
CICS: From waterfall to agile using RTC*

Nigel Hopper
CICS SM and API Team Leader

(*Or “Teaching the elephant to dance!”)

CICS
40+

First GA'd when:
- Nixon was president
- Man landed on the moon

One of the top 35 technologies that shaped the industry*

*According to Computerworld magazine

http://www.ibm.com/ibm100/us/en/icons/cics/

CICS TS code is complex!

• Started out over 40 years ago as a loose collection of programs
• Primarily written in assembler and PL/X

• Now has Java, XML, Cobol and more!

• Eventually converted to domains
• Currently in the region of 70 domains. Grouped in areas such as Application Services,

Business Logic Applications, Base Runtime, CPSM
• 3 APIs
• Multiple tools such as CICS Explorer, CICS Deployment Assistant

Since 2007 we've worked on...

• Adopting Agile practices
• Adopting RTC for project planning and control
• Rewriting our build into Antz
• Migrating our source code to RTC
• Moving from green screen development to RDz
• Looking to use common tooling for development and service
• And there is still some way to go!

The CICS process until 2007

• Waterfall oriented to a cycle of:
• Development
• Functional Test
• System Test
• Quality
• Translation/Packaging/Deliver

• 2 year release cycle
• Upfront commitment for the release

Pre-2007 process issues

• Up front commitment can be very inflexible
• Change can require (5?) layers of management approval

• Work sized at – 'what will fit'
• Large overhead in

• Planning
• Tracking
• Status recording
• Managing change

• Coordination and scheduling of cross team work
• Different teams, different priorities

Pre-2007 process issues (cont.)

• Late in release system test and beta issues
• Integration problems

• Difficult to identify
• Lengthy to fix due to complexity

• Beta issues
• Raised late
• Lack of time to make changes at this late stage

• Defect backlog
• Release would often peak at 600+ defects
• Main focus towards the end of release

• Often a great deal of post-release tidying up

Why Agile?

• IBM were sufficiently confident of it to make it the corporate direction for
developing software

• “If CICS can do it, anyone can” message
• But how?

• Little skills
• Little knowledge
• Still a 2 year release cycle
• Who's benefit is this for?

Initial Agile adoption

• In 2007 our CICS release became iterative
• Still a 2 year release cycle
• With 4 month iterations

• The intention was:
• Work to be broken down into smaller 'chunks'
• All development, functional testing and defects done in iteration
• System/Integration testing done in following iteration
• Beta every 4 months

Initial Agile adoption - Reality

• Still 2 year upfront commitment
• Not seeing as much flexibility due to this

• Difficult cultural change

• Difficult to contain work to 4 months
• Code not conducive to this approach

• 6 million lines of code
• Nearly 40 years of waterfall development

• Requirements were too large
• Agile was new to us

Initial Agile adoption – Reality (cont.)

• Tooling fragmented and not Agile 'friendly'
• 10+ day code 'freeze' prior to beta shipping!
• No way of integrating and prioritizing. For example:

• Defects in one tool
• Project tracking several others

• While the Agile term was used, reality was mini-waterfalls

Initial Agile adoption – benefits

• Beta shipped every 4 months
• Much earlier feedback

• System testing much earlier
• Defects found and handled much earlier

• Peaked at 450

• Changed people's perception of what was possible
• Proved work could be 'chunked'
• Still a great deal of scepticism from certain 'mature' personnel!

• Feedback on quality in the release has been high

Agile: Deliver sooner, fix earlier

Agile Profile
defects found early when

they are cheaper to fix

CICS TS for zOS
First 'Agile' delivery

Waterfall Profile
Defects found later when they

are more expensive to fix

CICS TS for zOS
Last waterfall delivery

Timing is everything...

• Senior developers / testers / management had Agile education
• More of an overview
• Approximately 15 of us did a book review

• Primarily team leaders and lead developers
• Mike Cohn – Agile Estimating and Planning

• 2008 Rational Team Concert V1 beta shipped
• Adopted by a couple of system testers for their infrastructure
• Demonstrated it to the CICS team
• Trialled by several CICS team members

• Hursley started centrally hosting Jazz servers

Timing is everything... (cont.)

