1.3

tcpConnRemAddress 1.3.6.1.2.1.6.13.1.4

tcpConnRemPort 1.3.6.1.2.1.6.13.1.5

tcpInErrs 1.3.6.1.2.1.6.14

tcpOutRsts 1.3.6.1.2.1.6.15

UDP Group

udpInDatagrams 1.3.6.1.2.1.7.1

udpNoPorts 1.3.6.1.2.1.7.2

udpInErrors 1.3.6.1.2.1.7.3

udpOutDatagrams 1.3.6.1.2.1.7.4

udpTable 1.3.6.1.2.1.7.5

udpEntry 1.3.6.1.2.1.7.5.1

udpLocalAddress 1.3.6.1.2.1.7.5.1.1

udpLocalPort 1.3.6.1.2.1.7.5.1.2

SNMP Group

snmpInPkts 1.3.6.1.2.1.11.1

snmpOutPkts 1.3.6.1.2.1.11.2

snmpInBadVersions 1.3.6.1.2.1.11.3

snmpInBadCommunityNames 1.3.6.1.2.1.11.4

snmpInBadCommunityUses 1.3.6.1.2.1.11.5

snmpInASNParseErrs 1.3.6.1.2.1.11.6

NOT USED 1.3.6.1.2.1.11.7

snmpInTooBigs 1.3.6.1.2.1.11.8

snmpInNoSuchNames 1.3.6.1.2.1.11.9

snmpInBadValues 1.3.6.1.2.1.11.10

snmpInReadOnlys 1.3.6.1.2.1.11.11

snmpInGenErrs 1.3.6.1.2.1.11.12

snmpInTotalReqVars 1.3.6.1.2.1.11.13

snmpInTotalSetVars 1.3.6.1.2.1.11.14

426 TPF V4R1 TCP/IP

Table 14. MIB Variables Supported by the TPF System (continued)

Variable Descriptor Object Identifier

snmpInGetRequests 1.3.6.1.2.1.11.15

snmpInGetNexts 1.3.6.1.2.1.11.16

snmpInSetRequests 1.3.6.1.2.1.11.17

snmpInGetResponses 1.3.6.1.2.1.11.18

snmpInTraps 1.3.6.1.2.1.11.19

snmpOutTooBigs 1.3.6.1.2.1.11.20

snmpOutNoSuchNames 1.3.6.1.2.1.11.21

snmpOutBadValues 1.3.6.1.2.1.11.22

NOT USED 1.3.6.1.2.1.11.23

snmpOutGenErrs 1.3.6.1.2.1.11.24

snmpOutGetRequests 1.3.6.1.2.1.11.25

snmpOutGetNexts 1.3.6.1.2.1.11.26

snmpOutSetRequests 1.3.6.1.2.1.11.27

snmpOutGetResponses 1.3.6.1.2.1.11.28

snmpOutTraps 1.3.6.1.2.1.11.29

snmpEnableAuthenTraps 1.3.6.1.2.1.11.30

Appendix G. Management Information Base Variables 427

428 TPF V4R1 TCP/IP

Index

Special Characters
/etc/imapd.conf 259
/etc/postfix/access 259
/etc/postfix/main.cf 259
/etc/syslog.conf 246
/etc/syslog.pid 245
/etc/tftp.conf 239, 241
/etc/tpf_mail.conf 259
directive 240
#MAILxx record 255
accept socket function

accept a connection request 138
activate_on_accept socket function 82

activate a program after data received 141
activate_on_receipt function call, using 129
activate_on_receipt function, sample child server

code 369
activate_on_receipt function, sample server

code 367
activate_on_receipt socket function

activate a program after data received 144
activate a program after data received with

length 148
bind socket function

bind a local name to the socket 152
claw_accept function 386
claw_closeadapter function 388
claw_connect function 390
claw_disconnect function 393
claw_end function 395
claw_initialization function 396
claw_openadapter function 397
claw_query function 400
claw_send function 403
close socket function

shut down a socket 155
connect socket function

request a connection to a remote host 157
gethostbyaddr socket function

get host information by address 160
gethostbyname socket function

get host information by name 162
gethostid socket function

return host identifier 164
gethostname socket function

return the host name 166
getpeername socket function

return the name of the peer 168
getservbyname socket function

get server port by name 170
getservbyport socket function

get server name by port 172
getsockname socket function

return the name of the local socket 174
getsockopt socket function

return socket options 176

htonl socket function
translate a long integer 180

htons socket functions
translate a short integer 181

inet_addr socket function
construct internet address from character string 182

inet_ntoa socket function
return pointer to a string in dotted decimal

notation 184
ioctl socket function

perform special operations on socket 185
listen socket function

complete binding 189
ntohl socket function

translate a long integer 191
ntohs socket function

translate a short integer 192
read socket function

read data on a socket 193
recv socket function

receive data on a connected socket 196
recvfrom socket function

receive data on connected/unconnected socket 199
recvmsg socket function

receive messages on a socket 202
select socket function

monitor read, write, and exception status 205
send socket function

send data on a connected socket 206
sendmsg socket function

send message on a socket 210
sendto socket function

send data on an unconnected socket 212
setsockopt socket function

set options associated with a socket 216
shutdown socket function

shut down all or part of a duplex connection 220
sock_errno socket function

return the error code set by a socket call 222
socket.h header file 363
socket socket function

create an endpoint for communication 223
SSL_accept SSL function

accept an SSL session connection request 274
SSL_aor SSL function

allow the issuing ECB to exit and a specific program
to be activated in a new ECB 275

SSL_check_private_key SSL function
verify private key-public key agreement 277

SSL_connect SSL function
start an SSL session 279

SSL_CTX_check_private_key SSL function
verify private key- public key agreement in the

certificate 280
SSL_CTX_free SSL function

return a context (CTX) structure to the system 281

© Copyright IBM Corp. 1996, 2002 429

SSL_CTX_load_and_set_client_CA_list SSL function
load certificates from a file and places the issuer

name of each certificate in a CTX structure 282
SSL_CTX_load_verify_locations SSL function

load the certificate authorities (CAs) 283
SSL_CTX_new_shared SSL function

create a new CTX structure for use by shared SSL
sessions 287

SSL_CTX_new SSL function
create a new context (CTX) structure 285

SSL_CTX_set_cipher_list SSL function
set the cipher list for use by SSL sessions 289

SSL_CTX_set_client_CA_list SSL function
identify set of CAs sent to remote client 292

SSL_CTX_set_default_passwd_cb_userdata SSL function
identify the password to access data in a private key

in PEM format 293
SSL_CTX_set_verify SSL function

indicate whether to verify remote peers starting SSL
sessions 294

SSL_CTX_use_certificate_chain_file SSL function
load the chain of certificates for an SSL session to

use in a specific context 296
SSL_CTX_use_certificate_file SSL function

load the certificate for an SSL session to use in a
specific context 298

SSL_CTX_use_PrivateKey_file SSL function
load the private key for an SSL session to use in a

specific context 300
SSL_CTX_use_RSAPrivateKey_file SSL function

load the RSA private key for an SSL session to use
in a specific context 302

SSL_free SSL function
returns to the system the SSL structure associated

with an SSL session 304
SSL_get_cipher SSL function

returns the cipher name associated with a specific
SSL session 305

SSL_get_error SSL function
return error information about an SSL API 307

SSL_get_peer_certificate SSL function
return the peer certificate received from an SSL

session 309
SSL_get_session SSL function

return a copy of the SSL session information for a
specific SSL structure 310

SSL_get_verify_result SSL function
return the result of the remote peer certificate

validation 311
SSL_get_version SSL function

returns the protocol version of the current SSL
connection 313

SSL_library_init SSL function
registers the available ciphers and message

digest 314
SSL_load_and_set_client_CA_list SSL function

load certificates from a file and puts the name of
each certificate in the SSL structure 315

