IBM Software Design and Development
Rational

How collaboration in software
delivery improves productivity
for small to medium businesses

2 How collaboration in software delivery improves productivity for small to medium businesses

Business is never without risk. That’s why success can be
thrilling, along with its financial rewards. Many risks are
obvious, such as the depth and breadth of the competition, or
the dangers in missing deadlines or profit projections. But
what about less obvious forms of risk, or those considered so
unlikely that they go ignored by decision makers? As we've
seen in the recent gulf oil spill, an otherwise successful multi-
national corporation ignores potential risks at the peril of its
workers, the environment, and its public image. Or, as in the
case of Toyota in 2010, ignoring safety warnings can lead to a
very public crisis of confidence, including law suits, lost rev-
enue, and yet another damaged reputation.’

In the area of software development and delivery, the rapid
pace of change—owing to constant shifts in technology, proj-
ect requirements, interim company objectives, personnel, and
other factors—creates a uniquely risky environment for proj-
ect managers. What's soff in software is its insubstantial nature,
that it’s merely information, a set of instructions to manipulate
machinery that will essentially do what the software tells it to
do. When the environment for creating these instructions is
under constant change, outcomes become less predictable.

We see three categories of risk in software development. First,
there is the risk that a software project will completely fail.
That is, the project will not be completed because of technol-
ogy or management hurdles, or most often a combination of
these. Second, there is the risk that the cost of a software proj-
ect will exceed its benefit to the business. Third, there is the
risk of unintended behavior—as in the recent case of Toyota,

where the risk posed by a software glitch was not only ignored
by the manufacturer, it was simply missed by the National
Highway Traffic Safety Administration, the regulatory body
that oversees the auto industry. As reported in The Washington
Post, the agency “was woefully unprepared to decide whether
engine electronics might be at fault,” and that “NHTSA
officials told investigators that the agency doesn’t employ any

992

electrical engineers or software engineers.

The business of software is risky not only for the auto indus-
try, but also for the medical, electronics, financial services,
communications, aero-defense, and a host of other industries.
As systems and devices of all sorts—from jet fighters to tooth-
brushes to Wall Street trading systems—become smarter and
more interconnected, software development and delivery has
emerged as a critical business process that needs to be man-
aged as effectively as possible. That includes the ability to
address and manage the risks assumed through innovation
and ever-more competitive business models. Yet the nature of
software’s benefits, especially the competitive edge that success
can deliver, often blinds managers to the risks that lie just
beneath the surface of whiz-bang graphics and user interfaces.

One long-held approach to reducing risk in software develop-
ment and delivery involves the use of automated tools: special-
ized software that helps developers manage most aspects of the
project life cycle. Just as chainsaws replaced axes and allowed
teams of forest workers to be more productive, tools for soft-
ware development have progressed from language compilers

IBM Software 3

to those that support discrete stages and specialties within
the software development process. Tools for capturing and
managing requirements, changes, testing, and deployment,
for example, have been used for more than 15 years to
support team specialties and roles, and their use has certainly
improved productivity. But improvements have typically been
measurable only at the individual level, while improvements
regarding team collaboration have been minimal.

Collaboration is our next challenge in managing the risks
inherent in the intangible nature of software design and devel-
opment. This will require both better process platforms and
better architectures that explicitly confront these uncertainties
in open and measurable ways. Recent models for software and
systems architecture—including systems of systems, service-
oriented architecture (SOA), and reusable middleware—

have begun to improve the structure of what gets delivered.
Modern governance, CMM]I, agile methods, cloud computing,
and improved toolsets are providing a better platform for the
development process itself. But there is much still needed in
both contexts of architecture and platforms.

This paper describes the economic benefits of simplifying
software tool implementation for software development and
delivery teams through solutions such as Presto from Black
Diamond Software. Our goal is to illustrate incremental
improvement to a team’s risk and productivity profiles through
a range of scenarios taken from actual business cases. The
software economics discussion is based on Walker Royce’s
work for the Rational® organization at IBM; the examples
provided for each scenario come from Randy Howie’s work
with customers and the Black Diamond team.

The nature of software projects

The best thing about software is that it is soft (i.e., relatively
easy to change) but this is also its riskiest attribute. Should we
think of software as something designed and manufactured
like a bridge that is engineered and then produced according
to an organized plan with a division of labor? Or is software
more like a movie, a collaboration involving a team of crafts-
men and emerging from the naturally creative process of
artistic people?

Unlike bridge construction, most software does not deal with
natural phenomena where laws of physics or materials provide
a well-understood framework. Hence, like a movie, most soft-
ware is constrained only by human imagination; the quality of
software is judged more like a beauty contest than by precise
mathematics and physical tolerances. Also like a movie, you
can seemingly change almost anything at any time: plans, peo-
ple, funding, requirements, designs, and tests. “Requirements”
rarely describe anything that is truly required. Nearly every-
thing is negotiable, and quality is best determined through
the eyes of the audience.’

