
© 2011 IBM Corporation

Gain insight into DB2 9
and DB2 10 for z/OS
performance updates
and save costs
Mike Bracey
DB2 for z/OS Systems Engineer
braceym@uk.ibm.com

IBM System z Technology Summit

© 2010 IBM Corporation2

Disclaimer:
Information regarding potential future products is intended to outline our general
product direction and it should not be relied on in making a purchasing decision. The
Information mentioned regarding potential future products is not a commitment,
promise, or legal obligation to deliver any material, code or functionality. Information
about potential future products may not be incorporated into any contract. The
development, release, and timing of any future features or functionality described for
our products remains at our sole discretion.

Performance Disclaimer:
This document contains performance information based on measurements done in a
controlled environment. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of
multiprogramming in the user’s job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that
an individual user will achieve throughput or performance improvements equivalent to
the numbers stated here.

© 2010 IBM Corporation3

DB2 10 Performance Preview

● Abstract

This session offers a look at performance impact of DB2 9
and DB2 10 for z/OS with particular emphasis on the DB2 10
improvements.

● Agenda

– DB2 10 for z/OS performance goals and expectations

– Scalability and buffer pool enhancements

– INSERT improvement

– FETCH/SELECT improvement

– LOB, XML, and SQL procedure performance

– JDBC and DDF performance

© 2010 IBM Corporation4

DB2 10 Performance Objective

added 64 bit support

Historical goal of <5% version-to-version performance regression
Goal of 5% -10% performance improvement for DB2 10

Average %CPU improvements
version to version

-15
-10
-5
0
5

10
15

V3 V4 V5 V6 V7 V8 V9 V10

© 2010 IBM Corporation5

DB2 10 Performance Expectation

Most of workloads…
• Up to 10% CPU reduction after REBIND packages
• Higher improvement with workload with scalability issues in V8/V9 or
accessed thru DRDA

Most of workloads…
• Up to 10% CPU reduction after REBIND packages
• Higher improvement with workload with scalability issues in V8/V9 or
accessed thru DRDA

Sweet Spots…
- Workload using native SQL procedures: up to 20% CPU reduction after
DROP/CREATE or REGENERATE the procedures
- Query workload with positive access path changes
- Workload with frequent access on small LOB (NFM with Inline LOB)
- Workload with random, singleton select/update (NFM with Hash access)

Sweet Spots…
- Workload using native SQL procedures: up to 20% CPU reduction after
DROP/CREATE or REGENERATE the procedures
- Query workload with positive access path changes
- Workload with frequent access on small LOB (NFM with Inline LOB)
- Workload with random, singleton select/update (NFM with Hash access)

© 2010 IBM Corporation6

● DBM1 below 2GB
– 80-90% less usage in V10

compared to V9
– Some of working storage

(stack, xproc storage) stays
below 2GB

● Larger number of threads
– Possible data sharing

member consolidation
● Improve CPU with storage

– More release deallocate
– Larger MAXKEEPD values

for KEEPDYNAMIC=YES

DBM1 Virtual Storage Constraint Relief
V10

SKCT
SKPT

Global DSC

DBD
CT/PT

Local DSC

Thread / Stack

80-90% less usage
DBM1 below

Thread / Stack/ working

© 2010 IBM Corporation7

Virtual Storage Reduction from SAP Workload

0

200

400

600

800

1000

1200

DB2 9 DB2 10

#o
f u

se
rs

 /
 D

B
M

1
vi

rtu
al

(M
B

)

4.4
4.6
4.8
5
5.2
5.4
5.6
5.8
6
6.2

C
PU

 ti
m

e

Thread DBM1 below virtual CPU time per tran

412 concurrent threads

Virtual storage below the bar
– 997 MB with DB2 9

– 63 MB in DB2 10

No significant increase in real storage

© 2010 IBM Corporation8

DBM1 VSCR Monitoring
More focus on

– Real storage usage (PM24723)
– Common storage (ECSA and ESQA) usage

New statistics in IFCID 225 reports
– DBM1 and DIST address space: virtual below and above, real, and aux
– Common and Shared storage usage (z/OS APAR OA33106 SRB ESQA reduction)

