
Transaction Processing Facility

System Installation Support Reference
Version 4 Release 1

SH31-0149-15

���

Transaction Processing Facility

System Installation Support Reference
Version 4 Release 1

SH31-0149-15

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page xv.

Sixteenth Edition (June 2002)

This is a major revision of, and obsoletes, SH31-0149-14 and all associated technical newsletters.

This edition applies to Version 4 Release 1 Modification Level 0 of IBM Transaction Processing Facility, program
number 5748-T14, and to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. Address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . xi

Tables . xiii

Notices . xv
Trademarks . xv

About This Book . xvii
Who Should Read This Book xvii
Conventions Used in the TPF Library xvii
Related Information . xviii

IBM Transaction Processing Facility (TPF) 4.1 Books xviii
IBM Systems Application Architecture (SAA) Books xviii
IBM High-Level Language Books xix
Miscellaneous IBM Books . xix
Online Information . xix

How to Send Your Comments xix

Control Program User Exits Overview 1
Exit Points . 2

Changing Dynamic Exit Points to Nondynamic 3
Changing Nondynamic Exit Points to Dynamic 3
Associating an Exit Point with a Function. 3

CCUEXT CSECT . 3
User Exits Control List (UCL) 3
Service Routine for UXCMC Macro 4
General Post-Interrupt Routine (UXGPIR) 4
User Exit Routines (CUSR) . 4
User Static Override Bitmap Table 4

Installing Control Program User Exits 4
Installing Multiple Functions in a User Exit 5
Creating a Control Program Exit Point and User Exit 5
Conditions and Considerations When Using User Exits 6

User Exit Routines - Common Entry Conditions 6
User Exit Routines - Common Return Conditions 7
User Exit Routines - Common Programming Considerations. 7

Macro Servicing . 8
TPF Macro Processing: Limitations/Restrictions 8

Control Program User Exits . 9
Application Timeout Processing 10
BACKC Macro Entry . 11
C Debugger Initialization . 12
C Debugger Return . 14
C Library Function Call (TARGET(TPF)) 15
C Library Function Return (TARGET(TPF)) 16
C Stack Exception (TARGET(TPF)) 17
C Stack Exception Return (TARGET(TPF)) 19
Catastrophic Recovery . 20
CCCTIN (CT25 and CT26) . 22
CCCTIN (CT99) . 24
Control Transfer . 25
Core Resident Enter/Back Macro 27

© Copyright IBM Corp. 1994, 2002 iii

||

CPU External Interrupt . 29
CPU Timer Interrupt . 30
Create Macro Control Point . 31
Create Macro Postinterrupt . 32
Critical Record Filing . 33
Debugger Trace Selection . 34
Debugger Trace Table Entry Activation 35
DLAYC Macro Entry . 36
Dump Override Table . 38
Dynamic Load Module Environment Initialization (ISO-C) 39
Dynamic Load Module External Function Call 41
Dynamic Load Module External Function Call Entry 42
Dynamic Load Module Return Processing 43
Dynamic Load Module Return Processing Entry 45
ECB Creation . 46
ENTxC Macro Entry . 48
EXITC . 49
FARF Address Generation. 50
Fast Link Macro . 51
Fast Link Macro Decoder . 52
File-Resident Enter/Back Macro. 53
General Postinterrupt Processing 55
Get Block With ECB . 56
Get Block without ECB . 57
Get Common Block . 58
Get System Work Block . 59
Library Function Call (ISO-C). 60
Library Function Return (ISO-C) 61
LODIC Macro . 62
Online Mini Dump . 64
Pool Address Retrieval . 65
Program Event Recording (PER) 66
Program Event Recording (PER) Debugging Tools 67
RCS I/O Queue Thresholding 69
Release Block With ECB . 71
Release Block without ECB . 72
Release Common Block . 73
Release System Work Block . 74
RIAT. 75
ROUTC . 77
SNAPC Error . 79
SNAPC Error Entry . 80
Split Access . 81
Split Chain Header Access . 82
Stack Overflow Processing (ISO-C) 83
Stack Overflow Processing Entry (ISO-C) 84
Suspend ECB . 85
Suspend List Post-Interrupt . 86
Suspend List Resource Checking 87
SVC Macro (Immediate) . 88
SVC Macro (Wait or Implied Wait: Postinterrupt) 89
SVC Macro Decoder . 90
System Error . 91
System Error Entry . 92
TMSLC Macro . 93
TPFAR . 95

iv TPF V4R1 System Installation Support Reference

TPFDF Macro Trace Call . 96
TPFDF Macro Trace Return . 97
Trace C User Data . 98
Trace Environment Customization 100
Transaction Log Write . 101
Update Tape Display . 102
User Header Label . 103
User Trace Area Initialization 105
Validate Tape for Output . 106
WAITC Macro Entry . 107
WTOPC Message Translation 108

ECB-Controlled Program User Exits Overview 109
Exit Points . 109
Selective Activate Exits . 109

Activating the Selective Activation Function 109
Creating an Enable Command. 109
Creating a Disable Command 110

Data Macros to Develop User Exits 111
E-type User Exit Considerations 111

User Exit Allocation and Activation 111

ECB-Controlled Program User Exits 117
Check OLDR Load Deck . 118
Clock Global Update Exits . 119
Command Manager. 120
Common Symbol Table . 121
Communications Source Common 122
Continuous Data Collection Information Storage 123
Continuous Data Collection Table Creation 124
CP-CP Session Activation . 125
Database Reorganization . 126
Deactivate Phase I Selective Activate 128
Deactivate Phase II Selective Activate 129
Deadlock Detection . 130
DEARRANGE_CTK9 (UPX1) 131
Debug Registration . 133
Detect Selective Activate Support 134
Display . 135
DNS Select an IP Address . 136
Dump Data . 137
Dynamic LU . 139
ECB Display . 142
Extra Program Record Report 143
FILE_CY2KT (UPX7) . 144
FILE_STCCR (UPX3) . 145
FIND_CY2KT (UPX6) . 147
FIND_STCCR (UPX2) . 148
Get Global Environment Lists 149
Loadset History . 150
Log Recovery Error Processing 151
LU Registration . 152
LU 6.2 . 153
MATIP ASCU List . 154
MATIP Assign LNIATA . 155
MATIP Flow ID . 156

Contents v

MATIP Host Name . 157
MATIP Router . 158
MATIP Security . 159
MATIP Session Start . 161
MATIP Translation . 163
Message Queue Interface (MQI) Channel Exits 164
Message Router . 165
Module Copy Selection/Validation 166
Nonsocket Activation . 167
Nonsocket Connect . 168
Nonsocket Deactivation . 169
Nonsocket Message . 170
Output Message Filtering. 171
Output Message Re-formatting 172
Program Event Recording (PER) 173
Program History . 174
REARRANGE_CTK9 (UPX0) 175
Recoup Command . 177
Recoup Phase 1 . 178
Recoup Restart . 179
Segment URS1 . 180
Segment URS2 . 181
Segment USC1 . 182
Segment USC2 . 183
Segment USC3 . 184
Segment USC4 . 185
Select A Host . 186
Select ALS to Adjacent APPN Node. 188
Select an RTP Connection . 189
Select TCP/IP Support . 191
Selective Activate Message Router 192
Selective Activate Restart . 194
Selective Activate Structure Initialization 195
Selective Activate Structure Update 196
Selective Core Resident Load 197
Selective Recoup . 198
SLC Communication Source 199
SNA Communication Route Selection 200
SNA Message Recovery . 201
SNMP Enterprise-Specific MIB Retrieval 202
SNMP Manager Validation . 203
Socket Accept . 204
Socket Activation. 205
Socket Connect . 206
Socket Cycle-Up . 207
Socket Deactivation. 208
Socket System Error . 209
System Error Message . 210
Tape Display Setup . 211
Tape Library Validation . 213
TCP/IP Native Stack Support Accept Connection 214
TPF File System Initialization 215
TPF MQSeries Assign LNIATA. 216
TPF MQSeries Channel Message 217
TPF MQSeries Channel Message Retry 219
TPF MQSeries Channel Security 221

vi TPF V4R1 System Installation Support Reference

||
||

TPF MQSeries Convert to Object Handle. 223
TPF MQSeries Queue Trigger 224
TPF MQSeries Start Queue Manager 225
Trace-by-Terminal . 226
User Command Processor . 227
User Data Recovery Copy Support 228
User Data Recovery Restore Support 229
User Device . 230
User Global Symbol Table . 231
User Label Routines . 233
User Library Function . 235
User Symbol Override Table 236
VFA Restart . 238
Virtual IP Address Processor Deactivation 239
Virtual Reader. 240
WTOPC Page Control . 241
3270 Welcome Screen . 242

Global Area . 243
Terminology . 243
Structure of the Global Areas 244

Global Area 1 (GL1) . 245
Global Area 2 (GL2) . 247
Global Area 3 (GL3) . 247
Global Area 4 . 247

Components of the Global Area 247
Global Records . 247
Global Directories . 248
Global Blocks . 249
Global Fields . 250

System Environment Considerations 250
Multiple Database Function Environment 250
Tightly Coupled Environment 252

Using the Global Area by Applications 255
GLOBZ: Define Global Fields Macro 255
GLMOD: Change Global Protect Key Macro. 256
FILKW: File Keyword Macro 257
GL0BA: Define Global 1 Macro 257
GL0BY: Define Global 3 Macro 257
SYNCC: The Global Synchronization Macro. 258

Programming Considerations 258
Defining Addressability to Globals 258
Global Area Requirements of the Control Program 260

Loading Globals . 261
SIP for Globals . 261
Creating the Input Data Set 261
Considerations for Preparing Input 305

Synchronization of Globals . 306
Requirements for Synchronization 307

Locating Global Areas in a Dump. 307
Examples of I-Stream Shared and Unique Globals 309

Main Storage Super GOA Copy 312
Main Storage Prime GOA Copy 313
Sample STC Card Images for Global Block Creation 314
Examples of Coding the SYNCC Macro 317

Contents vii

Loaders . 321
General File System Components 321
Changing CIMR Components 322
Loading System Components to a New TPF System 322

Initializing the General File 322
Formatting the General File and Online Modules 322
Creating a General File Load Deck 322
Loading System Components to the General File 338
IPLing the General File . 339
Loading Fixed-File Records 340

Loading System Components to an Existing TPF System 341
Creating a New Fallback Image 341
Creating an Auxiliary Load Deck 342
Loading System Components to a Storage Medium 358
Loading from a Storage Medium to the TPF System. 360
Enabling an Image . 361
Moving Keypoints to the Working Area. 361
IPLing an Image . 362

Loading E-Type Programs to an Enabled System. 362
Creating an E-Type Loader Load Deck 362
Loading E-Type Programs to a Storage Medium 367
Loading and Activating a Loadset of Programs. 368
Loading a Loadset of Programs 368
Allocate Programs That are Unallocated 369
Activating a Loadset to Test New Programs 369
Using Loadsets . 369
Accepting a Loadset of E-Type Programs. 372
Using E-Type Loader Functions 372

Record ID Attribute Table . 373
Contents of the RIAT . 373
Addressing the RIAT . 374
Programming Areas. 374
Programming Techniques . 374
Record Size . 374
Frequency of Access . 374
Record Life . 374
Record Generation . 374
References . 375

Multiple Assembly/Compilation Print Program 377
Printing Multiple Assembly and Compilation Listings 377

JCL Control Cards . 377
Return Codes . 378
Error Messages . 378

Hardware Requirements . 379

Macro Cross-Reference. 381
Specifying the DCRS Search Parameters. 381

Example of DCRS . 382
Specifying a DREF Heading Parameter 382
Input to the Macro Cross-Reference Programs. 382

DCRS Program . 383
SORT Program . 383
DREF Program . 383

Control Cards . 383

viii TPF V4R1 System Installation Support Reference

Procedure . 384
Output from the Macro Cross-Reference Programs 384

Listings . 384
Files . 384
DCRS Attention Messages . 384
DCRS Error Messages . 385
DREF Messages. 386
References . 386

Multiple Assembly/Compilation Program 387
Input . 387

Files . 387
JCL Control Cards . 387
User Considerations . 392

Output . 393
Listings . 393
Files . 393

Sample JCL . 393
Printout Directory to Listings 393
Assembly Listings to Tape 394
E-Type Assemblies to Tape 395
E-Type Compilations Sent to the Printer 396
E-Type Compilations Sent to the Printer 397

Error Messages . 398
Hardware Requirements . 398

System Allocator . 399
Allocating Programs, Transfer Vectors, and Pools. 400
Creating the Input Deck . 401

Comments . 401
Specifying the Addressing Mode 401
Allocating Programs . 402
Allocating Transfer Vectors 404
Allocating Spare Program Slots 405
Defining Pools. 405
Adding Your Own Function Switches 406

Running the System Allocator (SALO) 406
To Run Only SIP Stage I . 406
To Run Both SIP Stages I and II 407

Creating the Program and System Allocator Tables 407

Variable Cross-Reference Listing 409
JCL Control Cards . 409

Control Card Input . 411
Scan the Entire PDS for Every Type of Variable 412
Scan a List of Members . 412
Subset of Variable Types Option 412
Print the Globals Found in the Order Specified. 413
Option Defaults . 413
Examples of Control Card Options 413

Procedure . 414
Output . 414
Error Messages . 414
Hardware Requirements . 415
References . 415

Contents ix

Appendix. JCL Load Deck Examples 417
TLDR JCL to Load Components to GDS 417
TLDR JCL to Load Components to Tape 417
TLDR JCL to Load Components to VRDR 418
OLDR JCL to Load E-Type Programs to GDS 419
OLDR JCL to Load E-Type Programs to Tape 419
OLDR JCL to Load E-Type Programs to VRDR 420

Index . 421

x TPF V4R1 System Installation Support Reference

Figures

1. Relationship of TPF Function, Exit Point, and User Processing 2
2. Selective Activation Table Example . 110
3. Selective Activation Index Example. 110
4. Global Storage Allocation for a Base-Only System with a Single I-Stream 246
5. Global Storage Allocation for a Single I-Stream with 2 Subsystems and 5 SSUs 251
6. Global Storage Allocation for 3 I-Streams with 1 Subsystem (the BSS) and 2 SSUs 254
7. GOA Data Structure . 262
8. Super GOA Layout . 302
9. STC Input Using Load Modules . 303

10. SSUT Entry . 309
11. Example of the Super GOA . 313
12. Example of a Prime GOA . 314
13. ALDR Run Load Deck Example . 323
14. ALDR Input Control Load Deck Example . 325
15. ALDR Input Control Load Deck Example Showing FCTB in Program Object Format from HFS 326
16. General File Load Using the General File Loader Offline Segment (ALDR) 338
17. General File IPL Using the General File Loader Online Segment (ACPL) 339
18. Loading Fixed-File Records Using the ZSLDR Command 340
19. TLDR Run Load Deck (to Tape) Example . 343
20. TLDR Input Control Load Deck Example . 346
21. TLDR Input Control Load Deck Example Showing FCTB in Program Object Format from HFS 347
22. Auxiliary Load via Auxiliary Loader (Offline — MVS) 358
23. Sample Summary Listing for Auxiliary Loader (with Key to Output Listing) 359
24. Auxiliary Load via Auxiliary Loader (Online — TPF). 360
25. OLDR Run Load Deck (To GDS) Example . 363
26. E-Type Load via E-Type Loader (Offline — MVS) 367
27. E-Type Load via E-Type Loader (Online — TPF) 368
28. Printout Directory to Listings JCL . 394
29. Assembly Listings to Tape JCL . 394
30. E-Type Assemblies to Tape JCL . 395
31. E-Type Compilations Sent to the Printer JCL . 396
32. E-Type Compilations Sent to the Printer JCL . 397
33. Operation of SALO . 400
34. Sample JCL Created by Running SIP Stage 1 407
35. JCL Required to Run VCRS . 410

© Copyright IBM Corp. 1994, 2002 xi

||

xii TPF V4R1 System Installation Support Reference

Tables

1. Activation and Allocation of User Exits for ECB-Controlled Programs 111
2. LU Types and User-Specified OSTG Options . 139
3. X.25 LU Types and the Permitted OSTG Options 140
4. Description of Fields in the Dynamic LU User Exit 140
5. The Byte Arrangement for Message Display . 211
6. Initial File System Values . 215
7. Summary of CLASS Attribute for File Resident Programs 403

© Copyright IBM Corp. 1994, 2002 xiii

xiv TPF V4R1 System Installation Support Reference

Notices

References in this book to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service in this book is not intended to
state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
IBM’s intellectual property rights may be used instead of the IBM product, program,
or service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department 830A
Mail Drop P131
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Any pointers in this book to non-IBM Web sites are provided for convenience only
and do not in any way serve as an endorsement. IBM accepts no responsibility for
the content or use of non-IBM Web sites specifically mentioned in this book or
accessed through an IBM Web site that is mentioned in this book.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AD/Cycle
Advanced Peer-to-Peer Networking
APPN
C/370
CICS
DFSORT
IBM
MQSeries
MVS/ESA
OS/390
PR/SM

© Copyright IBM Corp. 1994, 2002 xv

VisualAge
VM/ESA.

Other company, product, and service names may be trademarks or service marks
of others.

xvi TPF V4R1 System Installation Support Reference

About This Book

TPF system programmers should use this book and TPF System Generation to
install the TPF system and run offline support packages. This book contains
information about the following subjects:
v User Exits
v Global Areas
v Loaders
v Record ID Attribute Table
v Multiple Assembly/Compilation Print Program
v Macro Cross Reference Program
v Multiple Assembly/Compilation Program
v System Allocator
v Variable Cross-Reference Listing

In this book, abbreviations are often used instead of spelled-out terms. Every term
is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, Systems Network Architecture (SNA). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in the TPF
Library Guide.

Who Should Read This Book
This book should be read by TPF system programmers who install the TPF system
and run offline support packages.

Conventions Used in the TPF Library
The TPF library uses the following conventions:

Conventions Examples of Usage

italic Used for important words and phrases. For example:

A database is a collection of data.

Used to represent variable information. For example:

Enter ZFRST STATUS MODULE mod, where mod is the module for which you want
status.

bold Used to represent text that you type. For example:

Enter ZNALS HELP to obtain help information for the ZNALS command.

Used to represent variable information in C language. For example:

level

monospaced Used for messages and information that displays on a screen. For example:

PROCESSING COMPLETED

Used for C language functions. For example:

maskc

Used for examples. For example:

maskc(MASKC_ENABLE, MASKC_IO);

bold italic Used for emphasis. For example:

You must type this command exactly as shown.

© Copyright IBM Corp. 1994, 2002 xvii

Conventions Examples of Usage

Bold underscore Used to indicate the default in a list of options. For example:

Keyword=OPTION1 | DEFAULT

Vertical bar | Used to separate options in a list. (Also referred to as the OR symbol.) For example:

Keyword=Option1 | Option2

Note: Sometimes the vertical bar is used as a pipe (which allows you to pass the output of
one process as input to another process). The library information will clearly explain
whenever the vertical bar is used for this reason.

CAPital LETters Used to indicate valid abbreviations for keywords. For example:

KEYWord=option

Scale Used to indicate the column location of input. The scale begins at column position 1. The
plus sign (+) represents increments of 5 and the numerals represent increments of 10 on the
scale. The first plus sign (+) represents column position 5; numeral 1 shows column position
10; numeral 2 shows column position 20 and so on. The following example shows the
required text and column position for the image clear card.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

LOADER IMAGE CLEAR

Notes:

1. The word LOADER must begin in column 1.

2. The word IMAGE must begin in column 10.

3. The word CLEAR must begin in column 16.

Related Information
A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM Transaction Processing Facility (TPF) 4.1 Books
v TPF C/C++ Language Support User’s Guide, SH31-0121

v TPF ACF/SNA Network Generation, SH31-0131

v TPF Database Reference, SH31-0143

v TPF Library Guide, GH31-0146

v TPF General Macros, SH31-0152

v TPF General Information, GH31-0147

v TPF Non-SNA Data Communications Reference, SH31-0161

v TPF Main Supervisor Reference, SH31-0159

v TPF Migration Guide: Program Update Tapes, GH31-0187

v TPF Operations, SH31-0162

v TPF Program Development Support Reference, SH31-0164

v TPF ACF/SNA Data Communications Reference, SH31-0168

v TPF System Generation, SH31-0171

v TPF System Macros, SH31-0151

v TPF Transmission Control Protocol/Internet Protocol, SH31-0120.

IBM Systems Application Architecture (SAA) Books
v SAA AD/Cycle C/370 User’s Guide, SC09-1763.

xviii TPF V4R1 System Installation Support Reference

IBM High-Level Language Books
v High Level Assembler /MVS & VM & VSE Programmer’s Guide, SC26-4941

v OS/390 C/C++ User’s Guide, SC09-2361.

Miscellaneous IBM Books
v DFSORT Application Programming Guide, SC33-4035

v MQSeries Distributed Queue Management Guide, SC33-1139.

Online Information
v Messages (Online)

v Messages (System Error and Offline).

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

v If you prefer to send your comments electronically, do either of the following:

– Go to http://www.ibm.com/tpf/pubs/tpfpubs.htm.

There you will find a link to a feedback page where you can enter and submit
comments.

– Send your comments by e-mail to tpfid@us.ibm.com

v If you prefer to send your comments by mail, address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

v If you prefer to send your comments by FAX, use this number:
– United States and Canada: 1 + 845 + 432 + 9788
– Other countries: (international code) + 845 + 432 +9788

About This Book xix

|

|

|

http://www.ibm.com/tpf/pubs/tpfpubs.htm

xx TPF V4R1 System Installation Support Reference

Control Program User Exits Overview

User exits allow you to add user-unique processing at various points in TPF
programs without having to modify the released programs. Control program user
exits are called by control program exit points that reside in control program
CSECTs.

Note: User exits can affect system performance. Therefore, have detailed
knowledge of TPF system internals before activating or writing user exit
code.

Figure 1 on page 2 shows an overview of control program user exit processing.
When the TPF control program encounters a exit point that is not active, control
program processing continues. When the TPF control program encounters an active
exit point, control is passed to the User Exit Interface (UXITC). The UXITC macro
generates linkage to insure that the interfaces are standard among all exit points
(as exit points are scattered throughout the control program). Control is then passed
to the control program CSECT CCUEXT. CSECT CCUEXT, that contains the copy
member CUSR, then passes control to the user exit for user processing. If the user
exit routine does not cause the current ECB to give up control of the CPU, the
routine can return to the NSI in the exit point interface. If the user exit routine gives
up control of the CPU, user processing is suspended for the ECB and the stack
pointer (R13) and the contents of the stack area are lost.

Note: The user exit must restore the stack pointer (R13) and registers before it
returns to the NSI in the exit point.

© Copyright IBM Corp. 1994, 2002 1

If the user wants to resume processing the ECB later, the ECB can be placed on a
CPU loop (task dispatcher) list with the Postinterrupt address label, UXPI. This
causes control to be passed to the General Post Interrupt routine (UXGPIR in
CSECT CCUEXT) which reactivates the ECB when it is removed from the task
dispatcher list (see “General Postinterrupt Processing” on page 55).

Note: A direct return to the CPU Loop from the System Error user exit MUST NOT
be attempted. An interface has been provided for this purpose. For more
information, see ″Programming Considerations″ comments for the System
Error user exit in the CSECT CCUEXT code.

Exit Points
Exit points are predefined locations in TPF system processing from which
user-unique processing code can be invoked. This user-unique code (called user
exit, user exit routine, and user processing) will then execute as an extension of a
TPF system function.

Exit point status is not carried across an IPL. The ZSTIM command can be used
during restart, cycle-up, or cycle-down to automatically activate or deactivate exit
points.

TPF CONTROL PROGRAM
FUNCTION
(MAINLINE)

USER EXIT
INTERFACE

(UXITC)

(CSECT CCUEXT)
USER EXIT ROUTINE

(CUSR)
SLNKC
DLNKC

• Save registers
• Establish user routine

address
• Link to user code

• Restore registers

EXIT POINT
active

NSI IN
TPF

CONTROL PROGRAM
FUNCTION

not
active

USER
PROCESSING RETURN

TO CPU

RLNKC
return to

NSI

Figure 1. Relationship of TPF Function, Exit Point, and User Processing

2 TPF V4R1 System Installation Support Reference

A dynamic control program exit point is one that can be activated or deactivated by
an online macro (UXCMC) issued from a program. A nondynamic control program
exit point does not change. It is active or inactive. You cannot change it without
reinitializing the system.

Changing Dynamic Exit Points to Nondynamic

Note: Dynamic overlay exits (exits that change the control program code with
exception code) cannot be changed to nondynamic.

To change a dynamic exit point to a nondynamic exit point, you must do the
following:

1. Change the corresponding entry in the &ATT (attribute) table of the DCTUCL
macro to “UCLXPA” (nondynamic and active).

2. Assemble CCUEXT and CCNUCL, and link-edit the control program.

3. Make sure that you have removed all UXCMC macro calls treating this user exit
as dynamic.

Changing Nondynamic Exit Points to Dynamic
Changing nondynamic exit points to dynamic exit points requires modification of
control program code (at the exit point) and any related initialization code.
Therefore, it is not recommended.

Associating an Exit Point with a Function
You may want to associate specific exit points with a function (for example, test
tools, accounting, data collection, and others) so the function can be activated or
deactivated using a command. If you do, make sure that the exit point can be
deactivated and is not being used by another function.

Multiple Functions in User Exits
You may need to implement more than one function in a user exit. If you do,
macros are provided that allow you to define and control multiple functions residing
in a single dynamic or nondynamic user exit.

CCUEXT CSECT
The CCUEXT CSECT contains user-written exit routines and associated TPF
control mechanisms. Therefore, you do not have to update the TPF control program
in many locations to apply user-written code.

CCUEXT contains the following major functional components:
v User Exits Control List
v Service Routine for UXCMC Macro
v General Post-Interrupt Routine (UXGPIR)
v User Exit Routines (CUSR copy member)
v User static override bitmap table (CUDP copy member)

User Exits Control List (UCL)
The UCL and its DSECT are generated by the DCTUCL macro. The UCL is
allocated and initialized in CCUEXT. The UCL contains the following information for
each exit point:
v Name of the exit point (1–4 characters).
v Index number of the exit point.
v Status of the exit point (active or not active).

Control Program User Exits Overview 3

v Current address of the user exit routine for this exit point.
v The default address of the user exit routine for this exit point.
v The address of the overlay parameter list (for dynamic overlay exits).
v A list of bits that define the functions that are associated with each user exit.

The current address is the same as the default address unless changed by the
UXCMC macro. The default address is defined by address constants using specific
user exit routine labels in copy member CUSR. The UCL is addressable in the
control program (by referencing the label UCLTAB), from the control program itself,
or from an E-type program (by CINFC for label CMMUCL).

Service Routine for UXCMC Macro
The entry point of the UXCMC service routine is CPMUXT. The input to UXCMC is
the UX1PL DSECT parameter list. UX1PL is formatted by the caller. UX1PL
designates the type of action to be taken (activate or deactivate), the exit points to
be acted on, and functions in the exit to be acted on. For activate, UX1PL can
designate functions to be activated and the address of the alternate user processing
routine for exit points.

Note: For user exits with multiple functions, the alternate address will be used to
point to an alternate stub routine. Alternate addresses will not be supported
for each function.

For deactivate, UX1PL can designate functions to be deactivated.

If UX1PL is formatted correctly, the requested action is taken. If UX1PL is not
formatted correctly, you receive an appropriate return code and no action is taken.

General Post-Interrupt Routine (UXGPIR)
The General Post-Interrupt Routine (UXGPIR) allows you to restart user-suspended
ECBs. The ADDLC or ADDFC macro, with a post-interrupt address of UXPI (a
routine in CCNUCL), places an ECB on a dispatch list. When the ECB is removed
from the list, by the System Task Dispatcher (CPU Loop), UXPI passes control to
UXGPIR. If the post-interrupt exit point is active, UXGPIR passes control to the
user’s post-interrupt exit routine. If the post-interrupt exit point is not active, the
suspended ECB is reactivated by executing a load PSW from the PSW in the ECB
field CE1PSW.

User Exit Routines (CUSR)
User exit routines are user developed code to be processed at each active exit
point.

User Static Override Bitmap Table
User IDOTB macro calls associate one or more areas of main storage with a given
system error. Use of the static override bitmap table and its effect on dump content
are described in the TPF Program Development Support Reference.

Installing Control Program User Exits
To install control program user exits, do the following:

4 TPF V4R1 System Installation Support Reference

1. Update or replace copy member CUSR in CCUEXT. The IBM supplied copy of
CUSR has user exit routine labels that are equated to a value of zero (EQU 0).
When you install a user exit routine, remove the predefined entry point label and
place it at the beginning of the user exit routine. Then add your code to the
CUSR copy member.

2. Assemble and link-edit the CCUEXT CSECT. The user exit routine is then
incorporated in the control program. If the user exit routine is installed for a
nondynamic exit point, no more action is required and the exit routine will be
invoked by the control program whenever the exit point is met.

However, if a dynamic exit routine was installed, you must also provide a
program that will issue UXCMC macros to activate or deactivate the appropriate
exit point in order for the exit routine to be useable.

Note: To properly code a user exit routine, the programmer must be thoroughly
familiar with the internals of the control program.

Installing Multiple Functions in a User Exit
To install multiple functions in a user exit routine, do the steps shown in “Installing
Control Program User Exits” on page 4 and the following:

1. Define a bit in IUXEQ for each function you want to use in a user exit. The
IBM-supplied copy of IUXEQ has bits defined for vendor products that are
installed in user exits.

2. Update the user exit code in CUSR with a stub routine that will link to each
function defined for use by the exit point. The stub routine can be built by
coding a sequence of UXMAC macros.

Note: The order of UXMAC macros dictates the order in which functions in an
exit will get control.

3. Provide a program to activate or deactivate functions in the user exit using the
UXCMC macro. Define these functions in the expanded format of the parameter
list, UX1PL.

Note: Use this activation or deactivation process for dynamic and nondynamic
user exits.

Creating a Control Program Exit Point and User Exit
The TPF system provides exit points for all of the control program user exits listed
in this chapter. To create your own control program exit point and user exit, do the
following:

1. Update these 3 arrays in DCTUCL:

a. The Exit Point List (&UEP). This array contains abbreviated names for the
user exits.

b. The Exit Point Status array (&ATT). This array identifies whether an exit is
dynamic (and inactive or active), or nondynamic. Dynamic exit points have
an initial value of “UCLDYN” (dynamic and inactive), while nondynamic exit
points are identified by 2 zeros.

c. The Exit Point Description array (&DESC) contains a description of the exit.

Entries in each array correspond to entries with the same subscript in the other
2 arrays. For example, the entries for the nondynamic RIAT exit point are:

Control Program User Exits Overview 5

&UEP(37) SETC ’RIT’
&ATT(37) SETC ’00’
&DESC(37) SETC ’RIAT EXIT POINT’

The entries for the dynamic overlay fast link macro exit point are:
&UEP(13) SETC ’FLX’
&ATT(13) SETC ’UCLDYN+UCLOVR’
&DESC(13) SETC ’FAST LINK MACRO EXIT’

Entries can be added by overlaying spare or unused entries or by adding to the
end of the arrays. Twelve spare entries have been provided for you.

When adding entries to these arrays it is important to insert new entries at the
end of the array, but before the last entry. The last entry in each array marks the
end, and must have the following values:

&UEP(n) SETC ’XXX’
&ATT(n) SETC ’00’
&DESC(n) SETC ’END OF TABLE’

where n is the size of the array, increased by the number of exits you have
added.

Note: The arrays are logically split into two sections. The first section is fixed at
160 entries (index numbers 0 — 159); it is used for performance-critical
user exits. Each user exit has a corresponding entry both at CPMUXTBL
in the CAPT low core table and in the DCTUCL. The second section is
used for all other user exits; each of these user exits has a
corresponding entry only in the DCTUCL.

2. If you add a new control program user exit by overlaying a spare or unused
entry, you need to reassemble only the CAPT copy member. If you add a new
control program user exit by adding an entry to the end of an array, you need to
reassemble all CP CSECTS and link-edit the control program because of CAPT
copy member expansion.

3. Update one array in UXITC: the Exit Point List (&UEP). This entry corresponds
to the &UEP entry in the DCTUCL macro, and the subscripts must match.

Additions to this array are made in exactly the same way as for the DCTUCL
arrays: the subscript is the same for the corresponding entry, and any additions
must be made at the end, before the entry that marks the end of the array:

&UEP(n) SETC ’XXX’

4. Add UXITC macro processing at the appropriate exit point, to use the new user
exit.

5. Install the user exit (see “Installing Control Program User Exits” on page 4).

Conditions and Considerations When Using User Exits
This section lists the conditions and considerations when using user exits.

User Exit Routines - Common Entry Conditions
The following entry conditions apply to all user exit routines unless specified in the
individual exit point interface descriptions.

1. Register 15 will contain the base address of the user exit routine.

2. Register 13 will contain the address of a stack area which can be used by the
user processing to save registers or other data.

6 TPF V4R1 System Installation Support Reference

3. To preserve the integrity of the stack, user processing must not issue an SVC
macro, since this would cause the stack register to be re-initialized and the
current saved data to be lost.

4. The stack at the address pointed to by register 13 will contain the contents of
linkage registers 14 and 15 when the test for the user exit is performed.

5. Register 14 is the linkage register and contains the NSI return address from the
user exit routine to the exit point in the control program.

6. Registers 11 and 12 contain the fixed base register values.

7. The contents of registers 0 through 10 are not modified by the user exit
interface. Their contents and meaning are not predictable and are dependent on
the routine that caused the exit point to be executed.

User Exit Routines - Common Return Conditions
The following return conditions apply to all exit routines unless specified otherwise
in the individual exit point interface descriptions.

1. All registers (for example, general purpose, floating point, control point, and
others) which are modified by user exit processing must be restored before
returning to NSI in the user exit interface.

2. The system state, mask, protection key, and address space must be set exactly
the same as on entry to the user exit routine.

3. If the user exit processing does not return to NSI in the user exit interface (for
example, the ECB is suspended), it is your responsibility to cause control to be
passed to the CPU loop (Task Dispatcher) with the following conditions:
v The fixed base registers must be set to the proper value.
v The system must be in supervisor state.
v The protect key must be 0.

User Exit Routines - Common Programming Considerations
1. Follow proper linkage conventions. You are not required to use the linkage

macros when coding the user exit routines, but the linkage conventions must be
adhered to. The following shows an example of linkage macros in a user exit
routine:

2. Registers 13, 14, and 15 should not be used by user exit processing.

3. If required, user exit processing may increase the system mask only (for
example, reduce the type of interrupts allowed).

4. When a user exit is activated from the ISO-C environment, the following
conditions apply:

v The data save area (DSA) pointer (R13) is saved in an ECB.

v R13 is set to the CP stack address.

* User Exit routine
UCCXXX DS 0H

SLNKC LOREG=0,DSECT=SA01
DLNKC
.
. (User Processing)
. Can contain CLNKC calls to other user
. routines/subroutines
.
RLNKC LOREG=0 returns to exit point

Control Program User Exits Overview 7

v The contents of R8–R12 (at the time of the user exit) are saved on the CP
stack.

v R8, R11 and R12 are set to common interface conditions.

v The CP stack is pushed to point to the second stack frame.

Macro Servicing
There are many points in the control program where macro servicing can begin or
end. Macro servicing can begin in the following:
v SVC macro decoder
v Fast link macro decoder
v Processing an ENTxC macro
v Processing a BACKC macro
v WAITC macro processing.

Macro servicing can end in one of the following ways:

v An SVC macro gives up control and completes its processing using a
postinterrupt routine (wait or implied wait).

v An SVC macro processes to completion without giving up control (for example,
no wait or implied wait).

v A fast link macro return (no loss of control).

All of these points in macro servicing have unique user exit points because the
system condition at each place is unique.

TPF Macro Processing: Limitations/Restrictions
The user exit points associated with macro processing do not recognize whether a
macro has been issued from an E-type program or from the control program. This
means that any macro that takes a path through any of the places identified as the
beginning of macro servicing can be intercepted. It is, however, assumed that the
user will screen out those macros issued from the control program.

The macros which generate inline code are not capable of being intercepted at
macro entry or at macro exit because there are no exit points at these locations.
The WGTAC and CINFC (fast path) macros are inline macros and, therefore, are
not intercepted.

There are some macro service routines that perform a control transfer operation as
part of their processing. If a core block cannot be obtained for the control transfer,
the macro service routine may temporarily suspend the ECB by directly invoking the
DLAYC macro processing routine. If this occurs, the User Exit routine will be
invoked next at postinterrupt time for the DLAYC macro (if the SVC macro exit with
postinterrupt exit point SVW is active), and then again when the original macro
service routine completes its processing (if the associated exit point is active).

Note: Some macros that issue an implied wait will return via the SVX exit point if
no outstanding I/O exists. If outstanding I/O exists, the macro will return
using SVW.

8 TPF V4R1 System Installation Support Reference

Control Program User Exits

This chapter describes each TPF control program (CP) user exit, how to use the
user exit, and the following information concerning each user exit:

v General conditions at entry

v System conditions at entry

v Programming considerations at entry

v Programming considerations on return

v General conditions on return.

© Copyright IBM Corp. 1994, 2002 9

Application Timeout Processing
User exit routine UCCAPL provides the ability to perform additional actions or
extend the life of an ECB that is about to be timed out.

UCCAPL is called when the ECB that is currently running exited with a 000010 or a
00002010 system error. Exit point APL is located in 2 places in copy segment
CTME of CSECT CCNUCL; just prior to issuing the 000010 system error and just
prior to issuing the 00002010 system error.

General Conditions at Entry
The registers at entry to UCCAPL are:

R0 Set to 0.

R8 Address of the program’s PAT slot.

R9 SVM address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O and external interrupts

Protect key 0

Address Space SVM.

Programming Considerations at Entry
v See “User Exit Routines - Common Entry Conditions” on page 6.

v See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

v PFXATMR will be zero if a 000010 system error is going to be issued. Otherwise,
a 00002010 system error will be issued and CE2TMSLC contains the address of
the time-slice name entry in the time-slice name table.

v Calling TPF services from within this user exit is not supported.

Programming Considerations on Return
For all registers except R0, see “User Exit Routines - Common Return Conditions”
on page 7.

General Conditions on Return
v R0 will be set to 0 if a 000010 or 00002010 dump will be taken. A nonzero return

code in R0 will result in no dump being taken and control returns to the
application program. If user exit was called on behalf of 000010 system error
processing, the value of R0 will be used to reset PFXATMR on return from the
user exit.

v The user exit code sets any fields (for example, CE1ISTIM and PFXATMR) to
prevent additional errors or timeouts.

v See “User Exit Routines - Common Return Conditions” on page 7.

10 TPF V4R1 System Installation Support Reference

BACKC Macro Entry
User exit routine UCCCFB is called at the beginning of macro processing for a
BACKC macro (if the exit point named CFB is active). Exit point CFB is in CSECT
CCENBK.

General Conditions at Entry
The registers at entry to UCCCFB are:

R8 Base of E-type program that issued the macro.

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem (see “Programming Considerations at

Entry”, item 3)

System mask Unmasked (see “Programming Considerations at
Entry”, item 3)

Protect key Working storage or zero (0)

Address Space EVM.

Programming Considerations at Entry
1. The contents of program registers R0–R7 have not been saved in the ECB.

2. Information on the program to return to can be found in the current program
nesting level, CE1CPNL.

3. Usually, the system state and system mask are as stated. However, there can
be exceptions if system programs issued MONTC to get to supervisor state and
changed the system mask.

4. The CFB exit point occurs before formatting an entry in the macro trace table.

5. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 11

C Debugger Initialization
User exit routine UCCCDBI allows you to initialize a C debugger other than the TPF
C Debugger for VisualAge Client. UCCCDBI is called before initializing a C
debugger if the exit point named CDBI is active. Exit point CDBI is located in the
object code only segment CDBINT, which is part of the library load module CISO.

General Conditions at Entry
The registers at entry to UCCCDBI are:

R0–R8, R10 Contents are unknown.

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

The C debugger state indicators in page 2 of the ECB are:

CE2DBENBL Indicates if the ECB is enabled for debugging. If it is, one of the
following fields in the TPF process block (IPROC) will contain a
pointer to the trace entry; the other will contain a zero to indicate
that it is not being used:

IPROC_TBT_PTR
The address of the trace-by-terminal entry.

IPROC_TBP_PTR
The address of the trace-by-program entry.

Each trace entry contains the following information:

v Debug workstation IP address

v Port number of the debug workstation

v Entry state flag

v Option flags

v Number of ECBs using this entry

v Created ECB trace token

v Programs to be traced

v User token.

Note: A trace-by-terminal entry also contains a field that
identifies the terminal information. A terminal can be
a TCP/IP address, a fully qualified LU Name, or an
LNIATA.

CE2DBHOOK Indicates if the ECB has entered a program that matches the trace
entry information and, therefore, should initialize the debugger.

CE2DBINIT Indicates if the debugger has been initialized.

CE2DBFLAG This byte holds several internal flags that are used by debuggers.
One of the bits indicate that the debugger has issued an
input/output (I/O) command to the workstation and is waiting for a
response. This bit is set before writing to the socket and is cleared
after reading the socket.

System Conditions at Entry
System state Inherited from application

12 TPF V4R1 System Installation Support Reference

System mask Inherited from application

Protect key Inherited from application

Address Space EVM.

Programming Considerations at Entry
1. UCCCDBI can use the data stored in the user token field of the trace entry, or

any other information accessible by the ECB to determine if it should delay the
initialization of the debugger until the ECB enters another C program. To delay
the initialization of the debugger until the ECB enters another C program, set
the CE2DBINIT field to CE2DBINIT_OFF.

2. See “User Exit Routines - Common Entry Conditions” on page 6.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 13

C Debugger Return
User exit routine UCCCDBR is called if the exit point named CDBR is active.
UCCCDBR is called from the TPF C Debugger for VisualAge Client routine that
handles the debugger hooks. The exit point is given control prior to returning to the
application. Exit point CDBR is located in CPLX library load module.

General Conditions at Entry
R0, R2–R8, R10

Contents are unknown.

R1 Parameter list for user exit containing the following information:
v Application program mask and condition code (full word)
v Address in application where debugger will return control
v Application registers (R0–R15)

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Inherited from application

System mask Inherited from application

Protect key Inherited from application

Address Space EVM.

Programming Considerations at Entry
1. See “User Exit Routines - Common Entry Conditions” on page 6.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

14 TPF V4R1 System Installation Support Reference

C Library Function Call (TARGET(TPF))
User exit routine UCCCFC is used with C language support and is activated on a
call to a C library function if the exit point named CFC is active. Exit point CFC is in
CSECT CCLANG.

General Conditions at Entry
The registers at entry to UCCCFC are:

R7 C stack pointer.

R8 Index into the quick enter table.

R9 Address of the ECB.

R13–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem

System mask Unmasked

Protect key Working Storage

Address state EVM.

Programming Considerations at Entry
1. It is possible to be in Protect key 0 if a CINFC(CINFC_WRITE) was issued.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 15

C Library Function Return (TARGET(TPF))
User exit routine UCCCFR is used with C language support and is activated on
return from a C library function if the exit point named CFR is active. Exit point CFR
is in CSECT CCLANG.

General Conditions at Entry
The registers at entry to UCCCFR are:

R7 C stack pointer.

R8 Base address of C program to return to.

R9 Address of the ECB.

R13–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem

System mask Unmasked

Protect key Working Storage

Address state EVM.

Programming Considerations at Entry
1. It is possible to be in Protect key 0, if a CINFC(CINFC_WRITE) was issued.

The protect key can be different from the key at UCCCFC.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

16 TPF V4R1 System Installation Support Reference

C Stack Exception (TARGET(TPF))
The user exit (UCCCSK) for the C stack exception routine is used with C language
support and is activated the first time a C program is called during the life of an
entry.

Some possible uses of this exit point include:

v To specify a locale other than the default locale for the current ECB

v To add a user expansion area at the end of the first stack frame

v To collect utilization/performance statistics

v To use for your own tracing or debugging tools.

Exit point CSK in CSECT CCLANG. When the user exit is activated, control is
transferred to the CUSR copy member of CCUEXT.

General Conditions at Entry
The registers at entry to UCCCSK are:

R1 Current block pointer.

R4 Address of next C stack frame (CSTKNAB).

R5 Address of default locale name.

R6 Requested C stack frame size.

R7 Address of first C stack frame in first block.

R8 Program base register.

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Unmasked

Protect key 0

Address space EVM.

Programming Considerations at Entry
1. If you want to add additional space at the end of the first stack frame, this

space must be added immediately following the CSTKEND field. The length of
this additional space must be added to both CSTKNAB and R4 (the new frame
pointer), which hold the same value. The maximum size of the stack frame is
4095 bytes, minus the size of the block header. For detailed information about
the layout of the stack frame, see data macro ICS0TK.

2. The current locale name (the default) is pointed to by R5. If a different locale is
needed, store the name of the locale (4-byte maximum) at the location pointed
to by R5. Characters EDC$ at the beginning of each locale name are not
stored. For example, for locale EDC$UK, store UK at the address pointed to by
R5, and pad this value on the right with nulls.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Control Program User Exits 17

Programming Considerations on Return
All registers must be restored before return, with the following exception. If the size
of the first stack frame is expanded because of the addition of a user expansion
area, then R4 is updated to point to the next stack frame.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7, except for R4, as
discussed previously.

18 TPF V4R1 System Installation Support Reference

C Stack Exception Return (TARGET(TPF))
User exit routine UCCCSER is used with C language support and is activated on
return from a stack or static exception if the exit point named CSER is active. Exit
point CSER is in CSECT CCLANG.

General Conditions at Entry
The registers at entry to UCCCSER are:

R9 Address of the ECB.

R13–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem

System mask Unmasked

Protect key Working storage

Address state EVM.

Programming Considerations at Entry
1. It is possible to be in Protect key 0 if a CINFC(CINFC_WRITE) was issued.

2. The contents of the caller’s registers upon entry to the user exit routine, can be
retrieved from the stack in R13 by entering the following in the user exit:
L R5,STKPREV(,R13)
L R3,STKR0(R5) THIS GETS R0

These entries must be made before the SLNKC macro statement at the
beginning of the exit routine.

3. This exit will be activated by a STATIC or STACK exception. It is the user’s
responsibility to determine which occurred.

4. Some registers saved in the stack have been modified by the exception
handlers. See a listing of CCLANG for details.

5. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 19

Catastrophic Recovery
User exit routine UCCCAT is invoked from catastrophic recovery processing after
the tape queues have been cleared, but before tapemarks are written to the
real-time tapes. Exit point CAT is in CSECT CCCPSF.

UCCCAT is provided to give users the opportunity to log critical records to tape.
UCCCAT is invoked once for every active real-time tape found in the real-time tape
chain. UCCCAT should first examine the tape status table entry to see if it is a tape
for which user exit processing is required. If it is, UCCCAT should invoke
CEDTWBK, in the CSECT CCCPSE, to write additional blocks to tape.

Note: Save your registers and change them as needed before you call CEDTWBK
from the UCCCAT user exit.

Routine CEDTWBK expects the following conditions at entry:

R0 The length of the record to be written. Length must not exceed
32 690 bytes.

R1 The main I-stream system virtual address of the record to be
written.

R2 Module number of the tape being written to (supplied by CCCPSF
on entry to the user exit).

General Conditions at Entry
The registers at entry to UCCCAT are:

R0 Module number of the tape being processed. At the conclusion of
user exit processing, CCCPSF will send the dummy
record/tapemark sequence to the referenced tape device.

R6 Tape status table section 1 entry for the tape being processed. This
register can be used to determine whether the tape name in the
tape status table entry identifies a tape that requires user
processing. See the ITSTB DSECT.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

Refer to a listing of CCCPSF for the contents of the remaining registers.

System Conditions at Entry
System state Supervisor, normal I/O suspended

System mask Masked

Protect key 0

Address space SVM on the main I-stream.

Programming Considerations at Entry
1. User processing must not change the system state. Return must be made to the

next sequential instruction.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

20 TPF V4R1 System Installation Support Reference

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 21

CCCTIN (CT25 and CT26)
The CTIN user exits are invoked in copy segment CT00 of CSECT CCCTIN. They
are nondynamic exit points that do not follow the standards set by the other exit
points. The exit routines are not in CUSR. Instead, they have their own copy
segments, CT25, CT26, and CT99 in CCCTIN. The user exits control list (UCL) is
not used, nor are the linkage macros used. This is because during initialization,
many control program tables and system stacks are not yet available.

The CCCTIN exit permits the user to reserve and initialize main storage for user
definition.

To activate exit points CT25 and CT99, you must change the statement at the
beginning of each copy segment from EQU INIT00 to DS F.

CT00 tests for the relative location of CT25 and CT99. If the result is 0, the exit
points are bypassed. CT26 is activated only when CT25 is in use. Refer to the
commentary in the program listing for copy members CT25, CT26, and CT99 for
additional information.

General Conditions at Entry
The registers at entry to CT25 are:

R1 Set to 0

R4 Address of next available main storage location

R8 Base of CTIN

R9 Base of CT25

R14 Return address.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address space IPLVM.

Programming Considerations at Entry
1. On return, R1 must either be zero or contain the address of the user storage

allocation table (USAT). If an address is returned, CT26 is activated to allocate
storage for the user using the information in the USAT. Macro IUSAT is used to
describe the layout of each individual entry in the USAT. The maximum number
of entries is defined by the variable &SAADLN in SYSET. As released by IBM,
this value is 50.

2. CT25 is provided to allow you to reserve storage for user tables or other
user-unique structures that require reserved main storage. This can be done
through the following methods:

a. Build a user storage allocation table, USAT, and pass the address to CT26,
which does the actual allocation. The USAT should be built, using the
USATC macro and assembled into CT25.

b. Point to a USAT built elsewhere, perhaps in a user keypoint, and pass the
address to CT26.

22 TPF V4R1 System Installation Support Reference

c. Allocate storage directly in CT25 by updating R4, the next available storage
pointer. However, this is not recommended.

CT25 can also be used to relocate the user data in the FCTB. The core address
of the FCTB can be obtained using the CINFC tag, CMMFCTV.

Programming Considerations on Return
R1 Address of USAT or 0.

R4 Must be unchanged or, if main storage was reserved by CT25 and
the next available location has changed, R4 must contain the
address of the next available main storage location rounded to the
next doubleword.

R8 Must still contain the base of CTIN.

General Conditions on Return
The System Mask, System State, and Protect Key must be the same as on entry to
CT25.

Control Program User Exits 23

CCCTIN (CT99)
The CTIN user exits are invoked in copy segment CT00 of CSECT CCCTIN. They
are nondynamic exit points that do not follow the standards set by the other exit
points. The exit routines are not in CUSR. Instead, they have their own copy
segments, CT25, CT26, and CT99 in CCCTIN. The user exits control list (UCL) is
not used, nor are the linkage macros used. This is because during initialization,
many control program tables and system stacks are not yet available.

The CCCTIN exit permits the user to reserve and initialize main storage for user
definition.

To activate exit points CT25 and CT99, you must change the statement at the
beginning of each copy segment from EQU INIT00 to DS F.

CT00 tests for the relative location of CT25 and CT99. If the result is 0, the exit
points are bypassed. CT26 is activated only when CT25 is in use. Refer to the
commentary in the program listing for copy members CT25, CT26, and CT99 for
additional information.

General Conditions at Entry
The registers at entry to CT99 are:

R8 Base of CTIN

R9 Base of CT99

R14 Return address.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address space SVM.

Programming Considerations at Entry
CT99 is provided to allow users to initialize/key protect user unique main storage
tables, allocated by CT25 and CT26, or other user-unique structures, such as user
CINFC labels.

Programming Considerations on Return
R8 Must still contain the base of CTIN.

General Conditions on Return
The System Mask, System State, and Protect Key must be the same as on entry to
CT99.

24 TPF V4R1 System Installation Support Reference

Control Transfer
User exit routine UCCCMXF is invoked whenever a control transfer macro (CXFRC)
is executed and the exit point named CMXF is active. Exit point CMXF is contained
in CSECT CCNUCL. Exit point CMXF contains different parameters depending on
the CXFRC ECB= parameter.

UCCCMXF allows user information to be passed from a parent to a child ECB. It is
independent of macro servicing user exits.

General Conditions at Entry
The registers at entry to UCCCMXF are:

R2 Pointer to a 4-byte user data field where this routine can store data
to be passed to the child ECB. R2 equals 0 if CXFRC was unable
to obtain storage because of a low core condition.

R5 Set to 1 to show that ECB=DEFER was coded.

R7 Return address of CXFRC (CXFRTRN).

R9 If present, the address of the parent ECB. See “Programming
Considerations at Entry”.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O

Protect key 0

Address Space SVM or EVM.

General Conditions at Entry
The registers at entry to UCCCMXF are:

R2 Address of the new ECB.

R5 Set to 0 to show that ECB=IMMED was coded.

R7 Return address of CXFRC (CXFRTRN).

R9 If present, the address of the parent ECB. See “Programming
Considerations at Entry”.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O

Protect key 0

Address Space SVM.

Programming Considerations at Entry
1. A parent ECB may or may not be present.

2. See “User Exit Routines - Common Entry Conditions” on page 6.

Control Program User Exits 25

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

26 TPF V4R1 System Installation Support Reference

Core Resident Enter/Back Macro
User exit routine UCCCREB is called if the exit point named CREB is active.
UCCCREB is invoked at the end of macro processing and just before control is
passed to the destination program for:
v Enter-type macros going to a core-resident program
v BACKC macro from a core-resident program.

UCCCREB can be called from an ISO-C environment. Exit point CREB is located in
copy segment CCEB of CSECT CCENBK and in copy segment CLHL of CSECT
CCCLHR.

Multifunction user exit linkage is assembled into this exit point. This user exit is
activated by the ZDBUG command (with the START parameter specified), which
calls the UXITC macro with the IUX_VADB function set on.

General Conditions at Entry
The registers at entry to UCCCREB are:

R0–R7 When the user exit is called from a non–ISO-C environment, the
contents have been restored from the ECB and contain the values
that are to be passed to the E-type program that will receive
control. When the user exit is called from an ISO-C environment,
the application registers are stored in the data save area (DSA) and
have not yet been restored.

R8 Base of E-type program to receive control.

R9 Address of the ECB.

R10 Contains 0 if the user exit is called from an ISO-C environment,
otherwise it contains a non-zero value.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem (see “Programming Considerations at

Entry”, item 1)

System mask Unmasked (see “Programming Considerations at
Entry”, item 1)

Protect key Working storage.

Address Space EVM.

Programming Considerations at Entry
1. Usually, the system state, system mask, and protection key are as stated.

However, there can be exceptions if system programs issued MONTC to get to
supervisor state, changed the system mask, or changed the protection key.

2. You activate the TPF Assembler Debugger for VisualAge Client or TPF C
Debugger for VisualAge Client code from this user exit by calling the UXMAC
macro. Program load event detection code (the IUX_VADB UXMAC call) must
be the last exit routine to be called in the exit. The debugger will not return to
this user exit when it determines that the debugger must receive control. If you
do not want the debugger to trace the program that will be entered, set the

Control Program User Exits 27

CE3_NO_DEBUG indicator in byte CE3DBCR (page 3 of the ECB) before the
debugger is called. The debugger always sets this indicator off before activating
the program.

3. See “User Exit Routines - Common Entry Conditions” on page 6.

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

28 TPF V4R1 System Installation Support Reference

CPU External Interrupt
User exit routine UCCCPTE is invoked whenever any CPU external interrupt is
taken and the exit point named CPTE is active. Exit point CPTE is contained in
CSECT CCNUCL.

This exit point has been provided to allow the user exit routine to be invoked when
any CPU external interrupt is received. The exit will be invoked from both the main
and application I-streams.

General Conditions at Entry
The registers at entry to UCCCPTE are:

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address Space SVM.

Programming Considerations at Entry
See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 29

CPU Timer Interrupt
User exit routine UCCCPTI is invoked whenever a CPU timer clock interrupt is
taken and the exit point named CPTI is active. Exit point CPTI is contained in
CSECT CCNUCL.

This exit point has been provided to allow the user exit routine to be invoked when
an external CPU timer interrupt is received. The exit will be invoked from both the
main and application I-streams.

General Conditions at Entry
The registers at entry to UCCCPTI are:

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address Space SVM.

Programming Considerations at Entry
See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

30 TPF V4R1 System Installation Support Reference

Create Macro Control Point
User exit routine UCCCMCP is called whenever a create macro (CREDC, CREEC,
CREMC, CRESC, CRETC, CREXC, or SWISC) is executed and the exit point
named CMCP is active. Exit point CMCP is contained in CSECT CCNUCL.

UCCCMCP allows user information to be passed from a parent to a child entry
control block (ECB). It is independent of macro servicing user exits. For calls from
the $FORKC macro, passing information from a parent to a child ECB must be
done in UCCCMCP because the UCCCMPI user exit will not be invoked.

General Conditions at Entry
The registers at entry to UCCCMCP are:

R2 Pointer to a 4-byte user data field.

R6

For calls from the $FORKC macro, R6 contains the address of the
child ECB. For other calls, the content of R6 is undefined.

R9 Address of the ECB that issued the macro.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O interrupts

Protect key 0

Address Space

EVM, except for calls from the $FORKC macro in
which case the address space is in SVM.

Programming Considerations at Entry
1. Except for calls from $FORKC, the 4-byte user data field is initialized to zero

when UCCCMCP is entered. For calls from the $FORKC macro, the 4-byte user
data field is initialized to 3 and must not be changed.

2. If you perform CRETCM processing, the 4-byte user data field is set to 1. If you
perform CRETCS processing, the 4-byte user data field is set to 2. It is your
responsibility to reset the field to its initial value.

3. See “User Exit Routines - Common Entry Conditions” on page 6.

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 31

Create Macro Postinterrupt
User exit routine UCCCMPI is invoked whenever a new entry control block (ECB) is
obtained because of Create postinterrupt processing and the exit point named
CMPI is active. Exit point CMPI is contained in CSECT CCNUCL.

UCCCMPI allows user information to be passed from a parent to a child ECB. It is
independent of macro servicing user exits.

Note: For calls from the $FORKC macro, passing information from a parent to a
child ECB must be done in UCCCMCP because the UCCCMPI user exit will
not be invoked.

General Conditions at Entry
The registers at entry to UCCCMPI are:

R2 Pointer to a 4-byte user data field.

R9 Address of the ECB that was just created.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O

Protect key 0

Address Space SVM.

Programming Considerations at Entry
1. See “User Exit Routines - Common Entry Conditions” on page 6.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

32 TPF V4R1 System Installation Support Reference

Critical Record Filing
User exit routine UCCCRI is invoked during critical record filing of catastrophic error
processing. This exit point cannot be activated dynamically. Exit point CRI is in
copy segment CPSF of CSECT CCCPSF.

General Conditions at Entry
The registers at entry to UCCCRI are:

R0–R8 Contents unknown.

R9 Address of the ECB.

R10 CPSF base address.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for all interrupts

Protect key 0

Address space SVM.

Programming Considerations at Entry
1. See “User Exit Routines - Common Entry Conditions” on page 6.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 33

Debugger Trace Selection
User exit routine UCCDBTS is called when the TPF Assembler Debugger for
VisualAge Client is about to assign a trace-by-program entry to the application entry
control block (ECB). This user exit permits you to verify additional information in the
ECB against a user token field that is stored in the trace entry. You supply the user
token data on the TPF registration window. UCCDBTS is called if the DBTS exit
point is active. Exit point DBTS is located in CSECT CCENBK.

General Conditions at Entry
The registers at entry to UCCDBTS are:

R1 IPROG trace entry that will be assigned to the ECB.

R6 Pointer to page 2 of the ECB.

R7 Pointer to the name of the program that will be entered.

R9 Pointer to page 1 of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Inherited from the application

Protect key 0

Address Space SVM or EVM.

Programming Considerations at Entry
See “User Exit Routines - Common Programming Considerations” on page 7 for
considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
1. Register 5 (R5) must contain a return code.

0 Returning a value of 0 causes the trace entry to be attached to the
ECB.

1 If you decide that the trace entry that was passed to the user exit
should not be attached to the ECB, return a value of 1. Segment CCED
continues to search its tables for another trace entry that matches this
ECB. The user exit is called again if another match is found.

2. See “User Exit Routines - Common Return Conditions” on page 7.

34 TPF V4R1 System Installation Support Reference

Debugger Trace Table Entry Activation
User exit routine UCCDBTA is called when the TPF Assembler Debugger for
VisualAge Client is about to activate a trace-by-program or trace-by-terminal entry.
This user exit permits you to perform additional customization or initialization before
the trace session starts. UCCDBTA is called if the DBTA exit point is active. Exit
point DBTA is located in CSECT CCENBK.

General Conditions at Entry
The registers at entry to UCCDBTA are:

R9 Pointer to page 1 of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Inherited from the application

Protect key 0

Address Space SVM or EVM.

Programming Considerations at Entry
1. Access the debugger trace process block (IPROC) that is pointed to by the

addresses in CE2PROC to determine which trace table is being used. The
address of the trace table entry is in one of the following:

v IPROC_TBT_PTR, which is defined by ITERM

v IPROC_TBP_PTR, which is defined by IPROG.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 35

DLAYC Macro Entry
User exit routine UCCDLAY is called during macro processing for an DLAYC or
YIELDC macro (if the exit point named DLAY is active). The exit point is in CSECT
CCNUCL.

General Conditions at Entry
The registers at entry are:

R6 Type of macro calling this exit point.

01 DLAYC macro call

02 YIELDC macro call (for the READY list)

02 YIELDC macro call (for the virtual file access count (VCT)
list)

R9 Pointer to entry control block (ECB) page 1.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O interrupts

Protect key Working storage or zero (0)

Address Space EVM.

Programming Considerations at Entry
See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
v Intermediate processing contains code that performs special processing for

virtual machine (VM) and processor resource/systems manager (PR/SM)
environments. This processing can load a wait state program status word (PSW)
under certain conditions; load RC=4 to register 6 (R6) and return to the caller if
you want to bypass intermediate processing.

v DLAYC macro processing does not check to see if the ECB is holding any
resources. With the DLAYC macro entry user exit, you can determine whether
the ECB is holding any resources. Additionally, you can decide to issue a system
error or return to the issuing program without entering the DLAYC macro. To
ignore the delay request, load RC=8 to R6 and return to the service routine. The
service routine ignores the delay request and returns to the program that issued
the macro.

v See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
v R6 must contain the return code that will be used by the calling service routine to

determine the next action.

0 Continue normal processing.

4 Bypass intermediate processing and go directly to delay processing.

8 End the delay macro call and return to the macro caller.

36 TPF V4R1 System Installation Support Reference

v See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 37

Dump Override Table
User exit routine UCCDOT is invoked from system error processing after the
selective memory dump table has been initialized for a dump of system storage.
Exit point DOT is located in CSECT CCCPSE. This exit is provided to give users
final control over which storage areas are included in the dump.

General Conditions at Entry
The registers at entry to UCCDOT are:

R2 Base address of the selective memory dump table. The SMDT
resides in the copy member of the CCCPSE CSECT.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

Note: Refer to a listing of CCCPSE for the contents of the remaining registers.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address space SVM on the main I-stream.

Programming Considerations at Entry
1. User processing must not change the system state. Return must be made to the

next sequential instruction.

2. The format of an SMDT entry is described by the IDSMDT data macro. To
obtain the address of the SMDT entry corresponding to a particular keyword,
use the following code:

IDSMDT REG=Rx DSECT AN SMDT ENTRY
LA Rx,<keyword> LOAD KEYWORD EQUATE
MH Rx,=Y(MDTLEN) TIMES SIZE OF ENTRY
A Rx,0(,R2) ADD TABLE BASE

To flag an SMDT entry for inclusion in the dump, set the MDTINCL flag in the
MDTFLG flag byte. Also, you can omit storage areas from the dump by turning
off MDTINCL.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

38 TPF V4R1 System Installation Support Reference

Dynamic Load Module Environment Initialization (ISO-C)
User exit routine UCCCENV is used with ISO-C support. UCCCENV is activated
when an ISO-C environment is initially created for a given ECB after all ISO-C
control structures have been initialized, if the exit point named CENV is active. User
exit CENV is called from an ISO-C environment. Exit point CENV is called from the
dynamic load module (DLM) startup code (CSTRTD) of the CLMINT segment in the
CIS0 library.

Some possible uses of this exit point include:
v To increase the size of the language work space (LWS)
v To load a default locale that is different than the C/370 locale.

General Conditions at Entry
The registers at entry to UCCCENV are:

R5 0.

R8 Points to the DLM header.

R9 Address of the ECB.

R13–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

The relevant ECB fields at entry to UCCCENV are:

CE2ISOC Address of the Task Communication Area (TCA)

CE3SPTR Address of the Data Save Area (DSA).

System Conditions at Entry
System state Problem (see “Programming Considerations at

Entry”, item 2)

System mask Unmasked (see “Programming Considerations at
Entry”, item 2)

Protect key Working storage

Address state EVM.

Programming Considerations at Entry
1. The language work space (LWS) area cannot be incremented past the end of

the stack (EOS) field in the task communication area (TCA).

2. Usually, the system state, system mask, and protection key are as stated.
However, there can be exceptions if system programs issued MONTC to get to
supervisor state, changed the system mask, or changed the protection key.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
1. If you need a locale that is different from the default locale, use R5 to indicate

the locale. For EDCLOC-based locales, R5 must contain the name of the

Control Program User Exits 39

module that contains the locale. For localedef utility-based locales, R5 must
contain the 4-character internal name of the locale.

2. See “User Exit Routines - Common Return Conditions” on page 7.

40 TPF V4R1 System Installation Support Reference

Dynamic Load Module External Function Call
User exit routine UCCEFCX is called by the dynamic load module (DLM) startup
code before calling the entry point function (if the exit point named EFCX is active).
User exit EFCX is called from an ISO-C environment. This exit point is in the
CLMINT segment of the CIS0 library.

Multifunction user exit linkage is assembled into this exit point. This user exit is
activated by the ZDBUG command (with the START parameter specified), which
calls the UXITC macro with the IUX_VADB function set on.

General Conditions at Entry
The registers at entry are:

R8 Program base of the called program

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem (see “Programming Considerations at

Entry”, item 1)

System mask Unmasked (see “Programming Considerations at
Entry”, item 1)

Protect key Working storage or zero (0)

Address Space EVM.

Programming Considerations at Entry
1. Usually, the system state and system mask are as stated. However, there can

be exceptions if system programs issued a MONTC macro to get to supervisor
state and changed the system mask.

2. You activate the TPF Assembler Debugger for VisualAge Client or TPF C
Debugger for VisualAge Client code from this user exit by calling the UXMAC
macro. Program load event detection code (the IUX_VADB UXMAC call) must
be the last exit routine to be called in the exit. The debugger will not return to
this user exit when it determines that the debugger must receive control. If you
do not want the debugger to trace the program that will be entered, set the
CE3_NO_DEBUG indicator in byte CE3DBCR (page 3 of the ECB) before the
debugger is called. The debugger always sets this indicator off before activating
the program.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 41

Dynamic Load Module External Function Call Entry
User exit routine UCCEFCE is called during the processing of an external function
call by a dynamic load module (if the exit point named EFCE is active). This exit
point is in CSECT CCENBK (CCED).

General Conditions at Entry
The registers at entry to UCCEFCE are:

R8 Base of E-type program (dynamic load module) that issued the
external function call.

R9 Address of the ECB.

R11, R12, R13, R15
See “User Exit Routines - Common Entry Conditions” on page 6.

Relevant ECB fields at entry are:

CE3SPTR Data save area (DSA) pointer.

System Conditions at Entry
System state Problem (see “Programming Considerations at

Entry”, item 2)

System mask Unmasked (see “Programming Considerations at
Entry”, item 2)

Protect key Working storage or zero (0)

Address Space EVM.

Programming Considerations at Entry
1. On entry, the ECB field CE3PAT will contain the PAT entry address for the

program (dynamic load module) that issued the external function call.

2. Usually, the system state and system mask are as stated. However, there can
be exceptions if system programs issued a MONTC macro to get to supervisor
state and changed the system mask.

3. The dynamic load module external function call exit point occurs before the
formatting of an entry in the macro trace table.

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

42 TPF V4R1 System Installation Support Reference

Dynamic Load Module Return Processing
User exit routine UCCRTNX is called if the exit point named RTNX is active.
UCCRTNX is called at the end of return processing from a dynamic load module
(DLM). User exit RTNX may be called from an ISO-C environment. Exit point RTNX
is in CSECT CCENBK (CCED).

Multifunction user exit linkage is assembled into this exit point. This user exit is
activated by the ZDBUG command (with the START parameter specified), which
calls the UXITC macro with the IUX_VADB function set on.

General Conditions at Entry
The registers at entry to UCCRTNX are:

R0–R7 When the user exit is called from a non–ISO-C environment, the
contents have been restored from the ECB and contain the values
that are to be passed to the E-type program that will receive
control. When the user exit is called from an ISO-C environment,
the application registers are stored in the data save area (DSA) and
have not yet been restored.

R8 Base of E-type program to receive control.

R9 Address of the ECB.

R10 Contains 0 if the user exit is called from an ISO-C environment,
otherwise it contains a non-zero value.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem (see “Programming Considerations at

Entry”, item 1)

System mask Unmasked (see “Programming Considerations at
Entry”, item 1)

Protect key Working storage

Address Space EVM.

Programming Considerations at Entry
1. Usually, the system state, system mask, and protection key are as stated.

However, there can be exceptions if system programs issued MONTC to get to
supervisor state, changed the system mask, or changed the protection key.

2. You activate the TPF Assembler Debugger for VisualAge Client or TPF C
Debugger for VisualAge Client code from this user exit by calling the UXMAC
macro. Program load event detection code (the IUX_VADB UXMAC call) must
be the last exit routine to be called in the exit. The debugger will not return to
this user exit when it determines that the debugger must receive control. If you
do not want the debugger to trace the program that will be entered, set the
CE3_NO_DEBUG indicator in byte CE3DBCR (page 3 of the ECB) before the
debugger is called. The debugger always sets this indicator off before activating
the program.

3. See “User Exit Routines - Common Entry Conditions” on page 6.

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Control Program User Exits 43

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

44 TPF V4R1 System Installation Support Reference

Dynamic Load Module Return Processing Entry
User exit routine UCCRTNE is called at the beginning of return processing for a
dynamic load module (if the exit point named RTNE is active). User exit RTNE is
called from an ISO-C environment. Exit point RTNE is in the CLMINT segment of
the CIS0 library.

General Conditions at Entry
The registers at entry to UCCRTNE are:

R8 Base of E-type program (dynamic load module) that is returning.

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem (see “Programming Considerations at

Entry”, item 2)

System mask Unmasked (see “Programming Considerations at
Entry”, item 2)

Protect key Working storage or zero (0)

Address Space EVM.

Programming Considerations at Entry
1. For information on the program in which to return, see the current program

nesting level, CE1CPNL.

2. Usually, the system state and system mask are as stated. However, there can
be exceptions if system programs issued MONTC to get to supervisor state and
changed the system mask.

3. The RTNE exit point occurs before formatting an entry in the macro trace table.

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 45

ECB Creation
User exit routine UCCECB is invoked whenever a new entry control block (ECB) is
created, if the exit point named ECB is active. Exit point ECB is located in the ECB
creation routine contained in CSECT CCNUCL (CHSZ). UCCECB provides the
ability to examine the origin (via the ECB format flag) of all ECBs and to
subsequently track individual ECBs.

General Conditions at Entry
The registers at entry to UCCECB are:

R0–R8 The contents are unknown because the ECB exit point is in the
ECB creation subroutine, and therefore the contents of these
registers are dependent on the calling routines.

R9 Address of the ECB that was just created.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O

Protect key 0

Address Space SVM.

Programming Considerations at Entry
1. Because the ECB exit point is in a subroutine called from more than 1 point in

the control program, user processing must not give up control, and must
return to the NSI contained in register 14. The ECB cannot be exited and
control cannot be passed to the CPU loop (Task Dispatcher).

2. At entry to UCCECB, the ECB has been allocated and initialized, including the
ECB format flag at label CE1FLG in the ECB. The format flag value can be
used to determine the type of ECB (for example, control transfer, SNA input
message, and others).

3. At entry to UCCECB, the process control block associated with the ECB has
been allocated. The default group ID and user ID (IPROC_GID and
IPROC_UID) can be modified at this point. The group ID and user ID are used
by the file system to handle file permissions. You can find the address of the
process control block at CE2PROC in page 2 of the ECB. The IPROC DSECT
maps the process control block fields.

4. The environment variables can be set to specify the initial current working
directory, the standard input (stdin) file, the standard output (stdout) file, and the
standard error (stderr) file.

5. The following fields in the ECB can be modified:
v Maximum amount of storage for the C language stack (CE2MHSF)
v Maximum amount of storage for TPF heap storage (CE2MPF)
v Initial stack allocation (CE2ISAS)
v Stack increment (CE2SISZ).

6. See “User Exit Routines - Common Entry Conditions” on page 6.

7. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

46 TPF V4R1 System Installation Support Reference

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 47

ENTxC Macro Entry
User exit routines UCCENTR, UCCENTN, and UCCENTD are called during macro
processing for an ENTRC, ENTNC, or ENTDC macro (if the exit points named
ENTR, ENTN, or ENTD are active). These exit points are in CSECT CCENBK.

General Conditions at Entry
The registers at entry are:

R8 Base of E-type program that issued the macro, unless ENTNC was
issued from CP code

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem (see “Programming Considerations at

Entry”, item 5)

System mask Unmasked (see “Programming Considerations at
Entry”, item 5)

Protect key Working storage or zero (0)

Address Space EVM or SVM.

Programming Considerations at Entry
1. The contents of program registers R0–R7 have not been saved in the ECB

register save area.

2. On entry, the ECB field CE3PAT will contain the PAT entry address for the
program that issued the macro, unless the macro was issued from CP code, in
which case CE3PAT will be zero. When CE3PAT is zero, R8 cannot be
predicted.

3. Entry is in the SVM when the ENTNC is issued from CP code.

4. Access to the ENTxC macro parameters can be found by retrieving the pointer
address from stack field STKINL14(R13).

5. Usually, the system state and system mask are as stated. However, there can
be exceptions if system programs issued a MONTC macro to get to supervisor
state and changed the system mask.

6. The ENTxC exit points occur before the formatting of an entry in the macro
trace table.

7. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

48 TPF V4R1 System Installation Support Reference

EXITC
User exit routine UCCEXI is called from the EXITC macro service routine if the exit
point named EXI is active. Exit point EXI is located in copy segment CCEB of
CSECT CCENBK.

UCCEXI provides the ability to trap all ECB exits. It is independent of the macro
service user exit.

General Conditions at Entry
The registers at entry to UCCEXI are:

R0–R8 Contents unknown. The registers have been restored from the ECB
register save area.

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

Performance-related ECB fields filled in:

CE1CTRS the label for ECB performance counters area

CE1DSTMP The 8-byte TOD clock time of most recent dispatch.

CE1EXTIM The 8-byte TOD clock time of ECB exit. Set immediately before the
EXI exit point.

CE1ISTIM The 8-byte TOD clock format of accumulated running time.

CE1FINDS The 4-byte count of Find requests (counts FINDC, FINHC, FINSC,
FINWC, FIWHC, and FNSPC macros).

CE1FILES The 4-byte count of File requests (counts FILEC, FILNC, FILSC,
FILUC, and FLSPC macros).

CE1GETFCS The 4-byte count of GETFC requests.

CE1USERID The 4-byte field for user information initialized to zero at creation
and not modified by the TPF system.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O

Protect key 0

Address space EVM.

Programming Considerations at Entry
1. See “User Exit Routines - Common Entry Conditions” on page 6.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 49

FARF Address Generation
If the exit point named FSP is active then user exit routine UCCFSP is invoked
during FACE or FACS processing after the FARF address for the record being
requested has been generated. Exit point FSP is located in copy segment CUSR of
CSECT CCUEXT.

General Conditions at Entry
The registers at entry to UCCFSP are:

R0 Input ordinal number.

R4 Pointer to split for requested record.

R6 Pointer to split chain header for requested record type.

R7 Output area containing FARF address.

R13–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem

System mask Unmasked

Protect key 1

Address space EVM.

Programming Considerations at Entry
See “User Exit Routines - Common Programming Considerations” on page 7.

Programming Considerations on Return
The following registers can be modified on return:

R0 Input ordinal number.

R6 Pointer to split chain header for requested record type.

Note: R13 must contain a return code set by the user exit routine to indicate the
action to be taken. The following return codes are supported:

0 Continue normal processing.

4 The contents of R0, R6, or both have been modified; retry the FACE
or FACS call.

8 Return an error indication to the FACE or FACS call.

See “User Exit Routines - Common Return Conditions” on page 7 for additional
return conditions.

General Conditions on Return
User processing must return to the NSI. For more programming considerations, see
“User Exit Routines - Common Return Conditions” on page 7.

50 TPF V4R1 System Installation Support Reference

Fast Link Macro
Exit routine UCCFLX is called at the end of macro processing for fast link macros,
just before returning control to the E-type program that issued the fast link macro (if
the exit point named FLX is active). Exit point FLX is in CSECT CCNUCL.

General Conditions at Entry
The registers at entry to UCCFLX are:

R0–R7 The contents cannot be predicted. The values being returned to the
caller are in the ECB register save area. If the fast link macro
returns a condition code, bits 2 and 3 of R0 contain the condition
code that is being returned.

R8 Base of E-type program that issued the fast link macro.

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem (see “Programming Considerations at

Entry”, item 1)

System mask Unmasked (see “Programming Considerations at
Entry”, item 1)

Protect key Working storage.

Address Space EVM.

Programming Considerations at Entry
1. Usually, the system state and system mask are as stated. However, there can

be exceptions if system programs issued MONTC to get to supervisor state and
changed the system mask.

2. See “User Exit Routines - Common Entry Conditions” on page 6.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 51

Fast Link Macro Decoder
User exit routine UCCFLM is invoked from the fast link macro decoder if the FLM
exit point is active. Exit point FLM is in CSECT CCNUCL.

General Conditions at Entry
The registers at entry to UCCFLM are:

R6 Address of the macro entry in the macro decoder table.

R8 Base of E-type program that issued the fast link macro.

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem (see “Programming Considerations at

Entry”, item 2)

System mask Unmasked (see “Programming Considerations at
Entry”, item 2)

Protect key Working storage

Address Space EVM.

Programming Considerations at Entry
1. The contents of program registers R0–R7 have been saved in the ECB register

save area.

2. Usually, the system state and system mask are as stated. However, there can
be exceptions if system programs issued MONTC to get to supervisor state and
changed the system conditions.

3. This exit includes ENTRC to FACE or FACS.

4. The FLM exit point occurs before formatting an entry in the macro trace table.

5. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

52 TPF V4R1 System Installation Support Reference

File-Resident Enter/Back Macro
User exit routine UCCFREB is called (if the FREB exit point is active) at the end of
macro processing and just before control is passed to the destination program for:
v Enter-type macros going to a file-resident program
v The BACKC macro from a file-resident program.

UCCFREB can be called from an ISO-C environment. Exit point FREB is in copy
segment CCEB of CSECT CCENBK and in copy segment CLHL of CSECT
CCCLHR.

Multifunction user exit linkage is assembled into this exit point. This user exit is
activated by the ZDBUG command (with the START parameter specified), which
calls the UXITC macro with the IUX_VADB function set on.

General Conditions at Entry
The registers at entry to UCCFREB are:

R0–R7 When the user exit is called from a non–ISO-C environment, the
contents have been restored from the ECB and contain the values
that are to be passed to the E-type program that will receive
control. When the user exit is called from an ISO-C environment,
the application registers are stored in the data save area (DSA) and
have not yet been restored.

R8 Base of E-type program to receive control.

R9 Address of the ECB.

R10 Contains 0 if the user exit is called from an ISO-C environment,
otherwise it contains a non-zero value.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor (see “Programming Considerations at

Entry”, item 1)

System mask Unmasked (see “Programming Considerations at
Entry”, item 1)

Protect key Working storage

Address Space EVM.

Programming Considerations at Entry
1. Usually the system mask and protection key are as stated. However, there can

be exceptions if system programs have changed the system mask or protection
key.

2. You activate the TPF Assembler Debugger for VisualAge Client or TPF C
Debugger for VisualAge Client code from this user exit by calling the UXMAC
macro. Program load event detection code (the IUX_VADB UXMAC call) must
be the last exit routine to be called in the exit. The debugger will not return to
this user exit when it determines that the debugger must receive control. If you
do not want the debugger to trace the program that will be entered, set the
CE3_NO_DEBUG indicator in byte CE3DBCR (page 3 of the ECB) before the
debugger is called. The debugger always sets this indicator off before activating
the program.

Control Program User Exits 53

3. See “User Exit Routines - Common Entry Conditions” on page 6.

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

54 TPF V4R1 System Installation Support Reference

General Postinterrupt Processing
User exit routine UCCGPI is called from the user exit general postinterrupt routine
(UXGPIR) if the exit point named GPI is active. UXGPIR allows a user-suspended
ECB to be restarted when it is removed from a dispatching list. Exit point GPI is in
CSECT CCUEXT.

Note: The UXGPIR program should only be invoked by an ECB-controlled
program.

General Conditions at Entry
The registers at entry to UCCGPI are:

R0–R8 Contents unknown. The registers have been restored from the ECB
register save area.

R9 Address of the ECB.

R10 Address of the General Postinterrupt routine UXGPIR.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O

Protect key 0

Address space SVM.

Programming Considerations at Entry
1. Do not deactivate this exit point while there are ECBs on a task dispatcher list

that were intended to be passed to this user exit routine or the user routine will
not receive control.

2. See “User Exit Routines - Common Entry Conditions” on page 6.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
1. Field CE1PSW in the ECB must contain a valid PSW on return to the NSI in the

user exit interface because the user exit General Postinterrupt routine executes
a load PSW from CE1PSW to pass control.

2. See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 55

Get Block With ECB
User exit routine UCCGBE is invoked by the Get Block With ECB routine after a
core block has been allocated, and before returning to the caller. This exit point,
named GBE, can be activated dynamically. Exit point GBE is in copy segment
CLHV of CSECT CCSTOR.

General Conditions at Entry
The registers at entry to UCCGBE are:

R1 FCT (Frame Control Table) entry pointer.

R2 EVM address of the storage block.

R3 Address of routine invoking CL$GET02.

R4 Pointer to address space flag.

Note: Equates have been provided to test the address space flag.
See the user exit prologue in CUSR for more detailed
information.

R9 Address of the associated ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O interrupts

Protect key 0

Address Space SVM or EVM.

Programming Considerations at Entry
1. No core block management data records can be modified.

2. The exit point can be invoked in either the SVM or the EVM.

3. The ECB address, in R9, will be consistent with the address space.

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

56 TPF V4R1 System Installation Support Reference

Get Block without ECB
User exit routine UCCGBK is invoked by the Get Block Without ECB routine after a
core block has been allocated, and before returning to the caller. This exit point,
named GBK, can be activated dynamically. Exit point GBK is in copy segment
CLHV of CSECT CCSTOR.

General Conditions at Entry
The registers at entry to UCCGBK are:

R1 FCT (Frame Control Table) entry pointer.

R2 SVM address of the storage block.

R3 Address of routine invoking CL$GET01.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O interrupts

Protect key 0

Address Space SVM.

Programming Considerations at Entry
1. No core block management data records can be modified.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 57

Get Common Block
User exit routine UCCGCB is invoked by the Get Common Block routine after a
common block has been allocated and before returning to the caller. This exit point,
named GCB, can be activated dynamically. Exit point GCB is in copy segment
CLHV of CSECT CCSTOR.

General Conditions at Entry
The registers at entry to UCCGCB are:

R1 CCT (Common Block Control Table) entry pointer.

R2 SVM address of the common block.

R3 Address of routine invoking CL$GCOMC.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O interrupts

Protect key 0

Address Space SVM or EVM.

Programming Considerations at Entry
1. No core block management data records can be modified.

2. The exit point can be invoked in either the SVM or the EVM. Because the block
address is common to both address spaces, an address space flag is not
supplied or needed.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

58 TPF V4R1 System Installation Support Reference

Get System Work Block
User exit routine UCCGSB is invoked by the Get System Work Block routine after a
system work block has been allocated, and before returning to the caller. This exit
point, named GSB, can be activated dynamically. Exit point GSB is in copy segment
CLHV of CSECT CCSTOR.

General Conditions at Entry
The registers at entry to UCCGSB are:

R1 SCT (SWB Control Table) entry pointer.

R2 SVM address of the system work block.

R3 Address of routine invoking CL$GSWBC.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O interrupts

Protect key 0

Address Space SVM or EVM.

Programming Considerations at Entry
1. No core block management data records can be modified.

2. The exit point can be invoked in either the SVM or the EVM. Since the block
address is common to both address spaces, an address space flag is not
supplied or needed.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 59

Library Function Call (ISO-C)
User exit routine UCCCLE is used with ISO-C support. It is activated on a call to an
ISO-C library function if the exit point named CLE is active. User exit CLE is called
from an ISO-C environment. Exit point CLE is in the library startup code (CSTRTL).

Activation of this exit point is performed selectively on library load modules. The
UXCMC macro specifies the library load modules to be activated. For example, the
user exit point could be activated for the ISO-C library but the activation must be
done again for a user-written library. The status of library user exits is propagated
across all versions of a library.

General Conditions at Entry
The registers at entry to UCCCLE are:

R1 Address of the C parameter list.

R2 The called function entry point address.

R3 The address of the called function name. If the function name is not
available, R3 will be 0.

R4 Contains the length, in bytes, of the function name. If R3=0, R4=0.

R8 Points to the dynamic load module (DLM) header.

R9 Address of the ECB.

R13–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem

System mask Unmasked

Protect key Working Storage

Address state EVM.

Programming Considerations at Entry
See “User Exit Routines - Common Programming Considerations” on page 7.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

60 TPF V4R1 System Installation Support Reference

Library Function Return (ISO-C)
User exit routine UCCCLX is used with ISO-C support and is activated on return
from an ISO-C library function if the exit point named CLX is active. User exit CLX
is called from an ISO-C environment. Exit point CLX is located in the library startup
code (CSTRTL).

Activation of this exit point is performed selectively on library load modules. The
UXCMC macro specifies the library load modules to be activated. For example, the
user exit point could be activated for the ISO-C library but not for a user-written
library. The status of library user exits is propagated across all versions of a library.

General Conditions at Entry
The registers at entry to UCCCLX are:

R1 The value returned by the called function in R15 (if any).

R2 The called function entry point address.

R3 The address of the called function name. If the function name is not
available, R3 will be 0.

R4 Contains the length, in bytes, of the function name. If R3=0, R4=0.

R8 Points to the dynamic load module (DLM) header.

R9 Address of the ECB.

R13–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem

System mask Unmasked

Protect key Working Storage

Address state EVM.

Programming Considerations at Entry
See “User Exit Routines - Common Programming Considerations” on page 7.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 61

LODIC Macro
User exit routine UCCLODC is called whenever a LODIC macro call is processed.
Exit point LODC is located near the very end of the LODIC macro processing
routine contained in copy segment CICS of CSECT CCNUCL.

General Conditions at Entry
The registers at entry to UCCLODC are:

R0 Return code passed from the user exit.

-1 Indicates that the ECB will be placed on the bottom of the
suspend list. Control will return to the CPU loop.