Unlike a movie, however, the consumer cannot usually see all
of the capabilities of a given piece of software in order to
judge it. In making online purchases, for example, consumers
can see the list of products in their shopping basket but not
their personal data, which has been stored. Is that data secure?
Often it is not—data security cannot be visualized and is diffi-
cult to ensure. These “behind the scenes” behaviors are part of
the reason that software is so inherently risky.

4 How collaboration in software delivery improves productivity for small to medium businesses

If we don’t carefully manage software production, we can lull
ourselves into believing that what we see is what we get and
ignore the risk lurking beneath. We can end up operating in
malignant cycles of change that result in massive amounts

of scrap, rework, and wasted resources. And worse, we can
smother the business results that are the purpose for the
software in the first place.

Software project managers must combine techniques that
support the creative process with those used in conventional
engineering projects. The process must be agile enough to
support change and other aspects of complex teamwork via a
set of tools that enable monitoring and measurement of that
process.*

The question is, what techniques can we use to manage what
is essentially an intellectual endeavor?

Agile development and the challenges of

software delivery

While a variety of industries are finding software delivery to
be challenging, it has nevertheless become an essential part of
their business operations. The needs of large-scale businesses
have spawned niche markets for small to medium size suppli-
ers, where turnaround time is brief and the margin for error is
slim. Companies at this level must quickly meet their software
challenges in order to deliver quality components to their
major customers.

Opver the past decade, many smaller companies competing
in niche markets, or smaller I'T organizations enabling their
businesses through software, have adopted agile software
delivery techniques as a way to meet deadlines more

efficiently. Much has been written on agile development,’ and
a full discussion of the concepts and benefits of agile is beyond
the purpose of this paper. Suffice it to say that agile techniques
have allowed software project teams to move from a “develop-
ment activity” focus to a “delivery of results” focus, which is
the whole point of the process.

Alongside this evolution toward a more agile software delivery
process is the complementary market for software delivery
tools, noted earlier. Tools for testing, requirements manage-
ment, change management, security and compliance, assembly
and delivery, etc. allow software teams to be more productive
and thus more valuable to their respective business, since each
class of tools helps automate a critical portion of the software
project life cycle.

But the specialization of software development roles and the
interrelated data these roles must create and maintain have
introduced new areas of risk into the equation. Let’s consider
the risk associated with specialization across the life cycle.

Life cycle challenges

The next advance in software tools will be improved collabo-
ration across these roles throughout the project life cycle. To
date, most traditional tools offer little to aid collaboration as
teams work to deliver results. The hand-off from one phase—
one tool, so to speak—to the next is managed via manual
processes that are error prone and time consuming. Consider
the impact of this manual process in just one area of the devel-
opment life cycle: change management. Some form of change
management practice is vital for coping with dependencies
among hundreds, or thousands, of units of software code, each
of which must be created or reused, tested in context, and
retested whenever a change is introduced that “touches” any
given unit.

IBM Software 5

Figure 1 shows the potential impact of change on a very small
part of a typical project in the mid-market.

Requirements

Business Rule 1

Business Rule 2
Business Rule 3

Business Rule 4

Sprint 1

Business Rule 3
Business Rule 4

T}
e

Sprint 2

Figure 1: Requirements begin with “business rules” (shown in light blue
boxes at far left). These become actual “requirements” (deep yellow), lead-
ing to “test cases” (teal) with corresponding “test scripts” (purple) at far
right. A change in business rules will have a cascading, multiplying effect
on requirements and testing that can overwhelm teams relying on non-
automated processes for life cycle collaboration

Figure 1 illustrates how enormous the impact of change

can be. A small, benign change in one component may cause
malignant changes across numerous components. And because
many different people, each playing multiple roles, must react
to a change exactly when it happens, it’s easy to see how
change causes risk on software projects. If the combined
explosion of change and communication to team members is

not managed, risk “leaks” are created, the effects of which
permeate many components and can linger throughout the life
of the software.

Challenges for smaller teams

The difficulties associated with change management plague
software development and delivery teams of all sizes. But
there is a major difference between large and small software
organizations when it comes to their risk profiles. While large
software organizations can “amortize” major investments in
tools and training over a period of several years, and absorb
early failures as nominal growing pains over the course of
successive projects, smaller companies do not have this luxury.
Automated tools and modern development methods are
equally critical for these smaller, niche players, but their
investments need to be realized in the shortest of time-
frames—typically by the end of the current project. Failure

is often not an option: the current project may be their last.

A word on open source tools: Free at what cost?

