
MQSeries Integrator - Timer Plug-In
Version 1.1

11th September 2002

Mike Brady
Senior Consulting IT Specialist

IBM
Australia

mjbrady@au1.ibm.com

Property of IBM

MQSeries Integrator – Timer Plug-in node

 ii

Take Note!

Before using this report be sure to read the general information under "Notices".

Second Edition, September 2002

This edition applies to Version 1.1 of MQSeries Integrator – Timer Plug-In and to all subsequent
releases and modifications unless otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2001. All rights reserved. Note to US
Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

MQSeries Integrator – Timer Plug-in node

 iii

Table of Contents

Notices .. iv

Trademarks and service marks.. iv

Summary of Amendments .. v

Preface.. vi

Chapter 1. Overview... 1

Chapter 2. Installation .. 7

SupportPac contents .. 7

Prerequisites... 10

Supported platforms ... 10

Installing the plug-in nodes on NT... 10

Installing the plug-in nodes on AIX.. 11

Installing the plug-in nodes on Solaris .. 11

Installing the plug-in nodes on HP-UX .. 11

Integrating the plug-in node into the Windows Control Center .. 12

Installation verification... 13

Chapter 3. Nodes Reference.. 14

TimerCreate Node .. 14

TimerCreate node properties... 15

Configuring the TimerCreate node .. 16

TimerCancel Node.. 16

TimerCancel node properties .. 17

Configuring the TimerCancel node.. 17

Tracing the timer plug-in nodes... 18

MQSeries Integrator – Timer Plug-in node

 iv

Notices

The following paragraph does not apply in any country where such provisions are inconsistent with
local law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended to
state or imply that only IBM's program or other product may be used. Any functionally equivalent
program that does not infringe any of the intellectual property rights may be used instead of the IBM
product.

Evaluation and verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, New York 10594, USA.

The information contained in this document has not be submitted to any formal IBM test and is
distributed AS-IS. The use of the information or the implementation of any of these techniques is a
customer responsibility and depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item has been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do so at their own risk.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the United
States or other countries or both:

 AIX

 IBM

 MQSeries

 MQSeries Integrator

 MQSI

The following terms are trademarks of other companies:

• HP-UX Hewlett Packard Corporation

• Solaris Sun Corporation

• Windows NT Microsoft Corporation

MQSeries Integrator – Timer Plug-in node

 v

Summary of Amendments

Date Changes

6th July 2001 Initial internal release

11th July 2001 Added support for Solaris platform

19th July 2001 Added support for Platform scope timers

11th August 2001 Added support for HP-UX platform

3rd September 2001 Released as a SupportPac

11th September 2002 Added improved heap management logic and made garbage
collection self-regulating

Add preprocessor directives to allow source to build correctly
against v2.1, v2.0.2 and v2.0.1 releases

Shipped v2.0.1 and post v2.0.1 binaries

MQSeries Integrator – Timer Plug-in node

 vi

Preface

When implementing complex solutions with MQSeries Integrator V2, a common requirement is to
initiate a message flow based on a time interval. For example, there may be processing that needs to
be performed at regular intervals, or the arrival of a timer message might be used to check for
completion of a previous operation. One solution to this problem is to write a custom application to
manage the generation of such messages and pass them to MQSI, however, this involves a
management overhead, that is. the application must be started, stopped and monitored.

The MQSI V2 Timer function provides an alternative mechanism for generating event or timer
messages without the need for any external timer application. It is quick, intuitive, simple to implement
and is highly flexible in the ways it can be deployed. The function is implemented using a pair of
cooperating nodes; the TimerCreate node and TimerCancel node. The implementation allows timers
to be visible in a variety of scopes, from Message Flows in the same Execution Group to Message
Flows in any Execution Group in any Broker instance running on the same platform. Furthermore, the
implementation is multi-threaded so it will work equally well for deployments where Message Flows
have been configured with multiple worker threads (Additional Instances > 0).