0 Indicates that the system resources available are below the
shutdown levels defined for the specified priority class (more
work will not be started). Control will return to the application
program.

1 Indicates that the system resources available are above the
shutdown levels defined for the specified priority class (more
work is allowed to be started). Control will return to the
application program.

R1 Address of the SWB to add to the list if R0 is -1.

R7 Address of the macro parameters.

R8 Address of the program being run.

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O

Protect key 0

Address Space EVM.

Programming Considerations at Entry
v See “User Exit Routines - Common Entry Conditions” on page 6.

v See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

v The macro expansion contains the register index of the register that was supplied
with the USRPRM= keyword. The value of that register can be obtained from the
register save area in the ECB.

Programming Considerations on Return
For all registers except R0 and R1, see “User Exit Routines - Common Return
Conditions” on page 7.

General Conditions on Return
v R0 can be changed to take a different action than was indicated on entry to

UCCLODC.

62 TPF V4R1 System Installation Support Reference

v If R0 is changed to -1, you must put the address of the SWB to add to the
suspend list into R1.

Control Program User Exits 63

Online Mini Dump
User exit routine UCCOMD is invoked from system error processing if the OMD exit
point is active and ZASER DATAX has been entered. UCCOMD allows you to
check the ISO-C stack before dumping system data and to collect additional system
data and add it to the system data that system error processing normally collects
for the dump data user exit (CPSU).

Note: Do not use UCCOMD if you do not have the Online Mini Dump Facility.

General Conditions at Entry
The registers at entry to UCCOMD are:

R10 Pointer to the CPSE workarea.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

Note: See a listing of CCCPSE for the contents of the remaining registers.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address space SVM.

Programming Considerations at Entry
1. User processing must not change the system state. Return must be made to the

next sequential instruction.

2. See the UCCOMD prologue in CUSR for the sample code for adding additional
data.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

64 TPF V4R1 System Installation Support Reference

Pool Address Retrieval
User exit routine UCCGPFA is called during GETFC macro processing after the file
address compute (FACE) program retrieves the pool address for the record you
requested (if the GPFA exit point is active). Exit point GPFA is located in copy
segment GRFS of CSECT CCSONP.

General Conditions at Entry
The registers at entry to UCCGPFA are:

R2 Indicates whether the pool address has been retrieved in a commit
scope.

0 Indicates that the pool address was not retrieved in a
commit scope; 0 indicates a normal retrieval.

1 Indicates that a commit scope is active.

R3 Pointer to the macro parameter list.

R7 Pointer to an 8-byte area that contains the pool file address.

R13–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem.

System mask Unmasked.

Protect key 1.

Address space EVM.

Programming Considerations at Entry
Pool file addresses that are retrieved in a commit scope are given back to the TPF
system if the commit scope is rolled back.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 65

Program Event Recording (PER)
User exit routine UCCPER is invoked whenever a PER program interrupt is taken
that matches the address range and event type requested for display by the ZSPER
command and the exit point named PER is active. Exit point PER is contained in
copy segment CPER of CSECT CCCPSE.

The PER exit point allows you to interrupt data and expand the amount of data
captured by the PER interrupt. The PER user exit logic issues a SNAPC (with
return) to write the PER data to tape. When the PER user exit is not active, PER
processing issues the SNAPC for the common set of data.

General Conditions at Entry
The registers at entry to UCCPER are:

R1 Address of a 1-byte return flag used to show whether the PER
interrupt data should be processed or discarded by the ZSPER
command.

R3 Address of the PER control area. The IDSPER macro can be used
to DSECT the control block.

R6 Address of the storage block containing the PER interrupt data. The
IDSPER macro can be used to DSECT the data block.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address Space SVM.

Programming Considerations at Entry
1. A PER interrupt can occur in either the SVM or the EVM.

2. R9 may not contain a valid ECB address in the SVM.

3. The PER hardware interface locations are unchanged.

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
1. To bypass additional processing of PER interrupt data by the ZSPER command,

set bit 0 of the byte at the address in R1 to 1 (X'80'). To continue processing the
PER interrupt data, no change is required. Regardless of the flag setting
returned by this exit, the PER interrupt may still be eligible for processing by the
PER debugging tools exit point (UCCPER2) or the TPF Assembler Debugger for
VisualAge Client.

2. See “User Exit Routines - Common Return Conditions” on page 7.

66 TPF V4R1 System Installation Support Reference

Program Event Recording (PER) Debugging Tools
User exit routine UCCPER2 is invoked whenever a PER event matches the address
ranges and event types specified in the IDSPER control area (for systemwide tools)
or the entry control block (ECB) PER work area (for ECB-related tools) and the exit
point named PER2 is active. Exit point PER2 is contained in copy segment CPER
of CSECT CCCPSE.

The PER debugging tools exit point allows you to process the PER interrupt with
one or more user-developed debugging tools. These tools will see the interrupt after
ZSPER command support (if active), but before the TPF Assembler Debugger for
VisualAge Client.

General Conditions at Entry
The registers at entry to UCCPER2 are:

R1 Previous pointer on the PER interrupt handler stack.

R3 Address of the PER control area. The IDSPER macro can be used
to map the structure of the control block.

R6 Address of the storage area containing the PER interrupt data. The
IDSPER macro can be used to map the structure of the data block.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address Space SVM or EVM.

Programming Considerations at Entry
1. A PER interrupt can occur in either the SVM or the EVM.

2. Register 9 (R9) may not contain a valid ECB address in the SVM.

3. The PER hardware interface locations are unchanged.

4. If the user tools processing this PER interrupt are non-interactive display or
recording tasks, return should be made to CPER so the TPF Assembler
Debugger for VisualAge Client (if it is active) can also handle the PER interrupt.

5. If the user tools processing this PER interrupt are interactive, return will not be
made to CPER and the interrupt will not be visible to the TPF Assembler
Debugger for VisualAge Client. For this condition, correct functioning of the TPF
Assembler Debugger for VisualAge Client may not be possible.

6. If it does not return control to CPER, the user exit must clean up the stack
frame that was being used by the PER interrupt handler when the exit was
invoked. (On entry, R1 contained the previous stack pointer to be stored into
PFXPSAVE to complete stack cleanup.)

7. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 67

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

68 TPF V4R1 System Installation Support Reference

RCS I/O Queue Thresholding
User exit routine UCCTHR is provided as a default for processing a record cache
subsystem (RCS) I/O queue threshold exceeded condition. This exit point, which is
nondynamic, is invoked by entry point CJIVTTMR in control program CSECT
CCRCSC whenever the I/O queue threshold value computed for an RCS
subsystem is exceeded.

This user exit provides I/O queue depth statistics for a degraded record cache
subsystem (RCS) controller on a periodic basis whenever a calculated threshold
value is exceeded for the subsystem. System processing action depends on the
action specified by the user exit in the thresholding parameter list provided.

An interface parameter list (IDSTHR) is provided by CJIVTTMR that passes
relevant queue depth information. CJIVTTMR accepts the processing action that the
user specifies in the parameter list on return.

General Conditions at Entry
The registers at entry to UCCTHR are:

R6 IDSTHR parameter list.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Unmasked

Protect key 0

Address space SVM.

Programming Considerations at Entry
1. The parameter list IDSTHR is provided so the control program is the only code

that is required to understand the internal system data structures. Because a
menu of processing options is provided, you do not have to be aware of the
internal data structures and, therefore, should not need to change them
because of system changes.

2. Return must be made to CJIVTTMR because that entry point restarts the
periodic (1 second) timer interval for threshold monitoring.

3. See “User Exit Routines - Common Entry Conditions” on page 6.

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
1. R14 will contain a return code, set by the user exit routine, that will show what

action is to be taken. The following return code definitions are supported:

v 0 - No action required

v 4 - Prime w/longest queue is down

v 8 - Mod w/longest queue is down

v 12 - Turn thresholding off

v 16 - Change threshold value

v 20 - Dupe w/longest queue is down

Control Program User Exits 69

2. See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

70 TPF V4R1 System Installation Support Reference

Release Block With ECB
User exit routine UCCRBE is invoked by the Release Block With ECB routine
before releasing the core block. This exit point, named RBE, can be activated
dynamically. Exit point RBE is in copy segment CLHV of CSECT CCSTOR.

General Conditions at Entry
The registers at entry to UCCRBE are:

R1 FCT (Frame Control Table) entry pointer.

R2 Address of the storage block.

R3 Address of routine invoking CL$REL02.

R4 Pointer to address space flag.

Note: Equates have been provided to test the address space flag.
See the user exit prologue in CUSR for more detailed
information.

R9 Address of the associated ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O interrupts

Protect key 0

Address Space SVM or EVM.

Programming Considerations at Entry
1. No core block management data records can be modified.

2. The exit point can be invoked in either the SVM or the EVM.

3. The ECB address, in R9, will be consistent with the address space.

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 71

Release Block without ECB
User exit routine UCCRBK is invoked by the Release Block Without ECB routine
before releasing the core block. This exit point, named RBK, can be activated
dynamically. Exit point RBK is in copy segment CLHV of CSECT CCSTOR.

General Conditions at Entry
The registers at entry to UCCRBK are:

R1 FCT (Frame Control Table) entry pointer.

R2 SVM address of the storage block.

R3 Address of routine invoking CL$REL01.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O interrupts

Protect key 0

Address Space SVM.

Programming Considerations at Entry
1. No core block management data records can be modified.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

72 TPF V4R1 System Installation Support Reference

Release Common Block
User exit routine UCCRCB is invoked by the Release Common Block routine before
releasing the common block. This exit point, named RCB, can be activated
dynamically. Exit point RCB is in copy segment CLHV of CSECT CCSTOR.

General Conditions at Entry
The registers at entry to UCCRCB are:

R1 CCT (Common Block Control Table) entry pointer.

R2 SVM Address of the common block.

R3 Address of routine invoking CL$RCOMC.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O interrupts

Protect key 0

Address Space SVM or EVM.

Programming Considerations at Entry
1. No core block management data records can be modified.

2. The exit point can be invoked in either the SVM or the EVM. Since the block
address is common to both address spaces, an address space flag is not
supplied or needed.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 73

Release System Work Block
User exit routine UCCRSB is invoked by the Release System Work Block routine
before releasing the system work block. This exit point, named RSB, can be
activated dynamically. Exit point RSB is in copy segment CLHV of CSECT
CCSTOR.

General Conditions at Entry
The registers at entry to UCCRSB are:

R1 SCT (SWB Control Table) entry pointer.

R2 SVM Address of the system work block.

R3 Address of routine invoking CL$RSWBC.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O interrupts

Protect key 0

Address Space SVM or EVM.

Programming Considerations at Entry
1. No core block management data records can be modified.

2. The exit point can be invoked in either the SVM or the EVM. Since the block
address is common to both address spaces, an address space flag is not
supplied or needed.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

74 TPF V4R1 System Installation Support Reference

RIAT
The Record ID Attribute Table (RIAT) contains information on every file type (both
fixed and pool) in the database. For more information on this table, see “Record ID
Attribute Table” on page 373.

User exit routine UCCRIT is invoked from the RITID macro call if the user exit
option was specified for the ID during RIAT definition. This exit point, named RIT,
cannot be activated dynamically. Exit point RIT is in copy segment CEFJ of CSECT
CCFADC and copy segment CVF3 of CSECT CCVFAC.

The RIAT exit allows you to intercept all FIND/FILE macros after a RIAT entry has
been found. This is a nondynamic exit point, but the exit may or may not be
activated depending on the RIAT indicators for that ID.

General Conditions at Entry
The registers at entry to UCCRIT are:

R1 Address of the MIOB set up to service the request.

R2 Address of the RIAT entry, if found. If the MIOB was setup from the
RIAT default entry R2 will be set to zero (0).

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O interrupts

Protect key 0

Address space EVM.

Programming Considerations at Entry
1. Filing critical user records.

As many as six records per subsystem can be designated for filing during
catastrophic error processing. CTIN generates a list of six doublewords for each
subsystem that holds record addresses. These addresses are copied to disk as
part of CPSF.

The CINFC tag CMMZFA is used to access the list. The leftmost fullword
contains the 31-bit main storage address of the record to be filed and the
rightmost fullword contains the record file address in FARF format, as shown in
the accompanying diagram.

If fewer than six records are filed for any subsystem, X'FF' must appear in byte
4 of the doubleword following the last record entry for that subsystem.

2. The contents of program registers R0–R7 have been saved in the ECB register
save area.

3. See “User Exit Routines - Common Entry Conditions” on page 6.

Control Program User Exits 75

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

5. See TPF System Generation for RIAT START call restrictions before you code
this user exit and observe the following:

v When the RIAT bits are changed as part of this user exit, do not set the bits
such that they conflict with the rules for the RIATA macro as stated in TPF
System Generation.

v Do not set or reset the SIMMED and SDELAY values in this user exit
because the setting or resetting of these bits must be seen by all processors
at the same time or database corruption may occur.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

76 TPF V4R1 System Installation Support Reference

ROUTC
User exit routine UCCRTC is invoked from the ROUTC and SENDC macros.

This exit point, named RTC, cannot be activated dynamically. Exit point RTC is
located in copy segment CLXA of CSECT CCCCP1. Copy segment CT20 of
CSECT CCCTIN detects if the user exit routine exists. If so, CT20 turns on the
active indicator for this exit point.

UCCRTC allows you to intercept outbound messages and modify the message text
and the routing parameters.

General Conditions at Entry
The registers at entry to UCCRTC are:

R1 Address of message block.

R2 Address of RCPL.

R3, R4 Set to 0.

R7 Address of ROUTC parameter list.

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O interrupts

Protect key 0

Address space EVM.

Programming Considerations at Entry
1. See “User Exit Routines - Common Entry Conditions” on page 6.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
For all registers except registers R3 and R4, see “User Exit Routines - Common
Return Conditions” on page 7.

Registers R3 and R4 on return from UCCRTC are:

R3=0 Continue processing without process selection vector (PSV)
activation.

R3=-1 Stop processing the message. Release the message from the data
level, if still holding the block, and return to the calling program. If
the exit code takes control of the message block by using the
$DISBC macro, it is responsible for clearing the data level held
indicator.

R3=RID (resource ID) with high order bit on
Activate the PSV routine using the RID.

Control Program User Exits 77

R3=address Activate the PSV routine using the PSV name at the specified
(EVA) address.

If R3 shows that a PSV routine is to be activated:

R4=address The 3 bytes of data at the specified address (EVA) are placed in
the ECB fields EBCM02-4 of the new ECB used to invoke the PSV
routine.

R4=0 No data is passed in ECB fields EBCM02-4 of the new ECB used
to invoke the PSV routine.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

78 TPF V4R1 System Installation Support Reference

SNAPC Error
User exit routine UCCSPX is called from SNAPC error processing at the end of
processing just before returning to the calling program. UCCSPX will not be called
when the return to CPU loop option has been set at the UCCSNP user exit. Exit
point SPX is in CSECT CCCPSE.

General Conditions at Entry
The registers at entry to UCCSPX are:

R1 Address of a 1-byte return flag that is used to show whether control
should return to the CPU loop or skip the SNAP dump processing.

R2 For a SNAPC (with return), the address of a doubleword field that
contains the PSW for the NSI. For a SNAPC (with exit), the
address of the SNAP9000 routine in CPSM.

R3 Pointer to an address that contains the program old PSW at the
time of the SNAPC, followed by 16 fullwords that contain the
registers at the time of the SNAPC.

R4 The SVA address of the ECB, or 0 if the SNAPC took place without
an ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

Refer to a listing of CCCPSE for the contents of the remaining registers.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address space SVM.

Programming Considerations at Entry
1. Do not issue the TIMEC and CWRTC macros or others which issue the

$MONTC macro.

2. Do not issue macros which can give up control.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 79

SNAPC Error Entry
User exit routine UCCSNP is called at the beginning of the SNAPC error processing
routine if the exit point named SNP is active. Exit point SNP is located in CSECT
CCCPSE.

General Conditions at Entry
The registers at entry to UCCSNP are:

R0, R4–R9 Unknown

R1 Address of a 1-byte return flag used to show whether control should
return to CPU loop or skip the SNAP dump processing.

R2 Pointer to SNAPC parameters.

R3 Pointer to an address that contains the program old PSW at the
time of the SNAPC, followed by 16 fullwords that contain the
registers at the time of the SNAPC.

R10 Base register for CCCPSE

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

Note: The contents of all the registers at the time the error occurred have been
saved by CCCPSE. Refer to a listing of CCCPSE for the exact location.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address space SVM or EVM.

Programming Considerations at Entry
1. The program old PSW and the program interrupt code can be found in their

assigned fixed storage locations.

2. Do not issue the TIMEC and CWRTC macros or others which issue the
$MONTC macro.

3. Do not issue macros which can give up control.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

80 TPF V4R1 System Installation Support Reference

Split Access
If the exit point named FSC is active then user exit routine UCCFSC is invoked
during FACE or FACS processing after the split for the record being requested has
been located. Exit point FSC is located in copy segment CUSR of CSECT
CCUEXT.

General Conditions at Entry
The registers at entry to UCCFSC are:

R0 Input ordinal number.

R4 Pointer to split for requested record.

R6 Pointer to split chain header for requested record type.

R7 Output area.

R13–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem

System mask Unmasked

Protect key 1

Address space EVM.

Programming Considerations at Entry
See “User Exit Routines - Common Programming Considerations” on page 7.

Programming Considerations on Return
The following registers can be modified on return:

R0 Input ordinal number

R6 Pointer to split chain header for requested record type

Note: R13 must contain a return code set by the user exit routine to indicate the
action to be taken. The following return codes are supported:

0 Continue normal processing.

4 The contents of R0, R6, or both have been modified; retry the FACE
or FACS call.

8 Return an error indication to the FACE or FACS call.

See “User Exit Routines - Common Return Conditions” on page 7 for additional
return conditions.

General Conditions on Return
User processing must return to NSI. For more programming considerations, see
“User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 81

Split Chain Header Access
If the exit point named FHD is active then user exit routine UCCFHD is invoked
during FACE or FACS processing after the split chain header for the record type
being requested has been located. Exit point FHD is located in copy segment
CUSR of CSECT CCUEXT.

General Conditions at Entry
The registers at entry to UCCFHD are:

R0 Input ordinal number.

R4 Pointer to FACE table header.

R6 Pointer to split chain header for requested record type.

R7 Output area.

R13–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem

System mask Unmasked

Protect key 1

Address space EVM.

Programming Considerations at Entry
See “User Exit Routines - Common Programming Considerations” on page 7.

Programming Considerations on Return
The following registers can be modified on return:

R0 Input ordinal number.

R6 Pointer to split chain header for requested record type.

Note: R13 must contain a return code set by the user exit routine to indicate the
action to be taken. The following return codes are supported:

0 Continue normal processing.

4 The contents of R0, R6, or both have been modified; retry the FACE
or FACS call.

8 Return an error indication to the FACE or FACS call.

See “User Exit Routines - Common Return Conditions” on page 7 for additional
return conditions.

General Conditions on Return
User processing must return to the NSI. For more programming considerations, see
“User Exit Routines - Common Return Conditions” on page 7.

82 TPF V4R1 System Installation Support Reference

Stack Overflow Processing (ISO-C)
User exit routine UCCCSOX is activated at the end of stack overflow processing if
the exit point named CSOX is active. User exit CSOX is called from an ISO-C
environment. Exit point CSOX is in CSECT CCISOC (CIS2).

General Conditions at Entry
The registers at entry to UCCCSOX are:

R8 Points to the dynamic load module (DLM) header.

R9 Address of the ECB.

R13–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem (see “Programming Considerations at

Entry”, item 1)

System mask Unmasked (see “Programming Considerations at
Entry”, item 1)

Protect key Working storage

Address state EVM.

Programming Considerations at Entry
1. Usually, the system state, system mask, and protection key are as stated.

However, there can be exceptions if system programs issued MONTC to get to
supervisor state, changed the system mask, or changed the protection key.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 83

Stack Overflow Processing Entry (ISO-C)
User exit routine UCCCSOE is activated on entry to stack overflow processing if the
exit point named CSOE is active. User exit CSOE is called from an ISO-C
environment. Exit point CSOE is in CSECT CCISOC (CIS2).

General Conditions at Entry
The registers at entry to UCCCSOE are:

R8 Points to the dynamic load module (DLM) header.

R9 Address of the ECB.

R13–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem (see “Programming Considerations at

Entry”, item 1)

System mask Unmasked (see “Programming Considerations at
Entry”, item 1)

Protect key Working storage

Address state EVM.

Programming Considerations at Entry
1. Usually, the system state, system mask, and protection key are as stated.

However, there can be exceptions if system programs issued MONTC to get to
supervisor state, changed the system mask, or changed the protection key.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

84 TPF V4R1 System Installation Support Reference

Suspend ECB
User exit routine UCCSUSE is called whenever an ECB that is marked as a
suspendable ECB (by means of the LODIC or TMSLC macros) will be suspended
during CPU loop dispatch time. Exit point SUSE is located in copy segment CLHL
of CSECT CCCLHR.

General Conditions at Entry
The registers at entry to UCCSUSE are:

R1 Address of the SWB that will be placed on the suspend list.

R9 SVM address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O and external interrupts

Protect key 0

Address Space SVM.

Programming Considerations at Entry
v See “User Exit Routines - Common Entry Conditions” on page 6.

v See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
None.

Control Program User Exits 85

Suspend List Post-Interrupt
User exit routine UCCSUSP is called whenever an item is taken off the suspend list
and is about to be dispatched. Exit point SUSP is located in copy segment CLHL of
CSECT CCCLHR.

General Conditions at Entry
The registers at entry to UCCSUSP are:

R1 Address of the SWB that is taken off the suspend list.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O and external interrupts

Protect key 0

Address Space SVM.

Programming Considerations at Entry
v See “User Exit Routines - Common Entry Conditions” on page 6.

v See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

v The application registers are not yet restored from the SWB.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
The application registers are restored and the ECB is given control.

86 TPF V4R1 System Installation Support Reference

Suspend List Resource Checking
User exit routine UCCSUSC is called indirectly by two different routines:

v The post-interrupt routine, which determines if an item will be added to the
suspend list (see copy member CCIT of the CCNUCL CSECT)

v The suspend list post-interrupt routine, which determines if an item will be
dispatched from the suspend list (see copy member CLHL of the CCCLHR
CSECT).

Exit point SUSC is located in copy segment CICS of CSECT CCNUCL.

General Conditions at Entry
The registers at entry to UCCSUSC are:

R0 Return code that is passed back to the post-interrupt routine or the
suspend list post-interrupt routine.

0 There are not enough resources to create more work.
v If this is a new item, place it on the suspend list.
v If the item is already on the suspend list, keep it there.

1 There are enough resources to create more work.
v If this is a new item, do not place it on the suspend list.
v If the item is already on the suspend list, dispatch it from

the suspend list.

R2 Index register for LODIC shutdown table (CPLODTAB).

R7 Address of parameter list:
Byte 0 = X'41'
Byte 1 = LODIC priority class indicator
Byte 3 = Block type ignore flags.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O interrupts

Protect key 0

Address Space SVM.

Programming Considerations at Entry
v See “User Exit Routines - Common Entry Conditions” on page 6.

v See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

v You can use the user exit with the LODIC macro user exit (UCCLODC).

Programming Considerations on Return
For all registers except R0 and R1, see “User Exit Routines - Common Return
Conditions” on page 7.

General Conditions on Return
R0 can be changed to take a different action than was indicated on entry to
UCCSUSC.

Control Program User Exits 87

SVC Macro (Immediate)
User exit routine UCCSVX is invoked by SVC macro processing routines that return
to the issuer of the macro by an LPSW from the SVC old PSW location (for
example, no wait or implied wait). Control is passed to UCCSVX just before issuing
the LPSW instruction (if the exit point named SVX is active). Exit point SVX is in
CSECT CCNUCL.

General Conditions at Entry
The registers at entry to UCCSVX are:

R0–R7 The contents have been restored from the ECB and contain the
data that is being returned to the E-type program that issued the
macro.

R8 Base of the E-type program that issued the macro.

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O

Protect key 0

Address Space EVM.

Programming Considerations at Entry
1. To preserve the integrity of the stack, user processing must not issue an SVC

macro.

2. The adjusted SVC old PSW, which points to the return address, can be found in
PFXSVPSW.

3. See “User Exit Routines - Common Entry Conditions” on page 6.

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

88 TPF V4R1 System Installation Support Reference

SVC Macro (Wait or Implied Wait: Postinterrupt)
User exit routine UCCSVW is invoked by those SVC macros that have a wait or
implied wait, and that return to the issuer of the macro by an LPSW CE1PSW
instruction in a postinterrupt routine. UCCSVW is invoked just before issuing the
LPSW instruction if the SVW exit point is active. Exit point SVW is in CSECT
CCNUCL.

General Conditions at Entry
The registers at entry to UCCSVW are:

R0–R7 The contents have been restored from the ECB and contain the
data that is being returned to the E-type program that issued the
macro.

R8 Base of the E-type program that is to receive control.

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O

Protect key 0

Address Space SVM or EVM.

Programming Considerations at Entry
1. Usually, the address space active at the time of the user exit depends on the

processing of the postinterrupt routine. Most postinterrupt routines can complete
all of their processing in the SVM. For some interrupt routines it is necessary to
switch to the EVM, where they will complete their processing. They are not
required to switch back to the SVM before returning to the macro decoder.

2. To preserve the integrity of the stack, user processing must not issue an SVC
macro.

3. See “User Exit Routines - Common Entry Conditions” on page 6.

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 89

SVC Macro Decoder
User exit routine UCCSVC is invoked from the SVC Macro Decoder for all SVCs,
both direct and indexed, if the exit point named SVC is active. Exit point SVC is in
CSECT CCMCDC.

General Conditions at Entry
The registers at entry to UCCSVC are:

R6 Address of the macro entry in the macro decoder table.

R8 Base address of E-type program that issued the SVC macro.

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O Interrupts

Protect key 0

Address state EVM.

Programming Considerations at Entry
1. The contents of program registers R0–R7 have been saved in the ECB register

save area.

2. To preserve the integrity of the stack, user processing must not issue an SVC
macro because this would cause the stack register to be reinitialized and the
current saved data to be lost.

3. The SVC exit point occurs before the formatting of the entry in the macro trace
table.

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

90 TPF V4R1 System Installation Support Reference

System Error
User exit routine UCCSRX is called from system error processing after dump
processing has completed and the system is ready to return to the NSI, CPU loop,
or to exit the ECB.

Note: UCCSRX is not called if the return to CPU loop flag was set in the UCCSER
user exit.

Exit point SRX is in CSECT CCCPSE. UCCSRX is provided to control the location
to which return is made when system error processing has completed.

The user exit will be called once on the failing I-stream.

General Conditions at Entry
The registers at entry to UCCSRX are:

R6 Base address of the I-stream status save area for the executing
I-stream. See the DCTISV DSECT. The failing program’s resume
PSW and registers may be extracted from DCTISV.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

Refer to a listing of CCCPSE for the contents of the remaining registers.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address space SVM.

Programming Considerations at Entry
1. If you do not return to the next sequential instruction, you must enable the

system for interrupts.

2. To pass control to the original destination set by CPSE in the resume PSW,
return from the user exit routine.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 91

System Error Entry
User exit routine UCCSER is invoked at the beginning of the system error
processing routine if the exit point named SER is active. Exit point SER is located
in CSECT CCCPSE.

General Conditions at Entry
The registers at entry to UCCSER are:

R0, R2–R5, R9
Unknown

R1 Address of a 1-byte return flag used to show whether control should
return to NSI or the CPU loop following error processing.

R6 Pointer to the DCTISV save area for the current I-stream.

R7–R8, R10 Base registers for CCCPSE.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address Space SVM.

Programming Considerations at Entry
1. The program old PSW and the program interrupt code can be found using the

DCTISV savearea. R6 contains the address of this area and the DCTISV
DSECT maps it out.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
1. You must not attempt a direct return to the CPU loop in this exit. An interface is

provided to request that control pass to the CPU Loop, instead of NSI, after
completion of System Error processing. For more information, see the
″Programming Considerations″ comments for this exit in CSECT CCUEXT.

2. See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

92 TPF V4R1 System Installation Support Reference

TMSLC Macro
User exit routine UCCTMSL is called whenever a TMSLC macro call is processed.
Exit point TMSL is located near the very end of the TMSLC macro processing
routine contained in copy segment CICS of CSECT CCNUCL. This exit point is
called before doing one of the following:
v Issuing a SNAPC dump with exit
v Suspending the ECB
v Returning to the application program.

General Conditions at Entry
The registers at entry to UCCTMSL are:

R0 Code passed to the user exit:

0 Return to the application program with no error.

-1 Unrecognized time-slice name. Enter the SNAPC dump if the
NOTFND= label is not coded.

-2 Too many time-slice ECBs active. Enter the SNAPC dump if
the EXCD= label is not coded.

-3 Suspend the ECB, or if the macro indicates that the
DISABLE parameter was used, force the ECB to lose
control.

R1 Address of the SWB to add to the suspend list if R0 is -3.

R7 Address of the macro parameters.

R8 Address of the program that is being run.

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O

Protect key 0

Address Space EVM.

Programming Considerations at Entry
v R0 reflects the action that the system will take on return from UCCTMSL.

v See “User Exit Routines - Common Entry Conditions” on page 6.

v See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
For all registers except R0 and R1, see “User Exit Routines - Common Return
Conditions” on page 7.

General Conditions on Return
v R0 can be changed to take a different action than was indicated on entry to

UCCTMSL.

Control Program User Exits 93

v If R0 is changed to -3, you must put the address of the SWB to add to the
suspend list into R1.

94 TPF V4R1 System Installation Support Reference

TPFAR
Direct exits for TPFAR SQL calls are not provided. The method for trapping SQL
calls is indirect and can be done with the ENTRC exit, UCCENTR. Trap all ENTRCs
to program CRDA. CRDA handles all SQL calls and is only entered by application
programs issuing SQL requests.

Control Program User Exits 95

TPFDF Macro Trace Call
User exit routine UCCDFFC is invoked by copy segment UFZ0 of CSECT CCNUCL
before the invocation of each TPFDF fast-link case. This exit point, DFFC, can be
activated dynamically and is in copy segment CUSR of CSECT CCUEXT.

General Conditions at Entry
The registers at entry to UCCDFFC are:

R0–R7 Contents as set by the program executing the fast-link call.

R8 Program index (bits 0–15) and case index (bits 16–31).

R9 Address of the ECB.

R10 Unknown.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem

System mask Unmasked

Protect key Working storage

Address Space EVM.

Programming Considerations at Entry
1. Bits 0–15 of R8 contain the fast-link segment index. See data macro IFLDDF for

a mapping of the index number to the segment name.

2. Bits 16–31 of R8 contain the fast-link case number, offset by decimal 16. To
obtain the actual case number, subtract 16.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

96 TPF V4R1 System Installation Support Reference

TPFDF Macro Trace Return
User exit routine UCCDFFR is invoked by copy segment UFZ0 of CSECT CCNUCL
on return from each TPFDF fast-link case. This exit point, DFFR, can be activated
dynamically, and is in copy segment CUSR of CSECT CCUEXT.

General Conditions at Entry
The registers at entry to UCCDFFR are:

R0–R8 Contents as set by the fast-link case on exit.

R9 Address of the ECB.

R10 Unknown.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem

System mask Unmasked

Protect key Working storage

Address Space EVM.

Programming Considerations at Entry
See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 97

Trace C User Data
User exit routine UCCCTRC is invoked by the C function trace program entry
breakpoints and program exit breakpoints service routine (CTR2) and by the C
function trace other breakpoints service routine (CTRY). This user exit is invoked
after the trace entry is inserted into the C function trace table, to allow the user to
insert additional trace data into the optional C function trace user area.

General Conditions at Entry
The registers at entry to UCCCTRC are:

R2 TCA address

R3 For program entry breakpoints - DSA address of the caller

For program exit breakpoints - current DSA address

For other breakpoints - current DSA address

R5 CID address

R6 Breakpoint type, defined in IDSCTR

R8 Current DLM address

R9 ECB pointer

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Unknown

System mask Unmasked

Protect key Unknown

Address space EVM.

Programming Considerations at Entry
See “User Exit Routines - Common Programming Considerations” on page 7.

v You can issue the ENATC macro from the CTRC user exit. However, the ENATC
macro uses register 15 to provide return code information. This use of register 15
conflicts with the user exit usage of register 15 for addressing. Therefore, before
you issue the ENATC macro from the CTRC user exit, establish addressability
using a base register other than 15.

Note: You cannot issue the SETTC macro while processing the CTRC user exit
routine because the trace table environment has already been set up.

v If the offline dump processing code references the user data words (which are
the output in registers 5 and 6) as storage locations, you should use storage
offsets instead of storage addresses. The reason for this restriction is that the
offline dump processing loads the C function trace area from tape into MVS
storage, which is not the original TPF storage addresses.

Programming Considerations on Return
User data first full word optionally updated by the user exit; the value in R5 will be
saved in the first word of the trace entry field (ICTRE_USR) upon return from the
user exit.

98 TPF V4R1 System Installation Support Reference

User data second full word optionally updated by the user exit; the value in R6 will
be saved in the second word of the trace entry field (ICTRE_USR) upon return from
the user exit.

See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 99

Trace Environment Customization
User exit routine UCCCDEB is invoked by the C function trace exception routine
(CTR0). The ISO-C user can use UCCCDEB to customize the C function trace
environment.

General Conditions at Entry
The registers at entry to UCCCDEB are:

R2 TCA address

R3 Current DSA address

R5 CID address

R8 Current DLM address

R9 ECB pointer

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor state

System mask Masked for I/O interrupts

Protect key 0

Address space EVM.

Programming Considerations at Entry
See “User Exit Routines - Common Programming Considerations” on page 7.

You can issue the SETTC macro or the ENATC macro from the CDEB user exit.
However, the SETTC and ENATC macros use register 15 to provide return code
information. This use of register 15 conflicts with the user exit usage of register 15
for addressing. Therefore, before you issue the SETTC macro or the ENATC macro
from the CDEB user exit, establish addressability using a base register other than
15.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

100 TPF V4R1 System Installation Support Reference

Transaction Log Write
User exit routine UCCWLOG is called at the point where writing a record to the log
buffer has been completed (if the WLOG exit point is active). Exit point WLOG is in
copy segment CL20 of CSECT CCTLOG.

General Conditions at Entry
The registers at entry to UCCWLOG are:

R1 Pointer to the WLOGC CONTROL structure.

R2 Pointer to the WLOGC DATALIST structure.

R7 Pointer to the WLOGC parameter list.

R8 Base of the E-type program that issued the request.

R9 Address of the entry control block (ECB).

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked for I/O

Protect key Zero (0)

Address space EVM or SVM.

Programming Considerations at Entry
1. The entry address space, SVM or EVM, depends on the address space of the

caller of WLOGC. WLOGC can be called from either real-time or CP code.

2. See “User Exit Routines - Common Entry Conditions” on page 6.

3. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 101

Update Tape Display
User exit routine UCCLDD issues a Load Display command to update the LED
display on a tape device. UCCLDD is invoked from the exit point LDD, which is
nondynamic, in one of the following routines:

v Routine LOCATEYYY of segment CEDT in CSECT CCCPSE.

v Routine CCDSW100 of segment CEDT in CSECT CCCPSE.

General Conditions at Entry
The registers at entry to UCCLDD are:

R0 R0 must have one of the following values:

X'00' Equated to LDDTPSW, indicates the exit was called during system
error processing and came from routine CCDTPSW1 in segment
CEDT.

X'04' Equated to LDDYYY, indicates the exit was called during system
error processing and came from routine LOCATEYYY in segment
CEDT.

Note: This should be taken into consideration when adding code to
the exit.

R4 Pointer to the TSTB section 2 entry for the tape device in question

R6 Pointer to the TSTB section 1 entry for the tape device in question

R7 Pointer to the Load Display workarea located in the calling segment

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address space SVM.

Programming Considerations at Entry
1. This routine is invoked during system error processing

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
1. If the user exit returns condition code zero, either Message 1, Message 2, or

both messages will be displayed.

2. If the exit returns a non-zero condition code, no message will be displayed.

102 TPF V4R1 System Installation Support Reference

User Header Label
User exit routine UCCUHL is invoked from the BUILDHDR routine if the exit point
named UHL is active. UCCUHL allows you to modify tape header labels. Exit point
UHL, which is nondynamic, is located in copy segment CEFM of CSECT CCTAPE.

User exit routine UCCUHL contains a control routine, UHLSTART, that calls user
label subroutines that you can modify.

The user header label control routine calls subroutines UHL1, UHL2, ... UHL8 in
order, until all 8 subroutines are called, or until any one of the subroutines fails to
set up the user label properly. A properly setup user header label will start with the
characters UHLx where x is the current label number. After verifying the label, it is
written.

Note: If you use the user header label routines user exit, you should also use the
real-time user label routines user exit in segment UXTH. See “User Label
Routines” on page 233 for more information.

General Conditions at Entry
The following registers are set up for the user by each of the user label subroutines:

R2 Pointer to the IBM standard HDR1 and HDR2 labels.

R3 Pointer to User Label Work Area (mapped by ITUHL).

R4 Pointer to the TLMR (Tape Label Mask Record) entry.

R5 Pointer to the TSTB/1 (Tape Status Table/Section 1) entry.

R6 Pointer to the TSTB/2 (Tape Status Table/Section 2) entry.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address space SVM.

Programming Considerations at Entry
When UXTH is called to write user header records, the TSTB/3 entry for the tape is
not yet set up. Therefore, to be consistent with UXTH, R4 has a pointer to the
TLMR record. This requires you to use the equates in TAPEQ to access any fields
in the TLMR.

When the first user label subroutine gets control (UHL1, UTL1, or IHL1), registers
R2, R4, R5, and R6 will be set up as listed previously. R3 will point to the base of
the user label work area (ULWA). It is recommended that you do not change this
register. However, if it is necessary to use R3, the pointer to the ULWA can be
found in CE1CR3. R7 will contain the return address and this value must not be
changed. R0 and R1 can be used by the user label subroutine.

Control Program User Exits 103

When any other user label subroutines get control, register R3 will once again point
to the base of the previous user label work area. R0, R1, R2, R4, R5, and R6 will
all contain whatever values they contained on exit from the previous user label
subroutine.

Data Structures

DSECT ITUHL maps a 1055-byte working area that is used by UXTH. The working
area is broken up into the following areas:

v ULWALAB1 through ULWALAB8 correspond to the 8 user label definitions. These
areas are to be filled in by the UHL and UTL routines, and will contain user
labels read from input tapes for the IHL routines.

v ULWAUSR is a user work area. This area is provided for temporary storage
because ECB fields are not to be modified by the user label subroutines.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

104 TPF V4R1 System Installation Support Reference

User Trace Area Initialization
User exit routine UCCCEXP is invoked by the C function trace exception routine
(CTR0). The C user can use UCCCEXP to initialize storage after the user trace
area storage is allocated. The SETTC macro must have been previously issued by
this ECB to allocate the C function trace user area (for example, in the CDEB user
exit).

General Conditions at Entry
The registers at entry to UCCCEXP are:

R2 TCA address

R3 Current DSA address

R5 CID address

R8 Current DLM address

R9 ECB pointer

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor state

System mask Masked for I/O interrupts

Protect key 0

Address space EVM

Programming Considerations at Entry
See“User Exit Routines - Common Programming Considerations” on page 7.

You can issue the ENATC macro from the CEXP user exit. However, the ENATC
macro uses register 15 to provide return code information. This use of register 15
conflicts with the user exit usage of register 15 for addressing. Therefore, before
you issue the ENATC macro from the CEXP user exit, establish addressability using
a base register other than 15.

Note: You cannot issue the SETTC macro while processing the CEXP user exit
routine because the trace table environment has already been set up.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 105

Validate Tape for Output
User exit routine UCCVTO validates that a tape can be used for output before it is
automatically used by automount routines as an ALT tape. UCCVTO is invoked from
the exit point VTO, which is nondynamic, in one of the following routines:
v Routine VOL1INT of segment CEFA in CSECT CCTAPE.
v Routine CHECKDATE of segment CEDT in CSECT CCCPSE.

General Conditions at Entry
The registers at entry to UCCVTO are:

R0 R0 must have one of the following values:

X'00' Equated to VTOCEDT, indicates the exit was called during
system error processing and came from segment CEDT.

Note: This should be taken into consideration when adding
code to the exit.

X'04' Equated to VTOCEFA, indicates the exit came from
segment CEFA.

R1 Pointer to the IBM standard VOL1 label (addressable by the
equates in TAPEQ).

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address space SVM.

Programming Considerations at Entry
1. See “User Exit Routines - Common Entry Conditions” on page 6.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
1. If the user exit returns condition code zero, the process of mounting the tape as

an ALT tape continues.

2. If the exit returns a nonzero condition code, the tape is not mounted as an ALT
tape and a message informs the operator that the tape is not valid for output. If
the user exit is activated from CEFA, the COSK0288E message is sent. If the
user exit is activated from CEDT, the CPSE0027E message is sent.

3. See “User Exit Routines - Common Return Conditions” on page 7.

106 TPF V4R1 System Installation Support Reference

WAITC Macro Entry
User exit routine UCCWAI is called at the beginning of macro processing for the
WAITC macro (if the exit point named WAI is active). Exit point WAI is in CSECT
CCNUCL.

General Conditions at Entry
The registers at entry to UCCWAI are:

R0–R7 Contents as set by the program that issued the WAITC macro.

R8 Base of E-type program that issued the WAITC.

R9 Address of the ECB.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Problem (see “Programming Considerations at

Entry”, item 1)

System mask Unmasked (see “Programming Considerations at
Entry”, item 1)

Protect key Working storage or zero (0)

Address space EVM.

Programming Considerations at Entry
1. Usually, the system state and system mask are as stated. However, there can

be exceptions if system programs issued MONTC to get to supervisor state and
changed the system mask.

2. The WAI exit point occurs before checking the I/O count in the ECB. Therefore,
the I/O count is unknown at entry to user processing.

3. See “User Exit Routines - Common Entry Conditions” on page 6.

4. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
1. If the I/O counter is zero (no I/O is pending) when UCCWAI returns to the NSI

in WAITC macro processing, no other user exit routines are invoked and control
is returned to the E-type program that issued the WAITC. If the I/O counter is
not zero (I/O is pending) when UCCWAI returns to the NSI, the MONWC macro
causes the user exit routine at label UCCSVC to run. When all I/O is complete
for the ECB, UCCSVW is run at post interrupt time (if the SVW exit point is
active) and control is returned to the E-type program that issued the WAITC.

2. See “User Exit Routines - Common Return Conditions” on page 7.

Control Program User Exits 107

WTOPC Message Translation
User exit routine UCCWTOP is invoked from control program (CP) copy member
CEDI to allow you to translate individual characters in output message text. CEDI
normally translates the plus sign (+) and greater than sign (>) into periods (.).
UCCWTOP allows you to translate the plus sign (+) and greater than sign (>) into
characters other than periods (.) before CEDI translates them.

General Conditions at Entry
The registers at entry to UCCWTOP are:

R5 The number of bytes, from 1 to 256, to be translated.

R7 Pointer to the first byte of text to be translated.

R8 Pointer to the primary terminal address for this message.

R11–R15 See “User Exit Routines - Common Entry Conditions” on page 6.

System Conditions at Entry
System state Supervisor

System mask Masked

Protect key 0

Address space SVM.

Programming Considerations at Entry
1. This routine can be called several times for a single message depending on the

length of the message. Therefore, the message header may not be part of the
message text to be translated.

2. See “User Exit Routines - Common Programming Considerations” on page 7 for
other considerations.

Programming Considerations on Return
See “User Exit Routines - Common Return Conditions” on page 7.

General Conditions on Return
See “User Exit Routines - Common Return Conditions” on page 7.

108 TPF V4R1 System Installation Support Reference

ECB-Controlled Program User Exits Overview

User exits allow you to add user-unique processing at various points in TPF
programs without having to modify the released programs. ECB-controlled program
user exits are called by ECB-controlled program exit points that reside in
ECB-controlled programs.

Note: Because ECB-controlled program exit points that are provided are in function
programs, no performance impact on the system is anticipated. However,
have detailed knowledge of TPF system internals before activating or writing
user exit code.

Exit Points
Exit points are predefined locations in TPF system processing from which
user-unique processing code can be invoked. This user-unique code (called user
exit, user exit routine, and user processing) will then execute as an extension of a
TPF system function.

Exit point status is not carried across an IPL. The ZSTIM command can be used
during restart, cycle-up, or cycle-down to automatically activate or deactivate exit
points.

A dynamic E-type program exit point is one that can be set on or off by SYSTC
switches. A nondynamic E-type program exit point does not change. It is always on
(that is, it is always called).

Along with the exit points, sample programs or stubs have been provided. As
released by IBM, most of these stubs simply issue a BACKC, while some provide
sections of sample code. You must change the program stub to an operational
program to perform whatever processing is required.

Selective Activate Exits
Selective activate exits allow you to limit the use of an E-type loader loadset to a
specific ECB origin. An ECB origin can be a terminal address, communication line
number, port number, user ID, NCP ALS, NCP name, and others.

To use the selective activate function you must:
v Activate the selective activation function during system generation.
v Create an enable command.
v Create a disable command.

Activating the Selective Activation Function
You can activate the selective activation function in the CONFIG macro or by using
the ZSYSG command. When activated, selected ECBs can enter the programs in a
selectively activated loadset. Otherwise, no ECBs can enter the programs in a
selectively activated loadset. See TPF Operations for more information on ZSYSG.

Creating an Enable Command
To enable loadsets for specific ECB origins, create a command that builds two
core-resident structures; a selective activation table and a selective activation index.
The selective activation table should contain loadset names and selective activation

© Copyright IBM Corp. 1994, 2002 109

numbers. The selective activation index should contain the ECB origins and
pointers to the loadset names. Entries should be added to these structures using a
user-defined enable message. To do this your command should do the following:

1. Add the ECB origin to the selective activation index.

2. If the loadset name is already in the selective activation table, update the index.

3. If the loadset name is not in the selective activation table, add the entry and call
the selective activate utility (COLW) to set the activation number. Update the
index.

Note: COLW returns an activation number of zero if the loadset has not been
selectively activated.

4. Update the file resident structure (if one exists) to allow enable requests to
survive an IPL.

Figure 2 shows an example of a selective activation table. Figure 3 shows an
example of a selective activation index.

Note: In Figure 2, Joseph was enabled to be used from an ECB origin, but is not
yet activated selectively. Loadsets Sally and Fred1 were selectively activated
and were assigned activation numbers 4 and 8, respectively.

Note: Figure 3 contains a list of ECB origins (terminal addresses) and the
associated index into the selective activation table. In this example, ECBs
originating on terminal 292834 can enter programs from loadsets Sally or
Fred1.

Creating a Disable Command
The user-defined disable command should stop an ECB from using a loadset. This
message should remove the index pointer for the selective activation index entry,
and if there are no more index entries that reference the specified loadset, remove
the associated selective activation table entry (if there are no more ECB origins that
reference a loadset, there is no longer a need to maintain the activation number in
the selective activation table). If there are no more loadsets enabled to be used by
the specified ECB origin, then the index entry can be removed. By removing the
table index from the index entry, ECBs originating from that origin will not have the
specified loadset’s activation number in their activation number list (which is used

Loadset Name Selective Activation Number
------------ ---------------------------
Joseph 0
Sally 4
Fred1 8

Figure 2. Selective Activation Table Example

Terminal Addr Index into Selective Activation Table
------------- ------------------
020103 0
030567 0, 1
002203 1
292834 1, 2

Figure 3. Selective Activation Index Example

110 TPF V4R1 System Installation Support Reference

by Enter / Back to determine which version of a program to use). If a file copy of
the mapping structure is maintained, then it will have to be updated to reflect the
disable request.

Note: It is entirely possible that the loadset name will not be found in either table.
The user-written disable code should handle this condition. This can occur
for 2 reasons:

1. The loadset was selectively activated, but never enabled. Here, a table
entry for the loadset was never created.

2. It is possible that the loadset was enabled; however, the mapping
structure is not recorded on file (for example, the enables do not survive
an IPL). If an IPL were to occur after the enable and before the disable
request, the disable code would not find the loadset in the tables.

Data Macros to Develop User Exits
The following data macros have been provided to assist in the development of the
user exits in ECB-controlled programs:

BK0UX An extension of the recoup keypoint, BK0RP. It is also called by
BK0RP. It can be used to subdivide the recoup user area, BK0USR.

CZ1UX An extension of the system error equates, CZ1SE. It is also called
by CZ1SE. It can be used to define user system error equates for
the error numbers DB0000 through DBFFFF. These numbers have
been set aside for user definition.

UXTEQ Called by the BEGIN macro for all ECB-controlled user programs
including the user exit programs. It can be used to define
user-specified system equates.

E-type User Exit Considerations
When ECB-controlled program user exits are called using the ENTRC macro, you
must decide whether to return to the calling program, save and restore registers,
and/or maintain data areas. Some functions might not complete if control is not
returned to the calling segment with the registers intact.

User Exit Allocation and Activation
Table 1 refers to the activation and allocation of user exits for ECB-controlled
programs. Note which user exits are allocated through SIP before you load your
online system.

Note: Copy members are activated differently than E-type programs. Copy
members are not activated because copy members are copied to parent
code which is activated.

Table 1. Activation and Allocation of User Exits for ECB-Controlled Programs

System Function User Exit Description Allocation Activated by

APPN UACP E-type program Allocated ENTRC

UALS E-type program Allocated ENTRC

UAPN E-type program Allocated ENTRC

UARG E-type program Allocated ENTRC

ECB-Controlled Program User Exits Overview 111

Table 1. Activation and Allocation of User Exits for ECB-Controlled Programs (continued)

System Function User Exit Description Allocation Activated by

C/C++ Language Dynamic Link
Library (DLL) Support

USUD E-type program Allocated DLL load in CISO (Note
7)

Clocks GCALX Copy member None Initiating program

GDATX Copy member None Initiating program

GCLKX Copy member None Initiating program

Communications Source Common
Exit

UCS1 E-type program Allocated ENTRC (Note 1)

Continuous Data Collection CDCA E-type program Allocated ENTRC

CDCB E-type program Allocated ENTRC

Database reorganization UBDB E-type program Allocated ENTRC

Deadlock Detection CLUD E-type program Allocated CL40

Dump Data User Exit CPSU E-type program Allocated ENTNC

Dynamic LU CDLY E-type program Allocated ENTRC

ECB display UDE0 E-type program Allocated ENTRC

E-type loader display UELG E-type program Allocated ENTRC

Extra Program Record Report UELI E-type program Allocated ENTRC

Get global environment lists UENV E-type program Allocated ENTRC

HPR support URTP E-type program Allocated ENTRC

Log Recovery Error Processing CL99 E-type program Allocated ENTRC

LU 6.2 CSXA E-type program Allocated CREMC/ENTNC (Note 5)

CSXB E-type program Allocated CREMC/ENTNC (Note 5)

CSXC E-type program Allocated CREMC/ENTNC (Note 5)

Message Queue Interface Channel
Exits

(Note 6) E-type program Allocated ENTRC

Message Router COBC E-type program Allocated ENTRC (Note 3)

Module copy select/validate UCPY E-type program Allocated ENTRC

Pool migration and conversion UPX0 E-type program Allocated ENTRC

Pool migration and conversion UPX1 E-type program Allocated ENTRC

Pool migration and conversion UPX2 E-type program Allocated ENTRC

Pool migration and conversion UPX3 E-type program Allocated ENTRC

Pool migration and conversion UPX6 E-type program Allocated ENTRC

Pool migration and conversion UPX7 E-type program Allocated ENTRC

Record loadset history UELL E-type program Allocated ENTRC

Record program history UELM E-type program Allocated ENTRC

Recoup BRU1 E-type program Allocated ENTxC

BRU2 E-type program Allocated ENTxC

BRU3 E-type program Allocated ENTxC

Restrict ZOLDR input UELD E-type program Allocated ENTRC

Selective activate UELF E-type program Allocated ENTRC

Selective activate UELH E-type program Allocated ENTRC (Note 4)

Selective activate UELN E-type program Allocated ENTRC

112 TPF V4R1 System Installation Support Reference

Table 1. Activation and Allocation of User Exits for ECB-Controlled Programs (continued)

System Function User Exit Description Allocation Activated by

Selective activate UELU E-type program Allocated ENTRC (Note 4)

Selective activate UELW E-type program Allocated ENTRC

Selective activate UELX E-type program Allocated ENTRC (Note 4)

Selective activate UEL1 E-type program Allocated ENTRC (Note 4)

Selective core resident load UCLB E-type program Allocated ENTRC

SLC Communication Source CIM2 E-type program Allocated ENTxC

SNA Communication Route
Selection

CSJV E-type program Allocated ENTxC

SNA Message Recovery CMVU E-type program Allocated ENTxC

SNMP UCOM E-type program Allocated ENTRC

UMIB E-type program Allocated ENTRC

System Error Message Control CPSD E-type program Allocated ENTxC

System Message Processing UOP1 E-type program Allocated ENTxC

UOP2 E-type program Allocated ENTxC

System Restart URS1 E-type program Allocated ENTxC

URS2 E-type program Allocated ENTxC

System State Change USC1 E-type program Allocated ENTxC

USC2 E-type program Allocated ENTxC

USC3 E-type program Allocated ENTRC

USC4 E-type program Allocated ENTRC

Tape Display Setup UXTD E-type program Allocated ENTxC

Tape Library Validation CORU E-type program Allocated ENTxC

TPF Files System Initialization UBOT E-type program Allocated
(Note 2)

Initiating program (CBOT)

TPF MQSeries CUIR E-type program Allocated CREEC

TPF MQSeries CUIT E-type program Allocated
(Note 7)

Initiating program (MQ
MCA)

TPF MQSeries CUIV E-type program Allocated
(Note 7)

Initiating program (MQ
QMGR)

TPF MQSeries CUIW E-type program Allocated
(Note 7)

Initiating program (MQ
QMGR)

TPF MQSeries CUIA E-type program Allocated
(Note 7)

Initiating program (MQ
QMGR)

TCP/IP Support CLA4 E-type program Allocated ENTNC

CLCH E-type program Allocated CREEC

CLCI E-type program Allocated CREEC

CLCV E-type program Allocated CREDC

CLCX E-type program Allocated CREMC

CLCM E-type program Allocated ENTRC

CLCQ E-type program Allocated ENTRC

CLCS E-type program Allocated ENTRC

CLCU E-type program Allocated ENTRC

ECB-Controlled Program User Exits Overview 113

Table 1. Activation and Allocation of User Exits for ECB-Controlled Programs (continued)

System Function User Exit Description Allocation Activated by

C542 E-type program Allocated ENTRC

UACC E-type program Allocated ENTRC

UMATAL E-type program Allocated
(Note 7)

ENTRC

UMATAS E-type program Allocated
(Note 7)

ENTRC

UMATCH E-type program Allocated
(Note 7)

ENTRC

UMATFI E-type program Allocated
(Note 7)

ENTRC

UMATRO E-type program Allocated
(Note 7)

ENTNC

UMATSE E-type program Allocated
(Note 7)

ENTRC

UMATSS E-type program Allocated
(Note 7)

ENTRC

UMATTR E-type program Allocated
(Note 7)

ENTRC

USOK E-type program Allocated ENTRC

User Command Processor UME1 E-type program Allocated ENTNC

User Command Table UMET E-type program Allocated Read only

User Data Recovery Copy Support UDRS E-type program Allocated ENTDC

User Data Recovery Restore
Support

UDRR E-type program Allocated ENTDC

User input device support UELC E-type program Allocated ENTRC

User Label Routines UXTH E-type program Allocated ENTxC

User library function UELE E-type program Allocated ENTRC

VFA restart CVFX E-type program Allocated ENTRC

VIPA processor deactivation UVIP E-type program Allocated ENTRC

Virtual reader support UELB E-type program Allocated ENTRC

VisualAge for TPF Debuggers CDBPUX E-type program Allocated ENTRC

VisualAge for TPF Debuggers CDBUXT E-type program Allocated ENTRC

WTOPC page control UOP3 E-type program Allocated ENTRC

3270 Welcome Screen CSLJ E-type program Allocated ENTRC

Notes:

1. You must set the associated SYSTC switch on to invoke the user exit.

2. Allocated in the initiating program.

3. You must set the SYSTC switch SBCOMXT on to invoke the user exit.
SBCOMXT can be set on by coding COMEXIT=YES on the MSGRT macro in
SIP.

4. You must set the associated SYSTC switch on to use the selective activate
function. See “Activating the Selective Activation Function” on page 109 for more
information.

114 TPF V4R1 System Installation Support Reference

5. This user exit is entered with a CREMC or an ENTNC depending on which TPF
program calls it.

6. The name of the E-type program activated by the MQI channel exits is specified
by the user with the ZMQID DEFINE command. See TPF Operations for more
information.

7. Allocated as part of a dynamic link library (DLL) or dynamic link module (DLM).

ECB-Controlled Program User Exits Overview 115

116 TPF V4R1 System Installation Support Reference

ECB-Controlled Program User Exits

This chapter describes each TPF entry control block (ECB) user exit, how to use
the user exit, and the following information concerning each user exit:

v Input

v Programming considerations

v Return values.

© Copyright IBM Corp. 1994, 2002 117

Check OLDR Load Deck
The check OLDR load deck exit, UELR, performs additional offline checking against
the program names and versions specified in the OLDR load deck. UELR is called
by COLR in the OLDR offline program.

Input
v The number of parameters that were specified in the PARM= parameter. This is

taken from the load deck EXEC statement.

v A pointer to an array of character strings, each string represents a parameter
found after the PARM= parameter. This is taken from the load deck EXEC
statement.

v The name of the program and its 2-character version code taken from the input
load deck card.

Programming Considerations
UELR is shipped in skeleton form.

Return Values
v If return=0, no messages are issued by the caller.

v If return=odd (for example, 1, 3, or 5), the following error message will be issued
by the caller of this routine and the program will not be loaded:
xxxx0099E: COLR_VALIDATE_PROGRAM_CARD:

USER EXIT ERROR yyyy ENCOUNTERED FOR
PROGRAM zzzzzz
<additional text, such as "loadset ignored">

v If return=nonzero, even (for example, 2, 4, or 6), the following warning message
will be issued by the caller of this routine and the program will not be loaded:
xxxx0099W: COLR_VALIDATE_PROGRAM_CARD:

USER EXIT ERROR yyyy ENCOUNTERED FOR
PROGRAM zzzzzz - PROGRAM LOADED ANYWAY

Notes:

1. xxxx is the job name (for example, OLDR)

2. yyyy is the return code from this routine

3. zzzzzz is the program name and version code.

118 TPF V4R1 System Installation Support Reference

Clock Global Update Exits
The clock exits are used to update the subsystem user global clock and calendar
fields. They are copy members that get expanded in other ECB-controlled clock
segments. Each contains sample code which copies the global fields from the first
subsystem user to the rest of the subsystem users in the subsystem. If the system
does not contain multiple subsystem users, the sample code will return control to
the expanding (or parent) segment.

Exit
Parent
Segment Function

GCALX CDTC Initializes the global calendar fields when the system is
cycled above 1052 state.

GDATX CDTD Updates the global calendar fields whenever a midnight
boundary is crossed.

GCLKX GLBL Updates the global clock fields every time a minute
boundary is crossed.

The interface requirements for each user exit are described in the prologue of its
parent segment.

ECB-Controlled Program User Exits 119

Command Manager
The command manager user exit, UELD, determines if an ECB has the authority to
issue a specified ZOLDR command.

UELD, is called by ZOLDR commands.

Input
Input message block on D0.

Programming Considerations
v UELD is shipped in skeleton form, with one return statement.

v All data levels must be returned to the caller in the same state they were upon
entry.

Return Values
Void.

120 TPF V4R1 System Installation Support Reference

Common Symbol Table
The common symbol table user exit, UCST, allows you to add data macros
(DSECTs), or any symbols that are considered common to real-time assembler
programs, to the common symbol table to be referenced when debugging all
programs. Use of the common symbol table eliminates the need for multiple copies
of the DSECT and symbol information for each real-time assembler program being
retained and loaded to the TPF system. Instead, only one copy of the common
DSECTs or symbols are kept in the TPF system.

See the ucst.asm program for an example of the common symbol table.

Input
All symbols defined in UCST are included in the common symbol table and are
used as an exclusion list to build an application program’s local symbol table.

Programming Considerations
v The common symbol table is referenced during the online symbol lookup process

and is used in the offline symbol table generation process. If a symbol is defined
in the common symbol table, it will be eliminated from the local symbol table for
the program.

v If a symbol is relocatable and found in the common symbol table, the symbol
lookup process resolves the relocation by finding the base register in the local
symbol table for the program. For example, if you added DSECT MYTBL to the
common symbol table and TBLFLD1 is a data field in MYTBL, the symbol lookup
process uses the displacement of TBLFD1 from the common symbol table and
uses the base register that is defined in the current program to resolve symbol
TBLFLD1.

v You can have multiple versions of the common symbol table in the TPF system
by loading multiple versions of the table through the online loader. The TPF
Assembler Debugger for VisualAge Client uses the application ECB activation
number as the basis to select the common symbol table with the same or lower
activation number.

v Be careful when determining which DSECTs or symbols you want to add to the
common symbol table and maintain the DSECT or symbol in the common symbol
table once you have added it. Removing entries from the common symbol table
will result in lost symbol definitions. For example, DSECT MYTBL is in the
common symbol table and all data fields in DSECT MYTBL are excluded from
the local symbol table for the program. If you remove DSECT MYTBL from the
common symbol table, the TPF Assembler Debugger for VisualAge Client cannot
resolve any data fields in MYTBL from the local symbol table or the common
symbol table until the local symbol table is rebuilt to include data fields for
MYTBL.

v You must run the TPFSYM offline program agains UCST to create the
SYSADATA file. This file is used as an exclusion list for offline symbol table
creation (TPFSYM) and as a common symobl table during symbol lookup.

Return Values
None. However, system error 0ADB12 is issued and the ECB exits whenever an
attempt is made to enter UCST. See Messages (System Error and Offline) for more
information about system errors.

ECB-Controlled Program User Exits 121

|
|
|

Communications Source Common
This exit routine, UCS1, is activated by communications source programs before
normal processing but not if entered after processing by other communications
source programs (that is, only one exit per input message). This exit can be used to
examine the input message origin.

Input
R0 Contains CIAA to show activation from CIAA

R1 Pointer to input message block.

R4 Address of the WGTA entry for the message origin

D0 Message block in communication message format

D1 The AAA record, if in use

D3 The RCB record, if in use

EBW042 Set to X'08' if the input was from a 3270, otherwise set to X'00'.

Input
R0 Contains CITT to show activation from CITT

R1 Pointer to input message block

R2 Pointer to RVT1 entry

R3 Pointer to RVT2 entry

D0 Message block in communication message format

EBW000 Input RCPL.

Programming Considerations
v UCS1 is a dynamic exit and is only called when SYSTC switch SBUCS1 is set

on.

v UCS1 is shipped as a BACKC stub.

v Communications Source programs (CIAA and CITT) enter UCS1 with return
expected.

v Communications Source program CINN, for local 3270s, completes its
processing in CIAA and, therefore, activates UCS1 through CIAA.

v The input block, from CIAA, will include an input message (assembled) or
answerback.

122 TPF V4R1 System Installation Support Reference

Continuous Data Collection Information Storage
The continuous data collection information storage user exit, CDCB, allows you to
store user data into tables that were previously defined by using the continuous
data collection table creation user exit, CDCA.

CDCB is called during the processing of the ZCDCO command with the START
parameter specified. CDCB runs immediately after system data collection is
completed.

Input
The variables that are passed in CDCB are:

CDC_KEY A pointer to a 9-character string that corresponds to the 8-character
representation of the CPU ID plus the null character.

CDC_TIME A pointer to a 27-character string that corresponds to a structured
query language (SQL) time stamp.

Programming Considerations
v You must store CDC_KEY and CDC_TIME into each record to relate the data in

that record with the data collected by the TPF system.

v You can store any data that is collected in the tables defined with CDCA.

v CDCB must be returned to the caller in the same state that it was on entry.

Return Values
None.

ECB-Controlled Program User Exits 123

Continuous Data Collection Table Creation
The continuous data collection table creation user exit, CDCA, allows you to create
tables that are necessary to store data.

CDCA is called during the processing of the ZCDCO command with the CREATE
parameter specified.

Input
None.

Programming Considerations
v Any tables that you create must provide columns for CDC_KEY and CDC_TIME.

These pointers serve as common keys for the remaining data and allow you to
relate a row in one table to a row in another table.

– CDC_KEY is a pointer to a 9-character string that corresponds to the
8-character representation of the CPU ID plus the null character.

– CDC_TIME is a pointer to a 27-character string that corresponds to a
structured query language (SQL) time stamp.

v CDCA must be returned to the caller in the same state that it was on entry.

Return Values
None.

124 TPF V4R1 System Installation Support Reference

CP-CP Session Activation
The CP-CP session activation user exit, UACP, determines if a TPF processor is
allowed to start CP-CP sessions. When no TPF processor in the loosely coupled
complex has CP-CP sessions, UACP is called during cycle-up and when an
APPN-capable link is activated while the TPF system is in NORM state.

Note: If this user exit is coded to not allow CP-CP sessions on a processor, you
can still start CP-CP sessions on that processor by issuing the ZNETW ACT
command.

Input
CE1CPD CPU ID of this processor (the processor that wants to start CP-CP

sessions)

Programming Considerations
v IBM provides sample code for UACP, which sets the return code to 0 indicating

that this processor is allowed to start CP-CP sessions.

v In a uniprocessor TPF environment, you do not need to modify this user exit
because the default logic shipped by IBM allows CP-CP sessions on the TPF
processor that invokes this user exit.

v If you want to limit the processors that are allowed to start the CP-CP sessions in
a TPF loosely coupled complex, code UACP to check the CPU ID to determine if
this TPF processor is allowed to start CP-CP sessions.

v Data level D2 must not be modified. All other data levels are available for use by
this user exit.

v EBW000–EBW103 and CE1UR1–CE1UR7 must not be modified.
EBX000–EBX103 is available for use by this user exit.

Return Values
R0 contains the return code:

0 This TPF processor is allowed to start CP-CP sessions.

1 This TPF processor is not allowed to start CP-CP sessions.

ECB-Controlled Program User Exits 125

Database Reorganization
The database reorganization (DBR) user exit (UBDB) is activated by the DBR
initialization program BDBF after BDBF completes the initialization of the DBR
keypoints for one subsystem user. The DBR user exit enables users to complete
any further initialization of the DBR keypoints for a particular subsystem user.

Input
D0 DCTBPK parameter list

D1 Output message block for BDBN

D2 DBR master keypoint

D3 IDSFCZ parameter block (used by ZDBSO INIT and ZDBRO INIT
triplet messages)

D4 Record types not to be captured by DBR

D5 DBR exception record (for the last record type in the system)

D6 ESFAC core block (used by ZDBSO INIT and ZDBRO INIT triplet
messages)

EBW000–EBW015
Subsystem user IDs for each subsystem user entered with the
ZDBSO INIT SSU1/SSU2... message

EBW060–EBW063
Number of subsystem user keypoints initialized with the ZDBSO
INIT SSU1/SSU2... message

EBW064–EBW067
Number of subsystem users entered with the ZDBSO INIT
SSU1/SSU2... message

EBW074 Type of IPL (X'04' = IPL from general file)

EBW088–EBW089
Number of processors generated in the system

EBW092 Processor ordinal number entered with the ZDBRO INIT triplet
message

EBW096 Hexadecimal value for the I-stream entered with the ZDBRO INIT
triplet message

EBX000–EBX009
Input message (first two tokens)

EBX060–EBX063
Number of subsystem users to be processed by the ZDBSO INIT
message

EBX064–EBX067
Pointer to the current subsystem user table entry (used by ZDBSO
INIT message)

EBXSW0 FINWC switch – X'80'

EBXSW2 First subsystem user’s DBR keypoints initialized – X'04' (used by
the ZDBSO INIT message)

EBXSW3 ZDBSO switch – X'80'

126 TPF V4R1 System Installation Support Reference

EBXSW4 BYPASS=YES option entered – X'80'

EBXSW4 ZDBSO INIT SSU1/SSU2... message entered – X'40'

EBXSW4 ZDBRO INIT triplet message entered – X'20'

EBXSW5 First triplet combination for the ZDBSO INIT message processed –
X'FF'

Programming Considerations
v Data levels 3, 4, 5, and 6 can be used, but CRUSA macros must be issued for

each of the data levels that is to be used by UBDB.

v Data levels 0, 1, and 2 must not be used.

v ECB work area fields and switches specified previously must not be used by
UBDB.

References
TPF Database Reference.

ECB-Controlled Program User Exits 127

Deactivate Phase I Selective Activate
The deactivate phase I selective activate exit, UELW, makes it possible to check if
there are references to the loadset. UELW is called from segment COLA.

UELW is only called when the FORCE parameter is not issued with the ZOLDR
DEACTIVATE command.

Input
Loadset name (blank padded on right).

Programming Considerations
v UELW is shipped in skeleton form, with one return statement.

v All data levels must be returned to the caller in the same state they were upon
entry.

v See “Selective Activate Exits” on page 109.

Return Values
v If return=FALSE, deactivate processing stops and exits.

v If return=TRUE, deactivate processing continues.

128 TPF V4R1 System Installation Support Reference

Deactivate Phase II Selective Activate
The deactivate phase II exit, UELF, updates a user-defined structure when a
selectively activated loadset is deactivated.

UELF is called by the ZOLDR DEACTIVATE SEL command.

Input
v Loadset name

v Activation number.

Programming Considerations
v UELF is shipped in skeleton form.

v All data levels must be returned to the caller in the same state they were upon
entry.

v See “Selective Activate Exits” on page 109.

Return Values
Void.

ECB-Controlled Program User Exits 129

Deadlock Detection
The deadlock detection user exit, CLUD, is called by segment CL40 with a C
function call to perform deadlock notification.

Input
The registers at entry to CLUD are:

R6 Address of both the entry control block (ECB) and the input/output block
(IOB) involved in the deadlock condition.

Programming Considerations
This exit provides sample code for a return code of 8.

Return Values
R15 contains the return code:

0 Processing continues as if the exit was never called.

4 Processing ends with an error. The service routine for the ZECBL command
(with the E parameter specified) is called to remove all the IOBs associated
with this ECB and to schedule a D9 dump.

8 The CE1SUD and CE1SUG fields of each ECB that is involved in the
deadlock condition are set to indicate that a deadlock has occurred. The
post-interrupt routine in the IOB is also activated.

130 TPF V4R1 System Installation Support Reference

DEARRANGE_CTK9 (UPX1)
The DEARRANGE_CTK9 user exit, UPX1, performs any needed accounting or
utility functions when keypoint 9 (CTK9) is filed by the TPF system through the
CYYA interface. You can also provide your own DEARRANGE_CTK9 function to
convert CTK9 from the current format in processor storage to pool expansion (PXP)
format or to a user-defined format that is compatible with PXP format.

The DEARRANGE_CTK9 user exit is called from the DEARRANGE_CTK9 function
in segment CYH1.

Input
EBXSW0 Contains the index of the data level containing CTK9 in 32-way

loosely coupled pool support format or a user-defined format
compatible with 32-way loosely coupled pool support format. The
index is in the form of data level 0 (D0) to data level E (DE).
EBXSW0 is only valid when EBXSW2=X'80'.

EBXSW1 Contains switches used by CYYA. These switches can only be
queried by this user exit.

EBXSW2 If EBXSW2=X'00', CTK9 is on data level F (DF) in 32-way loosely
coupled pool support format or a user-defined format compatible
with 32-way loosely coupled pool support format.

If EBXSW2=X'80', CTK9 is on the data level specified by EBXSW0.

Data Level F If EBXSW2=X'00', data level F (DF) contains CTK9 in 32-way
loosely coupled pool support format or a user-defined format
compatible with 32-way loosely coupled pool support format.

If EBXSW2=X'80', data level F (DF) is free.

Return Values
R6=0 Default return code. If this value is returned, CYH1 converts CTK9

from its 32-way loosely coupled pool support format to PXP format.
Use this return code if you code this user exit but do not change
CTK9.

R6=1 If this value is returned, CYH1 does not change CTK9. CYH1
immediately returns to its caller. Use this return code if you code
this user exit and convert CTK9 from its current format in processor
storage to PXP format or to a user-defined format that is compatible
to PXP format.

Programming Considerations
v This user exit is called by CYH1 when the conversion mode indicator (CY1MD32)

in CTK9 is PXP or CONVERTING. If the conversion mode indicator is 32LC or
FALLING_BACK, CYH1 does not call this user exit.

v As shipped by IBM, this user exit issues a BACKC macro to return to the caller.
CTK9 remains unchanged.

v You can use all data levels and registers if the data levels and registers are
saved before use and restored before returning to the caller.

v If R6=0 on return to CYH1, CTK9 must be in 32-way loosely coupled pool
support format and it must be on the same data level where it was on entry to
the user exit.

ECB-Controlled Program User Exits 131

v If R6=1 on return to CYH1, CTK9 must be on data level F (DF) and it must be in
PXP format or a user-defined format that is compatible with PXP format.

v If EBXSW2=X'80' on entry to the user exit, CTK9 must remain unchanged on the
data level specified in EBXSW0 on return from the user exit. If R6=1, a second
CTK9 in pool expansion (PXP) format or a user-defined format that is compatible
to PXP format must reside on data level F (DF).

References
See TPF Database Reference for more information about pool support.

132 TPF V4R1 System Installation Support Reference

Debug Registration
The debug registration user exit, CDBPUX, is part of the TPF Assembler Debugger
for VisualAge Client or TPF C Debugger for VisualAge Client and allows you to
verify user registration information before the entry is stored in the debug tables.

CDBPUX is called from segment CDBP, which is the entry point function for CDBP.

Input
IPAddress The address of the workstation that submitted the registration

request.

setup_message
A pointer to the registration information. The structure definition for
the registration information is contained in the c$cdbg.h header file.

Programming Considerations
1. IBM ships this user exit as a C function coded with a return of TRUE.

2. CDBPUX is an object file that is linked into CDBP, which is a C dynamic load
module (DLM). The interface to CDBPUX is a C function call; the user exit code
can be written in assembler if the TMSPC and TMSEC macros are used for the
corresponding prolog and epilog.

Return Values
TRUE The workstation and the registration information are correct. On

return from CDBPUX, CDBP stores the information in the
appropriate trace table.

FALSE The workstation or the registration information is not correct. On
return from CDBPUX, CDBP ignores the registration information
and sends an error message to the workstation that submitted the
request.

ECB-Controlled Program User Exits 133

Detect Selective Activate Support
The detect selective activate support exit, UEL1, is shipped by IBM to return
FALSE. If FALSE is returned by this user exit, you cannot activate loadsets
selectively. If user exits are developed to support selective activation, then this user
exit must be changed to return a value of TRUE. UEL1 is called when Activate
Phase I detects a selective activation request.

If an installation has chosen not to use selective activation, then the operator will
get the following message:

″CEL1 - ACTIVATE ENDED - LOADSET xxxxxxxx - SELECTIVE
ACTIVATION NOT SUPPORTED″

Input
None.

Programming Considerations
v UEL1 is shipped in skeleton form, with one return statement.

v See “Selective Activate Exits” on page 109.

Return Values
v If return=FALSE, selective activate user exits have not been developed at this

installation (IBM shipped return value).

v If return=TRUE, selective activate user exits have been developed at this
installation.

134 TPF V4R1 System Installation Support Reference

Display
The display exit, UELG, allows you to display your own additional data. UELG is
called by the ZOLDR DISPLAY commands.

Input
Address of uelg_zoldr_display_parms structure that contains the parameters
available to this function.

Programming Considerations
UELG is shipped in skeleton form, with 1 return statement.

Return Values
Void.

ECB-Controlled Program User Exits 135

DNS Select an IP Address
The Domain Name System (DNS) Select an Internet Protocol (IP) address user
exit, UDNS, enables incoming TCP/IP connections to be load balanced across a
TPF loosely coupled complex and provides two ways to answer a DNS query
(address) request. The user exit is passed the TPF host name from the DNS
request and a list of active IP addresses for the host name and their associated
central processing unit (CPU) and IP type of information. You have the following
three choices for selecting an IP address:

v Select an IP address from the list

v Select a CPU ID, where the TPF system will select an IP address from the list on
the selected CPU

v Let the TPF system select an IP address from the list automatically.

Input
The following four input parameters are passed to the user exit to determine which
IP address will be passed back to the client:

v A pointer to a structure defined in netdb.h containing a list of IP addresses and
associated processor IDs. This structure contains:

– The IP address.

– The CPU ID.

– The IP address type.

v A pointer to the host name from the DNS query.

v The number of active IP addresses associated with the input host name.

v A pointer to the output buffer. See Return Values for the format of this buffer.

Programming Considerations
The TPF server will select an IP address by a round-robin process if this user exit
does not select one.

Return Values
A pointer to a structure defined in netdb.h containing one of the following:

v An IP address (associated with the input host name)

v A CPU ID (the TPF system chooses the IP address from the CPU ID)

v Zeros (the TPF system chooses the IP address from the list associated with the
host name).

136 TPF V4R1 System Installation Support Reference

Dump Data
The Dump Data user exit, CPSU, is called by system error processing. This exit
provides an interface for dumps with an associated entry control block (ECB) that
will enable a user to save dump data for on-line processing. Both SERRC and
SNAPC dumps are supported. Dump data will be presented to the dump data user
exit. Activating the dump data user exit does not bypass normal system processing.

Input
v Dump data from system error dumps (EBXSW0 = X'00')

The data is chained in 4KB blocks in SNAPC format, parsed according to the
data name, and attached to the following chains:

– CE1CR0

Data Name Content

DCTERI First dump block:
- Error message
- Registers
- Program
- Prog old PSW
- LN/IA/TA
- Subsystem

or MESSAGE If the dump is a duplicate dump, appended messages are
dumped. No other data is provided.

– CE1CR1

Data Name Content

ECB ECB all pages: (if any)
- ECB data fields
- ECB MACRO TRACE

DECBFRAM Frame containing active and inactive data event control blocks
(DECBs). Zero or more occurrences possible.

– CE1CR2

Data Name Content

PROGRAM Program block (if any)

D0 Data level 0 (if any)

D1 Data level 1 (if any)

D2 Data level 2 (if any)

... ...

DF Data level F (if any)

DLIBLOCK Data block that is attached to the TPFDF SW00SR slot. Zero
or more occurrences possible

DECBBLK Core block that is attached to a DECB. Zero or more
occurrences possible.

– CE1CR3

Data Name Content

DETAC0 Detached data block Level 0. Zero or more occurrences
possible

ECB-Controlled Program User Exits 137

DETAC1 Detached data block Level 1. Zero or more occurrences
possible

... ...

DETACF Detached data block Level F. Zero or more occurrences
possible

DETACDEC Detached data block from a DECB. Zero or more occurrences
possible

– CE1CR4

Data Name Content

C/ISTACK Initial C stack frame (if any)

C/STACK Current C stack frame (if any)

C/STATIC Current C static block (if any)

AUTOSTOR Current auto storage block (if any)

SW00SR Current TPFDF parameter block (if any)

v Dump data from snap dumps (EBXSW0 = X'FF')

The snap data blocks are chained to CE1CR0 and parsed using the IDSSNP
DSECT.

Programming Considerations
1. The released version of CPSU contains sample code which will release the

dump data blocks and exit the ECB.

2. Issuing a SNAPC dump in dump data processing will cause an infinite loop. Use
the appropriate tests to terminate the loop when coding a SNAPC macro.

3. The dump data user exit cannot be controlled independently for SERRC and
SNAPC.

4. A SYSTC tag, SBDTAC, is defined for this user exit. The tag specifies whether
detached data blocks are presented. If the switch is on, there are detached data
blocks. The maximum number of detached blocks, including both ECB data
levels and DECBs, is specified by the DETDATAX constant in CZOCP.

5. You can use the IDECB DSECT to map the DECB frames that are presented.

138 TPF V4R1 System Installation Support Reference

Dynamic LU
The dynamic logical unit (LU) user exit, CDLY, allows you to specify the values that
are used to create resource definitions for new LU resources that log on to the TPF
system.

You can also use this user exit to specify which LU resources, if any, can log on to
the TPF system.

This user exit is called only if an LU resource tries to log on to the TPF system and
a resource definition does not already exist for that LU resource. Therefore, the
dynamic LU user exit can be called when:

v An LU resource logs on to the TPF system.

v An operator enters the ZNCNS INITIALIZE command for an LU 6.2 resource.

v The ROUTC macro is used to send a message to an application on another
processor and the receiving processor creates a resource definition.

v Functional management message routing (FMMR) support is used to send a
message to an application in another complex and the receiving processor
creates a resource definition.

Input
R1 Address of the parameter list, which contains the following:

v Four-byte address of a copy of the resource vector table (RVT) entry for
the LU resource, which is defined by the RV1VT DSECT.

See Table 4 on page 140 for information about the fields in the copy of
the RVT entry that you can change with this user exit.

v Four-byte address of an area that contains the name of a process
selection vector (PSV) routine for the LU resource. (The PSV name is
blank when this user exit is called.)

See “Programming Considerations” for information about specifying the
name of a PSV routine for the LU resource.

Programming Considerations
v D0–D7 cannot be modified.

v EBX096–EBX099 cannot be modified.

v To avoid session initiation logic errors, do not allow the entry control block (ECB)
to give up control during processing of CDLY.

v Control is returned to the CDLX segment, which verifies the changes made by
this user exit.

v Table 2 shows the OSTG options for each LU type (except X.25) that can be
changed using this user exit. The OSTG options that can be changed are
indicated by the word EXIT. The OSTG options that are not relevant or not
supported are indicated by a dash (—). See TPF ACF/SNA Network Generation
for a description of the OSTG options.

Table 2. LU Types and User-Specified OSTG Options

OSTG
Option

LU Types

3277 3278 3284 3286 3287 3288 3289 3614 360X APSLU APPC FMMR NEF

LEID= EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT

UMODE= EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT

PSV= EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT — — — EXIT

ECB-Controlled Program User Exits 139

Table 2. LU Types and User-Specified OSTG Options (continued)

OSTG
Option

LU Types

3277 3278 3284 3286 3287 3288 3289 3614 360X APSLU APPC FMMR NEF

AWARE= EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT EXIT

CHAIN= — — — — — — — — — — — — —

v Table 3 shows the OSTG options for each X.25-type resource that can be
changed using this user exit. The OSTG options that can be changed are
indicated by the word EXIT. REQUIRED indicates that you must specify a value
for the OSTG option. OPTIONAL indicates that you can use the default value or
specify a new value for the OSTG option. The OSTG options that are not
relevant or not supported are indicated by a dash (—). See TPF ACF/SNA
Network Generation for a description of the OSTG options.

Table 3. X.25 LU Types and the Permitted OSTG Options

OSTG Option
LU Types

MCHLU VCLU AX001 AX002 XALCI FTPI

LEID=
EXIT

(OPTIONAL)
EXIT

(OPTIONAL)
EXIT

(REQUIRED)
EXIT

(REQUIRED)
EXIT

(OPTIONAL)
EXIT

(OPTIONAL)

UMODE=
EXIT

(OPTIONAL)
EXIT

(OPTIONAL)
EXIT

(OPTIONAL)
EXIT

(OPTIONAL)
EXIT

(OPTIONAL)
EXIT

(OPTIONAL)

PSV=
EXIT

(OPTIONAL)
EXIT

(OPTIONAL)
EXIT

(OPTIONAL)
EXIT

(OPTIONAL)
EXIT

(REQUIRED)
EXIT

(OPTIONAL)

AWARE=
EXIT

(OPTIONAL)
EXIT

(OPTIONAL)
— — — —

CHAIN= —
EXIT

(OPTIONAL)
— — — —

v Table 4 describes the fields in the copy of the RVT entry that you can change
with this user exit.

Table 4. Description of Fields in the Dynamic LU User Exit

Field Description Default
Value

RV1LEIDF A 4-byte field that corresponds to the LEID= OSTG option.
This field contains the 1-byte length of the logical end-point
identifier (LEID) followed by the 1- to 3-byte LEID.

If you specify an LEID for a 3270, AX001, or AX002 LU
resource, use the following format, which will be verified
when control is returned to the CDLX segment:

3270 Specify a 3-byte LEID for 3270 devices that will log
on to non-SNA applications (that is, applications
that use an LEID to address a terminal).

AX001 Specify a 2-byte LEID that consists of the line
number and interchange address of the terminal.

AX002 Specify a 1-byte LEID that consists of the line
number of the terminal.

Note: If you specify an LEID for any other LU type, the
format is not verified when control is returned to the CDLX
segment.

X'0000'

RV1MODE3 A 1-byte field that corresponds to the UMODE= OSTG
option.

X'00'

140 TPF V4R1 System Installation Support Reference

Table 4. Description of Fields in the Dynamic LU User Exit (continued)

Field Description Default
Value

SNAAWARE bit
in RV1MODE1

A bit that corresponds to the AWARE= OSTG option. Off

SNACHAIN bit
in RV1MODE2

A bit that corresponds to the CHAIN= OSTG option. Off

RV1DVTP2 A 1-byte field that identifies the X.25 LU type, which can be
one of the following:

TP1MCH Multichannel link

TP1VCL Virtual circuit

TP1XA1 Airlines X.25 type 1

TP1XA2 Airlines X.25 type 2

TP1XALC Airlines line control interconnection (ALCI)

TP1FTP Fast transaction processing interface
(FTPI).

Note: You must specify a value for this field when using
X.25 LU resources.

None

See TPF ACF/SNA Network Generation for a description of the OSTG options.

v Use the PSVNAME field in this user exit to specify the name of a PSV routine for
the LU resource. The PSVNAME field is a 6-byte field that corresponds to the
PSV= OSTG option.

Note: If you specify a PSV name for an LU resource, that PSV routine must be
defined to the TPF system in at least 1 offline ACF/SNA table generation
(OSTG) RSC statement. See TPF ACF/SNA Network Generation for more
information about the OSTG program and the RSC statement.

v This user exit is shipped by IBM to return the value 2 in R0 for every LU
resource that tries to log on to the TPF system using dynamic LU support. This
means that no LU resources can log on to the TPF system using dynamic LU
support until you update this user exit.

Return Values
R0 contains the return code:

0 Success

2 LU resource not authorized to log on to the TPF system.

ECB-Controlled Program User Exits 141

ECB Display
The ECB display user exit, UDE0, allows you to exclude ECBs from the active ECB
display. UDE0 is activated by the ZFECB command.

Input
R1 Address of the line of text (as defined by the IDFET macro) that contains

information about the active ECB.

Programming Considerations
v UDE0 is shipped in skeleton form.

v If you want to exclude an ECB from the active ECB display, set EBXSW1 to
X'80'.

Return Values
None.

142 TPF V4R1 System Installation Support Reference

Extra Program Record Report
The extra program record report exit, UELI, makes it possible to report on how
many extra program records are available. Extra program records are obtained from
the #XPRGn fixed file record type. This user exit also makes it possible to report on
how many #APRGn records (used to store ADATA files) are available.

UELI is called by:

v The online portion of the general file loader (ACPL) at the very end of the load
process

v The online portion of the auxiliary loader (CIL1) after the E-type programs have
been loaded

v The E-type loader at the end of ZOLDR ACCEPT phase 1 before scheduling
ZOLDR ACCEPT phase 2.