"Tool automation can improve the productivity of individuals,
and, certainly, open source tools (i.e., “free” software) can
provide much of this automation. However, open source tools
do not minimize the impact of change described in Figure 1.
That’s because they do not integrate easily, do not improve
team collaboration, and therefore do not reduce the primary
project risks associated with modern development practices.
True, there are open source tools designed to help some team-
mates collaborate on certain tasks. But these do not provide
team-wide collaboration across the application development
life cycle. In fact, open source tools can create a barrier to
future collaboration improvements.

6 How collaboration in software delivery improves productivity for small to medium businesses

A grounding in software economics

The agile methods and tools described above emerged as a
significant, though partial, answer to the unique challenges of
software “engineering.” For small to medium size companies
competing in niche markets, or for smaller I'T organizations
enabling their businesses through software, agile practices help
team members be more productive, and in the aggregate, team
productivity should rise as tools automate each specialized area
of the life cycle.

But we can do much more.

The underlying goal is improved productivity. Productivity
can be measured in time savings and translated clearly into
monetary value. But it’s just as clear how these savings can be
eroded during a project if risks are not properly managed. For
example, a project can appear to be on track, or even ahead
of schedule; but a missed requirement discovered at some
downstream point in the project can mean revisiting and, at
worst, recreating units of code that had been settled earlier.
Furthermore, the most valuable forms of productivity are
based on team collaboration, which extends beyond improve-
ments made by individual team members. Support for effec-
tive, efficient collaboration must be the cornerstone for
productive teams, yet collaboration—which requires proper
tooling, processes, and team configuration—must itself be
managed like any other risk element within a project.

Improved productivity at both the individual and team level

is possible when processes are appropriately scaled. As we’ll
illustrate below, a full range of improvements across an
organization can be achieved over time, as teams collaborate
and the business is willing to scale efforts toward greater busi-
ness results. But the kernel of improved sofiware economzics lies
in the first steps to combined individual and team productivity.

What do we mean by “software economics?” Good economics
means efficient management of finite resources toward an
optimal result. At the individual and team levels of an organi-
zation, improved productivity is an immediate and tangible
aspect of good software economics. Improved productivity
means more or better output per dollar (or euro, pound, yen,
rupee, or yuan). This improvement can be channeled into
business value in many dimensions, such as cost savings,
better quality, earlier time to market, more predictable deliv-
ery, increased market share, enhanced market reputation, and
even greener operations.

But for most organizations, this improvement is more aspira-
tion than reality. Each software delivery practitioner today
costs American companies about $200,000 per year, including
salary, benefits, capital, overhead, profit, and other direct
costs. Even a 5% productivity improvement is therefore
worth $10,000 per year per person. That is substantial finan-
cial leverage. In lower cost countries, the numbers change, but
the leverage is still significant.

Let’s quantify this further. The IBM® Rational organization
and its business partners have observed a scale of organiza-
tional improvement that spans individual productivity through
the use of effective software tools, through team and process
improvements, all the way to increased business value at the
company level. For this discussion, we will focus on improve-
ments that are possible through an optimized tool adoption
strategy, as mapped out in Figure 2.

The key message from Figure 2 is that a range of incremental,
measurable improvements can be achieved. As a company’s
business model matures, so should its software development
and delivery process. The more significant improvements,

like systematic reduction in complexity and major process
transformations, require more significant financial and time

IBM Software 7

Improve
Automation

Cost to implement:

Improve
Collaboration

Cost to implement:

Improve
Process

Cost to implement:

Increase Flexibility &
Investment Value

Cost to implement:

g <5% 5%-10% 10%-35% 25%-50%
Very predictable Predictable Some culture change Much culture change

(N) Productivity: Productivity: Productivity: Productivity:

N 5-25% 15-35% 25-100% 2x-10x

M Timeframe = Weeks Timeframe = Months Timeframe = Quarters Timeframe = Years

|

C

1

M

P

A

C

T

S

Implementation costs
are per person per year

Individual Team Business

Organization

Figure 2: Expected productivity returns from investment in application life cycle management technology

the “culture” of the organization. The smaller improvements
highlighted in yellow are more predictable and straightfor-
ward to deploy. These include skill improvements, and

investments and the range of outcomes has more uncertainty.
These are covered by the business value improvements

graphed at the right of the scale in Figure 2, and they tend to
be broader organizational initiatives that require changes to automation improvements targeted at individual teams, proj-

ects, or smaller organizations.

8 How collaboration in software delivery improves productivity for small to medium businesses

The remainder of our discussion will focus on an optimum
approach to changes at this end of the scale, where teams gain
productivity through the transition from individual tools to
Collaborative Application Life cycle Management (CALM)
tools. The question is, how can tools be implemented so that
economic improvements can be realized and measured?

