
IBM ILOG Dispatcher

Reference Manual

June 2009

© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights � Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Table of Contents
About This Manual..1

Concepts...3

Group optim.dispatcher...10

Class IloDispatcherGraph::AdjacencyListIterator...15

Class IloDispatcherGraph::Arc...16

Class IloDimensionWindows::ForbiddenIterator..18

Class IloArrayVehicleToNumFunctionI..20

Class IloArrayVisitToNumFunctionI...22

Class IloComposedDistance...23

Class IloComposedVisitDistance..25

Class IloDefaultDecisionTracerI..27

Class IloDefaultFSDecisionMakerI..30

Class IloDefaultVisitVehicleFSDecisionI..32

Class IloDelaySumVar..34

Class IloDimension...35

Class IloDimension1...36

Class IloDimension1Iterator..38

Class IloDimension2...40

Class IloDimension2Iterator..44

Class IloDimensionIterator..46

Class IloDimensionWindows...48

Class IloDispatcher..51

Class IloDispatcherFSParameters..63

Class IloDispatcherGLS...66

Class IloDispatcherGoalFactory...70

Class IloDispatcherGoalFactoryI..72

Class IloDispatcherGraph..73

Class IloDispatcherNHoodParameters...81

Class IloDispatcherTabuSearch..86

i

Table of Contents
Class IloDistance..89

Class IloDistanceEvalI..93

Class IloDistanceI...95

Class IloEvalVehicleToNumFunctionI..98

Class IloEvalVisitToNumFunctionI...99

Class IloEverywhereNode..100

Class IloExecutionWindowsToVisitCon...101

Class IloExplicitArcPredicate..102

Class IloExplicitDistance...103

Class IloExplicitVisitDistance..104

Class IloFSDecisionI..105

Class IloFSDecisionMakerI..108

Class IloFSDecisionTracerI...111

Class IloNADecisionI..114

Class IloNADecisionMakerI...117

Class IloNode..120

Class IloOutOfRouteConstraint...123

Class IloOutputManip...125

Class IloPairDecisionI..126

Class IloProductDimension...128

Class IloRoutingSolution...130

Class IloSimpleDistanceEvalI..139

Class IloSimpleVisitDistanceEvalI..141

Class IloSingleVehicleFSDecisionI...143

Class IloSparseExplicitDistance...146

Class IloSparseExplicitVisitDistance..149

Class IloTravelSumVar...152

Class IloVehicle..153

Class IloVehicleBreakCon...158

ii

Table of Contents
Class IloVehicleBreakConIterator...161

Class IloVehicleEquiv...163

Class IloVehicleEquivEvalI..165

Class IloVehicleEquivI..166

Class IloVehicleIterator..168

Class IloVehicleLIFOConstraint..170

Class IloVehiclePair..171

Class IloVehicleToNumFunction...172

Class IloVehicleToNumFunctionI..175

Class IloVehicleVar...176

Class IloVisit...177

Class IloVisitAlternativeConstraint...184

Class IloVisitDistance..186

Class IloVisitDistanceEvalI..190

Class IloVisitDistanceI...192

Class IloVisitIterator...195

Class IloVisitPair...197

Class IloVisitToNumFunction..198

Class IloVisitToNumFunctionI...200

Class IloVisitVar..201

Class IloVisitVehicleCompat...202

Class IloVisitVehicleCompatI..204

Class IloVisitVehiclePredicateCompatI..205

Class IloDimensionWindows::Iterator..206

Class IloNode::Iterator...208

Class IloDispatcherGraph::Node..209

Class IloDispatcherGraph::PathIterator...211

Class IloDispatcher::RouteIterator...212

Class IloRoutingSolution::RouteIterator..214

iii

Table of Contents
Class IloDispatcher::UnperformedVisitIterator...216

Class IloRoutingSolution::UnperformedVisitIterator..217

Class IloDispatcher::VehicleBreakConIterator..218

Class IloRoutingSolution::VehicleIterator..219

Class IloRoutingSolution::VisitIterator...220

Enumeration IloFSDecisionRejectCause...221

Enumeration IloNearestAdditionBehavior...222

Enumeration IloNearestAdditionExtension..223

Enumeration IloOutOfRouteReference...224

Global function IloManhattan..225

Global function IloOrderedVisitPair..226

Global function IloInstantiateVehicleBreaks..227

Global function IloVisitAlternativeSwap...228

Global function IloExchange...229

Global function IloInstantiateVehicleBreakPosition...231

Global function IloMakeUnperformed...232

Global function IloTardinessFunction..233

Global function IloVerbose..234

Global function IloGeographical...236

Global function IloCompatible...237

Global function IloEarlinessFunction...238

Global function operator<<..239

Global function operator<<..240

Global function operator<<..241

Global function IloSortedNHood...242

Global function IloSortedNHood...243

Global function IloInstantiateVehicleBreak..244

Global function IloMakePerformed...245

Global function IloTerse...246

iv

Table of Contents
Global function IloSetVehicleVisitCumuls...247

Global function IloInstantiateVehicleBreakStart...248

Global function IloAllVehiclesDifferent..249

Global function IloBoxVehiclePairPredicate..250

Global function IloEuclidean...251

Global function IloCouple..252

Global function IloTwoOpt...253

Global function IloVehicleDependentDelayConstraint...255

Global function IloMax...256

Global function operator==..257

Global function operator==..258

Global function operator==..259

Global function operator==..260

Global function operator==..261

Global function IloDecouple..262

Global function IloGraphDistance...263

Global function IloMin..264

Global function IloSolutionValueComparator..265

Global function IloOrOpt..266

Global function IloAllVehiclesEquivalent...268

Global function IloIntraRelocate...269

Global function IloRelocate...270

Global function IloAllUnperformedGenerate...272

Global function operator!=..273

Global function operator!=..274

Global function operator!=..275

Global function operator!=..276

Global function operator!=..277

Global function IloDistMax..278

v

Table of Contents
Global function IloInstantiateTransits..279

Global function IloInstantiateTransits..280

Global function IloInstantiateTransits..281

Global function IloInstantiateTransits..282

Global function IloInsertVisit...283

Global function IloInsertVisit...284

Global function IloInsertVisit...285

Global function IloInsertVisit...286

Global function IloFunctionDistance..287

Global function IloAffineFunction...288

Global function IloInsertionGenerate...289

Global function IloSweepGenerate...291

Global function IloCross..293

Global function IloNearestDepotGenerate...294

Global function IloSetVisitCumuls..296

Global function IloInstantiateVehicleBreakDuration...297

Global function IloFinalizePlan...298

Global function IloDispatcherGenerate..299

Global function operator+..300

Global function operator+..301

Global function operator+..302

Global function IloGenerateRoute..303

Global function IloFPRelocate...304

Global function IloGetDispatcherDefaultVehicleEquivalence..305

Global function IloSameNodeArcPredicate...306

Global function IloMergeAndRelocateTours..307

Global function IloSavingsGenerate...311

Global function operator*..313

Global function operator*..314

vi

Table of Contents
Global function operator*..315

Global function operator*..316

Global function IloNearestAdditionGenerate...317

Global function IloMakePerformedPair..320

Global function IloSwapPerform...321

Global function IloDistanceThresholdArcPredicate..322

Global function IloDistanceThresholdArcPredicate..323

Global function IloRejectNeighbor..324

Typedef IloArcPredicate...325

Typedef IloDistanceFunction...326

Typedef IloSimpleDistanceFunction...327

Typedef IloSimpleVehicleToNumFunction...328

Typedef IloSimpleVisitDistanceFunction...329

Typedef IloSimpleVisitToNumFunction..330

Typedef IloVehicleArray...331

Typedef IloVehicleEquivFunction...332

Typedef IloVehiclePairPredicate...333

Typedef IloVisitArray..334

Typedef IloVisitDistanceFunction...335

Typedef IloVisitVehicleCompatPredicate...336

Variable IloEarthRadiusInKm..337

Variable IloEarthRadiusInMiles...338

vii

About This Manual
This reference manual provides you with a complete description of the components of IBM® ILOG® Dispatcher.

Group Summary

optim.dispatcher The IBM® ILOG® Dispatcher API.

What is Dispatcher?

Dispatcher is an extension of the IBM® ILOG® Solver C++ constraint-programming library, especially adapted to
problems in vehicle routing and maintenance dispatching.

This library is not a new programming language; it lets you use data structures and control structures provided by
C++. Thus, the Dispatcher part of an application can be completely integrated with the rest of that application (for
example, the graphic interface, connections to databases, etc.) because it can share the same objects.

What You Need to Know

This manual assumes that you are familiar with the operating system on which you are using Dispatcher. Since
Dispatcher is written for C++ developers, this manual assumes that you can write C++ code and that you have a
working knowledge of your C++ development environment.

IBM® ILOG® Dispatcher works with IBM ILOG Solver. This manual assumes that you have a working knowledge
of IBM ILOG Solver and Solver concepts, such as domains, constraints, goals, handles, choice points,
propagation, reversibility, and local search methods.

Notation

Throughout this manual, the following typographic conventions apply:

Samples of code are written in this typeface.•
The names of constructors and member functions appear in this typeface in the section where they
are documented.

•

Important ideas are emphasized like this, in italics.•

Naming Conventions

The names of types, classes, and functions defined in the Dispatcher library begin with Ilo. The names of
classes are written as concatenated, capitalized words. For example:

IloDispatcher or IloVisit.

A lowercase letter begins the first word in names of arguments, instances, and member functions. Other words in
such a name begin with an uppercase (that is, capital) letter. For example,

aVisit
IloVisit::getName()

There are no public data members in Dispatcher.

Accessors begin with the keyword get followed by the name of the data member. Accessors for Boolean
members begin with is followed by the name of the data member. Modifiers begin with the keyword set

1

followed by the name of the data member. Like other member functions, the first word in such a name begins
with a lowercase letter, and any other words in the name begin with an uppercase (that is, capital) letter. The
following example shows samples of accessors and modifiers in Dispatcher:

class IloVisit {
public:
 IloVisit(IloNode node, const char* name = 0);
 IloVisitVar getNextVar() const;
 IloNumVar getRankVar() const;
 IloBool isBreakable() const;
 void setPenaltyCost(IloNum val);
};

Include Files

In this reference manual, the documentation of a class uses the caption "Include File" to indicate which header
file you need to include in your application. The caption "Definition File" indicates the header file where the class
is actually defined.

2

Concepts

Construction Heuristics

To help you build a preliminary solution to a problem, Dispatcher provides predefined functions that return a goal.
Each of these goals implements a construction heuristic to generate a preliminary solution to a problem. You can
use these goals to generate a first solution to a routing problem. Once you have built a first solution, you can use
neighborhoods and search heuristics to improve that solution.

See Also

IloDispatcherGenerate,IloInsertionGenerate,
IloNearestAdditionGenerate,IloNearestDepotGenerate,IloSavingsGenerate,IloSweepGenerate

Cost Function

Description

IBM® ILOG® Dispatcher has a built-in cost function which is composed of a fixed and a variable cost for each
vehicle and of a cost for not performing visits (this cost is referred to as penalty cost).

This cost function is taken into account by the predefined first solution goals (IloSavingsGenerate,
IloInsertionGenerate, etc.) and is the objective variable attached to routing solutions (instances of the
IloRoutingSolution class); it will therefore be used by local search algorithms.

The fixed cost of a vehicle represents the cost of using that vehicle. (A vehicle is used if its route is not empty.) It
is specified using

IloVehicle::setCost(IloNum value)

The variable cost of a vehicle is proportional to the total amount of dimension used by the vehicle and is specified
using

IloVehicle::setCost(IloDimension dim, IloNum coef)

The penalty cost can be set via

IloVisit::setPenaltyCost(IloNum penaltyCost)

The cost variable of a vehicle can be obtained with the member function IloVehicle::getCostVar(), and
that of the entire routing plan with IloDispatcher::getTotalCost() or
IloDispatcher::getCostVar().

Costs on Vehicles

Vehicle cost is bound as follows: the transit variables of all visits performed by the vehicle (including the first and
last visits representing the start and end points of the vehicle), are added together to give the usage of the
dimension for the vehicle. This usage is also reinforced by bounds computed from the cumulative variable at the
last visit plus the transit variable at the last visit, minus the cumulative variable at the first visit as follows.
Suppose time is an IloDimension2:

 IloVisit first = vehicle.getFirstVisit();
 IloVisit last = vehicle.getLastVisit();
 IloNumVar usage = last.getCumulVar(time)
 + last.getTransitVar(time)
 - first.getCumulVar(time);

3

The statement vehicle.setCost(time, 40.0) means that for each unit of time that the vehicle works, 40
units of cost are accrued. Cost for the vehicle is computed by multiplying the usage variable of the dimension (in
this case, time) by the coefficient (40.0 in this case). If cost is specified in more than one dimension (for
instance, time and distance), the cost for each dimension specified for the vehicle is computed in the same
fashion.

The total cost of a vehicle is determined by summing the cost for each dimension specified for the vehicle and
adding any fixed costs for that vehicle. If a fixed cost is specified, it is added to the cost of the vehicle if the
vehicle is in use (that is, if the vehicle performs any visits other than its first and last visits).

Costs on Routing Plans

The total cost of a routing plan is determined by summing the total costs for all vehicles and adding any costs
related to unperformed visits.

For each visit that is unperformed, an amount equal to the penalty cost penCost set on the visit via
visit.setPenaltyCost(penCost) is added to the cost of the plan.

Instantiation of Plan Variables

In cases where the bounds on the cost function may not be an accurate reflection of true cost (for instance, when
there are complex constraints on the transit or cumulative variables), the transit and/or cumulative variables of a
problem can be fully instantiated to tighten the bounds to a value.

The IloInstantiateTransits goals are provided for this purpose. An IloInstantiateTransits goal
can be added to the search, along with a goal to bind the first (or last) cumulative variable for each dimension
and vehicle, to completely bind the transit and cumulative variables of the problem.

See Also

IloDimension, IloVehicle, IloVisit

Dimensions

Description

A given routing problem involves vehicles that travel routes to make visits to designated nodes. Those vehicles
may have different capacities in terms of weight (for solid goods, for example) or volume (for liquids, say); those
routes may entail different costs or distances traveled; those service visits may require different amounts of time
(perhaps for waiting, unloading, reloading, etc.). In short, there may be many different dimensions (such as
weights, volumes, costs, distances, times) in a given routing problem.

The class IloDimension makes it possible to model the various dimensions that occur in a problem. When you
create an instance of IloDimension , you can associate a constrained variable with this dimension for each
object (if needed). Constraints can subsequently be posted on those variables.

The class IloDimension has two subclasses to represent the intrinsic and extrinsic dimensions of an object. An
intrinsic dimension depends only on the single object with which it is associated. An extrinsic dimension depends
on two objects.

The subclass IloDimension1 represents the dimensions that are intrinsic to an object. For example, weight is
represented by IloDimension1 because the weight of an object depends only on that object.

IloDimension2 represents the dimensions that are extrinsic to an object; that is, those dimensions that depend
on something outside the object itself. For example, time is usually represented as an instance of
IloDimension2 because the time to travel from one visit to another depends on both those visits.

4

By definition, IloDimension2 is closely linked to the concept of distance . For that reason, one of the data
members of IloDimension2 is in fact an instance of IloDistance. Objects of IloDistance define how
distances are computed between nodes (see the class IloNode) with respect to a dimension. Distance functions
include IloEuclidean, which computes the Euclidean distance between nodes according to their coordinates,
and IloManhattan, which computes the grid pattern distance between nodes. Dispatcher also allows you to
define your own distance function.

Expressing Capacity

Vehicles usually have a capacity; that is, they cannot hold more than a certain weight or a given number of
pallets or a particular volume. To express this idea, it is necessary to define the dimension in which the capacity
will be expressed and to set its value. Likewise, the demand of the visits must also be defined. For example, the
code expressing the capacity of a truck and the demand of a visit in terms of weight looks like this:

 IloEnv env;
 IloModel mdl(env);
 IloDimension1 weight(env);
 mdl.add(weight);
 IloVehicle vehicle(env);
 vehicle.setCapacity(weight,1500);
 // vehicle capacity 1500 kg
 mdl.add(vehicle);
 IloNode node(env);
 IloVisit visit(node);
 mdl.add(visit.getTransitVar(weight) == 12);
 // visit weighs 12 kilos
 mdl.add(visit);

In this way, it is easy to express different capacities in different dimensions.

Expressing Cost

Like capacity, cost can vary in many different dimensions. To cite but a few, the cost of a routing problem may
vary according to the number of vehicles (fixed cost for renting or owning them), the drivers (their salaries), the
distance traveled, the time spent (by the vehicles or the drivers), the number of stops, and so forth.

The way of expressing cost is very similar to the way of expressing capacity:

 IloEnv env;
 IloModel mdl(env);
 IloDimension2 distance(env, IloEuclidean);
 mdl.add(distance);
 IloVehicle vehicle(env);
 vehicle.setCost(distance, 3.2);
 // $ 3.2 per mile
 mdl.add(vehicle);

For simplicity, we consider only costs that are linear with respect to the dimensions. It is possible to handle
non-linear costs, but at a much higher implementation expense. This version of Dispatcher handles only linear
costs.

Fixed costs can also be expressed with the member function IloVehicle::setCost(fixedCost). When the
vehicle is used, this fixed cost is added.

Expressing Service Time

The same technique applies to service times or delays. The following code shows how the service time at a
customer's location can be defined:

 IloEnv env;
 IloModel mdl(env);
 IloDimension1 volume(env);
 mdl.add(volume);

5

 IloDimension2 time(env, IloEuclidean);
 mdl.add(time);
 IloNode node(env);
 IloVisit visit(node);
 mdl.add(visit.getTransitVar(volume) == 10);
 // 10 m3
 mdl.add(visit.getDelayVar(time) ==
 .5 * visit.getTransitVar(volume));
 // .5 minute / m3
 mdl.add(visit);

The delay is equal to the absolute value of the calculation unit times volume.

See Also

IloDimension, IloDimension1, IloDimension2, IloDistance

Extraction

Description

Dispatcher extends the extraction capabilities of Solver. For more information on the extraction mechanism, see
the IBM ILOG Solver User's Manual.

The extraction of certain Dispatcher objects triggers the extraction of other objects. This section describes these
dependencies. Note that an extractable directly added to a model will always be extracted. Since IloSolution
objects will not store objects that have not been extracted, it is important to explicitly add any object to the model
that you want to be extracted and that is not included in the following dependency relationships.

IloVisit

If an instance of IloVisit is added to the model, its extraction will trigger the extraction of the following objects
related to that instance of IloVisit:

start and end nodes (instances of IloNode)•
rank variable (an instance of IloNumVar)•
next visit variable (an instance of IloVisitVar)•
previous visit variable (an instance of IloVisitVar)•
vehicle variable (an instance of IloVehicleVar)•
dimension variables corresponding to dimensions that have been extracted (instances of IloNumVar).
These dimension variables are cumul and transit variables for all dimensions and delay, wait, and travel
variables for instances of IloDimension2.

•

IloVehicle

If an instance of IloVehicle is added to the model, its extraction will trigger the extraction of its first and last
visits. Speed, capacity and cost related to dimensions will only be considered for dimensions that have been
extracted.

IloDimension1 and IloDimension2

If an instance of IloDimension1 or IloDimension2 is added to the model, its extraction will trigger the
extraction of dimension variables corresponding to visits that have been extracted. It will also update the
corresponding speed, capacity, and cost of extracted vehicles.

Note

6

Instances of IloDimension1 and IloDimension2 are not automatically extracted when an instance of
IloVisit is added to the model. In fact, the extraction of an instance of IloVehicleBreakCon is the only
event that can trigger the extraction of an instance of IloDimension2 and an instance of IloDimension1
can only be extracted if added explicitly to a model. Therefore, it is recommended to always explicitly add
dimensions of both types to a model.

Note that instances of IloDimension1 and IloDimension2 are not automatically extracted when an instance
of IloVisit is added to the model. In fact, the extraction of an instance of IloVehicleBreakCon is the only
event that can trigger the extraction of an instance of IloDimension2 and an instance of IloDimension1 can
only be extracted if added explicitly to a model. Therefore, it is recommended to always explicitly add dimensions
of both types to a model.

Cost Variable

If any Dispatcher extractable is present in the model, the cost variable representing the sum of the cost of the
vehicles and of unperformed visits is extracted.

Functions

The extraction of a variable created from the () operators of IloVisitToNumFunction triggers the extraction
of the visits included in the IloVisitArray passed to the constructor of the function.

The extraction of a variable created from the () operator of IloVehicleToNumFunction triggers the
extraction of the vehicles included in the IloVehicleArray passed to the constructor of the function.

Constraints

The extraction of constraints involving visits will extract all the variables and visits involved. For example, the
extraction of equalities between next or previous visit variables and visits or visit arrays will extract all the
variables and visits involved. This behavior is the same for the following constraints:

constraints on vehicles and vehicle variables•
constraints on vehicle break constraints (instances of IloVehicleBreakCon)•
constraints on visits (IloVehicleBreakCon::justAfter() constraints).•

The extraction of vehicle break constraints triggers the extraction of the corresponding start and duration
variables (instances of IloNumVar), as well as the extraction of the related vehicle and dimension.

Variables

The extraction of dimension, next visit, previous visit, vehicle, vehicle break start or vehicle break duration
variables does not trigger the extraction of any other extractable object.

Interdependency Chart

The following figure summarizes the interdependencies that exist among the main extractables in Dispatcher.
The arrows denote the direction of the extraction dependency relationship. For example, if you add an instance of
IloVehicle to a model, this will automatically extract the first and last visits to be performed by that vehicle
(instances of IloVisit). The extraction of the instance of IloVisit will trigger the extractions of the visit's
rank, previous visit, next visit, vehicle and node variables. The extraction of the instance of IloVisit will also
trigger the extraction of all dimension variables for dimensions already explicitly extracted in the model.

7

See Also

IloNode, IloDimension, IloVisit, IloVehicle, IloVehicleBreakCon, IloVisitVar, IloVehicleVar, IloNumVar documented
in the IBM ILOG Concert Technology Reference Manual.

Iterators

An iterator is an object that traverses an underlying data structure of other objects. The iterator contains a
traversal state of this data structure. Besides its constructors and destructors, an iterator has member functions
to access the element at the current position, to check whether the iterator has passed beyond the end position,
and to shift the iterator to the next position.

In order to help you implement selection algorithms in a search procedure or to display data, Dispatcher offers
iterators as a way to find all the objects needed by such a calculation.

Moreover, both the container to scan and the data to access are Dispatcher handles to implementation classes.
For example, an instance of the nested class IloRoutingSolution::RouteIterator scans all the visits
served by an instance of IloVehicle. Described in these terms, an iterator is very similar to a C string; like an
array (the container) of characters (the handles to data) ending with the null pointer (the handle to the null
implementation object).

Here's a typical skeleton for iterators in Dispatcher.

 class IloHandleDataIterator {
 public:
 IloHandleDataIterator(const IloHandleContainer);
 ~IloHandleDataIterator();
 IloBool ok();
 IloHandleData operator*();
 IloHandleDataIterator& operator++();
 };

The member function ok() returns IloTrue if the current position of the iterator is valid. It returns IloFalse if
the container has been entirely scanned.

8

The dereference operator* accesses the handle at the current position of the iterator.

The left increment operator++ shifts the current position of the iterator.

Example

As an example, we could display the routes served by a list of vehicles with the following code.

 void show(IloDispatcher dispatcher) {
 IloEnv env = dispatcher.getEnv();
 IloSolver solver = dispatcher.getSolver();
 for(IloIterator<IloVehicle> wi(env); wi.ok(); ++wi) {
 IloVehicle vehicle = *wi;
 if(dispatcher.getRouteSize(vehicle) != 0) {
 for(IloDispatcher::RouteIterator ri(dispatcher,vehicle); ri.ok();
++ri) {
 IloVisit visit = *ri;
 env.out() << " -> " << visit.getName() << " ("
 << visit.getId() << ") ";
 for(IloIterator<IloDimension> di(env); di.ok(); ++di) {
 env.out() << solver.getFloatVar(visit.getCumulVar(*di));
 }
 }
 env.out() << endl;
 }
 }
 env.out() << "Cost : " << dispatcher.getTotalCost() << endl;
 env.out() << "Vehicles used : "
 << dispatcher.getNumberOfVehiclesUsed() << endl;
 }

See Also

IloDimensionIterator, IloDimension1Iterator, IloDimension2Iterator, IloVehicleBreakConIterator, IloVehicleIterator,
IloVisitIterator, IloDispatcher::RouteIterator, IloDispatcher::UnperformedVisitIterator, IloNode::Iterator,
IloRoutingSolution::RouteIterator, IloRoutingSolution::UnperformedVisitIterator,
IloRoutingSolution::VehicleIterator, IloRoutingSolution::VisitIterator

Neighborhoods

Dispatcher offers several predefined neighborhoods (that is, subclasses of IloNHoodI): IloCross,
IloExchange, IloMakePerformed, IloMakePerformedPair, IloMakeUnperformed, IloOrOpt,
IloRelocate, IloFPRelocate, IloSwapPerform, IloTwoOpt. These neighborhoods can be used to
modify or improve routing solutions using local search goals provided by Dispatcher. All neighborhoods have
state and you should call reset() on them when the neighborhood is to be reused in a new local search. (See
the entry for IloNHood::reset in the IBM ILOG Solver Reference Manual.)

Please refer to the IBM ILOG Solver User's Manual for more information on neighborhoods.

See Also

IloCross, IloExchange, IloMakePerformed, IloMakePerformedPair, IloMakeUnperformed, IloOrOpt, IloRelocate,
IloFPRelocate, IloSwapPerform, IloTwoOpt

9

Group optim.dispatcher
The IBM® ILOG® Dispatcher API.

Class Summary

IloArrayVehicleToNumFunctionI

IloArrayVisitToNumFunctionI

IloComposedDistance

IloComposedVisitDistance

IloDefaultDecisionTracerI

IloDefaultFSDecisionMakerI

IloDefaultVisitVehicleFSDecisionI

IloDelaySumVar

IloDimension

IloDimension1

IloDimension1Iterator

IloDimension2

IloDimension2Iterator

IloDimensionIterator

IloDimensionWindows

IloDimensionWindows::ForbiddenIterator

IloDimensionWindows::Iterator

IloDispatcher

IloDispatcherFSParameters

IloDispatcherGLS

IloDispatcherGoalFactory

IloDispatcherGoalFactoryI

IloDispatcherGraph

IloDispatcherGraph::AdjacencyListIterator

IloDispatcherGraph::Arc

IloDispatcherGraph::Node

IloDispatcherGraph::PathIterator

IloDispatcherNHoodParameters

IloDispatcher::RouteIterator

IloDispatcherTabuSearch

IloDispatcher::UnperformedVisitIterator

IloDispatcher::VehicleBreakConIterator

IloDistance

IloDistanceEvalI

IloDistanceI

IloEvalVehicleToNumFunctionI

IloEvalVisitToNumFunctionI

10

IloEverywhereNode

IloExecutionWindowsToVisitCon

IloExplicitArcPredicate

IloExplicitDistance

IloExplicitVisitDistance

IloFSDecisionI

IloFSDecisionMakerI

IloFSDecisionTracerI

IloNADecisionI

IloNADecisionMakerI

IloNode

IloNode::Iterator

IloOutOfRouteConstraint

IloOutputManip

IloPairDecisionI

IloProductDimension

IloRoutingSolution

IloRoutingSolution::RouteIterator

IloRoutingSolution::UnperformedVisitIterator

IloRoutingSolution::VehicleIterator

IloRoutingSolution::VisitIterator

IloSimpleDistanceEvalI

IloSimpleVisitDistanceEvalI

IloSingleVehicleFSDecisionI

IloSparseExplicitDistance

IloSparseExplicitVisitDistance

IloTravelSumVar

IloVehicle

IloVehicleBreakCon

IloVehicleBreakConIterator

IloVehicleEquiv

IloVehicleEquivEvalI

IloVehicleEquivI

IloVehicleIterator

IloVehicleLIFOConstraint

IloVehiclePair

IloVehicleToNumFunction

IloVehicleToNumFunctionI

IloVehicleVar

IloVisit

IloVisitAlternativeConstraint

11

IloVisitDistance

IloVisitDistanceEvalI

IloVisitDistanceI

IloVisitIterator

IloVisitPair

IloVisitToNumFunction

IloVisitToNumFunctionI

IloVisitVar

IloVisitVehicleCompat

IloVisitVehicleCompatI

IloVisitVehiclePredicateCompatI

Typedef Summary

IloArcPredicate

IloDistanceFunction

IloSimpleDistanceFunction

IloSimpleVehicleToNumFunction

IloSimpleVisitDistanceFunction

IloSimpleVisitToNumFunction

IloVehicleArray

IloVehicleEquivFunction

IloVehiclePairPredicate

IloVisitArray

IloVisitDistanceFunction

IloVisitVehicleCompatPredicate

Enumeration Summary

IloFSDecisionRejectCause

IloNearestAdditionBehavior

IloNearestAdditionExtension

IloOutOfRouteReference

Function Summary

IloAffineFunction

IloAllUnperformedGenerate

IloAllVehiclesDifferent

IloAllVehiclesEquivalent

IloBoxVehiclePairPredicate

IloCompatible

IloCouple

IloCross

IloDecouple

12

IloDispatcherGenerate

IloDistanceThresholdArcPredicate

IloDistanceThresholdArcPredicate

IloDistMax

IloEarlinessFunction

IloEuclidean

IloExchange

IloFinalizePlan

IloFPRelocate

IloFunctionDistance

IloGenerateRoute

IloGeographical

IloGetDispatcherDefaultVehicleEquivalence

IloGraphDistance

IloInsertionGenerate

IloInsertVisit

IloInsertVisit

IloInsertVisit

IloInsertVisit

IloInstantiateTransits

IloInstantiateTransits

IloInstantiateTransits

IloInstantiateTransits

IloInstantiateVehicleBreak

IloInstantiateVehicleBreakDuration

IloInstantiateVehicleBreakPosition

IloInstantiateVehicleBreaks

IloInstantiateVehicleBreakStart

IloIntraRelocate

IloMakePerformed

IloMakePerformedPair

IloMakeUnperformed

IloManhattan

IloMax

IloMergeAndRelocateTours

IloMin

IloNearestAdditionGenerate

IloNearestDepotGenerate

IloOrderedVisitPair

IloOrOpt

IloRejectNeighbor

13

IloRelocate

IloSameNodeArcPredicate

IloSavingsGenerate

IloSetVehicleVisitCumuls

IloSetVisitCumuls

IloSolutionValueComparator

IloSortedNHood

IloSortedNHood

IloSwapPerform

IloSweepGenerate

IloTardinessFunction

IloTerse

IloTwoOpt

IloVehicleDependentDelayConstraint

IloVerbose

IloVisitAlternativeSwap

operator!=

operator!=

operator!=

operator!=

operator!=

operator*

operator*

operator*

operator*

operator+

operator+

operator+

operator<<

operator<<

operator<<

operator==

operator==

operator==

operator==

operator==

Variable Summary

IloEarthRadiusInKm

IloEarthRadiusInMiles

The IBM® ILOG® Dispatcher API.