• Timing was good - Major release of CICS shipped in 2009
• A significant turn around of staff meant a loss of important skills
• A review of tools and processes was undertaken

The way we were - Reality

• Using a wide variety of tools to
manage project, for example:

• 3 source code management systems
• Completely alien to each other
• Separate builds for two of the SCMs
• Highly integrated build into main SCM

• External database for customer
requirements

• Lotus Notes databases/documents
for:

• Internal requirements
• Actions
• Risks

• High learning curve for new starters

The Vision

Single non-proprietary environment
for the delivery and service of future releases of

CICS Transaction Server for zOS
• Where everyone (business, marketing, development, test, service, build, etc) can focus

and collaborate via one single tool
• If we are really to adopt Agile principles, the tooling had to improve

Why RTC?

• Early trials showed great promise
• Hursley just started centrally hosting Jazz servers
• Highly configurable

• We were in control!

• Provided great audit tracking
• Allowed for an end to end integrated development environment

• Requirements, Approvals, Defects, Code, Tracking, Build and so on!

• Clearly a tool designed for Agile development

My RTC 'key' goals

• Key goal – use RTC 'out of the box'
• Configuration – OK
• Customization – Not OK

• Key goal – use industry standard Agile methods/terms
• Key goal – use a minimum number of roles – trust people
• Key goal – use RTC to implement RTC
• Key goal – big bang approach would not work

RTC Adoption: Making it happen

• First thing – 2 month iterations, 4 month betas
• Initial focus on work items, project planning and tracking

• Epics, Stories. Tasks, Defects, Risks, Actions, etc.

• Long term focus on migrating source code and service delivery
• Rewrite the build
• Migrate LCS code
• Service product through RTC

• Staged implementation
• If you wait for it to be perfect, you will never start!

• Education – Combination workshops, mentoring, wiki help

RTC Adoption: Planning and Tracking

• Time line
• July 2009 - Created RTC server

• Infrastructure project, plus Main and Sandpit projects
• August – October 2009 – Reviewed processes and configured server – 80-90% right
• Mid-2009 – migration of Epics (requirements) to RTC
• October 2009 – migration of Defects from CMVC to RTC
• November 2009 – migration of CMVC source code to RTC
• End of 2009 using RTC for all work outside of LCS/build

• All requirements, defects, plans, teams, etc., everything needed to work a
project was coordinated through RTC

• Including Epics, Stories, Defects, Tasks, Risks, Actions
• PLUS editing of approximately 30% of the code

RTC Adoption: Planning and Tracking

• Many 'tweaks' since then
• Use of dashboards for status meetings
• New work items

• Risks
• Actions

• Red/Amber/Green fields for stories
• Minor changes to various:

• Work flows
• Enumerations

• Swapped use of priority and severity in defects – My bad!
• Templates for work item 'groups'

RTC Adoption: Development Environment

• The build rewrite
• Start of build rewrite – January 2010
• First integration build – September 2010
• First beta shipped from Antz build – February 2011
• RTC delivered CICS TS for zOS V4.2 - June 24, 2011

• The tooling
• DTS started – June 2010
• DTS ready – March 2011
• Developer environment ready – April 2011
• LCS Source code migrated to RTC – June 2011
• RTC/RDz development environment rolled out – June/July 2011

Advancing the development environment

Committer ServiceDeveloper

Dev Prod PTF ModYe olde environment

ASAP LCS CMVC SPA

The new developer environment

• Rational Team Concert v3
• Rational Developer for System Z v8
• IBM Internal language editor plug-in

• Better context aware editing

• Antz Eclipse plug-in for build control
• Hursley constructed build tool

• Ant is an open source build tool
• We added extensions to support zOS

• Antz now ships with RTC

Rational based development

Committer

Developer /
Service

Antz

Dev

Prod

PTF

Mod
Jazz

DTS

RTC-RDz

RTC/Jazz manages:
- Release/Iterations
- Work items
- Plans
- Source code
- Streams
- Change sets
- Lots more!