SSL_load_client_CA_file SSL function
load certificates from a file 316

SSL_new SSL function
create a new SSL structure for use by an SSL

session 317
SSL_pending SSL function

return data in the current SSL data record that is
available for reading on an SSL session 318

SSL_read SSL function
read application data from an SSL session 319

SSL_renegotiate SSL function
create a new set of cipher keys for an existing SSL

session 320
SSL_set_cipher_list SSL function

set the ciphers for use by an SSL session 321
SSL_set_client_CA_list SSL function

identify a CA list for use with client certificate
requests 324

SSL_set_fd SSL function
assign a socket to an SSL structure 325

SSL_set_session SSL function
set up SSL session information when reusing an SSL

session 326
SSL_set_verify SSL function

indicate whether to verify the remote client identity
when an SSL session starts 327

SSL_shutdown SSL function
shut down data flow for an SSL session 329

SSL_use_certificate_file SSL function
load the certificate for use with an SSL session 330

SSL_use_PrivateKey_file SSL function
load the private key for use with an SSL

session 332
SSL_use_RSAPrivateKey_file SSL function

load the RSA private key for use with an SSL
session 333

SSL_write SSL function
write application data across an SSL session 334

SSLv2_client_method SSL function
indicate that an application is a client and supports

SSL version 2 335
SSLv2_server_method SSL function

indicate that an application is a server and supports
SSL version 2 336

SSLv23_client_method SSL function
indicate that an application is a client and supports

SSL versions 2 and 3 and TLS version 1 337
SSLv23_server_method SSL function

indicate that an application is a server and supports
SSL versions 2 and 3 and TLS version 1 338

SSLv3_client_method SSL function
indicate that an application is a client and supports

SSL version 3 339
SSLv3_server_method SSL function

indicate that an application is a server and supports
SSL version 3 340

TLSv1_client_method SSL function
indicate that an application is a client and supports

TLS version 1 341
TLSv1_server_method

indicate that an application is a server and supports
TLS version 1 342

tpf_vipac C function use for moving a VIPA 69

430 TPF V4R1 TCP/IP

write socket function
write data on a connected socket 226

writev socket function
write data on a connected socket 229

Numerics
3172 Model 3 Interconnect Controller 30

A
about the IP trace table 407
accept a connect request from CLAW workstation 386
accept a connection request

socket API function, accept 138
accept an SSL session connection request

SSL API function, SSL_accept 274
access control list (ACL) 256
access list 259, 264

/etc/postfix/access 259
creating 259
parameters 264

access the Internet, application programs
socket API functions 137

activate a CLAW logical link request 390
activate a program after data received

socket API function, activate_on_accept 141
socket API function,
activate_on_receipt_with_length 148

socket API function, activate_on_receipt 144
activating and deactivating CDLC IP routers 65
activating and deactivating OSA-Express

connections 67
ACTIVATION parameter 237
active logical link, send message on 403
active queue 257
active queue control record 257
active queue record 257
adapter, query status 400
adapter, remove logical link 393
adding entry for an Internet server application to the

IDCF 235
adding FTP server entry to the IDCF 243
adding IP routing table entries 74
adding syslog daemon server entry to the IDCF 249
adding TFTP server entry to the IDCF 239
address parts

mapping 120
allow directive 240
allows the issuing ECB to exit and a specific program to

be activiated in a new ECB
SSL API function, SSL_aor 275

API (application programming interface) 137
API support, socket 122
application program use for moving a VIPA 69
application programming interface (API) 137
application programming interface functions

socket application 137
assign a socket to an SSL structure

SSL API function, SSL_set_fd 325
AUTH directive 240

B
balancing workload with movable VIPAs 69
basic encoding rules (BER) and SNMP 91
begin activity on a CLAW logical link request 390
bind a local name to the socket

socket API function, bind 152
blocking mode, socket

wait for data 121
buffer sizes, send and receive 80
byte order conversion

integer 120

C
CDLC IP CCW area table 52
CDLC IP CCW area table resources, defining 52
CDLC IP configuration record 51
CDT 23
channel data link protocol (CDLC) 40
child server code, sample

using activate_on_receipt function 369
CLAW activity on subchannel pair, terminate 388
CLAW device table (CDT) 23

CLAWADP value 23
updated 23

CLAWADP value, choosing 23
CLAWFD value, choosing 25
CLAWIP value, choosing 26
client code, sample

TCP client 373
UDP client 378

client support 122
client/server environment 7
close inactive sockets

socket sweeper 125
coding the SNMP user exits 98
commands

ZCLAW ACTIVATE 30
ZCLAW ADD 29
ZCLAW DELETE 31
ZCLAW DISPLAY 31
ZCLAW INACTIVATE 30
ZCLAW RESET 33
ZCLAW TRACE 32, 33
ZINET ADD 99, 237
ZINET ALTER 235, 237
ZINET DELETE 235
ZINET START 99, 237, 238
ZINET STOP 237, 238
ZOSAE 63, 64, 65, 67, 68
ZSNMP 98
ZTRTE 99
ZTTCP DISPLAY 67
ZVIPA 65, 68, 69, 70, 71

communication endpoint
socket 119

complete binding
socket API function, listen 189

components
socket/CLAW interfaces 16

Index 431

components (continued)
TCP/IP native stack support 44

concepts used in data transmission
socket 119, 120

configuration file
access list

general discussion 259
parameters 264

IMAP/POP
general discussion 259
parameters 262

SMTP
general discussion 259
parameters 259

syslog daemon
updating 249

TFTP
creating 241
directives 240
general discussion 239
transferring to TPF system 241
updating 241

TPF
general discussion 259
parameters 263

configuration file with SNMP
creating 96
example 96
keywords 97
refresh with ZSNMP command 96

configuration options
access list 264
IMAP/POP configuration file 262
SMTP configuration file 259
TPF configuration file 263

configuring a TPF system 59
connect request from CLAW workstation, accept 386
connect request from the 3172 Model 3, accept 386
construct internet address from character string

socket API function, inet_addr 182
control blocks

CLAW device table (CDT) 23
file descriptor table (FDT) 24
internet protocol address table (IPT) 25

conversion
integer byte order 120

create a new context (CTX) structure
SSL API function, SSL_CTX_new 285

create a new SSL structure for use by an SSL session
SSL API function, SSL_new 317

create an endpoint for communication
socket API function, socket 223

creates a new CTX structure for use by shared SSL
sessions.

