
WebSphere MQ - Network Design Notation

 1

WebSphere MQ - Network Design Notation
Version 1.0

8th August 2002

David Grainger
IBM Software Group

mailto:dgrainge@uk.ibm.com

Property of IBM

WebSphere MQ - Network Design Notation

 2

Take Note!

Before using this report be sure to read the general information under "Notices".

First Edition, August 2002

This edition applies to Version 1.0 of WebSphere MQ Network Design Notation and to all subsequent
releases and modifications unless otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2002. All rights reserved. Note to US
Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure is subject
to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

WebSphere MQ - Network Design Notation

 3

Table of ContentsTable of ContentsTable of ContentsTable of Contents

Table of Contents... 3

Notices ... 4

Trademarks and Service Marks ... 4

Preface... 5

Acknowledgements.. 5

Chapter 1. Introduction .. 6

Overview... 6

Scope of Modelling... 6

Object Naming in the Notation versus MQ Naming Conventions .. 7

Naming Examples... 7

Chapter 2. Network Design Notation Legend .. 8

Chapter 3. Using the Network Design Notation ... 9

Basic Application-to-Queue Connectivity ... 9

Distributed Queuing.. 11

Channels... 11

MQ Clustering .. 13

Shared Queues (z/OS)... 17

High Availability and Failover ... 19

Messaging Subnets.. 21

Other Symbols.. 22

Data Sources .. 22

Transactional Messaging Operations ... 22

Generic Software Components .. 22

WebSphere MQ Integrator Brokers and Flows .. 23

Chapter 4. Other Information ... 24

Usage Guidelines ... 24

Tips for Clarity and Emphasis .. 24

Bibliography ... 25

WebSphere MQ - Network Design Notation

 4

NoticesNoticesNoticesNotices

The following paragraph does not apply in any country where such provisions are inconsistent with local
law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this
statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended to state
or imply that only IBM's program or other product may be used. Any functionally equivalent program that
does not infringe any of the intellectual property rights may be used instead of the IBM product.

Evaluation and verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, New York 10594, USA.

The information contained in this document has not be submitted to any formal IBM test and is distributed
AS-IS. The use of the information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate them into the customer's
operational environment. While each item has been reviewed by IBM for accuracy in a specific situation,
there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting
to adapt these techniques to their own environments do so at their own risk.

Trademarks and Service Marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the United States
or other countries or both:

• WebSphere, MQIntegrator, MQSeries, SupportPac

• AIX, HACMP/6000

• CICS

• z/OS, zSeries

The following terms are trademarks of other companies:

• Microsoft, Microsoft Visio

• SAP

• UML

WebSphere MQ - Network Design Notation

 5

PrefacePrefacePrefacePreface

By the nature of message-oriented middleware, WebSphere MQ is often deployed into customer
environments that exhibit significant technical complexity.

A basic functional requirement on any messaging infrastructure is the achievement of connectivity
between a prescribed set of applications. But as we look beyond this to the non-functional requirements
placed upon a real infrastructure, complexity arises from the influence of quality-of-service.

The designer has to know how to build a message-queuing network that will offer the right balance of
availability (of messages and applications), performance (message throughput and timely delivery),
manageability and security. Further, the design must exhibit scalability if all of these qualities are to be
preserved in the face of growing demands on the infrastructure.

Achieving the best balance can represent a significant amount of effort on the part of the designer, but the
essence of this design thinking can be easily lost in the complexity of the resulting network. It is in this
sense that diagrams can play a key role, capturing concepts, decisions and details efficiently, while
helping to reduce ambiguity and uncertainty.

In this document, we propose a notation for diagrams of MQ-based messaging networks, and introduce
conventions for how to use this notation to communicate designs and ideas.

We hope that in this way, we can encourage better design practice throughout the WebSphere MQ
technical community.

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements

We would especially like to acknowledge the work of Benjamin Zhou (WebSphere MQ SupportPac MD04)
where he documented a basic symbol set, on which this network design notation builds.

We also gratefully acknowledge the following people who have made provision in their own time to review
and contribute to this proposal: Emma Allfree, David Arnold, Alan Beasley, Jason Edmeades, Emir Garza,
Anthony O’Dowd, Tim Pickrell, Jamie Roots, Jon Stone, Mark Taylor, Graham Wallis, Ewan Withers.