14

Class IloDispatcherGraph::AdjacencyListIterator
Definition file: ildispat/ilographdist.h
Include file: <ildispat/ilodispatcher.h>

AdjacencyListIterator is a class nested in the class IloDispatcherGraph. This class is used to access
the arcs in the adjacency list of (i.e. all directed arcs emanating from) an object of type
IloDispatcherGraph::Node.

See Also: IloDispatcherGraph, IloDispatcherGraph::Node, IloDispatcherGraph::Arc,
IloDispatcherGraph::AdjacencyListIterator, IloGraphDistance

Constructor Summary

public AdjacencyListIterator(IloDispatcherGraph g, IloDispatcherGraph::Node n)

Method Summary

public IloBool ok() const

public IloDispatcherGraph::Arc operator*() const

public AdjacencyListIterator & operator++()

Constructors

public AdjacencyListIterator(IloDispatcherGraph g, IloDispatcherGraph::Node n)

This constructor creates an iterator to access all instances of IloDispatcherGraph::Arc emanating from n.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all the adjacent arcs have been scanned by the iterator.

public IloDispatcherGraph::Arc operator*() const

This operator returns the current instance of IloDispatcherGraph::Arc, the one to which the invoking
iterator points.

public AdjacencyListIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of
IloDispatcherGraph::Arc in the adjacency list.

15

Class IloDispatcherGraph::Arc
Definition file: ildispat/ilographdist.h
Include file: <ildispat/ilodispatcher.h>

Arc is a class nested in the class IloDispatcherGraph. Objects of this class represent directed arcs in an
IloDispatcherGraph object. Each arc is uniquely associated to an identifier of type IloInt, and is
necessarily associated to two end nodes of type IloDispatcherGraph::Node. Only one arc may join two
nodes in the same sense. When an object of class Arc is created (either by using one of the provided
constructors or by using the member function IloDispatcherGraph::createArcsFromFile), all turns out
of the arc into subsequent arcs are allowed at no penalty. Similarly, all turns into the arc from a preceding arc are
allowed at no penalty. The cost of traversing an arc may be expressed in terms of multiple dimensions. These
costs are manipulated using the member function IloDispatcherGraph::setArcCost.

See Also: IloDispatcherGraph, IloDispatcherGraph::PathIterator, IloDispatcherGraph::Node,
IloDispatcherGraph::AdjacencyListIterator, IloGraphDistance

Constructor and Destructor Summary

public Arc(IloDispatcherGraph g, const IloInt id, IloDispatcherGraph::Node
fromNode, const IloDispatcherGraph::Node toNode)

public Arc(const Arc & arc)

public Arc(IloDispatcherGraphI::ArcI * impl=0)

Method Summary

public IloDispatcherGraph::Node getFromNode() const

public IloDispatcherGraphI::ArcI * getImpl() const

public IloInt getIndex() const

public IloDispatcherGraph::Node getToNode() const

Constructors and Destructors

public Arc(IloDispatcherGraph g, const IloInt id, IloDispatcherGraph::Node
fromNode, const IloDispatcherGraph::Node toNode)

This constructor creates an arc in the graph g, with identifier id, and joining fromNode and toNode.

public Arc(const Arc & arc)

This copy constructor creates a handle from a reference to an Arc object. That new Arc object and arc both
point to the same implementation object.

public Arc(IloDispatcherGraphI::ArcI * impl=0)

This constructor creates a handle object (an instance of IloDispatcherGraph::Arc) from a pointer to an
implementation object (an instance of the class IloDispatcherGraphI::ArcI).

16

Methods

public IloDispatcherGraph::Node getFromNode() const

This member function returns the arc's origin node.

public IloDispatcherGraphI::ArcI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking Arc object.

public IloInt getIndex() const

This member function returns the unique identifier associated with the Arc object.

public IloDispatcherGraph::Node getToNode() const

This member function returns the arc's destination node.

17

Class IloDimensionWindows::ForbiddenIterator
Definition file: ildispat/iloproto.h
Include file: <ildispat/ilodispatcher.h>

ForbiddenIterator is a class nested in the class IloDimensionWindows. It allows you to step through the
forbidden intervals of a dimension windows constraint, in increasing interval lower bound order.

See Also: IloDimensionWindows, IloDimensionWindows::Iterator

Constructor Summary

public ForbiddenIterator(IloDimensionWindows win)

Method Summary

public IloNum getLB() const

public IloNum getUB() const

public IloBool ok() const

public ForbiddenIterator & operator++()

Constructors

public ForbiddenIterator(IloDimensionWindows win)

This constructor creates an iterator to traverse the forbidden intervals contained in win.

Methods

public IloNum getLB() const

This member function returns the lower bound of the forbidden interval to which the invoking iterator points.

public IloNum getUB() const

This member function returns the upper bound of the forbidden interval to which the invoking iterator points.

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all the forbidden intervals have been scanned.

public ForbiddenIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next forbidden interval (the first one
starting after the current forbidden interval).

18

19

Class IloArrayVehicleToNumFunctionI
Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This class is an implementation class, a predefined subclass of IloVehicleToNumFunctionI, that you use to
define a new vehicle to IloNum function expressed using two arrays, an array of vehicles and an array of
corresponding values.

Constructor and Destructor Summary

public IloArrayVehicleToNumFunctionI(IloEnv env, IloVehicleArray vehicles,
IloNumArray values, IloNum unperfValue, IloNum defaultValue)

public IloArrayVehicleToNumFunctionI(IloEnv env, IloVehicleArray vehicles,
IloNumArray values, IloNum unperfValue)

Method Summary

public void addVehicleValue(IloVehicle vehicle, IloNum value)

public IloNum getDefaultValue() const

public virtual IloNum getUnperformedValue()

public virtual IloNum getValue(IloVehicle vehicle)

public void setUnperformedValue(IloNum unperformedValue)

Inherited Methods from IloVehicleToNumFunctionI

getUnperformedValue, getValue

Constructors and Destructors

public IloArrayVehicleToNumFunctionI(IloEnv env, IloVehicleArray vehicles,
IloNumArray values, IloNum unperfValue, IloNum defaultValue)

This constructor creates a new vehicle to IloNum function from an array of vehicles vehicles and an array of
values values. For a given index i, values[i] is the value of the function for vehicle vehicles[i].
Duplicate vehicles in vehicles are forbidden. Both arrays should have the same size. The value unperfValue
is the value returned by the function for the visit unperformed state. The value defaultValue is the value taken
by the function for a vehicle for which no value has been specified.

public IloArrayVehicleToNumFunctionI(IloEnv env, IloVehicleArray vehicles,
IloNumArray values, IloNum unperfValue)

This constructor creates a new vehicle to IloNum function from an array of vehicles vehicles and an array of
values values. For a given index i, values[i] is the value of the function for vehicle vehicles[i].
Duplicate vehicles in vehicles are forbidden. Both arrays should have the same size. The value unperfValue
is the value returned by the function for the visit unperformed state.

20

Methods

public void addVehicleValue(IloVehicle vehicle, IloNum value)

This member function adds the value value for vehicle to the function. If vehicle already has a value
specified in the function, it will be overwritten.

public IloNum getDefaultValue() const

This member function returns the default value of the function. This is the value returned by the function for
vehicles for which no value has been specified .

public virtual IloNum getUnperformedValue()

This member function is redefined to return the value, corresponding to the unperformed state, passed in the
constructor.

public virtual IloNum getValue(IloVehicle vehicle)

This member function returns a numeric value corresponding to vehicle. If vehicles is the array of vehicles
and values the array of values passed to the constructor and if i is the index for which vehicles[i] =
vehicle, then this member function will return values[i].

public void setUnperformedValue(IloNum unperformedValue)

This member function modifies the value returned by the function for the visit unperformed state.

21

Class IloArrayVisitToNumFunctionI
Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This class is an implementation class, a predefined subclass of IloVisitToNumFunctionI, that you use to
define a new visit to IloNum function expressed using two arrays, an array of visits and an array of
corresponding values.

Constructor and Destructor Summary

public IloArrayVisitToNumFunctionI(IloEnv env, IloVisitArray visits, IloNumArray
values, IloNum unperfValue)

Method Summary

public virtual IloNum getUnperformedValue()

public virtual IloNum getValue(IloVisit visit)

Inherited Methods from IloVisitToNumFunctionI

getUnperformedValue, getValue

Constructors and Destructors

public IloArrayVisitToNumFunctionI(IloEnv env, IloVisitArray visits, IloNumArray
values, IloNum unperfValue)

This constructor creates a new visit to IloNum function from an array of visits visits and an array of values
values. For a given index i, values[i] is the value of the function for visit visits[i]. Duplicate visits in
visits are forbidden. Both arrays should have the same size. The value unperfValue is the value taken by
the function for the visit unperformed state.

Methods

public virtual IloNum getUnperformedValue()

This member function is redefined to return the value, corresponding to the unperformed state, passed in the
constructor.

public virtual IloNum getValue(IloVisit visit)

This member function returns a numeric value corresponding to visit. If visits is the array of visits and
values the array of values passed to the constructor and if i is the index for which visits[i] = visit, then
this member function will return values[i].

22

Class IloComposedDistance
Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

This distance class allows the user to combine different instances of IloDistance by assigning them to a
specific vehicle using the member function IloComposedDistance::setDistance. If no instance of IloDistance
has been assigned to a given vehicle, all distance values returned for that vehicle are IloInfinity.

See Also: IloDistance, IloVehicle, IloExplicitDistance, IloSparseExplicitDistance

Constructor and Destructor Summary

public IloComposedDistance(IloEnv env)

public IloComposedDistance(IloEnv env, IloNum defaultValue)

public IloComposedDistance(IloEnv env, IloDistance defaultDistance)

Method Summary

public IloDistance getDefaultDistance() const

public IloNum getDefaultValue() const

public void setDefaultDistance(IloDistance distance)

public void setDefaultValue(IloNum defaultValue)

public void setDistance(IloVehicle vehicle, IloDistance distance)

Inherited Methods from IloDistance

end, Exists, Find, getDistance, getGroup, getImpl, getKey, refresh, removeKey,
setCache, setKey, unsetCache

Inherited Methods from IloVisitDistance

end, Exists, Find, getDistance, getGroup, getImpl, getKey, refresh, removeKey,
setKey

Constructors and Destructors

public IloComposedDistance(IloEnv env)

This constructor creates a composed distance object in the environment env.

public IloComposedDistance(IloEnv env, IloNum defaultValue)

This constructor creates a composed distance object in the environment env with the value defaultValue. If
no instance of IloDistance has been assigned to a given vehicle, all distance values returned for that vehicle
will be defaultValue.

23

public IloComposedDistance(IloEnv env, IloDistance defaultDistance)

This constructor creates a composed distance object in the environment env using the distance function
defaultDistance. If no instance of IloDistance has been assigned to a given vehicle, all distance values
computed for that vehicle will be computed using defaultDistance.

Methods

public IloDistance getDefaultDistance() const

This member function returns the instance of IloDistance used as a default distance in the composed
distance object.

public IloNum getDefaultValue() const

This member function returns the default value associated with the composed distance object.

public void setDefaultDistance(IloDistance distance)

This member function assigns the default distance function distance. If no instance of IloDistance has been
assigned to a given vehicle, all distance values computed for that vehicle will be computed using
defaultDistance.

public void setDefaultValue(IloNum defaultValue)

This member function assigns the default distance value defaultValue. If no instance of IloDistance has
been assigned to a given vehicle, all distance values returned for that vehicle will be defaultValue.

public void setDistance(IloVehicle vehicle, IloDistance distance)

This member function assigns the distance distance to vehicle vehicle.

24

Class IloComposedVisitDistance
Definition file: ildispat/ilovisitdist.h
Include file: <ildispat/ilodispatcher.h>

This distance class allows the user to combine different instances of IloVisitDistance by assigning them to
a specific vehicle using the member function IloComposedVisitDistance::setDistance. If no instance of
IloVisitDistance has been assigned to a given vehicle, a default value or a default distance is returned for
that vehicle.

See Also: IloVisitDistance, IloSparseExplicitVisitDistance, IloExplicitVisitDistance, IloVehicle

Constructor and Destructor Summary

public IloComposedVisitDistance(IloEnv env)

public IloComposedVisitDistance(IloEnv env, IloNum defaultValue)

public IloComposedVisitDistance(IloEnv env, IloVisitDistance defaultDistance)

Method Summary

public IloVisitDistance getDefaultDistance() const

public IloNum getDefaultValue() const

public void setDefaultDistance(IloVisitDistance distance)

public void setDefaultValue(IloNum defaultValue)

public void setDistance(IloVehicle vehicle, IloVisitDistance
distance)

Inherited Methods from IloVisitDistance

end, Exists, Find, getDistance, getGroup, getImpl, getKey, refresh, removeKey,
setKey

Constructors and Destructors

public IloComposedVisitDistance(IloEnv env)

This constructor creates a composed distance object in the environment env.

public IloComposedVisitDistance(IloEnv env, IloNum defaultValue)

This constructor creates a composed distance object in the environment env with the value defaultValue. If
no instance of IloDistance has been assigned to a given vehicle, all distance values returned for that vehicle
will be defaultValue.

public IloComposedVisitDistance(IloEnv env, IloVisitDistance defaultDistance)

25

This constructor creates a composed distance object in the environment env using the distance function
defaultDistance. If no instance of IloVisitDistance has been assigned to a given vehicle, all distance
values computed for that vehicle will be computed using defaultDistance.

Methods

public IloVisitDistance getDefaultDistance() const

This member function returns the instance of IloVisitDistance used as a default distance in the composed
distance object.

public IloNum getDefaultValue() const

This member function returns the default value associated with the composed distance object.

public void setDefaultDistance(IloVisitDistance distance)

This member function assigns the default distance function distance. If no instance of IloVisitDistance
has been assigned to a given vehicle, all distance values computed for that vehicle will be computed using
distance.

public void setDefaultValue(IloNum defaultValue)

This member function assigns the default distance value defaultValue. If no instance of IloVisitDistance
has been assigned to a given vehicle, all distance values returned for that vehicle will be defaultValue.

public void setDistance(IloVehicle vehicle, IloVisitDistance distance)

This member function assigns the distance distance to vehicle vehicle.

26

Class IloDefaultDecisionTracerI
Definition file: ildispat/fsdecision.h
Include file: <ildispat/ilodispatcher.h>

This class is a concrete subclass of the abstract IloDefaultFSDecisionTracerI class. It provides empty
implementations for all virtual member functions of the abstract tracer. This class is not meant to be used directly,
but as a convenient shorthand, to be subclassed by defining only the appropriate trace member functions.

Constructor Summary

public IloDefaultDecisionTracerI(IloDispatcher dsp)

Method Summary

public virtual void beginDecisionCommit(const IloFSDecisionI *)

public virtual void beginDecisionTest(const IloFSDecisionI *)

public virtual void beginExecute(const IloFSDecisionMakerI *)

public virtual void endDecisionCommit(const IloFSDecisionI *)

public virtual void endDecisionTest(const IloFSDecisionI *)

public virtual void endExecute(const IloFSDecisionMakerI *)

public virtual void notifyChosen(const IloFSDecisionI *)

public virtual void notifyInfeasible(const IloFSDecisionI *)

public virtual void notifyRejected(const IloFSDecisionI *,
IloFSDecisionRejectCause)

public virtual void notifyValidated(const IloFSDecisionI *)

public virtual void registerDecision(const IloFSDecisionI *)

Inherited Methods from IloFSDecisionTracerI

beginDecisionCommit, beginDecisionTest, beginExecute, endDecisionCommit,
endDecisionTest, endExecute, getDispatcher, notifyChosen, notifyInfeasible,
notifyRejected, notifyValidated, registerDecision

Constructors

public IloDefaultDecisionTracerI(IloDispatcher dsp)

This is the constructor for the IloDefaultDecisionTracerI class. This constructor builds an instance of a
tracer that does nothing, and, as such, should not be used directly, but in the constructor of a derived class. This
class can be useful in defining custom tracer objects, for which only a small subset of methods should actually do
something. Deriving from this default tracer allows you to define only those methods that do something, without
needing to define others with an empty behavior.

27

Methods

public virtual void beginDecisionCommit(const IloFSDecisionI *)

This member function is called before calling the commit member function of the decision maker with the
decision as argument. The decision has been tested as a legal one.

public virtual void beginDecisionTest(const IloFSDecisionI *)

This virtual member function is called before a decision is tested for legality using the make member function of
the decision.

public virtual void beginExecute(const IloFSDecisionMakerI *)

This member function is called at the beginning of the execution of a decision maker, before any decision has
been created and registered.

public virtual void endDecisionCommit(const IloFSDecisionI *)

This member function is called after calling the commit member function of the decision maker on the decision.

public virtual void endDecisionTest(const IloFSDecisionI *)

This virtual member function is called after executing the make member function of the decision within the testing
of the decision. If the making of the decision fails, this member function may not be called.

public virtual void endExecute(const IloFSDecisionMakerI *)

This member function is called at the end of the execution of a decision maker, after all legal visits have been
considered.

public virtual void notifyChosen(const IloFSDecisionI *)

This member function is called when a decision has been selected as the best legal decision that can be
performed. This method is called before the decision maker attempts to execute and commit the decision.

public virtual void notifyInfeasible(const IloFSDecisionI *)

This member function is called whenever a decision has been statically computed as not feasible, before it has
been tested. This can happen for nearest addition decisions, when the current route is already too long to accept
the candidate visit.

public virtual void notifyRejected(const IloFSDecisionI *,
IloFSDecisionRejectCause)

28

This virtual member function is called when the decision has been tested using the isLegal member function of
the decision maker, and has been rejected. The rejection can be caused by any of three scenarios:

the routing assignment, created by the decision's make, fails•
the route completion goal, used to check that the decision is consistent with the closing of the route, fails•
the justifier goal of the visit (typically a time-placement goal that tries to find a justifying set of starting
times and dates and breaks, if any, along the route), fails

•

The cause of the rejection is identified by the cause enumerated value, which is passed to the method.

public virtual void notifyValidated(const IloFSDecisionI *)

This member function is called when a decision has been accepted by the isLegal member function of the
decision maker. The best decision will be selected from among the validated decisions.

public virtual void registerDecision(const IloFSDecisionI *)

This virtual member function is called when a decision is registered. A decision has to be registered to be taken
into account by the first solution framework.

29

Class IloDefaultFSDecisionMakerI
Definition file: ildispat/fsdecision.h
Include file: <ildispat/ilodispatcher.h>

This class is a subclass of the abstract decision maker class, specialized for decisions that place one visit at a
time. This class defines a specialized behavior of the init() member function, which iterates on all visits to
create the decisions stored in the decision maker.

Constructor Summary

protected IloDefaultFSDecisionMakerI(IloDispatcher dispatcher,
IloDispatcherFSParameters param)

Method Summary

public virtual IloFSDecisionI * createDecision(IloVisit visit, IloVehicle
vehicle)

public virtual void init()

public void registerVisitVehicleDecision(IloVisit visit,
IloVehicle vehicle)

Inherited Methods from IloFSDecisionMakerI

commit, getBestDecision, getDispatcher, getEnv, getTracer, init, isLegal,
registerGlobalDecision, registerVehicleDecision, registerVisitDecision, setTracer,
storeDecision

Constructors

protected IloDefaultFSDecisionMakerI(IloDispatcher dispatcher,
IloDispatcherFSParameters param)

This constructor creates an IloDefaultFSDecisionMakerI from an IloDispatcher. As this class is an
abstract class, this constructor is defined as protected.

Methods

public virtual IloFSDecisionI * createDecision(IloVisit visit, IloVehicle vehicle)

This virtual member function is a virtual defined by this class. It is responsible for the creation of an instance of
IloDefaultVisitVehicleFSDecisionI*, which models the assignment of visit to vehicle. The precise
semantics of this decision will be defined by the concrete decision class that is actually built. The decision object
must be allocated on an IloEnv memory.

public virtual void init()

30

This member function implements the virtual init member function of the IloFSDecisionMakerI class. This
method iterates on all visits that are extracted in the dispatcher and, for each visit, looks for all vehicles that can
be assigned to this visit. For each compatible couple (visit, vehicle) it then does two things.

First, it calls the createDecision(IloVisit, Ilovehicle) virtual method, which returns a pointer to an
IloFSDecisionI, possibly zero. This virtual method is responsible for deciding whether or not it is worthwhile
to create a decision for this couple. If it is not worthwhile, then no decision is created, the method returns 0, and
this possibility will not be considered by the first solution framework. If it returns a non-zero decision, then this
decision must be stored using the storeDecision method.

public void registerVisitVehicleDecision(IloVisit visit, IloVehicle vehicle)

This member function is responsible for registering the decision. A decision has to be registered to be considered
in the decision maker's main decision-handling loop. Otherwise, it will never be considered.

31

Class IloDefaultVisitVehicleFSDecisionI
Definition file: ildispat/fsdecision.h
Include file: <ildispat/ilodispatcher.h>

This abstract class models the decision to assign a visit on a vehicle. As such, it derives from
IloSingleVehicleFSDecisionI class. As the precise location of the visit is not defined at this stage, this
decision class does not define the make member function, and hence is abstract.

However, the decision comparison process is redefined to compare the costs associated with the decision.
Subclassing from this class requires you to define an evaluate member function, but the isBetterThan
member function has a default behavior for this class. This class inherits from IloFSDecisionI.

Constructor Summary

public IloDefaultVisitVehicleFSDecisionI(IloVisit visit, IloVehicle vehicle)

Method Summary

public virtual IloBool calcFeasibility(IloFSDecisionMakerI * dm) const

public virtual void display(ostream & out) const

public IloVisit getVisit() const

public virtual IloBool isBetterThan(IloFSDecisionI * dec, const
IloFSDecisionMakerI * dm) const

public virtual void store(IloFSDecisionMakerI * dm)

Inherited Methods from IloSingleVehicleFSDecisionI

calcFeasibility, display, evaluate, getCost, getInChainStart, getOutChainEnd,
getRouteCompletionGoal, getVehicle, isArcFeasible, isFeasible, isPossible

Inherited Methods from IloFSDecisionI

Compare, Compare, Compare, display, getEnv, getJustifierGoal,
getRouteCompletionGoal, IsArcFeasibleOnDimension, isBetterThan, make, store

Constructors

public IloDefaultVisitVehicleFSDecisionI(IloVisit visit, IloVehicle vehicle)

This constructor builds a default visit vehicle decision from a visit and a vehicle.

32

Methods

public virtual IloBool calcFeasibility(IloFSDecisionMakerI * dm) const

This member function computes a feasibility predicate for the decision. As the precise location of the visit on the
vehicle is not defined at this class level, this predicate only tests that the vehicle can be assigned to the visit.
Subclasses should redefine this member function.

Decisions that are proven infeasible by the calcFeasibility predicate will be discarded when searching for
the best decision. Feasibility status is automatically refreshed after each decision is taken.

public virtual void display(ostream & out) const

This member function displays the decision.

public IloVisit getVisit() const

This member function returns the visit associated with the decision. Note that the base class has no getVisit
member function, as it could involve several visits, as in a decision that would place a pickup and delivery pair.

public virtual IloBool isBetterThan(IloFSDecisionI * dec, const IloFSDecisionMakerI
* dm) const

This member function is an implementation of the pure virtual member function of the IloFSDecisionI class. It
assumes that the two decisions are of the IloDefaultVisitVehicleFSDecisionI type. This member
function tests the two costs and if the cost of the invoking decision is lower, returns true.

If the costs are equal, it performs a tie-breaking on the two decision vehicles, if they are different. Otherwise, it
performs a tie-breaking on the decision visits.

public virtual void store(IloFSDecisionMakerI * dm)

This member function implements the pure virtual method of class IloFSDecisionI. It registers the decision
with its visit and its vehicle and also for global searches.

33

Class IloDelaySumVar
Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

A delay sum variable is a constrained variable representing the sum of the delay variables of the visits belonging
to the route of a vehicle for a given extrinsic dimension.

If the extrinsic dimension represents time, this variable can be used to limit the total service time spent by a
vehicle.

See Also: IloDimension2, IloTravelSumVar, IloVehicle, IloVisit, operator+, IloVehicle::getDelaySumVar

Constructor Summary

public IloDelaySumVar(IloVehicle vehicle, IloDimension2 dim2)

Constructors

public IloDelaySumVar(IloVehicle vehicle, IloDimension2 dim2)

This constructor creates a delay sum variable from a vehicle and an extrinsic dimension.

34

Class IloDimension
Definition file: ildispat/ilodim.h
Include file: <ildispat/ilodispatcher.h>

This is the parent class of the two classes, IloDimension1 and IloDimension2, for representing dimensions.

See Also: IloDimension1, IloDimension2

Constructor Summary

public IloDimension()

Method Summary

public void assumeTriangleInequality(IloBool assume)

Constructors

public IloDimension()

This constructor creates a dimension whose handle pointer is null.

Methods

public void assumeTriangleInequality(IloBool assume)

This member function indicates to the invoking dimension whether it can assume that the triangle inequality holds
on all transit triples of the problem. The triangle inequality holds if, for distinct visits a, b, and c, it is true that
transit(a,c) <= transit(a,b) + transit(b,c). Use assumeTriangleInequality to indicate to the dimension that
this condition holds by passing a value of IloTrue. By default, the triangle inequality is not assumed.

The triangle inequality can normally be assumed in the following situations:

instances of IloDimension2 in node routing problems•
instances of IloDimension1 where all weights are non-negative.•

The triangle inequality does not hold in the following situations:

en route pickup and delivery problems•
problems where weights can be negative.•

In Dispatcher 3.2 and later versions, only the propagation activated by
IloDispatcher::setFilterLevel(IlcMedium) makes use of the value of this flag. When this filtering
level is selected, more propagation will be performed on dimensions for which the triangle inequality can be
assumed.

35

Class IloDimension1
Definition file: ildispat/ilodim.h
Include file: <ildispat/ilodispatcher.h>

Instances of the class IloDimension1 represent the dimensions that are intrinsic to an object. For example,
weight is represented by IloDimension1 because the weight of an object depends only on that object, not on
any others.

See Also: IloDimension, IloDimension2

Constructor Summary

public IloDimension1(IloEnv env, const char * name=0)

public IloDimension1(IloEnv env, IloBool postIt, const char * name=0)

Method Summary

public static IloBool Exists(IloEnv env, const char * key)

public static IloDimension1 Find(IloEnv env, const char * key)

public const char * getKey() const

public void removeKey()

public void setKey(const char * key)

Inherited Methods from IloDimension

assumeTriangleInequality

Constructors

public IloDimension1(IloEnv env, const char * name=0)

This constructor creates an instance of the class IloDimension1, associated with the environment indicated by
env. The optional argument name, if provided, becomes the name of the dimension.

public IloDimension1(IloEnv env, IloBool postIt, const char * name=0)

This constructor creates an instance of the class IloDimension1, associated with the environment indicated by
env. The optional argument name, if provided, becomes the name of the dimension.

The parameter postIt indicates whether the underlying path constraint associated with the dimension is posted
or not. Setting postIt to IloFalse speeds up the search but should only be done if no constraints are posted
on variables related to the invoking dimension (using IloVehicle::setCapacity with the invoking dimension
as a parameter is the same as adding a constraint). However, a dimension created with postIt=IloFalse may
be safely used in the cost function.