Chapter 1. Overview

A timer instance is created when a TimerCreate node proceses a suitable timer creation message. A
timer instance can be configured so that it expires just once and is then deleted from the system, or it
can be configured so that it expires a specified number of times. Whenever the timer expires, it
generates a timer event message and sends it to the destination queue specified by the TimerCreate
node. The timer instance can also be associated with data extracted from the message that triggered
its creation. In this case, any extracted data will be included in the body of the timer event messages
generated by the timer instance. Furthermore, the CorrelId of the timer event messages will always
be set to the MsgId of the creation message.

Once created, a timer instance will exist until one of the following conditions is satisfied

• it expires the specified number of times, following which it is automatically removed from the
system

• it is explicitly cancelled by a matching TimerCancel node

The TimerCancel node provides a mechanism for cancelling an existing timer instance. The
TimerCancel node processes a timer cancellation message and identifies the timer instance to be
cancelled by matching it with attributes extracted from the cancellation message.

By default, when a timer instance is created, it is identified by its MsgId and CorrelId values.
Alternatively, you may specify a name for a timer instance in which case this is used exclusively to
identify the timer instance. The name can be either a literal value or it can be a value derived from
the creation message. Similarly, when cancelling a timer instance, a name may be provided either
explicitly (a literal value defined in the TimerCancel node) or derived from the cancellation message.
In order to cancel a named timer instance, the TimerCancel node must also provide a matching name.

The following message flow shows a timer instance being created by putting a timer creation
message on the TIMER_CREATE.Q. The message is then processed by a TimerCreate node and if
the timer instance is created successfully, the creation message is passed on to the OUT1.Q (via the
TimerCreate ‘out’ terminal). All other errors result in the creation message being propagated to the
‘failure’ terminal.

In this example, timer event messages created by the timer instance are sent to the
TIMER_EVENT.Q (this is not shown in the message flow).

To cancel the timer instance, a cancellation message is put on the TIMER_CANCEL.Q and is then
processed by the TimerCancel node. If the timer instance is successfully cancelled, the cancellation
message is passed on to the OUT2.Q. If no matching timer instance can be located, the cancellation
message is passed to the NO_MATCH.Q (via the TimerCancel ‘noMatch’ terminal). All other errors
result in the cancellation message being propagated to the ‘failure’ terminal.

MQSeries Integrator – Timer Plug-in node

 2

The properties window for the TimerCreate node (TimerCreate1) is shown below.

MQSeries Integrator – Timer Plug-in node

 3

In this example, the timer instance has a name ‘MJBTimer’. The timer event messages will be sent to
the queue ‘TIMER_EVENT.Q’ and they will contain the data extracted from the syntax element
specified by the path ‘Root.XML.outer.inner.innerMost’. The timer instance is configured to expire in 1
second and has its maximum number of expiries (TimerPopCount) set to 0 (zero) which means
INFINITE. Assuming that the timer instance is successfully created, then it will continue to generate
an event message every second until a TimerCancel node explicitly cancels it.

The properties window for the corresponding TimerCancel node (TimerCancel1) is shown below.
Since the timer instance was created with a name, the TimerCancel node must also specify the same
name. In this case, the (default) value specified by the MatchOn attribute are ignored.

The timer event messages generated by the timer instance always contain XML format data. In this
example, the body will contain the data element and contents extracted from the syntax element
‘Root.XML.outer.inner.innerMost’. As an example, assume that the creation message contained the
following message body.

"<outer><tag1>data1</tag1><tag2>data2</tag2><tag3>data3</tag3><inner>…

…<innerMost><tag5>someTimerData</tag5></innerMost>…

…</inner><tag4>data4</tag4></outer>"

The timer event messages will contain the following.

“<TimerEventData><innerMost><tag5>someTimerData</tag5></innerMost>…

…</TimerEventData>”

If nothing was specified for the MessageData attribute of the TimerCreate node, the event message
body will consist of ‘<TimerEventData/>’.