WebSphere MQ - Network Design Notation

 6

Chapter 1. Chapter 1. Chapter 1. Chapter 1. IntroductionIntroductionIntroductionIntroduction

Overview

In this document we propose a notation for diagrams of MQ networks. The notation consists of a set of
symbols and some conventions for how they are used to represent artifacts in a messaging infrastructure.

This document is intended as a guide to using the notation, rather than a manual of how to design an MQ
network (although along the way, we do cover the odd useful design concept!)

We have attempted to design the notation so that it remains easy and flexible to use in the context of
technical discussions amongst users of WebSphere MQ. That means the notation has to be fit for manual
use on whiteboards and other media used in such discussion.

We have also developed a Visio stencil to accompany this proposal. The stencil contains all of the major
notation symbols, which for Visio users should considerably simply the task of drawing and maintaining
network diagrams for use in technical documentation.

Scope of Modelling

Considering the stack layers in a conceptual infrastructure, we envisage this notation being used at a
specific level of design as represented by the shaded layer below:

When thinking about messaging infrastructures, it is often helpful to imagine how a high-level design that
achieves application connectivity can be transformed into a more detailed network design that also
satisfies the non-functional requirements.

One of the uses of this notation is to capture the state of the design before and after these non-functional
requirements have been injected. In this way, we hope to isolate those decisions made in pursuit of
quality-of-service, while retaining traceability of the design back to the basic connectivity requirements it
satisfies.

Use of the notation is not restricted to solution design, but extends to any stage of a project where design
information needs to be communicated.

Application-level modelling: application-level protocols, messaging
patterns / flow abstractions, message types & formats

Message-queuing network diagram: network topology to support
quality-of-service and support non-functional requirements

TCP/IP network diagrams and other transport implementation details.

Higher concepts: business process management, services-
orientation, message flow modelling, knowledge management, etc.

Technical
detail Level of

abstraction

WebSphere MQ - Network Design Notation

 7

QMGR <queue manager name>

Object Naming in the Notation versus MQ Naming Conventions

Before explaining the notation itself, a brief word on naming.

Experienced MQ users will appreciate the importance of well planned naming conventions when deploying
and operating large messaging networks*.

The chief motivation is the need to protect users of the infrastructure from changes but another reason for
the emergence of naming conventions stems from the constraints imposed by MQ itself. An example is
the 4-character wide namespace for z/OS queue managers (arising from the fact that each is implemented
as a z/OS subsystem.)

In this notation, however, we do not rigidly follow the naming conventions imposed by implementation
concerns, but instead use more expressive naming to improve the readability of network design diagrams.

However, we recognize that in many cases it will be necessary to observe deployment naming
conventions, especially when diagrams are targeted at systems administrators and operations specialists.

Naming Examples

For the majority of the symbols in this notation, the general form of an object name is:

<OBJECT TYPE> [<object name>]

Taking the queue manager symbol, here are some examples with varying degrees of expressiveness:

 The same naming form applies to many of the symbols in this notation. The main exceptions are the
queue symbols, where the type is indicated by the symbol itself, e.g.:

For message PUT or GET operations, it is sometimes necessary to be explicit about the queue (and
perhaps queue manager) that is the target of the operation. For these cases, we have adopted the
following convention:

<OPERATION> <queue name> or <OPERATION> <queue name>@<queue manager>

PUT my.queue // “my.queue” is a clustered queue

GET requests // “requests” is z/OS shared queue

PUT somequeue@my.queue.manager // app specifies queue manager

PUT somequeue@my.queue.manager.alias // or more likely, alias qmgr

*note: Information on MQ naming practices can be found in the product documentation, and in resources such as
SupportPac MD01 - MQSeries Standards and Conventions.

