
Transaction Processing Facility

ACF/SNA Data Communications
Reference
Version 4 Release 1

SH31-0168-06

���

Transaction Processing Facility

ACF/SNA Data Communications
Reference
Version 4 Release 1

SH31-0168-06

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page xvii.

Seventh Edition (June 2002)

This is a major revision of, and obsoletes, SH31-0168-05 and all associated technical newsletters.

This edition applies to Version 4 Release 1 Modification Level 0 of IBM Transaction Processing Facility, program
number 5748-T14, and to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. Address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . xi

Tables . xv

Notices . xvii
Trademarks . xvii

About This Book . xix
Before You Begin . xix
Who Should Read This Book xix
Conventions Used in the TPF Library xix
How to Read the Syntax Diagrams xx
Related Information . xxiii

IBM Transaction Processing Facility (TPF) 4.1 Books xxiii
Miscellaneous IBM Books xxiv
Online Information . xxv

How to Send Your Comments xxv

Introduction to TPF SNA Support 1
TPF SNA Overview. 1
Basic SNA Terms and Concepts 3

TPF Message Processing Flow Overview. 5
TPF Inbound Message Flow . 5

Protocol Handling . 6
Presentation Handling . 6

TPF Outbound Message Flow . 7

TPF SNA . 11
SNA Data Transfer . 11

Common Characteristics of NCP and CTC Data Transfer 11
NCP Data Transfer . 11
Unique Characteristics of CTC Data Transfer 11

Multiple-Domain Networks . 12
Subarea (PU_5) Environment 12

Cross-Domain Links . 12
Cross-Domain Resource Manager (CDRM) 14
Cross-Domain Sessions . 14

Low-Entry Networking (PUT 2.1) Environment 15
Control Points . 16
Control LUs . 16
3174 APPN Considerations 16

Advanced Peer-to-Peer Networking (APPN) Environment 16
Control Points . 16

Message Routing . 16

TPF Applications. 19
Considerations for Developing Applications That Access NCB Records 19
TPF as Host Node SLU . 19
Activating LU–LU Sessions with TPF 20

TPF Application Programming Considerations 21
Function Management Header (FMH) 22

© Copyright IBM Corp. 1994, 2002 iii

||

Programming Considerations for Session Initiation 22
Synchronizing Messages with Sequence Numbers 23
3600 Application Considerations 25

Data Transmission from 3600 to a TPF Application. 25
Data Transmission from a TPF Application to a 3600 25

3270 Application Considerations 26
Non-SNA 3270 Application Considerations 26
SNA 3270 Application Considerations 26

Host Node Application Considerations 26
IMS Relay Application Considerations 28
CICS Relay Application Considerations 29

X.25 NPSI Support . 29
NPSI Message Length Considerations 30

Request Unit Chaining . 31
RU Sizes . 31

NPSI GATE/Fast Transaction Processing Interface (GATE/FTPI). 32
Message Traffic Multiplexing 33
Input Processing . 34
Multiplexing Output Traffic . 35
Application Program Interface 35
Network Definition. 35
Operations . 40
Activating the TPF CTCP . 40
Activating Multi-Channel Links 41
Traces . 42

TPF Mapping Support . 42

Airlines Line Control (ALC) Support through SNA 45
TPF Host Interfaces . 45

Session Control via VTAM SSCP 46
Command Support . 48

Addressing an ALC Device 48
TPF/NEF SNA Multiple Host Support 49
X.25 ALC Interface for Switched or Permanent Virtual Circuits (XALCI) 50

User-Replaceable PSV Routine 51
Network Definition. 51

XALCI Configuration . 56

TPF Advanced Program-to-Program Communications 59
TPF/APPC Components . 59
TPF/APPC Installation Checklist 60

General Installation Tasks . 60
Installation Tasks for Low-Entry Networking (LEN) 63
Defining TPF/APPC LUs to the Network 63
Defining TPF/APPC LUs to a VTAM Subsystem. 66
Defining a TPF/APPC LU to a PS/2 Workstation (Using a Generic Name) 66

TPF/APPC Control Blocks . 67
TPF/APPC Conversation Control Block 67
TPF/APPC Session Control Block 68

TPF/APPC Work Blocks . 68
TPF/APPC Work Block . 68
TPF/APPC Change Number of Sessions Work Block 68
TPF/APPC Partner Work Block 69
TPF/APPC Half-Session to Presentation Services Record 69

Presentation Services . 69
TPF Transaction Program ATTACH Interface 69

iv TPF V4R1 ACF/SNA Data Communications Reference

Conversation Verbs . 71
Change Number of Sessions. 78
Finite State Machine . 80

Generating the Side Information Table for Mapped Conversations 83
Creating the Input File . 85
Running CHQI . 92
Side Information Table Offline Program Output 93
Loading the Side Information Data Set to TPF 96

Resource Manager . 98
Session Manager . 99

Initiating a Session . 99
Session Termination . 99

Message Flow . 99
Inbound Message Queuing 100

System Restart . 101
Session Considerations . 101
Conversation Considerations 102

Subsystem Considerations . 102
Considerations for a Tightly Coupled Environment 102
Considerations for a Loosely Coupled Environment 103

Loosely Coupled Complex Example. 103
Loosely Coupled Installation Checklist 105

User Exits . 107
Transaction Program Design Considerations 107

Traditional LU 6.2 Conversations 107
Pipeline LU 6.2 Conversations. 108
Shared LU 6.2 Conversations 110

Sample Transaction Programs 113
Sample Transaction Program Functions 114
Requesting TPF Transaction Program 114
Requested TPF Transaction Program 116
Sample Requesting TPF Transaction Program 117
Sample Requested TPF Transaction Program 121

High-Performance Routing (HPR) Support 127
Benefits of Using HPR Support 127
HPR Node Types . 127
ANR Labels . 128
Activating Links . 130
RTP Connections . 131

TCIDs. 134
Starting RTP Connections 134
Deactivating RTP Connections. 134
Displaying RTP Connections 134

Starting LU-LU Sessions . 135
ROUTE_SETUP Process 136
LU-LU Session Activation Flows 138
Session Addresses . 140

Path Switches. 141
Path Switch Process . 141
Path Switch Timer . 143

Detecting Network Failures . 144
Short Request Timer . 144
Alive Timer . 145

NLPs . 145
NHDRs . 147

Contents v

THDRs . 149
Data . 151
HPR Control Messages . 151
Network Considerations for NLPs 152

HPR Control Blocks . 152
RTPCB Table . 152
HPRSAT. 155
HPRMT . 156
Relationship with Other SNA Control Blocks. 157

Host IPL Considerations . 163
RTP Connection Resynchronization Process 163

CP-CP Session Failures . 167
Flow Control . 168

ARB Pacing . 168
RTP Output Queue . 170

HPR Output Messages . 172
Selective Retransmission. 173

Retransmitting Output Messages 174
Requesting That Input Messages Be Retransmitted 174

Segmentation and Reassembly 174
Segmenting Output Messages 175
Reassembling Input Messages 176

Installation and Tuning . 176
Diagnostic Information. 177

Sense Codes Unique to the TPF System 177

TPF/SNA Control Block Structures 179
Resource Vector Table (RVT) and Related Control Block Structures 179

How the RVT Is Organized 179
RVT-Related Control Block Structures 181

Node Control Block (NCB) Records and Related Structures 183
Types of NCB Records . 183
NCB-Related Control Block Structures 184
Displaying Information about NCB Records and Related Structures 187
Initializing NCB Records . 187
Reclaiming NCB Directory Records and NCB Records 187
Increasing the Number of NCB Directory Records in the TPF System . . . 188
Performance Considerations for Accessing NCB Records 190
Developing Applications That Retrieve NCB Records 190
Allocating or Retrieving a Scratch Pad Area (SPA) for a Dynamic LU . . . 190

Defining SNA Resources to the TPF System 193
Using the OSTG Program to Define SNA Resources 193

Important Considerations. 194
Loading Resource Definitions by Performing a Fresh Load 194
Forcing a Fresh Load during the Next IPL 195
Loading Resource Definitions by Performing a Dynamic Load 195
Falling Back to the Old Resource Definitions 196
Displaying Status Information about the Load Functions 198

Using the ZNDYN ADD Command to Define SNA Resources 198
Restrictions. 198
Important Considerations. 198

Using the ZNDYN CHANGE Command to Change SNA Resource Definitions 199
Using Dynamic LU Support to Define SNA Resources 199

Defining Remote LU Resources 199
Defining Remote ALS Resources 200

vi TPF V4R1 ACF/SNA Data Communications Reference

Activating and Deactivating Resources 201
Activating and Deactivating a Shared NCP 201
Starting and Stopping Application Programs 201
Activating and Deactivating Cross-Domain Resource Managers 202
Activating and Deactivating Control LU-Logon Manager Sessions 204
Activating and Deactivating APPN CP-CP Sessions 204

CP-CP Session Considerations When Running Loosely Coupled 205
Activating LU-LU Sessions . 206

Activating LU-LU Sessions Other Than LU 6.2 207
Activating LU 6.2 Sessions 207
PU 5 Environment . 208
PU 2.1 LEN Environment 208
PU 2.1 APPN Environment 208
Mixed PU 5 and PU 2.1 Environment 209

LU-LU Sessions in an APPN Network 211
Predefining TPF LUs to the APPN Network 211
APPN LU Registration Process 211
Remote Initiated LU-LU Sessions 212

Network Services Application Interfaces 213
ISHLL Macro . 213
Session Management Request Services 213

Starting Session Management Request Services 213
Requesting Session Resynchronization 214
Requesting Session Termination Interface 215

Session Status Awareness Services. 215
Activating Session Status Awareness Services 216
Starting Session Started Notification 216
Starting Session Ended Notification 217

PU 5 FID4 Considerations . 219
NCP Support . 219

Channel Contact . 219
NCP Considerations . 221

CTC Support . 222
Pre-Channel Contact/Priming 222
Channel Contact . 223
Loosely Coupled Considerations 227
Session Initiation. 227

VTAM Considerations . 227
Class of Service, Virtual Routes, and Transmission Priority 227
Other VTAM Considerations 228
VTAM Considerations for NCP 5.3 228

LU-LU Session VR Assignment for CTC 228
Virtual Route (VR) Activation 228

Virtual Route Deactivation 229
Network Flow Control . 230
Software IPL Considerations 231
Hardware IPL Considerations 232
Extended Network Addressing 233
Network Definition . 233

SNA Network Interconnection (SNI) Considerations 233

PU 2.1 Considerations . 237
General Information. 237

Contents vii

Session Control . 237
Session Identifiers . 237
Extended BIND . 238
SNA Restart and ALS Discovery 239

37x5 Considerations . 240
37x5 and APPN Considerations 240
37x5 and LEN Considerations 241

Non-37x5 Considerations . 244
Non-37x5 and APPN Considerations 244
Non-37x5 and LEN Considerations 244
3174 Considerations . 244

SNA Message Protocol . 247
Response Protocol . 247
Recoverable and Non-Recoverable Messages 247

Single-Segment Messages 247
Chained and Segmented Messages. 248

Multithread Processing . 250
Bracket Support . 250
Unsolicited Messages . 250

Unsolicited Messages Destined for a LNIATA/LEID 250
Unsolicited Messages Destined for a RID. 250

3614/3624 Message Processing 251
3614/3624 Session Initiation and Application Considerations. 251

User Routines . 253
Process Selection Vector (PSV) 253

Input Message PSV Processing 253
Output Message PSV Processing 254
PSV Interface . 255
PSV Output Message Queueing 259
Defining PSV Routines . 259
Logical End-Point Identifiers, Terminals, and PSV Routines 260

Data Flow Control (DFC) Considerations 260
User DFC Interface . 261
Outbound Message Interface 262
Pacing Considerations. 262
Undeliverable Message Considerations 262
Response Protocols/Error Handling 262

Input Message Router Exit . 265

Queue Manager . 269
Queue Manager Interface . 270

Input Interface. 270
Output Interface . 272
General Return Codes . 273
Detailed Return Codes . 273

Diagnostic Aids . 275
Trace Functions . 275

Operating System Traces 275
Path Information Unit (PIU) Trace Facility. 275
SNA I/O Trace Facility . 275

Reliability and Serviceability. 276
Error Detection and Feedback 276
Hardware Error Recovery 277

viii TPF V4R1 ACF/SNA Data Communications Reference

NCP Slowdown . 277
CTC Slowdown . 277

Data Collection/Reduction and Test Tools 279

Appendix A. Logical Unit Status (LUSTAT) 281

Appendix B. General Format of the SNA BIND Command 283
BIND Images for TPF Supported Secondary Logical Units 283
Acceptable BIND Image For a Local Host Node SLU 284

Appendix C. Interface Requirements for System Utility Programs 287
RID and RVT Conversions . 287
Retrieving NCB and SPA Data Records (CSNB) 287
Select A Thread Utility Routine (SELEC) 288
Select A Thread Utility Program (CSF0) 288

Appendix D. Using the Path Information Unit (PIU) Trace Facility 291
About the PIU Trace Table . 291
Starting the PIU Trace Facility and Specifying Which Data to Trace 291
Stopping the PIU Trace Facility 292
Defining How Much of the RU to Store in the PIU Trace Table 293
Writing the PIU Trace Table to a Real-Time Tape 293
Displaying Information about the PIU Trace Facility 294

Examples . 294
Displaying the PIU Trace Table Online 295

Creating a Compacted Display of the PIU Trace Table 296
Creating a Formatted Display of the PIU Trace Table 297

Using the Offline PIU Print (PIUPRT) Utility to Create a PIUPRT Report . . . 301
Sample JCL for the PIUPRT Utility 302
Defining the PIUPRT Report 303
PIUPRT Utility Return Codes 312

RH Indicators . 312
Including the PIU Trace Table in System Error Dumps 313

Appendix E. VTAM Mode Table Entries 315

Appendix F. TPF Message Processing Flow User Extensions 317
TPF Inbound Message Flow Extensions 317
TPF Outbound Message Flow Extensions 319

ROUTC Exit . 319

Appendix G. Sample TPF CTCP Implementation Using PSVs 321
Introduction to CTCP Functions 321

Generalized Access to X.25 Transport Extension (GATE) 322
User CTCP Control Blocks . 322

X.25 Network Control Block. 324
X.25 Link Control Block (XLCB) 324
Virtual Circuit Control Block (VCCB). 324
User Terminal Control Blocks 325
End Point Control Block (EPCB) 325
Contact Point Control Block (CPCB) 326
Control Block Residence . 326

TPF SNA Session Awareness 327
Session Start . 328
Session End . 328

Contents ix

TPF X.25 Command Message Flows 328
PSV Processing of NPSI/GATE Commands 329

TPF X.25 Data Message Flows 335
CTCP Input Data Message Processing 335
CTCP Output Data Message Processing 338

Appendix H. SNA Command Flow. 345
PU 5 and PU 2.1 LEN Session Activation. 345

CDRM-CDRM Session Activation. 345
PU 5 and PU 2.1 Session Deactivation 360
APPN Session Activation. 374
APPN LU-LU Session Deactivation 383
APPN-Subarea Migration Flows 384
More on SNA Command Flow 391

Appendix I. TPF Sense Code Processing 393
SNA Timeout Processing . 395

Index . 397

x TPF V4R1 ACF/SNA Data Communications Reference

Figures

1. TPF Inbound Message Flow . 5
2. TPF Outbound Message Flow . 8
3. Cross-Domain Communication Link . 13
4. Multiple Cross-Domain Links . 14
5. Cross-Domain LU to LU Session Data Flow . 15
6. TPF Sent Set-and-Test Sequence Numbers Action Code 23
7. 3601 Set-and-Test Sequence Numbers Action Code Response 24
8. 3601 STSN Response . 24
9. TPF Action Resulting from 3601 STSN Response. 25

10. FTPI Message Blocking Format . 33
11. FTPI Command Content . 34
12. RSC Definition Statement for an FTPI LU. 36
13. RSC Coding Example Statement for an FTPI LU 37
14. VTAM Log Mode Entry for FTPI . 37
15. Organization of NPSI Macros . 38
16. Organization of X25.CPL Macro . 38
17. CTCP Pseudo LU Coding Example . 39
18. X.25 MCH Macro. 39
19. X.25 Link Definition . 40
20. Pseudo Link Activation. 41
21. Multi-Channel Link Activation . 42
22. Multiple Host Network in NEF . 50
23. RSC Statement Definition Statement for an FTPI LU. 52
24. RSC Coding Example Statement for an XALCI LU 52
25. XALCI PSV Entry Shipped with TPF. 53
26. Create PSV Table Macro . 53
27. Create PSV Entry Macro . 53
28. Sample XALCI PSV Definition Statements . 53
29. XALCI Header Formats . 55
30. XALCI Configuration . 56
31. TPF/APPC Component Flow Diagram . 60
32. Defining TPF/APPC LUs to VTAM across a PU 5 Connection 64
33. Defining TPF/APPC Alias LU Names to VTAM across a PU 5 CTC Connection 64
34. Defining TPF/APPC LUs across PU 2.1 LEN Connections 65
35. Defining TPF/APPC LUs across PU 2.1 APPN Connections 66
36. Defining a TPF/APPC LU to CICS . 66
37. TPF Transaction Program ATTACH Interface . 70
38. ALLOCATE Verb . 73
39. CONFIRM Verb . 73
40. CONFIRMED Verb . 74
41. DEALLOCATE Verb . 74
42. FLUSH Verb . 74
43. GET_ATTRIBUTES Verb . 75
44. GET_TYPE Verb . 75
45. POST_ON_RECEIPT Verb . 75
46. PREPARE_TO_RECEIVE Verb . 76
47. RECEIVE Verb . 76
48. REQUEST_TO_SEND Verb . 76
49. SEND_DATA Verb . 77
50. SEND_ERROR Verb . 77
51. TEST Verb . 77
52. WAIT Verb . 78
53. Generating the Side Information Table . 84

© Copyright IBM Corp. 1994, 2002 xi

54. Example of an Input File for CHQI . 90
55. TPF Console Display . 91
56. Example CHQI Output Listing . 95
57. Loading a Side Information Offline Generated Tape 97
58. Inbound Queue . 101
59. Loosely Coupled Complex Example for TPF/APPC Sessions 105
60. Traditional LU 6.2 Conversations . 108
61. Pipeline LU 6.2 Conversations . 110
62. Shared LU 6.2 Conversations. 112
63. Sample Network with APPN TGs and HPR ANR Labels 129
64. Sample Networks and RTP Connections. 132
65. Combination of HPR Support and APPN. 133
66. ROUTE_SETUP Process . 137
67. LU-LU Session Activation, HPR Support Is Not Used 138
68. LU-LU Session Activation, a New RTP Connection Is Started 139
69. LU-LU Session Activation, an Existing RTP Connection 139
70. LU-LU Session Activation, Part of the Route . 139
71. Session Address Usage . 140
72. Path Switch Process . 142
73. Comparing an NLP to PIUs . 146
74. Routing an NLP through the Network . 148
75. RTPCB Table Layout . 153
76. LU RVT Entries for PU 5 and PU 2.1 . 158
77. HPR LU RVT Entries, RTP Connections Are Active 160
78. HPR LU RVT Entries, Path Switch Is in Progress 161
79. HPR LU RVT Entries, Path Switch Is Completed. 162
80. RTP Connection Resynchronization, before the IPL 165
81. RTP Connection Resynchronization, after the IPL 166
82. HPR SOUTC Block Types . 173
83. Segmenting an Output Message . 175
84. RVT Example . 180
85. RNHCT, RNHPT, and RNHET Example . 182
86. NCB Directory Record Example . 186
87. The ISHLL Macro . 213
88. NCP Gen with TPF Channel-Attached as a PU Type 5 Node 222
89. XID Processing Example 1. 224
90. XID Processing Example 2. 224
91. XID Processing Example 3. 225
92. NCP Gen with TPF Channel-Attached as a PU Type 2.1 LEN Node 242
93. Input Message Processing . 253
94. Extended TPF Outbound Message Flow, ROUTC and PSV Exits. 255
95. Compacted Display of the PIU Trace Table . 297
96. Formatted Display of the PIU Trace Table . 301
97. JCL for the PIUPRT Utility . 302
98. Compacted PIUPRT Report . 308
99. Formatted PIUPRT Report . 312

100. VTAM Mode Table Entries - Non-3270 LU0. 315
101. VTAM Mode Table Entries - 3270s . 316
102. Extended TPF Inbound Message Flow . 318
103. Extended TPF Outbound Message Flow. 319
104. TPF/NPSI Sessions Involving a CTCP . 321
105. TPF X.25 Network Elements and Corresponding User Control Blocks 324
106. TPF CTCP Control Block Structure. 327
107. Control Block Relationship for Inbound CALL_REQUEST Command 330
108. Generic TPF Inbound X.25 CTCP Command/Reply Flow. 331
109. Control Block Relationship for Inbound CLEAR Command 332

xii TPF V4R1 ACF/SNA Data Communications Reference

110. Control Block Relationship for CALL_OUT Request. 333
111. Generic TPF Outbound X.25 CTCP Command Processing Flow 334
112. Control Block Relationship for Inbound CALL_CONFIRM Command 334
113. Soft Copy Input Data Flow . 336
114. Hard Copy Input Data Flow . 337
115. Soft Copy Output Data Flow . 339
116. Hard Copy Enqueue, Dequeue, and Transmit . 340
117. Hard Copy Enqueue and Exit . 341
118. Hard Copy Queue Wake Up . 342
119. Hard Copy Repeat Last Message/Negative Acknowledgment 343
120. CDRM-CDRM Session Started by the TPF System 345
121. CDRM-CDRM Session Started by the Remote SSCP 346
122. CDRM-CDRM Session Started by VTAM . 346
123. CDRM-CDRM Session Started from the TPF side 347
124. APPL-APPL Session Started by TPF (PU 5) . 348
125. APPL-APPL Session Started by Remote LU (PU 5) 349
126. APPL-APPL Session Started by Remote LU (PU 5) and is Queued 350
127. APPL-APPL Session Started by Remote LU (PU 2.1 LEN) 350
128. Host-Node SLU Session Started by TPF (PU 5) 351
129. Host-Node SLU Session Started by Remote LU (PU 2.1 LEN) 352
130. PU 5 FMMR-FMMR Session Initiation from the PLU 353
131. PU 5 FMMR-FMMR Session Initiation from the SLU 354
132. PU 2.1 LEN FMMR-FMMR Session Initiation . 354
133. 3270 Session Started by Remote Terminal (PU 5) 355
134. 3270 Session Started by Remote Terminal (PU 2.1 LEN) 356
135. PU 5 LU 6.2 Session Started by TPF PLU . 357
136. PU 5 LU 6.2 Session Started by Remote SLU 357
137. PU 5 LU 6.2 Session Started by TPF SLU . 358
138. PU 5 LU 6.2 Session Started by Remote PLU 359
139. PU 2.1 LEN LU 6.2 Session Started by TPF . 359
140. PU 2.1 LEN LU 6.2 Session Started by Remote SLU 360
141. Normal CDRM-CDRM Session Deactivation . 361
142. Immediate CDRM-CDRM Session Deactivation 362
143. Forced CDRM-CDRM Session Deactivation . 363
144. Normal APPL-APPL Session Deactivation . 364
145. Immediate APPL-APPL Session Deactivation . 365
146. Forced APPL-APPL Session Deactivation . 366
147. Normal Host-Node SLU Session Deactivation . 367
148. Immediate Host-Node SLU Session Deactivation 368
149. Forced Host-Node SLU Session Deactivation . 369
150. Normal or Immediate FMMR-FMMR Session Deactivation 370
151. Forced FMMR-FMMR Session Deactivation . 371
152. Normal LU 6.2 Session Deactivation . 372
153. Immediate LU 6.2 Session Deactivation . 373
154. Forced LU 6.2 Session Deactivation . 374
155. CP-CP Session Activation . 375
156. Session Started by TPF PLU (APPN) . 376
157. Session Started by TPF SLU (APPN) . 377
158. Session Started by Remote SLU (APPN), RSCV Provided 377
159. Session Started by Remote SLU (APPN), RSCV Not Provided 378
160. Session Started by Remote SLU (APPN), Session Queued. 379
161. Session Started by Remote PLU (APPN) . 379
162. Session Started by Remote PLU (APPN), Session Queued. 380
163. Printer Sharing, Request by TPF, Printer Available 381
164. Printer Sharing, Request by TPF, Printer In Use 382
165. Printer Sharing, TPF Requested to Release the Printer 383

Figures xiii

166. Normal Deactivation by Remote SLU (APPN) . 384
167. SLU Initiated, SLU in APPN, PLU in Subarea . 385
168. SLU Initiated, SLU in APPN, PLU in Subarea (PLU Location Unknown) 386
169. PLU Initiated, SLU in APPN, PLU in Subarea . 387
170. SLU Initiated, PLU in APPN, SLU in Subarea (SC Provided) 388
171. SLU Initiated, PLU in APPN, SLU in Subarea (SC Not Provided) 389
172. PLU Initiated, PLU in APPN, SLU in Subarea (SC Provided) 390
173. PLU Initiated, PLU in APPN, SLU in Subarea (SC Not Provided) 391

xiv TPF V4R1 ACF/SNA Data Communications Reference

Tables

1. SNA Commands Supported for NPSI . 31
2. TPF/APPC Conversation Finite State Machine Matrix 82
3. LU 6.2 Statistics for Processing 4 Messages . 113
4. LU 6.2 Statistics for Processing 100 Messages 113
5. Comparing Traditional SNA Support to HPR Support 127
6. Processing Output Message Queues . 170
7. CSU0 Interface . 213
8. Request Session Resynchronization Interface. 214
9. Request Session Termination Interface . 215

10. CSXD Interface . 216
11. Session Started Notification Interface . 216
12. Session Ended Notification Interface . 217
13. IPSVI - PSV Interface Dsect . 256
14. DFC ROUTC Interface . 261
15. Sample Negative Response Handler Interface 263
16. LU0 (3600, NPSI) -RSP Analysis . 263
17. 3274/76 (LU1, LU2, LU3) Sense Code Table . 263
18. 3274/76 (LU1, LU2, LU3) LUSTAT SENSE TABLE 264
19. Negative Response Processing Actions . 264
20. Queue Control Element Layout . 269
21. Queue Manager Parameter List . 270
22. Queue Manager Input Interface . 271
23. Queue Manager Output Interface . 273
24. BIND Images for TPF-Supported Secondary Logical Units 283
25. Return Codes for the PIUPRT Utility . 312
26. Sense Codes and Actions . 393

© Copyright IBM Corp. 1994, 2002 xv

xvi TPF V4R1 ACF/SNA Data Communications Reference

Notices

References in this book to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service in this book is not intended to
state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
IBM’s intellectual property rights may be used instead of the IBM product, program,
or service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department 830A
Mail Drop P131
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Any pointers in this book to non-IBM Web sites are provided for convenience only
and do not in any way serve as an endorsement. IBM accepts no responsibility for
the content or use of non-IBM Web sites specifically mentioned in this book or
accessed through an IBM Web site that is mentioned in this book.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/VTAM
Advanced Peer-to-Peer Networking
APPN
CICS
DB2
IBM
OS/2
PS/2
RISC System/6000
SAA
Systems Application Architecture

© Copyright IBM Corp. 1994, 2002 xvii

System/370
VTAM.

Other company, product, and service names may be trademarks or service marks
of others.

xviii TPF V4R1 ACF/SNA Data Communications Reference

About This Book

This book describes the functions provided for the Systems Network Architecture
(SNA) data communications area.

In this book, abbreviations are often used instead of spelled-out terms. Every term
is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, Systems Network Architecture (SNA). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in the TPF
Library Guide.

Before You Begin
See TPF Concepts and Structures for an overview of the TPF system.

See IBM Systems Network Architecture Concepts and Products and IBM Systems
Network Architecture Technical Overview for information about SNA concepts and
terminology.

Who Should Read This Book
This book is intended for systems programmers who are responsible for SNA data
communications support.

Conventions Used in the TPF Library
The TPF library uses the following conventions:

Conventions Examples of Usage

italic Used for important words and phrases. For example:

A database is a collection of data.

Used to represent variable information. For example:

Enter ZFRST STATUS MODULE mod, where mod is the module for which you want
status.

bold Used to represent text that you type. For example:

Enter ZNALS HELP to obtain help information for the ZNALS command.

Used to represent variable information in C language. For example:

level

monospaced Used for messages and information that displays on a screen. For example:

PROCESSING COMPLETED

Used for C language functions. For example:

maskc

Used for examples. For example:

maskc(MASKC_ENABLE, MASKC_IO);

bold italic Used for emphasis. For example:

You must type this command exactly as shown.

© Copyright IBM Corp. 1994, 2002 xix

Conventions Examples of Usage

Bold underscore Used to indicate the default in a list of options. For example:

Keyword=OPTION1 | DEFAULT

Vertical bar | Used to separate options in a list. (Also referred to as the OR symbol.) For example:

Keyword=Option1 | Option2

Note: Sometimes the vertical bar is used as a pipe (which allows you to pass the output of
one process as input to another process). The library information will clearly explain
whenever the vertical bar is used for this reason.

CAPital LETters Used to indicate valid abbreviations for keywords. For example:

KEYWord=option

Scale Used to indicate the column location of input. The scale begins at column position 1. The
plus sign (+) represents increments of 5 and the numerals represent increments of 10 on the
scale. The first plus sign (+) represents column position 5; numeral 1 shows column position
10; numeral 2 shows column position 20 and so on. The following example shows the
required text and column position for the image clear card.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

LOADER IMAGE CLEAR

Notes:

1. The word LOADER must begin in column 1.

2. The word IMAGE must begin in column 10.

3. The word CLEAR must begin in column 16.

How to Read the Syntax Diagrams
This section describes how to read the syntax diagrams (informally called railroad
tracks) used in this book.

v Read the diagrams from left-to-right, top-to-bottom, following the main path line.
Each diagram begins on the left with double arrowheads and ends on the right
with 2 arrowheads facing each other.

** Syntax Diagram *1

v If a diagram is longer than one line, the first line ends with a single arrowhead
and the second line begins with a single arrowhead.

** The first line is long and extends the width of the diagram *

* Second Line *1

v A word in all uppercase is a parameter that you must spell exactly as shown.

xx TPF V4R1 ACF/SNA Data Communications Reference

** PARAMETER *1

v If you can abbreviate a parameter, the optional part of the parameter is shown in
lowercase. (You must type the text that is shown in uppercase. You can type
none, one, or more of the letters that are shown in lowercase.)

Note: Some TPF commands are case-sensitive and contain parameters that
must be entered exactly as shown. This information is noted in the
description of the appropriate commands.

** PARAMeter *1

v A word in all lowercase italics is a variable. Where you see a variable in the
syntax, you must replace it with one of its allowable names or values, as defined
in the text.

** variable *1

v Required parameters and variables are shown on the main path line. You must
code required parameters and variables.

** REQUIRED_PARAMETER required_variable *1

v If there is more than one mutually exclusive required parameter or variable to
choose from, they are stacked vertically.

** REQUIRED_PARAMETER_1
REQUIRED_PARAMETER_2
required_variable_a
required_variable_b

*1

v Optional parameters and variables are shown below the main path line. You can
choose not to code optional parameters and variables.

About This Book xxi

**
OPTIONAL_PARAMETER optional_variable

*1

v If there is more than one mutually exclusive optional parameter or variable to
choose from, they are stacked vertically below the main path line.

**
OPTIONAL_PARAMETER_1
OPTIONAL_PARAMETER_2
optional_variable_a
optional_variable_b

*1

v An arrow returning to the left above a parameter or variable on the main path line
means that the parameter or variable can be repeated. The comma (,) means
that each parameter or variable must be separated from the next parameter or
variable by a comma.

** 8

,

REPEATABLE_PARAMETER 8

,

repeatable_variable *1

v An arrow returning to the left above a group of parameters or variables means
that more than one can be selected, or a single one can be repeated.

** 8

,

REPEATABLE_PARAMETER_1
REPEATABLE_PARAMETER_2
repeatable_variable

*1

v If a diagram shows a blank space, you must code the blank space as part of the
syntax. In the following example, you must code PARAMETER variable.

** PARAMETER variable *1

v If a diagram shows a character that is not alphanumeric (such as commas,
parentheses, periods, and equal signs), you must code the character as part of
the syntax. In the following example, you must code PARAMETER=(begin.end).

xxii TPF V4R1 ACF/SNA Data Communications Reference

** PARAMETER=(begin.end) *1

v Default parameters and values are shown above the main path line. The TPF
system uses the default if you omit the parameter or value entirely.

**
DEFAULT

PARAMETER

0

variable
*1

v References to syntax notes are shown as numbers enclosed in parentheses
above the line. Do not code the parentheses or the number.

**
(1)

PARAMETER *1

Notes:

1 An example of a syntax note.

v Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in
mixed case and are shown in the diagram and in the heading of the fragment.
The fragment is placed below the main diagram.

** Reference to Syntax Fragment *1

Syntax Fragment:

1ST_PARAMETER,2ND_PARAMETER,3RD_PARAMETER

Related Information
A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM Transaction Processing Facility (TPF) 4.1 Books
v TPF ACF/SNA Network Generation, SH31-0131

v TPF C/C++ Language Support User’s Guide, SH31-0121

v TPF Concepts and Structures, GH31-0139

v TPF Data Communications Services Reference, SH31-0145

About This Book xxiii

v TPF General Macros, SH31-0152

v TPF System Installation Support Reference, SH31-0149

v TPF Main Supervisor Reference, SH31-0159

v TPF Migration Guide: Program Update Tapes, GH31-0187

v TPF Operations, SH31-0162

v TPF Program Development Support Reference, SH31-0164

v TPF System Performance and Measurement Reference, SH31-0170

v TPF System Generation, SH31-0171

v TPF System Macros, SH31-0151.

Miscellaneous IBM Books
v ACF, NCP, ALCI General Information, GH33-7012

v CICS/DOS/VS Intercommunication Facilities Guide, SC33-0133

v Communications Manager/2 Network Administration and Subsystem Management
Guide, SC31-6168

v Communications Manager/2 Workstation Installation and Configuration Guide,
SC31-7169

v NCP/SSP/EP Resource Definition Reference (order the correct version and
release for your installation)

v NPSI Host Programming, SC30-3502

v NPSI Planning and Installation, SC30-3270

v OS/2 Extended Edition APPC Programming Reference, S01F-0295

v OS/2 Extended Edition System Administration Guide for Communications,
G01F-0302

v IBM Systems Network Architecture Advanced Peer-to-Peer Networking
Architecture Reference, SC30-3422

v IBM Systems Network Architecture Concepts and Products, GC30-3072

v IBM Systems Network Architecture Format and Protocol Reference Manual:
Architectural Logic, SC30-3112

v IBM Systems Network Architecture Format and Protocol Reference Manual:
Architecture Logic for LU Type 6.2, SC30-3269

v IBM Systems Network Architecture LU 6.2 Reference: Peer Protocols,
SC31-6808

v IBM Systems Network Architecture Network Product Formats, LY43-0081

v IBM Systems Network Architecture Technical Overview, GC30-3073

v IBM Systems Network Architecture Transaction Programmer’s Reference Manual
for LU Type 6.2, GC30-3084

v IBM SNA Formats, GA27-3136

v Systems Application Architecture Common Programming Interface
Communications Reference, SC26-4399

v VTAM Network Implementation Guide (order the correct version and release for
your installation)

v VTAM Resource Definition Reference (order the correct version and release for
your installation)

v 3270 Data Stream Programmer’s Reference, GA23-0059

v 3600 Finance Communication System 3614 Programmer’s Guide and Reference,
GC27-0010

v 3600 Finance Communication System 3624 Programmer’s Guide, GC66-0008.

xxiv TPF V4R1 ACF/SNA Data Communications Reference

Online Information
v Messages (Online)

v Messages (System Error and Offline).

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

v If you prefer to send your comments electronically, do either of the following:

– Go to http://www.ibm.com/tpf/pubs/tpfpubs.htm.

There you will find a link to a feedback page where you can enter and submit
comments.

– Send your comments by e-mail to tpfid@us.ibm.com

v If you prefer to send your comments by mail, address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

v If you prefer to send your comments by FAX, use this number:
– United States and Canada: 1 + 845 + 432 + 9788
– Other countries: (international code) + 845 + 432 +9788

About This Book xxv

|

|

|

http://www.ibm.com/tpf/pubs/tpfpubs.htm

xxvi TPF V4R1 ACF/SNA Data Communications Reference

Introduction to TPF SNA Support

Systems Network Architecture (SNA) is an IBM communications system framework.
It is an architectural design that:

v Standardizes network operations

v Defines functional responsibility for each network component

v Defines protocol support of distributed functions.

SNA benefits include:

v Distribution of function

v Device and attachment independence

v Configuration flexibility.

This publication describes the TPF implementation of SNA,which allows you to
interface TPF with SNA networks. Supporting SNA in a TPF system permits TPF
application programs to communicate with devices that adhere to SNA standards.

In order to better understand the material covered in this publication, it is
recommended that you read the following two sections. The first section is an
overview of TPF SNA. The second section describes some basic SNA terminology.

TPF SNA Overview
The SNA support provided allows TPF to communicate with other systems including
other TPF systems, or devices (both SNA and non-SNA, such as ALC) across an
SNA interface.

Networks generally have a mix of systems, usually ACF/VTAMs and TPF. It is
required that an ACF/VTAM system, not TPF, be designated as the network
manager (that is, the owner of the communications networks’ resources), even if all
or most of the data traffic is directed toward TPF.

Connections to the network can be both PU 5 connections and PU 2.1 connections.
TPF as a PU 5 node connects to a communication controller running NCP or to an
SNA channel-to-channel (CTC) device.

The TPF system can connect to a PU 2.1 network as either a low-entry networking
(LEN) node or Advanced Peer-to-Peer Networking (APPN) node. In an APPN
environment, the TPF system can only be an end node (EN), not a network node
(NN).

TPF Network Control Program (NCP) support depends on:

v Subarea support (T5), which requires SNA Network Interconnection (SNI)

v T2.1 low-entry networking (LEN) support, which requires NCP Version 4 Release
3, or later

v T2.1 Advanced Peer-to-Peer Networking (APPN) support, which requires NCP
Version 6 Release 2, or later.

All subsequent occurrences of NCP in the text of this book are superseded by the
previous information, unless otherwise specified.

© Copyright IBM Corp. 1994, 2002 1

The SNA Network Interconnection (SNI) feature is required in the NCP to connect
TPF as a PU 5 node. Format ID 4 (FID4) path information units (PIUs) are used to
send messages across the connection. TPF’s connection uses a single virtual route
on the TPF side of the gateway, but sessions on the VTAMs side can take
advantage of the full SNA functions available.

For SNA channel-to-channel (CTC), TPF appears to a remote host as a PU 5 (T5)
node using FID4 PIUs. TPF and the remote system exchange identifications (XIDs)
and are able to establish sessions across a maximum of 2 virtual routes using the
CTC connection. Throughout the remainder of this publication, CTC will be used as
an abbreviation for any SNA channel-to-channel link, device, and others.

TPF as a PU 2.1 node connects to NCP using the FID2 interface. As a PU 2.1
node, TPF no longer has a unique subarea but appears to the network as a PU in
the subarea of each channel, attached NCP.

The TPF system also connects to a 3174 Advanced Peer-to-Peer Networking
(APPN) controller as a PU 2.1 node. Sessions can be established between TPF
applications and as many as 255 terminals (LUs) on a token ring connected to and
managed by the 3174 controller. When the TPF system connects as a LEN node,
only sessions using the LU 6.2 protocol are supported, and the sessions must be
started by the remote LUs. When the TPF system connects as an APPN node and
the 3174 is defined as an APPN network node, all LU protocols are supported.

The TPF system also connects to a RISC System/6000 system as a PU 2.1 node.
When the TPF system connects as a LEN node, only sessions using the LU 6.2
protocol are supported, and the sessions must be started by the remote LUs. When
the TPF system connects as an APPN node and the RISC System/6000 system is
defined as an APPN network node, all LU protocols are supported.

For an Airlines Line Control (ALC) network, you must install the:

v Network Extension Facility (NEF2 PRPQ #P85025) or the ALC Interface (ALCI)
feature of ACF/NCP

v TPF-provided Airline X.25 (AX.25) support with the NCP Packet Switching
Interface (NPSI)

v TPF-provided XALCI support with the NCP Packet Switching Interface General
Access to X.25 Transport Extension/Fast Transaction Processing Interface (NPSI
GATE/FTPI).

Note: NEF/ALCI and NPSI are separate product, each with their own set of
publications. This publication addresses only the support provided by TPF.
Before generating the TPF system, read the publications of the other
products to define the new network. See NPSI Planning and Installation and
NPSI Host Programming for information on NPSI and GATE/FTPI.

Both TPF SNA and ALC support are required for TPF NEF, AX.25, and XALCI. SNA
LUs can access new applications1. For 3270 SNA terminals, a pseudo address
(LEID) can be defined to enable these terminals to access old applications. ALC
terminals, using TPF-provided NEF/AX.25/XALCI support, can be used with old or
new applications.

1. Old applications require a LNIATA (LEID) interface, while new applications can use either RIDs (Resource Identifiers) or LNIATAs
(LEIDs).

2 TPF V4R1 ACF/SNA Data Communications Reference

TPF can also interface with LUs using the LU 6.2 protocol. These LUs can access
only applications that have been defined as LU 6.2 capable.

Note: TPF’s LU 6.2 support is provided through the TPF Advanced
Program-to-Program Communications (TPF/APPC) support package. Refer
to “TPF Advanced Program-to-Program Communications” on page 59 for
details about this support.

TPF supports the X.25 interface through the support of NCP Packet Switching
Interface (NPSI). TPF provides connectivity support for the following Logical Link
Control (LLC) types:
v LLC=0
v LLC=3
v LLC=4
v LLC=5

The High Performance Option (HPO) feature requires the TPF SNA support. HPO
contains 2 components: the multiple database function (MDBF) and the loosely
coupled facility (LC). These may be used separately or in combination.

When generating either of these components, the options needed for the system
must be chosen ahead of time. In either case, the generation procedure involves
the use of new macros plus new keywords on base generation macros. MDBF
systems require a generation of each subsystem in addition to generating the base
system. For LC systems only one base generation is performed, regardless of the
number of processors in the complex.

Basic SNA Terms and Concepts
A network addressable unit (NAU) is a resource managed by the communications
system. NAUs provide a window through which users access the communications
system network. An NAU is the origin and/or destination for information transmitted
through the network. Each NAU has a unique network name that is translated into a
unique address.

Note: Throughout this and related TPF publications, the terms node and NAU have
the same meaning.

The communications program must formally connect two NAUs before data may be
exchanged. This is referred to as a session. The four types of NAUs are:

v System service control point (SSCP) - The SSCP is a focal point within the SNA
network. SSCPs manage the network, coordinate operator and
problem-determination requests, and provide general support for users of the
network. Multiple SSCPs divide the network into domains of control. Each SSCP
controls the logical units and physical units within its domain.

v Physical unit (PU) - A physical unit is associated with each network resource
(host application, communications cluster, logical unit) defined to the SSCP.

v Logical unit (LU) - A port through which users access the resources of the
network. In SNA, both application programs and terminal operators can be
defined as logical units. One or more logical units may be situated within a
physical unit. SNA requires a hierarchical (primary-secondary) relationship
between LUs in session. The primary logical unit (PLU) and the secondary logical
unit (SLU) differ in the functions assigned to each. Primary logical units are
responsible for:

– Error recovery: After an error occurs, PLUs ensure communication is correctly
restablished. SLUs may only request error recovery.

Introduction to TPF SNA Support 3

– Establishing the LU to LU session: either an SLU or a PLU may request an
LU-LU session.

Logical units are further defined as either host node or non-host node. Host node
LUs reside in the CPU; non-host node LUs reside in the cluster controller. A
cluster controller is a device that controls input/output operations for multiple
devices (terminals) attached to it. Host node LUs may be either primary or
secondary.

v Control point (CP) - A special LU that resides in each APPN node. CPs manage
APPN networks and perform the tasks that the SSCPs perform in a PU 5
network. A control point in an APPN node communicates with an adjacent control
point using special sessions called CP-CP sessions.

An adjacent link station (ALS) is the term used to describe a connection between
the TPF system and a channel-attached NCP. With TPF’s support of PU 2.1, the
NCP appears to TPF as an ALS. ALSs exchange identification (XID) to discover
each others characteristics. XID processing is also done for 3174 APPN
connections and closely follows PU 2.1 ALS processing.

With SNA CTC, a channel contact procedure is implemented between TPF and
channel-attached T5 nodes; that is, an explicit PU5 to PU5 session exists. This
PU-PU session is comparable to the PU-PU sessions supported between NCPs. A
formal channel protocol between the physical units is used. The session
establishment and termination is initiated by the T5 node at the direction of its
SSCP.

The TPF system can connect to a PU 2.1 network as either a low-entry networking
(LEN) node or an Advanced Peer-to-Peer Networking (APPN) node, but not both.
There is a systemwide switch indicating the mode in which the TPF system is
running:

v LEN mode. The TPF system will connect to a PU 2.1 network as a low-entry
networking (LEN) node.

v APPN mode. The TPF system will connect to a PU 2.1 network as an Advanced
Peer-to-Peer Networking (APPN) node.

4 TPF V4R1 ACF/SNA Data Communications Reference

TPF Message Processing Flow Overview

TPF Inbound Message Flow
Figure 1 illustrates TPF’s inbound message flow for ALC and SNA terminals. See
the TPF Data Communications Services Reference additional information on
message routing and message flow.

The TPF inbound message flow consists of three components:

1. I/O Handling - Execution of the channel programs to transfer data between TPF
and its local communications controllers.

2. Protocol Handling - Processing such as message format conversion, code
translation, and error handling.

3. Presentation Handling - The delivery of the message to the application. This
component also handles requests for logon, logoff and unsolicited messages.

ALC
TI

SLC
EP

SLC
OP0

High
Speed

COMMSRCE

R
O
U
T
E
R

IN LEID
APPL

OUT
Non

SNA

TPF
Networks

IATA

SLC

Protocol
Handling

Presentation
Handling

TPF
Applications

ALCI
COMMSRCE

NEF
AX.25
XALCI

Non

SNA

SNA
COMMSRCE

Non

SNA

SNA
IN RID

APPL
OUT

PS Transaction
Program

NEF
NCP

NPSI
NCP

S
N
A

O
P
Z
E
R
O

L
U
6
2

O
P
Z
E
R
OSNA

NCP

XALCI
Gateway

IATA/AX25

PSDN

X.25
DEV

ASYN
DEV

SNA
LU

SNA
LU

PSDN

PSDN

PSDNPSDNPSDNPSDN

Data Flow

Figure 1. TPF Inbound Message Flow

© Copyright IBM Corp. 1994, 2002 5

Protocol Handling
The primary function of this component is to move the message from an I/O buffer
into a core block and then obtain an Entry Control Block (ECB). The core block
containing the message is attached to the ECB and the message is passed to
either:

v The Communications Source (COMMSRCE) program for data message handling.

v The output message transmitter (OMT or LMT) for response handling. Typically if
the response is an acknowledgement, the next message on queue is sent. When
the response is a negative acknowledgment, the message is retransmitted.

v The SNA Command handler for command request and response handling.

Other ancillary Protocol Handling functions include:

v Starting optional system routines for tracing messages during their processing.

v Updating data collection counters for offline performance analysis.

v Setting the ECB flag byte to indicate the origin of the message to assist in dump
analysis.

v Setting the ECB field EBROUT to the Logical End-Point Identifier (LEID) or RID
of the terminal to allow System Error processing in event of a failure.

Presentation Handling
TPF passes a data message to the Communications Source (COMMSRCE)
program that handles its specific line discipline or terminal type. The data message
can be input to an application, a logon/logoff request, or an unsolicited message
request. In general, COMMSRCE converts the terminal’s network address into an
address used internally by TPF. The internal address format is a RID for SNA
sources or an LEID for non-SNA sources (terminals). If the destination of the
message from an SNA source is a non-SNA application, the RID format is then
converted to an LEID format. The message is then edited to remove imbedded
control characters and examined to determine whether it is a data, logon/logoff, or
request for unsolicited messages. The edited message is passed to one of three
system services for subsequent processing:

1. Data messages are passed to the Router program.

2. Logon or logoff messages are passed to the Log Processor.

3. Request for unsolicited messages are passed to the Unsolicited Message
Package.

ROUTER Processing
The ROUTER ensures that the message can be delivered to the application. The
program checks to verify that the:

v Application is available and active

v System and subsystem state allow the message to be delivered.

If the message cannot be delivered, then a message is returned to the originator
stating why the message is undeliverable. The text of the messages returned by the
system is:

v APPLIC appl NOT ACTIVE

v SYS.ERR ON MSG FROM appl MSG LOST

v ACP CANNOT ACCESS appl LOGOFF

v APPLIC appl NOT AVAIL. LOGOFF

v CANNOT ACCESS appl SYS IN 1052

v RESTRICTED. CRAT TERM INPUT ONLY

6 TPF V4R1 ACF/SNA Data Communications Reference

v FILE ERR. CANNOT DELIVER MSG TO appl

v CANNOT ACCESS appl SYS IN RESTART

v CANNOT ACCESS appl PROCESSOR INACTIVE

Note: The lower case letters ’appl’ in these descriptions are replaced with the
actual four character TPF application name when the message is returned to
the originator.

If the message can be delivered, the application is entered with the message
attached to level 0 of the ECB and a Routing Control Parameter List (RCPL) in
EBW000 of the ECB.

The application is responsible for decoding the transaction code and starting the
appropriate programs. If the message was from a 3270 terminal and the application
requires ALC type input, the 3270 Simulator package may be called to reformat the
message text. When processing is complete the application issues a ROUTC macro
to send a reply to the terminal.

TPF Outbound Message Flow
Figure 2 on page 8 shows TPF’s outbound message flow for ALC and SNA
terminals. See the TPF Data Communications Services Reference for additional
information on message routing and message flow.

TPF Message Processing Flow Overview 7

The output message processing starts when the application issues a ROUTC
macro. The operands of the ROUTC macro require the user to supply a routing
control parameter list (RCPL) and a message block. The RCPL contains the origin
and destination of the message, and the message block contains the data stream
as it should be sent to the destination. The ROUTC macro code performs the
following:

v Checks the validity of the RCPL and message block format.

v Determines if the destination of the message is one of the following:
– Application
– LU
– Terminal.

v Starts the appropriate routine to send the message.

The message is queued on DASD before transmission if:
v The destination is a hardcopy device.
v Safestoring is required to allow retransmission if an error occurs.
v Output is suspended while waiting for a pacing response.

ALC
TI

SLC
EP

SLC
Out

IN LEID
APPL

OUT

TPF
Networks

IATA

SLC

Protocol and I/O
Handler

Presentation
Handler

TPF
Applications

ALCI
Output

Transformation

NEF
AX.25
XALCI

NEF
NCP

S
N
A

O
U
T

XALCI
Gateway

IATA/AX25

PSDN

X.25
DEV

ASYN
DEV

SNA
LU

SNA
LU

PSDN

PSDN

PSDN

Data Flow

ROUTC ALC
Out

IN RID
APPL

OUT ROUTC

PS

TPF/APPC
TP

ROUTC

TPF/APPC
Verbs

SNA
NCP

NPSI
NCP

R
O
U
T
E
R

Figure 2. TPF Outbound Message Flow

8 TPF V4R1 ACF/SNA Data Communications Reference

Queued messages are sent when the transmission media is available. These
additional functions are provided for destinations that require queuing the message:

v The operator can request retransmission of the last queued message. For
example, retransmission to a printer may be requested when the wrong form was
loaded.

v The operator may direct messages to another printer if the original destination is
inoperable. In this case, messages already queued for the inoperable printer are
moved to the new destination queue and subsequent ROUTC requests are
automatically sent to the new destination.

v The system automatically retransmits a message if an acknowledgment is not
received after 1 minute.

TPF Message Processing Flow Overview 9

10 TPF V4R1 ACF/SNA Data Communications Reference

TPF SNA

SNA Data Transfer
The 37x5 communications controller is a programmable control unit, a piece of
hardware. It assumes many of the line handling and processing functions of the
network. The network control program (NCP) regulates operation of the 37x5.
Macro instructions, coded on input cards, define the network attached to the 37x5.
The macro instructions are assembled and the resulting object deck is stored on
file. This load module must then be loaded to the 37x5 from an MVS/VTAM system.

Common Characteristics of NCP and CTC Data Transfer
The standard SNA data unit is called a path information unit (PIU). To transmit data
between TPF and the NCP, data must be in this format. The PIU contains routing
information in addition to the data itself. PIUs follow in a certain order, based on
their virtual route sequence number. PIUs with a virtual route sequence number that
is higher orlower than the next expected virtual route sequence number are
discarded. TPF builds a PIU for each message transferred to the NCP. TPF also
executes the appropriate channel program to transfer the PIUs to the NCP.

NCP Data Transfer
The NCP is responsible for successful delivery of each message. The NCP
presents an attention interrupt over the channel to TPF indicating that data is ready
for transfer. TPF reads input data on a time-controlled basis. Therefore, it does not
acknowledge every interrupt. Time-controlled reading of NCP input data prevents a
single NCP from monopolizing the resources of the TPF system. Control of the
network attached to an NCP occurs at two levels: TPF directs control of the network
at channel speed, while the NCP controls line handling and data transfer.

Unique Characteristics of CTC Data Transfer
Data transfer on a SNA CTC connection consists of a matching set of CCWs
(write/read on one side and read/write on the other side) with a number of 4K
indirect data address word (IDAW) buffers. Either side can initiate a write by
beginning the channel program with a write control (WCTL) CCW. The other side
receives an attention interrupt from the CTC hardware (for example, 3088); in
return, the other side issues a channel program beginning with a sense command
byte (SCB) CCW. The read/write sequence of the channel program is fixed at
exchance identification(XID) time.

As part of the data transfer, an 8-byte control field is passed by each side as the
first 8 bytes of data. Control information, including byte counts and status (such as
XID, error retry, and slowdown) is used by each side to determine how to process
the data received.

TPF supports a maximum buffer size of 64K. Blocking is used to transmit or receive
multiple PIUs on a single I/O operation. TPF initializes I/O operations on the CTC
connection when any of the following conditions occur:

v There are enough PIUs to fill the write buffer.

v The SNA polling time interval elapses and output PIUs are queued. The SNA
polling time interval can be from 10 milliseconds to 50 milliseconds and is
defined with the SNAPOLL parameter on the SNAKEY macro.

v An attention interrupt has been received.

© Copyright IBM Corp. 1994, 2002 11

Note: You should be aware of these conditions when specifying the value for the
VTAM DELAY operand.

Multiple-Domain Networks
A multiple-domain network is a cohesive, coordinated network composed of 2 or
more interconnected domains. Networking is a term used to describe
communications among different domains. Single-domain networks can support
many concurrent applications via shared resources. Although 2 or more
single-domain networks can coexist, even using the same CPU and
communications controller, the networks are independent of each other. They lack
the ability to communicate with each other. Communication between domains is
only possible in multiple-domain networks. This type of communication is referred to
as cross-domain communication. TPF supports communication with other domains.
These include:

v A second TPF domain

v An ACF/Virtual Telecommunications Access Method (VTAM) domain

Before domains can communicate, a path must be established between the
cross-domain resource managers (CDRMs). A path consists of a single NCP
attached to 2 hosts, or multiple NCPs each attached to a host or another NCP
where the NCPs are connected via SDLC lines. A path can also consist of an SNA
CTC connection.

Subarea (PU_5) Environment

Cross-Domain Links
A cross-domain link interconnects locally attached NCPs and hosts. Cross-domain
links are shown in Figure 3 on page 13. SNA CTC support requires the
channel-attached major node to reside in the same network as VTAM, with no SNI
support.

Note: In communications terms, local or locally attached refers to direct channel
attachment. Remote or remotely attached refers to a link (communications
line) attachment.

12 TPF V4R1 ACF/SNA Data Communications Reference

Cross-domain links present an identical appearance to each domain. Both domains
share equally in enabling a cross-domain link. Multiple links provide additional
“bandwidth” among domains. Therefore, all interdomain communication does not
depend on 1 link. Figure 4 represents a network with multiple links.

ACF/NCP/VS

VTAM
CICS

SA=2

ACF/NCP/VS

Host Processor

Domain 1

Local
37x5

Local
37x5

Data
Channel

Data
Channel

Domain 2

022 022CTC
Link

TPF Application
Programs

SA=6

Host Processor

Figure 3. Cross-Domain Communication Link

TPF SNA 13

A cross-domain link must be enabled before cross-domain communication can take
place. The network operators in each domain jointly enable the link.

Note: The network operators must activate the link before the path can be enabled.

Cross-Domain Resource Manager (CDRM)
The system services control point (SSCP) manages the resources for a single
domain. In this capacity, the SSCP is often called a domain resource manager
(DRM). The DRM activates the network and controls session startup and
termination. In a multiple-domain network, SSCP (DRM) functions are extended to
include management of cross-domain communication. A cross-domain resource
manager (CDRM) to CDRM session must be established before data can be
transmitted between domains. In this type of session, the CDRMs work in tandem
to activate, maintain, and terminate sessions between LUs in their respective
domains.

Cross-Domain Sessions
A cross-domain LU-LU session must be established before a TPF logical unit can
communicate with a second domains logical unit. Only after the SSCP to physical
unit and SSCP to logical unit sessions are established in the respective single
domains can a cross-domain session be initiated. Requests for a cross-domain
LU-LU session also require that a session first be established between the SSCPs
in the 2 domains. The processing to request a cross-domain session is outlined

ACF/NCP/VS

Local
37x5

VTAM

Host Processor

Domain 1 Domain 2

ACF/NCP/VS

Local
37x5

Host Processor

Local
37x5

ACF/NCP/VS

ACF/NCP/VS

Local
37x5

Figure 4. Multiple Cross-Domain Links

14 TPF V4R1 ACF/SNA Data Communications Reference

below. To aid in understanding the processing paths, LUs and SSCPs are
numbered. The numbers have no additional significance.

v Logical unit 1 (LU1) sends a control message to its SSCP (SSCP1) requesting a
session with the host LU in domain 3. The format of the control message
depends on the type of LU. For example, a 3601 LU (application) sends an SNA
initiate-self command; a 3270 terminal operator enters a USS (unformatted
system services) logon.

v SSCP1 interprets the control message and converses with the CDRM (SSCP3)
owning the host logical unit in domain 3. SSCP3 either accepts or rejects the
SSCP1 session initiation request.

v If the logical unit is available, SSCP1 and SSCP3 will cooperate to establish an
LU-LU session. Once the session is established, data may be exchanged
between the LU end points.

v If the host LU in domain 3 is not available (not active or its session limit is
exceeded), SSCP3 rejects the session initiation request. SSCP1 informs LU1 of
the request rejection.

Figure 5 shows the data flow paths for a cross-domain LU-LU session.

Low-Entry Networking (PUT 2.1) Environment
See IBM Systems Network Architecture Advanced Peer-to-Peer Networking
Architecture Reference for additional information about the PU 2.1 environment.

Domain 3Domain 2Domain 1

Host LUsHost LUsHost LUs

SSCP3SSCP2SSCP1

Local
37x5

Local
37x5

Local
37x5

LU1

Session Initiation/Termination Flow

Data Flow

Figure 5. Cross-Domain LU to LU Session Data Flow

TPF SNA 15

Control Points
With PU 2.1 support, the SSCP is replaced by a control point (CP). The control
point serves as a means of identifying the node externally. The CP name is used in
qualifying communications with other nodes in the network.

Control LUs
Control LUs (CLUs) are the mechanisms used to establish LU-LU sessions in the
PU 2.1 LEN environment. A VTAM application program called the logon manager
(LM) appears to the TPF system as a CLU and has a CLU-CLU session with a TPF
CLU over which session initiation requests are passed. Any terminal that is not at
the level where it can send a BIND, must request an LU-LU session from its control
point. For TPF applications, the VTAM control point views all TPF applications as
running under the control of the logon manager. Therefore, it forwards all requests
(CINITs) to the logon manager to be serviced. The logon manager includes the
CINIT in a request sent on the CLU-CLU session to the TPF CLU that contains the
TPF application. TPF then generates and sends the BIND request to the originating
LU to establish the session.

When the TPF system is operating in LEN mode, the TPF CP name is different for
each link connected to the TPF system. This allows a unique CLU to be defined for
each link that is part of the logon manager design.

3174 APPN Considerations
When TPF is connected to a 3174 Advanced Peer-to-Peer Networking (APPN)
controller, there is no VTAM system involved. Without a CLU-CLU session to
transport session initiation requests, TPF has no way of sending a BIND request
through the 3174 to the PS/2 computer, PS/2 devices, PS/2 units on the token ring.
The PS/2 computer, PS/2 devices, PS/2 units must be independent LUs, capable of
sending a BIND request to TPF. Only sessions using the LU 6.2 protocol are
supported for a 3174 APPN connection.

Advanced Peer-to-Peer Networking (APPN) Environment
See IBM Systems Network Architecture Advanced Peer-to-Peer Networking
Architecture Reference for additional information about the PU 2.1 environment.

Control Points
With PU 2.1 support, the SSCP is replaced by a control point (CP). When the TPF
system is operating in APPN mode, there is one CP name for the entire TPF
loosely coupled complex. One TPF processor has CP-CP sessions with an adjacent
APPN network node (NN) and manages all the resources for the complex.

CP-CP sessions are a pair of LU 6.2 sessions between adjacent CPs. LU 6.2
support must be installed for the TPF system to be able to connect to the network
as an APPN node. See “TPF/APPC Installation Checklist” on page 60 for
information about installing LU 6.2 support on the TPF system.

Message Routing
The function management message router (FMMR) transmits messages from
terminals or logical units attached to 1 processor to applications in a second
processor. Here, the communication path is always directed through the first
processor. This type of message routing is called level 2 networking.

16 TPF V4R1 ACF/SNA Data Communications Reference

In a TPF SNA environment, FMMR is only required for non-SNA terminals.
However, FMMR can be extended to make use of the cross-domain SNA
communication paths (SNA logical units communicate directly with applications in
other processors).

The FMMR operates as a host node LU in a TPF system. Therefore, to
communicate with the FMMR in another processor, a formal LU-LU session must be
established. Message recovery is not provided in an FMMR to FMMR session.
Users who require message recovery should communicate with other domains via
TPF host node secondary LU support.

TPF SNA 17

18 TPF V4R1 ACF/SNA Data Communications Reference

TPF Applications

In TPF terminology, an application is defined as a collection of programs is a
software package. When a TPF/SNA network is defined, a logical unit is associated
with each application. Each LU has a unique network address and network name.
TPF requires a node control block (NCB) to control the functions of each LU.

You must define all TPF applications, which are also known as local applications,
using the offline ACF/SNA table generation (OSTG) program. The TPF system
associates a scratchpad area (SPA) control record with each application that is
defined using the OSTG program. This SPA is for the exclusive use of the
application.

Non-SNA devices require different control records: the routing control block (RCB)
and the agent assembly area (AAA). TPF provides an interface program that
converts non-SNA address formats for applications written before the advent of
SNA. Applications that are SNA-oriented are called NCB/SPA dependent.
Applications that are not SNA-oriented are called RCB/AAA dependent. The
discussion throughout this publication pertains to NCB/SPA dependent programs
unless otherwise stated.

In the network, TPF applications are viewed as primary logical units. However, a
user may optionally request that an application also appear as a secondary logical
unit. Here, the application assumes a primary LU status when communicating with
an SLU; a secondary LU status when communicating with a PLU. As a secondary
LU (also known as an SLU THREAD), the communication rate among applications
is limited to the communication rate of the session protocol supported. To ease this
limitation, TPF allows the user to specify a number of communication paths
(threads) when communicating with a primary LU. Each path (thread) is assigned a
unique network address and network name. See TPF ACF/SNA Network
Generation for information describing the ANT deck and application SLU threads.

Another way of overcoming this limitation is to use parallel sessions provided with
TPF/APPC. See “TPF Advanced Program-to-Program Communications” on page 59
for additional information about TPF/APPC.

Considerations for Developing Applications That Access NCB Records
When developing your own applications, you must use the CSNB segment to
access NCB records. This segment returns the address of the appropriate 381-byte
fixed file NCB record or 381-byte long-term pool file NCB record for an LU, or it can
return the NCB record itself.

See “Retrieving NCB and SPA Data Records (CSNB)” on page 287 for more
information about the CSNB segment.

TPF as Host Node SLU
TPF applications may appear as host node secondary LUs to be compatible with
certain types of IMS and CICS logical units. With this support, users can write
applications to communicate with CICS, IMS, and/or a second TPF system via a
standard SNA interface program. CICS, IMS, and TPF data formatting requirements

© Copyright IBM Corp. 1994, 2002 19

are resolved in the user’s applications. TPF transmits the data, processes errors,
and provides the SNA interface segments. TPF host node SLU support allows you
to perform:

Relay routing Non-SNA terminals, in a TPF domain, access an
IMS or CICS database or both.

Transaction routing A TPF application dynamically determines which
input messages should be forwarded to another
system for processing.

Data acquisition The ability to request data from an IMS or CICS
database or both. This data is usually needed to
respond to a request from a logical unit in the TPF
domain.

Activating LU–LU Sessions with TPF
An LU-LU session must be established before data can pass between a TPF
application and a logical unit. The following list different ways to establish a session:

1. A secondary LU is defined as permanently in session with a TPF application
(VTAM AUTOLOG facility).

2. A remote LU requests a session with a TPF application from its control point.

3. The TPF operator requests a session be established using the ZNETW ACT
command. (This is valid only for APPL to APPL sessions.)

4. A TPF/APPC session is activated with an ALLOCATE request. See “TPF
Advanced Program-to-Program Communications” on page 59 for more
information about TPF/APPC.

20 TPF V4R1 ACF/SNA Data Communications Reference

TPF Application Programming Considerations

Note: This chapter is not applicable for TPF/APPC. See “TPF Advanced
Program-to-Program Communications” on page 59 for this information.

TPF provides the user with a standard interface for communicating with TPF
applications. The input interface consists of:

v The routing control parameter list (RCPL)

v A main storage block attached to the entry control block (ECB).

The RCPL contains the origin and destination for a message. It is located in the
ECB work area. Indicators in the RCPL delineate the type of input device, the
environment (SNA or non-SNA), and the presence of a resubmitted message. When
an application responds to a message, the origin field becomes the destination and
the destination field becomes the origin. The main storage block contains the input
message.

TPF assembles a segmented message before presenting it to the application. Some
messages do not fit into a single main storage block. These are stored on file and
forward-chained to the block. Applications use the ROUTC macro to send a
message to an SNA logical unit. If output messages use more than 1 block, they
too are chained together on file.

Note: In a TPF system, a reply is sent for every input message. Input messages
are resubmitted to an application (TPF records every input message) if a
reply is not received. Users define the time-out period during network
definition. Applications must release the input message, indicating
processing is complete, or the message is resubmitted.

When an application is started to process an input message, it receives:

v The RCPL, starting at field EBW000 in the ECB work area. The RCPL format is
specified during system initialization. See TPF System Generation for more
information on the system initialization program (SIP).

v The message is attached to level 0 of the ECB.

The RCPL contains the following fields:

v Origin

v Destination

v Indicators.

The origin field of an RCPL contains:

v An ordinal number that identifies the logical unit that sent the message. This
sub-field is referred to as the resource identifier (RID) or session control block
(SCB) identifier.

– With the ALC support under SNA, the LN/IA/TA is now the Logical End-Point
Identifier (LEID).

v A 1 character CPU identifier. The logical unit is directly attached to the named
CPU.

Non-SNA application programs use a line number, interchange address, and
terminal address (LN/IA/TA). The LN/IA/TA replaces the RID.

© Copyright IBM Corp. 1994, 2002 21

The destination field contains the 4-character name of the application that receives
the input message. Before sending a message, the logical unit must log on to this
application. Additionally, the application must be included in the routing control
application table (RCAT).

The RCPL contains indicator fields that describe the input or output message.
RCPL fields are defined via the RC0PL data macro. Application programs should
set any unused RCPL indicators to zero. This practice prevents errors and eases
installation of new applications.

Note: SNA output messages that cannot be sent because of telecommunication
failures are also passed to the application as input. In this situation the
returned message indicator (RCPL0RET) is set. Applications should be
designed with the capability of processing returned output messages.

The original messages sent by the application may have been altered by the
ROUTC exit or a process selection vector (PSV) routine. Therefore, when
using these facilities, regardless of the Data Flow Control (DFC) layer
implementation or the use of PSV routines, TPF must return messages to
the originator (application/PSV) via the same path (ROUTC Exit/PSV) rather
than directly to the application via the RCAT enter expansion.

See “Process Selection Vector (PSV)” on page 253 and “Data Flow Control
(DFC) Considerations” on page 260 for additional information. Also, see the
user exit information in the TPF System Installation Support Reference.

Function Management Header (FMH)
Both host and remote applications can include an FMH when transmitting a
message. An FMH contains information about the text of the message. For
example, an FMH might be used to indicate the results of some host processing.
The FMH contains 2 fields: the header length (HL) field and the control information
(CI) field. The HL field is 1 byte long. The CI field is 1 – 255 bytes long. Content
and usage for the CI field is determined by the user when designing the host and
remote application programs. When included, the FMH is the first part of the
message text. The presence of an FMH is indicated in the RCPL. When the FMH
length field (HL) is set to zero, the output message is not sent. This procedure is
sometimes used to comply with TPFs requirement that all input messages receive a
reply. Only the first segment in a multiple segment input message can include an
FMH; the remaining segments must not include one. Messages that include an
FMH are often referred to as data and control messages.

Programming Considerations for Session Initiation
When a logical unit requests a session, the following sequence occurs:

v The logical unit sends an SNA Initiate-Self command to its control point to
request a session with the application.

v The remote control point communicates with the TPF control point to request the
session.

v TPF returns a positive response, if requested.

v TPF sends an SNA BIND command built from the CDINIT to initiate the session.

v The logical unit returns a positive response. At this point, when necessary,
message synchronization is performed.

22 TPF V4R1 ACF/SNA Data Communications Reference

v TPF sends an SNA Start Data Traffic (SDT) command, except for an LU 6.2
session.

At this point, data may now flow between LU session partners.

Synchronizing Messages with Sequence Numbers
A sequence number is an arbitrarily assigned message number. Both TPF and the
3601 control program assign sequence numbers to output messages. Additionally,
each maintains a record of these numbers for both input and output messages.
Messages are synchronized via sequence numbers to ensure their integrity. TPF
and the 3601 control program share responsibility for sequence number
management.

The 3601 adds 1 to the sequence number each time a logical unit transmits data.
The 3601 appends this new number to the data and sends the message. On receipt
of the message, TPF adds 1 to the last sequence number it recorded. TPF
compares this number with the number of the message just received. If the
sequence numbers match, TPF processes the message. Otherwise, TPF returns a
negative response indicating a sequence number error. The 3601 performs the
same function for messages received from TPF. When TPF detects the error, the
logical unit should request resynchronization of messages via the SNA
Request-Recovery (RQR) command. When the 3601 detects the error, TPF
automatically starts message resynchronization via the SNA Set-and-Test Sequence
Numbers (STSN) command.

The STSN command contains a 5-byte data field. Byte zero (1) is called the action
code and is defined in Figure 6.
Bytes 1 and 2 contain the SNA sequence number of the last message received by

TPF. Bytes 3 and 4 contain the sequence number for the last message TPF sent.

If the sequence numbers are correct, the 3601 simply returns a positive response.
Otherwise, the response also includes a 5-byte data field. Figure 7 on page 24
defines the 3601 action code (byte 0) response.

Byte The STSN Action Code Byte

Bits Is set to To

0

&

1

2

&

3

00

01

00

01

(TPF does not use - do not alter)

Set the appropriate sequence number to
the value in the corresponding sequence
number field

0

(TPF does not use - do not alter)

Set the appropriate sequence number to
the value in the corresponding sequence
number field and test its validity

Figure 6. TPF Sent Set-and-Test Sequence Numbers Action Code

TPF Application Programming Considerations 23

The 3601 places the sequence number of the last message it sent to TPF in bytes
1 and 2, and the number of the last message it received in bytes 3 and 4.

The 3601 response to a TPF STSN command is summarized in Figure 8. The
ensuing TPF processing options are summarized in Figure 9 on page 25.

Byte The 3601 Action Code Response

Bits Set to Indicates

0

&

1

2

&

3

00

01

10

11

The sequence number TPF sent in the
STSN command is not acceptable. The
number should be set to its previous
value.

The sequence number is acceptable.

0

The 3601 has detected a sequence
number error.

The 3601 does not agree with the
sequence number presented via the
SET and TEST option.

Figure 7. 3601 Set-and-Test Sequence Numbers Action Code Response

Action
Code

(Byte 0)

Host
input #

Host
output #

01
Set

01
Set

11
Set
and
test

Host input
sequence number

(Byte 1-2)

Last message
received by
TPF

Host output
sequence number

(Byte 3-4)

Last message
sent by TPF and
responded to by
the logical unit

Last message
sent by TPF;
no response
from the logical
unit received

3601 action
when received

Set SMSCWS field
to value indicated
in host input field of
STSN

Set SMSCWS field
to value indicated in
host output
field of STSN

Figure 8. 3601 STSN Response

24 TPF V4R1 ACF/SNA Data Communications Reference

3600 Application Considerations

Data Transmission from 3600 to a TPF Application
Data is sent to TPF via the LWRITE instruction. 3601 applications must set
indicators in the write-type (SMSCWT) and write-flags (SMSCWF) fields before
issuing the LWRITE instruction. The write-type field indicates whether a function
management header (FMH) is included with the data. The write-flags field indicates:
v The requested response type
v The position of the message in the message chain
v If brackets are present
v The presence of a change direction request.

Logical units must request exception response for all data sent to TPF. All other
responses result in an error. See “SNA Message Protocol” on page 247 for an
explanation of the various SNA response types.

The format of input data sent to a host application is not fixed; the designers of the
3601 and host applications should establish a format suitable to the needs of the
installation.

Data Transmission from a TPF Application to a 3600
TPF output messages (those messages TPF transmits to a logical unit) are
classified as: 1) application messages, or 2) system messages. These messages
are further defined as recoverable or non-recoverable (See “Recoverable and
Non-Recoverable Messages” on page 247).

Note: 3600 multithread devices cannot be defined as recoverable.

If action
code was

Host
input #

Host
output #

01
Set

01
Set

11
Set
and
Test

Response
action code
must be *

TPF Action when
response received

Host
input #

Host
output #

01
Test
Positive

01
Test
Positive

11
Test
Negative

Send SDT to
logical unit

01
Test
Positive

Send SDT to
logical unit

Discard all messages
previously sent and
send SDT to logical unit

Send SDT to logical
unit and retransmit
all unreceived messages

* TPF terminates the session for any other response

Figure 9. TPF Action Resulting from 3601 STSN Response

TPF Application Programming Considerations 25

Most output messages are sent in reply to an input message. Some, however, are
not associated with an input message. These messages are referred to as
unsolicited messages (see “Unsolicited Messages” on page 250). TPF prefixes all
system messages with a function management header (FMH). The user defines the
contents of the FMH during system initialization (SIP).

TPF output messages are sent in a single transmission. They are segmented only
when: 1) the host application requests segmented output, or 2) the logical units’
input buffer is too small to contain the entire message.

Data is received from TPF via the LREAD instruction. Then, the read-type field
(SMSCRT) and the read-flags field (SMSCRF) are examined. A definite response is
requested for single-segment recoverable messages. An exception response is
requested for non-recoverable messages.

Chained messages request exception response for the first and middle messages in
the chain. For recoverable chained messages, the last message in the chain
requests a definite response. For non-recoverable chained messages, the last
message in the chain requests an exception response.

3270 Application Considerations

Non-SNA 3270 Application Considerations
v Non-SNA applications (RCB/AAA dependent) can use synchronous data link

(SDLC) devices without being changed. An LEID is defined for each 3270 SDLC
device in the offline ACF/SNA table generation process.

v Devices attached to 3x74/3276 cluster controllers have different terminal-type
values than those attached to 3271 control units. See TPF General Macros for
information on the TRMEQ macro. Terminal-type values are generated with this
macro. However, issuing a WRITE with the START PRINT bit set to 1 simulates
the COPY function.

SNA 3270 Application Considerations
TPF and the devices that interact with it use the following SNA protocols:

v For terminals attached to 3271 control units:
– Brackets are not used.
– Change direction indication is not required.
– Function management headers are not required.

v For terminals attached to 3x74/3276 control units:
– Brackets are used.
– Change direction indication is required.
– Function management headers are not required.

Note: It is recommended that you use the 3x74/3276 protocol for applications that
interact with both 3271 and 3x74/3276 units. TPF ignores end bracket and
change direction settings in output messages sent to 3271 attached devices.

Host Node Application Considerations
TPFs’ host node support allows TPF applications to communicate with IMS and
CICS applications. One of the uses of this support is to enable SNA or non-SNA
(EP) terminals to access IMS or CICS databases. This is performed by writing a
TPF application that forwards terminal requests to, IMS for example. When IMS

26 TPF V4R1 ACF/SNA Data Communications Reference

subsequently replies, the TPF application will forward the reply to the originating
terminal. Normally, the TPF application reformats the data stream from the terminal
to one acceptable to IMS and conversely reformats the IBM reply to a form
appropriate to the terminal.

Because TPFs host node support requires the message recovery package, a key
consideration for writing TPF host node applications is the operation of the system
recovery table (SRT). The SRT is used to track each message from its receipt by
TPF until the corresponding reply is successfully returned. For example, assume a
TPF application that will forward all terminal input to IMS and subsequently return
all IMS replies to the terminal.

In this example, an SRT entry will be made to record the receipt of each input
message from the terminal. In addition, if the terminal and TPF application were
defined as recoverable, a safe store copy of the input will be created in pool
records on DASD. The SRT entry is active until the TPF application signals a
Release Input to indicate that the entry was successfully processed. To signal a
Release Input, the TPF application must issue a ROUTC macro with the
RCPL2REL bit set in the RCPLCTL2 field of the routing control parameter list
(RCPL). If the TPF application fails to signal Release Input in a user-defined time
limit, TPF will consider the original input lost and resubmit a copy of the message to
the application.

Therefore, a TPF application relaying messages between a terminal and IMS has
several choices of when to signal Release Input. For example, the application can
do any of the following:

v Release Input can be signaled after the reply from IMS is received. In this case
the terminal keyboard is locked from the time it enters the message until it
receives the IMS reply. If IMS is slow to reply or fails, TPF will time out the
original input and resubmit it to the TPF application. The application has to
decide to either (1) release the original input and unlock the terminal’s keyboard
or (2) wait for the reply from IMS. In general, three cases exist relative to the
reply from IMS:

1. The reply from IMS was delayed and will be received.

2. The session failed after the message was sent, or the message was sent
with the return message indicator RCPL0RET on. In this case the message
will be (eventually) processed by IMS and a reply returned.

3. The message was sent with the return message indicator RCPL0RET and
the session failed before the message was actually transmitted. In this case
the message will be returned to the TPF application as not deliverable.

v The application can signal Release Input before forwarding the message. In this
case TPF will consider the terminals input as processed to completion. This
means that the application must implement its own technique for correlating the
IMS reply with the requesting terminal and handling possible returned messages
or delayed IMS replies.

The reader should understand that the decision to either unlock or leave locked the
terminals keyboard is left to the application. Leaving the keyboard locked until the
IMS reply is delivered prevents the terminal from sending another message, but
requires the application to unlock the terminal if the IMS reply is not returned.
Conversely, unlocking the keyboard before sending the IMS reply can make the
correlation of the IMS reply to the original input difficult.

When the reply is received from IMS, the TPF application must indicate receipt of
the message by sending a null RU via a ROUTC to IMS. This will cause the system

TPF Application Programming Considerations 27

to delete the SRT slot for the message from IMS (which is recoverable) and send a
definite response to IMS. The TPF application must also send a message to the
originating terminal. Because the TPF application will EXIT after sending the initial
message to IMS and then be reactivated on the receipt of the reply message from
IMS, it must remember the originating terminal. This can be done upon agreement
of the interface between TPF and the IMS application that the RCPL be passed as
part of the data stream and returned intact.

The null RU can also be used when an input message is resubmitted to the
application because of a time-out when no reply is received to a recoverable input
message. The application, if it decides that no more processing is required, can
simply cause the SRT slot to be released and a response sent to the terminal by
sending a null RU. The null RU in this case and the response to IMS described
previously consists of an RCPL with the Release Input present and Function
Management Header set, and the first byte of the message (AM0TXT) set to a
X'00'.

The previous discussion assumes that both the TPF application and IMS have been
defined to TPF as recoverable LUs so that message transmission between TPF and
IMS is to be guaranteed. If either IMS or the TPF application were defined as
non-recoverable, TPF will bypass the system overhead of ensuring messages are
either successfully delivered or returned to the sender. Message recovery
considerations (such as null RUs and SRT slots) still apply. The only difference is
that TPF will not safe store messages on disk and will not request definite response
for output messages.

RCPL control byte 2 (RCPLCTL2) also allows the application programmer to control
transmission protocol on the Host Node LU session. If both session partners are
defined as being recoverable, a half duplex flip-flop protocol is used by indicating
Change Direction in the RCPL (RCPL2CD). If the SLU threads that are to be used
for the Host Node LU session are defined as non-recoverable, a contention mode
protocol may be used by indicating End Brackets in the RCPL (RCPL2EBK).
Defining the SLU threads as non-recoverable allows the SLU to send End
Brackets, which is necessary for full contention mode support. Change Direction
and End Bracket are mutually exclusive and if both are indicated, End Bracket will
be assumed. If End Bracket is indicated and the SLU threads are defined as being
recoverable, half-duplex protocols are enforced.

In the previous examples, IMS was used, but the discussion is also applicable to
CICS.

IMS Relay Application Considerations
TPF’s support of IMS uses the type P SLU support present in IMS. The TPF
application appears to IMS as a type P SLU. As such, all IMS conventions for this
session type must be adhered to by TPF.

One such convention used by IMS is sending an unsolicited IMS error message
(DFSxxxx) immediately following an IMS exception DR1/DR2 to input (-RSP). For
example0: IMS will send a -RSP to input with system/user sense code 08260041 if
the IMS transaction is stopped. IMS expects to remain in send state regardless of
the current bracket state. IMS will then send the complete error message: DFS0065
TRAN/LTERM STOPPED (the hex ‘41’ becomes the decimal 65 of the error
message). TPF system code will stop output message transmission (OMT) on
receiving the -RSP and pass both the -RSP and the following IMS error message to

28 TPF V4R1 ACF/SNA Data Communications Reference

the TPF application. The TPF application must ROUTC a null RU to notify TPF to
restart OMT. The null RU for this case is defined as:
1. Unsolicited-msg indicator set on (RCPL0MTY)
2. FMH indicator set on (RCPL2FMO)
3. Null RU (RCPLDLEN = zero)
4. No SRT (RCPLDESS = zero).

TPF will function in this manner for system sense codes 0800, 0819, and 0826.

CICS Relay Application Considerations
TPF support of CICS uses the 3790 Full Function LU support in CICS. The TPF
application appears to CICS as a 3790. As such, all CICS conventions for this
session type must be adhered to by TPF.

X.25 NPSI Support
TPF supports connections to packet switched data networks (PSDNs) through the
use of the NCP Packet Switching Interface (NPSI).

SNA devices that attach to TPF through NPSI are not defined as NPSI device
types; instead, they are defined using other supported TPF RSC device types.

Defining a network containing X.25 resources using NPSI is described in the NPSI
publications for the single-domain case. This task requires understanding of VTAM
and NCP as well as NPSI and X.25, and consists of many considerations not
relevant to TPF X.25 support or even a TPF application using the X.25 network.
Such topics, mostly concerning X.25 link and physical level protocols, or X.25
vendor options, are not covered here because they have no influence on the TPF
X.25 support, or on the definition of NPSI LUs to TPF.

TPF provides connectivity support for the following NPSI facilities defined by Logical
Link Control (LLC) type:

LLC=0 : Both Switched Virtual Circuits (SVCs) and Permanent Virtual
Circuits (PVCs)

LLC=3 : Both Intermediate Network Node (INN) and Boundary Network
Node (BNN) function forms

LLC=4 : General Access to X.25 Transport Extension (GATE) option with
integrated Fast Connect support

LLC=5 : Packet Assembler/Disassembler (PAD) Options:
v Integrated PAD
v Transparent PAD.

TPF uses the ROUTC interface for TPF applications to communicate with logical
end points reached through a PSDN. This is achieved by extending TPF SNA
support to the LU_T1 interface with the NPSI product in a local or remote NCP
node. Additionally, user-written system modules, which collectively form the basis of
a user Communication and Transmission Control Program (CTCP), provide the user
with the capabilities offered by NPSI GATE support. Process selection vector (PSV)
routines can be used for this purpose. See “Process Selection Vector (PSV)” on
page 253 for additional information.

The NPSI link, PU, and LU resources are owned by VTAM. TPF needs network
awareness of only the NPSI LU resources. Therefore, all LU sessions with NPSI

TPF Application Programming Considerations 29

LUs, or in the case of LLC=3 with the LU residing across the PSDN, have
cross-domain/network session characteristics.

Non-SNA devices are supported as follows:

v On Permanent Virtual Circuits: using NPSI LLC=0 or LLC=5.

v On Switched Virtual Circuits: using NPSI LLC=4(GATE) with the NPSI Fast
Connect support and NPSI LLC=0 or LLC=5 for incoming calls without Fast
Connect using switched SNA device protocols.

Non-SNA devices appear to TPF as LU_T1 LU_LU sessions and use the following
session characteristics:
v Half-duplex contention
v No brackets
v Exception response only.

SNA devices are supported using NPSI LLC=3.

The following functions are not supported:

v TPF SNA Message Recovery for sessions with NPSI LUs

v X.25 D-bit delivery confirmation.

NPSI Message Length Considerations
An “X.25 message” is a sequence of one or more X.25 data packets ending with a
packet with the “more data” bit in its packet header turned off (indicating no more
data). During a RECEIVE, for example, NPSI combines related data packets in one
X.25 message and places it in 1 inbound PIU for application processing. During a
SEND, an outbound PIU contains 1 X.25 message that NPSI transforms into 1 or
more X.25 data packets for network transmission.

TPF applications, therefore, send or receive X.25 messages only. Furthermore,
TPFs message length support allows up to a 4K block maximum. Because TPF
message blocks contain headers and control bytes, user applications must adhere
to the following data length constraints:

v An inbound X.25 message must be less than 4027 bytes of user data.

Input messages will continue to be given to a TPF application in the smallest
core block possible. However, a complete X.25 message must be placed in 1
core block. If an inbound message exceeds 1020 bytes of user data (size of text
area in a 1055–byte core block), that message is placed in a 4K block for the
application.

v An outbound X.25 message must be less than 4027 bytes of user data.

Each use of the ROUTC macro sends 1 and only 1 X.25 message. For
resources accessed through NSPI, OMT creates a single SNA PIU with an RU
maximum length of 4027 bytes. Messages longer than 4027 bytes are discarded
and a system error is taken. An application may present outbound messages
using the existing interfaces (127, 381 byte core blocks or file chained 381 pool
records) or as a single 1055–byte or 4K block.

NPSI LU-LU Session Characteristics
The NPSI session protocols that are used by TPF X.25 support are:
v Half-duplex contention.
v No brackets.
v Multiple RU chains allowed both in and out but only single RU chains used.
v Exception response only.
v Immediate request mode.

30 TPF V4R1 ACF/SNA Data Communications Reference

v FMHs are not used.
v 4096 Max RU receive size (largest inbound X.25 message).
v 4096 Max RU send size (largest outbound X.25 message).

These options are given in the BIND image detailed in TPF ACF/SNA Network
Generation.

Because different LLC types use different message formats, the TPF application
must be aware of the LLC type used on each NPSI session. This information is not
maintained by TPF X.25 support and must be supplied and tracked by the-user in
user defined tables. (See the user exits information in TPF System Installation
Support Reference.)

The SNA commands shown in the Table 1 are used for the TPF NPSI support:

Table 1. SNA Commands Supported for NPSI

Session Control Data Flow Control

BIND
CLEAR
SDT
UNBIND

CHASE
LU_STAT
RSHUT
RSHUTD
SHUTC
SHUTD
SIG (LLC=5 Integrated PAD)

Request Unit Chaining
TPFs support of the NPSI request unit (RU) chaining allows messages of up to 32K
in length to be transmitted and received through an X.25 network. Input arriving in
4K blocks is deblocked into a chain of 1055-byte blocks to insulate the application
from the usage of 4K blocks. Messages chained in 4K blocks can be queued and
dequeued. The NPSI RU chaining function allows chaining of 1055–byte blocks and
4K blocks to virtual circuits. This RU chaining function is optional on a multi-channel
link basis and is specified in the NPSI generation by using the MBITCHN=YES/NO
keyword. You can use the CHAIN parameter in OSTG to specify the NPSI
resources using the RU chaining function. (For additional information on the CHAIN
parameter, see the TPF ACF/SNA Network Generation.)

Note: RU chaining is only supported by TPF resource types VC and MCH. All other
TPF resource types that represent NPSI devices do not support RU
chaining. In addition, not all NPSI LLC types support the MBITCHN=YES
keyword. See the NPSI Planning and Installation for complete details of
supported LLC types.

There is a restriction of chained 381–byte or single 1055–byte or 4K blocks for
NPSI resources that OSTG has defined as not supporting RU chaining.

RU Sizes
Support of the NPSI RU chaining function also affects TPF’s management of
maximum RU sizes. Maximum RU sizes, or maximum input buffer sizes, are
negotiated at session initiation time. The maximum RU size dictates the size of PIU
segments in an RU chained message.

TPF Application Programming Considerations 31

Bind Command Processing and Input Buffer Size
Bind processing uses the SESINIT and CDCINIT values to fill RV1MAXIP in the
RVT. These values are used by bind processing to specify TPF’s maximum input
buffer size. This value is the least of:

v The value in the bind image table for the resource

v The value in CTK2 that specifies TPF’s maximum physical input buffer size (the
field filled in by SNA Restart)

v The value in the SESINIT/CDCINIT.

To fill in RV1MAXDT, the remote resources maximum input buffer size, bind
processing uses the SESINIT and CDCINIT values. This value is less than:
1. The value in the bind image table for the resource.
2. The value in the SESINIT/CDCINIT

OMT creates PIU segments equal to the remote resources maximum RU size
(RV1MAXDT) whenever possible. Because of core block size restrictions, values
greater than or less than 4027 bytes may not be honored. OMT constructs
segments of 4027 bytes when a value greater than this is found. This allows
applications that do not have the capability to chain 1055–byte or 4K blocks to take
advantage of NPSI’s ability to handle 4K PIUs. For instance, if an application issues
ROUTC with an output message in chained 381-byte blocks, OMT packs the output
into a 4K block and issues SOUTC of the PIU segment. This significantly reduces
the number of PIUs flowing in the SNA network.

You can tune the SNA network performance by updating the VTAM LOGMODE
table. TPF uses its bind image table as absolute maximum values to prevent you
from specifying a value that is too high for TPF.

NPSI GATE/Fast Transaction Processing Interface (GATE/FTPI)
The Fast Transaction Processing Interface (FTPI) facility of the X.25 NCP Packet
Switching Interface (NPSI) enhances the GATE facility. (GATE is General Access to
X.25 Transport Extension.) GATE allows communications between non-SNA devices
and a Communication and Transmission Control Program (CTCP) running under
TPF or VTAM. A CTCP assumes control of the X.25 DTE/DCE interface protocol.
The communications between a CTCP and the NCP is established through SNA
sessions. With FTPI, all virtual circuit traffic is multiplexed on a single SNA session
between the CTCP and NPSI.

Without the FTPI option, NPSI requires the traffic for each virtual circuit to flow on
its own unique SNA session. By reducing the multiple sessions required for each
virtual circuit to a single session for each NCP, the time to activate the network is
greatly reduced, and less main storage is required by NPSI. FTPI also improves
NCP performance by blocking several packets into a single PIU for transfer to the
host. TPF similarly blocks output to the NCP.

The essential parts of FTPI support include:

v Removing input traffic in order for each message to be associated with an ECB
rather than associating each block of messages or each PIU with an ECB.

v Multiplexing output traffic for output message traffic to be blocked before transfer
to the NCP.

v Defining the network components needed to support FTPI. The definitions affect
TPF, VTAM, Logon Manager, NCP, and NPSI.

32 TPF V4R1 ACF/SNA Data Communications Reference

For more information regarding coding of a GATE/FTPI CTCP, as well as more
detailed information regarding NPSI and its command flows, see the NPSI Host
Programming and the NPSI Planning and Installation.

Message Traffic Multiplexing
The format of the traffic sent between NCP and TPF is shown in Figure 10 on page
33. The data transferred is always complete messages and is prefixed by a
command header. The header provides the data length, X.25 link identifier
(MCH_ID), the virtual circuit identifier (VC_ID), and the correlation number. The
correlation number is assigned to the virtual circuit by NPSI at CALL REQUEST
time and is used for all control and data exchanges for the life of the virtual circuit.
Figure 11 on page 34 shows the data content of each of the FTPI commands.

To/From

X.25
Network

Packet
Header

0 1 2 3 4 p

Packet Data

To/From

CTCP

Command
Header

0 8

Command Data

Packet

Command

0 1

Length of
Command Data

MCHID

2 3

VCID

4 5

Correlation
Number

6 7

PIU
Header

Command 1
Header Data

Command 2
Header Data

Command n
Header Data

PIU

Control Commands

Incoming Call

Call Accepted
Clear Request
Clear Indication
DCE Clear Confirmation
Reset Request
Reset Indication
DCE Reset Confirmation

To
CTCP

X’0B’

X’13’
X’17’

X’1B’
X’1F’

From
CTCP

X’0F’
X’13’

X’1B’

Data; no Q (qualified data) bit.
D (delivery) bit not supported.
Data (Q bit; D bit not supported.)
Interrupt
Interrupt Confirmation
*ERROR REPORT COMMAND
Diagnostic
Error Information
*FLOW CONTROL COMMAND
NOGO
GO

Data and Interrupt
Commands

To
CTCP

X’00’

X’02’
X’23’
X’27’

X’F1’
X’FF’

From
CTCP

X’00’

X’02’
X’23’
X’27’

–

X’F2’
X’F3’

Cmd
Code

Figure 10. FTPI Message Blocking Format. For additional information on the Q and D bits,
see the NPSI Planning and Installation.

TPF Application Programming Considerations 33

Input Processing
The input logic is located in OPZERO and provides demultiplexing support for
message traffic received over an FTPI session. The flow of input processing follows:

1. Each message in a PIU received from NPSI FTPI is copied to a core block and
associated with an ECB.

Command
Name

Header Cmd
Code

Command Data
Byte

1 2 3 4 5 6 7 8 9

Data
MCH=m
VC=n
CN=p

00
user data to/from network

variable user data . . .

Data
Qualified

MCH=m
VC=n
CN=p

02
user data to/from network

variable user data . . .

Interrupt
MCH=m
VC=n
CN=p

23
optional user datauser

data

Interrupt
Confirm.

MCH=m
VC=n
CN=p

27

Incoming
Call
(IC)

Call
Accepted
(CA)

Clear
Request
(CR)

Clear
Indicat.
(CI)

DCE Clear
Confirm
(CF)

MCH=m
VC=n
CN=p

MCH=m
VC=n
CN=p

MCH=m
VC=n
CN=p

MCH=m
VC=n
CN=p

MCH=m
VC=n
CN=p

08

0F

13

13

17

from network

CR packet (to network)

CI packet (from network)

CF packet (from network)

vc_id

vc_id

vc_id

vc_id

vc_id

addr . . . facility . . . cud** . . .

address block,
facility block,
cud**

block

pkt
wndow

packet
size

clear
cause

clear
cause

clear
cause

block

diag
code

diag
code

diag
code

address block, facility
block, cud**

address block, facility
block, cud**

address block, facility
block, cud**

Reset
Req/Ind.
(RRQ/RI)

MCH=m
VC=n
CN=p

1B
RRQ/I
reset
cause

pkt
diag
code

Reset
Confirm.

Diag.

Error
Info.

NOGO

GO

MCH=m
VC=n
CN=p

MCH=m
VC=0
CN=p

MCH=m
VC=n
CN=p

MCH=0
VC=0
CN=0

MCH=0
VC=0
CN=0

1F

F1

FF

F2

F3

Diag. packet

vc_id code
error

error
code

Billing info

code expanation . . .

** cud contains billing information
(connect time packets sent/rcvd)

Figure 11. FTPI Command Content. As represented in this figure, the X.25 link identifier is
MCH, the virtual circuit identifier is VC, and the correlation number is CN. Additional
information on the FTPI command content is found in the NPSI Host Programming.

34 TPF V4R1 ACF/SNA Data Communications Reference

2. The data collection counters for total message length and number of messages
received reflect the number and size of the messages received rather than the
number and size of PIUs received.

3. The demultiplexing of messages honors the input shutdown levels. When an
FTPI PIU is processed by OPZER0, that is, the message is copied to a core
block and the block attached to an ECB, OPZER0 only schedules 1 ECB before
returning the PIU to the top of the Input_List. This technique insures that the
Input_List shutdown levels for ECBs and core blocks continue to control the
addition of new work to the system.

Multiplexing Output Traffic
The logic in the SNA Output (SOUTC) routine accumulates output destined for an
FTPI session. The general SOUTC processing recognizes traffic destined for an
FTPI LU and:

1. Accumulates output messages using as the control structure the LU message
blocking table. Messages are blocked into 4K blocks before transmission. This
technique centralizes multiplexing in SOUTC.

2. Sends the accumulated data when the 4K block is full or when a user-definable
timer expires.

3. Data collection counters for the number and size of messages sent reflect the
actual message count, not the PIU count.

Application Program Interface
FTPI message traffic is presented to the application using the standard TPF API:
v ECB work area EBW000 contains the routing control parameter list (RCPL).
v ECB core level 0 points to the input message.

Similarly, the application sends output messages by issuing a ROUTC macro with
the data in a core block and a register pointing to the RCPL. On input to the
application, the message text starts with an FTPI command header as shown in
Figure 10 on page 33. Output sent by the application must also prefix the message
text with an FTPI command header. Optionally, the PSV routine that handles the
call setup and takedown for the X.25 resources supported by the FTPI multiplexed
session can insulate the application from processing FTPI headers by also
performing the FTPI header management. The PSV routine defined for the FTPI LU
can remove the FTPI header from input messages and store for recall and
appending to the corresponding output message.

Network Definition
Define the following to NPSI:

v X.25 links and virtual circuits.

v CTCP pseudo LU (CPLU). The CPLU is the access port of the TPF system to
the X.25 links serviced by the NCP. The CPLU is the NPSI LU that performs the
GATE/FTPI virtual circuit concentration and multiplexing services on behalf of the
X.25 virtual circuits. This LU appears to the NCP as a line and is placed in
session with the CTCP in the host.

Define the following to the TPF system:
v The application or CTCP that processes the FTPI messages
v The names of the NPSI FTPI LU resources
v The process selection vector (PSV) routines.

TPF Application Programming Considerations 35

For more information about defining SNA resources to the TPF system, see
“Defining SNA Resources to the TPF System” on page 193.

TPF CTCP Definition
CTCP is the host LU that handles X.25 traffic. In VTAM, the CTCP is viewed as an
intermediate program that translates between X.25 and SNA message formats. In
TPF, you have different implementation choices for a CTCP. A TPF LU that serves
the role of a CTCP can be any of the following:

v An application that sends and receives message traffic in the format required by
NPSI. The LU is defined via the SIP MSGRTA macro. As part of the SIP stage 1
process, an application name table definition (ANTDEF) statement is created to
serve as input the OSTG process.

v An application that does not understand the message format used by NPSI. For
these applications, you must provide a process selection vector (PSV) routine to
translate between the message format used by NPSI and the format required by
the TPF application.

The use of a PSV routine to intercept message traffic and modify TPF output
processing is supported for the following resource types:
– 3270
– 3600
– MCH_LU, VC_LU, FTPI, XALCI, AX001, AX002
– NEF.

Regardless of the method used to create a CTCP LU, your application or PSV
routine is responsible for translating between the data formats used by NPSI and
those required by the TPF application.

CTCP Definition
The CTCP pseudo LU is an LU that serves as a port between FTPI and the CTCP.
There is a difference between operating with or without FTPI. Without FTPI, NPSI
requires an LU and a session for each virtual circuit; with FTPI, there is a single LU
and a single session for each CTCP or host. The format and parameters used to
define a CPLU are shown in Figure 12.

The description of the FTPI values are:

lu_name
Specifies the name of the pseudo CTCP LU.

LUTYPE=FTPI
Specifies the LU is a Fast Transaction Processing Interface (FTPI) LU.

PACING=0|n
Specifies the pacing value to use for message traffic sent by TPF. A value of
zero (0) means that pacing is not used.

AWARE=YES|NO
Specifies whether the session awareness exit should be started whenever a

lu_name RSC LUTYPE=FTPI
[,PACING=0|n]
[,AWARE=YES|NO]
[,PSV=name]
[,LEID=nnnnnn]

Figure 12. RSC Definition Statement for an FTPI LU

36 TPF V4R1 ACF/SNA Data Communications Reference

session with the LU has been established or terminated. For additional
information on session awareness, see “TPF SNA Session Awareness” on
page 327.