The correspondence between the structures of the creation message and the event message can be
seen more clearly in the following diagrams.

MQSeries Integrator – Timer Plug-in node

 4

Although the content of the timer event message is always an XML format message, the data copied
from the creation message can be in any format. Any non-character data, such as BLOB data, will be
converted into a format suitable for inclusion in an XML message. Datatypes are converted according
to the following rules.

Data Type Conversion

DECIMAL Converted to string, e.g. 23.4 is converted to ’23.4’

INTEGER Converted to string value, e.g. –2345 is converted to ‘-2345’

FLOAT Converted to string, e.g. 23.4 is converted to ’23.4’

CHARACTER No conversion

BLOB Converted to a hexadecimal string

BIT Converted to a hexadecimal string

DATE Converted to ‘yyyy-mm-dd hh:mm:ss.sss’ format

GMTTIME Converted to ‘hh:mm:ss.sss’ format

GMTTIMESTAMP Converted to ‘yyyy-mm-dd hh:mm:ss.sss’ format

TIME Converted to ‘hh:mm:ss.sss’ format

TIMESTAMP Converted to ‘yyyy-mm-dd hh:mm:ss.sss’ format

BOOLEAN ‘TRUE’ or ‘FALSE’

Creation Message

(0x1000010)XML = (
 (0x1000000)outer = (
 (0x1000000)tag1 = (
 (0x2000000) = ‘data1’
)
 (0x1000000)tag2 = (
 (0x2000000) = 'data2'
)
 (0x1000000)tag3 = (
 (0x2000000) = 'data3'
)
 (0x1000000)inner = (
 (0x1000000)innerMost = (
 (0x1000000)tag5 = (
 (0x2000000) = 'someTimerData'
)
)
)
 (0x1000000)tag4 = (
 (0x2000000) = 'data4'
)
)
)

Timer Event Message

(0x1000010)XML = (
 (0x1000000)TimerEventData = (
 (0x1000000)innerMost = (
 (0x1000000)tag5 = (
 (0x2000000) = 'someTimerData'
)
)
)
)

MQSeries Integrator – Timer Plug-in node

 5

By default, a timer instance exists within the scope of the Execution Group. When processing a
TimerCancel node, the search is contained within this scope, i.e. only timer instances created by
Message Flows within the same Execution Group are considered.

However, it is also possible to extend the scope of a timer instance so that it becomes visible to all
Execution Groups within the scope of the Broker or all Execution Groups within all Brokers within the
scope of the current platform. This option is available under the Advanced tag of the properties
window. The TimerScope attribute allows either ExecutionGroup, Broker or Platform to be selected
(the default is ExecutionGroup).

If the scope is set to Broker, then whenever a TimerCancel node is executed, the search will include
not only local timer instances, i.e. those created within the same Execution Group, but will also
include any global timer instances created by other Execution Groups within the same broker. If the
scope is set to Platform, the scope of the search is increased include global timer instances created
by Execution Groups in any Broker running on the same platform. In order for a timer instance to be
treated as global, it must have been created by a TimerCreate node with TimerScope=Broker or
TimerScope=Platform.

It should be noted that whenever a timer is created, it should be unique within the specified scope.
This means that for timers with a name, any existing timer with the same name in scope is replaced.
For un-named timers, any timer within scope containing the same MsgId AND CorrelId is replaced.

The properties window below demonstrates one of the global settings of the TimerScope attribute.

By default, the size of the shared memory segment that will be allocated is 64 Kbytes. This is the
minimum permitted size, however it can be increased should more storage be required. To modify
the size of the shared segment, you must set the environment variable
TIMER_SHARED_MEMORY_KSIZE to the required number of Kbyte blocks.