QMGR QMGR qm1

QMGR freezer.toronto.ibm.com

QMGR IBMNYP01

QMGR Special Test
Configuration

queue1
R

queue2
a local
queue

a remote
queue

WebSphere MQ - Network Design Notation

 8

Chapter 2. Chapter 2. Chapter 2. Chapter 2. Network Design Notation LegendNetwork Design Notation LegendNetwork Design Notation LegendNetwork Design Notation Legend

APP app1

PUT [Queue]

CLSTR cluster1

NODE node1

QSG qsg1

R
remote queue local queue

QMGR qm1

NODE <standby>NODE <active>

RG resourceGroup1

failover

highly-available
resources

zSeries coupling facility

QMGR real
APP app1

QMGR qm1

QMGR qm1 QMGR qm2

QMGR qm1

my.ha.queue

local queue
A

alias queue
R

remote queue transmission queue
S

shared.queue

queues

messaging operations

GET [Queue]

PUT Queue@QueueManagerPUT [Queue] (TX)

GET [Queue] (TX)

message put and get transactional put and get fully-specified put operations
(use where target is not obvious)

applications & queue managers

A

qmgr1
messaging application queue manager queue manager alias (with target)

connectivity & grouping

local queue

A
alias queuemessage channel

(inter-queue manager)
general access to

queues in qm1

subnet1

MQ cluster queue sharing group (z/OS) segment of messaging network

physical infrastructure miscellaneous

interface or
service entry point

if1

logical or physical machine data source

dataSource1

high availability configurations

<TYPE> <name>

generic software component

PUT Queue@QueueManagerAlias

PUT

GET

Service
Entry
Point

WebSphere MQ - Network Design Notation

 9

Chapter 3. Chapter 3. Chapter 3. Chapter 3. Using the Network Design NotationUsing the Network Design NotationUsing the Network Design NotationUsing the Network Design Notation

Basic Application-to-Queue Connectivity

Most of the notation examples in this document involve messaging applications. These are simply
applications use asynchronous MQ messaging as part of their design.

In the first example, a messaging application puts and gets messages using two local queues, hosted
by a queue manager, qm1.

While the most common operations are puts and gets, we can easily describe other messaging operations
such as “browse” on the connecting line.

We also introduce this shorthand to indicate that application has general access to the queues visible at
that queue manager (including shared queues and clustered queues). This can be useful to help avoid
clutter on a diagram.

In effect, the line above represents a connection between application and queue manager, rather than
the opening of any specific queue. When used like this, details of the actual messaging operations must
be provided elsewhere.

service.requestsservice.replies

PUT

GET

QMGR qm1

APP someApp

queue2

QMGR qm1

queue3

APP someApp

queue2queue1

PUT / GET

QMGR qm1

BROWSE

APP someApp

WebSphere MQ - Network Design Notation

 10

Sometimes, it is necessary to show whether the application is connecting to a queue manager on a
remote node (using the MQ client) as opposed to a local node. We consider a node simply as a logical
operating system image, for example a single Unix machine, a virtual Linux image or a z/OS logical
partition.

An application can also be shown having connectivity to several queue managers:

In fact, the left-hand diagram shows very little other than the fact that juggler needs to access queues in
qm1 and qm2 at some time. There is insufficient detail to infer the pattern of access to the two queue
managers and their queues.

The diagram on the right reveals a little more about the nature of the operations, but we still cannot specify
whether juggler’s put and get are part of one messaging operation or are two independent operations.

The principle adopted in this notation is that we show associations between applications and queues (a
fairly static relationship), but do not show ordering or sequencing of message flow (which in any case is
determined dynamically in many networks).

We believe that flow patterns are better represented in a message flow model using other techniques
(such as UML Sequence Diagrams and Yourdon-Demarco Data Flow Diagrams).

Next is an example of an alias queue, which is associated with (“is resolved to”) a local queue.

It is common practice to shield the names of local queues by designing applications to target alias queues.

QMGR test

real.payments

A
payments

APP app1
PUT

QMGR qm1

QMGR qm2

local.queue1

local.queue2

APP juggler
QMGR qm1

QMGR qm2

local.queue1

local.queue2

APP juggler

GET

PUT

NODE node1

APP app1

QMGR qm1

NODE node2

QMGR qm2
client

local

WebSphere MQ - Network Design Notation

 11

Distributed Queuing

The remote queue definition is represented as follows (note the visual similarity with the alias queue
from the previous section):

The next example shows a simple request-reply flow.