PSV=name
Specifies the name of the PSV routine to receive control when a message is
received or sent to the LU.

LEID=nnnnnn
Specifies from 1 to 3 bytes of data to be passed to the PSV routine when an
input message is received from the LU.

An example of the coding of the RSC statement for a CPLU is shown in Figure 13
on page 37.

See TPF ACF/SNA Network Generation for more information about the OSTG RSC
statement.

VTAM Considerations
The only VTAM consideration for FTPI support is to provide a default VTAM log
mode definition for the FTPI LU, as shown in Figure 14.

For more information about the VTAM log mode definition, see VTAM Resource
Definition Reference.

NPSI Considerations
NPSI stage 1 user macros describe the X.25 network. The overall structure of the
macro is shown in Figure 15 on page 38. For additional information on the NPSI
macros, see NPSI Planning and Installation.

CPLU1 RSC LUTYPE=FTPI,
PACING=0,
AWARE=NO,
PSV=FTPI

Figure 13. RSC Coding Example Statement for an FTPI LU

FTPI MODENT FMPROF=X’03’, FM Profile 3
TSPROF=X’03’, TS Profile 3
PRIPROT=X’90’, Exception response
SECPROT=X’90’, Exception response
COMPROT=X’0040’, Half-duplex contention
RUSIZES=X’8989’ Max 3860 in, 3860 out
SSNDPAC=X’00’ No send pacing
SRCVPAC=X’00’ No receive pacing
PSERVIC=X’010000000000000000000000 LU type 1

Figure 14. VTAM Log Mode Entry for FTPI

TPF Application Programming Considerations 37

There are two macro changes to NPSI definition for FTPI:
1. X25.CPL - CTCP pseudo LU
2. X25.MCH - X.25 link.

The X25.CPL macro creates the NCP system generation statements to define a
virtual link, PU, and LU. The virtual LU provides a port between NPSI and the
CTCP for exchanging message traffic. One X25.CPL macro is required for each
CTCP or TPF host. The macro format is shown in Figure 16 on page 38.

The description of the X25.CPL macro values are:

CTCPNO=n
This is a 1-byte value associated with the CTCP or TPF application.

LOGAPPL=ctcp_name,
Requests VTAM to automatically establish a session between the CTCP pseudo
LU and the CTCP when both:
v The NPSI CTCP pseudo LU is active
v The TPF CTCP LU is active.

MINDATA=mm,
Specifies the number of X.25 packets that FTPI should accumulate before
considering the message buffer full. When the message buffer is full, it is sent
to the CTCP.

MAXTIME=time,
Specifies the time in tenths of a second that FTPI should wait before sending a
partial message buffer to the CTCP. This value avoids the need to fill the
message buffer before sending the data to the CTCP.

MAXDATA=size,
Specifies the maximum message size that can be transmitted. If the message
sent by the CTCP is larger than MAXDATA, NPSI sends it as several
messages.

DLOGMODE=mode_name,
Specifies the name of the VTAM mode table entry associated with the CTCP
pseudo LU. See Figure 14 on page 37 for an example of the entry.

X25.CPL One for each CTCP
X25.NET One for each network
X25.VCCPT

X25.OUFT
X25.MCH One per multi-channel link
X25.LCG One per logical channel group

X25.LINE One per virtual circuit
X25.PU One per virtual circuit

X25.END

Figure 15. Organization of NPSI Macros

X25.CPL CTCPNO=n,
LOGAPPL=ctcp_name,
MINDATA=mm,
MAXTIME=time,
MAXDATA=size,
DLOGMODE=mode_name,
MODTAB=mode_table

Figure 16. Organization of X25.CPL Macro

38 TPF V4R1 ACF/SNA Data Communications Reference

MODTAB=mode_table
Specifies the name of the VTAM mode table that contains the mode table entry
for the CTCP pseudo LU. If MODENT is not coded, the first entry in this table is
the mode table entry for the LU.

The coding of X25.CPL card is shown in Figure 17 on page 39.

X25.MCH
The parameter to indicate that the Fast Transaction Processing Interface (FTPI)
option of NPSI is to be used is on the X25.MCH macro. An MCH macro is required
for every X.25 physical link. The macro, with the operands specific to FTPI support,
is shown in Figure 18 on page 39.

The description of the X25.MCH values are:

FTPI=YES|CUD0|SUBD
Specifies that FTPI processing is to be used:

v YES specifies that all virtual circuits on the link are processed by the same
CTCP.

v CUD0 or SUBD indicates that X.25 CALL REQUEST selects the specific
CTCP to handle the virtual circuit. The CTCP chosen to handle a virtual
circuit is based upon either:

– CUD0 or the first byte of the CALL USER DATA in the CALL REQUEST
packet.

or:

– SUBD of the last digit of the called DTE address in the CALL REQUEST
packet. This technique is called subaddressing.

CTCP=(m1,m2,...mn)
Used with either the CUD0 or SUBD operand to select a specific CTCP
number. A CTCP’s number is defined on the X25.CPL macro.

CUD0=(n1,n2,...nn)
Used with the CTCP= operand to select a CTCP based upon the CUD0 value.

SUBD=(p1,p2,...pn)
Used with the CTCP= operand to select a CTCP based on the subaddresssing.

An example of the coding of X25.MCH card is shown in Figure 19 on page 40. For
additional information on coding the X25.MCH card, see the NPSI Planning and
Installation.

X25.CPL CTCPNO=0,LOGAPPL=NEFA,MINDATA=120,MAXTIME=10, X
MAXDATA=35665

*
X25.CPL CTCPNO=1,LOGAPPL=NEFB,MINDATA=121,MAXTIME=20

Figure 17. CTCP Pseudo LU Coding Example

X25.MCH FTPI=YES|CUD0|SUBD
[,CTCP=(m1,m2,...mn)]
[,CUD0=(n1,n2,...nn)]
[,SUBD=(p1,p2,...pn)]

Figure 18. X.25 MCH Macro

TPF Application Programming Considerations 39

Operations
To allow traffic to flow between TPF and the network requires activating:
v VTAM and the VTAM Logon Manager
v NCPs that connect TPF to the network
v TPF and its connections to the NCP.

With FTPI there are two additional steps to the activation procedure:

1. Establishing a session between the FTPI LU in the NCP and the TPF
application

2. Activating the X.25 multichannel links.

Activating the TPF CTCP
Figure 20 on page 41 summarizes the line flows needed to establish a session
between the TPF CTCP and the FTPI pseudo LU. NPSI FTPI support uses a
pseudo link, PU, and LU to provide a port or connection to the CTCP. Typically, the
session between the CTCP and the FTPI LU is automatically activated when the
VTAM operator requests activation of the pseudo link, PU, and LU.

X25.MCH ADDRESS=1, X
FTPI=CUD0, X
CUD0=(00,09,01), X
CTCP=(01,02,03), X
LCGDEF=(1,10), X
PKTMODL=8, X
FRMLGTH=3500, X
TDTIMER=3, X
LCN0=NOTUSED, X
LLCLIST=(LLC4), X
GATE=GENERAL, X
MWINDOW=2

Figure 19. X.25 Link Definition

40 TPF V4R1 ACF/SNA Data Communications Reference

1. The pseudo link is activated by the VTAM operator.

2. The pseudo PU is activated by the VTAM operator. Normally, the PU is defined
as ISTATUS=ACTIVE, and the PU is automatically started when the link is
started.

3. The pseudo LU is activated by the VTAM operator. As is the PU, the LU is
usually defined as ISTATUS=ACTIVE, and the LU is automatically started when
the PU is started. The LU is also defined as autolog, and the session with the
CTCP is requested when the LU is active.

4. As part of the automatic logon process, the VTAM Logon Manager sends a
SESINIT message to TPF requesting a session between the FTPI LU and the
TPF CTCP.

5. TPF sends a bind command to establish the FTPI LU-CTCP session.

6. TPF allows data flow by sending a Start Data Traffic (SDT) command.

7. Incoming CALL REQUESTS are blocked into a PIU and sent to the CTCP.

Activating Multi-Channel Links
Figure 21 on page 42 shows the activation of an X.25 link. The description is for a
single link; however, in practice, a single operator command activates both the
CTCP session and the X.25 links.

Operator

VTAM TPFA
MCH

Link PU
1 2

CTCP Pseudo Link

Link PU LU
1 2

37xx
PSDN

ACT,ID=PLNK1V
1.

ACT,ID=PLNK_PU1V
2.

ACTLINK

CONTACT

ACTPU

ACT,ID=PLNK_LU1V
3. ACTLU

SESINIT tpfa,pseudo_link_lu1

4.

5.

6.

7.

BIND (NEFA,PLNK_LU1) Incoming call
accepted for
PLNKLU1

SDT

INCALL

INCALL

DATA (call (mch2,vc1)call(mch1,vc1))

Figure 20. Pseudo Link Activation

TPF Application Programming Considerations 41

1. The VTAM operator activates the X.25 link. Normally the links would be initially
defined as active; the links would be automatically activated when the NCP is
started.

2. The VTAM operator requests activation of the X.25 link station or PU. Normally,
the PUs would be initially defined as active; the PUs would be automatically
activated when the NCP is started.

Traces
The 3 traces provided for FTPI are:

1. PIU Trace: TPF traces each PIU sent and received between an FTPI LU and
TPF. The PIU can contain 1 or more blocked messages. The PIU trace
collection and reporting programs continue to trace PIUs and do not attempt to
trace each message in the PIU. The TPF message collection facility should be
used to trace messages.

2. Message Collection: Captures a copy of each message sent and received
from an FTPI LU. Message collection is provided by the Comm Source and
ROUTC function.

3. Real Time Trace (RTT): RTT traces system and application activity for a
specific terminal.

TPF Mapping Support
TPF mapping support builds and formats data streams from application to terminal
and from terminal to application. Input messages from 3270 devices contain both
control characters and text. Mapping support deletes the control characters and
arranges the text in an application compatible format. Conversely, as
application-created output messages consist only of text, mapping support inserts
the control characters necessary to display the message on a particular 3270
device. Applications receive input messages in AMSG format.

Users are responsible for coding applications that interface properly with TPF
mapping support . For input messages, mapping support is used to delete control
characters; for output messages it is used to insert control characters. Output
messages need control characters inserted before the ROUTC macro is issued.

Operator

VTAM TPFA
MCH

Link PU
1 2

CTCP Pseudo Link

Link PU LU
1 2

37xx
PSDN

V ACT,ID=MCH1
1.

V ACT,ID=MCH1PU
2.

ACTLINK

CONTACT

V ACT,ID=MCH2. (etc.)

SABM

DTE/DCE INT.ACTIVE

Figure 21. Multi-Channel Link Activation

42 TPF V4R1 ACF/SNA Data Communications Reference

In bracket communication mode, operators of 3x74/3276–attached terminals may
send a message only after receiving an output message with the change direction
indicator set. In contention mode, messages may be sent at any time. Therefore,
host applications are expected to set the change direction indicator (in the RCPL),
thereby controlling bracket communication. TPF ensures the change direction
indicator is set when applications release saved input messages.

See 3270 Data Stream Programmer’s Reference for more information on the
operation of 3270 devices.

TPF Application Programming Considerations 43

44 TPF V4R1 ACF/SNA Data Communications Reference

Airlines Line Control (ALC) Support through SNA

When accessing non-SNA terminals via an SNA interface, TPF maintains the
Application Program Interface (API) for application programs that address physical
devices. This is done using either:

v TPF NEF support

Note:

TPF Network Extension Facility (NEF) support depends on either:

– The Network Extension Facility (NEF2 PRPQ P85025), or

– Airlines Line Control Interface (ALCI) feature of ACF/NCP.

All subsequent occurrences of NEF in the text of this book are
superseded by the previous information.

v TPF-provided Airline X.25 (AX.25) support with the NCP Packet Switching
Interface (NPSI)

v TPF-provided XALCI support with the NPSI GATE/Fast Transaction Processing
Interface (NPSI GATE/FTPI).

Most often the physical device is a terminal addressed via a Logical End
Point-Identifier (LEID). These devices also use an Agent Assembly Area (AAA). The
NEF/ALCI, AX.25, and XALCI enhancements permit the use of ALC protocols for a
select group of non-SNA devices across an SNA interface.

See the ACF, NCP, ALCI General Information for more information about devices
supported across these interfaces. These devices are also supported across the
AX.25 interface.

Throughout the remainder of this publication, NEF implies either the NEF PRPQ or
ALCI feature environments.

TPF Host Interfaces
Using TPF multiple host extension support, NEF_supported terminals can directly
communicate with one or more TPF hosts via cross_domain support. AX.25’s use of
Permanent Virtual Circuits (PVCs) requires direct attachment to a specific host in
the PU_5 environment. This is not required for PU 2.1. XALCI’s use of GATE/FTPI
allows the use of switched virtual circuits (SVCs) as well as PVCs. Because all 3
protocols are SNA-supported, either a block or byte multiplexer channel may be
used.

Combining SNA and ALC support requires generation of both SNA and ALC data
records. Further, it is necessary to cross-reference the basic SNA record (the
resource vector table (RVT)) with the definition of each ALC supported terminal. The
terminal address table (WGTA) is used for this purpose.

SNA (TPF) maintains the real network addresses of all logical units (LUs) in the
NCP after they were discovered from the VTAM Communications Management
Configuration (CMC) when the LU-LU session was set up. However, SNA (TPF) is
not aware of the attached ALC terminals, lines, or interchanges. Each LU has a
resource identifier (RID), network address, and node name. To maintain the ALC
device address format, each terminal is given a 3-byte address known as Logical

© Copyright IBM Corp. 1994, 2002 45

End-Point Identifier (LEID). The LEID is used to create the AAA initialization table
(UAT) entries for the ALC terminals. Each NEF/AX.25/XALCI terminal address table
(WGTA) entry contains the RID of the associated LU. Each NEF terminal on a 37x5
references to the same LU; each NEF LU references to all of the NEF terminals on
the 37x5. The same is not true for AX.25 LUs. There may be several AX.25 LUs in
the 37x5, each represent 1 or many terminal controllers. GATE/FTPIs’ use of virtual
circuit concentration allows a single LU type 1 to support multiple X.25 virtual
circuits. Each of these virtual circuits can, in turn, support multiple terminals. At
least 1 FTPI LU is required per TPF host. Multiple GATE/FTPI sessions to a single
TPF host are supported.

Note: WGTA entries are created from user-supplied UAT records.
VTAM Communications Management Configuration (CMC) must own NEF, AX.25,
and XALCI resources. For NEF, the terminal interchange (TI) is identified to VTAM
as a physical unit (PU). One LU per NCP with NEF and one or more LUs per NCP
with NPSI/AX.25 or NPSI GATE/FTPI needs to be defined to a VTAM CMC. All
terminals attached to the 37x5 through links and terminal interchanges
communicate through the NEF, AX.25, and FTPI LUs. These LUs are also defined
to TPF as cross_domain resources (CDRSCs). This implies that TPF is not aware
of the ALC lines or terminal interchanges. All terminals accessed using
NEF/AX.25/XALCI LUs are identified to TPF as LEIDs through an entry in the
terminal address table (WGTA). The LEID need not have any correlation with the
physical address of the terminal. However, the first (most significant) byte of the
LEID must be above the range of valid symbolic line numbers.

Input or output data messages pass through 4 message formats when sent over the
network. An input/output message is received or sent from the terminal interchange
in ALC format. This format includes the real interchange address (IA), the
synchronization check characters, the cyclic check characters, and the data. NCP
(NEF/NPSI) converts this to or from a path information unit (PIU). The request unit
(RU) is in the PIU. The RU contains terminal address information that is used to
obtain the LEID followed by the data. TPF converts the input message to TPF
application message format. On input, the communications source program
activates the application in the same format (AM0SG) or in the input message
format (MI0MI). The user specifies the format during system initialization. Output
message processing is based on the output message format AM0SG or UI0OM.

Session Control via VTAM SSCP
The VTAM SSCP views NEF communication lines as SNA lines, and ALC terminal
interchange units as physical units (PU). A pseudo_NEF application logical unit is
created in the TPF host. The NCP NEF logical unit is then bound in a session with
the NEF application logical unit. The NEF application logical unit is known as NEFx
where x is the CPU ID of the host. All NCP NEF logical units that communicate with
the host must be bound to NEFx This is not an application that a terminal operator
can log into. Further, it does not appear in the routing control application table
(RCAT). In the RVT, the NEF logical unit is defined as permanently logged. For
AX.25, the TPF CCP code performs, on behalf of the application, the functions
provided by the host NEF LU. FTPI LUs that are defined to TPF as using the
XALCI protocol can be logged into any application. This dummy application is
simply used for session startup and takedown. The XALCI data streams are used,
in a manner similar to NEF, to allow access to the Log Processor. Terminals
supported by XALCI are independent of the application that the FTPI LU is logged
into.

46 TPF V4R1 ACF/SNA Data Communications Reference

The VTAM CMC system operator controls the NEF/AX.25/XALCI network using
SNA commands. One exception exists: the operator does not control or
communicate with ALC terminals. The TPF operator addresses the terminals via its
LEID. The terminals can receive unsolicited messages sent through the ZSNDU
command. The TPF operator can perform terminal diagnostics functions and
terminal display functions via the ZTERM command. The ZTERM command
displays the RCB file address, WGTA entry address, the application name, and the
logical unit with which the terminal is associated.

Data Flow

Input Messages: When a terminal operator enters a data message, it is sent from
the terminal to TPF. Before being transmitted to the host, if required by the user,
NEF provides the ability to translate the data from ALC to EBCDIC. TPF XALCI
support assumes that the data has already been converted to EBCDIC. The RU
portion of the PIU received by TPF contains terminal address information and input
data, including the end-of-message character. The terminal address information is
as follows:

1. NEF/XALCI - 3–byte LEID

2. AX.25 - 1 or 2–byte address information

v One byte - Terminal Address (TA) (third byte of the LEID)

v Two bytes - Interchange Address / Terminal Address (IATA) (second and third
bytes of the LEID).

Note: During NCP generation the user specifies if translation/editing should be
performed by NEF.

On receipt of the PIU, TPF determines the origin and the content, data, or
response. If it is a data message, segment CNE1 is activated for all three classes
of traffic. Otherwise, SNA OPZERO processes it like any other response.

Note: NEF/AX.25 resources are defined as unrecoverable. Therefore, error
recovery does not exist for these messages.

The ALCI Comm Source program, CNE1, reformats input messages from a PIU to
the TPF application message format. This includes setting up the LEID in the ECB
from the input PIU. The message is also converted from an SNA format to a high
speed message format. When the message is reformatted, an interface is provided
to real-time trace (RTT) to allow agent trace as well as nodename trace. See TPF
Program Development Support Reference for more information on these trace
facilities.

The resource identifier (RID) field in the WGTA entry is updated to reflect the
current association of the terminal with the NEF, AX.25, or FTPI/XALCI logical unit.

When CNE1 has completed successfully, the input message is processed as any
other high-speed input message. Messages can be passed to either of the
following:
v Log processor
v System message processor
v Locally resident application (as indicated in the RCAT entry)
v Message router.

Therefore, on exiting the input interface program, the input takes a parallel
processing path to that of other high-speed ALC input messages.

Airlines Line Control (ALC) Support through SNA 47

Output Messages: When an application program, including the system message
processor, sends an output message to a NEF/AX.25/XALCI terminal (in response
to an input message), it uses either ROUT- or SEND-type macros. The ROUT or
SEND macro service routines, or both, view this terminal as a high-speed ALC
device. One exception exists: the first byte of the LEID is above the range of valid
symbolic line numbers. Real symbolic line numbers are calculated during system
generation with input supplied by the user. This data is stored in the system
communication configuration table (CK6KE).

Support is included in the communication control program (CCP) to avoid accessing
the system communication keypoint records. This logic intercepts the CCP when the
symbolic line number is out of the valid range where a CCP error condition would
have occurred without NEF, AX.25, or XALCI support. The LEID is then used to
locate the terminals entry in the terminal address table (WGTA). The WGTA
contains the RID that points to the resource vector table (RVT) entry. If the RVT
entry cannot be used, CCP error logic is followed. Otherwise, the RVT entry is used
to locate the device.

The technique described is used in the common CCP macro routine (segment
CLXC) to determine when it is necessary to reformat the output message to a PIU
format. In addition, only the SENDA, SENDC, SENDL, and SLMTC macros are
supported. The ROUTC macro is only supported if it generates a SENDA, SENDC,
or SENDL macro. In other words, ROUTC starts the appropriate macro for the
appropriate device.

If an error occurs when locating the WGTA entry, a system error is issued.

The ALCI using the CLXV SNA output routine performs the reverse of the ALCI
Comm Source interface program. When the message is reformatted, the SNA
SOUTC macro service routine is activated. This routine performs the scheduling
and transmission of the message to the 37x5. For XALCI, SOUTC also performs
blocking of output messages according to the GATE/FTPI interface before
transmission. The SOUTC routine also ensures that an SNA session is established
with the receiving logical unit if the request was made via SLMTC. If required, it
then translates the message. Lastly, the SOUTC routine informs the LU if the
message is multisegmented and if a response is expected from the receiving
terminal. For NEF, AX.25, and XALCI messages, pacing is not performed.

Command Support
SNA commands (VTAM VARY NET) are used to control the network. In SNA
processing, this is accomplished via the nodename of the NCP, the SNA line, and
the physical and logical units. As SNA does not have a node name for ALC
terminals, they must be addressed via an LEID.

The user controls the assignment of the LEID to each ALC terminal.

Addressing an ALC Device
Normal ALC command support is not provided for NEF/AX.25 devices except for
terminals. This portion of the network is not controlled or displayed via the ZL—type
command. It is not considered a true high speed line.

Command support for terminals falls into two categories:

1. Terminals that require specific interfaces to provide functionally equivalent
support

48 TPF V4R1 ACF/SNA Data Communications Reference

|
|
|
|

|
|
|

|

|
|

2. Terminals that use existing 3270 SDLC support (which also use an LEID
addressing scheme for SNA resources).

The convert node name (ZNCVT), alter/display CRAS (ZACRS/ZDCRS), and 1052
fallback functions fall into the category of 3270 SDLC support. Here, LEID is used
to locate the resource vector table (RVT) entry. See TPF Operations for more
information on each of these commands.

An NEF/AX.25/XALCI terminal operator can operate from either a prime or alternate
CRAS. Therefore, an entry is placed in the computer room agent table (CRAT). As
a result of this, a terminal operator can log into application SMPx (where x is the
symbolic CPU ID) and enter Z-type commands to the system message processor
(CSMP).

The Terminal Reset function (ZLRST), applicable only to NEF support, requires
special interfaces. Here, it is necessary to use the pseudo ALC address (LEID) to
locate the SNA resource vector table, rather than the system communication
keypoints. Normally this is done when the package detects what appears to be an
invalid symbolic line number. The terminal reset function allows a system operator
to reset a 1980-24 printer’s buffer (see CVTR). NEF support does not provide for
the terminal interchange (TI) reset function. This function can only be performed
from the owning VTAM CMC by activating the physical unit (ACTPU) of that
terminal interchange. ACTPU, in turn, causes NEF in the 37x5 to generate a
configuration report. This configuration report gives TPF the information about the
correlation between the NEF logical unit (represented by an entry in the RVT) and
the NEF terminals (LEIDs, entries in WGTA).

TPF/NEF SNA Multiple Host Support
NEF support must be present in any TPF host that communicates with a NEF
terminal. A VTAM CMC host owns all NEF resources (lines, physical units, logical
units). TPF hosts cannot own any NEF resources, but a given terminal can
communicate with any one of the hosts provided that the terminal is defined (in
WGTA) to that host.

Multiple host support requires two basic items:

1. Multiple logical units

2. Transaction analysis.

To accommodate an SNA multiple host environment, a NEF LU is defined for each
host. Figure 22 on page 50 illustrates a multiple host network.

Each NEF terminal has a single address (LEID) that is known in each of the hosts.
Therefore, user-assigned LEIDs for NEF terminals must define the first byte of the
LEID outside the range of the symbolic line numbers in all of the hosts. Because
the terminal has a direct link to each host, it is known to each host via its address,
LEID, and the CPU ID of that host.

Airlines Line Control (ALC) Support through SNA 49

|
|

|
|
|
|

X.25 ALC Interface for Switched or Permanent Virtual Circuits (XALCI)
XALCI support allows ALC-type terminals attached to a packet switched data
network (PSDN) to communicate with existing TPF applications. XALCI is similar to
TPF NEF/ALCI and AX.25 support of the AX001 and AX002 protocols, but differs in
the following ways:

v NPSI with the FTPI option is used in place of NPSI with the GATE option or the
ALCI feature of NCP. This effect of this change is limited to the handling of the
NPSI header.

v Terminal registration, XALCI header management, and correlation of terminals to
an LEID are not performed by NPSI. These functions are implemented in a
remote intelligent workstation (IWS) or gateway and are not supplied by NCP,
NPSI, or TPF.

v XALCI supports switched virtual circuits (SVCs). The effect of using SVCs is that
the correlation between LEID value and virtual circuit must be delayed until the

SCP

VTAM

TPF
‘B’

TPF
‘C’

ACF/NCP1 NEF
LU2B
LU2C

PU1

LU1

L5
(ALC)

L3
(ALC)

NEF
PU4

L1
(SDLC)

L2

NEF

ACF/NCP2

NEF
PU2

NEF
PU3

Figure 22. Multiple Host Network in NEF

50 TPF V4R1 ACF/SNA Data Communications Reference

virtual circuit has been established and the registration report has been received.
With AX001/AX002, the correlation between virtual circuit and LEID is made at
network definition time. TPF provides a user-replaceable module to process
virtual circuit setup requests. The replaceable module is implemented as a
process selection vector (PSV) routine. Users can either use the sample PSV
routine or substitute their own.

User-Replaceable PSV Routine
The sample PSV routine bases its processing on the NPSI/FTPI command type.
The valid command types are:
v Clear - User Data
v Qualified Data - DCE Reset Confirmation
v Diagnostic - Error Information
v Incoming Call - Interrupt
v Interrupt Confirm - Reset Confirm

The sample PSV routine classifies the input based on the FTPI header. The general
processing is:

v CALL REQUEST commands are accepted by issuing a ROUTC to return a CALL
ACCEPTED command and the ECB EXITCed. When the virtual circuit is
established, the next message received should be an ALCI registration report.

v Data is passed through to the ALCI logic. The ALCI processing is described in
“Airlines Line Control (ALC) Support through SNA” on page 45.

v All other types of NPSI commands are discarded by EXITCing the ECB.

Tables
TPF’s XALCI support code uses the WGTA as its control structure. Based on the
LEID in the data stream, the WGTA slot is used to store the MCH_ID, VC_ID, and
the correlation number of the input message for recall and insertion into the
corresponding output message. The WGTA is expanded by 4 bytes to hold this
additional information.

Network Definition

TPF Considerations:
The only network definition requirement for XALCI support is the need to:

v Define the NPSI LUs that connect TPF to the packet switch data network
(PSDN).

Note: Use the XALCI resource type for all FTPI LUs that use the XALCI
interface.

v Include the process selection vector routine to handle X.25 message traffic that
complies with the ALCI standards.

Defining the NPSI LU: Define to the TPF system the NPSI or NPSI FTPI LU that
connects the TPF system to the network and non-SNA terminals using ALCI
support. The format and parameters used to define the NPSI or NPSI FTPI LU are
shown in Figure 23 on page 52.

Airlines Line Control (ALC) Support through SNA 51

The description of the XALCI values are:

lu_name
Specifies the name of the NPSI LU.

LUTYPE=XALCI
Specifies if the LU uses the GATE/FTPI interface of NPSI and uses XALCI data
streams to perform the FTPI header management.

PACING=0
Specifies the pacing value to use for message traffic sent by TPF.

Note: A value of zero (0) must be specified and means that pacing is not used.

AWARE=NO
Specifies whether the session awareness exit should be started whenever a
session with the LU has been established or terminated. NO must be specified.

LEID=FFFFFF
Specifies from 1 to 3 bytes of data to be passed to the PSV routine when an
input message is received from the LU. This parameter is optional and is
neither required or used by the sample PSV routine supplied with TPF.

An example of the coding of the RSC statement for XALCI support is shown in
Figure 24 on page 52.

For more information about defining SNA resources to the TPF system, see
“Defining SNA Resources to the TPF System” on page 193.

Defining the XALCI PSV Routine: TPF provides XALCI support by bridging its
support of the NPSI FTPI option with the support for ALCI. The bridge between
FTPI and ALCI support is implemented as a user-replaceable PSV routine. To
include the PSV routine in the TPF system, you must:

v Assemble program segment COBU. COBU is the PSV table and includes and
entry for XALCI. COBU must be allocated as a file resident program.

v Allocate CNEA as either main storage of file resident, but not defined as corefast.
The PSV routine itself is a program segment named CNEA.

The source code for the PSV table, COBU, includes the default PSV routine for
XALCI. Figure 25 on page 53 shows the coded to be added to segment COBU.

lu_name RSC LUTYPE=XALCI
,PSV=XALCI
[,PACING=0]
[,AWARE=NO]
[,LEID=FFFFFF]

Figure 23. RSC Statement Definition Statement for an FTPI LU

CPLU1 RSC LUTYPE=XALCI,
PACING=0,
AWARE=NO,
PSV=XALCI

Figure 24. RSC Coding Example Statement for an XALCI LU

52 TPF V4R1 ACF/SNA Data Communications Reference

The macro to define a PSV table is shown in Figure 26 on page 53.

The macro to define a PSV entry is shown in Figure 27 on page 53.

NAME=XALCI,
Specifies the 1 to 6 character PSV name. The character set is restricted to the
letters A through Z and the numbers 0 through 9. The name XALCI was chosen
for this example, but any valid name is acceptable.

PGM=CNEA,
Specifies the user-replaceable program that bridges FTPI messages to the ALCI
interface. The program can be file or main storage resident but cannot be
corefast.

This program segment must reside in the BSS, but may also be resident in
other subsystems in an MDBF environment.

RESERVE=NO,
Specifies whether the entry is reserved for future use. If reserved, a SERRC is
generated in place of the ENTNC. The default is NO.

DFC=NO
Specifies whether the user PSV provides the SNA-architected DFC layer. The
default is NO.

Figure 28 on page 53 shows a sample of PSV definition for XALCI support.

For more information about the IPSVT and IPSVE macros, see TPF General
Macros.

X.25 Gateway Considerations
TPF’s XALCI support is based on a coordinated effort between TPF base code and
a remote intelligent workstation (IWS) or gateway. The TPF code performs the

IPSVE NAME=XALCI,
PGM=CNEA,
RESERVE=NO,
DFC=NO

Figure 25. XALCI PSV Entry Shipped with TPF

IPSVT BEGIN|END

Figure 26. Create PSV Table Macro

IPSVE NAME=XALCI
,PGM=CNEA
[,RESERVE=NO]
[,DFC=NO]

Figure 27. Create PSV Entry Macro

IPSVT BEGIN
IPSVE NAME=XALCI,PGM=CNEA
IPSVT END

Figure 28. Sample XALCI PSV Definition Statements

Airlines Line Control (ALC) Support through SNA 53

|
|

blocking and deblocking of data to and from GATE/FTPI, as well as the FTPI
header management and ALCI functions. For additional information, see “Airlines
Line Control (ALC) Support through SNA” on page 45. The FTPI header
management is performed using WGTA and is based on architected XALCI headers
discussed in “XALCI Header Formats”. The gateway is responsible for:

v Managing the virtual circuit to NPSI and TPF. This involves, for example,
handling the various X.25 commands and error handling.

v Building and sending a registration report that lists the LEID of all terminals
supported by the gateway. This should be done when the virtual circuit to TPF is
first established, as well as when supported terminals are powered on after the
gateway has established the virtual circuit to TPF.

v Inserting of the proper XALCI header information. This consists of 3 bytes (the
X.25 Q byte and 2 bytes that are similar to NEF/ALCI headers that describe the
data in “XALCI Header Formats”), as well as a 3-byte LEID or, in the case of a
registration report, a list of LEIDs.

v Ensuring that the data that is sent to TPF is in EBCDIC. TPF XALCI code
assumes that all headers and data are in EBCDIC.

v Removing of XALCI header information from responses received from TPF and
routing to the correct destination based on the LEID in the XALCI header.

v Ensuring that the data received from TPF is translated to the correct character
set. Headers and data transmitted from TPF are in EBCDIC.

XALCI Header Formats: Figure 29 on page 55 shows an example of the various
XALCI headers.

54 TPF V4R1 ACF/SNA Data Communications Reference

0 – 3 X’00’ X’05’

LEID

X’01’ 24 bit

User Data4 – n

User Data (Q=0)

0 – 4 X’02’ X’02’

LEID

X’02’ 24 bit

24 bit LEID5 – n

User Data (Q=1)
Registration Report

0 – 4 X’02’ X’05’

LEID

X’06’ 24 bit

Reset Message5 – n

Terminal Reset

0 – 4 X’02’ X’0A’

LEID

X’07’ Error Code

5 – 9

Error Report

Error Code (cont.) X’80’ 24 bit

10 – n

Valid Error Codes

X’10086021’
X’084B6031’

Unknown LEID
Inactive LEID

Note: The first byte off the XALCI header corresponds to the X.25
Q byte. All commands with the exception of User Data should
be transmitted on the virtual circuit as qualified data.

Figure 29. XALCI Header Formats

Airlines Line Control (ALC) Support through SNA 55

XALCI Configuration

Figure 30 on page 56 shows a typical XALCI configuration. GATE/FTPI multiplexed
sessions are used to connect each host in the TPF loosely coupled complex to
NPSI in the 3745. The 3745 is owned and loaded by the VTAM CMC. On the
remote side of the X.25 network is an intelligent workstation (IWS) that supports
multiple workstations attached via token ring. The IWS, or X.25 gateway, manages
the addition to and removal of XALCI header information for all traffic originating

VTAM/CMC
TPF
‘A’

TPF
‘B’

3745 w/NPSI
Gate/FTPI

LC Complex Gate/FTPI
Multiplexed
Sessions

X.25
Network

X.25 Gateway
(IWS)

Terminals on
Token Ring
each with

unique LEID D00101 D00102 D00103

Figure 30. XALCI Configuration

56 TPF V4R1 ACF/SNA Data Communications Reference

from or destined for its supported workstations. The correlation of data to
workstation is performed using a unique LEID that is associated with each
workstation on the token ring.

On initial activation, the X.25 gateway is responsible for establishing a virtual circuit
with the TPF complex. This is achieved by issuing a call to NPSI. Through the use
of call user data or subaddressing, the gateway can specify a particular processor
in the complex. Also, depending on NPSI generation options, the GATE/FTPI
function can perform alternate routing of the CALL if the primary target host is
unavailable. NPSI then forwards the call to the specified TPF CTCP.

The CTCP may analyze the call and either accept the call with a CALL ACCEPTED
or reject it with a CLEAR. If CALL ACCEPTED is sent, this is then forwarded by
NPSI across the newly established virtual circuit to the originating gateway. When
the gateway receives the CALL ACCEPTED, the XALCI registration report is then
built and transmitted on the virtual circuit. The registration report specifies the LEID
of every workstation that the gateway supports. This report is primarily used by TPF
to activate the LMT queues of hardcopy devices. The CTCP also uses the
registration report to store routing information, such as the device’s multichannel ID,
virtual circuit ID, and current correlation number that are all required for GATE/FTPI
support. When the registration report has been transmitted to TPF, terminal traffic
may begin to flow between the gateway and the TPF complex.

To trace the flow of a message in an XALCI configuration, assume that LOGI RES0
is entered by one of the workstations on the token ring. The input message is
transmitted on the ring to the gateway. The gateway then inserts the XALCI header
information that describes this as user data, as well as the LEID that identifies the
terminal. This data is then forwarded across the X.25 network on the virtual circuit.
NPSI receives the input message and blocks it with other traffic that is destined for
the same TPF CTCP. The data is accumulated until either a user-definable timer
expires or the user-definable number of messages has been blocked into the PIU.
In either case, the PIU is then forwarded across the multiplexed session to the
specified TPF host.

OPZERO manages the deblocking of the deblocking of the messages from the
GATE/FTPI blocked PIU based upon header information that was appended by
NPSI on each message. Messages are copied by OPZERO to a core block and
attached to an ECB. Upon inspection of the origin SNA resource type, SNA
COMMSOURCE passes control to ALCI COMMSOURCE. ALCI COMMSOURCE
uses the LEID in the data stream to access the WGTA slot for the device, and
stores the multi-channel ID, virtual circuit ID and correlation number for this input
message in the WGTA. The FTPI and XALCI headers are stripped out, and the
message is put in AMSG format.

Because this is a LOGI message, control is passed to the log processor. The log
processor logs the terminal into RES0 and responds with a LOGI COMPLETE data
stream that it routs to the originating terminal. The message router determines that
the LOGI COMPLETE message is destined for an XALCI resource and passes
control to ALCI output transformation code in CCCCP1. Routines access the WGTA
slot for the device based on the LEID and retrieve the FTPI header information that
was saved on input. FTPI and XALCI headers are inserted into the output message
and control is passed to SOUTC. SOUTC determines that this PIU is destined for
an FTPI LU, and control is passed to the FTPI message blocking process. The
FTPI message blocking process accumulate PIUs in a 4K core block until either the
block is full or a timer expires. (See the TPF ACF/SNA Network Generation for

Airlines Line Control (ALC) Support through SNA 57

detailed information on LUBLKT in SNAKEY/CTK2.) In either case, the blocked PIU
is then transmitted to NPSI across the multiplexed session.

The GATE/FTPI process in NPSI then deblocks the messages from the blocked
PIU, removes the FTPI header from the message, and transmits the message on
the virtual circuit that was specified in the FTPI header. When the gateway receives
the message, it removes the XALCI header information and LEID and sends the
message on the token ring destined for the terminal that corresponds with the LEID.
LOGI COMPLETE is displayed on the originating terminal.

For more information regarding coding of a GATE/FTPI CTCP as well as more
detailed information regarding NPSI and its command flows, see the NPSI Host
Programming and the NPSI Planning and Installation.

58 TPF V4R1 ACF/SNA Data Communications Reference

TPF Advanced Program-to-Program Communications

The function provided by the TPF Advanced Program-to-Program Communications
(TPF/APPC) interface is an implementation of IBM’s Advanced Program-to-Program
Communications (APPC) architecture. TPF/APPC is an interface that allows TPF
transaction programs to communicate with remote SNA nodes that have
implemented the APPC interface using LU 6.2 protocols.

Before using TPF’s LU 6.2 support, you must be familiar with the SNA protocol as
defined in the following publications:

v IBM Systems Network Architecture Format and Protocol Reference Manual:
Architecture Logic for LU Type 6.2

v IBM Systems Network Architecture LU 6.2 Reference: Peer Protocols

v IBM Systems Network Architecture Transaction Programmer’s Reference Manual
for LU Type 6.2.

TPF/APPC Components
TPF/APPC provides TPF’s implementation of the LU 6.2 architecture. TPF/APPC
support consists of the following components:

Presentation services
Processes the TPF/APPC verbs.

Resource manager
Services requests relating to conversations and activates the functions
required of the half-session components.

Session manager
Is responsible for insuring that the underlying LU-LU session needed for a
conversation is available.

Half-session
Is primarily responsible for controlling the data traffic flow for a session. This
component includes the:

v Data flow control component, which controls the flow of data between
half-sessions,

v Transmission control component, which controls the flow of data between
the half-session and path control.

Figure 31 on page 60 shows how the components relate to 1 another and what
types of interfaces are used between them.

© Copyright IBM Corp. 1994, 2002 59

TPF/APPC Installation Checklist
The following describes the tasks you must perform to use the TPF/APPC support.

General Installation Tasks
The following list contains the tasks that you must perform regardless of your
network environment:

v Define the local TPF application programs that represent the TPF/APPC LUs.

Transaction Program (TP)

Presentation Services (PS)

Resource Manager (RM)

Session Manager (SM)

Transmission Control (TC)

TPPCC Macro & C/370 Function Flow

CNOSC Macro Flow

Change Number of Sessions Inbound Flow

Legend:

Data Flow Control (DFC)

PS.COPR

COPR.TP

CNOS.TP

Change Number of
Session Macros

(CNOSC)

TPF/APPC C
Function Calls

TPF/APPC
Macros

(TPPCC)

ENTRCENTRC

SOUTC

SOUTC

Host Session (HS)

ROUTC ENTRC

ENTDC CNOSC
Process

TPPCC
Macros

ENTRC

Figure 31. TPF/APPC Component Flow Diagram

60 TPF V4R1 ACF/SNA Data Communications Reference

There can be many TPF/APPC local LUs in a TPF system. 1 of the LUs defined
is considered the default LU and is used by the TPF system for the following
conditions:

– When the TPF system issues a change number of sessions (CNOS)
INITIALIZE request for a remote LU without specifying a local LU, and this is
the first mode name initialized with the specified remote LU.

– When the TPF system issues a single session allocate request and a CNOS
INITIALIZE was not previously done for the LU specified on the ALLOCATE
verb.

The definition is done with the SIP MSGRTA macro and the offline ACF/SNA
table generation (OSTG) program. The output from the MSGRTA macro consists
of an ANT deck, which is then used as input to the OSTG process. To define the
default TPF/APPC LU, code the MSGRTA macro as follows:

MSGRTA APLIC= appl,EDIT=CHDD,ASNA=APPC

To define additional TPF/APPC LUs, code the MSGRTA macro as follows:

MSGRTA APLIC= appl,EDIT=CHDD,ASNA=LU62

In both macro statements, appl is the local LU name.

Note: Unlike other MSGRTA statements, the MSGRTA statement for TPF/APPC
represents the actual SNA logical unit (LU) rather than the end-user
application program. For TPF/APPC, the end-user application is referred
to as a transaction program. The MSGRTA statement defines the LU that
is placed in session with remote LUs. This LU, whose EDIT parameter
must specify program segment CHDD, then provides the LU services on
behalf of the transaction program. See TPF System Generation for more
information about the MSGRTA macro and TPF ACF/SNA Network
Generation for more information about OSTG.

See “Defining SNA Resources to the TPF System” on page 193 for more
information about defining local TPF applications to the TPF system.

v Define to the TPF system the remote LUs that will communicate with the local
TPF LU.

See “Defining SNA Resources to the TPF System” on page 193 for more
information about defining remote LU resources to the TPF system.

v If you are using parallel sessions, make sure that the TPF system is connected
to the SNA network either as a T2.1 node or as a T5 node through an SNA
channel-to-channel (CTC) connection. T5 parallel sessions are not supported
through an NCP PU 5 connection. If you are using parallel sessions across a
CTC link, the remote LU must reside in the adjacent host connected by the CTC
link. Single sessions are supported through all links (T2.1 and T5).

v Define or change your remote application programs to request session initiation
with the appropriate TPF/APPC LU name.

v Define the remote LUs to VTAM or NCP.

See the VTAM Resource Definition Reference and NCP/SSP/EP Resource
Definition Reference for more information.

v Define the #CCBRU, #SC1RU, #SC2RU, and #CMSIT fixed file records.

This is done with the RAMFIL statement in the system initialization program (SIP)
deck. #CCBRU records are 4-KB records that are used to hold the checkpointed

TPF Advanced Program-to-Program Communications 61

copies of the main storage conversation control blocks (CCBs). Enough records
must be allocated to hold the number of CCBs allocated with the MAXCCB
parameter of the SNAKEY macro in the SNA communications keypoint (CTK2,
defined by the CK2SN data macro).

#SC1RU and #SC2RU records are 4-KB records that are used to hold the
checkpointed copies of the main storage session control blocks (SCBs). Enough
records must be allocated to hold the number of SCBs allocated with the
MAXSCB parameter of the SNAKEY macro in CTK2.

#CMSIT records are 4-KB records that are used to hold the side information
table needed for C language mapped conversations.

See TPF System Generation for more information about the SIP RAMFIL
statement, and see TPF ACF/SNA Network Generation for more information
about the SNAKEY macro and the number of records to define.

v Code the following parameters on the SNAKEY macro:

MAXCCB
Defines the maximum number of conversation control blocks (CCBs) required
in your TPF system. See “TPF/APPC Conversation Control Block” on
page 67 for more information about CCBs.

MAXSCB
Defines the maximum number of session control blocks (SCBs) required in
your TPF system. See “TPF/APPC Session Control Block” on page 68 for
more information about SCBs.

Note: There is an interdependency between CCBs and SCBs; if you want to
use the TPF/APPC support, you must code both MAXCCB and
MAXSCB greater than 0.

TPALLOC
Defines the time-out value for the TPF/APPC ALLOCATE verb.

TPRECV
Defines the time-out value for the TPF/APPC RECEIVE verb and any verb
that implies a CONFIRM.

TPWAIT
Defines the time-out value for the TPF/APPC WAIT verb.

PARACOS
Defines the class of service (COS) name that the TPF system uses when
building a PU 5 CDINIT response for a TPF/APPC parallel session.

SINGMODE
Defines the mode name used for TPF/APPC single sessions initiated by the
TPF system.

See TPF ACF/SNA Network Generation for details about the SNAKEY macro.

v Define the local transaction programs that are activated by remote transaction
programs or by the TPF/APPC ACTIVATE_ON_CONFIRMATION or
ACTIVATE_ON_RECEIPT verb in the transaction program name table (TPNT).

The TPNT contains the local transaction program name and the associated TPF
E-type program segment that provides the application function. Use the ITPNT
macro to define these programs. See TPF General Macros for details on this
macro.

v If you plan to use the IBM C language mapped conversation interface, you may
need to generate the side information table.

62 TPF V4R1 ACF/SNA Data Communications Reference

|

The side information table is used to identify a partner LU name, remote
transaction program name, and mode name with a symbolic destination name.
Use the side information table offline program (CHQI) to generate the table
offline. See “Generating the Side Information Table for Mapped Conversations” on
page 83 for details on how to use this program. Use the ZNSID command to
build or change the table online. See TPF Operations for details about this
command.

v If you are using TPF/APPC in a loosely coupled environment, you may need to
perform the following additional tasks (based on your particular environment):

– Define 1 TPF/APPC service LU for every processor in the loosely coupled
complex.

– Define the TPF service transaction program to TPNT.

– Initialize session limits for the TPF/APPC service LUs.

See “Considerations for a Loosely Coupled Environment” on page 103 for more
information.

Installation Tasks for Low-Entry Networking (LEN)
The following tasks must be performed when the TPF system is operating in LEN
mode; however, if the TPF system is operating in APPN mode, skip this section.

v Install IBM ACF/VTAM Version 3 Release 4 or higher, which contains
enhancements to Logon Manager that are required for the TPF system to be
able to start TPF/APPC sessions.

v Define the qualifier number (QN) and the control LU (CLU) name on the
channel-to-channel (CTC) statements for connections to VTAM as well as on the
ALS statements.

This is done in OSTG when there will be TPF/APPC sessions across a CTC
connection managed by the logon manager. Sessions across an ALS connection
are always managed by the logon manager. There must be a CLU-logon
manager session over each CTC connection if the logon manager will be used.
See TPF ACF/SNA Network Generation for details about coding the CTC and
ALS statements.

See “Defining SNA Resources to the TPF System” on page 193 for more
information about defining SNA resources to the TPF system.

v Define TPF/APPC LU alias names to VTAM as CDRSCs under the TPF CTC
CDRMs. The alias name is the LU name with the TPF CPU ID suffix and the
qualifier number.

See VTAM Resource Definition Reference for more information.

v Define to the NCP alias names for the TPF applications and define them as
independent LUs.

See NCP/SSP/EP Resource Definition Reference for more information.

v Define to the NCP the CLU names for sessions across ALS connections.

See NCP/SSP/EP Resource Definition Reference for more information.

Defining TPF/APPC LUs to the Network
This section describes how to define a TPF/APPC LU to the network based on your
configuration.

Defining LUs across a PU 5 Connection
To define TPF/APPC LUs across a PU 5 NCP connection, define the LUs to VTAM
under the owning cross-domain resource manager (CDRM).

TPF Advanced Program-to-Program Communications 63

To define TPF/APPC LUs across a PU 5 CTC connection for a TPF system
operating in APPN mode, also define the LUs to VTAM under the owning CDRM.

Figure 32 shows sample definitions for TPF/APPC primary LUs (PLUs) and
secondary LU (SLU) threads. The real name of a TPF/APPC PLU is used.

Defining Alias LU Names across a PU 5 CTC Connection to
VTAM
When the TPF system is operating in LEN mode, you must define an alias name to
VTAM for each TPF/APPC PLU; however, when the TPF system is operating in
APPN mode, do not define an alias name.

To define TPF/APPC alias LU names across a PU 5 CTC connection, define the
alias LU names to VTAM under the owning CDRM. Define the LU alias name for a
TPF/APPC PLU as a cross domain resource with the CDRSC statement. The
format is: xxxxyzz CDRSC

Where:

xxxx
is the 4-character LU name.

y is the 1-character CPU ID.

zz is the 2-character qualifier number defined with the QN parameter on the OSTG
CTC statement.

Figure 33 shows sample definitions for TPF/APPC PLUs and SLU threads. The
alias name for a TPF/APPC PLU is used.

Defining LUs across a PU 2.1 LEN Connection
To define a TPF/APPC LU across a PU 2.1 LEN connection, do the following:

TPFA CDRM
LU62 CDRSC
LU62A001 CDRSC
LU62A002 CDRSC
LU62A003 CDRSC
LU62A004 CDRSC
LALA CDRSC
MONY CDRSC
MONYA001 CDRSC
MONYA002 CDRSC
MONYA003 CDRSC

Figure 32. Defining TPF/APPC LUs to VTAM across a PU 5 Connection

TPFA CDRM
APPCA01 CDRSC
APPCA001 CDRSC
APPCA002 CDRSC
APPCA003 CDRSC
APPCA004 CDRSC
DEADA01 CDRSC
TPARA01 CDRSC

Figure 33. Defining TPF/APPC Alias LU Names to VTAM across a PU 5 CTC Connection

64 TPF V4R1 ACF/SNA Data Communications Reference

v Define the LUs to the NCP under the NCP PU defined for TPF. Define the LU
alias name for a TPF/APPC PLU with the NCP LU statement. The format is:
xxxxyzz LU

Where:

xxxx
is the 4-character LU name.

y is the 1-character CPU ID.

zz is the 2-character qualifier number defined with the QN parameter or ALSQN
parameter on the OSTG ALS statement.

Figure 34 shows sample definitions for TPF/APPC PLUs and SLU threads in 2
ALSs. The alias name for a TPF/APPC PLU is used.

v Define the real name of a TPF/APPC PLU to VTAM as an APPL. For information
about coding APPL statements for TPF applications, see the VTAM Network
Implementation Guide.

Defining LUs across a PU 2.1 APPN Connection
In an APPN network, LUs do not need to be predefined to the NCP or VTAM
because an APPN node has the ability to register its LUs dynamically when links
are activated. LUs can be predefined or registered dynamically in an APPN
network. See “LU-LU Sessions in an APPN Network” on page 211 for more
information.

To define a TPF/APPC LU across a PU 2.1 APPN connection, do the following:

v Define the LUs to the NCP under the NCP PU defined for the TPF system.
Define the real LU name for a TPF/APPC LU with the NCP LU statement.

Figure 35 on page 66 shows sample definitions for TPF/APPC PLUs and SLU
threads in 2 ALSs.

P30CA4A PU PUTYPE=2
APPCA30 LU LOCADDR=0
APPCA005 LU LOCADDR=0
APPCA006 LU LOCADDR=0
APPCA007 LU LOCADDR=0
TPARA30 LU LOCADDR=0
AMFMA30 LU LOCADDR=0

P42CA4A PU PUTYPE=2
APPCA42 LU LOCADDR=0
APPCA008 LU LOCADDR=0
APPCA009 LU LOCADDR=0
APPCA010 LU LOCADDR=0
TPARA42 LU LOCADDR=0
AMFMA42 LU LOCADDR=0

Figure 34. Defining TPF/APPC LUs across PU 2.1 LEN Connections

TPF Advanced Program-to-Program Communications 65

v Define the real name of a TPF/APPC LU to VTAM as a CDRSC and specify the
name of the TPF control point (CP) on the CPNAME parameter. For information
about coding CDRSC statements for TPF applications, see the VTAM Network
Implementation Guide.

Defining TPF/APPC LUs to a VTAM Subsystem
The definition of an LU to a subsystem, such as CICS, depends on the convention
used by the subsystem. TPF’s LU 6.2 support follows the SNA protocol that is
comparable to the LUTYPE62 as supported by CICS (see CICS/DOS/VS
Intercommunication Facilities Guide). Figure 36 provides an example of the CICS
definition for a TPF 6.2 logical unit.

Defining a TPF/APPC LU to a PS/2 Workstation (Using a Generic
Name)

See the following publications for information about defining LU 6.2 communications
to OS/2.

For OS/2 1.30.1 or earlier, see:

v OS/2 Extended Edition APPC Programming Reference

v OS/2 Extended Edition System Administration Guide for Communications.

For OS/2 1.30.2 or later, see:

v Communications Manager/2 Workstation Installation and Configuration Guide

v Communications Manager/2 Network Administration and Subsystem Management
Guide.

P30CA4A PU PUTYPE=2
APPC LU LOCADDR=0
APPCA005 LU LOCADDR=0
APPCA006 LU LOCADDR=0
APPCA007 LU LOCADDR=0
TPAR LU LOCADDR=0
AMFM LU LOCADDR=0

P42CA4A PU PUTYPE=2
APPC LU LOCADDR=0
APPCA008 LU LOCADDR=0
APPCA009 LU LOCADDR=0
APPCA010 LU LOCADDR=0
TPAR LU LOCADDR=0
AMFM LU LOCADDR=0

Figure 35. Defining TPF/APPC LUs across PU 2.1 APPN Connections

DFHTCT TYPE=SYSTEM, REQUIRED X
ACCMETH=VTAM, REQUIRED X
TRMTYPE=LUTYPE62, REQUIRED X
FEATURE=SINGLE, REQUIRED X
SYSIDNT=APPC TPF LU NAME X
CONNECT=AUTO, OPTIONAL X
TRMSTAT=TRANSCEIVE, DEFAULT X
RUSIZE=256 DEFAULT

Figure 36. Defining a TPF/APPC LU to CICS

66 TPF V4R1 ACF/SNA Data Communications Reference

TPF/APPC Control Blocks
The concept of a transaction program instance is incorporated in the TPF entry
control block (ECB) by storing the transaction control block identifier (TCB ID) in the
reserved ECB field EBTCBID. TPF creates a new TCB ID when a remote
transaction program initiates a conversation (TPF receives an ATTACH functional
management header type 5 [FMH5] record).

TPF checks for an existing TCB ID when a local TPF transaction program initiates a
conversation. If a TCB ID does not exist (the ECB field is zero), TPF assigns a new
TCB ID to the ECB. If a TCB ID exists, the ALLOCATE request represents an
additional conversation controlled by the same transaction program instance.

In addition to the TPF entry control block (ECB), TPF/APPC uses the following
control blocks:

v The conversation control block (CCB), defined by data macro ICCB. (There is
also a C language equivalent to ICCB, C$ICCB, which is used for mapped
conversation support.)

v The session control block (SCB), defined by data macro ISCB.

TPF/APPC Conversation Control Block
Conversations are controlled and identified by an entry in a conversation control
block (CCB). Conversation control blocks are retrieved from and returned to a pool
of available CCBs. Entries are created and destroyed as conversations are
allocated or deallocated: 1 entry for each conversation. The life of a CCB entry
begins when a conversation starts and ends when the conversation ends.

Conversation control block entries are identified to the transaction programs by a
unique conversation identifier (CCB ID). The CCB ID is the value returned by the
ALLOCATE verb, an INITIALIZE verb, or assigned when an ATTACH is received.
The ID is used as the value on the RESID parameter on all subsequent verb
requests for this conversation.

Conversation control blocks are used to:

v Provide the anchor point for conversation input message queues

v Maintain the finite state machine status of a conversation

v Provide the area to define and control the event block necessary to suspend an
ECB and wait for the posting of an event

v Identify the TPF transaction program instance (TCB ID) that controls the
conversation.

Main storage for the conversation control block is allocated by the TPF initialization
component (CTIN) from information provided in the SNA main storage allocation
table (MSAT), which is contained in the SNA communications keypoint (CTK2,
defined by data macro CK2SN). You specify the information in CTK2 with the
SNAKEY macro. Conversation control blocks are written to DASD file storage by
cycle-down and soft-IPL processing, and are read back into main storage by the
TPF restart components.

TPF Advanced Program-to-Program Communications 67

TPF/APPC Session Control Block
Sessions are controlled by session control blocks (SCBs). An SCB has 2 parts,
SCB1 and SCB2, which are extensions of the 2 areas of the resource vector table,
RVT1 and RVT2. SCBs are available only for TPF/APPC sessions (both single and
parallel).

Main storage for the session control block is allocated by CTIN during TPF IPL
based on the information provided in the SNA main storage allocation table.

1 SCB is initialized and allocated for each remote LU to save session limit
information when:
v There is a change number of sessions (CNOS) initialize exchange
v An SCB does not already exist for that (LU,mode name) pair.

An additional SCB is allocated for each session that is brought up. All parallel
session SCBs that belong to the same remote LU are chained together and
anchored off the resource vector table (RVT) of the remote LU. SCBs are returned
to the SCB list when sessions are deactivated.

Note: The SCB previously initialized to save session limit information is not
returned until a CNOS RESET is done.

TPF/APPC Work Blocks
TPF/APPC also uses the following work blocks:

v The TPF/APPC work block, defined by data macro IWBL

v The change number of sessions (CNOS) work block, defined by data macro
ICNOS

v The partner work block, defined in data macro ICCB

v The half-session to presentation services record, defined by data macro IHPR.

TPF/APPC Work Block
The TPF/APPC work block is a working storage block attached to data level 15
(DF) of an ECB that issued a TPF/APPC verb request. If there is a block attached
to a data level required by the TPF/APPC support code, the system detaches the
block from the ECB with the DETAC macro and then reattaches it with the ATTAC
macro when the data level is no longer needed by the support code.

The work block is used to:
v Save the issuer’s registers
v Preserve the contents of the issuing ECB and the verb parameter list
v Provide working storage for the TPF/APPC support programs.

The work block is created by the TPF/APPC support programs and released before
returning control to the verb requester.

TPF/APPC Change Number of Sessions Work Block
The TPF/APPC change number of sessions (CNOS) work block is a working
storage block attached to data level 5 of an ECB that issued a CNOS verb request.

The CNOS work block is used to:
v Save the issuer’s registers
v Preserve the contents of the issuing ECB and the verb parameter list
v Provide working storage for the CNOS support programs.

68 TPF V4R1 ACF/SNA Data Communications Reference

The CNOS work block is created by the CNOS support programs and released
before returning control to the verb requester.

TPF/APPC Partner Work Block
The TPF/APPC partner work block is a working storage block used for the
TPF/APPC mapped conversation support. The partner work block is used to store
information from the side information table between the time a conversation is
initialized and actually allocated. (See “Mapped Conversations” on page 71 for a
definition and explanation of the side information table.) Once the conversation is
allocated, the block is released and the conversation gets the information from the
LU. The information that is stored in the partner work block includes:
v A symbolic destination name
v The partner LU name
v The transaction program name
v The mode name.

TPF/APPC Half-Session to Presentation Services Record
The TPF/APPC half-session to presentation services records (HPR) are 4K
short-term file pool records used to buffer input messages. The TPF/APPC support
package receives incoming messages from the communications source program in
AM0SG format. These messages are then put on an inbound queue in HPR
records. For more information about queuing, see “Inbound Message Queuing” on
page 100.

Presentation Services
Presentation services supports the TPF/APPC verb interface for both assembler
language and C language. It provides the interface between the TPF transaction
programs issuing the verbs and the rest of the components. The main functions
include:
v Initialization of the transaction program
v Conversation verb processing
v Change number of sessions (CNOS) processing
v Finite state machine checking and control
v Activation of other components.

TPF Transaction Program ATTACH Interface
Figure 37 on page 70 shows the TPF transaction program ATTACH interface.

TPF Advanced Program-to-Program Communications 69

When a remote LU 6.2 transaction program initiates a conversation with a TPF
transaction program by issuing an ALLOCATE verb, TPF receives an ATTACH
functional management header type 5 (FMH5) record. The ATTACH FMH5 record
contains the local TPF transaction program name, which is used as a search
argument against the user-defined TPF transaction program name table (TPNT). If
the transaction program name is not found in the TPNT, an FMH7 error record is
sent to end the conversation. If the transaction program name is found in the TPNT,
control is transferred to the TPF E-type program associated with the transaction
program name. When this program is activated, the following interface is set:

v The activated transaction program is in conversation with the remote transaction
program and is in receive state.

v All application registers (R0–R7) are available to the activated program. The
program cannot rely on the contents of any of the registers when the transaction
program is activated.

Remote LU 6.2
Transaction Program
Initiates Conversation

with ALLOCATE

TPF Receives
ATTACH FMH5,
Containing Local
TPF Transaction
Program Name

TPF Searches TPNT
for TPF Transaction

Program Name

No

Yes

Is Name in TPNT?
Send FMH7 Error

Record to End
the Conversation

Activate Local TPF
Transaction Program

Figure 37. TPF Transaction Program ATTACH Interface

70 TPF V4R1 ACF/SNA Data Communications Reference

v All TPF data levels are available for use by the transaction program.

v The transaction program name received on the ATTACH is placed in the ECB
beginning at EBW001. (EBW000 contains the length of the transaction program
name.)

Other information carried in the ATTACH FMH5 received by TPF is not passed to
the local TPF transaction program.

Note: The transaction program can issue a GET_ATTRIBUTES or GET_TYPE
verb for additional information.

v The ECB field EBROUT contains the session control block identifier (SCB ID) of
the SCB entry for the session with the remote LU that sent the ATTACH.

v The transaction control block identifier (TCB ID) is stored in the ECB field
EBTCBID.

v The conversation control block identifier (CCB ID) is stored in the ECB field
EBCCBID. Use this identifier on the RESID parameter of all subsequent
TPF/APPC verb macros for the conversation with the remote transaction
program.

Conversation Verbs
The conversation verbs provide program-to-program communication by means of
conversations between programs. The verbs defining the conversation protocol
boundary are divided into subcategories based on conversation type, as follows:
v Mapped conversation verbs
v Type-independent conversation verbs
v Basic conversation verbs.

Mapped Conversations
The mapped conversation verbs are intended for use by application transaction
programs. These verbs provide functions that are suitable for application programs
written in high-level programming languages.

The TPF/APPC mapped interface is based on the communication element of SAA’s
Common Programming Interface (CPI). Although TPF/APPC does not fully conform
to CPI Communications, standard CPI Communications programs can be converted
easily, provided the programs do not use the features that TPF does not support.

Mapped conversation support is provided only through the C language interface.
For additional information and details on the C language functions, see TPF C/C++
Language Support User’s Guide. For more information about CPI Communications,
see the Systems Application Architecture Common Programming Interface
Communications Reference.

Side Information: For a program to establish a conversation with a partner
program, TPF/APPC requires a certain amount of initialization information: the
name of the partner program, the name of the LU at the partner’s node, and the
mode name. The TPF/APPC mapped interface provides a way to use predefined
values for these required fields; these predefined values are called side information.
The side information is accessed by a symbolic destination name and is maintained
in an online database called the side information table. Each symbolic destination
name corresponds to an entry in the side information table and contains the
following 3 pieces of information:

Transaction program (TP) name
Specifies the name of the remote transaction program

TPF Advanced Program-to-Program Communications 71

Partner LU name
Is the name of the LU where the remote transaction program is located

Mode name
Is used by TPF/APPC to designate the properties for the session that will
be allocated for the conversation.

When a transaction program requests the initiation of a conversation and specifies
a symbolic destination name, the TPF/APPC mapped interface retrieves the
corresponding entry from the side information table and uses the data to initialize
the conversation characteristics mode_name, mode_name_length,
partner_LU_name, partner_LU_name_length, TP_name, and TP_name_length.

The side information table offline program (CHQI) provides a way of generating the
side information table, verifying the syntax of the entries before bringing them
online, and managing the data contained in the online side information table. You
can also modify the online side information table using the ZNSID command. For
details on how to run CHQI, see “Generating the Side Information Table for Mapped
Conversations” on page 83. For details on the format of the ZNSID command, see
TPF Operations.

Type-Independent Conversation Verbs
The type-independent conversation verbs are intended for use with both mapped
and basic conversations. These verbs provide functions that span both conversation
types.

TPF supports the following type-independent conversation verbs:
v GET_TYPE
v WAIT.

Basic Conversation Verbs
The basic conversation verbs are intended for use by application transaction
programs and LU service programs.

The TPPCC macro provides the assembler language interface for basic
conversations. For more information, see TPF General Macros. The tppc_ function
calls provide the C language interface for basic conversations. For more
information, see the TPF C/C++ Language Support User’s Guide.

TPF supports the following basic conversation verbs:
v ACTIVATE_ON_CONFIRMATION2

v ACTIVATE_ON_RECEIPT2

v ALLOCATE
v CONFIRM
v CONFIRMED
v DEALLOCATE
v FLUSH
v GET_ATTRIBUTES
v POST_ON_RECEIPT
v PREPARE_TO_RECEIVE
v RECEIVE
v REQUEST_TO_SEND
v SEND_DATA
v SEND_ERROR

2. This verb is a TPF extension to the LU 6.2 architecture.

72 TPF V4R1 ACF/SNA Data Communications Reference

v TEST.

Architecture and TPPCC Macro Comparison
The following figures compare the interface defined by the LU 6.2 architecture with
the interface provided through the TPPCC macro. The C language interface is not
shown but it is similar to the TPPCC macro except that all C language function calls
use positional parameters instead of keyword parameters. (See TPF General
Macros and the TPF C/C++ Language Support User’s Guide for details about the
TPF/APPC macros and functions.)

Note: In each figure, there is a line that separates the parameters that are passed
to the processing components from the parameters that are returned. The
passed parameters are shown above the line and the returned parameters
are shown below the line. Parameters shown between 2 lines are both
passed and returned.

LU_NAME
MODE_NAME
TPN
TYPE
RETURN_CONTROL
SYNCH_LEVEL
SECURITY
PIP

LU 6.2 Architecture TPPCC Macro

Verb Parameter

ALLOCATE

RESOURCE
RETURN_CODE

LUNAME=
MODE=
TPN=
TYPE=
RCONTROL=
SYNC=
SECURITY=NONE
PIP=NO

Verb Keyword

ALLOCATE,

RESID=
RCODE=

Figure 38. ALLOCATE Verb

RESOURCE

LU 6.2 Architecture TPPCC Macro

Verb Parameter

CONFIRM

RETURN_CODE
REQUEST_TO_SEND_RECEIVED

RESID=

Verb Keyword

CONFIRM,

RCODE=
RTSRCVD=

Figure 39. CONFIRM Verb

TPF Advanced Program-to-Program Communications 73

RESOURCE

LU 6.2 Architecture TPPCC Macro

Verb Parameter

CONFIRMED

RESID=

Verb Keyword

CONFIRMED,

RCODE=

Note: RCODE returns state checks and parameter checks.

Figure 40. CONFIRMED Verb

RESOURCE
TYPE
LOG_DATA

LU 6.2 Architecture TPPCC Macro

Verb Parameter

DEALLOCATE

RESID=
TYPE=
LOGDATA=NO

Verb Keyword

DEALLOCATE,

RCODE=RETURN_CODE

Figure 41. DEALLOCATE Verb

RESOURCE

LU 6.2 Architecture TPPCC Macro

Verb Parameter

FLUSH

RESID=

Verb Keyword

FLUSH,

RCODE=

Note: RCODE returns state errors and parameter checks.

Figure 42. FLUSH Verb

74 TPF V4R1 ACF/SNA Data Communications Reference

RESOURCE

LU 6.2 Architecture TPPCC Macro

Verb Parameter

GET_ATTRIBUTES

RESID=

Verb Keyword

GET_ATTRIBUTES,

OWNAME=
PLUNAME=
MODE=
SYNC=

RCODE=

OWN_LU_NAME
PARTNER_LU_NAME
MODE_NAME
SYNCH_LEVEL
SECURITY_USER_ID
SECURITY_PROFILE
LUW_IDENTIFIER
CONVERSATION_CORRELATOR

Note: RCODE returns state checks and parameter checks.

Figure 43. GET_ATTRIBUTES Verb

RESOURCE

LU 6.2 Architecture TPPCC Macro

Verb Parameter

GET_TYPE

RESID=

Verb Keyword

GET_TYPE,

TYPE=
RCODE=

TYPE
RETURN_CODE

Figure 44. GET_TYPE Verb

RESOURCE
FILL
LENGTH

LU 6.2 Architecture TPPCC Macro

Verb Parameter

POST_ON_RECEIPT

RESID=
FILL=LL
LENGTH=

Verb Keyword

POST_ON_RECEIPT,

RCODE=RETURN_CODE

Note: RCODE returns state checks and parameter checks.

Figure 45. POST_ON_RECEIPT Verb

TPF Advanced Program-to-Program Communications 75

RESOURCE
TYPE
LOCKS

LU 6.2 Architecture TPPCC Macro

Verb Parameter

PREPARE_TO_RECEIVE

RESID=
TYPE=
LOCKS=SHORT

Verb Keyword

PREPARE_TO_RECEIVE,

RCODE=RETURN_CODE

Figure 46. PREPARE_TO_RECEIVE Verb

RESOURCE
FILL

LU 6.2 Architecture TPPCC Macro

Verb Parameter

RECEIVE_AND_WAIT

RESID=
FILL=LL
WAIT=YES

Verb Keyword

RECEIVE,

LENGTH=LENGTH

WHATRCV=
DATA=
RTSRCVD=
RCODE=

WHAT_RECEIVED
DATA
REQUEST_TO_SEND_RECEIVED
RETURN_CODE

Figure 47. RECEIVE Verb

RESOURCE

LU 6.2 Architecture TPPCC Macro

Verb Parameter

REQUEST_TO_SEND

RESID=

Verb Keyword

REQUEST_TO_SEND,

RCODE=

Figure 48. REQUEST_TO_SEND Verb

76 TPF V4R1 ACF/SNA Data Communications Reference

RESOURCE
DATA
LENGTH

LU 6.2 Architecture TPPCC Macro

Verb Parameter

SEND_DATA

RESID=
DATA=
LENGTH=

Verb Keyword

SEND_DATA,

RCODE=
RTSRCVD=

RETURN_CODE
REQUEST_TO_SEND_RECEIVED

Figure 49. SEND_DATA Verb

RESOURCE
TYPE
LOG_DATA

LU 6.2 Architecture TPPCC Macro

Verb Parameter

SEND_ERROR

RESID=
TYPE=
LOGDATA=NO

Verb Keyword

SEND_ERROR,

RCODE=
RTSRCVD=

RETURN_CODE
REQUEST_TO_SEND_RECEIVED

Figure 50. SEND_ERROR Verb

RESOURCE
TEST

LU 6.2 Architecture TPPCC Macro

Verb Parameter

TEST

RESID=
TEST=

Verb Keyword

TEST,

RCODE=RETURN_CODE

Figure 51. TEST Verb

TPF Advanced Program-to-Program Communications 77

Change Number of Sessions
The change number of sessions (CNOS) verbs change the (LU,mode) session limit,
which controls the number of LU-LU sessions per mode name that are available
between 2 LUs for allocation to conversations.

The 2 LUs may cooperate in the execution of the CNOS verbs by means of a
CNOS request and CNOS reply. The LU executing the control operator transaction
program sends a CNOS request to the partner LU. The partner LU starts an SNA
service transaction program (the CNOS service transaction program), which causes
the partner LU to process the CNOS request and send back a CNOS reply.

Change Number of Sessions Components
The following is a description of the individual components for TPF’s change
number of sessions (CNOS) support.

TPF control operator transaction program (COPR.TP)
Serves as an interface between the TPF change number of sessions
command (ZNCNS) and the presentation services for control operator
(PS.COPR).

TPF COPR.TP is activated when the operator issues a ZNCNS command.
Based on the parameters passed by ZNCNS, TPF COPR.TP issues a
CNOSC macro to communicate with the remote LU’s CNOS service
transaction program (CNOS.TP). The macros that TPF COPR.TP can issue
are:
v CNOSC RESET
v CNOSC INITIALIZE
v CNOSC CHANGE.

Note: You can create your own COPR.TP to issue CNOS requests. There
can be as many COPR.TPs in the system as you need.

CNOS service transaction program (CNOS.TP)
Is a reserved SNA-defined transaction program in TPF. This program serves
as an interface between the remote control operator transaction program
and the TPF PS.COPR. When the remote LU makes a CNOS request to
TPF, the TPF CNOS.TP is activated, and in turn, activates the PS.COPR to
perform the PROCESS_SESSION_LIMIT function.

When control returns from PS.COPR, the conversation with the source LU
(in this case, the remote LU) has already been deallocated and the session
limit parameters updated for the target LU (in this case, the local LU). A

RESOURCE_LIST

LU 6.2 Architecture TPPCC Macro

Verb Parameter

WAIT

RESIDL=

Verb Keyword

WAIT,

RESPSTD=
RCODE=

RESOURCE_POSTED
RETURN_CODE

Figure 52. WAIT Verb

78 TPF V4R1 ACF/SNA Data Communications Reference

message that notifies the operator that the process is complete and
displays the new session limits is then sent to the TPF operator console.

Presentation service for the control operator (PS.COPR)
Serves as an interface between (1) the TPF COPR.TP and the remote
CNOS.TP or (2) the remote COPR.TP and the TPF CNOS.TP. PS.COPR
provides services for each TPF-supported change number of sessions verb.

Control is passed to PS.COPR when COPR.TP issues CNOSC macros or
from CNOS.TP to perform the PROCESS_SESSION_LIMIT function. When
receiving change number of sessions requests, TPF PS.COPR issues
TPF/APPC application verbs to communicate with the target LU. After
processing those verbs, TPF PS.COPR interacts with the resource manager
to request session changes. Control returns to the calling COPR.TP or
CNOS.TP after the services are complete.

Managing Session Limits
To understand the applications’ options in managing session limits, you need an
overview of how TPF processes change number of sessions (CNOS) requests.

The process of changing session limits involves the exchange of session limits
between the 2 control operators. TPF does not negotiate the session limits;
however, if TPF initiates the CNOS exchange, the remote LU can negotiate the
limits. TPF accepts the remote control operator’s session limits and processes
them. The control operator that initiated the CNOS request is informed of the new
limits in the reply to the CNOS request.

You can write your own COPR.TP application that issues CNOS requests with the
CNOSC macros. There can be only 1 CNOSC macro outstanding at a time for a
particular partner LU and mode name combination. A CNOSC macro must complete
before another application can issue a CNOS request for the same partner and
mode name combination. An application can have multiple outstanding CNOSC
macros specifying different LUs or the same LU with a different mode name.

Setting Session Limits to Zero: The CNOSC RESET macro and ZNCNS RESET
command both provide the ability to set the session limit to zero. Setting session
limits to zero deactivates sessions using the specified mode name and LU.
Sessions being used by a conversation are not deactivated until the conversation
finishes.

Setting session limits to zero is part of the orderly termination of an LU 6.2
application, or consider setting the session limits to zero to deactivate sessions that
are active but not presently needed.

If the application requests a session limit of zero, the session limit cannot be
negotiated; the partner LU must accept the zero limit. When the application sets
session limits to zero, it can specify that the change is to apply to 1 of the following:

v 1 specific mode name

v All mode names with the partner LU except SNASVCMG

v The SNASVCMG mode name only.

When making a CNOSC RESET request, the application can also specify whether
to drain (or honor) all the queued ALLOCATE requests (those waiting for a session)
before deactivating sessions or whether to reject the requests immediately.

TPF Advanced Program-to-Program Communications 79

The partner LU cannot negotiate the draining capability of the application making
the CNOS request; it must accept whatever the application specifies. The partner
LU can negotiate the draining capability for its side to indicate that it will not allow
draining on the target side.

Managing Session Activation and Deactivation: Change number of sessions
requests frequently cause sessions to be activated or deactivated. TPF activates
additional sessions when a transaction program requests an ALLOCATE, there are
no sessions free, and the session limit has not been reached. If the CNOS request
lowers the session limits, TPF deactivates sessions to meet the new limits. TPF
only deactivates sessions when conversations are no longer using those sessions
and TPF contains the LU responsible for deactivating sessions.

Finite State Machine
The LU 6.2 architecture uses a finite state machine as a method of defining a
limited (finite) number of states (current status) so that only certain actions can take
place. These actions can then change the current state. In general, actions can
take place only when the finite state machine is in certain states, and the execution
of the requested action can then cause the state of the finite state machine to
change.

The TPF/APPC support implements a logical conversation finite state machine
(FSM) to control the sequence in which verbs are issued for a conversation.

Note: TPF/APPC support implements 2 other types of finite state machines, which
are not discussed in detail. 1 maintains the status of posting, and the other
maintains the status of errors and failures.

The TPF/APPC support package defines the following conversation states:

State Definition

Reset (0) The state in which a new conversation can be
allocated.

Send (1) The state in which a conversation can send data,
status, or a confirmation request.

Receive (2) The state in which a conversation can receive data,
status, or a confirmation request from the remote
partner.

Received Confirm (3) A conversation that was in receive state received a
confirmation request.

Received Confirm Send (4) A conversation received a send request with a
confirmation request.

Received Confirm Deallocate (5) A conversation received a deallocate request with a
confirmation request.

Pending Deallocate (8) A conversation issued a deallocate request with a
confirmation request.

End Conversation (9) The state in which a conversation cannot continue.

Note: TPF does not support the states Prepare to Receive Defer (6) and Deallocate Defer
(7) defined in the LU 6.2 architecture.

When the local TPF transaction program issues a TPF/APPC verb request or when
the remote transaction program sends data, requests, or status messages to the
local TPF transaction program, an action or an event results. The state of the

80 TPF V4R1 ACF/SNA Data Communications Reference

conversation controls the events or actions. For example, the local TPF transaction
program is allowed to issue a TPF/APPC CONFIRMED verb only after it has
received a confirmation request from the remote transaction program. The
TPF/APPC FSM checks for the validity of all the requested actions and maintains
the current state of each conversation. Invalid requests cause a state check. If the
state check is due to the local TPF transaction program’s issuing a TPF/APPC verb,
the return code parameter (RCODE) contains the state check. If the state check is
due to the remote transaction program’s sending invalid data, status, or
confirmation, the session is unbound, and the local transaction program is notified
when it issues its next TPF/APPC verb.

The following table shows the definition of the individual actions or events. The first
column contains an indication of whether the action was sent (S) or received (R) by
the local TPF transaction program (TP).

Action or Event Description

S, Allocate The local TPF TP issues the ALLOCATE verb.

R, Attach The local TPF TP is activated when it receives an ATTACH header from a remote TP
that issued an ALLOCATE request for the local TPF TP.

S, Send_Data The local TPF TP issues the SEND_DATA verb.

S, Prep_to_Rvc_Flush The local TPF TP issues the PREPARE_TO_RECEIVE verb with the FLUSH option.

S, Prep_to_Rvc_Confirm The local TPF TP issues the PREPARE_TO_RECEIVE verb with the CONFIRM option.

S, Flush The local TPF TP issues the FLUSH verb.

S, Confirm The local TPF TP issues the CONFIRM verb.

S, Send_Error The local TPF TP issues the SEND_ERROR verb.

S, Receive_and_Wait The local TPF TP issues the RECEIVE verb.

S, Post_on_Receipt The local TPF TP issues the POST_ON_RECEIPT verb.

S, Wait The local TPF TP issues the WAIT verb.

S, Test (posted) The local TPF TP issues the TEST verb with the TEST=POSTED option.

S, Test (RTSR) The local TPF TP issues the TEST verb with the TEST=RTSRCVD option.

S, Request_to_Send The local TPF TP issues the REQUEST_TO_SEND verb.

R, Send_Indicator The local TPF TP in receive state is placed in send state when the remote TP enters
receive state.

R, Confirm_indicator The local TPF TP receives a confirmation request when it is in receive state.

R, Confirm_Send_Ind The local TPF TP receives a confirmation request with the SEND indication when it is in
receive state.

R, Confirm_Dealloc_Ind The local TP receives a confirmation request with the deallocation indication.

S, Confirmed The local TPF TP issues the CONFIRMED verb.

R, Program_Error_RC The local TPF TP receives an indication that the remote TP issued a SEND_ERROR
verb because of a program failure.

R, Service_Error_RC The local TPF TP receives an indication that the remote TP issued a SEND_ERROR
verb because of a service failure.

R, Dealloc_Normal_RC The local TPF TP receives an indication that the remote TP issued a DEALLOCATE verb
with the FLUSH option.

R, Dealloc_Abend_RC The local TPF TP receives an indication that the remote TP issued a DEALLOCATE verb
with 1 of the ABEND options.

R, Resource_Failure_RC The local TPF TP receives an indication that a conversation failure occurred.

R, Alloc_Error_RC The local TPF TP receives an indication that a conversation allocation request failed.

TPF Advanced Program-to-Program Communications 81

Action or Event Description

S, Dealloc_Flush The local TPF TP issues the DEALLOCATE verb with the FLUSH option.

S, Dealloc_Confirm The local TPF TP issues the DEALLOCATE verb with the CONFIRM option.

S, Dealloc_Abend The local TPF TP issues the DEALLOCATE verb with 1 of the ABEND options.

S, Dealloc_Local The local TPF TP issues the DEALLOCATE verb with the LOCAL option.

R, Dealloc_Pend_Confirm The local TPF TP receives the confirmation reply while waiting in response to a
DEALLOCATE verb with the CONFIRM option.

S, Get_Attribute The local TPF TP issues the GET_ATTRIBUTES verb.

S, Get_Type The local TPF TP issues the GET_TYPE verb.

The TPF/APPC conversation FSM is shown in Table 2. The columns of the matrix
show the defined states, and the rows show the individual actions or events. The
number in each box indicates the new state of the conversation following the
completion of the event. An empty box shows that the condition is not allowed, and,
if encountered, a state check results.

Table 2. TPF/APPC Conversation Finite State Machine Matrix

Actions or Events States

Reset (0) Send
(1)

Receive (2) Received
Confirm (3)

Received
Confirm
Send (4)

Received
Confirm

Deallocate
(5)

Pending
Deallocate

(8)

End
Conversation

(9)

S, Allocate 1

R, Attach 2

S, Send_Data 1

S, Prep_to_Rvc_Flush 2

S, Prep_to_Rvc_Confirm 2

S, Flush 1

S, Confirm 1

S, Send_Error 1 1 1 1 1

S, Receive_and_Wait 2 2

S, Post_on_Receipt 2

S, Wait 2

S, Test (posted) 2

S, Test (RTSR) 1 2

S, Request_to_Send 1 2 3 4 5

R, Send_Indicator 1

R, Confirm_Indicator 3

R, Confirm_Send_Ind 4

R, Confirm_Dealloc_Ind 5

S, Confirmed 2 1 9

R, Progrm_Error_RC 2 2 2

R, Service_Error_RC 2 2 2

R, Dealloc_Normal_RC 9 9

R, Dealloc_Abend_RC 9 9 9

R, Resource_Failure_RC 9 9 9

R, Alloc_Error_RC 9 9 9

S, Dealloc_Flush 0

82 TPF V4R1 ACF/SNA Data Communications Reference

Table 2. TPF/APPC Conversation Finite State Machine Matrix (continued)

Actions or Events States

Reset (0) Send
(1)

Receive (2) Received
Confirm (3)

Received
Confirm
Send (4)

Received
Confirm

Deallocate
(5)

Pending
Deallocate

(8)

End
Conversation

(9)

S, Dealloc_Confirm 8

S, Dealloc_Abend 0 0 0 0 0

S, Dealloc_Local 0

R, Dealloc_Pend_Confirm 0

S, Get_Attribute 1 2 3 4 5 9

S, Get_Type 1 2 3 4 5 9

Note: TPF does not support the states Prepare to Receive Defer (6) and Deallocate Defer (7) defined in the LU 6.2 architecture for
the SYNCH_POINT options.

Generating the Side Information Table for Mapped Conversations
The side information table offline program (CHQI) runs under MVS or CMS to
generate either a tape or a general data set that can be loaded to a TPF system.
The generated data set contains commands and data for modifying the side
information table. Data from the side information table is retrieved whenever an
application transaction program issues the mapped conversation initialize
conversation (cminit) function.

Note: Before generating the side information table, be sure that you have defined
the #CMSIT fixed file records at system generation time. These are the 4K
records used to hold the side information table.

Figure 53 on page 84 shows the process for generating a side information table.

TPF Advanced Program-to-Program Communications 83

The steps required for generating a side information table are as follows:

1. On MVS or CMS, create an input file for CHQI.

The input to CHQI is an EBCDIC file of fixed-length 80-byte records, consisting
of statements that specify the function to be performed. You can also include
comments and blank lines to improve readability. See “Creating the Input File”
on page 85 for details.

2. On MVS or CMS, run CHQI against the input file.

CHQI creates 2 output files:

v A tape or general data set that can be loaded online by TPF

v A listing describing the results of the conversion on the input file to the tape
or general data set.

See “Running CHQI” on page 92 and “Side Information Table Offline Program
Output” on page 93 for details.

3. Use the listing file to correct any errors in the input file.

4. Repeat steps 2 and 3 until there are no errors in the input file.

5. Mount the tape or general data set on the TPF system.

6. If the side information table is not initialized, issue the ZNSID INITIALIZE
command.

Note: Initializing the side information table erases any existing information in it.

7. Load the side information data set to the TPF system using the ZNSID LOAD
command.

Steps 5, 6, and 7 are described in more detail in “Loading the Side Information
Data Set to TPF” on page 96.

Input File

Offline
Program
(CHQI)

Data
Set

Offline
Online

ZNSID LOAD
Functional
Message

Side
Information

Table

Listing

Console
Display

Figure 53. Generating the Side Information Table

84 TPF V4R1 ACF/SNA Data Communications Reference

In the following discussion, the phrase side information table refers to the online
side information table residing on TPF. The phrase side information data set refers
to the data set that is generated offline by CHQI and contains the entries for the
online side information table.

Creating the Input File
The following describes the basic steps for creating the input file for CHQI.
Additional details on the syntax requirements for the statements are described in
the following section, “Statement Syntax” on page 86.

1. Create a file with a logical record length of 80 (LRECL=80) and a fixed record
format (RECFM=FB).

2. You can code comments (lines with an asterisk in column 1) and blank lines
(containing only spaces) anywhere in the file.

3. If the side information data set must be loaded to a specific subsystem, code:

LOAD SS-subsystem

where subsystem is the 1- to 4-character name of the subsystem on which the
data is to be loaded. If you specify a subsystem, the side information data set
must be loaded to that subsystem. If you do not code a LOAD statement, the
side information data set can be loaded to any subsystem. After the side
information data set is loaded, the symbolic destination names defined by that
data set are available to transaction programs running in the specified
subsystem. You can specify only 1 subsystem for a side information data set;
that is, only 1 LOAD statement can be included in the input file. This statement,
if included, must precede all other statements.

4. If you want to display text on the TPF operator console while loading the side
information data set, for each line of text to be displayed code:

DESCR text

where text is the line of text to be displayed. The text is displayed as a
response to the ZNSID LOAD command.

5. If you want to add an entry to the side information table, for each entry code:

ADD NAME-sdn TP-tpn LU-lunMODE-mode

where sdn is the symbolic destination name of the new entry, tpn is the
corresponding remote transaction program name, lun is the corresponding
partner LU name, and mode is the corresponding mode. If an entry with the
identical symbolic destination name already exists in the side information table,
it is changed by the entry in the side information data set. If 2 or more entries
with the same symbolic destination name are included in the same side
information data set, the entries are loaded in the order that they are specified
in the input file. After the load is complete, the side information table entry for
the duplicated symbolic destination name contains the data specified for the last
entry loaded.

6. If you want to remove entries from the side information table, for each entry to
be removed code:

REMOVE NAME-sdn

TPF Advanced Program-to-Program Communications 85

where sdn is the symbolic destination name of the entry to be removed. If no
entry with the specified symbolic destination name exists in the table, the entry
in the side information data set is ignored.

Statement Syntax
The CHQI input syntax consists of the following elements:

Comments
Any record beginning with an asterisk in column 1 is a comment. The text in
columns 2–80 is not parsed. You can code a comment line anywhere in the file.

Verbs
Each statement begins with a verb, and each type of statement requires a
different set of parameters following the verb. There are no abbreviations for the
verbs; you must code each 1 in full. CHQI recognizes 4 verb statements:
LOAD, DESCR, ADD, and REMOVE.

Parameters
The DESCR verb takes a positional parameter (the text that follows it); the
other verbs all take keyword parameters. Keyword parameters consist of the
keyword, followed immediately by either a single dash or by a single equal sign,
followed by the value. There can be 1 or more spaces between the dash or
equal sign and the value, as long as the value is in the same record as the
keyword. There must not be any spaces between the keyword and the dash or
equal sign.

The input file is free format in that you do not have to code verbs and parameters
on a particular line or in a particular column. Blank lines can be inserted at any
point to improve readability. Exceptions to this free format include the following:

v Comments must begin in column 1.

v Each parameter must be completed in the same record that it begins; that is, a
keyword and its associated value must be on the same line.

v The DESCR verb takes 1 parameter that includes all of the text from the DESCR
verb to the end of the record.

v The input file must be in uppercase, except for:

– Text in comments

– Text in DESCR parameters

– TP parameter values; these must match the transaction program names
defined in your network.

CHQI’s parser scans the input file, strips out comments, and parses the remaining
text into tokens. A token is any string of characters that is delimited by a space, null
character, comma3, dash, equal sign, or logical end of record and that does not
contain a space, null character, dash, equal sign or logical end of record4.

Tokens are classified as verbs, parameter keywords, and parameter values. Each
verb begins a new statement, and each statement consists of the verb that initiates
it and any following parameters up to the next verb or the end of file. The
statements are checked for errors. Any statement containing no error messages or
only attention messages is written to the side information data set in the proper

3. Commas have no meaning other than to separate tokens and are exactly equivalent to blank characters.

4. The parameter for the DESCR verb is an exception to this. DESCR’s parameter begins with the first nonblank character following
the verb and continues to the last nonblank character before the next logical end of record. If there is no nonblank character
between the DESCR verb and the next end of record, the parameter is a null string.

86 TPF V4R1 ACF/SNA Data Communications Reference

format to be read by the TPF side information data loader. Statements containing 1
or more errors are not written to the side information data set.

The following shows the format of the statements and describes the verbs and
parameters.

LOAD SS-subsystem

LOAD
Must be the first statement in the file, if used. If the LOAD statement occurs
following any other statement, the LOAD statement is flagged with an error. The
LOAD statement requires the SS parameter; if SS is omitted, the LOAD
statement is flagged with an error.

SS-subsystem
Specifies the subsystem on which the generated side information data must be
loaded. SS can be abbreviated to S.

The SS parameter value is any string from 1 to 4 characters long. The
subsystem name is copied to the header of the first record in the side
information data set.

DESCR text

DESCR
Can be coded anywhere except before a LOAD statement.

text
Represents a positional parameter that consists of the text between the DESCR
verb and the next logical end of record, stripped of any leading or trailing
blanks. There are no restrictions on the characters or strings that you can use,
assuming the characters you use can be handled by your console.

ADD NAME-sdn TP-tpn LU-lun MODE-mode

ADD
Can be coded anywhere except before a LOAD statement. Each ADD
statement takes 4 keyword parameters: NAME, TP, LU, and MODE. You can
code these parameters in any order. If the NAME parameter is omitted, the
statement is flagged with an error. If the TP, LU, or MODE parameter is omitted,
the statement is flagged as requiring attention and the corresponding field in the
side information entry is set to a null value.

Note: Transaction programs referring to an entry containing a null field must
set valid values for the mode_name, mode_name_length,
partner_LU_name, partner_LU_name_length, TP_name, and
TP_name_length conversation characteristics before successfully
allocating a conversation. See the cmsmn, cmspln, and cmstpn functions in
the TPF C/C++ Language Support User’s Guide for additional
information.

If any of these parameters is repeated in a single ADD statement, it is flagged
as an error. (Successive TP parameters, which are concatenated, are treated
as a single instance of the TP parameter.)

NAME-sdn
Specifies the symbolic destination name of the new side information table entry.
NAME can be abbreviated to NAM, NA, or N.

TPF Advanced Program-to-Program Communications 87

The NAME parameter value is any string from 1- to 8-characters long,
consisting of any characters except token delimiters (dash, equal sign, comma,
or blank) and lowercase letters. The symbolic name written to the side
information data set is an 8-byte field consisting of the NAME parameter value
padded to the right with space characters.

TP-tpn
Specifies the remote transaction program name associated with the symbolic
destination name. TP can be abbreviated to T.

SNA allows transaction program names to include unprintable characters. To
allow entry of such names, the TP parameter value can include substrings that
are translated to unprintable characters in the output side information entry. The
generated transaction program name is a variable-length field from 1 to 64
bytes long with no padding.

The dollar sign ($, X'5B') is used to delimit substrings of TP parameter values
that are to be interpreted as hexadecimal values, according to the following
rules:

v Pairs of hexadecimal digits entered between 2 single dollar signs ($) are
converted to the corresponding binary values; for example, T-$07F0$ sets the
transaction program name to X'07F0'.

v Hexadecimal substrings can be freely intermixed with literal substrings in the
same TP specification, as in T-A01BCD020304E05, which sets the
transaction program name to X'C101C2C3C4020304C505'.

v If a dollar sign is actually desired in the transaction program name, 2
consecutive dollar signs ($$) must be used for each dollar sign needed. For
example, T-X$$Y$$Z sets the transaction program name to "XYZ", and
T-$$$$$$32$F1$$F0$$$ sets the transaction program name to "$$$3210$".

v The transaction program name cannot include blank characters (X'40');
therefore, a parameter of T-123$40$ABC is flagged as an error.

v The length of the converted TP parameter value must be between 1 and 64
bytes.

To accommodate the possibility of a TP parameter value being too long to fit
into 1 80-byte record, the values of adjacent TP parameters are concatenated.
Each of the parameter values must conform to the rules stated previously, and
the total length of all the concatenated converted strings must be less than or
equal to 64. No other parameters can be coded between 2 concatenated TP
parameters.

Note: N1 of the other keyword parameters are concatenated in this way.

The following example shows adjacent TP parameters that are concatenated to
produce 1 transaction program name value for the generated entry:

**
* ADD STATEMENT WITH CONCATENATED TP PARAMETERS. *
* THE GENERATED TRANSACTION PROGRAM NAME IS: *
* HEX : C2C5C7C9 D5010203 5BC5D5C4 *
* EBCDIC : B E G I N . . . $ E N D *
**
ADD N-CONCAT

T-BEGIN
T-010203
T-$$
T-END
...

88 TPF V4R1 ACF/SNA Data Communications Reference

LU-lun
Specifies the partner LU name associated with a symbolic destination name. LU
can be abbreviated to L.

The LU parameter value is a string from 1 to 17 characters long, consisting of
an LU name and an optional network ID. If the network ID is included, it must
precede the LU name and be separated from it with a period. If you only
include the LU name, a period is not required.5 Both the network ID and the LU
name must be from 1 to 8 characters long, must contain only capital letters
(A–Z) and numeric digits (0–9), and must begin with a capital letter. Any LU
parameter that does not satisfy these requirements is flagged as an error. The
following are examples of valid LU parameter values:

NETID.LUNAME
LUNMONLY
N112358D.L1234567
N.L
LU62MAPD

The partner LU name field written to the side information data set is a
variable-length field from 1 to 17 bytes long. The LU parameter value is copied
to it without conversion or padding.

MODE-mode
Specifies the mode associated with a symbolic destination name. MODE can be
abbreviated to MOD, MO, or M.

The MODE parameter value is a string from 1 to 8 characters long. It must
contain only capital letters (A–Z) and numeric digits (0–9), and must begin with
a capital letter. Any MODE parameter value that does not satisfy these
requirements is flagged as an error. The mode field written to the side
information data set is a variable-length field from 1 to 8 bytes long. The MODE
parameter value is copied to it without conversion or padding.

REMOVE NAME-sdn

REMOVE
Can be coded anywhere except before a LOAD statement. Each REMOVE
statement requires the NAME parameter. If the NAME parameter is omitted or
repeated in the REMOVE statement, the statement is flagged with an error. The
TP, LU, and MODE parameters are not required for this statement. Each
occurrence of 1 of these parameters is flagged as requiring attention, and the
parameter value is ignored.

NAME-sdn
Specifies the symbolic destination name of the side information table entry to be
removed. Refer to the ADD statement parameter description for additional
information about this parameter.

CHQI Input File Example
Figure 54 on page 90 shows an example of a CHQI input file.

5. For consistency with TPF commands, LU parameters specified as .luname; that is, no network ID but a leading period before the
LU name are accepted. The leading period is not included in the side information data set or in the online side information table.

TPF Advanced Program-to-Program Communications 89

Figure 55 on page 91 shows how the TPF operator console looks after loading the
side information data set generated from Figure 54.

**
* THIS CHQI INPUT FILE GENERATES A TPF-LOADABLE SIDE INFORMATION DATA SET THAT *
* REMOVES SOME OBSOLETE SIDE INFORMATION TABLE ENTRIES AND ADDS SOME NEW 1S. *
**

LOAD S-BSS

**
* IF CODED, THE LOAD STATEMENT MUST BE THE FIRST STATEMENT IN THE INPUT FILE. *
* COMMENTS AND BLANK LINES CAN PRECEDE THE LOAD STATEMENT. *
**

DESCR ==
DESCR = REVISIONS TO SIDE INFORMATION TABLE =
DESCR = CREATED 01/30/91 =
DESCR ==

**
* THE FOLLOWING ENTRIES ARE OBSOLETE AND WILL BE REMOVED *
**
REMOVE N-OBSDEST1
REMOVE N-OBSDEST2
REMOVE N-OBSDEST3

DESCR ==
DESCR = OBSOLETE ENTRIES HAVE BEEN DELETED =
DESCR ==

* THE FOLLOWING NEW ENTRIES WILL BE ADDED *

ADD N-NEWDEST1 T-TPNAME1 L-SNANET.LU62MAP1 M-MODE1
ADD N-NEWDEST2 T-TPNAME2 L-SNANET.LU62MAP2 M-MODE2
ADD N-NEWDEST3 T-TPNAME3 L-SNANET.LU62MAP3 M-MODE3

DESCR ==
DESCR = NEW ENTRIES HAVE BEEN ADDED =
DESCR ==

Figure 54. Example of an Input File for CHQI

90 TPF V4R1 ACF/SNA Data Communications Reference

CHQI Input Statements and ZNSID Commands
The syntax of the CHQI input file is similar to the syntax of the ZNSID command.
The main differences between CHQI input statements and ZNSID commands are
as follows:

v There is no CHQI equivalent of the ZNSID DISPLAY, INITIALIZE, LOAD, or
HELP commands.

v For entries in the side information table with the same symbolic destination name
as an entry in a side information data set, the CHQI ADD statement works the
same as the ZNSID CHANGE command.

If the NAME parameter of a ZNSID ADD command matches the symbolic
destination name of an entry in the side information table, the command is
rejected. If the NAME parameter of a CHQI ADD statement matches the symbolic
destination name of an entry already in the side information table when the side
information data set is loaded, the entry loaded from the side information data set
replaces the online entry.

Note: Only those values that are coded in the input file are replaced.

Consider, for example, there is an entry in the table for a symbolic destination
name of SYMDEST0. An input file contains the statement:

ADD N-SYMDEST0 M-MODE0

(the LU and TP parameters are not specified). When the input file is processed,
attention messages are generated stating that the LU and TP parameters are
missing. After the resulting data set is loaded to TPF, the entry for SYMDEST0
contains the value for MODE which was specified by the input file; the values for
LU and TP remain as they were before the new data was loaded.

NSID0017I 01:23:45 USER TEXT FROM SIDE INFORMATION GDS
==
= REVISIONS TO SIDE INFORMATION TABLE =
= CREATED 01/30/91 =
==
--- END OF DESCRIPTION ---

NSID0017I 01:23:45 USER TEXT FROM SIDE INFORMATION GDS
==
= OBSOLETE ENTRIES HAVE BEEN DELETED =
==
--- END OF DESCRIPTION ---

NSID0017I 01:23:46 USER TEXT FROM SIDE INFORMATION GDS
==
= NEW ENTRIES HAVE BEEN ADDED =
==
--- END OF DESCRIPTION ---

NSID0005I 01.23.46 NEW SIDE INFORMATION TABLE ENTRIES LOADED
ENTRIES PROCESSED - 6
ENTRIES ADDED - 3
ENTRIES CHANGED - 0
ENTRIES REMOVED - 3
ERRORS DURING LOAD - 0

Figure 55. TPF Console Display. This shows the result of loading the side information data
set generated using the input in Figure 54 on page 90.