Input
R6 Parameter list containing the following:

v Total number of #XPRGn records allocated for the program base

v Number of available #XPRGn ordinals remaining

v Indicator for whether the master extra program record was read
successfully

v Program base indicator

v Total number of #APRGn records allocated for the program base

v Number of available #APRGn ordinals remaining

v Indicator for whether the master #APRGn record was read successfully.

Programming Considerations
v UELI is an assembler segment.

v Control must be returned to the caller.

Return Values
None.

ECB-Controlled Program User Exits 143

FILE_CY2KT (UPX7)
The FILE_CY2KT user exit, UPX7, performs accounting or utility functions when the
TPF system files a pool section keypoint table (CY2KT). The FILE_CY2KT user exit
also provides a mechanism that allows you to supply your own function to convert
CY2KT from its current format to pool expansion (PXP) format or to a user-defined
format that is compatible with PXP format.

The FILE_CY2KT user exit is called by the FILE_CY2KT function from segment
CYH6.

Input
EBXSW0 Contains the index of the data level where CY2KT is to be filed.

The index is in the form of data level 0 (D0) to data level F (DF).

CY2KT is in 32-way loosely coupled pool support format or a
user-defined format compatible with 32-way loosely coupled pool
support format.

Return Values
R6=0 Default return code. If this value is returned, CYH6 converts CY2KT

from 32-way loosely coupled pool support format back to PXP
format and moves CY2KT into keypoint 9 (CTK9). Use this return
code if you code this user exit and do not change CY2KT.

R6=1 If this value is returned, CYH6 does not change CY2KT or copy it to
CTK9. Use this return code if you code this user exit to convert
CT2KT to PXP format or a user-defined format compatible with PXP
format. Your user exit code must move the converted CY2KT to the
appropriate fields in CTK9 and file CTK9 to DASD.

Programming Considerations
v This user exit is called by CYH6 when the conversion mode indicator (CY1MD32)

in CTK9 is PXP or CONVERTING. If the conversion mode indicator is 32LC or
FALLING_BACK, CYH6 does not call this user exit.

v As shipped by IBM, this user exit issues a BACKC macro to return to the caller.
The CY2KT on the data level specified by EBXSW0 remains unchanged.

v You can use all data levels and registers if the data levels and registers are
saved before use and restored before returning to the caller.

v If R6=0 on return, CY2KT must be on the data level specified by EBXSW0 and in
32-way loosely coupled pool support format.

v If R6=1 on return, the CY2KT on the data level specified by EBXSW0 must be
placed in CTK9 and filed to DASD. The CY2KT is still on the data level specified
by EBXSW0.

References
See TPF Database Reference for more information about pool support.

144 TPF V4R1 System Installation Support Reference

FILE_STCCR (UPX3)
The FILE_STCCR user exit, UPX3, performs accounting or utility functions when
the TPF system files a short-term common control record (STCCR). The
FILE_STCCR user exit also provides a mechanism that allows you to supply your
own function to convert the STCCR from its current format in processor storage to
pool expansion (PXP) format or to a user-defined format that is compatible with
PXP format.

The FILE_STCCR user exit is called by the FILE_STCCR function from segment
CYH3.

Input
Data Level E Data level E (DE) contains the STCCR to be filed. The STCCR is in

32-way loosely coupled pool support format or a user-defined
format compatible with 32-way loosely coupled pool support format.

Return Values
R6=0 Default return code. If this value is returned, CYH3 converts the

STCCR from 32-way loosely coupled pool support format to PXP
format. Use this return code if you code this user exit and do not
change the STCCR on data level E (DE).

R6=1 If this value is returned, CYH3 does not change the STCCR. Use
this return code if you code this user exit to convert the STCCR to
PXP format or a user-defined format compatible with PXP format.
The user exit must file the STCCR on data level E (DE) to DASD.
CYH3 performs a BACKC macro to the caller of CYH3.

R6=2 If this value is returned, CYH3 does not change the STCCR. Use
this return code if you code this user exit to convert the STCCR to
PXP format or a user-defined format compatible with PXP format
and you want CYH3 to file the STCCR to DASD. CYH3 files the
STCCR to DASD and returns to the function that called it.

EBXSW4=0 If you set the return code to 1 (R6=1), you must set EBXSW4=0 if
STCCR was successfully filed to DASD. If the return code is set to
0 or 2, EBXSW4 is set by CYH3.

EBXSW4=2 If you set the return code to 1 (R6=1), you must set EBXSW4=2 if
there was an error while filing STCCR to DASD. If the return code
is set to 0 or 2, EBXSW4 is set by CYH3.

Programming Considerations
v The FILE_STCCR user exit is called by CYH3 when the format indicator in the

STCCR (CY$32LC in CY$CON) on data level E (DE) is not set to 32-way loosely
coupled pool support format.

v As shipped by IBM, this user exit calls the BACKC macro to return to the caller.
The STCCR on data level E (DE) is not changed.

v You can use all data levels and registers if the data levels and registers are
saved before use and restored before returning to the caller.

v If you code this user exit and set the return code to 0 (R6=0), the STCCR on
data level E (DE) must be in 32-way loosely coupled pool support format.

ECB-Controlled Program User Exits 145

v If you code this user exit and set the return code to either 1 (R6=1) or 2 (R6=2),
the STCCR on data level E (DE) must be in PXP format or a user-defined format
compatible with PXP format.

References
See TPF Database Reference for more information about pool support.

146 TPF V4R1 System Installation Support Reference

FIND_CY2KT (UPX6)
The FIND_CY2KT user exit, UPX6, performs accounting or utility functions when
the TPF system retrieves a pool section keypoint table (CY2KT). The FIND_CY2KT
user exit also provides a mechanism that allows you to supply your own function to
convert CY2KT from its current format to 32-way loosely coupled pool support
format or a user-defined format compatible with 32-way loosely coupled pool
support format.

The FIND_CY2KT user exit is called by the FIND_CY2KT function from segment
CYH6.

Input
EBXSW0 Contains the index of the data level where CY2KT is to be

constructed. The index is in the form of data level 0 (D0) to data
level F (DF). The specified data level is free on entry to the user
exit.

EBXSW3 Contains the ordinal of CY2KT to be converted.

Return Values
R6=0 Default return code. If this value is returned, CYH6 converts CY2KT

from pool expansion (PXP) format to 32-way loosely coupled pool
support format. Use this return code if you code this user exit and
do not change CY2KT.

R6=1 If this value is returned, CYH6 returns to its caller without changing
CY2KT. Use this return code if you code this user exit and your
code converts CY2KT from its current format to 32-way loosely
coupled pool support format or a user-defined format compatible
with 32-way loosely coupled pool support format.

Programming Considerations
v This user exit is called by CYH6 when the conversion mode indicator (CY1MD32)

in CTK9 is PXP or CONVERTING. If the conversion mode indicator is 32LC or
FALLING_BACK, CYH6 does not call this user exit.

v As shipped by IBM, this user exit issues a BACKC macro to return to the caller.
The data level specified by EBXSW0 is free.

v You can use all data levels and registers if the data levels and registers are
saved before use and restored before returning to the caller.

v If R6=0 on return to CYH6, the data level specified by EBXSW0 must be free.

v If R6=1 on return to CYH6, the requested CY2KT must be on the data level
specified by EBXSW0 in 32-way loosely coupled pool support format or in a
user-defined format compatible with 32-way loosely coupled pool support format.
CY2KT must appear in the same format it would be in if retrieved directly from
the #CY2KT fixed file record type.

References
See TPF Database Reference for more information about pool support.

ECB-Controlled Program User Exits 147

FIND_STCCR (UPX2)
The FIND_STCCR user exit, UPX2, performs accounting or utility functions when
the TPF system retrieves a short-term common control record (STCCR). The
FIND_STCCR user exit also provides a mechanism that allows you to supply your
own function to convert the STCCR from its current format to 32-way loosely
coupled pool support format or a user-defined format compatible with 32-way
loosely coupled pool support format.

The FIND_STCCR user exit is called by the FIND_STCCR function from segment
CYH2.

Input
EBXSW3 Contains the ordinal of the STCCR that was retrieved (X'00' –

X'0C').

Data Level E Data level E (DE) contains the retrieved STCCR in pool expansion
(PXP) format or a user-defined format compatible with PXP format.

Return Values
R6=0 Default return code. If this value is returned, CYH2 converts the

STCCR from PXP format to 32-way loosely coupled pool support
format. Use this return code if you code this user exit and do not
change the STCCR.

R6=1 If this value is returned, CYH2 returns to its caller without changing
the STCCR. Use this return code if you code this user exit and your
code converts the STCCR from its current format to 32-way loosely
coupled pool support format or a user-defined format compatible
with 32-way loosely coupled pool support format.

Programming Considerations
v This user exit is called by CYH2 when the format indicator in the STCCR

(CY$32LC in CY$CON) on data level E (DE) is not set to 32-way loosely coupled
pool support format.

v As shipped by IBM, this user exit calls the BACKC macro to return to the caller.
The STCCR on data level E (DE) is not changed.

v You can use all data levels and registers if the data levels and registers are
saved before use and restored before returning to the caller.

v If your user exit sets the return code to 0 (R6=0), the STCCR on data level E
(DE) must be in PXP format.

v If your user exit sets the return code to 1 (R6=1), the STCCR on data level E
(DE) must be in 32-way loosely coupled pool support format or a user-defined
format compatible with 32-way loosely coupled pool support format.

References
See TPF Database Reference for more information about pool support.

148 TPF V4R1 System Installation Support Reference

Get Global Environment Lists
The get global environment lists user exit, UENV, places variables on the global
environment list using environment variables that you have provided by coding the
setenv function. UENV is called once for each subsystem during restart.

Input
Environment variables that you have coded using the setenv function.

Programming Considerations
v If UENV is part of an ISO-C dynamic load module (DLM) and an external call is

added for which a stub does not exist, you must create a stub.

v To create a stub, code the STUB=YES parameter on the SPPBLD entry in
SPPGML in SIP.

v UENV gets called during restart only.

Return Values
None.

ECB-Controlled Program User Exits 149

Loadset History
The loadset history exit, UELL, makes it possible to track changes to loadsets.

UELL is called when the following commands are performed:
v ZOLDR LOAD
v ZOLDR ACTIVATE
v ZOLDR DEACTIVATE
v ZOLDR ACCEPT
v ZOLDR DELETE
v ZOLDR EXCLUDE
v ZOLDR REINCLUDE
v ZOLDR CLEAR

Input
v Caller identifier

v Loadset name (blank padded on right)

v 32-bit CPU mask with targeted CPU bits ON. The mask is filled with 1’s if the
calling task affects all CPUs (for example, ZOLDR LOAD, ZOLDR CLEAR, and
ZOLDR DELETE).

v Pointer to user field in the entry of Loadset Directory (LSD).

Programming Considerations
v UELL is shipped in skeleton form, with one return statement.

v All data levels must be returned to the caller in the same state they were on
entry.

Return Values
Void.

150 TPF V4R1 System Installation Support Reference

Log Recovery Error Processing
The transaction log recovery error user exit, CL99, is called whenever log recovery
processing detects an error condition. CL99 determines what action is to be taken
for the indicated error condition and returns an action code to the caller.

Input
Information to assess the error condition is passed in the entry control block (ECB)
work area. The following fields are passed:

EBW009 Processor index of the log that is being recovered.

EBW011 Processor index of the host processor.

EBER01 Error table index as defined in ICRCT equate values.

Programming Considerations
v This exit provides two tables that define actions that are permitted with all of the

associated possible error conditions. These tables also indicate which default
actions are provided with the released code.

v Two tables are provided: one for errors that occur during recovery of the host
processor log, and a second for errors that occur during log takeover (recovery of
the log of another processor).

v You must determine what actions are correct for your TPF system. For example,
for some error conditions the log will be reinitialized, resulting in the loss of all
the data on the recovery log. If you would rather try to correct the log than lose it,
you must modify CL99.

v Do not modify the general registers of the caller.

Return Values
You modify the action performed by the TPF system by returning a different action
code. The following fields are returned:

EBW009 The unchanged processor index of the log being recovered.

EBW011 The unchanged processor index of the host processor.

EBER01 Error action code.

ECB-Controlled Program User Exits 151

LU Registration
The logical unit (LU) registration user exit, UARG, allows you to select the local LUs
that the TPF system registers with the APPN network. A local LU is any LU that
resides in any processor in the loosely coupled complex.

The TPF system starts the registration process when CP-CP sessions become
active. UARG is called, for each local LU, during the registration process.

Input
R2 RVT1 address of the TPF LU to be registered.

Programming Considerations
v IBM provides sample code for UARG, which sets the return code to 0 indicating

that the LU should be registered.

v If all TPF local LUs have been predefined to the APPN network, you do not need
to register them. Code UARG to set return code 2 in this case.

v A TPF local LU must be defined to the APPN network for a remote LU to
establish a session with that TPF LU. The TPF local LU must either be
predefined or registered.

v Data level D0 must not be modified. All other data levels are available for use by
this user exit.

v EBW000–EBW103 and CE1UR1–CE1UR6 must not be modified.
EBX000–EBX103 is available for use by this user exit.

Return Values
R7 contains the return code:

0 Register this LU

1 Do not register this LU, but continue the LU registration process

2 Do not register this LU and end the LU registration process.

152 TPF V4R1 System Installation Support Reference

LU 6.2
The session services interface (SSI) routines are called by CMW0 with the CREMC
or ENTNC macro to perform session status notifications. These notifications
include:
v Session activation (CSXA)
v Conversation allocation (CSXB)
v Session termination (CSXC).

Input
Data macro SH0LL maps the passed parameters starting at location EBW000.

Programming Considerations
1. These exits provide the skeleton to display the values passed from CMW0.

2. You must implement SSI user exits.

ECB-Controlled Program User Exits 153

MATIP ASCU List
The Mapping of Airline Traffic over Internet Protocol (MATIP) agent set control unit
(ASCU) user exit, UMATAS, defines a list of ASCUs to be included in the Open
Confirm response to a Session Open request for a Type-A conversational session
when the Session Open request does not contain any ASCUs. UMATAS also
defines a list of ASCUs to be included in a Session Open request sent by the TPF
system to a remote server on some other remote system.

UMATAS is called in CMACMD.

Input
IPaddress A pointer to the Internet Protocol (IP) address that sent a Session

Open request to the TPF system, or a pointer to an IP address that
is to receive a Session Open request from the TPF system.

H1H2 An unsigned short integer containing a 2-byte remote ID (H1H2)
used to identify the session.

ASCU_size An unsigned short integer containing a 2-byte field that indicates
the number of bytes (either 2 or 4) assigned to each ASCU
identifier.

list A pointer to a char* that you fill in that contains a contiguous list of
2-or 4-byte ASCUs. These ASCUs are to be included in the Open
Confirm response to a Session Open request or in a Session Open
request.

Programming Considerations
v All data levels must be returned to the caller in the same state that they were on

entry.

v Use UMATAS for Type-A conversational sessions only.

v UMATAS is responsible for obtaining the storage needed for the ASCU list.

Return Values
UMATAS returns the number of ASCUs in the ASCU list.

154 TPF V4R1 System Installation Support Reference

MATIP Assign LNIATA
The Mapping of Airline Traffic over Internet Protocol (MATIP) assign LNIATA user
exit, UMATAL, allows you to assign a line number, interchange address, and
terminal address (LNIATA) to a specific incoming data message. You can also use
this user exit to assign an LNIATA to a data message received by the IP Bridge if
you know the original Internet Protocol (IP) address.

UMATAL is called in CMADAT, CMOA, and CRII.

Input
lniata A pointer to an unsigned integer that will contain the LNIATA on

return.

session_type An unsigned integer containing the session type (Type-A
conversational, Type-A host-to-host, Type-A, Type B, or IP Bridge).

IPaddress A pointer to the 4-byte IP address of the message origin.

message_ID A pointer to the message identifier (ID). The contents of this field
depend on the session type indicator:

v If Type-A conversational, the agent set control unit (ASCU)
identifier (H1, H2, A1, A2 values from MATIP Session Open
request) and terminal address from the data packet.

v If Type-A host-to-host, the host identifier (H1, H2 values from the
MATIP Session Open) and flow ID from the data packet (if
present).

v If Type B, the sender high-level designator (HLD) and recipient
HLD.

v If IP Bridge, the port number on which the message was
received.

Programming Considerations
v You must be able to assign the appropriate LNIATA based on information

obtained from the original MATIP headers.

v All data levels must be returned to the caller in the same state that they were on
entry.

v The length of the message identifier field varies depending on the session type:

– The Type-A conversational field is 5 bytes.

– The Type-A host-to-host field is 3 bytes.

– The Type B field is 4 bytes.

– The IP Bridge field is 2 bytes.

Return Values
UMATAL returns one of the following values:

0 The LNIATA is identified and returned to the caller.

Negative Number
The LNIATA is not identified and, therefore, is not returned to the caller.

ECB-Controlled Program User Exits 155

MATIP Flow ID
The Mapping of Airline Traffic over Internet Protocol (MATIP) flow identifier (ID) user
exit, UMATFI, allows Societe Internationale de Telecommunications Aeronautiques
(SITA) host-to-host communication to allocate message charges to the appropriate
host airlines. The byte contents are agreed on an airline-to-airline basis for billing
purposes.

UMATFI is called in CMADAT.

Input
H1H2 The host identifier (H1, H2, values from MATIP Session Open). If H1, H2 is

not provided, the flow ID and NULL pointers for H1, H2 are passed.

flowID The flow ID from the data packet.

Programming Considerations
All data levels must be returned to the caller in the same state that they were on
entry.

Return Values
UMATFI returns one of the following values:

0 Continue the processing of the data packet.

Negative Number
End the processing of the data packet.

156 TPF V4R1 System Installation Support Reference

MATIP Host Name
The Mapping of Airline Traffic over Internet Protocol (MATIP) host name user exit,
UMATCH, allows you to select a remote host or modify the host record data area
(user_area in TPF collection support database MATIP_DS) for outbound sessions.
You can search the host name table and use the line number, interchange address,
and terminal address (LNIATA) to select the remote host.

UMATCH is called in CMACMD.

Input
lniata The LNIATA of the remote host.

pHost A pointer to the start of the host name table.

nHosts The number of host records configured in the host name table.

Programming Considerations
v All data levels must be returned to the caller in the same state that they were on

entry.

v The selected host name must be defined in your Domain Name System (DNS)
server so it can be resolved by the gethostbyname function.

v You must provide a table that ends with a zero, of LNIATAs and host names. The
following is an example:
#define LNIATA_TBL
{{0X00D40103,"HOST1.POK.IBM.COM"},
{0X00D40104,"HOST2.POK.IBM.COM"},
{0," "}}

Return Values
UMATCH returns one of the following values:

Address The address of the entry in the host name table that contains the
selected host name so message traffic can start.

Null The host name is not in the host name table. The request to start
message traffic exits.

ECB-Controlled Program User Exits 157

MATIP Router
The Mapping of Airline Traffic over Internet Protocol (MATIP) router user exit,
UMATRO, allows messages to be routed to the appropriate application when a
terminal address table (WGTA) entry is not used to route the message. This user
exit is entered when data is received for either Type-A host-to-host messages or
Type-B messages.

UMATRO is called in CMADAT.

Input
session_type An unsigned integer containing the type of message (Type-A

host-to-host or Type B).

sock An integer containing the socket number.

IPaddress A pointer to the 4-byte Internet Protocol (IP) address of the
message origin.

message_text A pointer to a data message.

subtype An integer containing the traffic subtype for Type-A host-to-host
sessions, or end-to-end messaging responsibility transfer protocol
used for Type B.

message_ID A pointer to the message identifier.

v For Type-A host-to-host sessions, the message identifier contains
the H1, H2, and flow ID.

v For Type-B sessions, the message identifier contains the sender
and recipient high-level designator (HLD).

pload_len The data length.

Programming Considerations
v The message passed to UMATRO is not translated or converted to AM0SG

format, and an routing control parameter list (RCPL) is not built before UMATRO
is entered.

v UMATRO is not used for Type-A conversational sessions.

v Equates for the type of message are defined in the c$trmeq.h header file, which
is included by UMATRO.

v Equates for the traffic subtype for Type-A host-to-host sessions and for
end-to-end messaging responsibility transfer protocol used for Type-B sessions
are defined in UMATRO:

– IATA host-to-host traffic subtype for Type-A host-to-host sessions.

– SITA host-to-host traffic subtype for Type-A host-to-host sessions.

– BATAP end-to-end message responsibility transfer protocol for Type-B
sessions.

Return Values
UMATRO is expected to be entered without a return to the caller.

158 TPF V4R1 System Installation Support Reference

MATIP Security
The Mapping of Airline Traffic over Internet Protocol (MATIP) security user exit,
UMATSE, validates Session Open requests received from a remote system.

UMATSE is called in CMACMD.

Input
IPaddress A pointer to the 4-byte Internet Protocol (IP) address of the

message origin.

session_type An unsigned integer containing the session type: Type-A
conversational, Type-A host-to-host, Type-A, or Type B.

remote_ID An unsigned short integer containing a 2-byte remote identifier (ID)
that is used to help identify the remote host.

v For Type-A conversational, this field contains the number of bytes
assigned to each agent set control unit (ASCU) identifier (either 2
or 4 bytes).

v For Type-A host-to-host, this field contains the H1H2 (2-bytes
that contribute to the identifier) of the remote host.

v For Type B, this field contains the high-level designator (HLD) of
the sender.

ASCU_in A pointer to the beginning of a contiguous list of ASCUs that have
been sent as part of the Session Open command for Type-A
conversational traffic. This field is set only for Type-A conversational
sessions and is set to NULL for other sessions.

ASCU_count An integer indicating the number of ASCUs present in the
contiguous list of ASCUs.

ASCU_accept A pointer to char * that you fill in, which contains a list of ASCUs to
accept from the Session Open request for Type-A conversational
sessions. This field is set to NULL for all other sessions.

accept_count A pointer to an integer indicating the number of ASCUs that are
being accepted by the user.

ASCU_reject A pointer to char * that you fill in, which contains a list of ASCUs to
be rejected from the Session Open request for Type-A
conversational sessions. This field is set to NULL for all other
sessions.

reject_count A pointer to an integer indicating the number of ASCUs that are
being rejected by the user.

Programming Considerations
v All data levels must be returned to the caller in the same state that they were on

entry.

v Session types are defined in the c$trmeq.h header file and are limited to:
TPMATPA, TPMATPH, TPMATPRT, and TPMATPB.

Return Values
UMATSE returns one of the following values:

0 The Session Open request is not rejected and control is returned to the
caller.

ECB-Controlled Program User Exits 159

Negative Number
The Session Open request is rejected .

160 TPF V4R1 System Installation Support Reference

MATIP Session Start
The Mapping of Airline Traffic over Internet Protocol (MATIP) session start user exit,
UMATSS, initializes a session with a device or remote system. Characteristics for
the session can be defined when a line number, interchange address, and terminal
address (LNIATA) and an IP address pointer are passed to UMATSS. UMATSS also
enables you to start a Type-A host-to-host session or a Type-B session with a
remote system when a terminal address table (WGTA) entry is not associated with
the session.

UMATSS is called in CMACMD.

Input
session_type A pointer to an unsigned integer containing the session type

(Type-A conversational, Type-A host-to-host, or Type B).

lniata A pointer to the LNIATA being addressed. If the LNIATA is equal to
–1, no WGTA entry is associated with the session.

IPaddress A pointer to the in_addr structure that contains the 4-byte IP
address returned by the gethostbyname function.

session_ID A pointer to the message identifier (ID). The contents of this field
will be set by the user and will be consistent with the session type
associated with the session.

v For Type-A conversational sessions and Type-A MATIP printers,
an H1, H2, A1, A2 value can be defined.

v For Type-A host-to-host sessions, an H1, H2, and flow ID can be
defined.

v For Type B sessions, a sender and recipient high-level
designator (HLD) can be defined.

encoding A pointer to an integer containing the encoding of the format (such
as ASCII, EBCDIC, and so on).

subtype A pointer to an integer containing the agent set control unit (ASCU)
length, traffic subtype, or messaging responsibility transfer protocol
used.

v The ASCU length for Type-A conversational sessions can be:

– 0 if no ASCUs are being specified

– 2 if a 2-byte ASCU is being specified

– 4 if a 4-byte ASCU is being specified.

v The traffic subtype for Type-A host-to-host sessions can be IATA
host-to-host or SITA host-to-host.

v The message responsibility transfer protocol for Type-B sessions
can be BATAP. The default is routing based on the application
index in the associated terminal address table (WGTA) entry.

multiplex The type of ASCU or host-to-host session:

v The ASCU type for Type-A conversational sessions can be:

– A group of ASCUs with a 4-byte ID for each ASCU
(H1H2A1A2)

– A group of ASCUs with a 2-byte ID for each ASCU (A1A2)

– A single ASCU for a single session (A1A2).

v The type of session for Type-A host-to-host can be:

ECB-Controlled Program User Exits 161

– A multiple flow inside the TCP/IP connection (more than one
host can be connected)

– A single flow (a single host connected to a single host).

Programming Considerations
v All data levels must be returned to the caller in the same state that they were on

entry.

v You must modify UMATSS to initiate a MATIP session with a device or remote
system if you do not use the ZMATP command to associate an IP address with
the device or remote system.

Return Values
UMATSS returns one of the following values:

0 The session setup data is returned.

Negative Number
The session setup data is not returned.

162 TPF V4R1 System Installation Support Reference

MATIP Translation
The Mapping of Airline Traffic over Internet Protocol (MATIP) translation user exit,
UMATTR, translates message text according to user requirements. UMATTR is
entered during data packet processing of input or output.

UMATTR is called in CMADAT, CMOA, CMOB.

Input
message A pointer to the message being sent.

encoding_in An integer containing the encoding of the message on entry to
UMATTR.

encoding_out An integer containing the encoding of the message on exit from
UMATTR.

Programming Considerations
v All data levels must be returned to the caller in the same state that they were on

entry.

v For inbound messages, UMATTR will translate from the encoding specified in the
original Session Open request to EBCDIC encoding.

v For outbound messages, UMATTR will translate from EBCDIC encoding to the
encoding specified in the original Session Open request.

v Equates for encoding are contained in the user exit and are limited to padded
Baudot, IPARS, ASCII, and EBCDIC.

v EBW100 to EBW103 contains the message length and should not be written
over.

Return Values
v When the translation takes place, a pointer to the translated message is returned

to the caller.

v When the translation does not take place, a pointer to the original message is
returned to the caller.

ECB-Controlled Program User Exits 163

Message Queue Interface (MQI) Channel Exits
Standard MQI client support comes with 3 user exits that allow you to customize
the channel interface. These exits are referred to as message channel agent (MCA)
exit routines in the MQSeries publications. These exits are optional and only called
if they have been defined in the MQI channel directory using the ZMQID DEFINE or
ZMQID ALTER command. The MCA exits are:

Security Normally, security exits work in pairs, one at both the client and
server ends of the channel. This exit is provided to give the
customer the ability to check authorization to start the channel
connection. The security exit is called when the MQI channel is first
started.

Receive The receive exit is called after each message segment is received
from the server.

Send The send exit is called just before a message segment is
transmitted on the server.

Programming Considerations
1. The interface for the MCA exits are specified in the cmqxc.h header file. The

user exit code will be given control using the standard ISO-C DLM enter.

2. If an irrecoverable error occurs, the MCA user exits can SERRC with exit.
Otherwise, the user exits should always return to the MQI client support code,
only manipulating the data passed in the documented interface.

3. Any fields used in the ECB should be restored to their original values before
returning to the MQI client support code.

Note: For a detailed description on how the MCA exits work, see the MQSeries
Distributed Queue Management Guide. For more information about defining
or changing MQI channel definition exit attributes see the ZMQID DEFINE
and ZMQID ALTER command descriptions in TPF Operations.

164 TPF V4R1 System Installation Support Reference

Message Router
The message router exit, COBC, is called by COA4 before routing the message to
the application.

This user exit can be used in the following ways:

1. The text of the message on data level 0 can be altered.

2. The destination of the message can be changed by altering the destination field
in the RCPL.

3. Additional information can be passed to the destination application by changing
the RCPL to the expanded format and adding the general data area.

4. By inspecting R5 and changing its contents, it is possible to force an I-stream.

Input
R5 Destination I-stream number

D0 Input message in AM0SG format

D1 Reserved

D2 Reserved

D3 Reserved

EBW000–EBWXXX
The RCPL of the destination message (the length depends on
whether it is an expanded RCPL and the size of the general data
area).

EBX064–EBX103
Reserved

EBROUT Reserved

CE1DBI Database ID of the basic subsystem

CE1PBI Program base ID of the basic subsystem

CE1SSU Subsystem user ID of the basic subsystem

CE1ISN Reserved.

Programming Considerations
v Data level 0 should still contain the input message on return to COA4. Data level

1 through 3 must not be altered. All other levels must not be holding any core
blocks.

v COBC is a dynamic exit and is only called when SYSTC switch SBCOMXT is set
on.

v During the system installation process, ‘COMMEXIT=YES’ on the MSGRT macro
must be coded to set SBCOMXT on.

ECB-Controlled Program User Exits 165

Module Copy Selection/Validation
The module copy selection/validation user exit, UCPY, is entered at the point where
additional module verification checks can be done. For example, you could add
code here to determine if the modules to be copied are on the same channel.
Additional user information can be provided to UCPY by entering the ZMCPY ALL
and ZMPCY UP commands with the TOKEN parameter specified. See TPF
Operations for more information about these commands.

UCPY is called by the ZMCPY ALL and ZMPCY UP commands.

Input
ECB data field EBW048–EBW052 contains the user token if the TOKEN parameter
is specified when the ZMCPY ALL or ZMCPY UP command is entered. If the
TOKEN parameter is not specified, this field is set to X'00'. If the TOKEN parameter
is specified, the format of the field is ltttt where:

l is the length of the token.

tttt is the 1- to 4-character token.

Programming Considerations
v IBM ships UCPY in skeleton form with one return statement.

v All data levels, registers, and ECB work areas must be returned to the caller in
the same state they were on entry.

v UCPY will issue any output messages that may be associated with validation
errors found here.

Return Values
R2 contains the return code:

0 Indicates that the copy will be aborted.

Nonzero Indicates that copy processing can continue.

166 TPF V4R1 System Installation Support Reference

Nonsocket Activation
The nonsocket activation user exit, CLCQ, allows nonsocket Common Link Access
to Workstation (CLAW) applications to be activated. CLCQ is activated during
system cycle-up processing if nonsocket CLAW applications exist.

Input
v A pointer to the CLAW device table (CDT) (structure defined in c$isccdt.h). The

structure contains the following information:

– CLAW adapter ID

– Workstation name

– Workstation application name

– Host application name

– CLAW symbolic device address (SDA)

– CLAW device status indicator.

Programming Considerations
If this user exit is updated to contain writable static, compile it using the RENT
option.

Return Values
None.

ECB-Controlled Program User Exits 167

Nonsocket Connect
The nonsocket connect user exit, CLCU, allows nonsocket Common Link Access to
Workstation (CLAW) applications to be activated. CLCS is activated during connect
processing.

Input
EBW000 EP ID (X'02')

EBW004–EBW011 Device name

EBW012–EBW015 Pointer to CLAW adapter block

EBW016–EBW019 Global anchor

EBW020–EBW023 Path anchor

EBW024–EBW031 Reserved

EBW032–EBW033 Path ID

EBW034–EBW035 Reserved

EBW036–EBW043 Host application name

EBW044–EBW051 Workstation application name.

Programming Considerations
If this user exit is updated to contain writable static, compile it using the RENT
option.

Return Values
None.

168 TPF V4R1 System Installation Support Reference

Nonsocket Deactivation
The nonsocket deactivation user exit, CLCM, allows nonsocket Common Link
Access to Workstation (CLAW) applications to deactivate nonsocket CLAW
application resources. CLCM is activated by CLAW device failures, device
disconnects, and during system cycle-down processing if nonsocket CLAW
applications exist.

Input
v A pointer to the CLAW device table (CDT) (structure defined in c$isccdt.h). The

structure contains the following information:

– CLAW adapter ID

– Workstation name

– Workstation application name

– Host application name

– CLAW symbolic device address (SDA)

– CLAW device status indicator.

Programming Considerations
If this user exit is updated to contain writable static, compile it using the RENT
option.

Return Values
None.

ECB-Controlled Program User Exits 169

Nonsocket Message
The nonsocket message user exit, CLA4, allows messages to be routed to specific
nonsocket applications. CLA4 is entered when a nonsocket workstation sends a
message to the TPF host.

Input
EBW000 Entry point (EP) ID (X'01')

EBW004–011 Device name

EBW012–015 Adapter ID

EBW016–019 Global anchor

EBW020–023 Path anchor

EBW024–027 Buffer address

EBW028–031 Buffer type and size

EBW032–033 Path ID.

Programming Considerations
v If this user exit is updated to contain writable static, compile it using the RENT

option.

v Because socket is currently the only supported Common Link Access to
Workstation (CLAW) protocol application, CLA4 is shipped with code that issues
a SNAPC dump.

Return Values
None.

170 TPF V4R1 System Installation Support Reference

Output Message Filtering
Segment UOP1, the first of 2 user exits, is called before segment CVIQ builds its
internal routing table and enters segment CVI1 to duplicate the message.

Segment UOP1 allows the routing destination of the message to be modified. If
desired, the message can be suppressed by turning on the Message Suppression
Indicator (EBX074). The message can also be rerouted by changing the routing
code that has been passed to the user exit in Register 6 (R6). The message can be
routed to a functional support console (FSC) on your TPF system or on another
TPF system.

Note: If the LMT bypass bit (bit CE1ALMT of CE1CPA in the ECB) is ON when
UOP1 is entered, do not change the routing code that has been passed to
UOP1 in Register 6 (R6).

To reformat a message, alter the text of the message that is in the message block
on data level 6. If the message is changed in this exit, all recipients get the
changed version. To change the message format for just one FSC destination,
place the corresponding routing code in the User Format Indicator
(EBX072–EBX073). When the User Format Indicator has been set, UOP2 is
entered to enable you to reformat the message for the intended receiver.

The output of the exit is used to build the routing table, and to show whether to
invoke the second exit, UOP2.

Note: Since IPL messages are considered critical messages, they are sent to both
the PRC and RO CRAS. Messages can only be rerouted after the system
has reached 1052 state, or above.

Input
R6 FSC routing codes.

EBX072–EBX073
User format indicator (set to ’0’ by CVIQ)

EBX074 Message suppression indicator (set to 0 by CVIQ)

D7 Output message block

D9 Mass prefix message block.

Programming Considerations
v Return is NSI in CVIQ on exit from UOP1. CVIQ saves and restores all registers

across the exit.

v The released version of UOP1 executes a BACKC macro and returns to CVIQ.

v Performance impact is a user responsibility when implementing user code in
UOP1.

ECB-Controlled Program User Exits 171

Output Message Re-formatting
After the routing table has been built, but before simulation, the second exit,
segment UOP2, is called, by CVIQ, if the User Format Indicator has been set. The
purpose of this exit is to allow reformatting of the message for just one FSC
receiver. You can also provide 3270 simulation code in this user exit, thus choosing
to bypass the simulation provided by segment CVIQ. To bypass simulation, the
Simulation Indicator (EBX074) that has been passed to the exit, must be turned on.
The main use of this second exit is to add special start and end delimiters to a
message intended for ISCF/PC without affecting the output to the other consoles.

Input
EBX074 User simulation indicator (set to 0 by CVIQ)

D6 Output message block

D9 Mass prefix message block

Programming Considerations
v Return is NSI in CVIQ on exit from UOP2. CVIQ saves and restores all registers

across the exit.

v The released version of UOP2 executes a BACKC macro and returns to CVIQ.

v Performance impact is a user responsibility when implementing user code in
UOP2.

172 TPF V4R1 System Installation Support Reference

Program Event Recording (PER)
The PER user exit, UPER, is called by system error processing. This exit provides
a means of changing the output destination for data captured by a PER interrupt.
This exit also permits changes in the amount and/or format of the interrupt data
displayed.

Input
D0 PER data block

Programming Considerations
1. The identification of the alternate destination must have been specified when

PER was activated. The ZSPER command provides the PRINTER parameter
for this purpose. The value specified for PRINTER parameter is passed to
UPER with the PER interrupt data. The programming required to support this
option is a customer responsibility.

2. UPER contains sample code that formats the PER interrupt data and prints it on
the RO CRAS.

ECB-Controlled Program User Exits 173

Program History
The program history exit, UELM, makes it possible to track changes to the program
database.

UELM is called by the following commands:
v ZOLDR LOAD
v ZOLDR ACTIVATE
v ZOLDR DEACTIVATE
v ZOLDR ACCEPT
v ZOLDR EXCLUDE
v ZTPLD LOAD
v ZOLDR REINCLUDE
v ZOLDR DELETE
v ZAPGM
v ZAPAT

Note: ZAPGM calls UELM if the file copy of the program is updated. UELM will not
be called if the ZAPAT command is entered before E-type loader restart has
completed.

Input
v Address of pgm_history_parms structure that contains the parameters available

to this function

v D1 - EMR data levels.

v D7 - Contains a block if called from the ZAPGM command.

Programming Considerations
v UELM is shipped in skeleton form, with one return statement.

v All data levels must be returned to the caller in the same state they were upon
entry.

Return Values
Void.

174 TPF V4R1 System Installation Support Reference

REARRANGE_CTK9 (UPX0)
The REARRANGE_CTK9 user exit, UPX0, performs any needed accounting or
utility functions when the TPF system retrieves keypoint 9 (CTK9) through the
CYYM interface. You can also provide your own function to convert CTK9 from its
current format to 32-way loosely coupled pool support format or a user-defined
format compatible with 32-way loosely coupled pool support format.

The REARRANGE_CTK9 user exit is called by the REARRANGE_CTK9 function in
segment CYH0.

Input
EBXSW0 Contains the index of the data level that contains CTK9 in pool

expansion (PXP) format. The index is in the form of data level 0
(D0) to data level E (DE).

EBXSW1 Contains switches used by segments CYYM and CYH0. These
switches can only be queried by this user exit.

Return Values
R6=0 Default return code. If this value is returned, CYH0 converts CTK9

from PXP format to 32-way loosely coupled pool support format.
Use this return code if you code the user exit and do not change
CTK9.

R6=1 If this value is returned, CYH0 does not change CTK9 and
immediately returns to its caller. Use this return code if you code
this user exit and convert CTK9 from its current format to 32-way
loosely coupled pool support format or a user-defined format
compatible with 32-way loosely coupled pool support format.

R6=2 If this value is returned, CYH0 does not change CTK9. CYH0 runs
its error handling function before returning to its caller. Use this
return code to cause error processing if you code this user exit and
convert CTK9 from its current format to 32-way loosely coupled
pool support format or a user-defined format compatible with
32-way loosely coupled pool support format.

Programming Considerations
v This user exit is called by CYH0 when the conversion mode indicator (CY1MD32)

in CTK9 is PXP or CONVERTING. If the conversion mode indicator is 32LC or
FALLING_BACK, CYH0 does not call this user exit.

v As shipped by IBM, this user exit issues a BACKC macro to immediately return
to the caller. CTK9 remains unchanged.

v You can use all data levels and registers if the data levels and registers are
saved before use and restored before returning to the caller. Data level F (DF)
contains a work block used by segment CYYM.

v If R6=0 on return, CTK9 must be in PXP format and must be on the same data
level where it was on entry to the user exit.

v If R6=1 or R6=2 on return, CTK9 must be on the data level specified by
EBXSW0 and in 32-way loosely coupled pool support format or a user-defined
format compatible with 32-way loosely coupled pool support format.

ECB-Controlled Program User Exits 175

References
See TPF Database Reference for more information about pool support.

176 TPF V4R1 System Installation Support Reference

Recoup Command
The recoup command exit, BRU1, will be activated when a ZRECP message has
been entered and TPF does not recognize the command. BRPA, the Recoup
Command Editor, will enter BRU1 just before issuing the ‘ILLEGAL ACTION’
message via BRTO.

Input
EBW000–049 Input message. Use MI0MI to map.

R5 Base of input message (MI0MI).

Programming Considerations
1. If control is returned to BRPA, the message is assumed to be invalid, and a

message will be issued to that effect.

2. If control is returned to BRPA, then ECB data levels 5 and 6 must be available.

ECB-Controlled Program User Exits 177

Recoup Phase 1
The recoup chain chase exit, BRU2, is called by BKB1, transfer vector of BKB0.
BKB1 is the Phase 1 completion segment. After it has determined that it is not an
‘abort’ or ‘timeout’ condition, and that all subsystems have been processed, the exit
is activated.

Input
R1=0 Shows entry from BKB1.

R5 Base of global area.

R6 Base of in-core recoup keypoint

R7 Base of recoup save area.

D5 Recoup save area.

Programming Considerations
Control must be returned to BKB1 if user-unique recoup is not activated.

178 TPF V4R1 System Installation Support Reference

Recoup Restart
The recoup chain chase exit, BRU2, is called by BRSH, the recoup restart segment,
if chain chasing was in progress before the system was IPLed. BRSH determines if
the RCP tape is open and the sequence number (BK0SQN) is nonzero. If so, BRU2
is entered. Otherwise, recoup is restarted from the beginning.

BRU2 must be able to determine if user chain chasing was in progress. If so, it
must determine where it should restart from. If user chain chasing was not in
progress, BRU2 must return to allow BRSH to decide where in TPF recoup to
restart from.

Input
R1=4 Shows entry from BRSH.

R4 Base of in-core recoup keypoint

R6 Base of global area.

D0 Recoup save area.

D6 Recoup logging block.

Programming Considerations
Control must be returned to BRSH.

ECB-Controlled Program User Exits 179

Segment URS1
The System Restart exit, URS1, is called by the Restart Scheduler, CTKS, just
before CCP restart.

Input
None.

Programming Considerations
1. Control must be returned to CTKS so that restart will complete.

2. URS1 is called only in the BSS. If you need to perform restart on a function in
another subsystem, URS1 must be coded to change the database ID (DBI) in
the ECB and to invoke user restart segments using the CROSC macro.

180 TPF V4R1 System Installation Support Reference

Segment URS2
The Restart Schedule exit, URS2, is called by the Restart Scheduler, CTKO, just
before reaching 1052 state.

Input
None.

Programming Considerations
1. Control must be returned to CTKO so that restart will complete.

2. URS2 is called only in the BSS. If you need to perform restart on a function in
another subsystem, URS2 must be coded to change the DBI in the ECB and to
invoke user restart segments using the CROSC macro.

ECB-Controlled Program User Exits 181

Segment USC1
The Cycle-Down exit, USC1, is activated by the State Change Cycle Down
segment, CTKR, just after WGTA keypointing. This exit can be used to keypoint
user tables or any other user process during cycle down.

Input
R9 ECB Base

Programming Considerations
Control must be returned to CTKR in order for State Change to complete.

182 TPF V4R1 System Installation Support Reference

Segment USC2
The Cycle-Up exit, USC2, is activated by the State Change Cycle Up segment,
CTKT, just after WGTA keypointing has been activated.

Input
R9 ECB Base

Programming Considerations
Control must be returned to CTKT in order for State Change to complete.

ECB-Controlled Program User Exits 183

Segment USC3
The Cycle-Down exit, USC3, is activated by the State Change Cycle-Down
real-time program, CTKR, at the beginning of each of the following cycle-down
schedules:
v from CRAS to 1052
v from MESW to 1052
v from MESW to CRAS
v from NORM to 1052
v from NORM to CRAS
v from NORM to MESW.

Input
R9 ECB Base

Programming Considerations
v Control must be returned to CTKR in order for State Change to complete.

v Check the state (indicated at byte CMMSTI+1) you are cycling from and to before
invoking other routines.

184 TPF V4R1 System Installation Support Reference

Segment USC4
The Cycle-Up exit, USC4, is activated by the State Change Cycle-Up real-time
program, CTKT, at the end of the following cycle-up schedules (just before the call
to CVCX to set the state indicator):
v from 1052 to UTIL
v from 1052 to CRAS
v from 1052 to MESW
v from 1052 to NORM
v from CRAS to MESW
v from CRAS to NORM
v from MESW to NORM.

Input
R9 ECB Base

Programming Considerations
v Control must be returned to CTKT in order for State Change to complete.

v Check the state (indicated at byte CMMSTI+1) you are cycling from and to before
invoking other routines.

ECB-Controlled Program User Exits 185

Select A Host
The select a host user exit, UAPN, allows you to select the TPF processor in the
loosely coupled complex to assign to a new LU-LU session. UAPN is also valuable
in a uniprocessor TPF environment because it allows you to select a path (link) for
the session.

The TPF system invokes UAPN when a session activation request (LOCATE
command) is received on the CP-CP sessions.

Input
R1 RVT1 address of the remote LU

R2 RVT1 address of the local TPF LU

R5 Pointer to the table containing active links for the TPF loosely
coupled complex. The ITAPST DSECT maps out the entries in this
table.

EBW000 Indicator byte (zero or more bits can be set)

X'80' The TPF LU is processor-unique, or the remote LU is an
LU 6.2 node that already has one or more sessions with a
TPF processor; therefore, the TPF processor has been
selected.

X'40' The APPN network provided a suggested route for the
LU-LU session.

EBW001 The CPU ID of the selected or suggested TPF processor. The value
of this field is based on the value of the EBW000 field as follows:

v If EBW000 is 0, EBW001 is not defined.

v If EBW000 bit X'80' is on, then EBW001 contains the selected
TPF processor and this value cannot be changed by the user
exit.

v If EBW000 bit X'80' is off and bit X'40' is on, EBW001 contains
the suggested TPF processor, which was determined by the
suggested link provided by the APPN network. You can choose
to not use the selected link and change this value.

EBW010–EBW017
Mode name of the session

EBW020–EBW027
The ALS name of the suggested link. This field is defined only when
bit X'40' in field EBW000 is set.

Programming Considerations
v IBM provides sample code for UAPN, which sets the return code in field EBW002

to 0 indicating that the TPF system should select the TPF processor to use for
the LU-LU session. A round-robin method is used to distribute session activation
requests among the active processors in the loosely coupled complex that are in
CRAS state or above.

v Data levels D0 and D1 must not be modified. All other data levels are available
for use by the user exit.

v If the TPF processor has been chosen (EBW000 bit X'80' is on), you cannot
change the selected TPF processor. However, you can select which link to use.

186 TPF V4R1 System Installation Support Reference

v If the remote LU is the SLU, the APPN network may have included a suggested
path in the LOCATE. If so, the name of the suggested ALS, along with the TPF
processor connected to that link, are passed as input to this user exit in fields
EBW020–EBW027 and EBW001 respectively. You have three choices in this
case:

1. Use the suggested link.

2. Choose a different link, TPF processor, or both.

3. Tell the TPF system to select the TPF processor (the APPN network will
select).

Return Values
EBW002 Option chosen by the user exit:

0 The user exit did not select a TPF processor or a link. If the
TPF system has not already selected the TPF processor
(EBW000 bit X'80' is not set), the default logic in the TPF
system will be used to select a TPF processor. Regardless
of the value of field EBW000, the APPN network will select
the link.

1 The user exit selected a TPF processor and, optionally, a
link.

If the TPF system has not already selected the TPF
processor (EBW000 bit X'80' is not set), field EBW001 must
contain the CPU ID of the TPF processor you selected. The
processor you selected must be in CRAS state or above.

If you also selected a link, field EBW020–EBW027 must
contain the name of the selected ALS.

2 The user exit chose to use the suggested path. This return
code is valid only if EBW000 bit X'40' was set on input to
UAPN.

EBW001 CPU ID of the selected TPF processor.

EBW020–EBW027
ALS name of the link selected for the LU-LU session.

ECB-Controlled Program User Exits 187

Select ALS to Adjacent APPN Node
The select adjacent link station (ALS) to adjacent Advanced Peer-to-Peer
Networking (APPN) node user exit, UALS, allows you to select which ALS the TPF
system will use to start a session with an LU 6.2 resource that resides in an
adjacent APPN node.

UALS is called when the TPF system starts an LU 6.2 session and the local LU is
the primary LU (PLU) and the remote LU is known to reside in an APPN node
adjacent to the TPF system. Because the remote LU resides in an adjacent node,
there is no need to send a LOCATE search on the CP-CP sessions. Instead, a
BIND request can be sent directly to the adjacent APPN node. UALS selects the
ALS over which to send the BIND request.

Input
R3 SCB1 address of the LU 6.2 session being started.

R4 RVT1 address of the adjacent APPN control point (CP).

Programming Considerations
v When mode names are initialized between the TPF system and the remote LU

using the change number of sessions (CNOS) procedure, specifying the CP
parameter on the CNOSC INITIALIZE macro or ZNCNS INITIALIZE command
indicates that the remote LU resides in an adjacent APPN node. Specifying the
CP parameter during the CNOS procedure causes UALS to be called when
subsequent sessions with this remote LU are activated.

v IBM provides sample code for UALS, which selects the ALS to the specified
adjacent APPN CP that has the least number of active LU-LU sessions.

v If there are no active ALS links between the TPF system and the specified
adjacent APPN CP (the return code in R1 is set to 0), the TPF system will
perform the normal network search to find a path to the remote LU.

See TPF ACF/SNA Data Communications Reference for more information about
how the TPF system selects the path to use when starting a new LU-LU session.

v EBX048–EBX051 and data levels D0–D15 must not be modified.
EBW000–EBW103, EBX000–EBX047, and EBX052–EBX103 are available for
use by this user exit.

Return Values
R1 contains the return code:

0 No active ALS exists between the TPF system and the specified adjacent CP.

x The CCW index of the ALS over which to send the BIND request to start the
LU 6.2 session, where x is the CCW index.

188 TPF V4R1 System Installation Support Reference

Select an RTP Connection
The select a rapid transport protocol (RTP) connection user exit, URTP, allows you
to specify which RTP connection to use when an LU-LU session is started. You can
start a new RTP connection for the LU-LU session or you can choose an existing
RTP connection.

URTP is called only when the following conditions are true:

v An LU-LU session is being started.

v High-performance routing (HPR) support is enabled in the TPF system.

v The primary logical unit (PLU) resides in the TPF system.

v Part or all of the route calculated for this LU-LU session supports HPR support.

v One or more RTP connections that can be used for this LU-LU session already
exist.

Input
EBX016–EBX019

Address of the parameter list, which contains the following:

Bytes 0 –3 Number of existing RTP connections that can be
used for the LU-LU session.

Bytes 4 –n An 8-byte entry for each RTP connection that can
be used, which contains the following:

Bytes 0 –2 Rapid transport protocol control
block (RTPCB) index of the RTP
connection.

Byte 3 Status of the RTP connection,
which can be the following:

X'01' Starting

X'02' Connected

X'03' Switching

X'04' Moving

X'05' Resynchronizing.

See the IRTP_STATUS field in the
IRTPB DSECT for more
information.

Bytes 4 –7 Number of LU-LU sessions
currently using the RTP connection.

Programming Considerations
v IBM provides sample code for URTP, which selects the RTP connection that has

the least number of LU-LU sessions. If all of the RTP connections that can be
used have 20 or more LU-LU sessions, the sample code indicates that a new
RTP connection should be started.

v The logic for sending output messages processes each RTP connection equally,
regardless of the number of LU-LU sessions using each RTP connection. For
example, if one RTP connection has 100 LU-LU sessions and another RTP

ECB-Controlled Program User Exits 189

connection has 5 LU-LU sessions, both of these RTP connections are processed
equally. Therefore, try to distribute traffic equally over RTP connections.

v Data levels D0 and D4 must not be modified. All other data levels can be used
by this user exit.

v EBW000–EBW103 and EBX000–EBX103 must not be modified.

v See TPF ACF/SNA Data Communications Reference for more information about
HPR support.

Return Values
R0 contains the return code:

0 Start a new RTP connection.

x The RTPCB index of the RTP connection to be used.

190 TPF V4R1 System Installation Support Reference

Select TCP/IP Support
The select TCP/IP support user exit, USOK, allows you to select either TCP/IP
offload support or TCP/IP native stack support for a given socket.

USOK is called only when all of the following conditions are true:

v Both TCP/IP offload support and TCP/IP native stack support are defined in the
TPF system.

v A socket function call is issued.

USOK is called in segment C536.

Input
applname A character string pointer to the name of the application that issued

the socket function.

Programming Considerations
v IBM provides sample code for USOK, that selects offload support for all socket

function requests.

v All entry control block (ECB) fields and data levels must be returned to the caller
in the same state they were on entry.

v USOK is a subsystem-unique dynamic load module (DLM).

v The value returned by USOK, indicating the type of TCP/IP support, determines
how subsequent gethostid and gethostname functions are processed for this
ECB. See TPF Transmission Control Protocol/Internet Protocol for more
information about the gethostid and gethostname functions.

v If the value of applname is CLTX, INETD is creating the socket. The server
program defined to INETD that is being started is contained in EBX000–EBX003.

Return Values
USOK returns one of the following values:

0 Use TCP/IP offload support.

1 Use TCP/IP native stack support.

ECB-Controlled Program User Exits 191

Selective Activate Message Router
The selective activate message router exit, UELH, determines if an ECB is from an
ECB origin enabled to use a selectively activated loadset. If it is, UELH copies the
list of activation numbers associated with the ECB origin to a core area obtained
using MALLOC. It then calls the CEL9 assembler program to set up the ECB field
to point to the MALLOC area and update the EAT (ECB Activation Table) slots.

UELH is called by the message router package.

Input
v Length of the activation number.

v Maximum number of selective activation numbers allowed per ECB origin + 1.

v D0 - input message in AM0SG format.

v D1 - May contain AAA.

v D3 - May contain RCB.

Programming Considerations
v UELH is shipped in skeleton form, with one return statement.

v All data levels must be returned to the caller in the same state they were upon
entry.

v UELH should acquire MALLOC storage to build the activation number list.

v UELH must call CEL9 to update CE2ANL.

v The high-order bit of the MALLOC storage that contains the address of the
activation number list should be set as follows:

0 The order of the selective activation numbers is not significant. The
highest activation number assigned to the ECB that has a corresponding
program version is used.

1 The order of the selective activation numbers is significant. The first
activation number assigned to the ECB that has a corresponding program
version is used.

v See “Selective Activate Exits” on page 109.

The CE2ANL field has been added to the ECB. This field will contain the address of
the Selective Activation Number List. Opzero initializes CE2ACN with the system’s
current activation number. UELH initializes CE2ANL based on the origin of the ECB.

Each entry in the CE2ANL list is a 4-byte activation number with the last entry
having a F’0’ value. The user exit should scan the selective activation index for the
ECB origin, and if found, place the associated activation numbers in the list. The
maximum number of activation numbers that can be associated with an ECB origin
is limited by the size of an SWB (which is used when transferring the activation
number list from parent to child ECB).

Notes:

1. The CREM, CRED, and CREX macros pass an ECB activation number from the
parent ECB to the child ECB.

2. The CRET and SWISC TYPE-CREATE macros use the current ECB activation
number of the system for the child ECB.

192 TPF V4R1 System Installation Support Reference

The user exit must pass the address of the constructed activation number list to the
CE2ANL update routine. IBM code updates CE2ANL because CE2ANL resides in
protected page 2 of the ECB which should not be modified by user code.

IBM supplied code (CEL9) will increment the ECB count in the EAT slots associated
with each activation number in the activation number list.

Return Values
Void.

ECB-Controlled Program User Exits 193

Selective Activate Restart
The restart user exit, UELU, is used to rebuild user-defined selective activate tables
during an E-type loader restart. UELU is called before calling the task dispatcher to
process any entries remaining in the E-type loader control record (ECR) after the
ECR is merged with the E-type loader master record (EMR). The UELU exit makes
it possible to rebuild any selective activate structures.

The restart user exit, UELU, sets up user defined structures with information about
a loadset. This information is used when the loadset is selectively activated.

Note: Enter the ECB origin and loadset names allowed for that origin in a structure.

UELU, is called by:

v An E-type loader restart that reactivates the loadset when:

– The restart is not from a general file IPL.

– The subsystem is currently active and valid.

– There are #OLDx records for this subsystem.

– EMR can be found and held and ERD records are found without errors.

Input
The EMR data level.

Programming Considerations
v All data levels must be returned to the caller in the same state they were upon

entry.

v See “Selective Activate Exits” on page 109.

Return Values
Void.

194 TPF V4R1 System Installation Support Reference

Selective Activate Structure Initialization
The selective activate structure initialization exit, UELX, makes it possible to
initialize selective activate structures.

UELX, is called when the following commands are performed:

v ZOLDR DELETE

v ZOLDR CLEAR

Input
v Caller identifier

v Loadset name (blank padded on right).

Programming Considerations
v UELX is shipped in skeleton form, with one return statement.

v All data levels must be returned to the caller in the same state they were upon
entry.

v See “Selective Activate Exits” on page 109.

Return Values
Void.

ECB-Controlled Program User Exits 195

Selective Activate Structure Update
The selective activate structure update user exit, UELN, is used to set up user
defined structures with information about a loadset. This information is used when
the loadset is selectively activated.

UELN, is called by:

v The ZOLDR ACTIVATE lsname SEL command.

v A RESTART that reactivates the loadset.

Input
Loadset name (blank padded on right).

Programming Considerations
v UELN is called by ZOLDR ACTIVATE phase II.

v UELN is shipped in skeleton form, with one return statement.

v All data levels must be returned to the caller in the same state they were upon
entry.

v See “Selective Activate Exits” on page 109.

Return Values
Void.

196 TPF V4R1 System Installation Support Reference

Selective Core Resident Load
The selective core resident load user exit, UCLB, allows you to specify if a specific
core resident program will be loaded during restart. UCLB is called by the CLIB
segment to determine if a core resident program will be loaded.

Input
R5 Contains the address of the program allocation table (PAT) slot.

CE1DBI Contains the database identifier (DBI) of the subsystem that is
being processed by the CLIB segment.

CE1PBI Contains the program base identifier (PBI) of the BSS subsystem.

Programming Considerations
If multiple subsystems are present, the CLIB segment loads core resident programs
for each subsystem.

Return Values
R2 contains one of the following return codes:

0 Load the program.

Nonzero Do not load the program.

ECB-Controlled Program User Exits 197

Selective Recoup
The selective recoup user exit, BRU3, is called by BKA0, the selective recoup start
segment, when a descriptor record for the requested ID cannot be found. BRU3 is
entered just before the ‘UNABLE TO FIND DESCRIPTOR’ message being sent via
BRTO.

Input
EBW000–019 Input message formatted like a logging block item.

D0 Input message.

Programming Considerations
1. If control is returned to BKA0, then it assumes the input data is incorrect and

will issue a message to that effect.

2. If control is returned to BKA0, then ECB data levels 5 and 6 must be available
to be used.

198 TPF V4R1 System Installation Support Reference

SLC Communication Source
The SLC type-B message handler segment (CIM2) is activated by the SLC
Communications Source Program (CIMM). CIM2 is only activated when, at system
initialization time, you specify that no message switching is to be included in the
system.

Input
R1 Pointer to input message prime block.

D0 Message block in communication message format (see data macro
XM0RL).

Programming Considerations
v CIM2 is shipped in skeleton form. You must implement the functions normally

performed by message switching.

v If you have failed to replace this skeleton with the desired message switching
package, a system error will result.

v The SLC Communications Source Program (CIMM) enters CIM2 and does not
return.

ECB-Controlled Program User Exits 199

SNA Communication Route Selection
The route selection user exit, CSJV is activated by the CDCINIT request PIU
processor (CSJC). This exit selects a virtual route (VR) for an LU-LU session when
the TPF system issues the BIND request PIU. The SNA communication route
selection exit is necessary because 2 VRs can be active between 2 adjacent
subareas. TPF supports VR 0 and VR 1 across channel-to-channel (CTC) links.

Route selection is specified by updating the CCW area index in field RV1CCWIN of
the secondary LU’s (SLU) resource vector table, part 1 entry. RV1CCWIN equals 0
for VR 0, and 1 for VR 1. CSJV contains sample logic that alternates between VR 0
and VR 1 for session assignment.

Input
D0 Input CDCINIT PIU

EBW060 RID of SLU

EBW064 RVT1 entry of SLU

EBW068 RVT2 entry of SLU

EBW072 SAT entry of SLU.

Programming Considerations
EBW060–EBW075

Must not be modified by exit code.

200 TPF V4R1 System Installation Support Reference

SNA Message Recovery
The transaction analysis exit routine (CMVU) is activated by the SNA
communication source program (CITT) when the system message recovery option
is included in the system (the value of the NSRTE parameter of the SIP SNANET
macro is greater than 0) and the SNA communication transaction analysis option is
requested (by the ZNKEY TRANA-YES command).

You should modify the segment to perform the desired transaction analysis function.

Input
R1 Input message in AM0SG format

R2 RVT1 entry of the SLU

R3 RVT2 entry of the SLU

R4 SRT entry allocated for this message

R6 The time-out factor multiplier defined by the ZNKEY RECIT-m,s
command (CK2ITM field in CTK2).

R7 Recovery switch: 1=recover, 0=do not recover. It is set to recover
(1) on input.

D0 Input message in AM0SG format.

EBW024–EBW039
Register save area (R1–R4) used by CITT.

Programming Considerations
Registers R1-R4 are saved by CITT in the ECB, and are restored when CMVU
returns control to CITT.

ECB-Controlled Program User Exits 201

SNMP Enterprise-Specific MIB Retrieval
The Simple Network Management Protocol (SNMP) enterprise-specific MIB retrieval
user exit, UMIB, provides the TPF system with an interface to retrieve
enterprise-specific Management Information Base (MIB) variables. This user exit is
called when an SNMP request is received for a MIB variable that is in a group that
is not managed by the TPF system.

Input
The UMIB user exit receives a pointer to structure snmp_struct with the following
fields:

snmp_input_length
An integer indicating the length of snmp_input_value .

snmp_input_type
An unsigned character indicating the type of protocol data unit (PDU). The
type may be one of the following:

ISNMP_GETREQUEST
Gets the value of the object identifier passed.

ISNMP_GETNEXTREQUEST
Gets the next enterprise-specific MIB variable.

snmp_input_value
A pointer to the object identifier of the variable requested.

Programming Considerations
v The UMIB user exit is responsible for allocating storage for snmp_output_value .

v See the c$snmp.h header file for the format of snmp_struct.

v The snmp_output_value can be a maximum length of 255.

Return Values
The UMIB user exit returns one of the following values:

0 The enterprise-specific MIB variable is retrieved successfully and the
following fields in snmp_struct are updated:

snmp_output_length
An integer indicating the length of the variable and the value that is
pointed to by snmp_output_value .

snmp_output_value
A pointer to the encoded object identifier followed by the encoded
value of that object identifier.

−1 The enterprise-specific MIB variable does not exist. The SNMP request is
rejected with a NOSUCHNAME error return. This is the default return value.

References
See TPF Transmission Control Protocol/Internet Protocol for more information about
SNMP agent support.

202 TPF V4R1 System Installation Support Reference

|

SNMP Manager Validation
The Simple Network Management Protocol (SNMP) request validation user exit,
UCOM, validates the identity of the SNMP manager that has sent a request to the
SNMP agent in the TPF system.

Input
The UCOM user exit is passed the following values:

ucom_name A character pointer containing the community name received in the
SNMP message in EBCDIC format.

ucom_len An integer that contains the length of the community name.

ucom_sockaddr
A pointer to a sockaddr structure that contains the remote SNMP
manager Internet Protocol (IP) address.

Programming Considerations
See the socket.h header file for the format of the sockaddr structure.

Return Values
The UCOM user exit returns one of the following values:

0 SNMP manager is valid. Processing continues.

4 SNMP manager is not valid. AUTHENTICATION_FAILURE trap is sent to all
the managers defined in the /etc/snmp.cfg SNMP configuration file and the
request is discarded.

8 SNMP manager is not valid. AUTHENTICATION_FAILURE trap is not sent
and the request is discarded. This is the default.

References
See TPF Transmission Control Protocol/Internet Protocol for more information about
SNMP agent support.

ECB-Controlled Program User Exits 203

Socket Accept
The socket accept user exit, C542, provides a centralized program to screen all
connection requests before they are returned to the server application. C542 is
entered each time the accept application programming interface (API) function call
receives a connection request from a client.

Input
v The socket descriptor associated with an incoming connection request

v A pointer to the socket address of the connecting client (C structure sockaddr
defined in the socket.h header file)

v The length of the socket address.

Programming Considerations
v The pointer to the socket address that is passed to C542 enables C542 to

determine the identity of the connecting client.

v C542 accepts an incoming connection request by returning the socket descriptor
passed to it by the accept function back to the accept function.

v C542 rejects an incoming connection request by returning -1 to the accept
function.

v If C542 rejects an incoming connection request, the accept function closes the
socket descriptor associated with the connection request, sets sock_errno to
SOCACCES, and returns -1 to the server application program that issued the
accept function call.

Return Values
v If an incoming connection request is accepted by C542, the socket descriptor

passed to it by the accept function is returned to the accept function.

v If an incoming connection request is rejected by C542, -1 is returned to the
accept function.

204 TPF V4R1 System Installation Support Reference

Socket Activation
The socket activation user exit, CLCH, allows you to activate server applications.
CLCH is activated when you enter the ZCLAW ACTIVATE command and an TCP/IP
offload device is connected to the system or during a system cycle-up.

Input
EBW000–003 Number of Internet Protocol (IP) addresses

EBW004–007 Pointer to the list of IP addresses.

Programming Considerations
v The list of IP addresses and the number of IP addresses are provided to allow

you to activate server applications.

v CLCH allows you to build your own IP address table, which can be used by the
server applications.

v If you have at least one server for each offload device, use CLCH to activate
each server separately.

v If this user exit is updated to contain writable static, compile it using the RENT
option.

Return Values
None.

ECB-Controlled Program User Exits 205

Socket Connect
The socket connect user exit, CLCS, allows socket Common Link Access to
Workstation (CLAW) applications to be activated. CLCS is activated during connect
processing.

Input
EBW000 EP ID (X'02')

EBW004–EBW011 Device name

EBW012–EBW015 Pointer to CLAW adapter block

EBW016–EBW019 Global anchor

EBW020–EBW023 Path anchor

EBW024–EBW031 Reserved

EBW032–EBW033 Path ID

EBW034–EBW035 Reserved

EBW036–EBW043 Host application name

EBW044–EBW051 Workstation application name.

Programming Considerations
If this user exit is updated to contain writable static, compile it using the RENT
option.

Return Values
None.

206 TPF V4R1 System Installation Support Reference

Socket Cycle-Up
The socket cycle-up user exit, CLCV, allows you to activate all of your socket server
applications at one time. CLCV is entered once during system cycle-up after all
active offload devices are connected to the TPF system.

Input
None.

Programming Considerations
v If you have a server that handles the incoming requests for the entire TCP/IP

network, use CLCV to activate all your server applications. However, if you have
only one server for each offload device, use the socket activation user exit,
CLCH, to activate each server separately. See “Socket Activation” on page 205
for a description of this user exit.

v Application programmers can include server programs that handle incoming
messages received from any network interface defined to the TPF system.

v See TPF Transmission Control Protocol/Internet Protocol as a guide to help you
write your socket server code.

Return Values
None.

ECB-Controlled Program User Exits 207

Socket Deactivation
The socket deactivation user exit, CLCI, allows socket applications to clean up
socket application resources. CLCI is activated by Common Link Access to
Workstation (CLAW) device failures, device disconnects, when you enter the
ZCLAW INACTIVATE command, or during a system cycle-down.

Input
EBW000–003 Number of active file descriptors.

EBW004–007 Pointer to the list of file descriptors.

Programming Considerations
v The list of file descriptors and the number of active file descriptors are provided

to allow you to run user-defined socket application clean-up routines.

v If this user exit is updated to contain writable static, compile it using the RENT
option.

Return Values
None.

208 TPF V4R1 System Installation Support Reference

Socket System Error
The socket system error user exit, CLCX, allows you to clean up the socket
application resources for an entry control block (ECB). CLCX is activated during
system error with exit processing.

Input
EBW000–003 File descriptor.

Programming Considerations
v The file descriptor is provided to allow you to run user-defined socket application

clean-up routines for an ECB if you receive a system error.

v If this user exit is updated to contain writable static, compile it using the RENT
option.

Return Values
None.

ECB-Controlled Program User Exits 209

System Error Message
The System Error exit, CPSD, is called by the CPSA, just before terminal
notification of a system error.

Input
EBW000–EBW011

DUMMY RCPL

EBW012 ECB format flag

EBSW01 Available for use by this program

EBSW02 Available for use by this program

EBSW03 Available for use by this program

EBCM01 Available for use by this program

EBCM02 Available for use by this program

EBCM03 Available for use by this program

EBER01 Available for use by this program

D0–D5 May contain data

D6 Free and available for use

Programming Considerations
1. Control must be returned to segment CPSA so that system error processing will

complete.

2. This exit allows you to provide an alternative to the CHECK DATA CALL
SUPERVISOR message.

3. This exit allows for the provision of unique system error recovery/clean-up for
user applications.

210 TPF V4R1 System Installation Support Reference

Tape Display Setup
The tape display user exit, UXTD, is called to set up message displays for tape
devices supported by TPF 4.1. A message is displayed until it is changed by
another Load Display (LDD) command or until the cartridge is physically unloaded.
Therefore, UXTD is called at mount, dismount, and tape switch time (to reset the
display if the tape is not unloaded).

Note: UXTD will only be activated if the tape device is supported on TPF 4.1.

The message display is set up in the SETUP subroutine, which can be modified.
This should be the only code modified in UXTD. On return from SETUP, the calling
routine will issue a Load Display command to display the messages set up by this
routine.

UXTD is called by the following segments:

v COSK — Control Program Interface

v COSM — Tape Dismount

v COTI — Tape Initialization

v COTM — Tape Mount

v COTR — Tape Remount

v COTS — Output Tape Switch

v COTT — Input Tape Switch.

Input
The following registers are used by the SETUP subroutine:

R1 Pointer to LDD data area DSECT

R5 TSTB/1 (Tape Status Table/Section 1) address

R6 TSTB/2 (Tape Status Table/Section 2) address

R7 Return address

The contents of R7 through R15 are expected to be unchanged on return from
SETUP.

Data Structures

DSECT LDDAREA maps the data portion of the LDD CCW that will be sent to the
tape device. This area consists of the following fields:

v LDDFMT – This single control byte will be set up by the control routine on return
from SETUP.

v LDDMSG1 – This is the first 8-byte message area. Subfields are defined for the
display generated by the default SETUP routine.

v LDDMSG2 – This is the second 8-byte message area. Subfields are defined for
the display generated by the default SETUP routine.

The 2 message areas, LDDMSG1 and LDDMSG2, are each 8 bytes. Both are
initialized to zeros when SETUP gets control.

ECB-Controlled Program User Exits 211

Table 5. The Byte Arrangement for Message Display

Message 1 Message 2 Display

Zeros Zeros LDD not issued

Nonzeros Zeros Message 1 only

Zeros Nonzeros Message 2 only

Nonzeros Nonzeros Alternating Message
1/Message 2

212 TPF V4R1 System Installation Support Reference

Tape Library Validation
The tape library validation user exit, CORU, can be activated by any function to
validate a tape volume or change the category of a tape volume.

There are 2 branch vectors for CORU (CT7UOUT and CT7UCHNG). The branch
vectors are defined in the TAPEQ macro. The branch vectors must be loaded into
R1 before entering CORU. If the value passed in R1 is not valid, an OPR-771
system dump is issued and the ECB is exited.

CORU and its branch vectors do the following user-defined functions:

Perform volume serial number validation
Branch vector CT7UOUT checks a tape volume to make sure it can be
used as an output tape. CORU is shipped with code that issues a message
if the internal volume serial number and the external volume serial number
do not match. If the volsers do not match for a ZTINT request, the
operation is ended. If the internal volume serial number is not present, it
becomes the same as the external volume serial number. You can add your
own code to accept or reject certain categories.

Change tape category
Branch vector CT7UCHNG returns a new library category for a tape
volume. CORU is shipped with code that changes the category of a tape to
a TPF predefined category default from the TSTB2 field, CPMTDCAT. You
can change the predefined defaults or add your own.

Input
v R1 - Branch vector.

v EBTSSW - A value, as defined in TAPEQ, that indicates the calling function.

v EBTCAT - The volume’s category value.

v EBTVSN - The volume’s internal volume serial number.

v EBTVSNE - The volume’s external volume serial number.

Programming Considerations
v CT7UOUT is coded to return a condition of 0, 4, or C. If you want to return a

condition of 8, you must write the code.

v CT7UCHNG is coded to return a hexadecimal category value from CPMTDCAT.

v All registers, except R1, must be returned to the caller unchanged. R1 must
return a value from the branch vector.

Return Values
From branch vector CT7UOUT, R1 should contain one of the following:

0 Volume valid for output.

4 Volume mismatch; user defined as not allowed for output.

8 Volume not valid for output.

C Volume mismatch; user defined as allowed for output.

From branch vector CT7UCHNG, R1 should contain a hexadecimal category value
of 0000–FFFF.

ECB-Controlled Program User Exits 213

TCP/IP Native Stack Support Accept Connection
The TCP/IP native stack support accept connection user exit, UACC, allows you to
verify a remote client connection request.

UACC is called when an accept or activate_on_accept function call is made for a
socket that uses TCP/IP native stack support.

UACC is called in segments C511 and CTSG.

Input
userexit_s The file descriptor of a new socket associated with the client

connection request.

userexit_addr A pointer to the socket address buffer that contains the client
address information.

userexit_addrlen
The size of the socket address buffer.

Programming Considerations
v IBM provides sample code for UACC, which accepts all new client connection

requests.

v All entry control block (ECB) fields and data levels must be returned to the caller
in the same state they were on entry.

v UACC is a subsystem-unique dynamic load module (DLM).

v If UACC rejects the connection request:

– The TPF system issues a close function call for the new socket.

– The TPF system returns −1 with sock_errno set to SOCACCES.

Return Values
UACC returns one of the following values:

−1 Reject the connection request.

userexit_s Accept the connection request.

214 TPF V4R1 System Installation Support Reference

TPF File System Initialization
The TPF file system initialization user exit, UBOT, allows you to set up your own
initial directories, files, special files, symbolic links, access modes, user IDs, and
group IDs. UBOT is called immediately after the root directory and base-level
special files have been created by the CBOT segment during file system
initialization.

Input
When UBOT is called, UID=0 and GID=1; therefore, this user exit has authority to
access or change any file or directory.

Programming Considerations
The table that follows shows the initial file system values that are set up by the TPF
file system initialization program (CBOT). These values are shown to give you an
idea about how to code the initial values for your own directories, files, special files,
symbolic links, access modes, user IDs, and group IDs.

Table 6. Initial File System Values

Name Description UID GID Access Maj/Min
Device #

/ Root directory 0 1 S_IRWXU
S_IRWXG
S_IRWXO

N/A

/dev Special file
directory

0 1 S_IRWXU
S_IRGRP
S_IXGRP
S_IROTH
S_IXOTH

N/A

/dev/null Null special file 0 1 S_IRUSR
S_IWUSR
S_IRGRP
S_IWGRP
S_IROTH
S_IWOTH

80010000

/dev/tpf.omsg Output message
special file

0 1 S_IWUSR
S_IWGRP
S_IWOTH

00000000

/dev/tpf.imsg Input message
special file

0 1 S_IRUSR
S_IRGRP
S_IROTH

00010000

/usr User file directory 0 1 S_IRWXU
S_IRWXG
S_IRWXO

N/A

Return Values
The UBOT user exit returns one of the following values to CBOT:

0 File system user initialization was completed successfully.

-1 File system user initialization was not completed successfully.

ECB-Controlled Program User Exits 215

TPF MQSeries Assign LNIATA
The TPF MQSeries assign LNIATA user exit, CUIW, allows you to convert the
remote queue name and the remote queue manager name that is associated with
the nonpersistent message into a line number, interchange address, and terminal
address (LNIATA). This allows the TPF MQSeries to pass inbound nonpersistent
messages to existing nonMQ TPF applications.

Input
The following input is passed to the MQ_assign_lniata C function:

QName The ReplyToQ name.

QMgrName The ReplyToQmgr name.

Programming Considerations
v Compile (with the C++ compiler) and link-edit CUIW into the MQSeries dynamic

link library (DLL) called CMQU (build script called CMQUBS).

v Before entering CUIW, the TPF MQSeries queue manager converts the message
from an MQSeries format to an am0sg format.

v After returning from CUIW, the TPF MQSeries queue manager saves the
returned LNIATA into the ECB and marks the WGTAC table entry for this LNIATA
as an MQ-type terminal. The TPF MQSeries queue manager then passes the
am0sg-formatted message to the TPF message router program, COA4, which
sends the message to the nonMQ TPF application. Later, the TPF application
can issue a ROUTC to send a message to the remote queue manager and
remote queue.

Return Values
LNIATA.

216 TPF V4R1 System Installation Support Reference

TPF MQSeries Channel Message
The TPF MQSeries channel message user exit (rriCALL_MSGEXIT in segment
CUIT) allows you to process a channel message. rriCALL_MSGEXIT is called by
the TPF MQSeries queue manager after a message has been retrieved from the
transmission queue (sender channel), before a message is put to a destination
queue (receiver channel), and when a channel connection is started or ended.

Input
pExitParms A pointer to the MQCXP data structure in c$cmqxc.h that contains

the channel exit parameters (ExitID and ExitReason).

pChannelDef A pointer to the MQCD data structure in c$cmqxc.h that contains the
channel definition parameters.

DataLength A received message indicator. If DataLength contains a nonzero
number, a message has been received. When this exit is called,
DataLength contains the length of AgentBuffer. This exit must set
this field to the length of the data in AgentBuffer that is to proceed.

pAgentBufferLength
The length of the agent buffer.

AgentBuffer When this exit is called, AgentBuffer contains the transmission
queue header (MQXQH in cmqc.h), which includes the message
descriptor followed by the message data. The first 8 bytes of the
data must not be changed. If the message is to proceed, this exit
can do one of the following:

v Leave the contents of the buffer untouched

v Change the contents (returning the new length of the data in
DataLength, which must not be greater than the length of the
agent buffer).

Programming Considerations
v Compile (with the C++ compiler) and link-edit CUIT into the MQSeries dynamic

link library (DLL) called CMQU (build script called CMQUBS).

v A channel must first be defined using the ZMQSC DEF CHL command with the
MSGEXIT-YES and MSGDATA parameters specified. If a channel is defined with
the MSGEXIT-NO parameter specified, rriCALL_MSGEXIT will not be called.

Return Values
Set one of the following exit response codes in the ExitResponse field in the
MQCXP structure in c$cmqxc.h:

MQXCC_OK
Continue normally.

MQXCC_CLOSE_CHANNEL
Close the channel.

MQXCC_SUPPRESS_EXIT
Suppresses calls to this user exit unless the call is to end the channel
connection (ExitReason MQXR_TERM).

MQXCC_SUPPRESS_FUNCTION
Put the message on the dead-letter queue.

ECB-Controlled Program User Exits 217

|
|

|
|
|
|
|

|

||
|

||
|

||
|
|
|

|
|

||
|
|
|
|

|

|
|
|

|

|
|

|
|
|

|

|
|

|
|

|
|

|
|
|

|
|

Note: Any other value passed in the ExitResponse field will cause the channel to
be closed.

Set one of the following exit response codes in the ExitResponse2 field in the
MQCXP structure in c$cmqxc.h:

MQXR2_PUT_WITH_DEF_ACTION
Put with default action. This is only used for a receiver channel and
indicates that the user ID of the message is obtained from the default user
ID for the channel or the UserIdentifier field in the MQMD structure.

MQXR2_PUT_WITH_MSG_USERID
Put with user identifier. This is only used for a receiver channel and
indicates that the user ID of the message is obtained from the UserIdentifier
field in the MQMD structure.

MQXR2_PUT_WITH_DEF_USERID
Put with default user identifier. This is only used for a receiver channel and
indicates that the user ID of the message is obtained from the default user
ID for the channel.

Note: Any other value passed in the ExitResponse2 field will cause the channel to
be closed.

218 TPF V4R1 System Installation Support Reference

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

TPF MQSeries Channel Message Retry
The TPF MQSeries channel message retry user exit (rriCALL_MREXIT in segment
CUIT) allows you to try to put a message to a destination queue if a previous
attempt failed. rriCALL_MREXIT is called by the TPF MQSeries queue manager
when a channel starts, stops, and when the message channel agent (MCA) is not
able to put a message to a destination queue. This exit is only valid for a
receiver-type channel.

Input
pExitParms A pointer to the MQCXP data structure in c$cmqxc.h that contains

the channel exit parameters (ExitID and ExitReason).

pChannelDef A pointer to the MQCD data structure in c$cmqxc.h that contains the
channel definition parameters.

DataLength A received message indicator. The length of the message (including
the transmission queue header). If DataLength contains a nonzero
number, a message has been received.

pAgentBufferLength
The length of the agent buffer.

AgentBuffer The transmission queue header (MQXQH in cmqc.h), which
includes the message descriptor followed by the message data.

Programming Considerations
v Compile (with the C++ compiler) and link-edit CUIT into the MQSeries dynamic

link library (DLL) called CMQU (build script called CMQUBS).

v A channel must first be defined using the ZMQSC DEF CHL command with the
MREXIT-YES and MRDATA parameters specified. If a channel is defined with the
MREXIT-NO parameter specified, rriCALL_MREXIT will not be called.

Return Values
Set one of the following exit response codes in the ExitResponse field in the
MQCXP structure in c$cmqxc.h:

MQXCC_OK
Continue normally.

MQXCC_CLOSE_CHANNEL
Close the channel.

MQXCC_SUPPRESS_EXIT
Suppresses calls to this user exit unless the call is to end the channel
connection (ExitReason MQXR_TERM).

MQXCC_SUPPRESS_FUNCTION
Do not retry the message; put the message on the dead-letter queue.

Note: Any other value passed in the ExitResponse field will cause the channel to
be closed.

Set the following exit response code in the ExitResponse2 field in the MQCXP
structure in c$cmqxc.h:

ECB-Controlled Program User Exits 219

|
|

|
|
|
|
|
|

|

||
|

||
|

||
|
|

|
|

||
|

|

|
|

|
|
|

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

MQXR2_USE_EXIT_BUFFER
Use the exit buffer. This indicates that any data to be passed is in
ExitBufferAddr, not AgentBuffer.

Note: Any other value passed in the ExitResponse2 field will cause the channel to
be closed.

220 TPF V4R1 System Installation Support Reference

|
|
|

|
|
|

TPF MQSeries Channel Security
The TPF MQSeries channel security user exit (rriCALL_SCYEXIT in segment
CUIT), provides security protection for data that the TPF MQSeries transfers. This
ensures that the resources that the TPF MQSeries queue manager owns and
manages are protected from unauthorized access.

rriCALL_SCYEXIT provides support for both sender and receiver channels. Channel
security exits at both ends of the channel are given the opportunity to send security
messages and to reject or terminate a connection.

rriCALL_SCYEXIT is called:
v After a channel is connected but before sending any messages.
v When a security message is received.
v When a channel connection is ended.

Input
pExitParms A pointer to the MQCXP data structure in c$cmqxc.h that contains

the channel exit parameters (ExitID and ExitReason).

pChannelDef A pointer to the MQCD data structure in c$cmqxc.h that contains the
channel definition parameters.

DataLength A received message indicator. If DataLength contains a nonzero
number, a security message has been received.

pAgentBufferLength
The length of a received security message.

AgentBuffer A pointer to a received security message

Programming Considerations
v Compile (with the C++ compiler) and link-edit CUIT into the MQSeries dynamic

link library (DLL) called CMQU (build script called CMQUBS).

v A channel must first be defined using the ZMQSC DEF CHL command with the
SCYEXIT-YES and SCYDATA parameters. If a channel is defined with the
SCYEXIT-NO parameter, CUIT will not be called.

v If a security message needs to be sent, do the following:
– Create a security message in a user-defined malloc area.
– Specify the buffer address of the user-defined malloc area in the ExitBuffer

output parameter.
– Specify the length of the security message in the ExitBufferLength output

parameter.

Return Values
Set one of the following exit response codes in the ExitResponse field in the
MQCXP structure in c$cmqxc.h:

MQXCC_OK
Indicates that the security check is successful.

MQXCC_SEND_SEC_MSG
Send a user-defined security message in response to a request from the
other end.

MQXCC_SEND_AND_REQUEST_SEC_MSG
Send a user-defined security message with a request to respond.

ECB-Controlled Program User Exits 221

|
|
|
|

|
|
|

|
|
|
|

|
|

MQXCC_SUPPRESS_FUNCTION
Close the channel.

MQXCC_CLOSE_CHANNEL
Close the channel.

Note: Any other value passed in the ExitResponse field will cause the channel to
be closed.

222 TPF V4R1 System Installation Support Reference

TPF MQSeries Convert to Object Handle
The TPF MQSeries convert to object handle user exit, CUIV, allows you to convert
a line number, interchange address, and terminal address (LNIATA) into an MQ
object handle (Hobj) that is associated with a remote queue manager and remote
queue. CUIV is called by the TPF MQSeries queue manager for processing
outbound nonpersistent messages if the inbound message did not have a replyto
queue manager and replyto queue. If the original inbound message had a replyto
queue manager and replyto queue, CUIV is not called because the TPF MQSeries
queue manager has saved the object handle for the remote queue and queue
manager. CUIV is part of an intercept to ROUTC processing which converts a
nonMQ message into MQ message format.

Input
LNIATA.

Programming Considerations
v Compile (with the C++ compiler) and link-edit CUIV into the MQSeries dynamic

link library (DLL) called CMQU (build script called CMQUBS).

v Control must be returned to CUIM.

Return Values
MQHOBJ The object handle of the remote queue.

ECB-Controlled Program User Exits 223

TPF MQSeries Queue Trigger
The TPF MQSeries queue trigger user exit, CUIR, allows you to activate the
appropriate application to process the local queue specified in the trigger message.
CUIR is called (unless a process was specified for the local queue definition) when
the FIRST parameter is specified with the TRIGTYPE parameter of the ZMQSC ALT
QL or ZMQSC DEF QL command. If a process was specified for the local queue
definition, the process is called instead of CUIR. See TPF Operations for more
information about defining a trigger type using the TRIGTYPE parameter and
specifying a process using the PROCESS parameter with the ZMQSC ALT QL or
ZMQSC DEF QL command.

Input
D0 The address of a block that contains the message queuing message

descriptor (MQMD) and message queuing trigger message (MQTM).

Programming Considerations
v Compile (with the C++ compiler) and link-edit CUIR into the dynamic load module

(DLM) called CUIR (build script called CUIRBS).

v In a loosely coupled environment, CUIR can be called from more than one
processor to process the queue.

v CUIR must exit upon completion.

Return Values
None.

224 TPF V4R1 System Installation Support Reference

TPF MQSeries Start Queue Manager
The TPF MQSeries start queue manager user exit, CUIA, allows you to start your
MQSeries applications immediately after the start or restart of the queue manager.

Input
None.

Programming Considerations
Compile (with the C++ compiler) and link-edit CUIA into the MQSeries dynamic link
library (DLL) called CMQU (build script called CMQUBS).

Return Values
None.

ECB-Controlled Program User Exits 225

Trace-by-Terminal
The trace-by-terminal user exit, CDBUXT, is part of the TPF Assembler Debugger
for VisualAge Client and TPF C Debugger for VisualAge Client and allows you to
verify additional information in the entry control block (ECB) against a user token
field that is stored in the trace entry. The user token data is supplied by the user on
the TPF Registration Window. CDBUXT is called from segment CDBTBT, which is
the entry point function for CDB0.