You will probably need to run with your configuration and observe its behaviour in order to determine
the optimal size of the shared memory segment, i.e. adjusting the shared memory size up or down
until the system runs successfully with the minimum size segment. Some additional buffer should be
included to allow for unexpected peaks in activity. Should the system run short on shared memory, a
message will be written to the system log indicating this, and the Execution Group will be terminated.

Should you wish to calculate your shared memory requirements more methodically, as a rule of
thumb, each global timer instance will require the following storage:

MQSeries Integrator – Timer Plug-in node

 6

• 200 bytes for control block structure

• Storage for Execution Group name, calculated as length of Execution Group name + 1

• Storage for Message Flow name, calculated as (length of Message Flow + 1) x 2

• Storage for the TimerName (if specified), calculated as (length of TimerName +1) x 2

• Storage for saved data – the number and type of syntax element nodes that need to be saved will
determine this. Using the example saved data shown previously, the contents would consist of

1. Control block for ‘innerMost’ (approx. 70 bytes)

2. The element name ‘innerMost’. This is stored in Unicode format and together with a field
denoting its length. In this case it would require (9 x 2) + 4 bytes.

3. Control block for ‘tag5’ (approx. 70 bytes)

4. The element name ‘tag5’. This is stored in Unicode format and together with a field denoting
its length. In this case it would require (4 x 2) + 4 bytes.

5. Data in element in multibyte format (13 bytes, i.e. length of ‘someTimerData’) together with its
length field. In this case 13 + 4 bytes

MQSeries Integrator – Timer Plug-in node

 7

Chapter 2. Installation

SupportPac contents

The supplied zip file should be unzipped in a temporary directory. The following files and sub-
directories will be created.