36

Methods

public static IloBool Exists(IloEnv env, const char * key)

This static member function returns IloTrue if an IloDimension1 object having key key exists and
IloFalse if not.

public static IloDimension1 Find(IloEnv env, const char * key)

This static member function returns the object corresponding to the key key set using
IloDimension1::setKey. If there is no object corresponding to key an IloException is thrown.

public const char * getKey() const

This member function returns the key set on the invoking object

public void removeKey()

This member function allows the user to remove the key set on the invoking object.

public void setKey(const char * key)

This member function allows the user to set key on the invoking object. This key is unique. Each intrinsic
dimension must have a different key; otherwise, an exception is thrown.

37

Class IloDimension1Iterator
Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

An instance of the class IloDimension1Iterator is an iterator that traverses all instances of the class
IloDimension1 in a model.

See Also: IloDimension, IloDimension1

Constructor Summary

public IloDimension1Iterator(IloModel mdl, IloBool deep=IloTrue)

public IloDimension1Iterator(const IloDimension1Iterator & iter)

Method Summary

public IloBool ok() const

public IloDimension1 operator*() const

public const IloDimension1Iterator & operator++()

public const IloDimension1Iterator & operator=(const IloDimension1Iterator &
iter)

Constructors

public IloDimension1Iterator(IloModel mdl, IloBool deep=IloTrue)

This constructor creates an iterator which will iterate over all instances of IloDimension1 in model mdl. If the
parameter deep has the value IloTrue, all submodels of mdl will form part of the iteration. If deep has the
value IloFalse, submodels will not be investigated by the iterator.

public IloDimension1Iterator(const IloDimension1Iterator & iter)

This copy constructor creates an iterator from another iterator iter. After execution, both the newly created
iterator and iter will be at the same position within the model.

Methods

public IloBool ok() const

This member function returns IloFalse if the iterator has scanned all instances of IloDimension1 in the
model, otherwise it returns IloTrue.

public IloDimension1 operator*() const

This operator returns the instance of IloDimension1 at which the iterator is currently pointing.

38

public const IloDimension1Iterator & operator++()

This operator moves the iterator on to the next instance of IloDimension1 within the model, providing one
exists. The operator returns the invoking iterator at its new position.

public const IloDimension1Iterator & operator=(const IloDimension1Iterator & iter)

This assignment operator copies the state of iter to the iterator on the left-hand side of the operator. After
execution, both iterators will be at the same position within the model.

39

Class IloDimension2
Definition file: ildispat/ilodim.h
Include file: <ildispat/ilodispatcher.h>

Instances of the class IloDimension2 represent the dimensions that are extrinsic to an object. That is, extrinsic
dimensions do not depend only on that single object; in fact, they depend on at least one other factor as well,
such as another node. For instance, time is represented by IloDimension2 because the time to travel from one
visit to another depends on both of those two visits. By definition, IloDimension2 is closely linked to the
concept of distance. Objects of the class IloDistance define how distances are computed between nodes.

See Also: IloDimension, IloDimension1, IloDistance, IloDistanceEvalI, IloDistanceFunction, IloDistanceI,
IloSimpleDistanceEvalI, IloSimpleDistanceFunction

Constructor Summary

public IloDimension2(IloEnv env, IloDistance distance, const char * name=0)

public IloDimension2(IloEnv env, IloVisitDistance distance, const char * name=0)

public IloDimension2(IloEnv env, IloDistance distance, IloBool postIt, const char
* name=0)

public IloDimension2(IloEnv env, IloVisitDistance distance, IloBool postIt, const
char * name=0)

public IloDimension2(IloEnv env, IloDistanceFunction distFunction, const char *
name=0)

public IloDimension2(IloEnv env, IloDistanceFunction distFunction, IloBool postIt,
const char * name=0)

public IloDimension2(IloEnv env, IloSimpleDistanceFunction distFunction, const
char * name=0)

public IloDimension2(IloEnv env, IloSimpleDistanceFunction distFunction, IloBool
postIt, const char * name=0)

Method Summary

public static IloBool Exists(IloEnv env, const char * key)

public static IloDimension2 Find(IloEnv env, const char * key)

public const char * getKey() const

public IloBool isCached() const

public void removeKey()

public void setCached(IloBool cached)

public void setKey(const char * key)

Inherited Methods from IloDimension

assumeTriangleInequality

40

Constructors

public IloDimension2(IloEnv env, IloDistance distance, const char * name=0)

This constructor creates an instance of the class IloDimension2, associated with the environment indicated by
env, with distances defined by the argument distance. The optional argument name, if provided, becomes the
name of the dimension.

public IloDimension2(IloEnv env, IloVisitDistance distance, const char * name=0)

This constructor creates an instance of the class IloDimension2, associated with the environment indicated by
env, with distances defined by the argument distance. The optional argument name, if provided, becomes the
name of the dimension.

public IloDimension2(IloEnv env, IloDistance distance, IloBool postIt, const char *
name=0)

This constructor creates an instance of the class IloDimension2, associated with the environment indicated by
env, with distances defined by the argument distance. The optional argument name, if provided, becomes the
name of the dimension.

The parameter postIt indicates whether the underlying constraint associated with the new instance is posted or
not. Setting postIt to IloFalse speeds up the search but should only be done if no constraints are posted on
variables related to the invoking dimension. However, a dimension created with postIt=IloFalse may be
safely used in the cost function.

public IloDimension2(IloEnv env, IloVisitDistance distance, IloBool postIt, const
char * name=0)

This constructor creates an instance of the class IloDimension2, associated with the environment indicated by
env, with distances defined by the argument distance. The optional argument name, if provided, becomes the
name of the dimension.

The parameter postIt indicates whether the underlying constraint associated with the new instance is posted or
not. Setting postIt to IloFalse speeds up the search but should only be done if no constraints are posted on
variables related to the invoking dimension. However, a dimension created with postIt=IloFalse may be
safely used in the cost function.

public IloDimension2(IloEnv env, IloDistanceFunction distFunction, const char *
name=0)

This constructor creates an instance of the class IloDimension2, associated with the environment indicated by
env, with distances defined by the function distFunction. The optional argument name, if provided, becomes
the name of the dimension.

public IloDimension2(IloEnv env, IloDistanceFunction distFunction, IloBool postIt,
const char * name=0)

This constructor creates an instance of the class IloDimension2, associated with the environment indicated by
env, with distances defined by the function distFunction. The optional argument name, if provided, becomes
the name of the dimension.

41

The parameter postIt indicates whether the underlying constraint associated with the new instance is posted or
not. Setting postIt to IloFalse speeds up the search but should only be done if no constraints are posted on
variables related to the invoking dimension. However, a dimension created with postIt=IloFalse may be
safely used in the cost function.

public IloDimension2(IloEnv env, IloSimpleDistanceFunction distFunction, const char
* name=0)

This constructor creates an instance of the class IloDimension2, associated with the environment indicated by
env, with distances defined by the function distFunction. The optional argument name, if provided, becomes
the name of the dimension.

public IloDimension2(IloEnv env, IloSimpleDistanceFunction distFunction, IloBool
postIt, const char * name=0)

This constructor creates an instance of the class IloDimension2, associated with the environment indicated by
env, with distances defined by the function distFunction. The optional argument name, if provided, becomes
the name of the dimension.

The parameter postIt indicates whether the underlying constraint associated with the new instance is posted or
not. Setting postIt to IloFalse speeds up the search but should only be done if no constraints are posted on
variables related to the invoking dimension. However, a dimension created with postIt=IloFalse may be
safely used in the cost function.

Methods

public static IloBool Exists(IloEnv env, const char * key)

This static member function returns IloTrue if an IloDimension2 object having key key exists and
IloFalse if not.

public static IloDimension2 Find(IloEnv env, const char * key)

This static member function returns the object corresponding to the key key set using
IloDimension2::setKey. If there is no object corresponding to key an IloException is thrown.

public const char * getKey() const

This member function returns the key set on the invoking object

public IloBool isCached() const

This member function returns IloTrue if the status of the invoking extrinsic dimension is cached. Otherwise, it
returns IloFalse. See the member function IloDimension2::setCached for more information.

public void removeKey()

This member function allows the user to remove the key set on the invoking object.

42

public void setCached(IloBool cached)

This member function modifies the cached status of the invoking extrinsic dimension. When cached is
IloTrue, it calls IloDistance::setCache with log2rows = 18 and log2cols = 0. This is very useful if
distance computations are slow.

When cached is IloFalse, calls to the distance function of the invoking dimension are not cached. By default,
caching is off.

public void setKey(const char * key)

This member function allows the user to set key on the invoking object. This key is unique. Each extrinsic
dimension must have a different key; otherwise, an exception is thrown.

43

Class IloDimension2Iterator
Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

An instance of the class IloDimension2Iterator is an iterator that traverses all instances of the class
IloDimension2 in a model.

See Also: IloDimension, IloDimension2

Constructor Summary

public IloDimension2Iterator(IloModel mdl, IloBool deep=IloTrue)

public IloDimension2Iterator(const IloDimension2Iterator & iter)

Method Summary

public IloBool ok() const

public IloDimension2 operator*() const

public const IloDimension2Iterator & operator++()

public const IloDimension2Iterator & operator=(const IloDimension2Iterator &
iter)

Constructors

public IloDimension2Iterator(IloModel mdl, IloBool deep=IloTrue)

This constructor creates an iterator which will iterate over all instances of IloDimension2 in model mdl. If the
parameter deep has the value IloTrue, all submodels of mdl will form part of the iteration. If deep has the
value IloFalse, submodels will not be investigated by the iterator.

public IloDimension2Iterator(const IloDimension2Iterator & iter)

This copy constructor creates an iterator from another iterator iter. After execution, both the newly created
iterator and iter will be at the same position within the model.

Methods

public IloBool ok() const

This member function returns IloFalse if the iterator has scanned all instances of IloDimension2 in the
model. Otherwise, it returns IloTrue.

public IloDimension2 operator*() const

This operator returns the instance of IloDimension2 at which the iterator is currently pointing.

44

public const IloDimension2Iterator & operator++()

This operator moves the iterator on to the next instance of IloDimension2 within the model, providing one
exists. The operator returns the invoking iterator at its new position.

public const IloDimension2Iterator & operator=(const IloDimension2Iterator & iter)

This assignment operator copies the state of iter to the iterator on the left-hand side of the operator. After
execution, both iterators will be at the same position within the model.

45

Class IloDimensionIterator
Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

An instance of the class IloDimensionIterator is an iterator that traverses all instances of the class
IloDimension in a model (that is, all instances of IloDimension1 and IloDimension2).

See Also: IloDimension, IloDimension1, IloDimension2

Constructor Summary

public IloDimensionIterator(IloModel mdl, IloBool deep=IloTrue)

public IloDimensionIterator(const IloDimensionIterator & iter)

Method Summary

public IloBool ok() const

public IloDimension operator*() const

public const IloDimensionIterator & operator++()

public const IloDimensionIterator & operator=(const IloDimensionIterator & iter)

Constructors

public IloDimensionIterator(IloModel mdl, IloBool deep=IloTrue)

This constructor creates an iterator which will iterate over all instances of IloDimension in model mdl. If the
parameter deep has the value IloTrue, all submodels of mdl will form part of the iteration. If deep has the
value IloFalse, submodels will not be investigated by the iterator.

public IloDimensionIterator(const IloDimensionIterator & iter)

This copy constructor creates an iterator from another iterator iter. After execution, both the newly created
iterator and iter will be at the same position within the model.

Methods

public IloBool ok() const

This member function returns IloFalse if the iterator has scanned all instances of IloDimension in the
model. Otherwise it returns IloTrue.

public IloDimension operator*() const

This operator returns the instance of IloDimension at which the iterator is currently pointing.

46

public const IloDimensionIterator & operator++()

This operator moves the iterator on to the next instance of IloDimension within the model, providing one
exists. The operator returns the invoking iterator at its new position.

public const IloDimensionIterator & operator=(const IloDimensionIterator & iter)

This assignment operator copies the state of iter to the iterator on the left-hand side of the operator. After
execution, both iterators will be at the same position within the model.

47

Class IloDimensionWindows
Definition file: ildispat/iloproto.h
Include file: <ildispat/ilodispatcher.h>

A dimension window represents an interval during which a visit can be performed. This means that the visit must
start after the beginning of the window and end before the end of the window. Therefore, if the window is related
to an instance dim of IloDimension2 and if the window starts at a and ends at b, the following relation holds: a
<= visit.getCumulVar(dim) && visit.getEndCumulVar(dim) <= b. Dimension windows are
represented by permitted and forbidden intervals. Permitted intervals are the intervals when a visit can occur and
forbidden intervals are the intervals when a visit cannot occur. Dimension on windows are exclusively related to
extrinsic dimensions (instances of IloDimension2).

The constraint IloExecutionWindowsToVisitCon relates an instance of IloDimensionWindows to a
specific IloVisit.

See Also: IloExecutionWindowsToVisitCon

Constructor Summary

public IloDimensionWindows()

public IloDimensionWindows(IloDimensionWindows::ImplClass * impl)

public IloDimensionWindows(IloEnv env, IloDimension2 dim, const char * name=0)

Method Summary

public IloDimension2 getDimension()

public IloDimensionWindows::ImplClass * getImpl() const

public IloNum getLB() const

public IloNum getUB() const

public void setBounds(IloNum lb, IloNum ub)

public void setForbiddenInterval(IloNum lb, IloNum
ub)

public void setLB(IloNum lb)

public void setPermittedInterval(IloNum lb, IloNum
ub)

public void setUB(IloNum ub)

Inner Class

IloDimensionWindows::ForbiddenIterator

IloDimensionWindows::Iterator

Constructors

public IloDimensionWindows()

This constructor creates a dimension window whose handle pointer is null. This object must be assigned before it
can be used.

48

public IloDimensionWindows(IloDimensionWindows::ImplClass * impl)

This constructor creates a handle object (an instance of IloDimensionWindows) from a pointer to an
implementation object (an instance of the class IloDimensionWindowsI).

public IloDimensionWindows(IloEnv env, IloDimension2 dim, const char * name=0)

This constructor creates a dimension window on the extrinsic dimension dim on the environment env. The
optional argument name, if provided, becomes the name of the dimension window.

Initially, the interval [0, IloInfinity) is permitted on the window.

Methods

public IloDimension2 getDimension()

This member function returns the dimension associated with the dimension window.

public IloDimensionWindows::ImplClass * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking dimension
window.

public IloNum getLB() const

This member function returns the lower bound of the first permitted interval. It is the earliest starting value for the
visit attached to the constraint.

public IloNum getUB() const

This member function returns the upper bound of the last permitted interval. It is the latest ending value for the
visit attached to the constraint.

public void setBounds(IloNum lb, IloNum ub)

This member function sets the earliest starting and latest ending values of the visit attached to the constraint to
lb and ub. This function can remove permitted intervals.

public void setForbiddenInterval(IloNum lb, IloNum ub)

This member function sets the interval between lb and ub as forbidden, potentially removing permitted intervals.

public void setLB(IloNum lb)

49

This member function sets the earliest starting value of the visit attached to the constraint to lb. This function
can remove permitted intervals.

public void setPermittedInterval(IloNum lb, IloNum ub)

This member function sets the interval between lb and ub as permitted, potentially removing forbidden intervals.

public void setUB(IloNum ub)

This member function sets the latest ending value of the visit attached to the constraint to ub. This function can
remove permitted intervals.

50

Class IloDispatcher
Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

An instance of IloDispatcher organizes all the details of a routing problem.

See Also: IloVisit, IloVehicle, IloVehicleBreakCon

Constructor Summary

public IloDispatcher(IloSolver solver, const char * name)

public IloDispatcher()

public IloDispatcher(IloDispatcherI * impl)

public IloDispatcher(const IloDispatcher & disp)

Method Summary

public void alwaysRecomputeCost(IloBool recompute) const

public IloNum getCost(IloVisit visit1, IloVisit visit2, IloVehicle
vehicle) const

public IlcFloatVar getCostVar(IloVehicle vehicle, IloDimension dim) const

public IloNumVar getCostVar() const

public IlcFloatVar getCumulVar(IloVisit visit, IloDimension dim) const

public IlcFloatVar getDelayVar(IloVisit visit, IloDimension2 dim) const

public IlcFloatVar getDurationVar(IloVehicleBreakCon brk) const

public IlcFloatVar getDurationVar(IloVisit visit, IloDimension2 dim) const

public IlcFloatExp getEndCostVar(IloVisit visit, IloDimension2 dim) const

public IlcFloatVar getEndCumulVar(IloVisit visit, IloDimension2 dim) const

public IloEnv getEnv() const

public IlcFilterLevel getFilterLevel() const

public IloDispatcherI * getImpl() const

public IloInt getIndex(IloVehicle vehicle) const

public IloInt getIndex(IloVisit visit) const

public IlcIntVar getIntVar(IloVehicleVar var) const

public IlcIntVar getIntVar(IloVisitVar var) const

public IloModel getModel() const

public const char * getName() const

public IlcIntVar getNextVar(IloVisit visit) const

public IloInt getNumberOfDimensions() const

public IloInt getNumberOfNodes() const

public IloNum getNumberOfSuccesses() const

public IloInt getNumberOfUnperformedVisits() const

public IloInt

51

getNumberOfVehicleBreakConstraints(IloVehicle vehicle,
IloDimension2 dim) const

public IloInt getNumberOfVehicleBreakConstraints(IloVehicle vehicle)
const

public IloInt getNumberOfVehicles() const

public IloInt getNumberOfVehiclesUsed() const

public IloInt getNumberOfVisits() const

public IloNumVar getPenalizedCostVar() const

public IloVisit getPosition(IloVehicleBreakCon brk) const

public IlcIntVar getPositionVar(IloVehicleBreakCon brk) const

public IlcIntVar getPrevVar(IloVisit visit) const

public IlcIntVar getRankVar(IloVisit visit) const

public IloInt getRouteSize(IloVehicle vehicle) const

public IloSolver getSolver() const

public IlcFloatExp getStartCostVar(IloVisit visit, IloDimension2 dim) const

public IlcFloatVar getStartVar(IloVehicleBreakCon brk) const

public IloNum getTotalCost() const

public IlcFloatVar getTransitVar(IloVisit visit, IloDimension dim) const

public IlcFloatVar getTravelVar(IloVisit visit, IloDimension2 dim) const

public IloVehicle getVehicle(IloInt index) const

public IlcIntVar getVehicleVar(IloVisit visit) const

public IloVisit getVisit(IloInt index) const

public IlcFloatVar getWaitVar(IloVisit visit, IloDimension2 dim) const

public IlcConstraint interrupting(IloVehicleBreakCon brk) const

public IloBool isInterrupting(IloVehicleBreakCon brk) const

public IloBool isNonInterrupting(IloVehicleBreakCon brk) const

public IloBool isPerformed(IloVisit visit) const

public IloBool isPerformed(IloVehicleBreakCon brk) const

public IloBool isRouteComplete(IloVehicle vehicle) const

public IloBool isUnperformed(IloVisit visit) const

public IloBool isUnperformed(IloVehicleBreakCon brk) const

public IlcConstraint nonInterrupting(IloVehicleBreakCon brk) const

public IlcConstraint performed(IloVisit visit) const

public IlcConstraint performed(IloVehicleBreakCon brk) const

public void printInformation() const

public void setFilterLevel(IlcFilterLevel level) const

public void setInterrupting(IloVehicleBreakCon brk) const

public void setName(const char * name) const

public void setNext(IloVisit visit, IloVisit next) const

public void setNonInterrupting(IloVehicleBreakCon brk) const

public void setPerformed(IloVehicleBreakCon brk) const

public void setPosition(IloVehicleBreakCon brk, IloVisit visit) const

52

public void setPrev(IloVisit visit, IloVisit prev) const

public void setUnperformed(IloVehicleBreakCon brk) const

public void setVehicle(IloVisit visit, IloVehicle vehicle) const

public IlcConstraint unperformed(IloVisit visit) const

public IlcConstraint unperformed(IloVehicleBreakCon brk) const

public void whenComplete(IloVehicle vehicle, const IlcGoal goal)
const

public void whenComplete(IloVehicle vehicle, const IlcDemon demon)
const

public void whenInterrupt(IloVehicleBreakCon con, const IlcGoal goal)
const

public void whenPerformed(IloVehicleBreakCon con, const IlcGoal goal)
const

Inner Class

IloDispatcher::RouteIterator

IloDispatcher::UnperformedVisitIterator

IloDispatcher::VehicleBreakConIterator

Constructors

public IloDispatcher(IloSolver solver, const char * name)

This constructor creates a dispatcher object associated with the solver solver. The optional argument name, if
provided, becomes the name of the dispatcher object.

public IloDispatcher()

This constructor creates a dispatcher object whose handle pointer is null. This object must be assigned before it
can be used.

public IloDispatcher(IloDispatcherI * impl)

This constructor creates a handle object (an instance of IloDispatcher) from a pointer to an implementation
object (an instance of the class IloDispatcherI).

public IloDispatcher(const IloDispatcher & disp)

This copy constructor creates a handle from a reference to a dispatcher object. That dispatcher object and disp
both point to the same implementation object.

Methods

public void alwaysRecomputeCost(IloBool recompute) const

53

This member function forces Dispatcher to always recompute the cost between visits. Dimension costs set on
vehicles result in a cost value for each pair of visits. By default, Dispatcher caches these costs, which can be
memory consuming.

public IloNum getCost(IloVisit visit1, IloVisit visit2, IloVehicle vehicle) const

This member function returns the cost incurred by vehicle of the invoking dispatcher object between visit1
and visit2.

public IlcFloatVar getCostVar(IloVehicle vehicle, IloDimension dim) const

This member function returns the extracted constrained variable corresponding to the cost coefficient variable of
vehicle for dimension dim. If completing the route of vehicle does not instantiate this variable, you may need to
add a goal which will do so.

public IloNumVar getCostVar() const

This member function returns the cost variable. This variable is the sum of the cost of the vehicles and of the
unperformed visits.

public IlcFloatVar getCumulVar(IloVisit visit, IloDimension dim) const

This member function returns the extracted constrained variable corresponding to the cumul variable of visit
for dimension dim.

public IlcFloatVar getDelayVar(IloVisit visit, IloDimension2 dim) const

This member function returns the extracted constrained variable corresponding to the delay variable of visit for
the extrinsic dimension dim.

public IlcFloatVar getDurationVar(IloVehicleBreakCon brk) const

This member function returns the extracted constrained variable corresponding to the duration variable of the
vehicle break constraint brk.

public IlcFloatVar getDurationVar(IloVisit visit, IloDimension2 dim) const

This member function returns the duration variable for visit visit on dimension dim. Its semantics are identical
to the following: getSolver().getFloatVar(visit.getDurationVar(dim));

public IlcFloatExp getEndCostVar(IloVisit visit, IloDimension2 dim) const

This member function returns the extracted constrained variable corresponding to the cost of performing visit
according to the value of its end-cumul variable for the extrinsic dimension dim.

54

public IlcFloatVar getEndCumulVar(IloVisit visit, IloDimension2 dim) const

This member function returns the end-cumul variable for visit visit on dimension dim. Its semantics are
identical to the following: getSolver().getFloatVar(visit.getEndCumulVar(dim));

public IloEnv getEnv() const

This member function returns the environment of the invoking dispatcher object.

public IlcFilterLevel getFilterLevel() const

This member function returns the current filter level of the underlying path constraints on extracted dimensions.

public IloDispatcherI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking dispatcher
object.

public IloInt getIndex(IloVehicle vehicle) const

This member function returns the index of vehicle after extraction.

public IloInt getIndex(IloVisit visit) const

This member function returns the index of visit after extraction.

public IlcIntVar getIntVar(IloVehicleVar var) const

This member function returns the extracted constrained variable corresponding to the vehicle variable var. The
domain of this variable represents the indices of extracted vehicles.

public IlcIntVar getIntVar(IloVisitVar var) const

This member function returns the extracted constrained variable corresponding to the visit variable var. The
domain of this variable represents the indices of extracted visits.

public IloModel getModel() const

This member function returns the model attached to the solver from which the invoking IloDispatcher object
was created.

public const char * getName() const

55

This member function returns the name of the invoking dispatcher object.

public IlcIntVar getNextVar(IloVisit visit) const

This member function returns the extracted constrained variable corresponding to the next variable of visit.
The domain of this variable represents the indices of extracted visits.

public IloInt getNumberOfDimensions() const

This member function returns the number of dimensions in the invoking dispatcher object.

public IloInt getNumberOfNodes() const

This member function returns the number of nodes associated with the invoking dispatcher object.

public IloNum getNumberOfSuccesses() const

This member function returns the number of moves that have succeeded in the invoking dispatcher object.

public IloInt getNumberOfUnperformedVisits() const

This member function returns the number of unperformed visits in the invoking dispatcher object.

public IloInt getNumberOfVehicleBreakConstraints(IloVehicle vehicle, IloDimension2
dim) const

This member function returns the number of extracted vehicle constraints on vehicle vehicle and dimension
dim. This number includes vehicle constraints that are added directly as hard constraints to the model, and those
that are involved only in metaconstraints.

public IloInt getNumberOfVehicleBreakConstraints(IloVehicle vehicle) const

This member function returns the number of extracted vehicle constraints on vehicle vehicle. This number
includes vehicle constraints that are added directly as hard constraints to the model, and those that are involved
only in metaconstraints. This member function returns the total number of break constraints for vehicle created
for all dimensions.

public IloInt getNumberOfVehicles() const

This member function returns the number of vehicles associated with the invoking dispatcher object.

public IloInt getNumberOfVehiclesUsed() const

This member function returns the total number of vehicles used in the invoking dispatcher object.

56

public IloInt getNumberOfVisits() const

This member function returns the number of visits associated with the invoking dispatcher object.

public IloNumVar getPenalizedCostVar() const

This member function returns the penalized cost variable used in guided local search.

public IloVisit getPosition(IloVehicleBreakCon brk) const

This member function returns the position of the vehicle break brk of the invoking dispatcher object. The position
is the visit after which the break occurs. If the position variable is unbound, an error occurs.

public IlcIntVar getPositionVar(IloVehicleBreakCon brk) const

This member function returns the extracted constrained variable corresponding to the position variable of the
vehicle break constraint brk.

public IlcIntVar getPrevVar(IloVisit visit) const

This member function returns the extracted constrained variable corresponding to the prev variable of visit.
The domain of this variable represents the indices of extracted visits.

public IlcIntVar getRankVar(IloVisit visit) const

This member function returns the extracted constrained variable corresponding to the rank variable of visit.

public IloInt getRouteSize(IloVehicle vehicle) const

This member function returns the number of visits in the route of vehicle, not including the vehicle's first and last
(depot) visits. This function can only be used in a dispatcher object which is in an instantiated state.

public IloSolver getSolver() const

This member function returns the solver associated with the invoking dispatcher object.

public IlcFloatExp getStartCostVar(IloVisit visit, IloDimension2 dim) const

This member function returns the extracted constrained variable corresponding to the cost of performing visit
according to the value of its cumul variable for the extrinsic dimension dim.

public IlcFloatVar getStartVar(IloVehicleBreakCon brk) const

57

This member function returns the extracted constrained variable corresponding to the start variable of the vehicle
break constraint brk.

public IloNum getTotalCost() const

This member function returns the same value that is obtained by calling getCostVar().getMin().

public IlcFloatVar getTransitVar(IloVisit visit, IloDimension dim) const

This member function returns the extracted constrained variable corresponding to the transit variable of visit
for dimension dim.

public IlcFloatVar getTravelVar(IloVisit visit, IloDimension2 dim) const

This member function returns the extracted constrained variable corresponding to the travel variable of visit for
the extrinsic dimension dim.

public IloVehicle getVehicle(IloInt index) const

This member function returns the vehicle corresponding to index.

Note

The following is always true (i is an IloInt and v an IloVehicle):

dispatcher.getIndex(dispatcher.getVehicle(i)) == i and
dispatcher.getVehicle(dispatcher.getIndex(v)) == v.

public IlcIntVar getVehicleVar(IloVisit visit) const

This member function returns the extracted constrained variable corresponding to the vehicle variable of visit.
The domain of this variable represents the indices of extracted vehicles.

public IloVisit getVisit(IloInt index) const

This member function returns the visit corresponding to index.

Note

The following is always true (i is an IloInt and v an IloVisit):

dispatcher.getIndex(dispatcher.getVisit(i)) == i and
dispatcher.getVisit(dispatcher.getIndex(v)) == v.

public IlcFloatVar getWaitVar(IloVisit visit, IloDimension2 dim) const

58

This member function returns the extracted constrained variable corresponding to the waiting variable of visit
for the extrinsic dimension dim.

public IlcConstraint interrupting(IloVehicleBreakCon brk) const

This member function returns a constraint that may be added within search to assert that brk must interrupt a
visit. This member function may be used only inside search.

public IloBool isInterrupting(IloVehicleBreakCon brk) const

This member function returns IloTrue if and only if brk must interrupt a visit. A break is said to interrupt a visit
if it executes between the start and the end of the visit (see IloVisit::getCumulVar() and
IloVisit::getEndCumulVar()).

