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Trademarks

The following are trademarks or registered trademarks of the International
Business Machines Corporation or other companies:

e |IBM e 0S/390
e System/360 e DEC

e System/370 e VAX

e System/390 e Alpha

e S/360 e HP

e S/370 e PA-RISC
e S/390 e SUN

e ESA/390 e SPARC
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Overview

e Why floating point?
e About floating point: precision, range, and the like
— How floating point arithmetic differs from “real” arithmetic
e |[BM hexadecimal floating point
e The IEEE Floating Point Standard
e ESA/390 and OS/390 floating point support

— ESA/390 hardware enhancements

— 0S/390 software enhancements
e Contrasting binary and hexadecimal floating point on ESA/390

e Usage and migration considerations

— Other IEEE floating point implementations

e Summary
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Floating Point Data:

Representations and Behavior
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The Reality of Realistic Data

e Numeric data comes in all sizes:

6023 00000 00000 00000 00000.
9 46000 00000 00000.

2997 76000.
33136.
745.
440.
16.
3.
kilometers/mile 1.
In 2
Coulombs/electron
Planck's const (erg—sec)
grams/electron

Avogadro's Number
meters/light—year

meters/sec (light)
cm/sec (sound)
7 Watts/horsepower
hertz (Concert A)
3872 cc/cubic inch
14159 26535 89793 T
60935

.69314 71805 59945

.00000 00000 00000 00016

.00000 00000 00000 00000 00000 06624
.00000 00000 00000 00000 00000 00910 7

e Programs must manage these widely varying magnitudes
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Computing With Numeric Data

e Early computers provided only integer arithmetic

— “Reals” were approximated by scaled fixed-point numbers

< word size >

integer part . fraction part

4 radix point

— Programmers (or compilers) keep track of the radix point
— Fixed point requires “shifts” for re-scaling after some operations

— Still used for decimal arithmetic (e.g., COBOL, PL/I)

e Problems: handling full range of values; maximizing precision

— Magnitude overflow loses the most significant digits

— Truncation of low-order (least significant) digits loses precision

— Full field width (to handle full range of values) cannot retain full precision for
normal (non-extreme) values
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Computing With Numeric Data ...

e Solution: floating point!

“For each arithmetic operation we ask the computer to present us
with the first few significant digits and the count telling us where the
decimal point lies. These operations are referred to as floating point
arithmetic.” (Sterbenz, p.4)

e |[ncreased, more uniform precision
— Precision losses involve the least significant digits

— That's the way most of us do arithmetic...

e Manages scaling automatically

— Hardware keeps track of the radix point for you

Much less likelihood of “magnitude overflow”
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Basic Floating Point Representations

e Floating Point numbers are a subset of the rational numbers

e A value X is represented by

+ M x rk

M an integer satisfying 0 < M < rp

r radix (or base) of the representation

p  precision (the number of base-r digits)

k  exponent

e The set of all such values is a floating point system FP(r,p)

e Examples using FP(10,4):

012 3. 2340.
k=20 k = -1
X =123 X = 234

007 3.
k=0
X=173

007 3.
k =2
X = 7300

007 3.
k= -2
X = 0.73
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Basic Floating Point Representations ...

e |f a number is not exactly representable, it must be approximated by one
of the nearest representable values

e Approximations using FP(10,4):

Rounded Down Rounded Down Rounded Up
3 333. 6 666. 666 7.
k = -4 k = -4 k = -4
X=1/3 X =2/3 X =2/3

e Examples of base-16 and base-2 representations of 0.1 (base 10):
— in FP(16,6): 1677722/166 = 1677722/16777216 = 0.10000002384

— in FP(2,24): 13421773/227 = 13421773/134217728 = 0.10000000149

e Decimal fractions aren't generally precisely representable in base 2

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 8



Basic Floating Point Representations ...

e Common practice: use a fraction f = M + rp satisfying 0 < f < 1.0

— Puts the radix point at the left end of the digits

e X is then represented by + f x re

_e:k+p

— If fis normalized, r-1 < f < 1.0 (most significant digit # 0)

e Examples of normalized and unnormalized representations:

normalized

unnormalized

normalized

1230
k =3
X =123

0123
k=4
X = 123

unnormalized

unnormalized

7300
k =2
X=173

0730
k =3
X=173

e Unnormalization allows redundant representations!

— May also have many redundant representations of zero

0073
k=14
X =173

Floating Point Overview
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Terminology

e A floating-point number (say, 123.45E-67) is composed of two parts:
1. the “number stuff” (the 123.45)
2. the “exponent stuff” (the E—67)
e Fraction: some or all of the digits of the “number stuff”
— DECw~ VAX™ and IEEE store “some” digits (all but one implicit bit)
— IBM hex float stores “all” digits

— Sometimes called “mantissa” (but that word comes from logarithms...)

e Significand: the “number stuff,” with all numerically significant digits
exposed; what the machine actually calculates with

e Exponent:. the “exponent stuff,” correctly signed

e Characteristic, Biased Exponent. exponent+bias

— The bias is chosen so that valid values of the exponent cause the biased
exponent to be always non-negative

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved.
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Machine Representations of Floating Point Numbers

e Many ways to “package” the pieces into a “representation”

e Example of a typical format:

<— p digits in base r —»

sign| exponent fraction
S e f

< N bits >

— Typically, fraction sign s = 0 means +, s = 1 means —

— e is almost always represented in binary

— May be signed or unsigned

— f may be sign-magnitude, radix-complement, etc.

¢ Finiteness imposes limits on both p and the range of e

— This finiteness has many interesting consequences...

e Designers must choose among base, precision, exponent width/range

— Number of distinct values < 2N (and may be much < 2N)
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A Sampling of Floating Point Representations

Machines and Base [Base—B|Equiv.| Exp.|Format|Fraction
Representations (B) [Digits|Decml. [Width| (Note) |[Representation
Prlme 550 series single 2 23 6 8 | s/f/e|Two's—complement

IEEE Standard single 2 24 6 8 | s/e/f|Sign—magnitude
DEC VAX F—format 2 24 6 8 | s/e/f|Sign—-magnitude
IBM System/370 short 16 6 6 7 | s/e/f|Sign—-magnitude
Burroughs 6700/7700 8 13 10 7 | s/e/i|Sign—-magnitude
Harris Series 500 double 2 38 11 8 | s/f/e|Two's—complement
Prlme 550 series double 2 47 13 16 | s/f/e|Two's—complement
CDC 6600/CYBER 70 2 48 14 11 | i/e/s|One's—complement
Cray—2 single 2 48 14 15 |s/se/f|Sign—-magnitude
DEC VAX G—format 2 52 15 11 | s/e/f|Sign—magnitude
IEEE Standard double 2 53 15 11 | s/e/f|Sign—magnitude
IBM System/370 long 16 14 15 7 | s/e/f|Sign—-magnitude
DEC VAX D—format 2 55 16 8 | s/e/f|Sign—magnitude
Harris Series 500 quadruple| 2 69 22 23 | s/f/e|Two's—complement
Cray—2 double 2 96 28 15 |s/se/f|Sign—-magnitude
IBM System/370 extended 16 28 32 7 | s/e/f|Sign—-magnitude
DEC VAX H-format 2 112 33 15 | s/e/f|Sign—magnitude
Note: s = sign, se = signed exponent, e = exponent, f = fraction, i = integer.
Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 12



Real Numbers vs. Floating-Point Numbers

e “Real” numbers are mathematical abstractions: useful, but unreal

— Abstract numbers have no inherent precision or size limitations

e Real computations are done with “realistic,” “actual” numbers
— Always have finite precision and accuracy

— Must discard “excess” digits somewhere

e You must think differently about floating point numbers and arithmetic:
— Finite range and precision imply violation of mathematical “laws”

— Floating point numbers don't satisfy all the mathematical properties of
rationals

— Nor those of mathematical “reals” (We'll see later how close they come...)

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 13




Consequences of Finite

Precision

Floating Point Overview
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Precision Properties of Floating-Point Numbers

e Useful measure: the ulp (unit in the last place)
— ulp(x) = successor(x) — x (“spacing” between neighbors)

— relative ulp-error(x) = ulp(x) / x (weight assigned to lowest-order bit of x)

e Adding 1 in the low-order digit position has an effect that varies between
r-p and r-(-1

— Compare (0.999-0.998) to (0.101-0.100): relative ulp varies from 10-3 to
10-2

e Thus, relative-ulp(x) varies by a factor r, as x varies by powers of r

— This effect is known as “wobbling precision”

e Precision (relative) is not properly measured as r-r

— Magnitude of a normalized fraction varies from 1—r-p (= 1) to r-1
(i.e., by a factor of r)

— Hence, relative precision is better approximated as r-(-1)

— This affects how closely floating point arithmetic approximates “real”
(i.e., unrealistic) arithmetic

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 15




Rounding

e Finite precision requires some treatment of “excess” digits

e Consider the value 2/3 = 0.666666... in FP(10,4):
1. Throw away the excess: result = 0.6666
— Called “chopping” or “truncating” or “rounding toward zero”
2. Round towards + o« : +2/3 becomes 0.6667, —2/3 becomes —0.6666
3. Round towards — o : +2/3 becomes 0.6666, —2/3 becomes —0.6667
4. Round to nearest can be done two ways:
a. Add correctly signed 1/2 ulp (“biased round to nearest”)
— 0.12345 rounds to 0.1235
— The mode used by DEC VAX arithmetic, IBM hex rounding instructions

b. For values exactly half-way between to representables, choose the result that
ends in an even digit (“unbiased round to nearest”)

— 0.12345 rounds to 0.1234

e Why is traditional rounding “biased”? In FP(10,4), perform
X=(X-Y)+Y repeatedly, starting with X=1.000, Y=—0.5555:

— Biased round vyields: 1.001, 1.002, 1.003, ...
— Unbiased round yields: 1.000, 1.000, 1.000, ...