SSL API function, SSL_CTX_new_shared 287
creates a new set of cipher keys for an exsiting SSL

session
SSL API function, SSL_renegotiate 320

creating a compacted display of the IP trace table 410
creating a formatted display of the IP trace table 410
creating the SNMP configuration file 96

creating the TFTP configuration file 241
creating the TPF Internet mail server configuration

files 259

D
data

out-of-band 121
data collection and reduction 112
data flow

between the IP router and the TPF System 41
between the OSA-Express card and the TPF

System 44
TPF system and IBM 3172 Model 3 Interconnect

Controller 12
data trace postprocessor, CLAW output 344
data trace postprocessor, sample JCL 343
data transmission

socket concepts used 120
datagram sockets

User Datagram Protocol (UDP) 119
deactivating sockets 77
deactivation processing within movable VIPA support

and user exit 69
default local IP address 61
deferred queue 257
deferred queue control record 257
deferred queue record 257
defining

CDLC IP CCW area table resources 52
CDLC IP network configuration 52
CDLC IP routers 65
CDLC local IP addresses 62
gateways 58
IP message table 54
IP routing table 54
local IP addresses 60
OSA read buffers 53
OSA-Express cards 66
OSA-Express connections 67
real OSA IP addresses 63
routing table entries for SNMP 99
SNMP agent server 98
socket block table 51
TPF system to SNMP 99
VIPAs 64

deleting
CDLC IP routers 66
CDLC local IP addresses 62
IP routing table entries 74
OSA-Express connections 67
real OSA IP addresses 63
VIPAs 65

denial-of-service attacks 105
deny directive 240
describing SNMP agent support 89
description of a sample TCP/IP network 13
differentiated services 47, 111
directives

240, 248
allow 240

432 TPF V4R1 TCP/IP

directives (continued)
AUTH 240
deny 240
LOG 240
syslog daemon configuration file 246
TFTP configuration file 240

disconnect a logical link from an adapter 393
dispatch a message on an active logical link 403
displaying

individual IP trace tables 77
IP routing table entries 74
IP trace information 75
OSA-Express connections 67
socket control block information 78
TCP/IP native stack support 75
VIPA statistics 69
VIPAs 65

displaying information about the IP trace facility 409
displaying the IP trace table online 409
DNS client 103
DNS server 101
Domain Name System (DNS) Support

DNS client 103
DNS server 101
IP address selection 102
TPF host name table 101

dotted decimal formats 120
standard 120

E
ECBs

sockets 119
enabling TCP/IP native stack support 60
end all CLAW activity 395
end CLAW activity on subchannel pair 388
enterprise-specific SNMP traps 93
enterprise-specific user MIB variables and SNMP 93

F
FDT 24
file descriptor table (FDT) 24

CLAWFD value 25
updated 24

File Transfer Protocol (FTP) server
adding entry to IDCF 243
general discussion 243

FTP LOG file 243
full-duplex socket support

chained 124
socket thread control blocks 124

G
gateways 68
gateways, defining 58
get host information by address

socket API function, gethostbyaddr 160
get host information by name

socket API function, gethostbyname 162

get server port by name
socket API function, getservbyname 170
socket API function, getservbyport 172

get the status of CLAW adapter 400
get the status of CLAW logical links 400

I
IBM 3172 Model 3 Interconnect Controller

installation 29
identify a CA list for use with client certificate requests

SSL API function, SSL_set_client_CA_list 324
identify set of CAs sent to remote client

SSL API function, SSL_CTX_set_client_CA_list 292
identify the password to access data in a private key in

PEM format
SSL API function,
SSL_CTX_set_default_passwd_cb_userdata 293

IMAP server
general discussion 253

IMAP/POP configuration file
/etc/imapd.conf 259
creating 259
general discussion 259
parameters 262

inbound message flow, TCP/IP native stack support 48
indicate that an application is a client and supports SSL

version 2
SSL API function, SSLv2_client_method 335

indicate that an application is a client and supports SSL
version 3

SSL API function, SSLv3_client_method 339
indicate that an application is a client and supports SSL

versions 2 and 3 and TLS version 1
SSL API function, SSLv23_client_method 337

indicate that an application is a client and supports TLS
version 1

SSL API function, TLSv1_client_method 341
indicate that an application is a server and supports

SSL version 2
SSL API function,SSLv2_server_method 336

indicate that an application is a server and supports
SSL version 3

SSL API function, SSLv3_server_method 340
indicate that an application is a server and supports

SSL versions 2 and 3 and TLS version 1
SSL API function, SSLv23_server_method 338

indicate that an application is a server and supports
TLS version 1

SSL API function, TLSv1_server_method 342
indicate whether to verify remote peers starting SSL

sessions
SSL API function, SSL_CTX_set_verify 294

indicate whether to verify the remote client identity when
an SSL session starts

SSL API function, SSL_set_verify 327
individual IP trace support

configuring 59
displaying individual tables 77
using 76

industry standards 7

Index 433

initialize a CLAW adapter 397
initialize CLAW activity 396
initiate a request to open a CLAW logical link 390
integer byte order conversion 120
interconnection of networks 3, 13
interface

socket APIs 137
interfaces, socket/CLAW

inbound message flow 18
inbound message flow through 18
outbound message flow 17

internals, TCP/IP native stack support 39
Internet daemon

listener 236
monitor 236
operational considerations 235, 236
operator procedures 235
starting 237
stopping 237

Internet daemon configuration file (IDCF)
adding an entry for the TPF Internet mail

servers 267
adding entry for an Internet server application 235
adding entry for the File Transfer Protocol (FTP)

server 243
adding entry for the syslog daemon server 249
adding entry for the Trivial File Transfer Protocol

(TFTP) server 239
general discussion 235

Internet mail
receiving 269
sending 269

Internet Protocol (IP) trace facility, using 407
internet protocol address table (IPT) 25

CLAWIP value 26
updated 25

Internet security, overview 105
Internet server application

ACTIVATION parameter 237
IP parameter 235
operator control 238
parameters in ZINET ADD command 237
parameters in ZINET ALTER command 237
STATE parameter 238
USER parameter 237

IP address selection 102
IP message table 53
IP message table, defining 54
IP parameter 235, 236
IP protocol

raw sockets 119
IP routers, configuration characteristics 41
IP routing table 54
IP trace facility

defining the IPTPRT report 411
displaying information about 409
individual IP trace support 76
IP trace table

creating a compacted display 410
creating a formatted display 410
displaying online 409, 421

IP trace facility (continued)
IP trace table (continued)

information about 407
storing data 408
writing to a real-time tape 409

IPTPRT utility 410
IPTPRT utility messages 421
sample JCl for the IPTPRT utility 411
starting 407
stopping 408
using 407

IP trace facility, using 407
IPT 25
IPTPRT utility 410, 421
ISO-C structures

socket API functions, use 363

J
JCL, data trace postprocessor 343
JCL, process data trace postprocessor 350

L
LAN 3
load certificates from a file

SSL API function, SSL_load_client_CA_file 316
load the certificate authorities (CAs)

SSL API function,
SSL_CTX_load_verify_locations 283

load the certificate for an SSL session to use in a
specific context

SSL API function,
SSL_CTX_use_certificate_file 298

load the certificate for use with an SSL session
SSL API function, SSL_use_certificate_file 330

load the chain of certificates for an SSL session to use
in a specific context

SSL API function,
SSL_CTX_use_certificate_chain_file 296

load the private key for an SSL session to use in a
specific context

SSL API function,
SSL_CTX_use_PrivateKey_file 300

load the private key for use with an SSL session
SSL API function, SSL_use_PrivateKey_file 332

load the RSA private key for an SSL session to use in a
specific context

SSL API function,
SSL_CTX_use_RSAPrivateKey_file 302

load the RSA private key for use with an SSL session
SSL API function, SSL_use_RSAPrivateKey_file 333

loads certificates from a file and places the issuer name
of each certificate in a CTX structure

SSL API function,
SSL_CTX_load_and_set_client_CA_list 282

loads certificates from a file and puts the name of each
certificate in the SSL structure