TPF Advanced Program-to-Program Communications 91

v The CHQI LOAD verb specifies a particular subsystem on which the side
information data set must be loaded. There is no equivalent ZNSID command;
the ZNSID LOAD command is used to specify which side information data set is
to be loaded and to perform the loading of side information entries from that data
set.

v CHQI does not require or accept the token ZNSID preceding its verbs.

v ZNSID allows abbreviation of some verbs, CHQI does not.

v The ZNSID ADD command requires the NAME parameter and at least 1 of the 3
parameters TP, LU, and MODE (this is done mainly to allow entering of values
too long to fit on 1 input line using successive commands). The CHQI ADD
statement requires only the NAME parameter.

v CHQI concatenates adjacent TP parameter values. ZNSID rejects more than 1
TP parameter per command.

Running CHQI
CHQI consists of a single CSECT that can be assembled, link-edited, and run
under either MVS or CMS. There are no runtime parameters for CHQI, but you
must define the following 3 data sets:

Input file
Is the file discussed previously in “Creating the Input File” on page 85. The DD
name for this file must be CHQIIN.

Side information data set
Is the standard labeled tape or general data set created by CHQI, which can be
loaded online by TPF. The DD name for this file must be SIDOUT.

Note: If you are writing the data set to tape be sure to include IBM standard
labels. For MVS, code the LABEL = (,SL) parameter on the SIDOUT DD
card. For CMS, include the SL parameter on the FILEDEF SIDOUT
command.

The side information data set is described further in “Side Information Data Set”
on page 93.

The output listing
is a printable file containing ANSI printer control characters. It includes a listing
of the input file with attention messages and errors flagged, and a summary of
the processing. The DD name for this file must be CHQILIST.

The contents of the output listing is described in “CHQI Output Listing” on
page 93.

The following is a list of the possible return codes from CHQI.

Code Meaning

0 Processing completed normally; no error messages or attention messages
are found.

4 Processing completed; attention messages were found, but no error
messages.

8 Processing completed; errors were found.

12 CHQI was not able to open the input file.

16 CHQI was not able to open the output side information data set.

20 CHQI was not able to open the output listing file.

92 TPF V4R1 ACF/SNA Data Communications Reference

Sample JCL for CHQI
The following is a sample of the JCL to create a tape under MVS:

//* Your JOB card here
//**************************
//* Execute CHQI *
//**************************
//CHQIRUN EXEC PGM=CHQI41
//STEPLIB DD DSN=TPF.BASE.RLSE.LK,DISP=SHR
//SYSUDUMP DD SYSOUT=*
//CHQIIN DD DSN=TPF.BASE.SIDINPUT(NEWSID),DISP=SHR
//CHQILIST DD SYSOUT=*
//SIDOUT DD UNIT=(TAPE,,DEFER),DISP=(NEW,KEEP),LABEL=(,SL),
// DSN=SIDTAPE,VOL=SER=xxxxx
/*

Note: Modify the data set names and volume serial number as appropriate.

The following is a sample of the commands to create a tape under CMS:
FILEDEF CHQIIN DISK SIDTAPE INPUT A
FILEDEF CHQILIST DISK SID LISTING A
FILEDEF SIDOUT TAP SL
CHQI

Note: Modify the file names as appropriate.

Side Information Table Offline Program Output
As stated earlier, CHQI generates 2 output files: a side information data set that can
be loaded online by TPF and an output listing describing the results of the
conversion of the input file to the side information data set.

Side Information Data Set
A side information data set consists of entries containing data to be added to or
removed from the side information table, or descriptive text to be displayed during
the load. The entries are grouped into TPF 4K (4095-byte) records.

Each record consists of an 80-byte header and forty 100-byte entries. The byte
following the last entry is used as an end-of-data indicator. The 14 remaining bytes
at the end of the record are not used and are set to binary zeros. The data format
in the record header and the entries is defined by the ISIDE data macro.

CHQI Output Listing
The CHQI output listing is a file of fixed-length 95-byte records. The first byte of
each record is an ANSI printer control character. The listing echoes the input file
with each line numbered and with attention or error messages interspersed among
the input lines. The last page of the listing is a summary of the number of entries
written to the side information data set and a summary of error and attention
messages.

Attention messages
Attention messages are issued when valid but extraneous parameters are
coded in REMOVE statements and when not all parameters are coded in
ADD statements. When an attention message is issued, the ADD or
REMOVE statement is still formatted into an entry and written to the side
information data set (if there are no errors in the statement). Missing ADD
parameters are set to null values in the generated entry; extraneous
REMOVE parameters are ignored. If there are attention messages but no
error messages, CHQI ends with a return code of 4.

TPF Advanced Program-to-Program Communications 93

Error messages
When an error message is issued, CHQI does not format the error
statement into an entry on the side information data set. When there are
errors, CHQI ends with a return code of 8.

File error messages
CHQI issues a file error message when a file (other than the listing) cannot
be opened. Summary information is written to the listing file and processing
ends without reading from the input file or writing to the side information
output data set.

All attention and error messages begin with the prefix CHQI and are fully described
in Messages (System Error and Offline) and Messages (Online).

The last page of the listing is a short summary of the processing that took place.
There are 3 sections to the summary.

The first section describes the entries that were written to the side information data
set. It includes a message telling which subsystem the data must be loaded to, or
that the data can be loaded to any subsystem, the number of ADD entries
generated, the number of REMOVE entries generated, and the number of lines of
descriptive text generated.

The second section summarizes any error or attention messages that were flagged
during processing. If any error or attention messages were flagged, the lines that
were flagged are also listed.

The third section contains the return code issued to the operating system when
CHQI ended.

Figure 56 on page 95 shows an example of a listing with a number of error and
attention messages.

94 TPF V4R1 ACF/SNA Data Communications Reference

|
|

TPF SIDE INFORMATION TABLE OFFLINE PROGRAM PAGE 1

LINE # |....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8|
---------+--+
000001 |** |
000002 |* * |
000003 |* SIDE INFORMATION INPUT -- A PLETHORA OF ERRORS. * |
000004 |* * |
000005 |** |
000006 | |
000007 |LOAD NAME=NEWINFO |
----------------------A--
A. CHQI0009E INVALID LOAD PARAMETER
000008 | |
000009 |DESCR THIS TEXT WILL GET PRINTED ON THE OPERATOR’S CONSOLE |
----------A--
A. CHQI0015E LOAD STATEMENT BEGINNING IN LINE 000007 ENDS WITHOUT SPECIFYING SS
000010 |DESCR WHEN THE OFFLINE DATA SET GETS LOADED. |
000011 | |
000012 |MODE-BATCH |
----------A--
A. CHQI0030E NO VERB WAS SPECIFIED FOR THIS PARAMETER
000013 | |
000014 |ADD LOAD DATA |
-----------------A----------B--
A. CHQI0007E ADD STATEMENT BEGINNING IN LINE 000014 ENDS WITHOUT SPECIFYING NAME
A. CHQI0003W ADD STATEMENT BEGINNING IN LINE 000014 ENDS WITHOUT SPECIFYING TP
A. CHQI0001W ADD STATEMENT BEGINNING IN LINE 000014 ENDS WITHOUT SPECIFYING LU
A. CHQI0002W ADD STATEMENT BEGINNING IN LINE 000014 ENDS WITHOUT SPECIFYING MODE
A. CHQI0014E LOAD MUST BE THE FIRST STATEMENT
B. CHQI0015E LOAD STATEMENT BEGINNING IN LINE 000014 ENDS WITHOUT SPECIFYING SS
B. CHQI0013E INVALID VERB
000015 | |
000016 |REMOVE ALL--EVERY |
-----------------A---B---
A. CHQI0012E INVALID REMOVE PARAMETER
B. CHQI0011E INVALID PARAMETER SYNTAX
000017 | |
000018 |ADD N=M=EXPEDITE L=LU.62 T-ABC123 |
----------A--------B---------------C-----------D---
A. CHQI0032E REMOVE STATEMENT BEGINNING IN LINE 000016 ENDS WITHOUT SPECIFYING NAME
B. CHQI0031E PARAMETER KEYWORD FOLLOWED BY PARAMETER KEYWORD
C. CHQI0019E LU NAME MUST BEGIN WITH AN UPPERCASE LETTER
D. CHQI0039E TP NAME CONTAINS HEX SUBSTRING WITH ODD NUMBER OF DIGITS
000019 | |
000020 |REMOVE NAME-SAME MODE-SLOW LU-SLOWNET.LU62 TP-ZAPMAP |
-----------------------------A----------B----------------C---------------------------------
A. CHQI0005W MODE PARAMETER IS IGNORED IN REMOVE STATEMENT
B. CHQI0004W LU PARAMETER IS IGNORED IN REMOVE STATEMENT
C. CHQI0006W TP PARAMETER IS IGNORED IN REMOVE STATEMENT
000021 | |
000022 |ADD N-3_DOG_NIGHT L-NET@NY.LU62MAPPED T-BLANK40SPACE M-1SECRESP |
----------------------------A---------B-----------C-----------D-----------E----------------
A. CHQI0035E SYMBOLIC DESTINATION NAME IS LONGER THAN 8 CHARACTERS
B. CHQI0026E Network ID CONTAINS INVALID CHARACTER

Figure 56. Example CHQI Output Listing (Part 1 of 2)

TPF Advanced Program-to-Program Communications 95

Loading the Side Information Data Set to TPF
After you have the side information data set generated and free of errors, you can
move on to steps 5, 6, and 7 listed in the beginning of “Generating the Side
Information Table for Mapped Conversations” on page 83.

TPF SIDE INFORMATION TABLE OFFLINE PROGRAM PAGE 2

LINE # |....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8|
---------+--+
C. CHQI0018E LU NAME IS LONGER THAN 8 CHARACTERS
D. CHQI0038E TP NAME CONTAINS AN EMBEDDED SPACE CHARACTER
E. CHQI0024E MODE MUST BEGIN WITH AN UPPERCASE LETTER
000023 | |
000024 |ADD N-MY M-DOG L-HAS T-FLEAS |
000025 | N-EVERY M-GOOD L-BOY.DOES T-FINE |
---------------A-----------B-----------C--------------------D------------------------------
A. CHQI0025E NAME IS ALREADY DEFINED FOR THIS STATEMENT
B. CHQI0022E MODE IS ALREADY DEFINED FOR THIS STATEMENT
C. CHQI0016E LU IS ALREADY DEFINED FOR THIS STATEMENT
D. CHQI0036E TP IS ALREADY DEFINED FOR THIS STATEMENT
000026 | |
000027 |ADD N-DEST0001 M-MODEMAP1 L-TPFNET1.MAPLU1 T-RECEIVER1 |
000028 |ADD N-DEST0002 M-MODEMAP2 L-TPFNET2.MAPLU2 T-RECEIVER2 |
000029 |ADD N-DEST0003 M-MODEMAP3 L-TPFNET3.MAPLU3 T-RECEIVER3 |
000030 |ADD N-DEST0004 M-MODEMAP4 L-TPFNET4.MAPLU4 T-RECEIVER4 |
000031 |ADD N-DEST0005 M-MODEMAP5 L-TPFNET5.MAPLU5 T-RECEIVER5 |
000032 | |
000033 |REMOVE N-OBSDEST1 |
000034 |REMOVE N-OBSDEST2 |
000035 |REMOVE N-OBSDEST3 |
000036 | |
000037 |END |
----------A--
A. CHQI0013E INVALID VERB

TPF SIDE INFORMATION TABLE OFFLINE PROGRAM PAGE 3

SUMMARY

SIDE INFORMATION DATA FOR ANY SUBSYSTEM
5 ADD ENTRIES WERE GENERATED
4 REMOVE ENTRIES WERE GENERATED
2 LINES OF DESCRIPTIVE TEXT WERE GENERATED

23 ERRORS WERE FLAGGED
6 WARNINGS WERE FLAGGED

THE FOLLOWING LINES WERE FLAGGED:

7 9 12 14 16 18 20 22 25 37

RETURN CODE = 8

Figure 56. Example CHQI Output Listing (Part 2 of 2)

96 TPF V4R1 ACF/SNA Data Communications Reference

The following description refers to Figure 57, which shows a TPF console during the
mounting of an offline generated side information tape, initialization of the online
side information table, and loading of the tape to the side information table.

1. The ZTVAR command activates the subchannel address of the tape drive on
which the tape is mounted.

2. The 2 ZTLBL commands create a TPF internal label (SID) matching the IBM
standard label on the offline generated tape, and make the internal label usable
so that the tape can be mounted.

3. The ZTMNT command defines the tape drive at subchannel address 580 as the
active SID tape. At this point the tape is accessible to a TPF online process.

4. The side information table has not been initialized, so the ZNSID INITIALIZE
function message is entered.

Note: The side information table must be initialized before any data can be
added to it. Initialization sets up the structure of the side information table
and clears any data that previously existed online. The side information
table must be initialized only when a new TPF system is brought online,
or when the entire table is to be replaced. If you attempt to load the side
information data set when the online table is not initialized, the following
response is returned to the operator console:

NSID0016E RECORD ID CHECK FAILURE, CHECK SIDE INFORMATION
TABLE INITIALIZATION

5. The ZNSID LOAD command loads the tape into the newly initialized side
information table.

6. ZNSID D displays 1 of the newly loaded side information entries.

User: ZTVAR A 580
System: CSMP0097I 11.48.39 CPU-B SS-BSS SSU-HPN IS-01
COTU0101I 11.48.39 TVAR BSS PROT ENTRY ACQUIRED FOR DEVICE 580

BY THIS PROCESSOR
CSMP0097I 11.48.39 CPU-B SS-BSS SSU-HPN IS-01
COTE0001I 11.48.39 TVAR - TAPE STATUS

ADDRESS TPNAME SSUNAME STATUS TPIND VOLSER DENS #BLOCKS LDR

580 AVAIL

User: ZTLBL SID C LSL F$SIDOUT$ I G
System: CSMP0097I 11.48.39 CPU-B SS-BSS SSU-HPN IS-01
COTL0001I 11.48.39 DTLB HPN - TAPE LABEL INFORMATION

SID - NOT USABLE I/O-INPUT L-SL D-ALL NOCOMP
NOBLK T - 000
F-SIDOUT G - S-0001
RETENTION PERIOD - 00007
LAST MOUNTED -
LAST FILE SERIAL NO -

User: ZTLBL SID U
System: CSMP0097I 11.48.39 CPU-B SS-BSS SSU-HPN IS-01
COTJ0044I 11.48.39 TLBL HPN COMPLETE

User: ZTMNT SID 580 AI
System: CSMP0097I 11.48.39 CPU-B SS-BSS SSU-HPN IS-01
COTM0046I 11.48.39 TMNT HPN TAPE SID MOUNTED ON DEVICE 580

VSN A00112 G S0001 D38K SL NOBLK

Figure 57. Loading a Side Information Offline Generated Tape (Part 1 of 2)

TPF Advanced Program-to-Program Communications 97

Resource Manager
The resource manager services requests relating to conversations. The requests
are initiated through presentation services when a TPF/APPC verb is issued by a
transaction program or through the presentation services for the control operator
(PS.COPR). PS.COPR is activated when a COPR.TP issues a TPF/APPC change
number of sessions verb (CNOSC macro) or control is passed from CNOS.TP.

The resource manager coordinates the following functions:

v Assigning conversation control blocks (CCBs) for conversations

v Assigning session control blocks (SCBs) for sessions

v Choosing sessions for a conversation and, if necessary, requesting use of the
session through bidding

v Requesting the session manager to activate a new session or to deactivate an
existing session

v Replying to requests (BIDs) that are received from remote resource managers for
the use of a session

v Limiting resource sessions

v Queuing allocate requests.

The resource manager also activates the functions required of the half-session
components.

User: ZNSID INITIALIZE
System: CSMP0097I 11.48.39 CPU-B SS-BSS SSU-HPN IS-01
NSID0004I 11.48.39 SIDE INFORMATION TABLE INITIALIZED

User: ZNSID LOAD T-SID
System: CSMP0097I 11.48.39 CPU-B SS-BSS SSU-HPN IS-01
NSID0037I 11.48.39 LOADING SIDE INFORMATION DATA
CSMP0097I 11.48.39 CPU-B SS-BSS SSU-HPN IS-01
NSID0017I 11.48.39 USER TEXT FROM SIDE INFORMATION TAPE
ADDING 100 ENTRIES TO SIDE INFORMATION TABLE
--- END OF DESCRIPTION ---
CSMP0097I 11.48.39 CPU-B SS-BSS SSU-HPN IS-01
NSID0005I 11.48.39 NEW SIDE INFORMATION TABLE ENTRIES LOADED
ENTRIES PROCESSED - 100
ENTRIES ADDED - 100
ENTRIES CHANGED - 0
ENTRIES REMOVED - 0
ERRORS DURING LOAD - 0
CSMP0097I 11.48.39 CPU-B SS-BSS SSU-HPN IS-01
COTC0087A 11.48.39 TCLS HPN REMOVE SID FROM DEVICE 580

VSN A00112 NOBLK
User: ZNSID D N-NAME100
System: CSMP0097I 11.48.39 CPU-B SS-BSS SSU-HPN IS-01
NSID0002I 11.48.39 SIDE INFORMATION ENTRY DISPLAY

NAME- NAME100
TP- TP100
LU- LU100

MODE- MODE100

Figure 57. Loading a Side Information Offline Generated Tape (Part 2 of 2)

98 TPF V4R1 ACF/SNA Data Communications Reference

Session Manager
The session manager is responsible for insuring that the underlying LU-LU session
needed for a conversation is available. When an ALLOCATE request is issued, the
session manager sends out a LOCATE/CDINIT to initiate another session if there is
no session active and bound or available for the conversation, and the session limit
has not been reached.

Note: There is 1 exception to this: PU 2.1 secondary LU (SLU) thread sessions
cannot be activated from the TPF side.

Initiating a Session
If you want to initiate a session before issuing an ALLOCATE request, you can use
1 of the following ways:

v The VTAM operator issues a VARY NET ACT LOGON command.

v Through the use of autologon at network definition for VTAM or CICS. To define
autologon in VTAM, code LOGAPPL on an LU. To define autologon in CICS,
code CONNECT=AUTO on the DFHTCT statements.

v The end user (remote LU operator) can also initiate a session. The procedures
for this depends on the type of remote LU. See the publications associated with
the remote LU for details on these procedures.

LU 6.2 BIND Command
See IBM Systems Network Architecture Format and Protocol Reference Manual:
Architecture Logic for LU Type 6.2 for information about the LU 6.2 BIND command.

Session Termination
Sessions are terminated with an UNBIND command. Session termination can be
requested in the following ways:

v The VTAM operator issues a VARY NET INACT .

v The remote LU sends a LOGOFF or Terminate-Self command to its SSCP.

v The TPF operator issues a ZNETW INACT command.

Note: If you inactivate a local TPF/APPC PLU that has SLU threads, only
sessions with the PLU are ended; there is no affect on any sessions with
the SLU threads.

v The TPF operator issues a ZNCNS RESET command.

v The TPF operator issues a ZNCNS CHANGE command to lower session limits.

For details on the ZNETW and ZNCNS commands, see the “ACF/SNA
Communications Commands” in TPF Operations.

Message Flow
The TPF/APPC support code buffers all data messages sent as a result of the
TPF/APPC SEND_DATA verb. The FMH5 built as a result of an ALLOCATE request
is also buffered. The messages remain in the buffer until 1 of the following occurs:

v The buffer is full

v The TPF/APPC FLUSH verb is issued by the transaction program

v Some other TPF/APPC verb causes the buffer to be flushed.

TPF Advanced Program-to-Program Communications 99

When the buffer is flushed, the TPF/APPC support code issues the TPF ROUTC
macro with the extended routing control parameter list (RCPL) to forward the
contents of the buffer. The buffer size is set to the maximum request unit (RU) size
of the session.

All inbound messages that are to be handled by the TPF/APPC support code arrive
and are processed by the base TPF SNA support. The base TPF SNA support,
recognizing that the remote LU sending the message is defined (using OSTG) as
an LU 6.2 resource, passes the message to LU 6.2 OPZERO program CS2A.
(CS2A is in control program CSECT CCSNAE.)

The LU 6.2 OPZERO program passes control to the communications source
program (COA4), which then passes control to the message editor. To use
TPF/APPC support, the remote LU sending the message must be in session with
an LU defined by the SIP MSGRTA statement that specifies the input message
processor program (CHDD) as the message editor.

Inbound Message Queuing
As stated earlier, the TPF/APPC support package receives incoming messages
from the communications source program in AM0SG format. The message may be
in 381–byte, 1055–byte, or 4KB blocks. CHDD reblocks the incoming messages
into 4K half-session to presentation services records (HPRs). These blocks are
chained together so that individual logical records are identified and presented to
presentation services. Logical records are identified by the logical record length (LL)
included as the first 2 bytes of a record. The maximum logical record length
supported by TPF/APPC is 32 767 (32KB). If a logical record is too large to fit in 1
4K block, it is segmented into multiple 4K pool files. These pool files are chained
using the TPF forward chain field in the standard record header. The end of the
chain is indicated by a value of zero in the forward chain field. Each logical record
contains a pointer in its primary HPR to the next logical record.

Note: If an FMH7 record is received, a new logical record is created for the FMH7,
even if the previous logical record is incomplete.

Once the message is blocked into HPR records, CHDD either queues the message
or passes it directly to the transaction program. The message is passed directly to
the transaction program (that is, there is no queuing) if the following conditions are
true:

v The transaction program (TP) is waiting for data; that is, the TP issued a verb
that caused the ECB to be suspended, or the TP issued an
ACTIVATE_ON_RECEIPT or ACTIVATE_ON_CONFIRMATION verb.

v The message contains enough information or data to satisfy the request.

When the message is queued, the HPR records are filed in short-term pools.

The conversation control block contains the file address of the first and last HPRs
on the inbound queue. Figure 58 on page 101 shows the HPRs as queued on the
inbound queue.

100 TPF V4R1 ACF/SNA Data Communications Reference

System Restart
TPF restart is generally responsible for bringing the TPF system back to the state it
was in at the time of a system outage. During software IPL, the CCBs and SCBs
are considered critical records, and the entire CCB and SCB areas are filed to the
DASD area to insure a current copy is available for the subsequent TPF restart
programs.

The TPF restart programs recognize when the TPF SNA resources have been
redefined across a system outage. TPF SNA resources are redefined by loading a
new copy of the OSTG pilot tape, which is used to define the SNA resources as
known to TPF. When this occurs, all sessions with the remote SNA resources are
disrupted. When the TPF/APPC restart programs recognize that this fresh load has
taken place, the conversation allocation process must begin again; no attempt is
made to notify the remote transaction program of any conversation deallocation,
because the underlying session required to send the notification has been unbound.

Session Considerations
If a hardware IPL occurs, TPF unbinds all LU 6.2 sessions and does not attempt to
bring these sessions back. TPF does retain the session limits previously initialized
so you do not have to issue another CNOS INITIALIZE request.

Inbound Queue

First in
Inbound Queue

Last in
Inbound Queue

HPR HPR HPR

HPR HPR

HPR 0

Logical Record Logical Record Logical Record

0

0

0

Primary HPR

Figure 58. Inbound Queue

TPF Advanced Program-to-Program Communications 101

If a software IPL occurs, the LU 6.2 sessions remain active; however, all
conversations are deallocated.

Conversation Considerations
Conversations that were active at the time of an outage are represented as a
transaction program instance, identified in a TPF entry control block (ECB) by a
unique TCB ID. Because all ECBs are lost across a system outage, any
conversations controlled by the transaction program instance must be deallocated.
The TPF restart segments activate the TPF/APPC support restart segments.
TPF/APPC restart uses the keypointed copy of the CCB on the fixed file to find all
conversations that were active at the time of the system outage. Then, TPF/APPC
notifies the remote transaction program that the conversation was terminated by
sending a DEALLOCATE request. The local TPF transaction program, represented
by the ECB and associated programs, cannot be notified of the system outage
implied by a TPF restart.

Subsystem Considerations
A TPF transaction program can run in any subsystem. When a remote LU issues an
ALLOCATE request, TPF activates the transaction program in the subsystem where
the local LU for that session resides. Once a conversation is started, the ECB
representing the transaction program cannot switch subsystems.

Considerations for a Tightly Coupled Environment
The TPF/APPC support code allows the TPF user-written transaction programs to
be run on any available I-stream in a TPF tightly coupled environment. In fact, the
TPF transaction programs can be defined to run on any I-stream: the main I-stream
or a specific I-stream. This definition is done with the ITPNT macro as described in
TPF General Macros.

Because the TPF transaction programs are running on any I-stream in the tightly
coupled environment, the TPF/APPC support code activated by a TPF/APPC verb
request also runs on the same I-stream that initiated the verb request. With the
various components of the TPF/APPC support code running on multiple I-streams
concurrently, the potential for simultaneous updating exists. To ensure proper
sequence of updates, TPF/APPC support provides a locking mechanism by means
of the ILCKCB and IULKCB macros. (See TPF System Macros for details on these
macros.)

The TPF/APPC support code is sometimes activated as a result of inbound
messages received in TPF from the remote transaction programs. To insure that
these messages are queued and presented to the transaction program in the same
sequence as they arrive in TPF, this portion of the TPF/APPC support code must
always run on a single specified I-stream. To accomplish this serialization, when the
TPF communications source program (COA4) determines that the message is from
a resource defined as an LU 6.2 resource, it uses the SWISC macro to assign the
ECB to I-stream 2 and to activate the edit program specified in the routing control
application table (RCAT). Specifying I-stream 2 instead of the main I-stream allows
the queuing logic overhead to be moved off of the main I-stream. (Of course, in a
uniprocessor system, there is only 1 I-stream, and the SWISC macro simply
performs the program enter function without changing I-streams.)

102 TPF V4R1 ACF/SNA Data Communications Reference

|

Considerations for a Loosely Coupled Environment
For sessions between a remote LU and a TPF/APPC LU (not an SLU thread), there
is a restriction that forces all sessions with a particular remote LU 6.2 to be
established with only 1 processor in the loosely coupled complex. It does not matter
which processor is chosen, but once the first session is established, all sessions
with this remote LU 6.2 must go to the same processor as the first session.

To overcome this restriction, TPF provides unique TPF/APPC service LUs for each
processor and a TPF service transaction program to allow TPF/APPC transaction
programs in all processors of a loosely coupled complex to have LU 6.2
conversations with a particular remote LU 6.2.

To fully utilize TPF/APPC in a loosely coupled environment, there are some
installation tasks that you need to perform. These tasks are described in “Loosely
Coupled Complex Example”; however, before setting up your system to run
TPF/APPC in a loosely coupled environment, you must determine the kind of
sessions that your applications require.

A remote LU can view the complex in 1 of 2 ways:
v Each host as a separate TPF image
v The entire loosely coupled complex as a single TPF image.

If a remote LU needs sessions with multiple TPF hosts (separate image view), the
LU can do 1 of the following:

v Establish sessions with a unique TPF/APPC service LU in each TPF host
required

v Establish sessions with SLU threads in each TPF host required.

If a remote LU only requires sessions with 1 TPF host (single image view), the LU
can specify a local TPF/APPC LU name to establish a session with 1 TPF host.

1 factor to consider when determining whether an application needs sessions with
multiple hosts or only 1 host is the number of messages it generates. Some
applications may generate such a high volume of messages that funneling all the
requests to a single TPF processor in the complex would create a problem with
performance.

From the point of view of the TPF system, if all the TPF hosts need to communicate
with the same remote, they can also establish sessions using the TPF/APPC
service LUs in each host.

Loosely Coupled Complex Example
Figure 59 on page 105 the many possible types of TPF/APPC sessions. In this
example, there are 2 TPF loosely coupled complexes, each containing 2 hosts (LC1
contains TPFA and TPFB, and LC2 contains TPFC and TPFD), and several remote
LU 6.2 nodes.

The local TPF/APPC LUs for the LC1 complex are APPC, TOUR, and DEAD. The
local TPF/APPC LUs for the LC2 complex are LU62 and LVNV. (The local
TPF/APPC LUs could be the same for both complexes in this example.) The
TPF/APPC service LU for: (1) TPFA is SVCA, (2) TPFB is SVCB, (3) TPFC is
SVCC, and (4) TPFD is SVCD.

TPF Advanced Program-to-Program Communications 103

In each host, the diagram shows the local TPF/APPC LUs and the unique
TPF/APPC service LU, the RVTs for the remote LUs, and any SCBs associated
with the particular remote RVT. Each SCB represents 1 session. The LU name in
the SCB box indicates the local partner LU with which the remote is in session.

In the example, remote LU DB2 needs to communicate with multiple TPF hosts, so
it is set up to view each TPF host in the complex as a separate image. Sessions
are established using the service LU in each host; DB2 currently has 2 sessions
with each host.

Remote LU PS2Y also views LC1 as separate TPF images and has a session
established with each service LU in the complex. If necessary, PS2Y could also
establish sessions with 1 of the TPF/APPC LUs in TPFC or TPFD, or it could
establish sessions with 1 or both service LUs in TPFC and TPFD.

Remote LU PS2X views the LC1 complex as a single TPF image. It currently has 3
sessions established with LU APPC in TPFA. Because TPFB is in the same loosely
coupled complex as TPFA, no sessions between PS2X and TPFB can be
established at this time. However, because TPFC and TPFD are in a different
complex, PS2X can establish sessions with either host in the LC2 complex.

Note: Even though sessions between TPFB and PS2X cannot be established at
this time, transaction programs in TPFB can establish conversations with
transaction programs in PS2X using the TPF service transaction program.

Remote LUs PS2K and PS2Q both view LC2 as a single TPF image. PS2K has
sessions with LU62 in TPFC and cannot establish sessions with TPFD, but can
establish sessions with the hosts in LC1. PS2Q has a session with LVNV in TPFD
and cannot establish sessions with TPFC.

PS2N has a session with the service LU in TPFC, which allows PS2N to establish
sessions with the service LU of TPFD if needed.

Although not shown with lines in this diagram, there are also sessions between the
service LUs of the hosts in different loosely coupled complexes as well as in the
same complex. For example, SVCA in TPFA has 2 sessions with SVCC in TPFC
and 1 session with SVCD in TPFD. SVCA also has a session with SVCB.

104 TPF V4R1 ACF/SNA Data Communications Reference

Loosely Coupled Installation Checklist
This section describes the tasks you must perform to use the TPF/APPC support in
a loosely coupled environment.

Note: These tasks are also listed in the “TPF/APPC Installation Checklist” on
page 60. This section is provided to give more specific details for the
definitions required for loosely coupled environments.

APPC LU62

APPC LU62

DB2 DB2

DB2 DB2

PS2X PS2K

PS2X PS2K

PS2Y

DB2

PS2Q

PS2N

PS2X PS2K

TPFA TPFC

LC1 LC2

TPFB TPFD

PS2Y PS2N

PS2Y PS2N

SVCB PS2Q

SVCD

SVCA PS2Q

SVCC SVCA

SVCD SVCB

SVCC

SVCD SVCB

SVCC SVCA

ptnr=SVCA ptnr=SVCC

ptnr=SVCB ptnr=SVCD

ptnr=APPC ptnr=LU62

ptnr=SVCA ptnr=SVCC

ptnr=SVCB

ptnr=SVCA

ptnr=SVCB ptnr=LVNV

ptnr=SVCA ptnr=SVCC

ptnr=SVCB ptnr=SVCD

ptnr=SVCA ptnr=SVCC

ptnr=SVCB ptnr=SVCD

Local LUs Local LUs

Local LUs Local LUs

RVTs RVTs

RVTs RVTs

SCBs SCBs

SCBs SCBs

SVCA SVCC

SVCA SVCD

ptnr=SVCA ptnr=SVCC

ptnr=SVCB ptnr=SVCD

ptnr=APPC ptnr=LU62

ptnr=SVCA ptnr=SVCC

ptnr=SVCB ptnr=SVCD

TOUR LVNV

TOUR LVNV

ptnr=APPC ptnr=LU62

DEAD

DEAD

Figure 59. Loosely Coupled Complex Example for TPF/APPC Sessions

TPF Advanced Program-to-Program Communications 105

The last 3 tasks are not required if all remote LU 6.2s are to view the
complex as a single TPF image and the TPF system does not initiate any
conversations with these remote LUs (that is, the remote LUs start all
conversations).

These tasks are as follows:

v Define the local TPF applications that represent the TPF/APPC LUs.

v Define 1 TPF/APPC service LU for every processor in the TPF loosely coupled
complex, if necessary.

v Define the service transaction program in the transaction program name table
(TPNT), if necessary.

v Initialize the session limits for the mode name used by the TPF/APPC service
LU, if necessary.

Defining Local TPF/APPC LUs
See “TPF/APPC Installation Checklist” on page 60 for information about how to
define the local TPF/APPC LUs.

Defining the TPF/APPC Service LU
Define 1 TPF/APPC service LU for every processor in the TPF loosely coupled
complex with a MSGRTA statement as follows:

MSGRTA APLIC=SVC x,EDIT=CHDD,APROC=x,ASNA=APPC

where x is the processor ID.

For example, if there are 4 processors in the loosely coupled complex (TPFA,
TPFB, TPFC, TPFD), code the following:

MSGRTA APLIC=SVCA,EDIT=CHDD,APROC=A,ASNA=APPC
MSGRTA APLIC=SVCB,EDIT=CHDD,APROC=B,ASNA=APPC
MSGRTA APLIC=SVCC,EDIT=CHDD,APROC=C,ASNA=APPC
MSGRTA APLIC=SVCD,EDIT=CHDD,APROC=D,ASNA=APPC

Defining the Service Transaction Program
If any remote LUs view the complex as a single TPF image and TPF is to initiate
conversations with these remotes, define the service transaction program in the
transaction program name table with the ITPNT macro as follows:

ITPNT TYPE=ATTACH,PGM=CHRP,TPN=TPF_SERVICE_TP
ITPNT TYPE=AOR,PGM=CHRM,TPN=CHRM

Initializing the Session Limits
When initialize the network, use the ZNCNS command to initialize the session limits
for the mode name used by the TPF/APPC service LUs. (As with the ITPNT
definitions, this is necessary only if any remote LUs view the complex as a single
TPF image and TPF is to initiate conversations with these remotes.)

You must issue a ZNCNS INITIALIZE for each processor pair. For example, if there
are 4 processors (TPFA, TPFB, TPFC, TPFD) and you decide that each processor
needs 10 sessions with each of the remaining processors, issue the following
commands:

v From TPFA:

106 TPF V4R1 ACF/SNA Data Communications Reference

ZNCNS INIT LU-SVCB MODE-SERVMODE LIMIT-10 LOCAL-SVCA
ZNCNS INIT LU-SVCC MODE-SERVMODE LIMIT-10 LOCAL-SVCA
ZNCNS INIT LU-SVCD MODE-SERVMODE LIMIT-10 LOCAL-SVCA

v From TPFB:

ZNCNS INIT LU-SVCC MODE-SERVMODE LIMIT-10 LOCAL-SVCB
ZNCNS INIT LU-SVCD MODE-SERVMODE LIMIT-10 LOCAL-SVCB

v From TPFC:

ZNCNS INIT LU-SVCD MODE-SERVMODE LIMIT-10 LOCAL-SVCC

Notes:

1. This is only an example; you can specify any limit that is required by your
environment. You can also specify the number of contention winners and
contention losers. See the ZNCNS command in TPF Operations for additional
information.

2. It does not matter which host in the TPF to TPF pair initializes the session
limits. For example, TPFB can issue the ZNCNS message to initialize the limits
with TPFA.

3. The INITIALIZE only establishes the session limits; it does not activate sessions
for the mode name SERVMODE. Sessions are brought up by TPF/APPC as
needed.

4. Once the session limits are fine-tuned for a TPF complex, you can write a
COPR.TP to issue CNOSC macros to initialize the session limits rather than
issuing several ZNCNS commands.

User Exits
The TPF/APPC support code activates the following user exits:

CSXA Activated when an LU-LU session is established.

CSXB Activated when a conversation allocation request has been successful or
failed.

CSXC Activated when a session has ended.

Transaction Program Design Considerations
When designing your application, referred to as a transaction program (TP) in LU
6.2 terminology, a major factor to consider is the volume of traffic that will flow
between the TP in the TPF system and the TP in the remote LU. There are 3
classes of LU 6.2 conversations that can be used:
v Traditional LU 6.2 conversations
v Pipeline LU 6.2 conversations
v Shared LU 6.2 conversations.

Each class has advantages and disadvantages in the areas of application design
and throughput. To help you understand these advantages and disadvantages, the
following information compares the characteristics of each class performing a
common task; processing 4 messages where the TPF TP sends a request (data) to
the remote LU and receives a response (data).

Traditional LU 6.2 Conversations
The majority of existing LU 6.2 applications send and receive data on the same
session. This is known as traditional LU 6.2 conversations. From a TP design point

TPF Advanced Program-to-Program Communications 107

of view, this is the easiest method to use. If the number of transactions to be
processed is low, then traditional LU 6.2 conversations are the best choice.

Figure 60 shows how a TP written to use traditional LU 6.2 conversations processes
4 messages. 1 ECB processes an entire message; the request and the response
(req1 and rsp1, for example). Each message uses its own conversation, and the
request and response flow on the same conversation.

Only 1 conversation can use a given LU 6.2 session at a time. When a
conversation ends, another conversation can use that session. The main drawback
to using traditional LU 6.2 conversations is that the session is not usable from the
time that the TPF system sends out the request until the response is received. In
the sample TP, the 4 messages are processed 1 at a time. Even though the TPF
system has 4 requests to send out, the next request cannot be sent out until the
response to the current request is received.

Using LU 6.2 parallel sessions helps the throughput situation because there are
multiple sessions between the TPF system and the remote LU. For example, if you
have 20 parallel sessions, you can process 20 messages at a time. If the TPF
system is generating a consistently large amount of requests and processing each
request in the remote LU takes a long time, then it is likely that all parallel sessions
will be in use forcing requests to queue up in the TPF system. For high-volume TPs
like these, traditional LU 6.2 conversations are not a good choice.

Pipeline LU 6.2 Conversations
Pipeline LU 6.2 conversations are 1-way conversations. In most cases, 2
conversations are used; 1 for sending data and the other for receiving data. Using

TPF System Remote LU

ECB 1 ALLOCATE
SEND_DATA (req1)
RECEIVE (rsp1)
RECEIVE (deallocate)
DEALLOCATE LOCAL

ECB 2 ALLOCATE
SEND_DATA (req2)
RECEIVE (rsp2)
RECEIVE (deallocate)
DEALLOCATE LOCAL

ECB 3 ALLOCATE
SEND_DATA (req3)
RECEIVE (rsp3)
RECEIVE (deallocate)
DEALLOCATE LOCAL

ECB 4 ALLOCATE
SEND_DATA (req4)
RECEIVE (rsp4)
RECEIVE (deallocate)
DEALLOCATE LOCAL

BB,FMH5,CD,req1
rsp1,CEB

BB,FMH5,CD,req2
rsp2,CEB

BB,FMH5,CD,req3
rsp3,CEB

BB,FMH5,CD,req4
rsp4,CEB

Figure 60. Traditional LU 6.2 Conversations

108 TPF V4R1 ACF/SNA Data Communications Reference

pipeline conversations requires more work by the TP because a request is sent
over 1 conversation, but the response comes back over a different conversation. It
is up to the TP to correlate responses with requests.

Figure 61 on page 110 shows how a TP written to use pipeline LU 6.2
conversations processes 4 messages. 2 ECBs are needed to process a message; 1
ECB sends out the request and a different ECB is activated to process the
response when that response is received. To process a message, 2 conversations
are used; 1 for the request and 1 for the response. By ending the conversation as
soon as a request is sent out, the session is immediately available and can be used
to send out a second request before the response to the first request is received.

Pipeline conversations allow a large amount of messages to flow between the TPF
system and a remote LU. An example of pipeline conversations can be found in any
APPN network. A control point (CP) has special sessions, called CP-CP sessions,
with each adjacent CP. These CP-CP sessions are a pair of LU 6.2 sessions used
as 1-way pipes.

TPF Advanced Program-to-Program Communications 109

Shared LU 6.2 Conversations
Shared LU 6.2 conversations are similar to pipeline conversations in that a pair of
1-way pipes are used. The difference is that shared conversations allow multiple
messages to be processed by 1 conversation, thereby eliminating the overhead
involved with starting and ending the conversations associated with pipeline
conversations. Shared conversations are more efficient from a network point of view
because the number of path information units (PIUs) that flow are drastically
reduced compared to traditional or pipeline LU 6.2 conversations.

When starting a conversation, a TPF TP codes a parameter on the TPPCC
ALLOCATE macro (or tppc_allocate C language function) to indicate that the

ECB 1 ALLOCATE
SEND_DATA (req1)
DEALLOCATE FLUSH

ECB 2 ALLOCATE
SEND_DATA (req2)
DEALLOCATE FLUSH

ECB 3 Activated
RECEIVE (rsp1)
RECEIVE (deallocate)
DEALLOCATE LOCAL

ECB 4 ALLOCATE
SEND_DATA (req3)
DEALLOCATE FLUSH

ECB 5 Activated
RECEIVE (rsp2)
RECEIVE (deallocate)
DEALLOCATE LOCAL

ECB 6 ALLOCATE
SEND_DATA (req4)
DEALLOCATE FLUSH

ECB 7 Activated
RECEIVE (rsp3)
RECEIVE (deallocate)
DEALLOCATE LOCAL

ECB 8 Activated
RECEIVE (rsp4)
RECEIVE (deallocate)
DEALLOCATE LOCAL

TPF System Remote LU

Legend:
PIUs for the TPF Send Pipe

PIUs for the TPF Receive Pipe

BB,FMH5,CEB,req1

BB,FMH5,CEB,req2

BB,FMH5,CEB,req3

BB,FMH5,CEB,req4

BB,FMH5,CEB,rsp4

BB,FMH5,CEB,rsp3

BB,FMH5,CEB,rsp2

BB,FMH5,CEB,rsp1

Figure 61. Pipeline LU 6.2 Conversations

110 TPF V4R1 ACF/SNA Data Communications Reference

conversation is shared. The shared option on the ALLOCATE verb starts the
conversation that the TPF system will use as the 1-way pipe to send data.

Only certain LU 6.2 verbs are allowed for shared conversations because these
conversations are 1-way outbound pipes. The valid verbs include SEND_DATA,
FLUSH, GET_ATTRIBUTES, and DEALLOCATE (except when TYPE=CONFIRM is
specified). Any ECB can issue 1 of these verbs for a shared conversation. For a
conversation that is not shared, only 1 ECB (the ECB that creates or owns the
conversation) can issue verbs for that conversation.

Multiple requests (from different ECBs) all flow on the same shared conversation.
To increase network efficiency, multiple requests are packaged together and sent
out in a single PIU. Multiple responses are also returned in a single PIU.

Figure 62 on page 112 shows how a TP written to use shared LU 6.2 conversations
processes 4 messages. 1 ECB starts the shared conversation, which causes the TP
in the remote LU to start the other shared conversation. Next, ECBs in the TPF
system representing different TPs issue SEND_DATA verbs. In this example, 4
requests fit in a PIU, so all 4 requests are sent out in a single PIU. However, only 2
responses fit in a PIU. To handle responses, the ECB created when the second
conversation was started (ECB 2) issues an ACTIVATE_ON_RECEIPT verb
(equivalent to the LU 6.2 RECEIVE verb except that the data received is passed to
a new ECB, not to the ECB that issued the ACTIVATE_ON_RECEIPT verb). When
the first response reaches the TPF system, a new ECB is created (ECB 7) and the
response (rsp1) is passed to ECB 7. ECB 7 immediately issues an
ACTIVATE_ON_RECEIPT verb, and then processes the response that arrived. ECB
8 is created right away because the second response (rsp2) has already been
received by the TPF system. ECB 8 also issues ACTIVATE_ON_RECEIPT, and
then processes the response that it was passed (rsp2).

TPF Advanced Program-to-Program Communications 111

Why Use Shared Conversations
Table 3 on page 113 shows the statistics for processing 4 messages using the
different LU 6.2 conversation methods. To do comparisons, a larger scale is
needed, so the data in Table 4 on page 113 for processing 100 messages will be
used. This table shows the value of using shared conversations to process
high-volume messages.

In traditional and pipeline LU 6.2 conversations, 40-50% of the verbs issued by the
TP (ALLOCATE and DEALLOCATE) is overhead used to start and end those
conversations. For shared LU 6.2 conversations, less than 1% of the verbs is
overhead.

An even larger savings is in the number of PIUs. Both traditional and pipeline LU
6.2 conversations require 2 PIUs to process each message. Table 4 on page 113
uses realistic values to say that 25 requests fit in 1 PIU and 10 responses fit in 1

ECB 1 ALLOCATE
FLUSH

ECB 2 Activated
ACTIVATE_ON_RECEIPT

ECB 3 SEND_DATA (req1)

ECB 4 SEND_DATA (req2)

ECB 5 SEND_DATA (req3)

ECB 6 SEND_DATA (req4)

ECB 7 Activated
ACTIVATE_ON_RECEIPT
Process rsp1

ECB 8 Activated
ACTIVATE_ON_RECEIPT
Process rsp2

ECB 9 Activated
ACTIVATE_ON_RECEIPT
Process rsp3

ECB 10 Activated
ACTIVATE_ON_RECEIPT
Process rsp4

TPF System Remote LU

Legend:
PIUs for the TPF Send Pipe

PIUs for the TPF Receive Pipe

BB,FMH5

BB,FMH5

req1,req2,req3,req4

rsp1,rsp2

rsp3,rsp4

Figure 62. Shared LU 6.2 Conversations

112 TPF V4R1 ACF/SNA Data Communications Reference

PIU. Using these numbers, only 16 PIUs are needed to process 100 messages with
shared LU 6.2 conversations. The other classes of conversations require 200 PIUs,
therefore shared conversations reduce the number of PIUs by over 90% in this
example.

Table 3. LU 6.2 Statistics for Processing 4 Messages

Statistic Traditional Pipeline Shared

Number of ALLOCATE verbs 4 4 1

Number of SEND_DATA verbs 4 4 4

Number of RECEIVE or
ACTIVATE_ON_RECEIPT verbs

8 8 4

Number of DEALLOCATE verbs 4 8 0

Number of conversations 4 8 2

Number of PIUs 8 8 5

Table 4. LU 6.2 Statistics for Processing 100 Messages

Statistic Traditional Pipeline Shared

Number of ALLOCATE verbs 100 100 1

Number of SEND_DATA verbs 100 100 100

Number of RECEIVE or
ACTIVATE_ON_RECEIPT verbs

200 200 100

Number of DEALLOCATE verbs 100 200 0

Number of conversations 100 200 2

Number of PIUs 200 200 16

Sample Transaction Programs
When describing program-to-program communications, you must keep in mind your
perspective. Program-to-program communications relies on the presence of a local
program and a complimentary remote program. The function provided by this pair of
programs is distributed in the 2 systems.

The following sample TPF transaction programs (TPs) show how you can use the
TPF/APPC support package to have 2 TPF systems communicate with each other
to perform a simple task. To reduce confusion, the following sample programs are
described as the requesting program and the requested program. The requesting
program initiates the communications process and asks the requested program to
provide some information. The requesting program then accepts the response from
the requested program, takes some action based on the response and then
terminates the communications process. In the following example, the simple task is
to have 1 TPF system (the requesting TPF system) check the validity of a FACE
record type and ordinal number on a remote TPF system (the requested TPF
system).

These samples are provided solely to illustrate the interrelationship of the 2
transaction programs and are not intended to demonstrate all the functions or
possibilities of the TPF/APPC support package. In fact, the sample programs
described below ignore most of the error situations that may occur and that a fully

TPF Advanced Program-to-Program Communications 113

functional program would be expected to handle. It is beyond the scope of these
sample programs to demonstrate the necessary error handling of a fully functional
program.

Sample Transaction Program Functions
The sample transaction programs provide the following functions:

1. Initiate the requesting TPF TP with a command, and pass a FACE record type
and ordinal number.

2. The requesting TPF TP allocates a conversation with the requested TPF TP.

3. The requesting TPF TP sends the record type and ordinal number to the
requested TPF TP.

4. The requested TPF TP receives the record type and ordinal number.

5. The requested uses the FACE program interface in the remote system to check
the validity of the record type and ordinal number.

6. The requested attempts to read the record if they are valid.

7. The requested TPF TP returns a message to the requesting TPF TP with the
results of the operation.

8. The requesting TPF TP interprets the returned data and writes a message to
the operator based on the reply to indicate the results of the requested TPF TP.

9. The requesting TPF TP then deallocates the conversation.

For the purpose of this sample, assume that the requesting TPF system has a
command with the following format:

ZSAMP FACERT ORDINAL

A 6-byte ordinal number
A 6-byte FACE record type

Also, assume that this command activates the TPF E-type program segment named
SMPS. This process is described in “Requesting TPF Transaction Program”.

The TPF TP in the remote requested system is activated as a result of the TPPCC
ALLOCATE macro being executed in the local requesting TPF TP. Therefore, the
remote requested TPF TP must be defined in the remote TPF system. For the
purpose of this sample, assume that the following entry is defined in the transaction
program name table (TPNT) on the remote TPF system with the ITPNT macro:

ITPNT MF=L,TPN=VERIFY_RECORD_TYPE,PGM=SMPR,IS=ANY

If both TPF systems are generated as previously described to accept the ZSAMP
command and to define the TP name in the TPNT, either TPF system could be both
the requesting TPF system and the requested TPF system.

The requesting TPF TP is described in “Requesting TPF Transaction Program” and
the requested TPF TP is described in “Requested TPF Transaction Program” on
page 116.

Requesting TPF Transaction Program
In this sample, the requesting TPF TP is activated by the command previously
described. After parsing the command, the requesting TPF TP must allocate a
conversation with the requested TPF TP by issuing a TPPCC ALLOCATE macro, as

114 TPF V4R1 ACF/SNA Data Communications Reference

shown in “Sample Requesting TPF Transaction Program” on page 117, at the label
START_CONVERSATION. The LUNAME parameter points to the RVT entry of the
LU defining the remote TPF system’s TPF/APPC support package. The TPN
parameter gives the name of the remote TP as defined in the ITPNT of the remote
TPF system. The RESID parameter requests that the conversation ID be pointed to
by register 3, and the RCODE parameter requests that the return code be pointed
to by register 4.

Note: For these examples, all return codes are assumed to be OK.

After allocating the conversation to the remote requested TPF TP, the requesting
TPF TP then builds a message for the requested TP containing the FACE record
type and ordinal number that was present on the command. In this example, the
message is passed on D0 and consists of the following record:

Field Length Value Description

AM0CCT 2 19 Total message length
AM0TXT 2 14 Logical record length
AM0TXT+2 6 variable Record type from command
AM0TXT+8 6 variable Ordinal number from command

Once the message is built on D0, the requesting TPF TP sends the message by
issuing the TPPCC SEND_DATA macro, as shown in “Sample Requesting TPF
Transaction Program” on page 117 at label SEND_RECORD_TO_REQUESTED_TP.

The TPPCC FLUSH then causes the message to be sent to the remote requested
TPF TP. This requesting TPF TP must now change to receive state and wait for the
response from the remote requested TPF TP. This requesting TPF TP
accomplishes this by issuing the TPPCC RECEIVE macro as shown in “Sample
Requesting TPF Transaction Program” on page 117 at label
RECEIVE_AND_WAIT_FOR_REPLY.

This requesting TPF TP instance (in TPF terms, the ECB) is now suspended until
the remote requested TPF TP sends the response. Assuming all has g1 well, the
RECEIVE is satisfied with a return code of OK and a WHATRCV indicator of DATA.
The data message received consists of a logical length field and a 2-byte message
that gives the results of the requested TPF TP system’s checks. In our sample, the
2-byte message can be any of the following:

OK The record type and ordinal number were valid and the record was
successfully read on the remote TPF system.

NR The record type was invalid on the remote TPF system.

NO The ordinal number was invalid on the remote TPF system.

IO The record type and ordinal number were valid, but the record could not be
successfully read on the remote TPF system.

The requesting TPF TP now interrogates the response and informs the operator of
the results of the action. For example, the logic could be implemented to send a
message to the local TPF console as shown in “Sample Requesting TPF
Transaction Program” on page 117 at label PROCESS_REPLY.

The function is now basically complete, except that the local and remote TPF TPs
are still in conversation. The requesting TPF TP ends the conversation by issuing a
TPPCC DEALLOCATE macro, as shown in “Sample Requesting TPF Transaction

TPF Advanced Program-to-Program Communications 115

Program” on page 117 at label END_CONVERSATION. The requesting TPF TP
then frees up any other resources that it has end exits.

Requested TPF Transaction Program
When the requesting TPF TP issues the TPPCC ALLOCATE macro, an ATTACH
FMH5 is forwarded to this TPF system. The TPF/APPC support package recognizes
the ATTACH as the beginning of a new conversation and assigns a transaction
control block identifier (TCB ID), a conversation identifier (CCB ID) and activates
the program associated with the transaction program name in the TPF transaction
program name table (TPNT). When this TPF program, SMPR in our example, is
activated, the TCB ID and CCB ID are passed in the ECB, and the conversation is
placed in receive state. This interface is shown in “Sample Requested TPF
Transaction Program” on page 121 at label BEGIN_SAMPLE_RECEIVE.

No data has been passed to the TP when it is activated, so the requested TPF TP
issues the TPPCC RECEIVE macro to request the first data message, as shown in
“Sample Requested TPF Transaction Program” on page 121 at label
RECEIVE_AND_WAIT_FOR_REQUEST.

In this sample, the requesting TPF TP is issuing the TPPCC SEND_DATA macro to
forward the FACE record type and ordinal number. If this message has not yet
arrived, this ECB is suspended until the message does arrive. Control is returned to
the next sequential instruction after the TPPCC verb macro only when there is
something available.

When control is returned, this requested TPF TP can use the FACE record type and
ordinal number in the data message and perform its processing to check the
validity. However, this TPF TP is still in receive state and must wait for the partner
requesting TPF TP to change direction and place this TP in send state. Therefore,
this requested TPF TP saves the information in the request and again issues a
TPPCC RECEIVE macro to wait for the change in direction, as shown in “Sample
Requested TPF Transaction Program” on page 121 at label
RECEIVE_AND_WAIT_FOR_SEND_IND. The change in direction is given to this
requested TPF TP when the value in the WHAT_RECEIVED (WHATRCV)
parameter is set to LU62WR_SEND. Once the send-indication has arrived, this
requested TPF TP may then process the original request as shown in “Sample
Requested TPF Transaction Program” on page 121 at label PROCESS_REQUEST.

This requested TPF TP then issues the TPPCC SEND_DATA macro to forward the
results of the process as a reply to the partner requesting TPF TP. The partner
requesting TPF TP has issued a TPPCC RECEIVE macro to await the reply.

After sending the reply, this requested TPF TP causes a change of direction by
issuing the TPPCC RECEIVE macro and waits for the partner requesting TPF TP
to respond.

The requesting TPF TP receives the reply sent by the TPPCC SEND_DATA macro
and continues its processing. It then issues a TPPCC RECEIVE again, and gets the
send-indication in the WHATRCVD parameter. Because all processing is complete,
the requesting TPF/APPC TP issues the TPPCC DEALLOCATE macro, which
causes this requested TPF/APPC TP’s RECEIVE verb to be satisfied by passing
the deallocation request in the WHATRCVD parameter. This is shown in “Sample
Requested TPF Transaction Program” on page 121 at label
RECEIVE_AND_WAIT_FOR_END_CONV.

116 TPF V4R1 ACF/SNA Data Communications Reference

When this RECEIVE is satisfied with the deallocation request, the requested TPF
TP then issues the TPPCC DEALLOCATE macro with the TYPE=LOCAL option to
free up the conversation resources and end the conversation, as shown in “Sample
Requested TPF Transaction Program” on page 121 at label END_CONVERSATION.
The requested TPF TP can then issue the TPF EXITC macro.

Sample Requesting TPF Transaction Program
**
* THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM "
* COPYRIGHT = 5748-T12 (C) COPYRIGHT IBM CORP 1979,1988
* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM
* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083
**

BEGIN NAME=SMPS,VERSION=24,IBM=YES
*

* *
* MODULE NAME..... SMPS - (Local TPF/APPC TP) *
* RELATED MODULE.. SMPR - (Remote partner TP) *
* DOCUMENT NAME... N/A *
* DESCRIPTION..... Sample requesting (SEND) TPF/APPC TP *
* LEVEL........... N/A *
* *
* FUNCTION........ This simple sample program illustrates a *
* TPF/APPC transaction program (TP) that *
* requests information from a remote *
* TPF/APPC TP. The command ZSAMP *
* activates this program. *
* *
* This requesting TP allocates a conversation*
* with a remote TP. This program passes a *
* FACE record type and ordinal number to the *
* remote side TPF/APPC TP. The remote TP *
* then verifies if the passed record type is *
* valid on the remote TPF system and replies *
* accordingly. This requesting side then *
* interprets the response and formats an *
* operator message based on the response. *
* *
* This sample program is intended to show *
* only the format and use of some of the *
* TPPCC verb macros and is NOT intended *
* to be a fully-functional or practical *
* TP. *
* *
* *
* *
* *
* MODULE ATTRIBUTES.. *
* TYPE.......... ’E’ (ECB CONTROLLED) *
* ENVIRONMENT... Sample code only *
* ENTRY POINT... BEGIN_SAMPLE_SEND *
* *
* *

* INTERFACE REQUIREMENTS: *
* *
* INPUT.......... ZSAMP #FACER ORDINAL *
* ----- ------- *
* I I--- A six byte ordinal *
* I---------- A FACE record type *
* *
* RESTRICTIONS... This program assumes that the remote *
* TPF system has a entry in its ITPNT *
* table for the requested (RECEIVE side) TP, *

TPF Advanced Program-to-Program Communications 117

* named ’VERIFY_RECORD_TYPE’ *
* *
* *
* ECB ON ---> * INPUT.. * OUTPUT.. *
* --------------*----------------------*----------------------*
* WORK AREA.... * N/A * N/A *
* DATA LEVELS.. * D0 - Input Zmsg * N/A *
* REGISTERS.... * N/A * N/A *
* * * *
* --------------*----------------------*----------------------*

EJECT

* *
* Define Data Records Used *
* *

AM0SG REG=R1 Define Input message format
TPPCE
SPACE 3

STUFF DSECT , Define Save Stuff Area
SFACER DS CL6 Six byte FACE Record Type
SFACEO DS CL6 Six byte Face Ordinal number
SRCODE DS 0CL6 Full 6 byte return code
SRCODEP DS CL2 2 byte primary return code
SRCODES DS CL4 4 byte secondary return code

DS 0F Full word alignment
SRESID DS XL4 Resource (Conversation) ID
SRTS DS XL1 Request_To_Send_Received Indicator
SWHAT DS XL1 What_Received Indicator

USING STUFF,R2 Establish Addressability
IS CSECT , Continue Program CSECT

EJECT

* *
* Begin Mainline logic *
* *

BEGIN_SAMPLE_SEND DS 0H
L R1,CE1CR0 Get address of command text
GETCC D2,L0 Get a block to save stuff in
LR R2,R14 Get address of block
MVC SFACER,AM0TXT+4 Save Record Type
MVC SFACEO,AM0TXT+11 Save Ordinal Number
RELCC D0 Discard command
SPACE 3

* *
* Allocate a conversation with RECEIVE side TP *
* *

START_CONVERSATION DS 0H
TPPCC ALLOCATE, X

LUNAME=KLUNAME, X
TPN=KTPNAME, X
RESID=SRESID, X
RCODE=SRCODE, X
SYNC=N1

CLC SRCODEP,=AL2(LU62RC_OK) Any bad news on ALLOCATE
BNE TERMINATE_CONVERSATION Yes - terminate the conversation
SPACE 3

* *
* Send the data to the remote TP *
* *

BUILD_RECORD_TO_SEND DS 0H
GETCC D0,L1 Get a 381 byte block

118 TPF V4R1 ACF/SNA Data Communications Reference

LR R1,R14 Gets its address
XC 0(27,R1),0(R1) Clear AM0SG header
MVC AM0TXT+2(L’SFACER+L’SFACEO),SFACER Move data to be sent
MVC AM0CCT,=AL2(L’SFACER+L’SFACEO+7) Set count field
MVC AM0TXT(2),=AL2(L’SFACER+L’SFACEO+2) logical record length
SEND_RECORD_TO_REQUESTED_TP DS 0H
TPPCC SEND_DATA, X

RESID=SRESID, X
RCODE=SRCODE, X
RTSRCVD=SRTS

CLC SRCODEP,=AL2(LU62RC_OK) Any bad news on SEND_DATA
BNE TERMINATE_CONVERSATION Yes - terminate the conversation
CLI SRTS,LU62_RTSND_RCVDYES Did we get Request_To_Send
BE TERMINATE_CONVERSATION Yes - don’t honor it
SPACE 3

* FLUSH the data to be sent *

TPPCC FLUSH, X

RESID=SRESID, X
RCODE=SRCODE

CLC SRCODEP,=AL2(LU62RC_OK) Any bad news on SEND_DATA
BNE TERMINATE_CONVERSATION Yes - terminate the conversation
SPACE 3

* *
* Issue RECEIVE and wait for the answer *
* *

RECEIVE_AND_WAIT_FOR_REPLY DS 0H
TPPCC RECEIVE, X

RESID=SRESID, X
RCODE=SRCODE, X
RTSRCVD=SRTS, X
WHATRCV=SWHAT, X
WAIT=YES

CLC SRCODEP,=AL2(LU62RC_OK) Any bad news on RECEIVE
BNE TERMINATE_CONVERSATION Yes - terminate the conversation
CLI SRTS,LU62_RTSND_RCVDYES Did we get Request_To_Send
BE TERMINATE_CONVERSATION Yes - don’t honor it
CLI SWHAT,LU62WR_DATACOMPLETE Did we get complete data
BNE TERMINATE_CONVERSATION No - terminate the conversation
* Looks like we got the answer

* *
* Process reply received from requested TP *
* *

PROCESS_REPLY DS 0H
L R1,CE1CR0 Point to block received
SELECT

WHEN KOK,=,AM0TXT+2
WTOPC TEXTA=MOK,SUB=(CHARA,SFACER,CHARA,SFACEO), X

PREFIX=SAMP,NUM=01,LET=I
WHEN KNR,=,AM0TXT+2

WTOPC TEXTA=MNR,SUB=(CHARA,SFACER,CHARA,SFACEO), X
PREFIX=SAMP,NUM=02,LET=I

WHEN KNO,=,AM0TXT+2
WTOPC TEXTA=MNO,SUB=(CHARA,SFACER,CHARA,SFACEO), X

PREFIX=SAMP,NUM=03,LET=I
WHEN KIO,=,AM0TXT+2

WTOPC TEXTA=MIO,SUB=(CHARA,SFACER,CHARA,SFACEO), X
PREFIX=SAMP,NUM=04,LET=I

OTHERW
WTOPC TEXTA=MUN,PREFIX=SAMP,NUM=05,LET=I

ENDSEL
RELCC D0

TPF Advanced Program-to-Program Communications 119

SPACE 3

* *
* WAIT for SEND indicator to get into SEND state *
* *

TPPCC RECEIVE, X

RESID=SRESID, X
RCODE=SRCODE, X
RTSRCVD=SRTS, X
WHATRCV=SWHAT X
WAIT=YES

CLC SRCODEP,=AL2(LU62RC_OK) any bad news ?
BNE TERMINATE_CONVERSATION Yes - terminate the conversation
CLI SWHAT,LU62WR_SEND Did we get send indication ?
BNE TERMINATE_CONVERSATION No - terminate the conversation

* *
* Free up resources and DEALLOCATE *
* *

END_CONVERSATION DS 0H
TPPCC DEALLOCATE, X

RESID=SRESID, X
RCODE=SRCODE, X
TYPE=SYNC

CLC SRCODEP,=AL2(LU62RC_OK) Any bad news on DEALLOCATE
BNE TERMINATE_CONVERSATION Yes - terminate the conversation
RELCC D2 Discard save area
EXITC , All done
SPACE 3

* *
* Terminate conversation on bad return code *
* *

TERMINATE_CONVERSATION DS 0H
WTOPC TEXTA=MCF,SUB=(HEX4A,SRCODEP,HEX4A,SRCODES), X

PREFIX=SAMP,NUM=99,LET=I
SELECT

WHEN SRCODEP,=,=AL2(LU62RC_ALLOC_ERROR)
TPPCC DEALLOCATE, X

RESID=SRESID, X
RCODE=SRCODE, X
TYPE=LOCAL

OTHERW
TPPCC DEALLOCATE, X

RESID=SRESID, X
RCODE=SRCODE, X
TYPE=ABENDP

ENDSEL
CRUSA S0=0
RELCC D2 Discard save area
EXITC ,
EJECT ,

* *
* Define WTOPC message texts *
* *

DEFINE_MESSAGES DS 0H
MOK DC AL1(43)

DC C’ORDINAL FOR TYPE OK ON REMOTE’
MNR DC AL1(29)

DC C’TYPE INVALID ON REMOTE’
MNO DC AL1(48)

DC C’ORDINAL FOR TYPE TOO BIG ON REMOTE’

120 TPF V4R1 ACF/SNA Data Communications Reference

MIO DC AL1(48)
DC C’ORDINAL FOR TYPE I/O ERR ON REMOTE’

MUN DC AL1(48)
DC C’UNKNOWN RESPONSE FROM REMOTE’

MCF DC AL1(34)
DC C’CONVERSATION FAILURE’

* *
* Define Constants Used *
* *

DEFINE_CONSTANTS DS 0H
KLUNAME DS 0CL16 Remote FQN
KLUNAMEN DC CL8’NETID ’ Remote NETID
KLUNAMEL DC CL8’LUNAME ’ Remote LUNAME
KTPNAME DS 0CL65 Max area
KTPNAMEL DC AL1(L’KTPNAMEN) TP_NAME Length
KTPNAMEN DC C’VERIFY_RECORD_TYPE’
KOK DC C’OK’ ==> Record type and ordinal all okay
KNR DC C’NR’ ==> Record type was invalid in remote system
KNO DC C’NO’ ==> Ordinal number was too big in remote system
KIO DC C’IO’ ==> Could not read the record in the remote system

LTORG ,
FINIS ,
END ,

Sample Requested TPF Transaction Program
**
* THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM "
* COPYRIGHT = 5748-T12 (C) COPYRIGHT IBM CORP 1979,1988
* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM
* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083
**

BEGIN NAME=SMPR,VERSION=24,IBM=YES
*

* *
* MODULE NAME..... SMPR - The sample requested TP *
* RELATED MODULE.. SMPS - The sample requesting TP *
* DOCUMENT NAME... N/A *
* DESCRIPTION..... Sample requested (RECEIVE) TPF/APPC TP *
* LEVEL........... N/A *
* *
* FUNCTION........ This sample TPF/APPC transaction program *
* illustrates a TP that receives a request *
* from a TPF/APPC TP. An ATTACH sent from *
* the requesting side activates this TP. *
* *
* This requested side of the TPF/APPC TP *
* receives a FACE record type and ordinal *
* number in the first message from the *
* requesting TP. This TP uses this *
* information to call FACE on THIS TPF *
* system. Upon successful return from FACE, *
* this program attempts to read the record *
* from DASD. The results are returned to the*
* requesting TP as follows: *
* OK ===> Request record could be read *
* NR ===> Record type invalid *
* NO ===> Ordinal number invalid *
* IO ===> Error reading record from DASD *
* *
* This sample program is intended to show *
* only the format and use of some of the *
* TPPCC verb macros and is NOT intended *
* to be a fully functional or practical *

TPF Advanced Program-to-Program Communications 121

* TP. *
* *
* *
* *
* *
* MODULE ATTRIBUTES.. *
* TYPE.......... ’E’ (ECB CONTROLLED) *
* ENVIRONMENT... Sample code only *
* ENTRY POINT... BEGIN_SAMPLE_RECEIVE *
* *
* *

* INTERFACE REQUIREMENTS: *
* *
* INPUT.......... Standard TPF/APPC ATTACH interface *
* *
* RESTRICTIONS... This program assumes that there is an *
* entry in the ITPNT for this TPF system *
* that directs incoming ALLOCATES (ATTACH) *
* to this program. The TP_NAME is *
* VERIFY_RECORD_TYPE. *
* *
* *
* Input/Output Interface *
* Standard TPF/APPC ATTACH Interface: *
* ECB * INPUT.. * OUTPUT.. *
* --------------*----------------------*----------------------*
* WORK AREA.... * N/A * N/A *
* DATA LEVELS.. * N/A * N/A *
* REGISTERS.... * N/A * N/A *
* * * *
* --------------*----------------------*----------------------*

EJECT

* *
* Define Data Records Used *
* *

AM0SG REG=R1 Define Input message format
TPPCE , Define TPF/APPC values
DCLREG , Define registers for SPM use
SPACE 3

STUFF DSECT , Define Save Stuff Area
SFACER DS CL6 Six byte FACE Record Type
SFACEO DS CL6 Six byte Face Ordinal number
SRCODE DS 0CL6 Full 6 byte return code
SRCODEP DS CL2 2 byte primary return code
SRCODES DS CL4 4 byte secondary return code

DS 0F Full word alignment
SRESID DS XL4 Resource (Conversation) ID
SRTS DS XL1 Request_To_Send_Received Indicator
SWHAT DS XL1 What_Received Indicator
STCBID DS XL1 TCB_ID

DS 0D
SDWORD DS D Double word work area
SFWORD DS F Full word work area

USING STUFF,R2 Establish Addressability
IS CSECT , Continue Program CSECT

EJECT

* *
* Begin Mainline logic (ATTACH Received) *
* *

BEGIN_SAMPLE_RECEIVE DS 0H
GETCC D2,L0 Get a block to save stuff in
LR R2,R14 Get address of block

122 TPF V4R1 ACF/SNA Data Communications Reference

MVC SRESID,EBCCBID Save RESID value
MVC STCBID,EBTCBID Save TCBID value
SPACE 3

* *
* Issue RECEIVE and wait for the message *
* *

RECEIVE_AND_WAIT_FOR_REQUEST DS 0H
TPPCC RECEIVE, X

RESID=SRESID, X
RCODE=SRCODE, X
RTSRCVD=SRTS, X
WHATRCV=SWHAT, X
WAIT=YES

CLC SRCODEP,=AL2(LU62RC_OK) Any bad news on RECEIVE
BNE TERMINATE_CONVERSATION Yes - terminate the conversation
CLI SRTS,LU62_RTSND_RCVDYES Did we get Request_To_Send
BE TERMINATE_CONVERSATION Yes - don’t honor it
CLI SWHAT,LU62WR_DATACOMPLETE Did we get complete data
BNE TERMINATE_CONVERSATION No - terminate the conversation
* Looks like we got the message
L R1,CE1CR0 Point to block received
MVC SFACER,AM0TXT+2 Save Record Type
MVC SFACEO,AM0TXT+8 Save Ordinal Number
RELCC D0 Discard message

* *
* Wait for SEND indicator *
* *

RECEIVE_AND_WAIT_FOR_SEND_IND DS 0H
TPPCC RECEIVE, X

RESID=SRESID, X
RCODE=SRCODE, X
RTSRCVD=SRTS, X
WHATRCV=SWHAT, X
WAIT=YES

CLC SRCODEP,=AL2(LU62RC_OK) Any bad news on RECEIVE
BNE TERMINATE_CONVERSATION Yes - terminate the conversation
CLI SRTS,LU62_RTSND_RCVDYES Did we get Request_To_Send
BE TERMINATE_CONVERSATION Yes - don’t honor it
CLI SWHAT,LU62WR_SEND Did we get SEND indicator
BNE TERMINATE_CONVERSATION No - terminate the conversation

* *
* Initialize the response block *
* *

PROCESS_REQUEST DS 0H
GETCC D0,L1 Get a block
LR R1,R14 Point to the msg block
XC 0(27,R1),0(R1) Clear AM0SG header
MVC AM0CCT,=AL2(2+2+5) Set length
MVC AM0TXT(2),=AL2(2+2) Dup in LL field

* *
* Call FACE with requested data *
* *

XC CE1FM6,CE1FM6 Clear FARW
PACK SDWORD,SFACEO Convert Ordinal to packed
CVB R0,SDWORD and then binary
LA R6,SFACER Point to Record Type
LA R7,CE1FA6 Point to Return Area
ENTRC FACS Call FACE Program
LTR R0,R0 Check Return Code

TPF Advanced Program-to-Program Communications 123

BE FACE_ERROR Bad News
FINWC D6,FIND_ERROR Read Record and branch on err
MVC AM0TXT+2(2),KOK Set response = OK
B SEND_REPLY
FIND_ERROR DS 0H
MVC AM0TXT+2(2),KIO Set response = IO
B SEND_REPLY
FACE_ERROR DS 0H
IF R7,=,1 If bad record type

THEN
MVC AM0TXT+2(2),KNR Set response = NR
ELSE bad ordinal number
MVC AM0TXT+2(2),KNO Set response = NO

ENDIF

* *
* Send the data to the remote TP *
* *

SEND_REPLY DS 0H
TPPCC SEND_DATA, X

RESID=SRESID, X
RCODE=SRCODE, X
RTSRCVD=SRTS

CLC SRCODEP,=AL2(LU62RC_OK) Any bad news on SEND_DATA
BNE TERMINATE_CONVERSATION Yes - terminate the conversation
CLI SRTS,LU62_RTSND_RCVDYES Did we get Request_To_Send
BE TERMINATE_CONVERSATION Yes - don’t honor it
SPACE 3

* *
* FLUSH data to remote *
* *

TPPCC FLUSH, X

RESID=SRESID, X
RCODE=SRCODE

CLC SRCODEP,=AL2(LU62RC_OK) Any bad news on FLUSH ?
BNE TERMINATE_CONVERSATION Yes - terminate the conversation

* *
* Issue PREPARE TO RECEIVE to put remote in SEND state *
* *

TPPCC PREPARE_TO_RECEIVE, X

RESID=SRESID, X
RCODE=SRCODE, X
TYPE=SYNC

CLC SRCODEP,=AL2(LU62RC_OK) Any bad news ?
BNE TERMINATE_CONVERSATION Yes - terminate the conversation

* *
* Issue RECEIVE and wait for DEALLOCATE *
* *

RECEIVE_AND_WAIT_FOR_END_CONV DS 0H
TPPCC RECEIVE, X

RESID=SRESID, X
RCODE=SRCODE, X
RTSRCVD=SRTS, X
WHATRCV=SWHAT, X
WAIT=YES

CLC SRCODEP,=AL2(LU62RC_DLLOC_NORMAL)
BNE TERMINATE_CONVERSATION Yes - terminate the conversation

* *
* Free up resources and DEALLOCATE *

124 TPF V4R1 ACF/SNA Data Communications Reference

* *

END_CONVERSATION DS 0H
TPPCC DEALLOCATE, X

RESID=SRESID, X
RCODE=SRCODE, X
TYPE=LOCAL

CLC SRCODEP,=AL2(LU62RC_OK) Any bad news on DEALLOCATE
BNE TERMINATE_CONVERSATION Yes - terminate the conversation
CRUSA S0=2,S1=0 Discard any blocks
EXITC , All done
SPACE 3

* *
* Terminate conversation on bad return code *
* *

TERMINATE_CONVERSATION DS 0H
WTOPC TEXTA=MCF,SUB=(HEX4A,SRCODEP,HEX4A,SRCODES), X

PREFIX=SAMP,NUM=99,LET=I
TPPCC DEALLOCATE, X

RESID=SRESID, X
RCODE=SRCODE, X
TYPE=ABENDP

CRUSA S0=2,S1=0 Discard any blocks
EXITC ,
EJECT ,

* *
* Define Constants Used *
* *

DEFINE_CONSTANTS DS 0H
KOK DC C’OK’ ==> Record type and ordinal all okay
KNR DC C’NR’ ==> Record type was invalid in remote system
KNO DC C’NO’ ==> Ordinal number was too big in remote system
KIO DC C’IO’ ==> Couldn’t read the record in the remote system
MCF DC AL1(34)

DC C’CONVERSATION FAILURE’
LTORG ,
FINIS ,
END ,

TPF Advanced Program-to-Program Communications 125

126 TPF V4R1 ACF/SNA Data Communications Reference

High-Performance Routing (HPR) Support

High-performance routing (HPR) support is an extension to the SNA Advanced
Peer-to-Peer Networking (APPN) architecture. This support increases network
performance and throughput, and can dynamically reroute sessions if there are
failures in the network. All of this is done by installing new software in existing
network components. No new hardware is required.

Benefits of Using HPR Support
The following table shows some of the important benefits of HPR support by
comparing it to traditional SNA (PU 5 and base PU 2.1 support).

Table 5. Comparing Traditional SNA Support to HPR Support

Traditional SNA HPR Support

If any node along the LU-LU session path fails, the
session fails.

If any node along the LU-LU session path fails, a path
switch is automatically performed to obtain a new route
for the session. No data is lost during the path switch, no
operator intervention is required, and the whole process
is transparent to end users.

In PU 5 networking, flow control is end-to-end using
fixed-size window-based pacing. In PU 2.1 networking,
flow control is performed on a hop-by-hop basis using an
adaptive-sized, window-based pacing algorithm.

Flow control is performed on an end-to-end basis using
an adaptive method that is time-based rather than
window-based. This method is much more effective than
window-based flow control mechanisms and is better at
reacting to change to prevent network congestion.

Intermediate nodes along the session path have full
session awareness. Storage for session control blocks
must be allocated on every intermediate node for every
session passing through the node.

Intermediate nodes have no session awareness and,
therefore, do not require any storage for session control
blocks.

There is reliable hop-to-hop delivery. Each node along the
path is responsible for making sure that the data has
been received by the next node along the route, the data
arrives in the correct order, and no duplicate data is sent.
If data is too large to be sent across the next hop, the
node will segment the data into smaller pieces and the
adjacent node will reassemble the data into one message
again.

There is reliable end-to-end delivery. Intermediate nodes
no longer examine the data. Instead, intermediate nodes
simply forward the data to the next node and are not
concerned whether the adjacent node receives the data.
Intermediate nodes are no longer responsible for
detecting lost data, segmentation and reassembly of
messages, or any other aspect of reliable delivery. These
functions are performed only by the two end points rather
than by every node along the path, which greatly
improves end-to-end throughput and performance.

Traditional SNA support is connection oriented. The primary weakness of
connection-oriented protocols is single points of failure in the network. While
protocols that are not connection oriented do not suffer from single points of failure,
they lack the correct flow control mechanisms, especially in high-volume networks.
HPR support is a mixture of connection-oriented and connectionless protocols. In
doing so, the architecture incorporated the best features of both protocol types.

HPR Node Types
There are two types of HPR nodes in the network:

v Automatic network routing (ANR) nodes, which can be only intermediate nodes
for a rapid transport protocol (RTP) connection.

© Copyright IBM Corp. 1994, 2002 127

v RTP nodes, which can be end points or intermediate nodes for an RTP
connection. RTP nodes support the RTP tower and, optionally, control flows over
the RTP tower. The TPF system is an RTP node. See “RTP Connections” on
page 131 for more information about RTP connections.

The major difference between an ANR node and an RTP node is the amount of
work that must be performed. In HPR support, most of the work is performed by the
two RTP nodes that are the endpoints of an RTP connection, also known as RTP
endpoints. RTP endpoints provide the following functions:

v They detect failures in the network and then start the path switch process to
route the RTP connection around the failure. See “Detecting Network Failures” on
page 144 for more information.

v They provide end-to-end flow control. See “Flow Control” on page 168 for more
information.

v They provide the selective retransmission function, which includes retransmitting
specific messages that were lost in the network and requesting that specific
messages be retransmitted. See “Selective Retransmission” on page 173 for
more information.

v They segment output messages and reassemble input messages when
necessary. See “Segmentation and Reassembly” on page 174 for more
information.

ANR Labels
In APPN support, a link is identified by its transmission group (TG) number and the
control point (CP) name of the adjacent node. In HPR support, a link is identified by
an automatic network routing (ANR) label.

ANR labels identify paths through the HPR network. There are two ANR labels
assigned to each HPR-capable link, one label for each direction that data flows
across the link. The ANR labels are created when an HPR link is activated during
the exchange identifier (XID) process.

An ANR label is a 1- to 8-character identifier representing the path from node A to
node B across a specific link. Because an ANR label implies direction, there are two
ANR labels assigned to each link. When a link between node A and node B is
activated, node A assigns the ANR label representing the path from node A to node
B across the link. Node B assigns the ANR label representing the path from node B
to node A across the link.

ANR labels are unique only per node; they are not necessarily unique in the whole
network. Assume node A assigned ANR label 123 to a link connecting node A to
node B. Next, a link from node B to node C is activated. Node B can assign ANR
label 123 to this link. However, if node A activates a link to node C, node A cannot
assign ANR label 123 because node A has already assigned this ANR label to
another link.

Data sent on an RTP connection is called a network layer packet (NLP). There is a
section at the beginning of each NLP called the network layer header (NHDR),
which contains the list of ANR labels representing the path from the origin RTP
endpoint to the destination RTP endpoint. Because ANR labels are sent in every
NLP, it is desirable to create ANR labels that are as short as possible to reduce the
size of NLPs. See “NLPs” on page 145 for more information about NLPs.

128 TPF V4R1 ACF/SNA Data Communications Reference

A different link identification method (ANR labels) was created for HPR support
because:

v The combination of TG number and fully qualified CP name is 17 characters.
Sending an extra 17 bytes of data for each hop in every message could cause
the message (NLP) size to become very large. ANR labels are typically only 2 or
3 bytes long.

v The identification of a link by HPR support must remain the same for as long as
the link is active. In APPN, the TG number and owning CP name can change
while the link is active. The ANR labels assigned to a link do not change while
the link is active.

Besides having ANR labels assigned to HPR links, there are special ANR labels
called network connection endpoint (NCE) identifiers. An NCE identifier is assigned
to one or more logical units (LUs) in an RTP node. In the TPF system, there is one
NCE representing all TPF applications.

Figure 63 shows the APPN and HPR view of a network:

In Figure 63, there is one link connecting each of the following node pairs: A and B,
B and C, C and D. In APPN terminology, the path from node A to node D is
described as follows (assuming all nodes are in the NET1 network):

1. TG 21 to NET1.CPB (node A to node B)

2. TG 26 to NET1.CPC (node B to node C)

3. TG 21 to NET1.CPD (node C to node D).

The reverse path (node D to node A) is:

1. TG 21 to NET1.CPC (node D to node C)

2. TG 26 to NET1.CPB (node C to node B)

3. TG 21 to NET1.CPA (node B to node A).

In the HPR view of the network, there are two lines drawn between each pair of
nodes, but the two lines represent one link. Each line is showing the ANR label
assigned to that link in the indicated direction. In HPR support, ANR labels describe
a route through the network, so the path from node A to node D is:

APPN View of the Network

HPR View of the Network

Node A

CP=CPA

Node B

CP=CPB

Node C

CP=CPC

Node D

CP=CPD

TG 21 TG 26 TG 21

Node A

NCE=A7
Node B Node C

Node D

NCE=D6

N1

B1

B2

N1

C2

D1

Figure 63. Sample Network with APPN TGs and HPR ANR Labels

High-Performance Routing (HPR) Support 129

1. N1 (node A to node B)

2. B2 (node B to node C)

3. C2 (node C to node D)

4. D6 (the NCE of node D where the destination LU resides).

The reverse path (node D to node A) is:

1. D1 (node D to node C)

2. N1 (node C to node B)

3. B1 (node B to node A)

4. A7 (the NCE of node A where the destination LU resides).

Notice that this example uses ANR label N1 more than once in the HPR network.

Activating Links
The sequence of exchange identifier (XID) flows is the same for HPR support as it
is for base APPN support. If a node supports HPR, additional information now flows
in the XID. Whether an adjacent node supports HPR is determined dynamically
during the XID process. The same is true for determining whether the adjacent
node supports APPN.

If a node supports HPR, it includes control vector (CV) X'61' in its XID. Bits in CV
X'61' indicate whether the node supports the RTP tower and control flows over the
RTP tower. The ANR label assigned by this node to the link is also included in CV
X'61'.

A link is HPR capable if, and only if, the XIDs sent by both sides include CV X'61'.
If one or both XIDs do not include CV X'61', the link is base APPN and is not HPR
capable.

If HPR support is enabled on the TPF processor where the link is being activated,
CV X'61' is included in the XID sent by the TPF system. See “Installation and
Tuning” on page 176 for more information about how to enable HPR support in the
TPF system.

A link that supports APPN, but does not support HPR, is limited to base APPN
flows, meaning that only format identification 2 (FID2) path information units (PIUs)
can flow across this link. An HPR-capable link supports not only FID2 PIUs, but
also NLPs.

Because the TPF system is an APPN end node (EN), whenever a new link is
activated, the TPF system sends a topology database update (TDU) request to
register the new link in the APPN network. The TDU now includes HPR support
information.

Use the ZNAPN command with the TOPOLOGY parameter specified to display
information about the active PU 2.1 links connected to the TPF loosely coupled
complex. The information displayed indicates whether the link supports HPR and, if
so, whether the link connects to an RTP node or an ANR node. See TPF
Operations for more information about the ZNAPN command.

130 TPF V4R1 ACF/SNA Data Communications Reference

RTP Connections
An RTP connection is a logical pipeline between two RTP nodes over which one or
more LU-LU sessions exist. The two RTP nodes are the RTP endpoints for the RTP
connection, and these two nodes are not necessarily adjacent. RTP connections are
based on SNA class of service (COS), meaning all LU-LU sessions for a given RTP
connection have the same COS. Between a pair of RTP nodes, there can be
multiple RTP connections, each with the same COS or a different COS.

At any point in time, an RTP connection is in one of the following states:

CONNECTED This is the normal state of an RTP connection. Data traffic is
flowing between the RTP endpoints.

MOVING The TPF system is attempting to find a better route for the RTP
connection because the ZNRTP SWITCH command was entered.
Data traffic continues to flow on the current route. See TPF
Operations for more information about the ZNRTP SWITCH
command.

RESYNC The RTP connection resynchronization process is in progress for
the RTP connection. See “RTP Connection Resynchronization
Process” on page 163 for more information about the RTP
connection resynchronization process.

STARTING The RTP connection is being activated and the ROUTE_SETUP
process is still in progress. See “ROUTE_SETUP Process” on
page 136 for more information about the ROUTE_SETUP process.

SWITCHING A path switch is in progress because the TPF system detected a
failure in the network. No data is flowing. See “Path Switches” on
page 141 for more information about the path switch process.

If only part of the network supports HPR, it is possible for an RTP connection to be
established for only the HPR-capable part of the network and have the LU-LU
session extend beyond that point.

Figure 64 on page 132 shows an example of whether an RTP connection can be
started and, if so, how far the RTP connection goes based on the levels of HPR
support in the nodes in the network:

High-Performance Routing (HPR) Support 131

RTP Connection APPN

RTP Connection

RTP Connection

RTP Connection PU 5

APPN

APPN

TPF
(RTP)

LU X

TPF
(RTP)

LU X

TPF
(RTP)

LU X

TPF
(RTP)

LU X

TPF
(RTP)

LU X

TPF
(RTP)

LU X

(1)

(2)

(3)

(4)

(5)

(6)

Node B

(ANR)

Node B

(RTP)

Node B

(ANR)

Node B

(ANR)

Node B

(ANR)

Node B

(ANR)

Node C

(ANR)

Node C

(RTP)

Node C

(RTP)

Node C

(RTP)

Node C

(ANR)

Node C

(APPN)

Node D
(RTP)

LU Y

Node D
(RTP)

LU Y

Node D
(APPN)

LU Y

Node D
(PU 5)

LU Y

Node D
(ANR)

LU Y

Node D
(RTP)

LU Y

Figure 64. Sample Networks and RTP Connections

132 TPF V4R1 ACF/SNA Data Communications Reference

In Figure 64 on page 132, LU X in the TPF system is in session with LU Y in node
D across a three-hop route. The capabilities of the nodes along the path determine
if HPR support can be used and, if so, for how much of the session route. The
following six examples are shown in Figure 64 on page 132:

1. All intermediate nodes support HPR, and the node containing the destination LU
(LU Y in node D) not only supports HPR, but is an RTP node. This means that
you can use HPR support for the entire session route, and the RTP connection
will be from the TPF system to node D.

2. All intermediate nodes support HPR, and the node containing the destination LU
is an RTP node. Again, you can use HPR support for the entire session route.
Even though nodes B and C are RTP nodes, they function like ANR nodes in
this example.

3. Node D supports only APPN; it does not support HPR. This means that you
cannot use HPR support for the entire path. However, you can use HPR support
for part of the path because one intermediate node (node C) is an RTP node,
and all nodes between that node and the TPF system support HPR. In this
example, the RTP connection exists between the TPF system and node C.
Base APPN flows are used between nodes C and D.

4. Node D does not support APPN or HPR support. In this example, the RTP
connection exists between the TPF system and node C. PU 5 flows are used
between nodes C and D.

5. Even though all nodes support HPR, you cannot use HPR in this example
because none of the intermediate nodes or the destination node are an RTP
node. No RTP connection can be established; therefore, base APPN flows are
used for the entire route.

6. Even though the destination node is an RTP node, you cannot use HPR support
in this example because node C does not support HPR. Flows in and out of
node C must be base APPN.

The following example shows an RTP connection that exists for only part of the
LU-LU session path:

“Starting RTP Connections” on page 134 discusses how to determine if you can use
HPR support and, if so, for how much of the session route. You get the benefits of
HPR support only on the HPR part of the route (the RTP connection). For example,
in Figure 65 there is a session between LU X in the TPF system and LU Y in node
E. Assume the path goes from the TPF system to node B, then to node C, then to

RTP Connection APPN

TPF
(RTP)

LU X

Node B

(ANR)

Node F

(ANR)

Node C

(RTP)

Node D

(APPN)

Node G

(APPN)

Node E
(APPN)

LU Y

Figure 65. Combination of HPR Support and APPN

High-Performance Routing (HPR) Support 133

node D, and then to node E. The RTP connection is between the TPF system and
node C. If node B fails, the RTP connection would automatically switch and go
through node F (rather than node B). The session between LU X and LU Y would
remain active. However, if node D fails, the LU-LU session fails even though
another path exists between nodes C and E (through node G).

TCIDs
Because an RTP node can have several RTP connections active at the same time,
a token called a transport connection identifier (TCID) is assigned to uniquely
identify an RTP connection. Each RTP endpoint assigns a TCID to each RTP
connection. Therefore, there are two TCIDs assigned to each RTP connection. For
example, assume there is an RTP connection from node X to node Y. The TCID
assigned by node X is TCIDyx and the TCID assigned by node Y is TCIDxy. Each
message sent on an RTP connection contains one TCID in the transport header
(THDR) section of the NLP. Whenever possible, the sending node should use the
TCID that the remote RTP endpoint assigned. When node X sends NLPs to node Y,
TCIDxy should be placed in the THDR section of the NLP. This is done for
performance reasons because a node should generate a TCID in such a way that it
can be used as an index or pointer into control blocks defined in that node.

Just like ANR label generation, TCIDs are only unique per node, not in the whole
network.

See “NLPs” on page 145 for more information about NLPs. See “THDRs” on
page 149 for more information about the format of the THDR and how it is used.

Starting RTP Connections
Unlike links and sessions, which you can start yourself, you can never start an RTP
connection. Instead, RTP connections are always started automatically by RTP
nodes during the LU-LU session activation process. See “Starting LU-LU Sessions”
on page 135 for more information about how RTP connections are started.

Deactivating RTP Connections
RTP connections are deactivated automatically by one of the RTP endpoints when
the connection is no longer being used. This happens some time after the last
LU-LU session that was using the RTP connection ends. The TPF system delays
ending the RTP connection in case a new LU-LU session is started that can use
that RTP connection.

How long a node waits to deactivate the RTP connection depends on the
implementation. In the TPF system, the amount of time to wait is based on the
value of the alive timer. See “Alive Timer” on page 145 for more information about
the alive timer.

You can deactivate an RTP connection yourself at any time by using the ZNRTP
INACT command. The remote operator can deactivate an RTP connection at any
time as well. When you deactivate an RTP connection, it is immediate and
unconditional. The RTP connection is cleaned up and all LU-LU sessions that were
using the RTP connection are also cleaned up. See TPF Operations for more
information about the ZNRTP INACT command.

Displaying RTP Connections
To display information about RTP connections:

134 TPF V4R1 ACF/SNA Data Communications Reference

v Use the ZNRTP DISPLAY command to display information about one or more
RTP connections.

v Use the ZNRTP ROUTE command to display APPN and HPR route information
for an RTP connection.

v Use the ZNRTP SUMMARY command to display current and high-water mark
information about resources used by RTP connections.

v Use the ZNDLU command to display all the LU-LU sessions using a particular
RTP connection.

v Use the ZNMON command with the ALS parameter specified to display the
number of RTP connections and HPR LU-LU sessions currently active in the TPF
system.

See TPF Operations for more information about the ZNRTP, ZNDLU, and ZNMON
commands.

Starting LU-LU Sessions
HPR support does not change the existing procedures that are used to start LU-LU
sessions. The APPN search (LOCATE command flows on the CP-CP sessions) is
still used to calculate the route for the LU-LU session. Once a route has been
calculated, it is passed to the node that owns the primary logical unit (PLU) in the
route selection control vector (RSCV), which is CV X'2B'. The RSCV contains a
hop-by-hop list of the path through the network from the PLU to the secondary
logical unit (SLU).

With HPR support, additional information is included in the RSCV for each hop
along the route whether the link (hop) supports HPR or not and, if the link supports
HPR, whether it is connected to an RTP node or not.

By examining the RSCV, the node that contains the PLU determines if HPR support
can be used for this LU-LU session and, if so, how much of the route can use HPR
support. This is done automatically and does not require any new network
definitions or new parameters on operator messages to use HPR support. On a
session by session basis, the system software determines if HPR support can be
used.

In base APPN, LU-LU session initiation involves two key steps:

1. One or more LOCATE commands flow. Eventually, a LOCATE command
containing the RSCV will be sent to the node containing the PLU.

2. The PLU sends out the BIND request (as a FID2 PIU) to start the LU-LU
session.

With HPR support, additional processing is done between steps 1 and 2. The
RSCV is examined to see if HPR support can be used. If HPR support cannot be
used, there is no change to the existing processing. A FID2 BIND request is sent
out.

If the RSCV indicates that HPR support can be used, the node containing the PLU
selects the RTP connection to use for this LU-LU session. How this is done
depends on the implementation, but basically involves either starting a new RTP
connection or using one of the existing RTP connections. No matter what, the first
step is to determine how far HPR support can be used along the LU-LU session
route or, in other words, how far the RTP connection will go. The node where the
RTP connection ends is referred to as the remote RTP endpoint. If the RTP

High-Performance Routing (HPR) Support 135

connection goes the entire route from the PLU to the SLU, the remote RTP
endpoint is the node that contains the SLU. Otherwise, HPR support is being used
for only part of the route, and the SLU resides in a node beyond the remote RTP
endpoint.

If an LU-LU session is being started, the PLU resides in the TPF system, and HPR
support can be used for at least part of the route, the TPF system selects which
RTP connection to use. The following describes how the TPF system selects the
RTP connection to use:

1. The remote RTP endpoint (node Y) is determined by examining the RSCV.

2. The table of active RTP connections is searched to see if any of the RTP
connections can be used. For an existing RTP connection to be a candidate, all
of the following conditions must be true:

v The remote RTP endpoint of the RTP connection is node Y.

v The current route of the RTP connection is the same as that of the route in
the RSCV of the new LU-LU session up to node Y.

v The class of service (COS) of the RTP connection is the same as the COS of
the LU-LU session being started.

3. If none of the existing RTP connections are candidates for use, the TPF system
starts a new RTP connection.

4. If one or more existing RTP connections are candidates for use, the Select an
RTP Connection user exit (URTP) is called. URTP can either select one of the
existing RTP connections to use or select to have a new RTP connection
started. See TPF System Installation Support Reference for more information
about URTP.

ROUTE_SETUP Process
When an RTP connection starts, there is a new flow called a ROUTE_SETUP
command that occurs after the APPN search (LOCATE flows) and before the BIND
request is sent out. The purpose of the ROUTE_SETUP process is to gather the
HPR information for the route, including:

v The list of ANR labels in the forward direction (the path from the node containing
the PLU to the remote RTP endpoint)

v The list of ANR labels in the reverse direction (the path from the remote RTP
endpoint to the node containing the PLU)

v The maximum packet size, which is the value of the smallest link size along the
route between the RTP endpoints.

v The maximum amount of time that the remote RTP endpoint requires for a path
switch.

The ROUTE_SETUP request is sent by the node containing the PLU and is
processed by every node along the route, up to and including the remote RTP
endpoint, to obtain the forward route information. When the ROUTE_SETUP
request reaches the remote RTP endpoint, a ROUTE_SETUP reply is sent back to
gather the reverse route information.

Figure 66 on page 137 shows an example of the flows during the ROUTE_SETUP
process.

136 TPF V4R1 ACF/SNA Data Communications Reference

In the figure, a session between LUa (the PLU) in the TPF system and LUd in node
D is starting. The RSCV calculated by the network is a three-hop route, the TPF
system determined that HPR support can be used for the entire route, and a new
RTP connection will be started. The step-by-step description of the ROUTE_SETUP
process is as follows:

1. The TPF system receives a LOCATE command on the CP-CP sessions
containing the RSCV.

2. The TPF system builds the ROUTE_SETUP request; the following information is
included:

Req The ROUTE_SETUP command is marked as a request.

PCIDx A new procedure correlation identifier (PCID) to identify this
ROUTE_SETUP process. This is not the PCID of the LU-LU session
being started.

RSCV The route for the LU-LU session.

TPF

LUa
Node B Node C

Node D
NCE=D4

LUd

LOCATE(RSCV)

ROUTE_SETUP(Req,PCIDx,RSCV,
DLU=LUd,FANR(A1))

ROUTE_SETUP(Req,PCIDx,RSCV,
DLU=LUd,FANR(A1-B2))

ROUTE_SETUP(Rep,PCIDx,
CP_DLU=CPd,FANR(A1-B2-C1),

NCE_DLU=D4,RANR(D1-C2))

ROUTE_SETUP(Req,PCIDx,RSCV,
DLU=LUd,FANR(A1-B2-C1))

ROUTE_SETUP(Rep,PCIDx,
CP_DLU=CPd,FANR(A1-B2-C1),

NCE_DLU=D4,RANR(D1))

ROUTE_SETUP(Rep,PCIDx,
CP_DLU=CPd,FANR(A1-B2-C1),
NCE_DLU=D4,RANR(D1-C2-B1))

1

2

3

4

5

6

7

A1 B2 C1

B1 C2 D1

Figure 66. ROUTE_SETUP Process

High-Performance Routing (HPR) Support 137

DLU Name of the destination LU, which, in this example, is LUd.

FANR Forward ANR field. The TPF system includes the ANR label for the first
link (which is A1) here. Each node along the route will add to this field.

3. Node B adds ANR label B2 to the FANR field and then, using the RSCV, passes
the ROUTE_SETUP request to node C.

4. Node C adds ANR label C1 to the FANR field and then, using the RSCV,
passes the ROUTE_SETUP request to node D.

5. Node D builds the ROUTE_SETUP reply; the following fields are included:

Rep The ROUTE_SETUP command is a reply.

PCIDx The PCID from the ROUTE_SETUP request.

CP_DLU
CP name of the remote RTP endpoint (CP name of node D).

FANR Forward ANR field. This is copied from the ROUTE_SETUP request.

NCE_DLU
NCE identifier assigned to the destination LU in the remote RTP
endpoint, which is D4 in this example.

RANR Reverse ANR field. The remote RTP endpoint puts ANR label D1 here.
Each node along the route will add to this field.

6. Because the ROUTE_SETUP command is a reply, intermediate nodes add to
the RANR field rather than the FANR field. Node C adds ANR label C2 to the
RANR field.

7. Node B adds ANR label B1 to the RANR field.

When the ROUTE_SETUP reply is received by the TPF system, the RTP
connection is started by sending out an NLP marked as a new connection. The NLP
also contains the BIND request to start the new LU-LU session.

The ROUTE_SETUP process is also used during the path switch process. See
“Path Switches” on page 141 for more information about the path switch process.

LU-LU Session Activation Flows
If an LU-LU session is starting and an existing RTP connection is used, the
ROUTE_SETUP process is skipped and a BIND request is sent in an NLP instead.
The following examples show the flows in and out of the TPF system during LU-LU
session activation based on whether HPR support is used or not:

TPF
PLU

NN
CP SLU

LOCATE with RSCV

FID2(BIND Request)

Figure 67. LU-LU Session Activation, HPR Support Is Not Used

138 TPF V4R1 ACF/SNA Data Communications Reference

TPF
PLU

NN
CP SLU

LOCATE with RSCV

ROUTE_SETUP Request

ROUTE_SETUP Reply

NLP(BIND Request)

Figure 68. LU-LU Session Activation, a New RTP Connection Is Started

Is used
TPF
PLU

NN
CP SLU

LOCATE with RSCV

NLP(BIND Request)

Figure 69. LU-LU Session Activation, an Existing RTP Connection

Is HPR Capable
TPF
PLU

(RTP)

NN
CP

(ANR)
Node C
(RTP)

SLU
(APPN)

LOCATE with RSCV

ROUTE_SETUP Request

ROUTE_SETUP Reply

NLP(BIND Request)

FID2(BIND)

Figure 70. LU-LU Session Activation, Part of the Route

High-Performance Routing (HPR) Support 139

Session Addresses
For an LU-LU session in a PU 5 network, the combination of the network address
(NA) of the PLU with the NA of the SLU uniquely identifies the session. The NAs
flow in the transmission header (TH) section of an FID4 PIU.