This condition may either be deduced by propagation (using start times and duration of visits and breaks), or
asserted through the use of the member function setInterrupting(IloVehicleBreakConstraint). Note
that if IloFalse is returned, this does not indicate that brk will definitely not interrupt a visit (for this condition
use isNonInterrupting(brk)), but only that it is not certain that the brk will interrupt a visit.

public IloBool isNonInterrupting(IloVehicleBreakCon brk) const

This member function returns IloTrue if and only if brk must not interrupt a visit. A break is said to interrupt a
visit if it executes between the start and the end of the visit (see IloVisit::getCumulVar() and
IloVisit::getEndCumulVar()). This condition may either be deduced by propagation (using start times and
duration of visits and breaks), or asserted through the use of the member function
setNonInterrupting(IloVehicleBreakConstraint).

Note that if IloFalse is returned, this does not indicate that brk will definitely interrupt a visit (for this condition
use isInterrupting(brk)), but only that it is not certain that the brk will not interrupt a visit.

public IloBool isPerformed(IloVisit visit) const

This member function returns IloTrue if visit is performed. Otherwise, it returns IloFalse.

public IloBool isPerformed(IloVehicleBreakCon brk) const

This member function returns IloTrue if and only if brk must be performed. A break is optional if it not posted
as a hard constraint, but instead occurs as part of a metaconstraint. This performed status may be asserted
through the use of the member function setPerformed(IloVehicleBreakConstraint). Note that if
IloFalse is returned, this does not indicate that brk will definitely not be performed (for this condition use
isUnperformed(brk)), but only that it is not certain that the brk will be performed.

public IloBool isRouteComplete(IloVehicle vehicle) const

This member function returns IloTrue if vehicle has a complete route associated with it. This means that the
route is completely connected from the first to the last visit. Otherwise, it returns IloFalse.

public IloBool isUnperformed(IloVisit visit) const

59

This member function returns IloTrue if visit is unperformed. Otherwise, it returns IloFalse.

public IloBool isUnperformed(IloVehicleBreakCon brk) const

This member function returns IloTrue if and only if brk must not be performed. A break is optional if it is not
posted as a hard constraint, but instead occurs as part of a metaconstraint. This unperformed status may either
be deduced by propagation (using start times and duration of visits and breaks), or asserted through the use of
the member function setUnperformed(IloVehicleBreakConstraint). Note that if IloFalse is returned,
this does not indicate that brk will definitely be performed (for this condition use isPerformed(brk)), but only
that it is not certain that the brk will not be performed.

public IlcConstraint nonInterrupting(IloVehicleBreakCon brk) const

This member function returns a constraint that may be added within search to assert that brk must not interrupt
any visit. This member function may be used only inside search.

public IlcConstraint performed(IloVisit visit) const

This member function returns a constraint stating that visit must be performed by a vehicle. As an
IlcConstraint is returned, this method is useful inside a Solver search for deciding if a visit should be
performed or not. If no penalty cost has been set on visit, this constraint is always satisfied.

public IlcConstraint performed(IloVehicleBreakCon brk) const

This member function returns a constraint that may be added within search to assert that brk must be
performed. This member function may be used only inside search.

public void printInformation() const

This member function displays information about the invoking dispatcher object to standard output.

public void setFilterLevel(IlcFilterLevel level) const

This member function sets the filter level of the underlying path constraints on extracted dimensions to level.
The available levels are IlcLow (default), IlcBasic, and IlcMedium. When the level is IlcLow, the
constraints do not propagate until the route of a vehicle is closed. When the level is IlcBasic, propagation is
triggered by whenValue events for next variables and by whenRange events for cumulative variables and transit
variables. When the level is IlcMedium, propagation is triggered by whenDomain events for next variables and
whenRange events for cumulative and transit variables.

The IlcMedium level takes considerably longer to propagate than the other two levels. It is recommended only
during execution of a first solution method you have written, when the IlcBasic level has proved insufficient
and resulted in a large number of backtracks.

public void setInterrupting(IloVehicleBreakCon brk) const

This member function asserts that brk must interrupt a visit; it is normally used only in user code as part of a
custom-written goal to instantiate vehicle breaks. This member function may only be used inside search. The

60

effects of this member function are reversible.

public void setName(const char * name) const

This member function sets the name of the invoking dispatcher object to a copy of name.

public void setNext(IloVisit visit, IloVisit next) const

This member function sets next to be the visit just after visit in the extracted model. This method should only
be used during search.

public void setNonInterrupting(IloVehicleBreakCon brk) const

This member function asserts that brk must not interrupt any visit; it is normally used only in user code as part of
a custom-written goal to instantiate vehicle breaks. This member function may be used only inside search. The
effects of this member function are reversible.

public void setPerformed(IloVehicleBreakCon brk) const

This member function asserts that brk must be performed; it is normally used only in user code as part of a
custom-written goal to instantiate vehicle breaks. This member function may be used only inside search. The
effects of this member function are reversible.

public void setPosition(IloVehicleBreakCon brk, IloVisit visit) const

This member function sets visit to be the position of brk in the extracted model. This method should only be
used during search.

public void setPrev(IloVisit visit, IloVisit prev) const

This member function sets prev to be the visit just before visit in the extracted model. This method should
only be used during search.

public void setUnperformed(IloVehicleBreakCon brk) const

This member function asserts that brk must not be performed; it is normally used only in user code as part of a
custom-written goal to instantiate vehicle breaks. This member function may be used only inside search. The
effects of this member function are reversible.

public void setVehicle(IloVisit visit, IloVehicle vehicle) const

This member function sets vehicle to be the vehicle performing visit in the extracted model. This method
should only be used during search.

public IlcConstraint unperformed(IloVisit visit) const

61

This member function returns a constraint stating that visit must not be performed by a vehicle. As an
IlcConstraint is returned, this method is useful inside a Solver search for deciding if a visit should be
performed or not. If no penalty cost has been set on visit, this constraint is always violated.

public IlcConstraint unperformed(IloVehicleBreakCon brk) const

This member function returns a constraint that may be added within search to assert that brk must not be
performed. This member function may be used only inside search.

public void whenComplete(IloVehicle vehicle, const IlcGoal goal) const

This member function associates goal with the “complete” event of vehicle. Whenever the route of vehicle
becomes complete, the goal will be executed immediately. A route is complete when the route performed by the
vehicle is closed (in other words, when a route starting at the first visit of the vehicle and ending at the last one
has been created).

public void whenComplete(IloVehicle vehicle, const IlcDemon demon) const

This member function associates demon with the “complete” event of vehicle. Whenever the route of vehicle
becomes complete, the demon will be executed immediately. A route is complete when the route performed by
the vehicle is closed (in other words, when a route starting at the first visit of the vehicle and ending at the last
one has been created).

public void whenInterrupt(IloVehicleBreakCon con, const IlcGoal goal) const

This member function may be used for writing constraints that react to changes in the state of a vehicle break
constraint. When the interrupt status of con is known (either interrupting or noninterrupting), then goal will be
executed. This member function may be used only inside search. The effects of this member function are
reversible.

public void whenPerformed(IloVehicleBreakCon con, const IlcGoal goal) const

This member function may be used for writing constraints that react to changes in the performed state of a
vehicle break constraint. When the performed status of con is known (either performed or unperformed), then
goal will be executed. This member function may be used only inside search. The effects of this member
function are reversible.

62

Class IloDispatcherFSParameters
Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher's built-in first solution methods can be parameterized in a variety of ways. Owing to the various
different parameters that can be passed, passing these directly in the constructor of the first solution method can
be cumbersome. This handle class encapsulates the different types of parameters that can be passed to
Dispatcher's built-in first solution heuristics. Not all of the first solution heuristics can make use of all the
parameters.

The parameters which comprise the IloDispatcherFSParameters class are the following:

A goal factory (an instance of IloDispatcherGoalFactory). This goal factory is used to generate
goals which perform some action each time a vehicle's route is tested for legality at each stage in the
first solution construction method. Normally, the goal performs any scheduling of the cumul vars along
the route.

•

A number of proximate visits. This integer value (called k) is used by first solution methods (where
appropriate) to determine, at each stage in the construction process, how many visits are to be
considered for routing next to the visit under consideration. Dispatcher always considers up to the k
closest visits to the one under consideration, with proximity in this respect being defined by Dispatcher's
cost function.

•

A partial solution (an instance of IloRoutingSolution). This solution is used to maintain a partial
solution during the first solution construction. If the first solution method fails, then this solution will hold
the visits and vehicles which were scheduled immediately before the failure.

•

A search limit (an instance of IloSearchLimit). During the construction of a first solution, routes are
extended. Each time a route is extended, the validity of the current route is tested by "closing" the route;
that is, the current route runs from the vehicle's first to last visits. In order to close the route, Dispatcher
executes an internal goal. For simple problems, this succeeds easily, but for more complex ones, this
can take longer. For example, this can occur in the presence of "same-vehicle" constraints that mean
that some visits not already scheduled must be scheduled on the same route as their partner in order to
close the route. This goal, if not limited, can take a prohibitive amount of time to execute. The search
limit serves to limit the execution of this "vehicle closing" goal.

•

Note

This limit does not limit the goal which is generated via the goal factory, but merely the route closing goal which
is executed before the goal generated by the goal factory. If a limit is needed on the goal generated by the goal
factory, this should be done explicitly at that point.

Constructor Summary

public IloDispatcherFSParameters(IloEnv env)

Method Summary

public IloDispatcherGoalFactory getGoalFactory() const

public IloInt getNumberOfProximateVisits() const

public IloRoutingSolution getPartialSolution() const

public IloSearchLimit getSearchLimit() const

public void setGoalFactory(IloDispatcherGoalFactory
goalFactory)

public void setNumberOfProximateVisits(IloInt
nbOfProximateVisits)

63

public void setPartialSolution(IloRoutingSolution solution)

public void setSearchLimit(IloSearchLimit limit)

Constructors

public IloDispatcherFSParameters(IloEnv env)

This constructor creates an instance of the IloDispatcherFSParameters class. The class will be allocated
on the environment env.

Methods

public IloDispatcherGoalFactory getGoalFactory() const

This member function returns the goal factory previously set using a call to setGoalFactory, or an empty
handle if no such call has been made.

public IloInt getNumberOfProximateVisits() const

This member function returns the value previously set using a call to setNbOfProximateVisits, or
IloIntMax if no such call has been made.

public IloRoutingSolution getPartialSolution() const

This member function returns the routing solution previously set using a call to setPartialSolution, or an
empty handle if no such call has been made.

public IloSearchLimit getSearchLimit() const

This member function returns the search limit previously set using a call to setSearchLimit, or an empty
handle if no such call has been made.

public void setGoalFactory(IloDispatcherGoalFactory goalFactory)

This member function sets the goal factory parameter to goalFactory, which can be later retrieved using
getGoalFactory.

public void setNumberOfProximateVisits(IloInt nbOfProximateVisits)

This member function sets the number of proximate visits parameter to nbOfProximateVisits, which can be
later retrieved using getNumberOfProximateVisits.

public void setPartialSolution(IloRoutingSolution solution)

64

This member function sets the partial solution parameter to solution, which can be later retrieved using
getPartialSolution. Note that it is sufficient to pass an empty instance of IloRoutingSolution, created
using only IloRoutingSolution(IloEnv), as the first solution method will fill in the details of the solution as
it goes.

public void setSearchLimit(IloSearchLimit limit)

This member function sets the search limit parameter to limit, which can be later retrieved using
getSearchLimit().

65

Class IloDispatcherGLS
Definition file: ildispat/ilometa.h
Include file: <ildispat/ilodispatcher.h>

This class implements a metaheuristic for routing problems based on the Guided Local Search metaheuristic,
which is based upon the idea of optimizing an augmented cost function.

An augmented cost function is created by adding a penalty term to the true cost function. The penalty term is the
sum of all penalties for possible arcs in the routing problem. The penalty for each possible arc starts at zero.

Guided Local Search (GLS) works over a number of iterations. At each iteration, a greedy search to a local
minimum, reducing the penalized cost, is carried out. (In the first iteration, since the penalty term is zero, this is
equivalent to a greedy search on the true cost.) When a local minimum is reached, GLS increases the penalty
term by choosing an arc of the solution and penalizing it. This increases the penalty term such that in subsequent
iterations, cost can be reduced by removing that arc from the solution. In this way GLS allows search to roam,
moving out of local minima.

Choosing an Arc to Penalize

GLS tries to choose a bad or costly arc in the solution to penalize, as removing costly arcs should lead to finding
better solutions. GLS penalizes an arc for which cost(a)/(1 + pentimes(a)) is a maximum of all arcs in the current
solution.

cost(a) is the cost of arc a. This is derived from IloDispatcher::getCost(IloVisit v1,
IloVisit v2, IloVehicle veh) where v1 is the first visit of arc a, v2 is the second visit of arc
a, and veh is the vehicle which performs v1-> v2 in the current solution.

•

pentimes(a) is the number of times arc a has already been penalized.•

Thus GLS tries to penalize arcs with high cost. However, if an arc has been penalized a number of times, the
importance of cost reduces. This is due to the fact that, if an arc has been penalized a large number of times and
is still in the solution, there may be no better arc with which to replace it and it is probably best to start looking
elsewhere to place penalties.

Penalizing an Arc

An arc is penalized by increasing its penalty cost by an amount equal to a penalty factor (specified to the
metaheuristic) times the cost of the arc, as described above.

Note

If an arc is penalized on one vehicle, it will also be penalized on all equivalent vehicles.

The following example shows how IloDispatcherGLS can be used to search for a solution to a routing
problem:

 void ImproveWithGLS(IloDispatcher dispatcher,
 IloRoutingSolution solution,
 IloNHood nhood) {
 IloNumVar cost = dispatcher.getCostVar();
 IloEnv env = dispatcher.getEnv();
 IloGoal instantiateCost = IloDichotomize(env, cost, IloFalse);
 IloRoutingSolution rsol = solution.makeClone(env);
 IloRoutingSolution best = solution.makeClone(env);
 IloDispatcherGLS dgls(env, 0.2);

 IloSearchSelector sel = IloMinimizeVar(env, dgls.getPenalizedCostVar());
 IloGoal move = IloSingleMove(env, rsol, nhood, dgls, sel,
 instantiateCost);
 move = move && IloStoreBestSolution(env, best);

66

 IloSolver solver = dispatcher.getSolver();
 IloCouple(nhood, dgls);
 for (IloInt i = 0; i < 150; i++) {
 if (solver.solve(move)) {
 cout << "Cost = " << solver.getMax(cost) << endl;
 }
 else {
 cout << "---" << endl;
 if (dgls.complete()) break;
 }
 }
 IloDecouple(nhood, dgls);
 IloGoal restoreSolution = IloRestoreSolution(env, best) &&
 instantiateCost;
 solver.solve(restoreSolution);
 rsol.end();
 best.end();
 }

For more information, see the class IloMetaHeuristic in the IBM ILOG Solver Reference Manual.

See Also: IloCouple, IloDecouple, IloDispatcherTabuSearch

Constructor Summary

public IloDispatcherGLS(IloEnv env, IloNum penfactor=0.15)

Method Summary

public IloBool complete()

public IloNum getImprovementStep() const

public IloNumVar getPenalizedCostVar() const

public IloNum getPenalty() const

public IloNumVar getPenaltyCostVar() const

public IloNum getPenaltyFactor() const

public IloBool isFeasible(IloSolver solver, IloSolution delta) const

public void notify(IloSolver solver, IloSolution delta)

public void reset()

public void setImprovementStep(IloNum step)

public void setPenaltyFactor(IloNum penFactor)

public IloBool start(IloSolver solver, IloSolution solution)

public IloBool test(IloSolver solver, IloSolution delta)

Constructors

public IloDispatcherGLS(IloEnv env, IloNum penfactor=0.15)

This constructor builds a metaheuristic that performs a guided local search for a routing problem. The penalty
factor indicates how strongly arcs should be penalized.

Methods

public IloBool complete()

67

This member function penalizes the cost of some arcs according to the rule specified in the description. It is
important that this member function be called when a local minimum is reached, so that the GLS can remove
itself using penalizing arcs. The function returns IloTrue if no arcs could be penalized (all have cost 0).
Otherwise, it returns IloFalse (the usual case).

public IloNum getImprovementStep() const

This member function returns the step specified to the invoking metaheuristic at the previous call to
setImprovementStep. If no such call has been made, 1e-4 is returned.

public IloNumVar getPenalizedCostVar() const

This member function returns the cost variable representing the objective to be optimized plus the penalty
variable returned from getPenaltyCostVar. If a guided local search minimizing the penalized cost at each
step is desired, a search selector that minimizes this variable should be used.

public IloNum getPenalty() const

This member function returns the penalty of the last solution instantiated.

public IloNumVar getPenaltyCostVar() const

This member function returns the variable representing the initial penalty to be added to the true cost variable to
be optimized. Its domain is in the range [0..IloInfinity).

public IloNum getPenaltyFactor() const

This member function returns the penalty factor passed in the constructor, or the most recently mentioned one in
a call to setPenaltyFactor.

public IloBool isFeasible(IloSolver solver, IloSolution delta) const

This member function performs a pre-filter of solution deltas according to their penalized cost. If the neighbor
specified by delta has a penalized cost of at least the upper bound of the penalized cost function, IloFalse is
returned. In all other cases, IloTrue is returned.

public void notify(IloSolver solver, IloSolution delta)

This member function stores the value of the penalty variable (returned from getPenaltyCostVar) so that it
can be retrieved with getPenalty later.

public void reset()

This member function sets the current penalty back to 0 for all arcs, so that GLS can be used for a new search.

68

public void setImprovementStep(IloNum step)

This member function indicates to guided local search that the penalized cost function must improve by at least
step at each movement. By default, the step size is 1e-4.

public void setPenaltyFactor(IloNum penFactor)

This member function sets the penalty factor to penFactor, which allows you to adjust how strongly arcs are to
be penalized during search.

public IloBool start(IloSolver solver, IloSolution solution)

This member function adds a constraint to the solver solver that enforces the relationship between the
penalized cost variable, the penalty cost variable, and the objective variable in solution. The penalized cost
variable is the sum of the remaining two. If no constraints are violated by doing this, IloTrue is returned.
Otherwise, a failure occurs.

public IloBool test(IloSolver solver, IloSolution delta)

This member function causes a failure if the cost of the instantiated solution plus its penalty is greater than the
upper bound of the penalized cost variable. Otherwise, it returns IloTrue.

69

Class IloDispatcherGoalFactory
Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

This class is used by Dispatcher's first solution parameters and method to produce subgoals which are then
used, for example, to schedule complete routes. First solution heuristics use these subgoals to validate their
construction of a routing plan. As routes are built incrementally, it can be useful to run a validation subgoal only
for those vehicles which have been modified since the last decision. The goal factory class provides a way to
define which goal is to be used to validate a given vehicle. Note that validating one route independently of the
others is not always possible. If, for example, a set of routes compete for a shared resource, then a routing
change in one of these routes must be validated by a full rescheduling of the complete set. Rescheduling only the
touched route cannot guarantee the feasibility of the final plan.

The IloDispatcherGoalFactory class is used both to produce goals for validation of individual vehicles and
to validate whole routing plans, using the getGoal() method.

The functionalities provided by this class are limited to those of the basic IloGoal class. As a constructor exists
to build a goal factory from an instance of IloGoal, instances of IloGoal can be passed where an
IloDispatcherGoalFactory is expected.

See Also: IloDispatcherFSParameters, IloSavingsGenerate, IloNearestAdditionGenerate, IloSweepGenerate,
IloNearestDepotGenerate, IloInsertionGenerate

Constructor Summary

public IloDispatcherGoalFactory()

public IloDispatcherGoalFactory(IloGoal goal)

public IloDispatcherGoalFactory(IloDispatcherGoalFactoryI * impl)

public IloDispatcherGoalFactory(const IloDispatcherGoalFactory & elem)

Method Summary

public IlcGoal getGoal(IloSolver solver) const

public IloGoal getGoal(IloEnv env) const

public IloDispatcherGoalFactoryI * getImpl() const

public IlcGoal getVehicleGoal(IloSolver solver, IloVehicle
vehicle) const

public IloGoal getVehicleGoal(IloEnv env, IloVehicle vehicle)
const

public IloBool isSimpleGoal() const

public void operator=(const IloDispatcherGoalFactory & h)

Constructors

public IloDispatcherGoalFactory()

This constructor creates a goal factory object whose handle pointer is null. This object must be assigned before it
can be used.

70

public IloDispatcherGoalFactory(IloGoal goal)

This constructor builds a goal factory from an instance of an IloGoal goal. When the newly constructed goal
factory is passed to a first solution method, this goal factory makes sure that the subgoal goal is called each
time a step in the first solution construction procedure needs to be validated.

public IloDispatcherGoalFactory(IloDispatcherGoalFactoryI * impl)

This constructor creates a handle object (an instance of IloDispatcherGoalFactory) from a pointer to an
implementation object (an instance of the class IloDispatcherGoalFactoryI).

public IloDispatcherGoalFactory(const IloDispatcherGoalFactory & elem)

This copy constructor creates a handle from a reference to a goal factory object. That goal factory object and
elem both point to the same implementation object.

Methods

public IlcGoal getGoal(IloSolver solver) const

This method returns an IlcGoal to validate a whole routing plan.

public IloGoal getGoal(IloEnv env) const

This method returns an IloGoal to validate a whole routing plan.

public IloDispatcherGoalFactoryI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking goal factory.

public IlcGoal getVehicleGoal(IloSolver solver, IloVehicle vehicle) const

This method returns an IlcGoal to validate the route for vehicle vehicle.

public IloGoal getVehicleGoal(IloEnv env, IloVehicle vehicle) const

This method returns an IloGoal to validate the route for vehicle vehicle.

public IloBool isSimpleGoal() const

This predicate returns IloTrue when the goal factory has been built with one single goal. In this case, it always
returns this goal to validate all routes, and also for global plan validation.

public void operator=(const IloDispatcherGoalFactory & h)

This operator assigns an address to the handle pointer of the invoking goal factory. This address is the location
of the implementation object of the argument h. After the execution of this operator, the invoking goal factory and
h both point to the same implementation object.

71

Class IloDispatcherGoalFactoryI
Definition file: ildispat/ilogoals.h

This class is the base implementation class for vehicle goal factories. A goal factory implements a mapping from
vehicles to goals. Goal factories are used in all predefined first solution heuristics.

To define a new class of goal factory, you must define two virtual methods that return IlcGoal objects:

The getGoal() method returns a global goal, used to validate a global plan.•
The getVehicleGoal() method return a goal that validates only the route of the vehicle, passed as
an argument.

•

Method Summary

public virtual IlcGoal getGoal(IloSolver solver) const

public IloGoal getIloGoal(IloEnv env) const

public IloGoal getIloVehicleGoal(IloEnv env, IloVehicle vehicle) const

public virtual IlcGoal getVehicleGoal(IloSolver solver, IloVehicle vehicle) const

Methods

public virtual IlcGoal getGoal(IloSolver solver) const

This pure virtual method returns the global validation goal.

public IloGoal getIloGoal(IloEnv env) const

This method builds and returns an IloGoal which, when extracted, returns the global validation goal, as defined
by the virtual method getGoal(). This method is not virtual and should not be redefined.

public IloGoal getIloVehicleGoal(IloEnv env, IloVehicle vehicle) const

This method builds and returns an IloGoal that, when extracted, returns the vehicle validation goal, as defined
by the virtual method getVehicleGoal(). This method is not virtual and should not be redefined.

public virtual IlcGoal getVehicleGoal(IloSolver solver, IloVehicle vehicle) const

This pure virtual method returns a goal to validate the route of vehicle vehicle.

72

Class IloDispatcherGraph
Definition file: ildispat/ilographdist.h
Include file: <ildispat/ilodispatcher.h>

The class IloDispatcherGraph allows you to create a graph representing a road network on which instances
of IloNode can be positioned. IloDispatcherGraph maintains a directed graph representation on which the
user may specify costs for traversing specific arcs, as well as penalties for turns between consecutive arcs.
IloDispatcherGraph includes functionality to load network topology and costs from a .csv file, as well as for
modifying the topology and costs by direct manipulation.

It computes and stores the cheapest paths between nodes for each vehicle. The cheapest path is the path whose
value minimizes the cost function for a given vehicle.

See Also: IloDispatcherGraph::Node, IloDispatcherGraph::Arc, IloDispatcherGraph::PathIterator,
IloDispatcherGraph::AdjacencyListIterator, IloGraphDistance, IloNode

Constructor and Destructor Summary

public IloDispatcherGraph(IloEnv env, IloBool storePaths=IloTrue, IloInt
preSizeArcs=1, IloInt preSizeNodes=1)

public IloDispatcherGraph(IloEnv env, const char * file)

public IloDispatcherGraph(const IloDispatcherGraph & g)

public IloDispatcherGraph(IloDispatcherGraphI * impl=0)

Method Summary

public void addArc(IloDispatcherGraph::Node n1,
IloDispatcherGraph::Node n2, IloDimension2 dim,
IloNum value)

public void addDimension2(IloDimension2 dim)

public IloBool arcExists(const IloInt arcId) const

public IloBool arcExistsWithEnds(const IloInt fromId, const
IloInt toId) const

public void associateByCoordsInFile(const IloNode node, const
char * fileName)

public void createArcsFromFile(const char * fileName, IloBool
loadDims=IloTrue)

public void end()

public void forbidArcUse(IloDispatcherGraph::Arc a)

public void forbidTurn(IloDispatcherGraph::Arc from,
IloDispatcherGraph::Arc to)

public IloDispatcherGraph::Arc getArc(const IloInt arcId) const

public IloDispatcherGraph::Arc getArcByEnds(const IloInt fromNodeId, const
IloInt toNodeId) const

public IloNum getArcCost(IloDispatcherGraph::Arc a,
IloDimension2 dim)

public void * getArcObject(IloDispatcherGraph::Arc a)

public IloNum

73

getDistance(IloNode n1, IloNode n2, IloVehicle v,
IloDimension2 dim) const

public IloEnv getEnv() const

public IloDispatcherGraphI * getImpl() const

public IloDispatcherGraph::Node getLocation(IloNode node) const

public IloDispatcherGraph::Node getNode(const IloInt nodeId) const

public void * getNodeObject(IloDispatcherGraph::Node n)

public IloNum getOffsetCost(IloNode m, IloNode n, IloNum x,
IloNode o, IloNode p, IloNum y, IloVehicle veh,
IloDimension2 dim) const

public IloNum getTurnPenalty(IloDispatcherGraph::Arc from,
IloDispatcherGraph::Arc to, IloDimension2 dim)

public IloNum getVisibility()

public IloDimension2 getVisibilityDim()

public void loadArcDimensionDataFromFile(const char *
filename, IloDimension2 dim)

public void loadTurnDimensionDataFromFile(const char *
fileName, IloDimension2 dim)

public IloBool nodeExists(const IloInt nodeId) const

public void setArcCost(IloDispatcherGraph::Arc a,
IloDimension2 dim, const IloNum cost)

public void setArcObject(IloDispatcherGraph::Arc a, void * o)

public void setLocation(IloNode node,
IloDispatcherGraph::Node n)

public void setNodeObject(IloDispatcherGraph::Node n, void *
o)

public void setTurnPenalty(IloDispatcherGraph::Arc from,
IloDispatcherGraph::Arc to, IloDimension2 dim,
const IloNum penalty)

public void setVisibility(IloDimension2 dim, const IloNum
vis)

public void unsetLocation(IloNode node)

Inner Class

IloDispatcherGraph::AdjacencyListIterator

IloDispatcherGraph::Arc

IloDispatcherGraph::Node

IloDispatcherGraph::PathIterator

Constructors and Destructors

public IloDispatcherGraph(IloEnv env, IloBool storePaths=IloTrue, IloInt
preSizeArcs=1, IloInt preSizeNodes=1)

This constructor creates a graph which stores cheapest paths only if storePaths is set to IloTrue. Storing
cheapest paths is only necessary if you intend to access them through the
IloDispatcherGraph::PathIterator class. You will greatly reduce memory consumption if you do not
store the paths.

74

The optional parameter preSizeArcs can be used to help reduce memory consumption. For example, if you
have two arcs with indices of 1 and 13, you would call the constructor with preSizeArcs=14. The Dispatcher
Graph then generates an array of size 14. If the parameter is left undefined, the array generated will be of size
16.

The optional parameter preSizeNodes can be used to help reduce memory consumption. For example, if you
have two nodes with indices of 1 and 13, you would call the constructor with preSizeNodes=14. The
Dispatcher Graph then generates an array of size 14. If the parameter is left undefined, the array generated will
be of size 16.

public IloDispatcherGraph(IloEnv env, const char * file)

This constructor creates a graph that stores the cheapest paths in the file file. This constructor is useful if
memory is at a premium as the shortest paths will be placed on the disk. However, this will mean that the
distance computations and thus virtually all of Dispatcher's primary functions will proceed more slowly.

public IloDispatcherGraph(const IloDispatcherGraph & g)

This copy constructor creates a handle from a reference to a graph object. That graph object and g both point to
the same implementation object.

public IloDispatcherGraph(IloDispatcherGraphI * impl=0)

This constructor creates a handle object (an instance of IloDispatcherGraph) from a pointer to an
implementation object (an instance of the class IloDispatcherGraphI).