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 16




Conversions To and From Decimal

e “IN” conversion: from decimal to machine radix
e “OUT” conversion: from machine radix to decimal

e Equivalent decimal digits: (an “IN-OUT” conversion definition):
— In a floating point system FP(r,p) with radix r and p base-r digits:
If (1) 109 # rX for any (J,K), and
(2) All d-digit decimal floating-point numbers can be converted to a
member of FP(r,p), and when converted back to decimal will
correctly recover the original decimal value,
Then FP(r,p) can faithfully represent d-digit decimal numbers.

— (This is the definition used for the table on slide 12)

— Recoverability requires all conversions to be correctly rounded

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 17




Conversions To and From Decimal ...

Examples using S/390 short (6-digit) hex floating point:

e All 6-digit decimal floating point values can be converted to hex and back
with complete recovery

e Even though 16-¢ = 0.59x10-7, not all 7-digit decimal floating point values
can be recovered!

— 16-5 = 0.95x10-6 is a better “precision” estimate

e The six 7-digit decimal floating point values 0.625000xE—1 (where
x=3 ... 8) are all represented by X'40100001".

— X'40100001" converted back to decimal gives 0.6250006E —1

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 18



How Many “Significant Digits”?

e “IN-OUT” conversions: start with external decimal data, convert to
internal format, and back to decimal

IN-OUT Conversions

Precision Decimal Hex Binary
Digits Digits | Digits
short 6 6 21
long 15 14 51
extended 32 28
33 111

e Example: to recover external decimal values converted to extended
internal format and back to decimal,

— Extended hex float faithfully represents 32 decimal digits

— Extended binary float faithfully represents 33 decimal digits
e FP(16,6) and FP(2,24) faithfully represent 6 decimal digits

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 19




How Many “Significant Digits”? ...

e “OUT-IN" conversions: start with internal machine data, convert to
external decimal, and back to internal

OUT-IN Conversions

Precision Binary Hex Decimal
Digits | Digits | Digits
short 24 6 9
long 53 17
14 18
extended 28 35
113 36

e Example: to recover long internal float values converted to decimal and
back,

— Long binary float requires 17 decimal digits for faithful representation

— Long hex float requires 18 decimal digits for faithful representation

e “Rule of Thumb”: OUT-IN needs 3 more decimal digits than IN-OUT

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 20




Consequences of Finite Range

Floating Point Overview
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Value Ranges

e Let Q (or A) designate the largest representable normalized floating
point number (“MaxReal” or “Huge”)

— Sometimes (carelessly) nicknamed “infinity”; but Q # oo :
— o0 [2 = oo, while /2 is finite!
— oo X0 is meaningless, while Qx0 = 0!

— S/390 hex: Q = X'7FFF....FF' = 7.2 X 10*75

e Let o (or A) designate the smallest representable normalized floating
point number (“MinReal” or “Tiny”)

— S/390 hex: ® = X'0010....00' = 54 x 107

e Many systems have a range asymmetry:

— Some representable small numbers have reciprocals exceeding €2

— S/390 hex: no representable inverse for any number < X'02100000'

— Some representable large numbers have reciprocals less than ®

— |EEE binary: inverses of largest numbers underflow or are denormalized

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 22




Exponent Range: Representable and Computable Values

A Inconceivable Immensities
A

2Emax

Overflow Range

T
|
|

Emax+l |[--¢y---------

Products, Quotients

Emax
A

0 — Normal Range

Exponent Values

v

<— Representable Values —

Q, A (MaxReal)

®, A (MinReal)

Emin
4 Subnormal Range

Underflow Range

|
|
|
v

Emin—p+l |- -+ ----- - - - -

_____ Differences

Products, Quotients

2Emin

v
v Negligible Nothingnesses

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved.
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Overflow and Underflow

e Exponent range violations are called “overflow” and “underflow”

— Exponent > E,,, = overflow

— Exponent < E,;, = underflow

Exponents of products and quotients of “normal” numbers can
be nearly double the allowed exponent range

Possible problems with directed rounding (e.g. IEEE):

— Numbers near 2 (exponent near 2E,4) can be “rounded down” to €

— Numbers near ®2 (exponent near 2E,;,) can be “rounded up” to ®

e Sums of “normal” numbers can overflow E ., by 1

e Differences of “normal” numbers can underflow E,,;, by (p-1)

— May imply lost accuracy

Various ways to handle these “subnormal” numbers

Floating Point Overview
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Handling Overflow and Underflow

e Treatment (or mis-treatment) of range violations has pervasive impacts
on programming

— Operations on overflowed values are difficult to manage

— The problems caused by range violations make ulps appear trifling...

e Range violations customarily handled by “fixups” of many types
— Overflows may be set to Q, ®, e, or zero by various systems
— Underflows may be set to zero

— Overflows and underflows may return a finite value with modified
characteristic (e.g. S/390 hex floating point interruptions “wrap” modulo 128)

— efc.

e Fixups may be done by hardware, software, or both

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 25




Meaningless Computations

e Programs may encounter pathologies: overflows, underflows, division by
zero, square root of a negative argument, etc.

e Some machines respond with zero, -, Q,
others may provide explicit representations

e CDC: representations for « , “Indefinite,” “Indeterminate” (“Not a
Number”)

— Arithmetic: NaN op any — NaN; overflows — oo, underflows — 0; 0 X oo —
NaN

e |[BM Stretch: representations for « , infinitesimal (¢), OMZ (“Order of
Magnitude Zero” with significand = 0)

— Arithmetic: oo +X — oo ; €+X — X; etc.
— System/360 significance exception has roots in OMZ
e DEC VAX: exponent = 0 and minus sign is a “reserved operand”

— Causes an interruption when accessed

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 26




Real-Mathematics Fictions,

Floating-Point Facts

“Everything You Know Is Wrong” I

Floating Point Overview
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The Laws of “Real” Arithmetic

Closure

Commutative

Associative

Distributive

Units, Identities

Inverses

The product (ab) and sum (a+b) of the real numbers

a and b are reals
(1) atb = b+a, and (2) ab = ba

(1) (atb)+c = a+(b+c)
(2) (ab)c = a(bc)

a(b+c) = ab + ac
There are reals 0 and 1 such that
(1) a+0 = O0+a = a

(2) ax1 lxa = a

For any real a

(1) There is a real —a with a+(-a) = (-a)ta = 0

(2) If a# O, there is a real a -1 with axa-1

a-lxa

1

Floating Point Overview
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The Laws of “Real” Arithmetic ...

e Consequences:

No Divisors of Zero
If ab = 0O, then at least one of a or b must vanish

Cancellation If ab = ac and a # 0O, then b=c.
Subtraction If (a—b) means a+(-b), then (a+b)-b = a
Division If b # 0, and a/b means ab-1, then b(a/b) = a

¢ |nequalities
1. Ifa < b, then for all ¢, a+c < b+c
2. fa<bandc<d, thena+c<b+d

3. Ifb < c, and a is positive, then ab < ac

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved.
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Real vs. Realistic (Floating Point) Arithmetic

e The “laws of real arithmetic” hold only approximately (or not at all)

For most cases, it's pretty close
— But: you should always know where the problems will occur

— Small and large problems lurk everywhere

e et FP(r,p) be a floating point system with radix r and precision p:

FP(r,p,Round) means arithmetic in FP(r,p) is calculated to full precision and
then is rounded

FP(r,p,Chop) means arithmetic in FP(r,p) is calculated to full precision and
then is chopped

FP(r,p,ChopG) means arithmetic in FP(r,p) is calculated to at least (p+1) digits
(at least one guard digit is used), and then is chopped (e.g., IBM Hex)

FP(r,p,Chop0) means arithmetic in FP(r,p) is calculated with p digits (no guard
digits are used), and then is chopped

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 30



Floating Point Arithmetic Considerations

e Full precision means “as though it's infinite precision” before rounding or

chopping

e Full precision (rounded or chopped) arithmetic can be safely
approximated with finite, fixed-length registers, plus

— One “Guard Digit”
— One “Rounding Digit” (if rounding is desired)

— One “Sticky Digit” (for both rounding and chopping)
e Costs of “doing it right” are reasonable today

e Costs of “doing it fast” still involve trade-offs

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved.
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The Facts of Floating Point Arithmetic

Closure
“The product (ab) and sum (a+b) of the floating-point numbers
a and b” :

Fact: they may not exist in FP(r,p)
Example: Overflow and underflow

Example: IBM Hex (FP(16,6)) contains 84357.0 and 0.84375,
but not their sum, difference, quotient, or product.

Commutative
“(1) atb = b+a, and (2) ab = ba”:

Fact: true for almost all floating point systems

Example: ab # ba on the Cray-1

e The Cray-1 traded commutativity for speed

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved.

32



The Facts of Floating Point Arithmetic ...

Associative
“(1) (a+b)+c = a+(b+c), and (2) (ab)c = a(bc)”:

Fact: both fail to hold

(1) If a, b, and ¢ have the same sign, then the results differ by at most
e 1 ulp, in FP(r,p,Chop) and FP(r,p,ChopG)

e r ulps, in FP(r,p,Round)

(2) The results differ by at most

e 1 ulps, in FP(r,p,Chop) and FP(r,p,ChopG)

Distributive
“a(b+c) = ab + ac’:

Fact: fails to hold

If b and ¢ have the same sign, then the results differ by at most

e 1 ulps, in FP(r,p,Chop) and FP(r,p,ChopG)
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The Facts of Floating Point Arithmetic ...