SSL API function,
SSL_load_and_set_client_CA_list 315

local sockets 82

434 TPF V4R1 TCP/IP

LOG directive 240
log files 245

offloading 251
logging rules 246
logical link on CLAW device, open request 390
logical link, remove from adapter 393
logical link, send message on 403
logical links, query status 400
low-water marks 81

M
mail database

#MAILxx record 255, 258
access control list (ACL) 256
active queue 257
deferred queue 257
recoup considerations 258
user profile record (UPR) 255

mail queue
active 257
deferred 257

mailbox, managing 269
Management Information Base (MIB)

description with SNMP 85, 90
enterprise-specific, SNMP 93
protocol groups with SNMP 90
variables table 423

mapping address parts 120
maximum packet size 61
message counters 112
message flow through the socket/CLAW interfaces

inbound 18
outbound 17

message on an active logical link, send 403
messages, IPTPRT utility 421
MIB variable table 423
MIB variables and SNMP 85, 92, 93
modifying IP routing table entries 74
modifying the syslog daemon configuration file 249
monitor read, write, and exception status

socket API function, select 205
movable VIPAs

and deactivation processing 69
and network traffic balancing 69
and workload balancing 69
defined 64
moving by application program 69
moving to another processor 68

moving a VIPA by application program 69
moving VIPAs to another processor 68
MSG_OOB flag

out-of-band data, set for 121

N
network priority 111
network protocols

introduction of 3
network requirements

client/server environment 7

network requirements (continued)
industry standard 7
open network connectivity 7
porting socket applications 7
role in the Internet 7

network traffic and movable VIPAs 69
network, computer 3
network, interconnection 3, 13
network, tuning 55
nonblocking mode, socket

do not wait for data 121

O
obtain the status of CLAW adapter 400
obtain the status of CLAW logical links 400
offload device

IBM 3172 Model 3 Interconnect Controller 29
open a CLAW adapter 397
open a CLAW logical link request 390
open network connectivity 7
operational considerations

File Transfer Protocol (FTP) server 243
Internet daemon 235, 236
Internet server application 237
syslog daemon 245
Trivial File Transfer Protocol (TFTP) server 239

operator control
Internet daemon 236
Internet server application 238

order conversion
integer byte 120

OSA configuration record 52
OSA control block table 52
OSA read buffers 53
OSA read buffers, defining 53
OSA shared IP address table (OSIT) 52
OSA-Express card 39
OSA-Express card, configuration characteristics 43
OSA-Express connections 66
OSA-Express support 5, 43
out-of-band data

MSG_OOB flag 121
outbound message flow through the socket/CLAW

interfaces 17
outbound message flow, OSA-Express support 48
outbound message flow, TCP/IP native stack

support 46

P
packet filtering 105

/etc/iprules.txt 105, 106
defining rules for 106

perform special operations on socket
socket API function, ioctl 185

performance, TCP/IP native stack support 56
policy agent, TCP/IP native stack support 46
POP server

general discussion 253
port 120

Index 435

porting socket applications 7
prepare a CLAW adapter 397
prepare for CLAW activity 396
process model

DAEMON 236
NOLISTEN 236
RPC 236

process trace postprocessor 350
process trace postprocessor, sample JCL 350
processing SNMP Requests 91
protocol data units (PDU)

format table 88, 91
structure and fields, SNMP 87
trap format table 88
variable binding table 89

Q
quality of service (QoS) 47, 111
query the status of CLAW adapter 400
query the status of CLAW logical links 400
queued direct I/O (QDIO) 40, 43

R
raw sockets

IP protocol 119
read application data from an SSL session

SSL API function, SSL_read 319
read data on a socket

socket API function, read 193
real OSA IP addresses 63
receive a connect request from CLAW workstation 386
receive data on a connected socket

socket API function, recv 196
receive data on a connected/unconnected socket

socket API function, recvfrom 199
receive messages on a socket

socket API function, recvmsg 202
recoup

BKD1 258
updating descriptors for a mail database 258

refresh SNMP configuration file with ZSNMP
command 98

register the available ciphers and digest
SSL API function, SSL_library_init 314

remove a logical link from an adapter 393
removing VIPAs 65
request a connection to a remote host

socket API function, connect 157
request the status of CLAW adapter 400
request the status of CLAW logical links 400
restricted C functions

TCP/IP 385
restricted CDLC IP address 63
restricted functions

claw_accept 386
claw_closeadapter 388
claw_connect 390
claw_disconnect 393
claw_end 395

restricted functions (continued)
claw_initialization 396
claw_openadapter 397
claw_query 400
claw_send 403

return a context (CTX) structure to the system
SSL API function, SSL_CTX_free 281

return data in the current SSL data record that is
available for reading on an SSL session

SSL API function, SSL_pending 318
return error information about an SSL API

SSL API function, SSL_get_error 307
return pointer to a string in dotted decimal notation

socket API function, inet_ntoa 184
return socket options

socket API function, getsockopt 176
return the cipher name associated with a specific SSL

session
SSL API function, SSL_get_cipher 305

return the error code set by a socket call
socket API function, sock_errno 222

return the name of the local socket
socket API function, getsockname 174

return the name of the peer
socket API function, getpeername 168

return the offload device name
socket API function, gethostname 166

return the peer certificate received from an SSL session
SSL API function, SSL_get_peer_certificate 309

return the protocol version of the current SSL
connection

SSL API function, SSL_get_version 313
return the result of the remote peer certificate validation

SSL API function, SSL_get_verify_result 311
return to the system the SSL structure associated with

an SSL session
SSL API function, SSL_free 304

returns a copy of the SSL session information for a
specific SSL structure

SSL API function, SSL_get_session 310
returns host identifier

socket API function, gethostid 164
RIP 68
role in the Internet 7
routing information protocol (RIP) 68
routing table entries and SNMP 99

S
sample TCP/IP network

description 13
TPF system connected to one IP network 41

Secure Sockets Layer (SSL) support 273
send a message on an active logical link 403
send data on a connected socket

socket API function, send 206
send data on an unconnected socket

socket API function, sendto 212
send messages on a socket

socket API function, sendmsg 210

436 TPF V4R1 TCP/IP

server code, sample
TCP server 371
UDP server 376
using activate_on_receipt function, 367

server, TFTP 239
set options associated with a socket

socket API function, setsockopt 216
set the cipher list for use by SSL sessions

SSL API function, SSL_CTX_set_cipher_list 289
set the ciphers for use by an SSL session

SSL API function, SSL_set_cipher_list 321
sets up SSL session information when reusing an SSL

session
SSL API function, SSL_set_session 326

sharing sockets 79
shut down a socket

socket API functions, close 155
shut down all or part of a duplex connection

socket API function, shutdown 220
shut down data flow for an SSL session

SSL API function, SSL_shutdown 329
Simple Network Management Protocol (SNMP) agent

support, overview 85
SMTP configuration file

/etc/postfix/main.cf 259
creating 259
general discussion 259
parameters 259

SMTP server
general discussion 253

SNAKEY parameters
CLAWADP 23
CLAWFD 25
CLAWIP 26
SOCKSWP 125

SNMP agent support
agent description 85
component diagrams 86
configuration file 96
configuration file keywords 97
description 89
installation 96
installation of TCP/IP native stack support 96
manager description 85
message processing 91
MIB description 85
MIB variables table 423
MIB-II description 90
overview 85
processing requests 91
protocol data units (PDUs) 87
routing table entries 99
server definition 98
TPF system definition 99
traps 93
user exits 98
user MIB variables 93

