

IBM Java ${ }^{\text {w" }} 2$ SDK HeapAnalyzer for Windows Version 1.1

Jinwoo Hwang
jinwoo@us.ibm.com

Welcome to IBM Java 2 SDK HeapAnalyzer. This tool is for internal use only.
Please do not distribute the tool externally since International Patent disclosures were submitted with this tool.

Introduction

The Heapdump contains a list of all the objects that are in the heap.
Heapdumps can be very large with millions of items in them.
It's not always easy to analyze a large file. This tool analyzes heapdumps of Java SDK 1.3.1 and 1.4.1. HeapAnalyzer is an unofficial tool and is provided "as-is".

Prerequisite

Java 2 SDK 1.4.1 or higher (Java 2 runtime 1.4.1 is provided with this tool)

Definitions

root object An object for which no (different) object holds a reference.
parent object An object (for example, A) that holds at least one reference to some
(different) object (for example, B). In this case, A is said to be the parent of B.

Owner object If an object has more than one parent object, a parent object is chosen as owner object.

Total size is calculated only with owner objects.
child object An object (for example, B) for which at least one (different) object
(for example, A) holds a reference. In this case B is said to be the child of A.
type Collection of same objects
size The size of an object is the amount of memory that is required to hold that object in memory.
total size The subtree size of an object is the sum of its size and the sizes of all the objects that it reached from its children. Note that each object is assigned a unique parent and root during processing.

Features

Creates a tree from heapdump
Calculates size of each objects
Calculates total size of each subtree
Finds size drop in a subtree
Shows free heap space by size
Shows object by size
Shows types by size
Shows types by count
Shows types alphabetical order
Shows free heap space distribution
Shows detailed information of an object
Finds type with regular expression
Drag and drop support in input fields and text

How to run this tool

Java runtime environment is provided with this tool.
Usage jrelbin\java -Xmx[heapsize] -jar ha.jar
For example, jrelbin\java -Xmx1000m - jar ha.jar
If there's java.lang.OutOfMemoryError, please try increasing the maximum heap size (-Xmx) value to give the JVM more memory.

Maximum heap size should not be larger than the size of available physical memory size for this tool due to performance issue.

Feel free to contact me if you have any comments or suggestions.

1. Start the tool.

[Initial screen]
2. Select File -> Open and select a heapdump file

File Name:
Files of Type: All Files (*.*)

3. Progress is shown during processing heapdump.

4. It would take lots of time if you are processing large heapdump. The following is the screen when processing is complete. Please do not close this window until you do not need this heapdump.

Click on Analysis menu and select a menu item for further analysis.

5. The following is tree view of the heapdump.

The icon, indicates that it has already been included as a child object of owner object in tree view
Each tree node as in the following format:
TotalSize[Size] NumberOfChildObject Name Address

6. In tree view, you can see detailed information of a node, you can search for total size drop between parent and child
or you can find an address by selecting a node and click on right mouse button.

"Search for total size drop" will find a size drop between the total size of a parent and the biggest total size of child of the parent.
If you cannot find any size drop from the menu "Search for total size drop", you need to decrease Minimum total size drop for search in options.

OK

You can find an address in the tree view by selecting the menu "Find an address"

The following is the result of address search :

7. The following is the screen of detailed node information in heapdump tree

8. The following is free heap space view

9. Object view by size

File Analysis View Help

HeapAnalyzer
10. Type view by total size view

11. Types view by frequency

12. Free heap space distribution view

HeapAnalyzer
13. You can configure setting in File-> Options menu

Options	
Maximum number of subtrees	(
Maximum number of entries in free heap list	50
Maximum number of entries in object list	50
Maximum number of entries in type (size) list	50
Maximum number of entries in type (count) list	50
Mininum total size drop for search	100000000
Maximum number of entries in address list	50
Maximum number of entries in type (name) list	50