Units

“There are floating-point numbers 0 and 1 such that
(1) a+0 = O0+a = a,

Fact: true for many systems (but underflow may intrude)
(2) axl = 1xa = a”:
Fact: true for almost all systems; fails in FP(r,p,Chop0)

Examples:

e The multiplicative identity (1xa=a) failed on the original IBM System/360 in
long arithmetic (until corrected by IFPEC, the “Improved Floating Point
Engineering Change”) due to the lack of a guard digit.

e No guard digit on Cray, CYBER, Univac

Fact: May not be true for special values (e.g. “Not a Number”)
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The Facts of Floating Point Arithmetic ...

Inverses
“For any floating-point number a
(1) There is a real —a with a+(-a) = (-a)+ta = 0"

Fact: true in all known systems

“(2) If a# 0, there is a floating-point number a-1 with
axa-l = a-xa = 1"

Fact: fails to hold in many systems.

e There may be no representable inverses

S/390 hexadecimal floating point has no representable inverse for
any magnitude < X'02100000' (16-63)
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The Facts of Floating Point Arithmetic ...

Inverses (continued)
e Several a's may have the same a-1 (=1+a)

Example: if r > 2, a number with fraction (1—r-r) has r—1 inverses in FP(r,p)
with chopped arithmetic, and approximately (r—1)/2 inverses with rounded
arithmetic

Example: In S/390 hexadecimal floating point, a-1=b -1 means only
that a and b may differ by 16 ulps.

e Some a-! values give axa-1 # 1

Example: In S/390 hexadecimal floating point, numbers with fraction (1 —nXr-p)
have inverse r-1 if 1< n< 15

— Multiplying any fraction by a power of the radix leaves the fraction unchanged,
except in FP(r,p,Chop0)

— This was a serious problem with the original System/360 long hex float

Example: In S/390 hexadecimal floating point, ax(1/a) may differ from 1 by 16
ulps.
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The Facts of Floating Point Arithmetic: Consequences

No Divisors of Zero
“If ab = 0, then at least one of a, b must vanish”:

Fact. frequently fails if overflow or underflow occurs

Cancellation
“If ab = ac and a # 0, then b=c”:

Fact: b and c can differ by at most
e r—1 ulps, in FP(r,p,ChopG)

e 1 ulps, in FP(r,p,Round)
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The Facts of Floating Point Arithmetic: Consequences ...

Subtraction
“If (a—b) = a + (-Db), then (a+b)-b = a”:

Fact: frequently fails near underflow threshholds, or if
|b| greatly exceeds |a|

e |f (a+b) underflows to zero, then (a+b)—b = -—b!
e If |b] is much larger than |a|, then (a+b)—b = 0!
Subtractions can easily lose significant digits

Division
“If b # 0, and a/b means ab-%, then b(a/b) = a”:

Fact: fails to hold

If b(a/b) = c, then |a| and |c| can differ by at most

e 1 ulps, in FP(r,p,ChopG)
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The Facts of Floating Point Arithmetic: Inequalities

1. “If a < b, then for all c, atc < b+c”:
Fact: a+c < b+c

2. ‘fa<bandc<d,thena+c< b+ d”:
Fact: a + c < b +d

3. “If b <c, and a is positive, then ab < ac”:
Fact: ab < ac

e Strict mathematical inequalities must be weakened to tolerate equality in
floating point systems

e |nequalities do not persist across floating point operations!
— The fact that equalities don't persist is better known

— Some floating tests for equality are simply bitwise comparisons
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Floating Point Pecularities and Pathologies

The following oddities have happened on widely-used machines:
e Some numbers have no inverse
e a has an inverse, but axa=t# 1
e Zz=Vy but z-t# y-t
e 1/3# 9/27
® YX Z# ZXY,
o z#x 1xz=# (O
e X +y=#Yy+X
* 2Xy#y+ty
e IXy=#Yy

e 065xy=#y/2
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Floating Point Pecularities and Pathologies ...

* ((yxz)ly)lz <.00001 (caused by overflow to Q)
 ((yxz)ly)/z > 100000. (caused by overflow to )

e y>1>7z>0 but y/z = 0 (caused by overflow to 0)
e y/z <0.99 buty-z =0 (caused by underflow to 0)
e |z|<1, but the machine claims |z|>1

e The expressions x<y and x—y<0 are exactly equivalent on some
computers but not on others.

e Some machines have different over/underflow threshholds for
multiplication and/or division than for addition and/or subtraction.

e Some machines treat all sufficiently tiny nonzero numbers z as if they
were zero during multiplication and division, but not during addition or
subtraction.
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Why Does Floating Point Work At All?

1. It closely approximates the way most of us do calculations
(most of the time)

2. It handles most of the “dirty work” automatically

3. “The secret of success of floating-point computation lies in the fact that
we continue to do arithmetic to p digits of precision even though the
accuracy of our intermediate results has degraded so that we can only
guarantee that a few digits are significant.” (Sterbenz, p. 78)
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Some General Conclusions

1. You must “think floating point”
e And not “think real”: real numbers are merely a pleasant abstraction
e Algebraic relations are not computational relations!
2. Small radix r means ...
e Relative error grows more slowly
e Post-normalization is needed more frequently

e More exponent bits needed for a given exponent range

— Example: binary requires 2 more exponent bits than hex for same range

3. Rounding in preference to chopping means ...
e Magnitude of average error tends to be smaller

e Arithmetic operations may require extra cycles

4. Always bear in mind Murphy's Law of Floating Point:

‘ Anything that can go wrong, does on some computer. I
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A Review of IBM Hex Floating

Point
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IBM Hex Floating Point

e Three radix-16 representations:
1. Short precision: 6 hex digits (not 24 bits!)
2. Long precision: 14 hex digits

3. Extended precision: 28 hex digits (fraction is in two parts)

1 7 24
Single
(32-bit) s| char fraction
Format

1 7 56
Double
(64-bit) s| char fraction
Format

1 7 56
Extended
(128-bit) s| char fraction.1
Format

[\/1111] fraction.2
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IBM Hex Floating Point ...

e All representations have same exponent range
— 7-bit, base-16 exponent
— Exponent values: —64 to +63

— Magnitudes range from 5.4x10-79 to 7.2x10+75

e Unnormalized values permitted throughout exponent range

— Redundant representations for many values

Example: in short hex float, 1 = X'41100000', X'42010000',
X'43001000', etc.

Example: X'nn000000"' (“pseudo-zeros”) treated as zero for all nn

— True zero has characteristic 00 (exponent = —64)

— Have effect only on addition and subtraction

— Multiplication and division are not affected, because the operands are
pre-normalized internally (without causing exponent spills)
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IBM Hex Floating Point ...

Arithmetic truncates (usually, but not always, toward zero!)

— Example: 1.0—-16-7 = 1.0, not 1.0—16-¢ (result not rounded toward zero)

— Example: X'42100000' —X"40FFFFFF' = X'41F00001' (instead of
X'41F00000"'); result truncated away from zero, with error = 15/16 ulp.

Square root is rounded

— Rounding isn't biased (source and target operands have same lengths)

e No reserved or special values

— Zero arithmetic results delivered as +0 (“true zero”)

e Rounding modes previously only via “ACRITH” feature on 4361

— Now available on ESA/390
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IEEE Floating Point Standard

‘ ANSI / IEEE Standard 754-1985 I

“...meticulous attention to details that hardly matter to most people
but matter, when they do matter, very much.” (Kahan)
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IEEE Floating Point Standard: Representations

e No redundant representations

e Two fully-defined basic formats: single and double precision

1 8 23
Single
(32-bit) s| char fraction
Format
1 11 52
Double
(64-bit) s| char fraction
Format
S: sign bit (0 =+, 1 = -)
char: characteristic (“biased exponent”)
C.in =0, C,. = all 1-bits
fraction: has an extra implied high-order 1-bit for normal values;

significands therefore have 24-bit and 53-bit precisions
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IEEE Floating Point Standard: Normal Values

length precision E.i E. . bias
single 24 —126 +127 +127
double 53 —1022 +1023 +1023

e EXxponent range: E,,;, to E, .«
e Characteristic C = exponent e + bias
— Exponent's characteristic range: C,;,+1 to C,,—1
C.in and C,., are reserved for special values (see slides 52-54)
e Significand = 1.fraction (leading 1-bit is implied)
— Fraction is therefore always normalized

— 1 < significand < 2
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IEEE Floating Point Standard: Normal Values ...

e Normal numbers

— Single precision (short) value: *+ (1.fraction) x 2char—127
— Magnitudes: 1.175X10-38 to 3.403x10+38

— Double precision (long) value: * (1.fraction) X 2char—1023
— Magnitudes: 2.2231x10-308 to 1.7977x10+308

e Zero

— Characteristic = C,,;, (zero); fraction = 0

e Examples of single precision values:

— Signed
1.0 = B'
15.0 = B'
0.1 = B'
Max = B'
Min = B'
—0.0 = B'

0

w =)o O0OoOo

01111111
10000010
01111011
11111110
00000001
00000000
<—char—>

000........ 000
1110000....000
10011001...011
111........ 111
000........ 000
000........ 000

<—fraction—>

X'3F800000°
X'41700000°
X'3DCCCCCD’
X'7F7FFFFF'
X'00800000°
X'80000000°
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IEEE Floating Point Standard: Special Values

e Designated by reserved characteristics C,;, (zero), C,,., (all 1-bits)

e Denormalized numbers
— Characteristic = C,;,, (zero)
— Fraction # 0 (no implied “1.” before the fraction)
— Value: % (0.fraction) X 2Emin)

— Examples of single precision values:

1.0e-40 = B' 0 00000000 00...011000010 ' = X'000116C2"

Largest Denorm = B' 0 00000000 111........ 111 ' = X'007FFFFF'

Smallest Denorm = B' 0 00000000 000........ 001 ' = X'00000001°'
s <—char—> <—fraction—>
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IEEE Floating Point Standard: Special Values ...

e Denormalized numbers allow “gradual underflow”
— Most helpful for addition and subtraction

— Can avoid many problems caused by “abrupt” underflows to zero
— (Y-X)+X gives X if underflow of (Y-X) causes abrupt “flush to zero”

— (Y-X)+X gives Y with denormalization (gradual underflow) of (Y-X)

e Abrupt underflow has no normal numbers smaller than E_,;,

| S S S SO N N — — — abrupt underflow

I e s s e s s e s e e e B B B B B I N R S — — — gradual underflow
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IEEE Floating Point Standard: Special Values ...

e [nfinity
— Characteristic = C,,, (all 1-bits); fraction = 0
— Signed

e Not-a-Number (NaN)

— Characteristic = C,,4 (all 1-bits); fraction # 0

— Fraction value may be used by implementation to indicate specific conditions

— Two types are required: “quiet” (QNaN) and “signaling” (SNaN)

— Standard doesn't define distinct representations

— Sign is ignored (“not interpreted”) in determining it's a NaN

e Examples of single precision values:

—Infinity = B' 1 11111111 0000....0000 ' = X'FF800000'

a Quiet NaN = B' 0 11111111 1100....0000 ' = X'7FE00000'

a Signaling NaN = B' 0 11111111 0100....0000 ' = X'7FA00000'
s <—char—> <-fraction—>
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IEEE Floating Point: Full Range of the Representation

Characteristic Fraction
Special # 0: NaN
Values Cmax|s| 111...111 <1 = 0: Infinity
A s| 111...110
s| 111...101
Zero fraction
Normal implies value
Values is an integral
power of 2.
s| 000...010
v s| 000...001
Special Cmin|s| 000...000 <«+—— = 0: Zero
Values # 0: Denormalized
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IEEE Floating Point Standard: Required Capabilities

e Arithmetic operations
— add, subtract
— divide, multiply, remainder (which is very complicated!)

— compare (always exact; sign of zero is ignored)

— 0 are only two distinct IEEE bit patterns that compare equal

e Sguare Root

e Float/Integer conversions
— All supported float and integer formats inter-convertible

— Rounded float-to-integer conversion

e Conversions between float and decimal

— Decimal conversions assumed to be done in software

e Exceptions and exception handling rules
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IEEE Floating Point Standard: Required Capabilities ...

Conforming implementations must recognize five exception conditions:

1. Invalid operation

e Mathematically meaningless operations

a. |oof = oo
b. o X 0

C. o0 + oo
d 0+ 0

e. X REM y with x = o ory =20
f. SQRT(negative value)
e Computationally meaningless operations
a. Operation on a Signaling NaN (SNaN)
b. Relational operation involving a NaN (“un-ordered comparison”)

c. Integer-conversion fault (NaN, o, out of range)
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IEEE Floating Point Standard: Required Capabilities ...

2. Division by zero
e N.B.:. 0+ O is an invalid operation

3. Exponent overflow

4. Exponent underflow

e Result may be denormalized

5. Inexact result

e May also occur coincident with overflow or underflow

Exceptions can trap, set a flag, or both

e Flags are required, traps are recommended
— Not all implementations support traps
e Non-trapped (masked, disabled) exceptions must set a flag

— Default: proceed without trap

e Trap and non-trap results may differ! (see slides 71, 113)
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IEEE Floating Point Standard: Required Capabilities ...

e Four rounding modes

— To nearest (the default; “ties” round to even); up; down; to zero (“chop”)
— Integer conversions are subject to rounding mode

UP: +3.5 — +4, -35 — 3
DOWN : +3.5 — +3, -35 — A4
Toward Zero: +3.5 — +3, -35 — -3
To Nearest: 3.5 — H4, 2.5 — 2

— Remainder defined by r = x—yXxn, where n is the integer nearest the exact
value of x/y; if [n—=x/y| = 1/2, nis even

— Language rules may limit the choices

— E.g. C/C++ standard requires rounding “toward zero”

e Arithmetic rules require creation of —0 in some cases!
— SQRT(-0), X — X (rounded down), (—=0)+(—0)
— 0 remainder, 0 product, O quotient, O result of FIX
— E.g., (+2) REM (—1), (+0)X(—1), (+0)+ (1), FIX(-0.2)
— E.g., |A] + (=), where A is finite
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IEEE Floating Point Standard: Required Capabilities ...

e Arithmetic on infinities is always “exact” and correctly signed

— If A is finite, then

A+ oo :ioo,loo|+|c>o| = 0o, AX o0 = oo A+ oo =0, A+ 0 = oo,
etc.

— Only exception condition recognized is “invalid operation”
(€.9g.,0 X 00,00 + oo, |oo]|—|eo], etcC.)

e Overflow: default = £~ or “+ MaxReal” depending on rounding mode
— Note potential problems in using MaxReal in subsequent computations!
e Single precision is required in all conforming implementations

e |EEE standard forbids double rounding in any operation

— “The result cannot suffer more than one rounding error”
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IEEE Floating Point Standard: Further Details

e “Extended” Precisions are suggested

Single Extended: at least 11 exponent bits, at least 32 fraction bits

— Most implementations use double for “single extended”

Double Extended: at least 15 exponent bits, at least 64 fraction bits

— Implementations should support

— the extended format corresponding to the widest basic format supported

— mixed-length operations

e Relational Predicates for languages (20 suggested)

Standard recommends implementation of many new relations to accommodate
testing and comparing of NaNs

Example: (A ?> B) is true if (A > B) or the relation is unordered

— NaNs have no ordering relationship to anything (including themselves)

— Example: (NaN eq NaN) is false, even if the NaNs are identical!
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IEEE Floating Point Standard: Recommended Functions

COPYSIGN(x,y): returns x with sign of y, for any y
—X: Is x copied with sign reversed (not 0—x)
SCALB(y,N): returns y x 2N for integral N

LOGB(x): returns unbiased exponent of x

a & WD E

NEXTAFTER(x,y): returns next representable neighbor of x in the direction
of y

FINITE(x): returns TRUE if x is not an infinity or a NaN, FALSE otherwise
ISNAN(x): returns TRUE if x is a NaN
x<>y: is TRUE only when x<y or x>y

UNORDERED(x,y): returns TRUE if x is unordered with y

© o N O

10. CLASS(x): tells which of ten classes x falls into:

e Signaling NaN; quiet NaN; —infinity; negative normalized nonzero; negative
denormalized; —O0; +0; positive denormalized; positive normalized nonzero;
+infinity.
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IEEE Floating Point Standard: Justifications

1. Facilitate program portability
e Easier exchange of programs and floating point data among systems

e Reproducible results (depending on the compiler, math library,...)

2. Enhance safety
e Fewer computational eccentricities to trap the unwary
e Reduce anomalous behavior to the inescapable minimum
e Minimize idiosyncrasies and programming contortions

e Simpler code is usually faster, cheaper, more robust
3. Reduce behavior unpredictability at precision and range threshholds
4. Minimize impact of wobbling precision

5. Enhance capabilities

e Better exception handling facilities

IEEE Standard 854 (1987) generalizes 754 to binary and decimal formats

e Conformance to 754 gives conformance to 854
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ESA/390 Floating Point

Enhancements

Web page:

http://www.ibm.com/s390/ieee/

Floating Point Overview
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ESA/390 Floating Point Enhancements: Overview

e Design goals include:
— Affordability
— Minimal impact to existing applications
— Serviceability
— Compatibility
— Definitive support

— Standard conformance

e ESA/390 supports both hexadecimal floating point (HFP) and IEEE binary
floating point (BFP)

— Fully-conforming implementation of IEEE floating point standard for single and
double precision

— Extended precision lacks only the remainder function!

— Precisely rounded decimal/binary conversions handled in software

— Easy migration from HFP, and to and from other platforms

e Software support in OS/390, HLASM, C/C++, LE, Java, UNIX System
Services, etc.
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ESA/390 Hardware

Enhancements

e New processor features
e Hexadecimal floating point extensions
e Floating point support instructions for HFP and BFP

e Binary (IEEE) floating point support

— Data types, exceptions, rounding modes, instructions
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ESA/390 Floating Point Enhancements: Processor Features

Extensions controlled by “AFPR” bit (CR0.13)

12 additional floating point registers (AFPR)
- 1, 3,5, 7, 8 through 15

— pairing always between registers FPR,, and FPR,,,, (as before):
0-2, 1-3, 4-6, 5-7, 8-10, 9-11, 12-14, 13-15
— Usable by HFP and BFP operations

Three new BFP data types
Floating Point Control (FPC) register

Data exception extended to store Data Exception Code (DXC)
— Locations 144-147

— Old “data exception” (Program Interruption Code 7) now called
“decimal data exception” with zero DXC

121 new instructions for HFP, BFP and FP Support

— Five new instruction formats
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ESA/390 Floating Point Enhancements: BFP Data Types

e Three data lengths

— Short (4 bytes) and long (8 bytes) same as IEEE-standard single and double
— Extended (16 bytes): 15-bit exponent, 112-bit fraction (113-bit significand)

— Magnitudes: 3.4X10-4392 to 1.2X10+4392

— Extra precision important for intermediate computations with long variables!