/source

Makefile.NT

Makefile.AIX

Makefile.Solaris

Makefile.HPUX

timer.c

plugin.c

cancel.c

create.c

alarm.c

retcodes.c

utilities.c

timer.h

timer_retcodes.h

timer_constants.h

plugin.h

unicode.h

threads.h

rc.h

trace_publ.h

trace_defs.h

trace_func.h

trace_data.h

timerTest.c

samples.mak.NT

samples.mak.AIX

samples.mak.Solaris

samples.mak.HPUX

/NT/help

 MessageProcessingNodeType_TimerCreate.htm

 MessageProcessingNodeType_TimerApply.htm

MQSeries Integrator – Timer Plug-in node

 8

/NT/bin

 timer.lil

 v201/timer.lil

 timerTest.exe

/NT/messages

 MQSIV2_timer.msg

 MQSIV2_timer_msg.h

 MQSIV2_timer.dll

 Makefile

/NT/objects

 traceinit.obj

 trace.obj

 error.obj

unicode.obj

threads.obj

heap.obj

shmem.obj

/NT/config

 TimerCreate

 TimerCreate.wdp

 TimerCancel

 TimerCancel.wdp

/NT/images

TimerCreate.gif

TimerCreate 30.gif

TimerCreate 42.gif

TimerCreate 58.gif

TimerCreate 84.gif

TimerCancel.gif

TimerCancel 30.gif

TimerCancel 42.gif

TimerCancel 58.gif

TimerCancel 84.gif

MQSeries Integrator – Timer Plug-in node

 9

/AIX

/AIX/bin

 timer.lil

 v201/timer.lil

 timerTest

/AIX/messages

 MQSIV2_timer.cat

 MQSIV2_timer.msg

 MQSIV2_timer_msg.h

/AIX/objects

 traceinit.o

 trace.o

 error.o

 threads.o

unicode.o

heap.o

shmem.o

/Solaris

/ Solaris /bin

 timer.lil

 v201/timer.lil

 timerTest

/ Solaris /messages

 MQSIV2_timer.cat

 MQSIV2_timer.msg

 MQSIV2_timer_msg.h

/ Solaris /objects

 traceinit.o

 trace.o

 error.o

 threads.o

unicode.o

heap.o

shmem.o

/HPUX

/ HPUX /bin

MQSeries Integrator – Timer Plug-in node

 10

 timer.lil

 v201/timer.lil

 timerTest

/ HPUX /messages

 MQSIV2_timer.cat

 MQSIV2_timer.msg

 MQSIV2_timer_msg.h

/ HPUX /objects

 traceinit.o

 trace.o

 error.o

 threads.o

unicode.o

heap.o

shmem.o

license2.txt

ia0k.pdf

Prerequisites

This SupportPac provides a Plug-in node to be used with the IBM MQSeries Integrator for Windows
NT or 2000 - V2.0.1, IBM MQSeries Integrator for AIX - V2.0.1, IBM MQSeries Integrator for Solaris -
V2.0.1 and above and IBM MQSeries Integrator for HP-UX - V2.0.2. For normal use, there are no
other pre-requisite products other than those required by MQSeries Integrator V2.1 itself.

Supported platforms

This SupportPac has been developed for and tested on

• Microsoft Windows NT environment

• IBM AIX environment

• Sun Solaris environment

• HP-UX environment

Installing the plug-in nodes on Windows NT

1. Unzip the packaged files into a temporary directory.

2. Copy the message catalogue file NT\messages\MQSIV2_timer.dll to a directory of your choice,
e.g. <MQSI root>\messages.

3. Add an entry for the message catalogue to the registry. Use regedit to add an entry to the registry
under…

MQSeries Integrator – Timer Plug-in node

 11

HKEY_LOCAL_MACHINE
 SYSTEM
 CurrentControlSet
 Services
 EventLog
 Application

Create a new entry with the following details

MQSIV2_timer
 (default) (value not set)
 EventMessageFile <fully qualified name of MQSIV2_timer.dll>
 TypesSupported 0x00000007 (7)

4. Copy the file NT\bin\timer.lil to the MQSeries Integrator bin directory, e.g. <MQSI_root>\bin.

5. Set the TIMER_SHARED_MEMORY_KSIZE environment variable if required.

6. Restart the broker and check for plug-in initialisation messages in Event log

Installing the plug-in nodes on AIX

1. Unzip the packaged files into a temporary directory.

2. Copy the message catalogue file AIX\bin\MQSIV2_timer.cat to a directory specified by the
NLSPATH setting, e.g. <MQSI_root>/messages.

3. Copy the file AIX\bin\timer.lil to the MQSeries Integrator lil directory (<MQSI_root>/lil).

4. Set the TIMER_SHARED_MEMORY_KSIZE environment variable if required.

5. Restart the broker and check for plug-in initialisation messages in the syslog.

Installing the plug-in nodes on Solaris

1. Unzip the packaged files into a temporary directory.

2. Copy the message catalogue file Solaris\messages\ MQSIV2_timer.cat to a directory specified
by the NLSPATH setting, e.g. /usr/lib/locale/<locale>/LC_MESSAGES where <locale> is the
locale under which the machine is running or ‘C’ if none is set.

3. Copy the file Solaris\bin\timer.lil to the MQSeries Integrator lil directory (<MQSI_root>/lil).

4. Set the TIMER_SHARED_MEMORY_KSIZE environment variable if required.

5. Restart the broker and check for plug-in initialisation messages in the syslog.

Installing the plug-in nodes on HP-UX

1. Unzip the packaged files into a temporary directory.

2. Copy the message catalogue file HPUX\messages\ MQSIV2_timer.cat to a directory specified
by the NLSPATH setting, e.g. /usr/lib/locale/<locale>/LC_MESSAGES where <locale> is the
locale under which the machine is running or ‘C’ if none is set.