SNMP traps
example 93
types 93

socket
communication endpoint 119

socket address, Internet 119
socket API functions

accept 138
activate_on_accept 141
activate_on_receipt_with_length 148
activate_on_receipt 144
bind 152
close 155
connect 157
gethostbyaddr 160
gethostbyname 162
gethostid 164
gethostname 166
getpeername 168
getservbyname 170
getservbyport 172
getsockname 174
getsockopt 176
htonl 180
htons 181
inet_addr 182
inet_ntoa 184
ioctl 185
listen 189
ntohl 191
ntohs 192
read 193
recv 196
recvfrom 199
recvmsg 202
select 205
send 206
sendmsg 210
sendto 212
setsockopt 216
shutdown 220
sock_errno 222
socket 223
write 226
writev 229

socket API functions, using
access the Internet 137

socket API support 122
socket block table structure 51
socket calls

using 132
socket concepts used in data transmission 120
socket nonblocking mode

do not wait for data 121
socket options supported, TCP/IP native stack

support 80
socket sweeper

close inactive sockets 125
socket thread control blocks

chained 124
full-duplex socket support 124

socket user exits 122
socket/CLAW interfaces

inbound message 18

Index 437

socket/CLAW interfaces (continued)
inbound message flow through 18
outbound message 17
outbound message flow through 17

socket/CLAW interfaces, TCP/IP support
components 16

sockets
closing inactive 125
types of 119

sockets and ECBs 119
SOCKSWP value, choosing 125
SSL API functions

SSL_accept 274
SSL_aor 275
SSL_check_private_key 277
SSL_connect 279
SSL_CTX_check_private_key 280
SSL_CTX_free 281
SSL_CTX_load_and_set_client_CA_list 282
SSL_CTX_load_verify_locations 283
SSL_CTX_new_shared 287
SSL_CTX_new 285
SSL_CTX_set_cipher_list 289
SSL_CTX_set_client_CA_list 292
SSL_CTX_set_default_passwd_cb_userdata 293
SSL_CTX_set_verify 294
SSL_CTX_use_certificate_chain_file 296
SSL_CTX_use_certificate_file 298
SSL_CTX_use_PrivateKey_file 300
SSL_CTX_use_RSAPrivateKey_file 302
SSL_free 304
SSL_get_cipher 305
SSL_get_error 307
SSL_get_peer_certificate 309
SSL_get_session 310
SSL_get_verify_result 311
SSL_get_version 313
SSL_library_init 314
SSL_load_and_set_client_CA_list 315
SSL_load_client_CA_file 316
SSL_new 317
SSL_pending 318
SSL_read 319
SSL_renegotiate 320
SSL_set_cipher_list 321
SSL_set_client_CA_list 324
SSL_set_fd 325
SSL_set_session 326
SSL_set_verify 327
SSL_shutdown 329
SSL_use_certificate_file 330
SSL_use_PrivateKey_file 332
SSL_use_RSAPrivateKey_file 333
SSL_write 334
SSLv2_client_method 335
SSLv2_server_method 336
SSLv23_client_method 337
SSLv23_server_method 338
SSLv3_client_method 339
SSLv3_server_method 340
TLSv1_client_method 341

SSL API functions (continued)
TLSv1_server_method 342

standard dotted decimal formats 120
start a CLAW logical link request 390
start an SSL session

SSL API function, SSL_connect 279
starting an Internet server application 238
starting and stopping the IP trace function 75
starting the Internet daemon 237
starting the IP trace facility 407
STATE parameter 238
static VIPA

defined 64
stop all CLAW activity 395
stop CLAW activity on subchannel pair 388
stopping an Internet server application 238
stopping the Internet daemon 237
stopping the IP trace facility 408
storing data in the IP trace table 408
stream sockets

Transmission Control Protocol (TCP) 119
subchannel pair, stop activity 388
swinging VIPAs 68
syslog daemon 245

adding entry to IDCF 249
configuration file 246
diagnosing configuration problems 251
files used by 245, 246
offloading log files 251
operating 250
overview 245
starting 250
stopping 250

syslog daemon configuration file
example of 248
modifying 249
syntax 246

syslog.conf 246

T
table of MIB variables 423
table, IP trace 407
take away a logical link from an adapter 393
TCP session, sample

function calls 127
TCP, sample client code 373
TCP, sample server code 371
TCP/IP

error codes, socket 365
TCP/IP commands

ZCLAW ACTIVATE 30
ZCLAW ADD 29
ZCLAW DELETE 31
ZCLAW DISPLAY 31
ZCLAW INACTIVATE 30
ZCLAW RESET 33
ZCLAW TRACE 32, 33
ZOSAE 63, 64, 65, 67, 68
ZTTCP DISPLAY 67
ZVIPA 65, 68, 69, 70, 71

438 TPF V4R1 TCP/IP

TCP/IP components
socket/CLAW interfaces 16

TCP/IP layers 39
TCP/IP native stack support

activate_on_accept API 82
activating and deactivating CDLC IP routers 65
activating and deactivating OSA-Express

connections 67
balancing workloads with movable VIPAs 69
CDLC IP CCW area table 52
CDLC IP configuration record 51
components of 44
configuring a TPF system 59
data flow 41
deactivating sockets 77
default local IP address 61
defining

CDLC IP CCW area table resources 52
CDLC IP network configurations 52
CDLC IP routers 65
CDLC local IP addresses 62
gateways 58
IP message table 54
IP routing table 54
local IP addresses 60
OSA read buffers 53
OSA-Express cards 66
OSA-Express connections 67
real OSA IP addresses 63
routing table entries for SNMP 99
SNMP agent server 98
socket block table 51
TPF system to SNMP 99
VIPAs 64

deleting
CDLC IP routers 66
CDLC local IP addresses 62
OSA-Express connections 67
real OSA IP addresses 63
VIPAs 65

denial-of-service attacks 105
differentiated services 111
displaying

individual IP trace tables 77
IP trace information 75
OSA-Express connections 67
socket control block information 78
TCP/IP native stack support 75
VIPA statistics 69
VIPAs 65

enabling TCP/IP native stack support 60
inbound message flow 48
installation with SNMP 96
internals 39
Internet security 105
IP routers, configuration characteristics 41
IP routing table 54
local sockets 82
low-water marks 81
maximum packet size 61
new sock options supported 80

TCP/IP native stack support (continued)
operator procedures 59
OSA-Express card, configuration characteristics 43
outbound message flow 46
packet filtering 105
performance 56
policy agent 46
restricted CDLC IP address 63
sample networks 41
select TCP/IP support user exit 124
send and receive buffer sizes 80
sharing sockets 79
SNMP agent support 85
socket application design considerations 79
socket block table structure 51
socket cycle-up 124
starting and stopping the IP trace function 75
TCP/IP layers 39
TCP/IP native stack support accept connection user

exit 124
TCP/IP network services database support 111
timeouts 81
TPF control block structures 51
tuning major control block structures 55
tuning the IP network 55
tuning the IP over CDLC link layer 55
using existing sockets applications 79
using individual IP trace support 59
with individual IP trace support 76
workload balancing with movable VIPAs 69

TCP/IP network
communication 11
configuration 11
description of a sample 13
offload device 11
TCP/IP offload device 11

TCP/IP network services database
/etc/services file 113
data collection and reduction 112
differentiated services 111
message counters 112
network priority 111
network services database file 113
overview 111
quality of service (QoS) 111
type of service (TOS) 111