— Equivalent to “quad” format in HP PA-RISC, DEC Alpha, SUN SPARC

— BFP long and extended formats satisfy IEEE requirement for “Single Extended”
and “Double Extended”

— Storage-operand lengths match register-operand lengths

— Helps avoid some optimization problems (see slide 124)

e Maximum and minimum normalized and denormalized values:

Extreme Values Short Long Extended

Max Norm 3.4x 1038 1.8x 10308 1.2x 104932
Min Norm 1.2x10-38 2.2x10-308 3.4x 104932
Min Denorm 1.4x10-4° 4.9x10-324 6.5x 104966
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ESA/390 Floating Point Enhancements: BFP Data Types ...

e |nfinities (characteristic all 1-bits, zero fraction)

e NaNs (characteristic all 1-bits, non-zero fraction) (see slide 104 also)

— SNaN (Signaling NaN): leftmost fraction bit FO = O
— The rest of the fraction must have non-zero bit(s) (otherwise it's an infinity)

— Causes invalid-operation exception for almost all instructions
— QNaN (Quiet NaN): leftmost fraction bit FO = 1

— Special “hardware” QNaN delivered as default for masked IEEE Invalid-operation
exception: FO = 1, rest of fraction = 0

— Delivered operands:
— SNaNs chosen over QNaNs

— NaNs of same type are chosen in order of operand number

e Six classes of floating point data (see “Test Data Class” instruction)

— Zero; normalized; denormalized; infinity; QNaN; SNaN
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ESA/390 Floating Point Control Register

8 8 8 8

IEEE IEEE DXC Rounding
mask bits flag bits Mode

e Mask bits disable and enable IEEE exception “trap” conditions:

o
wll o
(o

Condition

IEEE invalid operation
IEEE divide by zero
IEEE overflow

IEEE underflow

IEEE inexact result
Reserved

ol

T
N B

e Flag Bits
— Same definitions as for mask bits

— Set on by masked exceptions; stay on until explicitly reset

e Masks and flags are ignored for HFP and FP Support instructions
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ESA/390 Floating Point Control Register ...

e Terminology: IEEE “trap” = S/390 “interruption”

e Actions on exception conditions:
— Mask bit = 1: set exception code in DXC field, take interruption
— Mask bit = 0: set flag bit in FPCR, take default action
— Note: results may differ between masked/unmasked exceptions:

1. Invalid operation: taking interruption suppresses the instruction

— add unlike infinities; subtract like infinities; 0 X oo ; 0/0 or oo /oo ; (X REM vy) with

X = o 0ory = 0; SQRT(<0); Compare and Signal with QNaN; conversion fault:

masked default = special “hardware” QNaN

— Signaling NaN: masked default = corresponding QNaN
2. Divide by O: interrupt suppresses; masked default = £

3. Underflow: interrupt wraps exponent; masked default = denormalized result
or zero

4. Overflow: interrupt wraps exponent; masked default = infinity or MaxReal

5. Inexact result: deliver rounded result (can also occur with BFP overflow or
underflow)
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ESA/390 Floating Point Control Register ...

e DXC (Data Exception Code) indicates which exception/trap occurred

00
01

02
08
0C
10
18
1C
20
28
2C
40
80

Decimal data exception

Invalid AFPR used by HFP or BFP; FP-extensions hardware is
installed, but CR0.13 bit =0

BFP instruction; FP hardware installed, but CR0.13 bit = 0
IEEE inexact, result truncated

|IEEE inexact, result incremented

IEEE underflow, exact result

|IEEE underflow, result inexact and truncated

|IEEE underflow, result inexact and incremented

|IEEE overflow, exact result

|IEEE overflow, result inexact and truncated

|IEEE overflow, result inexact and incremented

IEEE division by zero

IEEE invalid operation

e Bits 0-4 match masks and flags;
bit 5 indicates inexact result was incremented in magnitude
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ESA/390 Floating Point Enhancements: Rounding Modes

e Rounding mode indicated in FPCR (bits 30-31):

0

1
2
3

e Some instructions can specify an explicit rounding-method mask field:

~N~ o o~ B O

Unbiased round to nearest
Round toward zero (chop/truncate)
Round toward +

Round toward — «

Round according to the current rounding mode in the FPCR
Biased round to nearest

Unbiased round to nearest

Round toward zero (chop)

Round toward + oo

Round toward — «

Used by Convert to Fixed, Load FP Integer, Divide to Integer
instructions
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ESA/390 HFP Enhancements

e Previous hex floating point exceptions and Program Mask bits renamed
with “HFP” prefix

— E.g. “Exponent overflow” becomes “HFP exponent overflow”

e 26 new instructions (54 previously available)
— Convert from fixed (all 3 precisions; round toward zero)
— Convert to fixed (all 3 precisions, with selectable rounding)
— Load FP integer (rounded toward zero, HFP result; all 3 precisions)

— Extended-precision ops (similar to existing short and long ops)

— LTXR, LCXR, LNXR, LPXR (rectify low-order sign and characteristic)
— CXR, SQXR
— LEXR (does biased round, like LRER, LRDR)

— Multiply short X short to yield short (MEE, MEER)
— Square root for short and long storage operands (SQE, SQD)

— Load lengthened (eliminates need to clear registers first)
— LDE(R), LXE(R), LXD(R)
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ESA/390 Floating Point Support Instructions

e 8 new instructions

e 3 Load Zero, 1 Load Extended, 4 BFP-to-HFP, HFP-to-BFP conversion
— None cause any HFP or IEEE-defined exceptions

— CC=3 for “special case” results (may get MIN, MAX, or o)

e |Load zero (HFP and BFP, for all three operand lengths

LZXR FO Zero FO/F2 (o1d HFP code required two instructions)

— Subtracting a register from itself can cause IEEE exceptions!
...or HFP Significance exception if not masked off!

e |oad extended (LXR, register-register): replaces 2 LDRs
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ESA/390 Floating Point Support Instructions ...

e Conversions between BFP and HFP replace 30+ instructions with one!

e Convert HFP to BFP (long HFP to short or long BFP)

TBDR F2,RM,F3 Convert long HFP in F3 to 1long BFP in F2
TBEDR F9,RM,F1  Convert long HFP in F1 to short BFP in F9

— Note: rounding modifier RM=0 means “round toward zero,”
not “according to current rounding mode”

e Convert BFP to HFP (short or long BFP to long HFP)

THDER FO,F1 Convert short BFP in F1 to long BFP in FO
THDR  F12,F5 Convert 1long BFP in F5 to long BFP in F12

— Note: no rounding modifier!

— Exceeding range gives 0 or £ HexMax
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ESA/390 Floating Point Enhancements: BFP Instructions

e 87 new instructions (almost all mnemonics contain a 'B')

e Actions are more complex than HFP equivalents, due to
— rounding modes
— NaNs and infinities
— maskable exceptions

— different exponent ranges

e [Full range of usual operations
— Add, subtract, multiply, divide, square root
— Multiply includes short X short = long, long X long = extended
— NaN op NaN gives 1st operand
— Load, Load Complement/Negative/Positive
— These don't signal invalid operation with SNaN operands!

— Load Complement implements IEEE recommended function -Xx (see slide 62)

— CC = 3 generally indicates NaN operand or result (ho CC = 3 for HFP ops)

e No unnormalized data (or unnormalizing arithmetic operations)

— Denormalized numbers are default result of underflow
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ESA/390 Floating Point Enhancements: BFP Instructions ...

e BFP Comparisons (HFP instructions unchanged)

e Normal compare:

CEBR F1,F9 Compare long float values in F1, F9

— Invalid operation signaled if at least one operand is a SNaN

— CC=3 for comparisons involving QNaNs (“unordered”)

— Note: CC=3 setting is new with BFP compare instructions

e Compare and Signal: like Compare, but all NaNs signal Invalid Op

KEBR F1,F9 Compare long float values in F1, F9, signal all NaNs

— Sets CC=3 for comparisons involving any NaN
— Comparing mixed-length operands requires lengthening the shorter

— Implements recommended IEEE functions <>, UNORDERED (see slide 62)
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ESA/390 Floating Point Enhancements: BFP Instructions ...

e Convert to 32-bit fixed-point binary integer from float
— Previous HFP code to convert long float in FO to integer in RO:

AD 0,DCON Add and normalize
STD O0,FTEMP Store the intermediate sum
L 0,FTEMP+4 Get the integer result in RO

FTEMP DS D Doubleword temporary
DCON DC X'4F08 0000 0000 0000' Conversion constant

— 3 instructions and 3 storage references
— New HFP and BFP code to do the same (note rounding-mode mask!):

CFDR  RO,RM,FO HFP to Integer

CFDBR RO,RM,FO BFP to Integer

— 1 instruction and no storage references!
— Convert to fixed supports rounding mask field

— If invalid operation and mask bit = 0, sets CC = 3
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ESA/390 Floating Point Enhancements: BFP Instructions ...

e Convert from 32-bit fixed-point binary integer to float
— Previous HFP code to convert integer in RO to long float in FO:

X 0,DCON+4  Invert sign bit of integer
ST 0,FLOAT+4 Store result in long constant
LD O0,FLOAT Load the unnormalized value
AD 0,DCON Add and normalize

DCON DC X'CEOO 0000 8000 0000' —2**31
FLOAT DC X'4E00 0000 0000 0000' Pseudo—zero, Exponent = +14

— 4 instructions and 4 storage references
— New HFP and BFP code to do the same:
CDFR  FO,RO Integer to HFP

CDFBR FO,RO Integer to BFP

— 1 instruction and no storage references!