Methods

public void addArc(IloDispatcherGraph::Node n1, IloDispatcherGraph::Node n2,
IloDimension2 dim, IloNum value)

This member function adds an arc between nodes n1 and n2 to the graph. Its value according to the dimension
dim is value. If an arc between n1 and n2 already exists, its value will be modified. Each dimension is assigned
a value separately. If an arc between n1 and n2 exists but no value has been given for a dimension dim, then its
value according to dim is IloInfinity.

public void addDimension2(IloDimension2 dim)

This member function adds a dimension to the graph so that arc cost information can be loaded from a .csv file
using IloDispatcherGraph::createArcsFromFile. Each dimension that you want to load must be
separately added to the graph.

If you use the member function IloDispatcherGraph::loadArcDimensionDataFromFile to load arc cost
information for a dimension directly from a file, the member function IloDispatcherGraph::addDimension2
is automatically called for this dimension.

public IloBool arcExists(const IloInt arcId) const

Given the identifier of a node, this member function returns IloTrue if an IloDispatcherGraph::Arc object
with this identifier is already present in the graph, and IloFalse otherwise.

75

public IloBool arcExistsWithEnds(const IloInt fromId, const IloInt toId) const

Given the identifiers of the two endpoints of an arc, this member function returns IloTrue if an
IloDispatcherGraph::Arc from node fromId to node toId exists in the graph. Note that all arcs in the
graph are directed, and the two endpoints must be specified in the correct order, as a from-to pair.

public void associateByCoordsInFile(const IloNode node, const char * fileName)

When using even modestly sized networks, it may become quite difficult to determine which graph node
corresponds to a given IloNode, and the use of individual calls to the member function setLocation becomes
impractical. The member function associateByCoordsInFile looks up the coordinates of a given IloNode
in a .csv file, and automatically associates it to the graph node with matching coordinates. The first line in the
.csv file must contain the items "name", "x", and "y". Subsequent lines must contain an integer denoting a graph
node, followed by two floating point numbers giving its coordinates. For more information, see the documentation
of IloCsvReader in the IBM(R) ILOG(R) Concert Technology documentation.

public void createArcsFromFile(const char * fileName, IloBool loadDims=IloTrue)

This member function loads the topology of a network from a .csv file and creates all necessary arcs and nodes.
The .csv file must contain the items "arcName", "from", and "to". Each following line must contain three integers
to denote the arcName and the two nodes that the arc connects. By default, all turns between consecutive arcs
are allowed, at a cost of 0. For more information, see the documentation of IloCsvReader in the IBM(R)
ILOG(R) Concert Technology documentation.

If the optional parameter loadDims is set to the default IloTrue, the application will load dimension data as the
topology is being read for all dimensions that have already been added to the graph using the member function
IloDispatcherGraph::addDimension2. If the parameter loadDims is set to IloFalse, no dimension data
will be loaded by this member function. In this case, you can use the member function
IloDispatcherGraph::loadArcDimensionDataFromFile to directly load arc cost information for a
specific dimension from a .csv file.

public void end()

This member function frees all resources used by the invoking graph object. You cannot use the invoking graph
object after a call to this member function.

public void forbidArcUse(IloDispatcherGraph::Arc a)

This member function sets the cost of an arc to infinity for all dimensions currently defined in the graph to which
the arc belongs.

public void forbidTurn(IloDispatcherGraph::Arc from, IloDispatcherGraph::Arc to)

This member function sets to infinity the cost of turning from arc from into arc to in all dimensions currently
defined in the graph to which the arcs belong.

public IloDispatcherGraph::Arc getArc(const IloInt arcId) const

76

Given the identifier of an arc, this member function returns the corresponding IloDispatcherGraph::Arc
object.

public IloDispatcherGraph::Arc getArcByEnds(const IloInt fromNodeId, const IloInt
toNodeId) const

Given the identifiers of the two endpoints of an arc, this member function returns the corresponding
IloDispatcherGraph::Arc object. Note that all arcs in the graph are directed, and the two endpoints must be
specified in the correct order.

public IloNum getArcCost(IloDispatcherGraph::Arc a, IloDimension2 dim)

This member function returns the cost of arc a along dimension dim.

public void * getArcObject(IloDispatcherGraph::Arc a)

This member function returns a pointer to the object associated to arc a, if it exists. Otherwise, it returns 0 (zero).

public IloNum getDistance(IloNode n1, IloNode n2, IloVehicle v, IloDimension2 dim)
const

This member function returns the value, expressed according to dim, of the cheapest path going from n1 to n2
using v. The value of a path is the sum of the values of the arcs composing the path according to dimension dim.
The cheapest path is the path whose value minimizes the cost function of vehicle v.

public IloEnv getEnv() const

This member function returns the environment of the invoking graph object.

public IloDispatcherGraphI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking graph object.

public IloDispatcherGraph::Node getLocation(IloNode node) const

This member function retrieves the location of an instance of IloNode in the graph.

public IloDispatcherGraph::Node getNode(const IloInt nodeId) const

Given the identifier of a node, this member function returns the corresponding IloDispatcherGraph::Node
object.

public void * getNodeObject(IloDispatcherGraph::Node n)

77

This member function returns a pointer to the object associated to node n, if it exists. Otherwise, it returns 0
(zero).

public IloNum getOffsetCost(IloNode m, IloNode n, IloNum x, IloNode o, IloNode p,
IloNum y, IloVehicle veh, IloDimension2 dim) const

The purpose of IloDispatcherGraph::getOffsetCost is to provide address-to-address costs. The
member function IloDispatcherGraph::getDistance returns the distance between two IloNodes. The
new member function IloDispatcherGraph::getOffsetCost returns the distance between two real
addresses. An address would typically be considered a location within an arc, rather than a location directly at a
node.

This member function returns the cost of the shortest path between the two addresses in terms of dimension
dim, and for vehicle veh. The IloNode m and the IloNode n are the extreme points of the departure arc. The
IloNode o and the IloNode p are the extreme points of the destination arc. x and y provide the offset
coefficients that allow you to locate the exact address inside the origin and destination arcs.

For example, if the distance between m and n is 1 unit, the location of the departure address is x*l units away
from m in the direction of n. If the distance between o and p is 12 units, the location of the departure address is
y*l2 units away from o in the direction of p.

Note that if you use getOffsetCost, the IloDispatcherGraph must be created using
storePaths=IloTrue in the constructor. This naturally increases the amount of memory that the graph will
require.

public IloNum getTurnPenalty(IloDispatcherGraph::Arc from, IloDispatcherGraph::Arc
to, IloDimension2 dim)

This member function returns the turn penalty associated to the movement from arc from into arc to, along
dimension dim.

public IloNum getVisibility()

This member function returns the value of the visibility parameter used in the shortest path computation.

public IloDimension2 getVisibilityDim()

This member function returns the dimension used to control visibility for the shortest path computation.

public void loadArcDimensionDataFromFile(const char * filename, IloDimension2 dim)

This member function allows the user to load the arc cost information from a .csv file. A single .csv file may
contain the arc cost information for several dimensions, but the costs for each dimension must be loaded
individually through a call to loadArcDimensionDataFromFile. The .csv file must contain a first line with the
items "arcName" and the names of the dimensions in question. Each subsequent line must contain an integer to
denote the arcNumber, and a floating point value for the arc cost in terms of each of the dimensions named in the
first line.

If you use this member function to load arc cost information for a dimension directly from a file, the member
function IloDispatcherGraph::addDimension2 is automatically called for this dimension.

78

public void loadTurnDimensionDataFromFile(const char * fileName, IloDimension2 dim)

When new arcs are created, the default assumption is that turns to all contiguous arcs are permitted with no
penalty. The user may override the turn penalties for specific arcs by loading turn penalty information from a
.csv file. The first line of such file must contain the items "arc1Name", "arc2Name" and the dimension names.
All subsequent lines must contain two integers denoting the arc the vehicle is turning from, and the arc the
vehicle is turning into, as well as floating point values to specify the turning penalty in each of the dimensions
named in the first line. For more information, see the documentation of IloCsvReader in the IBM(R) ILOG(R)
Concert Technology documentation.

public IloBool nodeExists(const IloInt nodeId) const

Given the identifier of a node, this member function returns IloTrue if a Node object with this identifier is
already present in the graph, and IloFalse otherwise.

public void setArcCost(IloDispatcherGraph::Arc a, IloDimension2 dim, const IloNum
cost)

This member function sets the cost of arc a, along dimension dim. Negative costs are not accepted.

public void setArcObject(IloDispatcherGraph::Arc a, void * o)

This member function associates an object o with the arc a by passing a pointer to this object.

public void setLocation(IloNode node, IloDispatcherGraph::Node n)

This member function positions an instance of IloNode in the graph.

public void setNodeObject(IloDispatcherGraph::Node n, void * o)

This member function associates an object o with the node n by passing a pointer to this object.

public void setTurnPenalty(IloDispatcherGraph::Arc from, IloDispatcherGraph::Arc
to, IloDimension2 dim, const IloNum penalty)

This member function sets the penalty of turning from arc from into arc to, along dimension dim. Negative
penalties are not accepted.

public void setVisibility(IloDimension2 dim, const IloNum vis)

In a very large graph, it may be convenient to limit the area in which a shortest path computation is performed.
When the visibility of the shortest path computation is set to vis on dimension dim, any nodes located more
than vis units of dim away from the origin node are not considered in the computation. For a given shortest path
computation, only one dimension can be used to control the visibility of nodes.

79

public void unsetLocation(IloNode node)

This member function removes an instance of IloNode from the graph.

80

Class IloDispatcherNHoodParameters
Definition file: ildispat/lsearch.h
Include file: <ildispat/ilodispatcher.h>

This parameter class can be used to modify the default behavior of neighborhoods. Most of the parameters in
this class will limit the scope of the neighborhoods in which they are used. This is usually done to improve the
performance of the search and potentially the quality of the resulting solutions.

See Also: IloVisitAlternativeSwap, IloCross, IloExchange, IloFPRelocate, IloMakePerformed,
IloMakePerformedPair, IloMakeUnperformed, IloMergeAndRelocateTours, IloOrOpt, IloRelocate,
IloSwapPerform, IloTwoOpt, IloVehicleEquiv, IloVisitAlternativeSwap

Constructor Summary

public IloDispatcherNHoodParameters(IloDispatcherNHoodParametersI * impl=0)

public IloDispatcherNHoodParameters(const IloDispatcherNHoodParameters & param)

public IloDispatcherNHoodParameters(IloEnv env)

Method Summary

public void end()

public IloArcPredicate getArcFocusPredicate() const

public IloArcPredicate getArcKeeperPredicate() const

public IloEnv getEnv() const

public IloDispatcherNHoodParametersI * getImpl() const

public IloVehicleEquiv getVehicleEquivalence() const

public IloVehiclePairPredicate getVehiclePairFocusPredicate() const

public IloVehicleArray getVehicles() const

public IloVisitArray getVisits() const

public IloBool ignorePairs() const

public void setArcFocusPredicate(IloArcPredicate
arcPredicate)

public void setArcKeeperPredicate(IloArcPredicate
arcPredicate)

public void setIgnorePairs(IloBool ignorePairs)

public void setVehicleEquivalence(IloVehicleEquiv
vehicleEquiv)

public void setVehiclePairFocusPredicate(IloVehiclePairPredicate
vehiclePredicate)

public void setVehicles(IloVehicleArray vehicles)

public void setVisits(IloVisitArray visits)

Constructors

public IloDispatcherNHoodParameters(IloDispatcherNHoodParametersI * impl=0)

81

This constructor creates a handle object (an instance of IloDispatcherNHoodParameters) from a pointer to
an implementation object (an instance of IloDispatcherNHoodParametersI).

public IloDispatcherNHoodParameters(const IloDispatcherNHoodParameters & param)

This copy constructor creates a handle from a reference to a parameter object.

public IloDispatcherNHoodParameters(IloEnv env)

This constructor creates a parameter object, allocated on the environment env.

Methods

public void end()

This member function frees all resources used by the invoking parameter object. You cannot use the invoking
parameter object after a call to this member function.

public IloArcPredicate getArcFocusPredicate() const

This member function returns an arc predicate object which forbids neighborhoods from accepting new arcs
which do not satisfy the predicate.

Currently the neighborhoods which take this parameter into account are IloCross, IloExchange, and
IloRelocate.

public IloArcPredicate getArcKeeperPredicate() const

This member function returns an arc predicate object which forbids neighborhoods from removing arcs which
satisfy the predicate.

Currently the neighborhoods which take this parameter into account are IloCross, IloExchange,
IloFPRelocate, IloOrOpt, IloRelocate, and IloTwoOpt.

public IloEnv getEnv() const

This member function returns the environment of the invoking parameter object.

public IloDispatcherNHoodParametersI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking parameter
object.

public IloVehicleEquiv getVehicleEquivalence() const

82

This member function returns a vehicle equivalence object which can be used to speed up the search.
Neighborhoods using this equivalence object will only take into account non-empty vehicles and a single empty
vehicle of each vehicle group according to this equivalence.

Currently the neighborhoods which take this parameter into account are IloCross, IloExchange,
IloFPRelocate, IloMergeAndRelocateTours, and IloRelocate.

public IloVehiclePairPredicate getVehiclePairFocusPredicate() const

This member function returns a vehicle pair predicate object which forbids the neighborhoods from performing
moves between pairs of vehicle which do not satisfy the predicate.

Currently the neighborhoods which take this parameter into account are IloCross, IloExchange,
IloFPRelocate, IloMergeAndRelocateTours, and IloRelocate.

public IloVehicleArray getVehicles() const

This member function returns the array of vehicles on which neighborhoods can perform moves.

Currently the neighborhoods which take this parameter into account are IloVisitAlternativeSwap,
IloCross, IloExchange, IloFPRelocate, IloMakePerformed, IloMakePerformedPair,
IloMakeUnperformed, IloMergeAndRelocateTours, IloOrOpt, IloRelocate, IloSwapPerform, and
IloTwoOpt.

public IloVisitArray getVisits() const

This member function returns the array of visits which neighborhoods can move.

Currently the neighborhoods which take this parameter into account are IloMakePerformed,
IloMakeUnperformed, and IloSwapPerform.

public IloBool ignorePairs() const

If the Boolean value returned by this member function is true then neighborhoods will not move pickup and
delivery visits together.

Currently the neighborhoods which take this parameter into account are IloMakePerformed,
IloMakeUnperformed, IloSwapPerform, IloExchange, and IloRelocate.

public void setArcFocusPredicate(IloArcPredicate arcPredicate)

The arc predicate arcPredicate set by this member function forbids neighborhoods from accepting new arcs
which do not satisfy the predicate.

Currently the neighborhoods which take this parameter into account are IloCross, IloExchange, and
IloRelocate.

Example

The following code creates an arc predicate which can be passed to setArcFocusPredicate to focus move
operators on visits which are not located at the same node:

83

ILOPREDICATE0(MyPredicate,
 IloVisitPair, arc) {
 return arc.getVisit1().getStartNode() != arc.getVisit2().getStartNode();
}

For more information, see IloPredicate and ILOPREDICATE0, documented in the IBM ILOG Solver
Reference Manual.

public void setArcKeeperPredicate(IloArcPredicate arcPredicate)

The arc predicate arcPredicate set by this member function forbids neighborhoods from removing arcs which
satisfy the predicate. The number of visits moved by the neighborhood may grow by including next and previous
visits to satisfy the predicate.

Currently the neighborhoods which take this parameter into account are IloCross, IloExchange,
IloFPRelocate, IloOrOpt, IloRelocate, and IloTwoOpt.

Example

The following code creates an arc predicate which can be passed to setArcKeeperPredicate to prevent
move operators from breaking arcs of visits located at the same node:

ILOPREDICATE0(MyPredicate,
 IloVisitPair, arc) {
 return arc.getVisit1().getStartNode() == arc.getVisit2().getStartNode();
}

For more information, see IloPredicate and ILOPREDICATE0, documented in the IBM ILOG Solver
Reference Manual.

public void setIgnorePairs(IloBool ignorePairs)

If ignorePairs is true, then neighborhoods will not move pickup and delivery visits together.

Currently the neighborhoods which take this parameter into account are IloMakePerformed,
IloMakeUnperformed, IloSwapPerform, IloExchange, and IloRelocate.

public void setVehicleEquivalence(IloVehicleEquiv vehicleEquiv)

The vehicle equivalence object vehicleEquiv set by this member function can be used to speed up the search.
Neighborhoods using this equivalence object will only take into account non-empty vehicles and a single empty
vehicle of each vehicle group according to this equivalence.

Currently the neighborhoods which take this parameter into account are IloCross, IloExchange,
IloFPRelocate, IloMergeAndRelocateTours, and IloRelocate.

public void setVehiclePairFocusPredicate(IloVehiclePairPredicate vehiclePredicate)

The vehicle pair predicate vehiclePredicate set by this member function forbids the neighborhoods from
performing moves between pairs of vehicle which do not satisfy the predicate.

Currently the neighborhoods which take this parameter into account are IloCross, IloExchange,
IloFPRelocate, IloMergeAndRelocateTours, and IloRelocate.

Example

84

The following code creates a vehicle pair predicate which can be passed to
setVehiclePairFocusPredicate to only permit moves between vehicles which start at the same node:

ILOPREDICATE0(MyPredicate,
 IloVehiclePair, pair) {
 return pair.getVehicle1().getFirstVisit().getStartNode()
 == pair.getVehicle2().getFirstVisit().getStartNode();
}

For more information, see IloPredicate and ILOPREDICATE0, documented in the IBM ILOG Solver
Reference Manual.

public void setVehicles(IloVehicleArray vehicles)

The array of vehicles vehicle set by this member function is the array of vehicles on which neighborhoods can
perform moves.

Currently the neighborhoods which take this parameter into account are IloVisitAlternativeSwap,
IloCross, IloExchange, IloFPRelocate, IloMakePerformed, IloMakePerformedPair,
IloMakeUnperformed, IloMergeAndRelocateTours, IloOrOpt, IloRelocate, IloSwapPerform, and
IloTwoOpt.

public void setVisits(IloVisitArray visits)

The array of visits visits set by this member function is the array of visits which neighborhoods can move.

Currently the neighborhoods which take this parameter into account are IloMakePerformed,
IloMakeUnperformed and IloSwapPerform.

85

Class IloDispatcherTabuSearch
Definition file: ildispat/ilometa.h
Include file: <ildispat/ilodispatcher.h>

This class implements a metaheuristic for routing problems based upon tabu search. The principal idea of tabu
search is that exploration of the search space should be encouraged by discouraging the re-visiting of previously
explored areas. The most common way of doing this is by associating a “tabu status” to aspects of the solution.

Dispatcher's tabu search metaheuristic is based upon this simple idea. Each time a move is made, the arcs that
have been added to the solution by the move are kept in a keep list, while the arcs that have been removed are
added to a forbid list. They remain on these lists for a set number of moves, known as their tenure. This tenure
can be controlled by the user. For Dispatcher, useful values for the tabu tenure start from 5 upwards, but can
vary widely.

Whenever a move is examined by Dispatcher's tabu search, it looks at the new arcs added to the solution and at
the old arcs that leave the solution. It then counts the number of new arcs that appear on the forbid list and the
number of old (leaving) arcs that appear on the keep list. The sum of these is called the tabu number of the
move. If the tabu number is above a certain value (which varies according to the move type), the move is
declared tabu and rejected. This rejection can be overridden in one case: when the cost of this move is better
than the best cost solution visited so far. This meta-rule to the tabu rule is known as the aspiration criterion.

It is worth noting that the tabu search metaheuristic does not work well when the first neighborhood move is
taken at each stage in the search. (Normally, the IloMinimizeVar selector is used.) The IloCross
neighborhood can also hamper the metaheuristic as it can provide a huge number of equal cost moves that can
be performed, requiring large tabu tenures to avoid cycling.

The following example shows how IloDispatcherTabuSearch can be used to search for a solution to a
routing problem:

 void ImproveWithTabu(IloDispatcher dispatcher,
 IloRoutingSolution solution,
 IloNHood nhood) {
 IloNumVar cost = dispatcher.getCostVar();
 IloEnv env = dispatcher.getEnv();
 IloGoal instantiateCost = IloDichotomize(env, cost, IloFalse);
 IloRoutingSolution rsol = solution.makeClone(env);
 IloRoutingSolution best = solution.makeClone(env);
 IloDispatcherTabuSearch dts(env, 12);

 IloGoal move = IloSingleMove(env,
 rsol,
 nhood,
 dts,
 IloMinimizeVar(env, cost),
 instantiateCost);
 move = move && IloStoreBestSolution(env, best);
 IloSolver solver = dispatcher.getSolver();
 for (IloInt i = 0; i < 150; i++) {
 if (solver.solve(move)) {
 cout << "Cost = " << solver.getMax(cost) << endl;
 }
 else {
 if (dts.complete()) break;
 }
 }
 IloGoal restoreSolution = IloRestoreSolution(env, best) &&
 instantiateCost;
 solver.solve(restoreSolution);
 rsol.end();
 best.end();
 }

86

For more information, see the class IloMetaHeuristic in the IBM ILOG Solver Reference Manual.

See Also: IloDispatcherGLS

Constructor Summary

public IloDispatcherTabuSearch(IloEnv env, IloInt tenure)

Method Summary

public IloBool complete()

public IloInt getTenure() const

public IloBool isFeasible(IloSolver solver, IloSolution delta) const

public void notify(IloSolver solver, IloSolution delta)

public void reset()

public void setTenure(IloInt tenure)

public void start(IloSolver solver, IloSolution delta)

public IloBool test(IloSolver solver, IloSolution delta)

Constructors

public IloDispatcherTabuSearch(IloEnv env, IloInt tenure)

This constructor creates a metaheuristic that performs tabu search for a routing problem. You can use the
parameter tenure to specify a certain number of moves; any individual arc will be held on either the keep list or
the forbid list for the specified number of moves.

Methods

public IloBool complete()

This member function ages the tabu tenure of all tabu arcs by one iteration (removing the tabu status for any at
0) in the hope that this will allow some moves to be performed on the next iteration. It returns IloFalse.

public IloInt getTenure() const

This member function returns the tenure specified in the constructor set in the last call to setTenure.

public IloBool isFeasible(IloSolver solver, IloSolution delta) const

This member function performs pre-filtering of changes to the routing solution in accordance with the tabu arcs. If
delta violates the tabu criterion and has a cost at least as great as the best solution seen, IloFalse is
returned. IloTrue is returned in all other cases.

public void notify(IloSolver solver, IloSolution delta)

This member function first ages the tabu tenure of all tabu arcs by one iteration, removing the tabu status from
any at 0. It then examines the new arcs added to the solution and the old arcs removed from the solution. The old

87

arcs are placed on the forbid list with a tabu tenure dictated by getTenure. The new arcs are placed on the
keep list with the same tenure.

public void reset()

This member function removes the tabu status of all arcs and resets the record of the best solution seen.

public void setTenure(IloInt tenure)

This member function sets the length of the tabu tenure to tenure.

public void start(IloSolver solver, IloSolution delta)

This member function updates its record of the best solution seen so far if delta has a cost lower than that
record. The tabu status of any move is overridden if it leads to a solution of a cost less than that value.

public IloBool test(IloSolver solver, IloSolution delta)

This member function computes the difference in terms of arcs between the currently instantiated solution and
the solution passed in start. If examination of the arcs that have appeared and the arcs that have left indicates
that the move is tabu, and the cost of this solution is not less than the best solution seen, a failure results.
Otherwise, this method returns IloTrue.

88

Class IloDistance
Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher lets you define the distance function for a dimension (for example, the distance, the time, or the cost
necessary for going from one node to the other).

This class is the handle class of the object that defines this distance function.

This handle class uses the virtual member function IloDistanceI::computeDistance to retrieve distance
values.

See Also: IloDimension, IloDimension1, IloDimension2, IloDistanceEvalI, IloDistanceFunction, IloDistanceI,
IloSimpleDistanceEvalI, IloSimpleDistanceFunction, IloComposedDistance, IloExplicitDistance,
IloSparseExplicitDistance

Constructor and Destructor Summary

public IloDistance(IloDistanceI * dist=0)

public IloDistance(const IloDistance & dist)

public IloDistance(IloEnv env, IloDistanceFunction distFunction)

public IloDistance(IloEnv env, IloSimpleDistanceFunction distFunction)

public IloDistance(IloDistanceFunction distFunction, IloVehicleEquiv equiv)

Method Summary

public void end()

public static IloBool Exists(IloEnv env, const char * key)

public static IloDistance Find(IloEnv env, const char * key)

public IloNum getDistance(IloNode node1, IloNode node2, IloVehicle
vehicle) const

public IloInt getGroup(IloVehicle vehicle) const

public IloDistanceI * getImpl() const

public const char * getKey()

public void refresh() const

public void removeKey()

public void setCache(IloEnv env, IloInt log2Rows, IloInt log2Cols)
const

public void setKey(const char * key)

public void unsetCache() const

89

Inherited Methods from IloVisitDistance

end, Exists, Find, getDistance, getGroup, getImpl, getKey, refresh, removeKey,
setKey

Constructors and Destructors

public IloDistance(IloDistanceI * dist=0)

This constructor creates a handle object (an instance of IloDistance) from a pointer to an object (an instance
of the implementation class IloDistanceI).

public IloDistance(const IloDistance & dist)

This copy constructor creates a handle from a reference to a distance object. That distance object and dist both
point to the same implementation object.

When distance functions are specified in Dispatcher, they can be cached, if distance computations are slow,
through IloDimension2::setCached. (Normally, caching of distance functions is disabled.) When the
distance depends not only on the starting and ending node, but the vehicle used to perform the trip, it becomes
useful to introduce the notion of vehicle equivalence.

If two vehicles are specified as equivalent with respect to a particular distance metric and the distance between
two nodes using one of the vehicles resides in the cache, the distance between the same two nodes using the
other vehicle can be assumed to be the same. Thus, fewer cache slots are used. It is functionally unnecessary to
specify a vehicle equivalence class in Dispatcher, but definition of such a class can lead to speed increases
through better caching of distance data.

public IloDistance(IloEnv env, IloDistanceFunction distFunction)

This constructor creates a distance object in the environment env. The implementation object of the newly
created handle is an instance of the class IloDistanceEvalI constructed with the distance function
distFunction.

public IloDistance(IloEnv env, IloSimpleDistanceFunction distFunction)

This constructor creates a distance object in the environment env. The implementation object of the newly
created handle is an instance of the class IloSimpleDistanceEvalI constructed with the distance function
distFunction.

public IloDistance(IloDistanceFunction distFunction, IloVehicleEquiv equiv)

This constructor creates a handle to a distance object. The implementation object of this newly created handle is
an instance of the class IloDistanceEvalI constructed with the distance function distFunction for the
vehicle equivalence group equiv.

Methods

public void end()

90

This member function frees all resources used by the invoking distance object. You cannot use the invoking
distance object after a call to this member function.

public static IloBool Exists(IloEnv env, const char * key)

This static member function returns IloTrue if an IloDistance object having key key exists and IloFalse if
not.

public static IloDistance Find(IloEnv env, const char * key)

This static member function returns the object corresponding to the key key set using IloDistance::setKey.
If there is no object corresponding to key an IloException is thrown.

public IloNum getDistance(IloNode node1, IloNode node2, IloVehicle vehicle) const

This member function returns the distance from node1 to node2 using vehicle vehicle.

public IloInt getGroup(IloVehicle vehicle) const

This member function returns the group as specified by the vehicle equivalence object associated with vehicle.

public IloDistanceI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking distance.

public const char * getKey()

The following member function returns the key set on the invoking object

public void refresh() const

This member function flushes any internal caches on the distance function, and uses any vehicle equivalence
class specified in the constructor to update the group of each vehicle.

This member function thus allows the distance function to be changed. This means that after a call to refresh,
IloDistanceI::computeDistance can return a different value for the same three parameters than before
the call to refresh. However, the new distance function must be as consistent as the old one in that successive
calls using the same parameters must produce the same distance value.

public void removeKey()

This member function allows the user to remove the key set on the invoking object.

public void setCache(IloEnv env, IloInt log2Rows, IloInt log2Cols) const

91

This member function adds a cache to the invoking distance object so that distance computations can be cached.
The parameter env indicates the environment within which the distance object is used. The cache is
set-associative with 2log2Rows rows, and a set-associative width of 2log2Cols.

The method IloDimension2::setCached uses this member function to add a cache of size log2rows = 18
and log2cols = 0 to the distance object associated with the invoking dimension. No cache is added if one
already exists.

public void setKey(const char * key)

This member function allows the user to set key on the invoking object. This key is unique. Each distance must
have a different key; otherwise, an exception is thrown.

public void unsetCache() const

This member function stops caching of distance values.

92

Class IloDistanceEvalI
Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher lets you define the distance function for a dimension (for example, the distance, the time, or the cost
necessary for going from one node to another).

This class is an implementation class, a predefined subclass of IloDistanceI, that you use to define a new
distance function expressed by an evaluation function. This evaluation function is of type
IloDistanceFunction.