DBM1 AND MVS STORAGE BELOW 2 GB QUANTITY
-- -------------------
TOTAL NUMBER OF ACTIVE USER THREADS 2694.28

NUMBER OF ALLIED THREADS 386.00
NUMBER OF ACTIVE DBATS 2275.06
NUMBER OF POOLED DBATS 33.21

REAL AND AUXILIARY STORAGE FOR DBM1 QUANTITY
-- ------------------
REAL STORAGE IN USE (MB) 5396.07

31 BIT IN USE (MB) 289.45
64 BIT IN USE (MB) 5106.62

HWM 64 BIT REAL STORAGE IN USE (MB) 5106.64

© 2010 IBM Corporation9

Performance Scalability - DB2 Latches (CM)
Most of DB2 latches from 64 cp scalability evaluation will have a relief
● LC12 : Global Transaction ID serialization
● LC14 : Buffer Manager serialization
● LC19 : Log write in both data sharing and non data sharing
● LC24 : EDM thread storage serialization (Latch 24)
● LC24 : Buffer Manager serialization (Latch 56)
● LC25 : EDM hash serialization
● LC27 : WLM serialization latch for stored proc/UDF
● LC32 : Storage Manager serialization
● IRLM : IRLM hash contention
● CML : z/OS Cross Memory Local suspend lock
● UTSERIAL : Utility serialization lock for SYSLGRNG (NFM)

© 2010 IBM Corporation10

Performance Scalability - H/W synergy
Exploitation of z10 features

– CPU improvement using z10 prefetch instructions
– Large fixed page frames for buffer pool

● Buffer pools with PGFIX=YES
● Define IEASYSxx LFAREA 1MB page frames
● Reduction of hit miss in TLB (translation lookaside buffer)

– Observed 1-4% CPU reduction

In memory buffer pool with large real
– DB2 managed in memory buffer pool

● PGSTEAL = NONE
● Pre-load the data at the first open or at ALTER BPOOL
● Avoid unnecessary prefetch request
● Avoid LRU maintenance no LRU latch (LC14)

© 2010 IBM Corporation11

INSERT Performance Improvement

DB2 9
• Large index pages
• Asymmetric index split
• Data sharing Log latch
contention and LRSN spin loop
reduction
• More index look aside
• Support APPEND option
• RTS LASTUSED support

DB2 10 CM
• Space search improvement
• Index I/O parallelism
• Log latch contention reduction and
faster commit process
• Additional index look aside

DB2 10 NFM
• INCLUDE index
• Support Member Cluster in UTS
• Complete LRSN spin avoidance

© 2010 IBM Corporation12

Universal Table Space (UTS) – Member Cluster (NFM)

● Member Cluster option in create table space
– Assigns a set of pages and associated space map page to

each member
– Remove the “hot spots” in concurrent sequential insert in

data sharing
– It does not maintain data cluster during the INSERT
– Data cluster needs to be restored via REORG
– Each space map contains 10 segments

● Altering to MEMBER CLUSTER
ALTER TABLESPACE MyTableSp
MEMBER CLUSTER YES/NO;

– REORG to materialize the pending alter

© 2010 IBM Corporation13

INSERT Performance Improvement

Sequential key insert into 3 tables from JDBC 240 clients in two way data sharing
members. Using Multi Row Insert (batch size 100). Each member resides on LPARs with
z10 8CPs.

Sequential Insert Performance

0

20000

40000

60000

80000

100000

120000

V9 SEG V10 SEG V9 PBG V10 PBG V10
PBG/MC

Th
ro

ug
hp

ut
 R

at
e

(R
ow

s
pe

r s
ec

)

0

20

40

60

80

100

120

140

160

180

C
PU

 (m
ill

i s
ec

on
d)

Throughput Rate CPU

© 2010 IBM Corporation14

I/O Parallelism for Index Updates (CM)

● Still one processing task. No improvement if all indexes are in the buffer
pools

● Effective to reduce I/O wait for large indexes which cannot fit in the
buffer pools.

● New zparm INDEX_IO_PARALLELISM with default YES
● Classic Partitioned TS and UTS (both PBG/PBR) but not for segmented

TS

I/O parallelism by prefetching index pages to overlap the I/Os
against non-clustering indexes

V10

During insert, DB2 executes index updates sequentially.
Tables with many non-clustering indexes may suffer high
synchronous read I/O wait

V9

© 2010 IBM Corporation15

Additional Non-key Columns in a Unique Index (NFM)

Additional Non-key Columns in an unique indexes
Reduce index maintenance cost during insert, DASD space savings

V10

Multiple indexes per table
An index is used to enforce uniqueness constraint. Additional indexes are
necessary to achieve index only access on columns not part of the unique
constraint during queries.