The move toward collaboration

Reducing risk and improving productivity are the fundamental
reasons tools are used by software development and delivery
teams. Improved productivity is achieved by improving the
output of the people building software. Risk is reduced by
clearly describing and focusing on the desired business result
and minimizing the impact of change upon the result.

Over the past twenty years, the software industry has offered
application life cycle management (ALM) tools to the market-
place that promise automation for individuals and the tasks
they perform, but they do not provide the cross-team support
known as “collaborative ALM,” or CALM. In some cases, a
suite of tools was offered that could only support CALM

with significant investment in integration. Yet the marketplace
rarely used the Rational suite in its entirety, nor did they
widely subscribe to the services necessary to create CALM.
Further, only larger businesses that could amortize the
investment could afford the cost of integrating the suite to
achieve CALM. Businesses could buy tools that automated
tasks within their ALM implementations, therefore ending up
with a collection of ALM tools that automated areas of the
ALM process but were not themselves truly integrated.

The IBM Rational organization made this selection process
easier by acquiring and developing a suite of tools that par-
tially paved the path to full integration. While these tool
choices resulted in productivity improvements, substantial
risk reduction did not come out of the box and still required
clients to integrate tools and processes to adapt them to their
specific context.

Today’s Collaborative ALM, or CALM, is more squarely
targeted at risk reduction by eliminating the errors that can
occur through poor integration or through manual transfer of
code artifacts under development. In order to reduce risk the
following must occur:

1. The tools that provide automation along the application life
cycle must work on a common data architecture.

2. Dependencies between ALM tasks must be managed with
traceability between data elements.

3. Whenever a change occurs, the right people along the trace
must be notified of the change immediately.

In the next section, we will present a range of case-based sce-
narios that demonstrate incremental improvements toward an
optimum, productive CALM tool environment.

Tool implementation: A range of scenarios
"To this point, we have provided a perspective on agility and
tooling as they relate to the fundamental parameters of soft-
ware economics, risk, and productivity. Now let’s examine the
impact of tools choices on a real project through a range of
scenarios.

We have chosen an example business and project taken from
one of Black Diamond’s clients. This successful 90 million
dollar business had reliable but stable net income of about five
percent and wanted to grow by venturing into a new market.
The vision for net income growth relied on a web-based prod-
uct, for which their business case showed a net income growth
of 20 percent if successful. Black Diamond was asked to help
this company arrive at a budget. A team of nine people was
needed to build the first release, including contractors from
Black Diamond. The average loaded hourly cost of the team
was $70 per hour and based on initial but gross estimates a
project budget of $1.134 million was established.

IBM Software 9

Project Statfing Cost Analysis
Description Value
Average fully loaded hourly cost 5 70
Costiweek $ 25.200
il ’ 100800 e Project represents a significant cost
Cost/sprint 5 75,600
- to the company
Costirelease § 378,000
Cost/project 3 1,134,000
10% of project cost 5 113,400 . .
e r—— : s * Over a year of at expected increased income
oo e : T to pay for the cost of the project
Business A
Descriptio Val .
e = * At the average cost overrun for a project of
Revenue] 89,418,750 . '
e — - — 40 percent, project consumes one-third of net
I P income and will take almost two years to pay back
Target net income s 954,750
Minimum weeks 1o recover cost 62
Minimum weeks to recover cost + 40% 86
Cost as a percentage of net income 23.8%
Cost + 40% as a percentage of net income 33.3%

Table 1: Project parameters for Business A

Given the initial budget it would take over a year of the target
net income increase to pay for the project. The profile for this
company, Business A, and its project are outlined in Table 1
above.

With the business results as a basis, let us examine the choices
Business A faced as it decided how to outfit its team with
development tools—the goal being to increase team

productivity and save costs. We will quantify the results in
terms of the company’s balance sheet, which, in some cases,
will make it easy to see that the introduction of tools can
defeat the business goal. Each scenario includes an estimated
risk for cost overrun.

10 How collaboration in software delivery improves productivity for small to medium businesses

Description Best Case Worst Case
Estimated Staff Cost $ 1,134,000 $ 1,134,000
Risk of Project OverRun (40%) $ 453,600
Totals: $ 1,134,000 $ 1,587,600

Table 2: Using no tools to manage risk of project cost overrun.