— CC unchanged; rounding according to current rounding mode
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ESA/390 Floating Point Enhancements: BFP Instructions ...

e |Load and Test, Load Lengthened
e BFP Load and Test sets CC=3 is result is a NaN

— HFP Load and Test instructions never set CC=3

e New “lengthening” instructions for HFP and BFP:

LDER rl,r2 HFP short to long
LXDR rl,r2 HFP Tong to extended
LXER rl,r2 HFP short to extended

LDEBR rl,r2 BFP short to long
LXDBR rl1,r2 BFP Tong to extended
LXEBR rl1,r2 BFP short to extended
— Condition code is unchanged
— Invalid operation signaled if operand is SNaN
— NaNs extended with trailing zeros, shortened by truncating on the right
— Stable encoding of special values in NaNs must use leftmost bits
— Previous HFP code to lengthen a short float:

SDR FO,FO Clear FPReg 0
LE FO0,X Load the short float; FO now has long value
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ESA/390 Floating Point Enhancements: BFP Instructions ...

e | oad FP Integer (rounds FP operand to FP integer value)

— Previous HFP code for integer part of long float in FO:
AD FO0,=X'4F00 0000 0000 0000' Force fraction part off

— New HFP and BFP code to do the same:

FIDR FO,FO HFP integer part of FO
FIDBR FO,RO BFP integer part of FO

— CC is unchanged

e |oad rounded (long or extended to short, long to short)
— Three new HFP instructions added (LEDR, LDXR, LEXR)
— Alternate mnemonics for existing ops: LEDR = old LRER, LDXR = old LRDR

— Exponent overflow possible only if operand = HFP MaxReal

— BFP operations (LEDBR, LDXBR, LEXBR) must account for exponent width
reduction

— Possible exceptions: Overflow, Underflow, Inexact, Invalid Op

— Rounding controlled by current rounding mode
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ESA/390 Floating Point Enhancements: BFP Instructions ...

e Divide to integer

e Produces 2 BFP results: integer quotient, exact (rounded) remainder

— Similar to MOD/modulo, but not the same!
e May need re-execution to complete
— CC setting indicates status of calculation
e Example: calculate remainder of 1000/0.73 using short BFP:

LE F8,=EB'1000' Set up dividend
LE F3,=EB'0.73' Set up divisor

DIV  FIEBR F8,F3,F0,RM Partial quotient in FO, partial remainder in F8

BC 2,DIV Iterate if not complete
- — = Final remainder in F8

— Rounding modifier RM selects rounding mode
e HFP (long precision) code for remainder of 1000/0.73:

LD F0,=D'1000" Get numerator (A)

DD F0,=D'0.73" Compute quotient (A/B)

AD FO0,=X"'4F00 0000 0000 0000' Force fraction part off

MD F0,=D'0.73" Compute (B * IntegerPart(A/B))

LCDR FO,FO Complement

AD F0,=D"'1000" A— (B * Int(A/B)) is the remainder in FO
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ESA/390 Floating Point Enhancements: BFP Instructions ...

e Multiply-and-add, Multiply-and-subtract (short and long)
— opl = op3 X op2 £ opl, with precise intermediate result

MAEBR F5,F2,F6 Evaluate F5 = F5 + (F2 * F6) in short BFP

— Only the final result is rounded (possibly non-standard result!)

— Result NaN taken from operand in order op3, op2, opl

— SNaN defaulted to QNaN takes precedence

— Consistent with the same operations on RS/6000
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ESA/390 Floating Point Enhancements: BFP Instructions ...

e Test Data Class: bit pattern of second operand address selects
first-operand class(es) to be tested

Class + sign — sign
Zero 20 21
Norm 22 23
Denorm 24 25
Infinity 26 27
QNaN 28 29
SNaN 30 31

— Match of mask bit to operand class sets CC=1
— No invalid-operation signal for SNaNs (so you can test for them!)
— 12-bit pattern fits in instruction's displacement field

— Implements recommended IEEE functions FINITE, ISNAN, CLASS
(see slide 62)
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ESA/390 Floating Point Enhancements: Control Instructions

e FPCR Load/Store (register-storage), Set/Extract (register-register)

SFPC R1 Set FPCR from GPR 1
EFPC R1 Extract FPCR into GPR 1
LFPC D2(B2) Load FPCR from memory
STFPC D2(B2) Store FPCR into memory

e Set Rounding Mode: rightmost two bits of 2nd-operand address

SRNM  0(R5) Set rounding mode from bits 30-31 of GPR 5

SRNM 1 Set rounding mode to 'toward zero'
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ESA/390 Software Enhancements

e 0S/390 support

e High Level Assembler support

e C/C++ support, including LE and runtime libraries

e Considerations for Java, DB2, CICS, IMS, other products

e Programming conventions

Floating Point Overview
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OS/390 Operating System Support

e Delivered with OS/390 V2R6

Can emulate FP Extensions on older hardware; useful for testing,
development, validation

e Task initiation

TCB or SRB not initially enabled for BFP ops or AFPR, FPCR

— First exception is trapped:

— If FP-extensions hardware is installed, turn on CRO0.13, enable register saving
e May want to use AFPRs for HFP only

— If DAT on and no hardware, simulate instructions and enable register saving

— Registers initialized to zero for new tasks

— FPCR = 0 disables traps, resets flags, sets rounding mode to “nearest”

e XCTL, LINK, LOAD-and-CALL: callee gets caller's registers

LE enclaves: LINK requires special initialization handling

IEAFP service call to stop saving/restoring registers

— Can reduce task-switching overheads
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0OS/390 Operating System Support ...

e EXceptions:
— DXC = 0 for old decimal data exception (Program Interruption Code 7)
— DXC passed in parm area to ESPIE, ESTAE, FRRs

— SPIE must use DXC in FPCR

e Two CVT bhits:
— CVTBFP (in CVTOSLV2): you can use FP Extensions (may be emulated)

— CVTBFPH (in CVTFLAG?2): the FP Extensions hardware is present
e Sysplex: WLM directs jobs to BFP-capable systems

e UNIX System Services: enhancements to fork(), exec(), spawn(),
ptrace(), pthread create(), and od command
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ESA/390 Floating Point: HLASM Support

e Delivered with High Level Assembler R3

— Fully compatible with existing HFP instructions and data
e All new HFP, BFP and FP Support instructions

e Extend DC syntax of E/D/L-type constants for BFP data:

DC type — B — ' nominal value

— m = 1 for biased round to nearest; m = 4, 5, 6, 7 have same meanings as
rounding-modifier masks (see slide 73)

— Default is R4 (“round to nearest”)
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ESA/390 Floating Point: HLASM Support ...

e Signed zeros supported

NegZero DC

DC
01dZero DC

EB'-0' generates X'80000000'
EH'-0' generates X'80000000'
E'-0' generates X'00000000'

e Examples of BFP conversions:

Shortl DC
Longl0th DC
Tenth DC

DC
ExtBig DC

EB'1.0' generates X'3F800000'
DB'0.1' generates X'3FB99999 9999999A°
EB'0.1' generates X'3DCCCCCD' (rounded to nearest)

EB'0.1R5"' generates X'3DCCCCCC' (rounded toward zero)

LB'1.5E4000' generates X'73E73A97 C4B5FD80 5291940A C3F3C992'

e Minimum bit-length modifiers are 9, 12, 16 for E, D, and L

— No fraction bits remain at minimum bit length
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ESA/390 Floating Point: HLASM Support ...

e Extreme values:

— Nominal values may be (MAX) and (MIN)

— (MIN) is the minimum normalized value

— Minimum denormalized value = X'000...001"

e Special values:

— Nominal values may be (SNAN), (QNAN), (NAN), (INF)

— Leading fraction bits for NaNs: 01 for (SNaN), 11 for (QNaN), 10 for (NaN) (the
special “hardware” QNaN) (see slide 69)

— Minimum bit lengths for NaNs: 11, 14, 18 for E, D, and L

e Examples:

ShortMin DC
ShortInf DC
LongSNaN DC
ExtMax DC
LongDMin DC

EB'(Min)' generates
EB' (Inf)' generates
DB' (SNaN) ' generates
LB' (Max)' generates
XL8'1' generates

X'00800000"

X'7F800000"

X'7FF40000 00000000°

X'7FFEFFFF FFFFFFFF FFFFFFFF FFFFFFFF'
X'00000000 00000001"

e “Parameterized” NaNs discussed at slide 104
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ESA/390 Floating Point: HLASM Support ...

e |mproved and directed rounding supported for HFP data also:

DC type — H — ' nominal value

ShortHl DC EH'1.0'
LongH100 DC DH'100'
ExtBigHh DC LH'1l.5E75'

e Existing HLASM float hex conversions are very good,;
but “difficult numbers” require more highly precise conversions

e Examples:

DC D'.303325544866797714604E-10"' generates X'382159DA E5B7B6BD' (old)
DC DH'.303325544866797714604E-10' generates X'382159DA E5B7B6BE' (new)

DC D'.185240322463448422373E-23"' generates X'2D23D4A8 0F402692' (o1d)
DC DH'.185240322463448422373E-23"' generates X'2D23D4A8 0F402693' (new)
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ESA/390 Floating Point: HLASM Toolkit Feature Support

e All new HFP, BFP and FP Support instructions supported by

— Interactive Debug Facility
— New AFPR command to enable display of FPCR, AFP registers

— Disassembler

— Program Understanding tool
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C/C++ Compiler Support

e 0S/390 V2R6 required (compiler uses some runtime library routines)

— BFP instructions not used at compile time

No support for mixing binary/hex floating point in one compilation unit
— Emphasis is on BFP

— Assumption: mixed-mode applications rare

— Supported... but the user is responsible for managing the mixtures!