Input
itbtentry The structure that maps the trace entry that will be attached to the

active ECB. The definition of the itbtentry structure is contained in
the c$term.h header file.

Programming Considerations
1. IBM ships this user exit as a C function coded with a return value of TRUE.

2. CDBUXT is an object file that is linked into CDB0, which is a C dynamic load
module (DLM). The interface to CDBUXT is a C function call; the user exit code
can be written in assembler if the TMSPC and TMSEC macros are used for the
corresponding prolog and epilog.

Return Values
TRUE Attach the trace entry to the ECB.

FALSE Do not attach the trace entry to the ECB. On return from CDBUXT,
CDBTBT continues searching its tables for another trace entry that
matches this ECB. CDBUXT is called again if another match is
found.

226 TPF V4R1 System Installation Support Reference

User Command Processor
This exit, UME1, allows you to implement message processing for user defined
commands or for the ZDIAG command. UME1 works together with UMET, the user
command table.

Input
EBX000–EBX013

User command table entry.

D0 Pointer to the input command in output message (OMSG) format.
The input command stored in this area has been converted to
uppercase characters and ended by the end-of-message character
(X'4E').

CE2CRSMSG Pointer to a copy of the input command that has not been
converted to uppercase characters. The input command stored in
this area can contain uppercase, lowercase, or other special
characters and ends with a null character (X'00').

Programming Considerations
1. CVAA only passes the command table entry to UME1, the command table is not

passed.

2. The released version of UME1 contains sample code which will validate the
message, using TPF validation routines, and activate the indicated program.
You need only code command table entries in UMET (refer to the prologue).

3. CE2CRSMSG is a 4-byte field located in page 2 of the entry control block
(ECB) and defined in data area IEQCE2. (Page 2 of the ECB is the 4 KB of
protected storage located 4 KB beyond the start of the ECB.) Use base
registers 9 and 11 (R9 and R11) to address this field.

ECB-Controlled Program User Exits 227

User Data Recovery Copy Support
The user data recovery copy support user exit (UDRS) allows you to use
user-defined data recovery copy support. This user exit is activated when you enter
the ZFDRS command.

Input
D0 A pointer to the input command in output message (OMSG) format.

The input command that is stored in this area was converted to
uppercase characters; the command ends with the end-of-message
character (X'4E').

CE2CRSMSG A pointer to a copy of the input command that was not converted to
uppercase characters. The input command that is stored in this
area can contain uppercase, lowercase, or other special characters;
the command ends with a null character (X'00').

Programming Considerations
v The released version of UDRS contains sample code that will return an error

message to indicate that the requested function is not implemented. You must
replace the UDRS user exit with code that supports a data recovery copy
function.

v CE2CRSMSG is a 4-byte field that is located in page 2 of the entry control block
(ECB) and is defined in data area IEQCE2. (Page 2 of the ECB is the 4 KB of
protected storage that is located 4 KB beyond the start of the ECB.) Use base
registers 9 and 11 (R9 and R11) to address this field.

Return Values
None.

References
TPF Operations.

228 TPF V4R1 System Installation Support Reference

User Data Recovery Restore Support
The user data recovery restore support user exit (UDRR) allows you to use
user-defined data recovery restore support. This user exit is activated when you
enter the ZRDRS command.

Input
D0 A pointer to the input command in output message (OMSG) format.

The input command that is stored in this area was converted to
uppercase characters; the command ends with the end-of-message
character (X'4E').

CE2CRSMSG A pointer to a copy of the input command that was not converted to
uppercase characters. The input command that is stored in this
area can contain uppercase, lowercase, or other special characters;
the command ends with a null character (X'00').

Programming Considerations
v The released version of UDRR contains sample code that will return an error

message to indicate that the requested function is not implemented. You must
replace the UDRR user exit with code that supports a data recovery restore
function.

v CE2CRSMSG is a 4-byte field that is located in page 2 of the entry control block
(ECB) and is defined in data area IEQCE2. (Page 2 of the ECB is the 4 KB of
protected storage that is located 4 KB beyond the start of the ECB.) Use base
registers 9 and 11 (R9 and R11) to address this field.

Return Values
None.

References
TPF Operations.

ECB-Controlled Program User Exits 229

User Device
The user device user exit, UELC, allows you to access a user-defined input device.
UELC allows you to open the device, read the next 4KB record from the device, or
close the device

UELC is called by the common access device routine (CEL6), when the ddname
indicates a user-defined device.

Input
v Input device characteristics in C$IDSINQ (General Data Set Inquire Block)

v The following parameters from C$IDSUXT (User Exit Definitions)

– An action code (CEL6_OPEN, CEL6_READ_NEXT_RECORD or
CEL6_CLOSE)

– Data level

– Pointer to saved common access data (structure defined in tpfio.h)

– User field in GDS inquiry block.

Programming Considerations
v UELC is shipped in skeleton form, with one return statement.

v All data levels must be returned to the caller in the same state they were upon
entry.

v The data read must be put on the data level that is specified in the input.

Return Values
CEL6_SUCCESS The operation performed successfully.

CEL6_ERROR Error performing the operation.

CEL6_END_OF_DEVICE End of device.

230 TPF V4R1 System Installation Support Reference

User Global Symbol Table
The user global symbol table user exit, UGST, allows you to define global symbols
that do not exist in a program for resolution. These definitions can be used as a
valid expression request in both the TPF Assembler Debugger for VisualAge Client
and the TPF C Debugger for VisualAge Client.

Input
A user-defined global symbol table. See “Programming Considerations” for more
information.

Programming Considerations
v A user-defined global symbol must be defined in two places:

– The user_ugst table in the ugst.cpp file; for example:
const TPF_UDGS user_ugst[] = {

{"PAT", ugst_loc_pat, UGST_LOC_PTR}
{NULL, NULL UGST_LOC_PTR} };

You must also provide the function to resolve any user-defined global symbols
defined in the user-defined global symbol table. The resolving function is
defined as follows:
UDGS_RC func(char *parm, UDGS_RESULT *result);

The following example resolves UGST symbol PAT:
UDGS_RC ugst_loc_pat (NULL, UDGS_RESULT * result)
{

result->ptr = cinfc_fast (CINFC_CMMPAT);
return UDGS_RC_OK;

}

– Declare the user-defined global symbol as a variable with the proper data type
in the ugstdc.c program so that the TPF C Debugger for VisualAge Client can
process the symbol attributes to ensure correct display; for example:
struct pat *PAT; /* the variable name must match the symbol name */

Array declarations must have at least one item, for example:
void* DECB[1]

You must compile the ugstdc.c program with the NORENT, NODLL, and
TEST(SYM,NOBLOCK,NOLINE,NOPATH,NOHOOK) options.

– The UGST user exit is ended by specifying a NULL pointer in the symbol
name field.

v You can have multiple versions of the user global symbol table in the TPF
system by loading multiple versions of the table through the online loader. The
TPF Assembler Debugger for VisualAge Client uses the application ECB
activation number as the basis to select the common symbol table with the same
or lower activation number. The TPF C Debugger for VisualAge Client runs in the
same ECB as the application, so it will always use the common symbol table
based on the activation number of the application ECB.

v You can specify one parameter when using global symbols. The parameter is
handled as a character string and the pointer to that character string is passed to
the function that resolves the global symbol. The parameter must follow the
name of the global symbol and be enclosed in parentheses; for example,
DECBNAME(MYDECB), where DECBNAME is the name of the global symbol

ECB-Controlled Program User Exits 231

and MYDECB is the parameter. If the parameter is to include blank spaces, it
must include double quotes (″); for example, DECBNAME(″MY PARAMETER″).

If the global symbol resolves to UDGS_PTR_LIST, the resolving function is
responsible for allocating storage to hold the pointer list. Both the TPF C
Debugger for VisualAge Client and the TPF Assembler Debugger for VisualAge
Client will call the resolving function with result->ptrList set to NULL the first
time the resolving function is called. The resolving function is responsible for
allocating storage to hold the pointer list and to return the pointer list
in result->ptrList. Both the TPF C Debugger for VisualAge Client and the TPF
Assembler Debugger for VisualAge Client will pass ptrList to the resolving
function on all subsequent calls.

The resolving function must be aware that when a UGST symbol is entered from
the TPF Assembler Debugger for VisualAge Client, the debugger ECB (not the
application ECB) is in control. The resolving function must include the correct
logic to retrieve the information from the application ECB. See the usot.cpp,
ugst.cpp, and cgstab.cpp files for examples of the resolving function.

If the return type for the global symbol is UGST_LOC_PTRLIST, the symbol must
be declared as an array of one element in the xxxxdc.c file so that TPF C
Debugger for VisualAge Client can recognize it as an array of pointers.

Depending on the C structure that is declared for the global symbol, TPF C
Debugger for VisualAge Client will use various amounts of ECB heap areas to
process the global symbol. Declare the global symbol as void * and use XMP
map to map to the data that will use the least amount of ECB heap area.

Return Values
None.

232 TPF V4R1 System Installation Support Reference

User Label Routines
UXTH contains 3 sets of label processing routines. The first, UHLSTART is used to
write user header labels to an output tape. The second, UTLSTART is used to write
user trailer labels to an output tape. The third, IHLSTART, is used to read user
header labels from an input tape. Each of these routines calls the user label
subroutines, which are user-modifiable.

The user header label routine calls subroutines UHL1, UHL2, ... UHL8 in order until
all 8 are called or until any one of the subroutines fails to set up the user label
properly. A valid user header label will start with the characters UHLx where x is the
current label number. After verifying the label, UXTH writes the record. Should the
write fail, control is passed to COSG and error message COTM161E is sent to your
console.

The user trailer label routine calls subroutines UTL1, UTL2, ... UTL8 in order until
all 8 are called, or until any one of the subroutines fails to set up the user label
properly. A properly set up user trailer label will start with the characters UTLx
where x is the current label number. After verifying the label, UXTH writes the
record. Should the write fail, control is passed to COSG and error message
COTM161E is sent to your console.

The user header label routine for input tapes starts by reading from the input tape.
If a tape mark is found, return is made with an indicator saying no user labels were
found. If an I/O error occurs, return is made with an error indicator set. If a data
record is read, it is checked to make sure it is a properly set up user header label.
If not, return is made indicating an invalid label record on the tape. If the record is a
valid user header label, subroutine IHL1 is called to perform user processing on the
label. This process repeats itself, calling IHL2, IHL3, and others each time a valid
user header label is read. If a tape mark is found after reading at least one user
header label, control is returned with an indicator saying that user header labels
were found. If 8 valid user header labels are read in, and another record is read
before finding a tape mark, control is returned with an invalid label indication.

The user label subroutines should not use any of the ECB fields. If temporary
storage is needed, a portion of the user label work area, at label ULWAUSR, is set
aside for this purpose.

Note: If you use the User Label Routines user exit, you should also use the User
Header Label Routines user exit. See “User Header Label” on page 103 for
more information.

UXTH is called by the following segments:

COSG UXTH is entered from COSG, when an output tape is mounted, to write
user header labels; and, when an output tape is dismounted, to write user
trailer labels.

COSF UXTH is entered from COSF so the user header labels on a tape can be
read.

Input
On entry to UXTH, certain registers are set up to be used by the user label
subroutines. These are:

R2 Pointer to the IBM standard HDR1 and HDR2 labels

R3 Pointer to User Label Work Area (mapped by ITUHL)

ECB-Controlled Program User Exits 233

R4 Pointer to the TLMR (Tape Label Mask Record) entry

R5 Pointer to the TSTB/1 (Tape Status Table/Section 1) entry

R6 Pointer to the TSTB/2 (Tape Status Table/Section 2) entry

R7 Return address

Programming Considerations
When UXTH is called to write user header records, the TSTB/3 entry for the tape is
not yet set up, therefore, R4 has a pointer to the TLMR record. This requires that
the equates in TAPEQ be used to access any fields in the TLMR.

All of the calling program’s registers are saved in ULWASAVE on entry. This data
area should not be modified for any reason, although, user label subroutines can
access these values to restore the pointers provided by the caller. The individual
register values are saved in ULWASA0 through ULWASA15 corresponding to R0
through R15.

When the first user label subroutine gets control (UHL1, UTL1 or IHL1) registers
R2, R4, R5, and R6 will be set up as listed previously. R3 will point to the base of
the User Label Work Area (ULWA). It is recommended that this register not be
changed. If it is necessary to use R3, however, the pointer to the ULWA can be
restored from CE1CR3. When any other user label subroutines get control, register
R3 will once again point to the base of the User Label Work Area. R0, R1, R2, R4,
R5, and R6 will all contain whatever values they contained on exit from the previous
user label subroutine.

Data Structures

DSECT ITUHL maps a 1005-byte work area that is used by UXTH. The work area
is broken up into the following areas:

v User-modifiable area

– ULWALAB1 through ULWALAB8 correspond to the 8 user label definitions.
These areas are to be filled in by the UHL and UTL routines, and will contain
user labels read from input tapes for the IHL routines.

– ULWAUSR is a user work area. This area is provided for temporary storage,
since ECB fields are not to be modified by the user label subroutines.

v Register save area

– ULWASAVE defines a 16 fullword register save area. See Programming
Considerations for more details.

– ULWAREG0 through ULWAREG6 are used for temporary storage of registers
by the control routines. These areas must not be modified by the user label
subroutines.

234 TPF V4R1 System Installation Support Reference

User Library Function
The library function exit, UELE, makes it possible to activate and track status on
programs that are not entered by standard methods.

UELE is called by:

1. The ZOLDR ACTIVATE command, for all programs that are not C library or
TPFDF functions.

2. The E-type loader PAT clean up routine, for programs that do not have other
versions and are not C library or TPFDF functions.

3. The ZOLDR DEACTIVATE command for all programs that are deactivated.

Input
v Program name

v Caller identifier.

Programming Considerations
1. UELE is shipped in skeleton form, with one return statement.

2. All data levels must be returned to the caller in the same state they were on
entry.

Return Values
Void

ECB-Controlled Program User Exits 235

User Symbol Override Table
The user symbol override table user exit, USOT, allows you to define global
symbols that override symbol definitions in the local symbol table or the common
symbol table. For example, you can define symbol D0 in the symbol override table
as a pointer to the storage block on data level 0 to override the definition in data
macro (DSECT) CPSEQ, which has a value of 0.

The following search order is used in the symbol lookup process:

1. The user symbol override table.

2. The local symbol table or the common symbol table.

3. The user global symbol table.

4. The IBM-provided global symbol table. This table is defined in the cgstab.cpp
file, which is found in CUDA.DLL.

Input
A user-defined symbol override table. See “Programming Considerations” for more
information.

Programming Considerations
v A user-defined global symbol must be defined in two places:

– The user_ugst table in the ugst.cpp file. USOT is defined as an array of the
TPF_UDGS structure shown in the following example:
const TPF_UDGS user_usot[] = {

{"D0", usot_loc_d0, UGST_LOC_PTR},
{"D1", usot_loc_d1, UGST_LOC_INDIRECT},
{"NULL, NULL, UGST_LOC_PTR} },

In the previous example, you must provide the ugst_loc_d0 and ugst_loc_d1
functions to resolve symbols D0 and D1. The resolving function is defined as
follows:
UDGS_RC func(char *parm, UDGS_RESULT *result);

See the usot.cpp, ugst.cpp, and cgstab.cpp files for examples of the resolving
function.

– Declare the user-defined global symbol as a variable with the correct data
type in the usotdc.c program so that the TPF C Debugger for VisualAge Client
can process the symbol attributes to ensure correct display; for example:
void *D0; /* the variable name must match the symbol name */
void *D1;

Array declarations must have at least one item, for example:
void* DECB[1]

You must compile the usotdc.c program with the NORENT, NODLL, and
TEST(SYM,NOBLOCK,NOLINE,NOPATH,NOHOOK) options.

– The USOT user exit is ended by specifying a NULL pointer in the symbol
name field.

v You can have multiple versions of the user symbol override table in the TPF
system by loading multiple versions of the table through the online loader. The
TPF Assembler Debugger for VisualAge Client uses the application ECB
activation number as the basis to select the common symbol table with the same
or lower activation number. The TPF C Debugger for VisualAge Client runs in the

236 TPF V4R1 System Installation Support Reference

same ECB as the application, so it will always use the common symbol table
based on the activation number of the application ECB.

v You can specify one parameter when using global symbols. The parameter is
handled as a character string and the pointer to that character string is passed to
the function that resolves the global symbol. The parameter must follow the
name of the global symbol and be enclosed in parentheses; for example,
DECBNAME(MYDECB), where DECBNAME is the name of the global symbol
and MYDECB is the parameter. If the parameter is to include blank spaces, it
must include double quotes (″); for example, DECBNAME(″MY PARAMETER″).

If the global symbol resolves to UDGS_PTR_LIST, the resolving function is
responsible for allocating storage to hold the pointer list. Both the TPF C
Debugger for VisualAge Client and the TPF Assembler Debugger for VisualAge
Client will call the resolving function with result->ptrList set to NULL the first
time the resolving function is called. The resolving function is responsible for
allocating storage to hold the pointer list and to return the pointer list
in result->ptrList. Both the TPF C Debugger for VisualAge Client and the TPF
Assembler Debugger for VisualAge Client will pass ptrList to the resolving
function on all subsequent calls.

The resolving function must be aware that when a USOT symbol is entered from
the TPF Assembler Debugger for VisualAge Client, the debugger ECB (not the
application ECB) is in control. The resolving function must include the correct
logic to retrieve the information from the application ECB. See the usot.cpp,
ugst.cpp, and cgstab.cpp files for examples of the resolving function.

If the return type for the global symbol is UGST_LOC_PTRLIST, the symbol must
be declared as an array of one element in the xxxxdc.c file so that TPF C
Debugger for VisualAge Client can recognize it as an array of pointers.

Depending on the C structure that is declared for the global symbol, TPF C
Debugger for VisualAge Client will use various amounts of ECB heap areas to
process the global symbol. Declare the global symbol as void * and use XMP
map to map to the data that will use the least amount of ECB heap area.

Return Values
None.

ECB-Controlled Program User Exits 237

VFA Restart
The VFA restart user exit, CVFX, allows you to examine VFA buffers that are
marked as delay-file pending and to set a switch that indicates whether the buffers
should be filed or purged. CVFX is activated from VFA restart (CVF2) while cycling
the TPF system from restart to 1052 state.

CVFX is only activated when a selected VFA buffer control area (BCA) is marked as
delay-file pending and TPF transaction services restart (CLM0) was unable to
determine if any TPF locks are still held in an external lock facility (XLF) such as
the multi-path lock facility (MPLF) or the limited lock facility (LLF).

Input
R7 Contains the address of the current VFA BCA under examination.

Programming Considerations
v The CVFX segment is shipped in skeleton form with an immediate return to VFA

restart.

v The default mode is to always file delay-file pending candidates.

v Registers R1–R7, all user areas, and all data levels must be returned to the
calling segment in the same condition as when they were entered.

Return Values
R0 should contain one of the following return codes:

0 File the data buffer.

Nonzero Purge the data buffer from VFA.

238 TPF V4R1 System Installation Support Reference

Virtual IP Address Processor Deactivation
The virtual IP address (VIPA) processor deactivation user exit, UVIP, allows you to
specify if a movable VIPA that is currently owned by a failing processor should be
moved to another processor in the complex. When a processor is deactivated, UVIP
is called one time for each movable VIPA that meets any of the following conditions:

v The movable VIPA is owned by the deactivated processor and the specified VIPA
is not already in the process of being moved.

v The VIPA is owned by a deactivated processor and is moving to an inactive
processor.

v The VIPA is being moved to the deactivated processor.

If UVIP is not coded, the VIPA is not moved.

Input
The UVIP user exit requires the following values:

R1 A pointer to a zero-terminated list of 1-byte processor IDs to which
the VIPA could be moved. This list includes all active processors
that have the VIPA defined. A zero byte indicates the end of the list.

R2 A pointer to a 16-byte area containing the VIPA. For Internet
Protocol (IP) Version 4, the VIPA is in the last 4 bytes of the 16-byte
area.

Programming Considerations
v The VIPA will not handle Transmission Control Protocol/Internet Protocol

(TCP/IP) traffic until it is moved to another processor by using the UVIP user exit
or by using the ZVIPA command with the MOVE parameter specified. If the VIPA
is not moved, you can reactivate the deactivated processor to use the VIPA
again.

v The EBW and EBX work areas cannot be used in the UVIP user exit.

v Data levels D7 and D8 cannot be modified.

Return Values
R1 contains one of the following return codes:

0 Do not move the VIPA to another processor.

CPUID The low-order byte contains the CPU ID of the TPF processor to
which the VIPA will be moved.

If a zero is returned, the VIPA is not moved. Otherwise, the system will move the
movable VIPA to the active processor ID that is returned from the supplied list. If
the exit returns a processor ID that is not valid or is inactive, the VIPA is not moved.

If the processor ID that you select for the UVIP user exit is not from the supplied
input list of valid CPU IDs, the VIPA is not moved.

ECB-Controlled Program User Exits 239

Virtual Reader
The virtual reader exit, UELB, makes it possible to perform the following operations
on a virtual reader: OPEN, READ NEXT RECORD, CLOSE.

UELB is called by the common access device routine (CEL6), when the ddname
indicates the virtual reader.

Input
R6 Parameter list containing the following:

v Action code

v Spoolid

v Data level

v Saved data area.

Programming Considerations
v IBM provides sample assembler code for UELB. This sample code supports a

virtual reader for VM/ESA 1.1. Supporting a virtual reader for any other release of
VM can require you to change UELB. If changes are made, the interface (input
and output) must remain the same.

v The data read must be put on the data level that is specified in the input.

Return Values
R6 should contain one of the following return codes:

0 The operation performed successfully.

1 Error performing the operation.

2 End of device.

240 TPF V4R1 System Installation Support Reference

WTOPC Page Control
This exit point allows you to control the size of a WTOPC output page.

Input
R0 Default page size

Programming Considerations
v Return is to the calling programs NSI with the page size set in register 0, R0.

v Do not set the page size larger than 500 lines because the message could
exceed the 100 block limit, which could cause an OPR-340 system error.

v Some restrictions apply to register and work area usage, see the program listing
for details.

v The released version of UOP3 executes a BACKC macro to return to the caller.

ECB-Controlled Program User Exits 241

3270 Welcome Screen
The 3270 welcome screen, CSLJ, that is shipped by IBM is sample code that
shows how to build a 3270 welcome screen and display it on the appropriate
terminal following a logon request.

Input
R1 Address of the ISHLL DSECT.

Programming Considerations
v D0–D7 cannot be modified.

v The following fields in the ECB cannot be modified:
– EBW020–EBW023
– EBW028–EBW043
– EBW076–EBW080.

v To change the 3270 welcome screen, update the 3270 data stream in CSLJ.

v The 3270 welcome screen is displayed when session awareness support is
generated for a 3270 logical unit (LU). You can specify session awareness for an
LU by using the AWARE= option in the RSC statement. See TPF ACF/SNA
Network Generation for more information about the RSC statement.

Return Values
None.

242 TPF V4R1 System Installation Support Reference

Global Area

The global area is a portion of fixed main storage designed to contain application
records. The global area permits fast and efficient communication among
application programs and between application programs and the control program.

For specific information about accessing globals using C Language Support, see
the TPF C/C++ Language Support User’s Guide.

Terminology
The following glossary of selected terms gives a quick overview of terms used
throughout this chapter; it is not intended to be complete and exhaustive. Rather
than being listed alphabetically, the terms progress from simple to more complex
concepts.

globals.
A generic term referring to any or all of the entities in the area of main storage
called the global area or to copies of these entities on DASD.

global record.
A logical collection of data, treated as a single entity, that can reside in the
main storage global area and that also resides on DASD as large (1055-byte)
records (also called application core-resident records). As that name implies,
global records are typically used by application programs that need convenient
access to main storage records. TPF macros provide a variety of efficient
services for retrieving, addressing, and filing these records. The records can
have various attributes such as keypointability, SSU uniqueness or
commonality, and I-stream uniqueness or commonality.

global field.
A subset of certain global records, ranging in size from 1 to 256 bytes in length.
Global fields are individually addressable using the GLOBZ macro, and they
can share many of the attributes of global records.

global block.
The global records loaded from DASD with an ID of GL. These records contain
the data that make up the global fields, and they are the first items loaded into
global areas 1 and 3.

global directory.
A series of 8-byte fields at the start of global area 1 and global area 3 that
point to the main storage address and file address of global records. These
pointers are defined, respectively, by the GL0BA and GL0BY DSECTs.

subsystem user (SSU) unique/common.
In a system with the Multiple Database function (MDBF), global records and
fields can be shared among subsystem users (SSUs) in a subsystem or can be
unique for each SSU. In other words, an ordinal number used by different
SSUs either points to the same common record or to different unique ones.

I-stream unique/shared.
Records in a tightly coupled (TC) system can be declared unique or shared
among I-streams. This term applies only to global records (not global fields)
and only to main storage copies (not DASD copies).

primary globals.
Globals that reside below the 16MB boundary and are therefore accessible to
programs running in 24-bit addressing mode.

© Copyright IBM Corp. 1994, 2002 243

extended globals.
Global records that reside in an area of storage defined above the 16MB
boundary. The extended global area greatly expands the amount of storage
available for globals and relieves constraints on the amount of storage
available for data that must be accessible to programs running in 24-bit
addressing mode. For each primary global area there is a corresponding
extended area. A system can be generated with or without extended globals.

global attribute table (GAT).
Each global directory slot has a corresponding global attribute table entry that
identifies the characteristics of the global for example, SSU unique/common or
I-stream unique/shared. System programs use a special macro to address this
table; application programs do not require access to it.

SSU table.
A table generated during system restart that contains, for each SSU in the
system, the address, size, and protection key of each associated primary and
extended global area and GAT. The SSU table is organized by I-stream within
global area within SSU. (The global area organization is SSU within I-stream
within global area).

global storage allocator (GOA).
A #GLOBL fixed-file record that contains the information needed by the
Application Core Load program (GOGO) to load all the other #GLOBL records
to the global areas (see data macro GO1GO). A GOA must be manually
prepared for each SSU as input to the System Test Compiler (STC) so that it
becomes part of a pilot tape. The first such record in a chain is called the
prime GOA.

super GOA.
#GLOBL fixed file records that are used by the GOGO program as an index to
find the GOA associated with each I-stream/SSU combination. A super GOA
must be manually prepared as input to system test compiler (STC) so that it
becomes part of a pilot tape.

global synchronization.
A process that permits changes made to global fields and records to be
communicated among 2 or more active I-streams in a loosely coupled (LC) or
tightly coupled (TC) system to maintain currency. Synchronization involves
offline data record generation, online restart processing, and real-time
application interface processing.

system interprocessor global table (SIGT).
In an LC or TC system, a table that stores information necessary for controlling
the locking, unlocking, and synchronization of user-specified synchronizable
global records or fields.

Structure of the Global Areas
TPF primary globals are located in low main storage between the control program
and working storage. The primary global area is divided as follows:

Global area 1 Protected storage
Global area 2 Unprotected storage
Global area 3 Protected storage
Global area 4 (User defined)

Global areas 1, 2, and 3 are called GL1, GL2, and GL3 in the following text.

244 TPF V4R1 System Installation Support Reference

An extended global area can optionally be specified in high main storage and
accessed in 31-bit addressing mode. For systems with more than 16MB of main
storage, the extended global area relieves constraints on main storage availability
caused by TPF features like MDBF and tightly coupled support.

Figure 4 on page 246 represents the layout of the global area for a base-only
system with a single I-stream, that is, a system with no other subsystems, residing
in a uniprocessor. (For a system without extended globals, ignore the top half of the
diagram.)

Storage protection limits access to one or more storage locations by preventing
writing or reading or both. A storage protection key is an indicator associated with
one or more areas of storage. An entry must have a matching key to use a
particular area of storage. Thus, an area of storage with a key different from an
active entry is protected.

The smallest segment of storage affected by a protection key is 4096 (4KB) bytes.
Each global area, therefore, starts on a 4KB boundary and is a multiple of 4KB
bytes.

GL2 is assigned the same storage protection key as the active entry control block
(ECB). GL1 and GL3 are assigned a different key so that the ECB must issue a
macro before any updates can be performed. (Extended global areas have the
same protection keys as the respective primary global areas.) After the ECB has
completed an update, a second macro must be issued to return the key to its
original setting. These 2 macros, GLMOD and FILKW, are discussed in “Using the
Global Area by Applications” on page 255.

Global Area 1 (GL1)
The global area begins with the GL1 directory, called GL0BA, which is built as the
records are loaded into main storage. The directory consists of a series of pointers.
Each pointer in the GL1 directory contains the main storage and file address of a
record resident in one of 4 places: GL1, GL2, extended GL1, or extended GL2. A
series of data records, usually called global blocks, occupy the storage
immediately following the directory. These global blocks are mapped by the
DSECTs in GLOBB through GLOBG. Following the global blocks are resident
application records. GL1 is a protected area of main storage.

Global Area 245

Page 0's
High

Low

16 MB

GAT

Working
Storage

Application Records

Application Records

Records

Directory - GL0BY

Directory - GL0BA

Control Program Area

Extended
Global Area 3

Extended
Global Area 2

Extended
Global Area 1

Global Blocks:
GL0BP,GL0BQ

(SSU Common Fields)

Global Blocks:
GL0BB,GL0BC,GL0BD,
GL0BE,GL0BF,GL0BG
(SSU Unique Fields)

Extended
Globals

Primary
Globals

(Unprotected)Global
Area 2

(Protected)Global
Area 3

(Protected)Global
Area 1

Figure 4. Global Storage Allocation for a Base-Only System with a Single I-Stream

246 TPF V4R1 System Installation Support Reference

Global Area 2 (GL2)
The GL2 area immediately follows the GL1 area. There is no directory in the GL2
area. The GL1 or GL3 directory has pointers to the records in the GL2 or extended
GL2 area.

The GL2 area contains resident application records and special program records.
Special program records are concatenations of assembler-produced object decks.
They consist of tables, not of executable code. Special program records control the
operation of synchronous links. (see TPF Non-SNA Data Communications
Reference for information about synchronous link control). They are not necessary
for all systems. GL2 is an unprotected area of main storage.

Global Area 3 (GL3)
The GL3 area closely resembles the GL1 area. GL3 begins with the GL3 directory,
called GL0BY. The structure of GL0BY is the same as GL0BA, a series of pointers.
Each pointer in the GL3 directory contains the main storage and file address of a
record resident in one of 4 places: GL3, GL2, extended GL3, or extended GL2.
Both GL0BA and GL0BY can contain references to records resident in GL2. As in
GL1, the directory is followed by a series of global blocks. These are mapped by
the DSECTs in GL0BP and GL0BQ. Resident application records in turn follow the
global blocks. GL3 is a protected area of main storage.

Global Area 4
TPF allows for the expansion of globals into a fourth area for which there is no
general TPF support. For example, the system generation macro GLOBAL provides
parameters that describe only global areas 1, 2, and 3 and their extended-global
counterparts, although keypoint A and the SSU table provide space for global area
4 pointers. Also, CCCTIN carves space for the global 4 area if CTKA is altered to
declare nonzero values for it. Implementation of a fourth global area is strictly the
user’s responsibility.

Components of the Global Area
This section contains information about the components of the global area.

Global Records
A data record can be thought of as an item stored on DASD or as a block of data in
main storage. Global records on DASD are large (1055-byte) fixed-file records with
the FACE ID #GLOBL. They are defined via the System Test Compiler (STC) and
loaded via the command ZSLDR.

The main storage copy of a global record is loaded during system restart. The
record can be assigned various attributes such as keypointability, SSU uniqueness
or commonality, I-stream uniqueness or commonality.

Certain global records are termed global blocks, and are described in “Global
Blocks” on page 249. Most of the others are called application core-resident
records, or simply core-resident records.

Still other records stored in the global area, called special program records, are
special-purpose tables used exclusively by the system.

Global Area 247

Keypointable Global Records
The process of periodically copying a dynamic main storage record to a file on
DASD is called keypointing. As with most of the control program keypoint records,
the records resident in the global area are also maintained on file. Some of these
records contain information that rarely changes; these records need not be copied
to file. Other records contain temporary information and also need not be copied to
file. However, some records contain information that is changeable and must be
saved for a restart if a system malfunctions; the file copy must be updated to reflect
the changes. These records are classified as keypointable records. Records that do
not require dynamic file updating are classified as nonkeypointable records. Global
records are defined as keypointable or nonkeypointable in the main storage
allocator record (see “GOA List Entry” on page 304.)

Global Directories
The first 448 bytes of the GL1 area and the first 544 bytes of the GL3 area contain
the directories for these areas. Data macro GL0BA defines the GL1 directory as 56
doublewords (448 bytes). The first 48 doubleword slots are for keypointable global
records, and the remaining 8 are for nonkeypointable records. The GL0BY data
macro defines the GL3 directory as 68 doublewords (544 bytes). The first 64
doubleword slots are for keypointable global records, and the remaining 4 are for
nonkeypointable records. Each global area, and therefore each directory, must start
on a 4096-byte boundary, and each area must be a multiple of 4096. The first 4096
bytes of GL1 and GL3, including the directory, are directly addressable via the
GLOBZ macro.

You can alter the GL0BA and GL0BY data macros and increase the number of slots
per directory. However, because GLOBZ provides addressability to a single block of
4096 bytes, care must be taken in increasing the directory size, because the
amount of storage remaining for global field use is reduced correspondingly. Also,
even if the directory size changes, the number of keypointable slots must remain at
48 for GL1 and 64 for GL3.

These directories are built dynamically with each restart of the system. Each
directory slot contains the main storage and the file address of a global block, data
record, or special program record as follows:

Each directory slot has a corresponding entry in a special table in the global area
called the global attribute table (GAT). The entry contains an indicator byte as
follows:

0 1 2 3 4 5 6 7

Indic Res U Res I Res I Res U Res U Res U Res U

Indic = Indicator byte Res I= Reserved for IBM use
Res U= Reserved for User

The indicator byte contains information used by system programs during normal
online operation, such as whether:

v The global record is keypointable

v A keypointing operation is pending for the global record

248 TPF V4R1 System Installation Support Reference

v The record resides in unprotected storage

v The record is a special program record in GL2

v The record is SSU common or unique

v The record is I-stream shared or unique

v The record resides in extended storage.

Global Blocks
Global blocks are a series of global records, usually unrelated in content, that are
loaded immediately following the global directories. These records contain the
global fields described in the next section. Each global block has its own DSECT as
follows:
Global Area 1

GL0BA Directory area
GL0BB Nonkeypointable miscellaneous fields
GL0BC Keypointable miscellaneous fields
GL0BD Fare quote (F/Q) nonkeypointable fields
GL0BE Fare quote (F/Q) keypointable fields
GL0BF Expansion for nonkeypointable
GL0BG Expansion for keypointable

Global Area 3

GL0BY Directory area
GL0BP Nonkeypointable TPF global
GL0BQ Keypointable TPF global

You can create other blocks, for example, GL0BH and GL0BI, to be added to those
provided. Extra space must be allocated in the GLOB macro if this is done, and
care must be taken that the total space occupied by the directory and the global
blocks does not exceed 4096 bytes.

DSECTs GL0BC, GL0BE, GL0BG, and GL0BQ define keypointable fields; GL0BB,
GL0BD, GL0BF, and GL0BP define nonkeypointable fields. These DSECTs provide
addressability to the global fields and are all pointed to by the macro GLOBZ. Use
of GLOBZ and other pertinent macros is explained in “Using the Global Area by
Applications” on page 255.

The standard TPF DSECT header is used for global blocks. It contains the
following:

v The basic ID, which is the 2-byte string GL

v A record code check byte, which is usually the number of doublewords that are
loaded.

v A control byte that shows size and no forward chaining.

The header area can be retained or removed when a nonkeypointable global block
is loaded into main storage. Removing the header from a keypointable block causes
an error condition during a load sequence. Each global block can individually
contain as many as 1056 bytes of data. However, to maintain addressability to the
fields in the global blocks, the total length for the directory and the global blocks
must not exceed 4096 bytes.

The global blocks are followed by protected data records.

Global Area 249

Global Fields
A global field is an addressable unit of storage in a global block. Each of the
existing global blocks is designed to contain several global fields and each
installation can allocate storage for the global fields as needed.

The rules governing global fields are as follows:

1. Each global field can be from 1 to 256 bytes long.

2. Subsystem user unique fields should be defined only in the GL1 area (MDBF
only).

3. Subsystem user common fields can reside only in the GL3 area (MDBF only).

4. Global fields are directly addressable via the GLOBZ macro.

5. Global fields are I-stream unique by default. Each I-stream can only access its
own global fields.

Typical coding using global fields is:

GLOBZ REGC=R3 Get addressability to GL3
LA R2,@GLFLD Field is directly addressed by R2
. (This assumes that "@GLFLD" is
. defined in GL0BQ or GL0BP)
.

Typical coding using global records is:

GLOBZ REGR=R3 Get addressability to GL1
L R4,@GLREC Pick up address of a global record from directory
. (This assumes that "@GLREC" is
. defined in GL0BA)
.

Examples of the type of data that can be in the global fields follow:

v System parameters such as recoup restart indicator

v System variables such as time of day and date

v Program switches such as those that are checked during a restart to determine if
processing was interrupted and should be continued by any one program

v Application parameters such as the number of days of current inventory

System Environment Considerations
This section contains global area information that is specific for multiple database
function and tightly coupled environments.

Multiple Database Function Environment
Multiple Database Function (MDBF) is a licensed feature that supports multiple,
discrete applications on the same processor. It consists of 2 distinct yet related
concepts: subsystems and subsystem users. Figure 5 on page 251 shows such a
system.

250 TPF V4R1 System Installation Support Reference

Subsystems Under the Multiple Database Function
A subsystem (SS) can be thought of as an independent application system that
shares certain resources with other subsystems. Each subsystem can use all the
control program services and can contain a complete base of application programs.
For ease of control, one subsystem, called the basic subsystem (BSS), contains
all the system-related software such as the control program and file-resident
support programs. The BSS is the only subsystem that can be hardware IPLed.

The subsystem user (SSU) support allows 2 or more users to use the facilities of
the same subsystem. Each SSU can maintain a unique global area, or it can share
portions of a common global area with other SSUs.

16 MB

High

Low 16 MB

GAT

SSU #5

SSU #5

Page 0’s

SSU #4

SSU #4SSU #3

SSU #3SSU #2

SSU #2SSU #1

SSU #1SSU #5

SSU #5SSU #4

SSU #4SSU #3

SSU #3SSU #2

SSU #2SSU #1

SSU #1SSU #5

SSU #5SSU #4

SSU #4SSU #3

SSU #3SSU #2

SSU #2SSU #1

SSU #1

Control Program Area

Primary Globals Extended Globals

SS #3

SS #3
SS #2

SS #2
SS #1

SS #1

GL3
Key = C

GL3
Key = C

GL2
Key = 1

GL2
Key = 1

GL1
Key = C

GL1
Key = C

SS #3

SS #3
SS #2

SS #2
SS #1

SS #1

SS #3

SS #3

SS #2

SS #2
SS #1

SS #1

Figure 5. Global Storage Allocation for a Single I-Stream with 2 Subsystems and 5 SSUs

Global Area 251

Globals are among the system resources that are subsystem unique. That is, each
subsystem can have its own globals, different from those of any other subsystem.
In subsystems, global records can be declared to be common or unique among the
SSUs making up the subsystem. Since this is such an important function, special
attention is given here to declaring and using SSU common globals.

Example: Given the following assumptions:

v A subsystem has several SSUs

v The GOA entry for GL0BP (a GL3 global block) for each SSU has the X'02'
attribute byte set to show GL3 residence

v The GL0BP global block contains the symbolic name @COMMN defining a
global field

the following sequence of events occurs:

1. The records defined for the first SSU of this subsystem are physically stored in
the GL3 area, and directory entries are generated during the execution of
GOGO. (GOGO is the primary loading segment for globals.)

2. When the GOA entry for a record for another SSU is processed, instead of
physically loading a GL0BP record, GOGO generates only a directory entry that
points to the record loaded for the first SSU.

3. When the application programs of these SSUs need to access the global field
@COMMN, the GLOBZ macro with the REGC parameter must be used. This
loads the designated register with the GL3 area of the first SSU in the
subsystem, thus providing addressability to the common field.

For the reasons just given, SSU-common fields must be defined in GL3 only.
SSU-unique fields can be defined in either GL1 or GL3, but, if they are defined in
GL3, they must be defined and loaded before any SSU-common blocks. Better yet,
define them in GL1 only, leaving GL3 for the SSU-common fields.

Note: SSU-common or SSU-unique global records can reside in GL1 or GL3.

Design Considerations for Subsystems and SSUs
The following considerations apply:

v An application program of one subsystem cannot access programs, data, or
global records that are owned by another subsystem. Nor can it use another
subsystem user’s unique database or global data.

v The global block DSECTs (for example, GL0BB) for each SSU in a given SS
must be identical. The format of the remaining areas can vary from SSU to SSU.

v The control program uses an SSU ID in the ECB to access data and globals.
The application program must not alter the SSU ID.

v If a subsystem user becomes large enough, it may need to be separated into a
single subsystem. Nothing should be coded at the application level to prevent
this separation.

v All SSUs in a subsystem operate in the same system state.

Tightly Coupled Environment
The tightly coupled (TC) environment supports multiple I-streams in each central
processing complex (CPC). One of the I-streams in each CPC serves as the main
I-stream, while all other I-streams in the CPC are known as application I-streams.
The main I-stream services I/O requests, interrupts, and some control program (CP)
services. The application I-streams execute applications and some CP services.

252 TPF V4R1 System Installation Support Reference

All I-streams in the CPC have the same MDBF configuration. To put it simply, all
subsystems (SSs) and subsystem users (SSUs) that exist for one I-stream also
exist for the other I-streams.

I-Stream Unique/Shared Globals
The implementation of globals for tightly coupled systems allows great flexibility in
the allocation of the global area. Since each I-stream has its own global area, each
I-stream can maintain a set of I-stream-unique (ISU) global records that are unique
to that I-stream and not addressable from other I-streams. ISU records can be
accessed only by the owning I-stream.

I-stream shared (ISS) global records that are shared by all I-streams in a CPC can
also be defined. Only global records can be I-stream shared, not global fields.
I-stream sharing is allowed in the SSU operating mode for SSU unique records, or
in the SS operating mode for SSU shared records. ISS records can be read by any
I-stream.

Note: The application MUST provide its own serialization method for updating ISS
records.

See “Loading Globals” on page 261 for information on loading ISU and ISS records.

Figure 6 on page 254 represents the layout of the global areas for a tightly coupled
system with 3 I-streams and 2 subsystem users. Unique page and segment tables
provide each I-stream with its own view of the global areas.

The main I-stream’s view of storage is identical to real memory. Real storage below
the 16MB boundary is reserved for an area to contain the I-stream shared global
records and for one copy of the I-stream unique globals and global directories. Real
storage in high memory is reserved for (n-1) copies of the I-stream unique globals
and global directories, where n is the number of I-streams.

Each application I-stream sees its I-stream-unique globals in the unique area below
16MB, even though these globals actually reside in high real memory. Thus,
applications dispatched on any I-stream are able to access all of the shared and
unique globals they need using 24-bit addresses.

The layout of the extended global areas is unchanged from previous releases of the
TPF system. Extended globals are allocated subsystem user in I-stream within
global area.

Global Area 253

16 MB 16 MB

Low

High
Page 0’s Page 0’s

Extended Globals
(If Any)

Extended Globals
(If Any)

SSU #2

SSU #2

SSU #2

SSU #2

SSU #2

SSU #2

SSU #1

SSU #1

SSU #1

SSU #1

SSU #1

SSU #1

GAT GAT

SSU #2 SSU #2

SSU #2 SSU #2

SSU #2 SSU #2

SSU #2 SSU #2

SSU #2 SSU #2

SSU #2 SSU #2

SSU #1 SSU #1

SSU #1 SSU #1

SSU #1 SSU #1

SSU #1 SSU #1

SSU #1 SSU #1

SSU #1 SSU #1

Control Program Area Control Program Area

SVM #1 (Main I-Stream) SVM #n (I-Stream #n)

GL3
Key = C

GL3
Key = C

GL2
Key = 1

I-S Unique
I-Stream #3

GL2
Key = 1

I-S Unique
I-Stream #2

GL1
Key = C

GL1
Key = C

GL3
Key = C

GL3
Key = C

GL3
Key = C

GL3
Key = C

GL2
Key = 1

GL2
Key = 1

I-S Unique
I-Stream #1

I-S Unique
I-Stream #n

GL2
Key = 1

GL2
Key = 1I-S Shared I-S Shared

GL1
Key = C

GL1
Key = C

GL1
Key = C

GL1
Key = C

Never Mapped
for Application
I-Streams

Figure 6. Global Storage Allocation for 3 I-Streams with 1 Subsystem (the BSS) and 2 SSUs

254 TPF V4R1 System Installation Support Reference

Extended Globals
Extended globals contain global records. They do not contain global directories or
global blocks. The extended global area resides above the 16M line and is divided
into 3 sections: GL1, GL2, and GL3. There are further sub-divisions in each of
these sections. For example, the GL1 area contains a section for each I-stream in
the processor, and each of these sections contain a section for each SSU in the
complex. There is no separation between I-stream unique and I-stream shared
globals. They are both in the same section. The actual definition of the global
record (I-stream unique or I-stream shared) is implemented with the pointers to
these records which reside below the 16M line inside of the global directories
(GL0BA and GL0BY).

Note: Unlike primary globals below the 16M boundary, each I-stream has the ability
to access extended globals of other I-streams.

Notes:

1. The virtual address of the beginning of the I-stream-shared and I-stream-unique
areas is the same on all I-streams. The overall size of an I-stream unique area
is the same for all I-streams.

2. The I-stream-unique primary globals in high memory are all visible on the main
I-stream. To ensure that certain system functions, such as critical record filing
and ZDCOR/ZACOR, can still access all of main storage.

3. The global directories reside in the I-stream unique areas. Addresses in the
global directories can be used only on the I-stream to which the directories
correspond.

Note: The addresses in the directories in high memory for I-streams 2–n have
no meaning on the main I-stream.

4. It follows that application utility programs should not attempt to access an
I-stream-unique global on another I-stream without first switching control to the
other I-stream (via the SWISC macro). Also, application programs should not
pass the address of a global on one I-stream to a program on another I-stream,
since the receiving program may have a totally different view of global storage.

Synchronizing Globals in the Tightly Coupled Environment
Sometimes the same global can be loaded into the global area of each I-stream, for
example, data residing in a field that can’t be I-stream shared, giving it the
appearance of an ISU global. Some of these ISU globals that get updated by an
application on one I-stream may need to have their updates transmitted to the other
I-streams in the CPC. This process is called global synchronization.

Using the Global Area by Applications
The global area is designed primarily to be used by applications, although the
control program does access it. Application programs that access or update the
global area must meet certain requirements. Several application programming
macros are available to the application programmer to satisfy these requirements.
The examples presented in this section are only illustrations; they are not the only
solution to a coding problem. A complete description for each macro can be found
in TPF General Macros.

GLOBZ: Define Global Fields Macro
The application macro GLOBZ allows application programs to access the global
area by defining the global fields in the global blocks of GL1 or GL3 or both. A
maximum of 4096 bytes can be defined by GLOBZ for each global area. Each field

Global Area 255

in the 4096 bytes has a unique symbolic label and can be directly referenced after
issuing GLOBZ. GLOBZ does the following:

v When coded with the REGR parameter, GLOBZ calls the storage-reserving
macro GLOB, which in turn calls the GL1 directory DSECT macro GL0BA and
global field data macros GL0BB, GL0BC, GL0BD, GL0BE, GL0BF, and GL0BG.

v When coded with either the REGS or REGC parameter, GLOBZ calls the GL3
directory DSECT GL0BY and the global field data macros GL0BP and GL0BQ.

v GLOBZ loads one or 2 base registers with the address or addresses of the
global areas.

The following 3 examples show how the GLOBZ macro can be coded:

Example 1
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
LABEL GLOBZ REGR=R1 Load a base register with the global

area address. In this case, the
REGR=R1 specifies GL1. REGS=xxx
specifies the GL3 base, where xxx
is some base register. REGC=xxx
specifies the "common" global fields
base (in MDBF), where xxx is some base
register.

Example 2
A FLD=xxxxxxx parameter may be used to avoid the necessity of knowing in which
global area the field is stored. The appropriate address of either GL0BA or GL0BY
is returned in the specified register. Either REGR or REGS can be specified with
FLD, but not both.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
LABEL GLOBZ REGR=R1, FLD=@AFIELD

Example 3
GLOBZ does not define the fields of the resident data records in GL1, GL2, or GL3.
In this case, each resident record type has its own data macro, and the program
addresses it by loading a base register with the pointer from the appropriate
directory.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
LABEL GLOBZ REGR=R1

EX0AU REG=RG2 Assigns register 2 as base for record
using data macro that defines record.

L RG2,@EXAU Loads record base with pointer from
global directory.

Note: Loosely coupled (HPO) and tightly coupled (TC) users use the SYNCC
macro to update the global area, because global synchronization is required
between I-streams.

GLMOD: Change Global Protect Key Macro
All records in the GL1 or GL3 areas reside in an area of real main storage with a
protection key different from that in the program status word (PSW) for application
programs. Before an application program can modify any field in these areas, the
GLMOD macro must be issued. GLMOD changes the protection key in the PSW of
the application program to match the key of the global area.

The following example shows how to change the protection key in an area of real
storage:

256 TPF V4R1 System Installation Support Reference

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
LABEL GLOBZ REGR=R1
.
.
.
LABEL GLMOD GLOBAL1 Change the global area storage

protection key. ‘GLOBAL1’ is the
default and need not be coded.

FILKW: File Keyword Macro
The FILKW macro allows application programs to request an update on the file
copy of a keypoint record. FILKW is also used to restore the storage protection key
to the application working storage key after an update has been made. In the
following example, assume GL0BC contains the field identified as @AFIELD:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
LABEL GLOBZ REGR=R1
.
.
LABEL GLMOD

ST RG5,@AFIELD Update @AFIELD.
LABEL FILKW R,@GLBCC Restore the protection key and update

the global record, the main storage
address of which is located in the
directory at symbolic label @GLBCC.
The protection key must be restored
before the program can modify "native"
areas.

GL0BA: Define Global 1 Macro
The GL0BA macro has 3 functions:

v To map out the contents of the GL1 directory. This directory contains main
storage and file addresses for the special program records, global blocks GL0BB
through GL0BG, and miscellaneous router control data records.

v To set up in a specified register the displacement in the global area 1 directory of
the first slot assigned to a special program record.

v To set up an 8-byte field containing 1 bit for each of the 48 keypointable record
slots in GL1.

The allocation of storage for GL1 should be reflected in the macro source
statements set by each installation.

GL0BY: Define Global 3 Macro
The GL0BY macro has 3 functions:

v To map out the contents of the GL3 directory. This directory contains main
storage and file addresses for the special program records, GL0BP and GL0BQ
global blocks, and miscellaneous router control data records.

v To set up in a specified register the displacement in the global area 3 directory of
the first slot assigned to a special program record.

v To set up an 8-byte field containing 1 bit for each of the 64 keypointable record
slots in GL3.

The allocation of storage for GL3 should be reflected in the macro source
statements set by each installation.

Global Area 257

SYNCC: The Global Synchronization Macro
The SYNCC macro is designed to coordinate the synchronization of global area
data among several active I-streams and CPCs in a TC or LC environment. The 3
SYNCC macro options are:

v LOCK, which reserves the exclusive use of a global record or field and refreshes
the main storage copy with the most current file copy. The LOCK option also sets
the protection key of the user to allow a global update.

v UNLOCK, which releases the exclusive use of a global record and resets the
protection key of the user. The UNLOCK option allows a user to release
exclusive use of a record without doing an update first.

v SYNC, which:
– Writes the updated global back out to DASD.
– Requests synchronization of the global among all I-streams.
– Releases exclusive use of the global.
– Resets the protection key of the user.

The FILKW and GLMOD macros should be used to update and file
nonsynchronized global fields and records, which are not propagated to other active
processors. The FILKW and GLMOD macros should not be used to update
synchronized global fields or records; the SYNCC macro must be used to
propagate the fields or records to the other active processors and create the main
storage images at IPL time. SYNCC macro coding examples can be found in
“Examples of Coding the SYNCC Macro” on page 317.

Programs that process both synchronized and nonsynchronized global fields and
records must be careful to use the appropriate macros for the 2 kinds of globals.

Programming Considerations
This section contains programming considerations for defining and using global
areas.

Defining Addressability to Globals
This section contains programming considerations for defining global areas.

Global Records
When defining a new global, you must decide which global area the new global
should be addressed from. A global record can reside in GL1, GL2, or GL3, but it is
addressed from a directory slot in GL1 or GL3. To address the new global record
from GL1’s directory, you must label one of the 56 doubleword slots in the GL0BA
macro. The tag on the 8-byte field then points to the GL1 directory slot for the new
global record. To address the global record from GL3’s directory, you must update
the GL0BY macro in a similar manner. If either GL0BA or GL0BY is updated, then
the GLOBZ macro, which allows application programs to access the global area,
must also be updated. The GLOBZ macro must be updated because it contains a
list of global records addressed by GL0BY and GL0BA, and the directory tag for the
new GL3 or GL1 global record must be added to that list.

Another consideration is the degree of storage protection desired for the new
global. The GL1 and GL3 areas both have protection keys different from that
assigned to E-type programs and require the use of GLMOD and FILKW (or
KEYRC) macros to change from one key to another. The GL2 area, on the other
hand, has the same protection key as E-type programs and can be directly
addressed without special macros.

258 TPF V4R1 System Installation Support Reference

Addressing extended globals presents no special problems: the GL1 directory is
used to address records stored in extended GL1 or GL2; the GL3 directory is used
to address records stored in extended GL2 or GL3. The chief consideration is that
programs written to access extended globals must be allocated to run in 31-bit
mode or must switch to 31-bit mode by using MODEC MODE=31.

See “Loading Globals” on page 261 for more information about allocating a new
global record and creating an input data set used for the pilot tape.

Global Fields
Whether a global field is to be SSU common or unique determines in which global
area the global field should be defined. SSU unique fields should be defined only in
the GL1 area. SSU user common fields must reside in the GL3 area.

Global Fields in Global Area 1: To address GL1 records and fields, the GLOBZ
macro must be used with the REGR option. This invokes macro GLOB which, in
turn, invokes macros GL0BA, GL0BB, GL0BC, GL0BD, GL0BE, GL0BF, and
GL0BG.

The following summarizes the result of these macro calls:

1. Besides calling the other macros, GLOB declares storage for the GL1 directory
and for the global blocks. GLOB includes the following code:

@GLOBA DS 56D DEFINE THE AREA FOR 56 SLOTS
@GLOBB DS 132D X'84' 1056 BYTES
@GLOBC DS 132D X'84' 1056 BYTES
@GLOBD DS 9D X'09' 72 BYTES
@GLOBE DS 8D X'08' 64 BYTES
@GLOBF DS 17D X'11' 136 BYTES
@GLOBG DS 3D X'03' 24 BYTES

GL0BA DIRECTORY AREA
GL0BB NON-KEYPOINTABLE MISC FIELDS
GL0BC KEYPOINTABLE MISC FIELDS
GL0BD F/Q NON-KEYPOINTABLE FIELDS
GL0BE F/Q KEYPOINTABLE FIELDS
GL0BF EXPANSION FOR NON-KEYPOINTABLE
GL0BG EXPANSION FOR KEYPOINTABLE

2. The GL0BA macro maps the GL1 directory. Storage is declared for 56
doubleword slots. Each slot to which a global will be loaded should have a
label. The GL0BA DSECT must not address more directory slots than are
declared in the @GLOBA DS instruction.

3. The amount of storage GLOB declares for each global block must be greater
than or equal to the amount of storage defined in each DSECT. In the preceding
example, the sum of all the global fields defined in GL0BD must be less than or
equal to 72 bytes.

4. The sum of the storage declared by GLOB must not exceed 4KB, since the
directory and global blocks are all addressed from one base register.

5. The amount of storage declared for each global block must exactly match the
number of doublewords that will be loaded into that area (see Number of
Doublewords under “GOA List Entry” on page 304).

To define addressability to a new global field in GL1, you must modify one of GL1’s
global field DSECTs: GL0BB, GL0BC, GL0BD, GL0BE, GL0BF, or GL0BG. If the
DSECT is modified to declare additional storage, then GLOB must be updated to
declare additional storage.

Global Area 259

Global Fields in Global Area 3: To address GL3 records and fields, the GLOBZ
macro must be used with the REGS or REGC option. GLOBZ calls GL0BY, which in
turn calls GL0BP and GL0BQ. GL0BY includes the following code:

@GL0BY DS 68D DEFINE THE AREA FOR 68 SLOTS
@GL0BP DS 132D X'84' 1056 BYTES
@GL0BQ DS 132D X'84' 1056 BYTES

GL0BP NON-KEYPOINTABLE TPF GLOBAL
GL0BQ KEYPOINTABLE TPF GLOBAL

GL3 is very similar to GL1:

1. GL0BY declares storage and addresses for the GL3 directory and the global
blocks.

2. The directory has exactly 68 doubleword slots declared.

3. GL0BP and GL0BQ macros address the global blocks. As in GL1, the amount
of storage addressed by GL0BP and GL0BQ must not exceed the number of
doublewords declared by GL0BY.

4. The amount of storage declared for each global block must exactly match the
number of doublewords that will be loaded into that area (see Number of
Double Words in “GOA List Entry” on page 304).

5. The sum of storage GL0BY declares for the directory and the global blocks
must not exceed 4KB.

To define addressability to a new global field in GL3, you must modify either GL0BP
or GL0BQ. As in GL1, if the amount of storage added to GL0BP or GL0BQ causes
the DSECT to exceed the amount declared by GL0BY, GL0BY must be updated.
For new global fields in GL3, the GLOBZ macro must also be updated. The tag for
the new global field must be added to the list of subsystem user common fields in
the beginning of the GLOBZ macro.

Keypointable Global Records
A global record can be keypointed if it is addressed from one of the first 48 slots of
the GL1 directory or from one of the first 64 slots of the GL3 directory. The KEYUC
macro should contain an entry for each of the 48 slots in GL1. The GLOUC macro
should have an entry for each of the 64 slots in GL3. Global fields are considered
keypointable if they reside in a keypointable global record. How to designate a
global as keypointable is described under Attribute Byte in “GOA List Entry” on
page 304.

Global Area Requirements of the Control Program
GL1 contains not only fields for application use but also fields required by the
system itself. Examples are @MAXCL and @MAXBK, which are used in creating
output messages. @MAXCL is a 2-byte field that contains the maximum line length
for a standard CRT display, usually 64 characters. @MAXBK is a 2-byte field that
contains the maximum number of characters allowed in one message block, the
maximum being 342 characters per block.

A typical application field is @SWITCH, which is tested during cycling up or down to
determine whether any running utility programs should be halted.

GL0BD, GL0BE, and GL0BF do not contain any fields required by the system.
Usually, those fields are in GL0BP and GL0BQ.

260 TPF V4R1 System Installation Support Reference

Required System Data Resident in GL0BP
The GL0BP data macro contains the following fields used by RLCH (chain release
routine) and DBR (database reorganization):

v @RLCHC and @RLCHS (used by RLCH). For more information about using
these fields, see the prolog of program segment RLCH.

v @DBRKPT (used by DBR). For more information about using this field, see the
database reorganization information in TPF Database Reference and also the
prolog of program segments BDBE, BDBF, and BDBL.

Loading Globals
The loading of globals occurs in several steps:

v System Initialization Package (SIP) macros that define the size of the various
global areas are coded.

v An input data set containing the super global storage allocator (super GOA), all
GOAs, and all global data is coded. The global blocks included in the global data
must be defined as #GLOBL fixed file records.

v The System Test Compiler (STC) is to create a pilot tape from the input deck.

v Following the general file IPL, the pilot tape is loaded onto the online modules by
the online system data loader.

Note: A pilot tape load must be done for each subsystem user in the system.

v During a system IPL, the Application Core Load Program, GOGO, is activated to
load the globals. GOGO retrieves the #GLOBL records from DASD and stores
the global data into the global areas.

SIP for Globals
The global area you designed is created on your system by SIP macros. To find out
more information on this, see TPF System Generation.

Creating the Input Data Set
To create TPF globals, you must first define an input data set to be used by the
offline System Test Compiler (STC) to create a pilot tape (see TPF Program
Development Support Reference). The records must be defined as #GLOBL fixed
file records. An example of the STC card images used to create the global records
is shown in “Sample STC Card Images for Global Block Creation” on page 314. The
STC card images must include global storage allocator (GOA) records, which
specify certain attributes of the other #GLOBL records to be loaded and provide
information that controls the actual loading process. The DSECT that defines the
fields of a GOA record is GO1GO. The contents of the pilot tape must later be
transferred to DASD by the online system data loader, typically following a general
file load when the system is in 1052 state.

Ordinal number 0 of #GLOBL is called the super GOA. The super GOA points to a
chain of prime GOA records for each I-stream in a loosely coupled or tightly
coupled complex. Additional ordinals can be chained to ordinal number 0 to
accommodate complexes with greater than eight I-streams. See the TPF Migration
Guide: Program Update Tapes for information about adding a SIP definition for
additional super GOA ordinals. The GOA records are in #GLOBL fixed file records.
They are pointed to by their ordinal number. Each GOA record (except the super
GOA) contains a list of global records to be loaded. This feature makes it easy to

Global Area 261

establish processor-unique globals, or, if desired, various levels of interdependent
globals. Figure 7 is an example of the GOA data structure.

All GOA records have a standard 12-byte header, except that the forward chain field
contains a #GLOBL ordinal number instead of a file address. The record ID field,
GO1BID, and the forward chain field, GO1FCH, must be initialized using STC. The
record ID for the super GOA and all the GOA records must be C‘GO’.

Super GOA
The super GOA, which is a subsystem user unique data record identifies, in the
proper order each GOA, which is CPC and I-stream unique. Therefore, in a tightly
coupled system, the super GOA can have some GOAs to activate and, if more than
one subsystem user is present, more than one super GOA is necessary.

The super GOA has four sections:

v Section 1 is the standard header, and the super GOA uses a forward chain
defined in the header to point to additional records if the definition of the data
cannot be contained in the first record.

v Section 2 is the table header and contains the total number of I-streams for
which a prime GOA is defined in this super GOA.

v Section 3 is a table of displacements, each pointing to an area in section 4.
There is a 2-byte field (GO2DSP) in the table for each possible CPC in the
system. If multiple super GOAs are used, the leftmost bit of GO2DSP must be
coded as a 1 for any CPC that is not defined in that super GOA ordinal. This
indicates to the GOGO program that the next chained ordinal must be read and
searched for that CPC.

v Section 4 of the super GOA is also a table. Each entry in the table contains three
fullword fields (GO2CID, GO2IID, and GO2IS), which list the #GLOBL ordinal

Super
GOA

#GLOBL 0

Prime
GOA

#GLOBL 1

Overflow
GOA

#GLOBL 2

Prime
GOA

#GLOBL 18

Overflow
GOA

#GLOBL 17

Prime
GOA

#GLOBL 32

Prime
GOA

#GLOBL 39

Overflow
GOA

#GLOBL 2

CPC 0
I-S 1

CPC 0
I-S 2

CPC 1
I-S 1

CPC 1
I-S 1

Figure 7. GOA Data Structure

262 TPF V4R1 System Installation Support Reference

numbers for each I-stream. Given the number of the CPC (GO2CID) and the
I-stream number to be loaded (GO2IID), the table provides the #GLOBL ordinal
number of a prime GOA (GO2IS).

For the GOGO program to index into the tables in Sections 3 and 4 using the
GO2DSP, GO2CID, GO2IID, and GO2IS field definitions, bit 2 of the 1-byte
GO1CHN field in Section 2 must be set to 1 (X'40'). The use of the GO2DSP,
GO2CID, GO2IID, and GO2IS field definitions is required to support 32-way loosely
coupled processors.

The following example shows the STC defining two super GOA ordinals for 32
loosely coupled processors with 16 I-streams each:
**
* *
* TEST VERSION ’SUPERGOA’ RECORD 1: 32 CPC’S, 16 I/STREAMS EACH *
* AT PRESENT, GOA POINTERS WITHIN THE SUPERGOA ARE ALL SET TO: *
* #GLOBL 1 FOR BSS *
* #GLOBL 16 (X’10’) FOR SSU’S *
* *
**
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)0. THIS IS #GLOBL ZERO
GO1BID ENT GO. ID = ’GO’
GO1CTL ENT X’00’. N/A
GO1FCH ENT X’005A’. Chained to ordinal 90
GO1NIS ENTIT 1-1-X’0040’. 16 I/STREAMS * 4 CPCs
GO1NUM ENTIT 1-1-X’00’. LOAD MODE N/A
GO1CHN ENTIT 1-1-X’40’. GO2DSP Entries Used
*
GO2DSP ENTIT 1-01-X’0000’. CPC 0 INDEX
GO2DSP ENTIT 1-02-X’0010’. CPC 1 INDEX
GO2DSP ENTIT 1-03-X’0020’. CPC 2 INDEX
GO2DSP ENTIT 1-04-X’0030’. CPC 3 INDEX
GO2DSP ENTIT 1-05-X’8000’. CPC 4 NOT IN THIS RECORD
GO2DSP ENTIT 1-06-X’8000’. CPC 5 NOT IN THIS RECORD
GO2DSP ENTIT 1-07-X’8000’. CPC 6 NOT IN THIS RECORD
GO2DSP ENTIT 1-08-X’8000’. CPC 7 NOT IN THIS RECORD
GO2DSP ENTIT 1-09-X’8000’. CPC 8 NOT IN THIS RECORD
GO2DSP ENTIT 1-10-X’8000’. CPC 9 NOT IN THIS RECORD
GO2DSP ENTIT 1-11-X’8000’. CPC 10 NOT IN THIS RECORD
GO2DSP ENTIT 1-12-X’8000’. CPC 11 NOT IN THIS RECORD
GO2DSP ENTIT 1-13-X’8000’. CPC 12 NOT IN THIS RECORD
GO2DSP ENTIT 1-14-X’8000’. CPC 13 NOT IN THIS RECORD
GO2DSP ENTIT 1-15-X’8000’. CPC 14 NOT IN THIS RECORD
GO2DSP ENTIT 1-16-X’8000’. CPC 15 NOT IN THIS RECORD
GO2DSP ENTIT 1-17-X’8000’. CPC 16 NOT IN THIS RECORD
GO2DSP ENTIT 1-18-X’8000’. CPC 17 NOT IN THIS RECORD
GO2DSP ENTIT 1-19-X’8000’. CPC 18 NOT IN THIS RECORD
GO2DSP ENTIT 1-20-X’8000’. CPC 19 NOT IN THIS RECORD
GO2DSP ENTIT 1-21-X’8000’. CPC 20 NOT IN THIS RECORD
GO2DSP ENTIT 1-22-X’8000’. CPC 21 NOT IN THIS RECORD
GO2DSP ENTIT 1-23-X’8000’. CPC 22 NOT IN THIS RECORD
GO2DSP ENTIT 1-24-X’8000’. CPC 23 NOT IN THIS RECORD
GO2DSP ENTIT 1-25-X’8000’. CPC 24 NOT IN THIS RECORD
GO2DSP ENTIT 1-26-X’8000’. CPC 25 NOT IN THIS RECORD
GO2DSP ENTIT 1-27-X’8000’. CPC 26 NOT IN THIS RECORD
GO2DSP ENTIT 1-28-X’8000’. CPC 27 NOT IN THIS RECORD
GO2DSP ENTIT 1-29-X’8000’. CPC 28 NOT IN THIS RECORD
GO2DSP ENTIT 1-30-X’8000’. CPC 29 NOT IN THIS RECORD
GO2DSP ENTIT 1-31-X’8000’. CPC 30 NOT IN THIS RECORD
GO2DSP ENTIT 1-32-X’8000’. CPC 31 NOT IN THIS RECORD
*
GO2CID ENTIT 1-01-X’00000000’. CPC 0
GO2IID ENTIT 1-01-X’00000001’. I/S 1

Global Area 263

GO2IS ENTIT 1-01-X’00000001’. GOA ORD NUM (#1)
*
GO2CID ENTIT 1-02-X’00000000’. CPC 0
GO2IID ENTIT 1-02-X’00000002’. I/S 2
GO2IS ENTIT 1-02-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-03-X’00000000’. CPC 0
GO2IID ENTIT 1-03-X’00000003’. I/S 3
GO2IS ENTIT 1-03-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-04-X’00000000’. CPC 0
GO2IID ENTIT 1-04-X’00000004’. I/S 4
GO2IS ENTIT 1-04-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-05-X’00000000’. CPC 0
GO2IID ENTIT 1-05-X’00000005’. I/S 5
GO2IS ENTIT 1-05-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-06-X’00000000’. CPC 0
GO2IID ENTIT 1-06-X’00000006’. I/S 6
GO2IS ENTIT 1-06-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-07-X’00000000’. CPC 0
GO2IID ENTIT 1-07-X’00000007’. I/S 7
GO2IS ENTIT 1-07-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-08-X’00000000’. CPC 0
GO2IID ENTIT 1-08-X’00000008’. I/S 8
GO2IS ENTIT 1-08-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-09-X’00000000’. CPC 0
GO2IID ENTIT 1-09-X’00000009’. I/S 9
GO2IS ENTIT 1-09-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-10-X’00000000’. CPC 0
GO2IID ENTIT 1-10-X’0000000A’. I/S 10
GO2IS ENTIT 1-10-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-11-X’00000000’. CPC 0
GO2IID ENTIT 1-11-X’0000000B’. I/S 11
GO2IS ENTIT 1-11-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-12-X’00000000’. CPC 0
GO2IID ENTIT 1-12-X’0000000C’. I/S 12
GO2IS ENTIT 1-12-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-13-X’00000000’. CPC 0
GO2IID ENTIT 1-13-X’0000000D’. I/S 13
GO2IS ENTIT 1-13-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-14-X’00000000’. CPC 0
GO2IID ENTIT 1-14-X’0000000E’. I/S 14
GO2IS ENTIT 1-14-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-15-X’00000000’. CPC 0
GO2IID ENTIT 1-15-X’0000000F’. I/S 15
GO2IS ENTIT 1-15-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-16-X’00000000’. CPC 0
GO2IID ENTIT 1-16-X’00000010’. I/S 16
GO2IS ENTIT 1-16-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-17-X’00000001’. CPC 1

264 TPF V4R1 System Installation Support Reference

GO2IID ENTIT 1-17-X’00000001’. I/S 1
GO2IS ENTIT 1-17-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-18-X’00000001’. CPC 1
GO2IID ENTIT 1-18-X’00000002’. I/S 2
GO2IS ENTIT 1-18-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-19-X’00000001’. CPC 1
GO2IID ENTIT 1-19-X’00000003’. I/S 3
GO2IS ENTIT 1-19-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-20-X’00000001’. CPC 1
GO2IID ENTIT 1-20-X’00000004’. I/S 4
GO2IS ENTIT 1-20-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-21-X’00000001’. CPC 1
GO2IID ENTIT 1-21-X’00000005’. I/S 5
GO2IS ENTIT 1-21-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-22-X’00000001’. CPC 1
GO2IID ENTIT 1-22-X’00000006’. I/S 6
GO2IS ENTIT 1-22-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-23-X’00000001’. CPC 1
GO2IID ENTIT 1-23-X’00000007’. I/S 7
GO2IS ENTIT 1-23-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-24-X’00000001’. CPC 1
GO2IID ENTIT 1-24-X’00000008’. I/S 8
GO2IS ENTIT 1-24-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-25-X’00000001’. CPC 1
GO2IID ENTIT 1-25-X’00000009’. I/S 9
GO2IS ENTIT 1-25-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-26-X’00000001’. CPC 1
GO2IID ENTIT 1-26-X’0000000A’. I/S 10
GO2IS ENTIT 1-26-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-27-X’00000001’. CPC 1
GO2IID ENTIT 1-27-X’0000000B’. I/S 11
GO2IS ENTIT 1-27-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-28-X’00000001’. CPC 1
GO2IID ENTIT 1-28-X’0000000C’. I/S 12
GO2IS ENTIT 1-28-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-29-X’00000001’. CPC 1
GO2IID ENTIT 1-29-X’0000000D’. I/S 13
GO2IS ENTIT 1-29-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-30-X’00000001’. CPC 1
GO2IID ENTIT 1-30-X’0000000E’. I/S 14
GO2IS ENTIT 1-30-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-31-X’00000001’. CPC 1
GO2IID ENTIT 1-31-X’0000000F’. I/S 15
GO2IS ENTIT 1-31-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-32-X’00000001’. CPC 1
GO2IID ENTIT 1-32-X’00000010’. I/S 16
GO2IS ENTIT 1-32-X’00000010’. GOA ORD NUM (#16)
*

*

Global Area 265

GO2CID ENTIT 1-33-X’00000002’. CPC 2
GO2IID ENTIT 1-33-X’00000001’. I/S 1
GO2IS ENTIT 1-33-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-34-X’00000002’. CPC 2
GO2IID ENTIT 1-34-X’00000002’. I/S 2
GO2IS ENTIT 1-34-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-35-X’00000002’. CPC 2
GO2IID ENTIT 1-35-X’00000003’. I/S 3
GO2IS ENTIT 1-35-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-36-X’00000002’. CPC 2
GO2IID ENTIT 1-36-X’00000004’. I/S 4
GO2IS ENTIT 1-36-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-37-X’00000002’. CPC 2
GO2IID ENTIT 1-37-X’00000005’. I/S 5
GO2IS ENTIT 1-37-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-38-X’00000002’. CPC 2
GO2IID ENTIT 1-38-X’00000006’. I/S 6
GO2IS ENTIT 1-38-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-39-X’00000002’. CPC 2
GO2IID ENTIT 1-39-X’00000007’. I/S 7
GO2IS ENTIT 1-39-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-40-X’00000002’. CPC 2
GO2IID ENTIT 1-40-X’00000008’. I/S 8
GO2IS ENTIT 1-40-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-41-X’00000002’. CPC 2
GO2IID ENTIT 1-41-X’00000009’. I/S 9
GO2IS ENTIT 1-41-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-42-X’00000002’. CPC 2
GO2IID ENTIT 1-42-X’0000000A’. I/S 10
GO2IS ENTIT 1-42-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-43-X’00000002’. CPC 2
GO2IID ENTIT 1-43-X’0000000B’. I/S 11
GO2IS ENTIT 1-43-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-44-X’00000002’. CPC 2
GO2IID ENTIT 1-44-X’0000000C’. I/S 12
GO2IS ENTIT 1-44-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-45-X’00000002’. CPC 2
GO2IID ENTIT 1-45-X’0000000D’. I/S 13
GO2IS ENTIT 1-45-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-46-X’00000002’. CPC 2
GO2IID ENTIT 1-46-X’0000000E’. I/S 14
GO2IS ENTIT 1-46-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-47-X’00000002’. CPC 2
GO2IID ENTIT 1-47-X’0000000F’. I/S 15
GO2IS ENTIT 1-47-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-48-X’00000002’. CPC 2
GO2IID ENTIT 1-48-X’00000010’. I/S 16
GO2IS ENTIT 1-48-X’00000010’. GOA ORD NUM (#16)
*

266 TPF V4R1 System Installation Support Reference

*
GO2CID ENTIT 1-49-X’00000003’. CPC 3
GO2IID ENTIT 1-49-X’00000001’. I/S 1
GO2IS ENTIT 1-49-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-50-X’00000003’. CPC 3
GO2IID ENTIT 1-50-X’00000002’. I/S 2
GO2IS ENTIT 1-50-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-51-X’00000003’. CPC 3
GO2IID ENTIT 1-51-X’00000003’. I/S 3
GO2IS ENTIT 1-51-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-52-X’00000003’. CPC 3
GO2IID ENTIT 1-52-X’00000004’. I/S 4
GO2IS ENTIT 1-52-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-53-X’00000003’. CPC 3
GO2IID ENTIT 1-53-X’00000005’. I/S 5
GO2IS ENTIT 1-53-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-54-X’00000003’. CPC 3
GO2IID ENTIT 1-54-X’00000006’. I/S 6
GO2IS ENTIT 1-54-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-55-X’00000003’. CPC 3
GO2IID ENTIT 1-55-X’00000007’. I/S 7
GO2IS ENTIT 1-55-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-56-X’00000003’. CPC 3
GO2IID ENTIT 1-56-X’00000008’. I/S 8
GO2IS ENTIT 1-56-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-57-X’00000003’. CPC 3
GO2IID ENTIT 1-57-X’00000009’. I/S 9
GO2IS ENTIT 1-57-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-58-X’00000003’. CPC 3
GO2IID ENTIT 1-58-X’0000000A’. I/S 10
GO2IS ENTIT 1-58-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-59-X’00000003’. CPC 3
GO2IID ENTIT 1-59-X’0000000B’. I/S 11
GO2IS ENTIT 1-59-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-60-X’00000003’. CPC 3
GO2IID ENTIT 1-60-X’0000000C’. I/S 12
GO2IS ENTIT 1-60-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-61-X’00000003’. CPC 3
GO2IID ENTIT 1-61-X’0000000D’. I/S 13
GO2IS ENTIT 1-61-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-62-X’00000003’. CPC 3
GO2IID ENTIT 1-62-X’0000000E’. I/S 14
GO2IS ENTIT 1-62-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-63-X’00000003’. CPC 3
GO2IID ENTIT 1-63-X’0000000F’. I/S 15
GO2IS ENTIT 1-63-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-64-X’00000003’. CPC 3
GO2IID ENTIT 1-64-X’00000010’. I/S 16
GO2IS ENTIT 1-64-X’00000010’. GOA ORD NUM (#16)
*

Global Area 267

GEND

* This is the 2nd SUPERGOA ordinal
*
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)90. THIS IS #GLOBL 90 (x’5A’)
GO1BID ENT GO. ID = ’GO’
GO1CTL ENT X’00’. N/A
GO1FCH ENT X’005B’. Chained to ordinal 91
GO1NIS ENTIT 1-1-X’0040’. 16 I/STREAMS * 4 CPCs
GO1NUM ENTIT 1-1-X’00’. LOAD MODE N/A
GO1CHN ENTIT 1-1-X’40’. GO2DSP Entries Used
*
GO2DSP ENTIT 1-01-X’8000’. CPC 0 NOT IN THIS RECORD
GO2DSP ENTIT 1-02-X’8000’. CPC 1 NOT IN THIS RECORD
GO2DSP ENTIT 1-03-X’8000’. CPC 2 NOT IN THIS RECORD
GO2DSP ENTIT 1-04-X’8000’. CPC 3 NOT IN THIS RECORD
GO2DSP ENTIT 1-05-X’0000’. CPC 4 INDEX
GO2DSP ENTIT 1-06-X’0010’. CPC 5 INDEX
GO2DSP ENTIT 1-07-X’0020’. CPC 6 INDEX
GO2DSP ENTIT 1-08-X’0030’. CPC 7 INDEX
GO2DSP ENTIT 1-09-X’8000’. CPC 8 NOT IN THIS RECORD
GO2DSP ENTIT 1-10-X’8000’. CPC 9 NOT IN THIS RECORD
GO2DSP ENTIT 1-11-X’8000’. CPC 10 NOT IN THIS RECORD
GO2DSP ENTIT 1-12-X’8000’. CPC 11 NOT IN THIS RECORD
GO2DSP ENTIT 1-13-X’8000’. CPC 12 NOT IN THIS RECORD
GO2DSP ENTIT 1-14-X’8000’. CPC 13 NOT IN THIS RECORD
GO2DSP ENTIT 1-15-X’8000’. CPC 14 NOT IN THIS RECORD
GO2DSP ENTIT 1-16-X’8000’. CPC 15 NOT IN THIS RECORD
GO2DSP ENTIT 1-17-X’8000’. CPC 16 NOT IN THIS RECORD
GO2DSP ENTIT 1-18-X’8000’. CPC 17 NOT IN THIS RECORD
GO2DSP ENTIT 1-19-X’8000’. CPC 18 NOT IN THIS RECORD
GO2DSP ENTIT 1-20-X’8000’. CPC 19 NOT IN THIS RECORD
GO2DSP ENTIT 1-21-X’8000’. CPC 20 NOT IN THIS RECORD
GO2DSP ENTIT 1-22-X’8000’. CPC 21 NOT IN THIS RECORD
GO2DSP ENTIT 1-23-X’8000’. CPC 22 NOT IN THIS RECORD
GO2DSP ENTIT 1-24-X’8000’. CPC 23 NOT IN THIS RECORD
GO2DSP ENTIT 1-25-X’8000’. CPC 24 NOT IN THIS RECORD
GO2DSP ENTIT 1-26-X’8000’. CPC 25 NOT IN THIS RECORD
GO2DSP ENTIT 1-27-X’8000’. CPC 26 NOT IN THIS RECORD
GO2DSP ENTIT 1-28-X’8000’. CPC 27 NOT IN THIS RECORD
GO2DSP ENTIT 1-29-X’8000’. CPC 28 NOT IN THIS RECORD
GO2DSP ENTIT 1-30-X’8000’. CPC 29 NOT IN THIS RECORD
GO2DSP ENTIT 1-31-X’8000’. CPC 30 NOT IN THIS RECORD
GO2DSP ENTIT 1-32-X’8000’. CPC 31 NOT IN THIS RECORD
*
*
GO2CID ENTIT 1-01-X’00000004’. CPC 4
GO2IID ENTIT 1-01-X’00000001’. I/S 1
GO2IS ENTIT 1-01-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-02-X’00000004’. CPC 4
GO2IID ENTIT 1-02-X’00000002’. I/S 2
GO2IS ENTIT 1-02-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-03-X’00000004’. CPC 4
GO2IID ENTIT 1-03-X’00000003’. I/S 3
GO2IS ENTIT 1-03-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-04-X’00000004’. CPC 4
GO2IID ENTIT 1-04-X’00000004’. I/S 4
GO2IS ENTIT 1-04-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-05-X’00000004’. CPC 4
GO2IID ENTIT 1-05-X’00000005’. I/S 5
GO2IS ENTIT 1-05-X’00000010’. GOA ORD NUM (#16)
*

268 TPF V4R1 System Installation Support Reference

GO2CID ENTIT 1-06-X’00000004’. CPC 4
GO2IID ENTIT 1-06-X’00000006’. I/S 6
GO2IS ENTIT 1-06-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-07-X’00000004’. CPC 4
GO2IID ENTIT 1-07-X’00000007’. I/S 7
GO2IS ENTIT 1-07-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-08-X’00000004’. CPC 4
GO2IID ENTIT 1-08-X’00000008’. I/S 8
GO2IS ENTIT 1-08-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-09-X’00000004’. CPC 4
GO2IID ENTIT 1-09-X’00000009’. I/S 9
GO2IS ENTIT 1-09-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-10-X’00000004’. CPC 4
GO2IID ENTIT 1-10-X’0000000A’. I/S 10
GO2IS ENTIT 1-10-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-11-X’00000004’. CPC 4
GO2IID ENTIT 1-11-X’0000000B’. I/S 11
GO2IS ENTIT 1-11-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-12-X’00000004’. CPC 4
GO2IID ENTIT 1-12-X’0000000C’. I/S 12
GO2IS ENTIT 1-12-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-13-X’00000004’. CPC 4
GO2IID ENTIT 1-13-X’0000000D’. I/S 13
GO2IS ENTIT 1-13-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-14-X’00000004’. CPC 4
GO2IID ENTIT 1-14-X’0000000E’. I/S 14
GO2IS ENTIT 1-14-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-15-X’00000004’. CPC 4
GO2IID ENTIT 1-15-X’0000000F’. I/S 15
GO2IS ENTIT 1-15-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-16-X’00000004’. CPC 4
GO2IID ENTIT 1-16-X’00000010’. I/S 16
GO2IS ENTIT 1-16-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-17-X’00000005’. CPC 5
GO2IID ENTIT 1-17-X’00000001’. I/S 1
GO2IS ENTIT 1-17-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-18-X’00000005’. CPC 5
GO2IID ENTIT 1-18-X’00000002’. I/S 2
GO2IS ENTIT 1-18-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-19-X’00000005’. CPC 5
GO2IID ENTIT 1-19-X’00000003’. I/S 3
GO2IS ENTIT 1-19-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-20-X’00000005’. CPC 5
GO2IID ENTIT 1-20-X’00000004’. I/S 4
GO2IS ENTIT 1-20-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-21-X’00000005’. CPC 5
GO2IID ENTIT 1-21-X’00000005’. I/S 5
GO2IS ENTIT 1-21-X’00000010’. GOA ORD NUM (#16)

Global Area 269

*
GO2CID ENTIT 1-22-X’00000005’. CPC 5
GO2IID ENTIT 1-22-X’00000006’. I/S 6
GO2IS ENTIT 1-22-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-23-X’00000005’. CPC 5
GO2IID ENTIT 1-23-X’00000007’. I/S 7
GO2IS ENTIT 1-23-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-24-X’00000005’. CPC 5
GO2IID ENTIT 1-24-X’00000008’. I/S 8
GO2IS ENTIT 1-24-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-25-X’00000005’. CPC 5
GO2IID ENTIT 1-25-X’00000009’. I/S 9
GO2IS ENTIT 1-25-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-26-X’00000005’. CPC 5
GO2IID ENTIT 1-26-X’0000000A’. I/S 10
GO2IS ENTIT 1-26-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-27-X’00000005’. CPC 5
GO2IID ENTIT 1-27-X’0000000B’. I/S 11
GO2IS ENTIT 1-27-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-28-X’00000005’. CPC 5
GO2IID ENTIT 1-28-X’0000000C’. I/S 12
GO2IS ENTIT 1-28-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-29-X’00000005’. CPC 5
GO2IID ENTIT 1-29-X’0000000D’. I/S 13
GO2IS ENTIT 1-29-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-30-X’00000005’. CPC 5
GO2IID ENTIT 1-30-X’0000000E’. I/S 14
GO2IS ENTIT 1-30-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-31-X’00000005’. CPC 5
GO2IID ENTIT 1-31-X’0000000F’. I/S 15
GO2IS ENTIT 1-31-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-32-X’00000005’. CPC 5
GO2IID ENTIT 1-32-X’00000010’. I/S 16
GO2IS ENTIT 1-32-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-33-X’00000006’. CPC 6
GO2IID ENTIT 1-33-X’00000001’. I/S 1
GO2IS ENTIT 1-33-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-34-X’00000006’. CPC 6
GO2IID ENTIT 1-34-X’00000002’. I/S 2
GO2IS ENTIT 1-34-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-35-X’00000006’. CPC 6
GO2IID ENTIT 1-35-X’00000003’. I/S 3
GO2IS ENTIT 1-35-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-36-X’00000006’. CPC 6
GO2IID ENTIT 1-36-X’00000004’. I/S 4
GO2IS ENTIT 1-36-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-37-X’00000006’. CPC 6
GO2IID ENTIT 1-37-X’00000005’. I/S 5