Scenario 1. Do nothing—using no ALM tools at all

The risk we’ve discussed in this paper is widely referenced by
the Standish Group’s series of CHAOS reports® which as early
as 1994 found that 25 percent of software projects fail to
complete and those that complete do so with an average

189 percent budget overrun. In the past 15 years the report
has been widely analyzed, praised, referenced, and disputed.
While it is not in the scope of this paper to appraise the
Standish Group’s findings, our own empirical experience over
the past twenty years has taught us that software project esti-
mation is imperfect and sometimes extremely difficult. This,
combined with the inherent risk we have discussed, means that
most projects end up over original estimates. Therefore, any
business relying on a software project to boost results would
be negligent not to plan for an overrun. We believe a reason-
able assumption is a 40 percent overrun, which according to
some estimates is a conservative number.” Therefore if a busi-
ness attempts to execute a software project with no ALM tools
they have no opportunity to achieve any of the productivity
improvements illustrated in Figure 1 and face a planning risk
of 40 percent cost overrun. Table 2 shows the best and worst
case outcomes regarding the “Do Nothing” scenario.

Scenario 2. Improving individual productivity

The majority of businesses, like our example business, invest
in automation at an individual level, as shown in Figure 2.
These tools help with version control or change management,
or requirements management, but they do not represent a

full-suite of integrated CALM tools.

"Today a major category of non-integrated ALM tools are
those available freely as downloadable open source projects.
These tools are attractive, since they are free and available via
the Internet. Let’s examine the impact on our example project
if the team chooses open source.

First, as described in the CALM discussion earlier, the team
can expect individual productivity improvements. The best
and worse case impacts are shown in Table 3. But as we’ll see
below, these benefits do not include substantial risk reduction.

IBM Software 11

The missing man condition

Once tools are selected and purchased they must be installed
and configured for the team to use them. Further, if the

tools are not collaborative, integration may be necessary to
approach some level of collaboration. Large companies often
hire or have in-house separate teams dedicated to this purpose
so as not to interrupt the progress of software development.
However, it is obvious that our example company cannot
afford such a strain on personnel resources, which would sig-
nificantly compromise the business case. Organizations who
do this end up using members of the software development
team to install and configure the software. This leads to the
“missing man” condition. Table 3 accounts for the costs of
missing resources by making conservative best and worst case
assumptions about the time commitments of the missing team

Hiring a contractor to do the installation and configuration is
seldom a solution, since that expense typically raises the cost
of installation and configuration even higher than the missing
man condition. Further, using team members who are not
fully trained or experienced in tool assessment can lead to
compounded risks, such as improper installation or inadequate
knowledge transfer.

The time to learn

To be clear, open source or other non-integrated tools can
help individual team members improve productivity. In this
case, the risk of a project overrun improves by five percent
over Scenario 1. While this is a step in the right direction,
tools designed to automate specialties within the application
life cycle, including open source tools, are not provided in a

members. way that aids team collaboration.

Description Best Case Worst Case
Estimated Staff Cost $ 1,134,000 $ 1,134,000
Risk of Project OverRun (35%) $ 396,900
Cost of Open Source Tools $ - $ 20,000
Increased Productivity (20% - 5%) $ (226,800) $ (56,700)
Architect Time Lost on Tools (1 wk - 3 wks) $ 2,800 $ 8,400
Developer Time Lost on Tools (1 d/wk - 2 d/wk) $ 25,200 $ 50,400
Decrease in Team Velocity (-2%) $ - $ 22,680
Totals: $ 935,200 $ 1,575,680
Improvement: 17.5% 0.8%

Table 3: Implementing open source ALM tools.

12 How collaboration in software delivery improves productivity for small to medium businesses

The new element introduced with the addition of tools is the
time required to learn, implement, and train team members
regarding the new technology. The “missing man condition”
causes one or more team members to be “lost” to focus on the
introduction of tools, which causes some economic impact on
the project.

Of course, the Internet continues to provide a wide assort-
ment of training material for novice tool users. Video, down-
loadable demos, and Q&A wiki websites are widely available
as an alternative to traditional class based training, which
appeals to smaller companies on tight budgets and deadlines.

The best solution is for teams to move to standard, collabora-
tive platforms, where the cost of learning can be reduced over
time. But, as noted earlier, small businesses most often do not
have time on their side.

Scenario 3. Using Jazz-based tooling

With business rules traced all the way to test cases and test
scripts shown earlier in Figure 1, dependencies become
overwhelming for development teams who use no tools to
automate processes. These dependencies also present signifi-
cant, time-consuming challenges for teams using tools that
facilitate work only at the individual practitioner level, because
non-integrated tooling necessitates manual handoft of artifacts
between development roles during the project life cycle.
When one team member makes a change, every artifact in

the chain must be tested, again, to ensure consistency.

What does this mean in terms of agile development practices?
Think about the need to manage requirements throughout

a project’s life cycle. At the most obvious level, this means
ensuring that a customer’s expectations are met. But it also
means ensuring that any changes made to project artifacts

(as a result of various course corrections, or, frequently,
changes made by the customer mid-stream) do not adversely
impact dependent artifacts as a result. The coding team needs
to notify the requirements management team of all changes
made, and the RM staff need to carefully rectify those changes
against previously established baselines. And this sort of “man-
ual handoff” must occur between other teams as well, includ-
ing the testing team (who, in this case, must invoke regression
testing methods to ensure overall stability) and the analyst and
architect, who must ensure system-wide integrity through sep-
arate software models or related artifacts, all of which must be
manually updated.