Many new or changed options:

arch(3)
OK to use AFPR, all new instructions

float([no]afp)
Selects whether or not to use AFPR

float (ieee|hex)
Selects float mode
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C/C++ Compiler Support ...

float([no]fold)
OK to evaluate constant expressions at compile time

round (N|M|P|Z)
Determines compile-time rounding of constant expressions

float ([no] rrm)
rrm means runtime changes to rounding mode; compiler restricts
some optimizations

[no]strict
Restrict compiler optimizations so results are determinable and
repeatable; nostrict relaxes conformance to IEEE rules and allows
some reorderings for performance gains

float ([no]maf)
maf means OK to use multiply-and-add, multiply-and-subtract ops

e Strictly-compliant code generated when strict,nomaf specified

— If nostrict and float(ieee), get maf
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C/C++ and LE Runtime Library Support

e Library functions include routines
— To perform correctly rounded decimal/float conversions

— Uses same algorithms as HLASM

— For users who must manage mixed floating point modes during execution:
— Return FP mode of compilation unit
— Override FP mode of compilation unit
— Query and set fields of FPCR
— Determine available hardware and operating system support
— Convert between HFP and BFP

— ... and others, documented in the LE Vendor Interface book

— Other functions are documented on the LE web site
e Math functions: Sun's “Freely Distributed Math Library” (fd11bm)
— Long (64-bit) precision only

— Default rounding mode only
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C/C++ and LE Runtime Library Support ...

e (Class library support for BFP packaged in DLLs

Assumption: one copy of the DLL will be shared by all applications

Feature-test macro and name-mangling rules distinguish BFP/HFP routines

e |Language Environment
Runtime routines can handle modules with different FP modes

— PPA2 has FP mode flag bit
— Routines sensitive to mode (like printf, scanf) test it to process data in mode of
compilation unit
— Assembler macros can set PPA2 flag to indicate BFP is used

LE enclave initiation saves creator's non-volatile FPRs, sets FPCR =0

(restored on enclave termination)

Supports BFP exceptions, AFPR for BFP and HFP exceptions

— Signal catchers get control with BFP exceptions disabled (FPCR saved/restored
by runtime)

— Dump formats FPCR and AFPR

98
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Java Language Definition

e Symbolics for INF, NAN, MAX, MIN (=DMIN; no NMIN)
e (Casting functions for bits-to-float

e Relationals with NaNs return false
(not “unordered”™. x != x is true for NaNs)

e Only rounding mode is “to nearest”
e Overflows give « , underflows give zero
e |nteger-to-float conversions give no indication of lost bits

e [loat-to-integer conversions:

— NaN gives 0

— Representable values round to zero (truncate)

— Non-representable values (including < ) give MAXINT or MININT (no
exceptions indicated)

e Double-to-float rounded to nearest, or to 0 or - (no exceptions indicated)

e Coalesces all NaN values to “a single conceptual NaN value”

e Java's support of the IEEE standard is (currently) somewhat limited...
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Java Support: Implementations

e |mproved performance for (previously emulating) applications

e Java Virtual Machine (JVM) on OS/390 V2R6 and new hardware will
generate BFP instructions

— Uses C/C++ runtime library

— Old hardware: use Java Runtime Library IEEE simulation

e Just-In-Time (JIT) compiler on OS/390 V2R6 and new hardware will
generate BFP instructions

— Old hardware: use Java Runtime Library IEEE simulation

e High-Performance Java (HPJ) compiler R1 uses IEEE simulation

— March 1999 PTF provides AFPR and BFP-instruction support
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Other Products' Support

e \/S Fortran:

— AFPR support for HFP (APAR PQ26305)
DB2 UDB for OS/390

— Phased approach to support, over several releases

— Initially: BFP converted to HFP internally

— Don't use BFP data until “Toleration PTFs” (APARs PQ30062, PQ30063) are
applied

— Utilization of new instructions will require compatibility testing

— A new data type and related capabilities will be considered

CICS

— Transaction Server currently does not support BFP applications;
Open Transaction Environment tasks can use BFP

IMS is “transparent” to floating point data types
DFSORT intends to provide BFP support equivalent to HFP
Component Broker intends BFP support in the future

TCP/IP intends to add support to RPC for BFP
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ESA/390 Floating Point Software Conventions

e Old floating point register convention: all FPRs volatile

— Too few FPRs to justify optimizing contents across calls

e Now: FPRs 0-7 volatile; 8-15 saved and restored across calls
— Called routine must save modified non-volatile FP registers
— Allows optimization of variables into registers across calls

— No impact on programs using old conventions for FPRs 0-6
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ESA/390 Floating Point Software Conventions ...

e Floating Point Control register
— Volatile: need not save/restore exception flags, DXC

— Non-volatile: must save/restore masks, rounding mode

e Application is responsible for knowing what data types are used

— Assumption: rarely intermix HFP and BFP data types

e Asynchronous exits must preserve FPRs, FPCR

BAKR, PC calls get caller's FPRs and FPCR

— Not saved on linkage stack
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ESA/390 Floating Point Software Conventions ...

e Standard: “NaNs should ... afford retrospective diagnostic information
Inherited from invalid or unavailable data and results.”

e Potential value in “tagging” or “parameterizing” NaNs
— Can distinguish/describe many types of error or warning conditions

— Propagation of NaNs helps identify initial error condition

e NaN representations and parameterizations
— Recommend reserving the two high-order fraction bits
01 SNaN (rest of fraction = 0)
10 Hardware-generated default QNaN (rest of fraction = 0)
11 Software-created default QNaN (rest of fraction = 0)

— Recommend using at most 21 high-order bits for NaN parameter values

— Longer fields may suffer truncation

e Discussion question: Should we reserve the high-order bit of this 21-bit
field to distinguish between IBM/user “tagging” info?

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 104




Contrasting Binary and
Hexadecimal Floating Point

on ESA/390
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Binary and Hex Floating Point: General Differences

e Summary of HFP and BFP data formats

Format sign characteristic | characteristic fraction
width width bias width
Hex Short 1 7 64 24
Hex Long 1 7 64 o6
Hex Extended 1 7 64 112
Binary Short 1 8 127 24
Binary Long 1 11 1023 53
Binary Extended 1 15 16383 113
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Binary and Hex Floating Point: General Differences ...

1. Range: Significant differences
e Short IEEE binary has half the range of short S/390 hex
e Double IEEE binary has four times the range of long S/390 hex
e Extended IEEE binary has 64 times the range of extended S/390 hex
2. Precision: Minor differences
e Short IEEE binary has 0 to 3 more fraction bits than short S/390 hex
e Long IEEE binary has 0 to 3 fewer fraction bits than long S/390 hex
e Extended IEEE binary has 1 to 4 more fraction bits than extended S/390 hex
3. Special values: Significant differences
e S/390 hex has no representation for NaNs or infinities
4. Unnormalized/denormalized values: Important differences

e S/390 hex supports (but rarely produces) unnormalized data

e |[EEE denorms can indicate “lost” precision
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Binary and Hex Floating Point: Representation Differences

e A 24-bit binary fraction is not the same as a 6-hex-digit fraction!

— Computationally: 6 hex digits “statistically equivalent” to approximately 22 bits

e Example: consider the decimal value 0.1

— In binary: 0.0001 1001 1001 1001 1001 1001 1001 1001 ... etc.

Short hex-normalized float fraction has 21 significant bits:

— Normalized, rounded fraction is X'19999A"' (relative error = 2-22)

— Stored value is X'4019999A"

Single precision IEEE float fraction has 24 significant bits:
— Normalized, rounded fraction is X'CCCCCD"' (relative error = 2-25)

— With the implied 1-bit, stored value is
B'0 01111011 10011001100110011001101" or X'3DCCCCCD'
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Binary and Hex Floating Point: Computational Differences

e |Length coercions handled very differently

— BFP must round when shortening, under rounding-mode control

e |EEE longer precisions are not simple extensions of shorter precisions
— Different exponent widths (unlike S/390 hex!)

— Can't simply truncate low-order fraction bits, or append zeros
— Overflow, underflow possible when shortening precision
e EXxceptions have similarities and differences (see slide 113)
e |nverses of tiny hex numbers overflow: HexMax x HexMin = 1/16

e |nverses of large binary numbers are denormals (if underflow is masked
off); BinMax x BinMin = 4

— |EEE advantage: inverses exist for all normal values

— Lose a bit or two or precision for inverses of numbers near BinMax

e |nitial hardware implementation optimized for HFP (naturally!)
— Single internal format for HFP and BFP

— Almost all BFP operations pipelined in hardware

Floating Point Overview © IBM Corporation 1995, 2004. All rights reserved. 109




Binary vs. Hex Floating Point: 4-Byte (Short) Precision

IEEE IBM System/370 Hex
1 8 23 1 7 24
Short
(32-bit) s| char fraction s| char fraction
Format
Charac— | 8 bits (exp: —126 to +127) 7 bits (exp: —64 to +63)
teristic| range 10**(—38) to 10**(+38) range 10**(-78) to 10**(+75)
Fraction| base 2; implied leading 1-bit | base 16;
preceding the radix point; 6 hex digits (21-24 bits)
24 bits = 6 decimal digits = 6 decimal digits
Conver— — loss of precision
sion unrepresentable magnitudes «——
Problems —> unrepresentable spec. vals.
Special | Infinities; De—normalized (none)
Values numbers; Not—a—Number (NaN)
Rounding| up, down, to zero, to nearest | (none) (except ACRITH assist)
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Binary vs. Hex Floating Point: 8-Byte (Long) Precision