3. Copy the file HPUX\bin\timer.lil to the MQSeries Integrator lil directory (<MQSI_root>/lil).

4. Set the TIMER_SHARED_MEMORY_KSIZE environment variable if required.

MQSeries Integrator – Timer Plug-in node

 12

5. Restart the broker and check for plug-in initialisation messages in the syslog.

Integrating the plug-in node into the Windows Control Center

1. Unzip the packaged files into a temporary directory.

2. Change to the NT\images directory and copy its contents to <MQSI_root>\Tool\images

3. Change to the NT\config directory and copy its contents to
<MQSI_root>\tool\repository\private\<machine name>\<Queue Manager
name>\MessageProcessingNodeType

4. Change to the NT\help directory and copy its contents to <MQSI_root>\tool\help\com\isv

Note: create this directory if it does not already exist.

5. Start the MQSeries Integrator Control Center and display the MessageFlows panel. Right click on
IBM Primitives and select Add to Workspace, then Message Flow. Select the TimerCreate and
TimerCancel nodes from the displayed list and add them to the palette.

6. Check in all new node types

MQSeries Integrator – Timer Plug-in node

 13

Installation verification

Create a message flow that is similar to the one shown in the Overview section.

The sample program timerTest creates a timer instance, waits for 2 timer event messages and then
issues a timer cancel request. By default, this will use the following queues for its processing,
TIMER_CREATE.Q, TIMER_CANCEL.Q and TIMER_EVENT.Q, however, you can specify your own
queue manager and queues by invoking the application in the following way

timerTest <queueManagerName> <timerCreateQueue> <timerCancelQueue> <timerEventQueue>

Using the example configuration, the timer expiry interval is set to 1 second. Alternatively, you can
have the timer plug-in extract the expiry value from the creation message. The sample program
generates a message that contains a 5 second expiry. By setting IntervalSeconds to
Root.XML.outer.interval this value will be extracted and used.

The source for the timerTest program is supplied along with an appropriate makefile for the target
Operating System, e.g. samples.mak.NT to enable you to easily rebuild it.

MQSeries Integrator – Timer Plug-in node

 14

Chapter 3. Nodes Reference

TimerCreate Node

A TimerCreate node is responsible for creating a timer instance. The characteristics of the timer
instance are specified either as constant values or as values to be derived from the creation
message. Such characteristics include expiry interval, timer name, timer lifetime and data to be
included in timer event messages.

Once created, a timer instance will generate an event message every time its expiry interval is
reached. It will continue to generate messages in this way until its maximum lifetime is reached or it is
explicitly cancelled by a corresponding TimerCancel node. The lifetime of a timer instance is
determined by the number of times its expiry interval can be reached. A timer can also be configured
so that its lifetime is never exceeded, in which case, the only way to end the timer is via a
TimerCancel node.

Event messages generated by a timer instance can optionally contain significant data, thereby
providing applications with a mechanism for passing timer event information. The data can be a
constant value or may be derived from the body of the creation message.

By default, the scope of a timer instance is local, i.e. it is visible only within the Execution Group which
created it. However, it can also be configured to have global scope, in which case it is visible to all
Execution Groups within the broker domain. If the timer is global and it is a named timer, there can
only be one active instance of such a timer in the broker domain. When such a timer instance is
created, any existing global timer with the same name is first set to an expired state and is then
deleted.

Each message processed by a TimerCreate node will cause the TimerCreate node to perform the
following actions:

• Create a new timer instance and save the Msgid and CorrelId
• If specified, locate any syntax element specified by MessageData property. If the element is

not found, or does not contain any data value, the message is propagated to the failure
terminal.

• If specified, serialise the data at the located syntax element and store in timer instance in
process storage if local timer or in shared memory storage if global timer

• Add the timer to required indexes
• If the timer has a name, remove any existing timer within scope with the same name else

remove any existing timer within scope with the same MsgId and CorrelId
• If a IntervalSeconds specified a non-zero value, or resolved to a non-zero value, add the timer

to the alarm chain

If the node detects an error, the message will be routed to the failure terminal.