270 TPF V4R1 System Installation Support Reference

GO2IS ENTIT 1-37-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-38-X’00000006’. CPC 6
GO2IID ENTIT 1-38-X’00000006’. I/S 6
GO2IS ENTIT 1-38-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-39-X’00000006’. CPC 6
GO2IID ENTIT 1-39-X’00000007’. I/S 7
GO2IS ENTIT 1-39-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-40-X’00000006’. CPC 6
GO2IID ENTIT 1-40-X’00000008’. I/S 8
GO2IS ENTIT 1-40-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-41-X’00000006’. CPC 6
GO2IID ENTIT 1-41-X’00000009’. I/S 9
GO2IS ENTIT 1-41-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-42-X’00000006’. CPC 6
GO2IID ENTIT 1-42-X’0000000A’. I/S 10
GO2IS ENTIT 1-42-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-43-X’00000006’. CPC 6
GO2IID ENTIT 1-43-X’0000000B’. I/S 11
GO2IS ENTIT 1-43-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-44-X’00000006’. CPC 6
GO2IID ENTIT 1-44-X’0000000C’. I/S 12
GO2IS ENTIT 1-44-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-45-X’00000006’. CPC 6
GO2IID ENTIT 1-45-X’0000000D’. I/S 13
GO2IS ENTIT 1-45-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-46-X’00000006’. CPC 6
GO2IID ENTIT 1-46-X’0000000E’. I/S 14
GO2IS ENTIT 1-46-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-47-X’00000006’. CPC 6
GO2IID ENTIT 1-47-X’0000000F’. I/S 15
GO2IS ENTIT 1-47-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-48-X’00000006’. CPC 6
GO2IID ENTIT 1-48-X’00000010’. I/S 16
GO2IS ENTIT 1-48-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-49-X’00000007’. CPC 7
GO2IID ENTIT 1-49-X’00000001’. I/S 1
GO2IS ENTIT 1-49-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-50-X’00000007’. CPC 7
GO2IID ENTIT 1-50-X’00000002’. I/S 2
GO2IS ENTIT 1-50-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-51-X’00000007’. CPC 7
GO2IID ENTIT 1-51-X’00000003’. I/S 3
GO2IS ENTIT 1-51-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-52-X’00000007’. CPC 7
GO2IID ENTIT 1-52-X’00000004’. I/S 4
GO2IS ENTIT 1-52-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-53-X’00000007’. CPC 7

Global Area 271

GO2IID ENTIT 1-53-X’00000005’. I/S 5
GO2IS ENTIT 1-53-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-54-X’00000007’. CPC 7
GO2IID ENTIT 1-54-X’00000006’. I/S 6
GO2IS ENTIT 1-54-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-55-X’00000007’. CPC 7
GO2IID ENTIT 1-55-X’00000007’. I/S 7
GO2IS ENTIT 1-55-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-56-X’00000007’. CPC 7
GO2IID ENTIT 1-56-X’00000008’. I/S 8
GO2IS ENTIT 1-56-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-57-X’00000007’. CPC 7
GO2IID ENTIT 1-57-X’00000009’. I/S 9
GO2IS ENTIT 1-57-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-58-X’00000007’. CPC 7
GO2IID ENTIT 1-58-X’0000000A’. I/S 10
GO2IS ENTIT 1-58-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-59-X’00000007’. CPC 7
GO2IID ENTIT 1-59-X’0000000B’. I/S 11
GO2IS ENTIT 1-59-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-60-X’00000007’. CPC 7
GO2IID ENTIT 1-60-X’0000000C’. I/S 12
GO2IS ENTIT 1-60-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-61-X’00000007’. CPC 7
GO2IID ENTIT 1-61-X’0000000D’. I/S 13
GO2IS ENTIT 1-61-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-62-X’00000007’. CPC 7
GO2IID ENTIT 1-62-X’0000000E’. I/S 14
GO2IS ENTIT 1-62-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-63-X’00000007’. CPC 7
GO2IID ENTIT 1-63-X’0000000F’. I/S 15
GO2IS ENTIT 1-63-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-64-X’00000007’. CPC 7
GO2IID ENTIT 1-64-X’00000010’. I/S 16
GO2IS ENTIT 1-64-X’00000010’. GOA ORD NUM (#16)
*
*

GEND

* This is the 3rd SUPERGOA ordinal
*
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)91. THIS IS #GLOBL 91 (x’5B’)
GO1BID ENT GO. ID = ’GO’
GO1CTL ENT X’00’. N/A
GO1FCH ENT X’005C’. Chained to #GLOBL 92
GO1NIS ENTIT 1-1-X’0040’. 16 I/STREAMS * 4 CPCs
GO1NUM ENTIT 1-1-X’00’. LOAD MODE N/A
GO1CHN ENTIT 1-1-X’40’. GO2DSP Entries Used
*
GO2DSP ENTIT 1-01-X’8000’. CPC 0 NOT IN THIS RECORD
GO2DSP ENTIT 1-02-X’8000’. CPC 1 NOT IN THIS RECORD
GO2DSP ENTIT 1-03-X’8000’. CPC 2 NOT IN THIS RECORD

272 TPF V4R1 System Installation Support Reference

GO2DSP ENTIT 1-04-X’8000’. CPC 3 NOT IN THIS RECORD
GO2DSP ENTIT 1-05-X’8000’. CPC 4 NOT IN THIS RECORD
GO2DSP ENTIT 1-06-X’8000’. CPC 5 NOT IN THIS RECORD
GO2DSP ENTIT 1-07-X’8000’. CPC 6 NOT IN THIS RECORD
GO2DSP ENTIT 1-08-X’8000’. CPC 7 NOT IN THIS RECORD
GO2DSP ENTIT 1-09-X’0000’. CPC 8 INDEX
GO2DSP ENTIT 1-10-X’0010’. CPC 9 INDEX
GO2DSP ENTIT 1-11-X’0020’. CPC 10 INDEX
GO2DSP ENTIT 1-12-X’0030’. CPC 11 INDEX
GO2DSP ENTIT 1-13-X’8000’. CPC 12 NOT IN THIS RECORD
GO2DSP ENTIT 1-14-X’8000’. CPC 13 NOT IN THIS RECORD
GO2DSP ENTIT 1-15-X’8000’. CPC 14 NOT IN THIS RECORD
GO2DSP ENTIT 1-16-X’8000’. CPC 15 NOT IN THIS RECORD
GO2DSP ENTIT 1-17-X’8000’. CPC 16 NOT IN THIS RECORD
GO2DSP ENTIT 1-18-X’8000’. CPC 17 NOT IN THIS RECORD
GO2DSP ENTIT 1-19-X’8000’. CPC 18 NOT IN THIS RECORD
GO2DSP ENTIT 1-20-X’8000’. CPC 19 NOT IN THIS RECORD
GO2DSP ENTIT 1-21-X’8000’. CPC 20 NOT IN THIS RECORD
GO2DSP ENTIT 1-22-X’8000’. CPC 21 NOT IN THIS RECORD
GO2DSP ENTIT 1-23-X’8000’. CPC 22 NOT IN THIS RECORD
GO2DSP ENTIT 1-24-X’8000’. CPC 23 NOT IN THIS RECORD
GO2DSP ENTIT 1-25-X’8000’. CPC 24 NOT IN THIS RECORD
GO2DSP ENTIT 1-26-X’8000’. CPC 25 NOT IN THIS RECORD
GO2DSP ENTIT 1-27-X’8000’. CPC 26 NOT IN THIS RECORD
GO2DSP ENTIT 1-28-X’8000’. CPC 27 NOT IN THIS RECORD
GO2DSP ENTIT 1-29-X’8000’. CPC 28 NOT IN THIS RECORD
GO2DSP ENTIT 1-30-X’8000’. CPC 29 NOT IN THIS RECORD
GO2DSP ENTIT 1-31-X’8000’. CPC 30 NOT IN THIS RECORD
GO2DSP ENTIT 1-32-X’8000’. CPC 31 NOT IN THIS RECORD
*
GO2CID ENTIT 1-01-X’00000008’. CPC 8
GO2IID ENTIT 1-01-X’00000001’. I/S 1
GO2IS ENTIT 1-01-X’00000001’. GOA ORD NUM (#1)
*
GO2CID ENTIT 1-02-X’00000008’. CPC 8
GO2IID ENTIT 1-02-X’00000002’. I/S 2
GO2IS ENTIT 1-02-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-03-X’00000008’. CPC 8
GO2IID ENTIT 1-03-X’00000003’. I/S 3
GO2IS ENTIT 1-03-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-04-X’00000008’. CPC 8
GO2IID ENTIT 1-04-X’00000004’. I/S 4
GO2IS ENTIT 1-04-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-05-X’00000008’. CPC 8
GO2IID ENTIT 1-05-X’00000005’. I/S 5
GO2IS ENTIT 1-05-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-06-X’00000008’. CPC 8
GO2IID ENTIT 1-06-X’00000006’. I/S 6
GO2IS ENTIT 1-06-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-07-X’00000008’. CPC 8
GO2IID ENTIT 1-07-X’00000007’. I/S 7
GO2IS ENTIT 1-07-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-08-X’00000008’. CPC 8
GO2IID ENTIT 1-08-X’00000008’. I/S 8
GO2IS ENTIT 1-08-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-09-X’00000008’. CPC 8
GO2IID ENTIT 1-09-X’00000009’. I/S 9
GO2IS ENTIT 1-09-X’00000010’. GOA ORD NUM (#16)

Global Area 273

*
GO2CID ENTIT 1-10-X’00000008’. CPC 8
GO2IID ENTIT 1-10-X’0000000A’. I/S 10
GO2IS ENTIT 1-10-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-11-X’00000008’. CPC 8
GO2IID ENTIT 1-11-X’0000000B’. I/S 11
GO2IS ENTIT 1-11-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-12-X’00000008’. CPC 8
GO2IID ENTIT 1-12-X’0000000C’. I/S 12
GO2IS ENTIT 1-12-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-13-X’00000008’. CPC 8
GO2IID ENTIT 1-13-X’0000000D’. I/S 13
GO2IS ENTIT 1-13-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-14-X’00000008’. CPC 8
GO2IID ENTIT 1-14-X’0000000E’. I/S 14
GO2IS ENTIT 1-14-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-15-X’00000008’. CPC 8
GO2IID ENTIT 1-15-X’0000000F’. I/S 15
GO2IS ENTIT 1-15-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-16-X’00000008’. CPC 8
GO2IID ENTIT 1-16-X’00000010’. I/S 16
GO2IS ENTIT 1-16-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-17-X’00000009’. CPC 9
GO2IID ENTIT 1-17-X’00000001’. I/S 1
GO2IS ENTIT 1-17-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-18-X’00000009’. CPC 9
GO2IID ENTIT 1-18-X’00000002’. I/S 2
GO2IS ENTIT 1-18-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-19-X’00000009’. CPC 9
GO2IID ENTIT 1-19-X’00000003’. I/S 3
GO2IS ENTIT 1-19-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-20-X’00000009’. CPC 9
GO2IID ENTIT 1-20-X’00000004’. I/S 4
GO2IS ENTIT 1-20-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-21-X’00000009’. CPC 9
GO2IID ENTIT 1-21-X’00000005’. I/S 5
GO2IS ENTIT 1-21-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-22-X’00000009’. CPC 9
GO2IID ENTIT 1-22-X’00000006’. I/S 6
GO2IS ENTIT 1-22-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-23-X’00000009’. CPC 9
GO2IID ENTIT 1-23-X’00000007’. I/S 7
GO2IS ENTIT 1-23-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-24-X’00000009’. CPC 9
GO2IID ENTIT 1-24-X’00000008’. I/S 8
GO2IS ENTIT 1-24-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-25-X’00000009’. CPC 9
GO2IID ENTIT 1-25-X’00000009’. I/S 9

274 TPF V4R1 System Installation Support Reference

GO2IS ENTIT 1-25-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-26-X’00000009’. CPC 9
GO2IID ENTIT 1-26-X’0000000A’. I/S 10
GO2IS ENTIT 1-26-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-27-X’00000009’. CPC 9
GO2IID ENTIT 1-27-X’0000000B’. I/S 11
GO2IS ENTIT 1-27-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-28-X’00000009’. CPC 9
GO2IID ENTIT 1-28-X’0000000C’. I/S 12
GO2IS ENTIT 1-28-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-29-X’00000009’. CPC 9
GO2IID ENTIT 1-29-X’0000000D’. I/S 13
GO2IS ENTIT 1-29-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-30-X’00000009’. CPC 9
GO2IID ENTIT 1-30-X’0000000E’. I/S 14
GO2IS ENTIT 1-30-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-31-X’00000009’. CPC 9
GO2IID ENTIT 1-31-X’0000000F’. I/S 15
GO2IS ENTIT 1-31-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-32-X’00000009’. CPC 9
GO2IID ENTIT 1-32-X’00000010’. I/S 16
GO2IS ENTIT 1-32-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-33-X’0000000A’. CPC 10
GO2IID ENTIT 1-33-X’00000001’. I/S 1
GO2IS ENTIT 1-33-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-34-X’0000000A’. CPC 10
GO2IID ENTIT 1-34-X’00000002’. I/S 2
GO2IS ENTIT 1-34-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-35-X’0000000A’. CPC 10
GO2IID ENTIT 1-35-X’00000003’. I/S 3
GO2IS ENTIT 1-35-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-36-X’0000000A’. CPC 10
GO2IID ENTIT 1-36-X’00000004’. I/S 4
GO2IS ENTIT 1-36-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-37-X’0000000A’. CPC 10
GO2IID ENTIT 1-37-X’00000005’. I/S 5
GO2IS ENTIT 1-37-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-38-X’0000000A’. CPC 10
GO2IID ENTIT 1-38-X’00000006’. I/S 6
GO2IS ENTIT 1-38-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-39-X’0000000A’. CPC 10
GO2IID ENTIT 1-39-X’00000007’. I/S 7
GO2IS ENTIT 1-39-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-40-X’0000000A’. CPC 10
GO2IID ENTIT 1-40-X’00000008’. I/S 8
GO2IS ENTIT 1-40-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-41-X’0000000A’. CPC 10

Global Area 275

GO2IID ENTIT 1-41-X’00000009’. I/S 9
GO2IS ENTIT 1-41-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-42-X’0000000A’. CPC 10
GO2IID ENTIT 1-42-X’0000000A’. I/S 10
GO2IS ENTIT 1-42-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-43-X’0000000A’. CPC 10
GO2IID ENTIT 1-43-X’0000000B’. I/S 11
GO2IS ENTIT 1-43-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-44-X’0000000A’. CPC 10
GO2IID ENTIT 1-44-X’0000000C’. I/S 12
GO2IS ENTIT 1-44-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-45-X’0000000A’. CPC 10
GO2IID ENTIT 1-45-X’0000000D’. I/S 13
GO2IS ENTIT 1-45-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-46-X’0000000A’. CPC 10
GO2IID ENTIT 1-46-X’0000000E’. I/S 14
GO2IS ENTIT 1-46-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-47-X’0000000A’. CPC 10
GO2IID ENTIT 1-47-X’0000000F’. I/S 15
GO2IS ENTIT 1-47-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-48-X’0000000A’. CPC 10
GO2IID ENTIT 1-48-X’00000010’. I/S 16
GO2IS ENTIT 1-48-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-49-X’0000000B’. CPC 11
GO2IID ENTIT 1-49-X’00000001’. I/S 1
GO2IS ENTIT 1-49-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-50-X’0000000B’. CPC 11
GO2IID ENTIT 1-50-X’00000002’. I/S 2
GO2IS ENTIT 1-50-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-51-X’0000000B’. CPC 11
GO2IID ENTIT 1-51-X’00000003’. I/S 3
GO2IS ENTIT 1-51-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-52-X’0000000B’. CPC 11
GO2IID ENTIT 1-52-X’00000004’. I/S 4
GO2IS ENTIT 1-52-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-53-X’0000000B’. CPC 11
GO2IID ENTIT 1-53-X’00000005’. I/S 5
GO2IS ENTIT 1-53-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-54-X’0000000B’. CPC 11
GO2IID ENTIT 1-54-X’00000006’. I/S 6
GO2IS ENTIT 1-54-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-55-X’0000000B’. CPC 11
GO2IID ENTIT 1-55-X’00000007’. I/S 7
GO2IS ENTIT 1-55-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-56-X’0000000B’. CPC 11
GO2IID ENTIT 1-56-X’00000008’. I/S 8
GO2IS ENTIT 1-56-X’00000010’. GOA ORD NUM (#16)
*

*

276 TPF V4R1 System Installation Support Reference

GO2CID ENTIT 1-57-X’0000000B’. CPC 11
GO2IID ENTIT 1-57-X’00000009’. I/S 9
GO2IS ENTIT 1-57-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-58-X’0000000B’. CPC 11
GO2IID ENTIT 1-58-X’0000000A’. I/S 10
GO2IS ENTIT 1-58-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-59-X’0000000B’. CPC 11
GO2IID ENTIT 1-59-X’0000000B’. I/S 11
GO2IS ENTIT 1-59-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-60-X’0000000B’. CPC 11
GO2IID ENTIT 1-60-X’0000000C’. I/S 12
GO2IS ENTIT 1-60-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-61-X’0000000B’. CPC 11
GO2IID ENTIT 1-61-X’0000000D’. I/S 13
GO2IS ENTIT 1-61-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-62-X’0000000B’. CPC 11
GO2IID ENTIT 1-62-X’0000000E’. I/S 14
GO2IS ENTIT 1-62-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-63-X’0000000B’. CPC 11
GO2IID ENTIT 1-63-X’0000000F’. I/S 15
GO2IS ENTIT 1-63-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-64-X’0000000B’. CPC 11
GO2IID ENTIT 1-64-X’00000010’. I/S 16
GO2IS ENTIT 1-64-X’00000010’. GOA ORD NUM (#16)
*

GEND

* This is the 4th SUPERGOA ordinal
*
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)92. THIS IS #GLOBL 92 (x’5C’)
GO1BID ENT GO. ID = ’GO’
GO1CTL ENT X’00’. N/A
GO1FCH ENT X’005D’. Chained to ordinal 93
GO1NIS ENTIT 1-1-X’0040’. 16 I/STREAMS * 4 CPCs
GO1NUM ENTIT 1-1-X’00’. LOAD MODE N/A
GO1CHN ENTIT 1-1-X’40’. GO2DSP Entries Used
*
GO2DSP ENTIT 1-01-X’8000’. CPC 0 NOT IN THIS RECORD
GO2DSP ENTIT 1-02-X’8000’. CPC 1 NOT IN THIS RECORD
GO2DSP ENTIT 1-03-X’8000’. CPC 2 NOT IN THIS RECORD
GO2DSP ENTIT 1-04-X’8000’. CPC 3 NOT IN THIS RECORD
GO2DSP ENTIT 1-05-X’8000’. CPC 4 NOT IN THIS RECORD
GO2DSP ENTIT 1-06-X’8000’. CPC 5 NOT IN THIS RECORD
GO2DSP ENTIT 1-07-X’8000’. CPC 6 NOT IN THIS RECORD
GO2DSP ENTIT 1-08-X’8000’. CPC 7 NOT IN THIS RECORD
GO2DSP ENTIT 1-09-X’8000’. CPC 8 NOT IN THIS RECORD
GO2DSP ENTIT 1-10-X’8000’. CPC 9 NOT IN THIS RECORD
GO2DSP ENTIT 1-11-X’8000’. CPC 10 NOT IN THIS RECORD
GO2DSP ENTIT 1-12-X’8000’. CPC 11 NOT IN THIS RECORD
GO2DSP ENTIT 1-13-X’0000’. CPC 12 - 16 I STREAMS
GO2DSP ENTIT 1-14-X’0010’. CPC 13 - 16 I STREAMS
GO2DSP ENTIT 1-15-X’0020’. CPC 14 - 16 I STREAMS
GO2DSP ENTIT 1-16-X’0030’. CPC 15 - 16 I STREAMS
GO2DSP ENTIT 1-17-X’8000’. CPC 16 NOT IN THIS RECORD
GO2DSP ENTIT 1-18-X’8000’. CPC 17 NOT IN THIS RECORD
GO2DSP ENTIT 1-19-X’8000’. CPC 18 NOT IN THIS RECORD
GO2DSP ENTIT 1-20-X’8000’. CPC 19 NOT IN THIS RECORD
GO2DSP ENTIT 1-21-X’8000’. CPC 20 NOT IN THIS RECORD

Global Area 277

GO2DSP ENTIT 1-22-X’8000’. CPC 21 NOT IN THIS RECORD
GO2DSP ENTIT 1-23-X’8000’. CPC 22 NOT IN THIS RECORD
GO2DSP ENTIT 1-24-X’8000’. CPC 23 NOT IN THIS RECORD
GO2DSP ENTIT 1-25-X’8000’. CPC 24 NOT IN THIS RECORD
GO2DSP ENTIT 1-26-X’8000’. CPC 25 NOT IN THIS RECORD
GO2DSP ENTIT 1-27-X’8000’. CPC 26 NOT IN THIS RECORD
GO2DSP ENTIT 1-28-X’8000’. CPC 27 NOT IN THIS RECORD
GO2DSP ENTIT 1-29-X’8000’. CPC 28 NOT IN THIS RECORD
GO2DSP ENTIT 1-30-X’8000’. CPC 29 NOT IN THIS RECORD
GO2DSP ENTIT 1-31-X’8000’. CPC 30 NOT IN THIS RECORD
GO2DSP ENTIT 1-32-X’8000’. CPC 31 NOT IN THIS RECORD
*
*
GO2CID ENTIT 1-01-X’0000000C’. CPC 12
GO2IID ENTIT 1-01-X’00000001’. I/S 1
GO2IS ENTIT 1-01-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-02-X’0000000C’. CPC 12
GO2IID ENTIT 1-02-X’00000002’. I/S 2
GO2IS ENTIT 1-02-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-03-X’0000000C’. CPC 12
GO2IID ENTIT 1-03-X’00000003’. I/S 3
GO2IS ENTIT 1-03-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-04-X’0000000C’. CPC 12
GO2IID ENTIT 1-04-X’00000004’. I/S 4
GO2IS ENTIT 1-04-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-05-X’0000000C’. CPC 12
GO2IID ENTIT 1-05-X’00000005’. I/S 5
GO2IS ENTIT 1-05-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-06-X’0000000C’. CPC 12
GO2IID ENTIT 1-06-X’00000006’. I/S 6
GO2IS ENTIT 1-06-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-07-X’0000000C’. CPC 12
GO2IID ENTIT 1-07-X’00000007’. I/S 7
GO2IS ENTIT 1-07-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-08-X’0000000C’. CPC 12
GO2IID ENTIT 1-08-X’00000008’. I/S 8
GO2IS ENTIT 1-08-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-09-X’0000000C’. CPC 12
GO2IID ENTIT 1-09-X’00000009’. I/S 9
GO2IS ENTIT 1-09-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-10-X’0000000C’. CPC 12
GO2IID ENTIT 1-10-X’0000000A’. I/S 10
GO2IS ENTIT 1-10-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-11-X’0000000C’. CPC 12
GO2IID ENTIT 1-11-X’0000000B’. I/S 11
GO2IS ENTIT 1-11-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-12-X’0000000C’. CPC 12
GO2IID ENTIT 1-12-X’0000000C’. I/S 12
GO2IS ENTIT 1-12-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-13-X’0000000C’. CPC 12
GO2IID ENTIT 1-13-X’0000000D’. I/S 13
GO2IS ENTIT 1-13-X’00000010’. GOA ORD NUM (#16)
*

278 TPF V4R1 System Installation Support Reference

GO2CID ENTIT 1-14-X’0000000C’. CPC 12
GO2IID ENTIT 1-14-X’0000000E’. I/S 14
GO2IS ENTIT 1-14-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-15-X’0000000C’. CPC 12
GO2IID ENTIT 1-15-X’0000000F’. I/S 15
GO2IS ENTIT 1-15-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-16-X’0000000C’. CPC 12
GO2IID ENTIT 1-16-X’00000010’. I/S 16
GO2IS ENTIT 1-16-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-17-X’0000000D’. CPC 13
GO2IID ENTIT 1-17-X’00000001’. I/S 1
GO2IS ENTIT 1-17-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-18-X’0000000D’. CPC 13
GO2IID ENTIT 1-18-X’00000002’. I/S 2
GO2IS ENTIT 1-18-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-19-X’0000000D’. CPC 13
GO2IID ENTIT 1-19-X’00000003’. I/S 3
GO2IS ENTIT 1-19-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-20-X’0000000D’. CPC 13
GO2IID ENTIT 1-20-X’00000004’. I/S 4
GO2IS ENTIT 1-20-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-21-X’0000000D’. CPC 13
GO2IID ENTIT 1-21-X’00000005’. I/S 5
GO2IS ENTIT 1-21-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-22-X’0000000D’. CPC 13
GO2IID ENTIT 1-22-X’00000006’. I/S 6
GO2IS ENTIT 1-22-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-23-X’0000000D’. CPC 13
GO2IID ENTIT 1-23-X’00000007’. I/S 7
GO2IS ENTIT 1-23-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-24-X’0000000D’. CPC 13
GO2IID ENTIT 1-24-X’00000008’. I/S 8
GO2IS ENTIT 1-24-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-25-X’0000000D’. CPC 13
GO2IID ENTIT 1-25-X’00000009’. I/S 9
GO2IS ENTIT 1-25-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-26-X’0000000D’. CPC 13
GO2IID ENTIT 1-26-X’0000000A’. I/S 10
GO2IS ENTIT 1-26-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-27-X’0000000D’. CPC 13
GO2IID ENTIT 1-27-X’0000000B’. I/S 11
GO2IS ENTIT 1-27-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-28-X’0000000D’. CPC 13
GO2IID ENTIT 1-28-X’0000000C’. I/S 12
GO2IS ENTIT 1-28-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-29-X’0000000D’. CPC 13
GO2IID ENTIT 1-29-X’0000000D’. I/S 13
GO2IS ENTIT 1-29-X’00000010’. GOA ORD NUM (#16)

Global Area 279

*
GO2CID ENTIT 1-30-X’0000000D’. CPC 13
GO2IID ENTIT 1-30-X’0000000E’. I/S 14
GO2IS ENTIT 1-30-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-31-X’0000000D’. CPC 13
GO2IID ENTIT 1-31-X’0000000F’. I/S 15
GO2IS ENTIT 1-31-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-32-X’0000000D’. CPC 13
GO2IID ENTIT 1-32-X’00000010’. I/S 16
GO2IS ENTIT 1-32-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-33-X’0000000E’. CPC 14
GO2IID ENTIT 1-33-X’00000001’. I/S 1
GO2IS ENTIT 1-33-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-34-X’0000000E’. CPC 14
GO2IID ENTIT 1-34-X’00000002’. I/S 2
GO2IS ENTIT 1-34-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-35-X’0000000E’. CPC 14
GO2IID ENTIT 1-35-X’00000003’. I/S 3
GO2IS ENTIT 1-35-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-36-X’0000000E’. CPC 14
GO2IID ENTIT 1-36-X’00000004’. I/S 4
GO2IS ENTIT 1-36-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-37-X’0000000E’. CPC 14
GO2IID ENTIT 1-37-X’00000005’. I/S 5
GO2IS ENTIT 1-37-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-38-X’0000000E’. CPC 14
GO2IID ENTIT 1-38-X’00000006’. I/S 6
GO2IS ENTIT 1-38-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-39-X’0000000E’. CPC 14
GO2IID ENTIT 1-39-X’00000007’. I/S 7
GO2IS ENTIT 1-39-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-40-X’0000000E’. CPC 14
GO2IID ENTIT 1-40-X’00000008’. I/S 8
GO2IS ENTIT 1-40-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-41-X’0000000E’. CPC 14
GO2IID ENTIT 1-41-X’00000009’. I/S 9
GO2IS ENTIT 1-41-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-42-X’0000000E’. CPC 14
GO2IID ENTIT 1-42-X’0000000A’. I/S 10
GO2IS ENTIT 1-42-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-43-X’0000000E’. CPC 14
GO2IID ENTIT 1-43-X’0000000B’. I/S 11
GO2IS ENTIT 1-43-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-44-X’0000000E’. CPC 14
GO2IID ENTIT 1-44-X’0000000C’. I/S 12
GO2IS ENTIT 1-44-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-45-X’0000000E’. CPC 14
GO2IID ENTIT 1-45-X’0000000D’. I/S 13

280 TPF V4R1 System Installation Support Reference

GO2IS ENTIT 1-45-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-46-X’0000000E’. CPC 14
GO2IID ENTIT 1-46-X’0000000E’. I/S 14
GO2IS ENTIT 1-46-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-47-X’0000000E’. CPC 14
GO2IID ENTIT 1-47-X’0000000F’. I/S 15
GO2IS ENTIT 1-47-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-48-X’0000000E’. CPC 14
GO2IID ENTIT 1-48-X’00000010’. I/S 16
GO2IS ENTIT 1-48-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-49-X’0000000F’. CPC 15
GO2IID ENTIT 1-49-X’00000001’. I/S 1
GO2IS ENTIT 1-49-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-50-X’0000000F’. CPC 15
GO2IID ENTIT 1-50-X’00000002’. I/S 2
GO2IS ENTIT 1-50-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-51-X’0000000F’. CPC 15
GO2IID ENTIT 1-51-X’00000003’. I/S 3
GO2IS ENTIT 1-51-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-52-X’0000000F’. CPC 15
GO2IID ENTIT 1-52-X’00000004’. I/S 4
GO2IS ENTIT 1-52-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-53-X’0000000F’. CPC 15
GO2IID ENTIT 1-53-X’00000005’. I/S 5
GO2IS ENTIT 1-53-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-54-X’0000000F’. CPC 15
GO2IID ENTIT 1-54-X’00000006’. I/S 6
GO2IS ENTIT 1-54-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-55-X’0000000F’. CPC 15
GO2IID ENTIT 1-55-X’00000007’. I/S 7
GO2IS ENTIT 1-55-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-56-X’0000000F’. CPC 15
GO2IID ENTIT 1-56-X’00000008’. I/S 8
GO2IS ENTIT 1-56-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-57-X’0000000F’. CPC 15
GO2IID ENTIT 1-57-X’00000009’. I/S 9
GO2IS ENTIT 1-57-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-58-X’0000000F’. CPC 15
GO2IID ENTIT 1-58-X’0000000A’. I/S 10
GO2IS ENTIT 1-58-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-59-X’0000000F’. CPC 15
GO2IID ENTIT 1-59-X’0000000B’. I/S 11
GO2IS ENTIT 1-59-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-60-X’0000000F’. CPC 15
GO2IID ENTIT 1-60-X’0000000C’. I/S 12
GO2IS ENTIT 1-60-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-61-X’0000000F’. CPC 15

Global Area 281

GO2IID ENTIT 1-61-X’0000000D’. I/S 13
GO2IS ENTIT 1-61-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-62-X’0000000F’. CPC 15
GO2IID ENTIT 1-62-X’0000000E’. I/S 14
GO2IS ENTIT 1-62-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-63-X’0000000F’. CPC 15
GO2IID ENTIT 1-63-X’0000000F’. I/S 15
GO2IS ENTIT 1-63-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-64-X’0000000F’. CPC 15
GO2IID ENTIT 1-64-X’00000010’. I/S 16
GO2IS ENTIT 1-64-X’00000010’. GOA ORD NUM (#16)
*
*

GEND

* This is the 5th SUPERGOA ordinal
*
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)93. THIS IS #GLOBL 93 (x’5D’)
GO1BID ENT GO. ID = ’GO’
GO1CTL ENT X’00’. N/A
GO1FCH ENT X’005E’. Chained to ordinal 94
GO1NIS ENTIT 1-1-X’0040’. 16 I/STREAMS * 4 CPCs
GO1NUM ENTIT 1-1-X’00’. LOAD MODE N/A
GO1CHN ENTIT 1-1-X’40’. GO2DSP Entries Used
*
GO2DSP ENTIT 1-01-X’8000’. CPC 0 NOT IN THIS RECORD
GO2DSP ENTIT 1-02-X’8000’. CPC 1 NOT IN THIS RECORD
GO2DSP ENTIT 1-03-X’8000’. CPC 2 NOT IN THIS RECORD
GO2DSP ENTIT 1-04-X’8000’. CPC 3 NOT IN THIS RECORD
GO2DSP ENTIT 1-05-X’8000’. CPC 4 NOT IN THIS RECORD
GO2DSP ENTIT 1-06-X’8000’. CPC 5 NOT IN THIS RECORD
GO2DSP ENTIT 1-07-X’8000’. CPC 6 NOT IN THIS RECORD
GO2DSP ENTIT 1-08-X’8000’. CPC 7 NOT IN THIS RECORD
GO2DSP ENTIT 1-09-X’8000’. CPC 8 NOT IN THIS RECORD
GO2DSP ENTIT 1-10-X’8000’. CPC 9 NOT IN THIS RECORD
GO2DSP ENTIT 1-11-X’8000’. CPC 10 NOT IN THIS RECORD
GO2DSP ENTIT 1-12-X’8000’. CPC 11 NOT IN THIS RECORD
GO2DSP ENTIT 1-13-X’8000’. CPC 12 NOT IN THIS RECORD
GO2DSP ENTIT 1-14-X’8000’. CPC 13 NOT IN THIS RECORD
GO2DSP ENTIT 1-15-X’8000’. CPC 14 NOT IN THIS RECORD
GO2DSP ENTIT 1-16-X’8000’. CPC 15 NOT IN THIS RECORD
GO2DSP ENTIT 1-17-X’0000’. CPC 16 - 16 I STREAMS
GO2DSP ENTIT 1-18-X’0010’. CPC 17 - 16 I STREAMS
GO2DSP ENTIT 1-19-X’0020’. CPC 18 - 16 I STREAMS
GO2DSP ENTIT 1-20-X’0030’. CPC 19 - 16 I STREAMS
GO2DSP ENTIT 1-21-X’8000’. CPC 20 NOT IN THIS RECORD
GO2DSP ENTIT 1-22-X’8000’. CPC 21 NOT IN THIS RECORD
GO2DSP ENTIT 1-23-X’8000’. CPC 22 NOT IN THIS RECORD
GO2DSP ENTIT 1-24-X’8000’. CPC 23 NOT IN THIS RECORD
GO2DSP ENTIT 1-25-X’8000’. CPC 24 NOT IN THIS RECORD
GO2DSP ENTIT 1-26-X’8000’. CPC 25 NOT IN THIS RECORD
GO2DSP ENTIT 1-27-X’8000’. CPC 26 NOT IN THIS RECORD
GO2DSP ENTIT 1-28-X’8000’. CPC 27 NOT IN THIS RECORD
GO2DSP ENTIT 1-29-X’8000’. CPC 28 NOT IN THIS RECORD
GO2DSP ENTIT 1-30-X’8000’. CPC 29 NOT IN THIS RECORD
GO2DSP ENTIT 1-31-X’8000’. CPC 30 NOT IN THIS RECORD
GO2DSP ENTIT 1-32-X’8000’. CPC 31 NOT IN THIS RECORD
*
*
GO2CID ENTIT 1-01-X’00000010’. CPC 16
GO2IID ENTIT 1-01-X’00000001’. I/S 1
GO2IS ENTIT 1-01-X’00000001’. GOA ORD NUM

282 TPF V4R1 System Installation Support Reference

*
GO2CID ENTIT 1-02-X’00000010’. CPC 16
GO2IID ENTIT 1-02-X’00000002’. I/S 2
GO2IS ENTIT 1-02-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-03-X’00000010’. CPC 16
GO2IID ENTIT 1-03-X’00000003’. I/S 3
GO2IS ENTIT 1-03-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-04-X’00000010’. CPC 16
GO2IID ENTIT 1-04-X’00000004’. I/S 4
GO2IS ENTIT 1-04-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-05-X’00000010’. CPC 16
GO2IID ENTIT 1-05-X’00000005’. I/S 5
GO2IS ENTIT 1-05-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-06-X’00000010’. CPC 16
GO2IID ENTIT 1-06-X’00000006’. I/S 6
GO2IS ENTIT 1-06-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-07-X’00000010’. CPC 16
GO2IID ENTIT 1-07-X’00000007’. I/S 7
GO2IS ENTIT 1-07-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-08-X’00000010’. CPC 16
GO2IID ENTIT 1-08-X’00000008’. I/S 8
GO2IS ENTIT 1-08-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-09-X’00000010’. CPC 16
GO2IID ENTIT 1-09-X’00000009’. I/S 9
GO2IS ENTIT 1-09-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-10-X’00000010’. CPC 16
GO2IID ENTIT 1-10-X’0000000A’. I/S 10
GO2IS ENTIT 1-10-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-11-X’00000010’. CPC 16
GO2IID ENTIT 1-11-X’0000000B’. I/S 11
GO2IS ENTIT 1-11-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-12-X’00000010’. CPC 16
GO2IID ENTIT 1-12-X’0000000C’. I/S 12
GO2IS ENTIT 1-12-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-13-X’00000010’. CPC 16
GO2IID ENTIT 1-13-X’0000000D’. I/S 13
GO2IS ENTIT 1-13-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-14-X’00000010’. CPC 16
GO2IID ENTIT 1-14-X’0000000E’. I/S 14
GO2IS ENTIT 1-14-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-15-X’00000010’. CPC 16
GO2IID ENTIT 1-15-X’0000000F’. I/S 15
GO2IS ENTIT 1-15-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-16-X’00000010’. CPC 16
GO2IID ENTIT 1-16-X’00000010’. I/S 16
GO2IS ENTIT 1-16-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-17-X’00000011’. CPC 17
GO2IID ENTIT 1-17-X’00000001’. I/S 1

Global Area 283

GO2IS ENTIT 1-17-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-18-X’00000011’. CPC 17
GO2IID ENTIT 1-18-X’00000002’. I/S 2
GO2IS ENTIT 1-18-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-19-X’00000011’. CPC 17
GO2IID ENTIT 1-19-X’00000003’. I/S 3
GO2IS ENTIT 1-19-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-20-X’00000011’. CPC 17
GO2IID ENTIT 1-20-X’00000004’. I/S 4
GO2IS ENTIT 1-20-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-21-X’00000011’. CPC 17
GO2IID ENTIT 1-21-X’00000005’. I/S 5
GO2IS ENTIT 1-21-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-22-X’00000011’. CPC 17
GO2IID ENTIT 1-22-X’00000006’. I/S 6
GO2IS ENTIT 1-22-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-23-X’00000011’. CPC 17
GO2IID ENTIT 1-23-X’00000007’. I/S 7
GO2IS ENTIT 1-23-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-24-X’00000011’. CPC 17
GO2IID ENTIT 1-24-X’00000008’. I/S 8
GO2IS ENTIT 1-24-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-25-X’00000011’. CPC 17
GO2IID ENTIT 1-25-X’00000009’. I/S 9
GO2IS ENTIT 1-25-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-26-X’00000011’. CPC 17
GO2IID ENTIT 1-26-X’0000000A’. I/S 10
GO2IS ENTIT 1-26-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-27-X’00000011’. CPC 17
GO2IID ENTIT 1-27-X’0000000B’. I/S 11
GO2IS ENTIT 1-27-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-28-X’00000011’. CPC 17
GO2IID ENTIT 1-28-X’0000000C’. I/S 12
GO2IS ENTIT 1-28-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-29-X’00000011’. CPC 17
GO2IID ENTIT 1-29-X’0000000D’. I/S 13
GO2IS ENTIT 1-29-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-30-X’00000011’. CPC 17
GO2IID ENTIT 1-30-X’0000000E’. I/S 14
GO2IS ENTIT 1-30-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-31-X’00000011’. CPC 17
GO2IID ENTIT 1-31-X’0000000F’. I/S 15
GO2IS ENTIT 1-31-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-32-X’00000011’. CPC 17
GO2IID ENTIT 1-32-X’00000010’. I/S 16
GO2IS ENTIT 1-32-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-33-X’00000012’. CPC 18

284 TPF V4R1 System Installation Support Reference

GO2IID ENTIT 1-33-X’00000001’. I/S 1
GO2IS ENTIT 1-33-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-34-X’00000012’. CPC 18
GO2IID ENTIT 1-34-X’00000002’. I/S 2
GO2IS ENTIT 1-34-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-35-X’00000012’. CPC 18
GO2IID ENTIT 1-35-X’00000003’. I/S 3
GO2IS ENTIT 1-35-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-36-X’00000012’. CPC 18
GO2IID ENTIT 1-36-X’00000004’. I/S 4
GO2IS ENTIT 1-36-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-37-X’00000012’. CPC 18
GO2IID ENTIT 1-37-X’00000005’. I/S 5
GO2IS ENTIT 1-37-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-38-X’00000012’. CPC 18
GO2IID ENTIT 1-38-X’00000006’. I/S 6
GO2IS ENTIT 1-38-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-39-X’00000012’. CPC 18
GO2IID ENTIT 1-39-X’00000007’. I/S 7
GO2IS ENTIT 1-39-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-40-X’00000012’. CPC 18
GO2IID ENTIT 1-40-X’00000008’. I/S 8
GO2IS ENTIT 1-40-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-41-X’00000012’. CPC 18
GO2IID ENTIT 1-41-X’00000009’. I/S 9
GO2IS ENTIT 1-41-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-42-X’00000012’. CPC 18
GO2IID ENTIT 1-42-X’0000000A’. I/S 10
GO2IS ENTIT 1-42-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-43-X’00000012’. CPC 18
GO2IID ENTIT 1-43-X’0000000B’. I/S 11
GO2IS ENTIT 1-43-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-44-X’00000012’. CPC 18
GO2IID ENTIT 1-44-X’0000000C’. I/S 12
GO2IS ENTIT 1-44-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-45-X’00000012’. CPC 18
GO2IID ENTIT 1-45-X’0000000D’. I/S 13
GO2IS ENTIT 1-45-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-46-X’00000012’. CPC 18
GO2IID ENTIT 1-46-X’0000000E’. I/S 14
GO2IS ENTIT 1-46-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-47-X’00000012’. CPC 18
GO2IID ENTIT 1-47-X’0000000F’. I/S 15
GO2IS ENTIT 1-47-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-48-X’00000012’. CPC 18
GO2IID ENTIT 1-48-X’00000010’. I/S 16
GO2IS ENTIT 1-48-X’00000010’. GOA ORD NUM (#16)
*

*

Global Area 285

GO2CID ENTIT 1-49-X’00000013’. CPC 19
GO2IID ENTIT 1-49-X’00000001’. I/S 1
GO2IS ENTIT 1-49-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-50-X’00000013’. CPC 19
GO2IID ENTIT 1-50-X’00000002’. I/S 2
GO2IS ENTIT 1-50-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-51-X’00000013’. CPC 19
GO2IID ENTIT 1-51-X’00000003’. I/S 3
GO2IS ENTIT 1-51-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-52-X’00000013’. CPC 19
GO2IID ENTIT 1-52-X’00000004’. I/S 4
GO2IS ENTIT 1-52-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-53-X’00000013’. CPC 19
GO2IID ENTIT 1-53-X’00000005’. I/S 5
GO2IS ENTIT 1-53-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-54-X’00000013’. CPC 19
GO2IID ENTIT 1-54-X’00000006’. I/S 6
GO2IS ENTIT 1-54-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-55-X’00000013’. CPC 19
GO2IID ENTIT 1-55-X’00000007’. I/S 7
GO2IS ENTIT 1-55-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-56-X’00000013’. CPC 19
GO2IID ENTIT 1-56-X’00000008’. I/S 8
GO2IS ENTIT 1-56-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-57-X’00000013’. CPC 19
GO2IID ENTIT 1-57-X’00000009’. I/S 9
GO2IS ENTIT 1-57-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-58-X’00000013’. CPC 19
GO2IID ENTIT 1-58-X’0000000A’. I/S 10
GO2IS ENTIT 1-58-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-59-X’00000013’. CPC 19
GO2IID ENTIT 1-59-X’0000000B’. I/S 11
GO2IS ENTIT 1-59-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-60-X’00000013’. CPC 19
GO2IID ENTIT 1-60-X’0000000C’. I/S 12
GO2IS ENTIT 1-60-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-61-X’00000013’. CPC 19
GO2IID ENTIT 1-61-X’0000000D’. I/S 13
GO2IS ENTIT 1-61-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-62-X’00000013’. CPC 19
GO2IID ENTIT 1-62-X’0000000E’. I/S 14
GO2IS ENTIT 1-62-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-63-X’00000013’. CPC 19
GO2IID ENTIT 1-63-X’0000000F’. I/S 15
GO2IS ENTIT 1-63-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-64-X’00000013’. CPC 19
GO2IID ENTIT 1-64-X’00000010’. I/S 16
GO2IS ENTIT 1-64-X’00000010’. GOA ORD NUM (#16)
*
*

286 TPF V4R1 System Installation Support Reference

GEND

* This is the 6th SUPERGOA ordinal
*
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)94. THIS IS #GLOBL 93 (x’5E’)
GO1BID ENT GO. ID = ’GO’
GO1CTL ENT X’00’. N/A
GO1FCH ENT X’005F’. Chained to ordinal 95
GO1NIS ENTIT 1-1-X’0040’. 16 I/STREAMS * 4 CPCs
GO1NUM ENTIT 1-1-X’00’. LOAD MODE N/A
GO1CHN ENTIT 1-1-X’40’. GO2DSP Entries Used
*
GO2DSP ENTIT 1-01-X’8000’. CPC 0 NOT IN THIS RECORD
GO2DSP ENTIT 1-02-X’8000’. CPC 1 NOT IN THIS RECORD
GO2DSP ENTIT 1-03-X’8000’. CPC 2 NOT IN THIS RECORD
GO2DSP ENTIT 1-04-X’8000’. CPC 3 NOT IN THIS RECORD
GO2DSP ENTIT 1-05-X’8000’. CPC 4 NOT IN THIS RECORD
GO2DSP ENTIT 1-06-X’8000’. CPC 5 NOT IN THIS RECORD
GO2DSP ENTIT 1-07-X’8000’. CPC 6 NOT IN THIS RECORD
GO2DSP ENTIT 1-08-X’8000’. CPC 7 NOT IN THIS RECORD
GO2DSP ENTIT 1-09-X’8000’. CPC 8 NOT IN THIS RECORD
GO2DSP ENTIT 1-10-X’8000’. CPC 9 NOT IN THIS RECORD
GO2DSP ENTIT 1-11-X’8000’. CPC 10 NOT IN THIS RECORD
GO2DSP ENTIT 1-12-X’8000’. CPC 11 NOT IN THIS RECORD
GO2DSP ENTIT 1-13-X’8000’. CPC 12 NOT IN THIS RECORD
GO2DSP ENTIT 1-14-X’8000’. CPC 13 NOT IN THIS RECORD
GO2DSP ENTIT 1-15-X’8000’. CPC 14 NOT IN THIS RECORD
GO2DSP ENTIT 1-16-X’8000’. CPC 15 NOT IN THIS RECORD
GO2DSP ENTIT 1-17-X’8000’. CPC 16 NOT IN THIS RECORD
GO2DSP ENTIT 1-18-X’8000’. CPC 17 NOT IN THIS RECORD
GO2DSP ENTIT 1-19-X’8000’. CPC 18 NOT IN THIS RECORD
GO2DSP ENTIT 1-20-X’8000’. CPC 19 NOT IN THIS RECORD
GO2DSP ENTIT 1-21-X’0000’. CPC 20 - 16 I STREAMS
GO2DSP ENTIT 1-22-X’0010’. CPC 21 - 16 I STREAMS
GO2DSP ENTIT 1-23-X’0020’. CPC 22 - 16 I STREAMS
GO2DSP ENTIT 1-24-X’0030’. CPC 23 - 16 I STREAMS
GO2DSP ENTIT 1-25-X’8000’. CPC 24 NOT IN THIS RECORD
GO2DSP ENTIT 1-26-X’8000’. CPC 25 NOT IN THIS RECORD
GO2DSP ENTIT 1-27-X’8000’. CPC 26 NOT IN THIS RECORD
GO2DSP ENTIT 1-28-X’8000’. CPC 27 NOT IN THIS RECORD
GO2DSP ENTIT 1-29-X’8000’. CPC 28 NOT IN THIS RECORD
GO2DSP ENTIT 1-30-X’8000’. CPC 29 NOT IN THIS RECORD
GO2DSP ENTIT 1-31-X’8000’. CPC 30 NOT IN THIS RECORD
GO2DSP ENTIT 1-32-X’8000’. CPC 31 NOT IN THIS RECORD
*
*
GO2CID ENTIT 1-01-X’00000014’. CPC 20
GO2IID ENTIT 1-01-X’00000001’. I/S 1
GO2IS ENTIT 1-01-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-02-X’00000014’. CPC 20
GO2IID ENTIT 1-02-X’00000002’. I/S 2
GO2IS ENTIT 1-02-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-03-X’00000014’. CPC 20
GO2IID ENTIT 1-03-X’00000003’. I/S 3
GO2IS ENTIT 1-03-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-04-X’00000014’. CPC 20
GO2IID ENTIT 1-04-X’00000004’. I/S 4
GO2IS ENTIT 1-04-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-05-X’00000014’. CPC 20
GO2IID ENTIT 1-05-X’00000005’. I/S 5
GO2IS ENTIT 1-05-X’00000010’. GOA ORD NUM (#16)

Global Area 287

*
GO2CID ENTIT 1-06-X’00000014’. CPC 20
GO2IID ENTIT 1-06-X’00000006’. I/S 6
GO2IS ENTIT 1-06-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-07-X’00000014’. CPC 20
GO2IID ENTIT 1-07-X’00000007’. I/S 7
GO2IS ENTIT 1-07-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-08-X’00000014’. CPC 20
GO2IID ENTIT 1-08-X’00000008’. I/S 8
GO2IS ENTIT 1-08-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-09-X’00000014’. CPC 20
GO2IID ENTIT 1-09-X’00000009’. I/S 9
GO2IS ENTIT 1-09-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-10-X’00000014’. CPC 20
GO2IID ENTIT 1-10-X’0000000A’. I/S 10
GO2IS ENTIT 1-10-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-11-X’00000014’. CPC 20
GO2IID ENTIT 1-11-X’0000000B’. I/S 11
GO2IS ENTIT 1-11-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-12-X’00000014’. CPC 20
GO2IID ENTIT 1-12-X’0000000C’. I/S 12
GO2IS ENTIT 1-12-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-13-X’00000014’. CPC 20
GO2IID ENTIT 1-13-X’0000000D’. I/S 13
GO2IS ENTIT 1-13-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-14-X’00000014’. CPC 20
GO2IID ENTIT 1-14-X’0000000E’. I/S 14
GO2IS ENTIT 1-14-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-15-X’00000014’. CPC 20
GO2IID ENTIT 1-15-X’0000000F’. I/S 15
GO2IS ENTIT 1-15-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-16-X’00000014’. CPC 20
GO2IID ENTIT 1-16-X’00000010’. I/S 16
GO2IS ENTIT 1-16-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-17-X’00000015’. CPC 21
GO2IID ENTIT 1-17-X’00000001’. I/S 1
GO2IS ENTIT 1-17-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-18-X’00000015’. CPC 21
GO2IID ENTIT 1-18-X’00000002’. I/S 2
GO2IS ENTIT 1-18-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-19-X’00000015’. CPC 21
GO2IID ENTIT 1-19-X’00000003’. I/S 3
GO2IS ENTIT 1-19-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-20-X’00000015’. CPC 21
GO2IID ENTIT 1-20-X’00000004’. I/S 4
GO2IS ENTIT 1-20-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-21-X’00000015’. CPC 21
GO2IID ENTIT 1-21-X’00000005’. I/S 5

288 TPF V4R1 System Installation Support Reference

GO2IS ENTIT 1-21-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-22-X’00000015’. CPC 21
GO2IID ENTIT 1-22-X’00000006’. I/S 6
GO2IS ENTIT 1-22-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-23-X’00000015’. CPC 21
GO2IID ENTIT 1-23-X’00000007’. I/S 7
GO2IS ENTIT 1-23-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-24-X’00000015’. CPC 21
GO2IID ENTIT 1-24-X’00000008’. I/S 8
GO2IS ENTIT 1-24-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-25-X’00000015’. CPC 21
GO2IID ENTIT 1-25-X’00000009’. I/S 9
GO2IS ENTIT 1-25-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-26-X’00000015’. CPC 21
GO2IID ENTIT 1-26-X’0000000A’. I/S 10
GO2IS ENTIT 1-26-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-27-X’00000015’. CPC 21
GO2IID ENTIT 1-27-X’0000000B’. I/S 11
GO2IS ENTIT 1-27-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-28-X’00000015’. CPC 21
GO2IID ENTIT 1-28-X’0000000C’. I/S 12
GO2IS ENTIT 1-28-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-29-X’00000015’. CPC 21
GO2IID ENTIT 1-29-X’0000000D’. I/S 13
GO2IS ENTIT 1-29-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-30-X’00000015’. CPC 21
GO2IID ENTIT 1-30-X’0000000E’. I/S 14
GO2IS ENTIT 1-30-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-31-X’00000015’. CPC 21
GO2IID ENTIT 1-31-X’0000000F’. I/S 15
GO2IS ENTIT 1-31-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-32-X’00000015’. CPC 21
GO2IID ENTIT 1-32-X’00000010’. I/S 16
GO2IS ENTIT 1-32-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-33-X’00000016’. CPC 22
GO2IID ENTIT 1-33-X’00000001’. I/S 1
GO2IS ENTIT 1-33-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-34-X’00000016’. CPC 22
GO2IID ENTIT 1-34-X’00000002’. I/S 2
GO2IS ENTIT 1-34-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-35-X’00000016’. CPC 22
GO2IID ENTIT 1-35-X’00000003’. I/S 3
GO2IS ENTIT 1-35-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-36-X’00000016’. CPC 22
GO2IID ENTIT 1-36-X’00000004’. I/S 4
GO2IS ENTIT 1-36-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-37-X’00000016’. CPC 22

Global Area 289

GO2IID ENTIT 1-37-X’00000005’. I/S 5
GO2IS ENTIT 1-37-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-38-X’00000016’. CPC 22
GO2IID ENTIT 1-38-X’00000006’. I/S 6
GO2IS ENTIT 1-38-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-39-X’00000016’. CPC 22
GO2IID ENTIT 1-39-X’00000007’. I/S 7
GO2IS ENTIT 1-39-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-40-X’00000016’. CPC 22
GO2IID ENTIT 1-40-X’00000008’. I/S 8
GO2IS ENTIT 1-40-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-41-X’00000016’. CPC 22
GO2IID ENTIT 1-41-X’00000009’. I/S 9
GO2IS ENTIT 1-41-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-42-X’00000016’. CPC 22
GO2IID ENTIT 1-42-X’0000000A’. I/S 10
GO2IS ENTIT 1-42-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-43-X’00000016’. CPC 22
GO2IID ENTIT 1-43-X’0000000B’. I/S 11
GO2IS ENTIT 1-43-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-44-X’00000016’. CPC 22
GO2IID ENTIT 1-44-X’0000000C’. I/S 12
GO2IS ENTIT 1-44-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-45-X’00000016’. CPC 22
GO2IID ENTIT 1-45-X’0000000D’. I/S 13
GO2IS ENTIT 1-45-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-46-X’00000016’. CPC 22
GO2IID ENTIT 1-46-X’0000000E’. I/S 14
GO2IS ENTIT 1-46-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-47-X’00000016’. CPC 22
GO2IID ENTIT 1-47-X’0000000F’. I/S 15
GO2IS ENTIT 1-47-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-48-X’00000016’. CPC 22
GO2IID ENTIT 1-48-X’00000010’. I/S 16
GO2IS ENTIT 1-48-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-49-X’00000017’. CPC 23
GO2IID ENTIT 1-49-X’00000001’. I/S 1
GO2IS ENTIT 1-49-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-50-X’00000017’. CPC 23
GO2IID ENTIT 1-50-X’00000002’. I/S 2
GO2IS ENTIT 1-50-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-51-X’00000017’. CPC 23
GO2IID ENTIT 1-51-X’00000003’. I/S 3
GO2IS ENTIT 1-51-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-52-X’00000017’. CPC 23
GO2IID ENTIT 1-52-X’00000004’. I/S 4
GO2IS ENTIT 1-52-X’00000010’. GOA ORD NUM (#16)
*

290 TPF V4R1 System Installation Support Reference

GO2CID ENTIT 1-53-X’00000017’. CPC 23
GO2IID ENTIT 1-53-X’00000005’. I/S 5
GO2IS ENTIT 1-53-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-54-X’00000017’. CPC 23
GO2IID ENTIT 1-54-X’00000006’. I/S 6
GO2IS ENTIT 1-54-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-55-X’00000017’. CPC 23
GO2IID ENTIT 1-55-X’00000007’. I/S 7
GO2IS ENTIT 1-55-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-56-X’00000017’. CPC 23
GO2IID ENTIT 1-56-X’00000008’. I/S 8
GO2IS ENTIT 1-56-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-57-X’00000017’. CPC 23
GO2IID ENTIT 1-57-X’00000009’. I/S 9
GO2IS ENTIT 1-57-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-58-X’00000017’. CPC 23
GO2IID ENTIT 1-58-X’0000000A’. I/S 10
GO2IS ENTIT 1-58-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-59-X’00000017’. CPC 23
GO2IID ENTIT 1-59-X’0000000B’. I/S 11
GO2IS ENTIT 1-59-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-60-X’00000017’. CPC 23
GO2IID ENTIT 1-60-X’0000000C’. I/S 12
GO2IS ENTIT 1-60-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-61-X’00000017’. CPC 23
GO2IID ENTIT 1-61-X’0000000D’. I/S 13
GO2IS ENTIT 1-61-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-62-X’00000017’. CPC 23
GO2IID ENTIT 1-62-X’0000000E’. I/S 14
GO2IS ENTIT 1-62-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-63-X’00000017’. CPC 23
GO2IID ENTIT 1-63-X’0000000F’. I/S 15
GO2IS ENTIT 1-63-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-64-X’00000017’. CPC 23
GO2IID ENTIT 1-64-X’00000010’. I/S 16
GO2IS ENTIT 1-64-X’00000010’. GOA ORD NUM (#16)
*
*

GEND

* This is the 7th SUPERGOA ordinal
*
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)95. THIS IS #GLOBL 95 (x’5F’)
GO1BID ENT GO. ID = ’GO’
GO1CTL ENT X’00’. N/A
GO1FCH ENT X’0060’. Chained to ordinal 96
GO1NIS ENTIT 1-1-X’0040’. 16 I/STREAMS * 4 CPCs
GO1NUM ENTIT 1-1-X’00’. LOAD MODE N/A
GO1CHN ENTIT 1-1-X’40’. GO2DSP Entries Used
*
GO2DSP ENTIT 1-01-X’8000’. CPC 0 NOT IN THIS RECORD
GO2DSP ENTIT 1-02-X’8000’. CPC 1 NOT IN THIS RECORD

Global Area 291

GO2DSP ENTIT 1-03-X’8000’. CPC 2 NOT IN THIS RECORD
GO2DSP ENTIT 1-04-X’8000’. CPC 3 NOT IN THIS RECORD
GO2DSP ENTIT 1-05-X’8000’. CPC 4 NOT IN THIS RECORD
GO2DSP ENTIT 1-06-X’8000’. CPC 5 NOT IN THIS RECORD
GO2DSP ENTIT 1-07-X’8000’. CPC 6 NOT IN THIS RECORD
GO2DSP ENTIT 1-08-X’8000’. CPC 7 NOT IN THIS RECORD
GO2DSP ENTIT 1-09-X’8000’. CPC 8 NOT IN THIS RECORD
GO2DSP ENTIT 1-10-X’8000’. CPC 9 NOT IN THIS RECORD
GO2DSP ENTIT 1-11-X’8000’. CPC 10 NOT IN THIS RECORD
GO2DSP ENTIT 1-12-X’8000’. CPC 11 NOT IN THIS RECORD
GO2DSP ENTIT 1-13-X’8000’. CPC 12 NOT IN THIS RECORD
GO2DSP ENTIT 1-14-X’8000’. CPC 13 NOT IN THIS RECORD
GO2DSP ENTIT 1-15-X’8000’. CPC 14 NOT IN THIS RECORD
GO2DSP ENTIT 1-16-X’8000’. CPC 15 NOT IN THIS RECORD
GO2DSP ENTIT 1-17-X’8000’. CPC 16 NOT IN THIS RECORD
GO2DSP ENTIT 1-18-X’8000’. CPC 17 NOT IN THIS RECORD
GO2DSP ENTIT 1-19-X’8000’. CPC 18 NOT IN THIS RECORD
GO2DSP ENTIT 1-20-X’8000’. CPC 19 NOT IN THIS RECORD
GO2DSP ENTIT 1-21-X’8000’. CPC 20 NOT IN THIS RECORD
GO2DSP ENTIT 1-22-X’8000’. CPC 21 NOT IN THIS RECORD
GO2DSP ENTIT 1-23-X’8000’. CPC 22 NOT IN THIS RECORD
GO2DSP ENTIT 1-24-X’8000’. CPC 23 NOT IN THIS RECORD
GO2DSP ENTIT 1-25-X’0000’. CPC 24
GO2DSP ENTIT 1-26-X’0010’. CPC 25
GO2DSP ENTIT 1-27-X’0020’. CPC 26
GO2DSP ENTIT 1-28-X’0030’. CPC 27
GO2DSP ENTIT 1-29-X’8000’. CPC 28 NOT IN THIS RECORD
GO2DSP ENTIT 1-30-X’8000’. CPC 29 NOT IN THIS RECORD
GO2DSP ENTIT 1-31-X’8000’. CPC 30 NOT IN THIS RECORD
GO2DSP ENTIT 1-32-X’8000’. CPC 31 NOT IN THIS RECORD
*
*
GO2CID ENTIT 1-01-X’00000018’. CPC 24
GO2IID ENTIT 1-01-X’00000001’. I/S 1
GO2IS ENTIT 1-01-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-02-X’00000018’. CPC 24
GO2IID ENTIT 1-02-X’00000002’. I/S 2
GO2IS ENTIT 1-02-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-03-X’00000018’. CPC 24
GO2IID ENTIT 1-03-X’00000003’. I/S 3
GO2IS ENTIT 1-03-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-04-X’00000018’. CPC 24
GO2IID ENTIT 1-04-X’00000004’. I/S 4
GO2IS ENTIT 1-04-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-05-X’00000018’. CPC 24
GO2IID ENTIT 1-05-X’00000005’. I/S 5
GO2IS ENTIT 1-05-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-06-X’00000018’. CPC 24
GO2IID ENTIT 1-06-X’00000006’. I/S 6
GO2IS ENTIT 1-06-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-07-X’00000018’. CPC 24
GO2IID ENTIT 1-07-X’00000007’. I/S 7
GO2IS ENTIT 1-07-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-08-X’00000018’. CPC 24
GO2IID ENTIT 1-08-X’00000008’. I/S 8
GO2IS ENTIT 1-08-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-09-X’00000018’. CPC 24

292 TPF V4R1 System Installation Support Reference

GO2IID ENTIT 1-09-X’00000009’. I/S 9
GO2IS ENTIT 1-09-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-10-X’00000018’. CPC 24
GO2IID ENTIT 1-10-X’0000000A’. I/S 10
GO2IS ENTIT 1-10-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-11-X’00000018’. CPC 24
GO2IID ENTIT 1-11-X’0000000B’. I/S 11
GO2IS ENTIT 1-11-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-12-X’00000018’. CPC 24
GO2IID ENTIT 1-12-X’0000000C’. I/S 12
GO2IS ENTIT 1-12-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-13-X’00000018’. CPC 24
GO2IID ENTIT 1-13-X’0000000D’. I/S 13
GO2IS ENTIT 1-13-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-14-X’00000018’. CPC 24
GO2IID ENTIT 1-14-X’0000000E’. I/S 14
GO2IS ENTIT 1-14-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-15-X’00000018’. CPC 24
GO2IID ENTIT 1-15-X’0000000F’. I/S 15
GO2IS ENTIT 1-15-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-16-X’00000018’. CPC 24
GO2IID ENTIT 1-16-X’00000010’. I/S 16
GO2IS ENTIT 1-16-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-17-X’00000019’. CPC 25
GO2IID ENTIT 1-17-X’00000001’. I/S 1
GO2IS ENTIT 1-17-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-18-X’00000019’. CPC 25
GO2IID ENTIT 1-18-X’00000002’. I/S 2
GO2IS ENTIT 1-18-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-19-X’00000019’. CPC 25
GO2IID ENTIT 1-19-X’00000003’. I/S 3
GO2IS ENTIT 1-19-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-20-X’00000019’. CPC 25
GO2IID ENTIT 1-20-X’00000004’. I/S 4
GO2IS ENTIT 1-20-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-21-X’00000019’. CPC 25
GO2IID ENTIT 1-21-X’00000005’. I/S 5
GO2IS ENTIT 1-21-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-22-X’00000019’. CPC 25
GO2IID ENTIT 1-22-X’00000006’. I/S 6
GO2IS ENTIT 1-22-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-23-X’00000019’. CPC 25
GO2IID ENTIT 1-23-X’00000007’. I/S 7
GO2IS ENTIT 1-23-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-24-X’00000019’. CPC 25
GO2IID ENTIT 1-24-X’00000008’. I/S 8
GO2IS ENTIT 1-24-X’00000010’. GOA ORD NUM (#16)
*

*

Global Area 293

GO2CID ENTIT 1-25-X’00000019’. CPC 25
GO2IID ENTIT 1-25-X’00000009’. I/S 9
GO2IS ENTIT 1-25-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-26-X’00000019’. CPC 25
GO2IID ENTIT 1-26-X’0000000A’. I/S 10
GO2IS ENTIT 1-26-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-27-X’00000019’. CPC 25
GO2IID ENTIT 1-27-X’0000000B’. I/S 11
GO2IS ENTIT 1-27-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-28-X’00000019’. CPC 25
GO2IID ENTIT 1-28-X’0000000C’. I/S 12
GO2IS ENTIT 1-28-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-29-X’00000019’. CPC 25
GO2IID ENTIT 1-29-X’0000000D’. I/S 13
GO2IS ENTIT 1-29-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-30-X’00000019’. CPC 25
GO2IID ENTIT 1-30-X’0000000E’. I/S 14
GO2IS ENTIT 1-30-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-31-X’00000019’. CPC 25
GO2IID ENTIT 1-31-X’0000000F’. I/S 15
GO2IS ENTIT 1-31-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-32-X’00000019’. CPC 25
GO2IID ENTIT 1-32-X’00000010’. I/S 16
GO2IS ENTIT 1-32-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-33-X’0000001A’. CPC 26
GO2IID ENTIT 1-33-X’00000001’. I/S 1
GO2IS ENTIT 1-33-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-34-X’0000001A’. CPC 26
GO2IID ENTIT 1-34-X’00000002’. I/S 2
GO2IS ENTIT 1-34-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-35-X’0000001A’. CPC 26
GO2IID ENTIT 1-35-X’00000003’. I/S 3
GO2IS ENTIT 1-35-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-36-X’0000001A’. CPC 26
GO2IID ENTIT 1-36-X’00000004’. I/S 4
GO2IS ENTIT 1-36-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-37-X’0000001A’. CPC 26
GO2IID ENTIT 1-37-X’00000005’. I/S 5
GO2IS ENTIT 1-37-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-38-X’0000001A’. CPC 26
GO2IID ENTIT 1-38-X’00000006’. I/S 6
GO2IS ENTIT 1-38-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-39-X’0000001A’. CPC 26
GO2IID ENTIT 1-39-X’00000007’. I/S 7
GO2IS ENTIT 1-39-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-40-X’0000001A’. CPC 26
GO2IID ENTIT 1-40-X’00000008’. I/S 8
GO2IS ENTIT 1-40-X’00000010’. GOA ORD NUM (#16)
*

294 TPF V4R1 System Installation Support Reference

*
GO2CID ENTIT 1-41-X’0000001A’. CPC 26
GO2IID ENTIT 1-41-X’00000009’. I/S 9
GO2IS ENTIT 1-41-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-42-X’0000001A’. CPC 26
GO2IID ENTIT 1-42-X’0000000A’. I/S 10
GO2IS ENTIT 1-42-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-43-X’0000001A’. CPC 26
GO2IID ENTIT 1-43-X’0000000B’. I/S 11
GO2IS ENTIT 1-43-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-44-X’0000001A’. CPC 26
GO2IID ENTIT 1-44-X’0000000C’. I/S 12
GO2IS ENTIT 1-44-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-45-X’0000001A’. CPC 26
GO2IID ENTIT 1-45-X’0000000D’. I/S 13
GO2IS ENTIT 1-45-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-46-X’0000001A’. CPC 26
GO2IID ENTIT 1-46-X’0000000E’. I/S 14
GO2IS ENTIT 1-46-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-47-X’0000001A’. CPC 26
GO2IID ENTIT 1-47-X’0000000F’. I/S 15
GO2IS ENTIT 1-47-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-48-X’0000001A’. CPC 26
GO2IID ENTIT 1-48-X’00000010’. I/S 16
GO2IS ENTIT 1-48-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-49-X’0000001B’. CPC 27
GO2IID ENTIT 1-49-X’00000001’. I/S 1
GO2IS ENTIT 1-49-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-50-X’0000001B’. CPC 27
GO2IID ENTIT 1-50-X’00000002’. I/S 2
GO2IS ENTIT 1-50-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-51-X’0000001B’. CPC 27
GO2IID ENTIT 1-51-X’00000003’. I/S 3
GO2IS ENTIT 1-51-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-52-X’0000001B’. CPC 27
GO2IID ENTIT 1-52-X’00000004’. I/S 4
GO2IS ENTIT 1-52-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-53-X’0000001B’. CPC 27
GO2IID ENTIT 1-53-X’00000005’. I/S 5
GO2IS ENTIT 1-53-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-54-X’0000001B’. CPC 27
GO2IID ENTIT 1-54-X’00000006’. I/S 6
GO2IS ENTIT 1-54-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-55-X’0000001B’. CPC 27
GO2IID ENTIT 1-55-X’00000007’. I/S 7
GO2IS ENTIT 1-55-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-56-X’0000001B’. CPC 27
GO2IID ENTIT 1-56-X’00000008’. I/S 8
GO2IS ENTIT 1-56-X’00000010’. GOA ORD NUM (#16)
*

Global Area 295

*
GO2CID ENTIT 1-57-X’0000001B’. CPC 27
GO2IID ENTIT 1-57-X’00000009’. I/S 9
GO2IS ENTIT 1-57-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-58-X’0000001B’. CPC 27
GO2IID ENTIT 1-58-X’0000000A’. I/S 10
GO2IS ENTIT 1-58-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-59-X’0000001B’. CPC 27
GO2IID ENTIT 1-59-X’0000000B’. I/S 11
GO2IS ENTIT 1-59-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-60-X’0000001B’. CPC 27
GO2IID ENTIT 1-60-X’0000000C’. I/S 12
GO2IS ENTIT 1-60-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-61-X’0000001B’. CPC 27
GO2IID ENTIT 1-61-X’0000000D’. I/S 13
GO2IS ENTIT 1-61-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-62-X’0000001B’. CPC 27
GO2IID ENTIT 1-62-X’0000000E’. I/S 14
GO2IS ENTIT 1-62-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-63-X’0000001B’. CPC 27
GO2IID ENTIT 1-63-X’0000000F’. I/S 15
GO2IS ENTIT 1-63-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-64-X’0000001B’. CPC 27
GO2IID ENTIT 1-64-X’00000010’. I/S 16
GO2IS ENTIT 1-64-X’00000010’. GOA ORD NUM (#16)
*
*

GEND

* This is the 8th SUPERGOA ordinal
*
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)96. THIS IS #GLOBL 96 (x’60’)
GO1BID ENT GO. ID = ’GO’
GO1CTL ENT X’00’. N/A
GO1FCH ENT X’0000’. LAST IN CHAIN
GO1NIS ENTIT 1-1-X’0040’. 16 I/STREAMS * 4 CPCs
GO1NUM ENTIT 1-1-X’00’. LOAD MODE N/A
GO1CHN ENTIT 1-1-X’40’. GO2DSP Entries Used
*
GO2DSP ENTIT 1-01-X’8000’. CPC 0 NOT IN THIS RECORD
GO2DSP ENTIT 1-02-X’8000’. CPC 1 NOT IN THIS RECORD
GO2DSP ENTIT 1-03-X’8000’. CPC 2 NOT IN THIS RECORD
GO2DSP ENTIT 1-04-X’8000’. CPC 3 NOT IN THIS RECORD
GO2DSP ENTIT 1-05-X’8000’. CPC 4 NOT IN THIS RECORD
GO2DSP ENTIT 1-06-X’8000’. CPC 5 NOT IN THIS RECORD
GO2DSP ENTIT 1-07-X’8000’. CPC 6 NOT IN THIS RECORD
GO2DSP ENTIT 1-08-X’8000’. CPC 7 NOT IN THIS RECORD
GO2DSP ENTIT 1-09-X’8000’. CPC 8 NOT IN THIS RECORD
GO2DSP ENTIT 1-10-X’8000’. CPC 9 NOT IN THIS RECORD
GO2DSP ENTIT 1-11-X’8000’. CPC 10 NOT IN THIS RECORD
GO2DSP ENTIT 1-12-X’8000’. CPC 11 NOT IN THIS RECORD
GO2DSP ENTIT 1-13-X’8000’. CPC 12 NOT IN THIS RECORD
GO2DSP ENTIT 1-14-X’8000’. CPC 13 NOT IN THIS RECORD
GO2DSP ENTIT 1-15-X’8000’. CPC 14 NOT IN THIS RECORD
GO2DSP ENTIT 1-16-X’8000’. CPC 15 NOT IN THIS RECORD
GO2DSP ENTIT 1-17-X’8000’. CPC 16 NOT IN THIS RECORD
GO2DSP ENTIT 1-18-X’8000’. CPC 17 NOT IN THIS RECORD

296 TPF V4R1 System Installation Support Reference

GO2DSP ENTIT 1-19-X’8000’. CPC 18 NOT IN THIS RECORD
GO2DSP ENTIT 1-20-X’8000’. CPC 19 NOT IN THIS RECORD
GO2DSP ENTIT 1-21-X’8000’. CPC 20 NOT IN THIS RECORD
GO2DSP ENTIT 1-22-X’8000’. CPC 21 NOT IN THIS RECORD
GO2DSP ENTIT 1-23-X’8000’. CPC 22 NOT IN THIS RECORD
GO2DSP ENTIT 1-24-X’8000’. CPC 23 NOT IN THIS RECORD
GO2DSP ENTIT 1-25-X’8000’. CPC 24 NOT IN THIS RECORD
GO2DSP ENTIT 1-26-X’8000’. CPC 25 NOT IN THIS RECORD
GO2DSP ENTIT 1-27-X’8000’. CPC 26 NOT IN THIS RECORD
GO2DSP ENTIT 1-28-X’8000’. CPC 27 NOT IN THIS RECORD
GO2DSP ENTIT 1-29-X’0000’. CPC 28
GO2DSP ENTIT 1-30-X’0010’. CPC 29
GO2DSP ENTIT 1-31-X’0020’. CPC 30
GO2DSP ENTIT 1-32-X’0030’. CPC 31
*
*
GO2CID ENTIT 1-01-X’0000001C’. CPC 28
GO2IID ENTIT 1-01-X’00000001’. I/S 1
GO2IS ENTIT 1-01-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-02-X’0000001C’. CPC 28
GO2IID ENTIT 1-02-X’00000002’. I/S 2
GO2IS ENTIT 1-02-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-03-X’0000001C’. CPC 28
GO2IID ENTIT 1-03-X’00000003’. I/S 3
GO2IS ENTIT 1-03-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-04-X’0000001C’. CPC 28
GO2IID ENTIT 1-04-X’00000004’. I/S 4
GO2IS ENTIT 1-04-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-05-X’0000001C’. CPC 28
GO2IID ENTIT 1-05-X’00000005’. I/S 5
GO2IS ENTIT 1-05-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-06-X’0000001C’. CPC 28
GO2IID ENTIT 1-06-X’00000006’. I/S 6
GO2IS ENTIT 1-06-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-07-X’0000001C’. CPC 28
GO2IID ENTIT 1-07-X’00000007’. I/S 7
GO2IS ENTIT 1-07-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-08-X’0000001C’. CPC 28
GO2IID ENTIT 1-08-X’00000008’. I/S 8
GO2IS ENTIT 1-08-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-09-X’0000001C’. CPC 28
GO2IID ENTIT 1-09-X’00000009’. I/S 9
GO2IS ENTIT 1-09-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-10-X’0000001C’. CPC 28
GO2IID ENTIT 1-10-X’0000000A’. I/S 10
GO2IS ENTIT 1-10-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-11-X’0000001C’. CPC 28
GO2IID ENTIT 1-11-X’0000000B’. I/S 11
GO2IS ENTIT 1-11-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-12-X’0000001C’. CPC 28
GO2IID ENTIT 1-12-X’0000000C’. I/S 12
GO2IS ENTIT 1-12-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-13-X’0000001C’. CPC 28

Global Area 297

GO2IID ENTIT 1-13-X’0000000D’. I/S 13
GO2IS ENTIT 1-13-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-14-X’0000001C’. CPC 28
GO2IID ENTIT 1-14-X’0000000E’. I/S 14
GO2IS ENTIT 1-14-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-15-X’0000001C’. CPC 28
GO2IID ENTIT 1-15-X’0000000F’. I/S 15
GO2IS ENTIT 1-15-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-16-X’0000001C’. CPC 28
GO2IID ENTIT 1-16-X’00000010’. I/S 16
GO2IS ENTIT 1-16-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-17-X’0000001D’. CPC 29
GO2IID ENTIT 1-17-X’00000001’. I/S 1
GO2IS ENTIT 1-17-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-18-X’0000001D’. CPC 29
GO2IID ENTIT 1-18-X’00000002’. I/S 2
GO2IS ENTIT 1-18-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-19-X’0000001D’. CPC 29
GO2IID ENTIT 1-19-X’00000003’. I/S 3
GO2IS ENTIT 1-19-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-20-X’0000001D’. CPC 29
GO2IID ENTIT 1-20-X’00000004’. I/S 4
GO2IS ENTIT 1-20-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-21-X’0000001D’. CPC 29
GO2IID ENTIT 1-21-X’00000005’. I/S 5
GO2IS ENTIT 1-21-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-22-X’0000001D’. CPC 29
GO2IID ENTIT 1-22-X’00000006’. I/S 6
GO2IS ENTIT 1-22-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-23-X’0000001D’. CPC 29
GO2IID ENTIT 1-23-X’00000007’. I/S 7
GO2IS ENTIT 1-23-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-24-X’0000001D’. CPC 29
GO2IID ENTIT 1-24-X’00000008’. I/S 8
GO2IS ENTIT 1-24-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-25-X’0000001D’. CPC 29
GO2IID ENTIT 1-25-X’00000009’. I/S 9
GO2IS ENTIT 1-25-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-26-X’0000001D’. CPC 29
GO2IID ENTIT 1-26-X’0000000A’. I/S 10
GO2IS ENTIT 1-26-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-27-X’0000001D’. CPC 29
GO2IID ENTIT 1-27-X’0000000B’. I/S 11
GO2IS ENTIT 1-27-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-28-X’0000001D’. CPC 29
GO2IID ENTIT 1-28-X’0000000C’. I/S 12
GO2IS ENTIT 1-28-X’00000010’. GOA ORD NUM (#16)
*

298 TPF V4R1 System Installation Support Reference

GO2CID ENTIT 1-29-X’0000001D’. CPC 29
GO2IID ENTIT 1-29-X’0000000D’. I/S 13
GO2IS ENTIT 1-29-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-30-X’0000001D’. CPC 29
GO2IID ENTIT 1-30-X’0000000E’. I/S 14
GO2IS ENTIT 1-30-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-31-X’0000001D’. CPC 29
GO2IID ENTIT 1-31-X’0000000F’. I/S 15
GO2IS ENTIT 1-31-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-32-X’0000001D’. CPC 29
GO2IID ENTIT 1-32-X’00000010’. I/S 16
GO2IS ENTIT 1-32-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-33-X’0000001E’. CPC 30
GO2IID ENTIT 1-33-X’00000001’. I/S 1
GO2IS ENTIT 1-33-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-34-X’0000001E’. CPC 30
GO2IID ENTIT 1-34-X’00000002’. I/S 2
GO2IS ENTIT 1-34-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-35-X’0000001E’. CPC 30
GO2IID ENTIT 1-35-X’00000003’. I/S 3
GO2IS ENTIT 1-35-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-36-X’0000001E’. CPC 30
GO2IID ENTIT 1-36-X’00000004’. I/S 4
GO2IS ENTIT 1-36-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-37-X’0000001E’. CPC 30
GO2IID ENTIT 1-37-X’00000005’. I/S 5
GO2IS ENTIT 1-37-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-38-X’0000001E’. CPC 30
GO2IID ENTIT 1-38-X’00000006’. I/S 6
GO2IS ENTIT 1-38-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-39-X’0000001E’. CPC 30
GO2IID ENTIT 1-39-X’00000007’. I/S 7
GO2IS ENTIT 1-39-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-40-X’0000001E’. CPC 30
GO2IID ENTIT 1-40-X’00000008’. I/S 8
GO2IS ENTIT 1-40-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-41-X’0000001E’. CPC 30
GO2IID ENTIT 1-41-X’00000009’. I/S 9
GO2IS ENTIT 1-41-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-42-X’0000001E’. CPC 30
GO2IID ENTIT 1-42-X’0000000A’. I/S 10
GO2IS ENTIT 1-42-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-43-X’0000001E’. CPC 30
GO2IID ENTIT 1-43-X’0000000B’. I/S 11
GO2IS ENTIT 1-43-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-44-X’0000001E’. CPC 30
GO2IID ENTIT 1-44-X’0000000C’. I/S 12
GO2IS ENTIT 1-44-X’00000010’. GOA ORD NUM (#16)

Global Area 299

*
GO2CID ENTIT 1-45-X’0000001E’. CPC 30
GO2IID ENTIT 1-45-X’0000000D’. I/S 13
GO2IS ENTIT 1-45-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-46-X’0000001E’. CPC 30
GO2IID ENTIT 1-46-X’0000000E’. I/S 14
GO2IS ENTIT 1-46-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-47-X’0000001E’. CPC 30
GO2IID ENTIT 1-47-X’0000000F’. I/S 15
GO2IS ENTIT 1-47-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-48-X’0000001E’. CPC 30
GO2IID ENTIT 1-48-X’00000010’. I/S 16
GO2IS ENTIT 1-48-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-49-X’0000001F’. CPC 31
GO2IID ENTIT 1-49-X’00000001’. I/S 1
GO2IS ENTIT 1-49-X’00000001’. GOA ORD NUM
*
GO2CID ENTIT 1-50-X’0000001F’. CPC 31
GO2IID ENTIT 1-50-X’00000002’. I/S 2
GO2IS ENTIT 1-50-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-51-X’0000001F’. CPC 31
GO2IID ENTIT 1-51-X’00000003’. I/S 3
GO2IS ENTIT 1-51-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-52-X’0000001F’. CPC 31
GO2IID ENTIT 1-52-X’00000004’. I/S 4
GO2IS ENTIT 1-52-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-53-X’0000001F’. CPC 31
GO2IID ENTIT 1-53-X’00000005’. I/S 5
GO2IS ENTIT 1-53-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-54-X’0000001F’. CPC 31
GO2IID ENTIT 1-54-X’00000006’. I/S 6
GO2IS ENTIT 1-54-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-55-X’0000001F’. CPC 31
GO2IID ENTIT 1-55-X’00000007’. I/S 7
GO2IS ENTIT 1-55-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-56-X’0000001F’. CPC 31
GO2IID ENTIT 1-56-X’00000008’. I/S 8
GO2IS ENTIT 1-56-X’00000010’. GOA ORD NUM (#16)
*

*
GO2CID ENTIT 1-57-X’0000001F’. CPC 31
GO2IID ENTIT 1-57-X’00000009’. I/S 9
GO2IS ENTIT 1-57-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-58-X’0000001F’. CPC 31
GO2IID ENTIT 1-58-X’0000000A’. I/S 10
GO2IS ENTIT 1-58-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-59-X’0000001F’. CPC 31
GO2IID ENTIT 1-59-X’0000000B’. I/S 11
GO2IS ENTIT 1-59-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-60-X’0000001F’. CPC 31
GO2IID ENTIT 1-60-X’0000000C’. I/S 12

300 TPF V4R1 System Installation Support Reference

GO2IS ENTIT 1-60-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-61-X’0000001F’. CPC 31
GO2IID ENTIT 1-61-X’0000000D’. I/S 13
GO2IS ENTIT 1-61-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-62-X’0000001F’. CPC 31
GO2IID ENTIT 1-62-X’0000000E’. I/S 14
GO2IS ENTIT 1-62-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-63-X’0000001F’. CPC 31
GO2IID ENTIT 1-63-X’0000000F’. I/S 15
GO2IS ENTIT 1-63-X’00000010’. GOA ORD NUM (#16)
*
GO2CID ENTIT 1-64-X’0000001F’. CPC 31
GO2IID ENTIT 1-64-X’00000010’. I/S 16
GO2IS ENTIT 1-64-X’00000010’. GOA ORD NUM (#16)
*
*

GEND

In the example that follows, if the CPC number is 0 and the I-stream number is 2,
the ordinal number of the prime GOA for this CPC/I-stream pair would be 18 (that
is, X'12'). Each GO2DSP field in section 3 should contain the total number of
entries that precede the entry for this CPC in the table in section 4.

Following is an example of how the STC input might be coded for a super GOA:
* SUPER GOA FOR 2 CPC’S, EACH WITH 2 I-STREAMS
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)0. THIS IS #GLOBL ORDINAL NUMBER 0
* STANDARD HEADER
GO1BID ENT GO. ID = ’GO’
GO1FCH ENT X’00000000’ N/A - NO FORWARD CHAIN
* TABLE HEADER
GO1NIS ENTIT 1-1-X’0004’. MAX # OF I-STREAMS IN LC COMPLEX
GO1CHN ENTIT 1-1-X’40’. GO2DSP Entries Used
*
* TABLE 1 - CPC INDEX INTO TABLE 2
GO2DSP ENTIT 1-1-X’0000’. CPC 0 STARTS AT THE FIRST ENTRY
GO2DSP ENTIT 1-2-X’0002’. CPC 1 STARTS AT THE SECOND ENTRY
* TABLE 2 - INDEX TO I-STREAMS’ PRIME GOA
GO2CID ENTIT 1-1-X’00000000’. CPC 0
GO2IID ENTIT 1-1-X’00000001’. I-STREAM 1
GO2IS ENTIT 1-1-X’00000001’. PRIME GOA ORD NUM (#1)
GO2CID ENTIT 1-2-X’00000000’. CPC 0
GO2IID ENTIT 1-2-X’00000002’. I-STREAM 2
GO2IS ENTIT 1-2-X’00000012’. PRIME GOA ORD NUM (#18)
GO2CID ENTIT 1-3-X’00000001’. CPC 1
GO2IID ENTIT 1-3-X’00000001’. I-STREAM 1
GO2IS ENTIT 1-3-X’00000020’. PRIME GOA ORD NUM (#32)
GO2CID ENTIT 1-4-X’00000001’. CPC 1
GO2IID ENTIT 1-4-X’00000002’. I-STREAM 2
GO2IS ENTIT 1-4-X’00000027’. PRIME GOA ORD NUM (#39)

GEND

Schematically, the super GOA is laid out as Figure 8 on page 302 shows.

Global Area 301

Load Mode
In the header of each GOA record are 2 fields that determine whether the records
listed in the GOA record should be loaded. These fields are GO1NUM and
GO1CHN. The number of entries in the GOA list of records is in the GO1ENT field.

GO1NUM is a 1-byte field. The number in this byte is called a load mode. When
GOGO retrieves this GOA, it compares the contents of GO1NUM to a byte in the
subsystem user table entry for this subsystem user. If the values are equal, the
records in the list are loaded. How the field in the subsystem user table is initialized
is in “SIP for Globals” on page 261.