IEEE IBM System/370 Hex
1 11 52 1 7 56
Long
(64-bit) s| char fraction s| char fraction
Format
Charac— | 11 bits (exp: —1022 to +1023) | 7 bits (exp: —64 to +63)
teristic| range 10**(—308) to 10**(+308) | range 10**(-78) to 10**(+75)
Fraction| base 2; implied leading 1-bit | base 16;
preceding the radix point; 14 hex digits (53-56 bits)
53 bits = 15 decimal digits = 15 decimal digits
Conver— loss of precision «——
sion —> unrepresentable magnitudes
Problems —> unrepresentable spec. vals.
Special | Infinities; De—normalized (none)
Values numbers; Not—a—Number (NaN)
Rounding| up, down, to zero, to nearest | (none) (except ACRITH assist)
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Binary vs. Hex Floating Point: 16-Byte (Extended) Precision

IEEE IBM System/390 Hex
1 15 112 1 7 56 8 56
Extended /—/
(128bit) | |s| char fraction s|char| fraction |///| fraction
Format /=/
Charac— | 15 bits (exp: —16382 to +16383) 7 bits (exp: —64 to +63)
teristic| range 10**(—4392) to 10**(+4392) range 10**(-78) to 10**(+75)
Fraction| base 2; implied leading 1-bit base 16;
preceding the radix point; 28 hex digits (109-112 bits)
113 bits = 33 decimal digits = 32 decimal digits
Conver— — loss of precision
sion —> unrepresentable magnitudes
Problems — unrepresentable special values
Special | Infinities; De—normalized (none)
Values numbers; Not—a—Number (NaN)
Rounding| up, down, & zero, to nearest (none)
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IEEE vs. IBM Hex Floating Point: Exception Differences

370 Exception Maskable | Masked Action Unmasked (Interrupt) Action
Exponent Overflow No Wrap (scale) characteristic
Exponent Underflow Yes Deliver True Zero Wrap (scale) characteristic
Zero Divide No Dividend operand unchanged
Lost Significance Yes Deliver True Zero Deliver pseudo—zero

IEEE Exception Maskable | Masked Action Unmasked (Interrupt) Action
Invalid Operation Yes Deliver QNaN Implementation—defined
Zero Divide Yes Signed Infinity Implementation—defined
Exponent Overflow Yes Infinity or MaxReal Re-biased (scaled) result
Exponent Underflow Yes De—norm or zero Re-biased (scaled) result
Inexact Result Yes Deliver result Deliver calculated result

Note: Both 370 and IEEE results can differ between masked and unmasked actions
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Other IEEE Implementations

— |EEE-754 Standard

“...hardware components that require software support to
conform to the standard shall not be said to conform apart from
such software.”
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General Observations

e The IEEE standard allows a lot of flexibility!

e Many older implementations of the IEEE standard “cut corners”

— Implement only a subset of the standard (but claim “support” or even
“adherence”)

— E.g., single, extended, rounding, remainder, SQRT, int/float conversions

— E.g., incomplete support of exception handling

e Some implementations provide greater precision or range internally (in
registers) than is (or can be) stored in memory

— Intel, RS/6000 require special actions for strict conformance
— Hardware defaults often imply greater precision than operands provide

— Exact reproducibility of results across platforms may be affected

e |BM hardware: Intel boxes, AS/400, RS/6000, System/390

— Some systems may not support all standard-required items in hardware (e.g.,
remainder, SQRT, int/float conversions) or standard-recommended items (e.qg.,
extended)
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Intel

1. Fully standard-conforming implementation

2. Provides single, double, and double-extended (80 bits)

e Register operands are extended to 80-bit length; high-order 1-bit is explicit
e Storing an extended operand as single or double causes extra rounding
e Single and double formats exist in memory only

3. Precision control (PC) bits determine result precision

e Register operands can be coerced (rounded) to single and double precision by
setting PC bits

— Rounding clears unused bits on right to 0's when precision is reduced
— Overflows and underflows may not be detected until result is stored

e Setting PC bits required for IEEE standard conformance (in single or double)
for arithmetic results

— But not for exceptions; some are detected only on stores

4. Reduced precision: possible performance increase or decrease

e Performance is precision-sensitive

5. Also provides denormal-operand exception
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Intel ...

1

Transcendental functions (error < 1 ulp if rounded to nearest):
SIN, COS, SINCOS, TAN, ATAN, 2*X-1, Yxlog,X, Yxlog,(X+1)

IEEE functions SCALB and LOGB

. On-chip constants: 0, 1, &, log,10, log,e, log,,2, l0g.2

e Internal precision > 64; rounded to required precision on load

SNaN: high-order fraction bit = 0

e Never generate SNaN as a computational result

SNaN converted to QNaN by setting high-order fraction bit to 1
e ESA/390 uses same SNaN/QNaN convention

. “Real Indefinite”: negative QNaN with fraction = B'100..00'

e Generated as default result for many operations

QNaN: response for masked invalid operation, or when at least one
operand is a QNaN

. Storing a NaN truncates the significand on the right

. Double-NaN result is the NaN with the larger fraction
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RISC System/6000

e |EEE standard conformance complete for double precision

e All arithmetic done in (at least) double precision

— Hardware is “tuned” for double precision

— Single precision operands extended to double when loaded into registers

— Multiply-add instructions (= AXBx C) use 106-bit intermediate fraction
— Fast! (Typical example of trading conformance for performance)
— Answers differ from double precision operations and from standard

— Directed rounding of negated results may give unexpected results

— Extended precision implemented (in software) as double+double

e Multiple-NaN-operand results delivered in order of operand number

— ESA/390 uses same convention
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RISC System/6000 ...

e Near-complete standard conformance for single precision
— Depends on supporting software for conformance

— Single-precision store assumes previous “round-to-single” operation

— Store truncates exponent and fraction bits without tests or exceptions

— Conforming single precision results require rounding after each operation

— Double rounding inevitable (but bias = 2-29)

— No hardware square root

e EXxception detection and reporting is expensive
— Invalid operation flags indicate which type of invalidity

— Trapped results already set to defaults!
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Binary and Hexadecimal:

Differences to Watch Out For

e Things to think about when
— porting to S/390 from other IEEE-supporting platforms

— enhancing HFP applications to support BFP
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Standard Conformance and Language Issues

Not all hardware implementations consistently support all Standard items

— But results are usually “closely” reproducible

Satisfying IEEE standard says nothing about satisfying language
standards

— |EEE's suggested language enhancements (for “unordered” relations) require
significant extensions

— Possible conflict between IEEE standard's requirements and language
standards (which may be “biased round to nearest” or “round toward zero”)

How (and whether) to provide control of rounding mode?
— Dynamic vs. static vs. none? A callable service? New language elements?
— Should compile-time expression evaluation be influenced by rounding mode?

— If rounding mode is changed at execution time, compiler code-motion
optimizations can be fooled. (“User Beware”?)

Syntax for initializing data to NaN or infinity at compile time?

How to handle relational expressions that may have NaN as a value?
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Coding Implications

e Don't transliterate HFP code to BFP without analysis!
e Single-mode computation recommended

e Be very careful when mixing data types

Bit Pattern HFP Value BFP Value

X'3F80 0000° 0.03125 1.0
X'4110 0000° 1.0 9.0
X'4264 0000' 100.0 57.0
X'7FFF FFFF' MaxReal QNan

— New instructions provide fast type conversion

e Remember that most bit patterns are valid for HFP and BFP instructions
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Compiling and Optimization Implications

e Have to know what representation to use for constants (literals) and data
Initialization
— Single mode per compilation unit simplifies many choices

e Optimization oddities: algebraic “identities” and constant propagation

— Signed zeros, NaNs, and infinities require care in optimization

0/ X—07? Fails for X = 0
1*X—>X? Fails for X = NaN
0*X—>07?7 Fails for X = NaN or infinity
X-X—>07? Fails for X = NaN or infinity
X/ X—17? Fails for X = NaN or infinity
X =X —> TRUE ? Fails for X = NaN
X>Y—>Y<X? Fails for X = NaN
—X=0-X7? Fails for X = +0

— Hand-coded optimizations should be reviewed carefully!

e Optimization oddities: code motion

— Most compilers won't move constant expressions out of loops if they might
cause exceptions

— |EEE permits exceptions where none would occur with S/390 hex
(e.g., when shortening; inexact; invalid operation)
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Compiling and Optimization Implications ...

e Optimization oddities: register re-use
— Unpredictability of results vs. optimization level

— Different results from register-length vs. storage-length differences
REAL*4 A, B, C, D, E

A=B+C
E=A+D

With no optimization, the first sum is stored in single precision.
With optimization, A is kept in a register; final result may easily be different.

— Intel example: optimized results will change unless precision control instructions
are inserted

— Unlocalized optimization effects on answers

— In the above example, changes elsewhere in the program may cause the register
holding A to be spilled, de-optimizing E=B+C+D (possibly changing results)

e “Long” internal registers (e.g., Intel) imply several problems:
— Possible double rounding
— Shortening from extended to double or single would cause double rounding
¢ Violates standard (cannot claim full conformance)

— Unlikely to cause numerically significant errors, however
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Library/Run-Time Issues

e NaNs and infinities represented externally

— Run-time libraries provide an explicit representation

e Mapping of IEEE Standard exceptions onto existing language and
run-time exception-handling rules

— Should not be a problem, except for “inexact”:
most language standards have no such concept

e |s handling (if any) of signed zeros a problem?

— Structure/field compares in storage (of +0 to —0) will cause problems.
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Summary
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Summary

‘ ESA/390+0S/390 I

1. Rich and robust implementation of IEEE binary floating point

e Fully-conforming support of an open, industry standard
2. Additional floating point registers benefit all floating point applications
3. Easy migration from older machines via simulation

4. Compatible with all existing hexadecimal floating point applications
e Numerous enhancements available for hexadecimal floating point

e Inter-convertability for BFP and HFP data

5. Enhanced portability between ESA/390 and other platforms
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