Higher Insert / Delete CPU time, increased storage requirements

V9

© 2010 IBM Corporation16

Additional Non-key Columns in a Unique Index

● V9 definition
CREATE UNIQUE INDEX i1 ON t1(c1,c2,c3)
CREATE INDEX i2 ON t1(c1,c2,c3,c4,c5)

● Possible V10 definition
CREATE UNIQUE INDEX i1 ON t1(c1,c2,c3) INCLUDE (c4,c5)

or
ALTER INDEX i1 ADD INCLUDE (c4,c5) and DROP INDEX i2

● The following restrictions will apply:
– INCLUDE columns are not allowed in non-unique indexes
– Indexes on Expression will not support INCLUDE columns
– Indexes with INCLUDEd columns can not have additional unique columns

ALTER ADDed to the index

© 2010 IBM Corporation17

SELECT/FETCH Performance Improvement

CPU reduction on index predicate evaluation
Better performance using a disorganized index
Row Level Sequential Detection
Group by using Hash, More in memory workfile usage
Dynamic statement cache support for literal constants
Many access path related enhancements
-Plan stability for both static and dynamic statements
-Parallelism improvement
-IN list access improvement
-Auto stats…and more

V10

Sort performance improvement, in memory workfile/Sparse index
-Index on Expression
-Many access path related improvements
Plan Stability for static SQL statements
Histogram stats, etc.

V9

© 2010 IBM Corporation18

CPU reduction in Predicate Evaluation (CM)

● Optimize in index predicate evaluation process
– Applicable in any workload but query with many predicates

shows higher improvement

● Performance improvement
– Average improvement shows average 20% CPU reduction

from generic 150 queries.
– Individual queries show between 1 and 70% improvement

© 2010 IBM Corporation19

Improvement in using Disorganized Index (CM)
● Index scan using disorganized index causes high

sync I/O wait
● Disorganized index detection at execution
● Use List Prefetch on index leaf pages with range scan

– Reduce Synchronous I/O waits for queries accessing
disorganized indexes.

– Reduce the need of REORG Index
– Throughput improvement in Reorg, Runstats, Check Index
– Limited to forward index scan

● Performance results
– Observed 2 to 6 times faster with simple SQL statements

with small key size using list prefetch compared to Sync I/Os

© 2010 IBM Corporation20

Row Level Sequential Detection (CM)

• Problem:
Dynamic prefetch sequential works poorly when the number of rows per
page is large.

• Solution:
Row Level Sequential Detection (RLSD).
• Count rows, not pages to track the sequential detection.
• Since DB2 10 will trigger prefetch more quickly, it will use progressive

prefetch quantity.
• For example, with 4K pages the first prefetch I/O reads 8 pages,

then 16 pages, then all subsequent I/Os will prefetch 32 pages
(as today).

• Also applies to indexes

© 2010 IBM Corporation21

Row size = 49 bytes, page size = 4K (81 rows per page)
Read 10% of the rows in key sequential order

Query Time (seconds)

0
2
4
6
8

10

100 98 96 94 92
Cluster ratio

V9
V10

Dynamic Prefetch I/Os

0
100
200
300
400
500

100 98 96 94 92

Cluster ratio

V9
V10

Row level sequential detection (RLSD) preserves good sequential
performance for the clustered pages

Index Data Range Scan

© 2010 IBM Corporation22

Index to Data Access Path vs. Hash Access

• Index->Data access

– Traverse down Index Tree

– For a 5 Level Index
• 6 GETP

• 2 I/O’s

– 5 index page searches

= Page in Bufferpool

= Page Read from Disk

• Hash Access
– Locate a row without having to

use an index
– Single GETP in most cases
– 1 Synch I/O in common case
– Greatly reduced Search CPU

expense

© 2010 IBM Corporation23

Hash Access and Hash Space
• Optimal to get from fixed area

– 1 getpage, 1 I/O

• Overflow

– 3 getpages, 2-3 I/Os

• Use REORG with AUTOESTSPACE
YES unless you know better

• Real Time Statistics (RTS)