TCP/IP operator procedures
activating CLAW workstations 30
changing hardware 32
configuring a TPF system 29
data trace 32
deactivating CLAW workstations 30
defining CLAW workstations 29
defining the CLAW host name 29
deleting a CLAW workstation 31
displaying TCP/IP information 31
moving a CLAW workstation 31
process trace 33
resetting message lock 33

TCP/IP restricted C functions
CLAW functions 385

Index 439

TCP/IP restricted C functions (continued)
reference 385

TCP/IP restricted C functions: reference 385
TCP/IP, workstation interface

restricted C functions 385
TPF, used in 385

terminate all CLAW activity 395
terminate CLAW activity on subchannel pair 388
TFTP configuration file 241

creating 241
directives 240
general discussion 239
transferring to TPF system 241
updating 241

TFTP server 239
tftp.conf 241
timeouts 81
TPF configuration file

/etc/tpf_mail.conf 259
creating 259
general discussion 259
parameters 263

TPF host name table 101
TPF Internet mail server

#MAILxx record 255, 258
access control list (ACL) 256
access list 259
active queue 257
active queue control record 257
active queue record 257
adding an entry to IDCF 267
adding new users 268
administrator tasks 265
client tasks 269
configuration files 259
configuring 265
controlling 268
database layout 255
deferred queue 257
deferred queue control record 257
deferred queue record 257
IMAP 253
mail queue 257
managing mailboxes 269
operator tasks 265
overview 253
POP 253
receiving mail 269
recoup considerations 258
sending mail 269
SMTP 253
updating 267
user profile record (UPR) 255

trace postprocessor
CLAW process trace output 350
CLAW sample trace output, data 344

trace postprocessor, CLAW data 343
trace postprocessor, CLAW process 350
trace postprocessor, data

JCL, sample 343

trace postprocessor, process
JCL, sample 350

transferring the TFTP configuration file to the TPF
system 241

translate a long integer
socket API function, htonl 180
socket API function, ntohl 191

translate a short integer
socket API function, htons 181
socket API function, ntohs 192

Transmission Control Protocol (TCP)
stream sockets 119

transmission, data
socket concepts used 120

traps
and SNMP 93

Trivial File Transfer Protocol (TFTP) server
adding entry to IDCF 239
general discussion 239

tuning TCP/IP native stack support
IP network 55
IP over CDLC link layer 55
major control block structures 55

tuning, TCP/IP native stack support 54
type of service (TOS) 111

U
UCOM user exit with SNMP

and variable binding list 91
coding 98
message processing 91

UDP session, sample
function calls 131

UDP, sample client code 378
UDP, sample server code 376
UMIB user exit with SNMP

coding 98
message processing 91

updating
Internet daemon configuration file 235
TFTP configuration file 241

used in data transmission
socket concepts 120

User Datagram Protocol (UDP)
datagram sockets 119

user exit and movable VIPAs 69
user exits, nonsocket

system states for 20
user exits, socket

cycle-up 123
select TCP/IP support user exit 124
socket accept 123
socket activation 123
socket connect 123
socket cycle-up user exit 124
socket deactivation 123
system error 124
TCP/IP native stack support accept connection user

exit 124
user MIB variables and SNMP 93

440 TPF V4R1 TCP/IP

USER parameter 237
user profile record (UPR) 255
using existing sockets applications 79
UVIP user exit and movable VIPAs 69

V
variable binding lists, SNMP 91
variables table, MIB 423
verify private key- public key agreement in the certificate

SSL API function, SSL_CTX_check_private_key 280
verify private key-public key agreement

SSL API function, SSL_check_private_key 277
VIPAC macro use for moving a VIPA 69
virtual IP addresses (VIPAs)

and workload balancing 69
defining 64
deleting 65
displaying 65
movable 64
moving by application program 69
moving to another processor 68
static 64
swinging 68
types 64
using with an OSA-Express connection 63

W
WAN 3
workload balancing with movable VIPAs 69
write application data across an SSL session

SSL API function, SSL_write 334
write data on a connected socket

socket API function, write 226
socket API function, writev 229

writing the IP trace table to a real-time tape 409

Z
ZCACHE command 103
ZCLAW ACTIVATE 30
ZCLAW ADD 29
ZCLAW DELETE 31
ZCLAW DISPLAY 31
ZCLAW INACTIVATE 30
ZCLAW RESET 33
ZCLAW TRACE 32, 33
ZFILE kill command 250
ZFILE rm command 243
ZINET ADD command 99, 237, 249
ZINET ALTER command 235, 237
ZINET DELETE command 235
ZINET START command 99, 237, 238, 250
ZINET STOP command 237, 238, 250
ZOSAE command 63, 64, 65, 67, 68
ZSNMP command 98
ZTRTE command 99
ZTTCP ACTIVATE command 65, 67
ZTTCP CHANGE command 62, 63
ZTTCP DEFINE command 62, 63, 65

ZTTCP DELETE command 62, 66
ZTTCP DISPLAY command 67
ZTTCP INACTIVATE command 65, 67
ZVIPA command 65, 68, 69, 70, 71

Index 441

442 TPF V4R1 TCP/IP

����

File Number: S370/30XX-40
Program Number: 5748-T14

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH31-0120-12

	Contents
	Figures
	Tables
	Notices
	Trademarks

	About This Book
	Before You Begin
	Who Should Read This Book
	How This Book Is Organized
	Conventions Used in the TPF Library
	Related Information
	IBM Transaction Processing Facility (TPF) 4.1 Books
	IBM Transmission Control Protocol/Internet Protocol (TCP/IP) Books
	IBM Common Link Access to Workstation (CLAW) Books
	IBM 3172 Interconnect Controller Books
	Online Information

	How to Send Your Comments

	Part 1. TCP/IP Support Overview
	Networking Protocols Introduction
	TPF System Support of Transmission Control Protocol/Internet Protocol
	TCP/IP Native Stack Support

	TCP/IP Network Overview
	Network Requirements
	Industry-Standard Transport Application Programming Interface (API)
	Open Network Connectivity
	Client/Server Environment
	Enhanced Role in the Internet
	Porting Socket Applications

	Part 2. TCP/IP Offload Support
	TCP/IP Internals
	IBM 3172 Model 3 Interconnect Controller Overview
	Configuration Characteristics of TCP/IP Offload Devices
	Data Flow between the Offload Device and the TPF System
	Sample Transmission Control Protocol/Internet Protocol Network
	Components of TCP/IP Support
	Outbound Message Flow through the Socket/CLAW Interfaces
	Inbound Message Flow through the Socket/CLAW Interfaces
	Nonsocket User Exits
	Nonsocket Activation
	Nonsocket Connect
	Nonsocket Deactivation
	Nonsocket Message

	TPF Control Block Structures
	CLAW Device Table (CDT) and Related Control Block Structures
	Contents of the CLAW Device Table
	Related Control Block Structures

	Determining the Value for the CLAWADP Parameter
	File Descriptor Table and Related Control Block Structures
	Contents of the File Descriptor Table
	Related Control Block Structures
	CLAW Send Message Block
	Socket Thread Control Blocks

	Determining the Value for the CLAWFD Parameter
	Internet Protocol Address Table
	Contents of the Internet Protocol Address Table
	Related Control Block Structures

	Determining the Value for the CLAWIP Parameter
	Maximum Value for the IP Parameter

	Storage Considerations
	SNAKEY Parameters
	Miscellaneous Control Block Structures
	Socket Thread Control Blocks
	Calculating the Approximate Total Number of TCP/IP Bytes
	Example Calculating the Approximate Total Number of TCP/IP Bytes

