IBM Software

Managing Complex Systems Engineering – A Nuclear Perspective

Paul Fechtelkotter

WW Segment Leader, Energy and Utilities

IBM Rational

Agenda for Today

Issues facing the Nuclear Industry Lessons learned and customer examples Summary

Nuclear power projects are complex and sensitive to cost and schedule but have a history of large cost/ schedule over-runs

Factor	Sensitivity	Lifecycle average cost/kWh (relative to base case)
Construction cost	25% under budget	81%
	10% under budget	92%
	25% over budget	120%
	50% over budget	139%
Construction	1 year under plan	94%
timeline	1 year over plan	109%
	2 years over plan	116%
Time to ramp up to	1 year earlier than plan	98%
steady-state service	1 year later than plan	103%
	2 years later than plan	107%

Figure 3: Impact of Key Construction and Start-up Variables on Nuclear Power Economics⁸

"From this model we see that total construction cost is arguably the key factor, and that even a modest cost over-run (10-15%) could erase the cost advantage over competing fuel sources that a business case would have indicated."

Cost over runs continue to climb

Site/Supplier	Time	eline	Buc	lget	Peacons sited
Site/Supplier	Original	Current	Original	Current	Reasons cited
Olkiluoto, Finland (new) Areva	2009	2012	€3 Bn	€4.5 Bn	 Unrealistic forecast (5 years) New technology (EPR) Contractor experience Execution flaws (e.g., welds, coolant pipes) Lack of capable resources
(refurb) AECL	2001/02	2003/04	\$1.1B	\$3–4 B	Project management capabilityComplexity
Lungmen, Taiwan (new) <i>GE</i>	2009/10	2011/12	\$6.8 B	\$7.9B	 Component delivery / installation Political factors (approvals)

Figure 4: Nuclear Project Cost / Schedule Over-run Examples

* Source: Power Gen 2010: 'CAN UTILITIES DELIVER NUCLEAR CONSTRUCTION PROJECTS ON-TIME AND ON-BUDGET? Authors: Kish Khemani and Neal Walters with AT KEARNEY.

Operational plants are facing increasing regulatory challenges

- Compliance efforts are manually-intensive and time consuming
- Cost of outages can run into millions of \$US per day

Innovate2012 Next NOW!

The tight coupling and complex interactions in nuclear plants makes them prone to "systems risk"

Figure 9. Systems that must manage complex interactions and high coupling are more prone to accidents. Space missions are among these high-risk systems.

The growth in complexity leads to growth in risk. Operators need to take a systematic approach to managing the risk.

Source: Final Report: NASA Study on Flight Software Complexity, Commissioned by the NASA Office of Chief Engineer, Technical Excellence Program, Adam West, Program Manager (2009)

Combination and permutation formula illustrates the complexity

$$\frac{n!}{r!(n-r)!} = \binom{n}{r}$$

where *n* is the number of things to choose from, and you choose *r* of them (No repetition, order doesn't matter)

$$\frac{n!}{(n-r)!}$$

where *n* is the number of things to choose from, and you choose *r* of them (No repetition, order matters)

	Combination
	24251926972033700000000
	2.E+23
	Permutation
	376176733218739000000000000000000000000000000000000
	4.E+48
400	
100	n

Additional challenges are being driven by the transition to digital Instrumentation and Controls (I&C)

- Diversity and defense-in-depth and protection against common-cause failures
- Self-diagnostics within a digital I&C platform
- Communications between safety and non-safety channels
- Highly-integrated control rooms
- Qualification of safety system platforms
- Software verification and validation (V&V)
- Software quality
- Cyber security
- Configuration management
- Probabilistic Risk Assessment (PRA) for digital systems

10 of the top issues to avoid as energy systems modernize throughout the life cycle.

- 1. Requirements grow and change at rates in excess of 1 percent per calendar month.
- 2. Few applications include greater than 80 percent of user requirements in the first release.
- 3. Some requirements are dangerous or "toxic" and should not be included.
- 4. Some applications are overstuffed with extraneous features no one asked for.
- 5. Most software applications are riddled with security vulnerabilities.
- 6. Errors in requirements and design cause many high-severity bugs.
- 7. Effective methods such as requirement and design inspections are seldom used.
- 8. Standard, reusable requirements and designs are not widely available.
- 9. Mining legacy applications for "lost" business requirements seldom occurs.