For an LU-LU session in a PU 2.1 network, a session identifier (SID) together with
the origin destination assignment indicator (ODAI) indicator uniquely identify the
session between a pair of adjacent nodes. The SID and ODAI indicator flow in the
TH section of an FID2 PIU.

For an LU-LU session in an HPR network, a session address (SA) uniquely
identifies the session. The SA flows in the TH section of an NLP.

An SA is an 8-byte token that uniquely identifies an LU-LU session in the HPR
network. An SA is unique per RTP connection, not per node. There are two SAs
assigned to an LU-LU session, one assigned by each RTP endpoint. One SA flows
in the TH section of an NLP. Whenever possible, the SA that the remote RTP
endpoint assigned is placed in the TH. For example, if node X is sending data to
node Y, the SA assigned by node Y is placed in the TH of the NLP.

The reason for having two SAs assigned to an LU-LU session is the same reason
that two TCIDs are assigned to an RTP connection. The intention is that a node will
create an SA in such a way that it can be used as an index or pointer to control
blocks defined in that node.

The SA assigned by the RTP endpoint that owns the PLU is sent in the TH section
of the NLP containing the BIND request. The SA assigned by the RTP endpoint that
owns the SLU is sent in the BIND response in a new control vector, CV X'62'.

The following figure shows an example of how session addresses are used:

In Figure 71:

1. Node X creates a new SA called SAyx and sends the BIND request to the SLU
across the selected RTP connection. The TH of the NLP contains the SA
assigned by node X because the SA assigned by the remote RTP endpoint
(node Y) is not known yet.

Node X
PLU

Node Y
SLU

NLP(TH(SAyx),DATA(BIND Request))

NLP(TH(SAyx),DATA(BIND Response(CV62(SAxy))))

NLP(TH(SAxy),DATA(User Data))

NLP(TH(SAyx),DATA(User Data))

1

2

3

4

Figure 71. Session Address Usage

140 TPF V4R1 ACF/SNA Data Communications Reference

Note: A bit in the SA indicates whether the sending or receiving node assigned
the SA.

2. Node Y accepts the BIND request and assigns an SA of its own called SAxy,
which is appended to the BIND response in CV X'62'.

Note: The TH of the NLP contains the SA assigned by node X.

3. Once the BIND response has been received, node X now knows the SA
assigned by node Y and will put that SA (SAxy) in the TH of every subsequent
NLP sent on this LU-LU session.

4. The RTP endpoint owning the SLU (node Y) always knows the SA assigned by
the RTP endpoint that owns the PLU and, therefore, always puts SAyx in the
TH of NLPs sent on this LU-LU session.

See “NLPs” on page 145 for more information about NLPs.

Path Switches
When an RTP connection is started, a specific route in the network is assigned to
that RTP connection. The RTP connection will use this route until a problem with
the route is detected; for example, a node along the route fails. A path switch is the
process by which an RTP connection changes its route. The path switch is
non-disruptive, meaning no sessions or data is lost, and is transparent to the end
user.

The path switch process is started automatically when a problem with the current
route is detected. See “Detecting Network Failures” on page 144 for more
information about how problems in the network are detected.

You can start the path switch process yourself at any time by issuing the ZNRTP
SWITCH command. When you enter the ZNRTP SWITCH command, the APPN
network is searched to see if a better route exists. While the search is taking place,
the RTP connection continues to use its existing route. If the search returns a better
route, the path switch process continues and the RTP connection is switched over
to that better route. However, if the search fails or indicates that the RTP connection
is already using the best route, the path switch process ends and the RTP
connection continues to use its existing route. See TPF Operations for more
information about the ZNRTP SWITCH command.

Regardless of what caused a path switch to start, the TPF operator is notified when
a path switch ends successfully or fails. The fact that a path switch started usually
indicates a problem in the network that needs to be investigated. This is true
regardless of the outcome of the path switch.

A path switch is done at the RTP connection level; that is, when a path switch is
done, all LU-LU sessions on that RTP connection switch to the new route. A path
switch is not done for individual LU-LU sessions.

Path Switch Process
The path switch process is very similar to the LU-LU session activation process;
that is, an APPN search is performed, followed by the ROUTE_SETUP process.
The LOCATE command that flows during the APPN search is marked as search
only because a new LU-LU session is not being started. Normally, LOCATE
commands flow only during the LU-LU session activation process and do so to
calculate a route between the two LUs. During a path switch, the APPN search,

High-Performance Routing (HPR) Support 141

instead, calculates a new route between the two RTP endpoints. The search origin
and destination fields in the LOCATE command are set to the control point (CP)
names of the RTP endpoints.

If the APPN search finds a new route connecting the RTP endpoints, the
ROUTE_SETUP process is performed to gather the HPR information for the new
route. When the ROUTE_SETUP process ends, an NLP is sent along the new route
to the remote RTP endpoint. A Switching Information (SI) segment, which contains
information about the new route, is included in the NLP. The presence of an SI
segment in an NLP indicates that a path switch has taken place. See
“ROUTE_SETUP Process” on page 136 for more information about the
ROUTE_SETUP process.

The following figure shows an example of the flows during the path switch process:

In Figure 72:

1. An RTP connection exists between the TPF system and node Z. The route is
through node X.

2. Node X fails.

3. The TPF system detects the failure in the network and sends a LOCATE
request on the CP-CP sessions to start the path switch process.

4. The LOCATE reply is received and contains a new route between the TPF
system and node Z. The new route is through node Y.

5. The TPF system builds the ROUTE_SETUP request and sends it to node Y.
Node Y adds information to the ROUTE_SETUP request and passes it to node
Z.

TPF NNS Node X Node Y Node Z

RTP Connection

Node X Fails

LOCATE Request

LOCATE Reply

ROUTE_SETUP Request

ROUTE_SETUP Reply

NLP(NHDR,THDR(SI))

NLP

1

2

3

4

5

6

7

8

Figure 72. Path Switch Process

142 TPF V4R1 ACF/SNA Data Communications Reference

6. Node Z builds the ROUTE_SETUP reply and sends it to node Y. Node Y adds
information to the ROUTE_SETUP reply and passes it to the TPF system.

7. The TPF system sends an NLP to node Z along the new route. The NLP
includes the SI segment, which tells node Z the new route to use from now on.

8. NLPs sent by node Z now use the new route (through node Y).

Path Switch Timer
The path switch timer is started when the RTP endpoint begins the path switch
process. The timer continues to run until the path switch process ends successfully,
which is signaled by the receipt of an NLP from the remote RTP endpoint
acknowledging the path switch. The function of the path switch timer is to detect
when the remote RTP endpoint has failed or when no working path exists to the
remote RTP endpoint.

The path switch timer (and path switch process) is stopped if an NLP is received on
the RTP connection on the existing route. This can happen when network
congestion delays the arrival of the status reply.

You can define the value of the path switch timer. When an RTP connection is
started, each RTP endpoint informs its partner RTP endpoint how long that node
requires to complete a path switch. The HPRPST parameter on the SNAKEY macro
in CTK2 defines how long the TPF system tells the remote RTP endpoint to wait
when that node starts a path switch before considering that the path switch has
failed. You can also use the ZNKEY command with the HPRPST parameter
specified to specify a new value for the path switch timer. See TPF ACF/SNA
Network Generation for more information about the SNAKEY macro. See TPF
Operations for more information about the ZNKEY command.

Note: Once the value of the path switch timer is set for an RTP connection, that
value is used for the life of that RTP connection. Therefore, if you specify a
new value for the path switch timer, that new value is used only for new RTP
connections that are started. Existing RTP connections continue to use the
original value of the path switch timer.

The logic for choosing the value of the HPRPST parameter is the same as the logic
that is done today for determining an appropriate value for the automatic network
shutdown (ANS) parameter in the NCP generation deck. For example, if you want
PU 5 or PU 2.1 LU-LU sessions to remain active across an IPL of the TPF system,
you must to set the ANS parameter in the NCP to a value higher than the time it
takes the TPF system to complete the IPL. If you want RTP connections (and,
therefore, HPR LU-LU sessions) to remain active across an IPL of the TPF system,
you need to set the HPRPST parameter to a value higher than the time it takes the
TPF system to complete the IPL.

Stationary and Mobile RTP Nodes
An RTP endpoint can be defined as a stationary or mobile node. Most nodes are
stationary, but the TPF system is defined as a mobile node to avoid having the
network flooded with path switch requests if the TPF system is dumping storage for
a long time or performs an IPL. When the short request timer expires and a path
switch is needed, the path switch timer is started, but that node does not
necessarily send a request to the network to ask for a new path. If the remote RTP
endpoint is a stationary node, the local RTP endpoint that detected the network
failure will send a request to the network right away to ask for a new path.
However, if the remote RTP node is mobile, the local RTP node (if it is stationary)
does not send a request for a new path to the network even though its path switch

High-Performance Routing (HPR) Support 143

timer is running. When this occurs, it is up to the remote mobile node to do the path
switch if there was an actual failure in the network. If the path switch timer expires
and the node has not asked for a new path, it will ask the network for a new path at
this time as a last chance effort to keep the RTP connection active.

See “Short Request Timer” for more information about the short request timer. See
“Path Switch Timer” on page 143 for more information about the path switch timer.

To understand why having the TPF system defined as a mobile node is important,
assume that there are 100 000 RTP connections with the TPF system and a system
error is taken that lasts for 10 seconds. During that 10-second interval when the
TPF system is not sending or receiving data from the network, the remote RTP
endpoints will detect that there is a problem and start their path switch timers.
When the dump ends and data traffic resumes, the remote RTP endpoints will
receive data from the TPF system and stop their path switch timers. If the TPF
system was defined as a stationary node, the network would be flooded with
100 000 path switch requests while the TPF system was dumping. This would
cause unnecessary high-priority messages (APPN LOCATE commands) to flow and
result in the delay of processing data traffic.

Detecting Network Failures
When the route being used by an RTP connection fails, one of the RTP endpoints
will detect the failure and start the path switch process. How and when the TPF
system detects failures in the HPR network can be broken into two categories:

v An adjacent link station (ALS) directly connected to the TPF system fails and
RTP connections were going through that ALS. This immediately starts the path
switch process for each RTP connection going through the failing ALS.

v A node farther out in the network fails and RTP connections were going through
that node. When this happens, the TPF system will detect the network failure
because acknowledgements from the remote RTP endpoint will not be received.
How long it takes to detect the failure is based on the short request timer and,
possibly, the alive timer.

Short Request Timer
A short request timer exists for each RTP connection. Whenever a status request is
sent to the remote RTP endpoint, the short request timer is started. Its purpose is to
detect failures in the network. Whenever a status reply is received, the short
request timer is stopped. If no status reply is received and the short request timer
expires, the TPF system sends another NLP with no data to verify the route and the
short request timer is restarted. If the short request timer expires two consecutive
times before a status reply is received, a path switch is started.

The value of the short request timer is based on the smoothed round-trip time
(SRTT) of the RTP connection. The SRTT is the average time it takes the TPF
system to receive a status reply on the RTP connection after sending a status
request. Each time a status reply is received, the SRTT for the RTP connection is
adjusted to take into account changing network conditions.

When the short request timer is started, it is set to a value larger than the SRTT to
allow for normal network delays and congestion. This is particularly important when
the SRTT is a very low number; for example, in the millisecond range.

144 TPF V4R1 ACF/SNA Data Communications Reference

Alive Timer
The primary purpose of the alive timer is to detect network failures for idle RTP
connections. If the TPF system has not sent or received data on an RTP connection
for a given period of time, a status request will be sent in an HPR control message
to verify that the route is still active. This is also referred to as a heartbeat
message. Because the control message contains a status request, the short
request timer is started. Normal short request timer processing takes over from this
point. If no status reply is received, the TPF system starts a path switch.

The goal of sending these heartbeat messages is to detect network failures in a
timely way. For example, if a node along the route of an active RTP connection
fails, the next data message for this RTP connection is not going to be sent for
several minutes. Without the alive timer, the network failure would not be detected
until that first data message is sent minutes later. Processing of that data message
would be delayed until a path switch was started and completed successfully.

The other purpose of the alive timer is to keep limited resource links active. If there
are limited resource links along the route of an RTP connection, traffic must be sent
across that link every so often; otherwise, the intermediate nodes in the network will
deactivate the link thinking that there are no sessions using it. Intermediate nodes
have no awareness of HPR LU-LU sessions.

The HPRALIVE parameter on the SNAKEY macro in CTK2 defines the alive timer
value used by the TPF system. You can also use the ZNKEY command with the
HPRALIVE parameter specified to define a value for the alive timer. See TPF
ACF/SNA Network Generation for more information about the SNAKEY macro. See
TPF Operations for more information about the ZNKEY command.

NLPs
In PU 5 and PU 2.1 networks, a message (either an SNA command or user data)
flows in a path information unit (PIU). In HPR support, a message flows in a
network layer packet (NLP), which is an extension to the existing PIU format.

Figure 73 on page 146 compares the parts of a PIU to the parts of an NLP.

High-Performance Routing (HPR) Support 145

The following information describes the parts of a PIU and an NLP, and how these
parts are used:

v Link Header (LH)
– Exists only in PU 2.1 PIUs and NLPs
– Same format for both PU 2.1 PIUs and NLPs
– Indicates the size of the PIU or NLP.

v Network Layer Header (NHDR)
– Exists only in an NLP
– Used to route the NLP from one RTP endpoint to the other
– Variable length.

v Transport Header (THDR)
– Exists only in an NLP
– Identifies the RTP connection
– Optionally contains control information about the RTP connection
– Variable length.

v Transmission Header (TH)
– Identifies the session
– Format (FID type) is different based on network type.

v Request Header (RH)
– Identifies the type of data in the RU
– Same format regardless of network type.

v Request Unit (RU)
– Either an SNA command or user data
– Same format regardless of network type
– Variable length.

In a PU 5 or PU 2.1 network, the TH is required in a PIU, but the RH and RU are
optional; therefore, possible combinations of a PIU are:
v TH only (PU 5 virtual route pacing response)
v TH and RH, but no RU
v TH and RU, but no RH (TH chained message)

PU 5 PIU

PU 2.1 PIU

NLP

FID4 TH

FID2 TH

FID5 TH

RH

RHLH

RHLH

RU...

RU...

RU...THDR...NHDR...

Figure 73. Comparing an NLP to PIUs

146 TPF V4R1 ACF/SNA Data Communications Reference

v TH, RH, and RU.

The FID5 TH, RH, and RU are often referred to as the DATA portion of an NLP. The
NHDR and THDR are required in an NLP, but all of the parts in the DATA portion
are optional. The valid combinations of an NLP are:

v NHDR and THDR, but no DATA (referred to as an HPR control message)

See “HPR Control Messages” on page 151 for more information about HPR
control messages.

v NHDR, THDR, TH, RH, and RU

v NHDR, THDR, TH, and RH, but no RU

v NHDR, THDR, TH, and RU, but no RH (TH chained message)

See “Reassembling Input Messages” on page 176 for more information about TH
chained messages.

v NHDR, THDR, and RU, but no TH or RH (THDR chained message).

See “Segmentation and Reassembly” on page 174 for more information about
THDR chained messages.

See IBM Systems Network Architecture Network Product Formats for more
information about PIUs and NLPs.

NHDRs
The network layer header (NHDR) portion of the NLP is used by the network to
route the NLP from the origin RTP endpoint to the destination RTP endpoint along a
specific path. When the origin RTP endpoint builds the NLP, the list of ANR labels
representing the path from the origin node to the destination node is placed in the
ANRF field of the NHDR. When an intermediate node receives an NLP, the ANRF
field in the NHDR is examined to find the ANR label of the next hop, that ANR label
is removed from the ANRF field, and the NLP is then routed to the next node. The
NHDR is the only part of an NLP that is examined by or modified by intermediate
nodes in the network. When the NLP arrives at the remote RTP endpoint, the only
part of the ANRF field that remains is the NCE representing the destination LU.

The following figure shows an example of how NLPs are routed:

High-Performance Routing (HPR) Support 147

In Figure 74:

v An RTP connection exists between the TPF system and node D.

v A session between LUa and LUd exists on that RTP connection.

v The current path (ANR labels) for the RTP connection from the TPF system to
node D is A1-B2-C1.

v The current path for the RTP connection from node D to the TPF system is
D1-C2-B1.

v The NCE of the TPF system is A5.

v The NCE of node D is D4.

The following are the steps for routing NLPs between the TPF system to node D:

1. LUa has data to send to LUd. An NLP is built by the TPF system. The first label
of the current path (A1) indicates that the NLP needs to be routed to node B.
The remainder of the current path (B2-C1) is placed in the ANRF field of the
NHDR followed by NCE of the remote RTP endpoint (D4). The NLP is sent to
node B.

2. When node B receives the NLP, it removes the first ANR label (B2) from the
ANRF field of the NHDR and uses that label to determine where to send the
NLP next. Node B then sends the NLP to node C.

3. When node C receives the NLP, it removes the first ANR label (C1) from the
ANRF field of the NHDR and uses that label to determine where to send the
NLP next. Node C then sends the NLP to node D.

When Node D receives the NLP, the entire NLP is processed. The NLP was
routed correctly because the ANRF field contains the NCE of node D.

TPF
NCE=A5

LUa
Node B Node C

Node D
NCE=D4

LUd

NHDR(ANRF(B2-C1-D4))

NHDR(ANRF(A5))

NHDR(ANRF(C2-B1-A5))

1

2

3

4

5

6

A1 B2 C1

B1 C2 D1

NHDR(ANRF(C1-D4))

NHDR(ANRF(B1-A5))

NHDR(ANRF(D4))

Figure 74. Routing an NLP through the Network

148 TPF V4R1 ACF/SNA Data Communications Reference

4. LUd has data to send to LUa. An NLP is built by node D. The first label of the
current path (D1) indicates that the NLP needs to be routed to node C. The
remainder of the current path (C2-B1) is placed in the ANRF field of the NHDR
followed by the NCE of the remote RTP endpoint (A5). The NLP is sent to node
C.

5. When node C receives the NLP, it removes the first ANR label (C2) from the
ANRF field of the NHDR and uses that label to determine where to send the
NLP next. Node C then sends the NLP to node B.

6. When node B receives the NLP, it removes the first ANR label (B1) from the
ANRF field of the NHDR and uses that label to determine where to send the
NLP next. Node B then sends the NLP to the TPF system.

When the TPF system receives the NLP, the entire NLP is processed. The NLP
did get routed correctly because the ANRF field contains the NCE of the TPF
system.

The NHDR of each NLP includes the specific path that the NLP will take in the
network. If the current route fails and a path switch is done, a different set of ANR
labels is placed in the ANRF field of subsequent NLPs to tell the intermediate nodes
the new path to use. Because intermediate nodes only examine the NHDR, they
have no knowledge of the RTP connection or LU-LU session associated with the
NLP.

Because NLPs and FID2 PIUs can flow on the same link, the first 3 bits after the
link header (LH) are used to indicate the type of message. In a FID2 PIU, these are
the first 3 bits of the TH and are always set to X'001'. In an NLP, these are the first
3 bits of the NHDR and are always set to X'110'.

There are two slowdown indicators in the NHDR. When an NLP is first built by the
origin RTP endpoint, both of these slowdown indicators are cleared. If any
intermediate node along the route is congested, it can set one of the slowdown
indicators in the NHDR. When the NLP arrives at the destination RTP endpoint, the
slowdown indicators in the NHDR are examined and used to adjust the rate at
which data is sent on the RTP connection. See “ARB Pacing” on page 168 for
information about how the slowdown indicators in the NHDR are used.

THDRs
The transport header (THDR) portion of the NLP contains control information about
the RTP connection. The THDR is created by the RTP endpoint that sends the NLP
and is processed by the remote RTP endpoint that receives the NLP. Intermediate
nodes do not examine or modify the THDR.

The first part of the THDR consists of fixed-length fields that are always present.
The key fields include:

v Transport connection identifier (TCID), which identifies the RTP connection over
which this NLP flowed.

v Start-of-message (SOM) and end-of-message (EOM) indicators, which specify
whether the NLP is a complete message or part of a THDR chained message.
See “Segmentation and Reassembly” on page 174 for more information about
THDR chained messages and the use of the SOM and EOM indicators.

v Status Request (SR) indicator, which, when set, indicates that the receiver of the
NLP must respond by sending an NLP with a Status segment.

v Data offset, which is the offset to the data portion of the NLP (TH, RH, RU)
relative to the start of the THDR.

High-Performance Routing (HPR) Support 149

v Data length, which is the length of the data portion of the NLP (TH, RH, and RU).
If the data length is 0, the NLP is an HPR control message.

v Byte sequence number (BSN), which is the sequence number of the NLP sent on
this RTP connection. The BSN is used to detect lost and duplicate data in the
network.

Following the fixed part of the THDR, there are zero or more optional segments,
each of which contains control information about the RTP connection. See “THDR
Optional Segments” for more information about THDR optional segments.

When the TPF system receives an NLP, the NHDR and the THDR are processed
immediately during read interrupt processing. SNA Opzero processes the TH, RH,
and RU sections of a PIU and an NLP.

When the TPF system needs to send control information (one or more optional
segments) to the remote RTP endpoint, the optional segments and user data are
sent in the same NLP whenever possible. In the context of this discussion, user
data means either application data or an SNA command (for example, a BIND).
Piggybacking of control data and user data in the same NLP is done to reduce the
number of NLPs that flow on an RTP connection. If one or more optional segments
need to be sent when no user data is waiting to be sent, and no user data is
generated in the next SNA polling interval, the TPF system will send an HPR
control message (which is an NLP that contains just an NHDR and THDR, but no
data).

THDR Optional Segments
The following list contains the optional segments that can be included in the THDR:

Adaptive Rate-Based ARB (X'22') Used to control the flow of data on the RTP
connection.

Connection Fault CF (X'12') Sent whenever a protocol violation has been
detected, or to immediately deactivate an
RTP connection.

Connection Identifier
Exchange

CIE (X'10') When node X starts an RTP connection with
node Y, the first NLP sent by node Y back to
node X includes the CIE segment, which
contains the TCID that node Y assigned to
the RTP connection that was just started.

Client “Out of Band”
Bits

COB (X'10') Used to deactivate the RTP connection
normally.

Status STATUS (X'0E') Acknowledges the receipt of data and
informs the RTP endpoint of missing data
that needs to be retransmitted.

Connection Setup CS (X'0D') Sent when a new RTP connection is being
started. It identifies the control point (CP)
name of the destination RTP endpoint and
the network connection endpoint (NCE)
identifier in the destination RTP endpoint.

Switching Information SI (X'14') Sent by node X to node Y to inform node Y
of the path it should now use for the RTP
connection. The SI segment is included in
the NLP that starts the RTP connection and
anytime a path switch has occurred.

150 TPF V4R1 ACF/SNA Data Communications Reference

SYNC and ECHO Numbers
RTP endpoints maintain SYNC numbers for each RTP connection. A SYNC number
is sent as part of the STATUS segment when present in the THDR of an NLP. The
SYNC number is used to detect old control information. Each time a state change
takes place on the RTP connection, the SYNC number is incremented. Each RTP
endpoint has its own SYNC number. In addition, each RTP endpoint keeps track of
the most current SYNC number received from the remote RTP endpoint. When
building a STATUS segment, an RTP endpoint places its own SYNC number in the
SYNC field of the STATUS segment and then places the current SYNC number
received from the remote RTP endpoint in the ECHO field of the STATUS segment.

The SYNC and ECHO numbers are used to detect a path switch race condition,
which means that both RTP endpoints do a path switch at the same time. When an
RTP endpoint does a path switch, it increments its SYNC number and sends an
NLP containing the STATUS segment and the SI segment, which contains the new
route. When a STATUS segment is received whose ECHO field contains the value
of the new SYNC number of this RTP endpoint, the remote RTP endpoint has
acknowledged that a path switch has taken place. A path switch race condition
exists if the NLP with the SI segment is sent and then an NLP with an SI segment
is received before receiving an NLP with a STATUS segment that acknowledges the
path switch.

SYNC and ECHO numbers also play an important role in the RTP connection
resynchronization process. See “RTP Connection Resynchronization Process” on
page 163 for more information about the RTP connection resynchronization
process.

Data
The data portion of an NLP can contain a transmission header (TH), request header
(RH), and request unit (RU), all of which are optional. The data portion of an NLP
exists when there is either application data or an SNA command to send on an
LU-LU session. The RH and RU sections of an NLP are identical to the RH and RU
sections in an FID2 PIU.

The TH section in the data portion of an NLP is an FID5 TH. It is a different format
than an FID2 or FID4 TH, but provides the same function in that it identifies the
LU-LU session. The session address (SA) field is contained in the FID5 TH. The
combination of the SA from the TH and the TCID from the THDR uniquely identifies
the LU-LU session. As with the FID2 and FID4 TH, the FID5 TH includes the
sequence number field (SNF), which identifies the sequence number of the
message for this LU-LU session.

HPR Control Messages
An HPR control message is an NLP that includes an NHDR and THDR, but no data
(no TH, RH, or RU). Control messages are sent when one RTP endpoint has
control information (THDR optional segments) to send to the partner RTP endpoint
regarding a specific RTP connection, but has no user data to send for any of the
LU-LU sessions on the RTP connection.

Before HPR support, every PIU that flowed in or out of the TPF system contained
data for an LU-LU session, except for virtual route (VR) pacing responses. With
HPR support, there are two more conditions where there is no LU-LU session data:

v FID2 ROUTE_SETUP command, which is a PIU used to obtain the HPR path
information for an RTP connection and does not flow on any LU-LU session

High-Performance Routing (HPR) Support 151

v HPR control message, which contains control information about the RTP
connection sent by one RTP endpoint to the remote RTP endpoint.

Network Considerations for NLPs
Because an NLP is larger than a PIU, messages that used to fit in a single read
buffer before HPR support was installed may now span more than one read buffer.
To account for this condition, consider increasing the size of the read buffers used
to read in data from the network.

Use the UNITSZ parameter on the SNAKEY macro in CTK2 to change the size of
the read buffers. See TPF ACF/SNA Network Generation for more information about
the SNAKEY macro.

HPR Control Blocks
The following control blocks were created for HPR support:

v The rapid transport protocol control block (RTPCB) table, which contains
information about RTP connections.

v The high-performance routing session address table (HPRSAT), which contains
the session addresses of HPR LU-LU sessions.

v The high-performance routing message table (HPRMT), which contains output
messages sent on RTP connections that are waiting for an acknowledgement
from remote RTP endpoints.

RTPCB Table
The rapid transport protocol control block (RTPCB) table contains hash buckets, the
RTPCB header, and one entry for every RTP connection. Each RTPCB entry is
made up of three parts. The following figure shows an example of the RTPCB table
layout:

152 TPF V4R1 ACF/SNA Data Communications Reference

In Figure 75 an RTPCB entry is referenced using its RTPCB index, which is a direct
index into the RTPCB table. For example, the RTPCB index of the first RTPCB
entry is 1. Because RTP connections do not have names like other SNA resources
(like LUs, CPs, ALSs, and so on), they are identified by their RTPCB index.
Therefore, the RTPCB index is used as input to some of the SNA commands,
including the ZNRTP commands, and shows up in the PIU trace table.

When an RTP connection is started, an RTPCB entry is assigned and added to the
appropriate hash bucket based on the control point name of the remote RTP
endpoint. When the RTP connection ends, the RTPCB entry is removed from
whatever hash bucket it is in and the RTPCB entry is returned to the system.

For performance reasons, all RTPCB entries that represent RTP connections going
to the same remote RTP endpoint are chained together using the hash bucket
mechanism. When an HPR LU-LU session is starting, the TPF system needs to
know if there are existing RTP connections that can be used. Rather than

RTPCB Table

RTPCB Header

RTPCB Entry 1, Part 1

RTPCB Entry 1, Part 2

RTPCB Entry 1, Part 3

RTPCB Entry 2, Part 1

RTPCB Entry 2, Part 2

RTPCB Entry 2, Part 3

RTPCB Entry 3, Part 1

RTPCB Entry 3, Part 2

RTPCB Entry 3, Part 3

RTPCB Entry 1

RTPCB Entry 2

RTPCB Entry 3

Hash Bucket
Hash Bucket
Hash Bucket

Hash Bucket

1
2
3

823

Figure 75. RTPCB Table Layout

High-Performance Routing (HPR) Support 153

sequentially searching every RTPCB entry for a matching route, the hash bucket
algorithm allows for a quick and effective search of the RTPCB table.

Each RTPCB entry is broken into three parts for the following reasons related to
keypointing:

v Part 1 of the RTPCB entry contains static information about the RTP connection;
for example the TCIDs, COS name, CP name of the remote RTP endpoint, and
the path to that remote node (both RSCV and ANR labels). Because part 1 is
large and the information does not change very often, part 1 of an RTPCB entry
is written to DASD (keypointed) immediately whenever the RTP connection
starts, ends, or completes a path switch. The #RT1RI fixed file records contain
part 1 of the RTPCB entries. See “Defining Fixed File Records for the RTPCB
Table” on page 155 for more information about defining #RT1RI records.

v Part 2 of the RTPCB entry contains information necessary to resynchronize the
RTP connection if a hardware IPL of the TPF system is performed. Whenever
information in part 2 of an RTPCB entry is changed, that entry is marked for
keypointing. When the time-initiated SNA keypointing task gets control, it files
part 2 of all RTPCB entries that were marked for keypointing during the previous
SNA keypointing interval. The RTP connection resynchronization process needs
fairly recent information about the RTP connection, which is why this information
is written to DASD periodically. The #RT2RI fixed file records contain part 2 of
the RTPCB entries. See “Defining Fixed File Records for the RTPCB Table” on
page 155 for more information about defining #RT2RI records. See “RTP
Connection Resynchronization Process” on page 163 for more information about
the RTP connection resynchronization process.

v Part 3 of the RTPCB entry contains information about the RTP entry that does
not need to be keypointed. This information is either initialized or rebuilt following
an IPL of the TPF system.

The RTPCB header contains statistical information about HPR support. It also
contains the anchor for the various chains involving RTPCB entries. For example,
all RTPCB entries for RTP connections that are doing a path switch are chained
together. In another example, all RTPCB entries that have their short request timer
running are chained together. This allows the TPF system to perform the necessary
RTP endpoint functions effectively without having to scan the entire RTPCB table.

Defining the RTPCB Table
After you have determined the maximum number of HPR LU-LU sessions, the next
step is to decide how to spread those sessions across RTP connections and
determine how many RTP connections (RTPCB table entries) will be needed on
each TPF processor. This becomes the value of the MAXRTPCB parameter on the
SNAKEY macro in CTK2. See TPF ACF/SNA Network Generation for more
information about the SNAKEY macro.

You need at least one RTP connection for each remote RTP endpoint that has HPR
LU-LU sessions with a TPF processor. If there are many LU-LU sessions between a
TPF processor and a given remote RTP endpoint across different routes, or many
sessions using different class of service (COS) values, there will be multiple RTP
connections between the TPF processor and remote RTP endpoint.

The URTP user exit allows you to control how many LU-LU sessions are assigned
to an RTP connection. See TPF System Installation Support Reference for more
information about the URTP user exit.

154 TPF V4R1 ACF/SNA Data Communications Reference

Defining Fixed File Records for the RTPCB Table
Parts 1 and 2 of the RTPCB table are keypointed. Based on the number of RTPCB
entries defined, you need to define the necessary number of #RT1RI and #RT2RI
fixed file records. These are processor unique records. To determine how many
records you need to define for a TPF processor, use the following formulas:

v Number of #RT1RI records = MAXRTPCB / 5

v Number of #RT2RI records = MAXRTPCB / 127

Displaying RTPCB Entries
The ZNRTP DISPLAY command displays the contents of an RTPCB entry. The
display can be either raw data or formatted. You can also use the ZDDCA
command with the RTP dump tag specified to display the RTPCB table and its
entries. See TPF Operations for more information about the ZNRTP DISPLAY and
ZDDCA commands.

Initializing RTPCB Entries
You can use the ZNRTP INITIALIZE command to initialize RTPCB entries. However,
do not initialize RTPCB entries in a production environment. Doing so resets SNA
control blocks in the TPF system without informing the network. Inconsistencies will
occur. Therefore, use the ZNRTP INACT command, rather than the ZNRTP
INITIALIZE command, whenever possible.

See TPF Operations for more information about the ZNRTP INITIALIZE and ZNRTP
INACT commands.

HPRSAT
The high-performance routing session address table (HPRSAT) contains one entry
for every active HPR LU-LU session. Each entry contains the following information:

v The session address (SA) that the TPF system assigned

v The SA that the remote RTP endpoint assigned

v The RTPCB index of the RTP connection

v The resource identifier (RID) of the LU RVT entry.

The HPRSAT is primarily used by the PIU trace code at read interrupt completion
when NLPs are received from the network. Its purpose is to provide an effective
way to map the SA received in the NLP to its corresponding LU RVT entry. The
HPRSAT does for HPR sessions what the network address table (NAT) does for PU
5 LU-LU sessions, and what the session identifier table (SIT) does for PU 2.1
LU-LU sessions. All of these tables enable the TPF system to quickly find the LU
RVT entry for a given PIU.

The HPRSAT is not keypointed. Instead, the table is always rebuilt after an IPL of
the TPF system from information in the LU RVT entries.

Defining the HPRSAT
The HPRSAT is a single table shared by all RTP connections. The MAXHPRSA
parameter on the SNAKEY macro in CTK2 defines how many entries there are in
the HPRSAT, which is the maximum number of HPR LU-LU sessions that can be
active at any time. An HPRSAT entry is assigned when an HPR LU-LU session
starts, and the entry is cleared when that LU-LU session ends. The HPRSAT entry
assigned to an LU-LU session is based on a hashing algorithm for performance
reasons.

High-Performance Routing (HPR) Support 155

When defining the HPRSAT, you need to consider the existing APPN or PU 5
LU-LU sessions that will be migrated to HPR support as well as new LUs that will
be added to the network.

See TPF ACF/SNA Network Generation for more information about the SNAKEY
macro.

Displaying the HPRSAT
Use the ZDDCA command with the HSA dump tag specified to display the HPRSAT.
See TPF Operations for more information about the ZDDCA command.

HPRMT
The high-performance routing message table (HPRMT) is used to save the data
portion of HPR output messages (NLPs) until they are acknowledged by the remote
RTP endpoint. A message is added to the HPRMT just before the NLP is placed on
the SOUTC queue to be transmitted. A message is removed from the HPRMT when
an NLP is received containing a STATUS segment that acknowledges receipt of the
message.

If one or more NLPs sent by the TPF system become lost (for example, because of
a failure in the network), the remote RTP endpoint will detect that data was lost and
request that the TPF system retransmit the missing data. For this condition, the TPF
system will find the necessary data in the HPRMT and build another NLP to resend
that data to the remote RTP endpoint. All of the data and other important
information about the message is saved in the HPRMT so that the message can be
retransmitted without accessing the LU RVT entry because the LU-LU session may
no longer be active. For example, the TPF system sends a data message followed
by an UNBIND, causing the LU RVT entry to be cleaned up. The data message and
UNBIND NLPs are both lost and must be retransmitted. The data message and
UNBIND NLPs are rebuilt using only the information that was saved in the HPRMT.

Defining the HPRMT
The HPRMT resides only in core memory. You can define the size of the HPRMT
by using the HPRMTSIZ parameter on the SNAKEY macro in CTK2. You must
decide if the TPF system will save HPR output messages until they are
acknowledged by the remote RTP endpoint. Saving messages requires additional
storage. However, not saving messages can cause RTP connections (and the
sessions through them) to be taken down when there is a failure in the network. For
example, if data becomes lost in the network and the TPF system is requested to
retransmit that data, the RTP connection will be broken because there is no saved
copy of the data to retransmit. If you do not want the TPF system to save HPR
output messages, set the value of the HPRMTSIZ parameter on the SNAKEY
macro in CTK2 to 0, which means that the HPRMT is not defined. See TPF
ACF/SNA Network Generation for more information about the SNAKEY macro.

If you want the TPF system to save HPR output messages, you need to define the
size of the HPRMT. Some key factors to consider are:

v Output message rate

v Average output message size

v Turnaround time, which is how long it takes the remote RTP endpoint to
acknowledge data.

If the HPRMT is defined but becomes full, HPR output messages cannot be saved
until space becomes available in the table. Again, if the TPF system is requested to
retransmit a message that cannot be found in the HPRMT, the RTP connection will

156 TPF V4R1 ACF/SNA Data Communications Reference

be broken. The HPRMT does not and cannot use an aging algorithm. For example,
if the HPRMT is full and a new HPR message is being sent out, throwing away the
oldest message in the HPRMT to make room to save the new message will not
work because messages that have been in the HPRMT the longest time are the
ones that most likely will need to be retransmitted.

Because of the volume of data, it is not practical to keypoint the HPRMT. Across a
software IPL of the TPF system, the HPRMT remains as is. Across a hardware IPL
of the TPF system, the HPRMT is initialized and the RTP connection
resynchronization process is started. See “Host IPL Considerations” on page 163 for
more information about how HPR support handles IPLs of the TPF system.

On a given TPF system, the average output message size and network turnaround
time should be relatively constant regardless of the message rate. For example,
when your TPF system is in a steady state and sending 500 HPR output messages
per second, assume that the percentage of the HPRMT that is in use stays near
40%. Because the message rate and amount of HPRMT in use are directly
proportional, you can predict that at 1000 messages per second, about 80% of the
HPRMT would be in use.

Displaying Information about the HPRMT
Use the ZNRTP SUMMARY command to display information about how much of
the HPRMT is currently in use and the maximum amount of the HPRMT that was in
use at any point in time. You can also use the ZDDCA command with the HMT
dump tag specified to display the HPRMT table.

The TPF system also automatically sends warning messages to the TPF operator
console when the HPRMT becomes at least 90% full or 100% full.

Relationship with Other SNA Control Blocks
For each LU-LU session, one of the LU RVT entries contains the information about
the session. This is called the session RVT entry. For LU 6.2 sessions, the session
RVT entry is actually a session control block (SCB) entry.

Non-HPR LU-LU Sessions
When a PU 5 or PU 2.1 LU-LU session is started, the session is assigned to a
specific link (ALS, CTC, or NCP) and remains assigned to that link for the duration
of the session. The session RVT entry points to the CCW area of the assigned link
using the CCW index (RV1CCWIN) field. Whenever data is to be sent on the LU-LU
session, the CCW index in the session RVT is used to determine the link over
which the data will be sent. If a link fails in the network, all LU RVT entries whose
CCW index matches that of the failing link are cleaned up.

The following figure shows an example of the RVT and CCW area control blocks for
five LU-LU sessions across two links. These could be either PU 5 or PU 2.1 LU-LU
sessions:

High-Performance Routing (HPR) Support 157

In Figure 76:

v The five remote LUs (LU_A, LU_B, LU_C, LU_D, and LU_E) are all in session
with TPF application RES0.

v For all five sessions, the remote LU RVT entry is the session RVT entry. The
session partner RID (RV1SESP3) field in each of these RVT entries contains the
RID of the RES0 RVT entry.

v The sessions with LU_B, LU_C, and LU_E go through link NCP1, whose CCW
index is 1.

v The sessions with LU_A and LU_D go through link NCP2, whose CCW index is
2.

If a message needs to be sent to LU_B, the CCW index in its RVT entry
(RV1CCWIN=01) indicates that NCP1 is to be used.

LU RVT Entries

TPF

CCW Areas

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN

LU_A
001305
003123

02

LU_B
001306
003123

01

LU_C
001307
003123

01

LU_D
001308
003123

02

LU_E
001309
003123

01

RES0
003123

=
=
=
=

=
=
=
=

=
=
=
=

=
=
=
=

=
=
=
=

=
=
=
=

CCW INDEX = 01

CCW INDEX = 02 NCP2

NCP1
LU_E

LU_C

LU_D

LU_B

LU_A

Figure 76. LU RVT Entries for PU 5 and PU 2.1

158 TPF V4R1 ACF/SNA Data Communications Reference

If the link to NCP2 fails, the RVT entries for LU_A and LU_D would be cleaned up
because their CCW index (RV1CCWIN=2) matches the CCW index of the NCP2
link.

HPR LU-LU Sessions
For HPR LU-LU sessions, the session RVT entry does not point to its link (the CCW
index field in the RVT entry is not used for HPR LU-LU sessions). Instead, the
session RVT entry points to the RTPCB entry of the RTP connection over which the
LU-LU session exists. In turn, the RTPCB entry points to the current link assigned
to the RTP connection using the CCW index field. Because the link assigned to an
RTP connection can change (when a path switch takes place), the CCW index in
the RTPCB entry will change. While the path switch process is in progress, there is
no link assigned to the RTP connection.

When a non-HPR LU-LU session is started, the session is assigned to a specific
link and remains assigned to that link for the duration of the session. When an HPR
LU-LU session is started, the session is assigned to a specific RTP connection (not
a specific link) and remains assigned to that RTP connection for the duration of the
session. The link assigned to an RTP connection does not necessarily remain the
same for the duration of the RTP connection; it can change because of a path
switch.

The following figure shows an example of the RVT, RTPCB table, and CCW area
control blocks for five HPR LU-LU sessions:

High-Performance Routing (HPR) Support 159

In Figure 77:

v The five remote LUs (LU_A, LU_B, LU_C, LU_D, and LU_E) are all in session
with TPF application RES0.

v For all five sessions, the remote LU RVT entry is the session RVT entry. The
session partner RID (RV1SESP3) field in each of these RVT entries contains the
RID of the RES0 RVT entry.

v The sessions with LU_A and LU_D use RTP connection 1. Therefore, the
RTPCB index field (RV1RTPCB) in these RVT entries is 1.

v The sessions with LU_B, LU_C, and LU_E use RTP connection 2. Therefore, the
RTPCB index field (RV1RTPCB) in these RVT entries is 2.

v RTP connection 1 is in CONNECTED state. The current route for this RTP
connection goes through NCP3 (whose CCW index is 3).

v RTP connection 2 is in CONNECTED state. The current route for this RTP
connection goes through NCP2 (whose CCW index is 2).

LU RVT Entries RTPCB Entries CCW Areas

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

LU_A
001305
003123

000001

LU_B
001306
003123

000002

LU_C
001307
003123

000002

LU_D
001308
003123

000001

LU_E
001309
003123

000002

RES0
003123

=
=
=
=
=

=
=
=
=
=

=
=
=
=
=

=
=
=
=
=

=
=
=
=
=

=
=
=
=
=

RTPCB INDEX = 000001

CCW INDEX = 03

STATUS = CONNECTED

RTPCB INDEX = 000002

CCW INDEX = 02

STATUS = CONNECTED CCW INDEX = 03

CCW INDEX = 02

CCW INDEX = 01

NCP2

NCP3

NCP1

TPF

Figure 77. HPR LU RVT Entries, RTP Connections Are Active

160 TPF V4R1 ACF/SNA Data Communications Reference

If a message needs to be sent to LU_A, the CCW index field in this RVT entry is
not examined because it is an HPR LU-LU session. Instead, the RTPCB index is
used to get to the RTPCB entry (which is for RTP connection 1). The RTP
connection is in CONNECTED state; therefore, the message can be sent out. The
CCW index in the RTPCB entry indicates to send the message through NCP3.

Next, assume that the link to NCP3 fails. Because the current route for RTP
connection 1 was through NCP3, this RTP connection starts the path switch
process. The following figure shows an example of how the control blocks look at
this point:

In Figure 78, RTP connection 1 is now in SWITCHING state and its CCW index is 0
because no route currently exists for this RTP connection. The HPR LU RVT entries
are not changed at all when NCP3 fails.

While the path switch is in progress, the TPF application wants to send another
message to LU_A. Because the RTPCB entry associated with the LU_A session is

LU RVT Entries RTPCB Entries CCW Areas

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

LU_A
001305
003123

000001

LU_B
001306
003123

000002

LU_C
001307
003123

000002

LU_D
001308
003123

000001

LU_E
001309
003123

000002

RES0
003123

=
=
=
=
=

=
=
=
=
=

=
=
=
=
=

=
=
=
=
=

=
=
=
=
=

=
=
=
=
=

RTPCB INDEX = 000001

CCW INDEX = 00

STATUS = SWITCHING

RTPCB INDEX = 000002

CCW INDEX = 02

STATUS = CONNECTED CCW INDEX = 03

CCW INDEX = 02

CCW INDEX = 01

NCP2

NCP3

NCP1

X

TPF

Figure 78. HPR LU RVT Entries, Path Switch Is in Progress

High-Performance Routing (HPR) Support 161

in SWITCHING state, the message cannot be sent at this time and is placed on the
RTP output queue. See “RTP Output Queue” on page 170 for more information
about the RTP output queue.

The path switch process for RTP connection 1 is completed successfully and the
new route goes through NCP1. The following figure shows an example of how the
control blocks look at this point:

In Figure 79, the RTPCB entry for RTP connection 1 is back in CONNECTED state
and its CCW index has been updated to point to the link to NCP1. Any messages
that were queued during the path switch are now sent across the new route.
Throughout the entire path switch process, the HPR LU RVT entries are not
changed; all of the changes pertaining to the route are made to the RTPCB entries
instead.

LU RVT Entries RTPCB Entries CCW Areas

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

RV1NAME
RV1RID3
RV1SESP3
RV1CCWIN
RV1RTPCB

LU_A
001305
003123

000001

LU_B
001306
003123

000002

LU_C
001307
003123

000002

LU_D
001308
003123

000001

LU_E
001309
003123

000002

RES0
003123

=
=
=
=
=

=
=
=
=
=

=
=
=
=
=

=
=
=
=
=

=
=
=
=
=

=
=
=
=
=

RTPCB INDEX = 000001

CCW INDEX = 01

STATUS = CONNECTED

RTPCB INDEX = 000002

CCW INDEX = 02

STATUS = CONNECTED CCW INDEX = 03

CCW INDEX = 02

CCW INDEX = 01

NCP2

NCP3

NCP1

TPF

Figure 79. HPR LU RVT Entries, Path Switch Is Completed

162 TPF V4R1 ACF/SNA Data Communications Reference

Host IPL Considerations
After the TPF system performs an IPL, it will take one of the following actions for
the RTP connections:

v Clean up all RTP connections

v Perform the RTP connection resynchronization process for each RTP connection

v Do nothing.

When the TPF system takes an outage, whether the network remains active or not
depends on how long it takes the TPF system to IPL. If the TPF system is down for
too long and the automatic network shutdown (ANS) timers expire, the network will
deactivate the links to the TPF system causing all PU 5 and PU 2.1 LU-LU
sessions across those links to fail. If the links remain active across the IPL, the
LU-LU sessions remain active as well.

Because there is no way of knowing how long the TPF system has been down for a
hardware IPL, and because you can define the ANS timer values for each link, the
TPF system verifies the status of each link after the IPL. For HPR LU-LU sessions,
a link failure does not cause those sessions to fail. Instead, it triggers a path switch
of the RTP connections that were using that link. If the TPF system is down for a
long period of time, the network will clean up all RTP connections that went to the
TPF system and, therefore, all HPR LU-LU sessions as well. When the TPF system
comes back up, it needs to be able to detect this condition and internally clean up
all RTP connections and HPR LU-LU sessions that were active before the outage.

If the network has cleaned up its RTP connections, the TPF system could detect
this after the IPL. No responses would be received on those RTP connections
causing path switches to be started. When the path switch attempts eventually time
out, this would cause the TPF system to clean up the RTP connections. Rather
than wait for all of this to happen, the TPF system checks to see if any
HPR-capable links remained active across the IPL. If not, this indicates that the
TPF system has been down too long and causes the TPF system to clean up all
RTP connections and HPR LU-LU sessions.

If at least one HPR-capable link remained active across the IPL of the TPF system
and the SNA tables were reloaded from file (which always occurs for a hardware
IPL), information in the RTPCB entries will likely be old. If RTPRSYNC=YES is
coded on the SNAKEY macro in CTK2, the RTP connections remain active and the
TPF system performs the RTP connection resynchronization process for each RTP
connection. If RTPRSYNC=NO is coded on the SNAKEY macro in CTK2, the TPF
system ends all RTP connections.

If at least one HPR-capable link remained active across the IPL of the TPF system
and the core copies of the SNA tables were reused, the RTP connections remain
active. The RTP connection resynchronization process is not necessary when this
occurs because the information in the RTPCB entries is accurate.

RTP Connection Resynchronization Process
The RTP connection resynchronization process is the method used to keep RTP
connections active across a hardware IPL of the TPF system. After a hardware IPL,
the file copy of the SNA tables, including the RTPCB table, is reloaded from file.
The RTPCB table on file is likely to be several seconds old. Therefore, the TPF
system does not know the current input or output byte sequence number (BSN)
values for an RTP connection. The current SYNC and ECHO values for an RTP
connection are not known either. See “SYNC and ECHO Numbers” on page 151 for

High-Performance Routing (HPR) Support 163

more information about how SYNC and ECHO numbers are used by HPR support.
The following provides an example of the problems:

1. An RTP connection is active. Time-initiated keypointing files out the RTPCB
entry, which contains the following values:
v SYNC sent = 103
v SYNC received = 85
v Next BSN to send = 200
v Next expected BSN to receive = 500.

2. Messages are sent and received on the RTP connection. The RTPCB entry now
contains the following values:
v SYNC sent = 105
v SYNC received = 88
v Next BSN to send = 450
v Next expected BSN to receive = 622.

3. A hardware IPL of the TPF system is done. SNA restart reloads the SNA tables
from file. The RTPCB entry after the IPL contains:
v SYNC sent = 103
v SYNC received = 85
v Next BSN to send = 200
v Next expected BSN to receive = 500.

All of the values in the RTPCB entry are old, which can lead to different problems:

1. If the TPF system sends an NLP containing a STATUS segment, the remote
RTP endpoint discards the control information in that NLP because the SYNC
number (103) in the NLP is old. The current SYNC number is now 105. The
ECHO number (85) in the STATUS segment is also old (it should be 88).

2. If the remote RTP endpoint sends an NLP containing a STATUS segment, the
TPF system would accept the control information because the SYNC number
(88) in the NLP is equal to or greater than the last SYNC number received (85).
The problem is that the STATUS segment would acknowledge receiving
messages up to BSN value 450, but the TPF system thinks it has not yet sent
bytes 200–449. This would be treated as a protocol violation and cause the RTP
connection to be taken down.

3. If the TPF system sends an NLP containing data, the remote RTP endpoint
discards the data thinking that it is duplicate data because its BSN (200) is older
than the next expected BSN (which is 450).

4. If the TPF system sends an NLP with BSN=200 and a length of 300 bytes, the
first 250 bytes of data would be discarded (bytes 200–449) and the last 50
bytes would be treated as the next expected message. Because these 50 bytes
are really the middle of a message, they would not have the correct
start-of-message header settings. This will cause the remote RTP endpoint to
break the RTP connection because of a protocol violation.

5. If the remote RTP endpoint sends an NLP containing data, the BSN in the NLP
will be 622. Because the TPF system is expecting data starting with BSN=500,
the TPF system queues the NLP and asks the remote RTP endpoint to
retransmit bytes 500–621. Because the TPF system already acknowledged
receipt of bytes 500–621 before the IPL, the remote RTP endpoint does not
have that data anymore and will break the RTP connection.

The RTP connection resynchronization process prevents all of these problems. The
first step after reloading the RTPCB table from file is to increase the SYNC number
value of the RTP connection by a large amount to make sure it is current. Using the
previous example, the SYNC number in the file copy of the RTPCB entry is 85, but
the real current SYNC number is 88. The RTP connection resynchronization

164 TPF V4R1 ACF/SNA Data Communications Reference

process will increase the SYNC number in the RTP entry by a large amount (for
example, by 100), so that the new value (185) is guaranteed to be greater than the
current SYNC number. This way, control information sent by the TPF system will be
accepted.

The next step is to set a flag in the RTPCB entry to indicate that when the first NLP
is received after the IPL, assume that the BSN in that NLP is the BSN of the next
expected message.

The final step is the most complicated part of the RTP connection resynchronization
process. The TPF system sends out an HPR control message (an NLP with no
data) to ask the remote RTP endpoint the BSN of the next message it is expecting.
Until the response to that control message is received, the TPF system cannot send
any data on this RTP connection. When the response is received, the next
expected BSN value is copied into the output BSN field in the RTPCB entry and
data traffic continues.

The following figure shows an example of the events leading up to a hardware IPL
of the TPF system:

SYNC SENT
SYNC RECEIVED

BSN SENT
BSN RECEIVED

STATUS = CONNECTED

SYNC SENT
SYNC RECEIVED

BSN SENT
BSN RECEIVED

STATUS = CONNECTED

RTPCB Entry Gets Keypointed to DASD

RTPCB Entry at This Point

103
088
200
500

104
088
450
520

1

4

2

3

5

=
=
=
=

=
=
=
=

NLP(NHDR,THDR(BSN=200),DATA(50 Bytes))

NLP(NHDR,THDR(BSN=300,SR,STATUS(SYNC=104,ECHO=088,RSEQ=520)),DATA(50 Bytes))

*** TPF Takes Hardware IPL ***

NLP(NHDR,THDR(BSN=250),DATA(50 Bytes))

NLP(NHDR,THDR(BSN=350),DATA(50 Bytes))

NLP(NHDR,THDR(BSN=500),DATA(20 Bytes))

NLP(NHDR,THDR(BSN=400),DATA(50 Bytes))

Figure 80. RTP Connection Resynchronization, before the IPL

High-Performance Routing (HPR) Support 165

In Figure 80 on page 165:

1. An RTP connection is active. SNA time-initiated keypointing files out the RTPCB
entry with the values shown.

2. The TPF system sends two 50-byte messages and receives a 20-byte
message.

3. The TPF system sends three more 50-byte messages, the first of which asks for
a status reply.

4. The RTPCB entry for this RTP connection now contains the values shown.

5. A hardware IPL of the TPF system occurs.

The following figure shows an example of the steps involved in the RTP connection
resynchronization process:

In Figure 81:

1. The RTPCB table is reloaded from file after the IPL during SNA restart. The
values in the RTPCB entry are old.

SYNC SENT
SYNC RECEIVED

BSN SENT
BSN RECEIVED

STATUS = CONNECTED

SYNC SENT
SYNC RECEIVED

BSN SENT
BSN RECEIVED

STATUS = RESYNC

SYNC SENT
SYNC RECEIVED

BSN SENT
BSN RECEIVED

STATUS = CONNECTED

RTPCB Entry Read in from DASD

RTP Connection Resynchronization Process Begins

RTPCB Entry after RTP Connection Resynchronization

103
088
200
500

203
088
200
500

203
089
450
560

1

2

6

3

4

5

=
=
=
=

=
=
=
=

=
=
=
=

NLP(NHDR,THDR(BSN=200,SR,STATUS(SYNC=203,ECHO=088,RSEQ=500)),DATA(0 Bytes))

NLP(NHDR,THDR(BSN=520,STATUS(SYNC=089,ECHO=104,RSEQ=350)),DATA(20 Bytes))

NLP(NHDR,THDR(BSN=540,STATUS(SYNC=089,ECHO=203,RSEQ=450)),DATA(20 Bytes))

Figure 81. RTP Connection Resynchronization, after the IPL

166 TPF V4R1 ACF/SNA Data Communications Reference

2. The RTP connection resynchronization process begins. The SYNC number is
increased by a large amount (from 103 to 203) and the connection is placed in
RESYNC state.

3. When the TPF system is cycled up, an NLP is sent asking for a status reply.
This NLP contains no user data.

4. The TPF system receives an NLP containing 20 bytes of data and a STATUS
segment. Because this is the first NLP received after the IPL, the BSN
RECEIVED field in the RTPCB entry is set to the BSN value of this NLP (520).
The data message is processed normally.

The ECHO number (104) in the STATUS segment does not match the current
SYNC number (203); therefore, the RTP connection resynchronization process
continues. The STATUS segment in this NLP is the reply to the status request
sent out just before the IPL.

5. Another NLP is received containing a STATUS segment. This time the ECHO
number (203) matches the current SYNC number; therefore, this is the reply to
the status request sent out by the RTP connection resynchronization process.
The RSEQ value in the STATUS segment indicates the next expected message
that the remote RTP endpoint is waiting for starts with a BSN value of 450. The
TPF system sets its output BSN (BSN SENT) field to 450 and places the
connection back in CONNECTED state.

6. The RTPCB entry contains the values as shown. The RTP connection
resynchronization process is completed successfully and outbound data traffic
continues.

This example shows that the first STATUS segment received after the IPL does not
necessarily contain the latest information. The RSEQ value of the first STATUS
segment was 350, but NLPs with BSN values 350–449 were already sent before
the IPL. The RTP connection resynchronization process must send its own status
request after the IPL and wait for the reply to that status request to determine the
correct RSEQ value.

Enabling the RTP Resynchronization Process
The RTPRSYNC parameter on the SNAKEY macro in CTK2 enables the RTP
resynchronization process for the TPF system. You can also use the ZNKEY
command with the RTPRSYNC parameter specified to enable the RTP
resynchronization process. See TPF ACF/SNA Network Generation for more
information about the SNAKEY macro. See TPF Operations for more information
about the ZNKEY command.

CP-CP Session Failures
If the CP-CP sessions are not active, no new APPN LU-LU sessions can be started.
No new HPR LU-LU sessions can be started either. If CP-CP sessions are active
and then break for any reason, active LU-LU sessions (APPN and HPR) are not
affected; they remain active.

With HPR support, the CP-CP sessions are not only used for starting LU-LU
sessions, but also are involved in the path switch process. If CP-CP sessions are
not active, it is not possible to perform a path switch on an RTP connection. If the
TPF system detects a failure in the route of an RTP connection, but the CP-CP
sessions are not active, the path switch timer is started for that RTP connection. If
the CP-CP sessions are activated before the path switch timer expires, the TPF
system will begin the path switch process by sending a LOCATE request on the
CP-CP sessions. However, if CP-CP sessions are never activated and the path
switch timer expires, the RTP connection is cleaned up.

High-Performance Routing (HPR) Support 167

Activation of CP-CP sessions not only starts the path switch process for RTP
connections that are in SWITCHING state, but will restart the path switch process if
necessary. For example, the TPF system sends a LOCATE request to start the path
switch process for an RTP connection, but the CP-CP sessions fail before the
LOCATE reply is received. If the CP-CP sessions are reactivated before the path
switch timer expires, the TPF system will send another LOCATE request to restart
the path switch process.

Flow Control
Flow control is an important aspect of the HPR architecture. In addition to the
normal session level (LU-LU) pacing, end-to-end flow on an RTP connection is also
regulated using the adaptive rate-based (ARB) algorithm to prevent one RTP
endpoint from sending data faster than the network or remote RTP endpoint can
process the data.

ARB Pacing
The adaptive rate-based (ARB) algorithm is the primary congestion and flow control
mechanism used by RTP connections. An RTP endpoint is allowed to send a
certain amount of data to the remote RTP endpoint during a given interval. That
amount of data is called the send rate. Periodically, an RTP endpoint sends an NLP
containing an ARB request. The remote RTP endpoint sends back an ARB reply
with one of five possible values based on current conditions at the remote RTP
endpoint. The ARB reply value indicates whether the RTP endpoint (that sent the
ARB request) can raise its send rate, keep the send rate the same, or reduce its
send rate and, if so, by how much.

The send rate value for an RTP connection is adaptive and changes based on
conditions in the network and remote RTP endpoint. The send rate is unidirectional,
which means that on a given RTP connection the amount of data RTP endpoint A is
allowed to send to RTP endpoint B is not necessarily the same as the amount of
data RTP endpoint B is allowed to send to RTP endpoint A.

The possible values in an ARB reply are:

Normal Increase the send rate, if necessary.

Restraint Maintain the current send rate.

Slowdown 1 Decrease the send rate by 12.5%.

Slowdown 2 Decrease the send rate by 25%.

Critical Decrease the send rate by 50%.

How an RTP endpoint decides which value to place in an ARB reply is
implementation dependent. Typically, the value is based on availability of resources
in that RTP endpoint node. The TPF system sets the value in an ARB reply based
on how many core blocks are available. The percentage of available blocks for
each core block type (frame, ECB, common block, IOB, SWB) is calculated and
compared against the SNA shutdown value for that core block type. The SNA
shutdown values are defined by the ILWPx parameters on the SNAKEY macro in
CTK2. Initially, the ARB rate reply value is set as normal. As each core block type is
checked, the ARB rate reply value can be left as is or changed to a more severe
value. For example, the initial value is normal, but based on the availability of
frames the ARB rate reply is changed to slowdown 1. The availability of SWBs is
then checked and there are enough SWBs available to warrant setting the ARB rate
reply value to normal; however, because the value is already set to slowdown 1, it

168 TPF V4R1 ACF/SNA Data Communications Reference

remains slowdown 1. Next, the availability of ECBs is such that slowdown 2
condition is reached. Because slowdown 2 is more severe than slowdown 1, the
ARB rate reply is changed to slowdown 2.

If the value of the ILWPx parameter for a given core block type is X and the
percentage of available blocks for that core block type is Y, the ARB rate reply value
is set based on if Y is:

X+20 or higher Normal

X+10 to X+19 Restraint

X to X+9 Slowdown 1

X-1 to X-9 Slowdown 2

X-10 or lower Critical

For example, if the value of the ILWPF parameter is 40 (meaning SNA is shut down
when the percentage of available frames is 40% or less) and the percentage of
frames that are available is Y, the ARB rate reply is set based on if Y is:

60 or higher Normal

50–59 Restraint

40–49 Slowdown 1

31–39 Slowdown 2

30 or lower Critical

Note: If the value of an ILWPx parameter is less than 20, a value of 20 is used in
the calculation. If the value of an ILWPx parameter is greater than 65, a
value of 65 is used in the calculation.

The flexibility of the ARB rate reply values allows RTP endpoints to react
immediately to low resource conditions and even prevents seriously low resource
conditions from being reached in most conditions by reacting as soon as the first
sign of trouble is detected.

Intermediate nodes along the route of an RTP connection also play a role in the
ARB algorithm. If an intermediate node becomes congested, it can set the
slowdown 1 or slowdown 2 flag in the NHDR of any NLP. The RTP endpoint
receiving the NLP lowers its send rate accordingly if either of the slowdown flags
are set in the NHDR.

The ARB algorithm is not the same as traditional window-based algorithms, such as
PU 5 virtual route (VR) pacing. With a traditional window-based algorithm like VR
pacing, a node is allowed to send a certain amount of requests and then cannot
send more requests until a pacing response has been received from the remote
node. VR pacing has caused deadlock conditions in the TPF system where a large
queue of output messages builds up in the TPF system, the messages cannot be
sent because the TPF system is waiting for a VR pacing response, but because so
many blocks are in use, the TPF system is in an input list shutdown condition and
not polling the NCP; therefore, the VR pacing response cannot be read in.

Because the ARB algorithm is time-based rather than window-based, deadlock
conditions are avoided. An RTP endpoint is allowed to send a certain amount of
data on an RTP endpoint in a given interval; for example, 500 bytes per second. If
an RTP endpoint has messages totaling 2000 bytes to send, 500 bytes are sent

High-Performance Routing (HPR) Support 169

each second for 4 seconds. Each time 1 second passes, the RTP endpoint is
allowed to send another 500 bytes. At no time is the RTP endpoint blocked because
it is waiting for any response from the network or remote RTP endpoint. Unlike
session-level (LU-LU) and VR pacing, there are no pacing requests and responses
in the ARB algorithm. Instead, the ARB requests and replies adjust the send rates
while data is flowing.

When more data is being generated by TPF applications than the allowed send rate
for an RTP connection, the RTP output queue is used to control the rate at which
output messages are sent. Even though the ARB algorithm controls the flow on
RTP connections, session-level pacing for LU-LU sessions is still used and
important. See “RTP Output Queue” for more information.

How often an RTP endpoint sends an ARB request depends on the implementation.
The TPF system sends an ARB request at least every N messages sent on an RTP
connection, where N is based on the sizes of the RTPCB table and HPRMT.
Whenever the TPF system is sending an NLP that includes a status request, an
ARB request is also included. Several actions can cause a status request to be
sent, including an NLP after a path switch that contains the new route or when a
heartbeat message is sent on an idle RTP connection. When traffic is flowing at a
high rate on an RTP connection, it is important to ask for acknowledgements (by
sending status requests) frequently to prevent the HPRMT from becoming full.

RTP Output Queue
The RTP output queue holds output messages that cannot be sent immediately on
the RTP connection for one of the following reasons:

v No path exists for the RTP connection (path switch in progress).

v The send window on the RTP connection is closed.

v The RTP connection resynchronization process is in progress for the RTP
connection.

The RTP output queue does not replace the output message transmission (OMT)
queue or the SOUTC queue. Each queue type provides a different level of service:

v An OMT queue relates to an LU-LU session.

v An RTP output queue relates to an RTP connection.

v A SOUTC queue relates to an ALS.

An output message can be on only one of these queues at a time. There is also a
hierarchy here: Messages on the OMT queue move to either the RTP queue or
directly to the SOUTC queue. Messages on the RTP queue always move to the
SOUTC queue. Note that most output messages do not need to go on the OMT or
RTP queues and are placed directly on the SOUTC queue. Table 6 explains when
and why output messages are added and removed from the different queues.

Table 6. Processing Output Message Queues

Queue Type Why a Message Is Added to the
Queue

When Messages Are Removed
from the Queue

OMT The LU-LU session pacing window is
closed.

The pacing response for the LU-LU
session is received; messages are
dequeued until the queue becomes
empty or until the pacing window
becomes closed again.

170 TPF V4R1 ACF/SNA Data Communications Reference

Table 6. Processing Output Message Queues (continued)

Queue Type Why a Message Is Added to the
Queue

When Messages Are Removed
from the Queue

OMT Message is too large to go out in a
single PIU. The amount of data is
larger than the maximum request
unit (MAXRU) size of the LU-LU
session. The data needs to be split
into smaller pieces.

Immediately after the data has been
broken into smaller pieces as long as
the LU-LU session pacing window is
not closed.

RTP When no path exists for the RTP
connection because a path switch is
in progress.

The path switch is completed
successfully.

RTP The send window on the RTP
connection is closed. The TPF
system is not allowed to send more
data on this RTP connection during
the current time interval.

The current time interval expires; the
TPF system is allowed to send
another window of data. Messages
are dequeued from the RTP output
queue until the queue becomes
empty or until the send window
becomes closed again.

RTP The RTP connection
resynchronization process is in
progress for this RTP connection.

The RTP connection
resynchronization process is
completed successfully.

SOUTC The PIU is ready to be sent to the
network.

The PIU has been received by the
ALS.

The main purposes of the RTP output queue are as follows:

v A place to queue output messages for an RTP connection when there is no ALS
(route) currently assigned to the RTP connection. While a path switch is in
progress, the TPF application programs can still generate output messages. For
LU-LU sessions that are paced, output messages are placed on the RTP output
queue until the pacing window is closed, and then subsequent messages for the
session go on the OMT queue. All output messages for sessions that are not
paced go on the RTP output queue during a path switch. Messages remain on
the RTP output queue until the path switch process is completed successfully.

v Flow control. Once a message goes on the SOUTC queue, that message will be
sent to the network. If TPF applications are sending data faster than the current
send rate for the RTP connection, the RTP output queue is used to throttle the
rate at which data is sent on the RTP connection.

For performance reasons, the RTP output queue is a core memory table only,
similar to the SOUTC queue. As with the SOUTC queue, items on the RTP output
queue are regular core blocks (frames). Session-level pacing is still necessary for
LU-LU sessions to prevent the TPF system from running out of core blocks. This is
true for all types of LU-LU sessions: PU 5, PU 2.1, and HPR. Not all LU-LU
sessions need to use session-level pacing. For example, if the application profile is
such that one message in generates one message out, and a second message
cannot be sent in until the response to the first message is received, the session is
self-paced and session-level pacing is not needed. However, other application
profiles, like those using pipeline sessions, require session-level pacing. If a TPF
application is generating many output messages that cannot be sent out (for
example, the ALS is in slowdown mode), those messages need to be queued on
file on the OMT queue. If session-level pacing is not used, the pacing window will
never close and the OMT queue will not be used. The result is that these output

High-Performance Routing (HPR) Support 171

messages (which are core blocks) will go on the RTP output queue or the SOUTC
queue causing the queues to become very large.

If the size of an RTP output queue becomes too large, the TPF system will break
the RTP connection. In doing so, all the core blocks on that RTP output queue are
returned to the system. This mechanism is designed to prevent a single RTP
connection from running the TPF system out of core blocks. However, session-level
pacing should still be used to prevent the RTP output queue from becoming too
large in the first place.

HPR Output Messages
Building an output message for an HPR LU-LU session involves several steps. The
following example explains the steps for building an NLP containing 100 bytes of
user data:

1. The application issues the ROUTC macro pointing to the RCPL and a data level
(core block) containing the 100 bytes of data to be sent. The core block can be
any size (381, 1055, or 4 KB).

2. The core block is converted to FID1 format. The FID1 TH is built along with the
RH. The user data is the RU portion of the NLP. This block is referred to as an
HPR SOUTC type-A block. Figure 82 on page 173 shows what the HPR SOUTC
type-A block looks like in this example.

3. A new 4-KB core block is obtained in the system virtual memory (SVM). RH and
RU data is copied from the HPR SOUTC type-A block to near the end of the
new block. At the end of the new block there is the NLP pad area, which is
used to save information regarding the NLP being built. A FID5 TH is built right
before the RH. The HPR SOUTC type-A block is then returned to the system.
The new block is referred to as an HPR SOUTC type-B block. Figure 82 on
page 173 shows what the HPR SOUTC type-B block looks like in this example.

4. If the message cannot be sent right away, the HPR SOUTC type-B block is
placed on the RTP output queue. If the message can be sent right away or
when the message is dequeued from the RTP output queue, continue with the
next step.

5. The variable length NHDR and THDR are built. Next, the FID5 TH, RH, and RU
are shifted up to just after the THDR. The LH is built now that the size of the
NLP is known. A complete NLP has been built. The 4-KB core block containing
the complete NLP is referred to as an HPR SOUTC type-C block. Figure 82 on
page 173 shows what the HPR SOUTC type-C block looks like in this example.

6. The HPR SOUTC type-C block is placed on the SOUTC queue causing the
NLP to be sent to the ALS.

172 TPF V4R1 ACF/SNA Data Communications Reference

If the data is too large to be sent in one NLP, the original FID1 block (HPR SOUTC
type-A block) is converted to multiple HPR SOUTC type-B blocks. See “Segmenting
Output Messages” on page 175 for more information.

Only HPR SOUTC type-B blocks exist on the RTP output queue. The NHDR and
THDR portions of an NLP cannot be built until the NLP is ready to be sent out. For
example, if a path switch is in progress, there is no current route; therefore, the
routing information to put in the NHDR is unknown.

HPR SOUTC type-C blocks go only on the SOUTC queue. The beginning of the
block up to and including the LH is identical to that of a FID2 PIU. This is necessary
because both NLPs and FID2 PIUs can be sent on the same ALS (have blocks on
the same SOUTC queue).

Some of the special HPR functions like message retransmission and sending a
control message build their own HPR SOUTC type-B blocks to interface directly
with the SOUTC code.

Selective Retransmission
When an RTP endpoint sends an NLP, a copy of the data portion of the NLP is kept
until the remote RTP endpoint acknowledges receipt of the data. If NLPs are lost in
the network, the data needs to be retransmitted by the RTP endpoint.

HPR support uses a selective retransmission mechanism where data is not
retransmitted unless instructed to do so by the remote RTP endpoint. Additionally,
the remote RTP endpoint indicates which messages must be retransmitted. This
sophisticated approach has the following distinct advantages over other algorithms:

v Comparing selective retransmission to the “go back N” approach, assume 10
messages are sent and messages 3 and 6 were lost in the network. Using “go

Type A Type B Type C

FID1 TH

NLP PAD

(100 Bytes)

NLP PAD

NHDR

THDR

RH

RH RU

FID5 TH

LH

RHFID5 TH

RU
(100 Bytes)

RU
(100 Bytes)

Figure 82. HPR SOUTC Block Types

High-Performance Routing (HPR) Support 173

back N”, the remote node would indicate that the next message it is expecting is
message 3, which would cause the sending node to retransmit messages 3–10
even though only two messages were lost. With HPR selective retransmission,
the remote node would indicate that the next expected message is message 3,
but the remote node did receive messages 4–5 and 7–10, which have been
queued. This way, only messages 3 and 6 are retransmitted.

v When a node in the network is overloaded, data will be discarded and lost. If
retransmission is triggered by a timer popping in the sending node, the same
message would be sent over and over, which makes the network congestion
problem even worse. In HPR support, the trigger for retransmission lies in the
remote node, not the sending node. If the sending node does not receive an
acknowledgement, that triggers a path switch rather than retransmission.

Retransmitting Output Messages
When the TPF system sends an NLP that contains data, the data portion of the
NLP is saved in the HPRMT. When the remote RTP endpoint acknowledges receipt
of the data, the data is removed from the HPRMT.

If the TPF system receives an NLP with a STATUS segment indicating that data
was lost, the lost data is retrieved from the HPRMT and retransmitted. If the TPF
system is asked to retransmit data that does not exist in the HPRMT, the TPF
system will break the RTP connection. This can happen when the HPRMT is not
defined or if it is full.

Note: If the HPRMT is not defined or if it is full, this is not an error condition by
itself; only if the TPF system is asked to retransmit data that is not in the
HPRMT does this become an error condition.

See “HPRMT” on page 156 for more information about the HPRMT.

Requesting That Input Messages Be Retransmitted
When the TPF system receives an NLP over an RTP connection, the byte
sequence number (BSN) of the NLP is checked to see if this is the next expected
message, a duplicate message, or a message received out of order. If it is the next
expected message, the message is processed. If it is a duplicate message, it is
discarded.

When a message is received out of order, it is queued on the RTP input queue and
the TPF system asks the remote RTP endpoint to retransmit the missing data.
When the missing data is retransmitted and received by the TPF system, the
message on the RTP input queue is processed because it is now the next expected
message.

The RTP input queue contains all messages received out of order for a given RTP
connection. If the RTP input queue becomes too large or if the remote RTP
endpoint does not retransmit the missing data after a certain amount of time, the
TPF system will break the RTP connection.

Segmentation and Reassembly
When an RTP connection is started, part of the ROUTE_SETUP process is to find
the smallest link size of all the hops along the route. This value is the maximum link
size (MLS) and is the largest size of an NLP that can be sent across the RTP
connection. The MLS value can change (increase or decrease) when a path switch
occurs.

174 TPF V4R1 ACF/SNA Data Communications Reference

The function of intermediate (ANR) nodes is to route NLPs, not examine or process
them. For that reason, intermediate nodes do not segment or reassemble NLPs.
This means that when an RTP endpoint transmits an NLP, the size of that NLP
cannot be greater than the MLS value for that RTP connection. If a message is
larger than the MLS value, the message is segmented by the origin RTP endpoint
and sent as multiple NLPs that are THDR chained. The first NLP is marked as
start-of-message (SOM) and the last NLP is marked as end-of-message (EOM).
The remote RTP endpoint will reassemble the pieces of the message and then pass
the complete message to the application for processing.

The use of segmentation and reassembly is transparent to the application;
therefore, the application does not know or have to worry about the MLS value.
However, segmentation and reassembly does involve overhead at the RTP
endpoints. To avoid that overhead, it is recommended that you configure your
network with link sizes large enough to prevent segmentation from being necessary.

The minimum link size for an HPR link is 768 bytes. The NHDR and THDR sections
of an NLP cannot be segmented.

Segmenting Output Messages
When the SOUTC code builds an NLP, the NHDR and THDR are built first.
Subtracting the size of the LH, NHDR, and THDR from the MLS determines how
much data will fit in this NLP. If all of the data from the message will fit,
segmentation is not necessary and the message is sent in a single NLP. However, if
all of the data does not fit, the message must be segmented and sent as multiple
NLPs.

The following example shows a THDR chained message:

In Figure 83:

TPF Node 1 Node 2
Remote RTP

Node 3

Link Size = 1000 Link Size = 3500Link Size = 2000

2500-Byte
Message

RTP Connection, MLS = 1000

LH(SIZE=1000),NLP(NHDR(THDR(SOM,BSN=6000)),TH,RH,RU(900 Bytes))

LH(SIZE=1000),NLP(NHDR(THDR(BSN=6900)),RU(920 Bytes))

LH(SIZE=755),NLP(NHDR(THDR(EOM,BSN=7820)),RU(680 Bytes))

1

2

3

4

5

Figure 83. Segmenting an Output Message

High-Performance Routing (HPR) Support 175

1. An RTP connection exists between the TPF system and Node 3. The route has
three hops with link sizes of 2000 bytes, 1000 bytes, and 3500 bytes. The MLS
is the smallest of the link sizes, which is 1000 bytes.

2. A 2500-byte message needs to be sent on an LU-LU session that is over this
RTP connection; therefore, the message must be segmented.

3. The first NLP for the message is built and marked as SOM. The combined size
of the LH, NHDR, THDR, TH, and RH is 100 bytes in this example. With the
MLS value of 1000, the first 900 bytes of data are sent in this NLP. Because
there is more data to send in this message, the NLP is not marked as EOM.

4. The second NLP for the message is built. The combined size of the LH, NHDR,
and THDR is 80 bytes this time. The next 920 bytes of the message are sent in
this NLP. Because there is still more data to send, this NLP is not marked as
EOM either.

5. The third NLP for the message is built. The combined size of the LH, NHDR,
and THDR is 75 bytes this time. The remaining part of the message (the
remaining 680 bytes) is sent in this NLP, and the NLP is marked as EOM.

In the previous example, the combined size of the LH, NHDR, and THDR was
different for each NLP in the chained message. The LH size is fixed. For a given
THDR chained message, the NHDR size and contents will be the same for all the
NLPs that make up the message (unless a path switch occurs in the middle of
sending the chained message). The THDR is variable length based on which
optional segments are included.

Reassembling Input Messages
When the TPF system receives a THDR chained (segmented) message, SNA
Opzero reassembles the message and then passes the complete message to the
application. When an NLP marked as SOM, but not EOM is received, this indicates
the start of a chained message. The message is reassembled in a core block called
the THDR chained input message block, which is pointed to by the RTPCB entry.
As subsequent pieces of the message (NLPs) are received, the data from those
NLPs is added to the core block to rebuild the message. When the NLP marked as
EOM arrives, its data is added to the core block and the message is then passed to
the application for processing.

Before HPR support, the TPF system supported TH chained messages for LU-LU
sessions other than LU 6.2. The long message assembly (LMA) package puts a TH
chained message back together before passing it to the application. With HPR
support, TH chaining for LU 6.2 must be supported over RTP connections. SNA
Opzero, not LMA, performs the TH chaining reassembly function for LU 6.2
sessions over RTP connections. This reassembly is very similar to THDR chaining
reassembly except that the message is rebuilt in a core block called the TH chained
input message block, which is pointed to by the SCB entry representing the LU 6.2
session.

An input message can be both THDR chained and TH chained.

Installation and Tuning
To use HPR support, you must install it in your TPF system as well as in other
components in the network. This section discusses only how to install HPR support
in the TPF system. To install HPR support on another network component, refer to
the documentation for that product.

176 TPF V4R1 ACF/SNA Data Communications Reference

The TPF Migration Guide: Program Update Tapes explains the necessary steps to
install HPR support in the TPF system; for example, what new records and
parameters must be defined. This section explains how to determine appropriate
values for those new parameters. In logical order, the following are the tasks you
need to perform:

1. Define the maximum number of HPR LU-LU sessions, which determines the
size of the HPRSAT and becomes the value of the MAXHPRSA parameter on
the SNAKEY macro in CTK2. See “Defining the HPRSAT” on page 155 for more
information.

2. Define the maximum number of RTP connections, which determines the size of
the RTPCB table and becomes the value of the MAXRTPCB parameter on the
SNAKEY macro in CTK2. See “Defining the RTPCB Table” on page 154 for
more information.

3. Define the #RT1RI and #RT2RI fixed file records that are used to keypoint parts
of the RTPCB table. See “Defining Fixed File Records for the RTPCB Table” on
page 155 for more information.

4. Define the size of the HPRMT, which becomes the value of the HPRMTSZ
parameter on the SNAKEY macro in CTK2. See “Defining the HPRMT” on
page 156 for more information.

5. Define the alive timer value, which becomes the value of the HPRALIVE
parameter on the SNAKEY macro in CTK2. See “Alive Timer” on page 145 for
more information.

6. Define the path switch timer value, which becomes the value of the HPRPST
parameter on the SNAKEY macro in CTK2. See “Path Switch Timer” on
page 143 for more information.

7. Decide whether or not to keep RTP connections active across a hardware IPL
of the TPF system, which determines the value of the RTPRSYNC parameter
on the SNAKEY macro in CTK2. See “Host IPL Considerations” on page 163 for
more information.

8. Define the HPR flow control parameters, which are the ILWPE, ILWPF, ILWPI,
and ILWPS parameters on the SNAKEY macro in CTK2. See “ARB Pacing” on
page 168 for more information.

9. Define the size of the read buffers, which becomes the value of the UNITSZ
parameter on the SNAKEY macro in CTK2. See “Network Considerations for
NLPs” on page 152 for more information.

See the TPF Migration Guide: Program Update Tapes for more information about
installing HPR support.

See TPF ACF/SNA Network Generation for more information about the SNAKEY
parameters in CTK2.

Diagnostic Information
Use the PIU trace facility to display the NLPs that are sent between the TPF
system and remote RTP endpoints. See Appendix D, “Using the Path Information
Unit (PIU) Trace Facility” on page 291 for more information about the PIU trace
facility.

Sense Codes Unique to the TPF System
When the TPF system breaks an RTP connection for a reason that is not
architected, an implementation-specific sense code is sent in the connection fault

High-Performance Routing (HPR) Support 177

(CF) segment to indicate the reason for the failure. The following are the sense
codes and reasons why the TPF system sends them:

X'A001EE01' The TPF operator issued a ZNRTP INACT command causing the
connection to be unconditionally broken.

X'A001EE02' The TPF system is asked to retransmit a message, but the HPRMT
is not defined; therefore, no saved message exists.

X'A001EE03' The TPF system is asked to retransmit a message, but the
message was not found in the HPRMT.

X'A001EE04' The number of items on the RTP output queue for this RTP
connection is too large.

X'A001EE05' The number of items on the RTP input queue for this RTP
connection is too large.

X'A001EE06' The TPF system asked for data to be retransmitted, but the remote
RTP endpoint did not retransmit that data.

X'A001EE07' Two NLPs marked as start-of-message (SOM) were received
without an end-of-message (EOM) between them.

X'A001EE08' An NLP marked as middle-of-message was received without a
start-of-message (SOM) being received first.

X'A001EE09' An NLP marked as end-of-message (EOM) was received without an
NLP marked as start-of-message (SOM) having been received first.

X'A001EE0A' The TPF system sent a COB request to end the RTP connection,
but a COB response was not received.

178 TPF V4R1 ACF/SNA Data Communications Reference

TPF/SNA Control Block Structures

The following information describes the control block structures that are used by the
TPF system for SNA communications.

Resource Vector Table (RVT) and Related Control Block Structures
The RVT is a TPF/SNA control block structure located in main storage that contains
information about the resources defined in the TPF system. Therefore, each entry in
the RVT can be referred to as a resource definition. A resource definition includes
information about a resource, such as the following:

v Network ID and resource name

v Resource ID (RID)

v Ordinal number of the fixed file NCB record (for resources defined using the
OSTG program)

v File address of the NCB record

v Resource type

v Pointers to additional control block structures that contain more information about
the resource.

Each processor in the TPF system has its own unique RVT. Therefore, resource
definitions are not necessarily consistent across all of the processors in a loosely
coupled TPF system. For more information about creating resource definitions, see
“Defining SNA Resources to the TPF System” on page 193.

There are a number of other control block structures located in main storage that
are used to access the RVT. These control block structures include:
v Resource name hash control table (RNHCT)
v Resource name hash prime table (RNHPT)
v Resource name hash entry table (RNHET)
v RVT available list
v RVT termination list.

The following information describes these control block structures and the RVT in
more detail.

How the RVT Is Organized
The RVT is divided into the following sections:

Non-LU section
Contains resource definitions for the following resources:
v Adjacent link station (ALS) resources
v Cross-domain resource manager (CDRM) resources
v Channel-to-channel (CTC) resources
v Network control program (NCP) resources
v Local system services control point (SSCP).

Note: This section of the RVT is also known as the ALS section.

LU section Contains resource definitions for the logical unit (LU) resources.

Define the size of the RVT using the MAXRVT parameter in the SNAKEY macro.
Define the size of the non-LU section using the NUMALS parameter in the SNAKEY

© Copyright IBM Corp. 1994, 2002 179

macro. The size of the LU section is implicitly defined by the difference of these two
values. For more information about the SNAKEY macro, see TPF ACF/SNA
Network Generation.

Each entry in the RVT is assigned an RID after the SNA fresh load function is
performed during SNA restart. The RID is a direct index into the RVT. For example,
RID 3 always corresponds to the third entry in the RVT.

Initially, RIDs are consistent across all of the processors in a loosely coupled TPF
system. However, as new SNA resources are defined using the ZNDYN ADD
command or dynamic LU support, the RIDs will no longer be consistent. For
example, an LU resource can be assigned RID 5 on processor B and a different LU
resource can also be assigned RID 5 on processor C.

Spare entries can exist in both the non-LU section and LU section of the RVT. A
spare entry is an entry that is not currently being used for a resource definition.
These entries are used to create resource definitions for resources that are defined
using the following:
v Dynamic LU support
v ZNDYN ADD command
v ZNOPL LOAD command.

Figure 84 shows a simplified example of the RVT and how it is organized.

In Figure 84:

v There are 10 entries in the RVT (that is, MAXRVT=10).

v There are 5 entries in the non-LU section of the RVT (that is, NUMALS=5).

v There are 5 entries in the LU section of the RVT. This size is implicitly defined by
the values of the MAXRVT and NUMALS parameters (MAXRVT-NUMALS).

v There is 1 spare entry in the non-LU section of the RVT (RID 000005).

v There is 1 spare entry in the LU section of the RVT (RID 00000A).

R V T

Name

NCP001

ALS026

TPFB

VTAM2

LU05

APPL

TPFDB2T

LU0ZZ

RID

000001

000002

000003

000004

000005

000006

000007

000008

000009

00000A

Non-LU
Section

LU
Section

Storage
Address

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

Figure 84. RVT Example

180 TPF V4R1 ACF/SNA Data Communications Reference

v The first and last entry of the RVT, which are referred to as the RVT delimiters,
are not shown in the example.

Note: The last entry in the RVT contains all X'FF's.

RVT-Related Control Block Structures
The following processor-unique control block structures are used to access the
entries in the RVT, which is also a processor-unique control block structure. These
control block structures are located in main storage and are built during SNA
restart.

Resource name hash control table (RNHCT)
A table that contains pointers to the other resource name hash (RNH)
tables, the RVT available list, and the RVT termination list. It also contains
statistical information about the RNH tables.

Resource name hash prime table (RNHPT)
A table that contains entries referred to as RNHPT hash buckets. Each
RNHPT hash bucket points to the first entry on its RNHET synonym chain
and contains a count of the number of RNHET entries on that RNHET
synonym chain.

Define the number of RNHPT hash buckets in the TPF system using the
MAXPRIM parameter in the SNAKEY macro. See TPF ACF/SNA Network
Generation for more information about the SNAKEY macro.

Resource name hash entry table (RNHET)
A table that contains an entry for each RVT entry. Each RNHET entry
contains pointers that maintain the RNHET synonym chain, RVT available
list, and RVT termination list. The RNHET entries also contain the RID and
address of an RVT entry.

The RVT available list is a linked list of the RNHET entries for all of the available
(or spare) RVT entries in the LU section of the RVT. When a new LU resource is
defined to the TPF system, an RNHET entry is removed from the RVT available list,
assigned to the LU resource, and placed on the RNHET synonym chain in the
appropriate RNHPT hash bucket. The RNHET entry contains the RID and address
of the RVT entry that will be used to create the resource definition.

Spare entries in the non-LU section of the RVT are not placed on the RVT
available list. When new non-LU resources are defined to the TPF system, the TPF
system sequentially searches the non-LU section of the RVT for a spare entry. If no
spare entries exist in the non-LU section of the RVT, the TPF system uses the RVT
entry of an ALS resource that is no longer active, as long at that non-LU resource
was not defined using the OSTG program. Once an RVT entry is found for the new
non-LU resource, the TPF system places the RNHET entry for that RVT entry on
the RNHET synonym chain in the appropriate RNHPT hash bucket.

The RNHET synonym chain is a linked list of the RNHET entries that are assigned
to a particular RNHPT hash bucket. One RNHET synonym chain exists for each
RNHPT hash bucket.

The RVT termination list is a linked list of the RNHET entries for all of the LU
resources that were defined using dynamic LU support and are no longer in
session. (These resources are called dynamic LU resources.) When a dynamic LU
resource ends its session, its RNHET entry is placed on the RVT termination list. (If
the dynamic LU resources is an LU 6.2 resource, its RNHET entry is placed on the

TPF/SNA Control Block Structures 181

RVT termination list only when the last session for that LU 6.2 resources is ended.)
If a session is started again with that dynamic LU resource, its original RNHET
entry is removed from the RVT termination list and reused. Because the RNHET
entry contains the RID and address of the RVT entry for that dynamic LU resource,
its original RVT entry is also reused.

If the original RNHET entry for a dynamic LU resource is no longer on the RVT
termination list (that is, the RNHET entry was already reused by another dynamic
LU resource), the TPF system uses the oldest RNHET entry on the RVT termination
list. In doing so, the dynamic LU resource is assigned a new RVT entry and,
therefore, a new RID as well.

Note: When a non-LU resource becomes inactive, its RNHET entry is not placed
on the RVT termination list.

Figure 85 contains a simplified example of the RNHCT, RNHPT, and RNHET.

In Figure 85:

v Only the LU section of the RVT is shown in the example.

v There are 10 entries in the LU section of the RVT and, therefore, 10 entries in
the RNHET in the example.

v Only the following RNHPT fields are shown in the example:

Field Description

FIRST HET Address of the first RNHET entry on the RNHET synonym chain.

SYN COUNT Number of RNHET entries on the RNHET synonym chain.

v Only the following RNHET fields are shown in the example:

Field Description

SYN FORW Address of the next RNHET entry on the RNHET synonym chain.

SYN BACK Address of the previous RNHET entry on the RNHET synonym
chain.

R V T

Name

LU05

APPL

TPFDB2T

LU0ZZ

BATMAN

RID

6

7

8

9

A

B

C

D

E

F

Storage
Address

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

ROBIN

R N H E T

RVT
ADDR

HPT
ADDR

SYN
FORM

RIDNEXT
AVAIL

SYN
BACK

600

700

800

900

A03050

B03000

C31750

D32000

E32250

F00

Storage
Address

3000

3025

3050

3075

3100

3125

3150

3175

3200

3225

120020003125

125020100

130020303100

135020400

140020300

145020000

150000

155000

160000

165000

R N H P T

First
HET

3000

3025

0

3050

SYN
COUNT

2

1

0

2

1

Storage
Address

2000

2010

2020

2030

2040 3075

R N H C T

AVAIL TOP

AVAIL BOT

AVAIL COUNT

3150

3225

4

Figure 85. RNHCT, RNHPT, and RNHET Example. The RVT1 delimiters are not included in this figure.

182 TPF V4R1 ACF/SNA Data Communications Reference

HPT ADDR Address of the RNHPT hash bucket for this RNHET entry.

NEXT AVAIL Address of the next RNHET entry on the RVT available list if this
RNHET entry is on the RVT available list.

RVT ADDR Address of the RVT entry for this RNHET entry.

RID RID of the LU resource that is assigned this RNHET entry.

v Only the following RNHCT fields are shown in the example:

Field Description

AVAIL TOP Address of the first RNHET entry on the RVT available list.

AVAIL BOT Address of the last RNHET entry on the RVT available list.

AVAIL COUNT
Number of RNHET entries on the RVT available list.

v Five RNHPT entries, or RNHPT hash buckets, exist in the example.

v The RNHET entries for the following LU resources are on the synonym chain in
the first RNHPT hash bucket:
– LU05
– BATMAN.

v Only the RNHET entry for the APPL LU resource is on the synonym chain in the
second RNHPT hash bucket.

v There are no RNHET entries on the synonym chain in the third hash bucket.

v The RNHET entries for the following LU resources are on the synonym chain in
the fourth RNHPT hash bucket:
– TPFDB2T
– ROBIN.

v Only the RNHET entry for the LU0ZZ LU resource is on the synonym chain in
the fifth RNHPT hash bucket.

v There are 4 spare entries in the RVT. An RNHET entry exists for each of these
spare RVT entries, and all of these RNHET entries are on the RVT available list.

The TPF system determines the RNHPT hash bucket for a particular resource using
the DHASHC macro, which is a hashing function that is based on the name of the
resource. See TPF System Macros for more information about the DHASHC macro.

Displaying Information about the RVT-Related Control Block
Structures
Enter the ZNDYN DISPLAY command to display the RNHET entry for a particular
resource, the RNHET synonym chain for a particular resource, or statistical
information about the RNH tables. See TPF Operations for more information about
the ZNDYN DISPLAY command.

Node Control Block (NCB) Records and Related Structures
The following information describes the NCB records and their related control block
structures.

Types of NCB Records
NCB records are processor-shared TPF/SNA records that contain information about
the message queues for LU resources. The following types of NCB records exist in
the TPF system:
v 381-byte fixed file NCB records
v 381-byte long-term pool file NCB records.

TPF/SNA Control Block Structures 183

Although there are two different types of NCB records, the content of these NCB
records is the same.

381-Byte Fixed File NCB Records
The 381-byte fixed file NCB records are assigned to the LU resources that are
defined using the offline ACF/SNA table generation (OSTG) program. One 381-byte
fixed file NCB record is created and assigned to each LU resource when the OSTG
resource definitions are loaded to the TPF system using the SNA fresh load or
dynamic load function.

Note: These NCB records are also assigned to non-LU resources that are defined
using the OSTG program; however, the NCB records are not used by the
TPF system.

Each NCB record is assigned an ordinal number, which is the same across all of
the processors in a loosely coupled TPF system.

381-Byte Long-Term Pool File NCB Records
The 381-byte long-term pool file NCB records are assigned to LU resources that
are defined using dynamic LU support. These types of resources are referred to as
dynamic LU resources.

As many as 8 different 381-byte long-term pool file NCB records can exist for each
dynamic LU resource. This allows a dynamic LU resource to log on to different
applications and maintain separate message queues. The address of each NCB
record assigned to a dynamic LU resource is stored in an entry in the NCB
directory records. Each NCB directory record entry contains 8 NCB slots (0–7),
which are used to maintain the addresses of the NCB records for a dynamic LU
resource. See “NCB-Related Control Block Structures” for more information about
NCB directory records.

You can use the DEVTYPE parameter in the MSGRTA macro to define for each
application in the TPF system the NCB slot that is used when a dynamic LU
resource logs on to that application. For example, if you want dynamic LU
resources that log on to the APPL application to use the NCB record whose
address is stored in the last NCB slot in the NCB directory record entry (that is,
NCB slot 7), you would specify the option for the DEVTYPE parameter in the
MSGRTA macro that corresponds to the last NCB slot. A dynamic LU resource can
use different NCB records when it logs on to different TPF applications or it can use
the same NCB record for all of the TPF applications.

See TPF System Generation for more information about the MSGRTA macro.

Unlike 381-byte fixed file NCB records, 381-byte long-term pool file NCB records
are not assigned to non-LU resources. These NCB records are assigned to only LU
resources and only when sessions are started with those LU resources.

NCB-Related Control Block Structures
The following control block structures are used to organize and access the 381-byte
long-term pool file NCB records that exist in the TPF system. These control block
structures are located on file.

NCB control record
A fixed file record that contains information about the NCB directory
records.

184 TPF V4R1 ACF/SNA Data Communications Reference

NCB directory records
Fixed file records that contain the addresses of the 381-byte long-term pool
file NCB records assigned to a dynamic LU resource. Each NCB directory
record contains 84 entries. Each entry contains the name of a dynamic LU
resource and 8 NCB slots. Each NCB slot contains the address of a
381-byte long-term pool file NCB record if one exists for that NCB slot.

There are actually two types of NCB directory records defined in the TPF system;
the current and staged NCB directory records. Specify the number of current and
staged NCB directory records to define in the system initialization program (SIP)
stage I deck when the TPF system is generated.

The TPF system uses the current NCB directory records to organize and access
the 381-byte long-term pool file NCB records. The current NCB directory records
are generically referred to as the NCB directory records.

The staged NCB directory records are used only by the NCB reorganization
function to increase the number of NCB directory records in the TPF system.

Initially, the current NCB directory records have a record type of #NCBN4 and the
staged NCB directory records have a record type of #NCBN5. Each time you
perform the NCB reorganization function, these record types are swapped. That is,
if the current NCB directory records have a record type of #NCBN4 before you start
the NCB reorganization function, they will have a record type of #NCBN5 after the
NCB reorganization function ends.

See “Increasing the Number of NCB Directory Records in the TPF System” on
page 188 for more information about the NCB reorganization function.

When a session is started with a new dynamic LU resource, the TPF system
creates a 381-byte long-term pool file NCB record and an entry in the NCB
directory records for that dynamic LU resource. The address of the NCB record is
stored in the appropriate NCB slot in the NCB directory record entry. The NCB slot
used depends on the application with which the dynamic LU resource is starting a
session.

Note: The NCB slot for an application is specified using the DEVTYPE parameter
in the MSGRTA macro. See TPF System Generation for more information
about the MSGRTA macro.

Entries are created in the NCB directory records for only dynamic LU resources. LU
resources that were defined using the OSTG program are assigned 381-byte fixed
file NCB records and, therefore, do not require an entry in the NCB directory
records.

Figure 86 is a simplified example of the NCB directory records and how they are
organized.

TPF/SNA Control Block Structures 185

In Figure 86:

v Each NCB directory record is assigned an ordinal number beginning with ordinal
number 0. There are 3 NCB directory records (ordinal number 0–2) in the
example.

v The example shows only 4 entries in each NCB directory record. Each NCB
directory record in the TPF system actually has 84 entries.

v Entries exist in the NCB directory records for only the LU resources that were
defined using dynamic LU support. In this example, these LU resources are
BATMAN, ROBIN, and JOKER.

The NCB directory records do not contain entries for resources that were defined
using the OSTG program because these resources use 381-byte fixed file NCB
records.

v The example shows only 3 NCB slots (0–2) for each LU resource in the NCB
directory record. The TPF system actually has 8 NCB slots (0–7) for each LU
resource in the NCB directory record. NCB slots contain the address of an NCB
record.

v The first NCB directory record contains an entry for the ROBIN LU resource, the
second NCB directory record contains entries for no LU resources, and the third
NCB directory record contains an entry for the BATMAN LU resource and the
JOKER LU resource.

v One NCB record exists for the ROBIN LU resource. The address of this NCB
record is stored in NCB slot 0. If ROBIN logs on to an application that uses NCB
slot 0, the TPF system will retrieve this NCB record. If ROBIN logs on to an
application that uses NCB slot 2, the TPF system will obtain a new long-term
pool file NCB record and store its address in NCB slot 2.

v Three NCB records exist for the BATMAN LU resource and one long-term pool
file NCB record exists for the JOKER LU resource.

Ordinal Number 0

NUMBER OF ENTRIES: 1

NAME
NCB
SLOT

NCB FILE
ADDRESS

ROBIN

0

1

2

0

1

2

0

1

2

0

1

2

C0000090

0

0

0

0

0

0

0

0

0

0

0

ENTRY

1

2

3

4

Ordinal Number 1

NUMBER OF ENTRIES: 0

NAME
NCB
SLOT

NCB FILE
ADDRESS

0

1

2

0

1

2

0

1

2

0

1

2

0

0

0

0

0

0

0

0

0

0

0

0

ENTRY

1

2

3

4

Ordinal Number 2

NUMBER OF ENTRIES:

NAME
NCB
SLOT

NCB FILE
ADDRESS

BATMAN

0

1

2

0

1

2

0

1

2

0

1

2

C0000440

C0000370

C00001A0

C0000560

ENTRY

1

2

3

4

JOKER

Figure 86. NCB Directory Record Example. The RVT1 delimiters are not included in this figure.

186 TPF V4R1 ACF/SNA Data Communications Reference

The TPF system determines the ordinal number of the NCB directory record for a
particular LU resource using the DHASHC macro, which is a hashing function that
is based on the name of the LU resource. See TPF System Macros for more
information about the DHASHC macro.

Displaying Information about NCB Records and Related Structures
Enter the ZNNCB DISPLAY command to display information about a particular NCB
record or the NCB directory records. See TPF Operations for more information
about the ZNNCB DISPLAY command.

Initializing NCB Records
The TPF system initializes all of the 381-byte fixed file NCB records each time a
fresh load is performed.

You can also use the NCB initialization function at any time to initialize the NCB
records in the TPF system. This function initializes both the 381-byte fixed file NCB
records and 381-byte long-term pool file NCB records.