Once GOGO is finished loading the list of records defined in a GOA, it checks the
contents of the GO1CHN field. If the first bit of the GO1CHN byte is 0, this shows
to GOGO that there are no more GOA records to retrieve for this load mode. If the
first bit of GO1CHN is 1, GOGO will continues to retrieve the next GOA record, the
ordinal number of which is found in GO1FCH.

Figure 9 is an STC input that shows the use of load modes.

CPC 1 I-Stream 1 #GLOBL Ordinal P

CPC 1 I-Stream 2 #GLOBL Ordinal Q

R e c o r d H e a d e r

T a b l e H e a d e r

CPC 0 I-Stream 1 #GLOBL Ordinal X

CPC 0 I-Stream 2 #GLOBL Ordinal Y

0 1 2 3 4 5
12 Bytes

6 7 8 9 10 11

Section 1

Section 2

Section 3

Section 4

CPC 0 Count

CPC 30 Count

CPC 6 Count

CPC 12 Count

CPC 18 Count

CPC 24 Count

CPC 1 Count

CPC 31 Count

CPC 7 Count

CPC 13 Count

CPC 19 Count

CPC 25 Count

CPC 2 Count

R e s e r v e d

CPC 8 Count

CPC 14 Count

CPC 20 Count

CPC 26 Count

CPC 3 Count

CPC 9 Count

CPC 15 Count

CPC 21 Count

CPC 27 Count

CPC 4 Count

CPC 10 Count

CPC 16 Count

CPC 22 Count

CPC 28 Count

CPC 5 Count

CPC 11 Count

CPC 17 Count

CPC 23 Count

CPC 29 Count

Figure 8. Super GOA Layout

302 TPF V4R1 System Installation Support Reference

In Figure 9, if load mode X'07' is loaded, GOGO loads the records listed in #GLOBL
1 and #GLOBL 2, because their GO1NUM fields contain a X'07'. However, GOGO
does not continue chasing the forward chain after #GLOBL 2, because the
GO1CHN field contains 0.

When loading load mode X'23', GOGO retrieves #GLOBL1 and 2 but does not load
any of the records listed because GO1NUM shows the wrong load mode. The
GO1CHN field in #GLOBL 2 is ignored by GOGO because it shows the end of the
GOA chain for load mode X'07'. GOGO continues to retrieve #GLOBL 4 and loads
the records listed, because GO1NUM in that record contains a X'23'.

GOA Chain
GOGO first loads records into global area 1 (GL1), then into global area 2 (GL2),
and then into global area 3 (GL3). Therefore, the list of records in an I-stream’s
GOA chain must be coded in this sequence.

* PRIME GOA RECORD
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)1. #GLOBL ORDINAL NUMBER 1
* STANDARD HEADER
GO1BID ENT GO. RECORD ID C’GO’
GO1FCH ENT X’00000002’. FORWARD CHAIN TO ORDINAL # 2
* TABLE HEADER
GO1ENT ENTIT 1-1-X’0022’. 34 ENTRIES IN THIS TABLE
GO1NUM ENTIT 1-1-X’07’. LOAD MODE X’07’
GO1CHN ENTIT 1-1-X’80’. THERE IS A FORWARD CHAIN FOR X’07’
* TABLE ENTRIES

.

.

.
GEND

* OVERFLOW GOA RECORD
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)2. #GLOBL ORDINAL NUMBER 2
* STANDARD HEADER
GO1BID ENT GO. RECORD ID C’GO’
GO1FCH ENT X’00000004’. FORWARD CHAIN TO ORDINAL # 4
* TABLE HEADER
GO1ENT ENTIT 1-1-X’0010’. 16 ENTRIES IN THIS TABLE
GO1NUM ENTIT 1-1-X’07’. LOAD MODE X’07’
GO1CHN ENTIT 1-1-X’00’. THERE IS NO FORWARD CHAIN FOR X’07’
* TABLE ENTRIES

.

.

.
GEND

* PRIME GOA RECORD
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)4. #GLOBL ORDINAL NUMBER 4
* STANDARD HEADER
GO1BID ENT GO. RECORD ID C’GO’
GO1FCH ENT X’00000000’. LAST GOA IN CHAIN
* TABLE HEADER
GO1ENT ENTIT 1-1-X’0019’. 25 ENTRIES IN THIS TABLE
GO1NUM ENTIT 1-1-X’23’. LOAD MODE X’23’
GO1CHN ENTIT 1-1-X’00’. THERE IS NO FORWARD CHAIN FOR X’23’
* TABLE ENTRIES

.

.

.
GEND

Figure 9. STC Input Using Load Modules

Global Area 303

The global blocks must be the first records loaded into the GL1 and GL3 areas,
and, therefore, they must be the first GL1 and GL3 entries in the GOA list of
records to load. The order that the global block entries appear must match the
order that they are mapped by a GLOBZ macro call.

GOA List Entry
Each entry in a GOA list is 12 bytes long. Each set of 12 bytes contains information
about one global record:

Number of Doublewords (Byte 0): Specifies the hexadecimal number of
doublewords that will be loaded from the #GLOBL record for this global area.

When a global block is defined, this value must match exactly the number of
doublewords declared for that global block by a GLOBZ call. For example, if
@GLOBF declares 17 doublewords of storage, byte 0 for global block GL0BF must
be X'11'.

Values range from X'01' (8 bytes) to X'84' (1056 bytes). Loading the global blocks in
8-byte increments can increase the block length to 1056 bytes in main storage.
However, file restrictions limit the meaningful data in a block to 1055 bytes,
including an 8-byte header.

Attribute byte (Byte 1): Tells the system what type of global is being loaded. The
bit settings correspond to the following attributes:

X'20' I-stream shared

X'08' Extended global area resident

X'04' Keypointable

X'02' Subsystem user common

X'01' No directory entry for this record.

Note: If the I-stream shared indicator is on in a GOA entry for an I-stream other
than the main I-stream, the global load generates a system error, and restart
processing ends.

Global Area Number (Byte 2): Shows the global area into which the global record
is to be loaded as a number from 0 to 2, where 0 is GL1, 1 is GL2, and 2 is GL3.

Number of Bytes to Strip (Byte 3): Serves 2 purposes:

304 TPF V4R1 System Installation Support Reference

v This field can be used to enable loading from any designated point in the record
so loading the header can be avoided. For records that are used as static data
areas (tables, for example) and that are never filed, this prevents wasting the
space occupied by the header once the record is read into main storage.

Note: Records with headers stripped are not keypointable and should not be
defined as such. Conversely, records designated as keypointable must
have 0 in byte 3.

v This field can also be used to concatenate several DASD records into one
contiguous main storage block. When concatenating records, this field points to
the byte that must immediately follow the previously loaded record. Standard
values for this field are X'00', X'08', or X'10'. See “Record Concatenation”.

Directory Slot Number (Bytes 4 — 5): Specifies the number from, 1 to 124, of
the directory slot. There are 56 slots in the GL1 directory and 68 in the GL3
directory. Number 1 is the first slot for GL1; number 57 (coded X'39') is the first slot
of the directory for GL3.

A 0 is coded for the slot number if the X'01' bit is set in the attribute byte (byte 1) of
the GOA entry. See Record Concatenation.

Record ID (Bytes 6 —7): Defines the record ID found in the header of the record
to be loaded from DASD. The first 2 bytes of the global record to be loaded must
be the same as the record ID coded in its GOA entry.

Ordinal number (Bytes 8 — 11): The #GLOBL ordinal number, in hexadecimal, of
the record to be loaded into the slot indicated.

Considerations for Preparing Input
This section contains considerations for preparing the input.

Record Concatenation
The maximum number of bytes that can be loaded with one GOA entry is 1056
(X'84' doublewords). To create a larger block of data (say a large table), use record
concatenation, which concatenates several global records to generate a single large
block pointed to by a single directory slot. Concatenated global blocks can be
loaded into any global area.

To create a concatenated block, you must code the pilot tape as follows. The first
record in the block is loaded, with a slot number. Each following record is then
loaded into the same global area, but with a 0 slot number in bytes 4 and 5 of the
GOA entry and with the number of bytes to be stripped off in byte 3 to remove the
header. All records in the block must be coded sequentially with no other records in
between.

The following example of a series of entries in a GOA record show how to code
STC input to generate a concatenated global block:

* START OF CONCATENATED GLOBAL BLOCK
GO1CON ENTIT 1-5-X’83000200’. APPL RECOVERY CORE TABLE IN GL3
GO1EIX ENTIT 1-5-X’0051’. SLOT # 25 IN GL3
GO1EID ENTIT 1-5-AR. RECORD ID AR
GO1EON ENTIT 1-5-X’00000037’. LOAD FROM ORDINAL # 55
GO1CON ENTIT 1-6-X’81010210’. LOAD 81D MORE TO GL3
GO1EIX ENTIT 1-6-X’0000’. WITHOUT A SLOT NUMBER
GO1EID ENTIT 1-6-AR. RECORD ID AR
GO1EON ENTIT 1-6-X’00000038’. FROM ORDINAL # 56, SKIP 16 BYTES

Global Area 305

GO1CON ENTIT 1-7-X’81010210’. LOAD 81D MORE TO GL3
GO1EIX ENTIT 1-7-X’0000’. WITHOUT A SLOT NUMBER
GO1EID ENTIT 1-7-AR. RECORD ID AR
GO1EON ENTIT 1-7-X’00000039’. FROM ORDINAL # 57, SKIP 16 BYTES
GO1CON ENTIT 1-8-X’81010210’. LOAD 81D MORE TO GL3
GO1EIX ENTIT 1-8-X’0000’. WITHOUT A SLOT NUMBER
GO1EID ENTIT 1-8-AR. RECORD ID AR
GO1EON ENTIT 1-8-X’0000003A’. FROM ORDINAL # 58, SKIP 16 BYTES
* END OF CONCATENATED GLOBAL BLOCK
GO1CON ENTIT 1-9-X’64000200’. LOAD 64D TO GL3
GO1EIX ENTIT 1-9-X’0042’. SLOT NUMBER 10
GO1EID ENTIT 1-9-TR. RECORD ID TR
GO1EON ENTIT 1-9-X’00000022’. FROM ORDINAL # 34

Keypointable Global Records
Only the first 48 slots of the GL1 directory and the first 64 slots of the GL3 directory
can be defined as keypointable. A record in one of these slots is keypointable if and
only if:

v The X'04' bit of the global record’s indicator byte (GOA entry, byte 1) is set on the
pilot tape.

v The bytes-to-strip field (GOA entry, byte 3) is 0.

v The tag for the global record is defined as keypointable in either the KEYUC (for
GL1) or the GLOUC (for GL3) macro.

Subsystem User Common Globals
To designate a global record as subsystem user common, the X'02' bit in the
indicator byte of the record’s GOA entry must be set on. This bit must be off for
globals loaded into GL1.

I-Stream Shared Globals
To designate a global record as I-stream shared, the X'20' bit in the indicator byte of
the record’s GOA entry must be set on. This bit must be off for globals on I-streams
other than the main I-stream.

Synchronization of Globals
Global synchronization is a process by which global fields and records are
dynamically maintained among 2 or more active I-streams in a loosely coupled (LC)
or tightly coupled (TC) system. Synchronization involves offline data record
generation, online restart processing, and real-time application interface (SYNCC
macro) processing.

The offline portion of global synchronization involves creation of the system
interprocessor global table (SIGT). An SIGT is generated for each subsystem in
each CPC. The GLSYNC macro is used to create the offline SIGT. SIGT also
requires that space be reserved on DASD for the #SGFRI record type. For each
subsystem user, one #SGFRI record is required for each global field that is to be
synchronized. When no global fields require synchronization, at least 2
#SGFRI-type records are still needed, because 2 system globals are automatically
synchronized by SIP. The #SGFRI record type is defined by coding the SIP RAMFIL
macro. (See “Coding the SIP Macros” in TPF System Generation for more
information on the GLSYNC and RAMFIL macros.)

During system restart, online initialization (completion of the process started offline)
is performed. Segments CNPR, CNPS, and CNPT complete initialization of sections
0 and 1 of the SIGT. The main storage and file address of each synchronizable
global field or record is calculated and moved into the SIGT. A minimum of at least
one field, a dummy field, is defined as synchronizable.

306 TPF V4R1 System Installation Support Reference

Application programs initiate the online synchronization process when the SYNCC
macro is issued. Copy member CSYN of the CSECT CCNUCL (Global
Synchronization Service Routines) determines the type of SYNCC macro request
and performs the requested function. Segment CNPU is activated to synchronize a
field or record among all of the active I-streams in all active CPCs.

Requirements for Synchronization
The following requirements must be satisfied before global fields or records can be
synchronized between tightly coupled or loosely coupled processors:

v The fields and records eligible for synchronization must be defined offline before
system generation, and the control tables necessary to regulate the
synchronization process must be constructed. Operating offline, SIP builds
sections 0 and 1 of the SIGT (data macro SI0GT).

v A fixed file record called the synchronizable global field record (SGFR) is used to
refresh the main storage copy of each synchronizable global field in the system.
For each global field that a subsystem user seeks to synchronize, one SGFR is
required. The SIGT that was built offline by SIP is initialized by program CNPR
with the proper main storage and file address of each synchronizable global field
and record.

v The global records must contain standard headers. The technique of removing
headers and packing data into main storage (see “Record Concatenation” on
page 305) is not supported for synchronizable global records.

v The programs that use the fields and records, particularly those that update the
data, must be updated to incorporate the synchronization macro, SYNCC.

v Each program that depends on the most current value of the data in a global
field or global record must, itself, ensure the presence of the most current data in
main storage by issuing the SYNCC macro.

Note: Since the use of SYNCC in an LC environment is costly in terms of DASD
overhead, it may be more useful to redefine the use of a global than to
synchronize it.

Maximum Values for Synchronized Fields and Records
The maximum field and record sizes are:

v The maximum global field size for a synchronized field is 256 bytes.

v The maximum global record size for a synchronized record is 1056 bytes.

The maximum number of fields or records are:

v The maximum number of synchronized global fields for a subsystem user is 256
fields.

v The maximum number of synchronized global records for a subsystem user is
256 records.

Locating Global Areas in a Dump
To locate the start of the global areas for each subsystem user on each I-stream,
you must interrogate the subsystem user table (data macro MS0UT). In a dump, the
subsystem user table (SSUT) is labeled with the tag SSU. An address for this tag is
provided in the dump label index at the end of the dump.

The first 4 bytes of the SSUT contain the number of subsystem users in the
system. The SSUT contains one entry for each SSU.

Global Area 307

The length of each SSUT entry is defined by the label MU0LEN in DSECT MS0UT.
A header occupies the first 12 bytes of each entry. The header is used to identify
each entry with a subsystem user and is laid out as follows:

The rest of an entry contains the addresses to each I-stream’s unique primary and
extended global areas as well as each I-stream’s global attribute tables, as
Figure 10 on page 309 shows.

The formula for locating the address of any unique global area in a dump listing of
the SSUT for any SSU/I-stream combination is:

ADDRESS = START + S + G + I

where

START = address of the SSU tag + (MU0GLB - MU0CNT)

S = SSU number × MU0LEN

G = (global area number - 1) × MU0ASZ

I = (I-stream number - 1) × MU0GSZ

These variables are defined in terms of the following symbolic labels found in
MS0UT:

v MU0GLB - MU0CNT (length of standard header)

v MU0LEN (length of SSU entry)

v MU0ASZ (length of SSUT for a single global area)

v MU0GSZ (length of descriptor area for each I-stream).

SSU
ID

SSU
Mnemonic

SS
ID

I-S Shared
GL1 AddressIndicators

Size in
4KB Blocks

I-S Shared
GL4 Address

Size in
4KB Blocks

Byte 12 13 14 15 16 174 5 6 7 8 9 10 110 1 2 3

308 TPF V4R1 System Installation Support Reference

Examples of I-Stream Shared and Unique Globals
The following is STC input for the GOA chain for I-stream 1:

Figure 10. SSUT Entry

Global Area 309

* I-STREAM 1 PRIME GOA RECORD
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)1. #GLOBL ORDINAL NUMBER 1
* STANDARD HEADER
GO1BID ENT GO.
GO1FCH ENT X’00000002’. FORWARD CHAIN AT ORDINAL # 2
* TABLE HEADER
GO1ENT ENTIT 1-1-X’0002’. 2 ENTRIES THIS TABLE
GO1NUM ENTIT 1-1-X’07’. LOAD MODE 07
GO1CHN ENTIT 1-1-X’80’. THERE IS A FORWARD CHAIN
* TABLE OF ENTRIES
* RECORD 1
GO1CON ENTIT 1-2-X’84000000’. LOAD 84D RECORD TO GL1
GO1EIX ENTIT 1-2-X’0009’. SLOT # 9
GO1EID ENTIT 1-2-GL. RECORD ID GL
GO1EON ENTIT 1-2-X’00000002’. FROM ORDINAL # 2
* RECORD 2
GO1CON ENTIT 1-3-X’84240000’. LOAD 84D KEYPOINTABLE REC TO I-S shared GL1
GO1EIX ENTIT 1-3-X’000A’. SLOT # 10
GO1EID ENTIT 1-3-GL. RECORD ID GL
GO1EON ENTIT 1-3-X’00000003’. FROM ORDINAL # 3

GEND
* I-STREAM 1 FORWARD CHAIN GOA
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)2. #GLOBL ORDINAL NUMBER 2
* STANDARD HEADER
GO1BID ENT GO. RECORD ID
GO1FCH ENT X’00000000’. NO FORWARD CHAIN
* TABLE HEADER
GO1ENT ENTIT 1-1-X’0002’. 2 ENTRIES IN THIS TABLE
GO1NUM ENTIT 1-1-X’07’. LOAD MODE 07
GO1CHN ENTIT 1-1-X’00’. NO FORWARD CHAIN
* TABLE ENTRIES
* RECORD 3
GO1CON ENTIT 1-2-X’58020100’. LOAD 58D SSU COMMON REC TO GL2
GO1EIX ENTIT 1-2-X’0079’. GL3 SLOT # 65
GO1EID ENTIT 1-2-GL. RECORD ID GL
GO1EON ENTIT 1-2-X’0000003E’. FROM ORDINAL # 62
* RECORD 4
GO1CON ENTIT 1-3-X’64060200’. 64D KYPTBL SSU COMMON REC TO GL3
GO1EIX ENTIT 1-3-X’0049’. SLOT # 17
GO1EID ENTIT 1-3-GL. RECORD ID GL
GO1EON ENTIT 1-3-X’0000003F’. FROM ORDINAL # 63

GEND

The following is STC input for the GOA chain for I-stream 2:

* I-STREAM 2 PRIME GOA RECORD
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)18. #GLOBL ORDINAL NUMBER 18
* STANDARD HEADER
GO1BID ENT GO. RECORD ID GO
GO1FCH ENT X’00000011’. FORWARD CHAIN AT ORDINAL # 17
* TABLE HEADER
GO1ENT ENTIT 1-1-X’0002’. 2 ENTRIES THIS TABLE
GO1NUM ENTIT 1-1-X’07’. LOAD MODE 07
GO1CHN ENTIT 1-1-X’80’. THERE IS A FORWARD CHAIN
* TABLE OF ENTRIES
* RECORD 1
GO1CON ENTIT 1-2-X’84000000’. LOAD 84D RECORD TO GL1
GO1EIX ENTIT 1-2-X’0009’. SLOT # 9
GO1EID ENTIT 1-2-GL. RECORD ID GL
GO1EON ENTIT 1-2-X’00000002’. FROM ORDINAL # 2
* RECORD 2 I-STREAM SHARED
*

310 TPF V4R1 System Installation Support Reference

* (Note that no record is defined here.
* The corresponding record for I-stream 1
* will appear in the directory slot for
* for this I-stream.)
*

GEND
* I-STREAM 2 FORWARD CHAIN GOA
GO1GO GSTAR 1.
BSTA06 ENT (#GLOBL)17. #GLOBL ORDINAL NUMBER 17
* STANDARD HEADER
GO1BID ENT GO. RECORD ID
GO1FCH ENT X’00000000’. NO FORWARD CHAIN
* TABLE HEADER
GO1ENT ENTIT 1-1-X’0002’. 2 ENTRIES IN THIS TABLE
GO1NUM ENTIT 1-1-X’07’. LOAD MODE 07
GO1CHN ENTIT 1-1-X’00’. NO FORWARD CHAIN
* TABLE ENTRIES
* RECORD 3
GO1CON ENTIT 1-2-X’58020100’. LOAD 58D SSU COMMON REC TO GL2
GO1EIX ENTIT 1-2-X’0079’. GL3 SLOT # 65
GO1EID ENTIT 1-2-GL. RECORD ID GL
GO1EON ENTIT 1-2-X’0000003E’. FROM ORDINAL # 62
* RECORD 4
GO1CON ENTIT 1-3-X’64060200’. 64D KYPTBL SSU COMMON REC TO GL3
GO1EIX ENTIT 1-3-X’0049’. SLOT # 17
GO1EID ENTIT 1-3-GL. RECORD ID GL
GO1EON ENTIT 1-3-X’00000040’. FROM ORDINAL # 64

GEND

The previous code produces a pilot tape that initializes the #GLOBL records so that
4 globals records are loaded.

Records 1 and 3 are both I-stream unique since there is an item in each I-stream’s
GOA chain for both records. Each I-stream has its own main storage copy of both
record 1 and record 3, but the file address for each global is shared. This is
because the global is loaded to each I-stream from the same #GLOBL ordinal
number.

Record 2 is an example of an I-stream shared global. Since there is an entry for
record 2 only in I-stream 1’s GOA chain, I-Stream 2’s slot for record 2 (GL1 slot
#10) contains the same values as I-stream 1’s slot for record 2. Each I-stream
points to the same main storage address and file address for record 2. This is what
is meant by I-stream shared.

Note: If the I-stream shared indicator is on in a GOA entry for an I-stream other
than the main I-stream, global load generates a system error, and restart
processing ends.

Record 4, like records 1 and 3, is I-stream unique, but record 4 is loaded from a
different #GLOBL ordinal number on each I-stream. Record 4 has not only a unique
main storage copy for each I-stream but also a unique DASD copy for each
I-stream.

Global Area 311

The following diagram shows this relationship:

I-Stream 1

Directory – GL1

Slot #
9

10

Record 1

Directory – GL3

Slot #
17
65

Record 3

Record 4

Record 2

Directory – GL1

I-Stream
Unique Area

I-Stream
Shared Area

I-Stream 2

Directory – GL1

Slot #
9

10

Record 1

Directory – GL3

Slot #
17
65

Record 3

Record 4

Main Storage Super GOA Copy
The following is an example of a main storage copy of a super GOA.

312 TPF V4R1 System Installation Support Reference

Main Storage Prime GOA Copy
The following is an example of a main storage copy of a prime GOA.

+000 G O0000 A C P F +008 00000000 00300000 +010 00000000 00000000 +018 00000008 00100018
+020 00200028 00000000 +028 00000000 00000000 +030 00000000 00000001 +038 00000001 00000000
+040 00000002 00000010 +048 00000000 00000003 +050 00000010 00000000 +058 00000004 00000010
+060 00000000 00000005 +068 00000010 00000000 +070 00000006 00000010 +078 00000000 00000007
+080 00000010 00000000 +088 00000008 00000010 +090 00000001 00000001 +ABS 00000001 00000001
+0A0 00000002 00000010 +0A8 00000001 00000003 +0B0 00000010 00000001 +0B8 00000004 00000010
+0C0 00000001 00000005 +0C8 00000010 00000001 +0D0 00000006 00000010 +0D8 00000001 00000007
+0E0 00000010 00000001 +0E8 00000008 00000010 +0F0 00000002 00000001 +0F8 00000001 00000002
+100 00000002 00000010 +108 00000002 00000003 +110 00000010 00000002 +118 00000004 00000010
+120 00000002 00000005 +128 00000010 00000002 +130 00000006 00000010 +138 00000002 00000007
+140 00000010 00000002 +148 00000008 00000010 +150 00000003 00000001 +158 00000001 00000003
+160 00000002 00000010 +168 00000003 00000003 +170 00000010 00000003 +178 00000004 00000010
+180 00000003 00000005 +188 00000010 00000003 +190 00000006 00000010 +198 00000003 00000007
+1A0 00000010 00000003 +1A8 00000008 00000010 +1B0 00000004 00000001 +1B8 00000001 00000004
+1C0 00000002 00000010 +1C8 00000004 00000003 +1D0 00000010 00000004 +1D8 00000004 00000010
+1E0 00000004 00000005 +1E8 00000010 00000004 +1F0 00000006 00000010 +1F8 00000004 00000007
+200 00000010 00000004 +208 00000008 00000010 +210 00000005 00000001 +218 00000001 00000005
+220 00000002 00000010 +228 00000005 00000003 +230 00000010 00000005 +238 00000004 00000010
+240 00000005 00000005 +248 00000010 00000005 +250 00000006 00000010 +258 00000005 00000007
+260 00000010 00000005 +268 00000008 00000010 +270 00000000 00000000 +278 00000000 00000000
+280 00000000 00000000 +288 00000000 00000000 +290 00000000 00000000 +298 00000000 00000000
+2A0 00000000 00000000 +2A8 00000000 00000000 +2B0 00000000 00000000 +2B8 00000000 00000000
+2C0 00000000 00000000 +2C8 00000000 00000000 +2D0 00000000 00000000 +2D8 00000000 00000000
+2E0 00000000 00000000 +2E8 00000000 00000000 +2F0 00000000 00000000 +2F8 00000000 00000000
+300 00000000 00000000 +308 00000000 00000000 +310 00000000 00000000 +318 00000000 00000000
+320 00000000 00000000 +328 00000000 00000000 +330 00000000 00000000 +338 00000000 00000000
+340 00000000 00000000 +348 00000000 00000000 +350 00000000 00000000 +358 00000000 00000000
+360 00000000 00000000 +368 00000000 00000000 +370 00000000 00000000 +378 00000000 00000000
+380 00000000 00000000 +388 00000000 00000000 +390 00000000 00000000 +398 00000000 00000000
+3A0 00000000 00000000 +3A8 00000000 00000000 +3B0 00000000 00000000 +3B8 00000000 00000000
+3C0 00000000 00000000 +3C8 00000000 00000000 +3D0 00000000 00000000 +3D8 00000000 00000000
+3E0 00000000 00000000 +3E8 00000000 00000000 +3F0 00000000 00000000 +3F8 00000000 00000000
+400 00000000 00000000 +408 00000000 00000000 +410 00000000 00000000 +418 00000000 00000013

Figure 11. Example of the Super GOA

Global Area 313

Sample STC Card Images for Global Block Creation
SDMU ENTER GL0BBLAB0001 00010000
GL0BB GSTAR CREATE,1. 00020000
BSTA06 ENT (#GL0BL)3. 00030000
0 ENT X@C7D30020@. 00040000
@TRTAL ENT X’00’ ;00050000

X’00’ ;00060000
X’00’ ;00070000
X’00’ ;00080000
X’00’ ;00090000
X’00’ ;00100000
X’00’ ;00110000
X’0000000000000000000000010101020202020303000000000000’ ;00120000
X’0003030304040404050500000000000000000506060606060606’ ;00130000
X’00’. 00140000

@TRTNO ENT X’FF’ ;00150000
X’FF’ ;00160000
X’FF’ ;00170000
X’FF’ ;00180000
X’FF’ ;00190000
X’FF’ ;00200000
X’FF’ ;00210000
X’FFFFFFFFFFFFFFFFFFFFFF000000000000000000FFFFFFFFFFFF’ ;00220000
X’FF000000000000000000FFFFFFFFFFFFFFFF0000000000000000’ ;00230000
X’FFFFFFFFFFFF01010101010101010101FFFFFFFFFFFF’. 00240000

@ESRLC ENT (#MISCL)1. 00250000
@FCTAD ENT (#MISCS)6. 00260000

+000 G O0004 A C P F +008 00000002 001A0700 +010 ABS00000 00000000 +018 84000000 0009 G L
+020 00000003 84040000 +028 000A G L 00000004 +030 09000000 0022 G L +038 00000023 08040000
+040 0023 G L 00000024 +048 11000000 0024 G L +050 00000025 03040000 +058 0025 G L 00000026
+060 64040000 0001 M E +068 00000043 32040000 +070 0002 R T 00000044 +078 10040000 0003 P M
+080 00000041 10040000 +088 0004 G C 00000042 +090 84040000 002E Q X +ABS 0000004B 64040000
+0A0 0005 T R 00000046 +0A8 64060000 0007 T R +0B0 00000048 64040000 +0B8 002B T R 00000027
+0C0 64060000 002D T R +0C8 0000002B 81000100 +0D0 0013 X U 0000001F +0D8 09000100 0014 X U
+0E0 00000020 12000100 +0E8 0016 X C 00000018 +0F0 64040100 0006 T R +0F8 00000047 64060100
+100 0008 T R 00000049 +108 64040100 002C T R +110 00000028 64060100 +118 002F T R 0000002C
+120 64060100 0056 T R +128 00000035 64040100 +130 0058 T R 0000002A +138 64040100 0054 T R
+140 00000033 64060100 +148 005A T R 0000002E +150 00000000 00000000 +158 00000000 00000000
+160 00000000 00000000 +168 00000000 00000000 +170 00000000 00000000 +178 00000000 00000000
+180 00000000 00000000 +188 00000000 00000000 +190 00000000 00000000 +198 00000000 00000000
+1A0 00000000 00000000 +1A8 00000000 00000000 +1B0 00000000 00000000 +1B8 00000000 00000000
+1C0 00000000 00000000 +1C8 00000000 00000000 +1D0 00000000 00000000 +1D8 00000000 00000000
+1E0 00000000 00000000 +1E8 00000000 00000000 +1F0 00000000 00000000 +1F8 00000000 00000000
+200 00000000 00000000 +208 00000000 00000000 +210 00000000 00000000 +218 00000000 00000000
+220 00000000 00000000 +228 00000000 00000000 +230 00000000 00000000 +238 00000000 00000000
+240 00000000 00000000 +248 00000000 00000000 +250 00000000 00000000 +258 00000000 00000000
+260 00000000 00000000 +268 00000000 00000000 +270 00000000 00000000 +278 00000000 00000000
+280 00000000 00000000 +288 00000000 00000000 +290 00000000 00000000 +298 00000000 00000000
+2A0 00000000 00000000 +2A8 00000000 00000000 +2B0 00000000 00000000 +2B8 00000000 00000000
+2C0 00000000 00000000 +2C8 00000000 00000000 +2D0 00000000 00000000 +2D8 00000000 00000000
+2E0 00000000 00000000 +2E8 00000000 00000000 +2F0 00000000 00000000 +2F8 00000000 00000000
+300 00000000 00000000 +308 00000000 00000000 +310 00000000 00000000 +318 00000000 00000000
+320 00000000 00000000 +328 00000000 00000000 +330 00000000 00000000 +338 00000000 00000000
+340 00000000 00000000 +348 00000000 00000000 +350 00000000 00000000 +358 00000000 00000000
+360 00000000 00000000 +368 00000000 00000000 +370 00000000 00000000 +378 00000000 00000000
+380 00000000 00000000 +388 00000000 00000000 +390 00000000 00000000 +398 00000000 00000000
+3A0 00000000 00000000 +3A8 00000000 00000000 +3B0 00000000 00000000 +3B8 00000000 00000000
+3C0 00000000 00000000 +3C8 00000000 00000000 +3D0 00000000 00000000 +3D8 00000000 00000000
+3E0 00000000 00000000 +3E8 00000000 00000000 +3F0 00000000 00000000 +3F8 00000000 00000000
+400 00000000 00000000 +408 00000000 00000000 +410 00000000 00000000 +418 00000000 00000013

Figure 12. Example of a Prime GOA

314 TPF V4R1 System Installation Support Reference

@NC1NC ENT (#MISCS)7. 00270000
@NS1NS ENT (#MISCS)8. 00280000
@P9ADR ENT (#MISCS)10. 00290000
@P9PDC ENT X’00000021’. 33 00300000
@Q6PI1 ENT (#MISCS)0. 00310000
@Q6PI2 ENT (#MISCS)1. 00320000
@Q6PI3 ENT (#MISCS)2. 00330000
@ROTTY ENT (#MISCL)7. 00340000
@STTSF ENT (#MISCS)5. 00350000
@TTTEM ENT (#MISCL)0. 00360000
@U1TFT ENT (#MISCS)9. 00370000
@U7CRC ENT (#QCRRI)1. 00380000
@ALPHA ENT X@0006@. 6 00390000
@CRCOD ENT RC. 00400000
@HAALC ENT CO. 00410000
@LSTCH ENT X’0000’. 00420000
@MAXBK ENT X’0156’. 342 00430000
@MAXCL ENT X’0040’. 64 00440000
@MAXHL ENT X’0045’. 69 00450000
@MINBK ENT X’0105’. 261 00460000
@NBADY ENT X@0007@. 00470000
@NOCUR ENT X@0008@. 8 00480000
@NOREM ENT X@014D@. 333 00490000
@NRDET ENT X@000A@. 10 00500000
@NRGRO ENT X@016E@. 366 00510000
@NRRDI ENT X@003D@. 00520000
@OADET ENT X@0005@. 5 00530000

@OAGRO ENT X@014F@. 335 00540000
@OMSGI ENT X’0005’. 5 00550000
@P9PDO ENT X’000B’. 00560000
@P9PNL ENT X’0004’. 4 00570000
@XIPCT ENT X@0004@. TON’S 0-3 NOT ASSIGNED XILD 00580000
@XLSLC ENT X@0010@. # LOW SPEED LINES,16 LOW SPEE LINES 00-0F 00590000
@XLSLQ ENT X@000A@. # LS ENTRIES(XTQC) 00600000
@XLSTC ENT X@000E@. # OF L/S TERMINALS 00610000
@XMXML ENT X@000A@. MAX MESSAGE LENGTH IN SEGMENTS 00620000
@XMXRC ENT X@0005@. MAX RETRIEVAL COUNT
@XMXRT ENT X@000F@. MAX RETRIEVAL TIME LIMIT -15 MIN 00640000
@XNHST ENT X’0016’. # H/S M/S TERMINALS 00650000
@XSATS ENT X’0007’. # ENTRIES PER XSAT RECORD 00660000
@XSYLC ENT X@0013@. # ENTRIES IN XOCT 00670000
@XSYTC ENT X’0028’. # ENTRIES IN XTRT 00680000
@XTATS ENT X@000A@. # ENTRIES PER XTAT RECORD 00690000
@X1SDL ENT X’0048’. 72 SDL’S PER XDSL 00700000
@TTHAM ENT TSTAL. 00710000
@CRAS ENT X’010000’. 00720000
@CRCCC ENT LAX. 00730000
@FCOCC ENT LAX. 00740000
@PARSC ENT LAX. 00750000
@CRCORD ENT X’01’. 00760000
@PQ5NR ENT X@01@. 00770000
@XIPLG ENT X’FF’. INPUT LOGGING ON 00780000
@XSYST ENT X@03@. RES EOM/S- H/S AND L/S 00790000

GEND 00800000
SDMU ENTER GL0BCLAB0001 00810000
GL0BC GSTAR CREATE,1. 00820000
BSTA06 ENT (#GL0BL)4. 00830000
0 ENT X@C7D30020@. 00840000
@U1CAL ENT X@1EE2C5D700F1@. SEP ;00850000

X@1FD6C3E3010F@. OCT ;00860000
X@1ED5D6E5012E@. NOV ;00870000
X@1FC4C5C3014C@. DEC ;00880000
X@1FD1C1D5016B@. JAN ;00890000
X@1CC6C5C2018A@. FEB ;00900000
X@1FD4C1D901A6@. MAR ;00910000
X@1EC1D7D901C5@. APR ;00920000
X@1FD4C1E801E3@. MAY ;00930000

Global Area 315

X@1ED1E4D50202@. JUN ;00940000
X@1FD1E4D30220@. JUL ;00950000
X@1FC1E4C7023F@. AUG ;00960000
X’1EE2C5D7025E’. SEP ;00970000
X’1FD6C3E3027C’. OCT 0ABS0000

@U1GMT ENT 2000. 00990000
@U1TYM ENT 1200. 01000000
@U1MID ENT X@000001E0@. 480 01010000
@C0CLO ENT X@000004B0@. 1200 01020000
@U1ZID ENT X’00000000’. 01030000
@IFLTN ENT X@00000000000000@. 01040000
@CFLTN ENT 0000. 01050000
@DFLTN ENT 0000. 01060000
@PFLTN ENT 0000. 01070000
@GMTDA ENT X’0120’. 288 01080000
@NARAV ENT X’0000’. 01090000

@NRDDP ENT X@0007@. 01100000
@NRFMA ENT X@0000@. 01110000
@NRGDP ENT X’011F’. 287 01120000
@N9ARS ENT X’011F’. 287 01130000
@C0DEF ENT X’00’. 01140000
@U1DAY ENT X’0120’. 288 01150000
@U1DMO ENT X’011F’. 287 01160000
@NBADT ENT X@0000C9@. 01170000
@TTHDM ENT 120017OCT. 01180000
@GMTDY ENT 17OCT. 01190000
@C0TOL ENT X’00’. 01200000
@U1DMT ENT 17OCT. 01210000
@VCHEK ENT X’00’. 01220000
@VSTAT ENT I. 01230000

GEND 01240000
SDMU ENTER GL0BD0000001,TPF DEV,70131 01250000
GL0BD GSTAR 1. 01260000
BSTA06 ENT (#GL0BL)35. 01270000
0 ENT X@C7D303@. 01280000
@FQMIN ENT X’03E8’. 01290000
@FTADR ENT X’0000000000000000’. 01300000
@FQADJ ENT X’0000’. 01310000
@FQNCS ENT X’0096’. 01320000
@TMSLR ENT X’00000101’. 01330000
@FQCTX ENT X’0008’. 01340000
@ISNAM ENT TPF AIR. 01350000

GEND 01360000
SDMU ENTER GL0BE0000001,TPF DEV,70131 01370000
GL0BE GSTAR 1. 01380000
BSTA06 ENT (#GL0BL)36. 01390000
0 ENT X@C7D30304@. 01400000
@F1KEY ENT X’0000’. 01410000
@TMACT ENT X’00’. 01420000
@HIORD ENT X’0000’. 01430000
@TKTNO ENT X’00000000’. 01440000
@COIBM ENT 01450000

GEND 01460000
SDMU ENTER GL0BF0000001,TPF DEV,70131 01470000
GL0BF GSTAR 1. 01480000
BSTA06 ENT (#GL0BL)37. 01490000
0 ENT X@C7D303@. 01500000

GEND 01510000
SDMU ENTER GL0BG0000001,TPF DEV,70131 01520000
GL0BG GSTAR 1. 01530000
BSTA06 ENT (#GL0BL)38. 01540000
0 ENT X@C7D30304@. 01550000

GEND 01560000
SDMU ENTER GL0BP0000001 01570000
GL0BP GSTAR 1. 01580000
BSTA06 ENT (#GL0BL)62. 01590000
0 ENT X’C7D3’. 01600000

316 TPF V4R1 System Installation Support Reference

GEND 01610000
SDMU ENTER GL0BQ0000001 01620000
GL0BQ GSTAR 1. 01630000
BSTA06 ENT (#GL0BL)63. 01640000
0 ENT X@C7D3@. 01650000

Examples of Coding the SYNCC Macro
The following coding examples are illustrations, not the definitive method for using
the SYNCC macro; they should be consulted only as examples. TPF General
Macros contains a detailed explanation of the SYNCC macro.

Updating a Single Synchronized Field
Updating a single synchronizable field requires the insertion of the SYNCC macro at
2 points in the logic. The synchronization macro usually replaces the GLMOD and
FILKW macros.

In the following example, the field @AFIELD is locked (statement 7), and the main
storage copy is refreshed from the file copy. The protection key is set to the value
appropriate for the field, and control is returned to the problem program at the next
sequential instruction. A hold is maintained on the file copy of the record for the field
by the processor. The request to synchronize the field between all processors is
issued in statement 14. The protection key is returned appropriately for the problem
program. The synchronization process for the other active processors is initiated by
filing the synchronization copy of the field, sending messages to the other active
processors, and releasing the hold on the synchronization record.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
1) .
2) .
3) LABEL GLOBZ REGR=R1
4) .
5) .
6) .
7) LABEL1 SYNCC LOCK,@AFIELD
8) . ** **
9) . ** Logic may not modify working storage **
10) . ** without the proper use of GLMOD and **
11) . ** FILKW macros. **
12) . ** **
13) ST RG5,@AFIELD Update the single field
14) LABEL2 SYNCC SYNC,@AFIELD
15) .
16) .

Updating Multiple Synchronized Fields
Requests to update multiple synchronizable fields must be done serially. Inserting a
SYNCC macro before and after each field update request will substantially increase
the size of a program. To avoid issuing many SYNCC macros, the database design
should be reevaluated in an LC system. GLMOD and FILKW macros may have to
remain in the program to properly update nonsynchronizable fields or records. Two
synchronized fields cannot be updated with a single SYNCC macro call.

In the following example, the field @AFIELD is locked (statement 6), and the main
storage copy is refreshed from the file copy. The protection key is set to the value
appropriate for the field, and control is returned to the problem program at the next
sequential instruction. A hold is maintained on the file copy of the record for the field
by the processor. The request to synchronize the field between all processors is
issued in statement 14. The protection key is returned appropriately for the problem
program. The synchronization process for the other active processors is initiated by

Global Area 317

filing the synchronization copy of the field, sending messages to the other active
processors and releasing the hold on the synchronization record. The entire
process is repeated for @BFIELD.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
1) .
2) .
3) LABEL GLOBZ REGR=R1
4) .
5) .
6) LABEL1 SYNCC LOCK,@AFIELD
7) .
8) . ** **
9) . ** Logic may not modify working storage **
10) . ** without the proper use of GLMOD and **
11) . ** FILKW macros. **
12) . ** **
13) ST RG5,@AFIELD Update single field
14) LABEL2 SYNCC SYNC,@AFIELD
15) .
16) . ** Additional logic **
17) .
18) LABEL3 SYNCC LOCK,@BFIELD
19) . ** **
20) . ** Logic may not modify working storage **
21) . ** without the proper use of GLMOD and **
22) . ** FILKW macros. **
23) . ** **
24) ST RG5,@BFIELD Update single field
25) LABEL4 SYNCC SYNC,@BFIELD
26) .
27) .

Updating Nonsynchronized and Synchronized Fields
In this example, the field @AFIELD is locked (statement 6) and the main storage
copy is refreshed from the file copy. The protection key is set to the value
appropriate for the field and control is returned to the problem program at the next
sequential instruction. A hold is maintained on the file copy of the record for the field
by the processor. In following code (statements 7 through 12), the program properly
addresses the field, modifies the data, and in this example, uses a store register to
update the field (statement 13). The request to synchronize the field across all
processors is then issued (statement 14) and the program continues. As a result of
the request for synchronization (statement 14), the protection key is returned
appropriately for the problem program and the synchronization process for the other
active processors is initiated by filing the synchronization copy of the field, sending
messages to the other active processors, and releasing the hold on the
synchronization record. The update to @BFIELD is by conventional use of the
GLMOD and FILKW macros.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
1) .
2) .
3) LABEL GLOBZ REGR=R1
4) .
5) .
6) LABEL1 SYNCC LOCK,@AFIELD
7) .
8) . ** **
9) . ** Logic may not modify working storage **
10) . ** without the proper use of GLMOD and **
11) . ** FILKW macros. **
12) . ** **
13) ST RG5,@AFIELD Update single field
14) LABEL2 SYNCC SYNC,@AFIELD
15) .

318 TPF V4R1 System Installation Support Reference

16) . ** Additional logic **
17) .
18) LABEL3 GLMOD
19) .
20) . ** **
21) . ** Logic may not modify working storage **
22) . ** without the proper use of GLMOD and **
23) . ** FILKW macros. **
24) . ** **
25) . ST RG5,@BFIELD Update single field
26) LABEL4 FILKW R,@GBLCC
27) .
28) .

Global Area 319

320 TPF V4R1 System Installation Support Reference

Loaders

A loader is a tool for introducing new or modified system components, programs, or
data to a TPF system. All loaders have both an online and offline component.

Offline Component
Takes system components, programs, or data from the MVS data sets and
writes them to a storage medium such as tape, DASD, virtual reader, or
user-defined device.

Online Component
Takes the system components, programs, or data from the storage medium
and loads them to their proper location on the online system.

The load functions of a TPF system are handled by the general file loader, data
loader, E-type loader, and auxiliary loader. Only the general file loader is used for
an initial full load (see “Loading System Components to a New TPF System” on
page 322).

Once you complete a full load, you do not need to do another except for some
DASD configuration or core image restart (CIMR) changes.

General File System Components
The programs and keypoints needed to start or restart the system, and other
programs and keypoints, get stored in the general file. The following list shows the
general file contents:

v IPLA and the volume serial number (VOLID)

Note: This copy of IPLA is used when the loader general file is IPLed.

v Keypoints from an MVS object library

v IPLA

Note: This copy of IPLA is loaded to online modules.

v IPLB

v Core Image Restart (CIMR) area components
– Control program (CP)
– Program Allocation Table (IPAT)
– In-core dump formatter (ICDF) program
– Online segment of the general file loader (ACPL)
– Global synchronization table (SIGT)
– Record identifier attribute table (RIAT)
– File address compute program table (FCTB)
– USR1
– USR2

v E-Type Programs and Data Records
– E-type programs from an MVS object library
– Loader Control Record (LDCRL)
– Program Version Records (PVRs)

v General File IPL Keypoints

v Online Module IPL Keypoints

v Online Keypoint Patches

© Copyright IBM Corp. 1994, 2002 321

There are 2 types of general files for HPO: one for the basic subsystem (BSS) and
one for subsystems. Only the basic subsystem has the code necessary for an IPL.

Changing CIMR Components
A change to any CIMR component that causes the length of the component to
increase by more than the buffer provided at system generation, requires the
following actions:

1. Run the SIP program GTSZ to put the length of the changed component
(including the buffer) in the SKGTSZ member of the SIP SYSRCE macro library.

2. Assemble CTKA and CTKX (both online and general file versions) to calculate
the size of the CIMR and the file addresses for the CIMR components.

3. Perform a full load.

Note: Any change in the allocation of a CIMR component requires a full load.

Loading System Components to a New TPF System
The general file loader is used to load all system components to a new TPF system
or to selectively update any system component. The general file loader is only
necessary at system generation or in an emergency load condition in which no
fallback image exists. The general file loader can only be used to load to fixed
image 1.

Note: You must stop the entire online system to use the general file loader.
Therefore, if you are loading system components to an existing TPF system,
it may be advantageous to use the auxiliary loader. You do not have to stop
the system to use the auxiliary loader. See “Loading System Components to
an Existing TPF System” on page 341 for more information.

After you assemble all system and application programs and generate their data
records, do the following to load the system components to a new TPF system:
1. Initialize the general file.
2. Format the general file and online modules.
3. Create a general file load deck.
4. Load system components to the general file.
5. IPL the general file.
6. Load fixed-file records.
7. IPL the online module.

Initializing the General File
You must initialize and format the general file before you can load system
components to it. The system initialization program (SIP) does the initialization. SIP
uses the MVS utility program ICKDSF to load IPLA and the volume serial number
(VOLID) to the general file.

Formatting the General File and Online Modules
The real-time disk formatter prepares the general file and online modules to receive
system components.

Creating a General File Load Deck
This section shows the steps you must take to create a load deck (assuming SIP
has been run successfully).

322 TPF V4R1 System Installation Support Reference

Enter the JCL Cards
The following JCL cards are used to run the general file loader offline segment
(ALDR); nn is the release identification and ssid is the subsystem ID.

Notes:

1. DD names SALTB, OBJDD, GENFIL, PRINT, INPUT, and LOADMOD are
required.

2. DD name LDRTRACE is required only if you specify TRACE(ON) as a
parameter.

3. Data set concatenation is sequence-dependent.

TPFLDR EXEC Card: The TPFLDR EXEC card identifies the specified version of
the TPF offline loader program (TPFLDR).

These are the parameters that can be specified on the EXEC card.

1. ALDR

indicates the general file loader (ALDR) is to be executed.

2. CLMSIZE = x

where x is greater than or equal to the MVS file size of the largest C load
module to be loaded. If a C load module contains a higher than normal ratio of
VCONs to executable code, CLMSIZE must be larger. ALDR searches only the
OBJDD DSN (not LOADMOD DSN) when CLMSIZE = 0.

3. TRACE(ON|OFF)

If you specify TRACE(ON), selective trace data will be written to the
LDRTRACE DD name. This trace data can be useful to system programmers to
debug problems that occur while running TPFLDR. TRACE(ON) is primarily
intended for TPF development personnel for this purpose. TRACE(OFF) is the
default. If you specify TRACE(OFF), no trace data is written.

STEPLIB Card: The STEPLIB card identifies the partitioned data sets that contain
the offline loader programs.

//ALDRGF JOB (82F91,7323E),’SIP ACP ’,
// MSGLEVEL=1,CLASS=F,
// MSGCLASS=A,TIME=15
//LOAD40 EXEC PGM=TPFLDRnn,REGION=9000K,PARM=’ALDR,CLMSIZE=4000000’
//STEPLIB DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
// DD DSN=SYS1.EDC.SEDCLINK,DISP=SHR
// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR
//SALTB DD DSN=ACP.SALTBL.RELnn.ssid,DISP=SHR
//GENFIL DD DSN=GNFLssid,DISP=OLD,
// UNIT=3380,VOL=(PRIVATE,,,,SER=xxxxxx)
//GENFI2 DD DSN=GNF2BSS,DISP=OLD,
// UNIT=3380,VOL=(PRIVATE,,,,SER=xxxxxx)
//PRINT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//LDRTRACE DD SYSOUT=*
//ALDRCPL DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
//LOADMOD DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
//OBJDD DD DSN=ACP.OBJ.RELnn.ssid,DISP=SHR
//INPUT DD *
*** INPUT CONTROL CARDS ARE PLACED HERE
/*

Figure 13. ALDR Run Load Deck Example

Loaders 323

SALTB Card: The SALTB card identifies partitioned data sets that contain the
system allocator table (SALTBL). The SALTBL contains information necessary for
the TPF linkage editor to resolve virtual address constants (VCONs). These VCONs
can be program addresses, tape names, macro parameters, and others that are put
in the SALTBL to allow relocation of resources in the online system. See “System
Allocator” on page 399 for more information on the SALTBL.

GENFIL Card: The GENFIL card identifies the general file to which offline data is
written.

GENFI2 Card: The GENFI2 card identifies the general file DSN for the 4KB region
to which offline programs and data are written.

ADATATMP Card: The ADATATMP card specifies a temporary data set used to
hold ADATA files before they are written to the output medium.

PRINT Card: The PRINT card causes an output listing that details all system
components loaded to the general file to be produced. Errors that do not cause the
program to abend are also written in this listing. Abend error messages and
informational messages are sent to the operator console. For more information
about error messages, see Messages (System Error and Offline) and Messages
(Online).

ALDRCPL Card: The ALDRCPL card identifies the partitioned data set that
contains the link-edited control program and FACE table. The FACE table and
control program are assembled and link-edited using standard MVS facilities. For
more information, see TPF System Generation.

LOADMOD Card: The LOADMOD card identifies the partitioned data set
(LOADMOD) that contains the link-edited C load modules. When an E-type program
is being loaded, the data sets identified by the LOADMOD card are searched before
the data sets identified by the OBJDD card are searched. The C load modules are
compiled and link-edited using standard MVS facilities. For more information, see
TPF System Generation.

OBJDD Card: The OBJDD card identifies object libraries. Object libraries are
partitioned data sets of assembled or compiled TARGET(TPF) programs. All
programs to be loaded must be in object libraries with the exception of the control
program, the FACE table, and C load modules. Library contents are maintained and
updated using MVS procedures. For more information see TPF System Generation.

SYSPRINT Card: The SYSPRINT card identifies the device to which output is
printed. It should be included in the ALDR load deck or some error messages
related to the C load module will be routed to the stdout device. See TPF C/C++
Language Support User’s Guide for more information on stdout.

Enter the Input Control Cards
Figure 14 on page 325 shows a sample ALDR input control load deck. The example
explains the order of the cards and states if the cards are required or optional.

324 TPF V4R1 System Installation Support Reference

|
|
|
|
|
|

Figure 15 on page 326 shows a sample ALDR input control load deck that makes
use of the PATH card to load an FCTB in program object format from an HFS path.

==
Initialization part of the load deck - Must be first input control cards

==
LOADER CC 40 <-- Required, must be first
LOADER IMAGE CLEAR <-- Optional, immediately after CC
LOADER LOAD CTKX 40 <-- Optional, (required after IMAGE CLEAR)
GF CALL KEYPTCTKAGF <-- Optional, last initialization statement
GF CALL KEYPTCTKVGF
==

Main part of the load deck - Must be second input control cards
==
LOADER LOAD CP 40 <-- Required, before file-resident programs
LOADER LOAD IPAT 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD KEYPT <-- Optional, anywhere after LOAD CP
LOADER CALL KEYPTCTK040 <-- Optional, immediately after LOAD KEYPT
LOADER CALL KEYPTCTK140
LOADER CALL KEYPTCTK241
LOADER CALL KEYPTCTK340
LOADER CALL KEYPTCTK440
LOADER CALL KEYPTCTK540
LOADER CALL KEYPTCTK640
LOADER CALL KEYPTCTK940
LOADER CALL KEYPTCTKA40
LOADER CALL KEYPTCTKB40
LOADER CALL KEYPTCTKC40
LOADER CALL KEYPTCTKD40
LOADER CALL KEYPTCTKE40
LOADER CALL KEYPTCTKI40
LOADER CALL KEYPTCTKM40
LOADER CALL KEYPTCTKV40
LOADER CALL KEYPTCTKA40 C
LOADER PROG-MOD-BASE CLEAR <-- Opt, after LOAD CP & before LOAD OPL
LOADER ELDR CLEAR <-- Optional, anywhere after LOAD CP
LOADER LOAD OPL <-- Optional, anywhere after ELDR CLEAR
PARS40 <-- Optional, immediately after LOAD OPL
PARS4D
PARSP1
LOADER LOAD AP <-- Optional, anywhere after LOAD CP
LOADER CALL PROG COSY40 <-- Optional, immediately after LOAD AP
LOADER CALL PROG BXAX40
LOADER CALL PROG CCKP40
LOADER CALL PROG COHA40
LOADER CALL PROG COHB40
LOADER CALL PROG UF00P1
REP 000348 0014700 <- Optional, immediately after CALL PROG -> UF00P1
LOADER LOAD ACPL 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD FCTB 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD ICDF 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD IPLA 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD IPLB 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD SIGT 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD RIAT 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD USR1 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD USR2 40 <-- Optional, anywhere after LOAD CP
LDT <-- Required, must be last
/*

Figure 14. ALDR Input Control Load Deck Example

Loaders 325

CC Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER CC uu vv,vv,vv,vv,vv,vv,vv,vv,vv,vv

uu = SALTBL version
vv = Version number of operational program (PARS) list

The CC card contains control information for the program. It supplies the version
number of the SALTBL to be used for link-editing and the version numbers of any
operational program lists to be used to build the directory in main storage. As many
as ten lists can be specified. The only card that can precede the CC card is a REP
card for the loader. Otherwise the loader will abend.

Image Clear Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER IMAGE CLEAR

The Image Clear card ensures clean image definitions. If it is present, ALDR will set
an indicator for ACPL to perform the initialization of various image-related records.
Note that with a clear card IPLA, IPLB, CTKX, and all the CIMR components need
to be loaded.

Attention: The image clear card will cause all image definitions to be cleared on
the online system.

Comment Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

*comments

Comment cards can be placed anywhere in the load deck. Comments are identified
by an asterisk (*) in card column 1. As far as control card sequencing is concerned,
comment cards are ignored in this section of this publication.

Patching the General File Loader Offline Segment:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx ALDR

==
Initialization part of the load deck - Must be first input control cards

==
LOADER CC 40 <-- Required, must be first
==

Main part of the load deck - Must be second input control cards
==
LOADER PATH FCTBPATH This search path can be used to find FCTB

/u/tpf41/product_components/system/; X
/u/tpf41/product_components/test/; X
/u/user1/my_project/tables

LOADER LOAD FCTB 40/FCTBPATH <-- FCTBPATH indicates search path to use
LDT <-- Required, must be last
/*

Figure 15. ALDR Input Control Load Deck Example Showing FCTB in Program Object
Format from HFS

326 TPF V4R1 System Installation Support Reference

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.

The general file loader offline segment first checks for a REP card. The REP card
indicates that the offline segment is to be patched before it executes. Any control
card other than a REP card will return the program to normal load mode. The REP
card must contain ALDR in columns 75–78 or the run will terminate.

Load CTKX Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD CTKX vv

vv = version number

The Load CTKX card causes the image pointer record (CTKX) to be loaded to the
general file in a 4KB record. A switch is set in the loader control record to indicate
to the general file loader online segment that CTKX was loaded. When a new
CTKX is loaded it is compared to the existing version on the GF. If the start ordinal
of a CIMR or IPL component is different in the new CTKX, or the allocated size is
too small, that component must also be loaded.

Patching: One or more REP cards can follow the Load CTKX card. Each REP
card must contain CTKX in card columns 75–78 and the version number in columns
79–80.

Call General File Keypoint Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

GF CALL KEYPTnnnnvv

nnnn = Keypoint name
vv = version number

The specified keypoints are written to the general file keypoint area. Only 2
keypoints contain information for the general file that is not the same as the
information they carry for the online modules:

CTKA Keypoint A

CTKV Keypoint V

These keypoints have pertinent information about the general file and are used
during the general file IPL. They are not used to configure the online system. These
keypoints have to be called only if the online versions are called. This is because
the Call Online Keypoint card will cause any keypoint not called by the Call General
File Keypoint card to be written to the general file keypoint area and the online
keypoint area. See “Call Online Keypoint Card” on page 329.

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx nnnnvv

z = Any character except *
aaaaaa = Address of the patch area

Loaders 327

xxxx = Patch data. The data is entered 2 hex bytes at a
time, separated by commas or blanks.

nnnn = Associated keypoint name
vv = version number

A keypoint is patched by placing one or more REP cards after its Call General File
Keypoint card. Each REP card must contain the same name and version number in
card columns 75–80 as that punched in columns 21–26 of the corresponding Call
General File Keypoint card.

Load Control Program Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD CP vv

vv = version number

The offline loader builds a copy of the control program (CP) in main storage from
the load module library. The CP is then filed on the general file as a chain of 4KB
records (known as core-image records). A version number must be specified in
columns 21–22. Switches are set in the loader control record to inform the general
file loader online segment that the control program was loaded.

Because of main storage utilization, the CP must be loaded before file-resident
programs are loaded to the general file. This restriction includes application
program loads via OPL/PARS and LOADER LOAD AP cards. Attempts to load the
CP after file-resident programs will cause the loader to abend.

Note: The Load Control Program Card is only allowed in BSS.

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx ccccccvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
cccccc = CP CSECT name
vv = version number

Patch the control program by placing REP cards after the Load Control Program
card. Control program patching is accomplished by patching CP CSECTS
individually starting at relative address zero. Each REP card must contain the CP
CSECT name starting in column 73.

Load IPAT Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD IPAT vv

vv = version number

The Load IPAT card causes the program allocation table (PAT) to be loaded to the
general file as core-image records. The time stamp in the header of system
allocator table (SALTBL) will be used to validate the IPAT. If the time stamp in the
header of the IPAT does not match the time stamp of the system allocator table
(SALTBL), the load will be aborted.

328 TPF V4R1 System Installation Support Reference

Patching: One or more REP cards can follow the Load IPAT card. Each REP card
must contain the IPAT in card columns 75–78 and the version number in columns
79–80.

Load Keypoint Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD KEYPT

The Load Keypoint card tells the offline segment that there are keypoints to be
loaded to the working areas of the online modules. (The general file loader loads
keypoints directly to the working keypoint area (#KEYPT), not the staging area
(#KSAx)). The keypoints are identified by Call Online Keypoint cards that must
follow the Load Keypoint card. These cards must come after the Call General File
Keypoint card and the Load Control Program card.

Call Online Keypoint Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

GF CALL KEYPTnnnnvvON i

nnnn = Keypoint name
vv = version number
ON = an optional statement
i = processor ID (optional)

The Call Keypoint cards must be preceded by a Load Keypoint card. These cards
specify the names and version numbers of keypoints in columns 21–26. The valid
keypoints are:
CTK0 Keypoint 0
CTK1 Keypoint 1
CTK2 Keypoint 2
CTK3 Keypoint 3 (Reserved for customer use)
CTK4 Keypoint 4 (Reserved for customer use)
CTK5 Keypoint 5
CTK6 Keypoint 6
CTK9 Keypoint 9
CTKA Keypoint A
CTKB Keypoint B
CTKC Keypoint C
CTKD Keypoint D
CTKE Keypoint E
CTKI Keypoint I
CTKM Keypoint M
CTKV Keypoint V

The specified keypoints are written to the general file, in an area that is reserved for
online keypoints. ACPL copies the keypoints from the general file to the working
keypoint area if the keypoints have not been called by a Call General File Keypoint
card.

Each card sets a switch in the loader control record to indicate that the keypoint
was loaded. The general file loader online segment uses this information when
writing the keypoints to the online modules.

In a loosely coupled environment, when a processor-unique keypoint is being
loaded, the processor ID is specified in column 30. If column 30 is blank, the default

Loaders 329

is the ID of the first processor in the system. When shared keypoints are being
loaded, column 30 can be blank or any valid processor ID.

Leaving columns 27 and 28 blank on the Call Keypoint card (as in the example that
follows) causes any associated REP card information to patch the Call Keypoint
card information before the keypoint is loaded.
LOADER CALL KEYPTCTKA40 C <-- Loads keypoint CTKA
REP 000348 0014700 <-- Patches the new keypoint before loading --> CKTA40

Placing ON in columns 27 and 28 of the Call Keypoint card (as in the example that
follows) causes the associated REP card information to be written to the online
keypoint without loading the keypoint to the general file.
LOADER CALL KEYPTCTKA40ON C <-- No load of keypoint CTKA
REP 000348 0014700 <-- Patches applied to online keypoint CTKA --> CKTA40

Note: At least one REP card must follow the Call Keypoint card when using the
ON facility.

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx nnnnvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
nnnn = Associated keypoint name
vv = version number

Each REP card must contain the same name and version number in card columns
75–80 as that punched in card columns 21–26 of the corresponding Call Keypoint
card.

PROG-MOD-BASE Clear Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER PROG-MOD-BASE CLEAR

The PROG-MOD-BASE Clear card resets the master extra program record so that
all extra program records (#XPRG1 fixed file records) are available to be dispensed.
If the Clear card is present, ALDR sets an indicator for ACPL to initialize the master
extra program record. This occurs on image 1.

The card is optional and can be placed anywhere after the LOAD CP card and
before the LOAD OPL and LOAD AP cards. The card must be included to initialize
a program base before any C load modules are loaded to that image.

Notes:

1. All C load modules must be reloaded when the LOADER PROG-MOD-BASE
CLEAR card is included.

2. If the LOADER PROG-MOD-BASE CLEAR card is added while a ZOLDR
ACCEPT is in progress for a loadset that contains a C load module, then the
ELDR Clear card must also be included in the load deck.

ELDR Clear Card:

330 TPF V4R1 System Installation Support Reference

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER ELDR CLEAR

The ELDR Clear card ensures clean E-type loader record definitions. If it is present,
ALDR will set an indicator for ACPL to clear and reinitialize all E-type loader records
for image one. To clear E-type loader records in other images, use the auxiliary
loader.

Attention: The ELDR Clear card will cause all E-type programs that were loaded
or activated (but not accepted) with the E-type loader to be cleared on the online
system.

Load OPL Card and PARS Card:
Load OPL Card
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD OPL LIST

LIST = an optional parameter that causes the general file loader to print
the name and version number of each program loaded.

PARS Card
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

PARSvv

vv = PARS list version

The Load OPL card causes E-type programs to be loaded to the general file. The
programs are defined by one or more operational program list (OPL) records. Each
of these records contains a series of segment names and version numbers. Each of
these records resides on the object module library with the name PARS and a
unique 2-character version number. Different lists are indicated by different PARS
cards.

If the Load OPL card is not followed by a PARS card then the program uses
PARS00 as the list of OPL programs. If one or more PARS cards are supplied, the
version numbers specified are used.

The optional operand LIST in card columns 31–34 of the Load OPL card causes the
general file loader to print the name and version number of each program loaded.

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx nnnnvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
nnnn = Segment name
vv = version number

One or more REP cards can follow the PARS cards or, if no PARS cards are
present, the Load OPL card. Each REP card must contain the segment name and
version number in card columns 75–80. Although the offline segment of the general
file loader will handle patch cards for different segments in any sequence and freely

Loaders 331

intermixed, the execution time will be minimized if all REP cards for a segment are
in one group. This eliminates needless I/O operations.

Note: REP cards for C load modules are not supported. If a REP card is specified
for a C load module, a warning message is issued and the REP card is
ignored.

Load AP Card and Call Program Card:
Load AP Card
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD AP LIST

LIST = an optional parameter that causes the general file loader to print
the name and version of each program loaded.

Call Program Card
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER CALL PROG nnnnvv

nnnn = program name
vv = version number

The Load AP card tells the general file loader offline segment to accept Call
Program cards for the selective loading of E-type programs. Any program loaded by
this function will overlay any other version of the same program already loaded from
an OPL record.

The optional operand LIST in card columns 31–34 of the Load AP card causes the
general file loader to print the name and version number of each program loaded.

Note: If there is a Call Program card syntax error, that program will not load. Also,
all cards that follow the incorrect card (with the same Load AP card) will not
load.

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx nnnnvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
nnnn = Segment name
vv = version number

One or more REP cards can follow a Call Program card. Each REP card must
contain the same name and version number in card columns 75–80 as that
punched in card columns 21–26 of the corresponding Call Program card.

Note: REP cards for C load modules are not supported. If a REP card is specified
for a C load module, a warning message is issued and the REP card is
ignored.

Load ACPL Card:

332 TPF V4R1 System Installation Support Reference

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD ACPL vv

vv = version number

When the program encounters the Load ACPL card, the general file loader online
segment is loaded to the general file as core-image records. Its file address on the
general file is generated from its ordinal number obtained from CTKX. Switches are
set in the loader control record to indicate to the general file loader online segment
that the online segment was loaded.

Note: ACPL can only be loaded for BSS.

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx ACPLvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
vv = version number

One or more REP cards can follow the Load ACPL card. Each REP card must
contain ACPL in card columns 75–78 and the version number in columns 79–80.

Load ICDF Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD ICDF vv

vv = version number

The Load ICDF card causes the in-core dump formatter (ICDF) to be loaded to the
general file as core-image records. Its file address on the general file is generated
from its ordinal number obtained from CTKX. A switch is set in the loader control
record to indicate to the general file loader online segment that ICDF was loaded.

Note: ICDF can only be loaded for BSS.

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx ICDFvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
vv = version number

One or more REP cards can follow the Load ICDF card. Each REP card must
contain ICDF in card columns 75–78 and the version number in columns 79–80.

Load FCTB Card:

Loaders 333

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD FCTB vv

vv = version number

The Load FCTB card causes the FACE table to be loaded to the general file as
core image records. Its file address on the general file is generated from its ordinal
number obtained from CTKX. A switch is set in the loader control record to indicate
to the general file loader online segment that the FCTB was loaded. If the FCTB is
to be loaded in program object format from the hierarchical file system (HFS) under
OS/390 UNIX System Services (OS/390 UNIX), specify the name of a search path
that was previously initialized in the load deck by a Path card. The format of the
Load FCTB card, including the optional path name, follows.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD FCTB vv/pathname

vv = version number
pathname = variable length alphanumeric name assigned by user to search path

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx FCTBvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
vv = version number

Only data in the first 16 MB of the FCTB can be patched.

Load SIGT Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD SIGT vv

vv = version number

The Load SIGT card causes the global synchronization table (SIGT) to be loaded to
the general file as core-image records. Its file address is generated from its ordinal
number obtained from CTKX. A switch is set in the loader control record to indicate
to the general file loader online segment that SIGT was loaded.

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx SIGTvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
vv = version number

One or more REP cards can follow the Load SIGT card. Each REP card must
contain SIGT in card columns 75–78 and the version number in columns 79–80.

334 TPF V4R1 System Installation Support Reference

Load USR1 Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD USR1 vv

vv = version number

The Load USR1 card causes the first user-defined CIMR area (USR1) to be loaded
to the general file as core-image records. Its file address is generated from its
ordinal number obtained from CTKX. SIP automatically generates one ordinal
number for USR1. A switch is set in the loader control record to indicate to the
general file loader online segment that USR1 was loaded. The load USR1 card is
required for a full load.

Note: USR1 can only be loaded for BSS.

Patching: One or more REP cards can follow the Load USR1 card. Each REP
card must contain USR1 in card columns 75–78 and the version number in columns
79–80.

Load USR2 Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD USR2 vv

vv = version number

The Load USR2 card causes the second user defined CIMR area (USR2) to be
loaded to the general file as core-image records. Its file address is generated from
its ordinal number obtained from CTKX. SIP automatically generates one ordinal
number for USR2. A switch is set in the loader control record to indicate to the
general file loader online segment that USR2 was loaded. The load USR2 card is
required for a full load.

Patching: One or more REP cards can follow the Load USR2 card. Each REP
card must contain USR2 in card columns 75–78 and the version number in columns
79–80.

Load IPLA Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD IPLA vv

vv = version number

The Load IPLA card causes program IPLA to be loaded to the general file as
core-image records. Its file address is generated from its ordinal number obtained
from CTKX. A switch is set in the loader control record to indicate to the general file
loader online segment that IPLA was loaded.

Notes:

1. This is not the IPLA that is used on the general file IPL. The general file IPL
uses the IPLA records that were written to the general file by the ICKDSF MVS
program.

2. IPLA can only be loaded for BSS.

Patching:

Loaders 335

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx IPLAvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
vv = version number

One or more REP cards can follow the Load IPLA card. Each REP card must
contain IPLA in card columns 75–78 and the version number in columns 79–80.

Load IPLB Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD IPLB vv

vv = version number

The Load IPLB card causes program IPLB to be loaded to the general file as
core-image records. Its file address is generated from its ordinal number obtained
from CTKX. A switch is set in the loader control record to indicate to the general file
loader online segment that IPLB was loaded.

Note: IPLB can only be loaded for BSS.

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx IPLBvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
vv = version number

One or more REP cards can follow the Load IPLB card. Each REP card must
contain IPLB in card columns 75–78 and the version number in columns 79–80.

Load RIAT Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD RIAT vv

vv = version number

The Load RIAT card causes the record identifier attribute table (RIAT) to be loaded
to the general file as core-image records. Its file address is generated from its
ordinal number obtained from CTKX. A switch is set in the loader control record to
indicate to the general file loader online segment that RIAT was loaded.

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx RIATvv

336 TPF V4R1 System Installation Support Reference

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
vv = version number

One or more REP cards can follow the Load RIAT card. Each REP card must
contain RIAT in card columns 75–78 and the version number in columns 79–80.

LDT Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LDT

This must always be the last control card for a given run and stops processing. If
no LDT card is present, a message is printed, stating that the run cannot be
completed.

Path Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER PATH pathname optional comments
searchpath

pathname = alphanumeric name, up to 16 characters in length, used to reference the search path
searchpath = fully qualified search path occupying up to 14 input cards, as described below

The optional Path card actually consists of two or more cards in the input deck, and
is used to initialize a search path that can be referenced on a subsequent Load
FCTB card to load an FCTB, in program object format, from the hierarchical file
system (HFS) under OS/390 UNIX System Services (OS/390 UNIX). The first card
specifies the name that can be used on a subsequent Load FCTB card to reference
the search path. After the actual Path card, as many as 14 additional input cards
can be included to specify directories in the search path.

One or more absolute directories can be specified starting with the first directory to
be searched and ending with the last directory to be searched. If more than one
directory is specified, a ; symbol must separate directories. Blanks that follow a ;
symbol are ignored. The presence of any character other than a blank in column 80
indicates that the search path continues starting in column 10 on the next card in
the load deck. If there is no continuation character in column 80, the path will
include all characters starting in column 10 and ending with the last nonblank on
the input card. Comments can be included on the Path card starting in column 33.
However, comments cannot be included on the subsequent cards that specify the
actual search path because all nonblank characters are considered part of the path.
An example of a Path card and continuation card that is used to specify a search
path for the FCTB follows:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER PATH FCTBPATH Defining FCTBPATH for later user
/u/tpf41/produt_components/system/; X
/u/tpf41/product_components/test/; X
/u/user1/my_project/tables; X
/u/tpf41/my_project/phase_one/beta_test_versions/file_address_compute_X
table/program_object

If the Path card shown in the previous example was specified before a Load FCTB
card for FCTB40 that specifies FCTBPATH in the load deck, TPFLDR would then
attempt to locate the FCTB as a program object file by searching for the following
files, in order:

Loaders 337

1. /u/tpf41/product_components/system/FCTB40

2. /u/tpf41/product_components/test/FCTB40

3. /u/user1/my_project/tables/FCTB40

4. /u/tpf41/my_project/phase_one/beta_test_versions/file_address_compute_
table/program_object/FCTB40

Note: A path name can be defined only once in the load deck. The Path card
defining a path name must precede the Load FCTB card that references the
path name.

Loading System Components to the General File

When you create your TPF system for the first time, you must format online
modules, initialize and format the general file, and load IPLA and the volume
identifier (VOLID) to the general file. See “Initializing the General File” on page 322
and “Formatting the General File and Online Modules” on page 322 for more
information.

The remainder of the general file is loaded by the general file loader offline segment
(ALDR). ALDR activates the TPF linkage editor (LEDT/NLDT) to link the E-type
programs with input from the system allocator table (SALTBL). ALDR then loads all
the records and programs specified in the load deck to the general file.

Load
Lib.

Object
Lib.

JCL
Control Cards

TPF
Linkage Editor

SALTBL

General File
Loader

Offline Segment
(TPFLDR – ALDR)

Gen.
File

LDCRL

Begin Process End Process

LDCRL = Loader Control Record
Primary Process
Data Flow
Secondary Process

Figure 16. General File Load Using the General File Loader Offline Segment (ALDR)

338 TPF V4R1 System Installation Support Reference

ALDR also creates a loader control record (LDCRL) on the general file. This control
record shows the general file loader online segment (ACPL) the components to load
from the general file to the online modules.

Output Listing
An output listing is produced which details all system components loaded to the
general file. Errors which do not cause the program to abend are also written in this
listing. Abend error messages and informational messages are sent to the operator
console. For more information on error messages see Messages (System Error and
Offline) and Messages (Online).

IPLing the General File

When you IPL the general file, the general file loader online segment (ACPL) is
placed in main storage. ACPL uses the loader control record (LDCRL) segment to
put the contents of the general file onto online modules.

Keypoints are loaded to the prime and duplicate modules. They are copied to the
first 256 modules of the same type as the prime module during online execution.

At the completion of the online loading, the operator is notified about all
components loaded. If the IPL is unsuccessful, the operator is sent all of the error
messages for the run.

Note: See Messages (System Error and Offline) and Messages (Online) for a
complete listing of error and status messages.

If the IPL is successful, the general file loader sends the following message to the
operator’s terminal:

Online
Module

General File
Loader

Online Segment
(ACPL)

General File IPL
(Restart Scheduler)

Primary Process
Data Flow

General File IPL
(Initializer pgm)

Online
Module

Online
Module

Gen.
File

LDCRL

LDCRL = Loader Control Record

Figure 17. General File IPL Using the General File Loader Online Segment (ACPL)

Loaders 339

|
|
|
|
|

|
|

ACPL0001I SYSTEM LOAD COMPLETE
LOAD DATA AFTER 1052 STATE IF NEEDED
IF NOT IPL PRIME MODULE ccud

This message reminds an operator performing a full load to load data after the
system announces it is in 1052 state (see “Loading Fixed-File Records”).

Loading Fixed-File Records

The first time a system has been brought to 1052 state by a general file IPL it
should be loaded, using the data loader, with fixed-file records. These records are
used by the system and by the application programs.

To load fixed-file records, do the following:

1. Create a pilot tape (symbolic name = SDF) with the system test compiler (STC)
program. See TPF Program Development Support Reference for information on
the system test compiler program.

Note: A maximum of 65 535 records can be read or written from a pilot tape.

2. Mount the pilot tape (SDF). This is the only input to the data loader.

3. Enter the ZSLDR command to activate the data loader. See TPF Operations for
more information about the ZSLDR command.

Note: Once records are loaded to the TPF database, no utility is available to
remove the records from the database. If it is necessary to delete
previously loaded records from the TPF database, you must create and
load a new pilot tape that contains dummy records. If the number of

Online
ModuleData LoaderPilot Tape

(SDF)

Output Msg

Primary Process
Data Flow

ZSLDR LOAD DATA n

Online
Module

Online
Module

Figure 18. Loading Fixed-File Records Using the ZSLDR Command

340 TPF V4R1 System Installation Support Reference

records decreases from one load to the next, the additional records from
the first load will not be removed from the database.

4. Either of 2 actions can now be taken.

a. If the loaded records are meant for main storage, an online module IPL must
be performed to place the records there.

b. The system can be cycled to NORM state without an online module IPL. An
IPL will be required in the future to place the records in main storage.

Notes:

1. The data loader can be operated only while the TPF system is in 1052 state
unless the ID of the pilot tape is N. If the ID of the pilot tape is N, the TPF
system can be in any state.

2. In a loosely coupled facility, the subsystem cannot be above 1052 state in any
processor unless the ID of the pilot tape is N. If the ID of the pilot tape is N, the
subsystem can be in any state.

Loading System Components to an Existing TPF System
The auxiliary loader is the main method for performing system loads for an existing
TPF system. The general file loader is only necessary at system generation time or
if an emergency load condition in which no fallback image exists.

Use the auxiliary loader to load system components from a storage medium to any
defined and disabled TPF image. Because the auxiliary loader operates in 1052
state or above, the subsystem must be initialized through a full load before the
auxiliary loader can be used. The auxiliary loader requires only a hard IPL to switch
the now active image.

Multiple Image Users
If you are running more than one TPF image, make sure the FCTBs and
RIATs for each system have compatible structures. That is, make sure the
tables:

v Do not point to different addresses for the same record.

v Do not point to the same address for different records.

Perform the following steps to load system components to an existing TPF system:

1. Create a new fallback image.

2. Create an auxiliary load deck.

3. Load system components to a storage medium.

4. Load the storage medium to the system.

5. Enable the image.

6. Move keypoints to the #KEYPT working area (optional, see “Moving Keypoints
to the Working Area” on page 361).

7. IPL the image.

Creating a New Fallback Image
To load system components to a fallback image, you must first have a fallback
image. If you do not have a fallback image, or want to create a new fallback image,
you must do the following:

1. Define the fallback image.

Loaders 341

2. Copy CTKX, CIMR components, IPL areas, and program areas from another
image to the new fallback image.

Defining a Fallback Image
To define a new image (for example, TPF02) enter ZIMAG DEF TPF02 NUM 2 IPL
x PROG y.

Note: Where x is the IPL area and y is the PROG area for TPF02.

Copying CTKX, IPL Areas, Program Areas, and CIMR
Components
To physically copy CTKX, IPL areas, program areas, and CIMR components to a
fallback image, do the following:

1. Enter ZIMAG COPY TPF01 TPF02 CTKX to physically copy CTKX from image
TPF01 to image TPF02,

Note: CTKX must be loaded or copied to an image before any CIMR
components can be copied.

2. Enter ZIMAG COPY TPF01 TPF02 IPL to physically copy IPL areas from image
TPF01 to image TPF02,

3. Enter ZIMAG COPY TPF01 TPF02 PROG to physically copy program areas
from image TPF01 to image TPF02,

4. Enter ZIMAG COPY TPF01 TPF02 COMP ALL PHYSICAL to physically copy
all CIMR components from image TPF01 to image TPF02,

To logically copy CIMR components from image TPF01 to image TPF02, use the
ZIMAG COPY LOGICAL command. For example, enter ZIMAG COPY TPF01
TPF02 COMP FCTB.ICDF.ACPL.SIGT.RIAT.USR1.USR2 LOGICAL, assuming that
you are loading a new CPS0.

Notes:

1. The CTKX, IPL areas, and program areas cannot be logically copied.

2. A logical copy cannot be made of the IPAT if the two images are using different
program areas.

Creating an Auxiliary Load Deck
This section shows the steps to take to create a load deck.

Enter the JCL Cards
The following JCL cards are used to run the auxiliary loader offline segment
(TLDR); nn is the release identification and ssid is the subsystem ID.

342 TPF V4R1 System Installation Support Reference

Notes:

1. DD names SALTB, OBJDD, TAPEOUT, TEMPLOAD, LOADLIST, TLDROUT,
LOADSUM, SYSIN, and LOADMOD are required.

2. DD name LDRTRACE is required only if you specify TRACE(ON) as a
parameter.

3. Data set concatenation is sequence dependent.

4. Figure 19 shows a TLDR load deck using tape as the storage medium. “JCL
Load Deck Examples” on page 417 shows JCL load decks using other storage
medium.

5. If the storage medium is tape, use standard label tapes.

TPFLDR Exec Card: The TPFLDR Exec card identifies the specified version of
the TPF offline loader program (TPFLDR).

The following parameters can be specified on the EXEC card:

1. TLDR

indicates that the auxiliary loader (TLDR) is to be run.

2. PGMNBR = x

//TLDRVTAP JOB MSGLEVEL=1,CLASS=A,MSGCLASS=A
//TLDR EXEC PGM=TPFLDRnn,REGION=7000K,PARM=’TLDR,SYS=ACP,CLMSIZE=4000000’
//STEPLIB DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
// DD DSN=SYS1.EDC.SEDCLINK,DISP=SHR
// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR
//SALTB DD DSN=ACP.SALTBL.RELnn.ssid,DISP=SHR
//OBJDD DD DSN=ACP.OBJ.RELnn.ssid,DISP=SHR
//LOADMOD DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
//ALDRCPL DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
//ADATAIN DD PDS=xxx
//ADATATMP DD DSN=&&SYSUT1,SPACE=(TRK,(100,20)),UNIT=SYSDA
//TLDROUT DD UNIT=SYSDA,DSN=&&TLDROUT,DISP=(NEW,PASS)
//TAPEOUT DD DSN=&&SYSUT1,SPACE=(TRK,(100,20)),UNIT=SYSDA
//TEMPLOAD DD DSN=&&SYSUT1,SPACE=(TRK,(100,20)),UNIT=SYSDA
//LOADLIST DD SYSOUT=A
//LOADSUM DD DSN=&&LOADSUM,DISP=(NEW,PASS),UNIT=SYSDA,
// LRECL=133,SPACE=(TRK,(10,10)),RECFM=FBA
//SYSUDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//LDRTRACE DD SYSOUT=*
//SYSIN DD *
*** INPUT CONTROL CARDS ARE PLACED HERE
/*
//MKTAPE EXEC PGM=IEBGENER,REGION=58K
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=TLD.TAPE,LABEL=(,SL),UNIT=3480,
// VOL=SER=vvvvvv,DISP=(,KEEP),
// DCB=(BLKSIZE=4095,RECFM=U)
//SYSUT1 DD DSN=&&TLDROUT,UNIT=SYSDA,DISP=(OLD,DELETE)
//PRTSUM EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&&LOADSUM,UNIT=SYSDA,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=*,LRECL=133
//SYSIN DD *

PRINT PREFORM=A
/*

Figure 19. TLDR Run Load Deck (to Tape) Example

Loaders 343

where x is the maximum number of program calls that can be done in the load.
This number is used to GETMAIN an area for a program table. The current
maximum value is 599 186. Coding a value greater than this will result in a
PARM ERROR message. If not specified, the PGMNBR default is the value of
the SALCOUNT field in the header of the offline SALTBL referred to by the
SALVERS control card.

3. PTCHNBR = x

where x is the maximum number of REP cards that can be included in the load.
This number is used to determine the storage area size for a patch table. The
size of the area, in bytes, is 84 times the PTCHNBR. The current maximum
value is 199 728. Coding a value greater than this will result in a PARM ERROR
message. If not specified, the PTCHNBR default is 800 REP cards.

4. BUFSIZE = x

where x is the maximum size of any component that is included in the load
deck. The default value is 2 000 000. Check the size of the IPAT, FCTB, and CP
to determine the correct value for this parameter. Any number up to 7 digits is
allowed.

Note: When using the PGMNBR, PTCHNBR, and BUFSIZE defaults, specify a
REGION of at least 7000K on the EXEC card.

5. SYS = nnn

where nnn is a 3-character ID printed in the load listing and load summary. The
default is blanks.

6. CLMSIZE = x

where x is greater than or equal to the MVS file size of the largest C load
module to be loaded. If a C load module contains a higher than normal ratio of
VCONs to executable code, CLMSIZE must be larger. TLDR searches only the
OBJDD DSN (not LOADMOD DSN) when CLMSIZE = 0.

7. ADATASIZE = x

where x is greater than or equal to the MVS file size of the largest ADATA file to
be loaded. ADATA does not attempt to load ADATA files when ADATASIZE=0.

8. TRACE(ON|OFF)

If you specify TRACE(ON), selective trace data will be written to the
LDRTRACE DD name. This trace data can be useful to system programmers to
debug problems that occur while running TPFLDR. TRACE(ON) is primarily
intended for TPF development personnel for this purpose. TRACE(OFF) is the
default. If you specify TRACE(OFF), no trace data is written.

STEPLIB Card: The STEPLIB card identifies the partitioned data sets that contain
the offline loader programs.

SALTB Card: The SALTB card identifies partitioned data sets that contain the
system allocator table (SALTBL). The SALTBL contains information necessary for
the TPF linkage editor to resolve virtual address constants (VCONs). These VCONs
can be program addresses, tape names, macro parameters, and others that are put
in the SALTBL to allow relocation of resources in the online system. See “System
Allocator” on page 399 for more information on the SALTBL.

OBJDD Card: The OBJDD card identifies object libraries. Object libraries are
partitioned data sets of assembled programs. All programs to be loaded must be in
object libraries with the exception of the control program, FACE table, and C load
modules. Library contents are maintained and updated using MVS procedures. For
more information, see TPF System Generation.

344 TPF V4R1 System Installation Support Reference

LOADMOD Card: The LOADMOD card identifies the partitioned data set
(LOADMOD) that contains the link-edited C load modules. When an E-type program
is being loaded, the data sets identified by the LOADMOD card are searched before
the data sets identified by the OBJDD card are searched. The C load modules are
compiled and link-edited using standard MVS facilities. For more information, see
TPF System Generation.

ALDRCPL Card: The ALDRCPL card identifies the partitioned data set that
contains the link-edited control program. The control program is assembled and
link-edited using standard MVS facilities. For more information see TPF System
Generation.

ADATAIN Card: The optional ADATAIN card identifies the partitioned data set
(PDS) that contains ADATA files to be loaded with real-time programs. If the
ADATAIN card is present, TLDR will attempt to find ADATA files in the data set
specified by the ADATAIN card. SYSADATA files are generated by the high level
assembler (HLASM) and must be processed by the SYSADATA postprocessor
(program TPFDBG) to create ADATA files before they can be loaded. When TLDR
loads a basic assembly language (BAL) program, it will attempt to find an ADATA
file by searching for a PDS member with a matching name. When TLDR loads an
E-type load module, it will attempt to find an ADATA file for each object module
linked into the load module. TLDR will ensure that the assembly date of the ADATA
file matches the assembly date of the assembler language program before loading
an ADATA file.