Several years ago, the IBM Rational organization launched
the Jazz™ initiative to improve the flow of software artifacts
from one tool to the next during the project life cycle. Just as
good jazz musicians seamlessly elaborate, improvise, and col-
laborate during a live performance, practitioners using the
IBM Rational Jazz platform are able to focus on their specific
contributions to the life cycle without spending excessive time
in the inter-phase handoff to the next set of practitioners. As
described on the Jazz.net website, “Jazz products embody an
innovative approach to integration based on open, flexible
services and Internet architecture. Unlike the monolithic,
closed products of the past, Jazz is an open platform designed
to support any industry participant who wants to improve the
software life cycle and break down walls between tools.”

IBM Software 13

Description Best Case Worst Case
Estimated Staff Cost $ 1,134,000 $1,134,000
Risk of Project OverRun (20%) $ 226,800
Cost of Jazz Tools $ 68,000 $ 85,000
Increased Productivity (35% — 10%) $ (396,900) $ (113,400)
Architect Time Lost on Tools (1 wk — 3 wks) $ 2,800 $1,134,000
Developer Time Lost on Tools (1 d/wk — 2 d/wk) $ 25,200 $ 50,400
Decrease in Team Velocity (-2%) $ $ 22,680
Totals: $ 833,100 $1,413,880
Improvement: 26.5% 10.9%

Table 4: Implementing Jazz-based tools from IBM Rational.

The key new ingredient here is greatly improved collaboration.
In the context of software development projects, collaboration
not only allows smooth transition from one phase of the itera-
tive life cycle to the next; it also allows the generation of docu-
ments, process measurements, and other aspects of modern,
agile project management to occur without overburdening
team members or slowing the process. In the requirements
management example described earlier a Jazz-based project
features automatic notification of a change to the require-
ments management system, which in turn notifies testing

and analytic software tools of changes to be examined and/or
baseline inconsistencies to be rectified. Such a collaborative
environment does not eliminate the human element at work,
but rather makes the work easier to perform since the manual,
and error-prone, data entry task is eliminated.

As shown in Table 4, the implementation of Jazz tooling
offers a significant improvement over both the non-tool and
the non-collaborative tool environment.

Yet, for all its collaborative value, the Jazz platform still
requires training and implementation time, which for small
to medium size software delivery organizations can mean the
difference between making or missing a critical deadline. Our
fourth and final scenario offers an answer.

Scenario 4. Using Jazz-based tools in combination
with Presto

With a team poised to take advantage of a fully collaborative
development environment, including a full set of tools to sup-
port all team members, software development organizations
are well on the way to eliminating risk. Remember that the
risk to a software project is ultimately a risk to the business-
especially small to mid-sized businesses whose projects fre-
quently represent a sizable opportunity in the life and health
of the company.

While tools that support individuals, collaboration, and proj-
ect success are typically touted as “agile” in today’s software
development arena, tools need to support business results and

14 How collaboration in software delivery improves productivity for small to medium businesses

not jeopardize them through the time involved with their
introduction. Furthermore, tools need to keep a project on
track and not overrun the project budget because they’re too
costly.

In these scenarios, we have attempted to quantify risk in terms
of cost within the context of a specific software development
project. The greater the cost related to staffing, tool procure-
ment, project overrun, and other budgeted items, the greater
the risk to the business. Therefore, the next improvement in
the use of CALM methods through Jazz-based tooling
involves the elimination of risk in implementing and configur-
ing Jazz tools themselves. How do we address this risk? A key
strength of Jazz is that it’s an open, extensible platform, which
allows a growing “ecosystem” of partners to contribute point
solutions for specific industry needs or other needs not
addressed by current Jazz offerings. IBM partner Black
Diamond Software now offers a Jazz configuration environ-
ment, called “Presto,” which is designed to speed and

simplify the process of introducing Jazz technology.

Presto reduces risk and increases productivity in the
following ways:

1. Missing-man condition is so diminished that we can elimi-
nate it from the economic analysis shown in Table 4.

2. The 100+ steps necessary to properly implement and con-
figure the Jazz tools are now automated.

3. Many undocumented nuances of the installation and config-
uration process are addressed and simplified.

4. The possibility that an incorrect installation will impede the
benefits of Jazz collaboration has been eliminated.

5. Automatic backup and security for the collaboration data is
included.

6. Presto appliances can be easily updated to quickly incorpo-
rate updates to, and new releases of, Jazz products.

Description Best Case Worst Case
Estimated Staff Cost $ 1,134,000 $ 1,134,000
Risk of Project OverRun (20%) $ 226,800
Cost of Presto $ 35,000 $ 35,000
Increased Productivity (35% — 10%) $ (396,900) $ (113,400)
Totals: $ 772,100 $ 1,282,400
Improvement: 31.9% 19.2%

Table 5: Implementing Jazz-based tools along with Presto.