Note: An NCB record is initialized only if the LU resource assigned that NCB
record is not in session.

Enter the ZNNCB command to start the NCB initialization function. See TPF
Operations for more information about the ZNNCB command.

Reclaiming NCB Directory Records and NCB Records
The TPF system creates 381-byte long-term pool file NCB records and NCB
directory record entries for dynamic LU resources that start sessions with the TPF
system. Periodically reclaim the NCB records and NCB directory records that are no
longer in use. Otherwise, the TPF system can run out of resources and no new
dynamic LU resources can start sessions with the TPF system.

You can use the NCB reconciliation function to reclaim the NCB records and NCB
directory record entries that are no longer in use. This function returns to the TPF
system the following resources:

v 381-byte long-term pool file NCB records that are no longer in use. An NCB
record is not in use if the LU resource that is assigned that NCB record is no
longer in session and no OMT queue exists for that LU resource.

v NCB directory record entries that are no longer in use. An NCB directory record
entry is not in use if no NCB records exist for the LU resource that was assigned
that NCB directory record entry.

See “To Run the NCB Reconciliation Function” on page 188 for information about
how to run the NCB reconciliation function.

After you run the NCB reconciliation function, the following information is displayed:

v Largest number of entries being used in an NCB directory record

v Average number of entries being used in an NCB directory record

v Number of 381-byte long-term pool file NCB records returned to the TPF system

v Number of 381-byte long-term pool file NCB records still in use.

You can use this information to determine if you need to define more NCB directory
records. For example, if the largest number of entries in an NCB directory record is
approaching the maximum number of entries that can exist in an NCB directory

TPF/SNA Control Block Structures 187

record (which is 84 entries), increase the number of NCB directory records in the
TPF system. See “Increasing the Number of NCB Directory Records in the TPF
System” for more information about increasing the number of NCB directory
records.

To Run the NCB Reconciliation Function
Use the following procedure to run the NCB reconciliation function and reclaim the
unused NCB records and NCB directory record entries:

1. Enter the ZDSYS command to ensure that the TPF system is in NORM state.

If the TPF system is not in NORM state, enter ZCYCL NORM to cycle the TPF
system to NORM state.

2. Enter ZNNCB DISPLAY ALL to ensure that the NCB reorganization function is
not running.

If the NCB reorganization function is running, wait for it to be completed or end
it before starting the NCB reconciliation function. See “Increasing the Number of
NCB Directory Records in the TPF System” for more information about the NCB
reorganization function.

3. Also ensure that the NCB initialization function is not running.

If the NCB initialization function is running, wait for it to be completed before
starting the NCB reconciliation function. See “Initializing NCB Records” on
page 187 for more information about the NCB initialization function.

4. Enter ZNNCB RECON ALL to start the NCB reorganization function.

The TPF system displays statistical information about the NCB directory records
and NCB records when the NCB reconciliation function has been completed.

To End the NCB Reconciliation Function
Once you start the NCB reconciliation function, you can end it at any time by
entering the ZNNCB RECON command with the ABORT parameter.

If you are ending the NCB reconciliation function from a processor other than the
processor where it was started, you must also specify the BP parameter for the
ZNNCB REORG command.

Additional Information
See TPF Operations for more information about the following commands:
v ZDSYS
v ZCYCL
v ZNNCB DISPLAY
v ZNNCB RECON.

Increasing the Number of NCB Directory Records in the TPF System
When the NCB directory records start to become full, run the NCB reconciliation
function to return the unused NCB directory record entries to the TPF system. If
most of the entries in the NCB directory records are being used and the NCB
reconciliation function does not return many unused NCB directory record entries to
the TPF system, increase the number of NCB directory records in the TPF system
using the NCB reorganization function.

See “Reclaiming NCB Directory Records and NCB Records” on page 187 for more
information about the NCB reconciliation function.

The NCB reorganization function allows you to increase the number of NCB
directory records in any TPF system state while the SNA network is active. The
function is performed as follows:

188 TPF V4R1 ACF/SNA Data Communications Reference

1. The entries in the current NCB directory records are redistributed among the
larger number of staged NCB directory records.

2. If a new LU resource logs on to the TPF system while the NCB reorganization
function is running, an entry is created for that new LU resource in both the
current and staged NCB directory records.

3. When all of the entries in the current NCB directory records are copied to the
staged NCB directory records, the TPF system displays a message to prompt
you to switch to the staged NCB directory records.

Remember that after all of the entries are copied to the staged NCB directory
records, there are fewer entries per record than there were in the current NCB
directory records because more staged NCB directory records exist.

4. When you enter the command to switch the NCB directory records, the following
occurs:

v The staged NCB directory records become the new current NCB directory
records.

v The old current NCB directory records are initialized.

v The old NCB directory records become the new staged NCB directory
records.

There are now more NCB directory records defined in the TPF system and the
NCB reorganization function is completed.

Note: There are now fewer staged NCB directory records in the TPF system
than there are current NCB directory records. Therefore, if you need to
increase the number of NCB directory records in the TPF system again,
remember to increase the number of staged NCB directory records
before you start the NCB reorganization function.

For more information about how to run the NCB reorganization function, see “To
Run the NCB Reorganization Function”.

You can enter the ZNNCB DISPLAY command with the ALL parameter to display
the number of current and staged NCB directory records that are defined in the TPF
system.

To Run the NCB Reorganization Function
Use the following procedure to run the NCB reorganization function and create
more NCB directory records:

1. Enter ZNNCB DISPLAY ALL to ensure that the correct number of staged NCB
directory records are defined in the TPF system.

If there are not enough staged NCB directory records defined, define more
before continuing.

2. Enter ZNNCB DISPLAY ALL to ensure that the NCB reconciliation function is
not running.

If the NCB reconciliation function is running, wait for it to be completed or end it
before starting the NCB reorganization function. See “Reclaiming NCB Directory
Records and NCB Records” on page 187 for more information about the NCB
reconciliation function.

3. Also ensure that the NCB initialization function is not running.

If the NCB initialization function is running, wait for it to be completed before
starting the NCB reorganization function. See “Initializing NCB Records” on
page 187 for more information about the NCB initialization function.

4. Also ensure that the online file recoup function is not running.

TPF/SNA Control Block Structures 189

If the online file recoup function is running, wait for it to be completed or end it
before starting the NCB reorganization function. See TPF Operations for more
information about the online file recoup function.

5. Enter ZNNCB REORG START to start the NCB reorganization function.

6. When you are prompted by the TPF system, enter ZNNCB REORG SWITCH to
complete the NCB reorganization function.

A completion message is displayed when the NCB reorganization function has
been completed.

To End the NCB Reorganization Function
Once you start the NCB reorganization function, you can end it at any time by
entering the ZNNCB REORG command with the ABORT parameter.

If you are ending the NCB reorganization function from a processor other than the
processor where it was started, you must also specify the BP parameter for the
ZNNCB REORG command.

Additional Information
See TPF Operations for more information about the following commands:
v ZNNCB DISPLAY
v ZNNCB REORG.

Performance Considerations for Accessing NCB Records
There are no performance considerations for accessing NCB records in the TPF
system.

The TPF system uses the CSNB segment to access NCB records. This segment
uses the NCB directory record to determine the file address of the NCB record for a
dynamic LU resource only when the session is first started. The CSNB segment
then saves the file address of that NCB record in the RVT, which is located in main
storage. The next time the TPF system tries to access the NCB record, the CSNB
segment uses the address stored in the RVT.

See “Retrieving NCB and SPA Data Records (CSNB)” on page 287 for more
information about the CSNB segment.

Developing Applications That Retrieve NCB Records
When developing your own applications, you must use the CSNB segment to
access NCB records. This segment returns the file address of the appropriate
381-byte fixed file NCB record or 381-byte long-term pool file NCB record based on
the RID that it is given.

See “Retrieving NCB and SPA Data Records (CSNB)” on page 287 for more
information about the CSNB segment.

Allocating or Retrieving a Scratch Pad Area (SPA) for a Dynamic LU
The TPF system does not allocate an SPA ordinal when a dynamic LU is created.
You can, however, assign a spare SPA ordinal to a dynamic LU with user exits
CDLX and CDLY and save the SPA ordinal at RV1ORDN in the RVT. The SPA
ordinal can be saved at RV1ORDN for dynamically created resources. For static
resources, the NCB and SPA ordinal (generated by OSTG) will be saved at
RV1ORDN.

190 TPF V4R1 ACF/SNA Data Communications Reference

If you intend to retrieve the SPA for a dynamic LU using the CSNB segment,
initialize the SPA fixed file record before entering the CSNB segment or the CSNB
segment will set an error return code and return to the calling segment.

TPF/SNA Control Block Structures 191

192 TPF V4R1 ACF/SNA Data Communications Reference

Defining SNA Resources to the TPF System

You must define SNA resources to the TPF system for the TPF system to
communicate with them. You can define SNA resources to the TPF system using
the following:
v Offline ACF/SNA table generation (OSTG) program
v ZNDYN ADD command
v Dynamic LU support.

Define the SNA resources as follows:

v Use the OSTG program to define the local resources, such as TPF applications
and system services control points (SSCPs).

Note: When you define the local applications to the TPF system, you must use
the application name table (ANT) deck, which is generated by the
MSGRTA macros, as input to OSTG.

v Use the OSTG program to define the shared printers.

v Use the OSTG program or the ZNDYN ADD command to define the following
remote resources:
– Cross-domain resource manager (CDRM) resources
– Channel-to-channel (CTC) resources
– Network control program (NCP) resources.

v If the TPF system is running in low entry networking (LEN) mode, use the OSTG
program to define the adjacent link station (ALS) resources.

Otherwise, if the TPF system is running in APPN mode, you can also use the
ZNDYN ADD command or dynamic LU support, as well as the OSTG program, to
define the ALS resources.

Note: LEN mode or APPN mode is specified using the ZNAPN command.

v Use the OSTG program or dynamic LU support to define the remote LU
resources.

See the following for more information about defining resources to the TPF system:

v “Using the OSTG Program to Define SNA Resources”

v “Using the ZNDYN ADD Command to Define SNA Resources” on page 198

v “Using Dynamic LU Support to Define SNA Resources” on page 199.

Using the OSTG Program to Define SNA Resources
You can use the OSTG program to define all of the SNA resources to the TPF
system. See TPF ACF/SNA Network Generation for more information about the
OSTG program.

Once you define SNA resources using the OSTG program, you must load the
resource definitions to the TPF system using the fresh load function or the dynamic
load function. See “Loading Resource Definitions by Performing a Fresh Load” on
page 194 for more information about the fresh load function. See “Loading
Resource Definitions by Performing a Dynamic Load” on page 195 for more
information about the dynamic load function.

© Copyright IBM Corp. 1994, 2002 193

Important Considerations
When you generate the TPF system, you must use the IODEV macro to define the
symbolic device address (SDA) and system characteristics for each of the following
SNA resources that you define to the TPF system using the OSTG program:
v ALS resources
v CTC resources
v NCP resources.

Otherwise, although you can create the resource definition for the SNA resource,
you cannot activate it.

See TPF System Generation for more information about the IODEV macro.

Loading Resource Definitions by Performing a Fresh Load
The fresh load function replaces the current resource definitions in the TPF system
with an entirely new set of resource definitions. That is, the resources that were
previously defined to the TPF system using the OSTG program, the ZNDYN ADD
command, and dynamic LU support are replaced with the new resource definitions
during a fresh load.

The fresh load function also initializes all of the SNA control block structures in the
TPF system, including the resource vector table (RVT), node control block (NCB)
records, and the subarea address table (SAT). Therefore, when you perform a fresh
load, you must first deactivate the network because any existing sessions are
destroyed.

The fresh load process involves the following:

1. When you enter the ZNOPL LOAD command and specify the FRESH
parameter, the new resource definitions are loaded to the current resource
resolution table (RRT) and the old resource definitions are copied to the
alternate RRT. At this point, the new resource definitions are loaded to the TPF
system; however, no processors in the TPF system are using the new
definitions yet.

2. As you perform an initial program load (IPL) on each processor in the TPF
system, the SNA control block structures, including the RVT, NCB records, and
SAT, are initialized on that processor. After the IPL has been completed on a
processor, that processor is using the new (or current) resource definitions.

Important Considerations
v The fresh load function destroys all active sessions. Therefore, you must

deactivate the SNA network before you perform a fresh load.

v The fresh load function removes from the TPF system all of the resource
definitions that were created using the ZNDYN ADD command or dynamic LU
support.

v The NCB records and NCB directory records are initialized by the first TPF
processor on which an IPL is performed.

To Perform a Fresh Load
Use the following procedure to perform a fresh load:

1. Define the SNA resources using the OSTG program. See TPF ACF/SNA
Network Generation for more information about the OSTG program.

2. Load the pilot tape or general data set (GDS) that was created by the OSTG
program to the TPF system.

194 TPF V4R1 ACF/SNA Data Communications Reference

3. Deactivate the active resources in the TPF system. For more information about
deactivating the resources in the TPF system, see “Activating and Deactivating
Resources” on page 201.

4. Enter the ZNOPL LOAD command and specify the FRESH parameter to load
the new resource definitions to the TPF system.

A message is displayed that prompts you to enter the ZRIPL command.

5. Enter the ZRIPL command from each processor in the TPF system to perform
an IPL and incorporate the new resource definitions.

Note: You can enter the ZNOPL STATUS command to determine the
processors that require an IPL to incorporate the new resource
definitions.

Additional Information
See TPF Operations for more information about the following commands:
v ZNOPL LOAD
v ZNOPL STATUS
v ZRIPL.

Forcing a Fresh Load during the Next IPL
Enter the ZNOPL BUILD command if you want to force a fresh load of the current
resource definitions on 1, and only 1, processor during the next IPL.

The next time you perform an IPL on that processor, the SNA control block
structures in the TPF system, including the resource vector table and the SAT, are
initialized using the resource definitions in the current RRT.

Note: The NCB records are not initialized during the build function.

See TPF Operations for more information about the ZNOPL BUILD command.

Loading Resource Definitions by Performing a Dynamic Load
The dynamic load function allows you to load new resource definitions to the TPF
system without requiring you to perform an IPL or interrupt network
communications. The dynamic load function does not initialize the SNA control
block structures in the TPF system. It simply updates them with the new resource
definitions. Therefore, you do not need to deactivate the network before you
perform a dynamic load and the existing sessions are not destroyed.

In addition, the dynamic load function does not delete the resource definitions that
were created using the ZNDYN ADD command or dynamic LU support. These
resource definitions remain in the RVT after a dynamic load is performed.

The dynamic load process involves the following:

1. When you enter the ZNOPL LOAD command and specify the DYNAMIC
parameter, the new resource definitions are loaded to the alternate RRT.

2. When you enter the ZNOPL UPDATE command, the alternate RRT becomes
the current RRT, and the current RRT becomes the alternate RRT. At this point,
the new resource definitions are loaded to the TPF system; however, no
processors in the TPF system are using the new definitions yet.

3. As you enter the ZNOPL MERGE command on each processor in the TPF
system, the RVT and its related tables are updated on that processor with the

Defining SNA Resources to the TPF System 195

new resource definitions. After the online merge function has been completed
on a processor, that processor is now using the new (or current) resource
definitions.

Restrictions
v You cannot delete or redefine local resources using the dynamic load function.

You must perform a fresh load to delete or redefine these resources.

v You cannot delete or redefine active SNA resources using the dynamic load
function. You must first deactivate those resources. See “Activating and
Deactivating Resources” on page 201 for more information about activating and
deactivating SNA resources.

v You cannot add ALC terminals using the dynamic load function because ALC
terminals are not defined in the RVT; they are defined in the WGTA. The same
restriction applies to the data terminal equipment (DTE) that is supported by
AX.25 and XALCI LU resources.

To Perform a Dynamic Load
Use the following procedure to perform a dynamic load:

1. Define the SNA resources using the OSTG program. See TPF ACF/SNA
Network Generation for more information about the OSTG program.

2. Load the pilot tape or GDS that was created by the OSTG program to the TPF
system.

3. Enter the ZNOPL LOAD command and specify the DYNAMIC parameter to load
the new resource definitions to the alternate RRT.

A message is displayed that prompts you to enter the ZNOPL UPDATE
command.

4. Enter the ZNOPL UPDATE command from one processor in the complex to
switch the current and alternate RRT definitions.

A message is displayed that prompts you to enter the ZNOPL MERGE
command.

5. Enter the ZNOPL MERGE command from each processor in the TPF system to
update the RVT with the new resource definitions.

Note: You can enter the ZNOPL STATUS command to determine the
processors where you must enter the ZNOPL MERGE command to
incorporate the new resource definitions.

Additional Information
v If a processor is inactive when you perform a dynamic load, the RVT is

automatically updated with the new resource definitions when you perform an IPL
on that processor. There is no need to enter the ZNOPL MERGE command once
the processor is activated.

v See TPF Operations for more information about the following commands:
– ZNOPL LOAD
– ZNOPL MERGE
– ZNOPL STATUS
– ZNOPL UPDATE
– ZRIPL.

Falling Back to the Old Resource Definitions
After you perform a dynamic load, you can use the fallback function to reload to the
TPF system the old resource definitions that were saved in the alternate RRT, if
necessary.

196 TPF V4R1 ACF/SNA Data Communications Reference

Note: You cannot fall back to the old resource definitions after you perform a fresh
load. Instead, you must reload those resource definitions by entering the
ZNOPL LOAD command.

When you use the fallback function, you can specify whether you want to reload the
old resource definitions using the dynamic load function or the fresh load function.

To Fall Back using the Dynamic Load Function
You can use the dynamic load function to fall back to the old resource definitions
without interrupting network communications or destroying existing sessions.

Use the following procedure to fall back to the old resource definitions using the
dynamic load function:

1. Enter the ZNOPL FALLBACK command to reload the old resource definitions
from the alternate RRT to the current RRT.

A message is displayed that prompts you to enter the ZNOPL MERGE
command.

2. Enter the ZNOPL MERGE command from each processor in the TPF system to
update the RVT with the old resource definitions.

Note: You can enter the ZNOPL STATUS command to determine the
processors where you must enter the ZNOPL MERGE command to
incorporate the old resource definitions.

To Fall Back using the Fresh Load Function
If you cannot fall back to the old resource definitions using the dynamic load
function, you can fall back to the old resource definitions using the fresh load
function.

Use the following procedure to fall back to the old resource definitions using the
fresh load function:

1. Deactivate the active resources in the TPF system. For more information about
deactivating resources in the TPF system, see “Activating and Deactivating
Resources” on page 201.

2. Enter the ZNOPL FALLBACK command and specify the FRESH parameter to
reload the old resource definitions from the alternate RRT to the current RRT.

A message is displayed that prompts you to enter the ZRIPL command.

3. Enter the ZRIPL command from each processor in the TPF system to perform
an IPL and incorporate the old resource definitions.

Note: You can enter the ZNOPL STATUS command to determine the
processors that require an IPL to pick up the old resource definitions.

Additional Information
v See TPF Operations for more information about the following commands:

– ZNOPL FALLBACK
– ZNOPL LOAD
– ZNOPL MERGE
– ZNOPL STATUS
– ZRIPL.

v See “Loading Resource Definitions by Performing a Fresh Load” on page 194 for
more information about the fresh load function.

v See “Loading Resource Definitions by Performing a Dynamic Load” on page 195
for more information about the dynamic load function.

Defining SNA Resources to the TPF System 197

Displaying Status Information about the Load Functions
You can use the ZNOPL STATUS command to display the following information
about the RRT, SNA resource definitions, and load functions:

v Which section in the RRT contains the current resource definitions and which
section in the RRT contains the alternate (or new) resource definitions.

v Whether the resource definitions in the current and alternate section of the RRT
were loaded to the TPF system using the fresh load function or the dynamic load
function.

v The date and time that the resource definitions were loaded to the TPF system.

v A description of the resource definitions that were loaded to the TPF system. This
is the description that was specified for the DESC parameter in the PARM field of
the OSTG JCL EXEC statement.

v Whether the update, fallback, and merge functions are enabled or disabled.

v Whether the build function will be performed during the next IPL.

v A list of all the processors in the loosely coupled TPF system, if these processors
are active, and if they are using the current resource definitions.

See TPF Operations for more information about the ZNOPL STATUS command.

Using the ZNDYN ADD Command to Define SNA Resources
You can use the ZNDYN ADD command online to define the following resources:
v ALS resources (if the TPF system is running in APPN mode)
v CTC resources
v CDRM resources
v NCP resources.

See TPF Operations for more information about the ZNDYN ADD command.

Restrictions
You cannot use the ZNDYN ADD command to define ALS resources if the TPF
system is running in LEN mode.

Important Considerations
v Resource definitions that are created using the ZNDYN ADD command are

removed from the TPF system if a fresh load is performed.

v When you generate the TPF system, you must use the IODEV macro to define
the symbolic device address (SDA) and system characteristics for each of the
following SNA resources that you define to the TPF system using the ZNDYN
ADD command:
– ALS resources
– CTC resources
– NCP resources.

Otherwise, although you can create the resource definition for the SNA resource,
you cannot activate it.

See TPF System Generation for more information about the IODEV macro.

198 TPF V4R1 ACF/SNA Data Communications Reference

Using the ZNDYN CHANGE Command to Change SNA Resource
Definitions

You can use the ZNDYN CHANGE command online to change the name of an ALS,
CTC, CDRM, or NCP resource. You can also use the ZNDYN CHANGE command
to change the subarea for a CTC, CDRM, or NCP resource.

See TPF Operations for more information about the ZNDYN CHANGE command.

Using Dynamic LU Support to Define SNA Resources
You can use dynamic LU support to create resource definitions for remote LU
resources and ALS resources.

Defining Remote LU Resources
Remote LU resources can log on to the TPF system without first being defined
using the OSTG program. Instead, when a new remote LU resource tries to log on
to an application in the TPF system, the TPF system automatically creates a
resource definition and a 381-byte pool file NCB record for that remote LU
resource, which allows the session to be started.

Restrictions
v You cannot use dynamic LU support to define the following resources:

– Local TPF resources
– Shared printers.

v You cannot add ALC terminals using the dynamic load function because ALC
terminals are not defined in the RVT; they are defined in the WGTA. The same
restriction applies to the data terminal equipment (DTE) that is supported by
AX.25 and XALCI LU resources.

Important Considerations
v You must update the Dynamic LU user exit before you can use dynamic LU

support to define LU resources to the TPF system. This user exit specifies which
LU resources can log on to the TPF system using dynamic LU support and
defines certain characteristics for these resources.

Note: Initially, the dynamic LU Definition user exit is set up so that no LU
resources can be defined to the TPF system using dynamic LU support.

See TPF System Installation Support Reference for more information about the
Dynamic LU user exit.

v If you use dynamic LU support to define a remote LU resource that uses a PSV
routine, that PSV routine must first be defined to the TPF system in at least 1
OSTG RSC statement. Once the PSV routine is defined in an OSTG RSC
statement, it can be used by any number of remote LU resources.

v The TPF system does not create a scratch pad area (SPA) for LU resources that
are defined using dynamic LU support. Only LU resources that are defined using
the OSTG program have an SPA in the TPF system.

v Resource definitions that are created using dynamic LU support are removed
from the TPF system if a fresh load is performed.

Defining SNA Resources to the TPF System 199

Defining Remote ALS Resources
If the TPF system is running in APPN mode, ALS links can be activated without first
defining the ALS resource to the TPF system using the OSTG program. When an
ALS resource that was not previously known to the TPF system tries to activate the
PU 2.1 link, the TPF system automatically creates a resource definition for that ALS
resource, which allows the link to be activated.

Note: The TPF system does not create an NCB record for ALS resources that are
defined using dynamic LU support.

Restrictions
You cannot use dynamic LU support to define ALS resources if the TPF system is
running in LEN mode.

Important Considerations
Resource definitions that are created using dynamic LU support are removed from
the TPF system if a fresh load is performed.

200 TPF V4R1 ACF/SNA Data Communications Reference

Activating and Deactivating Resources

Resources in a TPF/SNA system are defined as active or inactive. TPF only uses
active resources. The TPF operator controls activation and deactivation of
resources. Resources include:

v Applications

v NCPs and logical units

v Cross-domain resource managers

v Cross-domain resources

v Channel-to-channel (CTC) links in the same network

v APPN control points (CPs).

Resources are activated and deactivated via the ZNETW command.

See TPF Operations for complete description of the ZNETW command format.

Other resources in the named resource’s hierarchy may be affected indirectly.

For example, a request to activate a local SSCP implies the activation of the
application logical units under the control of the SSCP. If the SSCP is already
active, only its logical units will be activated. If both the SSCP and its logical units
are active, then no action is taken.

The ZNKEY command permits you to alter and/or display fields in the SNA
communications keypoint.

The ZNPOL command is used to initiate/stop polling of a NCP/CTC device.

Activating and Deactivating a Shared NCP
TPF may not load an NCP. This function must be performed by an MVS/VTAM
network owner (CMC). When running in this configuration, the following
considerations apply:

v Define to the TPF system all of the LU resources attached to the NCP that can
communicate with TPF system. See “Defining SNA Resources to the TPF
System” on page 193 for more information about defining remote LU resources to
the TPF system.

If an operator deactivates an NCP or its resources, it does not affect other users of
the NCP.

Starting and Stopping Application Programs
TPF applications are defined during generation of the TPF system. Issuing the
ZROUT command starts the application. It is then available to non-SNA terminals.
Applications are available to the SNA network only after ZNETW activation. Thus,
applications must be started (ZROUT) before the non-SNA network can access
them; started (ZROUT) and activated (ZNETW) before the SNA network can access
them.

TPF provides support to establish cross-domain application to application sessions.
This is necessary because TPF applications cannot request a session. Instead, the
TPF operator issues a ZNETW command with the LOGON operand. If the

© Copyright IBM Corp. 1994, 2002 201

cross-domain application is a primary LU, the TPF application will act as a
secondary LU. During TPF system generation, users can define up to 255
secondary LUs to access an application. TPF attempts to establish a session for
each secondary LU defined.

If a VTAM system supports receiving NOTIFY PIUs, and a VTAM LU requests a
session with a TPF application that is not active, TPF will send a NOTIFY PIU to
the requesting VTAM system when the TPF application is activated. The VTAM
system may redrive the session request if the LU is still available.

Issuing a ZNETW INACT command deactivates a TPF application. This makes the
application unavailable to the SNA network and terminates all sessions with the
application’s logical units. The application is still available to the non-SNA network.
Deactivation types are the same as for other resources: orderly, immediate, and
forced.

Activating and Deactivating Cross-Domain Resource Managers
In the PU 5 environment, a CDRM to CDRM session must be established before
resources in a TPF domain can communicate with resources in another domain.
Here, the CDRMs work in tandem to activate, maintain, and terminate sessions
between resources. The network address of the T5 SNA Network Interconnection
(SNI) gateway CDRM is not defined to the TPF system until the session is
activated. Therefore, the TPF system is unaware of the path the session will take.
This enables the TPF system to dynamically discover the network address of the
CDRM, which allows an alternate path to be used if the CDRM-CDRM session
breaks.

Define to the TPF system each CDRM that can connect to the TPF system as a T5
node. See “Defining SNA Resources to the TPF System” on page 193 for more
information about defining CDRM resources to the TPF system.

When the TPF system is connected to a VTAM system using both PU 5 links
through SNI NCPs and APPN links, you must define an alias name for the CDRM in
VTAM. See “SNI and APPN Considerations” on page 234 for more information.

A CDRM-CDRM session over a channel-to-channel link can be activated by the
operator of either domain.

The operator of either domain can deactivate the CDRM-CDRM session. A
deactivation request between domains is called a cross-domain takedown
(CDTAKED). Cross-domain takedown requests include:

CDTAKED orderly: Equivalent to TPF orderly deactivation.

CDTAKED forced: Equivalent to TPF immediate deactivation.

CDTAKED cleanup: Equivalent to TPF forced deactivation.

Either domain manager can perform two types of deactivation:

v Disruptive CDRM inactivation takes down all LU-LU sessions that were
established using a specified CDRM and is accomplished through a forced,
normal, or immediate inactivation of the CDRM.

v Nondisruptive CDRM inactivation does not take down any LU-LU sessions that
were established using a specified CDRM. Nondisruptive inactivation is
performed if the operator specifies that sessions should be saved across the
CDRM deactivation when initiating a forced or immediate inactivation request on

202 TPF V4R1 ACF/SNA Data Communications Reference

a remote CDRM. See the ZNETW command in the TPF Operations for details on
issuing a nondisruptive inactivation request.

Support of nondisruptive CDRM inactivation and reactivation is specified during
CDRM session establishment. Control vector 6 in the ACTCDRM request and
response contains this information. Nondisruptive inactivation can be performed
regardless of whether the adjacent SSCP supports nondisruptive inactivation.

When the adjacent SSCP supports nondisruptive inactivation, the same sequence
of PIUs are used to perform both disruptive and nondisruptive inactivation. The only
differences between nondisruptive and disruptive inactivation are the type of
cross-domain takedown (CDTAKED) and deactivate CDRM (DACTCDRM)
commands and the status of the LU-LU sessions after the inactivation is completed.

Note: During nondisruptive CDRM inactivation, the associated LU-LU sessions
which remained in session across the inactivation are disassociated from
their owning CDRM. The consequence of this disassociation is the LU-LU
sessions are not reassociated with the CDRM session when it is
re-established. In order to inactivate the LU-LU sessions that survived a
nondisruptive CDRM inactivation, an inactivation request must be specified
on either NAU involved in the LU-LU session.

When the adjacent SSCP does not support nondisruptive inactivation, TPF treats
the nondisruptive inactivation request as a session outage notification (SON). The
operator should be aware that only the LU-LU sessions that support SON remain
active across the inactivation. Both a nondisruptive immediate and forced
inactivation of a CDRM that does not support nondisruptive inactivation results in
SON, with only a flow of a single PIU (a DACTCDRM type 3). A nondisruptive
immediate inactivation is escalated to a forced inactivation to perform SON.

Note: When TPF initiates a nondisruptive inactivation, TPF always interprets the
first ACTCDRM request from the remote SSCP as an attempt to
automatically recover the CDRM session. TPF then sends an 0858 negative
response to the ACTCDRM request. If an automatic recovery was not
intended, the operator can reissue the CDRM activation request, and TPF
completes the CDRM reactivation successfully.

Once the TPF domain manager is in session with another domain manager,
resources within the domains can communicate. The ZNETW command activates
and deactivates cross-domain resources.

Cross-domain resources are also deactivated if:

v The communication path to the resource malfunctions, or

v The owning cross-domain resource manager (CDRM) is deactivated by means of
disruptive inactivation.

Path malfunctions can occur in the communication line, NCP, 37x5, and/or owning
CDRM.

Activation of a CDRM is non-disruptive to any ongoing cross-domain LU-LU
sessions that may exist at the time of the activation. This feature enables a VTAM
CMC to restart a failed CDRM-CDRM session without affecting any cross-domain
sessions that survived the failure.

Activating and Deactivating Resources 203

Activating and Deactivating Control LU-Logon Manager Sessions
To activate PU 2.1 sessions when the TPF system is connected to the network as a
LEN node, you must first establish a session between the TPF control LU (CLU)
and the VTAM logon manager. To activate the session across an ALS connection,
the VTAM operator must issue the following command:

VARY NET, ACT, ID=clu_name, LOGON=elmngr

Where:

clu_name
The name of the control LU (CLU)

elmngr
The name of the Logon Manager application.

A CLU–Logon Manager session must be activated across each ALS connection
between TPF and VTAM.

The Logon Manager can also be used to mediate sessions across a PU 5 CTC
connection. In this case, the CDRM–CDRM session across the CTC link must first
be activated. Then, the TPF operator can issue:

ZNETW ACT ID-clu_name
ZNETW ACT ID-elmngr, LOGON-clu_name, CDRM-vtam_cdrm_name

Where:

clu_name
The name of the control LU (CLU)

elmngr
The name of the Logon Manager application

vtam_cdrm_name
The name of the remote cross-domain resource manager.

To deactivate the sessions, the VTAM operator must issue:

VARY NET, INACT, ID=clu_name

Alternatively, the TPF operator can issue:

ZNETW INACT ID-clu_name

Activating and Deactivating APPN CP-CP Sessions
When the TPF system is connected to the network as an APPN end node, special
control sessions exist between the TPF system and its network node server (NNS).
An NNS is a network node that provides services to an end node (the TPF system
in this case). The control point (CP) in the TPF system exchanges data with the CP
in the NNS using CP-CP sessions.

CP-CP sessions are used during the LU-LU session activation process to exchange
data between the TPF system and the APPN network. You cannot start new LU-LU
sessions if the CP-CP sessions are not active. CP-CP sessions provide services
that are similar to the services that CDRM-CDRM sessions provide to a PU 5

204 TPF V4R1 ACF/SNA Data Communications Reference

network. One key difference is that the deactivation of the CP-CP sessions for any
reason does not cause the active LU-LU sessions to be deactivated. Only the
LU-LU sessions that are in the process of being activated when the CP-CP
sessions fail will be cleaned up.

When the TPF system is connected to a PU 5 network, each processor in the TPF
loosely coupled complex can have CDRM-CDRM sessions to many remote hosts.
In an APPN network, an end node can be connected to many different network
nodes but can have active CP-CP sessions to only 1 network node. If the active
CP-CP sessions fail, new CP-CP sessions can be started with the same network
node or a different network node. Because the TPF loosely coupled complex is 1
end node, only 1 TPF processor has CP-CP sessions.

CP-CP sessions are critical resources; therefore, the TPF system automatically
attempts to activate CP-CP sessions when the network is started. If the active
CP-CP sessions fail unexpectedly (for example, because of a path failure), the TPF
processor that had the CP-CP sessions will attempt to activate new CP-CP
sessions.

When CP-CP sessions are not active, they can be activated by a TPF operator or
by a remote operator. To activate CP-CP sessions from the TPF operator console,
use the ZNETW ACT command. See TPF Operations for more information about
the ZNETW ACT command.

CP-CP sessions can be deactivated by a TPF operator or by a remote operator. To
deactivate CP-CP sessions from the TPF operator console, use the ZNETW INACT
command. See TPF Operations for more information about the ZNETW INACT
command.

If an LU is defined to the TPF system as a remote CP, the only sessions it can
have are CP-CP sessions. The TPF system does not support sessions between a
remote CP and a regular TPF application (that is, an application that is not a local
TPF control point LU). In addition to having CP-CP sessions, the LU that represents
the TPF CP can be in session with remote LU 6.2 nodes that are not control point
LUs.

CP-CP Session Considerations When Running Loosely Coupled
Only 1 processor in the loosely coupled complex can have CP-CP sessions. You
can use the ZNAPN STATUS command to determine if CP-CP sessions are active
and, if so, on which processor.

Before a TPF processor attempts to automatically start CP-CP sessions, the UACP
user exit segment is called to determine whether this TPF processor is allowed to
start CP-CP sessions. UACP allows you to limit CP-CP session activation attempts
to a subset of the TPF processors that reside in the loosely coupled complex. See
TPF System Installation Support Reference for more information about the UACP
user exit.

Cycling down the TPF processor with the CP-CP sessions to below CRAS state
prevents new LU-LU sessions from being established for the entire loosely coupled
complex until that host is cycled up again. Cycling down the processor with the
CP-CP sessions is not recommended and will result in an attention message on the
operator console. If you need to cycle down the processor with the CP-CP
sessions, do the following:

1. Deactivate the CP-CP sessions using the ZNETW INACT command.

Activating and Deactivating Resources 205

2. Activate new CP-CP sessions on a different processor in the loosely coupled
complex using the ZNETW ACT command.

3. Cycle down the processor that had the original CP-CP sessions.

See TPF Operations for more information about the ZNETW ACT and ZNETW
INACT commands.

Follow the same procedure if you want to take the processor with the CP-CP
sessions out of the complex. However, if the processor with the CP-CP sessions
fails causing an unplanned outage, you must follow a different procedure. If the
links to the failing processor have not reached their automatic network shutdown
(ANS) time-out value, the links are still considered active from the point of view of
the network. This means that the network considers the CP-CP sessions to still be
active. Until those CP-CP sessions are deactivated, new CP-CP sessions cannot be
started. This is why the TPF system does not attempt to automatically start new
CP-CP sessions when the processor with the active CP-CP sessions fails.

When the processor with the CP-CP sessions fails, do the following:

1. Deactivate the failing TPF processor using the ZPSMS command.

2. Deactivate the links to the failing TPF processor from a remote operator console
if the links are still active. This will cause the network to clean up the CP-CP
sessions.

3. Enter ZNETW INACT ID-CPCP,F from one of the surviving TPF processors.
This cleans up the processor-shared structures to indicate that CP-CP sessions
no longer exist.

4. Activate new CP-CP sessions from one of the surviving TPF processors using
the ZNETW ACT command.

See TPF Operations for more information about the ZNETW ACT and ZNETW
INACT commands.

If the TPF processor with the CP-CP sessions performs either a hardware IPL or
software IPL, the TPF system deactivates the CP-CP sessions and then attempts to
activate new CP-CP sessions during cycle up. Only LU-LU sessions that are being
activated are affected by this action, causing the session activations to fail; LU-LU
sessions that are active are not affected by the deactivation and reactivation of the
CP-CP sessions.

In a loosely coupled complex, LU-LU sessions on all TPF processors that are being
activated will fail if an IPL is performed on the TPF processor with the CP-CP
sessions. If an IPL is performed on a TPF processor that does not own the CP-CP
sessions, only the LU-LU sessions that are being activated on that TPF processor
will fail; LU-LU sessions being activated on the other TPF processors are not
affected.

Activating LU-LU Sessions
To activate an LU-LU session, the TPF system needs to know the SNA command to
send and across which session to send that command. The decision is based on
the following factors:

v Whether the TPF system is connected to the network as a PU 5 node, PU 2.1
node, or both.

v How sessions with the remote LU were activated previously.

206 TPF V4R1 ACF/SNA Data Communications Reference

v What path information, if any, was provided on the request that caused the
LU-LU session to be activated.

This section discusses how the TPF system activates LU-LU sessions, meaning
that the TPF system sends the first command in the session activation sequence. In
this context, activating an LU-LU session does not mean which side is the primary
LU (PLU) and, therefore, sends the BIND request to start the actual LU-LU session.

The discussion is broken into two parts, LU 6.2 and other LU types, because of the
different triggers that activate these sessions and the different connectivity
capabilities.

Activating LU-LU Sessions Other Than LU 6.2
The ZNETW ACT command activates LU-LU sessions for LU types other than LU
6.2. The CDRM parameter, which is optional and only applicable to the TPF system
connected as a PU 5 node, specifies the owning cross-domain resource manager
(CDRM) of the remote LU that is being activated. The owning CDRM is not
necessarily the CDRM that owns the remote LU but the CDRM through which the
TPF system can access the remote LU.

Processing of the ZNETW ACT request depends on whether the CDRM parameter
is specified and, if so, is that CDRM-CDRM session active.

v If the CDRM parameter is specified and the corresponding CDRM-CDRM session
is active, that CDRM-CDRM session will be used to start the LU-LU session.

v If the CDRM parameter is specified and the corresponding CDRM-CDRM session
is not active, the ZNETW ACT request is rejected.

v If the CDRM parameter is not specified, processing is based on other factors that
will be discussed in subsequent sections.

Activating LU 6.2 Sessions
An application program that issues the ALLOCATE verb causes an LU 6.2 session
to be activated (if there are no active and available sessions already). Before the
ALLOCATE verb is issued, a change number of sessions (CNOS) operation must
have been done to initialize the mode name and session limits for the remote LU.
This process can be done by an operator who enters the ZNCNS INITIALIZE
command or an application program that issues the CNOSC INITIALIZE macro.
Both of these have a pair of optional parameters, CDRM and CP. The CDRM
parameter is identical in function to the CDRM parameter on the ZNETW ACT
command.

The CP parameter can only be used when the remote LU 6.2 resource resides in
an Advanced Peer-to-Peer Networking (APPN) node that is adjacent to the TPF
system. The CP parameter specifies the control point (CP) name of the adjacent
APPN node. In this case, the TPF system bypasses the normal APPN search,
meaning the TPF system does not send a LOCATE request on the CP-CP sessions
and, instead, sends a BIND request directly to the adjacent APPN node. User exit
UALS selects the adjacent link station (ALS) over which the TPF system will send
the BIND request.

Processing of a CNOS INITIALIZE request depends on whether the CDRM or CP
parameter is specified and if that resource is active.

v If the CDRM parameter is specified and the corresponding CDRM-CDRM session
is active, that CDRM-CDRM session will be used to start the LU-LU session.

Activating and Deactivating Resources 207

v If the CDRM parameter is specified and the corresponding CDRM-CDRM session
is not active, the CNOS INITIALIZE request is rejected.

v If the CP parameter is specified and there is at least one active ALS connecting
the TPF system to the adjacent APPN node whose CP name was specified, a
BIND request will be sent to the adjacent APPN node.

v If the CP parameter is specified and there are no active ALS links connecting the
TPF system to the adjacent APPN node whose CP name was specified, the
CNOS INITIALIZE request is rejected.

v If neither the CDRM parameter or CP parameter is specified, processing is based
on other factors that will be discussed in subsequent sections.

Note: The CNOS INITIALIZE request can be performed a long time before the
application program issues the ALLOCATE verb and network conditions
could have changed. For example, the CDRM-CDRM session was active
when the CNOS INITIALIZE request was performed but then the
CDRM-CDRM session fails and is no longer active when the ALLOCATE
verb is issued. In this case, the ALLOCATE verb will fail.

PU 5 Environment
When the TPF system is connected to the network as a PU 5 node only, a CDINIT
request is the first command sent to start the LU-LU session. Because the TPF
system can be connected to many hosts, each with a CDRM-CDRM session, the
owning CDRM must be known for the CDINIT request to be sent across the correct
CDRM-CDRM session.

When a session is activated with the remote LU for the first time, the owning CDRM
must be specified (the CDRM parameter must be specified). On subsequent
session activation requests for the remote LU, the owning CDRM does not need to
be specified, in which case the TPF system will use the same owning CDRM that
was used the first time.

PU 2.1 LEN Environment
When the TPF system is connected to the network as a PU 2.1 node only and is
running in LEN mode, the only LU-LU sessions that can be started by the TPF
system are LU 6.2 sessions and the PLU must reside in the TPF system. Do not
code the CDRM parameter on CNOS INITIALIZE requests. Each time that a
session is started, the TPF system will select a CLU-CLU session over which to
send a REQTAIL request to the VTAM logon manager.

PU 2.1 APPN Environment
When the TPF system is connected to the network as a PU 2.1 node only and is
running in APPN mode, sessions other than LU 6.2 can be started by the TPF
system and the PLU is not required to reside in the TPF system. Unlike PU 5 where
there can be many CDRM-CDRM sessions, there is only one pair of CP-CP
sessions because the TPF system is an APPN end node (EN).

PU 2.1 APPN Environment: Sessions Other Than LU 6.2
Do not code the CDRM parameter on the ZNETW ACT command. Each time that a
session is started, the TPF system will send a LOCATE request on the CP-CP
sessions.

208 TPF V4R1 ACF/SNA Data Communications Reference

PU 2.1 APPN Environment: LU 6.2 Sessions
Do not code the CDRM parameter on the CNOS INITIALIZE request. If the remote
LU does not reside in an adjacent APPN node, do not code the CP parameter
either. Each time that a session is started, the TPF system will send a LOCATE
request on the CP-CP sessions.

If the remote LU resides in an adjacent APPN node and the PLU resides in the TPF
system, code the CP parameter on the first CNOS INITIALIZE request with the
remote LU. On subsequent CNOS INITIALIZE requests, the CP parameter does not
need to be specified. If the CP parameter is not specified, the TPF system uses the
same owning CP that was used previously if there is a path to it; otherwise, a
LOCATE request is sent on the CP-CP sessions.

Notes:

1. If the remote LU resides in an adjacent APPN node and that node is connected
to or defined to the network node server (NNS) of the TPF system, you do not
need to code the CP parameter because the LOCATE search on the CP-CP
sessions will determine that the remote LU resides in a node adjacent to the
TPF system. However, code the CP parameter in this case so that the session
can be activated more effectively.

2. If the remote LU resides in an adjacent APPN node and that node is not
connected to and not defined to the NNS of the TPF system, you must code
the CP parameter.

3. If the remote LU moves to a different APPN node or the CP name of the
adjacent APPN node changes, you must specify the CP parameter.

Mixed PU 5 and PU 2.1 Environment
When the TPF system is connected to the network as both a PU 5 node and PU
2.1 node, the question becomes: What type of network search do you use to find
the remote LU? In this context a mixed PU 5 and PU 2.1 environment means that
the TPF system has both PU 5 and PU 2.1 links active; it does not mean that part
of the LU-LU session path is in the PU 5 network and the other part of the path is
in the PU 2.1 network.

The question of whether to search the PU 5 or PU 2.1 network is only relevant if
the CDRM parameter (and CP parameter if LU 6.2) was not specified. There are
two key considerations:

v Choosing the most effective link protocol if multiple paths to the remote LU exist.
For example, the TPF system is connected to a VTAM system through PU 5
channel-to-channel (CTC) and also to the PU 2.1 APPN network (through 3745
devices). In this example, to access an application (LU) in the VTAM system, use
the PU 5 CTC path because it is more effective.

v Migrating 3745 NCPs from PU 5 to APPN. An LU that used to be accessed
through the PU 5 network is now accessed through the APPN network, or the
opposite in fallback scenarios. If only a partial migration is done, some LUs will
remain in the PU 5 network and others are now in the APPN network.

When migrating 3745s from PU 5 to APPN, the following rules are in place:

v Remote LUs that are accessed through PU 5 CTC links are not affected by the
migration and will continue to use the PU 5 CTC path.

v If CP-CP sessions are active, to activate a session with a remote LU that is still
accessed through a PU 5 NCP, you must code the CDRM parameter each time
(on the ZNETW ACT command or CNOS INITIALIZE request), not just the first
time.

Activating and Deactivating Resources 209

v To activate a session with a remote LU that used to be accessed through a PU 5
NCP and is now accessed through an APPN link, do not code the CDRM
parameter. A LOCATE request will be sent on the CP-CP sessions even if the
owning CDRM is known.

Mixed Environment: Sessions Other Than LU 6.2
If you did not specify the CDRM parameter on the ZNETW ACT command, the
order of preference is as follows:

1. Use PU 5 (send CDINIT) if the owning CDRM is known and the CDRM-CDRM
session is across a CTC link.

2. Use APPN (send LOCATE) if the CP-CP sessions are active.

3. Use PU 5 (send CDINIT) if the owning CDRM is known and the CDRM-CDRM
session is across an NCP link.

Mixed Environment: LU 6.2 Sessions
If you did not specify the CDRM parameter or CP parameter on the CNOS
INITIALIZE request, the order of preference is as follows:

1. Use APPN (send BIND) to the adjacent APPN node if the owning CP is known
and ALS links to that CP are active.

2. Use PU 5 (send CDINIT) if the owning CDRM is known and the CDRM-CDRM
session is across a CTC link.

3. Use APPN (send LOCATE) if the CP-CP sessions are active.

4. Use PU 5 (send CDINIT) if the owning CDRM is known and the CDRM-CDRM
session is across an NCP link.

5. Use LEN (send REQTAIL) if you are running in LEN mode.

210 TPF V4R1 ACF/SNA Data Communications Reference

LU-LU Sessions in an APPN Network

Applications (LUs) that reside in the TPF system need to be defined to the APPN
network. Because the entire TPF loosely coupled complex is a single APPN node,
LUs that reside in one or all processors in the complex need to be defined to the
network. Each LU in an APPN network is associated with its owner, which is the
control point (CP) name of the node where the LU resides.

The TPF LUs can be predefined to the APPN network, or discovered dynamically at
network startup time using the APPN LU registration process. The UARG user exit
in the TPF system indicates which TPF LUs, if any, to register with the APPN
network.

Predefining TPF LUs to the APPN Network
Predefining TPF LUs to an APPN network is similar in concept to predefining TPF
LUs to a PU 5 network. In a PU 5 network, each TPF LU is defined to the VTAM
system in a CDRM deck using CDRSC statements. The CDRM under which the
CDRSC is defined, referred to as the owning CDRM, indicates where the LU
resides. In an APPN network, the owner of an LU is a CP rather than a CDRM.

In the definition deck of the node that is to be the network node server (NNS) for
the TPF system, define each TPF LU as owned by the CP name of the TPF
system.

If you predefine the TPF LUs to the APPN network, there is no need for the TPF
system to register its LUs at network start up time; therefore, you should code the
UARG user exit to not register any of the TPF LUs. See TPF System Installation
Support Reference for more information about the UARG user exit.

APPN LU Registration Process
When CP-CP sessions are activated between an APPN end node (EN) and network
node (NN), the EN is expected to register all of its resources (LUs) with the APPN
network if the resources have not been predefined. Being an EN, the TPF system
will register all its LUs after the CP-CP sessions are activated.

The LU registration user exit, UARG, allows you to control which LUs, if any, will be
registered with the APPN network. If you have not predefined the TPF LUs to the
APPN network, use the default logic for UARG, which will register all of the TPF
LUs. See TPF System Installation Support Reference for more information about
the UARG user exit.

Predefining LUs eliminates the overhead of having to do LU registration whenever
CP-CP sessions are activated; however, the LU registration process is more
dynamic and makes adding new LUs much easier. Moving an application (LU) from
one node to another node is also much easier when LU registration is used as
opposed to predefining LUs and their owner.

© Copyright IBM Corp. 1994, 2002 211

Remote Initiated LU-LU Sessions
All session initiation requests from remote LUs that want to go into session with
TPF LUs will be received by the TPF processor in the loosely coupled complex that
has the CP-CP sessions. The select a host user exit, UAPN, allows you to load
balance sessions across all TPF processors in the complex.

APPN session initiation requests are called LOCATEs. When the TPF system
receives a LOCATE request, UAPN is called to determine which TPF processor will
be assigned this new LU-LU session. The LOCATE request is passed to the
selected TPF host for processing. UAPN is also valuable in a uniprocessor TPF
environment because it allows you to select the path (which ALS to use) for the
session.

For LU-LU sessions started by a remote primary LU (PLU), the network rather than
the TPF system will do the load balancing in most cases. The BIND request from
the remote PLU can be received by the TPF system without any previous LOCATE
request being received. Unlike LOCATEs, the BIND does not always flow to the
TPF processor with the CP-CP sessions.

For LU-LU sessions started by a remote secondary LU (SLU), the network might do
load balancing by providing a suggested route for the LU-LU session on the
LOCATE request. If a suggested route is present, the name of the suggested ALS
and the CPU ID of the TPF processor connected to that ALS are passed as input to
the UAPN user exit. You have the option to use the suggested route, select your
own route (TPF host, ALS, or both), or inform the TPF system to select a TPF
processor for this LU-LU session.

See TPF System Installation Support Reference for more information about the
UAPN user exit.

212 TPF V4R1 ACF/SNA Data Communications Reference

Network Services Application Interfaces

TPF applications that communicate with end points accessed through an SNA LU
require application-to-endpoint session control and status information. TPF provides
this information to the application via TPF Session Status Awareness and
Session Management Request services. The ISHLL macro (TPF SNA SHELL)
defines the interface parameters and fields used between these TPF SNA service
routines and the TPF application. This does not apply to LU 6.2 sessions.

ISHLL Macro
The format of the ISHLL macro shown in Figure 87.

REG=reg
This required operand indicates the register to be used to establish
addressability to the parameter area.

The ISHLL macro and the labels generated by this macro are documented in the
various interface tables in “Session Management Request Services” and in “Session
Status Awareness Services” on page 215.

Session Management Request Services
The following services may be requested:

v Session Resynchronization - This is valid only for an LU using PSV with DFC
ownership.

v Session Termination

The TPF SNA system segment (CSU0) is provided for applications to request the
session services.

Starting Session Management Request Services
To start a particular session service, a TPF application:
v Sets up the corresponding ISHLL interface parameter list.
v Initializes register 1 with the address of the ISHLL parameter list.
v Issues ENTRC CSU0.

CSU0 resides in all subsystems.

The ISHLL macro defines the parameter area that should reside in working storage.
The parameter area settings for each service call are described in detail in Table 7
on page 214, Table 8 on page 214, and Table 9 on page 215.

The service program (CSU0) sets the return code field (ISHLRC) in the parameter
area and returns control to the calling program.

Operation Operands
__

ISHLL REG=reg

Figure 87. The ISHLL Macro

© Copyright IBM Corp. 1994, 2002 213

Table 7. CSU0 Interface

Interface Input to CSU0 Returned from CSU0

Registers R1: ISHLL Parameter List
Address

R0-R7: Not changed

ECB Workarea v EBX012-EBX041 reserved for
system use

v Remaining ECB fields
irrelevant

v EBX012-EBX041
unpredictable

v Remaining ECB fields not
changed

Data Levels Irrelevant Not Changed

Protect Key Working Storage Working Storage

Requesting Session Resynchronization
Table 8. Request Session Resynchronization Interface

Label Length (In
Bytes)

Description

ISHLREQ 1 X'01' RESYNCH SESSION REQUEST

ISHLTYP 1 Reserved

ISHLRC 1 Return Code (output only)
1. X'00' Request scheduled
2. X'11' PLU name conversion error.
3. X'12' ISHLPNAM is not defined as a primary LU.
4. X'13' PLU not available.
5. X'21' SLU name conversion error.
6. X'22' SLU already in session.
7. X'23' SLU is pending activation.
8. X'24' ISHLSNAM is defined as a primary LU.
9. X'26' SLU not available.

10. X'27' PLU/SLU domain error.
11. X'41' Invalid request code.
12. X'42' System is not in NORM state.
13. X'43' CSCD can not schedule the request.
14. X'44' Invalid request type.
15. X'45' Resynch valid only for LU using PSV with

DFC ownership.

ISHLSW 1 Indicator, reserved for TPF internal usage.

ISHLSNAM 4 Secondary LU Name Address

The address of a 16-byte field that contains the NETID
and the Network Qualified LU name of the resource
functioning as secondary LU (SLU) for the requested
session. The NETID is an 8-character string left-justified
and padded with blanks. The name, which immediately
follows the NETID, is also an 8-character string
left-justified and padded with blanks.

ISHLPNAM 4 Primary LU Name Address

The address of a 16-byte field that includes the NETID
and the Network Qualified LU name of the resource
functioning as primary LU (PLU) for the requested
session. The NETID is an 8-character string left-justified
and padded with blanks. The name, which immediately
follows the NETID, is also an 8-character string
left-justified and padded with blanks.

214 TPF V4R1 ACF/SNA Data Communications Reference

Requesting Session Termination Interface
Table 9. Request Session Termination Interface

Label Length (In
Bytes)

Description

ISHLREQ 1 Deactivate Session Request (X'02')

ISHLTYP 1 Type of Deactivation
1. Normal (X'01')
2. Forced (X'02')

ISHLRC 1 Return Code (output only)

1. X'00' Request scheduled

2. X'11' PLU name conversion error.

3. X'12' ISHLPNAM is not defined as a primary LU.

4. X'21' SLU name conversion error.

5. X'24' ISHLSNAM is defined as a primary LU.

6. X'28' SLU is not in session.

7. X'29' SLU is not in session with ISHLPNAM.

8. X'2A' A zero PSV index is found in PSV name
table.

9. X'41' Invalid request code.

10. X'42' System is not in NORM state.

11. X'43' CSCD can not schedule the request.

12. X'44' Invalid deactivation type requested.

ISHLSW 1 Indicator, reserved for TPF internal usage.

ISHLSNAM 4 Secondary LU Name Address

The address of a 16-byte field that contains the NETID
and the Network Qualified LU name of the resource
functioning as secondary LU (SLU) for the requested
session. The NETID is an 8-character string left-justified
and padded with blanks. The name, which immediately
follows the NETID, is also an 8-character string
left-justified and padded with blanks.

ISHLPNAM 4 Primary LU Name Address

The address of a 16-byte field that contains the NETID
and the Network Qualified LU name of the resource
functioning as primary LU (PLU) for the requested
session. The NETID is an 8-character string left-justified
and padded with blanks. The name, which immediately
follows the NETID, is also an 8-character string
left-justified and padded with blanks.

Session Status Awareness Services
A TPF application may require knowledge of LU session establishment and/or
termination in order to determine whether to transmit, queue, or purge the output for
that resource. You can specify session awareness support for LU sessions in the
RSC statement of the OSTG input data set or by using the Dynamic LU user exit.

Network Services Application Interfaces 215

A 3270 welcome screen is also available through session awareness support for
3270 sessions. The TPF system provides a sample 3270 welcome screen. You can
modify this sample to meet your needs.

See TPF System Installation Support Reference for more information about the
Dynamic LU user exit and the sample 3270 welcome screen. See TPF ACF/SNA
Network Generation for more information about the RSC statement and the OSTG
program.

Activating Session Status Awareness Services
If this notification is implemented, ENTRC activates CSXD with notification
information for the following events:
v SESSION STARTED, data flow enabled.
v SESSION ENDED, planned or unplanned.

To notify the application/user of these events, TPF code passes the information to
CSXD with the address of the ISHLL area contained in register 1. The fields for
each event parameter list are described in Table 10 on page 216.

The released CSXD module contains a BACKC instruction.

Table 10. CSXD Interface

Interface Input to CSXD Returned from CSXD

Registers R1: ISHLL ADDR R0-R7: Not changed

ECB Workarea v EBW000-EBW103: Reserved
v EBSW01-3: Reserved
v EBRS01: Reserved
v EBCM01-3: Reserved
v EBER01: Reserved
v EBX000-EBX023: ISHLL
v EBX024-EBX103: Irrelevant

v EBW000-EBW103: Unchanged
v EBSW01-3: Unchanged
v EBRS01: Unchanged
v EBCM01-3: Unchanged
v EBER01 Unchanged
v EBX000-EBX023: Irrelevant
v EBX024-EBX103: Irrelevant

Data Levels 1. D0-D7: not available
2. D8-DF: available

Same as on input.

Protect Key Working Storage Working Storage

Starting Session Started Notification
Notification of this event is driven whenever TPF data flow is enabled for an SNA
session. The TPF application can now send messages on this session. Any
messages already on the TPF OMT queue are also sent.

When data flow is enabled, OMT processing issues an ENTRC to start the user
replaceable module (CSXD) with the address of the Session Started Notification
Interface in register 1. (See Table 11 on page 216 and Table 10 on page 216 for
detailed information.) Labels for this area are defined using the ISHLL macro.

Table 11. Session Started Notification Interface

Label Length (In
Bytes)

Description

ISHLNOT 1 X'05' Session Started Notification

ISHLSS 1 Reserved (X'00' only value defined).

ISHLRC 1 Reserved (X'00' only value defined).

ISHLSW 1 Reserved (X'00' only value defined).

216 TPF V4R1 ACF/SNA Data Communications Reference

Table 11. Session Started Notification Interface (continued)

Label Length (In
Bytes)

Description

ISHLSNAM 4 Secondary LU Name Address

The address of a 16-byte field that contains the NETID
and the Network Qualified LU name of the resource
functioning as secondary LU (SLU) for the requested
session. The NETID is an 8-character string left-justified
and padded with blanks. The name, which immediately
follows the NETID, is also an 8-character string
left-justified and padded with blanks.

ISHLPNAM 4 Primary LU Name Address

The address of a 16-byte field that contains the NETID
and the Network Qualified LU name of the resource
functioning as primary LU (PLU) for the requested
session. The NETID is an 8-character string left-justified
and padded with blanks. The name, which immediately
follows the NETID, is also an 8-character string
left-justified and padded with blanks.

ISHLPSV 6 Process Selection Vector.

Left-justified 6-character PSV name, padded with blanks,
defined for the remote LU.

Starting Session Ended Notification
This event indicates that the session is no longer available for data transmission to
or from the TPF application.

Notification of this event is driven whenever a session between a TPF application
and a network resource is terminated. Possible reasons for this event and session
outages are normal session termination and network failure.

When the session ends, Lost Terminal Processing issues an ENTRC to start the
user replaceable module (CSXD) with the address of the Session Ended
Notification Interface in register 1. (See Table 10 on page 216 and Table 12 on page
217 for additional information.) Labels for this area are defined using the ISHLL
macro.

Table 12. Session Ended Notification Interface

Label Length (In
Bytes)

Description

ISHLNOT 1 X'06' Session Ended Notification

ISHLSS 1 Session Status at time of failure.
1. X'01' - Pending activation
2. X'02' - In session and data flow allowed

ISHLRC 1 Reserved (X'00' only value defined).

ISHLSW 1 Reserved (X'00' only value defined).

Network Services Application Interfaces 217

Table 12. Session Ended Notification Interface (continued)

Label Length (In
Bytes)

Description

ISHLSNAM 4 Secondary LU Name Address

The address of a 16-byte field that contains the NETID
and the Network Qualified LU name of the resource
functioning as secondary LU (SLU) for the requested
session. The NETID is an 8-character string left-justified
and padded with blanks. The name, which immediately
follows the NETID, is also an 8-character string
left-justified and padded with blanks.

ISHLPNAM 4 Primary LU Name Address

The address of a 16-byte field that contains the NETID
and the Network Qualified LU name of the resource
functioning as primary LU (PLU) for the requested
session. The NETID is an 8-character string left-justified
and padded with blanks. The name, which immediately
follows the NETID, is also an 8-character string
left-justified and padded with blanks.

ISHLPSV 6 Process Selection Vector.

Left-justified 6-character PSV name, padded with blanks,
defined for the remote LU.

218 TPF V4R1 ACF/SNA Data Communications Reference

PU 5 FID4 Considerations

NCP Support
In order to connect TPF to current level NCPs as a PU type 5, the TPF system
must connect as a data host using exchange identification format 2 (XID) and use
FID4 PIUs. In addition, the TPF system supports explicit route (ER) and virtual
route (VR) protocols when using FID4. The TPF system supports ER0, VR0, and
TP2 (transmission priority high) between TPF and a channel-attached SNI NCP.

Channel Contact
A channel contact procedure is implemented between TPF and channel-attached
NCPs in SNA 4.2; that is, an explicit PU type 5 to PU type 4 session separate and
distinct from the SSCP-PU.T4 session. This PU-PU session is analogous to the
PU-PU sessions exists that is supported between NCPs, and is established and
terminated using a formal channel protocol between the physical units. Such
establishment and dis-establishment of PU-PU sessions is always initiated by the
PU Type 5(TPF) at the direction of its SSCP (through CONTACT and DISCONTACT
requests). This new procedure occurs as an integral part of the activation of a
channel-attached NCP and is completely transparent to the network operator.

As part of the channel contact procedure, the 2 physical units exchange certain
information using the XID Format 2 architected for PU-PU contact procedures.
Among the information sent from TPF to the NCP is the channel transmission group
(which will always be 1) and other items concerning the environment in which the 2
PUs agree to operate. Such information is supplied at PU generation (NCP
generation for NCPs and when the resource definition is created for the TPF
system). As a result of this, using certain parameters of the NCP’s HOST macro
changes.

INBFRS, the number of buffers allocated by an NCP to receive data from a host,
and MAXBFRU, the number of buffers allocated by a host to receive data from an
NCP, is sent to the NCP in the XID Format 2. TPF obtains the MAXBFRU value
from the SNAKEY macro in CTK2.

The size of host buffers used to receive data from an NCP (formerly obtained by
the NCP from UNITSZ) is sent to the NCP in the XID. The number of pad
characters prefixing NCP transmissions to the host (formerly obtained by the NCP
from BFRPAD) is always sent to the NCP as zero in the XID. TPF obtains the
UNITSZ value from the SNAKEY macro value in CTK2.

For the case of a host subarea attempting channel contact for a subarea which the
NCP already has active on another channel, the NCP normally rejects the XID. The
host can prevent this rejection and force acceptance (with the consequent breaking
of contact on that other channel) by setting a bit in the XID Format 2. TPF does not
support a host backup over a different channel adapter. Since TPF is designed to
keep the network up and running, the backup host connects on the same channel
adapter with the same subarea and does not issue the channel contact to break the
connection. Whenever possible TPF continues from the point of failure. However,
when the failing host was not able to checkpoint the fact that the NCP had been in
contact, TPF issues a channel contact with the bit set in the XID to allow
acceptance of the channel contact.

© Copyright IBM Corp. 1994, 2002 219

XID Format 2 Sent by TPF
This section describes the format and contents of the XID format 2 command sent
by TPF. The values TPF uses are shown. Values reserved or not used are not
shown.
0 bits 0-3, Format of XID I-Field.

X’2’ Format 2 (For T5 to T4 Node exchanges),
bytes 0-41 are included.

bits 4-7, Type of the XID-Sending Node.
X’4’ Subarea node

1 Length, in binary, of variable-format XID I-field (bytes 0-41).

2-5 Node Identification
bits 0-11, BLOCK NUMBER: The IBM Product Number for TPF. TPF will

set block number to X’000’ to indicate a node
identification that is not unique.

bits 12-31, ID number: a binary value that, together with the block
X’0’ number, identifies a specific station uniquely within a

customer network installation. TPF does not support ID
number and will set this field to zero (0).

6-p Format 2 Continuation
6-7 Reserved

8 Characteristics of TPF node:
bit 0, TG Status:

0 TG inactive

bit 1, multiple-link TG support:
0 not supported

bits 2-3 segment assembly capability:
10 segments are assembled on a session basis.

bits 4-7 reserved

9 FID types supported
bit 0

0 FID 0 not supported

bit 1
0 FID 1 not supported

bits 2-3, Reserved

bit 4
1 FID 4 supported

bits 5-7, Reserved

10 Reserved

11-12 Length in binary of maximum PIU XID sender can receive
MAXBFRU*UNITSZ

13 Transmission Group Number (TGN)
1

14-17 Subarea address of XID sender

18

bit 0 Reserved

220 TPF V4R1 ACF/SNA Data Communications Reference

bits 1-4 error status

bits 5-7 Reserved

19 CONTACT or load status of XID sender

00 CONTACT has been received by an XID command sender
20-27 IPL Load module name

40....40 no information conveyed

28-29 Reserved

31 Number of buffers suggested by primary
00 No suggestion made.

32-33 Number of Read command (MAXBFRU)

34-35 Number of Bytes allocated per Read (UNITSZ)

36 Number of pad bytes
00 No pad

37
bit 0 Reserved for primary
bit 1 Reserved
bit 2 1, accept XID if TG in contacted state on another channel

38-39 Reserved for primary

40-41 Reserved for primary

NCP Considerations
NCP can operate with TPF as a PU 5 SSCP, where FID4 PIUs are used. The old
values for the MAXBFRU and UNITSZ parameters (13 and 106 respectively) can be
used in TPF for FID4 support. However, MAXBFRU and UNITSZ can be increased
to support larger message sizes in the network. The only necessary requirement is
to ensure the class of service (COS) table pointed to on the NETWORK macro for
the TPF network has entries for ISTVTCOS and the default entry that matches
TPF’s requirements.

The following items must be specified in an NCP gen to define a channel-attached
TPF system as a PU Type 5:

v The Auto Network Shutdown keyword should be coded as ANS=CONT on each
PU statement in order that a CMC failure will not affect LU sessions with TPF.

v On the LINE statement defining a channel-adapter, an Attention Timeout value
greater than the time necessary for TPF to detect and recover from an error
condition should be coded. Typically, this is 1 minute for a software-initiated IPL
of TPF.

v For NCP Version 5.3 or higher, on the LINE statement defining a channel
adapter, code the MONLINK parameter as ’MONLINK=NO’.

Sample Definition for an NCP Gen with TPF Channel-Attached as
a PU Type 5 Node
See Figure 88 on page 222 for a sample definition for an NCP gen with TPF
channel-attached as a PU Type 5 node.

PU 5 FID4 Considerations 221

Note: This sample definition only shows the specified keywords that are required to
define a PU Type 5 node. User-supplied keywords are not included here.

CTC Support
With CTC support, TPF connects to an MVS/VTAM, VM/VTAM, or another TPF
system. TPF appears to a remote host as a PU type 5 (T5) node using FID4 PIUs.
TPF and the remote system exchange identification (XID) and establish sessions
across a virtual route using the CTC connection.

Pre-Channel Contact/Priming
TPF supports a CTC “priming” procedure that allows links (across devices that
support the CTC architecture) to be activated without operator intervention. SNA
restart places each attached CTC device in extended mode and ready state; this

**
* BUILD MACRO FOR N30H521 * 00620003
*** 00630003
N30H521 BUILD MODEL=3745, *

SUBAREA=511, *
TYPGEN=NCP, *
BFRS=80, *
MAXSESS=1000, *
NEWNAME=N30H521, *
PUNAME=N30H521, *
NETID=VTAMNET, *
SALIMIT=1023, *
SLODOWN=12

** 01320003
* HOSTS MACRO * 01330003
** 01340003
TPFBH HOST INBFRS=4, TPF INPUT BUFFERS *

MAXBFRU=13, *
UNITSZ=106, TPF UNIT SIZE *
BFRPAD=0, TPF REQUIRES NO PAD *
NETID=TPFNET, *
SUBAREA=11

* 06280003
*** 21950003
* GROUP MACRO FOR CHANNEL ADAPTERS * 21960003
*** 21970003
GR30CA GROUP LNCTL=CA, *

CA=TYPE6, *
NCPCA=ACTIVE, *
NPACOLL=YES

* 23210003
*************************************** 23220003
* CHANNEL DEFINITION FOR VTAM PU5 * 23230003
*************************************** 23240003
L30CA3 LINE ADDRESS=(10), *

CASDL=0, *
TRANSFR=52, *
DELAY=0, *
INBFRS=6, *
ISTATUS=INACTIVE, *
TIMEOUT=120

* 23320003
P30CA3 PU PUTYPE=5
* 23690003

Figure 88. NCP Gen with TPF Channel-Attached as a PU Type 5 Node

222 TPF V4R1 ACF/SNA Data Communications Reference

generates an asynchronous interrupt to the other side of the CTC adapter. The
remote system initiates XID processing, if the link is pending active.

Channel Contact
A channel contact procedure is implemented between TPF and channel-attached T5
nodes. In other words, there exists an explicit PU Type 5-to-PU Type 5 session.
This PU-PU session is analogous to the PU-PU sessions supported between NCPs,
and it is established using a formal channel protocol between the physical units.

As part of the channel contact procedure, the 2 physical units exchange information
using the XID Format 2 architected for PU-PU contact procedures. Among the
information sent from TPF to the T5 is the transmission group number and
environmental characteristics under which the 2 nodes agree to operate. Such
information is supplied at network generation (VTAM generation and when the
resource definition is created for the TPF system).

The XID process for SNA CTC connection consists of the initiating host (X-side)
sending an XID0 (XID format 2 with byte 19 set to 0) to the receiving host (Y-side).
See “XID Format 2” on page 225 for detailed information about XID format 2. If the
other host is not able to connect at this time, the operation times out and the
initiating host will wait for the other host to activate the connection. XID0 is then
allowed 30 seconds to complete.

If the other host is able to connect, it receives an attention interrupt from the write
control (WCTL) CCW that began the initiating host’s (X-side) channel program. The
receiving host (Y-side) then issues its XID channel program, beginning with a sense
command byte (SCB) CCW. The Y-side channel program consists of a read CCW
for the X-side’s XID0 and a write CCW for the Y-side’s XID0.

TPF checks the XID returned by the remote node for any error status set (byte 18,
bits 1-4) and if the value is non-zero, TPF terminates the channel contact
procedure.

The side with the lower subarea will send XID7 (byte 19 set to 07) if it can accept
the CTC connection. When the other side sends its XID7, the CONTACT procedure
is complete and the explicit route operatives (ER.OPs) are exchanged. The CTC
connection is now available for sessions, subject to the virtual route availability.

The transmission group (TG) number that TPF passes in the XID0 data is TG=0
(TG=ANY). If the remote system is VTAM, the TG number is specified in VTAM’s
PU definition. TPF requires that the TG number specified be a value of 1 or 2. If the
remote system is TPF, then the system with the low subarea selects either TG=1 or
TG=2.

When XID processing has completed, a completion message is then sent to the
originating operator.

See Figure 89 on page 224, Figure 90 on page 224, and Figure 91 on page 225 for
illustrations of XID processing flows.

PU 5 FID4 Considerations 223

XID0 (SA=3, TG=0)

XID7 (SA=3, TG=1)

XID7 (SA=4, TG=1)

XID0 (SA=4, TG=1)

TPF (subarea = 3) VTAM (subarea=4)

SA = subarea
TG = transmission group

Figure 89. XID Processing Example 1. TPF is the low subarea.

XID0 (SA=3, TG=1)

XID7 (SA=3, TG=1)

XID7 (SA=4, TG=1)

XID0 (SA=4, TG=0)

VTAM (subarea = 3) TPF (subarea=4)

SA = subarea
TG = transmission group

Figure 90. XID Processing Example 2. TPF is the high subarea.

224 TPF V4R1 ACF/SNA Data Communications Reference

The following 2 parameters in the VTAM definition for the channel-attached major
nodes must be correctly specified in order to attach to TPF. These parameters are
sent to VTAM in the XID format 2.

v DELAY - The delay before a send I/O operation is initiated after a PIU of priority
0 or 1 is sent.

v MAXBFRU - The number of buffers allocated by a host to receive data.

Note: You should be aware of these parameters when specifying the value for the
VTAM DELAY operand.

The number of 4K read buffers used by TPF for a CTC connection is specified in
the CTCRBFR operand of the SNAKEY macro. The number of 4K write buffers in a
buffer pool is specified on the CTCWBFRS operand of the SNAKEY macro. The
buffer pool is used to allocate buffers for CTC write operations. TPF dynamically
allocates write buffers to match the VTAM MAXBFRU value discovered at XID time.

XID Format 2
This section describes the format and contents of the XID format 2 information sent
by TPF. The values used by TPF are shown in the following XID header data
example. Values reserved or not used are not shown.

The following is an example of the header that precedes XID format 2 for CTC
links.
Byte

0-1 Number of buffers transmitted
XL2’0001’ XID data occupies 1 4K buffer

2 Indicator byte
1....... XID transfer
.1...... Error Indicator
..000000 Reserved

3 CTC format indicator

XID0 (SA=4, TG=0)

XID7 (SA=3, TG=1)

XID7 (SA=4, TG=1)

XID0 (SA=3, TG=0)

TPF (subarea = 4) TPF (subarea=3)

SA = subarea
TG = transmission group

XID0 (SA=4, TG=0)

XID7 (SA=3, TG=2)

XID7 (SA=4, TG=2)

XID0 (SA=3, TG=0)

Figure 91. XID Processing Example 3. There are 2 links between TPF systems.

PU 5 FID4 Considerations 225

XL1’01’ New protocol used

4-5 Number of 4K pages in input buffer

6-7 Reserved

The following is an example of the XID format 2.
Byte

0 XID format and node type
0010.... Format 2
....0101 Type 5 node

1 Length, in binary, of variable-format XID I-field

2-5 Node identification and ID number
XL4’FFF00000’ Block number x’FFF0’ and ID number 0

6-7 Reserved

8 Characteristics of TPF node:
0....... TG status inactive
.0...... Multiple link transmission group (TG) not supported
..10.... Segments reassembled on session basis
....0000 Reserved

9 FID types supported
0....... FID 0 not supported
.0...... FID 1 not supported
..00.... Reserved
....1... FID 4 supported
.....000 Reserved

10 Reserved

11-12 Length in binary of maximum PIU XID sender can receive
X’0FF5’ 4086 byte PIU

13 TG number
X’00’ TG0 (TG=ANY)
X’01’ TG1
X’02’ TG2

14-17 Subarea address of XID sender

18 Error status
0....... Reserved
.1000... XID parameters are incompatible
.1001... Multi-link TG is incompatible
.1010... TG number not defined
.1100... Multi-link TG is not supported
.....000 Reserved

19 CONTACT or load status of XID sender
X’00’ CONTACT has been received by an XID sender
X’07’ XID response sender is already loaded

20-27 IPL load module name
XL8’ ’ No information conveyed

28-29 Reserved

30 DLC type
X’03’ System/370 to S370

31-36 Reserved

226 TPF V4R1 ACF/SNA Data Communications Reference

Loosely Coupled Considerations
When multiple TPF processors are coupled together to share a common database,
there are some important considerations to keep in mind: the IODEV addresses
defined in SIP include all the SDAs for processors in the complex; that is, 1 SDA
per TPF processor for each CTC connection to a VTAM or TPF host.

For SNA CTC connections between members of a loosely coupled complex, only
CDRM-CDRM session and TPF/APPC sessions are supported.

Session Initiation
Sessions can be established across a PU type 5 CTC connection using either a
CDRM-CDRM session or a session between a Control LU (CLU) and the VTAM
Logon Manager. When TPF connects to the subarea network, a CDRM-CDRM
session is established. Then, an optional CLU session may be established with the
Logon Manager. The CLU session is required if TPF/APPC sessions are to be
brought up. In any case, there is a CTC configuration restriction on sessions that
can be established: TPFs’ subarea routing is limited to a single hop . (A hop is a link
crossed on a path from 1 host or NCP subarea to another host or NCP subarea.)
Therefore, the session partner must be in a host adjacent to TPF.

VTAM Considerations
This section describes considerations for VTAM.

Class of Service, Virtual Routes, and Transmission Priority
The capability exists in an SNA 4.2 level network to have three transmission priority
levels (0, 1, and 2) and the traffic flowing in the network will be assigned 1 of the
levels. TPF only supports high priority (2) for sessions across an SNI NCP. For SNA
CTC, TPF only supports medium priority (1). This is because priority 2 traffic is not
queued by VTAM, but is sent immediately.

TPF does not provide a class of service (COS) table; however, for TPF/APPC
parallel sessions you can specify user-defined COS name with the PARACOS
parameter on the SNAKEY macro. (See the TPF ACF/SNA Network Generation for
more information on the SNAKEY macro.)

For communications with VTAM for a gateway NCP, it is recommended that a COS
table contain VR0, TP2 as the first virtual route in any COS entries used where
VTAM will be the primary side of a session with TPF (for example, CDRM).
Otherwise, when activating sessions, VTAM will needlessly attempt to activate
virtual routes that TPF will reject. TPF only supports 1 VR (VR0, TP2) and TPF has
to be the primary side of the virtual route.

For SNA CTC, the COS name specified by VTAM must contain the following routes:

v VR0, TP1

v VR1, TP1

When VTAM requests a session for which it is the primary side (for example,
ACTCDRM, CICS to SLU-P), VTAM chooses the VR. Because TPF only supports
these routes, it is recommended that the ISTVTCOS and default COS table entries
have the NCP or SNA CTC virtual routes as the first entry in the VR list.

On request for a session, TPF only selects the routes defined. Immediately after the
XID exchange, TPF attempts to activate ERs and VRs. TPF responds negatively to

PU 5 FID4 Considerations 227

any attempt by VTAM or another TPF to activate a VR that does not request VR0
on TG1 or VR1 on TG2 because other VRs are not defined to TPF.

TPF requires that the virtual route use pacing windows with equal minimum and
maximum values; there is no adaptive VR pacing. TPF enforces these restrictions
on path definition:

v ER/VR0 must use TG1.

v ER/VR1 must use TG2.

It is recommended that TPF be the primary side of the virtual route to set pacing
windows. If VTAM is allowed to be the primary side of the virtual route, the
VRPSW01 in the PATH statement for the TPF subarea must set the minimum and
maximum window size to be of equal values. This is because TPF does not support
adaptive VR pacing.

See VTAM Network Implementation Guide and NCP/SSP/EP Resource Definition
Reference for more information about transmission priorities and virtual routes.

Other VTAM Considerations
When TPF is PU type 5 node:

v TPF will no longer perform application authorization for SNA resources. The
VTAM session management exit must be used to ensure that the terminal is
permitted to LOGON to the TPF application.

v VTAM USS definition tables should be used to transform the TPF-oriented LOGI
requests to a VTAM equivalent (LOGON APPLID).

v TPF supports nondisruptive CDRM inactivation and reactivation. This support
permits LU-LU sessions that were established using a specified CDRM to remain
active and bound when the CDRM is deactivated through a nondisruptive
inactivation request.

For CTC, with the definition of MAXBFRU, TPF accepts a dynamic buffer size from
VTAM at XID time subject to available buffers from the pool. When coding the
DELAY operand on the VTAM side, you should be aware that the TPF value is
determined by the SNAPOLL parameter of the SNAKEY macro. This SNA polling
time interval can be from 10 milliseconds to 50 milliseconds.

VTAM Considerations for NCP 5.3
In the CDRM deck for TPF for NCP Version 5 Release 3 or higher, all GWPATH
statements should be coded with the ADJNETEL parameter omitted. This causes
VTAM to use the default value of 1 for the CDRM representing TPF. If any 37X5
with NCP 5.3 or higher is channel-attached to TPF, ADJNETEL=1 is required.

LU-LU Session VR Assignment for CTC
The SNA Communication Route Selection Exit, CSJV, selects a virtual route for an
LU-LU session during CDCINIT processing when the local LU is the PLU. For
additional information on this exit, see TPF System Installation Support Reference.

Virtual Route (VR) Activation
TPF attempts to activate VR0 to the destination subarea when the NCP is activated
after explicit route 0 has been reported operative and activated.

228 TPF V4R1 ACF/SNA Data Communications Reference

If the explicit route associated with the virtual route being activated is operational
and active, then an “activate virtual route” request (ACTVR) is sent from this
subarea to the other end of the virtual route. On receipt of a positive response, the
virtual route is marked active. It is now available for sessions to be assigned to it.

The virtual route deactivation (DACTVR) can only be requested by the primary
virtual route end. This is the end that initiated the activation. However, if the other
end denies the deactivation, then it becomes the primary.

To activate a selected virtual route, TPF first insures that the associated explicit
route is active as described above. Then, an ACTVR request, which includes the
maximum VR pacing window size, is sent to the physical unit at the other end of
the route. On receipt of a positive response to the ACTVR request, the virtual route
is “active,” but in a “hold” state as the network flow control mechanism has not yet
opened the route for traffic. The positive ACTVR response includes a “VR Pacing
Response” which drives the TPF flow control logic and causes the route to be
opened for traffic and so able to support a session. If the ACTVR response does
not include a “VR Pacing Response” then the VR remains in “Hold” state until an
isolated response arrives. Upon receiving the ACTVR response, TPF sends an
isolated VRPRS to open the route for traffic from the other side. The route remains
active unless TPF deactivates the virtual route, or the associated explicit route
becomes inoperative.

TPF checks pacing window sizes, enabling it to set the window sizes necessary for
TPF to connect to the network. Remember, TPF only supports ER0, VR0 to a
channel attached SNI NCP.

With SNA CTC, activation of the virtual route is slightly different. Here, TPF
supports VR0, VR1, and TP1 (transmission priority 1).

After the channel contact procedure is completed, but before sessions can be
established, the virtual route(s) must be activated. TPF initiates sending ER_OP
and ER_ACT immediately after channel contact. ACTVR is then sent after ER
activation. Next, TPF checks an incoming ACTVR to ensure that:

v The ACTVR is for a defined VR

v The VR is for a single hop

v The ACTVR specifies that the minimum and maximum window values are the
same (min=max).

This checking permits TPF-to-TPF CTC connections. TPF can now be the
secondary side of the VR and any ACTVR meeting the previously described checks
is accepted, if the VR is not already active.

Contention can occur if both sides send ACTVRs simultaneously. The contention
winner is the node with the higher subarea (SA) value.

Virtual Route Deactivation
TPF does not take down a virtual route when the session count becomes zero (as
VTAM does). Further, it responds negatively to any attempt to deactivate the virtual
route by an orderly DACTVR from NCP. Only the primary end of the virtual route
can deactivate the route. TPF ensures that it is the primary side of the virtual route
by denying any ACTVR request. However, in accordance with the architecture, TPF
does respond positively to a DACTVR forced, and cleans up any sessions
associated with the virtual route.

PU 5 FID4 Considerations 229

When the explicit route associated with a virtual route becomes inoperative, the
associated virtual route becomes inactive regardless of the number of sessions
assigned to it. Appropriate notification is given to the endpoints of sessions using
the virtual route.

When the operator requests deactivation of an NCP, after all the sessions through
the NCP have been brought down, a channel discontact is sent for the normal,
immediate and force options of ZNETW INACT. This causes the ER and VR to be
reset by NCP.

In SNA CTC, VTAM deactivates the VR when the session count reaches zero. TPF
denies the request with a sense indicating that a session is waiting to use the VR,
and thereby becomes the primary side of the virtual route.

Network Flow Control
The initial state of the virtual route once the ACTVR has been issued is “held
waiting for a virtual route pacing response.” On receipt of the positive response to
ACTVR then the virtual route is active and, if that positive response contains a VR
pacing response, is open as well (for example, not held).

Once the virtual route is open each PIU is transmitted as a singly segmented PIU.
TPF sets the pacing request bit on in the first PIU of the window and suspends
transmission on the virtual route if a pacing response is outstanding and the window
size has been exhausted. This should be an extremely rare case, as TPF sets the
minimum and maximum window size to a user-defined value. The recommended
value is 42 for NCPs, but the user can set them up to the maximum (255). The
tradeoff is NCP buffer utilization versus TPF performance. NCP allocates buffers
equal to 3 times the minimum value, so that a large value may cause buffer
depletion. TPF queues messages waiting on a blocked virtual route in main storage
until the VRPRS is received. A small value may cause extra delay in response time
and cause congestion in TPF due to the length of time TPF buffers are committed
to an entry.

Because TPF sets the minimum and maximum window size to the same value, TPF
requires that the adjacent NCP contain the SNA network Interconnect (SNI) function
and that all TPF traffic that is routed through intermediate nodes cross the gateway
in the adjacent NCP. TPF checks that any ER activated is limited to a hop count of
1 to ensure the SNI connection.

Virtual route pacing responses received by TPF open the VR. When a VR pacing
request is received, TPF must generate a VRPRS to the other end of the virtual
route.

After receiving a VR pacing request TPF returns an isolated VRPRS PIU on that
virtual route, including the transmission priority and virtual route number in the TH.
TPF does not set “congestion detected” indicators.

TPF explicitly withholds the VR pacing response, based upon the values you can
set in CTK2 for the different block types. The values indicate the percentage of
available blocks that are needed for a VR pacing response to be sent. VR pacing
responses can be withheld based upon 4K, 1055, 381, and ECB block types. A
value of 0 indicates that VR pacing should not be withheld based upon this block
type. (See TPF ACF/SNA Network Generation for additional details.)

230 TPF V4R1 ACF/SNA Data Communications Reference

For example, if there are 1000 4K blocks in the system and the SNAKEY parameter
ILWP4 is set to 35, there must be at least 350 4K blocks available for the system to
respond to the VR pacing request. When setting these values, the input list
shutdown values for the different block types should be the values you want to keep
from reaching. Using the previous example of ILWP4 set to 35, if the input list
shutdown value for 4K blocks is 200, the difference is 150 4K blocks. This should
be enough 4K blocks to handle the next window’s worth of PIUs. If the amount of
remaining 4K blocks is not correct, the specified value for ILWP4 should be
changed.

While a virtual route is “blocked” (waiting for a pacing response) the output
message data is held in storage buffers that were associated with the application
sending the message.

Software IPL Considerations
In consideration of the following facts:

1. PIUs with a VR sequence number higher than the next 1 expected are
discarded.

2. PIUs with a VR sequence number lower than the next 1 expected are discarded
until the expected 1 arrives.

3. No traffic will flow inbound to TPF when a VRPRQ is lost by TPF. (TPF owes a
VRPRS).

4. Messages sent by TPF outbound are either discarded or the route taken down if
TPF exceeds the window size (TPF owes a VRPRQ).

TPF must take steps to guard against these occurrences and recover from them
should the condition occur.

The VR sequence number problem is addressed by having TPF record 2 sets of
VR sequence numbers. 1 is the VR sequence numbers that are being assigned by
TPF outbound. The assigned sequence numbers are updated by the SNA output
routine after the message is taken off the VR queue and is ready for transmission.
The second is a recording of the VR sequence numbers at interrupt time (CE, DE)
that the NCP has actually received. Following a software IPL, TPF sends out
dummy messages that flow on the VR starting from the last 1 that we know NCP
has received up to the 1 that TPF last assigned. The number of these dummy
messages will be the largest number TPF can send in 1 I/O operation.

The problem of VR pacing is addressed by TPF setting VRPRS received during
processing of the read interrupt. TPF uses existing logic that parses the PIUs to
record the first 64 bytes in the in-core trace table to remember that a VRPRS was
received. This closes the window where TPF could lose track of whether a VRPRS
was received.

On output, TPF sets VRPRQ sent and resets the indicator in the write interrupt
routine that records VR sequence numbers sent. This indicator is checked following
a software IPL and if on, the window size is adjusted to indicate that a full window
remains and that a VRPRQ should be set on the first PIU of the window.

If a VRPRQ was received but a VRPRS not sent by TPF, it is handled in a similar
fashion and TPF sends out a VRPRS during restart. This is placed on the top of the
VR queue and sent out as soon as TPF resumes communication with the NCP.

PU 5 FID4 Considerations 231

Hardware IPL Considerations
If HARDREC=YES is coded in SNAKEY on restart, TPF attempts to resynchronize
the VR (virtual route) sequence number for each channel-attached NCP. This is due
to the VR sequence number not being keypointed before the hardware IPL. The
NCP must be version 4 release 2 or above to support VR resynchronization.

When VR resynchronization is in progress, TPF continues to receive inbound PIUs
and hold all outbound PIUs on VR0 in core blocks until VR Resync is completed.
Meanwhile, TPF sends a few SNA commands on VR1 in an attempt to recover the
next VR sequence number from the NCP. It is critical that the amount of inbound
traffic should be minimized, because TPF must queue all outbound PIUs on VR0 in
core blocks. The VR PIU Pool threshold in the gateway NCP is used to control the
network traffic between TPF and NCP.

To alleviate TPF resource problems, TPF performs VR resynchronization
serialization across all channel-attached NCPs. The SNAKEY parameter VRRTO is
used to specify the time-out value for VR resynchronization for each NCP. Upon
timeout, TPF either declares that VR resynchronization is complete for the NCP if
the response to DACTVR is outstanding, or TPF shuts down the NCP because of
VR resynchronization failure.

The VR PIU Pool threshold should be set properly to prevent the NCP from
depleting its buffer pool and to minimize TPF congestion from queuing core blocks.

The NCP generation parameter, VRPOOL, is the parameter for the VR PIU pool.
See NCP/SSP/EP Resource Definition Reference for more information about VR
PIU Pool:

Virtual route resynchronization does not address the problem of LU-LU session
synchronization following a soft or hard IPL. For NEF type terminals connecting
using NEF V2 or ALCI, no session resynchronization is necessary. This is because
NEF does not check session sequence numbers, nor does it use brackets or
change direction. For X.25 terminals, NPSI does not use brackets or change
direction, but it does check session sequence numbers. Session resynchronization
(CLEAR/SDT) is required to recover the NPSI LU_1 sessions. For SNA-type
terminals, because the session control block (RVT2) is not keypointed on a hard
IPL, the LU session may be hung; that is, TPF status does not agree with LU
status. TPF is aware that a session may exist. (LU control block, RVT1, is
keypointed on a time-initiated basis, and LU information is preserved.) However,
TPF is not aware of the status of the session; that is, in brackets, response
pending, or next expected sequence number.

TPF does provide time-out utilities to detect hung sessions and attempt
resynchronization based on LU type (CLEAR/SDT or CLEAR/STSN/SDT) which
should recover most, though not all sessions; for example, LU6.2 sessions receiving
unexpected sequence numbers are terminated.

If HARDREC=NO is coded in SNAKEY on restart, TPF issues a DISCONTACT
request for each NCP using FID4, if the NCP shows active in the RVT entry. As a
result of DISCONTACT, automatic network shutdown (ANS) takes place. The
network has to be restarted. The DISCONTACT is issued because TPF cannot
determine the correct VR sequence numbers, as the control block containing the
sequence numbers (in the subarea address table) was not keypointed prior to the
soft or hard IPL.

232 TPF V4R1 ACF/SNA Data Communications Reference

Extended Network Addressing
TPF requires the extended network addressing feature available in NCP. This
means that the network address contained in a FID4 header is a 1 byte subarea
number and 2 byte element address.

As a result, the TPF network address table (NAT) has been expanded to allow for 3
byte network addresses. The Resource Vector Table now treats the RV1NASA field
as the subarea and the RV1NA field (which used to be the 2 byte network address)
as the element address.

In addition, TPF builds and accepts CDINIT format 3 requests with control vector
X'1A', which contains the larger network addresses. TPF indicates this support on
the ACTCDRM response to VTAM (bits 9, 12, 13, 16 and 18 of the CDRM usage
field in control vector 6 must be set on). CDCINIT format 1 uses session key 15
(network qualified address pair). Session key 15 contains the 6 byte network
addresses with the length field set to 12 to indicate no network identifiers.

Network Definition
For SNA CTC, the IODEV macro is used in the System Initialization Process to
define the addresses of the CTC connections. In SNAKEY, this IODEV macro
produces the symbolic device address table (SDAT), which defines the size of the
physical network, including the number of CTC connections. After you define the
addresses of the CTC connections using the IODEV macro, define the NCP and
CTC links to the TPF system using the OSTG program or the ZNDYN command.
See “Defining SNA Resources to the TPF System” on page 193 for more
information about defining these resources to the TPF system.

When you create a network definition for NCP or CTC resources, you must define
the VR window size for VR pacing using the WINSIZE parameter. This number is
saved in the MAXDT field in the RRT/RVT and passed to the adjacent node on the
ACTVR. The recommended value is 100 to minimize the overhead of pacing but
can be specified as high as 255. You are expected to tune this parameter to suit his
network. Be aware that picking too high a number will impact NCP performance as
NCP allocates 3 times this number of buffers for the virtual route.

The Subarea Address Table includes the ER and VR information.

TPF shares 1 network address for the SSCP and the CDRM (element address 0).
With FID4 support (TPF as a data host), the SSCP is replaced by the PU Manager.
TPF uses the same RVT entry for both the PU Manager and the CDRM, since no
information on the PU5-PU4 session is kept in the RVT. ER and VR control
information is kept in the Subarea Address Table.

SNA Network Interconnection (SNI) Considerations
When operating as a PU 5 type node (SSCP), with TPF’s support of the SNA
network interconnection (SNI) facility of NCP and VTAM, there are some special
considerations relative to network definition. A VTAM CMC must own all resources
attached to a gateway (SNI) NCP. For more information on PU 5 nodes, see
“Cross-Domain Resource Manager (CDRM)” on page 14.

A gateway NCP is defined from the viewpoint of the gateway SSCP that owns it.
Therefore, to represent the TPF view of the network from within TPFs’ own network,
you must specify a subarea for the CDRM when the CDRM is defined to the TPF

PU 5 FID4 Considerations 233

system. See “Defining SNA Resources to the TPF System” on page 193 for more
information about defining CDRM resources to the TPF system.

The name of the TPF systems’ network ID stored in the TPF systems’ SNA keypoint
(CTK2) is the name as it is known by the owning VTAM system.

Because the design of SNI requires the VTAM CDRM that owns the gateway
resources to appear in the subarea of the gateway NCP as an element in the NCPs
subarea, some restrictions exist regarding TPF’s attachment to an SNI network.
TPF’s table structure assumes that NCPs and VTAM hosts are each a unique
subarea. Therefore, the subarea address table (SAT) has 1 entry for each subarea
node. The VTAM SSCP and its associated CDRM are assumed to reside in the
same subarea. With SNI, this is not true. To circumvent this problem, define a
virtual or pseudo-subarea for the VTAM CDRM. The TPF system will create an SAT
entry for this subarea and point it to the resource vector table entry for the VTAM
CDRM. The RVT will contain the real network address for the CDRM. The actual
network address of the VTAM CDRM is discovered dynamically when the
CDRM-CDRM session is established. This virtual subarea will be used by TPF
internally as the owning subarea for all resources that request sessions with TPF
through this CDRM.

SNI and CTC Considerations
A CTC connection to VTAM requires TPF to appear as a node in the VTAM network
and use a CDRM-CDRM session or Control LU (CLU) - Logon Manager session to
establish LU-LU sessions between the VTAM and TPF hosts.

SNA CTC support requires the channel-attached major node to reside in the same
network (for example, VTAMNET) as VTAM. Because the TPF system must be
connected to the NCP network through SNI, the TPF CDRM resides in a different
network (for example, TPFNET). In order to establish a session across CTC, TPF
must appear to VTAM as a CDRM in the VTAM network so an additional TPF
CDRM must be defined. See the TPF ACF/SNA Network Generation for examples
of SNA CTC configurations.

Therefore, if both a CTC connection and an SNI connection exist, VTAM must have
4 separate definitions for the TPF CDRM:

v 1 definition for the SNI connection

v 1 definition for the CTC connection

v 2 VTAM CDRM definitions for TPF.

SNI and APPN Considerations
When the TPF system is connected to a VTAM system using both PU 5 NCP links
across SNI and APPN links, an alias name for the CDRM to the VTAM system must
be defined to the TPF system. In this environment, the VTAM system is defined as
an interchange node, allowing it to act as a PU 5 node and an APPN network node.
VTAM requires that its SSCP name and CP name must be identical. The problem is
that this name cannot be defined to the TPF system as both a CDRM and a CP.
The CP must be defined to the TPF system using its real name and the CDRM
must be defined using an alias name.

As an example, the SSCP and CP name for a VTAM system is VTM2. The alias
name for the CDRM will be VTM2CDRM. The subarea of the VTAM system across
the SNI boundary is 5. The following are the OSTG definitions needed to define this
CP and CDRM:

VTM2 RSC LUTYPE=REMCP
VTM2CDRM CDRM SUBAREA=5,ELEMENT=1,REALNAME=VTM2

234 TPF V4R1 ACF/SNA Data Communications Reference

In the previous example, the real name of the VTAM system, VTM2, is defined to
the TPF system as a remote APPN control point using the OSTG RSC statement.
You can also use dynamic LU support to define VTM2 to the TPF system.

You must define the alias name, VTM2CDRM, to the TPF system as a CDRM using
the OSTG CDRM statement. The REALNAME parameter on the CDRM statement
must be the real name of the VTAM system. To display or deactivate the CDRM
from the TPF operator console, you must use the alias name.

See “Defining SNA Resources to the TPF System” on page 193 for more
information about defining SNA resources to the TPF system.

PU 5 FID4 Considerations 235

236 TPF V4R1 ACF/SNA Data Communications Reference

PU 2.1 Considerations

See “Low-Entry Networking (PUT 2.1) Environment” on page 15 and IBM Systems
Network Architecture Advanced Peer-to-Peer Networking Architecture Reference for
additional information about PU 2.1.

General Information
In a PU 2.1 network, the TPF system can be a LEN node or an APPN node. The
TPF system can be channel-attached to devices like 37x5 NCP, 3174 APPN
controller, RISC System/6000 system, and other PU 2.1 nodes.

The following information provides general information about the TPF system in a
PU 2.1 environment. It also provides more specific information based on the TPF
node type (LEN or APPN) and which PU 2.1 devices are connected to the TPF
system.

Session Control
The considerations for sessions in a PU 2.1 environment are as follows:

v The LENNETID parameter in the SNAKEY macro is used as the network
identifier when the TPF system is connected to the network as a PU 2.1 node.

v An LU-LU session is associated with a session identifier (SID). The SID is
assigned by the node sending the BIND command and is used to route session
traffic between the two LUs. The SID provides the same function as a network
address pair in a subarea network, but is dynamically assigned and reused when
the session ends.

v A TPF PU 2.1 LU does not have a local address known to VTAM or NCP and,
consequently, local addresses are not carried in the Transmission Header (TH).
Local addresses have been replaced with a session identifier (SID) assigned
when the Bind requesting the LU-LU session is sent. All PIUs that flow between
a TPF PU 2.1 and NCP use the session identifier to identify the LU-LU session.

v Each session is uniquely identified by a Procedure Correlation Identifier (PCID).
The PCID is assigned at session activation, by the node sending the BIND, and
identifies the session for its duration. The PCID provides a common identifier that
can be used by the operator, of any node, to display or request information about
a particular LU-LU session.

v The PCID is the only unique identifier for a PU 2.1 LU-LU session throughout the
entire network. PU 5 LU-LU sessions are uniquely identified by the network
address pair of the two LUs. If the route for a PU 2.1 LU-LU session traverses
multiple hops, the SID cannot be used to identify the session throughout the
network because the SID value is unique only between two adjacent nodes.

v LU names, as carried in the BIND, are optionally prefixed with the network
identification (NETID) and called network qualified names (NQNs). Qualifying an
LU name with its NETID guarantees the name is unique across networks and
allows cross-network communication without the need to use aliases.

v An adaptive pacing technique has been designed which allows greater flexibility
and prevents deadlock. The use of this technique replaces current window sizes
and prevents the possibility of deadlock for LU-LU sessions.

Session Identifiers
The routing of message traffic between the TPF system, as a PU 2.1 node, and
NCP (or other channel-attached PU 2.1 device) is based on session identifiers

© Copyright IBM Corp. 1994, 2002 237

(SIDs), as contrasted with network addresses used for subarea routing when TPF is
a PU 5 node. The SID uniquely identifies a session between a TPF LU and another
LU and is associated with a link. A SID is a 17 bit number with the following
structure:

v 1 bit for an origin destination assignment indicator (ODAI). The ODAI specifies
which node, TPF or NCP, assigned the SID.

v 16 bits for an index, where the lowest index is X'0101' and X'FEFF' the highest;
for a total of 65,022 indexes.