	Tuning and Performance

	Operator Procedures for TCP/IP Offload Support
	Configuring a TCP/IP System
	Defining the CLAW Host Name
	Considerations for IBM 3172 Model 3 Interconnect Controllers

	Defining CLAW Workstations for a TPF Host Processor
	Considerations for IBM 3172 Model 3 Interconnect Controllers

	Activating and Deactivating CLAW Workstations
	Displaying Information about TCP/IP Support
	Deleting a CLAW Workstation
	Moving a CLAW Workstation from One TPF Host Processor to Another
	Performing a Hardware Switchover
	Using the CLAW Data Trace Function
	Starting the CLAW Data Trace Function
	Stopping the CLAW Data Trace Function

	Using the CLAW Process Trace Function
	Starting the CLAW Process Trace Function
	Stopping the CLAW Process Trace Function

	Resetting the ZCLAW Command Lock

	Part 3. TCP/IP Native Stack Support
	TCP/IP Native Stack Support Internals
	TCP/IP Layers
	Using CDLC IP Routers
	Configuration Characteristics of CDLC IP Routers
	Data Flow between the CDLC IP Router and the TPF System
	Sample TCP/IP Networks

	Using OSA-Express Support
	Configuration Characteristics of the OSA-Express Card
	Data Flow between the OSA-Express Card and the TPF System

	Components of TCP/IP Native Stack Support
	Policy Agent
	Outbound Message Flow
	Outbound Message Flow for CDLC
	Outbound Message Flow for OSA-Express

	Inbound Message Flow

	TPF Control Block Structures
	Socket Block Table Structure
	Defining the Socket Block Table

	CDLC IP Configuration Record
	Defining the CDLC IP Network Configuration

	CDLC IP CCW Area Table
	Defining CDLC IP CCW Area Table Resources

	OSA Configuration Record
	OSA Control Block Table
	OSA Shared IP Address Table
	OSA Read Buffers
	Defining OSA Read Buffers

	IP Message Table
	Defining the IP Message Table

	IP Routing Table
	Defining the IP Routing Table

	Tuning TCP/IP Native Stack Support
	Tuning Major Control Block Structures
	Tuning the IP over CDLC Link Layer
	Tuning the IP Network

	Performance
	TCP/IP Network Configurations
	Selecting the Local IP Address
	Choosing Network Paths

	Defining Gateways
	Choosing a Gateway

	Operator Procedures for TCP/IP Native Stack Support
	Configuring a TPF System
	Enabling TCP/IP Native Stack Support
	Local IP Addresses
	Default Local IP Address
	Maximum Packet Size

	Types of TPF Local IP Addresses
	CDLC Addresses
	Defining CDLC IP Addresses
	Deleting CDLC Local IP Addresses
	Restricting CDLC IP Addresses

	Real OSA IP Addresses
	Defining Real OSA IP Addresses
	Deleting Real OSA IP Addresses

	Virtual IP Addresses (VIPAs)
	Types of VIPAs
	Defining VIPAs to an OSA-Express Connection
	Displaying VIPAs
	Deleting VIPAs

	CDLC IP Connections
	Defining CDLC IP Connections
	Activating and Deactivating CDLC IP Routers
	Deleting CDLC IP Routers

	OSA-Express Connections
	Defining OSA-Express Cards to the Processor
	Defining OSA-Express Connections to TPF
	Activating and Deactivating OSA-Express Connections
	Displaying OSA-Express Connections
	Deleting OSA-Express Connections

	Gateways
	Routing Information Protocol

	How Network and Processor Failures Affect VIPAs
	Swinging VIPAs to an Alternate OSA-Express Connection
	Moving VIPAs from One Processor to Another
	Processor Deactivation
	The Operator and the ZVIPA Command
	Moving a VIPA by an Application Program

	Workload Balancing Using Movable VIPAs

	Configuration Examples
	Managing IP Routing Table Entries
	Displaying TCP/IP Native Stack Support
	Starting and Stopping the IP Trace Function
	Displaying IP Trace Information
	Using the Individual IP Trace Function
	Displaying Individual IP Trace Tables
	Deactivating Sockets
	Displaying Socket Control Block Information

	Socket Application Design Considerations
	Sharing Sockets
	Using Existing Socket Applications
	New Socket Options Supported
	Send Buffer and Receive Buffer Sizes
	Timeouts
	Low-Water Marks
	activate_on_accept API

	Local Sockets

	Simple Network Management Protocol Agent Support
	SNMP Overview
	SNMP Manager
	SNMP Agent
	Management Information Base (MIB)
	Interaction between SNMP Components

	Protocol Data Units (PDUs)
	Structure and Fields of SNMP PDUs

	TPF SNMP Agent Support
	Implementing Management Information Base-II (MIB-II)

	Processing SNMP Requests
	Message Processing
	User MIB Variables

	SNMP Traps
	Installing TPF SNMP Agent Support
	Installing and Defining TPF TCP/IP Native Stack Support
	Installing the SNMP Agent
	Creating the SNMP Configuration File
	Coding the UCOM and UMIB User Exits
	Defining and Starting the SNMP Agent Server
	Defining IP Routing Table Entries
	Defining the TPF System to the SNMP Manager

	Domain Name System Support
	DNS Server
	TPF Host Name Table
	IP Address Selection

	DNS Client

	Internet Security
	Denial-of-Service Attacks
	Packet Filtering
	Packet Filtering Rules File Syntax
	Packet Filtering Default Rule

	Considerations for Packet Filtering Rules
	Order of Rules
	Performance Considerations

	Examples of Packet Filtering Rules
	Problem Diagnosis

	TCP/IP Network Services Database Support
	Quality of Service
	Data Collection and Reduction
	Message Counts by Application

	TCP/IP Network Services Database File
	TCP/IP Network Services Database File Syntax
	TCP/IP Network Services Database File Example

	Part 4. Socket Application Programming Interface Overview
	Socket Overview
	Sockets
	Types of Sockets Supported by TCP/IP
	Socket Address for the Internet Domain

	Port Numbers
	Standard Dotted Decimal Formats
	Mapping Address Parts
	Integer Byte Order Conversion

	Blocking and Nonblocking
	Out-Of-Band Data
	TPF Socket Application Programming Interface (API) Support
	Socket API Functions Using TCP/IP Offload Support
	Socket API Functions Using TCP/IP Native Stack Support

	Socket User Exits
	Socket Accept for TCP/IP Offload Support
	Socket Activation
	Socket Connect
	Socket Cycle-Up When Using TCP/IP Offload Support
	Socket Deactivation
	Socket System Error
	TCP/IP Native Stack Support Accept Connection
	Select TCP/IP Support
	Socket Cycle-Up When Using TCP/IP Native Stack Support

	Full-Duplex Socket Support
	Using activate_on_receipt
	Socket Sweeper Support to Close Inactive Sockets

	Sample Socket Sessions
	Function Calls Used in a Sample TCP Session
	Using the activate_on_receipt Function Call
	Function Calls Used in a Sample UDP Session
	Main Socket Function Calls