Of course, some messages reaching a queue manager might, for some reason, be un-deliverable to the
target queue. It is conventional in MQ to configure a dead letter queue for the queue manager to store
these undeliverable messages – we could show this using the normal symbol for a local queue:

(We have not shown the actual flow of messages onto the dead letter queue – this is assumed to be per
documented MQ behaviour.)

Channels

In distributed queuing, an underlying MQ channel and a transmission queue need to be present, so that
messages can be transferred to a remote queue manager. Note that in the preceding networks, we have
not shown any channels or transmission queues. We believe that it should be possible to omit channel
information from many network diagrams without significantly reducing their usefulness.

QMGR here

real.payments

QMGR there

system.dead.letter.queuesystem.dead.letter.queue

R
payments

APP bad.payment.monitor

GET
PUT

APP someApp

QMGR here

real.payments

QMGR there

R
payments

QMGR here

payment.processor.in

QMGR there

payment.entry.reply

R
payment.reply

R
payment.request

PUT GET

PUTGET

APP payment.entry APP payment.processor

WebSphere MQ - Network Design Notation

 12

However, where it is necessary to show transmission queues, we can do so as follows:

The next diagram shows channel connectivity between queue managers: although there are various types
of MQ channels, we have opted for simplicity by using simple uni- or bi-directional arrows only.

Finally, in this section, we look at queue manager aliases.

In WebSphere MQ, an application can specify a queue manager at the time it opens a queue – this is
called a fully qualified open. One of the functions performed by a queue manager alias is to map the
queue manager name specified by the application to an alternate name. This re-mapping actually takes
effect at the time an application puts a message.

In this network for example, we have two queue manager aliases defined in queue manager web.local:

The application performs a fully qualified open of the queue, represented here with sales@routine: sales
is the target queue and routine is the specified queue manager alias.

When the message is put, the queue manager web.local will re-map routine to lo.value.sales and the
message will be transferred to that queue manager.

One practical use of queue manager aliases is the provision of classes of service in the messaging
network. By configuring several queue manager aliases to queue managers over different underlying
channels, applications can receive a particular class of messaging service, depending on which queue
manager alias they choose.

QMGR qm1 QMGR qm2

xmit.to.qm2 real.queue

R
remote.queue

QMGR qm1

QMGR qm2

QMGR qm3

QMGR web.localQMGR lo.value.sales

APP web.sales

PUT
sales@routine

sales

QMGR hi.value.sales

sales

A

routine

A

highvalue

WebSphere MQ - Network Design Notation

 13

MQ Clustering

Broadly speaking, clustering in WebSphere MQ provides:
- Improved availability of a receiving application as seen by the sender (by routing messages away

from put-disabled queues or failed queue managers)
- Better message response time and throughput (by balancing load across a group of receivers)
- Simplified network administration (through auto-configuration of inter-queue manager channels)
- Extended queue visibility for put access (through clustering of queues)

The following network diagram illustrates a simple MQ cluster that we’ve named finance.production:

The notation shows:

i) Membership of a cluster for cluster queue managers (those inside the boundary)
ii) Cluster queues (those hosted in a member queue manager and inside the boundary)

In this notation, we believe that it is normally not necessary to show the underlying cluster transmission
queue or cluster sender / receiver channels. Nor do we show the message flow through the cluster itself –
we assume this behavior in a cluster.

However, unlike previous diagrams, the target queue for a message put can be ambiguous when using
the cluster notation.

Therefore, we must name the clustered queue on the put operation. In general, we advocate this as good
practice for all diagrams where the target of a messaging operation is not obvious.

The cluster is scoped by the dotted boundary and the notation should be interpreted as: “an application
connected to any member queue manager can put* to clustered queues owned by any other member
queue managers in that cluster.”

By allowing a queue manager to straddle the cluster boundary, we can illustrate local queues that are
private and not visible to the cluster. In the following case, myPrivateQ is not accessible to the
payments.entry application:

* a remote clustered queue is only accessible to an application for put purposes. MQ does not support
message-get from a cluster queue at a remote queue manager.