Which node, TPF or NCP, assigned the SID is denoted by the ODAI. TPF always
assigns an ODAI value of zero (0), and the NCP assigns an ODAI value of one (1).
How a node, TPF or NCP, sets the ODAI value is determined at XID. That is, the
primary side of the link uses the ODAI value zero (0), and the secondary side uses
one (1). Since TPF is considered the primary side of the channel, it always uses
zero (0) as its ODAI value.

SIDs are assigned by the BIND sender from a pool of available numbers.
Assignment starts from the lowest numbers available number (X'0101') and
proceeds to the higher numbers. When a session ends, its SID is available for
re-assignment. This procedure ensures that the address space is not fragmented
and limits the main storage the TPF system needs to correlate SIDs to session
control blocks (RVTs or SCBs).

Extended BIND
The SNA architecture requires that a TPF system as a PU 2.1 node supports
extended BINDs, which implies support of the following:

v Negotiable and non-negotiable BINDs

v Control vectors in the BIND

v Adaptive session level pacing

v Network qualified LU names (NQNs).

A negotiable BIND allows the PLU, SLU, and NCP boundary function (BF) to
negotiate the BIND parameters to be used for the session. The SLU and its
boundary function can change the BIND parameters it disagrees with. The changed
parameters are then reviewed by the PLU. If the PLU agrees, then normal data
traffic can begin. If the PLU disagrees, it must UNBIND the session.

For certain LU-LU session types, the TPF system uses negotiable BINDs to allow
the NCP BF and VTAM to negotiate the maximum request unit (MAXRU) sizes and
pacing values for the session. If a BIND receiver changes any of the BIND
parameters whose negotiated value is unacceptable to the PLU, the session is
unbound.

The TPF system supports negotiable and nonnegotiable BINDs that contain the
following control vectors:

v PCID–The PCID uniquely identifies a session. It contains the following:

– Network identifier (NETID) of the control point (CP)

– CP name of the node that initiated the session

– 8-byte number to make the PCID unique among all sessions started by the
given CP.

The inclusion of NETID and CP name in a PCID eliminates the current gateway
problem of requiring an alias PCID each time a session crosses a network

238 TPF V4R1 ACF/SNA Data Communications Reference

boundary. The fully qualified PCID, therefore, uniquely identifies an LU-LU
session regardless of the number of networks it passes through. The PCID is
primarily intended for use by network management applications as a means to
collect and report on specific LU-LU sessions.

v Mode name–The mode name used for a session defines properties of the
connection, such as virtual route number and priority.

v Class of service / transmission priority field (COS/TPF)–The COS/TPF
specifies the transmission priority through the network of data traffic flowing on
the session. This value should not be confused with virtual route priority, which is
the transmission priority through the subarea network.

v Route selection–The route selection defines the route a session uses through
the network.

The TPF system will always send an extended BIND for an LU-LU session over a
PU 2.1 link. The BIND response received by the TPF system may or may not be
extended.

SNA Restart and ALS Discovery
During SNA restart, the TPF system verifies that ALS connections that were active
at the time of the IPL are still active. In addition, the TPF system discovers new
ALS connections that have become active and automatically creates new resource
definitions for these ALS connections, if necessary.

The restart portion consists of identifying ALS connections that were active when
TPF went down, and verifying their status by issuing a non-activation XID.

The discovery portion is identifying all ALSs that have become active since the TPF
system went down. This function is only for ALSs (and PU 5 CTC links); PU 5
NCPs become active via the ZNETW activate command.

An overview of the SNA restart logic for ALSs is as follows:

1. Scan the RVT entries to find ALS connections that were active before the IPL.
For each active ALS found, issue a non-activation XID and rebuild the session
index table (SIT) entry for that ALS.

2. Scan the symbolic device address table (SDAT) in keypoint 2 (CTK2) to find
SDAs that are not currently assigned to active ALS connections. For each such
SDA found, issue a pre-negotiation XID to check if the ALS is ready to become
active. (This is known as self discovery of an ALS.)

Before issuing the pre-negotiation XID, a sense is issued to determine if the
SDA is connected to a PU 5 NCP. If it is, a pre-negotiation XID is not issued
because this is not a PU 2.1 device.

When an XID is sent by the TPF system, the information provided must include the
fully qualified control point (CP) name of the TPF system. The network identifier
portion of the fully qualified CP name is the value of the LENNETID parameter on
the SNAKEY macro in keypoint 2 (CTK2). The name portion of the fully qualified CP
name is the name of the application that was defined to the TPF system as the
local CP. This is done by coding ASNA=LOCP on the MSGRTA statement that
defines the application to the TPF system during the SIP process.

Because an ALS becomes active dynamically, there is no way of knowing which
ALS links will be active when the TPF system comes up; therefore, it is not possible
to allocate SNA CCW areas at OSTG time. Instead, the TPF system allocates a
CCW area as follows:

PU 2.1 Considerations 239

v When the ZNETW activate command is issued for a PU 5 NCP.

v When an ALS becomes active during SNA restart or an attention interrupt is
received from an ALS to initiate the link activation process.

37x5 Considerations
Define the ALS name of the 37x5 channel adapter to the TPF system. The name of
the ALS resource in the TPF resource definition must be identical to the name on
the PU statement in the NCP generation deck.

See “Defining SNA Resources to the TPF System” on page 193 for more
information about defining ALS resources to the TPF system.

The following items must be specified in an NCP gen to define a channel-attached
TPF system as a PU 2.1 node:

v The Auto Network Shutdown keyword should be coded as ANS=CONT on each
PU statement in order that a CMC failure will not affect LU sessions with TPF.

v On the LINE statement defining a channel-adapter, an Attention Timeout value
greater than the time necessary for TPF to detect and recover from an error
condition should be coded. Typically, this is one minute for a software-initiated
IPL of TPF.

v For NCP Version 5.3 or higher, on the LINE statement defining a channel
adapter, the MONLINK parameter, should either be omitted or should be coded
as ’MONLINK=CONTINUOUS’. If it is omitted, then the default value of
’CONTINUOUS’ is assumed for the channel adapter.

v The NCP gen must be modified to start sessions with AX.25 LUs using NCP
Version 5.3 or higher. The AX.25 LU definition generated by the NCP/EP
Definition Facility (NDF) for the NPSI virtual circuit must have VPACING set to
zero.

v When defining the independent LU for a TPF application, ensure that the logon
mode (DLOGMODE) contains the same pacing value defined for other network
LUs that log on to the TPF application. If the pacing value of the independent LU
for the TPF application is less than the pacing value of the other LUs in the
network, an error occurs during session startup; a sense 08210006 is received in
response to the bind.

Note: This error occurs only for LU-LU sessions that use non-negotiable BINDs.

v A remote PS/2 can send a BIND request if it is defined as a PU T2.1 node with
an independent LU. Specify XID=YES in the PU statement of the NCP
generation to make the PS/2 a PU T2.1 node, and specify LOCADDR=0 in the
LU statement to make it an independent LU.

Note: When the TPF SLU resources are defined to VTAM, VTAM will direct all
sessions for those resources through that NCP. Dynamic Reconfiguration
allows the user to move TPF SLU resources to another NCP channel
attached to TPF.

37x5 and APPN Considerations
You must define the control point (CP) name of the VTAM system that owns the
37x5 to the TPF system. If you have backup VTAM systems capable of owning the
37x5, define to the TPF system the CP names of these VTAM systems using the
LUTYPE=REMCP option in the OSTG RSC statement or using dynamic LU
support. The CP name in the TPF resource definition must be identical to the value
of the SSCPNAME start option in the VTAM system.

240 TPF V4R1 ACF/SNA Data Communications Reference

See TPF ACF/SNA Network Generation for more information about the OSTG RSC
statement. See “Using Dynamic LU Support to Define SNA Resources” on page 199
for more information about dynamic LU support.

When the TPF system is operating in APPN mode, you do not need to predefine
TPF resources (LUs) to the NCP or to VTAM. Instead, the TPF system registers its
resources with the APPN network when you bring up the network.

37x5 and LEN Considerations
When the TPF system is operating in LEN mode, all TPF SLU resources (TPF SLU
threads, FMMR, and CLU resources) must be defined in the NCP generation deck
of the channel-attached NCP. The NCP generation deck is used by VTAM to define
TPF SLU resources. For an example of the definitions of SLU resources, see
Figure 92 on page 242.

When the TPF system is operating in LEN mode, you must define all TPF PLU
resources (TPF PLU applications) in the NCP generation deck of the
channel-attached NCP. These names must have a 1-character CPU ID suffix of the
TPF host with which the names are associated and the 2-byte hexadecimal number
(X'00'–X'FF') associated with this ALS. This number must match the ALSQN
parameter on the ALS macro in OSTG because of the VTAM restriction that all PLU
names must be defined before they can issue a BIND request. VTAM does not
support dynamic discovery of independent PLUs. The reason for the suffixing is that
there is no multiple peripheral node support in VTAM or NCP; to make the PLU
name unique per host per ALS, the 4-character PLU name must have a suffix.
Figure 92 on page 242 contains sample alias names for PLU resources. Resource
GMT1B30 is an example of how TPF application GMT1 is defined with suffix B30,
where B is the CPUID and 30 is the ALSQN.

Sample NCP Definitions with TPF Connected as a LEN Node
See Figure 92 on page 242 for a sample definition of an NCP generation deck with
the TPF system channel-attached as a PU type 2.1 LEN node.

Note: This sample definition shows only the specified keywords that are required to
define a PU type 2.1 LEN node. User-supplied keywords are not included.

PU 2.1 Considerations 241

**
* BUILD MACRO FOR N30H521 *

N30H521 BUILD MODEL=3745, *

SUBAREA=511, *
TYPGEN=NCP, *
BFRS=80, *
MAXSESS=1000, *
NEWNAME=N30H521, *
PUNAME=N30H521, *
NETID=VTAMNET, *
SALIMIT=1023, *
SLODOWN=12

*
**
* LINE FOR REMOTE PS/2 FOR LU6.2 *
**
*
L3027S LINE ADDRESS=27, *

CLOCKNG=EXT, *
SPEED=9600, *
DUPLEX=FULL, *
ISTATUS=INACTIVE, *
SSCPFM=USSSCS, *
MODETAB=LU62MOD1, *
DLOGMOD=TPFLU62

*
SERVICE ORDER=(P3027A)

P3027A PU ADDR=C1, *
PUTYPE=2, *
ANS=STOP, *
MAXDATA=265, *
MAXOUT=7, *
PASSLIM=8, *
PACING=7, *
XID=YES, *
RETRIES=(,1,4)

*
T3027A01 LU LOCADDR=0,ISTATUS=ACTIVE,RESSCB=10
*

* CHANNEL DEFINITION FOR TPF PROCESSOR B PU2.1 *

L30CA4B LINE ADDRESS=(11), *

CASDL=420, *
TRANSFR=52, *
DELAY=0, *
INBFRS=4, *
ISTATUS=INACTIVE, *
TIMEOUT=120

*
P30CA4B PU PUTYPE=2, *

ANS=CONT
*
CLUBB004 LU LOCADDR=0,RESSCB=1,ISTATUS=ACTIVE
GMT1B30 LU LOCADDR=0,RESSCB=100,ISTATUS=ACTIVE,DLOGMOD=TPF3270
NEFBB30 LU LOCADDR=0,RESSCB=100,ISTATUS=ACTIVE
ZZZZB004 LU LOCADDR=0,RESSCB=1,ISTATUS=ACTIVE
ZZZZB006 LU LOCADDR=0,RESSCB=1,ISTATUS=ACTIVE
PPPPB001 LU LOCADDR=0,RESSCB=1,ISTATUS=ACTIVE, *

MODETAB=LU62MOD1,DLOGMOD=TPFLU62
PPPPB002 LU LOCADDR=0,RESSCB=1,ISTATUS=ACTIVE, *

MODETAB=LU62MOD1,DLOGMOD=TPFLU62
*

Figure 92. NCP Gen with TPF Channel-Attached as a PU Type 2.1 LEN Node

242 TPF V4R1 ACF/SNA Data Communications Reference

VTAM and Logon Manager Considerations
The VTAM logon manager application is used when the TPF system is operating in
LEN mode. When you migrate the TPF system to APPN mode, the VTAM logon
manager application is no longer used; therefore, if the TPF system is operating in
APPN mode, the following information does not apply.

v When TPF is a PU type 2.1 LEN node:

– TPF will no longer perform application authorization for SNA resources. The
VTAM session management exit must be used to ensure the terminal is
permitted to LOGON to the TPF application.

– VTAM USS definition tables should be used to transform the TPF-oriented
LOGI requests to a VTAM equivalent (LOGON APPLID).

– All TPF applications LUs (4-character name) must be defined to VTAM as
APPLs in a VTAM application deck. These definitions are required by the
Logon Manager.

– TPF applications should be predefined to Logon Manager, if possible;
however, Logon Manager does have the ability to dynamically discover
application names. For a description and examples of how resources are
defined to Logon Manager, see the VTAM Network Implementation Guide.

v When TPF is a PU 5 node across a CTC connection:

– Use the VTAM Logon Manager for initiating sessions between VTAM host
applications or VTAM local terminals and TPF applications. This allows for
load balancing across multiple CTC connections.

– Define to VTAM the TPF applications to be accessed across CTC connections
using the Logon Manager. Specify these applications as APPLs using the
4-character generic name. The alias names (the application names suffixed by
the TPF CPU ID and CTC qualifier number) must be defined to VTAM as
CDRSCs associated with the TPF CTC CDRM in the VTAM network.

– In most cases, predefine to the Logon Manager the TPF applications to be
accessed across CTC connections. See the VTAM Network Implementation
Guide for specific details of when this is required. When predefinition is not
required, the Logon Manager does have the ability to dynamically discover the
TPF application names.

v When TPF is a PU 5 node attached to a gateway NCP and also a PU 2.1 node
or PU 5 node across a CTC connection:

– The terminal operator attached to a gateway NCP will attempt to logon to a
TPF application. In this case, the use of interpret tables and aliasing
eliminates the problem of duplicate names. Users on an NCP subarea
connection can LOGON RES0 and have that translated by VTAM to LOGON
RES1, which is a TPF PLU defined to VTAM as belonging to the TPF CDRM.
Through the use of gateway aliasing, the name RES1 can be translated back
to RES0 and the owning SSCP (TPFx) determined. The CDINIT would be
sent on the CDRM-CDRM session between VTAM and TPFx.

Users on a PU 2.1 or PU 5 CTC connection can LOGON RES0 and have
RES0 as an application controlled by the Logon Manager. The Logon
Manager then forwards the SESINIT to the TPF CLU on behalf of the SLU for
the TPF PLU RES0. TPF suffixes the PLU name in the BIND to make it
unique within the network.

PU 2.1 Considerations 243

Non-37x5 Considerations
The TPF system connects to PU 2.1 devices other than 37x5 devices. Some of
these devices, like a 3174 APPN controller or RISC System/6000 system, do not
provide their ALS name in the XID during link activation. The TPF system creates
an ALS name using the following format:

TPFxnnnn

Where:

x is the 1-character CPU ID of the TPF processor.

nnnn
is the 4-character SDA number of the ALS channel adapter.

You must define the ALS names to the TPF system using the TPFxnnnn format
described previously. See “Defining SNA Resources to the TPF System” on
page 193 for more information about defining ALS resources to the TPF system.

If a new symbolic device address (SDA) is required for a non-37x5 PU 2.1 device,
you must add an IODEV macro with the parameter DVTYP=37x5 to the SIP deck.
See the TPF System Generation for more information about the IODEV macro.

A VTAM system is not required for non-37x5 PU 2.1 devices that are
channel-attached to the TPF system; however, consider a VTAM system for network
management purposes.

Non-37x5 and APPN Considerations
You must define the control point (CP) name of the channel-attached PU 2.1 node
to the TPF system using the LUTYPE=REMCP option in the OSTG RSC statement
or using dynamic LU support.

See TPF ACF/SNA Network Generation for more information about the OSTG RSC
statement. See “Using Dynamic LU Support to Define SNA Resources” on page 199
for more information about dynamic LU support.

A VTAM system or other APPN network node that is a dependent LU server is
required if there are dependent LUs attached to the non-37x5 device, and this
device is only a dependent LU requester (not a server).

Non-37x5 and LEN Considerations
When the TPF system is connected to non-37x5 devices as a LEN node, only LU
6.2 sessions are supported and these sessions must be started by the remote LU,
not by the TPF system. The remote LU 6.2 devices must, therefore, be independent
LUs.

3174 Considerations
v The TPF system supports as many as 255 LU 6.2 sessions per controller and all

sessions are started by PS/2 workstations, or other intelligent workstations, on
the token ring that is managed by the 3174 controller.

v The network identifier defined in the 3174 APPN configuration must match the
LENNETID parameter in the SNAKEY macro.

244 TPF V4R1 ACF/SNA Data Communications Reference

v It is recommended that you use the wildcard option in the 3174 APPN
configuration so that BIND requests are sent to the TPF system when the 3174
does not know the target resource.

v Define the mode names used for LU 6.2 sessions in the 3174 APPN
configuration.

v Define the link in the 3174 APPN configuration as supporting both PU 2.0 and
PU 2.1 traffic.

v For 3174 connections, SIDs X'0101' to X'01FF' are reserved by the 3174. To
compensate for this, you must add an additional 255 SIDs when specifying the
MAXSID parameter on the SNAKEY macro. See TPF ACF/SNA Network
Generation for more information about the SNAKEY macro and MAXSID
parameter.

PU 2.1 Considerations 245

246 TPF V4R1 ACF/SNA Data Communications Reference

SNA Message Protocol

Messages transmitted between TPF and a logical unit must adhere to SNA
message protocol. In an SNA environment, messages are prefixed with a
request-response header (RH). Within this header is a field that indicates to the
receiver of the message the type of response the sender requires. SNA defines
three response types:

Definite response:
Directs the receiver to respond without regard to the nature of the
response. A response, either positive or negative, must be returned.
A positive response is referred to as a +RSP. A negative response
is referred to as a —RSP.

Exception response:
Directs the receiver to respond only if the request is unacceptable
as received or cannot be processed. Only a negative response is
returned.

No response: Indicates to the receiver that no response is to be returned.

Response Protocol
The response for logical units sending messages to TPF depends upon the LU
device type. Input messages received from logical units attached to 3601, 3602,
3274 or 3276 cluster controllers must request exception response (-RSP, that is,
negative response only). Otherwise, the data returned in response to a properly
sent request serves as request confirmation. Messages received in error from LUs
attached to 3274 or 3276 controllers result in TPF sending a Clear/Start Data Traffic
(SDT) SNA command sequence. TPF also informs the operator that an error has
occurred.

Input messages received from logical units attached to a 3271 control unit request
“no response.” When an error is detected, TPF discards the input message and
sends a CLEAR command. The terminal operator must press the RESET key,
which is located on the keyboard, and reenter the message.

Recoverable and Non-Recoverable Messages
Recoverable input messages may be defined as saved messages. The sender of a
message saves the message until a response is received. This practice enables the
sender to retransmit the message should a malfunction occur. Non-recoverable
messages are not saved; a malfunction results in the loss of the message.

TPF requests definite response when it sends a message defined as recoverable;
“exception response” when it sends a message defined as non-recoverable. TPF
saves recoverable messages until a positive response is received.

Single-Segment Messages
Single-segment messages are messages that take only one I/O transmission.
TPF-initiated single-segment messages are sent to all logical unit types except for:
1) messages sent to 3270 SDLC terminals attached to a 3271 control unit, and 2)
batch logical units. In the following single-segment illustration, arrows indicate the
direction of data transmission.

© Copyright IBM Corp. 1994, 2002 247

LU TPF

Input ------ 1 ------>

<------- 1 ------ (Recoverable reply)
Response

----+RSP(1)---->

Input
------- 2 ------>
<------ 2 ------ (Non-Recoverable Reply)
(-RSP or none)

Chained and Segmented Messages
Chained messages are messages connected via forward and/or backward pointers.
Functional associations may or may not exist between chained messages. For
example, output messages to the same device are often chained together pending
delivery. Here, the only association is the device to which the messages are sent.
Most often, however, chaining is used to mean segmenting. A segmented message
is one that exceeds the buffer-size limitation of a particular link. Thus, the message
is broken into segments. Segments may be viewed as chained messages that have
a functional association. Each chained message is identified with either a
first-in-chain, middle-in-chain, or last-in-chain indicator. TPF assembles a chained
and/or segmented message before presenting it to an application. The example
below illustrates a segmented (chained) message transmission:

LU TPF Comments

Input Message

Segment 1 ----------> First-in-chain

Segment 2 ----------> Middle-in-chain

Segment 3 ----------> Last-in-chain

<---------- Reply

TPF output messages are:

v Chained when the message is larger than the buffer of the receiving logical unit

v Sent in segments of 337 characters or less for LUs attached to 3271 control units

An SNA technique called “session pacing” controls the flow of messages throughout
a network by limiting the introduction of new traffic to the rate at which it can be
accepted. TPF supports both adaptive pacing and non-adaptive (fixed) pacing.
Pacing window size is passed to TPF by VTAM in CDCINIT and SESINIT. TPF
performs adaptive pacing on all PU 2.1 sessions and fixed pacing on all PU 5
sessions. AX.25/NEF sessions, however, are not paced.

TPF sends a number of message segments and waits for a pacing response from
the NCP. The pacing response from the NCP resets the window size which allows
TPF to send more segments. TPF responds to NCP’s pacing requests by sending
out pacing responses. These pacing responses allow the NCP to send TPF more
segments.
LU TPF

<------------- Segment 1

248 TPF V4R1 ACF/SNA Data Communications Reference

<------------- Segment 2 (Request pacing response)

Cluster controller
pacing response

------------->

<------------- Segment 3 (Last-in-chain)

LU sends
response

----+RSP----->

In this example, the output message is recoverable. Thus, a definite response
(+RSP) is requested for the last segment.

TPF processing for a chained output message, received in error, is as follows:
LU TPF Comments

<----------------- Segment 1
<----------------- Segment 2 (Request pacing response)

Pacing Response
----------------->
<----------------- Segment 3
<----------------- Segment 4

LU sends negative
response

------ -RSP -----> (Sequence number error)
<----------------- Clear

Command
<----------------- STSN (TPF resynchronizes sequence

Command numbers)

LU responds with
------ +RSP -----> (Text of the response contains

the sequence number of the last
successfully received message)

<---------------- SDT command
<---------------- Segment 1 (Message is resent beginning
<---------------- Segment 2 with the first segment)

Pacing response
---------------->
<---------------- Segment 3
<---------------- Segment 4

------ +RSP ----> (Last message was successfully
received)

Here, a segment is received with an invalid SNA sequence number. The logical unit
returns a negative response. TPF then initiates a message
recovery/resynchronization dialogue. This determines the last completed message.
TPF then transmits the message a second time. For a non-recoverable message
received in error, TPF resynchronizes the sequence numbers but does not resend
the message.

Large output messages to logical units attached to 3271 control units require
special processing. The 3271 cannot process chained or segmented messages.

SNA Message Protocol 249

Processing of single block messages is unchanged. After the application issues the
ROUTC macro, the output message transmission (OMT) program reblocks the
message and issues a SOUTC macro. See TPF General Macros for more
information about the ROUTC macro. See TPF System Macros for more information
about the SOUTC macro.

Multithread Processing
Multithread processing is a TPF option. It is intended primarily for logical units that
support financial service terminals (Models 3606 and 3608). However, it is available
for all 3600-type logical units. In multithread processing, either side can send the
next message before it receives a response from the previous message. The
multithread option is specified during generation of the network. However, TPF does
not support 3600 multithread processing concurrent with message recovery.
Message recovery is also specified during generation of the network. The two
features are mutually exclusive because of constraints in the routing control
parameter list (RCPL) introduced by 3-byte RID support.

Bracket Support
Bracket support is provided primarily for use with devices attached to the 3274/3276
cluster controllers. Brackets identify the beginning and end of a conversation
between a logical unit and a host application. A bracketed conversation continues,
uninterrupted, until the host application ends it with an “end bracket” indicator. The
logical unit initiates the conversation with a begin bracket indicator in the input
message. Bracket support is not available for:
v Multithread logical units
v Logical units attached to 3271 control units
v IBM 3614/3624 Consumer Transaction Facility terminals
LU TPF Comments

Message 1 -----BB-------> Begin bracket = BB
<-------------- Reply

Message 2 -------------->
<----EB-------- Reply End bracket = EB

Unsolicited Messages
An unsolicited message is an output message not associated with an input
message. An unsolicited message results from a host application sending an
unsolicited message. TPF SNA supports a ZSNDU interface only for SNA resources
in session with a non-SNA application (that is, addressing via LNIATA/LEID rather
than RID).

Unsolicited Messages Destined for a LNIATA/LEID
For an unsolicited message destined for a LNIATA/LEID, TPF notifies the terminal
of the pending unsolicited message. The operator must request delivery of the
message. Unsolicited messages are non-recoverable.

Unsolicited Messages Destined for a RID
An unsolicited message destined for a RID is treated as a normal data message.
The operator cannot request delivery of the message. Unsolicited messages are
non-recoverable.

250 TPF V4R1 ACF/SNA Data Communications Reference

3614/3624 Message Processing
The 3614 and 3624 Consumer Transaction Facilities are unattended self-service
banking terminals. Both issue money, accept deposits, and perform various banking
transactions. These units can be attached to TPF via a 37x5 communications
controller or “loop“ attached via a finance communication controller. Loop
attachment refers to an intermediate connection (in this case, the finance controller)
in the communications path. TPF cannot distinguish direct attachments from loop
attachments. Therefore, applications residing in the finance controller must present
a directly attached appearance.

The protocol for a 3614/3624 logical unit is unique. These logical units do not
request “exception response” as do other units. Prior SNA terminology defined the
3614/3624 response as “exception reached recovery node (RRN).” Today, however,
this response is generally accepted to mean a positive response (+RSP). Input
messages from and output messages to a 3614 or 3624 may not be chained.

Communication between a 3614/3624 and the host typically consists of three
messages. Such a sequence ends with the 3614/3624 status being sent to the host
application.

3614 or 3624 TPF

Transaction Request ---------->

<---------- Transaction Reply

Transaction Status ---------->

<---+RRN---

3614/3624 logical units are identified during network definition. These units must be
defined as multi-thread, non-recoverable. Bracket protocol is not supported for
3614/3624 logical units, nor are these units permitted to receive unsolicited
messages.

3614/3624 Session Initiation and Application Considerations
TPF and 3614/3624 logical units must establish a session before data can be
transmitted. Prior to session initiation, the 3614/3624 must be loaded with the
“configuration image.” This is a component of the IBM 3600 finance communication
system. The configuration image is a combination of: 1) formatted configuration
data, and 2) selected modules of financial controller data. When loaded, the
configuration image defines the operations of the 3614/3624. Once the 3614/3624
is loaded, a session can be initiated.

Host applications use the ROUTC macro to send data to the 3614/3624. TPF does
not examine output data; the data content and format is not validated. Data
transmitted between a 3614/3624 and a TPF application are encrypted. The CIFRC
macro is used to encrypt and/or decrypt data. TPF applications issue these
3614/3624 commands:

Change key - Changes the encryption key
Close - Closes the 3614/3624

Inquiry - Retrieves the stored status of 3614/3624
Open - Opens the 3614/3624

Request load - Loads a new 3614/3624 configuration image
Request recovery - Retrieves the current transaction status

Set key - Sets a new encryption key

SNA Message Protocol 251

See the 3600 Finance Communication System 3614 Programmer’s Guide and
Reference and 3600 Finance Communication System 3624 Programmer’s Guide for
additional information.

252 TPF V4R1 ACF/SNA Data Communications Reference

User Routines

TPF provides a set of replaceable exit modules to allow users to adapt their system
to their specific requirements. The use of an exit or replacement of a TPF supplied
module is optional and is provided to allow the user to amend or supplement the
standard TPF support. Every reasonable attempt will be made to keep the
interfaces to the routines the same in future TPF releases; however, future
requirements may dictate changes. The exit modules operate as extensions to the
TPF operating system and are part of a continuing effort to provide a clear
separation of operating system and application functions.

Process Selection Vector (PSV)
TPF provides optional exits, called Process Selection Vectors (PSVs), to allow the
user to extend the TPF communication support. These exits can be used to add
support for additional terminal types without modifying the user’s application
programs. These optional exit programs operate as an extension to the TPF
system; the exits are started when a message is received or sent. PSV exits are
started in the main I-stream.

The PSV exits are used to convert from the various X.25 protocols to the TPF
protocol and visa versa. These exits may also be used for conversion to and from
3270 and 3600 protocols. In addition to protocol conversion, users now have the
ability to supply their own form of message recovery support. The TPF Message
Recovery support (the System Recovery Table and the safe store of the message)
is bypassed when using these exits for message processing. The user may also
provide SNA-architected Data Flow Control (DFC) layer function with PSVs. For
additional information on the DFC layer, see “Data Flow Control (DFC)
Considerations” on page 260. For a high-level summary of PSVs, see Appendix F,
“TPF Message Processing Flow User Extensions” on page 317.

Input Message PSV Processing
Figure 93 shows the principal that the user-written exit routine can transform the
terminal protocol into the standard TPF Application Program Interface.

NCP

APPL

O
P
Z
E
R
O

PSV
Exits

R
O
U
T
E
R

Data Flow

SNA
COMM-
SRCE

Figure 93. Input Message Processing

© Copyright IBM Corp. 1994, 2002 253

The requirement for a user exit routine to be started for a specific LU or terminal is
specified at network definition. For SNA terminals (LUs), exits are defined via the
Offline SNA Table Generation (OSTG) package. By coding a 6-character Process
Selection Vector (PSV) name, each PSV name is associated with an
ECB-controlled program that receives control when a message is received.

TPF users have the opportunity to define a maximum of 96 unique PSV names that
can be correlated to a maximum of 96 user exit routines. Because TPF passes the
PSV name to the ECB-controlled user exit program, each user-supplied program
can uniquely service a given message (by PSV name) or multiple message types
(using the name to identify the type of service required). The type of pre-processing
message services include the following categories:

v Protocol Conversion - For example:
– Data Transformation - Converting from 3270 to ALC format.
– Data Compression and Compaction
– Translation - Converting the character set used by the terminal to EBCDIC.
– Address Transformation - Converting the address used by the network to the

internal address used by TPF.

v Processing X.25 commands - Accepting a Call Request or Clear Request.

v Causing TPF to start the Log Processor to either logon or logoff a terminal.

v Causing TPF to start the Unsolicited Message Package with a request for an
unsolicited message.

v Authorization and Decryption - Normally considered application functions, these
may be handled in the exit.

v Provide inbound DFC layer.

Output Message PSV Processing
Figure 94 on page 255 illustrates the user-written exit program to transform the
protocol used by the application to the protocol required by the terminal.

Identifying which specific exit program to start is part of the network definition
procedure. A PSV name can be defined for each LU that requires customized
output message handling. Optionally, the user can specify that messages routed to
a terminal addressed by line, interchange and terminal (LIT) or Logical End-Point
Identifier (LEID) should be intercepted and passed to a PSV routine. See the TPF
System Installation Support Reference for additional information about user exits.

The general function categories that an exit can provide are:

v Protocol Conversion - This is identical to the Protocol Conversion information
previously detailed in the “Input Message PSV Processing” on page 253.

v Connection Establishment - This includes sending a Call Request command to
NPSI to request a virtual circuit.

v Encryption - Normally considered an application function, this may be handled in
the exit.

v Message Queueing - This is normally handled by the system in OMT or LMT, but
it may be handled in the exit. See “Queue Manager” on page 269 for more
details.

v Provide output DFC layer support. For additional information, see “Data Flow
Control (DFC) Considerations” on page 260.

254 TPF V4R1 ACF/SNA Data Communications Reference

PSV Interface
When a message is received from an LU, SNA Comm Source starts the user exit
routine by using an ENTRC macro (Figure 93 on page 253). When a message is
sent via the ROUTC macro, and the destination LU uses a PSV routine, the
ROUTC macro code starts the associated PSV routine via control transfer
(Figure 94). When the PSV exit routine is entered, the PSW storage protection key
is set to the protect key of working storage. The information passed to the PSV exit
routine includes:

ECB Level 0 The address of message block.

EBW000-EBW0nn The RCPL.

EBX012-EBX017 The 6-character PSV name.

EBX018 The length of the LEID field (on entry from SNA
Comm Source only).

EBX019-EBX021 The LEID defined for the LU (on entry from SNA
Comm Source only).

EBX022-EBX027 The NETID of the remote LU, left-justified and
padded with blanks (on entry from SNA Comm
Source only).

EBX028-EBX035 The NAME of the remote LU, left-justified and
padded with blanks (on entry from SNA Comm
Source only).

EBX036 The device type of the remote LU as in NODEQ (on
entry from SNA Comm Source only).

EBCM01 bits 0-5 Reserved for system use only.

EBCM01 bit 6 Input/Output indicator:
0 (Input message handling)
1 (Output message handling)

ROUTER

ROUTC
Exit

PSV
Exits

ROUTC

New ECB

S
N
A
O
U
T

NCP

Data Flow

APPL

Figure 94. Extended TPF Outbound Message Flow, ROUTC and PSV Exits.

User Routines 255

EBCM01 bit 7 Return/Exit indicator:
0 (caller expects return, issue BACKC)
1 (caller does not expect return, issue EXITC)

EBCM02-EBCM04 User data:
If input, set to zeros
If output, user information (see the ROUTC exit
in the TPF System Installation Support
Reference).

The previously described PSV interface included within the EBX fields and the
equates for the EBC fields is contained in the IPSVI DSECT as shown in Table 13.

Table 13. IPSVI - PSV Interface Dsect

Label Length (In
Bytes)

Description

IPSINAME 6 PSV name

IPSIPNTX 1 Index to PSV name table

IPSILEIL 1 LEID length

IPSILEID 3 LEID

IPSINETI 8 Network Id of remote resource

IPSINAUN 8 Name of remote resource

IPSIDVTY 1 Device type of remote resource

EBCM01 Equates v IPSIEXIT X'80' discard and exit
v IPSIINDX X'04' index is passed (COBT)
v IPSIOUTP X'02' output processing
v IPSINRET X'01' do not return to caller

The exit routine passes the following information to SNA Comm Source:

EBCM01 bit 0 Continue/Exit indicator:
0 (continue processing input message)
1 (discard message, issue EXITC)

The user may activate PSV routines by entering segment COBT with the following
interface:

ECB Level 0 The address of the message block.

EBW000-EBW0nn The RCPL.

EBX012-EBX017 The 6-character PSV name (if EBCM01 bit 5 is off).

EBX012 The 1 byte PSV name index (if EBCM01 bit 5 is
on).

EBX018 The length of the LEID field (0 if no LEID).

EBX019-EBX021 The LEID defined for the LU (irrelevant if length is
0).

EBCM01 bits 0-4 Reserved for system use only.

EBCM01 bit 5 PSV activation type indicator:
0 (EBX012-17 contains name of PSV to be
activated)
1 (EBX012 contains the RVT name index of the
PSV to be activated)

256 TPF V4R1 ACF/SNA Data Communications Reference

EBCM01 bit 6 Input/Output indicator:
0 (Input message handling)
1 (Output message handling)

EBCM01 bit 7 Return/Exit indicator:
0 (caller expects return, issue BACKC)
1 (caller does not expect return, issue EXITC)

EBCM02-EBCM04 Available for user use (passed to PSV).

If COBT cannot locate the requested PSV routine, system error CE9022 is issued
and the ECB exited. In addition, if the destination in the RCPL is a RID, and a
session exists, an UNBIND is scheduled.

Input Considerations
The RCPL passed by SNA Comm Source to the exit routine contains:
v The RID of the origin LU.
v The 4-character application name to receive the message.

ECB area EBW048-EBW051 is reserved for system use only.

The exit routine can change any of the following information:

v Message Text - The message may be:
– reformatted to remove protocol headers,
– reformatted to remove an imbedded device address, or
– translated to EBCDIC.

v The origin specified in the origin field of the RCPL may be changed to an LEID,
an application name, or another RID.

v The destination specified in the RCPL may be changed to:
– another TPF application,
– the TPF Log Processor, or
– the Unsolicited Message Package.

On return, the exit routine must:

v Pass the message block back on level 0.

v Return a valid RCPL in EBW000 of the ECB.

On return, the exit routine may optionally pass information to the application by:

v Placing data or file records on levels 4 through 15 of the ECB.

v Extending the RCPL to include control information in the RCPL General Data
Area (GDA).

Comm Source receives control from the exit routine and:

v Sets the ECB flag to indicate either a SNA or non-SNA message.

v Sets ECB field EBROUT to:
– X'000000' if RCPL Origin is an application name.
– RID (right-justified) or LEID if RCPL Origin is a terminal.

This field is used by the System Error routines to return a message to the
terminal if an error occurs in delivering or processing the message.

v Starts the trace and Data Collection routines to capture information for debugging
and performance analysis.

v Delivers the message to the destination set in the RCPL.

User Routines 257

Output Considerations
The RCPL passed by ROUTC to the exit routine contains:

v the RID or LEID of the destination, and

v the 4-character origin application name.

The exit routine can change any of the following information:

v Message Text may be changed to:
– Add protocol headers
– Imbed device addressing
– Compress or compact the data stream
– Translate the character stream
– Reformat the message

v The destination field of the RCPL may be changed to an:
– LEID - to direct the output to another terminal
– RID - to send the output to an SNA resource
– Application name - to send the message to an application in this processor or

another processor.

The origin field of the RCPL contains the name of the application that issued
ROUTC. The origin may be:

v The application that sent the message.

v The application to which the message is returned if it cannot be delivered.

v The 4 characters ‘CPSE’ if the message was sent by the System Error program.
This program responds to the terminal when an ECB terminates abnormally. The
text of the message sent by the System Error program is ‘CHECK DATA AND
CALL SUPERVISOR’.

v The 3 characters ‘SNW’ followed by a one character CPU identifier for the
processor, if the message was sent by the SNA Output Message Writer (CSNW).
The text of these messages indicate why an input message from the terminal
could not be delivered to the application.

v The 3 characters ‘SMP’ followed by a one character CPU identifier when the
message was sent by the TPF system. There are three classes sent with an
origin of SMPc:

1. Solicited and unsolicited console messages. This class of message includes
replies to operator commands and error messages sent by the TPF system.

2. System replies to a request to logon or logoff.

3. Error messages generated by the system when the input message from a
terminal addressed by an LEID cannot be delivered to the application. The
text of the messages that can be returned by the system are:
– APPLIC appl NOT ACTIVE
– SYS.ERR ON MSG FROM appl MSG LOST
– ACP CANNOT ACCESS appl LOGOFF
– APPLIC appl NOT AVAIL. LOGOFF
– CANNOT ACCESS appl SYS IN 1052
– RESTRICTED. CRAT TERM INPUT ONLY
– FILE ERR. CANNOT DELIVER MSG TO appl
– CANNOT ACCESS appl SYS IN RESTART
– CANNOT ACCESS appl PROCESSOR INACTIVE

The lower case letters ‘appl’ in this description are replaced with the actual
4-character TPF application name when the message is returned to the
originator.

258 TPF V4R1 ACF/SNA Data Communications Reference

The PSV routine issues ROUTC to send the message to its final destination and
issues EXITC macro to return control to the system.

PSV Output Message Queueing
Optionally, the PSV routine may need to queue the message on DASD prior to
transmission. See “Queue Manager” on page 269 for detailed information about
queueing. A PSV routine may queue a message prior to delivery because:

v The message must be safe-stored to allow re-transmission in case of an error.

v The class of output is delivered only at specific times of day. For example, airline
tickets or bulk data.

v The terminal is inactive. In this case the PSV routine queues the output message
and requests a session. When the session is established, the output is dequeued
and sent.

TPF provides a generalized queuing package to allow the user to queue messages.
The queuing package provides the primitives to:
v Enqueue messages
v Dequeue messages
v Re-enqueue the last message dequeued, and
v Purge the queue

If the queuing package is needed, then the user must implement the following
facilities:

v Response handling - Typically messages are queued until they are successfully
delivered. If delivery is successful, then the next message on queue can be sent.
If delivery is unsuccessful, then the message should be repositioned at the top of
the queue and the message resent.

v Queue swing - Messages destined for an inoperable terminal can often be
re-directed to another terminal in the same vicinity. This requires the user to write
an operator command causing messages on the queue for an inoperable
terminal to be enqueued to another destination.

v Timeout - When a response is lost or a message garbled in transmission, then
there is no signal to send the next message or retransmit the last message.
Typically, this problem is handled by a time initiated program that checks for lost
responses and stalled queues. For each lost response or stalled queue, the PSV
routine is started to resend the last message. If a failure persists, then the queue
is declared inoperable.

Defining PSV Routines
A PSV routine has a 6-character name and is associated with an ECB controlled
program. There can be 128 PSV routines (96 user routines and 32 routines
reserved for use by IBM). Each PSV name must be 1 to 6 characters with the
characters limited to the letters A through Z and the numbers 0 through 9. The PSV
names reserved for IBM use start with the letter I. When the PSV name is passed
to the user program, the name is 6 characters, left-justified and padded with blanks
(X'40's). The name chosen may imply a specific network (for example, TYMNET), a
transmission protocol, or a specific device type. The ECB controlled program
associated with a PSV name may be unique to the name or shared among several
PSV names. Each program must be allocated and loaded before it can be used.
The Online Loader is used to load a new version of a PSV program. See TPF
ACF/SNA Network Generation for detailed information on PSVs.

User Routines 259

Logical End-Point Identifiers, Terminals, and PSV Routines
Logical End-Point Identifiers (LEIDs) give a resource a pseudo line, interchange and
terminal address. The resource may be an LU, a group of terminals attached via an
LU, or any entity the user chooses. An LEID is a short hand notation for the actual
resource. The PSV routines map LEIDs to devices in the following ways:

One-to-One This is the simplest case where an LU is associated with an LEID.
For example, an LU is associated with an LEID value of 123. In this
case, every message from the LU is passed to the application as if
it came from terminal 123, and every message sent by the
application to terminal 123 is forwarded to the LU.

One-to-Many This implies that a single LEID could represent multiple
destinations, for example, a distribution list. In this case, the PSV
routine intercepts output messages destined for an LEID and
forwards a copy of the message to each terminal implied by the
LEID.

Similarly, which LEID to assign to a message from an LU is
determined when the person signs in. For example, when a dial-in
terminal is connected to the system, the LEID associated with the
LU indicates the end user, geographical location, or authority.

Many-to-One This implies that several LEIDs could represent the same
destination. For example, a hard copy terminal uses multiple LEIDs
to imply multiple forms. A single terminal uses one LEID for
administrative traffic, one for batch data and one for tickets. The
PSV routine handling these LEIDs needs to queue and schedule
output traffic based upon the particular printer forms that are
loaded.

Data Flow Control (DFC) Considerations
The SNA architecture defines the Data Flow Control (DFC) layer to provide the
following services for LU-LU sessions:

v Assign sequence numbers.

v Correlate requests and responses.

v Group related request units into chains.

v Group related series of chains into brackets.

v Enforce session request and response mode protocols.

v Coordinate session send and receive modes.

Although DFC may provide all of these services for a particular LU-LU session, all
may not be supported for that session. The options to be supported (for example
BRACKETS) are agreed upon at session establishment time (BIND).

Associated with each RSC defined at TPF SNA generation time, certain services
are available and/or precluded depending upon the device type specified. For
example, BRACKET and Definite Response protocols are precluded for NPSI (MCH
and VC) LUs, but available for 3270s. Thus, TPF supports a specific set of BIND
values (images) for each device type and the generation process forces the device
definition to conform to one of the supported images for that device.

The TPF SNA DFC layer communicates with the network through the TPF-provided
lower level Transmission Control (TC) layer. The TC layer provides the following
functions:

260 TPF V4R1 ACF/SNA Data Communications Reference

v Transmit/receive when data flow is enabled.
v Verify sequence numbers.
v Manage session-level pacing.

The TPF SNA Output Message Transmission (OMT) package, acting as owner and
manager of the message queue, provides the DFC services. As an alternative to
using OMT, the user is able to define and implement PSV exit routines which own
and manage the message queue via Queue Manager, thus assuming the DFC
responsibility. Although the user should provide the full complement of DFC
functions, only those specified in the associated TPF BIND image can be used for
that session. For example, the TPF BIND image for NPSI (MCH and VC) LU
resources precludes the support of BRACKET protocols, and any use of BRACKET
protocols for that session will cause errors.

User DFC Interface
The DFC functions are closely related to the Request/Response Header (RH)
indicator settings and DFC RU commands of the PIU. Upon receipt of a PIU, the
RH and RU dictate which DFC services must be performed; similarly, the DFC
functions that are used dictate the RH and RU of the outbound PIU. Because of this
interdependence, TPF provides the user DFC with:

v The inbound sequence number and RH indicators

v The ability to set the outbound sequence number and RH indicators.

The ROUTC user exit and PSV routines provide the user interface to the SNA DFC
layer of TPF SNA. The interface is described in Table 14 on page 261.

Table 14. DFC ROUTC Interface

RU Type AM0SG Fields RCPL Setting

1. Any DFC
Command

2. Data

1. DFC Command
v AM0FCH = 0 (Chaining not

permitted)
v AM0CCT = length of DFC

Command RU + 5
v AM0TXT = DFC Command

RU
2. Data

v AM0FCH = 0 (Chaining not
permitted)

v AM0CCT = length of Data
RU + 5

v AM0TXT = Data RU

v RCPLORG & RCPLDES fields
v RCPLCTL0 (See Note 1.)
v RCPLCTL1 = 0 (Reserved)
v RCPLCTL2 = 0 (Reserved)
v RCPLCTL3 = 0 (Reserved)
v RCPLCTL4 = 0 (Reserved)
v RCPLCTL5 = 0 (Reserved)
v RCPLGDD = RCPLDRH

(X'40')
v RCPLCTR = X'07' (length of

GDA)
v RCPLGDA

– X'06' - length of GDA data
– 2 Byte PIU Sequence

Number
– 3 Byte SNA RH (See Note

2.)
– 1 Byte Indicator (X'00')

Notes:

1. RCPLCTL0 indicators:
RCPL0DTY (X'80') indicates input (Destination = TPF Application)
RCPL0OTY (X'40') indicates output (Origin = TPF Application)
RCPL0TRM (X'02') indicates RID addressing used.
RCPL0FMT (X'01') indicates expanded RCPL used.

2. TPF ensures that the setting of the following RH indicators (as defined in
PIUEQ) are set to zero:

User Routines 261

RH0CIB (Byte 0, X'20') Session Control and Network Services.
RH0AWM (Byte 0, X'10') Reserved
RH1PEM (Byte 1, X'40') Reserved
RH1RBM (Byte 1, X'08') Reserved
RH1RLWIM (Byte 1, X'04') Reserved
RH1QRI (Byte 1, X'02') Queued Response Indicator
RH1PCEM (Byte 1, X'01') Pacing Indicator
RH0B2CE (Byte 2, X'01') Conditional End Bracket Indicator (LU6.2 only)

Outbound Message Interface
An application or PSV (Process Selection Vector) sends output messages using the
ROUTC macro. If an output message cannot be delivered to its destination, the
originating application/PSV may have requested that:

1. The output message is returned to the originator. The originator indicates this to
TPF by setting the RCPL Returned Message Indicator off (RCPL0RET = 0).

2. The output message is queued by TPF for later transmission. The originator
indicates this to TPF by setting the RCPL Returned Message Indicator on
(RCPL0RET = 1).

The user DFC interface (see Table 14 on page 261) precludes the application/PSV
from requesting the message that is queued. Outbound messages across the user
DFC interface are to be considered as having been transmitted to the network.
Queueing of the message for later transmission is the user DFC’s responsibility.

Output messages that cannot be sent, such as when no session exists, are passed
to the originator as input. In this situation, the RCPL Returned Message Indicator is
set on (RCPL0RET = 1). Applications and PSV exit routines should be designed
with the capability of processing returned output messages.

Pacing Considerations
The TPF TC layer enforces the session pacing protocols. When the user provides
the DFC layer, the TPF TC layer queues messages when the session is at the
pacing limit or if a pacing queue exists. Upon the return from the ROUTC request,
the user DFC should consider the message to have been transmitted. Messages
stalled by pacing limits are not returned to the originator, but are discarded during
session end processing.

Undeliverable Message Considerations
Messages being returned by TPF to the application may differ from those sent by
the application as the original messages may have been altered by the ROUTC Exit
or a PSV routine. Thus, when using these facilities, regardless of the DFC layer
implementation and/or use of PSV routines, TPF must return messages to the
originator (application/PSV) via the same path (ROUTC Exit / PSV), rather than
directly to the application via the RCAT enter expansion.

Response Protocols/Error Handling
The user DFC is given all PIU responses (positive or negative) during the session.
A TPF sample negative response analysis program per LU type is provided to
perform the analysis for each -RSP sense code received:
v CMJ0: LU0 -RSP Handler Analysis. See Table 16 on page 263.
v CMJ1: LU1, LU2, LU3 -RSP Handler Analysis. See Table 17 on page 263.
v CMJ2: LUSTAT -RSP Handler Analysis. See Table 18 on page 264.

262 TPF V4R1 ACF/SNA Data Communications Reference

The PSV may use the TPF sample or a user modified version. The sample analysis
programs are activated via ENTRC using the interface described in Table 15 on
page 263.

Table 15. Sample Negative Response Handler Interface

Interface Input Returned

Registers Irrelevant v R0-R6: Not changed
v R7: Recommended Action

(Reference Table 19 on
page 264)

ECB Workarea Irrelevant Not Changed

Data Levels D0 = PIU Not Changed

Protect Key Working Storage Working Storage

Upon return from the analysis segment, the user should start the processing
corresponding to the action code(s) specified in register 7. See Table 19 on page
264 for detailed information.

Note: These do not include BATCH_LU and SLU-P conditions.

Table 16. LU0 (3600, NPSI) -RSP Analysis

SENSE Description User Action

X'0802' Intervention Required HOLDQ

X'0813' Bracket BID Reject - No RTR forthcoming HOLDQ + WAIT

X'0814' Bracket BID Reject - RTR forthcoming HOLDQ + WAIT

X'0817' XIO unsuccessful (GATE/PAD) MCH Inactive HOLDQ

X'081B' Receiver in Transmit RESYNC

X'1xxx' Request Error TERMINATE

X'2xxx' State Error RESYNC

X'4xxx' Request Header (RH) Usage Error TERMINATE

X'8xxx' PATH Error TERMINATE

Table 17. 3274/76 (LU1, LU2, LU3) Sense Code Table

SENSE Description User Action

X'0802' Intervention Required HOLDQ + WAIT

X'0807' Resource Not Available - LUSTAT
Forthcoming

HOLDQ + WAIT

X'0811' BREAK RETRY

X'0813' Bracket Bid Reject - No RTR Forthcoming HOLDQ + WAIT

X'0814' Bracket Bid Reject - RTR Forthcoming HOLDQ + WAIT

X'081B' Receiver in Transmit Mode SIGNAL

X'0829' Change Direction Required RESYNC

X'082A' Presentation Space Alteration REFORMAT

X'082B' Presentation Space Integrity Lost REFORMAT

X'082D' LU Busy HOLDQ + WAIT

User Routines 263

Table 17. 3274/76 (LU1, LU2, LU3) Sense Code Table (continued)

SENSE Description User Action

X'082E' Intervention Required at LU Subsidiary
Device

HOLDQ + WAIT

X'082F' Permanent Error at LU Subsidiary Device RETRY

X'0831' LU Disconnected HOLDQ + WAIT

X'1xxx' Request Error TERMINATE

X'2xxx' State Error RESYNC

X'4xxx' Request Header (RH) Usage Error TERMINATE

X'8xxx' PATH Error TERMINATE

X'FFFF' DEFAULT Use actions shown in
Table 16 on page 263 if
sense not found here.

Table 18. 3274/76 (LU1, LU2, LU3) LUSTAT SENSE TABLE

SENSE Description User Action

X'00010000' LU Available (T1/T3) WAKEUP

X'0001B000' Printer - Available (T2) WAKEUP

X'0001D000' Display - Available (T2) WAKEUP

X'00020000' No Data to Send WAKEUP

X'082B0000' Available, Presentation Space Integrity Lost,
Formatting Required.

REFORMAT

X'08310000' Powered Off or Disconnected HOLDQ + CD

X'FFFF0000' DEFAULT TERMINATE

Table 19. Negative Response Processing Actions

Action Value Processing Description

CD X'00000001' Yield direction to the remote. Set change direction
indicator of the RH (RH0B2CD = 1) in the RCPL
GDA for the next ROUTC request.

HOLDQ X'00000010' Suspend processing of messages queued for
transmission. Queue all ensuing transmit requests.

REFORMAT X'00000020' Application must format the screen.

RETRY X'00000030' Resend message up to some user defined limit
before starting HOLDQ and awaiting LUSTAT with
available sense data.

RESYNC X'00000040' Initiate resynchronization process. Using the
Session Services Interface request ’RESYNC’
activation of this session.

SIGNAL X'00000050' Send SIGNAL DFC request to obtain direction.

TERMINATE X'00000060' No recovery possible for this error. Using the
Session Services Interface request ’FORCED’
termination of this session.

WAIT X'00000002' Do not initiate any further transmissions. Wait for
an indication from the remote resource (that is,
LUSTAT or RTR) before resuming transmit
processing.

264 TPF V4R1 ACF/SNA Data Communications Reference

Table 19. Negative Response Processing Actions (continued)

Action Value Processing Description

WAKEUP X'00000070' Resource now available. Treat as Session Started
Notification.

Input Message Router Exit
Specifying COMEXIT=YES on the SIP MSGRT macro provides the user exit routine
(segment COBC) to be included in the generated TPF system. The sample code
released with TPF consists of nothing more than a ‘BACKC’ macro. The user
should replace this with the desired logic.

This routine is given control whenever a message is received by the Message
Router or the Communication Source package and the destination is an application.
The message includes both those from terminals and those generated by another
application.

It should be noted that upon return from this routine, TPF no longer examines the
input message and all subsequent processing is based entirely upon the RCPL
information. If the destination specified in the RCPL has been changed by this
routine to anything other than a local TPF application, TPF issues a ‘ROUTC’ upon
receiving control from this routine.

The INPUT/OUTPUT interface between the TPF packages (Message Router and
Communication Source) and the user coded COBC segment is as follows:

INPUT to COBC

v ECB WORK AREA:
EBW000-EBWXXX = The RCPL of the destination message

(The length depends on whether it is an expanded
RCPL and the size of the RCPL General Data Area.)

EBSW01-EBSW03 = 0
EBCM01-EBCM03 = 0
EBER01 = 0
EBX000-EBX063 = Unpredictable and may be used by COBC.
EBX064-EBX103 = Reserved and must not be altered.
EBXSW0-EBXSW7 = Unpredictable and may be used by COBC.
EBROUT = Reserved and must not be altered.
CE1DBI = Database ID of Basic Subsystem
CE1PBI = Program Base ID of Basic Subsystem
CE1SSU = SubSystem User ID of Basic Subsystem
CE1USA = Unpredictable and may be used by COBC.

ALL OTHER ECB FIELDS ARE RESERVED

v ECB DATA LEVELS:
D0 = INPUT MESSAGE IN AMSG FORMAT
D1 = If a core block exists, it is the AAA of the terminal in the

Basic Subsystem. This level should not be altered by the user.
D2 = Reserved and may not be used by COBC.
D3 = If a core block exists, it is the RCB of the terminal in the

Basic Subsystem. This level should not be altered by the user.

ALL OTHER LEVELS ARE AVAILABLE FOR USE BY THIS ROUTINE

v REGISTERS:

User Routines 265

R0-R7 = Unpredictable and available for use.
R8 = Base of program COBC
R9 = Base of the ECB
R14-R15 = Unpredictable and available for use.

OUTPUT from COBC

v ECB WORK AREA:
EBW000-EBWXXX = The RCPL of the destination message

(The length depends on whether it is an expanded
RCPL and the size of the RCPL General Data Area.)

EBSW01-EBER01 = Unpredictable, but will be set to zero by TPF prior
activating the application.

EBX000-EBX063 = Unpredictable and TPF may use it.
EBX064-EBX103 = reserved and must not be altered.
EBXSW0-EBXSW7 = Unpredictable.
EBROUT = Reserved.
CE1DBI = Must not be altered
CE1PBI = Must not be altered
CE1SSU = Must not be altered
CE1USA = Unpredictable

v ECB DATA LEVELS:
D0 = INPUT MESSAGE IN AM0SG FORMAT

(USER MAY MODIFY THE CONTENT OF THE MESSAGE)
D1 = MUST NOT BE ALTERED BY USER
D2 = MUST NOT BE ALTERED BY USER
D3 = MUST NOT BE ALTERED BY USER

ALL OTHER LEVELS MUST NOT BE HOLDING ANY CORE BLOCK

v REGISTERS:
R0-R7 UNPREDICTABLE
R14-R15 UNPREDICTABLE

v EXIT from COBC must be VIA ‘BACKC’

The TPF services and facilities that may be started by the routine are:
The Non-SNA Log Processor.
The Unsolicited Message Package.
The SMP Prefixing Facility.
All TPF macros.

The following are examples of the services that could be implemented in a user’s
input edit routine.

Data Transformation
The input message text may be modified to a format acceptable to the
application. This allows users to attach new terminals to existing
applications and non-SNA terminals to new applications.

Data De-compaction and De-compression
Data, encoded for transmission efficiency, is decoded.

Message Verification
An error message may be returned to the message originator and the
message discarded.

Prefixing
This special case of transaction analysis allows system operators to denote
the application, subsystem or subsystem_user to process the command
entered. For example, TPF supports operator command prefixing, where
the command is prefixed with the application, subsystem or
subsystem_user name followed by the character /. For many users this

266 TPF V4R1 ACF/SNA Data Communications Reference

format is unacceptable and operationally awkward. Therefore, for those
users that wish to use an alternate prefixing technique, the input edit routine
may translate an installation defined prefix to the prefix format required by
TPF.

Transaction Analysis
The input text may be analyzed to determine the application to process the
input message.

User Written Transaction Routing
Some users may wish to bypass the TPF Log Processor and create their
own. For example, assume a network where terminal users frequently
access multiple TPF applications and the TPF requirement for a terminal
user to logon is too costly in terms of operator efficiency. Here the input edit
routine could be used to implicitly logon the terminal based on the input
message text. The character $ may be used to signify an implicit logon and
the character immediately following the $ signifies the application. Further
assume that the presence of text following $aaaa determines whether the
connection is just for this message or all following input. Then, in a network
where terminal users frequently require access to multiple applications, the
terminal user could simply prefix their input rather than logging into the
required application.

Unsolicited Message
The user edit routine may request the next unsolicited message queued to
the terminal and transform the input into a LOGU request, setting the input
destination to the 4 characters, LOGI.

ECB Set Up
The user edit may set or change the following:

v Information describing the input or its source may be passed to the
application in the General Data Area of the expanded RCPL.

v The input RCPL could be copied to an installation defined area in the
ECB. The saved RCPL would provide a backup copy of the input RCPL
allowing pre-Message Router applications, say RES0, to create an output
RCPL and issue ROUTC.

v ECB levels 0, and 4 through 15 may be used to pass data.

v Change the format of the data from AM0SG to OM0SG. Note, the
appropriate RCPL indicator must be set to reflect this change.

Input from the following sources is passed to the user Input Edit routine:
v SNA/SDLC input
v ALC input
v SLC pseudo terminal input
v Binary Synchronous Station Names
v Application to application routing within the processor
v Undeliverable output messages (Returned Messages).

User Routines 267

268 TPF V4R1 ACF/SNA Data Communications Reference

Queue Manager

The Queue Manager package is a basic set of tools to perform queueing functions.
The primitives provided by this package are:

v ENQUEUE queues a message FIFO.

v GET

– Get Message retrieves a copy of the entire message, that was previously
enqueued, FIFO.

– Get N Bytes retrieves part of a message, up to the number of bytes
specified by the user, FIFO.

v DEQUEUE removes the previously retrieved message from the queue, and if
requested, releases all file addresses that are associated with the previously
retrieved message.

v WASH repositions the previously retrieved message at the top of the queue.

v PURGE ALL purges all messages from the queue.

The control block used for queue management is called a Queue Control Element
(QCE). This block is created and maintained by the user. When interfacing with the
Queue Manager, the QCE must reside in main storage and must have a protect
key of working storage. The user must have exclusive control over the QCE when
requesting queueing services. As illustrated in Table 20 on page 269, the user must
adhere to the layout of a QCE.

Table 20. Queue Control Element Layout

Field Label Displacement Byte Bit Comments

IQCEFOQ 0 4 First of Queue

IQCELOQ 4 4 Last of Queue

IQCESCUR 8 4 Start of Current Message

IQCECUR 12 4 Current Block

IQCEOFF 16 2 Next Available Byte for GET
N

IQCEPARM 18 16 User Parameter Area

Data messages queued off a QCE must be in the standard AMSG format. The
message text should be queued in a device-independent format to facilitate
potential queue swing operations. That is, reformatting of the data should occur
after the message has been dequeued. The message block size can be of 381,
1055, or 4K type. The maximum amount of text that can fit within a 381 byte block
is 342, within a 1055 byte block is 1016, and within a 4K byte block is 4027.

When queueing a message that consists of multiple blocks, the prime block should
be in main storage and the remaining blocks should be file chained, using the
AMSG chaining scheme. The AM0BCH field is reserved for system usage. All
chained blocks within the same message must be of the same size.

When retrieving a message the user has the following options:

Get Message The user requests to receive the message as given to the Queue
Manager at the time of enqueueing.

Get N Bytes The user requests to receive a portion, up to N bytes, of the

© Copyright IBM Corp. 1994, 2002 269

message. If the number of bytes specified spans more than one
block, the Queue Manager assembles it into one block.

Queue Manager Interface
The Queue Manager parameter list, IQPRM (Table 21), is used for both input and
output when interfacing with the Queue Manager. The user must provide this
parameter list, load its address in register one (R1), and enter (ENTRC) segment
CMX0 when issuing a queueing request. After completing the user-requested
service, the Queue Manager returns the parameter list and sets indicators to
identify successful or unsuccessful queue management results.

Note: The Queue Manager package is subsystem independent. It is the user’s
responsibility to ensure the subsystem environment is initialized when
entering the Queue Manager package.

Table 21. Queue Manager Parameter List

Field Label Displacement Byte Value Comments

IQPRFUNC 0 1 X'00'
X'01'
X'02'
X'03'
X'04'
X'05'

ENQUEUE
GET Message
GET N Bytes
DEQUEUE Message
WASH
PURGE All

IQPRINDC 1 1 X'80' Release File

IQPRGENR 2 1 X'00'
X'01'
X'02'

Successful Completion
Unsuccessful Completion
Parameter List Error

IQPRDETL 3 1 X'01'
X'02'
X'03'
X'04'
X'05'
X'06'
X'07'
X'08'
X'09'
X'0A'
X'0B'
X'0C'
X'0D'
X'0E'

End of Message
Queue Empty
I/O Error
No Message Available for Wash
GET Message Function Not Valid or
Not Performed
Consecutive GETs Issued
DEQUEUE Function Not Valid
Function Not Supported
GET N Byte Function Not Valid
Invalid Target Offset for GET
Invalid Record ID
No Block Attached On D0
Invalid QCE Address
Invalid Block Attached On D0 or
Can’t Queue the Message

IQPRQCE 4 4 QCE core address

IQPRRET 8 2 Number of bytes for GET N Bytes

IQPROFF 10 2 Target offset for GET N Bytes

IQPRID 12 2 2-character record ID

IQPRPARM 14 16 User parameter area

Input Interface
The Queue Manager Input Interface is detailed in Table 22 on page 271.

270 TPF V4R1 ACF/SNA Data Communications Reference

Table 22. Queue Manager Input Interface

Registers ECB Workarea ECB Data Levels

R1 : Parameter List Addr - IQPRM EBW - Irrelevant
EBX - Irrelevant
Protect Key of
Working Storage

v ENQUEUE Message
D0: Prime block of the message
DD-DF: Available
D1-DC: Reserved

v GET Message
D0, DD-DF: Available
D1-DC: Reserved

v GET N Bytes
D0: Prime block of the message
DD-DF: Available
D1-DC: reserved

v DEQUEUE Message
D0, DD-DF: Available
D1-DC: Reserved

v WASH/PURGE All
DD-DF: Available
D0-DC: Reserved

For all queueing services, the QCE core address must be present in the parameter
list. The user is responsible for initializing the QCE only before the first queueing
request.

Enqueue When the Queue Manager is started with the Enqueue function, the
prime block of the message must be on data level zero (D0) of the
ECB. Additional blocks should be file chained using standard AMSG
format.

The user must include within the parameter list the record ID that
the Queue Manager should use. Prime record attributes are used
by the Queue Manager on the specified record ID. The user may
also include within the parameter list a 16-byte parameter area.
This area is saved by the Queue Manager and returned to the user
in the QCE when the message is dequeued.

The prime block on level D0, provided by the user, is released by
the Queue Manager.

Get Message When the Queue Manager is started with the Get Message
function, the message at the top of the QCE queue is returned to
the user as originally enqueued . The prime block, returned by the
Queue Manager, resides on data level zero (D0) of the ECB and
any additional blocks are file chained using standard AMSG format.
The 16-byte user parameter area is returned in the QCE.

Upon issuing the Get Message request, the user must include
within the parameter list the record ID that the Queue Manager
should use.

Get N Bytes When the Queue Manager is started with the Get N Bytes function,
the user must provide sufficient space within a single target core
block on data level zero (D0) of the ECB. It is at this ECB location
where the Queue Manager returns up to N bytes from the current
message, source block, in the QCE.

Queue Manager 271

The user may also specify a target offset (M bytes), within the
parameter list. M indicates that the Queue Manager should start
filling the target block on level zero (D0) M bytes after the 18th byte
of the block. If M is equal to zero, the Queue Manager fills the
target block starting at location 18.

Note: The text is extracted from the source block starting at
location 18 within the prime block and location 23 within the
overflow blocks.

The Queue Manager does not impose any values within the first 18
bytes of the returned block.

Upon return, the Queue Manager places the actual number of bytes
returned in the IQPRRET field of the input parameter list.

The user must include within the input parameter list the record ID
that the Queue Manager should use.

If the Get N Bytes function has been used to retrieve a message,
the Get Message function cannot be used for retrieving any
remaining bytes of the same message. The ″End of Message″
return code indicates that the message has been fully dequeued.

Dequeue When the Queue Manager is started with the Dequeue function, the
previously returned message is removed from the queue. The user
may also specify the Release File option with the Dequeue function.
In that case, all file addresses of the previously returned message
are released.

The Dequeue function must be specified between two consecutive
“Get” operations.

Wash When the Queue Manager is started with the Wash function, the
QCE structure is rearranged where the previously retrieved
message is positioned at the top of the QCE queue.

Purge All When the Queue Manager is started with the Purge All function, the
QCE queue becomes empty. All file addresses are released.

Output Interface
The Queue Manager Output Interface is detailed in Table 23 on page 273.

272 TPF V4R1 ACF/SNA Data Communications Reference

Table 23. Queue Manager Output Interface

Registers ECB Workarea ECB Data Levels

v R1 : Parm List addr - IQPRM
v R0, R2-R7: Unchanged

EBW - Unchanged
EBX - Unchanged
Protect Key of
Working Storage

v ENQUEUE Message
D0-DC: Unchanged
DD-DF: Unpredictable

v GET Message
D0: Prime block of the message
D1-DC: Unchanged
DD-DF: Unpredictable

v GET N Byte
D0: Prime block of the message
D1-DC: Unchanged
DD-DF: Unpredictable

v DEQUEUE Message
D0: Prime block of the message
D1-DC: Unchanged
DD-DF: Unpredictable

v WASH/PURGE All
D0-DF: Unchanged
DD-DF: Unpredictable

The input/output parameter list is returned to the user upon completion of every
queue service request. The Queue Manager also sets two types of indicators
(general and detailed) to communicate the actions taken (or attempted) by the
Queue Manager to the user as detailed in “General Return Codes” and “Detailed
Return Codes”.

General Return Codes
The general indicator returns one of these results:

v Successful completion - The type of information that exists within the detailed
indicator is:

– End of Message.

v Unsuccessful completion - The detailed indicator must be examined to further
understand the type of error incurred. The type of information that exists within
the detailed indicator is:
– Queue Empty
– I/O Error
– No Messages Available for Wash
– Get Message Function Not Valid
– Dequeue Function Not Specified
– Insufficient Core for Enqueue

v Parameter List Error

A parameter in the user supplied parameter list is in error. The detailed indicator
byte must be examined for one of the following indications:
– Function Not Supported
– Invalid Number of Bytes for Get
– Invalid Target Offset for Get
– Invalid Record ID

Detailed Return Codes
v End of Message

Queue Manager 273

The End of Message return code is related to the Get N Bytes function. When
the last part of the message is returned, the Queue Manager posts successful
completion in the general indicator and end of message in the detailed indicator.

v Queue Empty

The Queue Empty return code is posted in the detailed indicator byte when the
Queue Manager attempts to get a message from an empty QCE.

v I/O Error

The I/O Error return code is posted in the detailed indicator byte when an I/O
error has been detected during manipulation of file records.

v No Messages Available for Wash

The No Messages Available for Wash return code is posted in the detailed
indicator byte when the Wash function is requested and the file address of the
previously returned message is not present in the QCE.

v Get Message Function Not Valid

The Get Message Function Not Valid return code is posted in the detailed
indicator byte when the user requested to retrieve a message via Get N Bytes,
and before receiving the end of message indicator the user requested further
dequeueing via Get Message.

v Dequeue Function Not Specified

The Dequeue Function Not Specified return code is posted in the detailed
indicator byte when the user requested two consecutive Get operations without
issuing a Dequeue operation in between.

v Insufficient Core for Enqueue

The core block that corresponds to the record ID that the user specified is not
large enough to fit the prime block of the message being enqueued.

v Function Not Supported

The user has requested a function that is not supported by the Queue Manager.

v Invalid Number of Bytes for Get

The Invalid Number of Bytes for Get return code is posted in the detailed
indicator byte when the user has requested the Get N Bytes function with a
non-positive number of bytes, or insufficient space has been provided within the
core block on D0 for dequeueing.

v Invalid Target Offset for Get

The Invalid Target Offset for Get return code is posted in the detailed indicator
byte when the user has requested the Get N Bytes Function with a target offset
either negative or too large for dequeue.

v Invalid Record ID

The Invalid Record ID return code is posted in the detailed indicator byte when
the user has requested the Enqueue function with an invalid record ID.

274 TPF V4R1 ACF/SNA Data Communications Reference

Diagnostic Aids

TPF/SNA diagnostic and error processing is consistent with TPF philosophy;
recover from errors as quickly as possible and save as much information as
possible. TPF automatically records error information. This helps identify the causes
of frequent temporary errors. Users can optionally request TPF tracing and testing
services. Whenever possible, TPF avoids terminating sessions or deactivating
resources.

The TPF operator receives a message when a permanent error is detected. The
message specifies the name of the failing resource, the time that the error occurred,
and text to describe the error. These steps should be followed to accumulate
adequate diagnostic documentation:

v Save all console logs that pertain to the error. These logs reflect TPF’s actions
up to and including the error message.

v Obtain printouts of any traces initiated because of the error.

v Request and save status displays of the resources involved in the error.

v Initiate online testing of the devices involved in the error.

Deactivating the affected part of the network may temporarily circumvent the
problem. However, users should maintain a complete description of the network as
it existed before the error.

Trace Functions
TPF supports the following SNA communication trace functions:
v Operating system traces
v Path information unit (PIU) trace facility
v SNA I/O trace facility.

Operating System Traces
The TPF operating system traces monitor supervisor calls (SVCs) and input/output
(I/O) interrupts. These traces produce a detailed image of the environment at the
time the interrupt occurred. For more information about the realtime trace (RTT),
see the TPF Program Development Support Reference.

Path Information Unit (PIU) Trace Facility
The path information unit (PIU) trace facility provides a detailed trace of the data
transferred between the TPF system and remote resources. See Appendix D,
“Using the Path Information Unit (PIU) Trace Facility” on page 291 for more
information about the PIU trace facility.

SNA I/O Trace Facility
The SNA I/O trace facility provides a detailed I/O trace for SNA I/O interrupts that
occur during Network Control Program (NCP) XID exchanges, adjacent link station
(ALS) XID exchanges, and channel-to-channel (CTC) XID exchanges. Information
about significant steps in XID7 processing for CTC devices is also logged in this
table. It also provides a detailed I/O trace for NCP, ALS, and CTC asynchronous
interrupts. Normal data transfer operations and attention-only interrupts that occur
during NCP and ALS data transfer operations are not traced.

© Copyright IBM Corp. 1994, 2002 275

The I/O interrupts and the asynchronous interrupts are stored in a 4K-byte table
that operates in wrap-around mode. This SNA I/O trace table contains header data
and a maximum of 63 entries. Each entry in the trace table has a length of 64
bytes, which includes one byte that is used for status information. The following
data is stored in the SNA I/O trace table entries:

v Channel command word (CCW) index

v Condition code (CC)

v Channel status word (CSW)

v Command associated with the first CCW for NCP and ALS XID exchanges, or
the commands associated with the first two CCWs for CTC XID exchanges

v CTC status

v XID information field (I-field) contents.

The SNA I/O trace facility is initially active for each device defined in the symbolic
device address table (SDAT). The SDAT is part of the SNA keypoint that is defined
by the CK2SN data macro.

To display the contents of the SNA I/O trace table online, issue the ZDDCA
command using the XID dump tag. The SNA I/O trace table is also included in
system error dumps that have the control program keyword (ICP) specified in the
dump override table. For more information about the XID dump tag and the dump
override table, see the TPF Program Development Support Reference. For more
information about the ZDDCA command, see TPF Operations.

Reliability and Serviceability
TPF’s reliability and serviceability support is provided to maintain operation of the
network. It includes:

v Error Detection and Feedback:

Before acting upon any request, TPF analyzes the request for errors. If an error
is detected, TPF returns the request along with an error indicator.

v Hardware Error Recovery:

When possible, TPF support for I/O handlers and NCP attempts automatic
recovery from an error. If recovery is possible, processing continues. Otherwise,
a record of the error is written to the realtime log tape.

v NCP Slowdown:

TPF detects an NCP slowdown condition and assists the NCP in return to normal
operation.

Error Detection and Feedback
All TPF operator and application program-initiated requests are tested for errors.
Errors detected in an operator request result in the return to the CRAS terminal of
the request and an indication of the error. If an invalid condition is detected while
processing a request, TPF: 1) stops processing the request, 2) informs the operator,
and 3) resets the affected resources. TPF discards invalid application requests and
starts a system error dump to document the error.

In addition to invalid request notices, TPF also sends discrete error messages to
the system console. These messages describe unusual conditions that affect
operation of the network such as permanent hardware errors, communication line
failures, or negative responses to SNA commands.

276 TPF V4R1 ACF/SNA Data Communications Reference

Hardware Error Recovery
When an I/O interrupt occurs, TPF (via the appropriate error recovery procedure)
tries to determine the type of error and take the appropriate recovery action. When
a non-recoverable error is encountered, a message is written to the system console
and an error record is written to the realtime log tape.

The NCP provides recovery for the devices attached to it. When an NCP completes
error-recovery processing, it forwards a Maintenance Data Record (MDR) to TPF.
The NCP also maintains temporary error counters for each device. These counters
are sent to TPF (as MDRs) whenever the counters overflow or the NCP is
deactivated. MDRs are written to the realtime log tape.

The record of hardware errors on the realtime log tape is formatted and printed for
analysis offline.

NCP Slowdown
When an NCP’s message buffer is filled, the NCP automatically enters slowdown
mode. In slowdown mode, the NCP reduces the number of messages it accepts
from both the communication lines and host processors. Further, the NCP tries to
increase its output message rate. When NCP notifies TPF of a slowdown condition,
TPF stops sending data to the NCP. TPF continues to accept requests from
application programs, but queues those requests directed to a slowed NCP. When
an NCP exits slowdown mode, the queued requests are processed and sent. TPF
data collection programs record each occurrence of an NCP slowdown.

If an NCP remains in slowdown for an extended period of time, a large output
queue can build up in the TPF system. The SLOWTIME parameter on the SNAKEY
macro in keypoint 2 (CTK2) determines how long an NCP is allowed to be in
slowdown before the TPF system breaks the connection to the NCP.

See TPF ACF/SNA Network Generation for more information about the SNAKEY
macro.

CTC Slowdown
TPF recognizes buffer shortage conditions on the host on the other side of the CTC
connection. VTAM indicates slowdown in one of the control fields passed on a data
transfer operation. TPF honors this indication and stops initiating writes until a
VTAM write operation is received with the slowdown indicator reset. TPF responds
to attention interrupts by issuing the channel program with read buffers, but the
write count only includes the 8 bytes of control information.

To the receiver, the slowdown indicator means that the data that has been written is
now rejected. In slowdown, TPF includes the total data size in the write count.
VTAM only reads 8 bytes. TPF supports slowdown as a receiving system; that is, it
sets the slowdown bit if a read buffer is not available.

Diagnostic Aids 277

278 TPF V4R1 ACF/SNA Data Communications Reference

Data Collection/Reduction and Test Tools

TPF data collection/reduction programs provide data about the SNA network.
Specifically, these programs delineate message activity from:

v An NCP, CTC or ALS

v Application programs

TPF data collection and reduction is described in TPF System Performance and
Measurement Reference.

TPF provides the support functions listed below to test application programs. See
TPF Program Development Support Reference for additional information about
these functions.

v Realtime Trace (RTT)

Realtime Trace (RTT) permits users to trace TPF macros issued by programs
that process logical unit input messages. Users can trace one logical unit and/or
all logical units located on an NCP.

v Diagnostic Output Formatter

The DOF is used to format the RTT output. DOF provides a listing of: 1) input
and output messages for each logical unit, and 2) macros issued by application
programs.

© Copyright IBM Corp. 1994, 2002 279

280 TPF V4R1 ACF/SNA Data Communications Reference

Appendix A. Logical Unit Status (LUSTAT)

Note: The logical unit status information described in this section does not apply to
LU 6.2; see IBM Systems Network Architecture Format and Protocol
Reference Manual: Architecture Logic for LU Type 6.2 for this information.

A logical unit sends status information to its session partner via a mechanism called
logical unit status (LUSTAT). The format of the SNA request unit (RU) when status
information is sent is as follows:

Byte
0 = X'04' Indicates this is LUSTAT
1-2 = X'0001' Indicates component is now available

= X'0002' Component failure: Permanent error
= X'0003' Component failure: Insufficient resource

3-4 User field; these two bytes may be used as
an extension to bytes 1-2.

TPF only receives LUSTAT messages; it does not send them. Further, TPF does
not receive LUSTAT messages from the following logical units:

v IBM 3614/3624 Consumer Transaction Facility

v Logical units attached to the 3271 control units

LUSTAT messages from 3274/3276 attached logical units are passed to TPF’s
output message transmission (OMT) program. TPF needs this status information to
perform error processing. LUSTAT messages received from these logical units are
listed below. The term primary, as used here, refers to a display station. The term
secondary refers to a printer.

X'00010000' Component now available
X'0001B000' Secondary component now available
X'0001D000' Primary component now available
X'00020000' Component has no data to send
X'081CD000' Component failure: Permanent error in primary device
X'081CB000' Component failure: Permanent error in secondary device
X'082B0000' Temporary error; component available
X'08310000' Component powered off or disconnected

LUSTAT messages from all other logical units are passed to the application in the
associated message block on data level 0. In order to let the application program
distinguish between an SNA command and user data, the Expanded RCPL GDA
area will contain the RH combined with the Sequence Number. The RH contains
the RU category to distinguish between user data (FMD) and SNA commands (NC,
DFC, SC). SIGNAL messages are handled in the same manner.

© Copyright IBM Corp. 1994, 2002 281

282 TPF V4R1 ACF/SNA Data Communications Reference

Appendix B. General Format of the SNA BIND Command

BIND Images for TPF Supported Secondary Logical Units
Valid RU indicator settings for each supported logical unit are listed below. See the
IBM Systems Network Architecture Format and Protocol Reference Manual:
Architectural Logic for an explanation of a particular indicator. See “Acceptable
BIND Image For a Local Host Node SLU” on page 284, for bind images for a local
host node SLU.

Table 24. BIND Images for TPF-Supported Secondary Logical Units

Secondary
Logical Unit

BIND
TYPE

FM
PROF

TS
PROF

PRI
PROT

SEC
PROT

COMM
PROT

S-PACE MAXRU P-PACE

CLU X'01' X'03' X'03' X'B1' X'A0' X'3040' X'0001' X'0000' X'0200'

3614 directly
attached to a 37x5

X'01' X'03' X'04' X'30' X'30' X'0040' X'0101' X'8585' X'0000'

3614 attached to a
3601/3602

X'01' X'03' X'04' X'30' X'30' X'0040' X'0101' X'8585' X'0000'

Terminals attached
to 3271

X'01' X'02' X'02' X'00' X'40' X'0000' X'0000' X'0000' X'0000'

Terminals attached
to 3274/3276 (See
note 1 on
page 284 and note
2 on page 284.)

X'01' X'03' X'03' X'B1' X'90' X'3080' X'0000' X'8585' X'0000'

Remote host node
SLU

X'01' X'04' X'04' X'B1' X'B1' X'7080' X'3F3F' X'8785' X'0000'

ALC/NEF logical
units

X'00' X'02' X'03' X'F0' X'90' X'0800' X'0000' X'8787' X'0000'

3600 LU single
thread,
non-recoverable,
brackets not used

X'01' X'03' X'04' X'D0' X'90' X'4040' X'0000' X'8785' X'0000'

3600 LU single
thread,
recoverable,
brackets not used

X'01' X'03' X'04' X'F0' X'90' X'4040' X'0000' X'8785' X'0000'

LU single thread,
recoverable,
brackets are used

X'01' X'03' X'04' X'F1' X'91' X'7080' X'0000' X'8785' X'0000'

3600 LU single
thread,
non-recoverable,
brackets are used

X'01' X'03' X'04' X'D1' X'91' X'7080' X'0000' X'8785' X'0000'

3600 LU
multi-thread,
non-recoverable

X'01' X'03' X'04' X'D0' X'90' X'4000' X'0000' X'8785' X'0000'

Batch transfer LU X'01' X'03' X'04' X'F0' X'F0' X'4080' X'0000' X'8785' X'0000'

FTPI X'01' X'03' X'03' X'90' X'90' X'0040' X'0000' X'8989' X'0000'

FMMR X'00' or
X'01'

X'02' X'03' X'80' X'80' X'0000' X'3F00' X'8787' X'0000'

© Copyright IBM Corp. 1994, 2002 283

Table 24. BIND Images for TPF-Supported Secondary Logical Units (continued)

Secondary
Logical Unit

BIND
TYPE

FM
PROF

TS
PROF

PRI
PROT

SEC
PROT

COMM
PROT

S-PACE MAXRU P-PACE

LU 6.2 X'00' X'13' X'07' X'B0' X'B0' X'D0B1' X'3F3F' X'F8F8' X'3F3F'

NPSI (See note
3.)

X'01' X'03' X'03' X'90' X'90' X'0040' X'0000' X'8989' X'0000'

NEF (ALCI) X'01' X'03' X'03' X'B0' X'90' X'0800' X'0000' X'8787' X'0000'

Notes:

1. For SLU type 1 (printer in SCS mode):

Byte 18 = X’F9’
Bit 0 = 1 BS, CR, INP, END, LF, HT, VT May Be Sent

1 = 1 SHF May Be Sent
2 = 1 SVF May Be Sent
3 = 1 SVF (Channel) And SEL May Be Sent
4 = 1 SLD May Be Sent
5 = 0 Reserved
6 = 0 Reserved
7 = 1 TRN, IRS May Be Used

2. For SLU type 2 (CRT) Or SLU type 3 (Printer):

a. For a 3277/3284/3286/3288:

Byte 24 = X’01’ For Model 11 (12 By 40 Screen Only)
= X’02’ For Model 12 (24 By Screen Only)

b. For a 3278/3287/3289:

Byte 20 = X’18’ Default Line Number Of 24 For Mod 2,3,4

21 = X’50’ Default Column Number Of 80 For Mod 2,3,4

22 = X’18’ Alternate Line Number of 24 For Mod 2

23 = X’50’ Alternate Col Number Of 80 For Mod 2,3,4

24 = X’7F’ Refer To Bytes 20-23 For Screen Definition

3. For NPSI, the defined TPF BIND images using TS Profile 4 are dynamically modified during session initialization
processing to indicate that TS Profile 3 is currently being used. This modification applies only to resources
defined as using PSV routines that supply the user DFC layer. This precludes the use of the ‘Set and Test
Sequence Numbers (STSN)’ session control command.

Acceptable BIND Image For a Local Host Node SLU

Note: This BIND image does not apply to LU 6.2; see IBM Systems Network
Architecture Format and Protocol Reference Manual: Architecture Logic for
LU Type 6.2 for this information.

Byte Value Meaning

0 X'31' BIND Request Code

1 0000....
....0001

BIND Format 0 BIND Type 1 (non-negotiable)

2 X'04' FM Profile 4 (LU-LU)

3 X'04' TS Profile 4 (LU-LU)

284 TPF V4R1 ACF/SNA Data Communications Reference

Byte Value Meaning

4 1.......
.0......
..11....
....0...
.....0..
......0.
.......1

Primary LU Protocol
Multiple RU Chains
Immediate Request Mode
Definite/Exception Response
No 2 Phase Commit
Reserved
No Compression
Primary may send end bracket (EB)

5 1.......
.0......
..11....
....0...
.....0..
......0.
.......X

Secondary LU Protocol
Multiple RU Chains
Immediate Request Mode
Definite/Exception Response
No 2 Phase Commit
Reserved
No Compression
Secondary may/may not send EB (See Note 1)

6 0.......
.1......
..1.....
...X....
....0...
.....0..
......0.
.......0

Common Protocol
No Segmentation
FMH Allowed
Bracket Protocol Used
Bracket Termination Rule (See Note 2)
Alternate Code Not Used
Sequence Numbers Not Available For Sync Point Resynch
BIS Not Sent
BIND Cannot Be Queued

7 10......
..0.....
...0....
....00..
......0.
.......0

Common Protocol
Half Duplex Flip/Flop
PLU has Recovery Responsibility
SLU is Contention Winner
Alternate Code Processing Identifier
No Control Vectors After SLU Name
Reset State is SEND for SLU

8 ..xxxxxx SLU Send Pacing Count

9 ..xxxxxx SLU Receive Pacing Count

10 xxxx....
....xxxx

SLU to PLU RU Size (See Note 3)
Mantissa
Exponent

11 xxxx....
....xxxx

PLU to SLU RU Size (See Note 4)
Mantissa
Exponent

12 ..xxxxxx PLU Send Pacing Count

13 ..xxxxxx PLU Receive Pacing Count

14 00000000 LU Type
LU Type 0

Notes:

1. This indicator may be set to zero or 1. Zero tells the SLU not to send the end
bracket indicator. One tells the SLU to send the indicator. If begin bracket is
sent, TPF sends both the begin and end bracket indicators.

2. Either conditional (rule 1) or unconditional (rule 2) termination is used.

3. TPF sends a request unit size of 3840 or the value specified in the PLU BIND
command; TPF sends the smaller of the 2 values.

Appendix B. General Format of the SNA BIND Command 285

4. The request unit size must not exceed 3840.

286 TPF V4R1 ACF/SNA Data Communications Reference

Appendix C. Interface Requirements for System Utility
Programs

RID and RVT Conversions
Use the INQRC and RIDCC macros to perform RID and RVT conversions. For
more information about these macros, see TPF General Macros.

The NAU conversion program (COVX) is still provided for migration purposes. You
can still use COVX for RID and RVT conversions, however; it is recommended that
you use INQRC and RIDCC instead.

You can no longer use your own programs for RID and RVT conversions. Any
references to such programs must be changed to use the INQRC or RIDCC macro.

Retrieving NCB and SPA Data Records (CSNB)
You must use the CSNB segment to retrieve node control block (NCB) or scratch
pad area (SPA) records in the applications that you develop. For more information
refer to “Allocating or Retrieving a Scratch Pad Area (SPA) for a Dynamic LU” on
page 190 or Migration Guide. You can also use this segment to retrieve the
following:

v The file address of an NCB record or SPA record

v An NCB record or an SPA record

v An NCB record or SPA record with either the Find and Wait (FINWC) macro, or
the Find, Wait and Hold (FIWHC) macro.

If an error occurs, you can return to the calling program or exit using the EXITC
macro.

The CSNB segment is activated using the ENTRC macro.

Input requirements are as follows:
Register 1 must point to a 5-byte work area aligned on a halfword
boundary. The format is:

Bytes 0-1 Contains the 2-byte resource identifier
(RID) for the requested NCB or SPA.

0-2 Contains the 3-byte resource identifier
(RID) for the requested NCB or SPA.

3 Available data level for which the data
record may be retrieved. This must be a
multiple of 8. For example, X’00’ means
data level 0, X’08’ means data level 1 and
X’10’ means data level 2, etc.

4 Option Byte

Bit 0 = 0. The NCB is requested
= 1. The SPA is requested

1 = 0. Retrieve the data record
= 1. Return the file address of the data

record (no retrieval is required).
2 = 0. Issue a FIWHC macro to retrieve the

record

© Copyright IBM Corp. 1994, 2002 287

= 1. Issue a FINWC macro to retrieve the
record

3 = 0. Return to caller on an error condition
1. Issue EXITC on an error condition

4 = 0. Retrieve 2-byte RID from bytes 0-1.
1. Retrieve 3-byte RID from bytes 0-2.

5-7 Reserved and should be set to zero.

CNSB output is as follows:

• Registers:

R1 = 0 If the requested function was performed
successfully

= 1 If an error was encountered in calculating the
file address of the record

= 2 If an error was encountered on FINWC or
FIWHC macro

= 3 If the input parameter is invalid
R1 - 5 = Same as on entry
6 - 7 = Contents unpredictable

• Data Levels:

CE1CRx = Address of the main storage block containing the
requested data record

CE1FAx = File address of the requested record

• Entry Control Block Work Area

EBX000 - EBX009 are used by this program

CE1UR2 is the beginning of this program’s save area for caller’s
registers 2 - 5

Select A Thread Utility Routine (SELEC)
This macro interfaces user application programs that support network qualified
names to the select a thread utility programs. It is intended that this interface
become the single interface to select a thread as user’s migrate to take advantage
of new networking functions such as network qualified names. See TPF General
Macros for more information about the SELEC macro.

Select A Thread Utility Program (CSF0)
This program performs the following services for a local host node SLU when it
communicates with a remote primary logical unit:

v Constructs the output RCPL based on the caller’s choice of either: 1) a specific
SLU thread, or 2) the SLU with the least number of output messages on queue.

v Returns the node names of the session partners given the input RCPL
associated with a message sent between the two.

Users issue an ENTRC macro to CSF0 when the request is to build an RCPL; an
ENTRC to CSF1 when the names of the session partners are requested. The input
requirements when requesting an output RCPL to be built are as follows:
Registers:

R1: Address of a 20 byte parameter list in the following
format:

Byte 0-7 Node name of the destination. If the name

288 TPF V4R1 ACF/SNA Data Communications Reference

is less than 8 characters, it must be
padded with blanks (X’40’) on the right.

8-15 Node name of the origin. This is the 4
character TPF application name (as defined
in the MSGRTA macro of SIP) with 4 blank
characters appended to it.

16 One byte thread specification.

= 0 if the output RCPL is to be built
using the SLU thread with the
least number of messages on its
queue.

= a binary number (1-255) of the
specific thread for which the
output RCPL is to be built. For
example, the first SLU generated
after the TPF application is
designated as thread number 1, the
second SLU is thread number 2,
etc.

17-19 = 3 spare bytes which must be set to
zero.

R7: Address of an available core block which can be used by this
program.

When requesting node names of the session partners the input is as follows:
Registers:

R1: Address of a 20 byte parameter list in the following
format:

Byte 0-15 An input RCPL (RC0PL) associated with a
message received on the host node SLU-PLU
session.

16-19 Spare bytes. Not used.

R7: Address of an available core block which can be used by this
program.

Expected output from CSF0/CSF1 includes:

1. When requesting an output RCPL to be build:
Registers:

R0: Same as on input

R1: Same as on input except the data area contains an output
RCPL which has the following format (refer to RC0PL):

RCPLDES3 (3 bytes) - This is the 3-byte resource
identifier of the selected SLU.

RCPLDESP (1 byte) - Set to the CPU ID of this TPF host.
RCPLORGA (4 bytes) - The four character name of the

TPF application.
RCPLCTL0 (1 byte) - Equals X’42’.
RCPLCTL1 (1 byte) - Equals X’00’.
RCPLCTL2 (1 byte) - Equals X’00’.
RCPLCTL3 (1 byte) - Equals X’00’.

Note: The application must set the appropriate
indicators in RCPLCTL0 (for RCPL0FMT) and RCPLCTL2

Appendix C. Interface Requirements for System Utility Programs 289

before issuing the ROUTC macro.

R2-R7: Same as on input

Entry Control Block Work Area

EBCM01 Return Code
= X’00’ The request was performed successfully
= X’04’ Invalid node name specified
= X’08’ Invalid PLU/SLU pair

- SLU not in session with PLU
- not a PLU/SLU combination

= X’0C’ RIDCC Error
= X’10’ SLU not bound/not in-session
= X’24’ Invalid Request

- not cross-domain environment
- not LU

= X’20’ SLU not available
= X’24’ Discrepancy between input qualifier and input

SLU
= X’28’ Qualifier invalid

- does not point to valid SLU

2. When requesting the node name of the session pair
Registers:

R0 - Same as on input

R1 - Same as on input except the data area now contains the
following:

Byte 0-7 Node name of the destination (left
justified and padded with blanks).

8-15 Node name of the origin.

16 Equals the thread number of the SLU
receiving the message.

R2 -R7 - Same as on input.

290 TPF V4R1 ACF/SNA Data Communications Reference

Appendix D. Using the Path Information Unit (PIU) Trace
Facility

The path information unit (PIU) trace facility provides a detailed trace of the data
transferred between the TPF system and remote resources. Each time the TPF
system sends or receives data, some, all, or none of that data is stored in an entry
in the PIU trace table depending on the resources that you are tracing. Later, you
can display the entries in the PIU trace table online, or write the PIU trace table to a
real-time tape and create a PIU print (PIUPRT) report to view or print offline.

The data stored in a PIU trace table entry can be a PIU in FID2 or FID4 format, a
network layer packet (NLP), or an 8-byte channel-to-channel (CTC) header (which
is included in all read and write channel programs during normal CTC data transfer
operations). You can trace the data for all of the resources in the network or for only
specific resources in the network. You can also trace only particular types of data,
such as data for high-performance routing (HPR) traffic or data for network control
(NC) commands and virtual route (VR) pacing requests and responses.

About the PIU Trace Table
The PIU trace table resides in core storage in the TPF system. The size of the PIU
trace table is defined in keypoint 2 (CTK2) using the TRACSZ parameter in the
SNAKEY macro. See TPF ACF/SNA Network Generation for more information
about the SNAKEY macro.

The number of entries in the PIU trace table varies depending on the size of the
PIU trace table and how many bytes of the request/response unit (RU) are being
stored in the PIU trace table.

The PIU trace table operates in wraparound mode; that is, once all of the entries in
the PIU trace table are used, the TPF system begins overwriting the oldest entries
with the new data.

To store data in the PIU trace table, you must first start the PIU trace facility and
specify which data you want to trace. When you no longer want to trace data, you
can stop the PIU trace facility. At any time, you can display the status of the PIU
trace facility and the type of data you are tracing.

Starting the PIU Trace Facility and Specifying Which Data to Trace
Use the ZNTRP command to start the PIU trace facility and specify which data to
trace. The TPF system stores the data being traced in entries in the PIU trace table.
The data stored in a PIU trace table entry can be a PIU in FID2 or FID4 format, an
NLP, or an 8-byte CTC header (which is included in all read and write channel
programs during normal CTC data transfer operations).

You can use the PIU trace facility to trace the following:

v All the data transferred between the TPF system and remote resources

v Only data for a specific resource, such as a logical unit (LU), adjacent link station
(ALS), network control program (NCP), cross-domain resource manager (CDRM),
channel-to channel (CTC) link, or system services control point (SSCP)

v Only HPR traffic, which includes ROUTE_SETUP commands and all NLPs on all
rapid transport protocol (RTP) connections

© Copyright IBM Corp. 1994, 2002 291

v Only data flowing over a specific RTP connection

v Only data flowing for HPR state changes, which includes HPR ROUTE_SETUP
commands, RTP connections starting, RTP connections stopping, and path
switches

v Only network control (NC) commands, virtual route (VR) pacing requests, and VR
pacing responses flowing for NCPs or CTC links.

You can start more than one trace at the same time; for example, you can trace the
data for LU X and LU Y. Depending on how you define your traces, some traces
may overlap other traces. For example, if you start tracing the data for LU X and
then later start tracing the RTP connection being used by LU X, the trace defined
for the RTP connection will overlap the trace defined for LU X. In addition, if you
have traces defined for specific resources and then later start tracing all resources,
the trace defined for all resources will overlap the traces defined for specific
resources.

At any time, you can display information about the status of the PIU trace facility
and the data being traced. See “Displaying Information about the PIU Trace Facility”
on page 294 for more information.

To start the PIU trace facility, do the following:

1. Enter the ZNTRP command with the START parameter specified to start the
PIU trace facility and specify which data you want to trace.

2. Enter the ZNTRP command with the RUSZ or CRUSZ parameter specified to
specify how many bytes of the request/response unit (RU) to store in the PIU
trace table. See “Defining How Much of the RU to Store in the PIU Trace Table”
on page 293 for more information.

3. Enter ZNTRP START TAPE to start writing the PIU trace table to a real-time
tape. See “Writing the PIU Trace Table to a Real-Time Tape” on page 293 for
more information.

Stopping the PIU Trace Facility
Use the ZNTRP command to stop the PIU trace facility. You can stop the PIU trace
facility completely or you can stop only particular traces that you defined. See
“Starting the PIU Trace Facility and Specifying Which Data to Trace” on page 291
for more information about defining traces.

To stop the PIU trace facility completely, enter ZNTRP STOP ALLR . All of the
traces that you defined will end and data will no longer be stored in the PIU trace
table.

To stop tracing all resources in the TPF system, but to continue the traces that you
defined for specific resources, enter ZNTRP STOP ALL . For example, assume you
were tracing data for LU X and then started tracing all resources in the TPF system.
After you enter ZNTRP STOP ALL, the PIU trace facility will continue tracing data
for only LU X.

To stop tracing HPR traffic or HPR state changes, enter ZNTRP STOP HPR.

To stop a trace that was defined for a specific resource, enter the ZNTRP command
with the STOP parameter and the NETID, ID, or RTP parameters specified. If the
trace that you stopped overlapped with another trace, the PIU trace facility will
continue that other trace. For example, assume you were tracing LU X and then

292 TPF V4R1 ACF/SNA Data Communications Reference

started tracing the NCP being used by LU X. If you stop the trace for the NCP, the
PIU trace facility will continue tracing LU X.

Defining How Much of the RU to Store in the PIU Trace Table
The PIU trace facility automatically stores (or traces) 21 bytes of the RU in the PIU
trace table. Use the ZNTRP command to increase or decrease how much of the RU
is traced. You can define how much of the RU to trace for user data messages. You
can also define how much of the RU to trace for SNA commands, data that flows
on CDRM-CDRM sessions, and data that flows on CP-CP sessions.

To define how much of the RU to trace for user data messages, enter the ZNTRP
command with the RUSZ parameter specified.

To define how much of the RU to trace for SNA commands, data that flows on
CDRM-CDRM sessions, and data that flows on CP-CP sessions, enter the ZNTRP
command with the CRUSZ parameter specified.

See TPF Operations for more information about the ZNTRP command.

Writing the PIU Trace Table to a Real-Time Tape
Before you can create a PIUPRT report to view or print offline, you must write the
PIU trace table to a real-time tape. See “Using the Offline PIU Print (PIUPRT) Utility
to Create a PIUPRT Report” on page 301 for more information about creating a
PIUPRT report.

To write the PIU trace table to a real-time tape, do the following:

1. Ensure you have a real-time tape mounted for the TPF system. See TPF
Operations for more information about mounting a tape.

2. Enter the ZNTRP command with the START parameter specified to start the
PIU trace facility and specify which data you want to trace. See “Starting the
PIU Trace Facility and Specifying Which Data to Trace” on page 291 for more
information.

3. Enter ZNTRP START TAPE to start writing the PIU trace table to the real-time
tape.

The PIU trace facility will automatically write each 4-KB block of the PIU trace table
to the real-time tape when that 4-KB block becomes full. If the length of the queue
to the real-time tape becomes too large, the PIU trace facility stops writing the PIU
trace table to tape until the queue becomes smaller. The maximum tape queue
length is defined in keypoint 2 (CTK2) using the PIUTAPEQ parameter in the
SNAKEY macro. See TPF ACF/SNA Network Generation for more information
about the SNAKEY macro.