See Also: IloDimension, IloDimension1, IloDimension2, IloDistance, IloDistanceFunction, IloDistanceI

Constructor and Destructor Summary

public IloDistanceEvalI(IloEnv env, IloDistanceFunction distFunction)

public IloDistanceEvalI(IloDistanceFunction distFunction, IloVehicleEquiv equiv)

Method Summary

public virtual IloNum computeDistance(IloNode node1, IloNode node2, IloVehicle
vehicle) const

Inherited Methods from IloDistanceI

computeDistance, computeDistance, getDistance, getGroup, refresh, setCache,
unsetCache, updateEquivalence

Inherited Methods from IloVisitDistanceI

computeDistance, getDistance, getGroup, refresh, setCache, unsetCache,
updateEquivalence

Constructors and Destructors

public IloDistanceEvalI(IloEnv env, IloDistanceFunction distFunction)

This constructor creates a new distance function from the evaluation function distFunction.

When distance functions are specified in Dispatcher, they can be cached, if distance computations are slow,
through IloDimension2::setCached. (Normally, caching of distance functions is disabled.) When the
distance depends not only on the starting and ending node, but the vehicle used to perform the trip, it becomes
useful to introduce the notion of vehicle equivalence.

If two vehicles are specified as equivalent with respect to a particular distance metric and the distance between
two nodes using one of the vehicles resides in the cache, the distance between the same two nodes using the
other vehicle can be assumed to be the same. Thus, fewer cache slots are used. It is functionally unnecessary to
specify a vehicle equivalence class in Dispatcher, but definition of such a class can lead to speed increases
using better caching of distance data.

93

public IloDistanceEvalI(IloDistanceFunction distFunction, IloVehicleEquiv equiv)

This constructor creates a new distance function for the vehicle equivalence group equiv from the evaluation
function distFunction.

Methods

public virtual IloNum computeDistance(IloNode node1, IloNode node2, IloVehicle
vehicle) const

This member function returns a numeric value that represents the distance between node1 and node2 for the
given vehicle. This is done using a call to distFunction passing node1, node2, and vehicle as
parameters.

94

Class IloDistanceI
Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher lets you define the distance function for a dimension (for example, the distance, the time, or the cost
necessary for going from one node to another).

This class is the implementation class for IloDistance, the class of object that defines a distance function for a
dimension. The virtual member function IloDistanceI::computeDistance returns the distance between
two nodes.

To express new distance functions, you can define a subclass of IloDistanceI. If this distance can be
expressed by an evaluation function, you can use the predefined subclasses IloDistanceEvalI or
IloSimpleDistanceEvalI for that purpose.

See Also: IloDimension, IloDimension1, IloDimension2, IloDistance, IloVisitDistance

Constructor and Destructor Summary

public IloDistanceI(IloEnv env, IloBool symmetric=IloFalse)

public IloDistanceI(IloVehicleEquiv equiv, IloBool symmetric=IloFalse)

Method Summary

public virtual IloNum computeDistance(IloVisit visit1, IloVisit visit2,
IloVehicle vehicle) const

public virtual IloNum computeDistance(IloNode node1, IloNode node2, IloVehicle
vehicle) const

public virtual IloNum getDistance(IloNode node1, IloNode node2, IloVehicle
vehicle) const

public virtual IloInt getGroup(IloVehicle vehicle) const

public virtual void refresh()

public virtual void setCache(IloEnv env, IloInt log2Rows, IloInt log2Cols)

public virtual void unsetCache()

public virtual void updateEquivalence()

Inherited Methods from IloVisitDistanceI

computeDistance, getDistance, getGroup, refresh, setCache, unsetCache,
updateEquivalence

95

Constructors and Destructors

public IloDistanceI(IloEnv env, IloBool symmetric=IloFalse)

This constructor creates an implementation distance object in the environment env.

When distance functions are specified in Dispatcher, they can be cached, if distance computations are slow,
through IloDimension2::setCached. (Normally, caching of distance functions is disabled.) When the
distance depends not only on the starting and ending node, but also on the vehicle used to perform the trip, it
becomes useful to introduce the notion of vehicle equivalence.

If two vehicles are specified as equivalent with respect to a particular distance metric and the distance between
two nodes using one of the vehicles resides in the cache, the distance between the same two nodes using the
other vehicle can be assumed to be the same. Thus, fewer cache slots are used. It is functionally unnecessary to
specify a vehicle equivalence class in Dispatcher, but definition of such a class can lead to speed increases
through better caching of distance data.

public IloDistanceI(IloVehicleEquiv equiv, IloBool symmetric=IloFalse)

This constructor creates an implementation distance object for the vehicle equivalence group equiv.

Methods

public virtual IloNum computeDistance(IloVisit visit1, IloVisit visit2, IloVehicle
vehicle) const

You redefine this pure virtual member function to return a floating-point value that represents the distance from
visit1 to visit2. The return value of the function must depend only on visit1 and visit2, and must
produce the same value for each call with the same parameters.

public virtual IloNum computeDistance(IloNode node1, IloNode node2, IloVehicle
vehicle) const

You redefine this pure virtual member function to return a floating-point value that represents the distance from
node1 to node2. The return value of the function must depend only on node1 and node2, and must produce the
same value for each call with the same parameters.

public virtual IloNum getDistance(IloNode node1, IloNode node2, IloVehicle vehicle)
const

This member function returns the distance from node1 to node2, using vehicle vehicle. If caching is enabled,
this member function first searches the cache for the distance value. If the value is not found, this function calls
IloDistanceI::computeDistance, returns the value obtained, and places that value into the cache.

public virtual IloInt getGroup(IloVehicle vehicle) const

This member function returns the vehicle equivalence group for vehicle. In the case where the invoking object
was constructed with only an IloEnv, this function returns zero. Otherwise, it returns the group as specified by
the vehicle equivalence object associated with the implementation.

96

public virtual void refresh()

This member function flushes any internal caches on the distance function, and uses any vehicle equivalence
class specified in the constructor to update the group of each vehicle.

This member function thus allows the distance function to be changed. This means that after a call to refresh,
IloDistanceI::computeDistance can return a different value for the same three parameters than before
the call to refresh. However, the new distance function must be as consistent as the old one in that successive
calls using the same parameters must produce the same distance value.

public virtual void setCache(IloEnv env, IloInt log2Rows, IloInt log2Cols)

This member function adds a cache to the invoking distance object so that distance computations can be cached.
The parameter env indicates the environment upon which the distance object is allocated. The cache is
set-associative with 2log2Rows rows, and a set-associative width of 2log2Cols.

The method IloDimension2::setCached uses this member function to add a cache to the distance object
associated with the invoking dimension. No cache is added if one already exists.

public virtual void unsetCache()

This member function stops caching of distance values.

public virtual void updateEquivalence()

This member function updates the vehicle equivalence group associated with the invoking distance object.

97

Class IloEvalVehicleToNumFunctionI
Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This class is an implementation class, a predefined subclass of IloVehicleToNumFunctionI, that you use to
define a new vehicle to IloNum function expressed by an evaluation function. This evaluation function is of type
IloSimpleVehicleToNumFunction.

Constructor and Destructor Summary

public IloEvalVehicleToNumFunctionI(IloEnv env, IloSimpleVehicleToNumFunction f)

Method Summary

public virtual IloNum getValue(IloVehicle vehicle)

Inherited Methods from IloVehicleToNumFunctionI

getUnperformedValue, getValue

Constructors and Destructors

public IloEvalVehicleToNumFunctionI(IloEnv env, IloSimpleVehicleToNumFunction f)

This constructor creates a new vehicle to IloNum function from the evaluation function f.

Methods

public virtual IloNum getValue(IloVehicle vehicle)

This member function returns a numeric value corresponding to vehicle. This is done via a call to f passing
vehicle as a parameter.

98

Class IloEvalVisitToNumFunctionI
Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This class is an implementation class, a predefined subclass of IloVisitToNumFunctionI, that you use to
define a new visit to IloNum function expressed by an evaluation function. This evaluation function is of type
IloSimpleVisitToNumFunction.

Constructor and Destructor Summary

public IloEvalVisitToNumFunctionI(IloEnv env, IloSimpleVisitToNumFunction f)

Method Summary

public virtual IloNum getValue(IloVisit visit)

Inherited Methods from IloVisitToNumFunctionI

getUnperformedValue, getValue

Constructors and Destructors

public IloEvalVisitToNumFunctionI(IloEnv env, IloSimpleVisitToNumFunction f)

This constructor creates a new visit to IloNum function from the evaluation function f.

Methods

public virtual IloNum getValue(IloVisit visit)

This member function returns a numeric value corresponding to visit. This is done via a call to f passing
visit as parameter.

99

Class IloEverywhereNode
Definition file: ildispat/ilonode.h
Include file: <ildispat/ilodispatcher.h>

This class represents an "everywhere" node, which has the special property that all distances measured to or
from this node are zero.

For more information, see the concept Dimensions.

See Also: IloDimension2, IloDistance, IloNode

Inherited Methods from IloNode

Exists, Find, getDistanceTo, getEnv, getKey, getName, getObject, getX, getY, getZ,
isEverywhere, removeKey, setKey, setName, setObject

100

Class IloExecutionWindowsToVisitCon
Definition file: ildispat/iloproto.h
Include file: <ildispat/ilodispatcher.h>

The constraint IloExecutionWindowsToVisitCon relates an instance of IloDimensionWindows to a
specific IloVisit. It constrains a visit to be started after the lower bound of the dimension windows interval and
to be ended before the upper bound of the dimension windows interval.

See Also: IloDimensionWindows

Constructor Summary

public IloExecutionWindowsToVisitCon(IloVisit visit, IloDimensionWindows window,
const char * name=0)

Method Summary

public IloVisit getVisit() const

public IloDimensionWindows getWindow() const

Constructors

public IloExecutionWindowsToVisitCon(IloVisit visit, IloDimensionWindows window,
const char * name=0)

This constructor creates a dimension windows constraint window on visit visit. The optional argument name, if
provided, becomes the name of the constraint.

Methods

public IloVisit getVisit() const

This member function returns the visit associated with the constraint IloExecutionWindowsToVisitCon.

public IloDimensionWindows getWindow() const

This member function returns the window associated with the constraint IloExecutionWindowsToVisitCon.

101

Class IloExplicitArcPredicate
Definition file: ildispat/iloarcpredicate.h
Include file: <ildispat/ilodispatcher.h>

This subclass of IloArcPredicate allows you to specify the satisfaction matrix explicitly using
IloExplicitArcPredicate::setValue or IloExplicitArcPredicate::setValues. If the satisfaction
value is not defined for an arc then a default is returned.

For more information, see the class IloPredicate documented in the IBM ILOG Solver Reference Manual.

See Also: IloArcPredicate

Constructor Summary

public IloExplicitArcPredicate(IloEnv env, IloBool defaultValue=IloTrue)

Method Summary

public void setValue(IloVisitPair arc, IloBool value)

public void setValues(IloArcPredicate predicate)

Constructors

public IloExplicitArcPredicate(IloEnv env, IloBool defaultValue=IloTrue)

This constructor creates an explicit arc predicate in the environment env. The parameter defaultValue allows
you to specify whether the predicate is satisfied or not when no satisfaction value has been specified for an arc.

Methods

public void setValue(IloVisitPair arc, IloBool value)

This member function specifies that the arc between visits arc.getVisit1() and arc.getVisit2() satisfies
the invoking predicate if value is set to IloTrue. Otherwise, it specifies that this arc does not satisfy the
predicate.

public void setValues(IloArcPredicate predicate)

This member function uses the invoking explicit arc predicate to cache the behavior of predicate. The invoking
predicate and predicate then accept the same arcs. This member function can be used to speed up the calls
to IloArcPredicate::operator() at the cost of an increased memory usage.

102

Class IloExplicitDistance
Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

This distance class allows the user to specify the distance matrix explicitly using the member function
IloExplicitDistance::setValue. If a distance between two nodes is not specified, a default value is returned.

See Also: IloDistance, IloComposedDistance, IloSparseExplicitDistance

Constructor and Destructor Summary

public IloExplicitDistance(IloEnv env, IloNum defaultValue=IloInfinity, IloInt
size=0)

Method Summary

public void setValue(IloNode node1, IloNode node2, IloNum value)

Inherited Methods from IloDistance

end, Exists, Find, getDistance, getGroup, getImpl, getKey, refresh, removeKey,
setCache, setKey, unsetCache

Inherited Methods from IloVisitDistance

end, Exists, Find, getDistance, getGroup, getImpl, getKey, refresh, removeKey,
setKey

Constructors and Destructors

public IloExplicitDistance(IloEnv env, IloNum defaultValue=IloInfinity, IloInt
size=0)

This constructor creates an explicit distance object in the environment env. The parameter defaultValue
allows you to specify the value that will be returned when no actual distance between two nodes has been
specified. Infinity is returned only if you do not override it with a value of your choice.

The parameter size is used to pre-size the distance matrix in order to save memory (automatic resizing
consumes more memory than an appropriate pre-sizing).

Methods

public void setValue(IloNode node1, IloNode node2, IloNum value)

This member function sets the explicit distance value between two nodes, node1 and node2.

103

Class IloExplicitVisitDistance
Definition file: ildispat/ilovisitdist.h
Include file: <ildispat/ilodispatcher.h>

This distance class allows the user to specify the distance matrix explicitly using the member function
IloExplicitVisitDistance::setValue. If a distance between two visits is not specified, then a default distance value is
returned.

See Also: IloVisitDistance, IloComposedVisitDistance, IloSparseExplicitVisitDistance

Constructor and Destructor Summary

public IloExplicitVisitDistance(IloEnv env, IloNum defaultValue=IloInfinity,
IloInt size=0)

Method Summary

public void setValue(IloVisit visit1, IloVisit visit2, IloNum value)

Inherited Methods from IloVisitDistance

end, Exists, Find, getDistance, getGroup, getImpl, getKey, refresh, removeKey,
setKey

Constructors and Destructors

public IloExplicitVisitDistance(IloEnv env, IloNum defaultValue=IloInfinity, IloInt
size=0)

This constructor creates an explicit distance object in the environment env. The parameter defaultValue
allows you to specify the value that will be returned when no actual distance between two visits has been
specified. Infinity is returned only if you do not override it with a value of your choice.

Methods

public void setValue(IloVisit visit1, IloVisit visit2, IloNum value)

This member function sets the explicit distance value between two visits, visit1 and visit2.

104

Class IloFSDecisionI
Definition file: ildispat/fsdecision.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher provides an open framework to define custom first solution heuristics. A first solution heuristic builds a
routing plan by assigning visits (or groups of visits) to vehicles. It does so by considering elementary decisions,
and either rejecting them as infeasible, or committing them into the solution that is being built.

The abstract class IloFSDecisionI is the base class for all first solution decisions that are handled by the
framework. Dispatcher provides decision classes to support a nearest-addition type of first solution (FS)
generation, but you can define your own class of decision to implement a custom FS algorithm.

Constructor and Destructor Summary

public IloFSDecisionI(IloEnv env)

Method Summary

public static IloInt Compare(const char * s1, const char * s2)

public static IloInt Compare(IloNum x1, IloNum x2, IloNum prec)

public static IloInt Compare(IloInt x1, IloInt x2)

public virtual void display(ostream & out) const

public IloEnv getEnv() const

public virtual IlcGoal getJustifierGoal(IloFSDecisionMakerI * dm)

public virtual IlcGoal getRouteCompletionGoal(IloFSDecisionMakerI * dm)

public static IloBool IsArcFeasibleOnDimension(IloDispatcher dispatcher,
IloDimension dim, IloVehicle vehicle, IloVisit v1,
IloVisit v2)

public virtual IloBool isBetterThan(IloFSDecisionI * decision, const
IloFSDecisionMakerI * dm) const

public virtual void make(IloFSDecisionMakerI * dm)

public virtual void store(IloFSDecisionMakerI * dm)

Constructors and Destructors

public IloFSDecisionI(IloEnv env)

This constructor creates a decision in the environment env. As this class is an abstract class, the constructor is
declared as protected.

Methods

public static IloInt Compare(const char * s1, const char * s2)

105

This static member function compares two strings in a lexicographic order, returning -1 if s1 is lexicographically
before s2, 1 if s1 is lexicographically after s2, and 0 if they are identical. Non-null strings are always preferred to
null strings.

This static comparison function is provided as a convenience for writing isBetterThan member functions.

public static IloInt Compare(IloNum x1, IloNum x2, IloNum prec)

This static member function compares two floating point numbers, with a given precision prec. It returns -1 when
x1 is less than or equal to x2-prec, 1 when x1 is greater than or equal to x2+prec, and 0 otherwise.

This static comparison function is provided as a convenience for writing isBetterThan member functions.

public static IloInt Compare(IloInt x1, IloInt x2)

This static member function compares two integers and returns -1 when x1 is less than x2, 1 when x1 is greater
than x2, or 0 if they are equal.

This static comparison function is provided as a convenience for writing isBetterThan member functions.

public virtual void display(ostream & out) const

This virtual member function displays the decision object.

public IloEnv getEnv() const

This member function returns the environment env on which the decision object was built.

public virtual IlcGoal getJustifierGoal(IloFSDecisionMakerI * dm)

This member function returns the justifier goal that is used to check the feasibility of the decision. This goal deals
with nonrouting aspects of the route, typically scheduling start times of visits on the route, if scheduling is
required. The default implementation of this member function returns 0 (empty goal).

public virtual IlcGoal getRouteCompletionGoal(IloFSDecisionMakerI * dm)

This pure virtual member function returns the goal used to close the route(s) touched by the decision. This goal is
used in validating the decision. For simple decisions involving only one visit and one vehicle, the standard
IloGenerateRoute Dispatcher goal is used. However, decisions could involve several visits and this goal
might also involve several vehicles.

public static IloBool IsArcFeasibleOnDimension(IloDispatcher dispatcher,
IloDimension dim, IloVehicle vehicle, IloVisit v1, IloVisit v2)

This static function checks whether an arc v1, v2 is feasible without violating the constraints linking the cumul
and transit variables on dim.

106

For example, if a truck has to start between 5 AM and 6 AM and reach a destination where opening hours are
between 8 AM and 10 AM, and if the driving time between the two locations is 6 hours, then this method will
detect that the arc is unfeasible.

public virtual IloBool isBetterThan(IloFSDecisionI * decision, const
IloFSDecisionMakerI * dm) const

This pure virtual member function is used in the building of the first solution to define the selection ordering of
decisions (better decisions are considered first). When you define your own classes of decisions, you have to
redefine this member function.

This member function returns IloTrue if the invoking decision is considered better than decision. Note that
this result is valid in the current context of building a first solution. Accessing all dynamic values in the search can
be done through the IloDispatcher, encapsulated by the IloFSDecisionMaker class (see
IloFSDecisionMakerI::getDispatcher method).

Note that the semantics of this member function is similar to an operator <. The relation induced by this
member function must be nonreflexive and antisymmetric. In other words, if d1.isBetterThan(d2) is true,
then d2.isBetterThan(d1) must be false.

public virtual void make(IloFSDecisionMakerI * dm)

This pure virtual member function defines the actual semantics of the decision. It is called after a decision has
been selected and checked for feasibility. If you define your own class of decision, you have to redefine this
member function.

public virtual void store(IloFSDecisionMakerI * dm)

This pure virtual member function is responsible for storing the decision in a decision maker. Typically, it registers
the decision with the visits and vehicles that are involved with the decision, and possibly as a global decision.

107

Class IloFSDecisionMakerI
Definition file: ildispat/fsdecision.h
Include file: <ildispat/ilodispatcher.h>

This class is an abstract subclass of IlcGoalI, dedicated to the building of Dispatcher first solutions. A decision
maker builds a Dispatcher solution by selecting, testing, and performing elementary decision objects (instances
of the abstract class IloFSDecisionI). More precisely, the decision maker class is responsible for:

creating decision objects at the beginning of the First Solution process•
storing, organizing, and selecting decision objects•
checking the feasibility of a particular decision•

A decision maker is a goal, and can be used wherever a goal can. The execute member function of a decision
maker calls first the init member function to initialize its decision objects, and then starts a decision-handling
loop which is at the root of the FS framework. The decision-handling loop performs the following operations:

Search for the best decision among decisions to be considered. If none is found, the algorithm
terminates.

1.

Test whether this decision is feasible: if not, then remove it from the decisions to be considered and go
back to Step 1.

2.

Commit the decision. In other words, call its make member function, and call commit on the decision
maker with the decision as an argument to perform side actions, if necessary. Then go back to Step 1.

3.

Constructor Summary

public IloFSDecisionMakerI(IloDispatcher dispatcher)

Method Summary

public virtual void commit(IloFSDecisionI * decision)

public virtual IloFSDecisionI * getBestDecision()

public IloDispatcher getDispatcher() const

public IloEnv getEnv() const

public IloFSDecisionTracerI * getTracer() const

public virtual void init()

public virtual IloBool isLegal(IloFSDecisionI * decision)

public void registerGlobalDecision(IloFSDecisionI * decision)

public void registerVehicleDecision(IloFSDecisionI *
decision, IloVehicle vehicle)

public void registerVisitDecision(IloFSDecisionI * decision,
IloVisit visit)

public void setTracer(IloFSDecisionTracerI * tracer)

public void storeDecision(IloFSDecisionI * decision)

Constructors

public IloFSDecisionMakerI(IloDispatcher dispatcher)

108

This is the constructor for the base decision maker class. This class is an abstract class, so this constructor
should never be called directly, but from a derived class constructor. As decision makers are sub-classes of
IlcGoalI, they are allocated on the underlying solver heap, not on the IloEnv.

Methods

public virtual void commit(IloFSDecisionI * decision)

This member function is called when a decision has been successfully selected and tested, and its make member
function has been called. The default implementation does nothing.

public virtual IloFSDecisionI * getBestDecision()

This pure virtual member function returns the best decision among the decisions that have not yet been
considered. It returns 0 if all decisions have been considered, and the first solution building process is complete.

public IloDispatcher getDispatcher() const

This member function returns the IloDispatcher object attached to the decision maker. Note that, as an IlcGoal,
a decision maker inherits from a getSolver member function.

public IloEnv getEnv() const

This member function returns the environment attached to the decision maker.

public IloFSDecisionTracerI * getTracer() const

This member function returns the associated tracer object, an instance of class IloFSDecisionTracerI, that
is used to trace all events happening in the building of the first solution. By default no tracer object is associated
to a decision maker, and this member function returns 0.

public virtual void init()

This virtual method is responsible for the creation and storage of the decision objects at the beginning of the
execution of a decision maker. This method should be redefined in sub-classes of decision makers.

public virtual IloBool isLegal(IloFSDecisionI * decision)

This member function returns true if the decision is feasible. The default behavior of this member function is
perform a nested solve that tests the feasibility of the decision. This nested solve calls first the make member
function of the decision, which performs the actual links, the justifier goal and the route completion goal. If no
goal fails, then the decision is assumed to be legal, and will actually be performed. If not, it will be removed from
consideration, and a new decision will be selected.

public void registerGlobalDecision(IloFSDecisionI * decision)

109

This member function registers the decision for global searches for best decisions. Only registered decisions are
taken into account when searching for the best global decision. This member function is useful only if you define
your own decision classes.

public void registerVehicleDecision(IloFSDecisionI * decision, IloVehicle vehicle)

This member function registers the decision with the vehicle. It is necessary in algorithms that search for the best
decision among those associated with a vehicle, as in the serial mode of nearest addition heuristics. This
member function is useful only if you define your own decision classes.

public void registerVisitDecision(IloFSDecisionI * decision, IloVisit visit)

This member function registers the decision with the visit. This method should be used to register a decision with
all associated visits. This member function is useful only if you define your own decision classes.

public void setTracer(IloFSDecisionTracerI * tracer)

This member function attaches a tracer object to a decision maker. The tracer object is notified of all events that
happen in the building of the first solution.

public void storeDecision(IloFSDecisionI * decision)

This member function is responsible for storing a newly created decision inside the decision maker.

It relies on the store virtual method of the class IloFSDecisionI to actually store the decision.

This member function should be used when redefining any init method of a decision maker class.

110

Class IloFSDecisionTracerI
Definition file: ildispat/fsdecision.h
Include file: <ildispat/ilodispatcher.h>

This class is an abstract class used to monitor events happening while building the First Solution using decisions.
A decision tracer can be attached to a decision maker object. The decision maker object will call the virtual
member functions of the tracer objects to notify certain events. For example, each time a decision is chosen, the
tracer object is notified. In addition to this abstract base class, Dispatcher provides a default tracer that does
nothing. Subclassing from the default tracer only requires the definition of the member functions you want to
trace, not all of them.

Constructor Summary

protected IloFSDecisionTracerI(IloDispatcher)

Method Summary

public virtual void beginDecisionCommit(const IloFSDecisionI *)

public virtual void beginDecisionTest(const IloFSDecisionI *)

public virtual void beginExecute(const IloFSDecisionMakerI * dm)

public virtual void endDecisionCommit(const IloFSDecisionI *)

public virtual void endDecisionTest(const IloFSDecisionI *)

public virtual void endExecute(const IloFSDecisionMakerI * dm)

public IloDispatcher getDispatcher() const

public virtual void notifyChosen(const IloFSDecisionI *)

public virtual void notifyInfeasible(const IloFSDecisionI *)

public virtual void notifyRejected(const IloFSDecisionI *,
IloFSDecisionRejectCause cause)

public virtual void notifyValidated(const IloFSDecisionI *)

public virtual void registerDecision(const IloFSDecisionI *)

Constructors

protected IloFSDecisionTracerI(IloDispatcher)

This constructor builds a decision tracer from a Dispatcher. As this class is an abstract class, the constructor is
declared as protected.

Methods

public virtual void beginDecisionCommit(const IloFSDecisionI *)

This member function is called before calling the commit member function of the decision maker with the
decision as argument. The decision has been tested as a legal one.

111

public virtual void beginDecisionTest(const IloFSDecisionI *)

This virtual member function is called before a decision is tested for legality using the make member function of
the decision.

public virtual void beginExecute(const IloFSDecisionMakerI * dm)

This member function is called at the beginning of the execution of a decision maker, before any decision has
been created and registered.

public virtual void endDecisionCommit(const IloFSDecisionI *)

This member function is called after calling the commit member function of the decision maker on the decision.

public virtual void endDecisionTest(const IloFSDecisionI *)

This virtual member function is called after executing the make member function of the decision within the testing
of the decision. If the making of the decision fails, this member function may not be called.

public virtual void endExecute(const IloFSDecisionMakerI * dm)

This member function is called at the end of the execution of a decision maker, after all legal visits have been
considered.

public IloDispatcher getDispatcher() const

This member function returns the dispatcher on which the tracer is built.

public virtual void notifyChosen(const IloFSDecisionI *)

This member function is called when a decision has been selected as the best legal decision that can be
performed. This method is called before the decision maker attempts to execute and commit the decision.

public virtual void notifyInfeasible(const IloFSDecisionI *)

This member function is called whenever a decision has been statically computed as not feasible, before it has
been tested. This can happen for nearest addition decisions, when the current route is already too long to accept
the candidate visit.

public virtual void notifyRejected(const IloFSDecisionI *, IloFSDecisionRejectCause
cause)

This virtual member function is called when the decision has been tested using the isLegal member function of
the decision maker, and has been rejected. The rejection can be caused by any of three scenarios:

112

the routing assignment, created by the decision's make, fails•
the route completion goal, used to check that the decision is consistent with the closing of the route, fails•
the justifier goal of the visit (typically a time-placement goal that tries to find a justifying set of starting
times and dates and breaks, if any, along the route), fails

•

The cause of the rejection is identified by the cause enumerated value, which is passed to the method.

public virtual void notifyValidated(const IloFSDecisionI *)

This member function is called when a decision has been accepted by the isLegal member function of the
decision maker. The best decision will be selected from among the validated decisions.

public virtual void registerDecision(const IloFSDecisionI *)

This virtual member function is called when a decision is registered. A decision has to be registered to be taken
into account by the first solution framework.

113

Class IloNADecisionI
Definition file: ildispat/fsdecision.h
Include file: <ildispat/ilodispatcher.h>

This abstract class is a subclass of IloDefaultVisitVehicleFSDecisionI, involving one visit and one
vehicle. This class is dedicated to nearest-addition (NA) type of heuristics and is the base class of two other
(concrete) decision classes modeling the two orientations of NA heuristics. As an abstract class, it defines new
virtual member functions specific to nearest-addition.

Nearest-addition heuristics work by linking visits to the open ends of one or more open vehicles. An arc is defined
as the couple of visits that will be linked by the decision; the candidate visit is always at one end of the arc. The
getArc member function returns the oriented pair of visits that make up the arc.

Constructor Summary

public IloNADecisionI(IloVisit visit, IloVehicle vehicle,
IloNearestAdditionBehavior orientation)

Method Summary

public virtual IloBool calcFeasibility(IloFSDecisionMakerI * dm) const

public IloBool closesVehicle() const

public void display(ostream & out) const

public virtual IloNum evaluate(IloFSDecisionMakerI * dm) const

public void getArc(IloDispatcher dispatcher, IloVisit &
from, IloVisit & to) const

public IloNearestAdditionBehavior getOrientation() const

public virtual void make(IloFSDecisionMakerI * dm)

public IloBool opensVehicle() const

Inherited Methods from IloDefaultVisitVehicleFSDecisionI

calcFeasibility, display, getVisit, isBetterThan, store

Inherited Methods from IloSingleVehicleFSDecisionI

calcFeasibility, display, evaluate, getCost, getInChainStart, getOutChainEnd,
getRouteCompletionGoal, getVehicle, isArcFeasible, isFeasible, isPossible

Inherited Methods from IloFSDecisionI

Compare, Compare, Compare, display, getEnv, getJustifierGoal,
getRouteCompletionGoal, IsArcFeasibleOnDimension, isBetterThan, make, store

114

Constructors

public IloNADecisionI(IloVisit visit, IloVehicle vehicle,
IloNearestAdditionBehavior orientation)

This constructor builds a Nearest-Addition decision from a visit, a vehicle, and an orientation (forward or
backward).