QMGR qm1
QMGR qm2

payment.processor.in

PUT payment.processor.in GET

APP payments.entry APP payments.processor

CLSTR finance.production

QMGR qm1
QMGR qm2

CLSTR finance.production

payment.processor.in

PUT payment.processor.in

GET

APP payments.entry

APP payments.processor

myPrivateQ

WebSphere MQ - Network Design Notation

 14

We can also show a clustered alias queue along with its corresponding local queue that feeds the
payments.processor application:

The next network shows three Payment Entry applications. Since they each connect via a queue manager
that is a member of the cluster, they all have put access to a queue called payment.processor.in:

For better clarity, we have used a diagram note rather than show “PUT payment.processor.in” for each
sender.

The line connecting each sender to its local queue manager indicates general access to queues visible in
that queue manager, which include the cluster queues. Therefore, the note is essential to clarify the
nature of the messaging operation being performed.

By arranging for a named queue to appear twice in the cluster as here, we can take advantage of the
workload balancing and re-route-around-failure benefits of MQ clustering.

If the group of the Payments Processor applications is considered as a single “logical” application, then
the main benefit brought by MQ clustering is the improvement of performance and availability of this
application, as seen by the Payment Entry applications.

QMGR qm1

QMGR qm2

CLSTR finance.production

PUT payment.requests

GET

APP payments.entry

APP payments.processor

paymentsToProcess

A
payment.requests

QMGR

QMGR

payment.processor.in

QMGR

QMGR

QMGR

Each payments.entry application puts to the clustered queue payment.processor.in

GETAPP payments.entry1

APP payments.entry3

APP payments.entry2

APP payments.processor1

payment.processor.in
APP payments.processor2

GET

CLSTR finance.production

WebSphere MQ - Network Design Notation

 15

Next, we have a pair of overlapping clusters being used to create even wider queue visibility. Any
application, once connected to a cluster1 or cluster2 queue manager, is able to put to the queue
global.audit.log, hosted by queue manager Central and read by a central audit application:

Below we have a system where messages flow from one cluster to another. In this case, the inter-cluster
transfer has been implemented with an application called bridge. Applications on the uk.production
cluster can put messages into the outbound queue from where they are retrieved by the bridge and sent to
queues in fr.production, such as the SAP input queue:

The purpose of the diagram above is not to illustrate the mechanics of the Bridge application. This is a
high-level diagram that illustrates the requirement to transfer messages between two clusters via an
application. To describe the detailed workings of the bridge, a more specific diagram with supporting
documentation on the message flow patterns would have to be supplied.

CLSTR uk.production CLSTR fr.production

QMGR london1

QMGR londonbridge

bridge.tofrance

QMGR parisbridge

sap.cust.requests

QMGR paris1

GET

PUT sap.custmgmt.requests

PUT bridge.tofrance
GET

APP Customer
Management

(CICS)

APP bridge

APP Customer
Management

(SAP)

CLSTR cluster2
QMGR Central

global.audit.log

QMGR online

QMGR BranchHub

GET

CLSTR cluster1

Applications can PUT audit messages to the clustered queue global.audit.log

APP onlineBanking

PUT global.audit.log

APP onlineDealing

APP branchApp

PUT
global.audit.log

PUT
global.audit.log

APP Corporate
Security Audit

WebSphere MQ - Network Design Notation

 16

Finally in this section, when thinking about clustering implementation, it can be useful to show which of the
queue managers are designated as holders of the full repositories of cluster information. We can do this
easily with the generic data source symbol:

QMGR qm1 QMGR qm2

clusterq1 clusterq2
full repository

CLSTR my.cluster

WebSphere MQ - Network Design Notation

 17

Shared Queues (z/OS)

On WebSphere MQ for z/OS, shared queues bring very high quality-of-service messaging infrastructure
in terms of both performance (message throughput and response time) and availability (of messages in
transit, and of the receiving application from the perspective of the sending application).

The benefit stems from the fact that the shared queue really is shared via the zSeries coupling facility -
queue managers in a queue-sharing group (QSG) are able to cooperate to ensure that applications can
put and send messages with maximum quality of service, while the dependency on any one queue
manager is minimized.