Note: If a program was assembled more than once on a given date, it is
possible for TLDR to load an incorrect ADATA file with an assembler
language program. You must ensure this does not happen. Whenever an
E-type program (BAL or load module) is loaded to the online system by the
auxiliary loader, any ADATA file associated with a previously loaded version
of that program is effectively erased. For more information, see TPF System
Generation.

ADATATMP Card: The ADATATMP card specifies a temporary data set used to
hold ADATA files before they are written to the output medium.

TLDROUT Card: The TLDROUT card identifies the output device to which offline
programs and data are written.

TAPEOUT Card: If E-type programs are loaded, the TAPEOUT card creates
program version records (PVRs) and writes them to the TAPEOUT file.

TEMPLOAD Card: The TEMPLOAD card reads load cards and checks the format.
It adds program names to a name table and copies the input card image to
temporary data sets used to generate the detail report.

LOADLIST Card: The LOADLIST card causes an output listing that details all
system components loaded to the storage medium to be produced. Errors that do
not cause the program to abend are also written in this listing. Abend error
messages and informational messages are sent to the operator console. For more
information on error messages see Messages (System Error and Offline) and
Messages (Online).

LOADSUM Card: The LOADSUM card causes an output listing summary of the
system components loaded to the storage medium.

Loaders 345

|
|
|
|
|
|

Enter the Input Control Cards
Figure 20 shows a sample TLDR input control load deck. The example explains the
order of the cards and states if the cards are required or optional. This order is not
affected by deleting optional cards or adding comment cards.

==
Initialization part of the load deck - Must be first input control cards

==
SYSID=BSS <-- Required, must be first
SALVERS=40 <-- Required, immediately after SYSID
LOADER LOAD CTKX 40 <-- Optional
==

Main part of the load deck - Must be second input control cards
==
LOADER LOAD CP 40 <-- Optional, before file-resident programs
LOADER LOAD IPAT 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD KEYPT <-- Optional, anywhere after LOAD CP
LOADER CALL KEYPTCTK040 <-- Optional, immediately after LOAD KEYPT
LOADER CALL KEYPTCTK140
LOADER CALL KEYPTCTK241
LOADER CALL KEYPTCTK340
LOADER CALL KEYPTCTK440
LOADER CALL KEYPTCTK540
LOADER CALL KEYPTCTK640
LOADER CALL KEYPTCTK940
LOADER CALL KEYPTCTKA40
LOADER CALL KEYPTCTKB40
LOADER CALL KEYPTCTKC40
LOADER CALL KEYPTCTKD40
LOADER CALL KEYPTCTKE40
LOADER CALL KEYPTCTKI40
LOADER CALL KEYPTCTKM40
LOADER CALL KEYPTCTKV40
LOADER CALL KEYPTCTKA40 C
LOADER PROG-MOD-BASE CLEAR <-- Optional, anywhere after LOAD CP and LOAD OPL
LOADER APRG CLEAR <-- Optional, anywhere after LOAD CP
LOADER ELDR CLEAR <-- Optional, anywhere after LOAD CP
LOADER LOAD OPL <-- Optional, anywhere after ELDR CLEAR
PARS40 <-- Optional, immediately after LOAD OPL
PARS4D
PARSP1
LOADER LOAD AP <-- Optional, anywhere after LOAD CP
LOADER CALL PROG COSY40 <-- Optional, immediately after LOAD AP
LOADER CALL PROG BXAX40
LOADER CALL PROG CCKP40
LOADER CALL PROG COHA40
LOADER CALL PROG COHB40
LOADER CALL PROG UF00P1
REP 000348 0014700 <- Optional, immediately after CALL PROG -> UF00P1
LOADER LOAD ACPL 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD FCTB 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD ICDF 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD IPLA 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD IPLB 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD SIGT 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD RIAT 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD USR1 40 <-- Optional, anywhere after LOAD CP
LOADER LOAD USR2 40 <-- Optional, anywhere after LOAD CP
LDT <-- Required, must be last
/*

Figure 20. TLDR Input Control Load Deck Example

346 TPF V4R1 System Installation Support Reference

Figure 21 shows a sample TLDR input control load deck that makes use of the
PATH card to load an FCTB in program object format from an HFS path.

All following cards in the same section (for example, LOADER LOAD KEYPT
section or LOADER LOAD AP section) will be marked as unknown card and
ignored when a card format error or sequence error is detected.

The IMAGE CLEAR card is not supported. A warning message will be generated if
it is included in the load deck. Use the ZIMAG CLEAR command to initialize an
image.

Comment Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

*comments

Comment cards can be placed anywhere in the load deck. Comments are identified
by an asterisk (*) in card column 1.

PROG-MOD-BASE Clear Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER PROG-MOD-BASE CLEAR

The PROG-MOD-BASE clear card resets the master extra program record so that
all extra program records (#XPRGn fixed file records) are available to be dispensed.
If the clear card is present, TLDR sets an indicator for the online part of the
auxiliary loader to initialize the master extra program record. This occurs on the
target image.

The card is optional and can be placed anywhere after the LOAD CP card and
before the LOAD OPL and LOAD AP cards. The card must be included to initialize
a program base before any C load modules are loaded to that image.

Notes:

1. All C load modules must be reloaded when the PROG-MOD-BASE clear card is
included.

==
Initialization part of the load deck - Must be first input control cards

==
SYSID=BSS <-- Required, must be first
SALVERS=40 <-- Required, immediately after SYSID
LOADER LOAD CTKX 40 <-- Optional
==

Main part of the load deck - Must be second input control cards
==
LOADER PATH FCTBPATH This search path can be used to find FCTB

/u/tpf41/product_components/system/; X
/u/tpf41/product_components/test/; X
/u/user1/my_project/tables

LOADER LOAD FCTB 40/FCTBPATH <-- FCTBPATH indicates search path to use
LDT <-- Required, must be last
/*

Figure 21. TLDR Input Control Load Deck Example Showing FCTB in Program Object
Format from HFS

Loaders 347

2. If the LOADER PROG-MOD-BASE CLEAR card is added while a ZOLDR
ACCEPT is in progress for a loadset that contains a C load module, then the
ELDR Clear card must also be included in the load deck.

APRGn Record Clear Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER APRG CLEAR

The APRGn Record Clear card resets the master APRGn record so that all APRGn
records (#APRGn fixed file records) are available to be dispensed. If the Clear card
is present, TLDR sets an indicator for the online part of the auxiliary loader to
initialize the master APRGn record. This occurs on the target image.

The card is optional and can be placed anywhere after the LOAD CP card and
before the LOAD OPL and LOAD AP cards. The card must be included to initialize
newly allocated APRGn records before ADATA files can be loaded with any
assembler language programs.

Notes:

1. All online ADATA files are effectively erased when the LOADER APRG CLEAR
card is included; if ADATA files are required to be online for any programs, those
programs must be reloaded.

ELDR Clear Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER ELDR CLEAR

The ELDR Clear card ensures clean E-type loader record definitions. If it is present,
TLDR will set an indicator for the online part of the auxiliary loader to clear and
reinitialize all E-type loader records for the target image.

Attention: The ELDR Clear card will cause all E-type programs that were loaded
or activated (but not accepted) with the E-type loader to be cleared on the online
system.

Subsystem ID Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

SYSID=nnnn

nnnn = Subsystem ID

The Subsystem ID card must be the first noncomment card in the deck. It identifies
the subsystem to be loaded. This ID is also the prefix of the command that
activates the online segment.

System Allocator Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

SALVERS=vv

vv = version

The System Allocator card specifies the version of the SALTBL to be used for
link-editing. The program will terminate if this is not the second non-comment card
in the deck.

348 TPF V4R1 System Installation Support Reference

Load CTKX Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD CTKX vv

vv = version number

The Load CTKX card causes the image pointer record (CTKX) to be loaded to a
storage medium in a 4KB record.

Patching: One or more REP cards can follow the Load CTKX card.

Load Control Program Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD CP vv

vv = version number

The Load Control Program card is valid only for a load to the basic subsystem
(BSS). The offline segment builds a copy of the control program in main storage
from the load module library. The CP is then filed on a storage medium as a chain
of 4KB records. A version number must be specified in columns 21–22.

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx ccccccvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
cccccc = CP CSECT name
vv = version number

Patch the control program by placing REP cards after the Load Control Program
card. Control program patching is done by patching CP CSECT individually, starting
at relative address zero. Each REP card must contain the CP CSECT name starting
in column 73.

Load IPAT Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD IPAT vv

vv = version number

The Load IPAT card causes the program allocation table (PAT) to be loaded to a
storage medium as core-image records. The time stamp in the header of system
allocator table (SALTBL) will be used to validate the IPAT. If the time stamp in the
header of the IPAT does not match the time stamp of the system allocator table
(SALTBL), the load will end.

Patching: One or more REP cards can follow the Load IPAT card. Each REP card
must contain the IPAT in card columns 75–78 and the version number in columns
79–80.

Load Keypoint Card:

Loaders 349

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD KEYPT

The Load Keypoint card tells the offline segment that there are keypoints to be
loaded. The keypoints are identified by Call Keypoint cards or Patch Keypoint cards
which must follow the Load Keypoint card.

Note: Be careful when you enter ZIMAG KEYPT MOVE to move loaded keypoints
into the working area (#KEYPT). ZIMAG KEYPT MOVE affects all images
and can, for certain keypoints, affect all loosely coupled processors. If a
mistake is made, the original contents of the keypoints can be recovered
with the ZIMAG KEYPT RESTORE command. Online updates to keypoint
data, made between the MOVE and the RESTORE, will be lost.

Call Keypoint Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER CALL KEYPTnnnnvvON i

nnnn = Keypoint name
vv = version number
ON = an optional statement
i = processor ID (optional)

The Call Keypoint card specifies the name and version number of a keypoint in
columns 21–26.

Note: See “Call Online Keypoint Card” on page 329 for a list of keypoint names.

The keypoint specified is written to the a storage medium. This new keypoint will be
written to the keypoint staging area of the target image. After the image is enabled,
the keypoints can be moved to their working areas with the ZIMAG KEYPT MOVE
command.

In a loosely coupled environment, when a processor-unique keypoint is being
loaded, the processor ID is specified in column 30. If column 30 is blank, the default
is the ID of the first processor in the system. When shared keypoints are being
loaded, column 30 can be blank or any valid processor ID.

Leaving columns 27 and 28 blank on the Call Keypoint card (as in the example that
follows) causes any associated REP card information to patch the Call Keypoint
card information before the keypoint is loaded.
LOADER CALL KEYPTCTKA40 C <-- Loads keypoint CTKA
REP 000348 0014700 <-- Patches the new keypoint before loading --> CKTA40

Placing ON in columns 27 and 28 of the Call Keypoint card (as in the example that
follows) causes the associated REP card information to be written to the online
keypoint without loading the new keypoint.
LOADER CALL KEYPTCTKA40ON C <-- No load of keypoint CTKA
REP 000348 0014700 <-- Patches applied to online keypoint CTKA --> CKTA40

Note: At least one REP card must follow the Call Keypoint card when using the
ON facility.

Patching:

350 TPF V4R1 System Installation Support Reference

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx nnnnvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
nnnn = Associated keypoint name
vv = version number

Each REP card must contain the same name and version number in card columns
75–80 as that punched in card columns 21–26 of the corresponding Call Keypoint
card.

Patch Keypoint Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER PATCH KEYPTnnnnvv i

nnnn = Keypoint name
vv = version number
ON = an optional statement
i = processor ID (optional)

The Patch Keypoint card specifies the name and version number of a keypoint in
columns 21–26. The Patch Keypoint card performs the same function as the Call
Keypoint card using the ON facility. The Patch Keypoint card can be used by the
TLDR only. The Patch Keypoint card causes the associated REP card information
to be written to the online keypoint without loading the new keypoint.

Note: As shown in the example that follows, at least one REP card must follow the
Patch Keypoint card.

LOADER PATCH KEYPTCTKA40 C <-- No load of keypoint CTKA
REP 000348 0014700 <-- Patches applied to online keypoint CTKA --> CKTA40

The format of the REP card is identical to REP cards for Call Keypoint cards.

In a loosely coupled environment, when a processor-unique keypoint is being
loaded, the processor ID is specified in column 30. If column 30 is blank, the default
is the ID of the first processor in the system. When shared keypoints are being
loaded, column 30 can be blank or any valid processor ID.

Note: Patch Keypoint cards cannot be used with Call Keypoint cards if both specify
the same keypoint.

Load OPL Card and PARS Card:
Load OPL Card
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD OPL LIST

LIST = an optional parameter that causes the auxiliary file loader to print
the name and version number of each program loaded.

PARS Card
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

Loaders 351

PARSvv

vv = PARS list version

These cards cause E-type programs to be loaded to a storage medium. The
programs are defined by one or more operational program list (OPL) records. Each
OPL record contains a series of segment names and version numbers. Each of
these records resides on the object module library with the name PARS and a
unique 2-character version number. Different lists are indicated by different PARS
cards. The Load OPL card must be followed by at least one PARS card.

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx nnnnvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
nnnn = Segment name
vv = version number

One or more REP cards can follow the PARS cards. Each REP card must contain
the segment name and version number in card columns 75–80. Although the
program will handle patch cards for different segments in any sequence and freely
intermixed, the execution time will be minimized if all REP cards for any given
segment are in one group. This eliminates needless I/O operations.

Note: REP cards for C load modules are not supported. If a REP card is specified
for a C load module, a warning message is issued and the REP card is
ignored.

Load AP Card and Call Program Card:
Load AP Card
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD AP LIST

LIST = an optional parameter that causes the auxiliary loader to print
the name and version of each program loaded.

Call Program Card
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER CALL PROG nnnnvv

nnnn = program name
vv = version number

The Load AP card tells the auxiliary loader offline segment to accept Call Program
cards for the selective loading of E-type programs. If there are different version
codes for a program in the OPL and AP lists, the auxiliary loader loads the last
version specified in the AP list.

Note: If there is a Call Program card syntax error, that program will not load. Also,
all cards that follow the incorrect card (with the same Load AP card) will not
load.

352 TPF V4R1 System Installation Support Reference

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx nnnnvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
nnnn = Segment name
vv = version number

One or more REP cards can follow a Call Program card. Each REP card must
contain the same name and version number in card columns 75–80 as that
punched in card columns 21–26 of the corresponding Call Program card.

Note: REP cards for C load modules are not supported. If a REP card is specified
for a C load module, a warning message is issued and the REP card is
ignored.

Note: If you include a REP card to patch a real time program that will have an
ADATA file loaded, the TPF Assembler Debugger for VisualAge Client may
not display an accurate listing view of the program.

Load ACPL Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD ACPL vv

vv = version number

When the auxiliary loader encounters the Load ACPL card, the general file loader
online segment is loaded to a storage medium as core-image records.

Note: This program can only be loaded to a basic subsystem (BSS).

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx ACPLvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
vv = version number

One or more REP cards can follow the Load ACPL card. Each REP card must
contain ACPL in card columns 75–78 and the version number in columns 79–80.

Load ICDF Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD ICDF vv

vv = version number

The Load ICDF card causes the in-core dump formatter (ICDF) to be loaded to a
storage medium as core-image records.

Loaders 353

Note: This program can only be loaded to a basic subsystem (BSS).

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx ICDFvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
vv = version number

One or more REP cards can follow the Load ICDF card. Each REP card must
contain ICDF in card columns 75–78 and the version number in columns 79–80.

Load FCTB Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD FCTB vv

vv = version number

The Load FCTB card causes the FACE table to be loaded to a storage medium as
core image records. If the FCTB is to be loaded in program object format from the
hierarchical file system (HFS) under OS/390 UNIX System Services (OS/390 UNIX),
specify the name of a search path that was previously initalized in the load deck by
a Path card. The format of the Load FCTB card, including the optional path name,
follows.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD FCTB vv/pathname

vv = version number
pathname = variable length alphanumeric name assigned by user to search path

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx FCTBvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
vv = version number

Only data in the first 16 MB of the FCTB can be patched. One or more REP cards
can follow the Load FCTB card. Each REP card must contain FCTB in card
columns 75–78 and the version number in columns 79–80.

Load SIGT Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD SIGT vv

vv = version number

The Load SIGT card causes the Global Synchronization Table (SIGT) to be loaded
to a storage medium as core-image records.

354 TPF V4R1 System Installation Support Reference

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx SIGTvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
vv = version number

One or more REP cards can follow the Load SIGT card. Each REP card must
contain SIGT in card columns 75–78 and the version number in columns 79–80.

Load USR1 Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD USR1 vv

vv = version number

The Load USR1 card causes the first user-defined CIMR area (USR1) to be loaded
to a storage medium as core-image records.

Note: This program can only be loaded to a basic subsystem (BSS).

Patching: One or more REP cards can follow the Load USR1 card. Each REP
card must contain USR1 in card columns 75–78 and the version number in columns
79–80.

Load USR2 Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD USR2 vv

vv = version number

The Load USR2 card causes the second user defined CIMR area (USR2) to be
loaded to a storage medium as core-image records.

Patching: One or more REP cards can follow the Load USR2 card. Each REP
card must contain USR2 in card columns 75–78 and the version number in columns
79–80.

Load IPLA Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD IPLA vv

vv = version number

The Load IPLA card causes the IPL program, IPLA, to be loaded to a storage
medium in 4KB records.

Note: This program can only be loaded to a basic subsystem (BSS).

Patching:

Loaders 355

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx IPLAvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
vv = version number

One or more REP cards can follow the Load IPLA card. Each REP card must
contain IPLA in card columns 75–78 and the version number in columns 79–80.

Load IPLB Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD IPLB vv

vv = version number

The Load IPLB card causes the IPL program, IPLB, to be loaded to a storage
medium in 4KB records.

Note: This program can only be loaded to a basic subsystem (BSS).

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx IPLBvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
vv = version number

One or more REP cards can follow the Load IPLB card. Each REP card must
contain IPLB in card columns 75–78 and the version number in columns 79–80.

Load RIAT Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOAD RIAT vv

vv = version number

The Load RIAT card causes the record identifier attribute table (RIAT) to be loaded
to a storage medium as core-image records.

Patching:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

zREP aaaaaa 001xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx RIATvv

z = Any character except *
aaaaaa = Address of the patch area
xxxx = Patch data. The data is entered 2 hex bytes at a

time, separated by commas or blanks.
vv = version number

356 TPF V4R1 System Installation Support Reference

One or more REP cards can follow the Load RIAT card. Each REP card must
contain RIAT in card columns 75–78 and the version number in columns 79–80.

LDT Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LDT

This must always be the last control card for a given run and ends processing.

Path Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER PATH pathname optional comments
searchpath

pathname = alphanumeric name, up to 16 characters in length, used to reference the search path
searchpath = fully qualified search path occupying up to 14 input cards, as described below

The optional Path card actually consists of two or more cards in the input deck and
is used to initialize a search path that can be referenced on a subsequent Load
FCTB card to load an FCTB, in program object format, from the hierarchical file
system (HFS) under OS/390 UNIX System Services (OS/390 UNIX). The first card
specifies the name that can be used on a subsequent Load FCTB card to reference
the search path. After the actual Path card, as many as 14 additional input cards
can be included to specify directories in the search path.

One or more absolute directories can be specified starting with the first directory to
be searched. If more than one directory is specified, a ; symbol must separate
directories. The presence of any character other than a blank in column 80
indicates that the search path continues starting in column 10 on the next card in
the load deck. If there is no continuation character in column 80, the path will
include all characters starting in column 10 and ending with the last nonblank on
the input card. Comments can be included on the Path card starting in column 33.
However, comments cannot be included on the subsequent cards that specify the
actual search path because all nonblank characters are considered part of the path.
An example of a Path card and continuation card that is used to specify a search
path for the FCTB follows:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER PATH FCTBPATH Defining FCTBPATH for later user
/u/tpf41/produt_components/system/; X
/u/tpf41/product_components/test/; X
/u/user1/my_project/tables; X
/u/tpf41/my_project/phase_one/beta_test_versions/file_address_compute_ X
table/program_object

If the Path card shown in the previous example was specified before a Load FCTB
card for FCTB40 that specifies FCTBPATH in the load deck, TPFLDR would then
attempt to locate the FCTB as a program object file by searching for the following
files in order:

1. /u/tpf41/product_components/system/FCTB40

2. /u/tpf41/product_components/test/FCTB40

3. /u/user1/my_project/tables/FCTB40

4. /u/tpf41/my_project/phase_one/beta_test_versions/file_address_compute_
table/program_object/FCTB40

Loaders 357

Note: A path name can be defined only once in the load deck. The Path card
defining a path name must precede the Load FCTB card that references the
path name.

Loading System Components to a Storage Medium

The auxiliary loader offline segment runs under MVS control and places the
components to be loaded on a storage medium. The storage medium is then
loaded to the system by the ZTPLD command. For more information about the
ZTPLD command, see TPF Operations.

Note: If you are writing to a virtual reader, use the ELDRVRDR EXEC to convert
TLDR JOB output to a spool file that supports virtual reader input. A sample
ELDRVRDR EXEC is shipped as segment UELV.

Output Listing
A load listing that details all programs and patches loaded, with any error
messages, is produced by the offline segment. A load summary is also printed. In
the load summary example that follows, items that are highlighted are explained in
the Key to Output Listing. See Messages (System Error and Offline) and
Messages (Online) for more information.

Load
Lib.

Object
Lib.

JCL

Control Cards

TPF
Linkage Editor

(LEDT)
SALTBL

Aux. Loader
Offline Segment

(TPFLDR – TLDR)

Storage
Medium

Begin Process End Process

Primary Process
Data Flow
Secondary Process

Figure 22. Auxiliary Load via Auxiliary Loader (Offline — MVS)

358 TPF V4R1 System Installation Support Reference

|
|
|
|
|
|

Output Listing Return Codes
When inspecting the load listing returned after running the JCL job, there will be a
TLDR return code. The return codes are shown below with an explanation and user
response.

0

Explanation: No errors or warnings.

User Response: Load the components to a TPF
image.

4

Explanation: Unknown card found in the AP/OPL
section of the load deck.

User Response: Check for messages to the right of

* LOAD SUMMARY * DATE: 88.059 TIME: 15.40.48

4 ACPDAB-OPL 2-ADESAB AFGVAB-AP BFDAAB-OPL
8 CTK1AB-KPT CVEHAB-OPL DALBAB-OPL DFREAB-AP
12 2-IPLBKK JCD0AB-OPL KXOPAB-OPL MIFFAB-OPL
16 OOZECD-AP PTV2CD-AP QIE1CD-AP WQXRCD-AP

ALLOCATOR VERSION = AB

THE FOLLOWING PROGRAMS WERE NOT LOADED

NAME TYPE REASON
---- ---- ------
CTKMAB KPT - KEYPT CONFIGURATION DEPENDENT
CTLBAB OPL - THIS AP PGM RECORD NOT ALLOWED
PREPCD AP - PGM NOT FOUND ON OBJ LIBRARY

THE FOLLOWING PROGRAMS HAVE WARNINGS

NAME TYPE WARNING
---- ---- -------
WQXRCD AP - PGM HAS UNRESOLVED V-CONS

LIST OF UNRESOLVED V-CONS

WQXRCD - WQX1 WQX2 WQX3 WQX4

Key to Output Listing

4 Number of programs loaded.

ACPD Program name.

AB Program version.

OPL Program was part of operational program list.

2 Number of patch cards applied (*** in this location means 255 or more
patches were applied).

AP Individually called program.

KPT Keypoint.

Figure 23. Sample Summary Listing for Auxiliary Loader (with Key to Output Listing)

Loaders 359

the particular card in error. Some common errors are
misspelling a card name, putting a card in the wrong
sequence, or including a non-TLDR card. A return code
of 4 is usually a warning, so you can still load the
components to a TPF image.

8

Explanation: The E-type program was not loaded,
patches for the E-type program were not applied, or a
program call was superseded by a later call.

User Response: Check for messages to the right of
the particular program being flagged.

Notes:

1. If an item is not found, make sure the required
library is included in the TLDR JCL.

2. If the program has been superseded by a later call,
check to make sure that the later version is the
version you want and that it loaded successfully. If it
is successful, you can load the components to a
TPF image.

12

Explanation: Error processing the CP, keypoints, core
image programs, or their patches.

User Response: Check for messages to the right of
the item in error. The TLDR JCL may have created a
correct module to load, but it is not complete as
intended.

1000

Explanation: Error on a C function when attempting to
open a file, read from a file, or write to a file.

User Response: Check for a message specifying the
exact error that occurred. The SYSERR card must be
included in the JCL to see the C function error
messages. Determine and correct the problem with the
file.

Loading from a Storage Medium to the TPF System

The online segment is started by the ZTPLD command. For more information about
this command, see TPF Operations.

Notes:

1. Use the ZTPLD command to load system components to a target image. The
target image must be disabled and its IPL and PROG areas must not be
referred to by any enabled image (if loading IPL or PROG components).

Online
Module

Aux. Loader
Online Segment

Storage
Medium

Output Msg

Primary Process
Data Flow

ZTPLD
(command)

Online
Module

Online
Module

Figure 24. Auxiliary Load via Auxiliary Loader (Online — TPF)

360 TPF V4R1 System Installation Support Reference

Use the ZIMAG DISABLE command to disable an image. Use the ZIMAG
DISPLAY command to display the status of the IPL and PROG areas. See TPF
Operations for more information about the use of these commands.

2. If you are loading from a virtual reader, make sure your TLDR job output has
been converted. Use the ELDRVRDR EXEC to convert TLDR JOB output to a
spool file that supports virtual reader input. A sample ELDRVRDR EXEC is
shipped as segment UELV.

The online segment sends the following message after a successful load:

TPLD0004I hh.mm.ss LOAD COMPLETE

where hh.mm.ss is a time stamp.

Additional status and error messages are also sent to the operator console. For
more information about auxiliary loader messages, see Messages (System Error
and Offline) and Messages (Online).

Enabling an Image
Once an image is loaded, enter the ZIMAG ENABLE command to enable it. For
example, to enable image TPF02, enter ZIMAG ENABLE TPF02. You will receive a
message that tells you if the components were loaded or not. To display any CIMR
components that were not loaded, enter ZIMAG DISP IMAGE TPF02. This will
show you the information about all of the CIMR components for TPF02. If a CIMR
component is missing, you can copy it from TPF01 using the ZIMAG COPY
command (if no changes were made to that component). To display any IPL
components that were not loaded, enter ZIMAG DISP IPL and look at the IPL2 line.
It should show that both IPLA and IPLB are loaded. If an IPL area is missing, you
must use the ZIMAG COPY IPL command or do an auxiliary load (TLDR) to load
the missing area.

Moving Keypoints to the Working Area

Before Beginning
If the existing keypoints are compatible with the new image, you do not have
to load or move new keypoints.

Because it is dangerous to overlay keypoints, they are not loaded directly to an
image, they are loaded to a staging area. Use the ZIMAG KEYPT MOVE command
to move the keypoints from the staging area (#KSAx) to the working area
(#KEYPT). The ZIMAG KEYPT MOVE command prompts you to continue (ZIMAG
KEYPT CONT) or abort (ZIMAG KEYPT ABORT). After you move the keypoints to
the working area, perform a hard IPL to put them in core storage.

Note: Keypoints are shared for all images. If there is something wrong with a
keypoint, that prevents you from bringing a system to NORM, IPL your
loader general file and use the ZIMAG KEYPT RESTORE command to
restore the keypoints you had before you entered the ZIMAG KEYPT MOVE
command. This allows you to come up again on your prime mod.

Loaders 361

|
|
|

IPLing an Image
To use an enabled image, you must perform a hard IPL, choose image selection,
and enter the name of the image.

Notes:

1. If you are IPLing an image that has a different core layout from the previously
used image, IPL with CLEAR to clear the VFA buffers.

2. If the image does not IPL successfully, IPL another image and debug the
problem image.

Loading E-Type Programs to an Enabled System
Unlike the general file loader or the auxiliary loader, the E-type loader does not
require an IPL.

The E-type loader:

v Does not require you to cycle down the system.

v Allows an unlimited number of programs to be loaded from a loadset.

Note: Loadsets are groups of programs loaded by the E-type loader. Each
loadset is identified by a 5–8 character-unique name. This name is
specified in the load deck used in the offline OLDR run. All programs in a
loadset are activated or deactivated at the same time. The number of
programs that can be associated with each loadset and the number of
loadsets that can exist is limited only by the number of 4KB fixed file
records (#OLDx) specified by you in the SIP RAMFIL macro (see TPF
System Generation). Fixed file records are used to hold the programs
loaded and the various tables necessary for the load. This allows for a
dynamic load. Loadsets are processor shared, subsystem unique, and
image unique.

v Supports loading of C load modules.

If you load a new TARGET(TPF) C library function, you must perform a C000 load
and an online module IPL to rebuild the quick enter directory segment name table.
Otherwise, you will not be able to use the new TARGET(TPF) C library function. If
you replace an existing TARGET(TPF) C library function, a C000 load is not
necessary.

Perform the following steps to load new E-type programs to a TPF system:

1. Create an E-type loader load deck.

2. Load the E-type programs to a storage medium.

3. Load a loadset of E-type programs from a storage medium to the system.

Creating an E-Type Loader Load Deck

Enter the JCL Cards
The following JCL cards are used to run the E-type loader offline segment (OLDR);
nn is the release identification, and ssid is the subsystem ID.

362 TPF V4R1 System Installation Support Reference

Notes:

1. The DD names SALTB, OBJLIB, OUTPUT, PRINTER, and SYSIN are required.

2. DD name LDRTRACE is required only if you specify TRACE(ON) as a
parameter.

3. Data set concatenation is sequence dependent.

4. Figure 25 shows an OLDR load deck using a GDS as the storage medium. “JCL
Load Deck Examples” on page 417 shows JCL load decks using other storage
medium.

5. If the storage medium is tape, use standard label tapes.

TPFLDR Exec Card: The TPFLDR EXEC card identifies the specified version of
the TPF offline loader program (TPFLDR).

These are the parameters that can be specified on the EXEC card.

1. OLDR

indicates the E-type file loader program (OLDR) is to be executed.

2. CLMSIZE = x

where x is greater than or equal to the MVS file size of the largest C load
module to be loaded. If a C load module contains a higher than normal ratio of
VCONs to executable code, CLMSIZE must be larger.

3. ADATASIZE = x

where x is greater than or equal to the MVS file size of the largest ADATA file to
be loaded. ADATA does not attempt to load ADATA files when ADATASIZE=0.

4. TRACE(ON|OFF)

//OLDRGDS JOB MSGLEVEL=1,CLASS=A,MSGCLASS=A,REGION=2100K,
// USER=mvsuser,PASSWORD=password
//NAME EXEC PGM=TPFLDRnn,REGION=9000K,PARM=’OLDR,CLMSIZE=9000000’
//STEPLIB DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
// DD DSN=SYS1.EDC.SEDCLINK,DISP=SHR
// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR
//LOADMOD DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
//OBJLIB DD DSN=ACP.OBJ.RELnn.ssid,DISP=SHR
//CPRTEMP DD UNIT=SYSDA,
// DSN=&&CPTEMP,SPACE=(TRK,(100,20)),
// DCB=(RECFM=FB,BLKSIZE=4095,LRECL=4095),
// DISP=(NEW,DELETE)
//PROGTEMP DD UNIT=SYSDA,
// DSN=&&PRTEMP,SPACE=(TRK,(100,20)),
// DCB=(RECFM=FB,BLKSIZE=4095,LRECL=4095),
// DISP=(NEW,DELETE)
//OUTPUT DD UNIT=SYSDA,VOLUME=SER=dasd,
// DSN=mvsuser.OUTPUT,SPACE=(TRK,(40,20)),
// DCB=(RECFM=F,BLKSIZE=4095,LRECL=4095),
// DISP=(OLD,KEEP,KEEP)
//SALTB DD DSN=ACP.SALTBL.RELnn.ssid,DISP=SHR
//ADATAIN DD DSN=xxx
//ADATATMP DD DSN=&&SYSUT1,SPACE=(TRK,(100,20)),UNIT=SYSDA
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//PRINTER DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//LDRTRACE DD SYSOUT=*
//SYSIN DD *
*** INPUT CONTROL CARDS ARE PLACED HERE

Figure 25. OLDR Run Load Deck (To GDS) Example

Loaders 363

If you specify TRACE(ON), selective trace data will be written to the
LDRTRACE DD name. This trace data can be useful to system programmers to
debug problems that occur while running TPFLDR. TRACE(ON) is primarily
intended for TPF development personnel for this purpose. TRACE(OFF) is the
default. If you specify TRACE(OFF), no trace data is written.

STEPLIB Card: The STEPLIB card identifies the partitioned data sets that contain
the offline loader programs.

LOADMOD Card: The LOADMOD card identifies the partitioned data set
(LOADMOD) that contains the link-edited C load modules. When an E-type program
is being loaded, the data sets identified by the LOADMOD card are searched before
the data sets identified by the OBJLIB card are searched. The C load modules are
compiled and link-edited using standard MVS facilities. For more information, see
TPF System Generation.

OBJLIB Card: The OBJLIB card identifies object libraries. Object libraries are
partitioned data sets of assembled or compiled TARGET(TPF) programs. All
programs to be loaded, with the exception of C load modules, must be in object
libraries. You cannot load the control program and FACE table using the E-type
loader. Library contents are maintained and updated using MVS procedures. For
more information see TPF System Generation.

CPRTEMP Card: The CPRTEMP card creates temporary data sets that contain
compacted program allocation table (PAT) records.

PROGTEMP Card: The CPRTEMP card creates temporary data sets that contain
the program records associated with a loadset.

OUTPUT Card: The OUTPUT card identifies the output device to which offline
programs and data are written.

SALTB Card: The SALTB card identifies partitioned data sets that contain the
system allocator table (SALTBL). The SALTBL contains information necessary for
the TPF linkage editor to resolve virtual address constants (VCONs). These VCONs
can be program addresses, tape names, macro parameters, and others that are put
in the SALTBL to allow relocation of resources in the online system. See “System
Allocator” on page 399 for more information on the SALTBL.

ADATAIN Card: The optional ADATAIN card identifies the partitioned data set
(PDS) that contains ADATA files to be loaded with real-time programs. If the
ADATAIN card is present, OLDR will attempt to find ADATA files in the data set
specified by the ADATAIN card. SYSADATA files are generated by the high-level
assembler (HLASM) and must be processed by the SYSADATA postprocessor
(program TPFDBG) to create ADATA files before they can be loaded. When OLDR
loads a basic assembly language (BAL) program, it will attempt to find an ADATA
file by searching for a PDS member with a matching name. When OLDR loads an
E-type load module, it will attempt to find an ADATA file for each object module
linked into the load module. OLDR will ensure that the assembly date of the ADATA
file matches the assembly date of the assembler language program before loading
an ADATA file.

Note: If a program was assembled more than once on a given date, it is
possible for OLDR to load an incorrect ADATA file with an assembler
language program. You must ensure this does not happen. Whenever an
E-type program (BAL or load module) is loaded to the online system and
accepted as a new base version by the E-type loader, any ADATA files

364 TPF V4R1 System Installation Support Reference

associated with a previously loaded base version of that program is
effectively erased. For more information, see TPF System Generation.

ADATATMP Card: The ADATATMP card specifies a temporary data set used to
hold ADATA files before they are written to the output medium.

PRINTER Card: The PRINTER card produces an output listing that details all
programs loaded to the storage medium. Errors that do not cause OLDR to abend
are also written in this listing. Abend error messages and informational messages
are sent to the operator console. For more information about error messages, see
Messages (System Error and Offline) and Messages (Online).

Enter the Input Control Cards
The following control cards are presented in the order in which they should be
placed in the load deck. This order is not affected by the addition of comment
cards.

Comment Card: Comment cards can be placed anywhere in the load deck.
Comments are identified by an asterisk (*) in card column 1.

Subsystem ID Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

SYSID=nnnn

nnnn = Subsystem ID

The Subsystem ID card must be the first noncomment card in the deck. It identifies
the subsystem to be loaded. This ID is also the prefix of the command that
activates the online segment.

Program Allocation Table Card:
Program Allocation Table Card (Format 1)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

PATVERS=vv

vv = version number

Program Allocation Table Card (Format 2)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

PATVERS=TIME

Program Allocation Table Card (Format 3)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

PATVERS=NONE

The Program Allocation Table card tells the E-type loader to compare the specified
version of the offline IPAT with the specified version of the online IPAT. If they are
identical, processing continues. If they are not identical (they were not created at
the same time), a check is made to determine if they are compatible. They are
considered compatible if new programs in the offline version replaced spare slots in
the online version, obsolete programs were changed to spare slots in the offline
version instead of deleting the entry in the allocator deck, and all programs appear
at the same relative location in both the offline and online version. If the 2 versions
are compatible, but the offline version contains newly allocated programs, the

Loaders 365

|
|
|
|
|

E-type loader changes the online version to contain the new programs. If the
versions are not compatible, a message tells you why they are not and the load
ends.

You can use this feature to replace spare PAT slots with allocation information for
newly added programs.

Notes:

1. If you do not want to change the online IPAT or check the compatibility of the
online and the offline versions of the IPAT during a ZOLDR LOAD, then the
Program Allocation Table card must contain NONE in columns 9–13.

2. If you want to check that the offline PAT is identical to the online IPAT by
ensuring their time stamps are identical during a ZOLDR LOAD, the Program
Allocation Table card must contain TIME in columns 9–13. If the time stamps
are not identical, the load ends.

System Allocator Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

SALVERS=vv

vv = version

The System Allocator card tells the TPF linkage editor which version of the SALTBL
to use for link-editing.

Loadset Card:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER LOADSET nnnnnnnn

nnnnnnnn = 5 to 8-character loadset name

The Loadset card puts the Call Program cards that follow it into a group of
programs called a loadset. This loadset of programs is identified by the loadset
name on the Loadset card. These loadsets are used to enter programs into a
running TPF system.

Note: There can be more than one Loadset card per load deck.

Call Program Card:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LOADER CALL PROG nnnnvv

Alternate Call Program Card

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

nnnnvv

nnnn = program name
vv = version number

One or more Call Program cards must follow the Loadset card. Call Program cards
tell the offline segment which programs are to be loaded to storage mediums.

366 TPF V4R1 System Installation Support Reference

Patch Cards: Any REP cards for a particular program must follow the Call
Program card for that program. Columns 75–80 must match columns 1–6 of the
Call Program card (or columns 21–26 if the alternate format is used). The E-type
loader permits a maximum of 255 patches per program.

REP cards are not supported for C load modules.

Note: If you include a REP card to patch a real time program that will have an
ADATA file loaded, the TPF Assembler Debugger for VisualAge Client may
not display an accurate listing view of the program.

Loading E-Type Programs to a Storage Medium

The E-type loader offline segment runs under MVS control and places loadsets of
programs (identified by the input control cards) on a storage medium. The storage
medium is then loaded to the system by the ZOLDR command.

Note: If you are writing to a virtual reader, use the ELDRVRDR EXEC to convert
OLDR JOB output to a spool file that supports virtual reader input. A sample
ELDRVRDR EXEC is shipped as segment UELV.

Object
Lib.

JCL

Control Cards

TPF
Linkage EditorSALTBL

E-type Loader
Offline Segment Storage

Medium

End Process

Primary Process
Data Flow
Secondary Process

Begin
Process

Figure 26. E-Type Load via E-Type Loader (Offline — MVS)

Loaders 367

Loading and Activating a Loadset of Programs

If you want to replace a base version of an E-type program, change the program in
main storage using the ZAPGM command or load and activate a loadset of
programs. Figure 27 shows how a loadset of programs are loaded from a storage
medium to the system using the ZOLDR LOAD command.

Note: ZAPGM should not be used for major program changes because it permits
you to change only 16 bytes of a program. Also, ZAPGM is not supported for
C load modules. ZAPGM can be used to make an immediate change to a
program that is causing system problems. In most cases, make program
changes by loading and activating a loadset of programs.

See TPF Operations for more information about the ZAPGM command.

Once you have loaded an E-type loader load deck to a storage medium, load and
activate the loadset of programs by doing the following:

1. Load a loadset of programs from the storage medium to the system.

2. Allocate programs that are unallocated (required to accept programs as base
versions and to run programs with transfer vectors).

3. Activate the loadset and test the new programs.

4. Accept the loadset (if you want to replace the base version programs with the
new versions).

Loading a Loadset of Programs
Use the ZOLDR LOAD command to load a loadset of programs. ZOLDR LOAD
reads program records from an input device and writes them to 4KB fixed file
records.

Online
Module

Main Storage

E-type Loader
Online Segment

Storage
Medium

Output Msg

Primary Process
Data Flow

ZOLDR LOAD
(command)

Online
Module

Figure 27. E-Type Load via E-Type Loader (Online — TPF)

368 TPF V4R1 System Installation Support Reference

Note: If you are loading from a virtual reader, make sure your OLDR job output has
been converted. Use the ELDRVRDR EXEC to convert OLDR JOB output to
a spool file that supports virtual reader input. A sample ELDRVRDR EXEC is
shipped as segment UELV.

The names of the loaded loadsets are maintained in loadset directory (LSD)
records. The names and temporary file locations of the loaded programs are
maintained in E-type loader program directory (EPD) records. The versions of the
loaded programs are maintained in program version records (PVRs). Loaded
programs have no effect on system activity until they are activated.

Allocate Programs That are Unallocated
Programs must be allocated before they can be accepted as the base version.
Programs that have transfer vectors must be base allocated or you will receive a
CTL-063 condition when you try to run the transfer vector program.

Allocating new programs in an active TPF operating system can be done without an
IPL by doing the following:

1. Change the spare entries in your allocator deck to the unallocated programs
you want to allocate.

2. Run SALO with the updated allocator deck to create an updated offline allocator
with a new Program Allocation Table (IPAT).

3. Create an E-type loader load deck with the updated allocator version on the
PATVERS card.

4. Run the E-type loader offline segment to load the load deck to an intermediary
device.

5. Enter ZOLDR LOAD ddname PATU (where ddname is the data definition of the
intermediary device) to update the online PAT on all processors. The previously
unallocated programs are now allocated.

Note: See “System Allocator” on page 399 for more information about allocating
programs and transfer vectors.

Activating a Loadset to Test New Programs
Use the ZOLDR ACTIVATE command to activate a loadset of programs. ZOLDR
ACTIVATE causes programs in a loadset to become available for processing. You
can activate a loadset of programs on one or all processors.

Selectively Activating E-Type Programs
You can control the use of E-type programs by selectively activating a loadset of
programs. Use the SEL option of the ZOLDR ACTIVATE command to limit the use
of new programs to specific terminals, lines, users, and others.

Note: Use the selective activate user exits to specify the terminals, lines, users,
and others that you want to allow to use a specific loadset of programs.
“Selective Activate Exits” on page 109 provides information to help you write
the code needed to support the SEL option.

Using Loadsets
When using loadsets, use a ZOLDR command to do the following:
1. Exclude a program from a loadset of programs.
2. Reinclude a program to a loadset of programs.
3. Display loadset information.

Loaders 369

4. Deactivate a loadset of E-type programs.
5. Delete a loadset of E-type programs.
6. Reclaim system resources.
7. Change E-type loader program allocation characteristics.
8. Change E-type loader values.
9. Clear E-type loader file resident records.

You may want to use the ZDEAT command to display ECB status.

Note: For online help, type ZOLDR ?, ZDEAT ?, or see TPF Operations for more
information.

Excluding a Program from a Loadset
Use the ZOLDR EXCLUDE command to exclude a program from an existing
loadset of programs. If a loadset is active, ZOLDR EXCLUDE deactivates the
program on all processors. A program that is excluded from a loadset of programs
will not be included in later functions performed on the loadset. For example, if you
exclude the PRGM1 program from the GROUP1 loadset, PRGM1 is not activated
when you activate GROUP1.

Reincluding a Program to a Loadset
Use the ZOLDR REINCLUDE command to reinclude a program to an existing
loadset of programs. A program that is reincluded to a loadset of programs will be
included in later functions performed on the loadset. For example, if you reinclude
the program PRGM1 to loadset GROUP1 then PRGM1 (which had previously been
excluded from GROUP1) is activated when you activate GROUP1.

You must deactivate an active loadset before an excluded program can be
reincluded into the loadset.

Displaying Loadset Information
Use the ZOLDR DISPLAY command to display the following information:
v Status or contents of a loadset
v Intersections with other loadsets
v Active loadsets
v All loadsets containing a particular program
v All loadsets
v E-type loader values and rules.

Deactivating a Loadset of E-Type Programs
Use the ZOLDR DEACTIVATE command to deactivate a loadset of programs.
ZOLDR DEACTIVATE causes all programs in a loadset to become inactive when
they finish processing. When all programs in a loadset are deactivated, previously
active versions of the programs are used by new entries.

Note: The FORCE option processes before any previously scheduled ZOLDR
tasks. It should only be used if ZOLDR DEACTIVATE processing ends with
an error. The FORCE option can change the version of a program that is
currently in use by an entry. This could cause interface problems.

Deleting a Loadset of E-Type Programs
Use the ZOLDR DELETE command to delete a loadset of programs. ZOLDR
DELETE causes all of the fixed file records associated with a loadset of programs
to be returned to the pool of available fixed file records. ZOLDR DELETE cannot
delete an active loadset until it has been deactivated.

370 TPF V4R1 System Installation Support Reference

If a program in the loadset is still active, the system changes the loadset name to
-nnnn (where nnnn is 0000–9999) and marks it as delete pending. The system
deletes the renamed loadset when all ECBs using the loadset are finished.

Reclaiming System Resources
Use the ZOLDR RECLAIM command to make inaccessible fixed file records
available to the system.

If an E-type loader action is interrupted by a system error, some fixed file records
may not be able to be accessed by the system. Although the information in the
records is still available elsewhere, the original fixed file record may not be
accessible. If the fixed file record is not accessible, the system cannot use that disk
space. Therefore, you must enter ZOLDR RECLAIM to allow the system to be able
to use that disk space again.

Note: Your site’s procedures will determine how you use the ZOLDR RECLAIM
command. You may want to enter ZOLDR RECLAIM after any E-type loader
RESTART, or you may want to enter ZOLDR RECLAIM every night to
reclaim inaccessible disk space.

Changing E-Type Loader Program Allocation Characteristics
Use the ZOLDR ALTER PROGCHAR command to alter the allocation
characteristics of unallocated E-type programs.

Changing E-Type Loader Threshold Values
Use the ZOLDR ALTER command to alter the following E-type loader threshold
values:

v Extra program allocation table (PAT) slot threshold percentage

v E-type loader fixed file record threshold percentage

v Number of incompatible PAT slots to report during the ZOLDR LOAD function
before the process is aborted

v Time interval for starting the E-type loader police routine

v Time interval for starting the E-type loader long running job detection routine and
the E-type loader reclaim detection routine.

Clearing E-Type Loader File Resident Records
Use the ZOLDR CLEAR command to clear and initialize all file resident records the
first time the system is IPLed or if E-type loader records are damaged.

Displaying ECB Status
Use the ZDEAT commands to see the number of ECBs using each activation
number and if the activation number corresponds to a selectively activated loadset.

Loaders 371

Accepting a Loadset of E-Type Programs

Before Accepting a Loadset
Issue the ZOLDR ACCEPT command only if you are satisfied that the
programs in the loadset work correctly and you want them online. If you are
still testing the loadset of programs, you likely want to keep them activated
only.

ZOLDR ACCEPT permanently replaces the base versions of the programs
with an active loadset of programs. If you make a mistake, reload the base
versions of programs, activate them, and accept them to correct your mistake.

Unallocated programs must first be allocated before you can accept them.

Use the ZOLDR ACCEPT command to accept a loadset of programs. ZOLDR
ACCEPT causes the active loadset of programs to overlay existing programs at
base allocated addresses. The fixed file records associated with an accepted
loadset of programs are deleted after you perform the accept.

Notes:

1. The loadset must be activated on all processors to be accepted.

2. A new program will not be accepted if there is an ECB on any subsystem that
can still use the base version program.

3. If active loadsets intersect, you must accept them in the order they were
activated. That is, the first activated loadset will be the first accepted loadset.

4. Use the ZOLDR DISPLAY command before accepting a loadset of programs to
make sure that you are accepting the correct version of a program.

Using E-Type Loader Functions
E-type loader functions affect only the program base that is being used on the
processor from which the function was requested. If other processors are using a
different program base, those processors do not see the effects of E-type loader
functions until they begin using the same program base.

For example, in a loosely coupled environment where processor A is using program
base 1 and processor B is using program base 2, if you issue the ZOLDR
ACTIVATE command on processor A, the specified loadset is started on all
processors using program base 1. Because processor B is using program base 2,
the specified loadset is not actually activated on that processor until you perform an
initial program load (IPL) using program base 1.

372 TPF V4R1 System Installation Support Reference

Record ID Attribute Table

The record ID attribute table (RIAT) is used to describe the characteristics of both
fixed and pool file records. Characteristics of fixed file IDs include: exception
recording, logging, and restoring status, user exit status, VFA candidacy, locking
status, and record caching candidacy. These characteristics also apply to pool file
IDs. Pool file IDs have these additional characteristics: size, duration, duplication
status, and device type. These characteristics can be specified for any of the 10
record categories (labeled 0–9) for a specific record ID.

The 10 pool record categories are available to application programmers for more
efficient utilization of disk space. Each record category should have unique
attributes for size, pool, and device. For example, record category 0 (RTP0) could
be designated as size=L (large), pool=LT (long term, nonduplicated), and device=A
(DEVA). No other record category (RTP1 — RTP9) would have these same
attributes.

Every RIAT-controlled record has a 2-byte record ID, a 16-bit combination ranging
from 256 to 64 511, associated with it. The TPF system reserves the record IDs in
the range 1–255 and 64 512–65 535, for its own use, and record ID 0 is considered
to be invalid.

In an MDBF environment each subsystem requires its own RIAT.

If multiple TPF images are defined, each image can have its own unique RIAT.

Contents of the RIAT
RIAT data begins at the beginning of the table area; there is no conventional TPF
header. RIAT entries are mapped by the DCTRIT data macro.

The RIAT is divided into 2 parts. The first part contains 4-byte hash pointers into the
second part of the table. The number of hash pointers in the first part of the RIAT is
determined by the number of RIAT entries and is computed in the RIATA macro.

The second part of the RIAT table consists of sequential entries, one per RIAT ID.
Each entry consists of attribute information, the record ID itself, and a synonym
chain pointer, if necessary.

The attribute information for each ID consists of the following data:

v Record category (0 — 9)

v Exception recording, logging, and restoring data

v User exit data

v VFA data

v Record caching candidacy

v Lock maintenance in a loosely coupled environment.

The synonym chain pointer is an address pointer that is set up if 2 different record
IDs hash to the same value. By following the chain of pointers, the desired record
ID can be retrieved.

© Copyright IBM Corp. 1994, 2002 373

Addressing the RIAT
For each ID from which data is to be retrieved, a hash value is first computed by
dividing the desired record ID by the size of the hash table and saving the
remainder. By multiplying this remainder by 4, the correct pointer into the second
part of the RIAT table is accessed.

Once the second part of the RIAT table is accessed, the desired ID is compared
against the ID corresponding to the RIAT entry currently being accessed. If these
IDs match, the correct entry has been found. If the IDs do not match, the synonym
chain pointer is used to access another RIAT entry. By continuing to follow this
scheme, the correct entry is eventually located.

Programming Areas
1. IPLB

IPLB loads the RIAT into storage along with all the other main storage resident
chained tables (FCTB, IPAT, SIGT, and others).

2. CTIN

CTIN places the address of each subsystem’s RIAT in the CINFC area of the
subsystem in the slot addressed by CINFC tag CMMRIT.

CTIN also builds the hash table in the first part of the RIAT and sets up all
addresses in both parts of the RIAT.

Programming Techniques
The ZRTDM command is used to display or modify the RIAT online. The RIAT is
directly accessed only through the RITID macro.

Record Size
The size of each RIAT depends on the number of entries coded with RIATA macro
calls.

Frequency of Access
The RIAT is always loaded into main storage. The RIAT file copy is accessed when
a specific entry is to be updated using the ZRTDM command.

Record Life
The RIAT exists for the life of the system. A new RIAT can be generated and loaded
with the general file or auxiliary loaders at any time.

Record Generation
To locate the RIAT, SIP Stage I retrieves the data set name (coded in the INDSN
macro) and the member name in which the RIAT resides from SPPGML. The RIAT,
before assembly, is made up of RIATA statements beginning with RIATA START and
ending with RIATA FINISH. During SIP Stage II, the RIAT is put in an offline
program list, assembled, and loaded.

Optional parameters (defaulted if not coded) include:
v Record category (0 — 9) characteristics
v Exception recording, logging, and restoring data

374 TPF V4R1 System Installation Support Reference

v User exit data
v VFA data
v Record caching candidacy
v Lock maintenance in a loosely coupled environment.

References
v See TPF System Generation for more information about the SRIAT and RIATA

macros.

v See TPF Operations for more information about the ZRTDM command.

Record ID Attribute Table 375

376 TPF V4R1 System Installation Support Reference

Multiple Assembly/Compilation Print Program

The Multiple Assembly/Compilation Print (ASMP) program allows one or more of the
Multiple Assembly/Compilation program listings to be printed from tape or disk.

The listings that are read can use either ANSI (FBA) or Printer Channel Command
(FBM) control characters. ASMP defaults to ANSI control characters, but if printer
channel commands are desired, code PARM=M on the JCL EXEC statement.

Note: Although the High Level Assembler (ASMA90) produces listings in FBM
format with a record length of 121, the MASM program converts the listings
to FBA format with a record length of 133. Also, the C compiler listings are
converted by MASM to FBA format with a record length of 133. This was
done to allow assembler and compilation listings to be read from the same
MVS volume.

Printing Multiple Assembly and Compilation Listings
The Multiple Assembly/Compilation Print (ASMP) program causes multiple assembly
and compilation listings to be printed. Each listing will be preceded by a header
page identifying the program name. You control what gets printed by changing the
JCL control cards.

To print multiple assembly and compilation listings, make a JCL control deck and
run the deck as a batch job under OS.

JCL Control Cards
The JCL control cards are an EXEC card for the program, a STEPLIB or JOBLIB
card for the PDS in which the program is stored, and the following cards:

MSGFILE This DD card specifies a SYSOUT DD statement for messages
from the program.

LISTAPE This DD card specifies the input tape or disk created during a
MASM run.

PRINTOUT This DD statement specifies a SYSOUT DD statement for the
listings that are being retrieved from tape.

ASMPCTL This card controls whether all listings or specific listings are printed.
//ASMPCTL DD DUMMY prints all of the listings on the input tape.
//ASMPCTL DD *, with the LIST parameter, prints the specific
listings included in the LIST statement.

LIST This card controls which program listings are printed. One
or more program listings can be requested. If there is only
one request in the list, parentheses are not required. The
program name is the member name in the source PDS
from which it was generated. The names are not required to
be in any order.

Note: If a suffix was attached to the program name during
the assembly or compilation, make sure it is included
in your LIST statement

A list can appear on several cards. The following example shows a
list continued on more than one card:

© Copyright IBM Corp. 1994, 2002 377

LIST=(PPCP40,,BMP040,BMP140,BMP240,BMP340,BMP440,
BMP540,BMP640,BMP740,BMGL40,LTPP40,LTPQ40,ACPL40,
ICDF40)

Note: If continued on the next card, the last name on the previous
card must be followed by a comma. Only columns 1–71 of
any card can be used.

The sample JCL that follows is designed to print 2 programs from tape.
//LISTJOB EXEC PGM=ASMPvv
//STEPLIB DD DSN=ACP.LINK,RELvv,DISP=SHR
//LISTAPE DD DSN=PRINT,UNIT=TAPE,VOL=SER=LISTAP,DISP=OLD,
// DCB=(BLKSIZE=23940,RECFM=FBA)
//PRINTOUT DD SYSOUT=A,DCB=(BLKSIZE=133,RECFM=FBA)
//MSGFILE DD SYSOUT=A,DCB=(RECFM=FBM,LRECL=80,BLKSIZE=80)
//ASMPCTL DD *

LIST=(CZXPA0,CZXDA0)
/*

Notes:

1. vv refers to the actual TPF release number being executed against.

2. The LISTAPE data definition must define as input the same device (for example,
tape or disk) as the LISTAPE data definition that was used to execute MASM.
Also, if you have more than 1 input tape, specify all of the tape IDs (for
example, VOL=SER=(123456,789012)).

Return Codes
0 Successful execution.

4 One or more programs specified in LIST option not found (see error
messages).

8 Error in ASMPCTL data definition (see error messages).

Error Messages
Message: KEYWORD ON CONTROL CARD IS NOT -LIST-

Explanation: A control card has been read on which the keyword is not LIST.

Message: INSUFFICIENT CORE - INCREASE REGION SIZE

Explanation: The program issued a GETMAIN request for core to build a list
from the control cards. The GETMAIN was unsuccessful. The
program should be executed with a larger region or partition size.

Message: MAX (n) NO OF ENTRIES ALLOWED IN CONTROL CARD LIST
EXCEEDED-INCREASE VARIABLE &LISTMEM AND
REASSEMBLE

Explanation: The program can print a list containing as many as n programs.
The list that is input to the program exceeds this number of entries.
This can be resolved by changing the value of local variable
&LISTMEM in the program and reassembling the program. An
easier way to resolve this problem might be to run the program
more than once with a smaller control card list.

378 TPF V4R1 System Installation Support Reference

Message: INVALID SYNTAX IN CONTROL CARD

Explanation: Self-explanatory.

Message: ENTRY IN CONTROL CARD LIST EXCEEDS 8 CHARACTERS

Explanation: Self-explanatory.

Message:

***** ASMP ERROR REPORT *****
--------NOT FOUND ON LISTAPE

Explanation: Program identified was requested via LIST option but not found
during search of LISTAPE input. Verify program name from output
of MASM.

Hardware Requirements
Hardware and software are required which will be capable of running the program
under OS and which has a tape or DASD drive on which to input the print tape or
DASD.

Multiple Assembly/Compilation Print 379

380 TPF V4R1 System Installation Support Reference

Macro Cross-Reference

The macro cross-reference listing is generated through execution of the macro
cross-reference programs DCRS and DREF with the Sort/Merge program and a
single MVS library containing card image format.

The DCRS cross-reference program is designed to scan assembler language
members of partitioned data sets. PL/I program names are checked for exclusion
from the report. Scanning macro or C language source code members will cause
unpredictable results.

DCRS searches every card image from each member of a partitioned data set. You
specify the search targets, which can include macros, global fields, system equates,
CINFC fields, CONKC fields, tape tags, CZ1CP fields, SYCON fields, and
user-specified strings (also called user tags). When a match is found, the program
name, macro name, field, or user tag is placed in a work area. Next, the work area
is passed to the Sort/Merge program, which arranges the data under the
designations specified by DCRS. Finally, a sorted copy of the work area is passed
to the DREF program. DREF formats the information for the printer and produces
headings for each search category. The headings for the printed output from the
DREF program include the date of compilation. The JULTOACT program converts
the Julian calendar date to the actual date, if the SET DATE information has been
properly entered.

Specifying the DCRS Search Parameters
You can specify the DCRS searching option with the PARM keyword parameter of
the JCL EXEC statement that invokes DCRS. The format of the PARM parameter
is:

/size/
The size of the ICALL translation table. The size must be a 4- or 5-digit decimal
number. If this parameter is omitted or not correct, DCRS uses the default value
of 19 584 bytes.

The ICALL translation table is built by DCRS and used to map the symbolic
name of a TPF Advanced Program-to-Program Communications (TPF/APPC)
segment to the TPF segment name. (ICALL is an internal macro used in the
TPF/APPC support code. See TPF System Macros for additional information
about this macro.)

The size of the table is determined by multiplying the number of segments that
can be called with the ICALL macro (that is, they have a symbolic name) by the
maximum size of each table entry. Each entry in the table can be a maximum of
68 bytes long; 64 bytes for the symbolic name plus 4 bytes for the TPF
segment name.

Note: An example of this option is shown in “Example of DCRS” on page 382.

option
The search option that DCRS will use. Use one of the following options:

1 Macros, system equates, globals, SYCON and CZ1CP fields

2 Macros only

PARM=‘[/size/]option’

© Copyright IBM Corp. 1994, 2002 381

3 System equates and global fields only

4 SYCON and CZ1CP fields only

5 Macros, system equates, and global fields

6 Macros, SYCON and CZ1CP fields only

7 System equates, global, SYCON, and CZ1CP fields

8 CONKC and CINFC fields

9 Tape macros and labels

A, tag1, tag2, ...
User-specified tags to be used as search arguments. The format for this
option is:

PARM=‘A,TAG1,TAG2,....,TAGn’

For example, if you specify:
‘A,CLRIO,SIOF,HIO,SCK’

DCRS will compare all opcodes and operands with the strings CLRIO,
SIOF, HIO, and SCK.

Notes:

1. Any occurrence of the user tag in an opcode or operand is recognized as a
match. When a match is found, the user tag and the segment name are placed
in the work area.

2. The maximum number of total characters for the PARM list is 100. Each
individual tag must be 8 characters or less, and contain only alphabetic,
numeric, #, or @ characters.

3. If the PARM parameter is omitted or not correct, the default is PARM=1
(macros, system equates, globals, SYCON and CZ1CP fields).

4. Options 1, 2, 5 and 6 will only locate macros with names that are 5–8
characters long. Use the A option to locate macros that are not 5–8 characters
long.

Example of DCRS
The following is example of the DCRS PARM parameter using the size option:

PARM=’/1234/1’

This statement sets the size of the ICALL translation table to 1234, and searches
macros, system equates, globals, SYCON, and CZ1CP fields.

Specifying a DREF Heading Parameter
You can specify the DREF heading option with the PARM keyword parameter of the
JCL EXEC statement that invokes DREF.

Using the PARM field, a heading can be specified for the report. The default
heading is NO HEADING SPECIFIED. See “Control Cards” on page 383.

Input to the Macro Cross-Reference Programs
A macro cross-reference listing is generated by running the DCRS, SORT, and
DREF programs.

382 TPF V4R1 System Installation Support Reference

DCRS Program
DCRS searches, according to specified search options, a single MVS library which
must be a partitioned data set containing Basic Assembler Language (BAL)
programs in card image format. PL/I program names are checked for exclusion from
the report. Note that DCRS is not designed to read macro language or C language.

Three inputs are required by DCRS. The first is the scanning option which has
already been discussed. Simply code the desired option onto the PARM parameter
of the JCL EXEC statement. The second and third inputs describe the MVS PDS to
be scanned. IN and INN are the input DD statements for DCRS. Both IN and INN
should be coded with the same PDS name. The duplication is necessary because
DCRS opens IN as a sequential data set, so that the directory blocks can be read.
INN is opened as a partitioned data set so that the members contents can be read.

SORT Program
The sort program reads in the output data set produced by the DCRS program.
Code DCRS’s output data set as input on the SORTIN DD statement. On the
SYSIN DD statement, pass the instructions that will sort the cards by character, in
ascending order, on columns 1–25. The character in column 1 is assumed to be the
DCRS scanning category.

DREF Program
The DREF has 2 inputs. First, an optional header can be included in the formatted
output. Code the PARM parameter of the JCL EXEC statement with the desired
string (as many as 100 characters). The second input is the temporary sequential
data set created by the sort program, which contains alphabetically sorted records.
Code the name of the data set on the IN DD statement.

Control Cards
The following control cards are an example of the cards necessary to execute the
macro cross-reference programs under MVS:
//DCRSTST JOB MSGLEVEL=1
//DCRS1 EXEC PGM=DCRSvv,PARM=’1’
//STEPLIB DD DSN=ACP.LINK.RELvv.BSS,DISP=SHR
//SYSUDUMP DD SYSOUT=A
//ERR DD SYSOUT=A
//IN DD DSN=ACP.SRCE.RT1.RELvv,DISP=SHR
//INN DD DSN=ACP.SRCE.RT1.RELvv,DISP=SHR
//ICALLDD DD DSN=ACP.MACRO.RELvv.BSS(ICALL),DISP=SHR
//OUT DD DSN=&&SORTIN,UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(CYL,(10,8)),
// DCB=(RECFM=FB,LRECL=25,BLKSIZE=4000)
//DCRS2 EXEC PGM=SORT
//SYSOUT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
//SORTIN DD DSN=&&SORTIN,DISP=(OLD,DELETE),UNIT=SYSDA
//SORTOUT DD DSN=&&SORTOUT,UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(CYL,(20,8)),
// DCB=(RECFM=F,LRECL=25,BLKSIZE=25)
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,8,,CONTIG)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,8,,CONTIG)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,8,,CONTIG)
//SYSIN DD *

SORT FIELDS=(1,25,CH,A)
/*
//DCRS3 EXEC PGM=DREFvv,PARM=’THIS IS THE OPTIONAL HEADING’
//STEPLIB DD DSN=ACP.LINK.RELvv.BSS,DISP=SHR

Macro Cross-Reference 383

//IN DD DSN=&&SORTOUT,UNIT=SYSDA,DISP=(OLD,PASS)
//OUT DD SYSOUT=A
/*
//

where vv is the correct version ID.

Procedure
Use the following instructions to run the macro cross-reference programs to
produce a printed cross-reference report.

1. Mount and ready all packs containing input library and work areas.

2. Ready the printer.

3. Start the reader (MVS command).

Output from the Macro Cross-Reference Programs
Output from the macro cross-reference programs are in the form of listings or files.

Listings
1. DCRS

The ERR data set will contain any error messages or warnings issued by
DCRS. See “DCRS Attention Messages” for a complete description of the
messages.

If there are no errors scanning the library, DCRS does not issue listings or
messages.

2. DREF

Printing of the macro cross-reference listing, containing as many as 11 sections
with headings.

Files
1. DCRS

Temporary sequential data set to be sorted by an MVS sort. This data set must
be defined by the OUT DD statement with a block size of 4000 fixed block
length 25 records. For example, code the DCB parameter as:
DCB=(RECFM=FB,LRECL=25,BLKSIZE=4000)

2. SORT

Temporary sequential data set, alphabetically sorted. This data set must be
defined by the SORTOUT DD statement with unblocked length 25 records. For
example, code the DCB parameter as:
DCB=(RECFM=F,LRECL=25,BLKSIZE=25).

DCRS Attention Messages
For DCRS attention messages, the card image, the segment name, and a reason
are moved into the ERR data set, followed by one of the following reasons:

ICALL PARAMETER parm NOT FOUND IN ICALL
MACRO

Explanation: This message can be caused by one of
the following conditions:

v The wrong copy of the ICALL macro was used
v The symbolic name to be translated is incorrect
v The translate table does not contain all the necessary

entries.

384 TPF V4R1 System Installation Support Reference

INVALID PARM DATA. DEFAULTS USED FOR
STORAGE AMOUNT AND OPTION.

Explanation: The data specified on the PARM
parameter is invalid. The function continues using the
default storage amount of 19,584 bytes and the default
option of 1.

OPEN FAILURE ON DDNAME ICALLDD

Explanation: The open failed on the DDNAME used
to access the ICALL macro. ICALL macros do not
appear in the listing.

OPERANDS TRUNCATED

Explanation: The buffer that holds the operands is
filled. The rest of the operand string is ignored. The

card image that is displayed will be the last card image
of the continued BAL statement. The buffer holds a
maximum of 255 characters.

STORAGE FOR ICALL TRANSLATE TABLE IS NOT
LARGE ENOUGH

Explanation: The storage block size specified for the
table is not large enough. Change the block size
specified on the PARM parameter.

DCRS Error Messages
For DCRS error messages, the card image and segment name are moved into the
ERR data set. Possible reasons are:

BLANK LINE FOUND

Explanation: DCRS has found a card image that
contains only blanks. The card image is not a
continuation of the previous line.

COMMA BEFORE INST

Explanation: A comma was found preceding before a
valid label or opcode. (INST is an abbreviation for
instruction.)

INVALID LABEL

Explanation: The instruction’s label contains invalid
characters.

INVALID OPCODE

Explanation: The instruction’s opcode contains invalid
characters.

NO ENDING QUOTE

Explanation: After finding the start of a quoted string,
DCRS did not find the closing apostrophe to end the
quoted string.

PARSING ERROR

Explanation: DCRS’s parser failed to recognize the
instruction’s format.

The following error messages occur without the card image and segment name being displayed:

ABEND 9

Explanation: The data set coded for the ERR DD
statement cannot be opened. DCRS issues an ABEND
with a user return code of 9. The job is terminated and
a dump of virtual storage areas relevant to the job is
printed if a SYSABEND, SYSMDUMP or SYSUDUMP
DD statement is provided in the JCL for this ABENDing
job.

A DATA FILE WAS UNSUCCESSFULLY OPENED

Explanation: An unsuccessful attempt to open an
input or output data set, except for the data set defined
for the ERR DD statement, causes the job to end and a
message to print.

ERROR READING BLOCK FOR SEGMENT - segment
name

Explanation: An error reading a segment block
causes the message to be issued and the job is
terminated.

ERROR USING GET ON ICALL MACRO. JOB
TERMINATED

Explanation: DCRS could not get the next record from
the ICALL macro.

Macro Cross-Reference 385

I/O ERROR OCCURRED IN READING THE
DIRECTORY. JOB TERMINATED

Explanation: DCRS could not read the PDS’s
directory. Scanning terminates since the member names
are unknown.

DREF Messages

J, K, L, M, N, O, OR S NOT FIRST CHARACTER OF
INPUT RECORD.

Explanation: DREF expects the first character of each
entry in the input data set to be a code letter. This code

letter tells DREF what kind of data the entry represents
and how it should be handled. The valid codes are: A,
B, C, J, K, L, M, O, S, and X.

References
DFSORT Application Programming Guide

386 TPF V4R1 System Installation Support Reference

Multiple Assembly/Compilation Program

The Multiple Assembly/Compilation Program (MASM) allows you to assemble or
compile your programs, which are in partitioned data sets (PDSs), with minimum
usage of JCL. MASM provides several features and options to customize your
environment:

v Choose between the High-Level Assembler (HLASM) or an IBM OS/390 C/C++
compiler.

Note: See the TPF Migration Guide: Program Update Tapes and OS/390 C/C++
User’s Guide for more information about C and C++ compilers.

v Through control cards to MASM, any subset of the source library’s segments can
be selected for assembly or compilation.

v You can specify where you want listings sent. All listings, or only those that
contain errors, can be sent to a SYSOUT device. In the later case, the listings
with errors are sent to the SYSOUT device while the error-free listings are
archived.

v Cross-reference listings can be generated with the object listings, or suppressed.

v E-type programs, offline programs, and CP segments can be assembled.

v E-type programs can be compiled.

v The level of C or C++ compiler error reporting can be changed.

v Additional system- or user-include libraries can be passed to a C or C++
compiler.

v MASM will set the return code to 4 if any program finds an error during assembly
or compilation.

Note: To understand the following discussion, you need to understand MVS JCL.

Input
The following section describes the input to the MASM program.

Files
Input to MASM is the partitioned data set containing the programs to be assembled
or compiled.

JCL Control Cards
MASM requires the following data sets when executed:

PDS DD card for the source libraries.

MSGFILE SYSOUT data set containing diagnostic messages from the
program and the Assembly or Compilation Error Report.

DRIVEIN Control card input files that select the program segments from the
source library (PDS).

If you request the listings-to-tape option, MASM needs 2 more data sets defined:

LIST DD statement for a SYSOUT device for listing of assemblies or
compilations with errors.

LISTAPE DD statement specifying a tape or disk to hold the error-free listings
(see Figure 29 on page 394).

© Copyright IBM Corp. 1994, 2002 387

The data sets described so far are those used by MASM directly. All JCL cards
normally required by either High-Level Assembler (HLASM) or a C or C++ compiler
are still required when running MASM, though MASM, in a few cases, places extra
requirements on them:

v The effects of MASM on the assembler:

– When MASM calls the assembler, the DECK parameter is used. This places
the object code into the data set specified by the SYSPUNCH data definition.
However, MASM disables the SYSLIN data set by passing the NOOBJECT
parameter to the assembler.

– MASM sets the assembler LINECOUNT to 55. See High Level Assembler
/MVS & VM & VSE Programmer’s Guide for detailed information about this
and other assembler parameters.

– For a non-E-type program assembly, the SYSIN DD statement should point to
the same library as the PDS DD statement (see Figure 28 on page 394).

– If you want to perform an E-type assembly, specify PARM=RT on the EXEC
card, specify a temporary data set in the SYSIN DD statement, and
concatenate the source library with the SYSLIB data set (see Figure 30 on
page 395). RENT should also be specified with RT to check for reentrancy.

– As in any assembly, you must ensure that SYSLIB refers to the appropriate
macro, and if necessary, the appropriate source libraries.

– When the LIST and LISTAPE data sets are used, the assembler listings are
converted from fixed block machine (FBM) length 121 to fixed block ANSI
(FBA) length 133.

v The effects of MASM on the compiler:

– When MASM calls a C or C++ compiler, the object deck is placed into the
SYSLIN data set. The SYSPUNCH data set is not defined by the C or C++
compiler.

– The SYSLIB data set must point to the TPF-supplied C language headers.

Attention: Do not add either the VM or MVS C language header data set to
SYSLIB.
These data sets have been deliberately omitted from the SIP-generated C
compilation procedures. The VM and MVS headers provide some functions
that are incompatible with the TPF system environment. If these headers were
added, the C program segment might compile without errors or warnings, but
would not be usable in a TPF system environment.

– MASM sets the following C or C++ compiler options that you cannot change:
LIST, OFFSET, SOURCE, NOSTART, NOANSIALIAS, and
AGGRC(OVERLAY). You can change the FLAG, LSEARCH, SEARCH, RENT,
OPTIMIZE, and LONGNAME options. All other parameters are allowed to
default. See your compiler User’s Guide for detailed information about these
and other compiler options.

– OPT(n) passes the OPTIMIZE option to the compiler exactly as you code it.
Valid values for n are OPT(0), OPT(1), and OPT(2). The default is OPT(2).
You can also use OPT and NOOPT.

Note: See the OS/390 C/C++ User’s Guide to understand what effect these
parameters have on the IBM OS/390 compiler that you are using. For
example, on some compilers OPT(1) is the same as OPT(2), and OPT
has the same effect as OPT (1).

– Either the RENT or NORENT option can be specified for a C or C++ program.

– For E-type compilations, specify PARM=RT on the EXEC card and specify a
temporary data set in the SYSIN DD statement (see Figure 31 on page 396).

388 TPF V4R1 System Installation Support Reference

– When the LIST and LISTAPE data sets are used, the compiler listings are
converted from variable block length 137 to fixed block ANSI (FBA) length
133.

Execution Parameters
The following are the user options that are available as execution parameters:

TAPE Error-free assembly listing are put to tape.

Note: This requires you to include a LISTAPE and LIST DD
statement and to change the SYSPRINT (or SYSCPRT for
C) DD statement.

See “Multiple Assembly/Compilation Print Program” on page 377 for
the subsequent listing of the tape.

SHORT See your appropriate assembler user’s guide. (Not valid for a C or
C++ compiler.)

XREF See your appropriate assembler user’s guide.

NOXREF See your appropriate assembler user’s guide. NOXREF is the
default value. If XREF is requested, it is expanded to XREF(FULL)
by MASM.

RT Indicates to MASM that real-time programs are being assembled or
compiled.

Note: Requires a temporary data set for the SYSIN data definition.
For the assembler, the source libraries must be concatenated to the
SYSLIB data definition. For a C or C++ compiler, the only data sets
that can be concatenated are data sets containing C language
headers.

I MASM passes the program to the High Level Assembler (HLASM).

RENT Passes the RENT option to the assembler or C or C++ compiler.
This causes the assembler or C compiler to verify that a segment is
reentrant. The RENT option is ignored if you specify the
TARGET(TPF) option.

Note: C++ programs are always compiled as reentrant regardless
of whether you specify RENT or NORENT.

NORENT Passes the NORENT option to the assembler or C or C++ compiler.
The assembler or C or C++ compiler will not do reentrancy
checking. The NORENT option is ignored if you specify the
TARGET(TPF) option.

Note: C++ programs are always compiled as reentrant regardless
of whether you specify RENT or NORENT.

G MASM passes the program to the IBM OS/390 C/C++ compiler and
the program is compiled as C code.

GPP MASM passes the program to the IBM OS/390 C/C++ Release 2 or
Release 3 compiler and the program is compiled as C++ code.

DLL Passes the DLL option to the compiler. This option is valid only for
the IBM C/C++ for MVS/ESA Version 3 Release 2 and IBM OS/390
C/C++ compilers. This option is valid for C programs only; the
parameter is ignored for C++ programs.

Multiple Assembly/Compilation Program 389

NODLL Passes the NODLL option to the compiler. The parameter is ignored
for C++ programs.

FL(x) A C or C++ compiler FLAG option, where x can equal I, W, E, or S.

Note: The value of x defaults to E for the C++ compiler.

LSE(yyyyy) A C or C++ compiler LSEARCH option, where yyyyy can be any
MVS data set containing user include files.

SE(zzzzz) A C or C++ compiler SEARCH option, where zzzzz can be any
MVS data set containing system include files.

OPT(n) Passes the OPTIMIZE option to the compiler exactly as you code it.
Valid values for n are OPT(0), OPT(1), and OPT(2). The default is
OPT(2). You can also use OPT and NOOPT.

Note: See the OS/390 C/C++ User’s Guide to understand what
effect these parameters have on the IBM OS/390 compiler
that you are using. For example, on some compilers OPT(1)
is the same as OPT(2), and OPT has the same effect as
OPT (1).

LONGNAME Passes the LONGNAME option to the compiler.

NOLONGNAME
Passes the NOLONGNAME option to the compiler.

TARGET(TPF) Passes the TARGET(TPF) option to the C or C++ compiler. This
parameter must be specified for TARGET(TPF) E-type programs
and must not be specified for C load module E-type programs.

Control Card Options
The control card options provide the following facilities:

v Assemble or compile the entire directory (no control cards)

v Assemble or compile a list of programs

v Assemble or compile from a specified program to the end of the directory

v Assemble or compile from the beginning of the directory to and including a
specified program

v Assemble or compile a range of programs in a directory

v Attach a suffix to all object module names

Option 1: Assemble or compile the entire directory

If no control cards are specified, all programs in the PDS directory
will be assembled/compiled. The DRIVEIN DD card may appear as
follows:

//DRIVEIN DD DUMMY
or:

//DRIVEIN DD *

/*

Option 2: Assemble or compile a list of programs

Format:

LIST=name
LIST=(name1,name2,name3,...........name9)

390 TPF V4R1 System Installation Support Reference

One or more programs for C and one program for C++ can
be supplied in the LIST option. If there is only one program
in the list, parentheses are not required. The program
names are not required to be in any order; however, it is
recommended that they appear in the order found in the
directory (alphabetic).

A list can appear on several cards. The following example
shows a list continued on more than one line:

LIST=(BMGL,BMPOX,CPTX,DMPO,
DMP1,SNXPD,
ZAPX,ZAPY,ZAPZ)

Note: A list must be enclosed in parentheses (if more than
one name). If continued on the next card, the last
name of the previous card must be followed by a
comma. There are no column restrictions.

Option 3: Assemble or compile FROM option

Format:
FROM=name

This option allows one to assemble or compile all programs
beginning with the specified FROM name through the end
of the directory.

Option 4: Assemble or compile TO option

Format:
TO=name

This option allows one to assemble or compile all programs
from the beginning of the directory to and including the
specified TO name.

Option 5: Assemble or compile a range of programs

Format:
FROM = name1,TO = name2

This option will assemble or compile all programs in the
directory from name1 through name2 inclusive.

Option 6: Attach a SUFFIX

Format:
SUFFIX = xx

This option allows you to specify a suffix that will be
attached to the object module name. The suffix can contain
as many as 6 alphanumeric characters. There is one
requirement for this option. It must precede the option (1-5)
for which it is to apply.

Note: You must consider the final length of the
concatenated name, which cannot exceed 8
characters. If greater than 8, the program will not be
assembled or compiled and a diagnostic will appear.

Options 1-5 are considered as individual tasks. One task can appear on one line.
The suffix parameter can precede any or all tasks requested.

Multiple Assembly/Compilation Program 391

Examples of Control Card Options:

Example 1: LIST=BMP0

Assemble or compile the program called BMP0.

Example 2: SUFFIX=53,TO=DGR0

Assemble or compile all programs from the beginning of the
directory to and including the program DGR0. Attach the suffix 53 to
all object module names.

Example 3: SUFFIX=54

Assemble or compile the entire directory, attaching the suffix 54 to
all object module names.

Example 4: LIST=(BMP0,CRAS,DGR0)

Assemble or compile the 3 programs specified in the list.

Example 5:

LIST=(BMP0,
CRAS,
DGR0)

An alternate way of showing Example 4.

Example 6:

TO=CRAS
LIST=(DGR0,ASMM,ZAPX,ZAPY)

Task 1:
Assemble or compile from the beginning of the directory to
and including CRAS.

Task 2:
Assemble or compile the programs specified in the list.

Example 7:

SUFFIX=44,LIST=(BMP1,BMP2)
FROM=ZAPA,
TO=ZAPF

SUFFIX=55,LIST=CRAS

Task 1:
Assemble or compile programs BMP1 and BMP2, attaching
the suffix 44 to the object modules.

Task 2:
Assemble or compile all programs between ZAPA AND
ZAPF inclusive (no suffix requested).

Task 3:
Assemble or compile the program CRAS attaching the
suffix 55.

User Considerations
Following are some helpful hints and considerations for using the Multiple
Assembly/Compilation Program.

392 TPF V4R1 System Installation Support Reference

v Use the TIME parameter if your system has a maximum time limit for a job. In
estimating assembly or compilation time, consideration should be given to the
total number of assemblies or compilations requested.

v Under MVS, there is the possibility that the SYSOUT data set may run out of
space if many assemblies or compilations are done in one run. Either provide
more space for the SYSOUT data set (SYSPRINT DD card for assembler, or
SYSCPRT DD card for C), or go directly to the printer.

v Compile only one C++ program at a time with the LIST=control card because the
compiler creates names for static initialization routines based on the job name
and time stamp of the job. If more than one program has a static initialization
routine and those programs are linked together at a later time, the link-edit will
fail because the names for all static initialization routines will be the same.

v Check CAREFULLY the macro libraries assigned to the SYSLIB DD. This is not
new to anyone running assembly jobs. However, when many assemblies are
being run, the entire run could be wasted if the wrong macro library is used.

v When using the TAPE parameter be sure to provide a tape initialized in the same
manner as the LISTAPE data definition specifies (for example, standard label,
device type, and others).

v If desired with the TAPE parameter, the LISTAPE data definition can specify a
DASD. If so, carefully calculate the amount of space needed based on number,
size, and whether XREF is requested. The DCB definition is preset at
RECFM=FBA and LRECL=133 with the BLKSIZE user variable based on needs
(a multiple of LRECL).

Output
Output from the MASM program is in the form of listings or files.

Listings
The listings produced by the Assembler or Compiler invoked will be produced either
on tape or on the printer, as specified by JCL execute parameter.

Files
For each program assemble, an object module will be written as a member of the
SYSPUNCH data set.

For each program compiled, an object module will be written as a member of the
SYSLIN data set.

Sample JCL
The following sample JCL is provided as examples of how to code MASM JCL
statements.

Printout Directory to Listings
The sample JCL that follows is designed to assemble programs MEMBER1,
MEMBER5, and all programs between MBR72 and MBR89 from cataloged library
TESTCASE.LIBRARY, and the object modules will be output into a cataloged library
called TESTCASE.LIB2. A cross-reference is produced.

Multiple Assembly/Compilation Program 393

In Figure 28, note the following:

v The STEPLIB data definition refers to the release link library.

v The vv refers to the actual release number and ssname refers to the subsystem
name.

v Both PDS and SYSIN point to the source PDS.

Assembly Listings to Tape
The sample JCL that follows will assemble all programs in cataloged library
TESTCASE.LIBRARY and put the object modules into cataloged library
TESTCASE.LIB2. Printouts are put to tape if the assemblies are error-free.
Consequently the SYSPRINT DD statement specifies a temporary data set on
DASD and a DD statement is included for output tape LISTAPE. PARM=TAPE is
specified on the EXEC card. Data definition LIST defines the output device to which
programs containing assembly errors will be routed.

In Figure 29, note the following:

v The STEPLIB data definition refers to the release link library.

v The vv refers to the actual release number and ssname refers to the subsystem
name.

//STEPA EXEC PGM=MASM,REGION=200K,TIME=20,PARM=I
//STEPLIB DD DISP=SHR,DSN=ACP.LINK.RELvv.SSname
//SYSLIB DD DISP=SHR,DSN=SYS1.MACLIB
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(1700,(400,50))
//SYSUT2 DD DSN=&&SYSUT2,UNIT=SYSDA,SPACE=(1700,(400,50))
//SYSUT3 DD DSN=&&SYSUT3,UNIT=SYSDA,SPACE=(1700,(400,50))
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD DISP=OLD,DSN=TESTCASE.LIB2
//SYSIN DD DISP=SHR,DSN=TESTCASE.LIBRARY
//PDS DD DISP=SHR,DSN=TESTCASE.LIBRARY
//MSGFILE DD SYSOUT=A,DCB=(RECFM=FBM,LRECL=80,BLKSIZE=80)
//DRIVEIN DD *

LIST=(MEMBER1,MEMBER5)
FROM=MBR72,TO=MBR89

/*

Figure 28. Printout Directory to Listings JCL

//STEPA EXEC PGM=MASM,REGION=200K,TIME=20,PARM=(I,TAPE)
//STEPLIB DD DSN=ACP.LINK.RELvv.SSname,DISP=SHR
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(20,10))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(20,10))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(20,10))
//SYSPRINT DD DSN=&&PA,DCB=(RECFM=FBM,LRECL=121,BLKSIZE=3630),
// UNIT=SYSDA,SPACE=(CYL,(2,1))
//LISTAPE DD DSN=PRINT,UNIT=TAPE,DISP=(NEW,KEEP),
// VOL=SER=123456,DCB=(BLKSIZE=23940,LRECL=133,RECFM=FBA),
// LABEL=(,SL)
//LIST DD SYSOUT=A,DCB=(BLKSIZE=7980,LRECL=133,RECFM=FBA)
//SYSPUNCH DD DSN=TESTCASE.LIB2,DISP=OLD
//PDS DD DSN=TESTCASE.LIBRARY,DISP=SHR
//MSGFILE DD SYSOUT=A,DCB=(RECFM=FBM,LRECL=80,BLKSIZE=80)
//SYSIN DD DSN=TESTCASE.LIBRARY,DISP=SHR
//DRIVEIN DD DUMMY
/*

Figure 29. Assembly Listings to Tape JCL

394 TPF V4R1 System Installation Support Reference

v If you expect a considerable amount of assembly output, you can specify more
than one tape in the LISTAPE data definition (that is,
VOL=SER=(123456,789012)).

v To put assembly listing output to DASD, specify DASD in the LISTAPE data
definition.

Note: Make sure you allocate enough DASD space based on the size and
number of programs being assembled.

v Successive executions of MASM can be accomplished by modifying the LISTAPE
data definition (that is, DISP=(MOD,KEEP)).

v Both PDS and SYSIN point to the source PDS.