Methods

public virtual IloBool calcFeasibility(IloFSDecisionMakerI * dm) const

This member function is the implementation of the virtual member function of class
IloSingleVehicleFSDecisionI. It returns IloFalse if some static computations can detect that the
decision is infeasible. Otherwise, it returns IloTrue.

Note that this member function's filtering may be incomplete when complex side constraints are present.
Decisions that pass this filtering, but which are infeasible, will be rejected later by the isLegal method.

public IloBool closesVehicle() const

This member function returns true when the decision closes a route. For example, a forward decision returns true
when its visit is a last visit.

public void display(ostream & out) const

This member function displays the decision.

public virtual IloNum evaluate(IloFSDecisionMakerI * dm) const

This member function is the implementation of the virtual member function of class
IloSingleVehicleFSDecisionI. It returns a cost that is used by the decision maker to select the best
decision at a given point. The default implementation of this member function is to return the Dispatcher cost
evaluation of linking the arc associated to the decision (see the getArc member function).

public void getArc(IloDispatcher dispatcher, IloVisit & from, IloVisit & to) const

This method returns the pair of visits (from, to), that the decision will try to link.

Note that the actual pair of visits linked by the decision depends both on the orientation of the decision, and on
the current state of the vehicle route.

public IloNearestAdditionBehavior getOrientation() const

This method returns the orientation (forward, backward) associated with the decision.

public virtual void make(IloFSDecisionMakerI * dm)

115

This member function attempts to link the arc associated to the decision, as returned by getArc.

public IloBool opensVehicle() const

This member function returns true when the decision opens a route. For example, a forward decision returns true
when its visit is a first visit.

116

Class IloNADecisionMakerI
Definition file: ildispat/fsdecision.h
Include file: <ildispat/ilodispatcher.h>

This class is a concrete subclass of IloNADecisionMakerI, dedicated to the nearest-addition type of first
solution heuristics. The decision maker is initialized with two enumerated values which define the type of
heuristics. The orientation parameter defines the orientation in which routes are built, either backward (from last
to first) or forward (from first to last). The extension parameter defines whether the heuristic is a serial or a
parallel one.

Constructor Summary

public IloNADecisionMakerI(IloDispatcher dispatcher, IloNearestAdditionBehavior
orientation, IloNearestAdditionExtension extension, IloBool
filterArcs=IloFalse)

Method Summary

public virtual IloFSDecisionI * createDecision(IloVisit, IloVehicle)

public IloBool filterArcs() const

public virtual IloFSDecisionI * getBestDecision()

public IloNearestAdditionExtension getExtension() const

public IloNearestAdditionBehavior getOrientation() const

public void init(IloVisitArray visits)

public virtual void init()

Inherited Methods from IloDefaultFSDecisionMakerI

createDecision, init, registerVisitVehicleDecision

Inherited Methods from IloFSDecisionMakerI

commit, getBestDecision, getDispatcher, getEnv, getTracer, init, isLegal,
registerGlobalDecision, registerVehicleDecision, registerVisitDecision, setTracer,
storeDecision

Constructors

public IloNADecisionMakerI(IloDispatcher dispatcher, IloNearestAdditionBehavior
orientation, IloNearestAdditionExtension extension, IloBool filterArcs=IloFalse)

This constructor builds a decision maker for a Nearest-Addition heuristic. Four types of heuristics can be built
using combinations of the enumerated parameters: Forward/Backward and Serial/Parallel.

The last argument filterArcs controls whether or not additional filtering of possible decisions is performed.
This extra filtering uses the static method IsArcFeasibleOnDimension on all posted dimensions.

While this extra filtering can effectively reduce the number of considered decisions, it can also impact

117

performance significantly. You can also redefine the calcFeasibility method to check only specific
dimensions using the static method IsArcFeasibleOnDimension .

The default value of this flag is false.

Methods

public virtual IloFSDecisionI * createDecision(IloVisit, IloVehicle)

This virtual method is used by the init method to abstract the actual creation of the decision from a (visit,
vehicle) couple. This method can return zero, in which case the couple is ignored.

public IloBool filterArcs() const

This member function returns true if extra filtering on dimensions is to be performed in the feasibility
computations.

public virtual IloFSDecisionI * getBestDecision()

This member function is the implementation of the virtual member function defined in the abstract
IloNADecisionMakerI class. The behavior of this member function depends on the extension parameter. If
the extension mode is parallel, it returns the best possible decision, among all decisions that are yet to be
considered. If the extension mode is serial, the decision maker fills vehicles one at a time, and this member
function returns the best decision concerning the currently open vehicle. At the beginning, no vehicle is open, and
the member function returns the best decision among all possible decisions. Afterwards, the decision's vehicle
becomes the current vehicle, and only decisions registered with this vehicle are considered. When the vehicle is
full, the decision maker looks again for the best global decision and chooses a new current decision, or
terminates.

public IloNearestAdditionExtension getExtension() const

This member function returns the extension mode used in the decision maker.

public IloNearestAdditionBehavior getOrientation() const

This member function returns the orientation parameter used in the decision maker.

public void init(IloVisitArray visits)

This member function initializes the decision maker from an array of visits. For each visit of the array, it performs
the same action as the init member function.

public virtual void init()

This is a redefinition of the virtual init member function of the IloNADecisionMakerI class.

This method iterates over all visits: for each visit, it iterates on all couples pairs (visit, vehicle), and calls the
virtual method createDecision, defined at this class's level. If the createDecision method returns a valid

118

decision, it is stored using the storeDecision method. If it returns zero, couple pair is simply ignored. The
createDecision method can be used to create decisions only for meaningful pairs (visit, vehicle).

119

Class IloNode
Definition file: ildispat/ilonode.h
Include file: <ildispat/ilodispatcher.h>

Abstractly, a node is a part of the geographical representation of a problem. Intuitively, it represents an
intersection of roads or the location of a customer site. A node is defined by coordinates that provide its location.
More than one visit (instances of IloVisit) can be located at a single node.

For more information, see the concept Dimensions.

See Also: IloDimension2, IloDistance, IloEverywhereNode

Constructor Summary

public IloNode(IloEnv env, IloNum x, IloNum y, IloNum z=0.0, const char * name=0)

public IloNode(IloEnv env, const char * name=0)

public IloNode(IloEnv env, IloBool everywhere, const char * name=0)

Method Summary

public static IloBool Exists(IloEnv env, const char * key)

public static IloNode Find(IloEnv env, const char * key)

public IloNum getDistanceTo(IloNode node, IloDimension2 dim, IloVehicle
vehicle) const

public IloEnv getEnv() const

public const char * getKey() const

public const char * getName() const

public IloAny getObject() const

public IloNum getX() const

public IloNum getY() const

public IloNum getZ() const

public IloBool isEverywhere() const

public void removeKey()

public void setKey(const char * key)

public void setName(const char * name) const

public void setObject(IloAny obj) const

Inner Class

IloNode::Iterator

Constructors

public IloNode(IloEnv env, IloNum x, IloNum y, IloNum z=0.0, const char * name=0)

120

This constructor creates a node whose coordinates are x and y, and allocates it upon env. The optional
argument z is the third coordinate of the node. These coordinates are used in the distance functions
IloDistMax, IloEuclidean, IloGeographical, and IloManhattan and in the goal IloSweepGenerate.
The optional argument name, if provided, becomes the name of the node.

public IloNode(IloEnv env, const char * name=0)

This constructor creates a node and allocates it upon env. The optional argument name, if provided, becomes
the name of the node.

public IloNode(IloEnv env, IloBool everywhere, const char * name=0)

This constructor creates a node and allocates it upon env. If everywhere is set to IloTrue, the node is an
everywhere node, which is not used to compute distance. (Distances from or to everywhere nodes are assumed
to be zero.) The optional argument name, if provided, becomes the name of the node.

Methods

public static IloBool Exists(IloEnv env, const char * key)

This static member function returns IloTrue if an IloNode object having key key exists and IloFalse if not.

public static IloNode Find(IloEnv env, const char * key)

This static member function returns the object corresponding to the key key set using IloNode::setKey. If
there is no object corresponding to key an IloException is thrown.

public IloNum getDistanceTo(IloNode node, IloDimension2 dim, IloVehicle vehicle)
const

This member function returns the distance from the invoking node to node, using extrinsic dimension dim, when
the trip is made on vehicle vehicle.

public IloEnv getEnv() const

This member function returns the environment of the invoking node.

public const char * getKey() const

The following member function returns the key set on the invoking object

public const char * getName() const

This member function returns the name of the invoking extractable object.

121

public IloAny getObject() const

This member function returns a pointer (may be null) to an object associated with the invoking extractable object.
Such an object generally contains user-defined data.

public IloNum getX() const

This member function returns the x-coordinate of the invoking node.

public IloNum getY() const

This member function returns the y-coordinate of the invoking node.

public IloNum getZ() const

This member function returns the z-coordinate of the invoking node.

public IloBool isEverywhere() const

This member function returns IloTrue if the node is an everywhere node. Otherwise, it returns IloFalse.

public void removeKey()

The following member function allows the user to remove the key set on the invoking object.

public void setKey(const char * key)

This member function allows the user to set key on the invoking object. This key is unique. Each node must have
a different key; otherwise, an exception is thrown.

public void setName(const char * name) const

This member function assigns name to the extractable object.

public void setObject(IloAny obj) const

This member function associates the object indicated by obj with the invoking extractable object.

122

Class IloOutOfRouteConstraint
Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This class is a subclass of IloConstraint. This constraint prevents you from adding visits to the route of
vehicle which are too far away from the current route.

Constructor Summary

public IloOutOfRouteConstraint(IloVehicle vehicle, IloDimension2 dim, IloNum coef,
IloOutOfRouteReference ref=IloFirstLastVisits)

Constructors

public IloOutOfRouteConstraint(IloVehicle vehicle, IloDimension2 dim, IloNum coef,
IloOutOfRouteReference ref=IloFirstLastVisits)

This constructor creates an out of route constraint.

There are three variants to this constraint.

The first one, which is typically found in long-haul trucking, is chosen when the parameter ref is equal to
IloFirstLastVisits, which is the default value. It obeys the following rule:

 vehicle.getTransitSumVar(dim) <= coef *
 distance.getDistance(first.getNode(), last.getNode(), vehicle)

where:

distance is the distance object associated with dim•
if the first visit f of the vehicle is located at an "everywhere-node", then first is the visit immediately
after f; otherwise first is f

•

if the last visit l of the vehicle is located at an "everywhere-node", then last is the visit immediately
before l; otherwise last is l

•

coef is a fixed value (at least 1) used to constrain the route•

The second type of constraint is chosen when the parameter ref is equal to IloNextFirstPrevLastVisits.
It obeys the following rule:

 vehicle.getTransitSumVar(dim) <= coef *
 distance.getDistance(nextFirst.getNode(), prevLast.getNode(), vehicle)

where:

distance is the distance object associated with dim•
nextFirst is always the visit immediately after the first visit of the vehicle, whether the first visit is
located at an "everywhere-node" or not

•

prevLast is the visit immediately before the last visit of the vehicle, whether the last visit is located at
an "everywhere-node" or not

•

coef is a fixed value (at least 1) used to constrain the route•

The third variant is chosen when the parameter ref is equal to IloMaxDiameter. The third type of constraint
differs from the ones above by the way the "limiting" distance is computed. This distance depends on the
maximum distance between any two visits on the route, which gives the following constraint:

123

 vehicle.getTransitSumVar(dim) <= coef *
 max(distance.getDistance(j.getNode(), k.getNode(), vehicle)

where j and k are visits belonging to the route of vehicle.

124

Class IloOutputManip
Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

This class enables Dispatcher to define different display functionality for a basic type. Objects of this class can be
used by the overloaded operator (operator<<) or returned by the functions IloTerse or IloVerbose.

See Also: IloTerse, IloVerbose

Constructor Summary

public IloOutputManip(IloOutputManipI * impl)

Method Summary

public void display(ostream &) const

Constructors

public IloOutputManip(IloOutputManipI * impl)

This constructor creates a handle object (an instance of IloOutputManip) from a pointer to an implementation
object (an instance of IloOutputManipI).

Methods

public void display(ostream &) const

This member function is called by operator <<.

125

Class IloPairDecisionI
Definition file: ildispat/fsdecision.h
Include file: <ildispat/ilodispatcher.h>

This abstract class is a subclass of IloSingleVehicleFSDecisionI, involving one vehicle and a pair of
pickup and delivery visits. This class is dedicated to PDP heuristics.

Constructor Summary

protected IloPairDecisionI(IloVehicle, IloVisit pickup, IloVisit delivery)

Method Summary

public virtual IloBool calcFeasibility(IloFSDecisionMakerI * dm) const

public virtual void display(ostream & os) const

public IloVisit getDelivery() const

public IloVisit getPickup() const

public virtual IloBool isBetterThan(IloFSDecisionI * dec, const
IloFSDecisionMakerI * dm) const

public virtual void store(IloFSDecisionMakerI * dm)

Inherited Methods from IloSingleVehicleFSDecisionI

calcFeasibility, display, evaluate, getCost, getInChainStart, getOutChainEnd,
getRouteCompletionGoal, getVehicle, isArcFeasible, isFeasible, isPossible

Inherited Methods from IloFSDecisionI

Compare, Compare, Compare, display, getEnv, getJustifierGoal,
getRouteCompletionGoal, IsArcFeasibleOnDimension, isBetterThan, make, store

Constructors

protected IloPairDecisionI(IloVehicle, IloVisit pickup, IloVisit delivery)

This constructor creates a pair decision from a vehicle and a (pickup, delivery) pair of visits.

Methods

public virtual IloBool calcFeasibility(IloFSDecisionMakerI * dm) const

This member function is an implementation of the pure virtual member function of the
IloSingleVehicleFSDecisionI class. This member function returns IloFalse if it can prove, from a static
analysis, that the insertion of the pair (pickup, delivery) on the decision's vehicle is impossible. Otherwise, it
returns IloTrue.

126

This method checks next and previous variable domains, and also checks that the path constraints on all
dimensions are satisfied.

Note that this member function's filtering may be incomplete when complex side constraints are present.
Decisions that pass this filtering, but which are infeasible, will be rejected later by the isLegal method.

public virtual void display(ostream & os) const

This virtual member function displays the decision object.

public IloVisit getDelivery() const

This member function returns the delivery visit.

public IloVisit getPickup() const

This member function returns the pickup visit.

public virtual IloBool isBetterThan(IloFSDecisionI * dec, const IloFSDecisionMakerI
* dm) const

This member function is an implementation of the pure virtual member function of the IloFSDecisionI class. It
assumes that the two decisions are of the IloPairDecisionI type. This member function tests the two costs
and if the cost of the invoking decision is lower, returns IloTrue.

If the costs are equal, it performs a tie-breaking on the decision's vehicles if they are different. Otherwise, it
performs a tie-breaking on the decision's delivery.

public virtual void store(IloFSDecisionMakerI * dm)

This member function implements the pure virtual method of class IloFSDecisionI. It registers the decision
with its vehicle, its pickup and delivery visits, and also for global searches.

127

Class IloProductDimension
Definition file: ildispat/ilodim.h
Include file: <ildispat/ilodispatcher.h>

Instances of the class IloProductDimension represent the product of distance traveled and quantity
transported along a route. These notions are represented using two external dimensions, one extrinsic dimension
(distance traveled) and one intrinsic dimension (quantity transported). Relating this to variables, for a given visit
v, an extrinsic dimension dim2, an intrinsic dimension dim1 and a product dimension prdim, the following is
true: v.getTransitVar(prdim) == v.getTravelVar(dim2) * (v.getCumulVar(dim1) +
v.getTransitVar(dim1)).

Constructor Summary

public IloProductDimension(IloEnv env, IloDimension1 productDim1, IloDimension2
productDim2, const char * name=0)

public IloProductDimension(IloEnv env, IloDimension1 productDim1, IloDimension2
productDim2, IloBool postIt, const char * name=0)

Method Summary

public static IloBool Exists(IloEnv env, const char * key)

public static IloProductDimension Find(IloEnv env, const char * key)

public IloDimension1 getDimension1() const

public IloDimension2 getDimension2() const

public const char * getKey() const

public void removeKey()

public void setKey(const char * key)

Inherited Methods from IloDimension

assumeTriangleInequality

Constructors

public IloProductDimension(IloEnv env, IloDimension1 productDim1, IloDimension2
productDim2, const char * name=0)

This constructor creates an instance of the class IloProductDimension, associated with the environment
indicated by env. The intrinsic dimension productDim1 represents the quantities transported and the extrinsic
dimension productDim2 represents the distance traveled. The optional argument name, if provided, becomes
the name of the dimension.

public IloProductDimension(IloEnv env, IloDimension1 productDim1, IloDimension2
productDim2, IloBool postIt, const char * name=0)

This constructor creates an instance of the class IloProductDimension, associated with the environment
indicated by env. The intrinsic dimension productDim1 represents the quantities transported and the extrinsic
dimension productDim2 represents the distance traveled. The parameter postIt indicates whether the

128

underlying constraint associated with the product dimension is posted or not. Setting postIt to IloFalse
speeds up the search but should only be done if no constraints are posted on variables related to the invoking
dimension. However, a dimension created with postIt=IloFalse may be safely used in the cost function. The
optional argument name, if provided, becomes the name of the dimension.

Methods

public static IloBool Exists(IloEnv env, const char * key)

This static member function returns IloTrue if an IloProductDimension object having key key exists and
IloFalse if not.

public static IloProductDimension Find(IloEnv env, const char * key)

This static member function returns the product dimension corresponding to the key key set using
IloProductDimension::setKey. If there is no product dimension corresponding to key an exception is
thrown.

public IloDimension1 getDimension1() const

This member function returns the intrinsic dimension associated with the invoking product dimension. This
dimension is used to access the quantity transported between each visit.

public IloDimension2 getDimension2() const

This member function returns the extrinsic dimension associated with the invoking product dimension. This
dimension is used to access the distance traveled between each visit.

public const char * getKey() const

This member function returns the key set on the invoking product dimension.

public void removeKey()

This member function allows the user to remove the key set on the invoking object.

public void setKey(const char * key)

This member function allows the user to set key on the invoking product dimension. This key is unique. Each
product dimension must have a different key; otherwise, an exception is thrown.

129

Class IloRoutingSolution
Definition file: ildispat/ilorsol.h
Include file: <ildispat/ilodispatcher.h>

An instance of IloRoutingSolution stores the details of a solution to a routing problem. An instance of
IloRoutingSolution contains an instance of IloSolution.

Example

The following program creates a solution to a simple vehicle routing problem and writes out a routing solution:

 int main(int argc, char* argv[]) {
 IloEnv env;
 IloModel mdl(env);
 IloDimension2 length(env, IloEuclidean, "Length");
 IloNode depot(env, 0.0, 0.0);
 IloVisit first1(depot, "First 1");
 IloVisit last1(depot, "Last 1");
 IloVisit first2(depot, "First 2");
 IloVisit last2(depot, "Last 2");
 IloVehicle vehicle1(first1, last1, "Vehicle 1");
 mdl.add(vehicle1);
 IloVehicle vehicle2(first2, last2, "Vehicle 2");
 mdl.add(vehicle2);
 vehicle1.setCost(length, 2.0);
 vehicle2.setCost(length, 1.0);
 IloNode n1(env, 1, 1); IloVisit v1(n1, "V1"); mdl.add(v1);
 IloNode n2(env, 1, 2); IloVisit v2(n2, "V2"); mdl.add(v2);
 IloNode n3(env, 2, 7); IloVisit v3(n3, "V3"); mdl.add(v3);
 IloNode n4(env, 3, 1); IloVisit v4(n4, "V4"); mdl.add(v4);
 IloNode n5(env, 5, 3); IloVisit v5(n5, "V5"); mdl.add(v5);
 IloNode n6(env, 0, 3); IloVisit v6(n6, "V6");
 IloConstraint initialSolution =
 (first1.getNextVar() == v1)
 && (v1.getNextVar() == v2)
 && (v2.getNextVar() == v3)
 && (v3.getNextVar() == last1)
 && (first2.getNextVar() == v4)
 && (v4.getNextVar() == v5)
 && (v5.getNextVar() == last2);
 mdl.add(initialSolution);
 IloSolver solver(mdl);
 IloRoutingSolution solution(mdl);
 IloDispatcher dispatcher(solver);
 IloGoal instantiateCost = IloDichotomize(env,
 dispatcher.getCostVar(),
 IloFalse);
 solver.solve(instantiateCost);
 solution.store(solver);
 solver.out() << solution;
 env.end();
 return 0;
 }

The routing solution generated by the program above is produced in the following standard format:

 COST 41.4083
 UNPERFORMED -1
 ROUTE V1 V2 V3 -1
 ROUTE V4 V5 -1

The first line of the solution contains the cost of the routing solution.

The second line lists any unperformed visits. Visits are indicated by their index number. The list is terminated with
-1.

130

The third and following lines list the vehicle routes in vehicle index number order. The visits of each route are
listed, by visit index number, in the order in which they are performed. The “first” and “last” visits are not listed.
The index number -1 indicates the end of the route.

For more information, see the concept Neighborhoods and the class IloSolution in the IBM ILOG Concert
Technology Reference Manual.

See Also: IloRoutingSolution::RouteIterator, IloRoutingSolution::UnperformedVisitIterator,
IloRoutingSolution::VehicleIterator, IloRoutingSolution::VisitIterator

Constructor Summary

public IloRoutingSolution()

public IloRoutingSolution(IloRoutingSolutionI * impl)

public IloRoutingSolution(const IloRoutingSolution & solution)

public IloRoutingSolution(IloEnv env, const char * name=0)

public IloRoutingSolution(IloModel model, const char * name=0)

public IloRoutingSolution(IloSolution solution)

Method Summary

public void add(IloVehicleBreakCon brk) const

public void add(IloVisit visit) const

public void add(IloVehicle vehicle) const

public void add(IloModel model) const

public void copy(IloRoutingSolution solution) const

public void end()

public IloNum getDurationMax(IloVehicleBreakCon brk) const

public IloNum getDurationMin(IloVehicleBreakCon brk) const

public IloEnv getEnv() const

public IloRoutingSolutionI * getImpl() const

public IloVisit getNext(IloVisit visit) const

public IloInt getNumberOfPerformedVisits() const

public IloInt getNumberOfUnperformedVisits() const

public IloNum getObjectiveValue() const

public IloNumVar getObjectiveVar() const

public IloVisit getPosition(IloVehicleBreakCon brk) const

public IloVisit getPrev(IloVisit visit) const

public IloInt getRouteSize(IloVehicle vehicle) const

public IloSolution getSolution() const

public IloNum getStartMax(IloVehicleBreakCon brk) const

public IloNum getStartMin(IloVehicleBreakCon brk) const

public IloVehicle getVehicle(IloVisit visit) const

public IloBool isBound(IloVehicleBreakCon brk) const

public IloBool isPerformed(IloVehicleBreakCon brk) const

public IloBool isPerformed(IloVisit visit) const

131

public IloRoutingSolution makeClone(IloEnv env) const

public operator IloSolution() const

public void operator=(const IloRoutingSolution & h)

public void remove(IloVehicleBreakCon brk) const

public void remove(IloVisit visit) const

public void remove(IloVehicle vehicle) const

public void remove(IloModel model) const

public void setDuration(IloVehicleBreakCon brk, IloNum val)
const

public void setDurationMax(IloVehicleBreakCon brk, IloNum max)
const

public void setDurationMin(IloVehicleBreakCon brk, IloNum min)
const

public void setNext(IloVisit visit, IloVisit next) const

public void setPerformed(IloVehicleBreakCon brk) const

public void setPosition(IloVehicleBreakCon brk, IloVisit visit)
const

public void setPrev(IloVisit visit, IloVisit prev) const

public void setStart(IloVehicleBreakCon brk, IloNum val) const

public void setStartMax(IloVehicleBreakCon brk, IloNum max)
const

public void setStartMin(IloVehicleBreakCon brk, IloNum min)
const

public void setUnperformed(IloVehicleBreakCon brk) const

public void setUnperformed(IloVisit visit) const

public void setVehicle(IloVisit visit, IloVehicle vehicle) const

public void store(IloSolver solver) const

Inner Class

IloRoutingSolution::RouteIterator

IloRoutingSolution::UnperformedVisitIterator

IloRoutingSolution::VehicleIterator

IloRoutingSolution::VisitIterator

Constructors

public IloRoutingSolution()

This constructor creates a routing solution whose handle pointer is null. This object must be assigned before it
can be used.

public IloRoutingSolution(IloRoutingSolutionI * impl)

This constructor creates a handle object (an instance of IloRoutingSolution) from a pointer to an
implementation object (an instance of the class IloRoutingSolutionI).

132

public IloRoutingSolution(const IloRoutingSolution & solution)

This copy constructor creates a handle from a reference to a routing solution. That routing solution and
solution both point to the same implementation object.

public IloRoutingSolution(IloEnv env, const char * name=0)

This constructor creates a routing solution on environment env. It creates an instance of IloSolution and sets
its objective to be the cost variable of the routing problem. The optional argument name, if provided, becomes the
name of the routing solution.

public IloRoutingSolution(IloModel model, const char * name=0)

This constructor creates a routing solution from the environment associated with model. It calls
IloRoutingSolution::add and adds all the visits and vehicles in model to the solution. The optional
argument name, if provided, becomes the name of the routing solution.

public IloRoutingSolution(IloSolution solution)

This constructor creates a routing solution from solution solution. It sets the routing solution's objective
variable to be the cost variable of the routing problem.

Methods

public void add(IloVehicleBreakCon brk) const

This member function adds brk to the invoking routing solution.

public void add(IloVisit visit) const

This member function adds visit to the invoking routing solution.

public void add(IloVehicle vehicle) const

This member function adds vehicle to the invoking routing solution. This is done by adding the first and last
visits of the vehicle to the solution and setting their saved next- and previous-variables such that the first visit is
directly connected to the last. That is, the saved state of the vehicle is empty.

public void add(IloModel model) const

This member function adds model to the invoking routing solution. That is, the status of all visit and vehicle
variables in model are stored in the invoking routing solution.

public void copy(IloRoutingSolution solution) const

133

This member function copies solution to the invoking routing solution. For each variable that has been added
to solution, this member function copies its saved data to the invoking solution. If a particular extractable does not
already exist in the invoking solution, it is automatically added first. If variables were added to the invoking
solution, their restorable status is the same as in solution. Extractables that are present in the invoking solution
but not in the solution being copied do not have their saved information modified.

public void end()

This member function calls end() on the instance of IloSolution contained in the invoking routing solution.

public IloNum getDurationMax(IloVehicleBreakCon brk) const

This member function returns the upper bound of the duration variable of brk stored in the invoking routing
solution.

public IloNum getDurationMin(IloVehicleBreakCon brk) const

This member function returns the lower bound of the duration variable of brk stored in the invoking routing
solution.

public IloEnv getEnv() const

This member function returns the environment of the invoking routing solution.

public IloRoutingSolutionI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking routing
solution.

public IloVisit getNext(IloVisit visit) const

This member function returns the visit corresponding to the value of the next-variable associated with visit in
the invoking routing solution. If the next-variable is unbound, an IloException is thrown.

public IloInt getNumberOfPerformedVisits() const

This member function returns the number of performed visits in the invoking routing solution.

public IloInt getNumberOfUnperformedVisits() const

This member function returns the number of unperformed visits in the invoking routing solution.

public IloNum getObjectiveValue() const

134

This member function returns the value of the objective the previous time it was stored via a call to store.

public IloNumVar getObjectiveVar() const

This member function returns the objective variable of the invoking routing solution.

public IloVisit getPosition(IloVehicleBreakCon brk) const

This member function returns the visit after which brk is performed in the invoking routing solution.

public IloVisit getPrev(IloVisit visit) const

This member function returns the visit corresponding to the value of the previous-variable associated with visit
in the invoking routing solution. If the previous-variable is unbound, an IloException is thrown.

public IloInt getRouteSize(IloVehicle vehicle) const

This member function returns the number of visits, not including the first and last, or “depot,” visits, in the route of
vehicle in the invoking routing solution.

public IloSolution getSolution() const

This member function returns the instance of IloSolution contained in the invoking routing solution.

public IloNum getStartMax(IloVehicleBreakCon brk) const

This member function returns the upper bound of the start variable of brk stored in the invoking routing solution.

public IloNum getStartMin(IloVehicleBreakCon brk) const

This member function returns the lower bound of the start variable of brk stored in the invoking routing solution.

public IloVehicle getVehicle(IloVisit visit) const

This member function returns the vehicle servicing visit in the invoking routing solution.

public IloBool isBound(IloVehicleBreakCon brk) const

This member function returns IloTrue if the position of brk is bound. Otherwise, it returns IloFalse.

public IloBool isPerformed(IloVehicleBreakCon brk) const

135

This member function returns IloTrue if brk is performed in the invoking routing solution.

public IloBool isPerformed(IloVisit visit) const

This member function returns IloTrue if visit is performed in the invoking routing solution. Otherwise, it
returns IloFalse.

public IloRoutingSolution makeClone(IloEnv env) const

This member function makes a clone of the invoking routing solution.

public operator IloSolution() const

This cast operator casts the invoking routing solution to an IloSolution taking the solution returned by
IloRoutingSolution::getSolution().

public void operator=(const IloRoutingSolution & h)

This operator assigns an address to the handle pointer of the invoking routing solution. This address is the
location of the implementation object of the argument solution. After the execution of this operator, the
invoking routing solution and solution both point to the same implementation object.

public void remove(IloVehicleBreakCon brk) const

This member function removes brk from the invoking routing solution.

public void remove(IloVisit visit) const

This member function removes visit from the invoking routing solution.

public void remove(IloVehicle vehicle) const

This member function removes vehicle from the invoking routing solution by removing both the first and last
visit of the vehicle.

public void remove(IloModel model) const

This member function removes all visits and vehicles that appear in the model from the invoking routing solution.

public void setDuration(IloVehicleBreakCon brk, IloNum val) const

This member function sets the value of the duration variable of brk to val in the invoking routing solution.