When you are ready to create a PIUPRT report, stop writing the PIU trace table to
the real-time tape. To stop writing the PIU trace table to the real-time tape, do the
following:

1. Enter ZNTRP STOP TAPE. The PIU trace facility will write the current 4-KB
block of the PIU trace table to the real-time tape regardless of whether the
current 4-KB block is full.

2. Remove the real-time tape so that it can be processed by the PIUPRT utility.
See TPF Operations for more information about removing a real-time tape.

See TPF Operations for more information about the ZNTRP command.

Appendix D. Using the Path Information Unit (PIU) Trace Facility 293

Displaying Information about the PIU Trace Facility
Use the ZNTRP command to display information about the PIU trace facility.

Enter ZNTRP DISPLAY OPTIONS to display the status of the PIU trace facility. The
information displayed indicates the following:

v Whether the PIU trace table is being written to a real-time tape.

v How much of the RU is being traced for user data messages.

v How much of the RU is being traced for SNA commands, data that flows on
CDRM-CDRM sessions, and data that flows on CP-CP sessions.

Enter ZNTRP DISPLAY to display information about the data being traced. The
information displayed indicates whether you are tracing the data for all the
resources in the network or for only specific resources. The information displayed
also indicates whether you are tracing only a particular type of data.

See TPF Operations for more information about the ZNTRP command.

Examples
The status of the PIU trace facility is displayed in the following example.

User: ZNTRP DISPLAY OPTIONS

System: NTRP0045I 23.23.21 PIU TRACE OPTIONS INFORMATION
PIU TRACE IS ACTIVE TO REAL TIME TAPE
200 BYTES OF RU ARE BEING TRACED FOR USER DATA MESSAGES
100 BYTES OF RU ARE BEING TRACED FOR SNA COMMANDS
END OF DISPLAY

Data being transferred between the TPF system and all resources in the network is
being traced in the following example.

User: ZNTRP DISPLAY

System: NTRP0042I 16.28.22 PIU TRACE IS ACTIVE FOR ALL RESOURCES

Only network control (NC) commands and VR pacing requests and responses being
transferred between the TPF system and the N42E720 resource are being traced in
the following example.

User: ZNTRP DISPLAY

System: NTRP0048I 12.31.25 PIU TRACE ACTIVE FOR THE FOLLOWING SELECTED RESOURCES
NETID NAME RTP INDEX DEVICE TYPE VRONLY
-------- -------- --------- -------------- ------

N42E720 ALS/NCP/CTC YES
END OF DISPLAY

Only data transferred on the specified RTP connection is being traced in the
following example.

294 TPF V4R1 ACF/SNA Data Communications Reference

User: ZNTRP DISPLAY

System: NTRP0048I 12.31.25 PIU TRACE ACTIVE FOR THE FOLLOWING SELECTED RESOURCES
NETID NAME RTP INDEX DEVICE TYPE VRONLY
-------- -------- --------- -------------- ------

000001 RTP CONNECTION
END OF DISPLAY

Only data transferred over sessions with the specified LUs is being traced in the
following example.

User: ZNTRP DISPLAY

System: NTRP0048I 12.31.25 PIU TRACE ACTIVE FOR THE FOLLOWING SELECTED RESOURCES
NETID NAME RTP INDEX DEVICE TYPE VRONLY
-------- -------- --------- -------------- ------

G623 LU
RES0 LU

END OF DISPLAY

Displaying the PIU Trace Table Online
Use the ZNPIU command to display the PIU trace table online. You can display all
of the PIU trace table or only part of the PIU trace table. You can also display the
HPR control messages in the PIU trace table and specify the format in which you
want to display the PIU trace table.

Enter the ZNPIU command with the ALL parameter specified to display all of the
PIU trace table entries. When you display all of the PIU trace table entries, the
oldest entry (that is, the entry with the oldest time stamp) is displayed first, followed
by the next oldest entry, and so on. Therefore, the last entry displayed is the newest
entry in the PIU trace table.

You can also enter the ZNPIU command and specify the number of PIU trace table
entries that you want to display. When you do this, the newest entries in the PIU
trace table are displayed. For example, if you specify that you want to display only
11 entries from the PIU trace table, the 11 newest entries are displayed.

Keep in mind that the PIU trace facility can continue to store new data in the PIU
trace table while you are displaying entries from the PIU trace table. Therefore, the
newest entries continue to change as more data is stored in the PIU trace table.
For example, if you display 11 entries from the PIU trace table, wait a few seconds
while data continues to flow and then display 11 entries from the PIU trace table
again, the 11 entries displayed the second time are different from the 11 entries
displayed the first time.

Enter the ZNPIU command with the CONTROL parameter specified to include HPR
control messages in the information that is displayed. An HPR control message is
an NLP that contains a network layer header (NHDR) and transport header (THDR),
but no data. If you do not specify the CONTROL parameter, the HPR control
messages are not displayed.

When you enter the ZNPIU command to display the PIU trace table, the last line of
the information displayed tells you how many entries are in the PIU trace table. This
number includes HPR control messages. Remember that HPR control messages
are included in the information displayed only when you specify the CONTROL
parameter. Therefore, if the PIU trace table contains only HPR control messages

Appendix D. Using the Path Information Unit (PIU) Trace Facility 295

and you enter the ZNPIU command without the CONTROL parameter, no entries
are displayed. However, the number of entries in the PIU trace table is displayed.

There are two formats in which you can display the PIU trace table. You can create
a compacted display of the PIU trace table or a formatted display of the PIU trace
table.

Creating a Compacted Display of the PIU Trace Table
To create a compacted display of the PIU trace table, enter the ZNPIU command
with the COMPACT parameter specified; also specify the CONTROL parameter if
you want to include HPR control messages in the information that is displayed. See
TPF Operations for more information about the ZNPIU command.

In the compacted display of the PIU trace table, each PIU trace table entry is
displayed on a separate line and only part of the RU being traced is included.
Different information is displayed depending on whether the PIU trace table entry is
for an FID4 PIU, FID2 PIU, NLP, or 8-byte CTC header.

v For an FID4 PIU, the following information is displayed:

RW Read/write operation code

IN Channel command word (CCW) area index

DRID Destination resource identifier (RID)

ORID Origin RID

DNA Destination network address

ONA Origin network address

VRSQ Virtual route sequence number

SEQ Sequence number of the session

CNT Combined length of the request/response header (RH) and the
RU

RH Request/response header

RU Request unit.

v For an FID2 PIU, the following information is displayed:

RW Read/write operation code

IN Channel command word (CCW) area index

DRID Destination resource identifier (RID)

ORID Origin RID

LNKHDR Link header

TH Bytes 0 and 1 of the FID2 transmission header (TH)

SID Session identifier

SEQ Sequence number of the session

RH Request/response header

RU Request unit.

v For an NLP, the following information is displayed:

RW Read/write operation code

296 TPF V4R1 ACF/SNA Data Communications Reference

IN Channel command word (CCW) area index

DRID Destination resource identifier (RID)

ORID Origin RID

RTP Rapid transport protocol control block (RTPCB) index

PCID Procedure correlation identifier

SEQ Sequence number of the session

RH Request/response header

RU Request unit.

v For an 8-byte CTC header, the following information is displayed:

RW Read/write operation code

IN Channel command word (CCW) area index

RU 8-byte CTC header.

Examples
Figure 95 shows an example of a compacted display of the PIU trace table. The
header in the information shown contains three lines. The first line describes the
information displayed for an FID4 PIU. The second line describes the information
displayed for an FID2 PIU. The third line describes the information displayed for an
NLP.

The example shows four entries in the PIU trace table. The entries are displayed in
the following order:

v FID4 PIU

v FID2 PIU

v NLP

v 8-byte CTC header.

See IBM Systems Network Architecture Network Product Formats for more
information about PIU and NLP formats.

Creating a Formatted Display of the PIU Trace Table
To create a formatted display of the PIU trace table, enter the ZNPIU command with
the FORMAT or LONG parameter specified; also specify the CONTROL parameter
if you want to display the HPR control messages.

User: ZNPIU COMPACT 4

System: NPIU0004I 17.36.50 PIU TRACE TABLE
RW IN DRID ORID DNA ONA VRSQ SEQ CNT RH RU
RW IN DRID ORID LNKHDR TH SID SEQ RH RU
RW IN DRID ORID RTP PCID SEQ RH RU
32 02 000002 00000F 0B0000 1F0000 0000 0000 0018 2B0000 0F000001000000001
52 01 000070 000136 00100000 2F00 0101 0000 830100 000001
31 01 000204 00023E 000001 E383BE95283C9EC8 0001 EB8000 A1
05 0B 003F0001055E0544
35 PIUS IN TRACE TABLE

Figure 95. Compacted Display of the PIU Trace Table

Appendix D. Using the Path Information Unit (PIU) Trace Facility 297

For the formatted display of the PIU trace table, you can also specify the
HEADERS parameter to display the NHDR and THDR for the NLPs in the PIU trace
table. If you do not specify the HEADERS parameter, the NHDR and THDR are not
displayed. Be sure to specify the HEADERS parameter when you specify the
CONTROL parameter (because HPR control messages contain only an NHDR and
a THDR).

You can also specify the NODATA parameter if you do not want to display the RU
for PIUs and NLPs. This can be useful when you want to view control data at the
RTP connection level. If you do not specify the NODATA parameter, the RU is
displayed.

See TPF Operations for more information about the ZNPIU command.

In the formatted display of the PIU trace table, each PIU trace table entry is
formatted and the entire RU being traced is displayed (if you did not specify the
NODATA parameter). In addition, the RH indicators and THDR optional segments
(for NLPs) are translated and displayed for you.

Different information is displayed depending on whether the PIU trace table entry is
for an FID4 PIU, FID2 PIU, NLP, or 8-byte CTC header.

v For an FID4 PIU, the following information is displayed:

RWI Read/write operation code

CCW Channel command word (CCW) area index

DNAME Destination name

ONAME Origin name

PCID Procedure correlation identifier

TIME Time stamp

DRID Destination resource identifier (RID)

ORID Origin RID

DNA Destination network address

ONA Origin network address

ERVR Explicit route, virtual route, and transmission priority

VRSQ Virtual route sequence number

SEQ Sequence number of the session

CNT Combined length of the request/response header (RH) and the
RU

RH Request/response header

RU Request unit

RH INDICS Translated RH indicators. See “RH Indicators” on page 312 for
more information.

v For an FID2 PIU, the following information is displayed:

RWI Read/write operation code

CCW Channel command word (CCW) area index

DNAME Destination name

298 TPF V4R1 ACF/SNA Data Communications Reference

ONAME Origin name

PCID Procedure correlation identifier

TIME Time stamp

DRID Destination resource identifier (RID)

ORID Origin RID

LNKHDR Link header

TH Bytes 0 and 1 of the FID2 transmission header (TH)

SID Session identifier

SEQ Sequence number of the session

RH Request/response header

RU Request unit.

RH INDICS Translated RH indicators. See “RH Indicators” on page 312 for
more information.

v For an NLP, the following information is displayed:

RWI Read/write operation code

CCW Channel command word (CCW) area index

DNAME Destination name

ONAME Origin name

PCID Procedure correlation identifier

TIME Time stamp

DRID Destination resource identifier (RID)

ORID Origin RID

LNKHDR Link header

TCID1 Transport connection identifier (TCID) that the TPF system
assigned to the RTP connection

TCID2 TCID that the remote RTP endpoint assigned to the RTP
connection

SEQ Sequence number of the session

RTP RTPCB index

SA1 Session address (SA) that the TPF system assigned to the
LU-LU session

SA2 SA that the remote RTP endpoint assigned to the LU-LU session

BSN Byte sequence number (BSN) of the RTP connection

NHDR Network layer header (NHDR)

THDR Transport header

SEGMENTS Indicates that the following optional segments in the THDR are
present:

ARB Adaptive Rate-Based segment (X'22')

CF Connection Fault segment (X'12')

Appendix D. Using the Path Information Unit (PIU) Trace Facility 299

CIE Connection Identifier Exchange segment (X'10')

COB Client Out of Band segment (X'0F')

CS Connection Setup segment (X'0D')

SI Switching Information segment (X'14')

STATUS Status segment (X'0E')

FID5 FID5 transmission header (TH)

RH Request/response header

RU Request unit

RH INDICS Translated RH indicators. See “RH Indicators” on page 312 for
more information.

v For an 8-byte CTC header, the following information is displayed:

RWI Read/write operation code

CCW Channel command word (CCW) area index

CTC HDR 8-byte CTC header.

Examples
Figure 96 on page 301 shows an example of a formatted display of the PIU trace
table. The entries are displayed in the following order:

v FID4 PIU

v FID2 PIU

v NLP

v 8-byte CTC header.

300 TPF V4R1 ACF/SNA Data Communications Reference

See IBM Systems Network Architecture Network Product Formats for more
information about PIU and NLP formats.

Using the Offline PIU Print (PIUPRT) Utility to Create a PIUPRT Report
Use the offline PIUPRT utility to create a PIUPRT report, which you can view or
print offline. Unlike using the ZNPIU command to display the PIU trace table online,
the PIUPRT utility offers you more flexibility to change the information contained in
the PIUPRT report. For example, you can print in the PIUPRT report only the data
transferred between the TPF system and a specific remote resource, or only the
data that flowed over a specific RTP connection. See “Defining the PIUPRT Report”
on page 303 for more information.

User: ZNPIU FORMAT 4 HEADERS

System: NPIU0005I 09.52.59 PIU TRACE TABLE
RWI-06 CCW-0B DNAME- TPFA ONAME- TPFB

PCID-0000000000000000 TIME-54.24 DRID-000001 ORID-000002
DNA-0A0000 ONA-0B0001 ERVR-0001 VRSQ-0005 SEQ-0001 CNT-0020 RH-EB8000
RU-ACTCDRM RH INDICS- RSP SC FI PRSP

0 0 14021111 40404040 40404040 05000000
16 10 000B3F06 0600274E B40020FE 00

RWI-51 CCW-01 DNAME- VTAMNET.VTAM2 ONAME- APPC
PCID-C43E70C65E829A43 TIME-53.56 DRID-800002 ORID-000102
LNKHDR-00FE0000 TH-2C00 SID-0101 SEQ-0023 RH-0B9081
RU- RH INDICS- REQ FMD FI OIC ER BB CEB

0 0 0E0502FF 0003D000 000422F0 F0F30027003..
16 10 12C48000 00000018 60E383BE 953FE66D .D...... -T....W.
32 20 F40DE5E3 C1D4D5C5 E34BE5E3 C1D4F206 4.VTAMNE T.VTAM2.
48 30 81000201 31004712 CA0580C1 0000103CA....
64 40 00F4E5E3 C1D4D5C5 E34BC1D7 D7C3103D .4VTAMNE T.APPC..
80 50 00F3E5E3 C1D4D5C5 E34BC7D4 E3F10326 .3VTAMNE T.GMT1..
96 60 DA093E07 8080FFFF FFFF1282 00F3E5E33VT
112 70 C1D4D5C5 E34BD3C3 D3F8C4C4 007512C5 AMNET.LC L8DD...E
128 80 00040180 000008E2 F3F2F7F0 40404000S 3270....
144 90 000C2C01 087BC3D6 D5D5C5C3 E3144612CO NNECT...
160 A0 80150DE5 E3C1D4D5 C5E34BE5 E3C1D4F2 ...VTAMN ET.VTAM2
176 B0 21164700 00000098 2D000000 00000000
192 C0 00017100 00000014 46128016 0DE5E3C1VTA
208 D0 D4D5C5E3 4BE5E3C1 D4F22116 47000000 MNET.VTA M2......
224 E0 00882D00 00000000 00000001 71000000
240 F0 00 .

RWI-32 CCW-01 DNAME- GMT1 ONAME- VTAMNET.LCL8DD
PCID-E383BE953FE66DF4 TIME-54.00 DRID-000204 ORID-00023E
LNKHDR-009D0000 TCID1-2D105A9AC4000008 TCID2-020DFB2D00000317 SEQ-023E
RTP-000008 SA1-30C480EEBD5EB606 SA2-0000000000000000 BSN-00000000
NHDR

0 0 C208DAFF 00 B....
THDR SEGMENTS- CIE ARB

0 0 2D105A9A C4000008 3804000B 00000068D...
16 10 00000000 03228000 000A8F20 00000000
32 20 03100000 820DFB2D 00000317

FID5-5D00023E30C480EEBD5EB606 RH-EB8000
RU-BIND RH INDICS- RSP SC FI PRSP

0 0 31010000 00008002 0000B700 80000000
16 10 00000000 00000000 00000000 00000060-
32 20 16E383BE 953FE66D F40DE5E3 C1D4D5C5 .T....W. 4.VTAMNE
48 30 E34BE5E3 C1D4F262 08800000 00060000 T.VTAM2.
64 40 032B1601 01144612 80150DE5 E3C1D4D5VTAMN
80 50 C5E34BE5 E3C1D4F2 21 ET.VTAM2 .

RWI-06 CCW-0B CTC HDR-003A00010205024D
426 PIUS IN TRACE TABLE

Figure 96. Formatted Display of the PIU Trace Table

Appendix D. Using the Path Information Unit (PIU) Trace Facility 301

Another difference between creating a PIUPRT report and using the ZNPIU
command to display the PIU trace table online is that you create a PIUPRT report
from the PIU trace table on a real-time tape rather than in core storage. If you enter
the ZNPIU command to display the PIU trace table online while you are tracing
active resources, the oldest entries in the PIU trace table may be written over with
new data. Therefore, after this happens, you cannot display those entries online.
However, because you create a PIUPRT report from the PIU trace table on a
real-time tape, you never have this problem.

The PIUPRT utility runs on an MVS system. Before you can use the PIUPRT utility
to create a PIUPRT report, you must do the following:

1. Compile the PIUPRT utility

2. Submit the object code to the object library

3. Link the object code to the link library.

To create a PIUPRT report, do the following:

1. Follow the steps in “Starting the PIU Trace Facility and Specifying Which Data
to Trace” on page 291 to start the PIU trace facility and specify which data you
want to trace.

2. When you are ready to create a PIUPRT report, perform a tape switch for the
real-time tape. See TPF Operations for more information about performing a
tape switch.

3. Create the job control language (JCL) needed to run the PIUPRT utility. See
“Sample JCL for the PIUPRT Utility” for an example.

4. Define the PIUPRT report by updating the PARM= statement in the PIUPRT
JCL. This allows you to specify the format of the PIUPRT report and the data
you want to include in it. See “Defining the PIUPRT Report” on page 303 for
more information.

5. Submit the PIUPRT JCL to the MVS system to run the PIUPRT utility and create
the PIUPRT report. See “PIUPRT Utility Return Codes” on page 312 for
information.

6. View or print the PIUPRT report.

Sample JCL for the PIUPRT Utility
Figure 97 is an example of the JCL that you can use to run the PIUPRT utility.
Change the tape number, shown as XXXXXX, to the tape number for the real-time
tape that contains the PIU trace table. Change the link library name, shown as
ACP.DEVP.TEST.LK, to the name of your link library.

//PIU EXEC PGM=PIUPRT,PARM=’FORMAT ALL’
//STEPLIB DD DISP=SHR,DSN=ACP.DEVP.TEST.LK
//PRINT DD SYSOUT=A,DCB=(LRECL=133,BLKSIZE=3990,RECFM=FBA)
//RTL DD DSN=RTL,DCB=(LRECL=4095,BLKSIZE=32760,RECFM=U),
// DISP=OLD,LABEL=(2,BLP),UNIT=TAPE,VOL=SER=XXXXXX
//SYSUDUMP DD SYSOUT=A
/*
//* RECFM=VB FOR TAPES CREATED IN BLOCKED FORMAT.

Figure 97. JCL for the PIUPRT Utility

302 TPF V4R1 ACF/SNA Data Communications Reference

Defining the PIUPRT Report
Use the PARM= statement in the PIUPRT JCL to define the PIUPRT report. You
can specify the data that you want to print in the PIUPRT report as well as how you
want to format the PIUPRT report.

Unlike using the ZNPIU command to display a specific number of entries from the
PIU trace table, you can actually define the type of data that you want to print in a
PIUPRT report. For example, you can print the entire PIU trace table on the
real-time tape or you can print only the data that flowed over a particular RTP
connection. You can also print only the data for a particular LU-LU session or print
only the data that has a time stamp in a specified range.

Specify the CONTROL parameter for the PARM= statement to include HPR control
messages in the PIUPRT report. An HPR control message is an NLP that contains
an NHDR and THDR, but no data. If you do not specify the CONTROL parameter,
the HPR control messages are not printed in the PIUPRT report.

Depending on the data contained in the PIU trace table on the real-time tape and
the values that you specify for the PARM= statement in the PIUPRT JCL, a PIUPRT
report can contain PIUs in FID2 or FID4 format, NLPs, and 8-byte CTC headers
(which are included in all read and write channel programs during normal CTC data
transfer operations). There are also two formats in which you can create the
PIUPRT report. Use the PARM= statement to specify whether you want to create a
compacted PIUPRT report or a formatted PIUPRT report.

See “Sample Compacted PIUPRT Report” on page 307 and “Sample Formatted
PIUPRT Report” on page 309 for an example of a compacted PIUPRT report and a
formatted PIUPRT report.

PARM= Statement for the PIUPRT JCL
Many parameters are available for the PARM= statement in the PIUPRT JCL that
allow you to change the contents of the PIUPRT report to your specific needs. The
following information shows the syntax for the PARM= statement and describes the
parameters.

Appendix D. Using the Path Information Unit (PIU) Trace Facility 303

** PIU EXEC PGM=PIUPRT PARM *1

PARM:

,PARM='COMPACT All'
COMPACT

,PARM=' Opts '
FORMAT Control
LONG HEADERS NODATA

Opts:

8

All

HPr
HSa sadr
Leid leid1

leid2
NAme name

netid.
NE nadr1

nadr2
NET4 nadr1

nadr2
Pcid pcid
RId rid1

rid2
RTp index
SA sub1

sub2
SID0 sid
SID1 sid
STatchng
SUB sub1

sub2
S0 sid
S1 sid
TCid tcid
TIme ti1 ti2 dt

All
includes in the PIUPRT report all of the path information units (PIUs) and
network layer packets (NLPs), except for HPR control messages, in the PIU
trace table.

COMPACT
creates a compacted PIUPRT report in which each entry is printed on a single
line. See “Sample Compacted PIUPRT Report” on page 307 for an example of
a compacted PIUPRT report.

304 TPF V4R1 ACF/SNA Data Communications Reference

Control
includes the HPR control messages in the PIUPRT report. If you do not specify
this parameter, the HPR control messages are not included in the PIUPRT
report.

FORMAT
creates a formatted PIUPRT report. See “Sample Formatted PIUPRT Report” on
page 309 for an example of a formatted PIUPRT report.

HEADERS
prints the network layer header (NHDR) and transport header (THDR) for each
HPR network layer packet (NLP) included in the PIUPRT report. If you do not
specify this parameter, the NHDR and THDR are not printed for the NLPs
included in the PIUPRT report.

HPr
includes only HPR traffic (NLPs and ROUTE_SETUP commands) in the
PIUPRT report.

HSa sadr
includes in the PIUPRT report only the NLPs for the specified HPR LU-LU
session, where sadr is the 16-digit hexadecimal session address of the HPR
LU-LU session.

Leid leid1 leid2
includes in the PIUPRT report only the PIUs for the specified origin or
destination network extension facility (NEF) logical endpoint identifier (LEID) or
range of LEIDs, where leid1 and leid2 are 6-digit hexadecimal LEIDs.

LONG
creates a formatted PIUPRT report. See “Sample Formatted PIUPRT Report” on
page 309 for an example of a formatted PIUPRT report.

Note: This parameter is the same as the FORMAT parameter.

NAme netid.name
includes in the PIUPRT report only the PIUs and NLPs for the specified
resource, where netid is the 1- to 8-character network identifier and name is the
1- to 8-character resource name.The network ID and name of a resource must
both begin with a letter (A–Z), @, #, or $. The remaining characters can be
letters (A–Z), numbers (0–9), @, #, or $.

Use the asterisk (*) as a wildcard character to specify a group of network
identifiers or resource names that begin or end with a common string of
characters. For example, to include in the PIUPRT report all of the resources
that have a name beginning with T46, specify T46*.

NE nadr1 nadr2
includes in the PIUPRT report only the PIUs for the specified origin or
destination network address or range of network addresses, where nadr1 and
nadr2 are 6-digit hexadecimal network addresses.

NET4 nadr1 nadr2
includes in the PIUPRT report only the PIUs for the specified origin or
destination network address or range of network addresses, where nadr1 and
nadr2 are 6-digit hexadecimal network addresses.

NODATA
omits the RU from the PIU trace table entries contained in the PIUPRT report. If
you do not specify this parameter, the RU for each PIU trace table entry
contained in the PIUPRT report is printed.

Appendix D. Using the Path Information Unit (PIU) Trace Facility 305

Pcid pcid
includes in the PIUPRT report only the PIUs and NLPs for the specified
procedure correlation identifier (PCID), where pcid is the 16-digit hexadecimal
PCID.

RId rid1 rid2
includes in the PIUPRT report only the PIUs and NLPs for the specified origin
or destination resource identifier (RID) or range of RIDs, where rid1 and rid2
are 6-digit hexadecimal RIDs.

RTp index
includes in the PIUPRT report only the NLPs for the specified RTP connection,
where index is the 6-digit hexadecimal RTPCB index of the RTP connection.

SA sub1 sub2
includes in the PIUPRT report only the PIUs for the specified origin or
destination subarea or range of subareas, where sub1 and sub2 are 4-digit
hexadecimal subareas.

SID0 sid
includes in the PIUPRT report only the PIUs for a specific PU 2.1 LU-LU
session, where sid is the 4-digit hexadecimal TPF-assigned session identifier
(ID).

SID1 sid
includes in the PIUPRT report only the PIUs for a specific PU 2.1 LU-LU
session, where sid is the 4-digit hexadecimal NCP-assigned session ID.

STatchng
includes in the PIUPRT report only ROUTE_SETUP commands and NLPs for
RTP connections that are starting, ending, or performing a path switch.

SUB sub1 sub2
includes in the PIUPRT report only the PIUs for the specified origin or
destination subarea or range of subareas, where sub1 and sub2 are 4-digit
hexadecimal subareas.

S0 sid
includes in the PIUPRT report only the PIUs for a specific PU 2.1 LU-LU
session, where sid is the 4-digit hexadecimal TPF-assigned session ID.

S1 sid
includes in the PIUPRT report only the PIUs for a specific PU 2.1 LU-LU
session, where sid is the 4-digit hexadecimal NCP-assigned session ID.

TCid tcid
includes in the PIUPRT report only NLPs for the specified transport connection
identifier (TCID), where tcid is the 16-digit hexadecimal TCID.

TIme ti1 ti2 dt
includes in the PIUPRT report only the PIUs and NLPs in the specified
time-stamp range, where ti1 and ti2 are the beginning and ending times in the
format hh.mm.ss, and dt is the date in the format ddmmm; for example 11:45:00
12:00:00 15DEC.

Sample PARM= Statements for the PIUPRT JCL
A compacted PIUPRT report of all the data in the PIU trace table, including HPR
control messages, is created in the following example.

//PIU EXEC PGM=PIUPRT,PARM=’CONTROL’

306 TPF V4R1 ACF/SNA Data Communications Reference

A compacted PIUPRT report is created in the following example. The report
includes all data transferred between the TPF system and remote resources that
have a name beginning with T46.

//PIU EXEC PGM=PIUPRT,PARM=’NA T46*’

A formatted PIUPRT report of all HPR traffic is created in the following example.
HPR control messages and the NHDR and THDR for each NLP are included in the
PIUPRT report. However, no RU data is included in the PIUPRT report.

//PIU EXEC PGM=PIUPRT,PARM=’FORMAT HEADERS NODATA CONTROL HPR’

A compacted PIUPRT report is created in the following example. The report
includes all of the PIUs and NLPs in the PIU trace table that have an origin or
destination RID in the range 000001–000100 and a time stamp in the range
9:30–9:40 on August 14.

//PIU EXEC PGM=PIUPRT,PARM=’RID 000001 000100 TIME 09:30:00 09:40:00 14AUG’

Sample Compacted PIUPRT Report
To create a compacted PIUPRT report, specify the COMPACT parameter in the
PARM= statement of the PIUPRT JCL; also specify the CONTROL parameter if you
want to print the HPR control messages in the PIUPRT report. See “Defining the
PIUPRT Report” on page 303 for more information.

In a compacted PIUPRT report, each PIU, NLP, or CTC header is printed on a
single line and only part of the RU that was traced is included. Different information
is printed in the compacted PIUPRT report depending on whether you are printing
FID2 PIUs, FID4 PIUs, NLPs, or CTC headers.

v For an FID4 PIU, the following information is printed:

RW Read/write operation code

IN Channel command word (CCW) area index

DRID Destination resource identifier (RID)

ORID Origin RID

DNA Destination network address

ONA Origin network address

VRSQ Virtual route sequence number

SEQ Sequence number of the session

CNT Combined length of the request/response header (RH) and the
RU

RH Request/response header

RU Request unit.

v For an FID2 PIU, the following information is printed:

RW Read/write operation code

IN Channel command word (CCW) area index

DRID Destination resource identifier (RID)

ORID Origin RID

LNKHDR Link header

TH Bytes 0 and 1 of the FID2 transmission header (TH)

Appendix D. Using the Path Information Unit (PIU) Trace Facility 307

SID Session identifier

SEQ Sequence number of the session

RH Request/response header

RU Request unit.

v For an NLP, the following information is printed:

RW Read/write operation code

IN Channel command word (CCW) area index

DRID Destination resource identifier (RID)

ORID Origin RID

RTP RTPCB index

PCID Procedure correlation identifier

SEQ Sequence number of the session

RH Request/response header

RU Request unit.

v For an 8-byte CTC header, the following information is printed:

RW Read/write operation code

IN Channel command word (CCW) area index

RU 8-byte CTC header.

Figure 98 shows an example of a compacted PIUPRT report. The header in the
PIUPRT report contains three lines. The first line describes the information printed
for an FID4 PIU. The second line describes the information printed for an FID2 PIU.
The third line displayed describes the information printed for an NLP.

The example prints four entries in the PIU trace table in the following order:

v FID4 PIU

v FID2 PIU

v NLP

v 8-byte CTC header.

See IBM Systems Network Architecture Network Product Formats for more
information about PIU and NLP formats.

TRANSACTION PROCESSING FACILITY SNA PIU TRACE OUTPUT

A DISPLAY OF PIUS BASED ON THE FOLLOWING USER PARAMETERS WILL BE PERFORMED:
COMPACT ALL

TRANSACTION PROCESSING FACILITY PIU TRACE REPORT
RW IN DRID ORID DNA ONA VRSQ SEQ CNT RH RU
RW IN DRID ORID LNKHDR TH SID SEQ RH RU
RW IN DRID ORID RTP PCID SEQ RH RU
************************* THESE PIUS WERE WRITTEN TO TAPE ON 18AUG AT 12.17.32 *************************
32 01 000002 000010 0B0000 230000 0000 0000 0018 2B0000 0F00000100000000230000000B010100000023FF00
51 02 000174 000138 007B0000 2D00 0101 0174 6B8000 31010202004000020000A7008000000000000000000000000000000FE5E3C1D4D5C5E34BC7
31 02 00023E 00091A 000001 E383BE951E86713C 0001 039000 F5C31140401D4011C1C21DF011C1501D4011C2D21DF011C2601D4011C3E21DF011C3F01D40
05 0B 001D000198991015

Figure 98. Compacted PIUPRT Report

308 TPF V4R1 ACF/SNA Data Communications Reference

Sample Formatted PIUPRT Report
To create a formatted PIUPRT report, specify the FORMAT or LONG parameter in
the PARM= statement of the PIUPRT JCL; also specify the CONTROL parameter if
you want to include HPR control messages in the PIUPRT report.

For a formatted PIUPRT report, you can also specify the HEADERS parameter to
print the NHDR and THDR for NLPs in the PIU trace table. If you do not specify the
HEADERS parameter, the NHDR and THDR are not printed. Be sure to specify the
HEADERS parameter when you specify the CONTROL parameter

You can also specify the NODATA parameter if you do not want to print the RU for
PIUs and NLPs in the PIUPRT report. This can be useful when you want to view
control data at the RTP connection level. If you do not specify the NODATA
parameter, the RU is printed.

In a formatted PIUPRT report, each PIU, NLP, or CTC header is formatted and the
entire RU that was traced is printed (if you did not specify the NODATA parameter).
In addition, the RH indicators and the THDR optional segments (for NLPs) are
translated and printed in the PIUPRT report.

Different information is printed in the formatted PIUPRT report depending on
whether you are including FID2 PIUs, FID4 PIUs, NLPs, or CTC headers.

v For an FID4 PIU, the following information is printed:

RWI Read/write operation code

CCW Channel command word (CCW) area index

DNAME Destination name

ONAME Origin name

DRID Destination resource identifier (RID)

ORID Origin RID

PCID Procedure correlation identifier

TIME Time stamp

DNA Destination network address

ONA Origin network address

ERVR Explicit route, virtual route, and transmission priority

VRSQ Virtual route sequence number

SEQ Sequence number of the session

CNT Combined length of the request/response header (RH) and the
RU

RH Request/response header

RU Request unit

RH INDICS Translated RH indicators. See “RH Indicators” on page 312 for
more information.

v For an FID2 PIU, the following information is printed:

RWI Read/write operation code

CCW Channel command word (CCW) area index

Appendix D. Using the Path Information Unit (PIU) Trace Facility 309

DNAME Destination name

ONAME Origin name

DRID Destination resource identifier (RID)

ORID Origin RID

PCID Procedure correlation identifier

TIME Time stamp

LNKHDR Link header

TH Bytes 0 and 1 of the FID2 transmission header (TH)

SID Session identifier

SEQ Sequence number of the session

RH Request/response header

RU Request unit.

RH INDICS Translated RH indicators. See “RH Indicators” on page 312 for
more information.

v For an NLP, the following information is printed:

RWI Read/write operation code

CCW Channel command word (CCW) area index

DNAME Destination name

ONAME Origin name

DRID Destination resource identifier (RID)

ORID Origin RID

PCID Procedure correlation identifier

TIME Time stamp

LNKHDR Link header

TCID1 Transport connection identifier (TCID) that the TPF system
assigned to the RTP connection

TCID2 TCID that the remote RTP endpoint assigned to the RTP
connection

SEQ Sequence number of the session

RTP RTPCB index

SA1 Session address (SA) that the TPF system assigned to the
LU-LU session

SA2 SA that the remote RTP endpoint assigned to the LU-LU session

BSN Byte sequence number (BSN) of the RTP connection

NHDR Network layer header (NHDR)

THDR Transport header

SEGMENTS Indicates that the following optional segments in the THDR are
present:

ARB Adaptive Rate-Based segment (X'22')

310 TPF V4R1 ACF/SNA Data Communications Reference

CF Connection Fault segment (X'12')

CIE Connection Identifier Exchange segment (X'10')

COB Client Out of Band segment (X'0F')

CS Connection Setup segment (X'0D')

SI Switching Information segment (X'14')

STATUS Status segment (X'0E')

FID5 FID5 transmission header (TH)

RH Request/response header

RU Request unit

RH INDICS Translated RH indicators. See “RH Indicators” on page 312 for
more information.

v For an 8-byte CTC header, the following information is printed:

RWI Read/write operation code

CCW Channel command word (CCW) area index

CTC LINK Name of the CTC link

CTC HDR 8-byte CTC header.

Figure 99 on page 312 shows an example of a formatted PIUPRT report. The
entries are printed in the following order:

v FID4 PIU

v FID2 PIU

v NLP

v 8-byte CTC header.

Appendix D. Using the Path Information Unit (PIU) Trace Facility 311

See IBM Systems Network Architecture Network Product Formats for more
information about PIU and NLP formats.

PIUPRT Utility Return Codes
When you submit the PIUPRT JCL to run the PIUPRT utility, you will receive one of
the return codes in the following table:

Table 25. Return Codes for the PIUPRT Utility

Return
Code

Description

0 PIUPRT report was created with no errors.

1 PIUPRT report was not created. The parameters specified for the PARM=
statement in the PIUPRT JCL were not correct. See “Defining the PIUPRT
Report” on page 303 for more information.

2 PIUPRT report was not created. An error occurred while reading the input file.

RH Indicators
The following information describes the RH indicators that are translated in the
formatted display of the PIU trace table and the formatted PIUPRT report.

−RSP Negative response

BB Begin brackets

CD Change direction

CEB Conditional end bracket

CS Code selection indicator

TRANSACTION PROCESSING FACILITY SNA PIU TRACE OUTPUT

A DISPLAY OF PIUS BASED ON THE FOLLOWING USER PARAMETERS WILL BE PERFORMED:
FORMAT HEADERS ALL

TRANSACTION PROCESSING FACILITY PIU TRACE REPORT
************************* THESE PIUS WERE WRITTEN TO TAPE ON 18AUG AT 12.17.08 *************************
RWI=52 CCW=01 DNAME= TPFB ONAME= N34H710 DRID= 000002 ORID= 000010 PCID= TIME= 08.12

DNA= 0B0000 ONA= 230000 ERVR= 0000 VRSQ= 0000 SEQ= 0001 CNT= 0034 RH= 2B0000
RU = ER-ACT-RP RH INDICS: REQ NC FI OIC NR

0 (0) 0C000001 00010100 00002300 00000000 0B800000 00000000 00000000 00A9BF17z..
32 (20) F51D3A23 54000000 00002300 00000001 00 5.......

--
RWI=31 CCW=02 DNAME= ELMNGR ONAME= VTAMNET.CLUBB002 DRID= 0000EE ORID= 00005F PCID= E383BE956D67FFA3 TIME= 15.33

LNKHDR= 00790000 TH = 0101 SID= 0101 SEQ= 0465 RH= EB8000
RU = BIND RH INDICS: RSP SC FI PRSP

0 (0) 31010703 30200002 0081D6D6 81000000 00000000 00000000 0000000E E5E3C1D4aOOa...VTAM
32 (20) D5C5E34B C5D3D4D5 C7D90000 10E5E3C1 D4D5C5E3 4BC3D3E4 C2C2F0F0 F26016E3 NET.ELMN GR...VTA MNET.CLU BB002-.T
64 (40) 83BE956D 67FFA30D E5E3C1D4 D5C5E34B E5E3C1D4 F22C0A01 08404040 40404040 c.n...t. VTAMNET. VTAM2...
96 (60) 402D0908 C9D5E3C5 D9C1C3E3INTE RACT

--
RWI=31 CCW=01 DNAME= VTAMNET.JFT10010 ONAME= JFT1 DRID= 00092B ORID= 00091C PCID= E383BE95415060AE TIME= 59.13

LNKHDR= 00DD0000 TCID1= 1F9C92CAC2000005 TCID2= 0D5CAAC700000326 SEQ= 092B
RTP= 000005 SA1= 30C250A1C3567004 SA2= 0000000000000000 BSN= 000005FA
NHDR

0 (0) C2088000 0220D000 00000000 0000FF00 B.......
THDR SEGMENTS= ARB

0 (0) 0D5CAAC7 00000326 3C040008 000000A9 000005FA 03228000 0010A211 00000000 .*.G....zs.....
FID5= 5D00092BB0C250A1C3567004 RH= 6B8000
RU = BIND RH INDICS: REQ SC FI OIC DR

0 (0) 31010303 B1903082 01018585 81010200 00000000 18500000 7E00000C E5E3C1D4b ..eea...&.. =...VTAM
32 (20) D5C5E34B D1C6E3F1 00050004 244A0810 E5E3C1D4 D5C5E34B D1C6E3F1 F0F0F1F0 NET.JFT1¢.. VTAMNET. JFT10010
64 (40) 6016E383 BE954150 60AE0DE5 E3C1D4D5 C5E34BE5 E3C1D4F2 2B160101 14461280 -.Tc.n.& -..VTAMN ET.VTAM2
96 (60) 150DE5E3 ..VT

--
RWI=06 CCW=0B CTC LINK = V2CTCL1 CTC HDR = 03D200012B836A60

Figure 99. Formatted PIUPRT Report

312 TPF V4R1 ACF/SNA Data Communications Reference

DFC Data flow control PIU

DR Definite response requested

EB End brackets

ED Enciphered data

ER Exception response requested

FI Format indicator

FIC First in chain

FMD Function management data PIU

LIC Last in chain

MIC Middle in chain

NC Network control PIU

NR No response requested

OIC Only in chain

PAC Pacing request or pacing response

PID Padded data

PRSP Positive response

QR Queued response

REQ Request

RLW Request larger window size

RSP Response

SC Session control PIU

SDI Sense data indicator.

Including the PIU Trace Table in System Error Dumps
To include the PIU trace table in system error dumps, use the ZIDOT command to
specify the SNA keyword (ISNA) in the dump override table. See TPF Operations
for more information about the ZIDOT command.

Appendix D. Using the Path Information Unit (PIU) Trace Facility 313

314 TPF V4R1 ACF/SNA Data Communications Reference

Appendix E. VTAM Mode Table Entries

Figure 100 and Figure 101 contain valid VTAM mode table entries for LU devices
supported by TPF. The tables are intended to aid in the understanding of VTAM
mode table entries for LUs that TPF recognizes for each supported device. This is
what the VTAM mode table should look like if LUTYPE is coded LUTYPE=ANY.

MODENT PARAMETERS and their respective valid values for TPF not reflected in
the tables are:

TYPE=1
designates non-negotiable BIND. TPF supplies TYPE=1 regardless of the
values in the suggested BIND.

ENCR=0
designates no encryption supported. Note that this does not rule out private
protocol encryption as is supported with 3600 devices. TPF supplies ENCR=0
regardless of the values in the suggested BIND.

COS=cosname
specifies class_of_service name and is valid in all mode table entries.

TPF will determine the device type and reflect this in the RVT at BIND time.

BIND Hex Offset-> 02 03 04 05 06-7 08 09 0A-B 0C
FM- TS- PRI- SEC- COM- SSN- SRC- PSN-

TPF-Descript. PROF PROF PROT PROT PROT DPAC VPAC RUSIZES DPAC

FMMR 2 3 80 80 0000 3F 0 8787 0

NEF 2 3 F0 90 0800 0 0 8787 0

3614 3 4 30 30 0080 1 1 8585 0

3600 Multi-thread/
non-recoverable 3 4 D0 90 4000 0 0 8785 0

3600 Single thread/
non-recoverable/
brackets 3 4 D1 91 7080 0 0 8785 0

3600 Single thread/
recoverable/
brackets 3 4 F1 91 7080 0 0 8785 0

SLU_P (rec) 4 4 B1 B0 7080 3F 3F 8785 0

Figure 100. VTAM Mode Table Entries - Non-3270 LU0. Valid combinations of non-3270 LU0
mode table entry values. PSERVIC is hex 0 for all entries.

© Copyright IBM Corp. 1994, 2002 315

BIND Hex Offset-> 02 03 04 05 06-7 08 09 0A-B 0C-D
LU FM- TS- PRI- SEC- COM- SSN- SRC- PSN-
Prof TPF-Image PROF PROF PROT PROT PROT DPAC VPAC RUSIZES DPAC
--
(TPF TRMEQ Label) PSERVIC BIND Offset-----> 0E 0F--11 12 13 14-5 16-7 18 19
--
LU0 3271-12 2 2 00 40 0000 0 0 8585 0
(TP77M2) 24x80 3277-2 00 000000 00 00 0000 0000 02 00
(TP84M2) 24x80 3284/86-2 00 000000 00 00 1850 0000 02 00

LU1 3274/6-x1C 3 3 B1 90 3080 0 0 8585 0
(TPLU1M1) 3287/9 w/SCS 2k 01 000000 F9 00 0000 0000 00 00
(TPLU1M2) 3287/9 w/SCS 4k 01 000000 F9 00 0000 0000 00 00

LU2 3274/6-x1C 3 3 B1 90 3080 0 0 8585 0
(TP77L2) 24x80 3277-2 02 000000 00 00 0000 0000 02 00
(TP78M2) 24x80 3278-2 02 000000 00 00 1850 0000 7E 00
(TP78M2) 24x80 3278-2,3,4 02 000000 00 00 1850 1850 7F 00
(TP78M3) 24x80 3278-3 02 000000 00 00 1850 2050 7F 00
(TP78M4) 24x80 3278-4 02 000000 00 00 1850 2850 7F 00

LU3 3274/6-x1C 3 3 B1 90 3080 0 0 8585 0
(TP87M2) 24x80 3287/89-2 03 000000 00 00 1850 0000 7E 00
(TP87M2) 24x80 3287/89-2,3,4 03 000000 00 00 1850 1850 7F 00
(TP87M2) 24x80 3287/89-2,3,4 03 000000 00 00 1850 2050 7F 00
(TP87M3) 24x80 3287/89-3 03 000000 00 00 1850 2050 7F 00
(TP87M4) 24x80 3287/89-4 03 000000 00 00 1850 2850 7F 00

Notes:

1. The TPF terminal equate (TRMEQ) labels define the valid terminal types for
resources which may communicate with TPF applications. For resources
defined to TPF as TYPE=ANY, TPF will set the RVT device type 2 field
(RV1DVTP2) from the VTAM PSERVIC values received in the SESINIT
command from the logon manager, based on the PSERVIC values defined
above. For non-3270 devices, PSERVIC value must be zero.

2. LU0 printer presentation field X'13' - X'14' may need to be zeroed when the
BIND is built. The field is non-zero to alert TPF to mark RV1DVTP2 as a printer.

Figure 101. VTAM Mode Table Entries - 3270s. Valid combinations of 3270 mode table entry
values.

316 TPF V4R1 ACF/SNA Data Communications Reference

Appendix F. TPF Message Processing Flow User Extensions

This section details how you can extend TPF terminal support. The key feature of
this extended support are user-written programs that transform the protocol used by
the terminal into the standard TPF Application Program Interface. This extended
support may be performed as part of your normal application process or as a
separate application front ending your normal application process. Similarly,
although it may also be used for other SNA protocols, this discussion focuses on
using the PSV exits to implement a Communication and Transmission Control
Program (CTCP) for the NPSI Generalized Access to X.25 Terminal Extension
(GATE) environment. See “Process Selection Vector (PSV)” on page 253 for
detailed information on PSVs.

TPF Inbound Message Flow Extensions
Figure 102 on page 318 illustrates the extended TPF inbound message flow.

© Copyright IBM Corp. 1994, 2002 317

The PSV name is passed to the exit as a way of identifying the functions and
processing required. The PSV name may be used to infer the characteristics of the
input message, based upon its source, because each PSV name is unique. A PSV
name may share a process with other PSVs or may be associated with a unique
process.

When control is returned to COMMSRCE from the exit routine, COMMSRCE then:

v Sets the ECB flag to indicate either an SNA or non-SNA message.

v Sets the ECB field EBROUT to the RID or LEID returned in the RCPL origin field.
This field is used by the System Error routines to return a message to the
terminal, if an error occurs in delivering or processing the message.

v Starts the appropriate trace and data collection routines to capture information for
debugging and performance analysis.

ALC
TI

SLC
EP

SLC
OP0

High
Speed

COMMSRCE

R
O
U
T
E
R

IN LEID
APPL

OUT
Non

SNA

TPF
Networks

IATA

SLC

Protocol
Handling

Presentation
Handling

TPF
Applications

SNA
COMMSRCE

Non

SNA

IN RID
APPL

OUT

Transaction
Program

NEF
NCP

NPSI
NCP

S
N
A

O
P
Z
E
R
O

L
U
6
2

O
P
Z
E
R
OSNA

NCP

IATA/AX25

X.25
DEV

ASYN
DEV

SNA
LU

SNA
LU

PSDN

PSDN

PSDNPSDNPSDNPSDN

Data Flow

AX001
AX002

NEF

Non

SNA

SNA

PS

INPUT
PSV

EXITS

Figure 102. Extended TPF Inbound Message Flow

318 TPF V4R1 ACF/SNA Data Communications Reference

v Starts the appropriate routine to deliver the message to the destination set in the
RCPL. The destination can be:
– an application,
– the Log Processor,
– the Unsolicited Message Package,
– an LEID Addressed End Point, or
– a RID Addressed Logical Unit.

TPF Outbound Message Flow Extensions
Figure 103 illustrates the extended TPF outbound message flow.

ROUTC Exit
As shown in the Figure 103, immediately preceding the PSV exit in the ROUTC
code, is the user ROUTC Exit. For an illustration of the user ROUTC Exit, see

ALC
TI

SLC
EP

SLC
Out

R
O
U
T
E
R

IN LEID
APPL

OUT

TPF
Networks

IATA

SLC

Protocol and I/O
Handler

Presentation
Handler

TPF
Applications

NEF
NCP

NPSI
NCP

S
N
A

O
U
T

SNA
NCP

IATA/AX25

SNA
LU

X.25
DEV
DEV

PSDN

ASYN
DEV

PSDN

SNA
LU

PSDN

Data Flow

ROUTC ALC
Out

IN RID
APPL

OUT ROUTC

PS

TPF/APPC
TP

ROUTC

TPF/APPC
Verbs

NEF

ROUTC

EXIT

AX001
AX002

OUTPUT

PSV

EXITS

Figure 103. Extended TPF Outbound Message Flow

Appendix F. TPF Message Processing Flow User Extensions 319

Figure 94 on page 255. See TPF System Installation Support Reference for
additional information about user exits. This exit provides you with the opportunity to
dynamically indicate the PSV routine to be selected for a message. This exit is
required for messages that have been presented to ROUTC using the LEID
interface.

ROUTC macro code starts the PSV routine indicated on return from the user
ROUTC Exit, or the PSV routine previously associated with the RID of the
destination LU, if the message was presented to ROUTC using a RID interface.

The exit routine is expected to issue the ROUTC macro to send the message to its
actual destination. When the exit routine completes its processing it should issue an
EXITC macro to return control to the system.

Optionally, the exit routine may need to queue the message on DASD before
transmission. TPF provides a generalized queuing package to allow the user to
queue messages. See “Queue Manager” on page 269 for more information.

320 TPF V4R1 ACF/SNA Data Communications Reference

Appendix G. Sample TPF CTCP Implementation Using PSVs

A TPF Communications and Transmission Control Program (CTCP) is a user-written
control program that manages the data flow between devices accessed through a
Packet Switched Data Network (PSDN) and existing or new TPF applications. A
TPF CTCP is a collection of one or more ECB-controlled programs implemented as
a standard TPF application or as a Process Selection Vector (PSV). The main
difference of implementing a CTCP as a TPF application, versus a TPF PSV, is
related to which side of the TPF ROUTC Application Program Interface (API) the
CTCP processing occurs.

A CTCP is required when either a Generalized Access to X.25 Transport Extension
(GATE) or Dedicated Access to X.25 Transport Extension (DATE) is specified as an
NCP Packet Switching Interface (NPSI) option for handling an X.25 link connected
to a PSDN. The information presented in this appendix is based upon the
requirements of an interface between a TPF/CTCP and the NPSI/GATE option.

The following sections cover a suggested X.25 Control Block structure to be defined
by you for a GATE CTCP implementation using PSV routines to handle X.25
commands and X.25 data messages. These sections are based on the flows shown
in Figure 102 on page 318 and Figure 103 on page 319.

Introduction to CTCP Functions
A TPF/CTCP is required to handle the NPSI commands and data messages that
flow between NPSI and TPF on the NPSI to CTCP LU-LU sessions in the GATE
environment, as shown in Figure 104.

TPF

APPL

CTCP

NCP

NPSI (GATE)

MCH-LU VC-LU VC-LU

LLC 4 = GATELU-LU
Session
Paths

Figure 104. TPF/NPSI Sessions Involving a CTCP

© Copyright IBM Corp. 1994, 2002 321

The NPSI commands, which flow between NPSI and the CTCP, control access to
the services of the X.25 Packet Switched Data Network (PSDN). The data flows
between NPSI, the CTCP, and the application(s) are used to exchange data
messages transported through the PSDN.

A principal function of a CTCP is to handle NPSI X.25 network commands for
switched virtual circuits, such as:

v Requesting a connection via a CALL_REQUEST command

v Accepting a connection via a CALL_CONFIRM command

v Requesting termination of a connection via a CLEAR command.

Generalized Access to X.25 Transport Extension (GATE)
With the GATE option, the CTCP is the common session partner with NPSI for both
data messages and commands. Therefore, a GATE CTCP can be used to provide
the equivalent of Open System Interconnect (OSI) layers 4, 5, 6 and a portion of 7.

OSI layer 4 is the Transport layer and includes:
v Establishment phase - switched call requests
v Data transfer phase - blocking, segmentation, multiplexing and demultiplexing
v Termination phase - switched call clearing

OSI layer 5 is the Session layer and includes:
v OSI Session establishment and termination
v Normal and expedited exchanges
v Exception reporting

OSI layer 6 is the Presentation layer and provides:
v Data Transformation
v Data Formatting

ASCII
EBCDIC
Binary

v Syntax Selection

OSI layer 7 is the Application layer and provides:
v Identification of partners
v Authorization
v Privacy
v Dialog Discipline
v End to End Recovery
v Data Transfer

The material that follows details the GATE CTCP environment by describing how
you may extend the TPF communication support using PSV routines to allow
communication between non-SNA terminal end points and existing or new TPF
applications.

User CTCP Control Blocks
This section suggests a control block structure that could be used by the CTCP you
implement in TPF to define resources accessed via an X.25 network.

Exit points exist which permit you to create, initialize, and maintain these user
control blocks. These exit points include:

322 TPF V4R1 ACF/SNA Data Communications Reference

v A CTIN main storage allocation exit to reserve space for the tables.

v An exit at TPF Restart to initialize the tables after a software or hardware IPL.

v An exit at Cycle Up and Cycle Down to force checkpointing of the tables.

v An exit in the Critical Record Filing routine to force checkpoint on a catastrophic
error.

See the TPF System Installation Support Reference for additional information about
these exit points.

In SNA, the LU represents a port into the network. NPSI uses the LU to represent
both virtual circuits and to provide a port for controlling an X.25 link. The virtual
circuit LU is called a VC_LU. The port for controlling the X.25 link is called an
MCH_LU. An MCH_LU may relate to one or many VC_LUs. Both VC_LUs and
MCH_LUs are defined in the RVT and have a:
v RID - Resource Identifier
v Name - the name of the LU

The suggested user control blocks fall into two categories:

1. The user control blocks defining the network accessed by the X.25 interface
protocol and the links and virtual circuits that provide access to the network.

2. The user control blocks defining the terminal and terminal controller resources
that can be reached through the X.25 Network.

The CTCP control blocks pertinent to network access are:
v XNCB - X.25 Network Control Block
v XLCB - X.25 Link Control Block
v VCCB - Virtual Circuit Control Block

The control block defining terminals is the End Point Control Block (EPCB).

In addition to these control blocks, all of which are assumed to be main storage
resident, the XNCL (X.25 Network Contact List), which could be DASD resident,
contains the CPCBs (Contact Point Control Blocks) which define the terminal
controllers in the switched networks. Figure 105 illustrates the relationship between
elements of the X.25 Network and the suggested user control blocks.

Appendix G. Sample TPF CTCP Implementation Using PSVs 323

X.25 Network Control Block
The X.25 Network Control Block (XNCB) provides one place to store information
about the X.25 network (for example, TRANSPAC or TELENET), and to anchor and
index the Network Contact List (XNCL) and X.25 Link Control Blocks (XLCBs) for
the network. Information contained in the XLCB might be:
v Network Identification
v Attributes (packet size, window size)
v Command sequence rules
v File Address of the XNCL records for this network
v Pointer to first XLCB for this network

X.25 Link Control Block (XLCB)
The X.25 Link Control Block corresponds to a NPSI MCH_LU and contains
information about an X.25 link:
v MCH_LU name,
v X.25 Network ID,
v link options and status, and
v a pointer to the first Virtual Circuit Control Block (VCCB) for the link.

Virtual Circuit Control Block (VCCB)
The Virtual Circuit Control Block corresponds to a NPSI VC_LU and contains
information about a virtual circuit:

v VC_LU name,

v status,

v information about the currently attached remote node (the contact information
from the XNCL), and

ASCII
Terminal

Terminal

Terminal

Terminal

PSDNX.3
PAD

End
Point

Contact
Point

Virtual
Circuit

X.25
Link

C
o
n
t
r
o
l
l
e
r

End
Point

EPCB CPCB VCCB XLCB

CTCB Control Blocks

NPSI

VC_LU

MCH_LU

VC_LU
TPF CTCP

lu3

lu1

lu2
TPF APPLS

LEID 7

LEID 6

LEID 5

LEID 8

Figure 105. TPF X.25 Network Elements and Corresponding User Control Blocks

324 TPF V4R1 ACF/SNA Data Communications Reference

v a pointer to the next VCCB for the X.25 link.

The VCCB is a logical extension of the TPF RVT entry that defines the
corresponding VC_LU. A VCCB entry is either active or idle. When a VCCB is idle,
it is available for call in or call out. When the virtual circuit is in use, it contains
information about the remote node.

User Terminal Control Blocks
The remaining control blocks define terminals and terminal controllers that can
access TPF applications. The key information needed by these control blocks is a
description of the device and its network identification.

The purpose of these terminal tables is two-fold:

1. The terminal tables contain the information to convert the terminal addressing
used by the network to the addressing technique used by TPF and its
applications (either LEID or RID addressing).

2. The terminal tables define the terminal characteristics to enable conversion from
the character set and presentation space definition used by the application to
that passed between TPF and the terminal.

Terminals and terminal controllers in an X.25 network are identified by a call user
ID. The call user ID-to-device definition relationship requires a way to index to a
device definition given a call user ID, and a way to discover the call user ID given a
device. The control blocks used are the:

v End-Point Control Block (EPCB) - An EPCB entry describes a terminal. When a
switched virtual circuit between TPF and the terminal is established, the address
of the VCCB is placed in the EPCB. For a terminal accessed by a permanent
virtual circuit, the address of the VCCB is established when the EPCB is
initialized.

v Contact Point Control Block (CPCB) - A CPCB defines a terminal controller and
its call out and call in identifiers (call user IDs) The CPCB associates a virtual
circuit with its user. When a call out is requested, the CPCB provides the
destination’s network identifier. When a CALL_REQUEST is received, the caller
is identified by locating the CPCB with a matching call user ID. For both call out
and call in, pertinent CPCB information is copied into the VCCB. From this
information, the CTCP can determine the type of controller and how to code and
decode the text in a packet. Collectively, all the CPCBs for a network comprise a
Network Contact List (XNCL) for that network.

End Point Control Block (EPCB)
The EPCB defines the remote resource, usually a terminal. The EPCB contains the
following information:

v terminal address (LEID) used by TPF,

v terminal characteristics,

v terminal status,

v a pointer to the currently active VCCB for this terminal,

v a pointer to the Contact Point Control Block that defines the terminal controller,
and

v a pointer to the next terminal using the same controller.

Appendix G. Sample TPF CTCP Implementation Using PSVs 325

Contact Point Control Block (CPCB)
The CPCB defines a remote terminal controller, its call identifier, and its
characteristics. The CPCB contains the following information:

v The network the contact point resides in.

v The identifier or call user ID used to request a virtual circuit to the controller.

v The identifier or call user ID provided in a call request on call in.

v Controller characteristics.

v Controller status.

v A pointer to the first terminal (EPCB) attached to the controller. (This pointer is
usually the LEID of the terminal.)

Control Block Residence
Figure 106 on page 327 illustrates the structure and residency of the suggested
CTCP Control Blocks while calls are active.

The control blocks that are referenced for every packet residing in main storage
include:
v EPCB - End Points,
v VCCB - Virtual Circuits,
v XLCB - X.25 Links, and
v XNCB - X.25 Networks.

The CPCBs may reside on DASD because they are used only when a
CALL_REQUEST command is received or a call out is required. The contact
information from the CPCB, <ci>, needed for processing messages is copied to the
VCCB when the virtual circuit has been established.

326 TPF V4R1 ACF/SNA Data Communications Reference

TPF SNA Session Awareness
When resources are defined as requiring Session Awareness (see “Session Status
Awareness Services” on page 215), you are expected to replace the supplied CSXD
program with your own code. You can code this exit to reflect the status changes of
virtual circuit LUs (VC_LUs) and multichannel link LUs (MCH_LUs) in your
corresponding VCCB and XLCB control blocks for use by your CTCP.

Whether to start CSXD when a session starts or ends is determined at network
definition time. LUs that use session awareness processing must specify
AWARE=YES on the OSTG RSC statement or in the Dynamic LU user exit for that
LU.

User control block structure with no calls active

Processor Storage

XNCB
XLCB

VCCB / / / /

VCCB / / / /

DASD

EPCB

CPCB

XNCL

EPCB

EPCB

EPCB

CPCB

CPCB

After first call (in/out) – controller with 3 terminals

XNCB
XLCB

VCCB <ci>

VCCB / / / /

EPCB

CPCB

XNCL

EPCB

EPCB

CPCB

CPCB

<ci> = contact information

EPCB

Figure 106. TPF CTCP Control Block Structure

Appendix G. Sample TPF CTCP Implementation Using PSVs 327

Session Start
When the Session Awareness Exit (CSXD) is started for an LU using the
NPSI/GATE option with the Fast Connect (FC) feature and a session starts, the
CTCP should be prepared to receive CALL_REQUESTs and CLEAR_REQUESTs.
Your exit code should update your corresponding control block (XLCB / VCCB) to
indicate that this resource is now active. Optionally, the CTCP can now initiate and
terminate calls.

Session End
When the Session Awareness Exit (CSXD) is started for an LU using the
NPSI/GATE option with the Fast Connect (FC) feature and a session ends, the
CTCP no longer receives requests for calls. Your exit code should update your
corresponding control block (XLCB / VCCB) to indicate that this resource is now
inactive and should disconnect the control block structure associated with the virtual
circuit.

TPF X.25 Command Message Flows
In this section, the handling of the NPSI protocols involved in the establishment,
acceptance, and discontinuance of switched virtual circuits using NPSI/GATE with
the Fast Connect (FC) feature is discussed in the context of a CTCP written by you.

The TPF X.25 support provides a means of establishing switched (dial-up)
connections between TPF applications and resources accessed via a PSDN. TPF’s
SNA support, augmented by the SNA Session Awareness routines provided by you
(see “TPF SNA Session Awareness” on page 327 in this section, and “Session
Status Awareness Services” on page 215), handles the SNA interfaces, both to the
VTAM SSCP and the NPSI LUs, necessary to setup and takedown LU-LU sessions
required for the connections.

While the SNA connection is transparent to the TPF application, you are required to
supply code to manage the underlying NPSI interface protocols required to setup
and takedown switched calls.

The following examples are covered:

v A user on a PSDN initiates a call into TPF. This results in a CALL_REQUEST
command being sent from NPSI/GATE to the CTCP. When this call is accepted,
the CTCP sends a CALL_CONFIRM command to NPSI/GATE.

v A user on a PSDN requests termination of a call with TPF. This results in a
CLEAR command being sent from NPSI/GATE to the CTCP. Acceptance of the
CLEAR command is not required. It is assumed by NPSI/GATE.

v The CTCP initiates a call by sending a CALL_REQUEST command to
NPSI/GATE. NPSI/GATE indicates call setup completion by sending a
CALL_CONFIRM command to the CTCP.

v The CTCP requests termination of a call by sending a CLEAR command to
NPSI/GATE. NPSI/GATE disconnects the call and sends a CLEAR_CONFIRM
command back to the CTCP.

Before your CTCP can respond to NPSI/GATE in these examples, you must take
such actions as reflecting in your control blocks the changing status of the Virtual
Circuits underlying the call.

In the following sections, the CTCP is assumed to be defined via a MSGRTA
statement as a TPF application named CTCP. TPF creates an associated RVT

328 TPF V4R1 ACF/SNA Data Communications Reference

definition of a TPF Primary LU resource named CTCP. The CTCP functions are
handled by a PSV routine (one or more ECB controlled programs) named GATE1.
GATE1 is specified as the PSV on the OSTG RSC statement for each NPSI LU
(both MCH_LU and VC_LU) defined to TPF that are in session with the CTCP PLU.
It is further assumed that the sessions between the CTCP and the NPSI LU
resources (both MCH_LU and necessary VC_LU resources) have been established
before any NPSI command flows.

Note: For the discussed X.25 command flows, the command data received is
never presented to a TPF application, but all processing for the command
occurs within the GATE1 PSV.

PSV Processing of NPSI/GATE Commands
When the CTCP to NPSI/GATE LU-LU session has been established for a VC_LU,
all data transmitted across the session is intercepted and given to the PSV routine
associated with the VC_LU; in this case the PSV routine is named GATE1. Whether
processing inbound or outbound traffic, the GATE1 PSV routine must perform the
CTCP functions associated with the message type (NPSI/GATE command versus
data). Examples of the CTCP functions performed by the GATE1 PSV routine are:

v Validation of connection end points.

v Address translation (SNA addresses to TPF internal LEID and application name
and vice-versa).

v Control Block Management:

– Connect Control Block to reflect remote end point connection and path
(associate with VC_LU). (Store VC_LU RID in EPCB.)

– Update Control Block to reflect remote end point status.

– Disconnect Control Block to reflect remote end point connection termination
(free end point VC_LU association). (Clear VC_LU RID in EPCB.)

v Interface with Queue Manager to:
– Start transmission of messages queued for remote end point.
– Stop transmission of messages queued for remote end point.
– Purge messages queued for remote end point.

(See “Queue Manager” on page 269 for additional information.)

Figure 108 on page 331 shows a generic flow of X.25 commands received from the
network processed by the GATE1 PSV on behalf of the CTCP. Figure 111 on
page 334 shows a generic flow of X.25 commands initiated by a TPF
application/CTCP handled by the GATE1 PSV on behalf of the CTCP destined for
the network.

Appendix G. Sample TPF CTCP Implementation Using PSVs 329

CALL_REQUEST Command received from NPSI/GATE
See Figure 107 and Figure 108 on page 331 for this scenario.

As shown in the first 3 flow items of Figure 108 on page 331, upon receipt of a PIU
from the NPSI/GATE VC_LU, TPF presents this to the GATE1 PSV using the
standard TPF API (RCPL and message block). The first character in each message
identifies it as a NPSI/GATE command or a data message. Upon finding a
command indication, GATE1 further examines the text of the command to
determine that it has just received a CALL_REQUEST. This is the dial-in situation
and the CTCP (GATE1 PSV) must validate the caller and connect the required
control block structure in TPF to allow data messages to flow to the application.

Using the RID in the RCPL associated with the CALL_REQUEST, the PSV routine
GATE1 indexes to the associated Virtual Circuit Control Block (VCCB). From the
VCCB, the X.25 network ID is obtained and the X.25 Network Control Block (XNCB)
for the network is accessed. The ordinal number of the first fixed file record for the
X.25 Network Contact List (XNCL) is obtained for the list of valid callers to be
searched to insure that this caller is authorized. When a match is found and the
caller has been validated, the contact information <ci> for this caller is obtained
from the CPCB on file. This information identifies the terminal controller and is
appended to the Virtual Circuit Control Block (VCCB), thus making the connection
between the NPSI/GATE virtual circuit and the terminals available through the
contact point for this call.

Finally, GATE1 (refer to Figure 108 on page 331 flow items number 4 and 5):

v Builds a CALL_CONFIRM command message.

v Modifies the RCPL (swaps origin and destination address fields and sets
appropriate output RCPL indicators).

RCPL

VCCB

XNCB

XNCL

CPCB

VCCB<ci>

RID from input RCPL

Pointer to X.25 Network Control Table

Ordinal number for beginning of
Network Contact List on DASD

Find CPCB corresponding to caller

Append Contact Information
to VCCB

Figure 107. Control Block Relationship for Inbound CALL_REQUEST Command

330 TPF V4R1 ACF/SNA Data Communications Reference

v Sets the BYPASS SEND INTERCEPT (CE1CPA X’40’) indicator to bypass
ROUTC EXIT activation for the ensuing ROUTC. See TPF System Installation
Support Reference for additional information about user exits.

v Issues a ROUTC to forward the CALL_CONFIRM command to NPSI.

v Terminates the ECB (EXITC).

CLEAR Command Received from NPSI/GATE
The remote contact point (terminal controller) can send an X.25 clear request when
the connection to the host is to be broken. NPSI/GATE sends a CLEAR command
to the CTCP when it has completed its handling of the clear request from the X.25
interface. Again assuming GATE/FC, the NPSI/GATE CLEAR command arrives over
the same virtual circuit as normal data messages.

See Figure 108 and Figure 109 on page 332 for this scenario.

SNA
OPZERO

NCP COMM
SOURCE

PSV
‘GATE1’

Message
Router

TPF
APPL

PSV
‘GATE1’

NCP

1.

2.

3.

4.

5.

PIU (NPSI_LU/CTCP)
with NPSI CMD RU

ECB + CMD
MSG BLK

RCPL (RID/CTCP)
+ CMD MSG BLK

ROUTC (CTCP/RID)
+ CMD MSG BLK

PIU (CTCP/NPSI_LU)
with X.25 CMD RU

Figure 108. Generic TPF Inbound X.25 CTCP Command/Reply Flow

Appendix G. Sample TPF CTCP Implementation Using PSVs 331

As shown in first 3 flow items of Figure 108 on page 331, upon receipt of a PIU
from the VC_LU destined for the CTCP, TPF presents this to the GATE1 PSV using
the standard TPF API (RCPL and message block). The inbound GATE1 PSV
routine recognizes that this is a NPSI/GATE CLEAR command and the process
shown in Figure 109 begins. The RID of the NPSI/GATE VC_LU, passed by TPF in
the RCPL, is used to find the Virtual Circuit Control Block (VCCB). The contact
information <ci> appended to the Virtual Circuit Control Block (VCCB<ci>) is saved
before resetting (clearing) the <ci> to break the relationship with the VCCB that was
established during call in processing. The VCCB is then marked as available to the
chain of virtual circuits in the X.25 Link Control Block (XLCB) for this X.25 link.

Next, each end point on this contact point must be handled. For each End Point
Control Block (EPCB) in the <ci> chain, the EPCB field containing the VC_LU RID
is cleared, thus breaking the application/end point connection across the X.25
network.

GATE1 PSV then terminates the CLEAR command ECB (EXITC).

TPF Initiated Call Out Using CALL_REQUEST Command to
NPSI/GATE
Your CTCP can initiate a call out process when there is a need to communicate
with a disconnected remote terminal controller. This might occur when there is:

v time initiated ticket printing,

v urgent unsolicited output messages,

v output queues triggered by queue count, or

v computer operator requests for call out.

These events trigger sending a CALL_REQUEST command to NPSI/GATE.
Figure 110 on page 333 and Figure 111 on page 334 are references for this
scenario.

RCPL

VCCB<ci>

EPCB EPCB EPCB EPCB

RID from RCPL

Break VCCB/CPCB
relationship

Chain of end Point blocks

x

<ci>

xx x x

RVT of VC_LU

Break output pointers from
terminal to virtual circuit

Figure 109. Control Block Relationship for Inbound CLEAR Command

332 TPF V4R1 ACF/SNA Data Communications Reference

An application sends a message to a terminal via a ROUTC. Your ROUTC EXIT
processing code determines that the LEID specified in the RCPL requires GATE1
PSV processing. See the TPF System Installation Support Reference for additional
information about user exits. Your code returns to the TPF ROUTC processing,
indicating that the message must be given to GATE1 for processing. TPF ROUTC
removes the outbound message from the application’s ECB and attaches it to a
newly created ECB to be presented to the GATE1 PSV.

For this activation, your CTCP, implemented in the ’GATE1’ PSV routine, uses the
terminal’s LEID specified in the RCPL to access the EPCB and determines that no
call is currently active with the terminal. You activate the Queue Manager facility
which places the message on the terminal’s message queue and start your CTCP
call out processing. (See “Queue Manager” on page 269 for detailed information.)

Your CTCP call out processing uses the pointer in the EPCB to access the CPCB
on DASD. From the CPCB, the call user ID of the controller (contact point) for this
terminal is obtained and a NPSI/GATE CALL_REQUEST command can be
constructed.

After the call user ID is obtained, the CTCP finds an idle X.25 virtual circuit using
the X.25 Link Control Block chain for the network identified in the CPCB.

The contact information <ci> for this terminal controller is copied from the CPCB
into the VCCB for the selected, available virtual circuit, and the VCCB is flagged as
having a call out pending. All tables are set appropriately and the necessary

EPCB

CPCB

XNCB

XLCB

VCCB

VCCB<ci>

Determine if active path exists
Assume no – path must be activated
Get the CPCB Pointer

Get the Network Contact ID

All X.25 links anchored from XNCB

Find first idle Virtual Circuit on X.25 link

Indicate this Virtual Circuit is active
pending CALL_CONFIRM (call out in progress)
Move contact information <ci> from CPCB into VCCB

CTCP PSV Processing

APPLICATION

ROUTC to Terminal with Urgent Message

Figure 110. Control Block Relationship for CALL_OUT Request

Appendix G. Sample TPF CTCP Implementation Using PSVs 333

information is extracted to build a NPSI/GATE CALL_REQUEST command. An
outbound RCPL specifies the CTCP as origin and the RID of the VCCB is selected,
as the destination is then constructed.

Finally, the GATE routine sets the BYPASS SEND INTERCEPT (CE1CPA X’40’)
indicator to bypass ROUTC EXIT activation for the ensuing ROUTC. GATE issues
the ROUTC macro with the modified RCPL and message block to forward the
CALL_REQUEST to the network.

CALL_CONFIRM Command Received from NPSI/GATE
An inbound CALL_CONFIRM command is the normal response to an outbound
CALL_REQUEST command. The CALL_CONFIRM shows that the remote controller
has accepted the call and is now ready to receive data.

With GATE/Fast Connect, the CALL_CONFIRM comes in on the same
VC_LU-to-CTCP session on which the CALL_REQUEST was sent. Figure 112 and
Figure 108 on page 331 are references for this scenario.

TPF APPL
or CTCP

Message
ROUTER

PSV
‘GATE1’

Message
ROUTER

NCP

1.

2.

3.

4.

RCPL (CTCP/LEID)
+ MSG BLK

RCPL (CTCP/LEID)
+ MSG BLK

RCPL (CTCP/RID)
+ CMD MSG BLK

PIU (CTCP/NPSI_LU)
with X.25 CMD RU

Figure 111. Generic TPF Outbound X.25 CTCP Command Processing Flow

RCPL

VCCB<ci>

EPCBs

RID from RCPL

Scan all associated EPCBs and start
device output queues

Figure 112. Control Block Relationship for Inbound CALL_CONFIRM Command

334 TPF V4R1 ACF/SNA Data Communications Reference

As shown in the first 3 flow items of Figure 108 on page 331, upon receipt of a PIU
from the VC_LU, TPF presents this message to the GATE1 PSV using the standard
TPF API (RCPL and message block).

Upon determining that this is a CALL_CONFIRM command from NPSI/GATE, the
following major actions are performed:

v Change the VCCB status from call pending to call active.

v Activate the CTCP X.25 control blocks so that data can be sent and received on
this virtual circuit.

v For each terminal reachable on this call, initiate the sending of output if there is
data queued.

When the CALL_CONFIRM command from NPSI/GATE is passed to GATE1, the
VCCB is located by using the RID provided by TPF in the RCPL. The virtual circuit
(VCCB) is marked active and each terminal or end point activated. This process
involves storing the RID for the virtual circuit in each EPCB associated with the
contact point. As each end point EPCB is handled, its output pending indicator is
interrogated and if on, GATE1 interacts with the Queue Manager facility to initiate
sending queued output to each terminal via ROUTC. For more information, see
“Queue Manager” on page 269.

Upon completion of initiating the output for each terminal, the GATE1 terminates the
ECB (EXITC).

TPF Initiated CLEAR Command Sent to NPSI/GATE
The CTCP should end a call that it initiated when the virtual circuit is no longer
needed. This might occur under the following circumstances:

v When output queues for terminals on this contact point have remained empty
long enough.

v Computer operator requests termination of call.

These events trigger sending a CLEAR command to NPSI/GATE.

The linkage between the EPCBs and the VCCB should be deactivated in order that
no further attempt to send messages on this call will be made. The VCCB is
marked to show the VC_LU as CLEAR pending CLEAR CONFIRM. The VC_LU
should not be reused until the CLEAR_CONFIRM is received from NPSI/GATE.
Otherwise, the processing is the same as for receiving a CLEAR command from
NPSI. See “CLEAR Command Received from NPSI/GATE” on page 331.

CLEAR_CONFIRM Command Received from NPSI/GATE
After a CLEAR command is sent from the CTCP to NPSI/GATE, NPSI must notify
the CTCP when the switched virtual circuit connection has been cleared by
returning a CLEAR_CONFIRM command.

The action to be taken is to change the status of the VC_LU from CLEAR pending
CLEAR_CONFIRM to CLEAR.

TPF X.25 Data Message Flows

CTCP Input Data Message Processing
The CTCP receives both commands and data from NPSI for virtual circuits defined
for LLC4 (GATE) support. For this dialog, it is assumed that the NPSI/GATE support
is further defined to have Fast Connect (FC) capability, resulting in both data

Appendix G. Sample TPF CTCP Implementation Using PSVs 335

messages and NPSI command messages flowing on the same virtual circuit to the
host. The first text character in each message indicates whether it is a NPSI
command or a data message.

In the following sections, the CTCP is assumed to be defined via a MSGRTA
statement as a TPF application named CTCP. TPF creates an associated RVT
definition of a TPF Primary LU resource named CTCP. The CTCP functions are
handled by a PSV routine (one or more ECB controlled programs) named GATE1.
GATE1 is specified as the PSV on the OSTG RSC statement for each NPSI LU
(both MCH_LU and VC_LU) defined to TPF which are in session with the CTCP
PLU. It is further assumed that the sessions between the CTCP and the NPSI LU
resources (both MCH_LU and necessary VC_LU resources) have been established
prior to any NPSI command flows, and that although the PIU received is directed to
the CTCP PLU, all data messages are ultimately destined for a TPF application
named ’APPL’.

This section describes the input-related flow and control blocks for inbound data
messages flowing through your CTCP Process. This material is divided into two
parts: data flow for soft copy and hard copy devices.

Soft Copy Device Data Flow
See Figure 113 for this discussion of soft copy device data flow.

Soft Copy Device Input Message Data Flow:

1. An input PIU is read by the TPF system from the NCP.

2. The PIU is passed to SNA Opzero, where an ECB is created and the PIU is
placed into the appropriate message block.

SNA
OPZERO

NCP COMM
SOURCE

PSV
‘GATE1’

Message
Router

TPF
APPL

1.

2.

3.

4.

6.

5.

PIU

ECB + MSG BLK

RCPL + MSG BLK
(RID/CTCP)

RCPL + MSG BLK
(LEID/APPL)

RCPL + MSG BLK
(LEID/APPL)

RCPL + MSG BLK
(LEID/APPL)

Figure 113. Soft Copy Input Data Flow

336 TPF V4R1 ACF/SNA Data Communications Reference

3. The Communications Source package (COMMSRCE) is then started. This is
where the RCPL is created, including the RID of the origin VC_LU and the
name of the destination CTCP. COMMSRCE passes control to the GATE1 PSV
routine.

4. The GATE1 PSV routine may perform various actions before returning to
COMMSRCE, including the following:

v Convert the RID of the input VC_LU, specified in the RCPL, to an LEID. The
LEID is determined from contact information <ci> found in the VCCB<ci> and
the address information, if any, contained in the message text.

v Obtain the associated EPCB for the LEID.

v Modify the RCPL to reflect the LEID, rather than the VC_LU RID, as the
message origin.

v Modify the RCPL to reflect APPL, rather than the CTCP, as the message
destination. The application name is obtained from information stored in the
EPCB during logon processing.

v Translate the message into character coding required by the application.

v Convert the input data from AMSG format to the message format required by
the application.

v Store the RID into the EPCB to facilitate finding the return address for the
resulting output.

The GATE1 routine returns control to COMMSRCE in order to:
v Interface to TPF data collection.
v Interface to TPF Program Test Vehicle, if appropriate.

5. COMMSRCE then passes control to the Message Router package with the
RCPL, passed from the GATE1 routine, and the modified message block.

6. The Message Router enters the TPF application (APPL) specified in the RCPL.

Hard Copy Device Data Flow
See Figure 114 for this discussion of hard copy device data flow.

Hard Copy Device Input Message Data Flow:

1. An input PIU is read by the TPF system from the NCP.

2. The PIU is passed to SNA Opzero, where an ECB is created and the PIU is
placed into the appropriate message block.

SNA
OPZERO

NCP COMM
SOURCE

PSV
(GATE)

Message
Router

TPF
APPL

1.

2.

3.

PIU

ECB + MSG BLK

RCPL (RID/CTCP) + MSG BLK

Figure 114. Hard Copy Input Data Flow

Appendix G. Sample TPF CTCP Implementation Using PSVs 337

3. The Communications Source package (COMMSRCE) is then started. The RCPL
is created, including the RID of the origin VC_LU and the name of the
destination CTCP. The Communications Source package passes control to the
GATE1 PSV routine.

4. The GATE1 routine may perform various including the following:

v Convert the RID of the input VC_LU, specified in the RCPL, to an LEID. The
LEID is determined from contact information <ci> found in the VCCB<ci> and
the address information, if any, contained in the message text.

v Obtain the associated EPCB for the LEID.

v Modify the RCPL to reflect the LEID, rather than the VC_LU RID, as the
message origin.

v Modify the RCPL to reflect APPL, rather than the CTCP, as the message
destination. The application name is obtained from information stored in the
EPCB during logon processing.

v Store the RID into the EPCB to facilitate finding the return address for the
resulting output.

v Determine whether the message is a positive or negative acknowledgment
(answer-back) and indicate the type of acknowledgement in the GDA area of
the RCPL.

v Swap the Origin and Destination addresses within the RCPL.

At this point, output processing, where the queueing package is started with the
printer acknowledgement message, must be activated to perform the necessary
queue and transmit manipulations as dictated by the acknowledgement type. The
GATE1 PSV may activate the output processing in either of two ways:

1. Using the Input Message ECB - You can directly activate the GATE1 PSV
output processing.

2. Using a new ECB - Issues ROUTC with the modified RCPL (swapped origin and
destination fields) and same message block. Your ROUTC EXIT processing
code determines that the LEID specified in the RCPL requires GATE1 PSV
processing. See the TPF System Installation Support Reference for additional
information about user exits. Your ROUTC EXIT code returns to the TPF
ROUTC processing indicating that the message must be given to GATE1 for
processing. TPF ROUTC removes the outbound message from the ECB
associated with the input message and attaches it to a newly created ECB to be
presented to the GATE1 PSV for output processing.

The continuation of the flow is shown in Figure 118 on page 342 and Figure 119 on
page 343. This is covered later in “Hard Copy Device Data Flow” on page 339.

CTCP Output Data Message Processing
This section describes the output related flow and control blocks for outbound data
messages flowing through your CTCP process. This material is divided into two
parts: data flow for soft copy and hard copy devices.

Soft Copy Device Data Flow
See Figure 115 on page 339 for this discussion of soft copy device data flow.

338 TPF V4R1 ACF/SNA Data Communications Reference

Soft Copy Device Output Message Data Flow:

1. The TPF application (APPL) issues a ROUTC macro with an RCPL and a
message block. The origin in the RCPL is the TPF application and the
destination is an LEID representing the destination terminal.

2. Your ROUTC EXIT processing code determines that the LEID specified in the
RCPL requires CTCP processing by the GATE1 PSV routine. See the TPF
System Installation Support Reference for additional information about user
exits. Your code returns to the TPF ROUTC processing indicating that the
message must be given to GATE1 for processing. TPF ROUTC removes the
outbound message from the application’s ECB and attaches it to a newly
created ECB to be presented to the GATE1 PSV.

3. On invocation, the GATE1 routine uses the LEID in the output RCPL to find the
associated terminal entry in the EPCB. From this entry, the RID of the X.25
Virtual Circuit LU for this terminal is obtained. The RID of the VC_LU replaces
the LEID in the destination field of the RCPL.

The End Point Control Block for this terminal is found by using the LEID as an
index. This control block provides the information necessary to reformat the
message (that is, physical terminal address, and character code translation
indicator). Thus, the GATE1 routine prepares the output message for transport
to the X.25 packet switching network.

4. Finally, the GATE1 routine sets the BYPASS SEND INTERCEPT (CE1CPA
X’40’) indicator to bypass ROUTC EXIT activation for the ensuing ROUTC.
GATE1 issues the ROUTC macro with the modified RCPL and message block.

Hard Copy Device Data Flow
The following section describes different cases of data flow for hard copy type
devices.

Hard Copy Device Output Message Data Flow (Enqueue / Dequeue /
Transmit): See Figure 116 on page 340 for this discussion of hard copy device
data flow.

ROUTC
EXIT

TPF
APPL

PSV
‘GATE1’

Queue
Manager

NCP

1.

2.

3.

ROUTC RCPL + MSG BLK
(APPL/LEID)

RCPL + MSG BLK
(APPL/LEID)

ROUTC BYPASS=YES RCPL + MSG BLK
(CTCP/RID)

Figure 115. Soft Copy Output Data Flow

Appendix G. Sample TPF CTCP Implementation Using PSVs 339

1. The TPF application issues a ROUTC macro with an RCPL and a message
block. The origin in the RCPL is the TPF application and the destination is an
LEID representing the destination printer.

2. Your ROUTC EXIT processing code determines that the LEID specified in the
RCPL requires GATE1 PSV processing.

See the TPF System Installation Support Reference for additional information
about user exits. Your code returns to the TPF ROUTC processing indicating
that the message must be given to GATE1 for processing. TPF ROUTC
removes the outbound message from the application’s ECB and attaches it to a
newly created ECB to be presented to the GATE1 PSV.

3. On invocation, the GATE1 PSV activates the TPF Queue Manager package, to
queue the message. For more information on the Queue Manager interface, see
“Queue Manager” on page 269.

4. If the GATE1 PSV determines transmission to that device is possible, the
Queue Manager is activated to dequeue a message block from the top of the
QCB.

5. The GATE1 routine may first reformat the message and then replace the LEID
of the destination in the RCPL with the RID of the VC_LU.

6. Finally, the GATE1 routine sets the BYPASS SEND INTERCEPT (CE1CPA
X’40’) indicator to bypass ROUTC EXIT activation for the ensuing ROUTC.
GATE1 issues the ROUTC macro with the modified RCPL and message block.

ROUTC
EXIT

TPF
APPL

PSV
‘GATE1’

Queue
Manager

NCP

1.

4.

2.

5.

3.

6.

7.

ROUTC RCPL + MSG BLK
(APPL/LEID)

OK

RCPL + MSG BLK
(APPL/LEID)

DEQUEUE

ENQUEUE

OK

ROUTC BYPASS=YES RCPL + MSG BLK
(CTCP/RID)

Figure 116. Hard Copy Enqueue, Dequeue, and Transmit

340 TPF V4R1 ACF/SNA Data Communications Reference

Hard Copy Device Output Message Data Flow (ENQUEUE / EXIT): See
Figure 117 for this discussion of hard copy device data flow.

1. The TPF application issues a ROUTC macro with an RCPL and a message
block. The origin in the RCPL is the TPF application and the destination is an
LEID representing the destination printer.

2. Your ROUTC EXIT processing code determines that the LEID specified in the
RCPL requires GATE1 PSV processing. See the TPF System Installation
Support Reference for additional information about user exits. Your code returns
to the TPF ROUTC processing indicating that the message must be given to
GATE1 for processing. TPF ROUTC removes the outbound message from the
application’s ECB and attaches it to a newly created ECB to be presented to the
GATE1 PSV.

3. On invocation, the GATE1 PSV activates the TPF Queue Manager package, to
queue the message. For more information on the Queue Manager interface, see
“Queue Manager” on page 269.

4. If the GATE1 PSV determines that transmission to the device is not possible or
does not wish to transmit, the ECB is terminated. You can write time initiated
routines that directly interface with the Queue Manager in order to dequeue and
transmit the queued messages according to your specifications.

Hard Copy Device Output Message Data Flow (WAKEUP): See Figure 118 on
page 342 for this discussion of hard copy device data flow.

ROUTC
EXIT

TPF
APPL

PSV
‘GATE1’

Queue
Manager

NCP

1.

4.

2.

5.

3.

ROUTC RCPL + MSG BLK
(APPL/LEID)

OK

RCPL + MSG BLK
(APPL/LEID)

EXITC

ENQUEUE

Figure 117. Hard Copy Enqueue and Exit

Appendix G. Sample TPF CTCP Implementation Using PSVs 341

In this case, the ROUTC macro was issued by the GATE1 PSV code activated from
COMMSRCE when a positive acknowledgment (answer-back) to a previously sent
message was received (see Figure 114 on page 337). The intent is to wake up the
existing queue.

1. Using the modified RCPL and message, the GATE1 PSV code activated by
COMMSRCE forwards the message via ROUTC.

2. Your ROUTC EXIT processing code determines that the LEID specified in the
RCPL requires GATE1 PSV processing. Your code returns to the TPF ROUTC
processing indicating that the message must be given to GATE1 for output
(WAKEUP) processing. TPF ROUTC removes the outbound message from the
ECB associated with the input message and attaches it to a newly created ECB
to be presented to the GATE1 PSV for output processing.

3. On invocation, the GATE1 output processing determines that the existing
message is a positive acknowledgment. A possible implementation to achieve
this might be to have the GATE1 PSV code associated with the input message
ECB indicate in the GDA area of the RCPL that this is a positive
acknowledgement.

4. If the GATE1 PSV determines transmission to that device is possible, the
Queue Manager is activated to dequeue a message block from the top of the
QCB (see “Queue Manager” on page 269).

5. The GATE1 routine may first reformat the message and then replace the LEID
of the destination in the RCPL with the RID of the VC_LU and the origin field of
the RCPL with the CTCP application name.

6. Finally, the GATE1 routine sets the BYPASS SEND INTERCEPT (CE1CPA
X’40’) indicator to bypass ROUTC EXIT activation for the ensuing ROUTC.
GATE1 issues the ROUTC macro with the modified RCPL and message block.

Hard Copy Device Output Message Data Flow (RETRANSMISSION): See
Figure 119 on page 343 for this discussion of hard copy device data flow.

ROUTC
EXIT

PSV
‘GATE1’

PSV
‘GATE1’

Queue
Manager

NCP

1.

4.

2.

5.

3.

ROUTC RCPL + MSG BLK
(APPL/LEID)

OK

RCPL + MSG BLK
(APPL/LEID)

ROUTC BYPASS=YES RCPL + MSG BLK
(CTCP/RID)

DEQUEUE (LEID)

Figure 118. Hard Copy Queue Wake Up

342 TPF V4R1 ACF/SNA Data Communications Reference

In this case, the ROUTC macro was issued by the GATE1 PSV code activated from
COMMSRCE when a negative acknowledgment (answer-back) to a previously sent
message was received (see Figure 114 on page 337). The intent is to wash the
previously sent message and retransmit it.

1. Using the modified RCPL and message, the GATE1 PSV code activated by
COMMSRCE forwards the message via ROUTC.

2. Your ROUTC EXIT processing code determines that the LEID specified in the
RCPL requires GATE1 PSV processing. Your code returns to the TPF ROUTC
processing indicating that the message must be given to GATE1 for output
(WAKEUP) processing. TPF ROUTC removes the outbound message from the
ECB associated with the input message and attaches it to a newly created ECB
to be presented to the GATE1 PSV for output processing.

3. On invocation, the GATE1 output processing determines that the existing
message is a negative acknowledgment. A possible implementation to achieve
this might be to have the GATE1 PSV code associated with the input message
ECB indicate in the GDA area of the RCPL that this is a negative
acknowledgement. the GATE1 PSV output processing then requests from the
Queue Manager to WASH the previously sent message (see “Queue Manager”
on page 269).

4. If the GATE1 PSV determines transmission to that device is possible, the
Queue Manager is activated to dequeue a message block from the top of the
QCB.

ROUTC
EXIT

PSV
‘GATE1’

PSV
‘GATE1’

Queue
Manager

NCP

1.

4.

6.

2.

5.

7.

3.

ROUTC RCPL + MSG BLK
(APPL/LEID) (NAK)

OK

OK

RCPL + MSG BLK
(APPL/LEID) (NAK)

DEQUEUE (LEID)

ROUTC BYPASS=YES RCPL + MSG BLK
(CTCP/RID)

WASH (LEID)

Figure 119. Hard Copy Repeat Last Message/Negative Acknowledgment

Appendix G. Sample TPF CTCP Implementation Using PSVs 343

5. The GATE1 routine may first reformat the message and then replace the LEID
of the destination in the RCPL with the RID of the VC_LU and the origin field of
the RCPL with the CTCP application name.

6. Finally, the GATE1 routine sets the BYPASS SEND INTERCEPT (CE1CPA
X’40’) indicator to bypass ROUTC EXIT activation for the ensuing ROUTC.
GATE1 issues the ROUTC macro with the modified RCPL and message block.

344 TPF V4R1 ACF/SNA Data Communications Reference

Appendix H. SNA Command Flow

The following sections show examples of session activation and deactivation for
different LU types.

PU 5 and PU 2.1 LEN Session Activation
The following sections show examples of session activation when the TPF system
is connected as a PU 5 node or PU 2.1 low-entry networking (LEN) node. See
“APPN Session Activation” on page 374 for session activation flows when the TPF
system is connected to the network as an APPN node.

CDRM-CDRM Session Activation
The following sections show examples of session activation based on your
configuration.

Across a CTC Connection (TPF to TPF, or TPF to VTAM)
To activate the CDRM-CDRM session from the TPF system, enter the following:

ZNETW ACT ID=rrrrrrrr

Where:

rrrrrrrr
The name of the remote CDRM.

Here are the flows when activated by the remote SSCP:

TPF
SSCP

REMOTE
SSCP

1

2

ACTCDRM

+RSP(ACTCDRM)

SDT

+RSP(SDT)

Figure 120. CDRM-CDRM Session Started by the TPF System

© Copyright IBM Corp. 1994, 2002 345

Across an NCP Connection (TPF to VTAM)
To activate the CDRM-CDRM session from VTAM, enter the following:

V NET,ACT,ID=rrrrrrrr

Where:

rrrrrrrr
The name of the TPF CDRM.

The CDRM-CDRM session can be activated from the TPF side. The ACTCDRM
request sent by TPF will be rejected by the gateway NCP, but then that NCP will
forward the request to VTAM who will drive the session. Here are the flows for this
case:

TPF
SSCP

REMOTE
SSCP

1

2

ACTCDRM

+RSP(ACTCDRM)

SDT

+RSP(SDT)

Figure 121. CDRM-CDRM Session Started by the Remote SSCP

TPF
SSCP

VTAM
SSCP

1

2

ACTCDRM

+RSP(ACTCDRM)

SDT

+RSP(SDT)

Figure 122. CDRM-CDRM Session Started by VTAM

346 TPF V4R1 ACF/SNA Data Communications Reference

Session Activation Between TPF APPL (PLU) and Remote APPL
(SLU)
To activate the APPL-APPL session from the TPF system, enter the following:

ZNETW ACT ID=ssssssss LOGON=pppp CDRM=cccccccc

Where:

ssssssss
The name of the remote APPL

pppp
The name of the TPF APPL

cccccccc
The name of remote CDRM.

TPF
SSCP

VTAM
SSCP

1 ACTCDRM

-RSP(08810000)

GATEWAY
NCP

REQACTCDRM

2

3

ACTCDRM

+RSP(ACTCDRM)

SDT

+RSP(SDT)

Figure 123. CDRM-CDRM Session Started from the TPF side

Appendix H. SNA Command Flow 347

Note: If the normal flow sequence numbers in the RVT (RV2SISEQ and
RV2SOSEQ) are both zero, then CLEAR and STSN are not sent; only SDT
is sent on the LU-LU session following the BIND. This applies to all the flow
diagrams in this section.

Here are the flows when the session is started from the remote side:

TPF APPL
(PLU)

REMOTE
APPL
(SLU)

1

2

CDINIT

CDCINIT

+RSP(CDINIT)

+RSP(CDCINIT)

TPF
SSCP

5

6

7

CLEAR

+RSP(CLEAR)

STSN

SDT

+RSP(STSN)

+RSP(SDT)

REMOTE
SSCP

BIND

+RSP(BIND)

4 CDSESSST

+RSP(CDSESSST)

3

Figure 124. APPL-APPL Session Started by TPF (PU 5)

348 TPF V4R1 ACF/SNA Data Communications Reference

If the remote SSCP is VTAM, then it is possible that the CDINIT request sent (step
#1) is a CDINIT Queue Only request. In this case a CDINIT Dequeue request must
be sent before CDCINIT. Here are the flows:

TPF APPL
(PLU)

REMOTE
APPL
(SLU)

1

2

CDINIT

CDCINIT

+RSP(CDINIT)

+RSP(CDCINIT)

TPF
SSCP

5

6

7

CLEAR

+RSP(CLEAR)

STSN

SDT

+RSP(STSN)

+RSP(SDT)

REMOTE
SSCP

BIND

+RSP(BIND)

4 CDSESSST

+RSP(CDSESSST)

3

Figure 125. APPL-APPL Session Started by Remote LU (PU 5)

Appendix H. SNA Command Flow 349

For PU 2.1 LEN, the session can only be started from the remote side and requires
the use of the Logon Manager in VTAM. Here are the flows:

Note: If the normal flow sequence numbers in the RVT (RV2SISEQ and
RV2SOSEQ) are both zero, then CLEAR and STSN are not sent; only SDT
is sent on the LU-LU session following the BIND.

Session Activation for Host-Node SLU Session
To activate the host-node SLU session from the TPF system, enter the following:

ZNETW ACT ID=ssssssss LOGON=pppp CDRM=cccccccc

Where:

TPF APPL
(PLU)

REMOTE
APPL
(SLU)

1A

1B

CDINIT (Queue Only)

CDCINIT (Dequeue)

+RSP(CDINIT)

+RSP(CDCINIT)

TPF
SSCP

REMOTE
SSCP

2-7 same as above

Figure 126. APPL-APPL Session Started by Remote LU (PU 5) and is Queued

TPF APPL
(PLU)

REMOTE
APPL
(SLU)

TPF
CLU

LOGON
MANAGER

SESINIT

3

4

5

CLEAR

+RSP(CLEAR)

STSN

SDT

+RSP(STSN)

+RSP(SDT)

BIND

+RSP(BIND)

2

1

Figure 127. APPL-APPL Session Started by Remote LU (PU 2.1 LEN)

350 TPF V4R1 ACF/SNA Data Communications Reference

ssssssss
The name of the remote APPL

pppp
The name of the TPF APPL

cccccccc
The name of the remote CDRM.

This message brings up a session between the remote APPL and each TPF
SLU-thread of APPL pppp that is not already in session.

Note: The remote PLU may not send CLEAR and STSN following the BIND. It is
possible that only SDT is sent on the LU-LU session following the BIND.

For remote initiated PU 5 sessions, the only difference in the flows is that the
remote side sends the CDINIT request (step #1 in the previous figure). Also, the
remote side may send a CDINIT Queue Only request, in which case a CDINIT
Dequeue request must also be sent by the remote side before the TPF system can
send CDCINIT.

TPF APPL
(SLU)

REMOTE
APPL
(PLU)

1

2

CDINIT

CDCINIT

+RSP(CDINIT)

+RSP(CDCINIT)

TPF
SSCP

5

6

7

CLEAR

+RSP(CLEAR)

STSN

SDT

+RSP(STSN)

+RSP(SDT)

REMOTE
SSCP

BIND

+RSP(BIND)

4 CDSESSST

+RSP(CDSESSST)

3

Figure 128. Host-Node SLU Session Started by TPF (PU 5)

Appendix H. SNA Command Flow 351

For PU2.1 LEN, the session can only be started from the remote side. Here are the
flows:

FMMR-FMMR Session Activation
To activate the FMMR-FMMR session, enter the following:

ZNETW ACT ID=rrrrrrrr LOGON=llllllll CDRM=cccccccc

Where:

rrrrrrrr
The name of the remote FMMR

llllllll
The name of the local FMMR

cccccccc
The name of the remote CDRM.