TimerCreate node terminals
Terminal Description
in The input terminal that accepts a message for processing by the node
out The output terminal to which the message is normally routed
failure The output terminal to which the message is routed if there is an error during

the node processing

MQSeries Integrator – Timer Plug-in node

 15

TimerCreate node properties

These properties are displayed when you right click a TimerCreate node entry in the Message Flow
Types pane, and click Properties. The values displayed are the default properties for this instance of
the node. They cannot be edited when displayed from the Message Flow Types pane.

TimerName

This optional value assigns a name to the timer instance. Timer instances that are created
with a name can only be cancelled by a TimerCancel node which specifies the same name,
i.e. they cannot be matched via MsgId and/or CorrelId.

If a name is specified, it can be either a literal value (as shown in the example flow) or it can
be a name derived from the creation message.

TimerQueue

Specifies the name of the queue to which timer event messages should be sent. It is a
mandatory attribute.

MessageData

This optional attribute defines the data to be included in the body of the event message(s). A
literal value can be specified, or the value can be derived from the creation message. If the
value specified begins with either ‘Root’ or ‘Root.’ then it is assumed that this represents a
syntax element path and is a derived value.

IntervalSeconds

Specifies the expiry interval (in seconds) of the timer instance. It can be either a literal value
or it can be an integer value derived from the creation message.

A value of 0 indicates an INFINITE lifetime, which means that it will never generate an event
message. If a non-zero value is specified, an alarm is set to the expiry value. Once the
expiry interval has been reached, a timer event message is generated, and, if the timer
instance lifetime has not been reached when the alarm expires, the expiry interval is reset.

TimerPopCount

Specifies the maximum number of times the timer expiry interval may be reached before the
timer instance is deleted. The default value is 1, which means that the timer will be deleted
after its initial expiry.

TimerScope

Enumerated value indicating the scope of the timer. The possible values are

• ExecutionGroup – the timer will visible to other nodes within the same Execution Group
(this is the default value). In this case, timers are stored in process memory.

• Broker – the timer will be visible to nodes in any Execution Group running within the
Broker. In this case, timers are stored in a shared memory segment.

• Platform – the timer will be visible to nodes in any Execution Group in all Brokers running
on the same Platform. In this case, timers are stored in a shared memory segment.

MQSeries Integrator – Timer Plug-in node

 16

Configuring the TimerCreate node

For a description of the properties of the TimerCreate node and their possible values,
see“TimerCreate node properties” above.

To configure an TimerCreate node:

1. In the Message Flow Definition pane, right click the symbol of the TimerCreate node you want
to configure and click Properties, then click Basic. The TimerCreate node dialog is
displayed.

2. In the TimerCreate node dialog, type values for those properties that you want to set.

3. If you want to provide a description of this instance of the TimerCreate node (which is
recommended if you want other Control Center users to be able to make use of it), click the
Description tab of the TimerCreate node dialog. Type a short description, or a long
description, or both.

4. Click OK to finish configuring this TimerCreate node.

TimerCancel Node

An TimerCancel node is the corresponding node to the TimerCreate node.

It searches the available collection of timers, looking for any matching timer instances. If any matches
are found, the corresponding timer instances are cancelled.

Every message that passes into the TimerCancel node will cause it to perform the following:

• Extract the Msgid and CorrelId
• Use the value specified by the MatchOn property to search the available timer instances

looking for a match – only the local indexes are searched if the TimerCancel node is local,
otherwise the global indexes are also searched

• If TimerName was specified, then the MatchOn property is ignored and the search is confined
to looking for a timer instance with the same name. The name specified can be either a literal
value or can be derived from the cancellation message.

• Cancel and delete any matching timer instances and propagate the cancellation message to
the out terminal.

• If no matching timer instance was found, propagate the cancellation message to the noMatch
terminal

If the node detects an error, the message will be routed to the failure terminal.