10. The volume of paper documents may be too large for human understanding.

Software Engineering Best Practices: Lessons from Successful Projects in the Top Companies by Capers Jones

Innovate2012 Next NOW!

TEM 🍅

We have seen value in implementing a better collaboration platform across the ecosystem

Change in one area ripples across the other areas

All participants must be synchronized during the plant's life, from conception to decommissioning Effective, comprehensive, and well-integrated requirements management is often chosen as a place to start

The relationships become difficult to manage as well as the change - a solid and integrated platform is needed

Effective requirements management is a foundational element that needs to needs to be addressed from project conception

Virtual Pla	ant Cor	nstruciion	Ph	ysical Plar	nt
Year 0	Year 2	Year 4	Year 6	Year 15	Year 45++
New Build Opportunity assessment Licence application, import and management Requirements Detailed specs, planning work execution	Contract Ma. agement Issuing contracts tu EPC's. Managing deliverables Design Vault/CM Capture 3D data from EPC. Library part reuse Document Mgt Capture and associate	Commissioning Manage process of commissioning Handover Efficient handover of rich oformation EFP Integration Maimenance Planning Document maintenance	Maintenance Simulate changes to procedure. Process Optimisation Asset Knowledge Management Complementing EAM to support decision making through the lifecycle	Regulation changeMaintaining a valid configurationLicense MaintenanceKeeping the license up to datePerformance ReportingSustem	Decommissioning Equipment Design Working within regulations Plant view Decommission by Area Decommission by Area Process Planning Simulate the de- construction
Engaging Suppliers Issue RFX Concept Evaluation Process Simulation	project data (eg safety case) Construction Planning Plan and execute the build process	Configuration Management Requirements, Design and Plant alignment	ecisions m npacts for Design Basis and Part Equivacy	hade here up to 100 Extension Benefit of 3D	can have years site from nuclear regulations

Text-based approaches introduce risk into the system and project but that is the norm today.

Advanced step

Method	Requirements Completeness	Requirements Defects per
Dynamic Modeling	97%	0.10
Quality Functional Deployment	96%	0.25
Requirements Inspections	95%	0.10
Use Cases	80%	0.80
Energy Legacy Applications	70%	0.20
Prototyping	62%	Olnterim step
Information Requirements Gathering	57%	1.00
Normal Text Documents	50%	1.10

Nuclear customers are moving forward with this approach

A REQUIREMENTS MANAGEMENT SYSTEM FOR A SPENT NUCLEAR FUEL REPOSITORY

Lena Morén and Åsa Olson, SKB Swedish Nuclear Fuel and Waste Management Co, Box 250 SE-101 24 Stockholm Lena.Moren@skb.se

> The operation and construction of a final repository facility and repository for spent nuclear fuel is regulated in Swedish laws. To support the development of a repository design in conformity to the regulations SKB has developed a requirements management system (RMS). The RMS shall make the basis and motive for the design traceable, facilitate system development, understanding and decision making.

> In the RMS the requirements and other design premises are organized in a hierarchy. Each level in the hierarchy can be regarded as a specification. The highest level specifies the problem to be solved and the principles to be applied in the design, and the lowest level the design of individual components.

> The higher level requirements are based on laws and regulations and generally accepted safety and radiation protection principles. The lower level design premises are based on results from the assessments of the operational and long-term safety and technology development. The formulation of concise requirement texts requires both system understanding and, since the requirements constitute specifications, choice of design alternative. The development initiates cooperation between groups and supports system understanding.