IBM Software 15

Essentially, Presto delivers Jazz tools already implemented and
configured in a virtual appliance. A virtual appliance is a com-
plete, functioning virtual computer—including the operating
system, devices, memory, and configuration needed to success-
fully use Jazz tools and quickly begin reaping the economic
benefits of CALM. Because Presto greatly diminishes the
effects of “the missing man condition” for Jazz tools, it can
shave weeks off a software project team’s learning curve.

As described earlier under “the missing man condition,” tools
require time and effort to be incorporated into the life cycle of
the project team. And the cost here can be significant—
anywhere from days on a small single project to months on a
corporate wide initiative. This number increases (non-linearly)
as you increase the number of tools and need to work out the
integrations.

Designed to enhance the economic benefits of Jazz, IBM’s
most advanced software development technology, Presto actu-
ally includes the Jazz tooling as part of the package. This offers
significant economic benefits, as shown in Table 5.

Outfitting each team member with Presto is as simple as start-
ing the client appliance and performing some simple configu-
ration steps. A repository server manages project artifacts and
allows team members to collaborate as necessary to support
the development process. Using Presto, team members are
ready to play their respective roles in the application life cycle
and help ensure that the team as a whole can deliver software
to the expected business results. On average you can save up
to 70 percent with Presto compared to purchasing standalone
tools.

Conclusion

Software is developed and delivered under conditions that are
more common to creative endeavors than to traditional engi-
neering; the possibilities are nearly limitless and change hap-
pens rapidly. Yet risk lurks beneath the surface of software
projects because of enormous complexities and the difficulty

of visualizing software capabilities. Automated tooling for
managing and measuring software projects is the answer,
but you need to incorporate tools into the team’s work
environment with the lowest possible cost and risk to avoid
compromising the business results of software projects.

The key is the understanding the relationship between a) time
and money, and b) testing and requirements dependencies.
Once requirements become too numerous to track manually
(and this frequently occurs in projects of relatively small
scope), it becomes easier for project managers and decision
makers to see the benefits of an automated toolset, such as
IBM Rational Jazz, that supports cross-team collaboration. A
fully collaborative development platform such as Jazz allows
progression from individual productivity to team productivity.

Extending the core Jazz environment, new technologies like
cloud computing, software as a service, and virtualization solu-
tions such as Presto by Black Diamond Software offer a signif-
icant move forward in dealing with software project risk, while
providing even higher levels of productivity.

About the authors

Randy Howie is CEO of Black Diamond Software, an

IBM premier business partner specializing in software
application development, installation, productivity tools, and
processes. With nearly twenty-five years in the areas of engi-
neering management, project management, and advanced
technology, Randy joined Black Diamond Software from
Artificial Intelligence Technologies, where he was Vice
President of engineering. Randy is also co-author of “The
Five Mandates of Software Development,” and he holds a
B.S. in Mechanical Engineering and a M.S.E. in Engineering,
both from Carnegie Mellon University.

Mike Perrow is a writer and editor on the brand strategy
team for IBM Rational. He is the founding editor of The
Rational Edge online magazine, which covered processes, I'T
and business alignment, and related technologies from
Rational Software Inc., and later as part of IBM. He holds
degrees in English and writing from the College of William
and Mary and from the University of Massachusetts, Amherst.

For more information

To learn more about acquiring and configuring an

IBM Rational Jazz solution for your business via Presto please
contact your IBM marketing representative or IBM Business
Partner, or visit:

o The Presto site: www.bds.com/presto

« Download the White Paper: “The Presto Manifesto—
Business results over software process, cost control over
craftsmanship, team success over individual achievement”

» Contact Black Diamond at (203) 431-9600 or by email:
sales@bds.com

Additionally, financing solutions from IBM Global Financing
can enable effective cash management, protection from
technology obsolescence, improved total cost of ownership
and return on investment. Also, our Global Asset Recovery
Services help address environmental concerns with new,
more energy-efficient solutions. For more information on
IBM Global Financing, visit: ibm.com/financing

¢ For access to the complete series of CHOAS reports by the Standish
Group, see http://www.standishgroup.com/. Or you can find excerpts
from these reports at a variety of academic computing-related web sites,
such as http://www.projectsmart.co.uk/docs/chaos-report.pdf

7 The 40% estimate for cost overrun as a result of using no tools at all is
based on a combination of our own experience and a variety of
anecdotes from our partners over the years. For further validation of
this baseline statistic for “doing nothing,” see Greg Alleman’s blog at
http://herdingcats.typepad.com/my_weblog/, and especially his
entry from 2007 at
http://herdingcats.typepad.com/my_weblog/2007/06/project-failure.html

8 http://jazz.net/about/about-jazz-vision.jsp

LEVOT ETN software

-

© Copyright IBM Corporation 2010

IBM Corporation
Software Group
Route 100
Somers, NY 10589
USA.