	Socket Application Programming Interface Functions Reference
	General Function Information
	accept — Accept a Connection Request
	activate_on_accept — Activate a Program When the Client Connects
	activate_on_receipt — Activate a Program after Data Received
	activate_on_receipt_with_length — Activate a Program after Data of Specified Length Received
	bind — Bind a Local Name to the Socket
	close — Shut Down a Socket
	connect — Request a Connection to a Remote Host
	gethostbyaddr — Get Host Information for IP Address
	gethostbyname — Get IP Address Information by Host Name
	gethostid — Return Identifier of Current Host
	gethostname — Return Host Name
	getpeername — Return the Name of the Peer
	getservbyname — Get Server Port by Name
	getservbyport — Get Server Name by Port
	getsockname — Return the Name of the Local Socket
	getsockopt — Return Socket Options
	htonl — Translate a Long Integer
	htons — Translate a Short Integer
	inet_addr — Construct Internet Address from Character String
	inet_ntoa — Return Pointer to a String in Dotted Decimal Notation
	ioctl — Perform Special Operations on Socket
	listen — Complete Binding, Create Connection Request Queue
	ntohl — Translate a Long Integer
	ntohs — Translate a Short Integer
	read — Read Data on a Socket
	recv — Receive Data on a Connected Socket
	recvfrom — Receive Data on Connected/Unconnected Socket
	recvmsg — Receive Message on Connected/Unconnected Socket
	select — Monitor Read, Write, and Exception Status
	send — Send Data on a Connected Socket
	sendmsg — Send Message on a Socket
	sendto — Send Data on an Unconnected Socket
	setsockopt — Set Options Associated with a Socket
	shutdown — Shut Down All or Part of a Duplex Connection
	sock_errno — Return the Error Code Set by a Socket Call
	socket — Create an Endpoint for Communication
	write — Write Data on a Connected Socket
	writev — Write Data on a Connected Socket

	Part 5. Operator Procedures for Internet Server Applications
	Operator Procedures for the Internet Daemon
	Internet Daemon
	Internet Daemon Configuration File
	Adding an Internet Server Application
	Updating the IDCF

	Internet Daemon Control
	Starting the Internet Daemon
	Stopping the Internet Daemon

	Internet Server Application
	Internet Server Application Control

	Trivial File Transfer Protocol (TFTP) Server
	Adding the Trivial File Transfer Protocol (TFTP) Server
	Directives for the TFTP Configuration File
	Creating the TFTP Configuration File
	Transferring and Maintaining the TFTP Configuration File

	File Transfer Protocol (FTP) Server
	FTP Server LOG File
	Adding the File Transfer Protocol (FTP) Server

	Syslog Daemon
	Files
	Syslog Daemon Configuration File
	Modifying the Syslog Daemon Configuration File

	Adding the Syslog Daemon Server
	Operating the Syslog Daemon
	Starting the Syslog Daemon
	Stopping the Syslog Daemon
	Offloading Log Files

	Diagnosing Syslog Daemon Configuration Problems
	Application Considerations

	TPF Internet Mail Server Support
	TPF Internet Mail Server Overview
	Mail Database Layout

	Recoup Considerations for the Mail Database
	TPF Internet Mail Server Configuration Files
	SMTP Configuration File Parameters
	IMAP/POP Configuration File Parameters
	TPF Configuration File Parameters
	Access List Configuration Parameters

	TPF Internet Mail Server Administrator or Operator Tasks
	Configuring the TPF System for TPF Internet Mail Server Support
	Adding a Domain to an Existing TPF Internet Mail Server Configuration
	Adding New Users to an Existing TPF Internet Mail Server Configuration
	Controlling the TPF Internet Mail Servers
	Managing Client Mailboxes

	TPF Internet Mail Server Client Tasks

	Part 6. Secure Sockets Layer (SSL) Support
	Secure Sockets Layer (SSL) Support
	SSL_accept
	SSL_aor
	SSL_check_private_key
	SSL_connect
	SSL_CTX_check_private_key
	SSL_CTX_free
	SSL_CTX_load_and_set_client_CA_list
	SSL_CTX_load_verify_locations
	SSL_CTX_new
	SSL_CTX_new_shared
	SSL_CTX_set_cipher_list
	SSL_CTX_set_client_CA_list
	SSL_CTX_set_default_passwd_cb_userdata
	SSL_CTX_set_verify
	SSL_CTX_use_certificate_chain_file
	SSL_CTX_use_certificate_file
	SSL_CTX_use_PrivateKey_file
	SSL_CTX_use_RSAPrivateKey_file
	SSL_free
	SSL_get_cipher
	SSL_get_error
	SSL_get_peer_certificate
	SSL_get_session
	SSL_get_verify_result
	SSL_get_version
	SSL_library_init
	SSL_load_and_set_client_CA_list
	SSL_load_client_CA_file
	SSL_new
	SSL_pending
	SSL_read
	SSL_renegotiate
	SSL_set_cipher_list
	SSL_set_client_CA_list
	SSL_set_fd
	SSL_set_session
	SSL_set_verify
	SSL_shutdown
	SSL_use_certificate_file
	SSL_use_PrivateKey_file
	SSL_use_RSAPrivateKey_file
	SSL_write
	SSLv2_client_method
	SSLv2_server_method
	SSLv23_client_method
	SSLv23_server_method
	SSLv3_client_method
	SSLv3_server_method
	TLSv1_client_method
	TLSv1_server_method

	Appendix A. CLAW Trace Postprocessor
	Sample JCL for the CLAW Data Trace Postprocessor
	CLAW Data Trace Postprocessor
	Sample JCL for the CLAW Process Trace Postprocessor
	CLAW Process Trace Postprocessor

	Appendix B. ISO-C Structures Called by Socket API Functions
	Structures Defined in the socket.h Header File
	Additional Structures

	Appendix C. Socket Error Return Codes
	Appendix D. Sample Application Driver Code
	activate_on_receipt Transmission Control Protocol (TCP) Server
	activate_on_receipt Transmission Control Protocol (TCP) Child Server
	Transmission Control Protocol (TCP) Server
	Transmission Control Protocol (TCP) Client
	User Datagram Protocol (UDP) Server
	User Datagram Protocol (UDP) Client

	Appendix E. TCP/IP Restricted CLAW C Functions: Reference
	claw_accept — Accept a CONNECT Request from the Workstation
	claw_closeadapter — Terminate CLAW Activity on Subchannel Pair
	claw_connect — Initiate a Request to Open a Logical Link
	claw_disconnect — Remove a Logical Link from an Adapter
	claw_end — Terminate All CLAW Activity
	claw_initialization — Prepare for CLAW Activity
	claw_openadapter — Initialize an Adapter
	claw_query — Get the Status of CLAW Adapter or Logical Links
	claw_send — Send a Message on an Active Logical Link
	CLAW Return Codes

	Appendix F. Using the Internet Protocol Trace Facility
	About the IP Trace Table
	Starting the IP Trace Facility and Specifying Which Data to Trace
	Stopping the IP Trace Facility
	Defining How Much Data to Store in the IP Trace Table
	Writing the IP Trace Table to a Real-Time Tape
	Displaying Information about the IP Trace Facility
	Displaying the IP Trace Table Online
	Creating a Compacted Display of the IP Trace Table
	Creating a Formatted Display of the IP Trace Table

	Using the Offline IPTPRT Utility to Create an IPTPRT Report
	Sample JCL for the IPTPRT Utility
	Defining the IPTPRT Report
	PARM= Parameter for the IPTPRT JCL
	Sample PARM= Parameters for the IPTPRT JCL
	Sample Compacted IPTPRT Report
	Sample Formatted IPTPRT Report

	IPTPRT Messages

	Including the IP Trace Table in System Error Dumps

	Appendix G. Management Information Base Variables
	MIB Variable Types

	Index