14. Type by alphabetical order

heap6k.txt Types by name

Type

\$Proxy0
array of $[B$
array of [C
array of [l
array of [Liavailang/Byte;
array of [Liavallang/object;
array of [Ljava/lang/String;
array of [LiavallangirefiSoftReference;
array of [IC
array of comilibmiejs/models/baseibindingsiejbbnd/CMPResAuthTyp array of com/ibmiejs/modelsibaseiextensionsicommonextiConnectio array of comlibmiejs/modelsibaseiextensionsicommonextilsolationL array of comibmiejs/modelsibaseiextensionsicommonextilocaltranil array of comibmiejs/modelsibaseiextensionsicommonextilocaltranil array of com/ibmiejs/modelsibaselextensionsicommonextilocaltranil array of com/ibm/ejs/models/baselextensions/ejbext/AccessintentKin array of com/ibm/ejs/models/base/extensions/ejbext/ActivationPolicylarray of com/ibmiejs/models/baselextensions/ejbextiActivitySessionT array of com/ibmiejs/models/baselextensions/ejbextiCollectionAcces array of compibmiejs/modelsibaselextensionsiejbexticoncurrencyCor array of comibmiejsimodelsibaselextensionsiejbextilnvocationLocal - -

HeapAnalyzer
15. Address by type to find types include string "byte"

The following is the list of types which have "byte" in their names.

You can also enter exact name of a type:

The following is the list of types of byte[]

		Addres	e		
	Name of t	byte]			-
- -7	Total size	30,144 b			
-	Number of	: 989			
	TotalSize	[Size]	NumberOfChildobject	Address	
9	16	[16]	0	0x30080200	
	2,064	[2,064]	0	0x300fofio	
	48	[48]	0	$0 \times 300 ¢ 7740$	
	288	[288]	0	$0 \times 30077 \mathrm{de8}$	
	16	[16]	0	0×3007760	
	464	[464]	0	$0 \times 300 f 9830$	
	16	[16]	0	$0 \times 300 f 9 a 58$	
	24	[24]	0	$0 \times 30099 \mathrm{d88}$	
	48	[48]	0	$0 \times 300 f 9 e 90$	
	40	[40]	0	$0 \times 300 f a 2 a 0$	
	40	[40]	0	$0 \times 300 f a 4 e 8$	
	48	[48]	0	$0 \times 300 f a 620$	
	40	[40]	0	0x300fb1e8	
-	16	[16]	0	$0 \times 300 \mathrm{fd} 048$	-

HeapAnalyzer
16. You can monitor memory usage in "Memory Usage" menu.

Summary of regular-expression constructs

Construct	Matches
Characters	
x	The character x
\backslash	The backslash character
\on	The character with octal value $0 n(0<=n<=7)$
$\backslash 0 n n$	The character with octal value $0 n n(0<=n<=7)$
$\backslash \mathrm{mmn}$	The character with octal value $0 \mathrm{mnn}(0<=m<=3,0<=n<=7)$
$\backslash \mathrm{xhh}$	The character with hexadecimal value $0 \times h h$
\uhhhh	The character with hexadecimal value $0 \times h h h h$
\t	The tab character ('\u0009')
$\backslash \mathrm{n}$	The newline (line feed) character (${ }^{\text {'Uu000A' }}$)
$\backslash r$	The carriage-return character (\backslash \u000D ${ }^{\prime}$)
\backslash f	The form-feed character ($\backslash \mathrm{lu} 000 \mathrm{C}$ ')
\a	The alert (bell) character (' $\backslash \mathrm{u} 0007 \mathrm{\prime}$)

$\backslash e$	The escape character (' $\backslash u 001 \mathrm{~B} ')$
$\backslash c x$	The control character corresponding to x

Character classes

[abc]
[^abc]
[a-zA-Z]
[a-d[m-p]]
[a-z\&\&[def]]
$[a-z \& \&[\wedge b c]]$
$[a-z \& \&[\wedge m-p]]$
a, b, or c (simple class)
Any character except a, b, or c (negation)
a through z or A through z, inclusive (range)
a through d , or m through p : [a-dm-p] (union)
d, e, or f (intersection)
a through z, except for b and $c:[a d-z]$ (subtraction)
a through z , and not m through p : $[\mathrm{a}-\mathrm{lq} \mathrm{q}-\mathrm{z}]$ (subtraction)

Predefined character classes

\cdot	Any character (may or may not match line terminators)
$\backslash d$	A digit: $[0-9]$
$\backslash D$	A non-digit: $[\wedge 0-9]$
$\backslash s$	A whitespace character: $[\backslash t \backslash n \backslash x 0 B \backslash f \backslash r]$
$\backslash S$	A non-whitespace character: $[\wedge \backslash s]$
$\backslash W$	A word character: $\left[a-z A-Z_{2} 0-9\right]$
$\backslash W$	A non-word character: $[\wedge \backslash w]$

POSIX character classes (US-ASCII only)