Using the new tooling

• Cruise Eclipse plug-in
• Changing and unit testing the code

(RTC/RDz)
• Developers load a workspace with a

project (CICS Domain)
• Make changes using language aware

editors
• Check-in changes to RTC
• Use RTC build definitions to request a

Antz developer build
• Build automatically delivers changes

to developers load libraries

• Remote System Explorer within RDz
• Starts CICS and allows job output to be

examined

• RDz Debug perspective to debug
CICS system code

• Soooo much more screen real-estate

• Code reviewed through RTC
approvals

• Developer delivers the code to the
Delivery stream

Delivery and Test Service (DTS) Tool

• Requirement to control the promotion of code through:
• Developer
• Integration
• Best so far (BSF)
• Production (Increment)
• Each level runs automated regression testing of increasing complexity

• Integration to BSF to Production

• Previously two nodes with this approach (ASAP tool)
• CICS
• System management
• Possible for one node to break the other
• Stops complete teams or everyone from testing

The issues...

• RTC was not the problem, does what it says on the box
• RTC is just a tool, it will do what you ask it to
• Minor issues only
• Changes are not set in stone

• People issues
• They do not want to change - Why change if it currently works?

• Not something new again?
• How long is this one going to last?
• Don't want to see the benefits
• Don't want to try something new

• Developers have used the same tool set for 20+ years
• Single biggest change to development practices in 3 decades

The issues... (cont.)

• Process issues
• We had some serious holes in our process – still very waterfall
• Need agreement of many senior people

• An Agile process that is clearly defined – somewhat of a contradiction
• Still learning the Agile way

• Some serious bun fights
• Can often go around in circles

• Sometimes you just need to make a decision

The issues... (cont.)

• There was a huge amount of inconsistency:
• Between teams
• Between tracking of work
• In approving work
• In artefacts created for delivery

• content, designs, where stored,etc.

• Understanding the existing build
• 20+ years of integrating a build into a library system!
• Exactly what is GXP?
• Any experience now retired!

The issues... (cont.)

• RTC/RDz environment: Many teething problems – to be expected
• Build

• Fine for production / integration
• Many tweaks required for developer and service builds

• Cruise plug-in missing some components
• Service process

• Technically flawed
• Over engineered
• Being revisited

• New development process
• Steep learning curve for some

The benefits...

• No longer a 2 year upfront commitment
• Integrated work item and reporting tools

• Transparency of work items, dependencies and status
• Ability to ignore what is green and focus on the issues
• Risks/Actions integrated

• Responsiveness to business needs – aiming for greater value, earlier
• Beta deliveries much earlier
• Ability to adapt to change much easier
• Flexible resource pool
• Current release – much more Agile in terms of requirements and prioritisation

The benefits... (cont.)

• Dashboards
• Instant status reporting – Everyone has a much clearer view of project
• Weekly status (Scrum of Scrums)

• The preparation for that meeting from 15-30mins to <5mins
• Approximately 15 teams
• Reduced the weekly status meeting from 90mins to 60mins
• The meeting is now dealing with issues

• Can have dashboards show information across multiple projects
• Project, team and individual dashboards – all configurable

• Iteration quality checks
• End of iteration criteria preparation from ~ 2-4 hours per team <15mins
• End of iteration meeting from 2 hours to <1 hour

The benefits... (cont.)

• Mitigate against future development risks
• Loss of specialized skills (particularly LCS)

• Common tool set and skills
• Flexible Workforce
• Far greater coordination of work
• Improving our speed of delivery
• Common tool set across

• The department, teams, development and service
• Hursley
• IBM

• After 2 months of RTC/RDz – 90% working as well or better than VM

The benefits... (cont.)

• Now we have moved to a single stream set
• Developer, Public, Best so far (BSF), Production (Increment)
• No longer CICS and SM with the above

• Ability to cut new streams
• Risky development
• When beta required

• Cut a new Production (INC) stream for beta
• Development / Testing continues on other streams
• Packaging and Regression testing on beta stream
• Defects found in beta stream promoted to Production
• Only those required for beta merged from Production to beta
• No more code freezes!

The benefits... (cont.)