The diagram notation for shared queues is based on that in the MQ Intercommunication manual. For
example, the two applications below can process messages for incoming transactions by retrieving them
from a shared queue (which must reside in the coupling facility):

Use of a z/OS shared queue for input means that messages do not become isolated on the failure of any
one application or queue manager. If a queue manager fails, another member of the queue-sharing group
can resolve messaging transactions that were in-flight in the failed queue manager. Note in this case how
the two queue managers do not have any queues of their own but offer a way to “plug-in” to the network.

The notation resembles that for clusters in that the visibility of shared queues (and membership of the
queue sharing group) is denoted by visual containment. All queues inside the coupling facility are shared
and accessible through all queue managers in the queue-sharing group.

We show local* queues as usual:

Note that the visibility of a local queue is always restricted to applications connected to that queue
manager, regardless of whether the queue lies inside or outside of the queue-sharing-group boundary.
Unlike MQ clusters, it is not necessary to place these queues outside the boundary:

*Often referred to as private queues to distinguish from shared queues

QMGR prod1

QSG qsg1

S
transaction.reply

S
transaction.request

GET transaction.request

PUT transaction.reply

APP High Value
Transaction
Processor

QMGR prod2

GET transaction.request

PUT transaction.reply

APP High Value
Transaction
Processor

QMGR prod1

QMGR prod2

engine2.audit

QSG qsg1

S
incoming.trans

GET incoming.trans

PUT

APP High Value
Transaction
Processor

APP High Value
Transaction
Processor

WebSphere MQ - Network Design Notation

 18

Using the notation introduced so far, we can now illustrate an MQ cluster and shared queues working
together in this fictional foreign exchange trading system:

The diagram above shows:
- A front-office trade entry application connected to a queue manager in an MQ cluster
- The queue manager, prod.gate, member of both the queue sharing group and the MQ cluster
- Message flow from the trade entry application to the shared queue forex.requests.shared via the

requestGateway application (which might for example validate message formats).

The single shared input queue allows the four trade settlement applications to compete to process the
incoming trade message. The applications “pull” work as fast as they can and this promotes very efficient
utilization of the backend system resources.

QMGR backoffice1 QMGR backoffice2

QMGR prod.gate
forex.requests

CLSTR production.zone1

QMGR frontoffice

QSG production.zone1

S
forex.requests.shared

GET

PUT

PUT forex.requests

Note:
All four tradeSettlement
applications receive
messages from the queue
forex.requests.shared

GET forex.requests.shared

APP tradeSettlement

APP tradeSettlement

APP tradeSettlement

APP tradeSettlement

APP requestGateway

APP tradeEntry
(webapp)

WebSphere MQ - Network Design Notation

 19

High Availability and Failover

The notation includes a simple means for showing high availability (HA) configurations of queue managers
and applications. (We could equally include other components such as message brokers.)

Consider the first example below, which is a simple ‘standby configuration’. “SaladMaker” is an
application that ‘makes’ fruit salad from orange and cherry messages. This application and its resources
are considered as a resource group configured for high availability.

The high availability is achieved here using two nodes (corresponding to physical servers), one of which is
acting as a ‘cold standby’.

The notation illustrates four general concepts, while avoiding HA vendor-specific terminology:

i) The service entry point: the interface symbol shows the point where clients connect to obtain
normal service from the component. Advertised to clients as a well-known address, it could
take any form, such as a TCP/IP port, an email address, or in our case, an MQ queue
“requests”. The service entry point remains stable (to the client applications) during a fail-over
scenario.

ii) The resource group: a set of sub-components that make up the highly available component
(the “unit of failover”).

iii) The node: a physical machine or discrete operating system image where the resource group
lives.

iv) The failover arrow: associates the resource group with its destination node in a failover
scenario.

There are two ways of thinking about the resource group visualized above:

• “in a failure scenario, all of these components move to another node”, or
• “if any single sub-component fails, the whole group is considered failed (and all the
components move to another node)”

Note the “RG” prefix to the resource group name: this helps to distinguish the resource group from
clusters and queue sharing groups, which also use a dotted container symbol. We have also used red for
the boundary but this is not required (and doesn’t work in monochrome media).

Designing real MQ high-availability configurations requires consideration of the physical storage that MQ
requires for its message queues and transaction logs. We have used the data-source symbol here for this
purpose.