E-Type Assemblies to Tape
The control cards in the following example specify that only members MBR1,
MBR2, MBR30, and MBR3 of library TESTCASE.LIBRARY are to be assembled. It
attaches suffix 01 to the object code member names placed into TESTCASE.LIB2.

Because this is an E-type assembly, PARM=RT,RENT was specified on the EXEC
card. PARM=I was used to obtain the High Level Assembler (HLASM). The SYSIN
DD statement points to a temporary data set on DASD and the source library is
concatenated into the SYSLIB data set. Care must be taken in cases like this to
ensure that the first data set in the concatenation has the largest blocksize.
Because the High Level Assembler (HLASM) is used, a region of at least 200KB
must be used for the assembly.

In Figure 30, note the following:

v The STEPLIB data definition refers to the release link library.

v The vv refers to the actual release number and ssname refers to the subsystem
name.

v If error-free assemblies are to be put to tape, LIST and LISTAPE DD statements
should be included and the SYSPRINT DD statement changed to a temporary
data set as in Figure 29 on page 394.

v PARM=TAPE must also be specified on the EXEC card.

//STEPA EXEC PGM=MASM,REGION=220K,TIME=20,PARM=’I,RT,RENT,TAPE’
//STEPLIB DD DSN=ACP.LINK,RELvv.SSname,DISP=SHR
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=TESTCASE.LIBRARY,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(20,10))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(20,10))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(20,10))
//SYSPRINT DD DSN=&&PA,DCB=(RECFM=FBM,LRECL=121,BLKSIZE=3630),
// UNIT=SYSDA,SPACE=(CYL,(2,1))
//LISTAPE DD DSN=PRINT,UNIT=TAPE,VOL=SER=123456,LABEL=(,SL),
// DISP=(NEW,KEEP),DCB=(BLKSIZE=23940,LRECL=133,RECFM=FBA)
//LIST DD SYSOUT=A,DCB=(BLKSIZE=7980,LRECL=133,RECFM=FBA)
//SYSPUNCH DD DSN=TESTCASE.LIB2,DISP=OLD
//SYSIN DD SPACE=(CYL,5),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3600),
// UNIT=SYSDA
//PDS DD DSN=TESTCASE.LIBRARY,DISP=SHR
//MSGFILE DD SYSOUT=A,DCB=(RECFM=FBM,LRECL=80,BLKSIZE=80)
//DRIVEIN DD *

SUFFIX=01
LIST=(MBR1,MBR2,MBR30,MBR3)

/*

Figure 30. E-Type Assemblies to Tape JCL

Multiple Assembly/Compilation Program 395

E-Type Compilations Sent to the Printer
The following example shows MASM calling the AD/Cycle C/370 compiler. The
PARM parameter is coded with a D to call the AD/Cycle C/370 compiler, with an RT
to designate E-type compilations, and with NOXREF to suppress the compiler
cross-reference. The compiler requires a region of at least 4MB and several work
data sets (SYSUT1–SYSUT9). SYSUT10 is coded as a dummy because the
compiler option that uses it is suppressed by MASM. Although this job generates
E-type object code, the source code libraries should not be concatenated to the
SYSLIB data set. The compiler expects that only header libraries will be
concatenated to SYSLIB.

In Figure 31, note the following:

v The STEPLIB data definition refers to the release link library.

v The vv refers to the actual release number and ssname refers to the subsystem
name.

v SYSIN must be a temporary data set.

v If error-free compiles are to be put to tape or disk:

– Specify PARM=TAPE on the EXEC card.

– LIST and LISTAPE DD statements should be included.

//COMPILE EXEC PGM=MASM,REGION=4M,
// PARM=(D,RT,NOXREF,TARGET(TPF))
//STEPLIB DD DSN=ACP.LINK.RELvv.SSname,DISP=SHR
// DD DSN=LE.V1R3M0.SCEERUN,DISP=SHR
// DD DSN=PLI.V2R3M0.SIBMLINK,DISP=SHR
// DD DSN=EDC.V1R2M0.SEDCDCMP,DISP=SHR
//SYSMSGS DD DSN=EDC.V1R2M0.SEDCDMSG(EDCMSGE),DISP=SHR
//SYSIN DD DSN=&&SYSIN,UNIT=SYSDA,
// SPACE=(CYL,(3,3),RLSE),DISP=(NEW,DELETE,DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3600)
//SYSLIB DD DSN=ACP.CHDR.RELvv.SSname,DISP=SHR
//SYSLIN DD DSN=ACP.OBJ.RELvv.SSname,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSUT1 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT4 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD DUMMY
//*
//MSGFILE DD SYSOUT=A,
// DCB=(RECFM=FBM,LRECL=80,BLKSIZE=80)
//PDS DD DSN=ACP.CSRCE.RT.RELvv.SSname,DISP=SHR
//DRIVEIN DD *

LIST=(C024vv,C025vv,C026vv,C027vv,C028vv)
/*
//

Figure 31. E-Type Compilations Sent to the Printer JCL

396 TPF V4R1 System Installation Support Reference

– SYSCPRT DD statement should be changed to a temporary data set as
follows:
//SYSCPRT DD DSN=&&PA,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=882),
// UNIT=SYSDA,SPACE=(CYL,(2,1)),SYSOUT=

Note: The SYSOUT parameter is required only when overriding a SYSCPRT
DD statement containing a SYSOUT parameter in a cataloged
procedure. It is set to blank intentionally and must be coded as shown.

E-Type Compilations Sent to the Printer
The following example shows MASM calling the AD/Cycle C/370 compiler to
compile C load module E-type programs with optimization level 2. The PARM
parameter is coded with a D to call the AD/Cycle C/370 compiler, with an RT to
designate E-type compilations, and with NOXREF to suppress the compiler
cross-reference. The compiler requires a region of at least 4MB and several work
data sets (SYSUT1–SYSUT9).

In Figure 32, note the following:

v The STEPLIB data definition refers to the release link library.

v The vv refers to the actual release number and ssname refers to the subsystem
name.

//COMPILE EXEC PGM=MASM,REGION=4M,
// PARM=(D,RT,NOXREF,OPT(2))
//STEPLIB DD DSN=ACP.LINK.RELvv.SSname,DISP=SHR
// DD DSN=LE.V1R3M0.SCEERUN,DISP=SHR
// DD DSN=PLI.V2R3M0.SIBMLINK,DISP=SHR
// DD DSN=EDC.V1R2M0.SEDCDCMP,DISP=SHR
//SYSMSGS DD DSN=EDC.V1R2M0.SEDCDMSG(EDCMSGE),DISP=SHR
//SYSIN DD DSN=&&SYSIN,UNIT=SYSDA,
// SPACE=(CYL,(3,3),RLSE),DISP=(NEW,DELETE,DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3600)
//SYSLIB DD DSN=ACP.CHDR.RELvv.SSname,DISP=SHR
//SYSLIN DD DSN=ACP.OBJ.RELvv.SSname,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSUT1 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT4 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT5 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT6 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT7 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT8 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=3200,BLKSIZE=12800)
//SYSUT9 DD UNIT=VIO,SPACE=(32000,(30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD DUMMY
//*
//MSGFILE DD SYSOUT=A,
// DCB=(RECFM=FBM,LRECL=80,BLKSIZE=80)
//PDS DD DSN=ACP.CSRCE.RT.RELvv.SSname,DISP=SHR
//DRIVEIN DD *

LIST=(CSCNFvv,CTZDIFvv)
/*
//

Figure 32. E-Type Compilations Sent to the Printer JCL

Multiple Assembly/Compilation Program 397

Error Messages
The following MASM messages can help determine MASM problems.

INVALID PARM PARAMETER

Explanation: An unrecognized argument was found
on the JCL EXEC PARM parameter. See “Execution
Parameters” on page 389 for a list of valid arguments.

THE COMBINED C OPTIONS EXCEED MAXIMUM

Explanation: The number of characters coded for the
FL, LSE, SE arguments on the JCL EXEC PARM will
cause the PARM buffer to overflow. The combined
lengths of these arguments (including the commas and
parentheses) must be less than 60.

INVALID KEYWORD ON CONTROL CARD

Explanation: A keyword on a control card is not one
of the following:

LIST, FROM, TO or SUFFIX

END OF CARD REACHED - VALUE OR KEYWORD
INVALID

Explanation: Column 72 of the card has been
reached while scanning an entry on a control card and
a delimiter has not been found.

NO CORE FOR LIST - INCREASE REGION SIZE

Explanation: A LIST option has been found on a
control card and a GETMAIN macro issued to obtain
core to build this list. The requested core is not
available. This can be remedied by increasing the
region size.

MISSING RIGHT PAREN IN LIST - ASSUMED
CONTINUE

Explanation: A list of members on a list control card
has not been terminated by a right parenthesis. A right
parenthesis is assumed.

VALUE OF KEYWORD MISSING

Explanation: A keyword - LIST, FROM, TO or SUFFIX
has been found without any value indicated.

INVALID - FROM - OPTION, EXPECTING
FOLLOWING - TO -

Explanation: A FROM keyword and value has been
found without a corresponding TO option.

SUFFIX GREATER THAN 6 CHARACTERS

Explanation: A suffix has been supplied via a control
card which exceeds 6 characters.

LENGTH OF FROM/TO VALUE GREATER THAN 8
CHARACTERS

Explanation: A value assigned to a FROM or TO
keyword exceeds 8 characters.

MAXIMUM (n) NO. OF MEMBERS FOR LIST
EXCEEDED

Explanation: n members are allowed in a list. The list
supplied on a control card exceeds this number. To
correct this problem the local variable &MAXMEM in
ASSMDRIVE should be increased and the program
reassembled.

SUFFIX + MEMBER NAME GREATER THAN 8 CHAR

Explanation: When the suffix has been added to the
input library member name the resultant name exceeds
8 characters.

PROGRAM NOT FOUND

Explanation: The DRIVERIN data set has specified a
program segment that was not a member of the source
code data set.

Hardware Requirements
An operating system (hardware and software) capable of supporting the High Level
Assembler (HLASM) and a C or C++ compiler with enough additional direct access
file space to store the input and output partitioned data sets is required.

398 TPF V4R1 System Installation Support Reference

System Allocator

The system allocator (SALO) is an offline program that creates the system allocator
(SAL) table and the program allocation table (PAT). To help with this section a few
definitions are provided as follows:

dummy Function switches can be coded on each card in the SALO input
deck. If the function switch is off, the program is dummy allocated
and, therefore, the program is not entered and no DASD is
required. These entries reside in the SAL table only.

parent The program in which a transfer vector is located. The parent can
have multiple entry points (transfer vectors) in it.

spare Programs allocated as spare serve as placeholders that can be
defined for future application expansion. If an application is
removed, the placeholders are needed to avoid a shift of the
remaining applications.

transfer vector
The label name given to an entry point into a program.

SALO builds the SAL table and PAT from concatenated input decks as shown in
Figure 33 on page 400. The input decks contain program names and
characteristics; for example, where the programs are to reside, what addressing
mode they operate in, and whether they have any privileges. The input decks also
contain symbol definition cards that are used to resolve V-type address constants
(V-cons). As many as 16 input decks can be concatenated. The IBM input deck,
IBMPAL, is concatenated first. You can specify as many as 15 more user input
decks to hold user allocation information.

The output tables from SALO (SAL table and PAT) contain the information from the
input decks in the form required by the linkage editor (LEDT) and online programs.

© Copyright IBM Corp. 1994, 2002 399

The SAL table:

v Resolves the offline external references for the TPF linkage editor. The SAL table
holds the program’s name and its displacement into the PAT (determined by the
order in which programs are listed in the input deck).

The PAT:

v Keeps track of the file or main storage locations for all E-type programs

v Is used by Enter/Back to determine each program’s characteristics

v Keeps track of which programs were activated by the E-type loader.

To summarize, SALO is an offline tool for creating the SAL and PAT tables.

Allocating Programs, Transfer Vectors, and Pools
There are significant changes to the system allocator (SALO) process in the TPF
4.1 system:

v The offline SALO is written in IBM C Language, and is compiled, link-edited and
executed in one job.

v SKPAL and PAL are no longer supported. They are replaced by SALO input
decks. SALO uses these decks to create the program allocation table (PAT) and
the system allocator (SAL) table.

There can be up to 16 input decks. IBM provides one input deck, which is the
IBMPAL input deck. You can concatenate up to 15 input decks of your own. Do not
add allocator statements to the IBMPAL input deck because the order of the
programs in the decks determines their ordinal number (also known as the program

Input Decks

Program Parameters

CVZZ
BXPL
BXPR
CI01
BXQR

SALO

SAL Table

Program Displacement
into PAT

BXPL
BXPR
BXQR
CI01
CVZZ

PAT

Program Characteristics

CVZZ
BXPL
BXPR
CI01
BXQR

10
20
40
30

0

PRN

0
1
2
3
4

Legend:
SAL
PAT
PRN

Note: The numbers used in this
figure are only examples.

= System allocator table
= Program allocation table
= Program record number

Figure 33. Operation of SALO

400 TPF V4R1 System Installation Support Reference

record number (PRN)) in the 4KB fixed-file record area. However, you may need to
modify the allocator statements to meet your needs. All programs are allocated as
4KB.

You do not need to put all of the required core resident (CR) programs at the front
of the allocator decks because residency is specified on the allocator statement
itself, rather than being determined by the position of the allocator statement.

You need to specify the names of the input decks and the data set that contains
them on the new INDSN macro using these parameters:

SALDSN
The name of the input data set that contains all of your input decks (as
members) for the system allocator.

SALMEM
A sublist of up to 15 deck (member) names. These decks, along with system
required decks, are used as input to the system allocator.

Creating the Input Deck
The following sections describe how to code user input decks. The decks consist of
SALO input statements that contain program allocation information, symbol
definitions, default mode settings, or comments. All statements, except comments,
must be coded in uppercase.

All program, transfer vector, and symbol definition statements are placed in the SAL
table. All program and spare statements also appear in the PAT unless function
switches or subsystem switches coded for them are false.

Programs can be allocated either normally or as dummy. Normally allocated
programs appear in both the SAL table and the PAT. Dummy allocated programs
only appear in the SAL table and indicate to the linkage editor (LEDT) that the
name of the dummy allocated program is valid and should not be flagged as an
unresolved external.

A program is allocated as dummy if the function switch name coded on the FUNC=
parameter of a program allocation statement resolves to 0 (false) or the subsystem
name coded on the SS= parameter of a program allocation statement does not
match the subsystem name coded on the SS= parameter passed to SALO.

Function switch names are resolved by the SIP created C header file c$idfunc.
c$idfunc equates a 1 or a 0 (true or false) with each valid function switch name.

Comments
You can intersperse comments with input statements but they must contain an
asterisk (*) in column 1. You can also put comments on the same line as other
statements but at least one space must separate the comment from the statement.

Specifying the Addressing Mode
When you want a block of programs to run in a particular addressing mode (24-bit
addressing mode or 31-bit addressing mode) without specifying this on each
individual input statement, you can use the MODE statement. This statement
provides a default mode setting for all subsequent program statements in the input
decks.

System Allocator 401

The format of the MODE statement follows:
where 24BIT is the default.

Notes:

1. All programs written in the IBM C Language must be allocated in 31-bit
addressing mode. This allows them to call heap storage functions, which return
31-bit addresses.

2. The FACE, SIGT, RIAT, and SNA tables are now above 16MB. All programs that
manipulate these tables or reference the FC0TB, SI0GT, and DCTRIT data
macros must be allocated as 31-bit addressing mode.

Allocating Programs
All program records are 4KB. The order in which the programs appear in the input
decks determines their program record numbers (PRNs). Every program allocation
statement is allocated as a 4KB block.

The format of the input statements for allocating file resident (FR) and main storage
resident or core resident (CR) programs follows:
where:

prog
The 4-character program name that is being allocated. The program name must
be four characters long and the first character must be alphabetic.

FR|CR
Indicates whether the program is to be file resident (FR), main storage resident,
or core resident (CR).

Notes:

1. FR replaces the MR used in previous releases.

2. Core resident (CR) programs do not have a demand counter.

3. Core resident programs must have CLASS values of SHARED or
COMMON.

CLASS=
The class of program can be SHARED, COMMON, UNPROT, ISUNIQ, or
PRIVATE. The default is SHARED.

SHARED Indicates that all ECBs use the same copy of the program, but
only those ECBs currently using the program can view it. In
addition, all ECBs using the program can potentially access the
program at different ECB virtual addresses. The program
resides in page-protected memory and key-protected memory.
The demand counter for noncore SHARED programs is located
in the PAT entry of the program.

COMMON Indicates that all ECBs use the same copy of the program and
access the program at the same address. The program resides

MODE=24BIT|31BIT

prog,FR|CR [,CLASS=SHARED|COMMON|UNPROT|ISUNIQ|PRIVATE] [,MODE=24BIT|31BIT]
[,OPTIONS=(KEY0,MONTC,RESTRICT,CMB)[,SS=ALL|EXC|ssname]
[, FUNC=1|0|fsname]
[, PRELOAD]

[, NODBUG]

402 TPF V4R1 System Installation Support Reference

in key-protected storage. The demand counter for a noncore
COMMON program is located in the PAT entry of the program.

UNPROT Indicates that this is a self-modifying I-stream shared program.
All ECBs use the same copy of the program and access the
program at the same address. The program resides in
unprotected storage. The demand counter for an UNPROT
program is in the 8-byte program header.

ISUNIQ Indicates that this is a self-modifying I-stream unique program.
All ECBs on the same I-stream use the same copy of the
program and access the program at the same address. All
copies of the program reside in unprotected storage. The
demand counter for an ISUNIQ program is in the 8-byte
program header.

Moreover, ISO-C programs cannot be allocated as private or as
IS-unique.

PRIVATE Indicates that this is a private program to be loaded to a unique
unprotected working storage block each time it is entered.
PRIVATE programs do not have a demand counter.

ISO-C programs cannot be allocated as private or as IS-unique.

Table 7 summarizes the use of the CLASS attribute for file-resident programs.

Table 7. Summary of CLASS Attribute for File Resident Programs

I-Stream
Shared

I-Stream
Unique ECB Unique Same Address Protected Unprotected

SHARED X X

COMMON X X X

UNPROT X X X

ISUNIQ X X X

PRIVATE X X

MODE=24BIT|31BIT
The addressing mode in which the program is entered. This parameter
overrides any preceding MODE statement for this program. All programs written
in IBM C Language must be allocated in 31-bit mode.

OPTIONS=
One or more of the following macro authorization options (separated by
commas):

KEY0 Specifies that the E-type program can issue a macro that lets
the program store into protected storage (change the protection
key to 0).

MONTC Specifies that the E-type program can issue a MONTC macro that
lets the program store into protected storage and execute
privileged instructions until the program issues an LMONC macro.

RESTRICT Specifies that the program can issue macros that are restricted
for other reasons.

CMB Specifies that the program can issue a macro to get common
blocks.

System Allocator 403

SS=
A valid subsystem name as declared in the SIP Stage I SSDEF macro:

ALL Indicates that the program should be allocated in all subsystems.

EXC Indicates that the program should be allocated in all subsystems except
the BSS.

ssname
A valid subsystem name as declared in the SIP Stage I SSDEF macro.

The default is ALL.

FUNC=
A function switch:

1 Specifies that the program allocated by this statement is placed in both
the system allocator (SAL) table and the program allocation table (PAT).

0 Specifies that this program is a dummy and is put only in the system
allocator (SAL) table.

fsname
A valid switch name taken from the SIP-created IBM C language
header file c$idfunc.h. See “Adding Your Own Function Switches” on
page 406 for more information.

The default is 1.

PRELOAD
Guarantees a core resident (CR) program will be loaded before 1052 state. The
number of PRELOAD programs should be minimized for performance reasons.

NODBUG
Specifies that the program is not available to be debugged using the TPF
Assembler Debugger for VisualAge Client. This parameter is available only for
programs that are allocated as 31-bit core resident or file resident with a class
of SHARED or COMMON.

Allocating Transfer Vectors
A transfer vector is the label name given to an entry point into a program. The
program in which the entry point is located is called the parent. The parent can
have multiple entry points (transfer vectors) within it. An allocation statement for the
parent program must precede all its transfer vector’s allocation statements. A
transfer vector has the same allocation attributes as its parent. Each transfer vector
uses 4KB of DASD.

Note: Transfer vectors are not supported for ISO-C dynamic load modules (DLMs).
DLMs can have only one entry point.

The format of the input statements for allocating transfer vectors follows:
where:

prog
The 4-character transfer vector name that is being allocated. The first character
must be alphabetic.

prog,TV,parent,tv#

404 TPF V4R1 System Installation Support Reference

TV
Indicates that this is a transfer vector statement.

parent
The 4-character program name this transfer vector is located in. The parent
cannot be a transfer vector.

tv#
The transfer vector number for prog, which must be a decimal number in the
range 0 to 1023.

Allocating Spare Program Slots
Spare statements interspersed throughout the program allocation table (PAT) hold
program record numbers (PRNs) and 4KB blocks of DASD so that programs can be
placed in these positions at a later time. This allows you to add and delete
programs without changing existing PRNs. Any programs you add without using
spares must be added after the last entry in the last input deck. If programs are
added in the middle, a full load must be done.

The format of the input statements for allocating spare program slots follows:
where:

SPARE
Indicates that this is a spare statement.

Defining Pools
The format of the input statements for defining pools follows:
where:

poolsym
The 3-character GFS ID to be expanded. The first two characters are the record
ID and the third character is the record size attribute (L for large records or S
for small records).

svc
A 3-byte hexadecimal SVC interrupt code. Valid codes include:

0ABCnn SLT (small, long-term)

OABEnn SST (small, short-term)

0AC0nn SDP (small, duplicated)

0AC2nn LLT (large, long-term)

0AC4nn LST (large, short-term)

OAC6nn LDP (large, duplicated)

where nn stands for:

00 ratio dispensing option

04 DASD Device A

08 DASD Device B

SPARE

poolsym,TYPE=POOL,VALUE=svc

System Allocator 405

0C DASD Device C

10 DASD Device D

Adding Your Own Function Switches
Function switches determine whether a program is allocated normally or as a
dummy program.

To Add Your Own Function Switches
1. Update the SIP SKFUNC skeleton. Add your new switch in four places:

2. In the list of switches in the prologue section (comments) of the macro, along
with a description of the switch, for example:

.* &NEWFUNC NEW FUNCTION SWITCH

3. In the section where global variables are defined, for example:
GBLB &NEWFUNC

4. In the section containing SETB instructions, for example:
&NEWFUNC SETB (&SBaaaa AND &SBbbbb)

(where &SBaaaa and &SBbbbb are defined function switches).

5. In the final section that punches out the IBM C Language header file, before the
EOFL statement, for example:

PUNCH ’ "NEWFUNC",&NEWFUNC,’

1. Code your new function switch name on the FUNC parameter of the program
allocation statement.

2. Code EXPRS=S on the SIP GENSIP macro to generate the IBM C Language
header file c$idfunc.h.

3. Rerun SIP Stage I.

4. Execute the JCL generated by step 3.

When adding a new function switch, avoid using names beginning with &SB. This
naming convention is reserved for IBM use.

Running the System Allocator (SALO)
Before you can run the system allocator (SALO), you must have:

v The IBMPAL input deck

v Any input decks that you want concatenated (and the names of these decks
coded on the INDSN macro)

v Any of your own authorization bits in the IBM C Language header file
c$idsalo.h.

v Any of your own function switches in the SIP SKFUNC skeleton.

There are two different ways you can run SALO, depending on whether you run SIP
Stage I, or both SIP Stages I and II.

To Run Only SIP Stage I
1. Code EXPRS=S on the SIP GENSIP macro.

2. Assemble the Stage I deck.

3. Run the JCL that was produced from SIP Stage I.

406 TPF V4R1 System Installation Support Reference

To Run Both SIP Stages I and II
1. SALO is compiled automatically, link-edited, and executed during Stage II.

When SALO runs successfully, it produces the system allocator (SAL) table and the
program allocator table (PAT), which are written to disk as partitioned data sets.

Creating the Program and System Allocator Tables
The SAL1A2E program is used to create the program allocator table (PAT) and the
system allocator (SAL) table. Figure 34 shows part of the JCL created from SIP
Stage I that is used to run the SAL1A2E program. You may want to change some
of the statements to suit your purpose.

GPARM
The GPARM statement identifies the general parameters that are used by
SAL1A2E EXEC.

PROG
The PROG parameter identifies the number of programs you want to
allocate.

SS
The SS parameter determines the name of the subsystem.

ECHO
The ECHO parameter determines how the error listing is created. If the
value supplied is YES, all input cards and errors are listed. If the value
supplied is NO, only errors are listed.

SAL
The SAL parameter determines if a SAL report is created. The SAL report
shows the characteristics of all tapes, pools, and programs in the SAL table.
The value supplied can be YES or NO.

CC
The CC parameter determines if the output report files have carriage control
characters. The value supplied can be YES or NO.

INFILE
The INFILE parameter identifies data sets that contain lists of programs that
you want to allocate.

SALOUT
The SALOUT statement determines where the SAL table is put.

//SAL1A2E EXEC EDCCLG,INFILE=’ACP.CSRCE.OL.REL40(SALO40)’,
// GPARM=’PROG=5500 SS=BSS ECHO=YES SAL=YES CC=NO’
//COMPILE.SYSLIB DD DSN=&VSCCHD&CVER&EDCHDRS,DISP=SHR
// DD DSN=ACP.CHDR.REL40,DISP=SHR
// DD DSN=ACP.SYMACRO.REL40.BSS,DISP=SHR
//GO.SYSUDUMP DD SYSOUT=A
//GO.INFILE DD DSN=ACP.SALIN.REL40(IBMPAL),DISP=SHR
// DD DSN=ACP.SALIN.REL40(USRTPF),DISP=SHR
//GO.SALOUT DD DSN=ACP.SALTBL.REL40.BSS(TABLE40),DISP=SHR
//GO.PATOUT DD DSN=ACP.SYSRCE.RT.REL40.BSS(IPAT40),DISP=SHR
//GO.LSTFILE DD SYSOUT=A
//GO.SALRPT DD SYSOUT=A

Figure 34. Sample JCL Created by Running SIP Stage 1

System Allocator 407

PATOUT
The PATOUT statement determines where the IPAT source is put. The source
must be assembled to create the actual PAT.

LSTFILE
The LSTFILE statement determines where the error listing is put.

SALRPT
The SALRPT statement determines where the SAL report is put.

408 TPF V4R1 System Installation Support Reference

Variable Cross-Reference Listing

The variable cross-reference listing program (VCRS) scans any partitioned data set
containing programs written in assembler or macro assembler language. It also
prints a cross reference listing of all the global variable symbols used in the PDS,
cross-referencing them to the members in which they are used. By use of control
cards, VCRS can be made to scan a selected list of members, certain variable
types, or both.

The variables found can either be sorted alphabetically or by global type (A, B, or
C), or alphabetically in SIP (System Initialization Process) order. The PDS scanned
can be concatenated data sets. Using SYSLIB data definitions, you can search for
segments that are called by other members of the PDS being searched and that
use the assembler COPY statement. VCRS ignores PDS members that are written
in PL/I language (for example, data reduction and pool generation).

VCRS identifies, by name, a copied member that uses global symbols. The copied
member is referred to by the NAME(COPY) statement where:

NAME The prime PDS member being searched.

COPY A PDS member using a global symbol that was copied (using the
assembler COPY statement) by the prime PDS member.

VCRS also cross-references variable symbols that are used in macro language SET
statements.

JCL Control Cards
Input to the program is the partitioned data set to be scanned. Sort modules from
SYS1.LINKLIB and SYS1.SORTLIB are also required. If the code being scanned
contains any COPY statements, the PDS containing the members to be copied
must also be included as the SYSLIB data set.

Figure 35 on page 410 shows the JCL required to run the VCRS program.

© Copyright IBM Corp. 1994, 2002 409

where:

vv The user’s version of the TPF system

ssid The user’s subsystem ID

BSS The basic subsystem.

Note: All library names are referred to as per the TPF System Initialization Process
(see TPF System Generation).

The region or partition in which the job is run should be at least 82KB. A STEPLIB
or JOBLIB card is needed if the VCRS program is in a user’s library rather than in
SYS1.LINKLIB. The rest of the JCL is described as follows:

MSG This DD statement is used for error messages to the user.

SYSPRINT This DD statement is used for messages from the MVS Sort/Merge
program,which is invoked by VCRS.

SORTLIB This DD statement points to the data set in which the modules of
the Sort/Merge program reside.

SORTIN This is a work data set through which VCRS passes records to the
sort/merge program. A BLKSIZE value must be supplied.

SORTOUT This is a work data set in which VCRS receives sorted records from

//VCROSS EXEC PGM=VCRSvv,REGION=256K,TIME=20
//STEPLIB DD DSN=ACP.LINK.RELvv.ssid,DISP=SHR
//MSG DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
//SORTIN DD UNIT=SYSDA,SPACE=(TRK,(5,10)),DCB=BLKSIZE=5600
//SORTOUT DD UNIT=SYSDA,SPACE=(TRK,(5,10)),
// DCB=(RECFM=FB,LRECL=28,BLKSIZE=5600)
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,10,,CONTIG)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,10,,CONTIG)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,10,,CONTIG)
//PDS DD DISP=SHR,DSN=ACP.SYMACRO.RELvv.ssid
// DD DISP=SHR,DSN=ACP.MACRO.RELvv
// DD DISP=SHR,DSN=ACP.SIPGEN.RELvv
// DD DISP=SHR,DSN=ACP.SYSRCE.RELvv.ssid
// DD DISP=SHR,DSN=ACP.SRCE.CP.RELvv (note - BSS only)
// DD DISP=SHR,DSN=ACP.SRCE.RT1.RELvv
// DD DISP=SHR,DSN=ACP.SRCE.RT2.RELvv
// DD DISP=SHR,DSN=ACP.SRCE.RT3.RELvv
// DD DISP=SHR,DSN=ACP.SRCE.OL.RELvv
//SYSLIB DD DISP=SHR,DSN=ACP.SYMACRO.RELvv.ssid
// DD DISP=SHR,DSN=ACP.MACRO.RELvv
// DD DISP=SHR,DSN=ACP.SIPGEN.RELvv
// DD DISP=SHR,DSN=ACP.SYSRCE.RELvv.ssid
// DD DISP=SHR,DSN=ACP.SRCE.CP.RELvv (note - BSS only)
// DD DISP=SHR,DSN=ACP.SRCE.RT1.RELvv
// DD DISP=SHR,DSN=ACP.SRCE.RT2.RELvv
// DD DISP=SHR,DSN=ACP.SRCE.RT3.RELvv
// DD DISP=SHR,DSN=ACP.SRCE.OL.RELvv
//SYSIN DD *

LIST=(PROGRAM1,PROGRAM9)
SORT=SIP
GLOBAL=A

/*

Figure 35. JCL Required to Run VCRS

410 TPF V4R1 System Installation Support Reference

the Sort/Merge program. You must supply DCB parameters with
LRECL=28 plus a BLKSIZE value.

SORTWK01-3 These are DD statements for work space used by the Sort/Merge
program.

PDS This is a DD statement for the data set to be scanned. In the
example, it is a concatenated data set of all TPF source libraries
produced from SIP Stage II. As an alternative, if the referenced
programs in the SYSIN data definition resided in a single data set,
only that data set need to be specified. Normal MVS restrictions
apply to the maximum number of concatenated data sets.

SYSLIB This DD statement points to partitioned data sets in which VCRS
looks for members named in COPY statements found in the primary
input. Nested COPY statements are ignored, for example, code
referred to by a COPY statement cannot have a COPY statement in
itself. The SYSLIB DD statement is not needed if there are no
COPY statements in the primary input. When searching TPF
segments in the PDS data definition (when the PDS DD statement
is included), the SYSLIB DD statement must include, at least, the
library (ACP.SYMACRO.RELvv.ssid) that contains the SYGLB and
SYSET segments. See TPF System Generation for more
information.

SYSIN This is a DD statement for the control card data set. These control
cards are described below, in Control Card Input.

The JCL for running this program can be simplified by using a cataloged or
instream procedure. The sample JCL that follows shows use of an instream
procedure:

//VCROSS PROC TYPE=OL,REL=95
//VCROSS EXEC PGM=VCRS,REGION=256K,TIME=20
//STEPLIB DD DSN=TPF.LINK.REL&REL
//MSG DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
//SORTIN DD UNIT=SYSDA,SPACE=(TRK,(5,10)),DCB=BLKSIZE=5600
//SORTOUT DD UNIT=SYSDA,SPACE=(TRK,(5,10)),
// DCB=(RECFM=FB,LRECL=28,BLKSIZE=5600)
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,10,,CONTIG)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,10,,CONTIG)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,10,,CONTIG)
//PDS DD DISP=SHR,DSN=TPF.SRCE.&TYPE..REL&REL
//SYSLIB DD DISP=SHR,DSN=TPF.SYMACRO.REL&REL
// DD DISP=SHR,DSN=TPF.SRCE.&TYPE..REL&REL
//SYSIN DD DUMMY
// PEND
//X EXEC VCROSS

Control Card Input
The control card options provide the following facilities:

1. Scan the entire PDS for every type of global variable.

2. Scan a list of members for every type of global variable.

3. Scan the entire PDS for 1 to 3 types of variables.

4. Scan a list of members for 1 to 3 types of variables.

5. Sort and print the globals found in the order specified.

Variable Cross-Reference Listing 411

Scan the Entire PDS for Every Type of Variable
If no control cards are specified, all members in the PDS directory will be scanned
for every variable type with default options. The SYSIN DD card can appear as one
of the following:
//SYSIN DD DUMMY

or
//SYSIN DD *
/*

Scan a List of Members
Format:

LIST=name
LIST=(name1,name2,name3,...name(n))

One or more members can be supplied in the LIST option. If there is only
one member in the list, parentheses are not required. The names are not
required to be in any order.

A list can appear on several lines. The following example shows a list
continued on more than one line:

Format:

LIST=(BMGL,BMP0,CRTBC,
CRSM, CLWA,
CZXP,
CYYA)

Note: A list must be enclosed in parentheses (if more than one name is
supplied). If continued on the next line, the last name of the previous
line must be followed by a comma. Only columns 1–71 can be used.

Subset of Variable Types Option
Format:

GLOBAL=type
GLOBAL=(type1,type2)
GLOBAL=(type1,type2,type3)
GLOBAL=(type)

where:

type = A, B, or C

One or more global variable types can be supplied in the GLOBAL option. If
there is only one global type in the list, parentheses can be omitted. The
types do not need to be in any order. Only the types specified will be
searched for.

Note: The list must be enclosed in parentheses (if more than one type is
supplied). If continued on the next line, the last type of the previous
line must be followed by a comma. Only columns 1–71 can be used.

412 TPF V4R1 System Installation Support Reference

Print the Globals Found in the Order Specified
Format:

SORT=how

where:

how = TYP, or GLB, or SIP

v If SORT=TYP

The global variables found will be printed in alphabetic order in global
type (first A, then B, then C).

v If SORT=GLB

The global variables found will be printed in global name alphabetic
order, regardless of global type.

v If SORT=SIP

Only the SIP global variable found (for example, &X... and &S...) will be
printed and in SIP alphabetic order (disregarding the first 3 characters of
the name).

Option Defaults
If you do not request options (see Scan The Entire PDS For Every Type Of
Variable), the LIST option is not in effect (will scan entire PDS data definition,
except PL/I members) (see Scan a List of Members), the GLOBAL option is set to
GLOBAL=(A,B,C) (see Subset Of Variable Types Option), and the SORT=GLB
option (see Print The Globals Found In the Order Specified) is in effect.

Examples of Control Card Options
Example 1: LIST=SYSEQ

List all global variables used in member SYSEQ.

Example 2: LIST=SYCON,GLOBAL=A

List all type-A global variables used in member SYCON.

Example 3: LIST=(EB0EB,RTCEQ,BACKC)

List all global variables used in EB0EB, RTCEQ, and BACKC.

Example 4:

LIST=(EB0EB,
RTCEQ,
BACKC)

An alternate way of showing Example 3.

Example 5: GLOBAL=(A,C)

List all type-A and type C global variables in the PDS.

Example 6: GLOBAL=(A, C)

An alternate way of showing Example 5.

Example 7: LIST=(ST0TM,CINFC),GLOBAL=(A,B)

List all type-A and B global variables occurring in members ST0TM
and CINFC.

Example 8: SORT=GLB

Variable Cross-Reference Listing 413

List all of the variables referred in alphabetic order. Can be used
with any of the other examples.

Procedure
The JCL and control cards should be made into a deck and run as a batch job
under MVS.

Output
A variable cross-reference listing is produced that lists the global variable symbols
used in the input data set and the members in which they are used. An error
message listing may also be produced.

Error Messages
Errors consist of 2 types - control card errors, and errors which result from local
variable symbols defined in the VCRS program being too small (such as &VBLS).

EQUAL SIGN DOESN’T FOLLOW KEYWORD/CARD
REJECTED

Explanation: This message occurs when a keyword
on the control card is not followed by an equal sign.

END OF CARD REACHED/VALUE OR KEYWORD
INVALID

Explanation: This message is printed when column 72
of the control card is reached on a scan without finding
a delimiter for the keyword or keyword value being
scanned.

INVALID KEYWORD ON CNTRL CARD

Explanation: The keyword is not LIST, GLOBAL, or
SORT.

GLOBAL VALUE NOT A,B,C

Explanation: The value of the GLOBAL = field on the
control card is not A, B, or C.

INVALID SYNTAX ON CNTRL CARD

Explanation: The syntax on the control card does not
correspond to the rules specified in either Subset of
Variable Types Option or Print the Globals Found in the
Order Specified or Option Defaults.

RIGHT “ PARENDS” MISSING ON CNTRL
CARD/ASSUMED

Explanation: A right parenthesis is missing on the
control card.

INSUFFICIENT CORE/INCREASE REGION SIZE

Explanation: A GETMAIN for core to be used as a
work area cannot be satisfied.

MAX (nnn) NO. OF MEMBERS FOR LIST
EXCEEDED/INCREASE &LISTMEM AND
REASSEMBLE

Explanation: The LIST option was used to specify a
LIST of members to be cross-referenced. The program
only caters for nnn members. Increasing the value of
local variable &LISTMEM and reassembly of VCRS will
correct this error.

MAX (nnn) NO. OF CONTINUATION CARDS
EXCEEDED/INCREASE &CONTCRD AND
REASSEMBLE

Explanation: The program allows for nnn continuation
cards in a statement. A statement has more than this
number of continuation cards when this message is
issued. The problem can be corrected by increasing the
value of local variable &CONTCRD, reassembly of
VCRS and re-execution.

CONTINUATION CNTRL CARD MISSING

Explanation: Continuation control card expected but
not found.

ERROR RETURN CODE FROM SORT

Explanation: On return from the Sort phase of the
program, General Register 15 contains a nonzero value
indicating that an error occurred in the sort.

414 TPF V4R1 System Installation Support Reference

MAX (nnn) NO OF ALLOWED VARIABLES
EXCEEDED - INCREASE &VBLS AND REASSEMBLE

Explanation: The number of global variables, nnn,
allowed for in the program is less than the number
occurring in the member being processed when the
message is issued. This can be remedied by changing
the value of local variable &VBLS, reassembly of VCRS
and re-execution.

NO GLOBAL VARIABLES USED IN MEMBERS
SEARCHED

Explanation: The members searched (PDS data
definition as modified by LIST option) did not contain
any Global variable definitions.

COPY REQUEST FOR MEMBER xxxxxxxx IN
MEMBER yyyyyyyy IS A NESTED
REQUEST/IGNORED

Explanation: See JCL-SYSLIB data definition.

BUFFER NOT AVAILABLE FOR xxxxxxxx

Explanation: Where xxxxxxxx is either SYSLIB
(SYSLIB data definition or PDS (PDS data definition).

An OS GETBUF macro instruction returned an error
code for the specified data set.

SORT VALUE NOT SIP TYP GLB

Explanation: Sort parameter contained unknown
keyword.

xxxxxxxx MEMBER NOT FOUND

Explanation: Member xxxxxxxx, specified via LIST
option, not found in PDS data definition.

COPY REQUEST FOR MEMBER xxxxxxxx IN
MEMBER yyyyyyyy NOT FOUND, IGNORED

Explanation: Copy member xxxxxxxx, requested by
PDS member yyyyyyyy, not found in SYSLIB data set.

Hardware Requirements
An Operating System (hardware and software) capable of supporting the
Sort/Merge program. Enough additional direct access space is required to store the
input and SYSLIB data sets.

References
TPF System Generation

Variable Cross-Reference Listing 415

416 TPF V4R1 System Installation Support Reference

Appendix. JCL Load Deck Examples

This appendix contains examples of load decks for the auxiliary loader (TLDR) and
E-type loader (OLDR) offline segments. The format of the load decks vary
depending on the type of offline loader and the storage medium used.

TLDR JCL to Load Components to GDS
The example that follows shows the JCL required to load offline data to the general
data set (GDS) using the auxiliary loader offline segment (TLDR).

Note: nn is the release identification and ssid is the subsystem ID.
//TLDRGDS JOB MSGLEVEL=1,CLASS=A,MSGCLASS=A,
// USER=mvsuser,PASSWORD=password
//TLDR EXEC PGM=TPFLDRnn,REGION=7000K,PARM=’TLDR,SYS=ACP,CLMSIZE=4000000’
//STEPLIB DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
// DD DSN=SYS1.EDC.SEDCLINK,DISP=SHR
// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR
//SALTB DD DSN=ACP.SALTBL.RELnn.ssid,DISP=SHR
//OBJDD DD DSN=ACP.OBJ.RELnn.ssid,DISP=SHR
//LOADMOD DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
//ALDRCPL DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
//TLDROUT DD UNIT=SYSDA,VOLUME=SER=dasd,
// DSN=mvsuser.OUTPUT,SPACE=(TRK,(40,20)),
// DCB=(RECFM=F,BLKSIZE=4095,LRECL=4095),
// DISP=(OLD,KEEP,KEEP)
//TAPEOUT DD DSN=&&SYSUT1,SPACE=(TRK,(20,20)),UNIT=SYSDA
//TEMPLOAD DD DSN=&&SYSUT1,SPACE=(TRK,(20,20)),UNIT=SYSDA
//LOADLIST DD SYSOUT=*
//LOADSUM DD DSN=&&LOADSUM,DISP=(NEW,PASS),UNIT=SYSDA,
// LRECL=133,SPACE=(TRK,(10,10)),RECFM=FBA
//SYSUDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSIN DD *
*** INPUT CONTROL CARDS ARE PLACED HERE
/*
//PRTSUM EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&&LOADSUM,UNIT=SYSDA,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=*,LRECL=133
//SYSIN DD *

PRINT PREFORM=A
/*

TLDR JCL to Load Components to Tape
The example that follows shows the JCL required to load offline data to tape using
the auxiliary loader offline segment (TLDR).

Note: nn is the release identification and ssid is the subsystem ID.
//TLDRVTAP JOB MSGLEVEL=1,CLASS=A,MSGCLASS=A
//TLDR EXEC PGM=TPFLDRnn,REGION=7000K,PARM=’TLDR,SYS=ACP,CLMSIZE=4000000’
//STEPLIB DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
// DD DSN=SYS1.EDC.SEDCLINK,DISP=SHR
// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR
//SALTB DD DSN=ACP.SALTBL.RELnn.ssid,DISP=SHR
//OBJDD DD DSN=ACP.OBJ.RELnn.ssid,DISP=SHR
//LOADMOD DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
//ALDRCPL DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
//TLDROUT DD UNIT=SYSDA,DSN=&&TLDROUT,DISP=(NEW,PASS)
//TAPEOUT DD DSN=&&SYSUT1,SPACE=(TRK,(20,20)),UNIT=SYSDA

© Copyright IBM Corp. 1994, 2002 417

//TEMPLOAD DD DSN=&&SYSUT1,SPACE=(TRK,(20,20)),UNIT=SYSDA
//LOADLIST DD SYSOUT=*
//LOADSUM DD DSN=&&LOADSUM,DISP=(NEW,PASS),UNIT=SYSDA,
// LRECL=133,SPACE=(TRK,(10,10)),RECFM=FBA
//SYSUDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSIN DD *
*** INPUT CONTROL CARDS ARE PLACED HERE
/*
//MKTAPE EXEC PGM=IEBGENER,REGION=58K
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=TLD.TAPE,LABEL=(,SL),UNIT=3480,
// VOL=SER=vvvvvv,DISP=(,KEEP),
// DCB=(BLKSIZE=4095,RECFM=U)
//SYSUT1 DD DSN=&&TLDROUT,UNIT=SYSDA,DISP=(OLD,DELETE)
//PRTSUM EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&&LOADSUM,UNIT=SYSDA,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=*,LRECL=133
//SYSIN DD *

PRINT PREFORM=A
/*

TLDR JCL to Load Components to VRDR
The example that follows shows the JCL required to load offline data to the virtual
reader (VRDR) using the auxiliary loader offline segment (TLDR).

Notes:

1. nn is the release identification and ssid is the subsystem ID.

2. This JCL transmits to a data set called vmnode.vmuid. Use the ELDRVRDR
EXEC to convert this data set to a spool file that supports virtual reader input. A
sample ELDRVRDR EXEC is shipped as segment UELV.

//TLDRVRDR JOB MSGLEVEL=1,CLASS=A,MSGCLASS=A
//TLDR EXEC PGM=TPFLDRnn,REGION=7000K,PARM=’TLDR,SYS=ACP,CLMSIZE=4000000’
//STEPLIB DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
// DD DSN=SYS1.EDC.SEDCLINK,DISP=SHR
// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR
//SALTB DD DSN=ACP.SALTBL.RELnn.ssid,DISP=SHR
//OBJDD DD DSN=ACP.OBJ.RELnn.ssid,DISP=SHR
//LOADMOD DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
//ALDRCPL DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
//TLDROUT DD DSN=&&VRDROUT,DISP=(NEW,PASS),UNIT=SYSDA
//TAPEOUT DD DSN=&&SYSUT1,SPACE=(TRK,(20,20)),UNIT=SYSDA
//TEMPLOAD DD DSN=&&SYSUT1,SPACE=(TRK,(20,20)),UNIT=SYSDA
//LOADLIST DD SYSOUT=*
//LOADSUM DD DSN=&&LOADSUM,DISP=(NEW,PASS),UNIT=SYSDA,
// LRECL=133,SPACE=(TRK,(10,10)),RECFM=FBA
//SYSUDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSIN DD *
*** INPUT CONTROL CARDS ARE PLACED HERE
/*
//PRTSUM EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&&LOADSUM,UNIT=SYSDA,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=*,LRECL=133
//SYSIN DD *

PRINT PREFORM=A
/*
//TRANSMIT EXEC PGM=IKJEFT01,

418 TPF V4R1 System Installation Support Reference

// PARM=’TRANSMIT vmnode.vmuid DDNAME(SYSTSIN) NOLOG NONOTIFY SEQ’
//SYSTSIN DD UNIT=SYSDA,
// DSN=&&VRDROUT,DISP=(OLD,KEEP)
//SYSTSPRT DD DUMMY

OLDR JCL to Load E-Type Programs to GDS
The example that follows shows the JCL required to load offline programs to the
general data set (GDS) using the E-type loader offline segment (OLDR).

Note: nn is the release identification and ssid is the subsystem ID.
//OLDRGDS JOB MSGLEVEL=1,CLASS=A,MSGCLASS=A,REGION=2100K,
// USER=mvsuser,PASSWORD=password
//NAME EXEC PGM=TPFLDRnn,REGION=9000K,PARM=’OLDR,CLMSIZE=9000000’
//STEPLIB DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
// DD DSN=SYS1.EDC.SEDCLINK,DISP=SHR
// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR
//LOADMOD DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
//OBJLIB DD DSN=ACP.OBJ.RELnn.ssid,DISP=SHR
//CPRTEMP DD UNIT=SYSDA,
// DSN=&&CPTEMP,SPACE=(TRK,(100,20)),
// DCB=(RECFM=FB,BLKSIZE=4095,LRECL=4095),
// DISP=(NEW,DELETE)
//PROGTEMP DD UNIT=SYSDA,
// DSN=&&PRTEMP,SPACE=(TRK,(100,20)),
// DCB=(RECFM=FB,BLKSIZE=4095,LRECL=4095),
// DISP=(NEW,DELETE)
//OUTPUT DD UNIT=SYSDA,VOLUME=SER=dasd,
// DSN=mvsuser.OUTPUT,SPACE=(TRK,(40,20)),
// DCB=(RECFM=F,BLKSIZE=4095,LRECL=4095),
// DISP=(OLD,KEEP,KEEP)
//SALTB DD DSN=ACP.SALTBL.RELnn.ssid,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//PRINTER DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSIN DD *
*** INPUT CONTROL CARDS ARE PLACED HERE

OLDR JCL to Load E-Type Programs to Tape
The example that follows shows the JCL required to load offline programs to tape
using the E-type loader offline segment (OLDR).

Note: nn is the release identification and ssid is the subsystem ID.
//OLDRVTAP JOB MSGLEVEL=1,CLASS=A,MSGCLASS=A,REGION=2100K
//NAME EXEC PGM=TPFLDRnn,REGION=9000K,PARM=’OLDR,CLMSIZE=9000000’
//STEPLIB DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
// DD DSN=SYS1.EDC.SEDCLINK,DISP=SHR
// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR
//LOADMOD DD DSN=ACP.LINK.RELnn.ssid,DISP=SHR
//OBJLIB DD DD DSN=ACP.OBJ.RELnn.ssid,DISP=SHR
//CPRTEMP DD UNIT=SYSDA,
// DSN=&&CPTEMP,SPACE=(TRK,(100,20)),
// DCB=(RECFM=FB,BLKSIZE=4095,LRECL=4095),
// DISP=(NEW,DELETE)
//PROGTEMP DD UNIT=SYSDA,
// DSN=&&PRTEMP,SPACE=(TRK,(100,20)),
// DCB=(RECFM=FB,BLKSIZE=4095,LRECL=4095),
// DISP=(NEW,DELETE)
//OUTPUT DD DSN=OLD.TAPE,UNIT=3480,DISP=(NEW,KEEP),
// VOL=SER=vvvvvv,LABEL=(,SL),

Appendix. JCL Load Deck Examples 419

// DCB=(BLKSIZE=4095,RECFM=U)
//SALTB DD DSN=ACP.SALTBL.RELnn.ssid,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//PRINTER DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSIN DD *
*** INPUT CONTROL CARDS ARE PLACED HERE

OLDR JCL to Load E-Type Programs to VRDR
The example that follows shows the JCL required to load offline programs to the
virtual reader (VRDR) using the E-type loader offline segment (OLDR).

Notes:

1. nn is the release identification and ssid is the subsystem ID.

2. This JCL transmits to a data set called vmnode.vmuid. Use the ELDRVRDR
EXEC to convert this data set to a spool file that supports virtual reader input. A
sample ELDRVRDR EXEC is shipped as segment UELV.

//OLDRVRDR JOB MSGLEVEL=1,CLASS=A,MSGCLASS=A,REGION=2100K
//NAME EXEC PGM=TPFLDRnn,REGION=9000K,PARM=’OLDR,CLMSIZE=9000000’
//STEPLIB DD DSN=ACP.LINK.RELnn.BSS,DISP=SHR
// DD DSN=SYS1.EDC.SEDCLINK,DISP=SHR
// DD DSN=SYS1.PLI.SIBMLINK,DISP=SHR
//LOADMOD DD DSN=ACP.LINK.RELnn.BSS,DISP=SHR
//OBJLIB DD DSN=ACP.OBJ.RELnn.BSS,DISP=SHR
//CPRTEMP DD UNIT=SYSDA,
// DSN=&&CPTEMP,SPACE=(TRK,(100,20)),
// DCB=(RECFM=FB,BLKSIZE=4095,LRECL=4095),
// DISP=(NEW,DELETE)
//PROGTEMP DD UNIT=SYSDA,
// DSN=&&PRTEMP,SPACE=(TRK,(100,20)),
// DCB=(RECFM=FB,BLKSIZE=4095,LRECL=4095),
// DISP=(NEW,DELETE)
//OUTPUT DD DSN=&&VRDROUT,DISP=(NEW,PASS),UNIT=SYSDA,
// DCB=(RECFM=F,BLKSIZE=4095,LRECL=4095)
//SALTB DD DSN=ACP.SALTBL.RELnn.BSS,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//PRINTER DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSIN DD *
*** INPUT CONTROL CARDS ARE PLACED HERE
//*
//TRANSMIT EXEC PGM=IKJEFT01,
// PARM=’TRANSMIT vmnode.vmuid DDNAME(SYSTSIN) NOLOG NONOTIFY SEQ’
//SYSTSIN DD UNIT=SYSDA,
// DSN=&&VRDROUT,DISP=(OLD,KEEP)
//SYSTSPRT DD DUMMY

420 TPF V4R1 System Installation Support Reference

Index

Special Characters
setenv function 149

Numerics
24-bit mode 401, 403
31-bit mode 401, 403

A
addressing mode

24-bit 401
31-bit 401
specifying 401
using the MODE statement 401

ALDR Path card 337, 357
allocating programs

adding function switches 406
in an active TPF system 369
using the offline SALO program 402

allocating spare program slots 405
allocating transfer vectors 404
allocation error listings 407
allocation reports 407
Application Timeout (UCCAPL) 10
auxiliary load

offline input 342
auxiliary loader 341

C
C function trace 98

trace area initialization 105
trace environment customization 100
trace user data 98

C language programs
allocating in 31-bit mode 403

C trace environment customization (UCCCDEB) 100
C trace environment initialization (UCCCEXP) 105
C trace user data (UCCCTRC) 98
category change 213
CCCTIN exit points 22, 24
CCUEXT CSECT 3
chain release 261
CIMR (core image restart area) components

changing 322
copying individual system components 342
core block management

get block with ECB user exit 56
get block without ECB user exit 57
get common block with ECB user exit 58
get system work block 59
release block with ECB user exit 71
release block without ECB user exit 72
release common block with ECB user exit 73
release system work block 74

core load mode number
See load mode number

core resident programs
allocating 402
selective loading during restart 197

CPU external interrupts 29
CPU timer interrupts 30
Create macro processing 31
critical record filing processing 33
CUSR 4

D
data loader 340
data sets

partitioned 407
database reorganization 261
DCTRIT macro 402
deadlock detection user exit 130
debugger trace selection 34, 35
demand counter

location of 402
disk space

reclaiming 371
dynamic exit points

changing to nondynamic 3
dynamic load module (DLM)

environment initialization 39
external function call entry 42
external function call exit 41
return processing entry 45
return processing exit 43

E
E-type loader

changing threshold values 371
clearing file resident records 371
general information 372
offline JCL cards 362

ECB
displaying status 371

ECB (entry control block)
creating 46

enterprise-specific MIB retrieval 202
environment variables 149
error listings

system allocator (SALO) 407
exit points

changing 3
extended globals 304

F
FARF address generation (UCCFSP) 50
FC0TB macro 402

© Copyright IBM Corp. 1994, 2002 421

file address decoding
FARF address generation 50
split access user exit 81
split chain header access user exit 82

file resident programs
allocating 402

function switches
adding 406
adding your own 406
definition of 406

G
GAT (global attribute table) 244
GAT (Global Attribute Table) 248
general file

formatting 322
initializing 322
IPLing 339

general file contents 321
general file load deck

creating 322
general file loader 322
general postinterrupt processing (UCCGPI) 55
GENSIP macro 406
GL0BP 261
global area 243
global areas

application use of 255
area 1 245
area 2 247
area 3 247
area 4 247
layout 245
locating in a dump 307
MDBF layout 252
number 304
structure 244

global attribute table (GAT) 244
Global Attribute Table (GAT) 248
global block DSECTs

considerations when changing 259
in global area 1 259
list and description 249
subsystem design considerations 252

global directory
definition 243
GL0BA

as a part of global area 1 245, 258, 259
called by GLOBZ 256

GL0BY
as a part of global area 3 247, 258, 260
called by GLOBZ 256

global environment lists 149
global fields

definition of 243
in global area 1 259
in global area 3 260
SSU common or unique 259

global macros
FILKW

description 257
example 257
updating global fields and records 258, 317, 318

GL0BA 248
GL0BY 248
GLMOD 258

description 256
updating global fields and records 258, 317, 318

GLOBZ
addressing global area 1 259
addressing global area 3 260
addressing global areas 1 and 3 248
description 255
example 250, 257
updating for GL0BA or GL0BY changes 258
using to address global fields 250

KEYRC 258
SYNCC 307, 317

description 258
updating global fields and records 317, 318

global record 247, 258
global storage allocator record (GOA) 244, 261
global synchronization 255, 306
global terminology 243
global variable symbols

cross-referencing to PDS members 409
finding in a PDS 409

globals
defining addressability

See PARM
directory slots 248
extended 304
I-stream unique/shared records 243
loading 261, 302
programming considerations 258
record concatenation 305
SSU unique/common 243

GOA (global storage allocator record) 244, 261
GOA list entry

attribute byte 304
directory slot number 305
global area number 304
number of bytes to strip 304
number of doublewords 304
ordinal number 305

H
header label routines 103

I
I-stream unique/shared records 253, 309
IDOTB macro 4
images

creating 341
defining 342
enabling 361
IPLing 362

422 TPF V4R1 System Installation Support Reference

INDSN macro 401, 406
initialization processing 22, 24
input decks, SALO 400
IPLing an image 362

K
key-protected memory 402
key-protected storage 403
keypoint data

lost 350
keypointable global records 306
keypointing global records 248, 260
keypoints

moving to the working area 361

L
library function return (ISO-C) 61
load mode number 302
Loader Control cards

Call General File Keypoint card 327
Call Keypoint card 350
Call Online Keypoint card 329
Call Program card 332, 352, 366
CC card 326
Comment card 326
ELDR Clear card 330, 348
Image Clear card 326
LDT card 337, 357
Load ACPL card 332, 353
Load AP card 332, 352
Load Control Program card 328, 349
Load CTKX card 327, 349
Load FCTB card 333, 354
Load ICDF card 333, 353
Load IPAT card 328, 349
Load IPLA card 335, 355
Load IPLB card 336, 356
Load Keypoint card 329, 349
Load OPL card 331, 351
Load PARS card 351
Load PARS Card 331
Load RIAT card 336, 356
Load SIGT card 334, 354
Load USR1 card 335, 355
Load USR2 card 335, 355
Loadset card 366
Patch cards 367
Patch Keypoint card 351
PROG-MOD-BASE Clear card 330, 347
Program Allocation Table card 365
Subsystem ID card 348, 365
System Allocator card 348, 366

loaders
general information 321

loading E-type programs 362, 367
LODIC Macro (UCCLODC) 62
LU-LU sessions

accepting 372
activating 368, 369

LU-LU sessions (continued)
deactivating 370
deleting from the system 370
displaying information about 370
excluding programs 370
loading 368
reincluding programs 370
selecting an RTP connection 189
using 369

M
macro authorization

on program allocation 403
macro cross-reference programs

DCRS cross-reference generation
attention messages 384
control cards 383
description 381
error messages 385
JCL 383
search parameters 381

DREF report generation
description 381
error messages 386
report heading parameter 382

macro servicing 8
macros

DCTRIT 402
FC0TB 402
GENSIP 406
IDOTB 4
INDSN 401, 406
SI0GT 402
SSDEF 404
UXCMC 4
UXGPIR 4
UXITC 1

main storage resident programs
allocating 402

manager validation, SNMP 203
MDBF (multiple database function) 250
memory

key-protected 402
page-protected 402

MIB retrieval 202
MODE statement

specifying 401
movable VIPA processor deactivation 239
Multiple Assembly/Compilation Print Program 377
Multiple Assembly/Compilation Program

execution parameters 389
files 387
input 387
user considerations 392

multiple database function (MDBF) 250
multiple images 373

Index 423

N
nondynamic exit points

changing to dynamic 3

O
object libraries 324, 345, 364
online mini dump user exit 64
online modules

formatting 322

P
page-protected memory 402
partitioned data sets 407
patching loader offline segment 326
Path card, ALDR 337, 357
PDS (partitioned data set)

cross-referencing global variable symbols to PDS
members 409

searching for a program 409
searching for global variable symbols 409

PER exit 66
PER2 exit 67
pilot tape 261
pools

allocating 406
defining 405

primary globals 243
prime GOA 261, 313
private programs 403
program allocation

adding function switches 406
program allocation table

creation of 400
program loadsets

loading 368
programs

accepting a loadset 372
activating 369
activating selectively 369
allocating 369, 400
changing allocation characteristics 371
deactivating a loadset 370
deleting a loadset 370
excluding from a loadset 370
finding in a PDS 409
loading 362
loading to a storage medium 367
loading to GDS 419
loading to tape 419
loading to VRDR 420
reincluding in a loadset 370

R
rapid transport protocol connections 189
RCS thresholding processing 69
record concatenation 305
record ID attribute table 373

recovery
catastrophic 20

Resource Control control user exits
LODIC Macro 62
suspend ECB 85
Suspend List Post-Interrupt 86
suspend list resource checking 87
TMSLC Macro 93

retrieving enterprise-specific MIB 202
RIAT (record ID attribute table) 373
RIAT processing 75
ROUTC processing 77

S
SAL reports 407
sample STC input 314
SBDTAC SYSTC tag 138
SENDC processing 77
SI0GT macro 402
SIGT (system interprocessor global table) 244
Simple Network Management Protocol (SNMP)

manager 203
SNMP enterprise-specific MIB retrieval 202
SNMP manager validation 203
spare program slots

allocating 405
split access (UCCFSC) 81
split chain header access (UCCFHD) 82
SSDEF macro 404
SSU (subsystem user) table 244
SSU table (Subsystem User table) 307
SSU unique/common 252, 306
stack overflow processing entry (ISO-C) 84
stack overflow processing exit (ISO-C) 83
static override bitmap table 4
STC (system test compiler) 261
storage

key-protected 403
unprotected 403
unprotected working 403

storage protection 245
super GOA 244, 261, 262, 301
Super GOA 312
Suspend list PI (UCCSUSE) 85
suspend list PI (UCCSUSP) 86
Suspend list Resource Checking (UCCSUSC) 87
SVC macro decoder 90
SVC macro service services 8
SYNCC macro coding sample 318
synchronizable global field record (SGFR) 307
system allocator (SALO)

changes to 400
description 399
input decks 400
running the program 406

system allocator table 323, 344
system components

copying individual components 342
loading to a storage medium 358
loading to a TPF image 341

424 TPF V4R1 System Installation Support Reference

system components (continued)
loading to GDS 417
loading to tape 417
loading to the general file 322, 338
loading to VRDR 418

system data loader 261
system error user exits

catastrophic recovery 20
dump override 38, 64
SERRC errors 91, 92
SNAPC errors 79, 80

system generation 322
system interprocessor global table (SIGT) 244
system resources

reclaiming 371
system test compiler (STC) 261

T
tape category change 213
tape volume validation 213
TC (tightly coupled)

See tightly coupled (TC)
TCP/IP user exits

See user exits
tightly coupled (TC) 252
TMSLC Macro (UCCTMSL) 93
TPF macro processing restrictions 8
TPF transaction services exit 101
TPFAR exits 95
TPFDF user exits

TPFDF macro trace call 96
TPFDF macro trace return 97

transaction log write routine 101
transfer vectors

allocating 404
definition of 404

U
UCCAPL user exit 10
UCCCAT user exit 20
UCCCDBI user exit 12
UCCCDBR user exit 14
UCCCDBTS user exit 34, 35
UCCCDEB user exit 100
UCCCENV user exit 39
UCCCEXP user exit 105
UCCCFB user exit 11
UCCCFC user exit 15
UCCCFR user exit 16
UCCCLE user exit 60
UCCCLX user exit 61
UCCCMCP user exit 31
UCCCMPI user exit 32
UCCCMXF user exit 25
UCCCPTI user exit 29, 30
UCCCREB user exit 27
UCCCRI user exit 33
UCCCSER user exit 19
UCCCSK user exit 17

UCCCSOE user exit 84
UCCCSOX user exit 83
UCCCTRC user exit 98
UCCDFFC user exit 96
UCCDFFR user exit 97
UCCDOT user exit 38
UCCECB user exit 46
UCCEFCE user exit 42
UCCEFCX user exit 41
UCCENTD user exit 36, 48
UCCENTN user exit 36, 48
UCCENTR user exit 36, 48
UCCEXI user exit 49
UCCFHD user exit 81, 82
UCCFLM user exit 52
UCCFLX user exit 51
UCCFREB user exit 53
UCCFSP user exit 50
UCCGBC user exit 58
UCCGBE user exit 56
UCCGBK user exit 57
UCCGPFA user exit 65
UCCGSB user exit 59
UCCLDD user exit 102
UCCLODC user exit 62
UCCOMD user exit 64
UCCPER user exit 66
UCCPER2 user exit 67
UCCRBE user exit 71
UCCRBK user exit 72
UCCRCB user exit 73
UCCRIT user exit 75
UCCRSB user exit 74
UCCRTC user exit 77
UCCRTNE user exit 45
UCCRTNX user exit 43
UCCSER user exit 92
UCCSNP user exit 80
UCCSPX user exit 79
UCCSRX user exit 91
UCCSUSC user exit 87
UCCSUSE user exit 85
UCCSUSP user exit 86
UCCSVC user exit 90
UCCSVW user exit 89
UCCSVX user exit 88
UCCTHR user exit 69
UCCTMSL user exit 93
UCCUHL user exit 103
UCCVTO user exit 106
UCCWAI user exit 107
UCCWLOG user exit 101
UCCWTOP user exit 108
unprotected storage 403
unprotected working storage 403
update tape display 102
user exit control list (UCL) 3
user exits

control program exits, by name
CCCPSE, exit point DOT 38
CCCPSE, exit point OMD 64

Index 425

user exits (continued)
control program exits, by name (continued)

CCCPSE, exit point PER 66
CCCPSE, exit point PER2 67
CCCPSE, exit point SER 92
CCCPSE, exit point SNP 80
CCCPSE, exit point SPX 79
CCCPSE, exit point SRX 91
CCCPSF, exit point CAT 20
CCCTIN exit points 22, 24
CCENBK, exit point CFB 11
CCENBK, exit point CREB 27
CCENBK, exit point DBTS 34, 35
CCENBK, exit point EFCE 42
CCENBK, exit point ENTD 36, 48
CCENBK, exit point ENTN 36, 48
CCENBK, exit point ENTR 36, 48
CCENBK, exit point FREB 53
CCENBK, exit point RTNX 43
CCNUCL, exit point CMCP 31
CCNUCL, exit point CMPI 32
CCNUCL, exit point CMXF 25
CCNUCL, exit point CPTE 29
CCNUCL, exit point CPTI 30
CCNUCL, exit point ECB 10, 46, 62, 93
CCNUCL, exit point FLM 52
CCNUCL, exit point FLX 51
CCNUCL, exit point SVW 89
CCNUCL, exit point SVX 88
CCNUCL, exit point WAI 107
CCSONP, exit point GPFA 65
CCTLOG, exit point WLOG 101
CCUEXT, exit point GPI 55
CLHV, exit point GBE 56
CLHV, exit point GBK 57
CLHV, exit point GCB 58
CLHV, exit point GSB 59
CLHV, exit point RBE 71
CLHV, exit point RBK 72
CLHV, exit point RCB 73
CLHV, exit point RSB 74
CPLX, exit point CDBI 12
CPLX, exit point CDBR 14
CSTRTD, exit point EFCX 41
CSTRTD, exit point RTNE 45
CTR0, exit point CDEB 100
CTR0, exit point CEXP 105
CUSR, exit point DFFC 96
CUSR, exit point DFFR 97

control program exits, by subject
BACKC macro entry (UCCCFB) 11
C debugger hooks 14
C debugger initialization 12
C library function call 15
C library function return 16
C stack exception routine 17
C stack exception routine return 19
C trace environment customization 100
C trace environment initialization 105
C trace user data 98
catastrophic recovery (UCCCAT) 20

user exits (continued)
control program exits, by subject (continued)

control transfer execution (UCCCMXF) 25
core-resident enter/back macro (UCCCREB) 27
CPU external interrupt exit point (UCCCPTE) 29
CPU timer interrupt exit point (UCCCPTI) 30
create macro control point (UCCCMCP) 31
Create macro execution (UCCCMPI) 32
critical record filing exit point (UCCCRI) 33
dump override table (UCCDOT) 38
dynamic load module environment

initialization 39
dynamic load module external function call

(UCCEFCE) 42
dynamic load module external function call exit

(UCCEFCX) 41
dynamic load module return processing entry

(UCCRTNE) 45
dynamic load module return processing exit

(UCCRTNX) 43
ENTDC macro (UCCENTD) 36, 48
ENTNC macro (UCCENTN) 36, 48
ENTRC macro (UCCENTR) 36, 48
EXITC exit processing (UCCEXI) 49
fast link macro decoder (UCCFLM) 52
fast link macro exit (UCCFLX) 51
file resident enter/back macro (UCCFREB) 53
general post-interrupt routine (UXGPIR) 4
get block 56, 57
get common block 58
get system work block 59
library function call (ISO-C) 60
library function return (ISO-C) 61
PER exit point (UCCPER) 66
PER2 exit point (UCCPER2) 67
pool address retrieval exit point (UCCGPFA) 65
RCS I/O queue thresholding exit point

(UCCTHR) 69
release block 71, 72
release common block 73
release system work block 74
RIAT exit point (UCCRIT) 75
ROUTC exit point (UCCRTC) 77
SNAPC error (UCCSNP) 80
SNAPC error exit (UCCSPX) 79
stack overflow processing entry 84
stack overflow processing exit 83
SVC macro exit 89
SVC macro exit (UCCSVX) 88
system error entry (UCCSER) 92
system error exit (UCCSRX) 91
TPFDF macro trace call 96
TPFDF macro trace return 97
transaction log write routine 101
update tape message exit routines

(UCCLDD) 102
user header label exit routines (UCCUHL) 103
validate output tape exit routines (UCCVTO) 106
WAITC macro (UCCWAI) 107
WTOPC message translation (UCCWTOP) 108

426 TPF V4R1 System Installation Support Reference

user exits (continued)
control program exits, general information

CCUEXT 3
changing dynamic exit points to nondynamic 3
changing nondynamic exit points to dynamic 3
commands 3
common entry conditions 6
common programming considerations 7
common return conditions 7
creating 5
installing 4
performance considerations 1
UXCMC macro routine 4

E-type program exits, by segment
BK0UX 111
BRU1 177
BRU2 178
BRU3 198
C542 204
CDBPUX 133
CDBUXT 226
CDC1 124
CDC2 123
CDLY 139
CIM2 199
CL99 151
CLA4 170
CLCH 205
CLCI 208
CLCM 169
CLCQ 167
CLCS 206
CLCU 168
CLCV 207
CLCX 209
CLUD 130
CMVU 201
COBC 165
CPSD 210
CPSU 137, 227
CSJV 200
CSLJ 242
CSXA 153
CSXB 153
CSXC 153
CUIA 225
CUIR 224
CUIT 221
CUIV 223
CUIW 216
CVFX 238
CZ1UX 111
GCALX 119
GCLKX 119
GDATX 119
UACC 214
UACP 125
UALS 188
UAPN 186
UARG 152
UBDB 126

user exits (continued)
E-type program exits, by segment (continued)

UBOT 215
UCLB 197
UCOM 203
UCPY 166
UCS1 122
UCST 121
UDE0 142
UDNSEX 136
UDRR 228
UDRS 229
UEL1 134
UELB 240
UELC 230
UELD 120
UELE 235
UELF 129
UELG 135
UELH 192
UELI 143
UELL 150
UELN 196
UELR 118
UELU 194
UELW 128
UELX 195
UENV 149
UGST 231
UMIB 202
UOP1 171
UOP2 172
UOP3 241
UPER 173
UPX0 175
UPX1 131
UPX2 148
UPX3 145
UPX6 147
UPX7 144
URS1 180
URS2 181
URTP 189
USC2 183
USC3 184
USC4 185
USOK 191
USOT 236
UVIP 239
UXTD 211
UXTEQ 111
UXTH 233

E-type program exits, by subject
3270 welcome screen 242
auxiliary loader 143
clock global update 119
Common Link Access to Workstation (CLAW)

device connection 168, 206
Common Link Access to Workstation (CLAW)

device failures 167, 169, 208
common symbol table 121

Index 427

user exits (continued)
E-type program exits, by subject (continued)

communications source common 122
data macros 111
database reorganization 126
deactivation of processor movable VIPA exit 239
deadlock detection 130
dump data 137
dynamic LU 139
E-type loader 227
enterprise specific MIB 202
extra program record report 143
file system initialization 215
general file loader 143
Get a DNS IP address 136
get global environment lists 149
log recovery error processing 151
LU 6.2 153
manager validation for SNMP 203
message router user 165
messages, routing to nonsocket applications 170
MIBs, SNMP enterprise-specific 202
module copy selection/validation 166
nonsocket application activation 167
Nonsocket application activation 168
nonsocket application resource cleanup 169
nonsocket message 170
output message filtering 171
processor deactivation movable VIPA exit 239
program event 173
rapid transport protocol connection 189
recoup 177
recoup restart 179
screen connection requests 204
selective recoup 198
SLC type-B message handler 199
SNA communications source program 201
SNMP manager validation 203
socket application activation 205
Socket application activation 206
socket application resource cleanup 208, 209
socket cycle-up 207
system error 209, 210
system error message 210
system message processor 227
system restart 180
system state 182
tape display setup 211
TCP/IP 167, 168, 170, 191, 204, 206, 214
TPF MQSeries 216, 221, 223, 224, 225
user command processor 227
user data recovery copy support 229
user data recovery restore support 228
user global symbol table 231
user label routines 233
user symbol override table 236
validation of SNMP manager 203
VFA restart 238
virtual IP address (VIPA) processor deactivation

exit 239
VisualAge debuggers 133, 226

user exits (continued)
E-type program exits, by subject (continued)

WTOPC page control 241
E-type program exits, general information

performance considerations 109
user considerations 111

user exits CSECT (CCUEXT) 3
UXCMC macro routine 4
UXGPIR macro routine 4
UXITC macro routine 1

V
validate output tapes 106
validate SNMP manager 203
variable cross-reference (VCRS) listing program

cross-referencing global variable symbols to PDS
members 409

dataset definition statements 410
SORTIN 410
SORTLIB 410
SORTOUT 410
SYSPRINT 410

error messages 414
finding global variable symbols in a PDS 409
finding programs in a PDS 409
PDS option defaults 413

virtual IP address (VIPA) processor deactivation
exit 239

W
WLOGC write processing 101
WTOPC message translation 108

428 TPF V4R1 System Installation Support Reference

����

File Number: S370/30XX-34
Program Number: 5748-T14

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH31-0149-15

	Contents
	Figures
	Tables
	Notices
	Trademarks

	About This Book
	Who Should Read This Book
	Conventions Used in the TPF Library
	Related Information
	IBM Transaction Processing Facility (TPF) 4.1 Books
	IBM Systems Application Architecture (SAA) Books
	IBM High-Level Language Books
	Miscellaneous IBM Books
	Online Information

	How to Send Your Comments

	Control Program User Exits Overview
	Exit Points
	Changing Dynamic Exit Points to Nondynamic
	Changing Nondynamic Exit Points to Dynamic
	Associating an Exit Point with a Function
	Multiple Functions in User Exits

	CCUEXT CSECT
	User Exits Control List (UCL)
	Service Routine for UXCMC Macro
	General Post-Interrupt Routine (UXGPIR)
	User Exit Routines (CUSR)
	User Static Override Bitmap Table

	Installing Control Program User Exits
	Installing Multiple Functions in a User Exit
	Creating a Control Program Exit Point and User Exit
	Conditions and Considerations When Using User Exits
	User Exit Routines - Common Entry Conditions
	User Exit Routines - Common Return Conditions
	User Exit Routines - Common Programming Considerations

	Macro Servicing
	TPF Macro Processing: Limitations/Restrictions

	Control Program User Exits
	Application Timeout Processing
	BACKC Macro Entry
	C Debugger Initialization
	C Debugger Return
	C Library Function Call (TARGET(TPF))
	C Library Function Return (TARGET(TPF))
	C Stack Exception (TARGET(TPF))
	C Stack Exception Return (TARGET(TPF))
	Catastrophic Recovery
	CCCTIN (CT25 and CT26)
	CCCTIN (CT99)
	Control Transfer
	Core Resident Enter/Back Macro
	CPU External Interrupt
	CPU Timer Interrupt
	Create Macro Control Point
	Create Macro Postinterrupt
	Critical Record Filing
	Debugger Trace Selection
	Debugger Trace Table Entry Activation
	DLAYC Macro Entry
	Dump Override Table
	Dynamic Load Module Environment Initialization (ISO-C)
	Dynamic Load Module External Function Call
	Dynamic Load Module External Function Call Entry
	Dynamic Load Module Return Processing
	Dynamic Load Module Return Processing Entry
	ECB Creation
	ENTxC Macro Entry
	EXITC
	FARF Address Generation
	Fast Link Macro
	Fast Link Macro Decoder
	File-Resident Enter/Back Macro
	General Postinterrupt Processing
	Get Block With ECB
	Get Block without ECB
	Get Common Block
	Get System Work Block
	Library Function Call (ISO-C)
	Library Function Return (ISO-C)
	LODIC Macro
	Online Mini Dump
	Pool Address Retrieval
	Program Event Recording (PER)
	Program Event Recording (PER) Debugging Tools
	RCS I/O Queue Thresholding
	Release Block With ECB
	Release Block without ECB
	Release Common Block
	Release System Work Block
	RIAT
	ROUTC
	SNAPC Error
	SNAPC Error Entry
	Split Access
	Split Chain Header Access
	Stack Overflow Processing (ISO-C)
	Stack Overflow Processing Entry (ISO-C)
	Suspend ECB
	Suspend List Post-Interrupt
	Suspend List Resource Checking
	SVC Macro (Immediate)
	SVC Macro (Wait or Implied Wait: Postinterrupt)
	SVC Macro Decoder
	System Error
	System Error Entry
	TMSLC Macro
	TPFAR
	TPFDF Macro Trace Call
	TPFDF Macro Trace Return
	Trace C User Data
	Trace Environment Customization
	Transaction Log Write
	Update Tape Display
	User Header Label
	User Trace Area Initialization
	Validate Tape for Output
	WAITC Macro Entry
	WTOPC Message Translation

	ECB-Controlled Program User Exits Overview
	Exit Points
	Selective Activate Exits
	Activating the Selective Activation Function
	Creating an Enable Command
	Creating a Disable Command

	Data Macros to Develop User Exits
	E-type User Exit Considerations
	User Exit Allocation and Activation

	ECB-Controlled Program User Exits
	Check OLDR Load Deck
	Clock Global Update Exits
	Command Manager
	Common Symbol Table
	Communications Source Common
	Continuous Data Collection Information Storage
	Continuous Data Collection Table Creation
	CP-CP Session Activation
	Database Reorganization
	Deactivate Phase I Selective Activate
	Deactivate Phase II Selective Activate
	Deadlock Detection
	DEARRANGE_CTK9 (UPX1)
	Debug Registration
	Detect Selective Activate Support
	Display
	DNS Select an IP Address
	Dump Data
	Dynamic LU
	ECB Display
	Extra Program Record Report
	FILE_CY2KT (UPX7)
	FILE_STCCR (UPX3)
	FIND_CY2KT (UPX6)
	FIND_STCCR (UPX2)
	Get Global Environment Lists
	Loadset History
	Log Recovery Error Processing
	LU Registration
	LU 6.2
	MATIP ASCU List
	MATIP Assign LNIATA
	MATIP Flow ID
	MATIP Host Name
	MATIP Router
	MATIP Security
	MATIP Session Start
	MATIP Translation
	Message Queue Interface (MQI) Channel Exits
	Message Router
	Module Copy Selection/Validation
	Nonsocket Activation
	Nonsocket Connect
	Nonsocket Deactivation
	Nonsocket Message
	Output Message Filtering
	Output Message Re-formatting
	Program Event Recording (PER)
	Program History
	REARRANGE_CTK9 (UPX0)
	Recoup Command
	Recoup Phase 1
	Recoup Restart
	Segment URS1
	Segment URS2
	Segment USC1
	Segment USC2
	Segment USC3
	Segment USC4
	Select A Host
	Select ALS to Adjacent APPN Node
	Select an RTP Connection
	Select TCP/IP Support
	Selective Activate Message Router
	Selective Activate Restart
	Selective Activate Structure Initialization
	Selective Activate Structure Update
	Selective Core Resident Load
	Selective Recoup
	SLC Communication Source
	SNA Communication Route Selection
	SNA Message Recovery
	SNMP Enterprise-Specific MIB Retrieval
	SNMP Manager Validation
	Socket Accept
	Socket Activation
	Socket Connect
	Socket Cycle-Up
	Socket Deactivation
	Socket System Error
	System Error Message
	Tape Display Setup
	Tape Library Validation
	TCP/IP Native Stack Support Accept Connection
	TPF File System Initialization
	TPF MQSeries Assign LNIATA
	TPF MQSeries Channel Message
	TPF MQSeries Channel Message Retry
	TPF MQSeries Channel Security
	TPF MQSeries Convert to Object Handle
	TPF MQSeries Queue Trigger
	TPF MQSeries Start Queue Manager
	Trace-by-Terminal
	User Command Processor
	User Data Recovery Copy Support
	User Data Recovery Restore Support
	User Device
	User Global Symbol Table
	User Label Routines
	User Library Function
	User Symbol Override Table
	VFA Restart
	Virtual IP Address Processor Deactivation
	Virtual Reader
	WTOPC Page Control
	3270 Welcome Screen

	Global Area
	Terminology
	Structure of the Global Areas
	Global Area 1 (GL1)
	Global Area 2 (GL2)
	Global Area 3 (GL3)
	Global Area 4

	Components of the Global Area
	Global Records
	Keypointable Global Records

	Global Directories
	Global Blocks
	Global Fields

	System Environment Considerations
	Multiple Database Function Environment
	Subsystems Under the Multiple Database Function
	Design Considerations for Subsystems and SSUs

	Tightly Coupled Environment
	I-Stream Unique/Shared Globals
	Extended Globals
	Synchronizing Globals in the Tightly Coupled Environment

	Using the Global Area by Applications
	GLOBZ: Define Global Fields Macro
	Example 1
	Example 2
	Example 3

	GLMOD: Change Global Protect Key Macro
	FILKW: File Keyword Macro
	GL0BA: Define Global 1 Macro
	GL0BY: Define Global 3 Macro
	SYNCC: The Global Synchronization Macro

	Programming Considerations
	Defining Addressability to Globals
	Global Records
	Global Fields
	Keypointable Global Records

	Global Area Requirements of the Control Program
	Required System Data Resident in GL0BP

	Loading Globals
	SIP for Globals
	Creating the Input Data Set
	Super GOA
	Load Mode
	GOA Chain
	GOA List Entry

	Considerations for Preparing Input
	Record Concatenation
	Keypointable Global Records
	Subsystem User Common Globals
	I-Stream Shared Globals

	Synchronization of Globals
	Requirements for Synchronization
	Maximum Values for Synchronized Fields and Records

	Locating Global Areas in a Dump
	Examples of I-Stream Shared and Unique Globals
	Main Storage Super GOA Copy
	Main Storage Prime GOA Copy
	Sample STC Card Images for Global Block Creation
	Examples of Coding the SYNCC Macro
	Updating a Single Synchronized Field
	Updating Multiple Synchronized Fields
	Updating Nonsynchronized and Synchronized Fields

	Loaders
	General File System Components
	Changing CIMR Components
	Loading System Components to a New TPF System
	Initializing the General File
	Formatting the General File and Online Modules
	Creating a General File Load Deck
	Enter the JCL Cards
	Enter the Input Control Cards

	Loading System Components to the General File
	Output Listing

	IPLing the General File
	Loading Fixed-File Records

	Loading System Components to an Existing TPF System
	Creating a New Fallback Image
	Defining a Fallback Image
	Copying CTKX, IPL Areas, Program Areas, and CIMR Components

	Creating an Auxiliary Load Deck
	Enter the JCL Cards
	Enter the Input Control Cards

	Loading System Components to a Storage Medium
	Output Listing
	Output Listing Return Codes

	Loading from a Storage Medium to the TPF System
	Enabling an Image
	Moving Keypoints to the Working Area
	IPLing an Image

	Loading E-Type Programs to an Enabled System
	Creating an E-Type Loader Load Deck
	Enter the JCL Cards
	Enter the Input Control Cards

	Loading E-Type Programs to a Storage Medium
	Loading and Activating a Loadset of Programs
	Loading a Loadset of Programs
	Allocate Programs That are Unallocated
	Activating a Loadset to Test New Programs
	Selectively Activating E-Type Programs

	Using Loadsets
	Excluding a Program from a Loadset
	Reincluding a Program to a Loadset
	Displaying Loadset Information
	Deactivating a Loadset of E-Type Programs
	Deleting a Loadset of E-Type Programs
	Reclaiming System Resources
	Changing E-Type Loader Program Allocation Characteristics
	Changing E-Type Loader Threshold Values
	Clearing E-Type Loader File Resident Records
	Displaying ECB Status

	Accepting a Loadset of E-Type Programs
	Using E-Type Loader Functions

	Record ID Attribute Table
	Contents of the RIAT
	Addressing the RIAT
	Programming Areas
	Programming Techniques
	Record Size
	Frequency of Access
	Record Life
	Record Generation
	References

	Multiple Assembly/Compilation Print Program
	Printing Multiple Assembly and Compilation Listings
	JCL Control Cards
	Return Codes
	Error Messages

	Hardware Requirements

	Macro Cross-Reference
	Specifying the DCRS Search Parameters
	Example of DCRS

	Specifying a DREF Heading Parameter
	Input to the Macro Cross-Reference Programs
	DCRS Program
	SORT Program
	DREF Program

	Control Cards
	Procedure
	Output from the Macro Cross-Reference Programs
	Listings

	Files
	DCRS Attention Messages
	DCRS Error Messages
	DREF Messages
	References

	Multiple Assembly/Compilation Program
	Input
	Files
	JCL Control Cards
	Execution Parameters
	Control Card Options

	User Considerations

	Output
	Listings
	Files

	Sample JCL
	Printout Directory to Listings
	Assembly Listings to Tape
	E-Type Assemblies to Tape
	E-Type Compilations Sent to the Printer
	E-Type Compilations Sent to the Printer

	Error Messages
	Hardware Requirements

	System Allocator
	Allocating Programs, Transfer Vectors, and Pools
	Creating the Input Deck
	Comments
	Specifying the Addressing Mode
	Allocating Programs
	Allocating Transfer Vectors
	Allocating Spare Program Slots
	Defining Pools
	Adding Your Own Function Switches
	To Add Your Own Function Switches

	Running the System Allocator (SALO)
	To Run Only SIP Stage I
	To Run Both SIP Stages I and II

	Creating the Program and System Allocator Tables

	Variable Cross-Reference Listing
	JCL Control Cards
	Control Card Input
	Scan the Entire PDS for Every Type of Variable
	Scan a List of Members
	Subset of Variable Types Option
	Print the Globals Found in the Order Specified
	Option Defaults
	Examples of Control Card Options

	Procedure
	Output
	Error Messages
	Hardware Requirements
	References

	Appendix. JCL Load Deck Examples
	TLDR JCL to Load Components to GDS
	TLDR JCL to Load Components to Tape
	TLDR JCL to Load Components to VRDR
	OLDR JCL to Load E-Type Programs to GDS
	OLDR JCL to Load E-Type Programs to Tape
	OLDR JCL to Load E-Type Programs to VRDR

	Index