Design premises Level 1: Stakeholder requirements	Sources and level of detail	Example	SKB Kärnbränslehantering AB
Requirements expressing basic requirements and principles for the design.	Laws and regulations Stakeholder demands Problem to be solved and principles to be applied in the design	The post-closure safety of the final repository shall be based on several barrier functions that are maintained through a system of passive barriers.	
Levels 2 and 3: System and sub-sys	tem requirements		
Requirements expressing the functions the repository and repository facility shall have to conform to the objectives and principles.	Laws and regulations The KBS-3 method The spent nuclear fuel The KBS-3 repository and repository facility	The final repository shall contain the spent nuclear fuel and isolate it from the environment at the surface.	
Requirements expressing the functions the barriers and technical systems shall have for the repository and facility to maintain their functions.	Laws and regulations The KBS-3 method The spent nuclear fuel The engineered and natural barriers The technical systems	The canister shall sustain the containment and withstand the mechanical loads that are expected to occur in the final repository.	
Levels 4 and 5: Design requirements	s and reference design		
Requirements expressing the properties and parameters to be designed and the terms they shall fulfil	The required functions and results from the safety assessment, research and development	The compression yield strength and the dimensions of the insert shall be such that the copper shall remains tight	

Other premises for the design

Premises for the design from: - the safety assessment,

- the other barriers,

the production and operation

The components of the engineered barriers and their properties The layout and properties of the underground openings The components of the technical systems

with respect to the largest expected isostatic load.

Largest isostatic load 45 MPa = max. swelling pressure + max. groundwater pressure.

Figure 1 The hierarchy of design premises in SKB's RMS with an example.

Figure 1. SKB's version of the V-model with the requirement hierarchy, the constraints, the specified issues and the verification. The black arrows illustrates links in the RMS. For the verification lighter colour illustrate design phases and darker construction and operation phases.

TRM 🍅

Requirements Management System for the Final Disposal of the Spent Fuel

May 10, 2012 Posiva Oy Juhani Palmu

Juhani Palmu

Innovate2012

Next NOW!

VAHA Project - the requirements related to the geological disposal of spent nuclear fuel in Finland

Juhar

POSIVE

VAHA Project

- VAHA vaatimustenhallinta requirements management
- The aim of the project is to design and implement a systematic process and an information system to manage the requirements related to the geological disposal of spent nuclear fuel in Finland.

Juhani Palmu

IBM. 🍯

VAHA Project, System Structure

Level 1 - Stakeholder requirements

Level 2 - System requirements

Level 3 - Sub-system requirements

Level 4 - Design requirements

Level 5 - Design specifications

Constraints

I POSIVA

Juhani

VAHA Project, System Structure

TOROD.	ocation: 1/1 - VAHA			
A DOORS Database	Name	Туре	Description	
E T VAHA	Concepts and Instructions	Folder		
E Concepts and Instructions	Constraints	Folder		
Constraints	L1 Stakeholder	Folder	Level 1 - Stakeholder Requirements	
LI Stakeholder	L2 System	Folder	Level 2 - Functional Requirements	
1 2 Subautama	L3 Subsystems	Folder	Level 3 - Subsystem Requirements	
+ 14-5 Design	L4-5 Design	Folder	Level 4 & 5 - Design Requirements and Specifications	
2 - Reference Envs				
🗄 🛅 3 - Sandbox				

Juhani Palmu

VAHA Change Management Process

Why Westinghouse Electric Company chose DOORS

Innovate2012

Next NOW!

The Importance of a Requirements Management Program to Westinghouse

- Customers expect their <u>contractual</u> requirements to be met by our products and services
- Nuclear <u>regulatory</u> requirements must be met by our design
- · Standards & certifications must be in compliance
- Our products/services must meet these requirements before we can be paid
- "Change" happens we use DOORS functionality to <u>manage the change</u> for us

DOORS connects requirements to test cases and test results

DOORS provides the ability to hold online document review process

AP1000

Westinghouse's collaborative example

- Collaborating among ecosystem partners for new-build design work

ISM Software Innovate2012 The Premier Event for Software and Systems Inno Next NOW!

US Department of Energy (DOE) - Yucca Mountain Repository

Develop a national site for spent nuclear fuel & high-level radioactive waste storage. Project lead by a consortium of government contractors, URS Corporation, Shaw Corporation and Areva Federal Services LLC.

The program used *Rational's DOORS* product to develop an extensive requirements database to track and manage an extremely broad range of program and regulatory requirements ranging from US CFRs to Contract Requirements.

Summary

The challenges facing the nuclear community continue to rise The introduction of software-based I&C is one of the key drivers
There is a need for more effective collaboration and synchronization amongst all parties is the ecosystem
Better collaboration is achievable through the use of existing integrated, scalable, and battle-tested IT platforms