– # of overflow
TOTALENTRIES

– TOTALENTRIES /
TOTALROWS < 10%

• FREEPAGE is not valid for HASH
space but PCTFREE is honored

Hash
Overflow

Index

Part 3

Hash
Overflow

Index

Part 2

Hash
Overflow

Index

Part 1

Fixed Hash Areas
PBR

Overflow
Index

Fixed Hash Area

Part 1

PBG

Part 2 Part 3

© 2010 IBM Corporation24

Hash Access Summary
Performance benefit :
– Up to 30% DB2 CPU reduction with random access

• Higher improvement with large table with small rows
• Savings in index maintenance once you remove the clustering index

– Possible reduction in Hotspots
• Rows are randomly distributed

Performance concern :
– Not for sequential fetch nor insert

• Significant Sync I/O increase if accessed in clustering order
• No Member Cluster support
• Careful research is necessary on picking the candidate

– Statement level of monitoring for GetPage and I/Os
– Significant impact on LOAD utility using input data with clustering order

• Relief is coming soon
– Possible INCREASE in I/O or BP space in some cases

• In case of small ‘active’ working set
• In case of many “row not found”

© 2010 IBM Corporation25

SQL Procedure Performance (CM)

Native SQL Procedures
Further performance optimization

Specific CPU reduction in commonly used areas

-Pathlength reduction in IF statement

-Optimization in SELECT x from SYSDUMMY1

V10

Introduced native SQL Procedure
Improvement by executing procedures in DBM1 instead of WLM address
space

V9

© 2010 IBM Corporation26

Measurements – SQLPL (CM)

OLTP using SQLPL
–20% CPU reduction

with V10 CM
–89% DBM1 Below the

Bar usage reduction
–5% resp time

improvement due to
latch contention relief

200

300

400

500

600

700

800

900

1000

V9 V10-CM
0.001000

0.002000

0.003000

0.004000

0.005000

Throughput CPU per transaction

© 2010 IBM Corporation27

Local JDBC and ODBC Application Performance
● Local Java and ODBC applications did not always perform faster

compared to the same application called remotely

– DDF optimized processing with DBM1 that was not available
to local ODBC and JDBC application.

– zIIP offload significantly reduced chargeable CP
consumption

● Open support of DDF optimization in DBM1 to local JCC type 2 and
ODBC z/OS driver

– Limited block fetch
– LOB progressive streaming
– Implicit CLOSE

● Expect significant performance improvement for applications with

– Queries that return more than 1 row
– Queries that return LOBs

© 2010 IBM Corporation28

High Performance DBATs
● Re-introducing RELEASE(DEALLOCATE) in distributed packages

– Could not break in to do DDL, BIND
– V6 PQ63185 to disable RELEASE(DEALLOCATE) on DRDA DBATs

● High Performance DBATs reduce CPU consumption by
– RELEASE(DEALLOCATE) to avoid repeated package allocation/deallocation
– Avoids processing to go inactive and then back to active
– Bigger CPU reduction for short transactions

● Using High Performance DBATs
– Stay active if there is at least one RELEASE(DEALLOCATE) package exists
– Connections will turn inactive after 200 times (not changeable) to free up

DBAT
– Normal idle thread time-out detection will be applied to these DBATs
– Good match with JCC packages
– Not for KEEPDYNAMIC YES users

© 2010 IBM Corporation29

High Performance DBAT…
● New -MODIFY DDF PKGREL command

– Options
● PKGREL(BNDOPT) honors package bind option
● PKGREL(COMMIT) forces package bind option

RELEASE(COMMIT)
– Same as V9 inactive connection behavior
– Will allow BIND and DDL to run concurrently with distributed

work
● PKGREL(DEALLOC) forces package bind option

RELEASE(DEALLOCATE)
– Provides better performance behavior
– BIND and DDL can not break in when concurrent distributed

work runs

© 2010 IBM Corporation30

Inline LOBs (NFM)

● CREATE or ALTER TABLE INLINE LENGTH on UTS
– INLINE to base table up to 32K bytes