• Quality has improved
• Defects in RTC – defects part of the backlog
• Pre-2007 defects peaked at 600+ - Waterfall
• 2007-2009 defects focused on much earlier (450 peak) – Agile/Iterative
• 2009-2011 again lower levels of defects (350 peak) – Agile/Iterative+RTC

• Far greater ability to use Agile practices
• Most teams working in 1 month iterations. Could not have been imagined 2 years ago

• Far greater collaboration across teams
• Far greater notification when things change

The benefits... (cont.)

• Far less post-release 'churn' – seems more in control
• Value for the engineer

• Skills in a 'industry leading' environment
• Much reduced learning curve

• Eclipse or Web interface
• Easier to move roles within CICS or Hursley

• You can trust people
• The more you use RTC, the more ways you find of using it

• For example, community projects

Where are we now?

• Further adoption of Agile practices
• Moved to 1 month iterations for most teams – Still 4 month betas
• Story point sizing
• User story definitions (Actor, goal, value)
• Iteration planning, priority based, team driven commitment
• Backlog monitoring

• All planning, development and service being done through RTC
• New customer requirements solution – linking into RTC (RRC?)
• Investigating RRC
• Further deployment of RQM
• Using CLM projects to link RRC/RTC/RQM for complete integration

Summary

• Moving from Waterfall to Agile development is possible
• It doesn't have to be just 'new projects'
• It can have a staged approach
• Does not have to be for all aspects e.g. SCM

• Adopting RTC will provide a catalyst for change
• Evangelists and the support of senior management are key
• Re-examines processes in a new way

• Helps to identified holes and errors in team processes

Summary (cont.)

• RTC / RDz does provide an end-to-end development environment
• Flexible, auditable, functional, easy to pick up the basics
• 90% of adoption driven by the teams, not management
• Extensible through the Jazz Team Server and RRC and RQM
• More you use it the more ways you find to use it

• Expect teething problems – be Agile in fixing them
• If you need multiple projects

• Think ahead to the architectural design and configuration
• Who needs access to what without restricting their work
• Consider provider / consumer projects

© Copyright IBM Corporation 2011. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any
kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor
shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the
use of IBM software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates
and/or capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to
future product or feature availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the
International Business Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

www.ibm/software/rational

Backup Slides

www.ibm.com/uk/hursley/

Where is Hursley with Jazz today?

• Hursley – IBM's largest software lab in Europe

• Diverse heritage
• Spitfire designed here
• CICS TS for zOS
• CICS TG
• CICS Tools
• WebSphere Application Server
• WebSphere MQ
• WebSphere MQ Broker
• Java
• Tivoli Netcool
• Cast Iron
• Many others

Jazz Adoption

• Started with the provision of a central Jazz Service in June 2008
• Hosting Jazz repositories, their back-up, infrastructure and maintenance
• Agile approach to Jazz Service delivery

• Customer rather than process focused

• Early in 2009 the Hursley Jazz Community was established
• Monthly meetings to collaborate and share best practice
• Provide help to users requesting it
• Pull ideas and best practice from the Jazz Community
• Give solutions based upon these ideas back out to our customers

• Then the Jazz @ Hursley website was set up to:
• Provide access to background information
• Provide access to the Jazz clients supported
• Compliment, not replace, the official jazz.net site

Team Adoption – Hursley's portfolio

Circa 4Q2010

Hursley's centrally hosted approach

Hursley Statistics

USA
UK
Canada
India
China
Ireland
Germany
France

Demographics

Further Backup Slides

Ye olde development way (Not that it's bad!)

• VM environment
• Cruise tool – Sophisticated library

search and cross reference
• MPU tool - Create an MPU
• Check out using Alter associate to

MPU
• Edit using xedit in VM
• Check in using catlg
• Use MPU tool to correctly associate

composites
• MPUBATCH tool to build the code
• Repeat until clean build

• Use MVS2CALL to transfer to MVS
• Repeat until unit tested
• Use MPUREV to get code reviewed

and approved
• Use MPU to promote the code

• Pretty much all green screen

Debugging environment

SLD*
← Ye Olde Way

RDz Debug Perspective
 The New Way →

*SLD (Source Level Debugger) – Very powerful zOS debugging tool

Code change

Build

Review 1

Review 2

Review 3a

Review 3b

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