TimerCancel node terminals
Terminal Description
in The input terminal that accepts a message for processing by the node

out The output terminal to which the message is routed if the cancellation is
successful

noMatch The output terminal to which the message is routed if no matching timer is found
failure The output terminal to which the message is routed if there is an error during the

node processing

MQSeries Integrator – Timer Plug-in node

 17

TimerCancel node properties

These properties are displayed when you right click an TimerCancel node entry in the Message Flow
Types pane, and click Properties. The values displayed are the default properties for this instance of
the node. They cannot be edited when displayed from the Message Flow Types pane.

TimerName

This optional value assigns a name to the timer instance to be cancelled. If a name is
specified, then the MatchOn attribute (see below) is ignored. Only timers with a matching
name will be eligible for cancellation by this node.

If a name is specified, it can be either a literal value (as shown in the example flow) or it can
be a name derived from the cancellation message.

MatchOn

Enumerated value indicating how the message attributes should be used to find matching
timers. The possible values are

• CorrelId=OldMsgId – the CorrelId value of the current message must match the MsgId
value of the original message that created the timer (this is the default value)

• MsgId=OldMsgId – the MsgId value of the current message must match the MsgId value
of the original message that created the timer

• CorrelId=OldCorrelId – the CorrelId value of the current message must match the CorrelId
value of the original message that created the timer

• MsgId =OldCorrelId – the MsgId value of the current message must match the CorrelId
value of the original message that created the timer

• MsgId+CorrelId=OldMsgId+OldCorrelId – the combined MsgId and CorrelId values of the
current message must match the combined MsgId and CorrelId values of the original
message that created the timer

TimerScope

Enumerated value indicating the scope for matching against available timers. The possible
values are

• ExecutionGroup – only the local indexes, i.e. those indexes that refer to timers created
with PostitScope=ExecutionGroup will be searched.

• Broker – both the local indexes, i.e. those indexes that refer to timers created with
PostitScope=ExecutionGroup, and the global indexes, i.e. those indexes that refer to
timers created with PostitScope=Broker will be searched.

• Platform – both the local indexes, i.e. those indexes that refer to timers created with
PostitScope=ExecutionGroup, and the global indexes, i.e. those indexes that refer to
timers created with PostitScope=Broker or PostitScope=Platform will be searched. If
PostitScope=Platform, both the Broker and Platform indexes are searched.

Configuring the TimerCancel node

For a description of the properties of the TimerCancel node and their possible values,
see“TimerCancel node properties” above.

To configure an TimerCancel node:

MQSeries Integrator – Timer Plug-in node

 18

1. In the Message Flow Definition pane, right click the symbol of the TimerCancel node you want
to configure and click Properties.The TimerCancel node dialog is displayed.

2. In the TimerCancel node dialog, type values for those properties that you want to set.

3. If you want to provide a description of this instance of the TimerCancel node (which is
recommended if you want other Control Center users to be able to make use of it), click the
Description tab of the TimerCancel node dialog. Type a short description, or a long
description, or both.

4. Click OK to finish configuring this TimerCancel node.

Tracing the timer plug-in nodes

To trace execution of the plug-in nodes, set the TIMER_PLUGIN_TRACE environment variable
(system variable on NT) and reboot machine before restarting broker. Settings for trace are as
follows.

TIMER_PLUGIN_TRACE =

-f traceOutputFileName - name of file to write trace to

-t - include time stamp on trace entries.

-i - include process and thread id on entries

-c - commit (flush) entries to file after every write

-l - trace level to output (see trace values below)

-a - append trace to existing trace file

Valid trace level settings are

• TRACE_NONE

• TRACE_ENTRY_EXIT

• TRACE_ERROR

• TRACE_WARNING

• TRACE_INFO

• TRACE_SYSTEM_ALL

• TRACE_ALL

The following setting results in comprehensive tracing and will be sufficient in most cases.

TIMER_PLUGIN_TRACE=-f <name of output file> -i –c -l TRACE_SYSTEM_ALL

MQSeries Integrator – Timer Plug-in node

 19

End of Document