● Completely Inline LOBs
– Reduce DASD space

● No more one LOB per page, Compression
– CPU and I/O saving

● Avoid LOB aux indexes overhead

● Split LOBs
– A part of LOB resides in base and other part in LOB TS

– Incur the cost of both inline and out of line

– Index on expression can be used for INLINE portion

© 2010 IBM Corporation31

Inline LOBs

0

10

20

30

40

50

60

70

80

Se
co

nd
s

OUTLINE INLINE

Select 10,000 x 200 byte LOBs

• Inline is good, if
– Most of LOBs are small and

only a few large ones
– Compress well

• Inline is not good, if
– Most of LOBs become “split LOB”

unless indexing is important for
inlined portion

– Majority of SQLs do not touch the
LOB columns

• Base table becomes larger with
Inline

– Buffer hit ratio for base table
may decrease

– Image copy of base table
becomes larger

Very small LOBs select, insert shows
Up to 70% elapsed time reduction
with INLINE LOBs

Elapsed time in random select

© 2010 IBM Corporation32

XML Performance Improvement

Significant Performance improvement in V9 service stream
DB2 10 performance improvement
– Binary XML support

• Avoid the cost of XML parsing during insert
• Reduce the XML size
• Measured 10-30% CPU and elapsed time improvement

– Schema Validation in engine
• No more UDF call for validation
• Utilize XML System Service Parser

– 100% zIIP / zAAP eligible for validation parser cost
– XML Update

• No more full document replace

© 2010 IBM Corporation33

DB2 10 Monitoring Enhancements and Changes

1. New Monitor class 29 for statement detail level monitoring
IFCID 316/318 for dynamic, 400/401 for static

2. Record index split with new IFCID 359
3. Separate accounting to identify DB2 latch and transaction lock

in class3
4. Package LASTUSED
5. Storage statistics(IFCID225) for DIST address space, shared,

and common storage
6. Specialty Engines

Possible redirection value (zIIP SECP) is no longer supported, always zero
SE CPU (actual offloaded CPU time) continues to be available

Portion of RUNSTATS utility (redirect rate depends on RUNSTATS parms)

Prefetch and Deferred Write Engines redirected 100%

© 2010 IBM Corporation34

DB2 10 Monitoring Enhancements and Changes

7. Package accounting information with rollup

8. Statistics trace interval
Always 1 minute interval in V10 no matter what you use in STATIME for
critical statistics records

9. Compression for DB2 trace data in SMF with a new zparm
(SMFCOMP)
Overhead is minimum (up to 1% measured)

Up to 90% SMF data set saving from measurements Trace formatter needs
to be modified to call z/OS services to decompress the data

© 2010 IBM Corporation35

Beta Customers’ Feedback – Workload level
Workload Results

CICS online transactions Approx. 7% CPU reduction in DB2 10 CM after REBIND, 4%
additional reduction when 50MB of 1MB page frames are used
for selective buffer pools

CICS online transactions Approx 12% CPU reduction

CICS online transactions Approx 5% CPU reduction from DB2 8

CICS online transactions No CPU reduction - Candidate of release deallocate usage

Distributed Concurrent
Insert

50% DB2 elapsed time reduction, 15% chargeable CPU
reduction after enabling high perf DBAT

Data sharing heavy
concurrent insert

38% CPU reduction

Queries Average CPU reduction 28% from V8 to DB2 10 NFM

Batch Overall 20-25% CPU reduction after rebind packages

© 2010 IBM Corporation36

Beta Customers’ Feedback – Line Item Focused
Workload Results

Multi row insert 33% CPU reduction from V9, 4x improvement from V8 due to
LRSN spin reduction

Query with 10 stage 1
predicates

5 index matching, 1 index screening, range and IN predicates

60% CPU reduction with same access path

Parallel Index Update 30-40% Elapsed time improvement with class 2 CPU time
reduction

Inline LOB SELECT LOB shows 80% CPU reduction

Include Index 17% CPU reduction in insert after using INCLUDE INDEX

Hash Access 20-30% CPU reduction in random access

No improvement or some degradation in CICS workload

16% CPU reduction comparing Hash Access and Index-data
access.

5% CPU reduction comparing Hash against Index only access

20x elapsed time increase in sequential access

© 2010 IBM Corporation37

Thank you !

Mike Bracey (braceym@uk.ibm.com)