\p\{Lower\}	A lower-case alphabetic character: [a-z]
\p\{Upper\}	An upper-case alphabetic character: [$\mathrm{A}-\mathrm{Z}]$
$\backslash \mathrm{p}$ ASCII\}	All ASCII: [$\backslash \times 00-\backslash \mathrm{x} 7 \mathrm{~F}]$
\p\{Alpha\}	An alphabetic character: [\backslash p $\{$ Lower $\} \backslash \mathrm{p}$ \{Upper $\}$]
\p\{Digit\}	A decimal digit: [0-9]
$\backslash \mathrm{p}$ Alnum\}	An alphanumeric character: $[\backslash \mathrm{p}\{$ Alpha $\} \backslash \mathrm{p}$ (Digit $\}]$
\p \{Punct\}	Punctuation: One of ! \#\#\$\%\&' ()*+,-./: ; \ll ? ? [[] ^ - $\{1\} \sim$
\p \{Graph\}	A visible character: [$\backslash p\{$ Alnum $\}$ \p $\{$ Punct $\}]$
\p\{Print\}	A printable character: [$\backslash \mathrm{p}\{\mathrm{Graph}\}$]
\p\{Blank\}	A space or a tab: [$\backslash \mathrm{t}$]
\p\{Cntrl\}	A control character: [$\backslash \mathrm{x} 00-\backslash \mathrm{x} 1 \mathrm{~F} \backslash \mathrm{x} 7 \mathrm{~F}]$
\p\{XDigit $\}$	A hexadecimal digit: [0-9a-fA-F]
\p\{Space\}	A whitespace character: [$\backslash t \backslash \mathrm{n} \backslash \mathrm{x} 0 \mathrm{~B} \backslash \mathrm{f} \backslash \mathrm{r}$]

Classes for Unicode blocks and categories

\p\{InGreek \}
$\backslash p\{L u\}$
\p \{Sc\}
$\backslash \mathrm{P}\{$ InGreek $\}$
[$\backslash \mathrm{p}\{\mathrm{L}\} \& \&[\wedge \backslash p\{\mathrm{Lu}\}]]$

A character in the Greek block (simple block)
An uppercase letter (simple category)
A currency symbol
Any character except one in the Greek block (negation)
Any letter except an uppercase letter (subtraction)

Boundary matchers

Greedy quantifiers

$X ?$	X, once or not at all
X^{\star}	X, zero or more times
$X+$	X, one or more times
$X\{n\}$	X, exactly n times
$X\{n\}$,	X, at least n times n but not more than m times

Reluctant quantifiers

X ? ?
$X \star$? $\quad X$, zero or more times
$X+$?
$X\{n\}$?
$X\{n$,$\} ?$
$X\{n, m\}$?

A word boundary
A non-word boundary
The beginning of the input
The end of the previous match
The end of the input but for the final terminator, if any
The end of the input

Possessive quantifiers

$X ?+$	X, once or not at all
$X^{\star+}$	X, zero or more times
$X++$	X, one or more times
$X\{n\}+$	X, exactly n times
$X\{n\}+$,	X, at least n times
$X\{n, m\}+$	X, at least n but not more than m times

Logical operators

XY
$X \mid Y$
(X)

Back references

$\backslash n$

Quotation

$\backslash E$

Whatever the $n^{\text {th }}$ capturing group matched

Special constructs (non-capturing)

(?: X)
Nothing, but quotes the following character
Nothing, but quotes all characters until $\backslash E$
Nothing, but ends quoting started by $\backslash \mathrm{Q}$

[^0]X followed by Y
Either X or Y
X , as a capturing group
(?idmsux-idmsux) Nothing, but turns match flags on - off
(?idmsux-idmsux: X) $\quad X$, as a non-capturing group with the given flags on - off
$(?=X) \quad X$, via zero-width positive lookahead
$(?!X) \quad X$, via zero-width negative lookahead
$(?<=X) \quad X$, via zero-width positive lookbehind
$(?<!X) \quad X$, via zero-width negative lookbehind
$(?>X) \quad X$, as an independent, non-capturing group

Copyrights and notices

(C) Copyright IBM Corporation 2004. All Rights Reserved. Note to U.S. Government Users Restricted Rights -Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

AIX, Cloudscape, DB2, IBM, iSeries, OS/390, VisualAge, WebSphere, and z/OS are trademarks or registered trademarks of IBM Corporation in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark of The Open Group.
Other company, product, and service names may be trademarks or service marks of others.
The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS TOOLS "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you. This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the tool. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this tools at any time without notices.

[^0]: X, as a non-capturing group