Produced in the United States of America
December 2010
All Rights Reserved

IBM, the IBM logo, ibm.com and Rational are trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the web at
“Copyright and trademark information” at ibm.com/legal/copytrade.shtml

References in this publication to IBM products or services do not imply
that IBM intends to make them available in all countries in which
IBM operates.

The information contained in this documentation is provided for
informational purposes only. While efforts were made to verify the
completeness and accuracy of the information contained in this
documentation, it is provided “as is” without warranty of any kind, express
or implied. In addition, this information is based on IBM’s current product
plans and strategy, which are subject to change by IBM without notice.

IBM shall not be responsible for any damages arising out of the use of,
or otherwise related to, this documentation or any other documentation.
Nothing contained in this documentation is intended to, nor shall have
the effect of, creating any warranties or representations from IBM (or its
suppliers or licensors), or altering the terms and conditions of the
applicable license agreement governing the use of IBM software.

This movie analogy is borrowed from Walker Royce, from his IBM white
paper “Improving software economics: Top 10 principles of achieving
agility at scale,” at http://www.ibm.com/common/ssi/fcgi-bin/ssialias?
infotype=SA&subtype=WH&appname=SWGE_RA_RA_USEN&htmlifid=
RAW14148USEN&attachment=RAW14148USEN.PDF

http://www.latimes.com/news/local/la-fi-toyota-recall8-2009nov08,
0,6120294.story

http://www.washingtonpost.com/wp-dyn/content/article/2010/02/22/
AR2010022204887_2.html|?sid=ST2010022204995

Royce, Walker, “Successful Software Management Style: Steering and
Balance,” IEEE Software, Vol. 22, No. 5, September/October 2005

You can begin your exploration of agile development principles with the
Agile Manifesto, for example, at http://agilemanifesto.org/

Qo
%& Please Recycle

RAW14240-USEN-00

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/common/ssi/fcgi-bin/ssialias?infotype=SA&subtype=WH&appname=SWGE_RA_RA_USEN&htmlfid=RAW14148USEN&attachment=RAW14148USEN.PDF
http://www.ibm.com/common/ssi/fcgi-bin/ssialias?infotype=SA&subtype=WH&appname=SWGE_RA_RA_USEN&htmlfid=RAW14148USEN&attachment=RAW14148USEN.PDF
http://www.ibm.com/common/ssi/fcgi-bin/ssialias?infotype=SA&subtype=WH&appname=SWGE_RA_RA_USEN&htmlfid=RAW14148USEN&attachment=RAW14148USEN.PDF
http://www.latimes.com/news/local/la-fi-toyota-recall8-2009nov08,0,6120294.story
http://www.latimes.com/news/local/la-fi-toyota-recall8-2009nov08,0,6120294.story
http://www.washingtonpost.com/wp-dyn/content/article/2010/02/22/AR2010022204887_2.html?sid=ST2010022204995
http://www.washingtonpost.com/wp-dyn/content/article/2010/02/22/AR2010022204887_2.html?sid=ST2010022204995
http://www.agilemanifesto.org/
http://www.standishgroup.com/
http://www.projectsmart.co.uk/docs/chaos-report.pdf
http://www.herdingcats.typepad.com/my_weblog
http://herdingcats.typepad.com/my_weblog/2007/06/project-failure.html
http://www.jazz.net/about/about-jazz-vision.jsp
http://www.bds.com/presto
http://www.bds.com/LinkClick.aspx?link=73&tabid=63&mid=397
http://www.bds.com/LinkClick.aspx?link=73&tabid=63&mid=397
http://www.bds.com/LinkClick.aspx?link=73&tabid=63&mid=397
http://www.ibm.com/financing
http://ibm.com/software/rational

	Untitled
	How collaboration in softwaredelivery im
	The nature of software projects
	Agile development and the challenges ofs
	Life cycle challenges
	Challenges for smaller teams
	A word on open source tools: Free at wha
	A grounding in software economics
	The move toward collaboration
	Tool implementation: A range of scenario
	Description
	Scenario 1. Do nothing—using no ALM tool
	Scenario 2. Improving individual product
	The missing man condition
	The time to learn
	Description
	Scenario 3. Using Jazz-based tooling
	Scenario 4. Using Jazz-based tools in co
	Description
	Conclusion
	About the authors
	For more information