NODE orange.yourco.net

NODE cherry.yourco.net

The Orange and Cherry applications connect to the
remote queue manager using the MQ client

NODE <standby>

NODE fruit1.yourco.net

RG fruitSalad

failover

QMGR qm1

requests

APP SaladMakerGET

PUT requests

PUT requests

APP orange

APP cherry

MQ logs MQ queue files

fruitSalad

WebSphere MQ - Network Design Notation

 20

The next diagram features an ‘N+1 standby configuration’. Here, a spare node with queue manager acts
as standby for resource groups running on several other (N) nodes. Note that the number of service entry
points reflects the number of active or “hot” components.

*Background notes on preserve making:

• Node fruit1 makes marmalade from oranges
• Node fruit2 makes jam from apricots
• In this diagram, the name ‘marmalade’ is used for the resource group, the entry interface, a database
• …and similarly for the name ‘jam’

The orange application connects to the remote
queue manager using the MQ client

NODE <standby>

failover

failover

NODE orange.yourco.net

NODE fruit1.yourco.net

RG marmalade

QMGR qm1

oranges

APP marmaladeGETPUT orangesAPP orange

The apricot application connects to the remote
queue manager using the MQ client

NODE apricot.yourco.net

NODE fruit2.yourco.net

RG jam

QMGR qm1

jam

apricots

APP jamGETAPP apricot

marmalade DBMQ logs &
queues

MQ logs &
queues

jam DB

PUT apricots

marmalade

WebSphere MQ - Network Design Notation

 21

Messaging Subnets

To support diagrams of large messaging networks, the notation includes shorthand for referring to a
complete sub-network as a unit.

The interface symbol, borrowed from UML and object-oriented modeling, is used here to represent the
messaging interface to a network. In practice, a specification of this interface might include:

• The types of message formats flowing through that interface
• The destination (and perhaps reply-to) queue names
• The expected patterns of message flow

As a more concrete example, the following diagram details the backend portion of a messaging network
(on the left) that interfaces with Finance Users sub-network:

The corresponding detail for the “Finance Users” subnet might look like this:

The implication is that the “finance” interface specifies an integration point (a degree of “pluggability”)
between these sub-networks. The high-level network could be rendered (somewhat trivially) as:

We anticipate that for some messaging networks (especially those that seek to implement re-usable
subnets), it is desirable to be able to draw these high-level diagrams that expose the major interfaces
(perhaps with accompanying documented specifications), before dropping into more detailed views of the
sub-networks themselves.

Finance
UsersQMGR finance1

APP SAP.Payroll

QMGR finance2
APP SAP.Invoicing

finance

QMGR financeA

QMGR financeB

QMGR finance.hub
Finance
Systems

APP finance.portal1

APP finance.portal2

APP payroll.onetime.jobentry

finance

subnet BInterface
to Bsubnet AInterface

to A

Finance
Systems

Finance
Users

finance

WebSphere MQ - Network Design Notation

 22

Other Symbols

Data Sources

A major factor in the design of many message queuing networks is the positioning of data sources. We
have included a datasource symbol so that application access to these resources can be visualized. The
symbol is intended to represent any form of file- or disk-based storage and could be used to represent
databases, log files, lookup tables, registries, etc.

This diagram illustrates a simple network to support a message-based data replication scheme.

Transactional Messaging Operations

Some applications (especially those hosted by application servers) are able to send or receive messages
within the scope of a transactional Unit of Work.

A transactional put or get is distinguished simply by a (TX) suffix on the PUT/GET operation.

Generic Software Components

There are many software parts that can appear in the context of a messaging infrastructure. For these,
we suggest use of the generic software component symbol, a simple rectangle using the naming form
adopted elsewhere in this notation. For example, see the generic software component symbol
instantiated as a message broker and an application server below:

QMGR

buffer

PUT

READ

GET

UPDATE
master

APP sender APP receiver

slave

large.trade.requests

QMGR bank

PUT (TX)
APP importantApp

<TYPE> <name> BROKER myBroker APPSERVER as1

e.g.