For FMMR-FMMR sessions, the PLU is the FMMR whose LU name is greater. Here
are the flows when initiated from the side owning the FMMR PLU:

TPF APPL
(SLU)

REMOTE
APPL
(PLU)

2

3

4

CLEAR

+RSP(CLEAR)

STSN

SDT

+RSP(STSN)

+RSP(SDT)

BIND

+RSP(BIND)

1

Figure 129. Host-Node SLU Session Started by Remote LU (PU 2.1 LEN)

352 TPF V4R1 ACF/SNA Data Communications Reference

Here are the flows when initiated from the side owning the FMMR SLU:

TPFBFMMR
(PLU)

TPFAFMMR
(SLU)

1

2

CDINIT

CDCINIT

+RSP(CDINIT)

+RSP(CDCINIT)

TPFB
SSCP

5 SDT

+RSP(SDT)

TPFA
SSCP

BIND

+RSP(BIND)

4 CDSESSST

+RSP(CDSESSST)

3

Figure 130. PU 5 FMMR-FMMR Session Initiation from the PLU

Appendix H. SNA Command Flow 353

For PU 2.1 LEN, the session must be started from VTAM and use the Logon
Manager. Here are the flows:

Session Activation between TPF APPL and Remote 3270
Here are the flows for when the remote terminal logs on to the TPF APPL:

TPFBFMMR
(SLU)

TPFCFMMR
(PLU)

1

2

CDINIT

CDCINIT

+RSP(CDINIT)

+RSP(CDCINIT)

TPFB
SSCP

5 SDT

+RSP(SDT)

TPFC
SSCP

BIND

+RSP(BIND)

4 CDSESSST

+RSP(CDSESSST)

3

Figure 131. PU 5 FMMR-FMMR Session Initiation from the SLU

TPFBFMMR
(PLU)

TPFAFMMR
(SLU)

1 SESINIT

TPF
CLU

SDT

+RSP(SDT)

LOGON
MANAGER

BIND

+RSP(BIND)

3

2

Figure 132. PU 2.1 LEN FMMR-FMMR Session Initiation

354 TPF V4R1 ACF/SNA Data Communications Reference

Here are the PU2.1 LEN flows for when the remote terminal logs on to the TPF
APPL:

TPF APPL
(PLU)

REMOTE
3270
(SLU)

2

4

CDINIT

CDCINIT

+RSP(CDINIT)

+RSP(CDCINIT)

TPF
SSCP

7 CLEAR

+RSP(CLEAR)

VTAM
SSCP

BIND

+RSP(BIND)

6 CDSESSST

+RSP(CDSESSST)

5

INIT-SELF1

+RSP(INIT-SELF)3

Figure 133. 3270 Session Started by Remote Terminal (PU 5)

Appendix H. SNA Command Flow 355

Session Activation for PU 5 LU 6.2 Sessions (Started by TPF
PLU)
The following are the flows when the TPF system is the primary LU (PLU) and
activates a new session (parallel or single) in a PU 5 environment. The session is
activated by an ALLOCATE verb. In step #5, a FLUSH verb is issued causing the
buffered ATTACH (FMH5) to be transmitted to the remote LU.

TPF APPL
(PLU)

REMOTE
3270
(SLU)

2

4

CDINIT

-RSP(0842FFFF)

TPF
CLU

CLEAR

+RSP(CLEAR)

VTAM
SSCP

BIND

+RSP(BIND)

6

5

INIT-SELF1

+RSP(INIT-SELF)3

Logon Manager
Logon Exit

SESINIT

Figure 134. 3270 Session Started by Remote Terminal (PU 2.1 LEN)

356 TPF V4R1 ACF/SNA Data Communications Reference

Here are the flows when the session is started from the remote side:

TPF APPL
(PLU)

REMOTE
APPL
(SLU)

1

2

CDINIT

CDCINIT

+RSP(CDINIT)

+RSP(CDCINIT)

TPF
SSCP

5 FMH5

REMOTE
SSCP

BIND

+RSP(BIND)

4 CDSESSST

+RSP(CDSESSST)

3

Figure 135. PU 5 LU 6.2 Session Started by TPF PLU

TPF APPL
(PLU)

REMOTE
LU

(SLU)

1

2

CDINIT

CDCINIT

+RSP(CDINIT)

+RSP(CDCINIT)

TPF
SSCP

5 LUSTAT (with CEB)

REMOTE
SSCP

BIND

+RSP(BIND)

4 CDSESSST

+RSP(CDSESSST)

3

Figure 136. PU 5 LU 6.2 Session Started by Remote SLU

Appendix H. SNA Command Flow 357

Session Activation for PU 5 LU 6.2 Sessions (Started by TPF
SLU)
The following are the flows when a TPF secondary LU (SLU) thread activates a
new single session in a PU 5 environment. The session is activated by an
ALLOCATE verb. In step #6, a FLUSH verb is issued causing the buffered ATTACH
(FMH5) to be transmitted to the remote LU. This example assumes the TPF system
is the contention winner.

Here are the flows when the session is started from the remote side. If the remote
LU started the session with an ALLOCATE request, the flow is step #5A; otherwise,
the flow is step #5B.

TPF APPL
(SLU)

REMOTE
APPL
(PLU)

1

2

CDINIT

CDCINIT

+RSP(CDINIT)

+RSP(CDCINIT)

TPF
SSCP

5

6

LUSTAT (with CEB)

FMH5 (with BB)

REMOTE
SSCP

BIND

+RSP(BIND)

4 CDSESSST

+RSP(CDSESSST)

3

Figure 137. PU 5 LU 6.2 Session Started by TPF SLU

358 TPF V4R1 ACF/SNA Data Communications Reference

Session Activation for PU 2.1 LEN LU 6.2 Sessions
The following are the flows when the TPF system activates a new session (parallel
or single) that is not using an SLU thread and is in a PU 2.1 LEN environment. The
session is activated by an ALLOCATE verb. In step #4, a FLUSH verb is issued
causing the buffered ATTACH (FMH5) to be transmitted to the remote LU.

TPF APPL
(SLU)

REMOTE
APPL
(PLU)

1

2

CDINIT

CDCINIT

+RSP(CDINIT)

+RSP(CDCINIT)

TPF
SSCP

5A

5B LUSTAT (with CEB)

FMH5

REMOTE
SSCP

BIND

+RSP(BIND)

4 CDSESSST

+RSP(CDSESSST)

3

Figure 138. PU 5 LU 6.2 Session Started by Remote PLU

TPF APPL
(PLU)

REMOTE
LU

(SLU)

1 LOCATE/REQTAIL

SESINIT (LOCATE reply)

TPF
CLU

FMH5

LOGON
MANAGER

BIND

+RSP(BIND)

4

3

2

Figure 139. PU 2.1 LEN LU 6.2 Session Started by TPF

Appendix H. SNA Command Flow 359

The following flows show a single session being started by a remote SLU
(dependent LU).

Note: If the remote LU is an independent LU, then it sends a BIND directly to the
TPF system.

PU 5 and PU 2.1 Session Deactivation
The following sections show examples of session deactivations.

CDRM-CDRM Session Deactivation
The following sections show different ways to deactivate a CDRM-CDRM session.

Normal CDRM-CDRM Session Deactivation: To deactivate the CDRM-CDRM
session from the TPF system, enter the following:

ZNETW ACT ID=rrrrrrrr

Where:

rrrrrrrr
The name of the remote CDRM.

TPF APPL
(PLU)

REMOTE
LU

(SLU)

SESINIT

TPF
CLU

LUSTAT (with CEB)

LOGON
MANAGER

BIND

+RSP(BIND)

3

2

1

Figure 140. PU 2.1 LEN LU 6.2 Session Started by Remote SLU

360 TPF V4R1 ACF/SNA Data Communications Reference

Note: Either SSCP can send CDTAKED. After all initiating and active LU-LU
sessions have been ended, the SSCP receiving the CDTAKED request
sends CDTAKEDC first. Next, the SSCP that sent CDTAKED sends a
CDTAKEDC followed by a DACTCDRM.

Immediate CDRM-CDRM Session Deactivation: To deactivate the CDRM-CDRM
session from the TPF system, enter the following:

ZNETW ACT ID=rrrrrrrr,I

Where:

rrrrrrrr
The name of the remote CDRM.

TPF
SSCP

REMOTE
SSCP

CDTAKED TYPE=ORDERLY

+RSP(CDTAKED)

LU-LU ssessions ended normally

CDTAKEDC

+RSP(CDTAKEDC)

CDTAKEDC

DACTCDRM TYPE=NORMAL

+RSP(DACTCDRM)

1

2

3

4

5

+RSP(CDTAKEDC)

Figure 141. Normal CDRM-CDRM Session Deactivation

Appendix H. SNA Command Flow 361

Note: Either SSCP can send CDTAKED. After all initiating and active LU-LU
sessions have been ended, the SSCP receiving the CDTAKED request
sends CDTAKEDC first. Next the SSCP that sent CDTAKED sends a
CDTAKEDC followed by a DACTCDRM.

To deactivate the CDRM-CDRM non-disruptively, enter the following:
ZNETW ACT ID=rrrrrrrr,I,SAVESESS

Where:

rrrrrrrr
The name of the remote CDRM.

In this case, the flows are identical except that active LU-LU sessions are not
ended (step #2); only the LU-LU sessions that are in the process of being activated
are ended.

Forced CDRM-CDRM Session Deactivation: To deactivate the CDRM-CDRM
session from the TPF system, enter the following:

ZNETW ACT ID=rrrrrrrr,F

Where:

rrrrrrrr
The name of the remote CDRM.

TPF
SSCP

REMOTE
SSCP

CDTAKED TYPE=FORCED

+RSP(CDTAKED)

LU-LU ssessions ended immediately

CDTAKEDC

+RSP(CDTAKEDC)

CDTAKEDC

DACTCDRM TYPE=NORMAL

+RSP(DACTCDRM)

1

2

3

4

5

+RSP(CDTAKEDC)

Figure 142. Immediate CDRM-CDRM Session Deactivation

362 TPF V4R1 ACF/SNA Data Communications Reference

Note: Either SSCP can send CDTAKED. There are no CDTAKEDC exchanges
here. DACTCDRM is sent immediately after receiving a CDTAKED response,
and then the LU-LU sessions are ended. For active LU-LU sessions,
UNBIND is the only command that flows (a CDSESSEND cannot be sent
because the CDRM-CDRM session no longer exists). LU-LU sessions that
are in the process of being activated are cleaned up without any flows
between the LUs.

To deactivate the CDRM-CDRM non-disruptively, enter the following:
ZNETW ACT ID=rrrrrrrr,F,SAVESESS

Where:

rrrrrrrr
The name of the remote CDRM.

In this case, the flows are identical except that active LU-LU are not ended (step
#3); only the LU-LU sessions that in the process of being activated are ended.

Session Deactivation for TPF APPL (PLU) and Remote APPL
(SLU)
The following sections show different ways to deactivate an APPL-APPL session.

Normal Deactivation of APPL-APPL Session: To deactivate an APPL-APPL
session normally from the TPF system, enter the following:

ZNETW INACT ID=ssssssss

Where:

ssssssss
The name of the remote APPL.

To deactivate all sessions with the TPF APPL, enter the following:
ZNETW INACT ID=pppp

Where:

pppp
The name of the TPF APPL.

TPF
SSCP

REMOTE
SSCP

CDTAKED TYPE=CLEANUP

+RSP(CDTAKED)

LU-LU ssessions ended by force

DACTCDRM TYPE=NORMAL

+RSP(DACTCDRM)

1

3

2

Figure 143. Forced CDRM-CDRM Session Deactivation

Appendix H. SNA Command Flow 363

Notes:

1. Responses to normal data traffic can flow before step #5. Because the CHASE
command is normal flow, once a response to CHASE has been received the LU
knows it is not waiting for any more responses to normal flow traffic. The remote
LU does not have to send a CHASE request, so step #2 is optional.

2. For PU2.1 sessions, no CDSESSENDs are sent (skip step #7).

Immediate APPL-APPL Session Deactivation: To deactivate an APPL-APPL
session immediately from the TPF system, enter the following:

ZNETW INACT ID=ssssssss,I

Where:

TPF APPL
(PLU)

REMOTE
APPL
(SLU)

TPF
SSCP

REMOTE
SSCP

CDSESSEND

CDSESSEND

+RSP(CDSESSEND)

+RSP(CDSESSEND)

2

3

4

CHASE

+RSP(CHASE)

SHUTC

CHASE

+RSP(SHUTC)

+RSP(CHASE)

SHUTD

+RSP(SHUTD)

1

7

5

6

CLEAR

UNBIND TYPE=NORMAL

+RSP(CLEAR)

+RSP(UNBIND)

Figure 144. Normal APPL-APPL Session Deactivation

364 TPF V4R1 ACF/SNA Data Communications Reference

ssssssss
The name of the remote APPL.

To deactivate all sessions with the TPF APPL, enter the following:
ZNETW INACT ID=pppp,I

Where:

pppp
The name of the TPF APPL.

Note: For PU2.1 sessions, no CDSESSENDs are sent (skip step #3).

Forced APPL-APPL Session Deactivation: To deactivate an APPL-APPL session
with force from the TPF system, enter the following:

ZNETW INACT ID=ssssssss,F

Where:

ssssssss
The name of the remote APPL.

To deactivate all sessions with the TPF APPL, enter the following:
ZNETW INACT ID=pppp,F

Where:

pppp
The name of the TPF APPL.

TPF APPL
(PLU)

REMOTE
APPL
(SLU)

TPF
SSCP

REMOTE
SSCP

CDSESSEND

CDSESSEND

+RSP(CDSESSEND)

+RSP(CDSESSEND)

3

1

2

CLEAR

UNBIND TYPE=NORMAL

+RSP(CLEAR)

+RSP(UNBIND)

Figure 145. Immediate APPL-APPL Session Deactivation

Appendix H. SNA Command Flow 365

Note: For PU2.1 sessions, no CDSESSENDs are sent (skip step #2).

Host-Node SLU Session Deactivation
The following sections show different ways to deactivate a host-node SLU session.

Normal Deactivation of Host-Node SLU Session: To deactivate a host-node
SLU session normally from the TPF system, enter the following:

ZNETW INACT ID=ssssssss

Where:

ssssssss
The name of the TPF SLU thread.

To deactivate all sessions with the remote APPL, enter the following:
ZNETW INACT ID=pppppppp

Where:

pppppppp
The name of the remote APPL.

TPF APPL
(PLU)

REMOTE
APPL
(SLU)

TPF
SSCP

REMOTE
SSCP

CDSESSEND

CDSESSEND

+RSP(CDSESSEND)

+RSP(CDSESSEND)

2

1 UNBIND TYPE=CLEANUP

+RSP(UNBIND)

Figure 146. Forced APPL-APPL Session Deactivation

366 TPF V4R1 ACF/SNA Data Communications Reference

Notes:

1. Responses to normal data traffic can flow before step #4. Because the CHASE
command is normal flow, once a response to CHASE has been received the LU
knows it is not waiting for any more responses to normal flow traffic. The remote
LU does not have to send a CHASE request, so step #3 is optional.

2. For PU2.1 sessions, no CDSESSENDs are sent (skip step #6).

Immediate Deactivation of Host-Node SLU Session: To deactivate a host-node
SLU session immediately from the TPF system, enter the following:

ZNETW INACT ID=ssssssss,I

Where:

ssssssss
The name of the TPF SLU thread.

To deactivate all sessions with the remote APPL, enter the following:
ZNETW INACT ID=pppppppp,I

TPF APPL
(SLU)

REMOTE
APPL
(PLU)

TPF
SSCP

REMOTE
SSCP

CDSESSEND

CDSESSEND

+RSP(CDSESSEND)

+RSP(CDSESSEND)

1

2

3

CHASE

+RSP(CHASE)

RSHUTD

CHASE

+RSP(RSHUTD)

+RSP(CHASE)

6

4

5

CLEAR

UNBIND TYPE=NORMAL

+RSP(CLEAR)

+RSP(UNBIND)

Figure 147. Normal Host-Node SLU Session Deactivation

Appendix H. SNA Command Flow 367

Where:

pppppppp
The name of the remote APPL.

Note: For PU2.1 sessions, no CDSESSENDs are sent (skip step #2).

Forced Host-Node SLU Session Deactivation: To deactivate a host-node SLU
session with force from the TPF system, enter the following:

ZNETW INACT ID=ssssssss,F

Where:

ssssssss
The name of the TPF SLU thread.

To deactivate all sessions with the remote APPL, enter the following:
ZNETW INACT ID=pppppppp,F

Where:

pppppppp
The name of the remote APPL.

TPF APPL
(SLU)

REMOTE
APPL
(PLU)

TPF
SSCP

REMOTE
SSCP

CDSESSEND

CDSESSEND

+RSP(CDSESSEND)

+RSP(CDSESSEND)

2

1 UNBIND TYPE=NORMAL

+RSP(UNBIND)

Figure 148. Immediate Host-Node SLU Session Deactivation

368 TPF V4R1 ACF/SNA Data Communications Reference

Note: For PU2.1 sessions, no CDSESSENDs are sent (skip step #2).

FMMR-FMMR Session Deactivation
The following sections show different ways to deactivate an FMMR-FMMR session.

Normal or Immediate Deactivation of FMMR-FMMR Session: To deactivate an
FMMR-FMMR session normally from the TPF system, enter the following:

ZNETW INACT ID=rrrrrrrr

To deactivate an FMMR-FMMR session immediately from the TPF system, enter
the following:

ZNETW INACT ID-rrrrrrrr,I

Where:

rrrrrrrr
The name of the remote FMMR.

To deactivate all FMMR sessions, enter the following:
ZNETW INACT ID=llllllll

or
ZNETW INACT ID-llllllll,I

Where:

llllllll
The name of the local FMMR.

TPF APPL
(SLU)

REMOTE
APPL
(PLU)

TPF
SSCP

REMOTE
SSCP

CDSESSEND

CDSESSEND

+RSP(CDSESSEND)

+RSP(CDSESSEND)

2

1 UNBIND TYPE=CLEANUP

+RSP(UNBIND)

Figure 149. Forced Host-Node SLU Session Deactivation

Appendix H. SNA Command Flow 369

Note: For PU2.1 sessions, no CDSESSENDs are sent (skip step #2).

Forced FMMR-FMMR Session Deactivation: To deactivate an FMMR-FMMR
session with force from the TPF system, enter the following:

ZNETW INACT ID=rrrrrrrr,F

Where:

rrrrrrrr
The name of the remote FMMR.

To deactivate all FMMR sessions, enter the following:
ZNETW INACT ID=llllllll,F

Where:

llllllll
The name of the local FMMR.

TPFBFMMR TPFAFMMRTPFB
SSCP

TPFA
SSCP

CDSESSEND

CDSESSEND

+RSP(CDSESSEND)

+RSP(CDSESSEND)

2

1 UNBIND TYPE=NORMAL

+RSP(UNBIND)

Figure 150. Normal or Immediate FMMR-FMMR Session Deactivation

370 TPF V4R1 ACF/SNA Data Communications Reference

Note: For PU2.1 sessions, no CDSESSENDs are sent (skip step #2).

LU 6.2 Session Deactivation
If you deactivate an LU 6.2 session normally, the session ends after the active
conversation, if any, finishes. The other types of deactivation cause the session to
end without waiting for an active conversation to finish.

Normal LU 6.2 Session Deactivation: To deactivate LU 6.2 sessions normally for
a particular remote LU, enter the following from the TPF system:

ZNETW INACT ID=ssssssss

or
ZNCNS RESET LU=ssssssss,MODE=nnnnnnnn

Where:

ssssssss
The name of the remote LU

nnnnnnnn
The mode name.

To deactivate all LU 6.2 sessions normally between remote LUs and a specific
TPF/APPC local LU, enter the following:

ZNETW INACT ID=pppp

Where:

pppp
The name of the local TPF/APPC LU.

TPFBFMMR TPFAFMMRTPFB
SSCP

TPFA
SSCP

CDSESSEND

CDSESSEND

+RSP(CDSESSEND)

+RSP(CDSESSEND)

2

1 UNBIND TYPE=CLEANUP

+RSP(UNBIND)

Figure 151. Forced FMMR-FMMR Session Deactivation

Appendix H. SNA Command Flow 371

Note: For PU2.1 sessions, no CDSESSENDs are sent (skip step #4).

Immediate LU 6.2 Session Deactivation: To deactivate all LU 6.2 sessions
immediately for a particular remote LU, enter the following from the TPF system:

ZNETW INACT ID=ssssssss,I

Where:

ssssssss
The name of the remote LU.

To deactivate all LU 6.2 sessions immediately between remote LUs and a specific
TPF/APPC local LU, enter the following:

ZNETW INACT ID=pppp,I

Where:

pppp
The name of the TPF APPL.

TPF LU REMOTE
LU

TPF
SSCP

REMOTE
SSCP

CDSESSEND

CDSESSEND

+RSP(CDSESSEND)

+RSP(CDSESSEND)

4

3 UNBIND TYPE=NORMAL

+RSP(UNBIND)

1 BIS

BIS2

Figure 152. Normal LU 6.2 Session Deactivation

372 TPF V4R1 ACF/SNA Data Communications Reference

Note: For PU2.1 sessions, no CDSESSENDs are sent (skip step #2).

Forced LU 6.2 Session Deactivation: To force the deactivation of all LU 6.2
sessions with a particular remote LU, enter the following from the TPF system:

ZNETW INACT ID=ssssssss,F

Where:

ssssssss
The name of the remote LU.

To force the deactivation of all LU 6.2 sessions between remote LUs and a specific
TPF/APPC local LU, enter then following:

ZNETW INACT ID=pppp,F

Where:

pppp
The name of the TPF APPL.

TPF LU REMOTE
LU

TPF
SSCP

REMOTE
SSCP

CDSESSEND

CDSESSEND

+RSP(CDSESSEND)

+RSP(CDSESSEND)

2

1 UNBIND TYPE=NORMAL

+RSP(UNBIND)

Figure 153. Immediate LU 6.2 Session Deactivation

Appendix H. SNA Command Flow 373

Note: For PU2.1 sessions, no CDSESSENDs are sent (skip step #2).

APPN Session Activation
The following sections show examples of session activations when the TPF system
is connected to the network as an APPN end node (EN).

CP-CP Session Activation
This section contains the flows for activating CP-CP sessions between the TPF
system and its network node server (NNS).

TPF LU REMOTE
LU

TPF
SSCP

REMOTE
SSCP

CDSESSEND

CDSESSEND

+RSP(CDSESSEND)

+RSP(CDSESSEND)

2

1 UNBIND TYPE=CLEANUP

+RSP(UNBIND)

Figure 154. Forced LU 6.2 Session Deactivation

374 TPF V4R1 ACF/SNA Data Communications Reference

Note: The CP-CP sessions are not considered active until step 4 completes.

APPN LU-LU Session Activation
This section contains the flows for activating LU-LU sessions between the TPF
system and remote LUs in an APPN network.

Legend for acronyms in the flow diagrams:

APPL Application LU

CP Control point LU

TPF
CP

NNS
CP

1

3

2

4

5

BIND (MODE=CPSVCMG)

BIND (MODE=CPSVCMG)

CP_CAPABILITIES (X’12C1’ GDS)

CP_CAPABILITIES (X’12C1’ GDS)

TOPOLOGY_DATABASE_UPDATE (X’12C2’ GDS)

TOPOLOGY_DATABASE_UPDATE (X’12C2’ GDS)

TOPOLOGY_DATABASE_UPDATE (X’12C2’ GDS)

+RSP(BIND)

+RSP(BIND)

CP_CAPABILITIES (X’12C1’ GDS)

CP_CAPABILITIES (X’12C1’ GDS)

6 REGISTER_RESOURCE (X’12C3’ GDS)

+RSP

REGISTER_RESOURCE (X’12C3’ GDS)

+RSP

REGISTER_RESOURCE (X’12C3’ GDS)

+RSP

Figure 155. CP-CP Session Activation

Appendix H. SNA Command Flow 375

M1 PCID modifier in the original LOCATE request

M2 PCID modifier used in the subprocedure

NNS Network node server

PLU Primary logical unit

RSCV Route selection control vector (control vector X'2B')

SC Session characteristics (control vectors X'31' and X'65')

Sessst Session started notification

SLU Secondary logical unit

TGs Transmission groups (pairs of control vectors X'46' and X'47').

Session Started by a TPF PLU: The following diagram shows the flows for
sessions that are started by a TPF PLU.

Session Started by a TPF SLU: The following diagram shows the flows for
sessions that are started by a TPF SLU.

TPF
APPL
PLU

REMOTE
APPL
SLU

1

LOCATE(Request),
FIND(SLU),
CDINIT(Search Only,TGs)

TPF
CP

NNS
CP

BIND

+RSP(BIND)

3

2

LOCATE(Reply,Discard),
FOUND(SLU),
CDINIT(Proceed,SC,RSCV)

Figure 156. Session Started by TPF PLU (APPN)

376 TPF V4R1 ACF/SNA Data Communications Reference

Session Started by a Remote SLU When RSCV is Provided: The following
diagram shows the flows for sessions that are started by a remote SLU when the
RSCV is provided.

Session Started by a Remote SLU When RSCV is Not Provided: The following
diagram shows the flows for sessions that are started by a remote SLU when the
RSCV is not provided.

TPF
APPL
(SLU)

REMOTE
APPL
(PLU)

1

LOCATE(Request,Keep),
FIND(PLU),
CDINIT(Initiate,SC,TGs)

TPF
CP

NNS
CP

BIND

+RSP(BIND)

2

3

LOCATE(Reply,Discard),
FOUND(PLU),
CDINIT(Sessst)

Figure 157. Session Started by TPF SLU (APPN)

TPF APPL
(PLU)

REMOTE
(SLU)

1

LOCATE(Request,Keep),
FIND(PLU),
CDINIT(Initiate Only,SC,RSCV)

TPF
CP

NNS
CP

BIND

+RSP(BIND)

2

3

LOCATE(Reply,Discard),
FOUND(PLU),
CDINIT(Sessst)

Figure 158. Session Started by Remote SLU (APPN), RSCV Provided

Appendix H. SNA Command Flow 377

Session Started by a Remote SLU When the Session is Queued: The following
diagram shows the flows for sessions that are started by a remote SLU when the
session is queued.

TPF APPL
(PLU)

REMOTE
(SLU)

1

LOCATE(Request,Keep,PCIDa,M1),
FIND(PLU),
CDINIT(Initiate Only,SC)

TPF
CP

NNS
CP

BIND

+RSP(BIND)

4

2

5

LOCATE(Reply,Discard,PCIDa,M1),
FOUND(PLU),
CDINIT(Sessst)

2

LOCATE(Request,PCIDa,M2),
FOUND(SLU),
CDINIT(Search Only,TGs)

3

LOCATE(Reply,Discard,PCIDa,M2),
FOUND(SLU),
CDINIT(Proceed,RSCV)

Figure 159. Session Started by Remote SLU (APPN), RSCV Not Provided

378 TPF V4R1 ACF/SNA Data Communications Reference

Session Started by a Remote PLU: The following diagram shows the flows for
sessions that are started by a remote PLU.

Session Started by a Remote PLU When the Session is Queued: The following
diagram shows the flows for sessions that are started by a remote PLU when the
session is queued.

TPF APPL
(PLU)

REMOTE
(SLU)

1

LOCATE(Request,Keep),
FIND(PLU),
CDINIT(Queue Only,SC)

TPF
CP

NNS
CP

BIND

+RSP(BIND)

4

2

5
LOCATE(Discard),
CDINIT(Sessst)

2

LOCATE(Reply,Keep),
FOUND(PLU),
CDINIT(Queued,TGs)

3
LOCATE(Keep),
CDINIT(Dequeue,RSCV)

Figure 160. Session Started by Remote SLU (APPN), Session Queued

TPF APPL
SLU

REMOTE
PLU

1

LOCATE(Request,Keep),
FIND(SLU),
CDINIT(Initiate Only)

TPF
CP

NNS
CP

BIND

+RSP(BIND)

3

2

4
LOCATE(Discard),
CDINIT(Sessst)

2

LOCATE(Reply,Keep),
FOUND(SLU),
CDINIT(Proceed,SC,TGs)

Figure 161. Session Started by Remote PLU (APPN)

Appendix H. SNA Command Flow 379

LU-LU Session Activation for Printer Sharing
This section contains the flows for establishing an LU-LU session with a shared
printer. The TPF system can either request the session with the printer or be asked
to release its session with the printer.

Legend for acronyms in the flow diagrams:

CP Control point LU

I/Q Initiate or queue

NNS(SLU) Network node server for the SLU

NNS(TPF) Network node server for the TPF system

PLU Primary logical unit

Relreq Release session request

RSCV Route selection control vector (control vector X'2B')

SC Session characteristics (control vectors X'31' and X'65')

Sessst Session started notification

SLU Secondary logical unit

TGs Transmission groups (pairs of control vectors X'46' and X'47').

TPF APPL
SLU

REMOTE
PLU

1

LOCATE(Request,Keep),
FIND(SLU),
CDINIT(Queue Only)

TPF
CP

NNS
CP

BIND

+RSP(BIND)

5

2

6
LOCATE(Discard),
CDINIT(Sessst)

2

LOCATE(Reply,Keep),
FOUND(SLU),
CDINIT(Queued,SC)

3
LOCATE(Keep),
CDINIT(Dequeue)

4
LOCATE(Keep),
CDINIT(Proceed,TGs)

Figure 162. Session Started by Remote PLU (APPN), Session Queued

380 TPF V4R1 ACF/SNA Data Communications Reference

Session Requested by the TPF System (Printer Available): The following
diagram shows the flows when the TPF system requests a session with a shared
printer that is available.

Session Requested by the TPF System (Printer In Use): The following diagram
shows the flows when the TPF system requests a session with a shared printer that
is in use.

TPF APPL
PLU

Printer
SLU

TPF
CP

NNS(SLU)
CP

BIND

+RSP(BIND)

3

1

NNS(TPF)
CP

LOCATE(Request,Keep),FIND(SLU),CDINIT(I/Q,Relreq,TGs)

2 LOCATE(Reply,Keep),FOUND(SLU),CDINIT(Proceed,SC,RSCV)

4 LOCATE(Discard),CDINIT(Sessst)

Figure 163. Printer Sharing, Request by TPF, Printer Available

Appendix H. SNA Command Flow 381

TPF System Requested to Release the Shared Printer: The following diagram
shows the flows when the TPF system is requested to release the session with a
shared printer.

TPF
PLU

End Node
PLU’ CP

TPF
CP

NNS(SLU)
CP

1

NNS(TPF)
CP

LU-LU session(PCIDx)

2
LOCATE(Request,Keep,PCIDa),FIND(SLU),
CDINIT(I/Q,Relreq,TGs)

Printer
SLU

3
LOCATE(Reply,Keep,PCIDa),FOUND(SLU),
CDINIT(Queued,SC)

4

LOCATE(Request,PCIDb),
FIND(PLU’),
NOTIFY(Relreq)

5
LOCATE(Reply,Discard,PCIDb),
FOUND(PLU’)

UNBIND(PCIDx)6

+RSP(UNBIND)

7 LOCATE(Keep,PCIDa),CDINIT(Dequeue,RSCV)

BIND(PCIDa)

+RSP(BIND)

8

9 LOCATE(Discard,PCIDa),CDINIT(Sessst)

Figure 164. Printer Sharing, Request by TPF, Printer In Use

382 TPF V4R1 ACF/SNA Data Communications Reference

APPN LU-LU Session Deactivation
This section contains the flows for deactivating LU-LU sessions in an APPN
network. For active LU-LU sessions, the control points (CPs) are not involved
except for the case where normal deactivation is done by a SLU. See “PU 5 and
PU 2.1 Session Deactivation” on page 360 for the other deactivation flows.

Legend for acronyms in the flow diagrams:

APPL Application LU

CP Control point LU

NNS Network node server

TPF
PLU

End Node
PLU’ CP

TPF
CP

NNS(SLU)
CP

1

NNS(TPF)
CP

LU-LU session(PCIDx)

2

LOCATE(Request,Keep,PCIDa),
FIND(SLU),
CDINIT(I/Q,Relreq,TGs)

Printer
SLU

LOCATE(Reply,Keep,PCIDa),
FOUND(SLU),
CDINIT(Queued,SC)

4

BIND(PCIDa)8

+RSP(BIND)

UNBIND(PCIDx)

+RSP(UNBIND)

6

5 LOCATE(Reply,Discard,PCIDb),FOUND(PLU)

3

LOCATE(Request,PCIDb),FIND(PLU),NOTIFY(Relreq)

LOCATE(Keep,PCIDa),
CDINIT(Dequeue,RSCV)7

LOCATE(Discard,PCIDa),
CDINIT(Sessst)9

Figure 165. Printer Sharing, TPF Requested to Release the Printer

Appendix H. SNA Command Flow 383

PLU Primary logical unit

SLU Secondary logical unit.

APPN-Subarea Migration Flows
This section contains the flows for establishing LU-LU sessions between the TPF
system in an APPN network and remote LUs in a subarea (PU 5) network.

Legend for acronyms in the flow diagrams:

BF Boundary function within the NCP

CDRM Cross-domain resource manager

CP Control point LU

INN Interchange network node

NNS Network node server

PLU Primary logical unit

RSCV Route selection control vector (control vector X'2B')

SC Session characteristics (control vectors X'31' and X'65')

Sessst Session started notification

SLU Secondary logical unit

TGs Transmission groups (pairs of control vectors X'46' and X'47').

SLU Initiated, SLU in APPN, PLU in Subarea
The following diagram shows the flows for sessions that are initiated by the SLU.
The SLU is in an APPN network and the PLU is in a subarea network.

TPF APPL
PLU

REMOTE
SLU

2

LOCATE(Request,PCIDa),
FIND(PLU),
NOTIFY(Cdterm-Orderly,PCIDx)

TPF
CP

NNS
CP

UNBIND(PCIDx)

+RSP(UNBIND)

4

3
LOCATE(Reply,Discard,PCIDa),
FOUND(PLU)

LU-LU session (PCIDx)1

Figure 166. Normal Deactivation by Remote SLU (APPN)

384 TPF V4R1 ACF/SNA Data Communications Reference

SLU Initiated, SLU in APPN, PLU in Subarea (PLU Location
Unknown)
The following diagram shows the flows for sessions that are initiated by the SLU.
The SLU is in an APPN network and the PLU is in a subarea network but the PLU
location is unknown.

TPF
SLU

REMOTE
CDRM PLU

2

LOCATE(Request,Keep),
FIND(PLU),
CDINIT(Initiate,SC,TGs)

TPF
CP

VTAM
CP

BIND

+RSP(BIND)

4

CDINIT

CDCINIT

CDSESSST

+RSP(CDINIT)

+RSP(CDCINIT)

+RSP(CDSESSST)

1

INN
CDRM

3

5

LOCATE(Reply,Discard),
FOUND(PLU),
CDINIT(Sessst)6

Figure 167. SLU Initiated, SLU in APPN, PLU in Subarea

Appendix H. SNA Command Flow 385

PLU Initiated, SLU in APPN, PLU in Subarea
The following diagram shows the flows for sessions that are initiated by the PLU.
The SLU is in an APPN network and the PLU is in a subarea network.

TPF
SLU

REMOTE
CDRM PLU

4

LOCATE(Request,Keep,PCIDb),
FIND(PLU),
CDINIT(Initiate,SC,TGs)

LOCATE(Reply,Discard,
Resubmit Directed,PCIDa),

FOUND(PLU),
CDINIT(Procedure Terminated)

TPF
CP

VTAM
CP

BIND

+RSP(BIND)

6

CDINIT

CDCINIT

CDSESSST

+RSP(CDINIT)

+RSP(CDCINIT)

+RSP(CDSESSST)

3

INN
CDRM

5

7

LOCATE(Reply,Discard,PCIDb),
FOUND(PLU),
CDINIT(Sessst)8

2 DSRLST

+RSP(DSRLST)

LOCATE(Request,Keep,PCIDa),
FIND(PLU),
CDINIT(Initiate,SC,TGs)

1

Figure 168. SLU Initiated, SLU in APPN, PLU in Subarea (PLU Location Unknown)

386 TPF V4R1 ACF/SNA Data Communications Reference

SLU Initiated, PLU in APPN, SLU in Subarea (SC Provided)
The following diagram shows the flows for sessions that are initiated by the SLU.
The PLU is in an APPN network and the SLU is in a subarea network. Session
characteristics are provided.

TPF
(SLU)

REMOTE
CDRM PLU

4

TPF
CP

VTAM
CP

BIND

+RSP(BIND)

6

CDINIT

CDSESSST

+RSP(CDINIT)

+RSP(CDCINIT)

+RSP(CDSESSST)

INN
CDRM

5

7

1 CDINIT

LOCATE(Request,Keep),
FIND(SLU),
CDINIT(Initiate)

2

LOCATE(Reply,Keep),
FOUND(SLU),
CDINIT(Proceed,SC,TGs)

3

LOCATE(Discard),
CDINIT(Sessst)

8

Figure 169. PLU Initiated, SLU in APPN, PLU in Subarea

Appendix H. SNA Command Flow 387

SLU Initiated, PLU in APPN, SLU in Subarea (SC Not Provided)
The following diagram shows the flows for sessions that are initiated by the SLU.
The PLU is in an APPN network and the SLU is in a subarea network. Session
characteristics are not provided.

TPF
PLU

REMOTE
CDRM SLU

5

TPF
CP

VTAM
CP

BIND

+RSP(BIND)

3

CDINIT

CDSESSST

+RSP(CDINIT)

BFINIT

+RSP(CDCINIT)

+RSP(CDSESSST)

INN
CDRM

6

10

1 CDINIT

LOCATE(Request,Keep),
FIND(PLU),
CDINIT(Initiate,SC,RSCV)

2

LOCATE(Reply,Discard),
FOUND(PLU),
CDINIT(Sessst)

9

NCP
BF

BFCINIT

BIND8

7

8

4

Figure 170. SLU Initiated, PLU in APPN, SLU in Subarea (SC Provided)

388 TPF V4R1 ACF/SNA Data Communications Reference

PLU Initiated, PLU in APPN, SLU in Subarea (SC Provided)
The following diagram shows the flows for sessions that are initiated by the PLU.
The PLU is in an APPN network and the SLU is in a subarea network. Session
characteristics are provided.

TPF
PLU

REMOTE
CDRM SLU

4

TPF
CP

VTAM
CP

BIND

+RSP(BIND)

7

CDCINIT

+RSP(CDINIT)

+RSP(CDCINIT)

INN
CDRM

5

CDSESSST

+RSP(CDSESSST)

9

1 CDINIT

LOCATE(Request,Keep),
FIND(PLU),
CDINIT(Initiate,RSCV)

2

LOCATE(Reply,Keep),
FOUND(PLU),
CDINIT(Pending SC)

3

LOCATE(Discard),
CDINIT(Sessst)

8

LOCATE(Keep),
FIND(PLU),
CDINIT(Providing SC, SC)

6

Figure 171. SLU Initiated, PLU in APPN, SLU in Subarea (SC Not Provided)

Appendix H. SNA Command Flow 389

PLU Initiated, PLU in APPN, SLU in Subarea (SC Not Provided)
The following diagram shows the flows for sessions that are initiated by the PLU.
The PLU is in an APPN network and the SLU is in a subarea network. Session
characteristics are not provided.

TPF
PLU

REMOTE
CDRM SLU

2

TPF
CP

VTAM
CP

BIND

+RSP(BIND)

4

+RSP(DSRLST)

DSRLST

INN
CDRM

LOCATE(Request),
FIND(SLU),
CDINIT(Search Only,TGs)

1

LOCATE(Reply,Discard),
FIND(SLU),
CDINIT(Proceed,SC,RSCV)

3

Figure 172. PLU Initiated, PLU in APPN, SLU in Subarea (SC Provided)

390 TPF V4R1 ACF/SNA Data Communications Reference

More on SNA Command Flow
For additional information about SNA command flows, see the following
publications:

v SNA Formats

TPF
PLU

REMOTE
CDRM SLU

5

TPF
CP

VTAM
CP

BIND

+RSP(BIND)

8

CDINIT

CDCINIT

+RSP(CDINIT)

+RSP(CDCINIT)

INN
CDRM

CDSESSST

+RSP(CDSESSST)

10

2 DSRLST

+RSP(DSRLST)

LOCATE(Reply,Discard,PCIDa),
FOUND(SLU),
CDINIT(Proceed,RSCV)

3

LOCATE(Request,Keep,PCIDb),
FIND(SLU),
CDINIT(Initiate Only,TGs)

4

LOCATE(Discard,PCIDb),
CDINIT(Sessst)

9

LOCATE(Reply,Keep,PCIDb),
FOUND(SLU),
CDINIT(Proceed,SC,RSCV)

6

LOCATE(Request,PCIDa),
FIND(SLU),
CDINIT(Search Only,TGs)

1

7

Figure 173. PLU Initiated, PLU in APPN, SLU in Subarea (SC Not Provided)

Appendix H. SNA Command Flow 391

v IBM Systems Network Architecture Technical Overview.

392 TPF V4R1 ACF/SNA Data Communications Reference

Appendix I. TPF Sense Code Processing

Every SNA command sent by the TPF system has a corresponding response
handler that performs sense error handling internally or passes control to the SSCP
negative response handler.

The response handler handles a negative response if it is to be treated as a
positive response. Generally a negative response to the last command to flow
during session deactivation is treated as positive because, whether the response is
positive or negative, everything should be cleaned up at this time. Examples of
commands that can be the last commands to flow are CDSESSEND, CDTERM,
DACTCDRM, DACTPU and UNBIND.

The actions that can be taken by the negative response handler are:

v CLNUP

If the session is bound or is starting up, the necessary commands are issued to
take it down. Control blocks are then cleaned up.

A 511 SNAPC dump is taken if the sense handling table (CSD9) indicates a
dump should be taken. The message accompanying the SNAPC gives the sense
code, the command, and whether it was a session failure or session activation
failure.

An operator message is displayed if the command that failed was part of session
initiation due to a ZNETW ACT command. Otherwise no message is displayed.
The message that is displayed gives the sense code or ’TIMED OUT’, and the
command that caused the session activation failure.

v EXIT

No action is taken. This is generally used for sense indicating contention.

v RESND

If the command has already been re-sent once, then the action is CLNUP.
Otherwise, the command is resent.

v WAIT

This action indicates that the TPF system should wait for a response to the
original transmission because the resend of the command resulted in a negative
response indicating that the first transmission is being processed.

v RESYNC

If there is no session, the action is CLNUP. Otherwise session resynchronization
is scheduled.

Table 26 shows the action taken based on the sense code. The default action for
any sense code not listed in this table is CLNUP, a message, and the 511 SNAPC
dump.

Table 26. Sense Codes and Actions

Sense Command Action Dump

0801 ANY CLNUP NO

0805 ACTCDRM EXIT NO

ANY CLNUP NO

0806 ANY CLNUP NO

0808 ACTCDRM CLNUP YES

© Copyright IBM Corp. 1994, 2002 393

Table 26. Sense Codes and Actions (continued)

Sense Command Action Dump

0809 ANY CLNUP YES

080D CDINIT EXIT NO

ACTCDRM EXIT NO

080E ANY CLNUP NO

0812 ANY RESND NO

0815 ANY CLNUP YES

0817 ANY CLNUP NO

081E ANY CLNUP YES

0821 ANY CLNUP YES

0822 ANY CLNUP NO

0831 BIND CLNUP NO

CHASE EXIT NO

0832 ANY CLNUP YES

0833 ANY CLNUP YES

0835 ANY CLNUP YES

0836 CDINIT CLNUP YES

0839 ANY CLNUP NO

083B ANY CLNUP YES

0841 CDINIT CLNUP YES

084B CDINIT CLNUP NO

0852 BIND CLNUP YES

0857 BIND CLNUP NO

CDINIT CLNUP NO

0858 ACTCDRM RESND NO

0877 BIND CLNUP YES

087D CDINIT CLNUP NO

0881 ACTCDRM CLNUP NO

088C ANY CLNUP YES

0893 BIND RESND NO

0894 BIND CLNUP YES

0895 ANY CLNUP YES

0896 ANY CLNUP YES

0897 ANY CLNUP YES

1002 ANY CLNUP YES

1003 ANY CLNUP YES

1007 ANY CLNUP YES

2005 ANY CLNUP YES

2007 ANY CLNUP YES

8002 ANY CLNUP NO

8003 BIND CLNUP NO

394 TPF V4R1 ACF/SNA Data Communications Reference

Table 26. Sense Codes and Actions (continued)

Sense Command Action Dump

8004 BIND CLNUP YES

8005 ANY CLNUP NO

8006 ANY CLNUP YES

8007 ANY CLNUP YES

8008 BIND CLNUP NO

8009 ANY CLNUP NO

800C ANY CLNUP YES

800D ANY RESND NO

8011 ANY CLNUP NO

8013 ANY CLNUP NO

SNA Timeout Processing
If the TPF system is waiting for a response to a command and no response is
received before the SSCP time-out interval expires, a pseudo negative response is
created and passed to the command router. The command router passes the
response to the appropriate response handler for action. The action taken by the
response handler for timeout processing is CLNUP. See Appendix I, “TPF Sense
Code Processing” on page 393 for information on negative response processing
and the CLNUP action.

Appendix I. TPF Sense Code Processing 395

396 TPF V4R1 ACF/SNA Data Communications Reference

Index

Special Characters
#CCBRU 61
#CMSIT 61
#SC1RU 61
#SC2RU 61

Numerics
3174 APPN 2, 4, 16, 244
3270 Application Considerations 26

copy (SNA command) 26
3270 welcome screen 216
3600 Application Considerations

Data Transmission 25
exception response request 25

3601 applications 25
3601 control program 23
3614/3624 Message Processing 251
3614/3624 Session Initiation and Application

Considerations 251
37x5 communications controller 11
37x5 Considerations 240, 241
4K read buffers 225
4K write buffers 225

A
Acceptable BIND Image For a Local Host Node

SLU 284
action codes 23
activating a cross-domain link 14
activating and deactivating a Shared NCP

loading NCP on 37x5 201
activating and deactivating APPN CP-CP sessions 204
activating and deactivating control LU-Logon Manager

sessions 204
activating and deactivating cross-domain resource

managers
PU 5 environment 202

activating and deactivating resources 201
activating LU-LU sessions 206
activating sessions 20
adaptive rate-based pacing

ARB algorithm 168
description of 168

address conversion 19
addressing ALC devices 48
Adjacent Link Station - ALS 4
advanced peer-to-peer networking 16
Advanced Peer-to-Peer Networking 2, 16

37x5 Considerations 240
considerations with System network Interconnection

(SNI) 234
CP-CP sessions 204
environment 16
LU registration 211
LU-LU sessions 211

agent assembly area (AAA) 19
Airlines Line Control (ALC) 2

Airlines Line Control Interface (ALCI) 45
AX.25 support 45
Network Extension Facility (NEF) 45
support through SNA 45
terminal interchange 46

Airlines Line Control Interface (ALCI) 2
ALC (Airlines Line Control) 2
ALCI (Airlines Line Control Interface) 2, 45
alive timer

defining
SNAKEY macro 145
ZNKEY command 145

description of 145
heartbeat message 145

ALLOCATE 73
ALS 64, 65
ALS - Adjacent Link Station 4
alternate CRAS 49
AM0SG 100
AMSG format

coding applications 42
ANR labels 128, 136
ANR nodes 127
application development

considerations for
NCB records 190

CSNB segment 190
application message 25
application programs

defining 201
starting/stopping 201

applications, concurrent 12
APPN mode 4
ARB algorithm 168
architecture comparisons for TPF/APPC

ALLOCATE 73
CONFIRM 73
CONFIRMED 73
DEALLOCATE 74
FLUSH 74
GET_ATTRIBUTES 74
GET_TYPE 75
POST_ON_RECEIPT 75
PREPARE_TO_RECEIVE 75
RECEIVE_AND_WAIT 76
REQUEST_TO_SEND 76
SEND_DATA 76
SEND_ERROR 77
TEST 77
WAIT 77

assembler, H-level 69
ATTACH interface 69
automatic network routing (ANR) labels 128, 136
automatic network routing (ANR) nodes 127
AX.25 NCP definition

pacing 240

© Copyright IBM Corp. 1994, 2002 397

AX.25 Support 2, 45

B
BIND 99
bind (SNA command) 22
bind command processing

relationship to input buffer size 32
BIND Images for TPF Supported Secondary Logical

Units 283
BNN (Boundary Network Node) 29
Boundary Network Node (BNN) 29
Bracket Support 250

C
C-language 69
CALL_CONFIRM command

received from NPSI/GATE 334
CALL_OUT command

TPF initiated to NPSI/GATE 332
CALL_REQUEST command

received from NPSI/GATE 330
CCB (conversation control block) 67
CCB ID (conversation control block identifier) 67
CCP (communications control program) 48
CCSNAE 100
CDRSC 63, 64
Chained and Segmented Messages 248
chaining (NPSI)

request unit (RU) 31
change direction indicator 43
change number of sessions (CNOS) work block 68
channel contact in CTC 223
channel-to-channel (CTC)

activation of virtual route 229
channel contact 223
considerations with FID4 222, 223
considerations with System network Interconnection

(SNI) 234
data transfer 11
deactivation of virtual route 230
pre-channel contact/priming 222
slowdown 277

Channel-to-Channel (CTC) priming 222
CHDD 61, 100
check characters

cyclic 46
synchronization 46

CIAA 46
CICS 26, 66

3790 full function LU support 29
CICS compatibility 19
CICS Relay Application Considerations 29
CIFRC macro 251
CK2SN 61
class of service (COS) 227
Class of Service (COS) 239
clear (SNA command) 247
CLEAR command

received from NPSI/GATE 331

CLEAR command (continued)
TPF initiated sent to NPSI/GATE 335

CLEAR-CONFIRM command
received from NPSI/GATE 335

CLU 16
cluster controller (3274/3276) 4, 43, 250
cluster controller (3x74/3276) 26
CLXC 48
CMC (communications management configuration) 46
CNE1 47
command content for FTPI 34
command flow 345
command support in TPF/NEF/AX.25 48
Communication and Transmission Control Program

(CTCP) 29, 317
activating for GATE/FTPI 36
control block residence 326
definition for GATE/FTPI 36
functions 321
input data message processing 335
output data message processing 335
sample implementation using PSVs 321
user control blocks 322

communication path 19
communication rate 19
communications control program (CCP) 48

macro routine (CLXC) 48
communications controller 11
communications management configuration (CMC) 46
communications program 3
communications source program (CIAA) 46
computer room agent table (CRAT) 49
concurrent message processing 250
configuration image 251
configuration report 49
CONFIRM 73
CONFIRMED 73
Contact Point Control Block (CPCB) 326
control blocks for TPF/APPC 67
control information (CI) field in FMH 22
control messages, HPR 151
Control Point 16

activating 204
deactivating 204

control records 19
control unit (3271) 26
controlling logical and physical units 3
controlling NEF/AX.25/XALCI 47
controlling the network 11
conversation control block (CCB) 67
conversation control block identifier (CCB ID) 67, 71
conversation verbs for TPF/APPC

basic conversation verbs 71, 72
mapped conversation verbs 71
type-independent verbs 71, 72

COS - Class of Service 239
COS (class of service) 227
COVX (NAU conversion program) 287
CP-CP sessions

activating 204
deactivating 204

398 TPF V4R1 ACF/SNA Data Communications Reference

CPCB (Contact Point Control Block) 326
CRAS 49
cross-domain communication 12
cross-domain links 12

activating and enabling 14
cross-domain resource (CDRSC) 46
cross-domain resource manager (CDRM) 14

establishing path between 12
cross-domain sessions

requesting 14
cross-domain support 45
cross-domain takedown (CDTAKED) 202
CS2A 100
CSMP 49
CSNB segment

accessing NCB records 190
CSXA 107
CSXB 107
CSXC 107
CTC (channel-to-channel)

activation of virtual route 229
channel contact 223
considerations with FID4 222, 223
considerations with System network Interconnection

(SNI) 234
data transfer 11
deactivation of virtual route 230
pre-channel contact/priming 222
slowdown 277

CTC (Channel-to-Channel)
data transfer 11

CTCP (Communication and Transmission Control
Program) 29, 317

activating for GATE/FTPI 36
control block residence 326
definition for GATE/FTPI 36
functions 321
input data message processing 335
output data message processing 335
sample implementation using PSVs 321
user control blocks 322

CTK2 67
CTKE 48
cyclic check characters 46

D
data

encryption 251
exchange 3
transmission 20

data and control message 22
Data Flow Control (DFC) 22

BIND 260
services 260
User DFC Interface 261

DATE (Dedicated Access to X.25 Transport
Extension) 29

DEALLOCATE 74
Dedicated Access to X.25 Transport Extension

(DATE) 29

defining application programs 201
defining RCPL fields 22
defining the network 11
defining TPF/APPC LUs

across a PU 2.1 APPN connection 65
across a PU 2.1 LEN connection 64
across a PU 5 connection 63
across a PU 5 CTC connection 64
to a VTAM subsystem 66
to the network 63

DELAY parameter 225
DFC (Data Flow Control) 22, 260
DFHTCT 66
DHASHC macro

NCB directory records 187
RNHPT hash bucket 183

diagrams for macro models xx
domain 3

communication across 12
multiple 12
single 12

domain resource manager (DRM) 14
Dumps

system error 276
dynamic LU support

ALS resources
considerations 200
defining 200
restrictions 200

remote LU resources
considerations 199
defining 199
defining PSV routines 199
Dynamic LU user exit 199
restrictions 199

Dynamic LU user exit
defining remote LU resources 199

E
EBTCBID 71
EBW000 field 21
ECHO numbers 151
enabling a cross-domain link 14
encryption of data 251
End Point Control Block (EPCB) 325
EPCB (End Point Control Block) 325
error 275

detection 275
detection and feedback 276
from LU attached to 3271 247
from LU attached to 3274/3276 247
invalid pseudo line number 48
path malfunctions 203
recovery 277

Error Detection and Feedback 276
error recovery 3
establishing a session 20
establishing LU-LU sessions 4
exception reached recovery node (RRN) 251
exchanging data 3

Index 399

F
Fast Transaction Processing Interface (FTPI) 2, 32

command content 34
message blocking format 33
NPSI considerations for 37
traces 42
VTAM considerations for 37

FID5 TH 151
financial service terminals (3606/3608) 250
finite state machine 80
FLUSH 74
FMH7 100
forward ANR field 138
FTPI (Fast Transaction Processing Interface) 2, 32

command content 34
message blocking format 33
NPSI considerations for 37
traces 42
VTAM considerations for 37

Function Management Header (FMH) 22
defining contents of 26

function management message router (FMMR) 16

G
GATE (General Access to X.25 Transport

Extension) 2, 29, 32, 317, 322
gateway resources 233
General Access to X.25 Transport Extension

(GATE) 2, 29, 32, 317, 322
generating the side information table 83

creating the input file 85
ADD statement 85, 87
comments 85, 86
DESCR statement 85, 87
general statement syntax 86
input file example 89
input statements and ZNSID, comparison 91
LOAD statement 85, 87
REMOVE statement 85, 89

loading the table to TPF 96
output from CHQI 93

output listing, description of 93
output listing, example of 94
side information data set 93

running CHQI 92
sample JCL 93

GET_ATTRIBUTES 74
GET_TYPE 75

H
H-level assembler 69
half-session to presentation services record (HPR) 69
half-session, TPF/APPC 59
Hardware Error Recovery 277
hardware IPL considerations

virtual route resynchronization 231
header length (HL) field in FMH 22
hierarchic relationship 3

high-performance routing (HPR) support
alive timer 145
ANR labels 128, 136
benefits of 127
control messages 151
diagnostic information

PIU trace facility 177, 291
sense codes 177

flow control
ARB pacing 168
RTP output queue 170

forward ANR field 138
heartbeat message 145
HPRMT

defining 156
description of 156
displaying 157

HPRSAT
defining 155
description of 155
displaying 156

input messages
reassembling 176

installing 176
IPL considerations 163
links

activating 130
ANR labels 128, 136
displaying 130
maximum link size (MLS) 174
NCE indentifiers 129
XID flows 130

LU-LU sessions
CP-CP sessions 167
flows 138
session addresses 140
starting 135

NCE identifiers 129, 138
network failures

alive timer 145
detecting 144
heartbeat message 145
short request timer 144

NLP
description of 145
FID5 TH 151
HPR control messages 151
network considerations 152
NHDR 147
RH 151
RU 151
THDR 149

node types
ANR nodes 127
mobile RTP nodes 143
RTP nodes 127
stationary RTP nodes 143

output messages
building 172
retransmitting 174
segmenting 175

400 TPF V4R1 ACF/SNA Data Communications Reference

high-performance routing (HPR) support (continued)
path switch

CP-CP sessions 167
description of 141
path switch timer 143
process of 141
starting 141

reassembly
description of 174

reverse ANR field 138
ROUTE_SETUP process 136
RTP connection resynchronization process

description of 163
enabling 167

RTP connections
deactivating 134
description of 131
displaying 134
starting 134, 136
states of 131
TCIDs 134

RTPCB table
#RT1RI records 155
#RT2RI records 155
defining 154
description of 152
displaying 155
initializing 155
SNA control blocks, relationship with 157

segmentation
description of 174
THDR chaining 175, 176

Select an RTP Connection user exit (URTP) 136
selective retransmission

description of 173
sense codes 177
session addresses 140
short request timer 144
smoothed round trip time 144
SRTT 144
TCIDs 134
THDR chaining

description of 175, 176
tuning 176
URTP user exit 136
ZNRTP DISPLAY command 134, 155
ZNRTP INACT command 134
ZNRTP INITIALIZE command 155
ZNRTP ROUTE command 134
ZNRTP SUMMARY command 134
ZNRTP SWITCH command 141

high-performance routing message table (HPRMT)
defining

SNAKEY macro 156
description of 156
displaying

ZDDCA command 157
ZNRTP SUMMARY command 157

high-performance routing session address table
(HPRSAT)

defining
SNAKEY macro 155

description of 155
displaying

ZDDCA command 156
host applications 25
host node 4
Host Node Application Considerations 26
host support

multiple 49
HPO (High Performance Option) 3
HPR (half-session to presentation services record) 69
HPR control messages 151
HPR SOUTC type-A block 172
HPR SOUTC type-B block 172
HPR SOUTC type-C block 172

I
ICCB 67
ICNOS 68
IDAW (indirect data address word) 11
IHPR 69
IMS 26

conventions 28
errors 28

IMS compatibility 19
IMS Relay Application Considerations 28
inbound message flow 5
inbound message flow extensions 317
inbound message queuing 100
indirect data address word (IDAW) 11
initiate (SNA command) 22
INN (Intermediate Network Node) 29
input buffer size

relationship to bind command processing 32
input message 47
Input Message Router Exit 265
input messages, HPR

reassembling 176
installing TPF/APPC 60
interface

NEF support 49
standard 21
TPF/NEF/AX.25 45

Intermediate Network Node (INN) 29
invalid condition

See error
invalid pseudo line number 48
IPL considerations (hardware)

virtual route resynchronization 231
ISCB 68
ISHLL macro 213
ITPNT 62
IWBL 68

Index 401

K
keyboard, locked 27
keypoint 2 (CTK2) 67

L
L/C (Loosely Coupled Facility) 3
LEID (Logical End-Point Identifier) 2, 6, 45, 46, 260

value 46
LEN 63

37x5 Considerations 241
LEN environment 15
LEN mode 4
level 2 networking 16
line number, interchange address, terminal address

(LNIATA) 21, 26
line numbers, symbolic 48
links, HPR

activating 130
displaying

ZNAPN command 130
maximum link size 174
XID flows 130

LLC (Logical Link Control) 3, 29, 321, 335
load module 11
locked keyboard 27
logging onto an application 22
Logical End-Point Identifier (LEID) 2, 6, 45, 46, 260

value 46
Logical Link Control (LLC) 3, 29, 321
logical unit (LU) 19

3271
special processing 250

logical unit relationship 3
Logical Unit Status (LUSTAT) 281
logical units (LU)

recoverable 28
type P 28

Logon Manager Considerations 243
Loosely Coupled considerations for APPN 205
loosely coupled considerations for TPF/APPC 63, 103

installation tasks for TPF/APPC 105
loosely coupled complex example 103

Loosely Coupled Facility (L/C) 3
lost input resubmitted 27
LREAD instruction 26
LU 6.2

architecture 73, 80
conversations

description of 107
pipeline 108
shared 110, 112
traditional 107

installation 60
prerequisites 59

LU registration 211
LU-LU sessions

activating 206
LU-LU sessions in an APPN network 211

LU-LU sessions, HPR
CP-CP sessions 167
flows 138
starting 135

LUSTAT (Logical Unit Status) 281
LUTYPE62 66
LWRITE instruction 25

M
macro model diagrams xx
macro routine (CLXC) 48
macro to define network 11
macros

ROUT-type 48
SEND-type 48

macros supported by NEF/AX.25 48
mapped conversation support, TPF/APPC 71
mapping support

AMSG format 42
MAXBFRU parameter 225
MAXCCB 61
MAXPRIM 181
MAXRVT 179
MAXSCB 61
message

(non-) recoverable 25
data and control 22
logical unit status 281
multiple segment input 22
overflow 21
receipt 27
recovery and synchronization 17, 249
responses 26
resubmitted 21
segmented 26
synchronization 22
unsolicited 25

message blocking format for FTPI 33
message buffering, outbound 99
message flow

for TPF/APPC 99
in an XALCI configuration 56
inbound 5
outbound 7

message formats
high speed 47
specified at system initialization 46

message number 23
message processing flow overview

inbound 5
outbound 7

message processing flow user extensions 317
inbound message 317
outbound message 319

message queuing, inbound 100
message routing 16
message traffic multiplexing 33
Messages

outbound messages
AM0SG fields 262

402 TPF V4R1 ACF/SNA Data Communications Reference

Messages (continued)
outbound messages (continued)

PSV 262
RCPL 262

pacing
queue 262
ROUTC 262

undeliverable messages
PSV 262
RCAT 262
ROUTC 262
ROUTC EXIT 262

messages, unsolicited 47
Mode Name 239
models of macro invocations xx
MSAT 67
MSGRTA 61
Multi-Thread Processing 250
multiple logical units 49
multiple segment input message 22
multiple-domain networks 12
multiplexor channel 45
MVS/VTAM 11

loading NCP 201

N
NAU

node vs. NAU 3
NCB

See node control block (NCB)
NCB control record

description of 184
NCB directory records

#NCBN4 185
#NCBN5 185
current NCB directory records 185
defining 185
description of 185
DHASHC macro 187
displaying 187
example of 185
increasing number of 188
NCB reconciliation function 187
NCB reorganization function 188
ordinal number 187
ordinal numbers 186
reclaiming 187
staged NCB directory records 185

NCB initialization function
description of 187
ZNNCB command 187

NCB reconciliation function
381-byte long-term pool file NCB records 187
description of 187
NCB directory records 187
procedure for 188
running 188
ZNNCB RECON command 188

NCB reorganization function
description of 188

NCB reorganization function (continued)
ending 190
procedure for 189
process 188
running 189
ZNNCB REORG command 190

NCE identifier 129
NCE identifiers 138
NCP Packet Switching Interface (NPSI) 2, 3, 30, 32
NCP Slowdown 277
NEF (Network Extension Facility) 2, 45

application logical unit
not in RCAT 46

editing by NEF 47
multiple host support 49
transaction analysis (TA) program 49
translation 47

NEFx terminology 46
network 1

address 19
control 11
name 19

network addressable unit (NAU) 3
control point (CP)

primary, secondary 3
logical unit (LU) 3
physical unit (PU) 3
system service control point (SSCP) 3

network connection endpoint (NCE) identifiers 129,
138

network control program (NCP)
modifying input deck 233
slowdown 277

network definition 233
Network Extension Facility (NEF) 2, 45, 47

application logical unit
not in RCAT 46

editing by NEF 47
multiple host support 49
transaction analysis (TA) program 49
translation 47

network failures, HPR
alive timer 145
detecting 144
heartbeat message 145
short request timer 144

network generation 250
Network Interface Adapter (NIA) 29
network layer header (NHDR) 147
network layer packet (NLP)

data
FID5 TH 151
RH 151
RU 151

description of 145
HPR control messages 151
network considerations 152
NHDR 147
THDR 149

network resource 3
Network Services Application Interfaces 213

Index 403

NHDR 147
NIA (Network Interface Adapter) 29
node

host or non-host 4
node control block (NCB) 19
node control block (NCB) records

381-byte fixed file
description of 184

381-byte long-term file 184
description of 184
NCB directory records 184
NCB slots 184, 185

description of 183
displaying 187
initializing 187
NCB control record 184
NCB directory records 185
NCB initialization function 187
NCB reconciliation function 187
NCB slots

defining for an application 184, 185
description of 184, 186

performance 190
reclaiming 187

node types, HPR
ANR nodes 127
mobile RTP nodes 143
RTP nodes 127
stationary RTP nodes 143

node vs. NAU 3
non-host node 4
Non-SNA 3270 Application Considerations 26
NPSI (NCP Packet Switching Interface) 2, 3, 30, 32
NPSI GATE/FTPI 2
NSPI considerations for FTPI (Fast Transaction

Processing Interface 37
null RU 27, 29
NUMALS 179

O
online merge function 196
OSTG 61
OSTG program

considerations 194
defining SNA resources 193
IODEV macro 194
loading resource definitions 194

SNA dynamic load function 195
SNA fallback load function 196
SNA fresh load function 194

outbound message buffering 99
outbound message flow 7
outbound message flow extensions 319

ROUTC exit 319
output message transmission (OMT) 28, 281
output Messages 48
output messages, HPR

building 172
HPR SOUTC type-A block 172
HPR SOUTC type-B block 172

output messages, HPR (continued)
HPR SOUTC type-C block 172
retransmitting 174
segmenting 175

P
pacing considerations

for AX.25 240
pacing in SNA 248
Packet Assembler/Disassembler (PAD) 29
Packet Switched Data Network (PSDN) 29
PAD (Packet Assembler/Disassembler) 29
PARACOS 62
partner work block for TPF/APPC 69
path information unit (PIU) 46

See PIUPT0 utility
path switch

CP-CP sessions 167
description of 141
path switch timer 143
process of 141
starting

automatically 141
ZNRTP SWITCH command 141

path switch timer
defining

SNAKEY macro 143
ZNKEY command 143

description of 143
PCID 238
permanent virtual circuits (PVC) 29
PIU trace facility

description 291
maximum tape queue length

defining 293
PIU trace table

description 291
displaying offline 301, 307, 309
displaying online 295, 296, 297
including in system error dumps 313
size of, defining 291
writing to real-time tape, starting 293
writing to real-time tape, stopping 293

PIUPRT report
compacted 307
creating 302
description 301
examples 307, 309
formatted 309

PIUPRT utility
description 301
PARM= statement 303
PIUPRT report 307, 309
return codes 312
sample JCL 302

RU
specifying amount to trace 293

starting
description 291
procedure 292

404 TPF V4R1 ACF/SNA Data Communications Reference

PIU trace facility (continued)
status of

displaying 294
examples 294

stopping 292
traces

defining 291
displaying 294
starting 291
stopping 292

PIU trace table
compacted display

examples 297, 307
offline 307
online 296
PIUPRT utility 307
ZNPIU command 296

description 291
displaying offline

compacted report 307
examples 307, 309
formatted report 309
PIUPRT utility 301

displaying online
compacted display 296
examples 297, 300
formatted display 297
ZNPIU command 295

formatted display
examples 300, 309
offline 309
online 297
PIUPRT utility 309
RH indicators 312
ZNPIU command 297

including in system error dumps 313
maximum tape queue length

defining 293
size of, defining 291
writing to real-time tape

starting 293
stopping 293

PIUPRT utility
description 301
PARM= statement

description 303
examples 306

PIUPRT report
compacted report 307
creating 302
defining 303
description 301
examples 307, 309
formatted report 309

return codes
description 312

sample JCL 302
PLU (primary logical unit) 3
POST_ON_RECEIPT 75
PREPARE_TO_RECEIVE 75
presentation handling 6

presentation services, TPF/APPC 59, 69
primary host node 4
primary logical unit (PLU) 3
prime CRAS 49
priming (CTC) 222
process selection vector (PSV) 253

input message processing 253
output message processing 254

Process Selection Vector (PSV) 22, 29, 30
NPSI/FTPI command type 51
NPSI/GATE commands 51

proctor handling 6
Programming Considerations for Session Initiation 22
protocols, SNA 26
PSDN (Packet Switched Data Network) 29
pseudo line number

user-assigned 49
pseudo-address

in NEF 48
PSV

interface 255
output message queueing 259
processing

input message 253
NPSI/FTPI command type 51
NPSI/GATE commands 329
output message 254

routines 260
defining 259
names 259
NPSI/FTPI command type 51

PSV (process selection vector) 253
PSV (Process Selection Vector) 22, 29, 30
PU 2.1

37x5 considerations 240
APPN mode 4
LEN mode 4

PU_2.1 237
peripheral node 239
Route Selection 239

PU_2.1 Environment 237

Q
QCE (Queue Control Element) 269
Queue Control Element (QCE) 269
Queue Manager

DEQUEUE 269, 272
detailed return codes 273
ENQUEUE 269, 271
general return codes 273
GET 271
PURGE 269, 272
WASH 269, 272

R
railroad tracks xx
rapid transport protocol (RTP) connections

alive timer 145

Index 405

rapid transport protocol (RTP) connections (continued)
deactivating

automatically 134
ZNRTP INACT command 134

description of 131
displaying

ZNDLU command 134
ZNMON command 134
ZNRTP DISPLAY command 134
ZNRTP ROUTE command 134
ZNRTP SUMMARY command 134

failures
alive timer 145
detecting 144
heartbeat message 145
short request timer 144

heartbeat message 145
IPL considerations 163
path switch

description of 141
path switch timer 143
process of 141
starting 141

resynchronizing 163
ROUTE_SETUP process 136
Select an RTP Connection user exit (URTP) 136
short request timer 144
smoothed round trip time (SRTT) 144
SRTT 144
starting 134, 136
states of 131
TCIDs 134
URTP user exit 136

rapid transport protocol (RTP) nodes 127, 143
rapid transport protocol control block table

#RT1RI records 155
#RT2RI records 155
defining

SNAKEY macro 154
description of 152
displaying

ZDDCA command 155
ZNRTP DISPLAY command 155

initializing
ZNRTP INITIALIZE command 155

SNA control blocks
relationship with 157

RC0PL data macro 22
read buffers (4K) 225
read-flags (SMSCRF) field 26
read-type (SMSCRT) field 26
real-time trace (RTT) 275
reassembly, HPR

description of 174
RECEIVE_AND_WAIT 76
Recoverable and Non-recoverable Messages 247
reentering a message 247
Registration of LUs in APPN network 211
release input signal 27
Reliability and Serviceability 276
report, configuration 49

request recovery (SNA command) 23
request unit (RU) 46

chaining for NPSI 31
sizes 31

REQUEST_TO_SEND 76
request-response header (RH) 247
requesting a cross-domain session 14
requirements

CMC ownership of resources 46
resource

activating and deactivating
implicitly 201

active and inactive 201
gateway 233

resource identifier (RID) 21, 45
resource IDs

assigning to RVT entries 180
resource manager, TPF/APPC 59
resource name hash control table (RNHCT)

description of 181
displaying 183
example of 182

resource name hash entry table (RNHET)
description of 181
displaying 183
example of 182
RVT available list 181
RVT termination list 181
synonym chain 181

resource name hash prime table (RNHPT)
description of 181
displaying 183
example of 182
hash buckets 181

resource vector table (RVT) 71
ALS section 179
defining 179
delimiters 181
description of 179
example of 180
LU section 179
non-LU section 179
organization of 179
resource IDs (RIDs) 180
resource name hash control table (RNHCT) 181
resource name hash entry table (RNHET) 181
resource name hash prime table (RNHPT) 181
RNHET synonym chain 181
RVT available list 181
RVT termination list 181
spare entries 180

Resource Vector Table (RVT) 48
resources

defining 193
Response Protocol

3614/3624 LU 251
for device types 247

response protocols/error handling
interface 262
LUSTAT sense 262
sense codes 262

406 TPF V4R1 ACF/SNA Data Communications Reference

response types 247
restart, system 101
resubmitted message 21
retransmitting messages 247
Retrieving NCB and SPA Data Records (CSNB) 287
reverse ANR field 138
RH indicators

description 312
RID and RVT conversions 287
RISC System/6000 2, 244
RNHET synonym chain

description of 181
RNHPT hash buckets

description of 181
DHASHC macro 183

ROUT-type macro 48
ROUTC 100
ROUTC exit 319
ROUTC macro 21, 27, 250, 251
ROUTE_SETUP process 136
ROUTER processing 6
routing control application table (RCAT) 22
routing control block (RCB) 19
routing control parameter list (RCPL) 21, 27

destination field 21
indicators 22
origin field 21
passed between TPF and IMS 28

RSC 61
RTP connection resynchronization process

description of 163
enabling

SNAKEY macro 167
ZNKEY command 167

RTP nodes 127, 143
RTP output queue

description of 170
RU (request unit)

chaining for NPSI 31
sizes 31

RVT (resource vector table) 71
RVT available list

description of 181
RVT termination list

description of 181

S
SCB (session control block) 21, 68
scratch pad area (SPA) 19
SDAT (Symbolic Device Address Table) 233
SDLC support 49
secondary host node 4
secondary logical unit

SLU THREAD 19
secondary logical unit (SLU) 3
segmentation, HPR

description of 174
THDR chaining 175, 176

segmented messages 248
Select an RTP Connection user exit (URTP) 136

selective retransmission, HPR
description of 173

SEND_DATA 76
SEND_ERROR 77
SEND-type macro 48
sequence number 23
service LU, TPF/APPC 103
service transaction program, TPF/APPC 103
session 3
session activation 20
session activation flow 345

APPN 374
APPN-Subarea 384
CDRM-CDRM session 345
CP-CP sessions 374
FMMR-FMMR session 352
host-node SLU session 350
LEN 345, 359
LU 6.2 session 359
LU-LU sessions 375
printer sharing 380
PU 2.1 LEN 345, 359
PU 5 345
PU 5 LU 6.2 session (TPF PLU) 356
PU 5 LU 6.2 session (TPF SLU) 358
Subarea-APPN 384
TPF APPL (PLU) and remote APPL (SLU) 347
TPF APPL and remote 3270 354

session addresses 140
session awareness 215
session control block (SCB) 21, 68
Session Control via VTAM SSCP 46
session deactivation flow

APPN 383
CDRM-CDRM session 360
FMMR-FMMR session 369
host-node SLU session 366
LU 6.2 session 371
PU 2.1 360
PU 5 360
TPF APPL (PLU) and remote APPL (SLU) 363

session ended notification 216
starting 217

Session Identifiers - SID 237
Session Management Request Services

session resynchronization 213, 214
session termination 213, 215
starting 213

session manager, TPF/APPC 59
session resynchronization 213

requesting 214
session started notification 216

starting 216
Session Status Awareness Services

activating 215
CTCP 327
session ended notification 215, 217
session started notification 215, 216

session termination 99, 213
requesting 215

set and test sequence numbers (SNA command) 23

Index 407

short request timer
description of 144
smoothed round trip time (SRTT) 144

SID - session identifier 237
side information table 62, 71, 83

generating
creating the input file 85
loading the table to TPF 96
output from CHQI 93
running CHQI 92

SIGNAL 281
simultaneous message processing 250
single-domain networks 12
Single-Segment Messages 247
SINGMODE 62
slowdown

channel-to-channel (CTC) 277
slowdown, NCP 277
SLU

SLU THREAD 19
SLU (secondary logical unit) 3
SLU threads

and TPF/APPC 61
smoothed round trip time (SRTT) 144
SNA

data records 45
SNA 3270 Application Considerations 26
SNA command flow 345
SNA commands 22
SNA communications

NCB records 183
RVT 179

SNA data transfer
channel-to-channel (CTC) characteristics 11
NCP characteristics 11

SNA dynamic load function
description 195
displaying status information 198
inactive processors 196
procedure 196
restrictions 196
ZNOPL LOAD command 195, 196
ZNOPL MERGE command 195, 196
ZNOPL UPDATE command 195, 196

SNA fallback function
description 196
displaying status information 198
using dynamic load function 197
using fresh load function 197
ZNOPL FALLBACK command 197
ZNOPL MERGE command 197

SNA fresh load function
considerations 194
description 194
displaying status information 198
forcing 195
procedure 194
ZNOPL BUILD command 195
ZNOPL LOAD command 195

SNA I/O trace facility 275

SNA network Interconnection (SNI)
Considerations 233

SNA online merge function 196
SNA protocols 26
SNA resources

changing definitions
ZNDYN CHANGE command 199

defining
ALS resources 193
CDRM resources 193
CTC resources 193
local resources 193
NCP resources 193
OSTG program 193
remote LU resources 193
shared printers 193
SSCP resources 193
TPF applications 193
ZNDYN ADD command 198

dynamic load function 195
dynamic LU support 199
fallback function 196
fresh load function 194
tracing 291

SNAKEY 61
SNI/TPF restrictions 234
SOUTC macro 250
SOUTC macro service routine 48
SPA for a dynamic LU

allocating 190
retrieving 190

spare RVT entries
description of 180
RVT available list 181

SRTT 144
standard communications interface 21
start data traffic (SNA command) 22, 247
Starting and Stopping Application Programs 201
subarea 234
subarea address table (SAT) 234
supported verb functions, TPF/APPC 72
switched virtual circuits (SVC) 29
Symbolic Device Address Table (SDAT) 233
symbolic line number 48

invalid 49
SYNC numbers 151
synchronization check characters 46
Synchronizing Messages with Sequence Numbers 23
synchronous data link (SDLC) 12, 26
synonym chain

description of 181
syntax diagrams xx
system communication configuration table (CTKE) 48
system communication keypoint records 48
system initialization program (SIP) 21, 26
system message 25
system message processor (CSMP) 49
System network Interconnect (SNI) Considerations

modifying NCP input deck 233
SNI NCP generation deck 233
with APPN considerations 234

408 TPF V4R1 ACF/SNA Data Communications Reference

System network Interconnect (SNI) Considerations
(continued)

with channel-to-channel (CTC) considerations 234
system recovery table (SRT) 27
system restart

and TPF/APPC 101
system services control point (SSCP) 14, 46

T
TCB ID (transaction control block identifier) 67
TCIDs 134
terminal address table (WGTA) 45, 48
terminal-type values 26
termination, session 99
TEST 77
TG (transmission group) 223
THDR chaining

description of 175, 176
tightly coupled considerations for TPF/APPC 102
TP (transmission priority) 227, 229
TPALLOC 62
TPF as Host Node SLU 19
TPF Mapping Support 42
TPF SNA overview 1
TPF/APPC (TPF Advanced Program-to-Program

Communications) 59
APPC overview 59
architecture comparison 73

ALLOCATE 73
CONFIRM 73
CONFIRMED 73
DEALLOCATE 74
FLUSH 74
GET_ATTRIBUTES 74
GET_TYPE 75
POST_ON_RECEIPT 75
PREPARE_TO_RECEIVE 75
RECEIVE_AND_WAIT 76
REQUEST_TO_SEND 76
SEND_DATA 76
SEND_ERROR 77
TEST 77
WAIT 77

ATTACH interface 69
change number of sessions 78
change number of sessions work block 68
components 59
control blocks 67
conversation control block (CCB) 67
conversation verbs 71

basic conversation verbs 72
mapped conversation verbs 71
type-independent verbs 72

defining LUs to a VTAM subsystem 66
defining LUs to the network 63
finite state machine 80
half-session to presentation services record

(HPR) 69
inbound message queuing 100
installation checklist 60

TPF/APPC (TPF Advanced Program-to-Program
Communications) (continued)

loosely coupled considerations 63, 103
mapped conversation support 62, 71

side information table 62, 71
side information table offline program (CHQI) 83

message flow 99
partner work block 69
presentation services 69
resource manager 98
sample transaction programs 113
service LU 103
service transaction program 103
session control block (SCB) 68
session manager 99
side information table 62
SLU threads 61
system restart 101
tightly coupled considerations 102
transaction program name table 62, 70
user exits 107
work blocks 68

TPF/APPC components
half-session 59
presentation services 59
resource manager 59
session manager 59

TPF/APPC service LU 103
TPF/APPC service transaction program 103
TPF/NEF/AX.25 host interfaces 45
TPF/SNA structures

NCB records 183
RVT 179

TPNT (transaction program name table) 62, 70
TPPCC macros 73
TPRECV 62
TPWAIT 62
trace functions 275
trace, realtime

agent 47
nodename 47

traces (for Fast Transaction Processing Interface) 42
tracing and testing in TPF 275
transaction control block identifier (TCB ID) 67
transaction program name table (TPNT) 62, 70
transaction programs

design considerations 107
samples of

requested TPF transaction program 116, 121
requesting TPF transaction program 114, 117

translation by NEF 47
Transmission Control (TC)

services 260
transmission group (TG) 223
transmission priority (TP) 227, 229
transport connection identifiers (TCIDs) 134
transport header (THDR)

description of 149
ECHO numbers 151
optional segments 150
SYNC numbers 151

Index 409

TRMEQ macro 26
tuning SNA network performance 32
type P SLU support 28
type-A block, HPR SOUTC 172
type-B block, HPR SOUTC 172
type-C block, HPR SOUTC 172

U
UNBIND 99
Unsolicited Messages

notification methods 250
unsolicited messages/requests 47
URTP user exit 136
User DFC Interface

RCPL 261
Request / Response Header (RH) 261
Sequence Numbers 261

user exits for TPF/APPC 107
user terminal control blocks 325

V
VARY command 99
VC (virtual circuits) 29
VCCB (Virtual Circuit Control Block) 324
verb functions, TPF/APPC 72
Virtual Circuit Control Block (VCCB) 324
virtual circuits (VC)

Permanent Virtual Circuits (PVC) 29
switched virtual circuits (SVC) 29

virtual route (VR) activation 228
virtual route assignment for CTC

for LU-LU session for CTC 228
virtual route resynchronization 231
Virtual Telecommunications Access Method (VTAM) 46
VR (virtual route) activation 228
VTAM (Virtual Telecommunications Access

Method) 46, 233
VTAM Considerations 243

for FTPI (Fast Transaction Processing Interface) 37
VTAM DELAY operand 225

W
WAIT 77
work blocks for TPF/APPC 68
write buffers (4K) 225
write-flags (SMSCWF) field 25
write-type (SMSCWT) field 25

X
X.25

command message flows 328
data message flows 335
interface 3
link control block 324
message 30
network control block 324

X.25 (continued)
protocols 253

X.25 ALC interface (XALCI) 2
configuration 56
for switched or permanent virtual circuits 50
header formats 54
message flow 56

X.25 gateway considerations 53
X.25 link control block (XLCB) 324
X.25 network control block (XNCB) 324
XALCI (X.25 ALC interface) 2

configuration 56
for switched or permanent virtual circuits 50
header formats 54
message flow 56

XLCB (X.25 link control block) 324
XNCB (X.25 network control block) 324

Z
ZNCNS CHANGE 99
ZNCNS RESET 99
ZNDYN ADD command

considerations 198
defining SNA resources 198
IODEV macro 198
restrictions 198

ZNDYN CHANGE command 199
ZNDYN DISPLAY command 183
ZNETW command 201
ZNETW INACT 99
ZNKEY command 201
ZNNCB command 187
ZNNCB DISPLAY command 187
ZNNCB RECON command 188
ZNNCB REORG command 190
ZNOPL BUILD command 195
ZNOPL FALLBACK command 197
ZNOPL LOAD command 195, 196
ZNOPL MERGE command 195, 196, 197
ZNOPL STATUS command 195, 196, 197, 198
ZNOPL UPDATE command 195, 196
ZNPOL command 201
ZNRTP DISPLAY command 134, 155
ZNRTP INACT command 134
ZNRTP INITITALIZE command 155
ZNRTP ROUTE command 134
ZNRTP SUMMARY command 134, 157
ZNRTP SWITCH command 141
ZNSID command 91
ZROUT command 201
ZSNDU command 250
Zxxxx commands 47, 49

410 TPF V4R1 ACF/SNA Data Communications Reference

����

File Number: S370/30XX-30
Program Number: 5748-T14

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH31-0168-06

	Contents
	Figures
	Tables
	Notices
	Trademarks

	About This Book
	Before You Begin
	Who Should Read This Book
	Conventions Used in the TPF Library
	How to Read the Syntax Diagrams
	Related Information
	IBM Transaction Processing Facility (TPF) 4.1 Books
	Miscellaneous IBM Books
	Online Information

	How to Send Your Comments

	Introduction to TPF SNA Support
	TPF SNA Overview
	Basic SNA Terms and Concepts

	TPF Message Processing Flow Overview
	TPF Inbound Message Flow
	Protocol Handling
	Presentation Handling
	ROUTER Processing

	TPF Outbound Message Flow

	TPF SNA
	SNA Data Transfer
	Common Characteristics of NCP and CTC Data Transfer
	NCP Data Transfer
	Unique Characteristics of CTC Data Transfer

	Multiple-Domain Networks
	Subarea (PU_5) Environment
	Cross-Domain Links
	Cross-Domain Resource Manager (CDRM)
	Cross-Domain Sessions

	Low-Entry Networking (PUT 2.1) Environment
	Control Points
	Control LUs
	3174 APPN Considerations

	Advanced Peer-to-Peer Networking (APPN) Environment
	Control Points

	Message Routing

	TPF Applications
	Considerations for Developing Applications That Access NCB Records
	TPF as Host Node SLU
	Activating LU–LU Sessions with TPF

	TPF Application Programming Considerations
	Function Management Header (FMH)
	Programming Considerations for Session Initiation
	Synchronizing Messages with Sequence Numbers
	3600 Application Considerations
	Data Transmission from 3600 to a TPF Application
	Data Transmission from a TPF Application to a 3600

	3270 Application Considerations
	Non-SNA 3270 Application Considerations
	SNA 3270 Application Considerations

	Host Node Application Considerations
	IMS Relay Application Considerations
	CICS Relay Application Considerations

	X.25 NPSI Support
	NPSI Message Length Considerations
	NPSI LU-LU Session Characteristics

	Request Unit Chaining
	RU Sizes
	Bind Command Processing and Input Buffer Size

	NPSI GATE/Fast Transaction Processing Interface (GATE/FTPI)
	Message Traffic Multiplexing
	Input Processing
	Multiplexing Output Traffic
	Application Program Interface
	Network Definition
	TPF CTCP Definition
	CTCP Definition
	VTAM Considerations
	NPSI Considerations
	X25.MCH

	Operations
	Activating the TPF CTCP
	Activating Multi-Channel Links
	Traces

	TPF Mapping Support

	Airlines Line Control (ALC) Support through SNA
	TPF Host Interfaces
	Session Control via VTAM SSCP
	Data Flow

	Command Support
	Addressing an ALC Device

	TPF/NEF SNA Multiple Host Support
	X.25 ALC Interface for Switched or Permanent Virtual Circuits (XALCI)
	User-Replaceable PSV Routine
	Tables

	Network Definition
	TPF Considerations:
	X.25 Gateway Considerations

	XALCI Configuration

	TPF Advanced Program-to-Program Communications
	TPF/APPC Components
	TPF/APPC Installation Checklist
	General Installation Tasks
	Installation Tasks for Low-Entry Networking (LEN)
	Defining TPF/APPC LUs to the Network
	Defining LUs across a PU 5 Connection
	Defining Alias LU Names across a PU 5 CTC Connection to VTAM
	Defining LUs across a PU 2.1 LEN Connection
	Defining LUs across a PU 2.1 APPN Connection

	Defining TPF/APPC LUs to a VTAM Subsystem
	Defining a TPF/APPC LU to a PS/2 Workstation (Using a Generic Name)

	TPF/APPC Control Blocks
	TPF/APPC Conversation Control Block
	TPF/APPC Session Control Block

	TPF/APPC Work Blocks
	TPF/APPC Work Block
	TPF/APPC Change Number of Sessions Work Block
	TPF/APPC Partner Work Block
	TPF/APPC Half-Session to Presentation Services Record

	Presentation Services
	TPF Transaction Program ATTACH Interface
	Conversation Verbs
	Mapped Conversations
	Type-Independent Conversation Verbs
	Basic Conversation Verbs
	Architecture and TPPCC Macro Comparison

	Change Number of Sessions
	Change Number of Sessions Components
	Managing Session Limits

	Finite State Machine

	Generating the Side Information Table for Mapped Conversations
	Creating the Input File
	Statement Syntax
	CHQI Input File Example
	CHQI Input Statements and ZNSID Commands

	Running CHQI
	Sample JCL for CHQI

	Side Information Table Offline Program Output
	Side Information Data Set
	CHQI Output Listing

	Loading the Side Information Data Set to TPF

	Resource Manager
	Session Manager
	Initiating a Session
	LU 6.2 BIND Command

	Session Termination

	Message Flow
	Inbound Message Queuing

	System Restart
	Session Considerations
	Conversation Considerations

	Subsystem Considerations
	Considerations for a Tightly Coupled Environment
	Considerations for a Loosely Coupled Environment
	Loosely Coupled Complex Example
	Loosely Coupled Installation Checklist
	Defining Local TPF/APPC LUs
	Defining the TPF/APPC Service LU
	Defining the Service Transaction Program
	Initializing the Session Limits

	User Exits
	Transaction Program Design Considerations
	Traditional LU 6.2 Conversations
	Pipeline LU 6.2 Conversations
	Shared LU 6.2 Conversations
	Why Use Shared Conversations

	Sample Transaction Programs
	Sample Transaction Program Functions
	Requesting TPF Transaction Program
	Requested TPF Transaction Program
	Sample Requesting TPF Transaction Program
	Sample Requested TPF Transaction Program

	High-Performance Routing (HPR) Support
	Benefits of Using HPR Support
	HPR Node Types
	ANR Labels
	Activating Links
	RTP Connections
	TCIDs
	Starting RTP Connections
	Deactivating RTP Connections
	Displaying RTP Connections

	Starting LU-LU Sessions
	ROUTE_SETUP Process
	LU-LU Session Activation Flows
	Session Addresses

	Path Switches
	Path Switch Process
	Path Switch Timer
	Stationary and Mobile RTP Nodes

	Detecting Network Failures
	Short Request Timer
	Alive Timer

	NLPs
	NHDRs
	THDRs
	THDR Optional Segments
	SYNC and ECHO Numbers

	Data
	HPR Control Messages
	Network Considerations for NLPs

	HPR Control Blocks
	RTPCB Table
	Defining the RTPCB Table
	Defining Fixed File Records for the RTPCB Table
	Displaying RTPCB Entries
	Initializing RTPCB Entries

	HPRSAT
	Defining the HPRSAT
	Displaying the HPRSAT

	HPRMT
	Defining the HPRMT
	Displaying Information about the HPRMT

	Relationship with Other SNA Control Blocks
	Non-HPR LU-LU Sessions
	HPR LU-LU Sessions

	Host IPL Considerations
	RTP Connection Resynchronization Process
	Enabling the RTP Resynchronization Process

	CP-CP Session Failures
	Flow Control
	ARB Pacing
	RTP Output Queue

	HPR Output Messages
	Selective Retransmission
	Retransmitting Output Messages
	Requesting That Input Messages Be Retransmitted

	Segmentation and Reassembly
	Segmenting Output Messages
	Reassembling Input Messages

	Installation and Tuning
	Diagnostic Information
	Sense Codes Unique to the TPF System

	TPF/SNA Control Block Structures
	Resource Vector Table (RVT) and Related Control Block Structures
	How the RVT Is Organized
	RVT-Related Control Block Structures
	Displaying Information about the RVT-Related Control Block Structures

	Node Control Block (NCB) Records and Related Structures
	Types of NCB Records
	381-Byte Fixed File NCB Records
	381-Byte Long-Term Pool File NCB Records

	NCB-Related Control Block Structures
	Displaying Information about NCB Records and Related Structures
	Initializing NCB Records
	Reclaiming NCB Directory Records and NCB Records
	To Run the NCB Reconciliation Function
	To End the NCB Reconciliation Function
	Additional Information

	Increasing the Number of NCB Directory Records in the TPF System
	To Run the NCB Reorganization Function
	To End the NCB Reorganization Function
	Additional Information

	Performance Considerations for Accessing NCB Records
	Developing Applications That Retrieve NCB Records
	Allocating or Retrieving a Scratch Pad Area (SPA) for a Dynamic LU

	Defining SNA Resources to the TPF System
	Using the OSTG Program to Define SNA Resources
	Important Considerations
	Loading Resource Definitions by Performing a Fresh Load
	Important Considerations
	To Perform a Fresh Load
	Additional Information

	Forcing a Fresh Load during the Next IPL
	Loading Resource Definitions by Performing a Dynamic Load
	Restrictions
	To Perform a Dynamic Load
	Additional Information

	Falling Back to the Old Resource Definitions
	To Fall Back using the Dynamic Load Function
	To Fall Back using the Fresh Load Function
	Additional Information

	Displaying Status Information about the Load Functions

	Using the ZNDYN ADD Command to Define SNA Resources
	Restrictions
	Important Considerations

	Using the ZNDYN CHANGE Command to Change SNA Resource Definitions
	Using Dynamic LU Support to Define SNA Resources
	Defining Remote LU Resources
	Restrictions
	Important Considerations

	Defining Remote ALS Resources
	Restrictions
	Important Considerations

	Activating and Deactivating Resources
	Activating and Deactivating a Shared NCP
	Starting and Stopping Application Programs
	Activating and Deactivating Cross-Domain Resource Managers
	Activating and Deactivating Control LU-Logon Manager Sessions
	Activating and Deactivating APPN CP-CP Sessions
	CP-CP Session Considerations When Running Loosely Coupled

	Activating LU-LU Sessions
	Activating LU-LU Sessions Other Than LU 6.2
	Activating LU 6.2 Sessions
	PU 5 Environment
	PU 2.1 LEN Environment
	PU 2.1 APPN Environment
	PU 2.1 APPN Environment: Sessions Other Than LU 6.2
	PU 2.1 APPN Environment: LU 6.2 Sessions

	Mixed PU 5 and PU 2.1 Environment
	Mixed Environment: Sessions Other Than LU 6.2
	Mixed Environment: LU 6.2 Sessions

	LU-LU Sessions in an APPN Network
	Predefining TPF LUs to the APPN Network
	APPN LU Registration Process
	Remote Initiated LU-LU Sessions

	Network Services Application Interfaces
	ISHLL Macro
	Session Management Request Services
	Starting Session Management Request Services
	Requesting Session Resynchronization
	Requesting Session Termination Interface

	Session Status Awareness Services
	Activating Session Status Awareness Services
	Starting Session Started Notification
	Starting Session Ended Notification

	PU 5 FID4 Considerations
	NCP Support
	Channel Contact
	XID Format 2 Sent by TPF

	NCP Considerations
	Sample Definition for an NCP Gen with TPF Channel-Attached as a PU Type 5 Node

	CTC Support
	Pre-Channel Contact/Priming
	Channel Contact
	XID Format 2

	Loosely Coupled Considerations
	Session Initiation

	VTAM Considerations
	Class of Service, Virtual Routes, and Transmission Priority
	Other VTAM Considerations
	VTAM Considerations for NCP 5.3

	LU-LU Session VR Assignment for CTC
	Virtual Route (VR) Activation
	Virtual Route Deactivation

	Network Flow Control
	Software IPL Considerations
	Hardware IPL Considerations
	Extended Network Addressing
	Network Definition
	SNA Network Interconnection (SNI) Considerations
	SNI and CTC Considerations
	SNI and APPN Considerations

	PU 2.1 Considerations
	General Information
	Session Control
	Session Identifiers
	Extended BIND
	SNA Restart and ALS Discovery

	37x5 Considerations
	37x5 and APPN Considerations
	37x5 and LEN Considerations
	Sample NCP Definitions with TPF Connected as a LEN Node
	VTAM and Logon Manager Considerations

	Non-37x5 Considerations
	Non-37x5 and APPN Considerations
	Non-37x5 and LEN Considerations
	3174 Considerations

	SNA Message Protocol
	Response Protocol
	Recoverable and Non-Recoverable Messages
	Single-Segment Messages
	Chained and Segmented Messages

	Multithread Processing
	Bracket Support
	Unsolicited Messages
	Unsolicited Messages Destined for a LNIATA/LEID
	Unsolicited Messages Destined for a RID

	3614/3624 Message Processing
	3614/3624 Session Initiation and Application Considerations

	User Routines
	Process Selection Vector (PSV)
	Input Message PSV Processing
	Output Message PSV Processing
	PSV Interface
	Input Considerations
	Output Considerations

	PSV Output Message Queueing
	Defining PSV Routines
	Logical End-Point Identifiers, Terminals, and PSV Routines

	Data Flow Control (DFC) Considerations
	User DFC Interface
	Outbound Message Interface
	Pacing Considerations
	Undeliverable Message Considerations
	Response Protocols/Error Handling

	Input Message Router Exit

	Queue Manager
	Queue Manager Interface
	Input Interface
	Output Interface
	General Return Codes
	Detailed Return Codes

	Diagnostic Aids
	Trace Functions
	Operating System Traces
	Path Information Unit (PIU) Trace Facility
	SNA I/O Trace Facility

	Reliability and Serviceability
	Error Detection and Feedback
	Hardware Error Recovery
	NCP Slowdown
	CTC Slowdown

	Data Collection/Reduction and Test Tools
	Appendix A. Logical Unit Status (LUSTAT)
	Appendix B. General Format of the SNA BIND Command
	BIND Images for TPF Supported Secondary Logical Units
	Acceptable BIND Image For a Local Host Node SLU

	Appendix C. Interface Requirements for System Utility Programs
	RID and RVT Conversions
	Retrieving NCB and SPA Data Records (CSNB)
	Select A Thread Utility Routine (SELEC)
	Select A Thread Utility Program (CSF0)

	Appendix D. Using the Path Information Unit (PIU) Trace Facility
	About the PIU Trace Table
	Starting the PIU Trace Facility and Specifying Which Data to Trace
	Stopping the PIU Trace Facility
	Defining How Much of the RU to Store in the PIU Trace Table
	Writing the PIU Trace Table to a Real-Time Tape
	Displaying Information about the PIU Trace Facility
	Examples

	Displaying the PIU Trace Table Online
	Creating a Compacted Display of the PIU Trace Table
	Examples

	Creating a Formatted Display of the PIU Trace Table
	Examples

	Using the Offline PIU Print (PIUPRT) Utility to Create a PIUPRT Report
	Sample JCL for the PIUPRT Utility
	Defining the PIUPRT Report
	PARM= Statement for the PIUPRT JCL
	Sample PARM= Statements for the PIUPRT JCL
	Sample Compacted PIUPRT Report
	Sample Formatted PIUPRT Report

	PIUPRT Utility Return Codes

	RH Indicators
	Including the PIU Trace Table in System Error Dumps

	Appendix E. VTAM Mode Table Entries
	Appendix F. TPF Message Processing Flow User Extensions
	TPF Inbound Message Flow Extensions
	TPF Outbound Message Flow Extensions
	ROUTC Exit

	Appendix G. Sample TPF CTCP Implementation Using PSVs
	Introduction to CTCP Functions
	Generalized Access to X.25 Transport Extension (GATE)

	User CTCP Control Blocks
	X.25 Network Control Block
	X.25 Link Control Block (XLCB)
	Virtual Circuit Control Block (VCCB)
	User Terminal Control Blocks
	End Point Control Block (EPCB)
	Contact Point Control Block (CPCB)
	Control Block Residence

	TPF SNA Session Awareness
	Session Start
	Session End

	TPF X.25 Command Message Flows
	PSV Processing of NPSI/GATE Commands
	CALL_REQUEST Command received from NPSI/GATE
	CLEAR Command Received from NPSI/GATE
	TPF Initiated Call Out Using CALL_REQUEST Command to NPSI/GATE
	CALL_CONFIRM Command Received from NPSI/GATE
	TPF Initiated CLEAR Command Sent to NPSI/GATE
	CLEAR_CONFIRM Command Received from NPSI/GATE

	TPF X.25 Data Message Flows
	CTCP Input Data Message Processing
	Soft Copy Device Data Flow
	Hard Copy Device Data Flow

	CTCP Output Data Message Processing
	Soft Copy Device Data Flow
	Hard Copy Device Data Flow

	Appendix H. SNA Command Flow
	PU 5 and PU 2.1 LEN Session Activation
	CDRM-CDRM Session Activation
	Across a CTC Connection (TPF to TPF, or TPF to VTAM)
	Across an NCP Connection (TPF to VTAM)
	Session Activation Between TPF APPL (PLU) and Remote APPL (SLU)
	Session Activation for Host-Node SLU Session
	FMMR-FMMR Session Activation
	Session Activation between TPF APPL and Remote 3270
	Session Activation for PU 5 LU 6.2 Sessions (Started by TPF PLU)
	Session Activation for PU 5 LU 6.2 Sessions (Started by TPF SLU)
	Session Activation for PU 2.1 LEN LU 6.2 Sessions

	PU 5 and PU 2.1 Session Deactivation
	CDRM-CDRM Session Deactivation
	Session Deactivation for TPF APPL (PLU) and Remote APPL (SLU)
	Host-Node SLU Session Deactivation
	FMMR-FMMR Session Deactivation
	LU 6.2 Session Deactivation

	APPN Session Activation
	CP-CP Session Activation
	APPN LU-LU Session Activation
	LU-LU Session Activation for Printer Sharing

	APPN LU-LU Session Deactivation
	APPN-Subarea Migration Flows
	SLU Initiated, SLU in APPN, PLU in Subarea
	SLU Initiated, SLU in APPN, PLU in Subarea (PLU Location Unknown)
	PLU Initiated, SLU in APPN, PLU in Subarea
	SLU Initiated, PLU in APPN, SLU in Subarea (SC Provided)
	SLU Initiated, PLU in APPN, SLU in Subarea (SC Not Provided)
	PLU Initiated, PLU in APPN, SLU in Subarea (SC Provided)
	PLU Initiated, PLU in APPN, SLU in Subarea (SC Not Provided)

	More on SNA Command Flow

	Appendix I. TPF Sense Code Processing
	SNA Timeout Processing

	Index