WebSphere MQ - Network Design Notation

 23

WebSphere MQ Integrator Brokers and Flows

Traditionally, WebSphere MQ Integrator message brokers receive and send their work through MQ
queues. There are frequent cases where it is desirable to depict brokers, message flows and queues on a
diagram to clarify the relationships between these objects.

Here we use of the notation to show a simple message broker configuration, using the generic software
component symbol to represent BROKERs and message FLOWs:

Notes for illustrating WebSphere MQ Integrator brokers:

• In MQ Integrator, a queue manager instance is dedicated to a particular broker instance, so we
have chosen to show the queue manager contained in the broker. Further, in accordance with
general practice, we have given the broker and queue manager the same name

• Though not essential, we represent the same queue manager instance twice, so that message
operations can be drawn more easily

• Message flows appear in much the same way as regular messaging applications – they connect
to queues and perform GET and PUT operations (at the Input and Output flow nodes respectively)

QMGR engineA

BROKER engineA

FLOW transformXC

FLOW transformYC

FLOW routeX

input.typeX

input.typeY

input.typeX

GET

GET

GET

QMGR engineA

output.typeCanonical

output.someDest

output.otherDest

PUT

PUT

PUT

NODE production.node1

PUT

WebSphere MQ - Network Design Notation

 24

Chapter 4. Chapter 4. Chapter 4. Chapter 4. Other InformationOther InformationOther InformationOther Information

Usage Guidelines

We suggest that the following be considered for network design diagrams drawn using this notation:

i) Consider static aspects of the network only: Dynamic aspects such as message flow
sequencing, routing and queue build-up are best modelled using other techniques (including
Data Flow Diagrams, UML Interaction or Collaboration diagrams, etc.)

ii) Represent only what is sensible: A lot of network design information is not suitable for
visual representation and should be captured in notes, documents, flow diagrams, models,
etc.

iii) Capture the essence of the design: Normally, it will be impractical and unnecessary to
model every component of a network in a single diagram. In many cases, drawing a subset of
cloned applications or showing a sub-chain of a long multi-hop sequence should be sufficient
to get the concept across and is much easier for a reader to comprehend.

iv) Consider drawing different views: Do not try to serve too many needs with one diagram.
Omit detail when it is not directly relevant to the viewer’s purposes. For example, it is not
necessary to show every single message put or get. Considering whether all objects need
names or whether it is sufficient just to indicate their type (this also avoids the potential
problem of a reader inferring something you didn’t intend from an arbitrarily chosen name.)

Tips for Clarity and Emphasis

There are many ways to add emphasis to diagrams to draw out interesting detail:

• Line weight
• Line type (solid, dashed, dotted)
• Color
• Font type, size and options (bold, italics, etc.)
• Arrowhead size and style
• Containment and overlap
• Shadows and other effects

However, with these techniques, it is all too easy to inadvertently reduce the clarity of a diagram*,
especially when using drawing software.

This is most likely when:

• Too many techniques are being used at the same time. If you find that you don’t have enough
forms of emphasis available, this is probably a sign that the diagram needs to be broken up into
multiple, simpler views.
• Techniques are being used inconsistently throughout one or more diagrams

The hazard is that a diagram viewer will construe the importance of various elements differently than you
intended, or worse, will be plain confused!

In this document, we have tried to make minimum possible use of these emphasis techniques, in order to
leave as many as possible in the hands of users of this notation.

We suggest that when using any of the techniques above, take a step back from your diagram and try to
imagine what emphasis a viewer will see.

Happy drawing!

*As discovered during the development of this notation!

WebSphere MQ - Network Design Notation

 25

BibliographyBibliographyBibliographyBibliography

• Design Rules, Naming Convention and A Minimum Symbol Set for MQSeries System Design,
Benjamin Zhou (Financial Services Corporation). WebSphere MQ SupportPac MD04

• MQSeries Queue Manager Clusters, IBM Corporation SC34-5349-02

• MQSeries Intercommunication, IBM Corporation SC33-1872-05

• MQSeries for AIX - Implementing with HACMP Version 2.0 IBM Corporation. WebSphere MQ
SupportPac MC63

• MQSeries Standards and Conventions, IBM Corporation. WebSphere MQ SupportPac MD01

-- End of Document --