136

public void setDurationMax(IloVehicleBreakCon brk, IloNum max) const

This member function sets the maximum of the duration variable of brk to max in the invoking routing solution.

public void setDurationMin(IloVehicleBreakCon brk, IloNum min) const

This member function sets the minimum of the duration variable of brk to min in the invoking routing solution.

public void setNext(IloVisit visit, IloVisit next) const

This member function sets next to be the visit just after visit in the invoking routing solution.

public void setPerformed(IloVehicleBreakCon brk) const

This member function sets brk to be performed in the invoking routing solution.

public void setPosition(IloVehicleBreakCon brk, IloVisit visit) const

This member function sets the position of brk to be immediately after visit in the invoking routing solution.

public void setPrev(IloVisit visit, IloVisit prev) const

This member function sets prev to be the visit just before visit in the invoking routing solution.

public void setStart(IloVehicleBreakCon brk, IloNum val) const

This member function sets the value of the start variable of brk to val in the invoking routing solution.

public void setStartMax(IloVehicleBreakCon brk, IloNum max) const

This member function sets the maximum of the start variable of brk to max in the invoking routing solution.

public void setStartMin(IloVehicleBreakCon brk, IloNum min) const

This member function sets the minimum of the start variable of brk to min in the invoking routing solution.

public void setUnperformed(IloVehicleBreakCon brk) const

This member function sets brk to be unperformed in the invoking routing solution.

public void setUnperformed(IloVisit visit) const

137

This member function sets visit to be unperformed in the invoking routing solution.

public void setVehicle(IloVisit visit, IloVehicle vehicle) const

This member function sets vehicle to be the vehicle performing visit in the invoking routing solution.

public void store(IloSolver solver) const

This member function calls store on the instance of IloSolution contained in the invoking routing solution.

138

Class IloSimpleDistanceEvalI
Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher lets you define the distance function for a dimension (for example, the distance, the time, or the cost
necessary for going from one node to another).

This class is an implementation class, a predefined subclass of IloDistanceI, that you use to define a new
distance function expressed by an evaluation function. This evaluation function is of type
IloSimpleDistanceFunction. It differs from IloDistanceEvalI by only considering the two nodes when
computing a distance and ignoring vehicles.

See Also: IloDimension, IloDimension1, IloDimension2, IloDistance, IloSimpleDistanceFunction, IloDistanceI

Constructor and Destructor Summary

public IloSimpleDistanceEvalI(IloEnv env, IloSimpleDistanceFunction distFunction)

Method Summary

public IloNum computeDistance(IloNode node1, IloNode node2, IloVehicle vehicle)
const

Inherited Methods from IloDistanceI

computeDistance, computeDistance, getDistance, getGroup, refresh, setCache,
unsetCache, updateEquivalence

Inherited Methods from IloVisitDistanceI

computeDistance, getDistance, getGroup, refresh, setCache, unsetCache,
updateEquivalence

Constructors and Destructors

public IloSimpleDistanceEvalI(IloEnv env, IloSimpleDistanceFunction distFunction)

This constructor creates a new distance function from the evaluation function distFunction.

Methods

public IloNum computeDistance(IloNode node1, IloNode node2, IloVehicle vehicle)
const

This member function returns a numeric value that represents the distance between node1 and node2. This is
done using a call to distFunction, passing node1 and node2 as parameters.

139

Note

Note that the distances are not vehicle-dependent. The parameter vehicle is included because this is the
default interface to distance data.

140

Class IloSimpleVisitDistanceEvalI
Definition file: ildispat/ilovisitdist.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher lets you define the distance function for a dimension (for example, the distance, the time, or the cost
necessary for going from one node to another).

This class is an implementation class, a predefined subclass of IloVisitDistanceI, which you use to define
a new distance function expressed by an evaluation function. This evaluation function is of type
IloSimpleVisitDistanceFunction. It differs from IloVisitDistanceEvalI by only considering the two
visits when computing a distance and ignoring vehicles.

See Also: IloDimension, IloDimension1, IloDimension2, IloVisitDistance, IloSimpleVisitDistanceFunction,
IloVisitDistanceI

Constructor and Destructor Summary

public IloSimpleVisitDistanceEvalI(IloEnv env, IloSimpleVisitDistanceFunction
distFunction)

Method Summary

public IloNum computeDistance(IloVisit visit1, IloVisit visit2, IloVehicle
vehicle) const

Inherited Methods from IloVisitDistanceI

computeDistance, getDistance, getGroup, refresh, setCache, unsetCache,
updateEquivalence

Constructors and Destructors

public IloSimpleVisitDistanceEvalI(IloEnv env, IloSimpleVisitDistanceFunction
distFunction)

This constructor creates a new distance function from the evaluation function distFunction.

Methods

public IloNum computeDistance(IloVisit visit1, IloVisit visit2, IloVehicle vehicle)
const

This member function returns a numeric value that represents the distance between visit1 and visit2. This
is done using a call to distFunction, passing visit1 and visit2 as parameters.

Note

141

Note that the distances are not vehicle-dependent. The parameter vehicle is included because this is the
default interface to distance data.

142

Class IloSingleVehicleFSDecisionI
Definition file: ildispat/fsdecision.h
Include file: <ildispat/ilodispatcher.h>

The abstract class IloSingleVehicleFSDecisionI is the parent class for decisions concerning one vehicle.
Note that such decisions can involve several visits. For example, placing a pickup, delivery pair on one vehicle is
an example of a decision involving several visits. As the semantics of the decision are not defined at this class
level, the make method is not defined.

To simplify the decision comparison process, a cost is associated to decisions, computed by a new virtual
member function called evaluate. Subclassing from this class requires you to define an evaluate member
function.

Constructor Summary

protected IloSingleVehicleFSDecisionI(IloVehicle vehicle)

Method Summary

public virtual IloBool calcFeasibility(IloFSDecisionMakerI * dm) const

public virtual void display(ostream &) const

public virtual IloNum evaluate(IloFSDecisionMakerI * dm) const

public IloNum getCost() const

public IloVisit getInChainStart(IloDispatcher) const

public IloVisit getOutChainEnd(IloDispatcher) const

public virtual IlcGoal getRouteCompletionGoal(IloFSDecisionMakerI * dm)

public IloVehicle getVehicle() const

public IloBool isArcFeasible(IloDispatcher, IloVisit v1, IloVisit v2)
const

public virtual IloBool isFeasible(IloFSDecisionMakerI *) const

public IloBool isPossible(IloDispatcher, IloVisit) const

Inherited Methods from IloFSDecisionI

Compare, Compare, Compare, display, getEnv, getJustifierGoal,
getRouteCompletionGoal, IsArcFeasibleOnDimension, isBetterThan, make, store

Constructors

protected IloSingleVehicleFSDecisionI(IloVehicle vehicle)

This constructor builds an IloSingleVehicleFSDecisionI from a vehicle.

143

Methods

public virtual IloBool calcFeasibility(IloFSDecisionMakerI * dm) const

This member function computes a feasibility predicate for the decision. As the precise location of the visit on the
vehicle is not defined at this class level, this predicate only tests that the vehicle can be assigned to the visit.
Subclasses should redefine this member function.

Decisions that are proven infeasible by the calcFeasibility predicate will be discarded when searching for
the best decision. Feasibility status is automatically refreshed after each decision is taken.

public virtual void display(ostream &) const

This virtual member function displays the decision object.

public virtual IloNum evaluate(IloFSDecisionMakerI * dm) const

This pure virtual member function computes a cost that is stored. The cost is used to compare decisions.
Decisions with the lowest cost are preferred.

public IloNum getCost() const

This member function returns the cost associated to the decision, as computed by the evaluate member
function.

public IloVisit getInChainStart(IloDispatcher) const

This member function returns the first visit of the chain ending at the last visit of the vehicle associated with the
decision. When building a solution, visits are connected together through their next variable. Connected visits
form a chain.

public IloVisit getOutChainEnd(IloDispatcher) const

This member function returns the last visit of the chain starting at the first visit of the vehicle associated with the
decision. When building a solution, visits are connected together through their next variable. Connected visits
form a chain.

public virtual IlcGoal getRouteCompletionGoal(IloFSDecisionMakerI * dm)

This member function returns the route completion goal used for decision validation. It returns
IloGenerateRoute on the decision vehicle.

public IloVehicle getVehicle() const

This member function returns the vehicle associated with the decision.

144

public IloBool isArcFeasible(IloDispatcher, IloVisit v1, IloVisit v2) const

This member function returns IloFalse when the arc from v1to v2 on the decision vehicle can be detected as
not feasible, and returns IloTrue otherwise.

This member function checks that v2 is in the domain of possible next visits of v1 (and conversely checks that
v1 is a possible previous visits of v2).

This member function also checks the feasibility of the arc on all dimensions by calling the
isArcFeasibleOnDimensions method.

public virtual IloBool isFeasible(IloFSDecisionMakerI *) const

This virtual method is the defines the abstract method declared at the level of the IloFSDecisionI class. It
returns the feasibility predicate, as computed by the calcFeasibility virtual method.

public IloBool isPossible(IloDispatcher, IloVisit) const

This member function returns IloTrue when the vehicle is in the domain of possible vehicles of visit. This
method can be used to compute the feasibility of a decision.

145

Class IloSparseExplicitDistance
Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

This distance class allows the user to specify the distance matrix explicitly using the member function
IloSparseExplicitDistance::setValue.

You should use this class instead of IloExplicitDistance when the number of nodes is quite large, but you
are only interested in the distances between a small set of these nodes.

See Also: IloExplicitDistance, IloDistance, IloComposedDistance

Constructor and Destructor Summary

public IloSparseExplicitDistance(IloEnv env, IloBool symmetric=IloFalse, IloNum
defaultVal=IloInfinity, IloInt size=1)

public IloSparseExplicitDistance(IloEnv env, IloBool symmetric,
IloSimpleDistanceFunction defaultFunction, IloInt size=1)

public ~IloSparseExplicitDistance()

Method Summary

public IloNum getDistance(IloNode node1, IloNode node2, IloVehicle vehicle) const

public IloBool isSet(IloNode node1, IloNode node2) const

public void setValue(IloNode node1, IloNode node2, IloNum value)

Inherited Methods from IloDistance

end, Exists, Find, getDistance, getGroup, getImpl, getKey, refresh, removeKey,
setCache, setKey, unsetCache

Inherited Methods from IloVisitDistance

end, Exists, Find, getDistance, getGroup, getImpl, getKey, refresh, removeKey,
setKey

Constructors and Destructors

public IloSparseExplicitDistance(IloEnv env, IloBool symmetric=IloFalse, IloNum
defaultVal=IloInfinity, IloInt size=1)

This constructor creates a sparse explicit distance object in the environment env. The parameter defaultVal
allows you to specify the value that will be returned when no actual distance between two nodes has been
specified. Before, the returned value was automatically infinity. Now, infinity is returned only if you do not override
it with a value of your choice.

The optional parameter symmetric is set to IloTrue if the sparse distance matrix is symmetric. The distance
matrix is symmetric if, for any two nodes a and b, dist(a,b)=dist(b,a). The optional parameter size allows you to
pre-size the data structure used to store the data.

146

For speed considerations, it is recommended to set the size parameter to approximately the number of entries
that will be in the sparse distance matrix. If the instance is symmetric, you only need to allocate space for half the
entries. In all cases, the constructor will round size to the power of two that is smaller or equal to the parameter
size.

public IloSparseExplicitDistance(IloEnv env, IloBool symmetric,
IloSimpleDistanceFunction defaultFunction, IloInt size=1)

This constructor creates a sparse explicit distance object in the environment env. The parameter
defaultFunction allows you to specify a distance function which will be called when no actual distance
between two nodes has been specified.

The parameter symmetric is set to IloTrue if the sparse distance matrix is symmetric. The distance matrix is
symmetric if, for any two nodes a and b, dist(a,b)=dist(b,a). The optional parameter size allows you to pre-size
the data structure used to store the data.

For speed considerations, it is recommended to set the size parameter to approximately the number of entries
that will be in the sparse distance matrix. If the instance is symmetric, you only need to allocate space for half the
entries. In all cases, the constructor will round size to the power of two that is smaller or equal to the parameter
size.

public ~IloSparseExplicitDistance()

This destructor returns the memory used by the matrix.

Methods

public IloNum getDistance(IloNode node1, IloNode node2, IloVehicle vehicle) const

This member function returns the distance from node1 to node2 in the sparse matrix.

If a value for two given nodes has not been set using setValue, then an exception is thrown. You can use the
member function isSet to check if a distance has already been set.

Note

Note that the distances are not vehicle-dependent. The parameter vehicle is included because this is the
default interface to distance data. However, since setValue does not set vehicle-specific data, the sparse
matrix does not contain vehicle-specific data.

public IloBool isSet(IloNode node1, IloNode node2) const

This member function returns IloTrue if the distance between node1 and node2 has already been set by
setValue.

The class IloSparseExplicitDistance throws an exception if you try to access data that has not been set
using setValue.

public void setValue(IloNode node1, IloNode node2, IloNum value)

This member function sets the explicit distance value between two nodes, node1 and node2.

147

Note

Note that you can change a pre-existing value by using setValue several times. The distance is set to the
value specified by the last call to setValue.

148

Class IloSparseExplicitVisitDistance
Definition file: ildispat/ilovisitdist.h
Include file: <ildispat/ilodispatcher.h>

This distance class allows the user to specify the distance matrix explicitly using the member function
IloSparseExplicitVisitDistance::setValue.

You should use this class instead of IloExplicitVisitDistance when the number of visits is quite large, but
when you are only interested in the distances between a small set of these visits.

See Also: IloExplicitVisitDistance, IloVisitDistance, IloComposedVisitDistance

Constructor and Destructor Summary

public IloSparseExplicitVisitDistance(IloEnv env, IloBool symmetric=IloFalse,
IloNum defaultVal=IloInfinity, IloInt size=1)

public IloSparseExplicitVisitDistance(IloEnv env, IloBool symmetric,
IloSimpleVisitDistanceFunction defaultFunc, IloInt size=1)

public ~IloSparseExplicitVisitDistance()

Method Summary

public IloNum getDistance(IloVisit visit1, IloVisit visit2, IloVehicle veh) const

public IloBool isSet(IloVisit visit1, IloVisit visit2) const

public void setValue(IloVisit visit1, IloVisit visit2, IloNum value)

Inherited Methods from IloVisitDistance

end, Exists, Find, getDistance, getGroup, getImpl, getKey, refresh, removeKey,
setKey

Constructors and Destructors

public IloSparseExplicitVisitDistance(IloEnv env, IloBool symmetric=IloFalse,
IloNum defaultVal=IloInfinity, IloInt size=1)

This constructor creates a sparse explicit distance object in the environment env. The parameter defaultVal
allows you to specify the value that will be returned when no actual distance between two visits has been
specified. Infinity is returned only if you do not override it with a value of your choice.

The optional parameter symmetric is set to IloTrue if the sparse distance matrix is symmetric. The distance
matrix is symmetric if, for any two visits a and b, dist(a,b)=dist(b,a). The optional parameter size allows you to
pre-size the data structure used to store the data.

For speed considerations, it is recommended to set the size parameter to approximately the number of entries
that will be in the sparse distance matrix. If the instance is symmetric, you only need to allocate space for half the
entries. In all cases, the constructor will round size to the power of two that is smaller or equal to the parameter
size.

public IloSparseExplicitVisitDistance(IloEnv env, IloBool symmetric,

149

IloSimpleVisitDistanceFunction defaultFunc, IloInt size=1)

This constructor creates a sparse explicit distance object in the environment env. The parameter defaultFunc
allows you to specify a distance function which will be called when no actual distance between two visits has
been specified.

The parameter symmetric is set to IloTrue if the sparse distance matrix is symmetric. The distance matrix is
symmetric if, for any two visits a and b, dist(a,b)=dist(b,a). The optional parameter size allows you to pre-size
the data structure used to store the data.

For speed considerations, it is recommended to set the size parameter to approximately the number of entries
that will be in the sparse distance matrix. If the instance is symmetric, you only need to allocate space for half the
entries. In all cases, the constructor will round size to the power of two that is smaller or equal to the parameter
size.

public ~IloSparseExplicitVisitDistance()

This destructor returns the memory used by the matrix.

Methods

public IloNum getDistance(IloVisit visit1, IloVisit visit2, IloVehicle veh) const

This member function returns the distance from visit1 to visit2 in the sparse matrix.

If a value for two given nodes has not been set using setValue, then an exception is thrown. You can use the
member function isSet to check if a distance has already been set.

Note

Note that the distances are not vehicle-dependent. The parameter veh is included because this is the default
interface to distance data. However, since setValue does not set vehicle-specific data, the sparse matrix
does not contain vehicle-specific data.

public IloBool isSet(IloVisit visit1, IloVisit visit2) const

This member function returns IloTrue if the distance between visit1 and visit2 has already been set by
setValue.

The class IloSparseExplicitVisitDistance throws an exception if you try to access data that has not
been set using setValue.

public void setValue(IloVisit visit1, IloVisit visit2, IloNum value)

This member function sets the explicit distance value between two visits, visit1 and visit2.

Note

Note that you can change a pre-existing value by using setValue several times. The distance is set to the
value specified by the last call to setValue.

150

151

Class IloTravelSumVar
Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

A travel sum variable is a constrained variable representing the sum of the travel variables of the visits belonging
to the route of a vehicle for a given extrinsic dimension.

This variable can be used to limit the total distance traveled by a vehicle.

See Also: IloDimension2, IloDelaySumVar, IloVehicle, IloVisit, operator+, IloVehicle::getTravelSumVar

Constructor Summary

public IloTravelSumVar(IloVehicle vehicle, IloDimension2 dim2)

Constructors

public IloTravelSumVar(IloVehicle vehicle, IloDimension2 dim2)

This constructor creates a travel sum variable from a vehicle and an extrinsic dimension.

152

Class IloVehicle
Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

Vehicles carry the goods delivered during visits. They interact with other objects through dimensions that are
used to express costs and capacities. They can also have variable start and end times (which are defined as time
windows on the vehicle's first and last visits).

See Also: IloDimension, IloDimension1, IloDimension2, IloVehicleArray, IloVehicleBreakCon, IloVehicleVar,
IloVehicleToNumFunction, IloVisit

Constructor Summary

public IloVehicle(IloVisit first, IloVisit last, const char * name=0)

public IloVehicle(IloEnv env, const char * name=0)

Method Summary

public static IloBool Exists(IloEnv env, const char * key)

public static IloVehicle Find(IloEnv env, const char * key)

public IloNum getCapacity(IloDimension1 dim) const

public IloNum getCost(IloDimension dim) const

public IloNum getCost() const

public IloNumVar getCostVar() const

public IloDelaySumVar getDelaySumVar(IloDimension2 dim) const

public IloVisit getFirstVisit() const

public const char * getKey() const

public IloVisit getLastVisit() const

public IloNum getSpeed(IloDimension2 dim) const

public IloNumVar getTransitSumVar(IloDimension dim) const

public IloTravelSumVar getTravelSumVar(IloDimension2 dim) const

public void removeKey()

public void setCapacity(IloDimension1 dim, IloNum capacity) const

public void setCost(IloDimension dim, IloNumToNumStepFunction func)

public void setCost(IloDimension dim, IloNumToNumSegmentFunction
func)

public void setCost(IloDimension dim, IloVisitToNumFunction func,
IloVisitVar var) const

public void setCost(IloDimension dim, IloNum unitCost) const

public void setCost(IloNum val) const

public void setFirstVisit(IloVisit first) const

public void setKey(const char * key)

public void setLastVisit(IloVisit last) const

public void setSpeed(IloDimension2 dim, IloNum speed) const

153

Constructors

public IloVehicle(IloVisit first, IloVisit last, const char * name=0)

This constructor creates a vehicle. The vehicle's starting and ending visits are first and last. The optional
argument name, if provided, becomes the name of the vehicle.

public IloVehicle(IloEnv env, const char * name=0)

This constructor creates a vehicle associated with environment env. The optional argument name, if provided,
becomes the name of the vehicle.

This vehicle does not have predetermined starting and ending visits. In fact, the start and end visits for the
vehicle are located at “everywhere” nodes, which has the effect that the distance function is not called to
compute any distance from the start or end point of the vehicle. Instead, all such distances are assumed to be
zero.

Methods

public static IloBool Exists(IloEnv env, const char * key)

This static member function returns IloTrue if an IloVehicle object having key key exists and IloFalse if
not.

public static IloVehicle Find(IloEnv env, const char * key)

This static member function returns the object corresponding to the key key set using IloVehicle::setKey. If
there is no object corresponding to key an IloException is thrown.

public IloNum getCapacity(IloDimension1 dim) const

This member function returns the capacity of the invoking vehicle object in the intrinsic dimension dim.

public IloNum getCost(IloDimension dim) const

This member function returns the cost per unit of dim associated with the invoking vehicle object.

public IloNum getCost() const

This member function returns the fixed cost associated with the invoking vehicle object.

public IloNumVar getCostVar() const

This member function returns an object corresponding to the total cost (fixed and proportional) associated with
the invoking vehicle object.

154

public IloDelaySumVar getDelaySumVar(IloDimension2 dim) const

This member function returns a numerical variable representing the sum of the delay variables of the visits
belonging to the route of the invoking vehicle for the extrinsic dimension dim.

If the extrinsic dimension represents time, this variable can be used to limit the total service time spent by a
vehicle.

See Also: IloDelaySumVar

public IloVisit getFirstVisit() const

This member function returns the first visit of the invoking vehicle object, which corresponds to the vehicle's start
point.

public const char * getKey() const

This member function returns the key set on the invoking object

public IloVisit getLastVisit() const

This member function returns the last visit made by the invoking vehicle object, which corresponds to the
vehicle's end point.

public IloNum getSpeed(IloDimension2 dim) const

This member function returns the speed of the invoking vehicle object in dimension dim.

public IloNumVar getTransitSumVar(IloDimension dim) const

This member function returns a numerical variable corresponding to the sum of the transit variables, for
dimension dim, for all visits assigned to the invoking vehicle.

public IloTravelSumVar getTravelSumVar(IloDimension2 dim) const

This member function returns a numerical variable representing the sum of the travel variables of the visits
belonging to the route of the invoking vehicle for the extrinsic dimension dim.

This variable can be used to limit the total distance traveled by a vehicle.

See Also: IloTravelSumVar

public void removeKey()

This member function allows the user to remove the key set on the invoking object.

155

public void setCapacity(IloDimension1 dim, IloNum capacity) const

This member function sets the capacity of the invoking vehicle object to capacity according to dimension dim.

public void setCost(IloDimension dim, IloNumToNumStepFunction func)

This member function associates a cost function with the invoking vehicle object. The function func represents
the value of the cost for the dimension dim according to the value of the corresponding transit sum variable. If a
cost function has already been specified using this member function, it will be replaced by func. If a cost function
has been specified using cost coefficients, the function func is added to it.

public void setCost(IloDimension dim, IloNumToNumSegmentFunction func)

This member function associates a cost function with the invoking vehicle object. The function func represents
the value of the cost for the dimension dim according to the value of the corresponding transit sum variable. If a
cost function has already been specified using this member function, it will be replaced by func. If a cost function
has been specified using cost coefficients, the function func is added to it.

public void setCost(IloDimension dim, IloVisitToNumFunction func, IloVisitVar var)
const

This member function associates a visit-dependent proportional cost with the invoking vehicle object. The
function func represents the value of the cost coefficient for the dimension dim according to the value of var.

public void setCost(IloDimension dim, IloNum unitCost) const

This member function associates a proportional cost with the invoking vehicle object. This cost is equal to
unitCost per unit of dimension dim. In Dispatcher, the cost function can use negative elements and thus be
negative itself if so desired. This member function can be used with a negative value for unitCost.

public void setCost(IloNum val) const

This member function associates a fixed cost, val, with the invoking vehicle object. In Dispatcher, the cost
function can use negative elements and thus be negative itself if so desired. This member function can be used
with a negative value for val.

public void setFirstVisit(IloVisit first) const

This member function sets first as the first visit for the invoking vehicle object.

public void setKey(const char * key)

This member function allows the user to set key on the invoking object. This key is unique. Each vehicle must
have a different key; otherwise, an exception is thrown.

156

public void setLastVisit(IloVisit last) const

This member function sets last as the last visit for the invoking vehicle object.

public void setSpeed(IloDimension2 dim, IloNum speed) const

This member function sets the speed of dim to be equal to speed. The result of the computation of distance
between two nodes is divided by the factor of speed. For example, if the instance of IloDistance associated
with dim returns 6 for a pair of nodes, and the speed of the vehicle is set to 2, the distance taken into account by
the vehicle will be 6/2 = 3. By default, the speed of a vehicle is equal to 1.

157

Class IloVehicleBreakCon
Definition file: ildispat/ilobreak.h
Include file: <ildispat/ilodispatcher.h>

A break is a period of time during a route when a vehicle is not available to make a visit, such as during the
driver's lunch period. Breaks are performed by a vehicle in a particular dimension (usually time). The break
includes a start time, duration, and a position that can be variable. Breaks can interrupt customer visits or not, as
desired.

Breaks operate by using up waiting time between one visit and the next. (See IloVisit::getWaitVar.)

Breaks are instantiated through the use of goals.

See Also: IloDimension2, IloInstantiateVehicleBreak, IloInstantiateVehicleBreakDuration,
IloInstantiateVehicleBreakPosition, IloInstantiateVehicleBreaks, IloInstantiateVehicleBreakStart, IloVehicle

Constructor Summary

public IloVehicleBreakCon(IloVehicle vehicle, IloDimension2 dim2, IloNumVar
startVar, IloNumVar durationVar, const char * name=0)

public IloVehicleBreakCon(IloVehicle vehicle, IloDimension2 dim2, IloNumVar
startVar, IloNum duration, const char * name=0)

Method Summary

public static IloBool Exists(IloEnv env, const char * key)

public static IloVehicleBreakCon Find(IloEnv env, const char * key)

public IloDimension2 getDimension() const

public IloNumVar getDurationVar() const

public const char * getKey() const

public IloVisitVar getPositionVar() const

public IloNumVar getStartVar() const

public IloVehicle getVehicle() const

public IloConstraint justAfter(IloVisitArray visits) const

public IloConstraint justAfter(IloVisit visit) const

public IloConstraint performed() const

public void removeKey()

public void setKey(const char * key)

public IloConstraint unperformed() const

Constructors

public IloVehicleBreakCon(IloVehicle vehicle, IloDimension2 dim2, IloNumVar
startVar, IloNumVar durationVar, const char * name=0)
public IloVehicleBreakCon(IloVehicle vehicle, IloDimension2 dim2, IloNumVar
startVar, IloNum duration, const char * name=0)

158

These constructors create a vehicle break constraint on vehicle vehicle in the dimension dim with a start time
of startVar and duration of either durationVar or duration.

Methods

public static IloBool Exists(IloEnv env, const char * key)

This static member function returns IloTrue if an IloVehicleBreakCon object having key key exists and
IloFalse if not.

public static IloVehicleBreakCon Find(IloEnv env, const char * key)

This static member function returns the object corresponding to the key key set using
IloVehicleBreakCon::setKey. If there is no object corresponding to key an IloException is thrown.

public IloDimension2 getDimension() const

This member function returns the dimension associated with the invoking vehicle break constraint.

public IloNumVar getDurationVar() const

This member function returns the constrained expression associated with the invoking vehicle break constraint
representing the duration of the break.

public const char * getKey() const

The following member function returns the key set on the invoking object

public IloVisitVar getPositionVar() const

This member function returns the visit-variable associated with the invoking vehicle break constraint. This
visit-variable, an instance of IloVisitVar, is a constrained variable representing the visit immediately before
the break.

public IloNumVar getStartVar() const

This member function returns the numeric variable associated with the invoking vehicle break constraint
representing the start time of the break.

public IloVehicle getVehicle() const

This member function returns the vehicle with which the invoking vehicle break constraint is associated.

public IloConstraint justAfter(IloVisitArray visits) const

159

This member function constrains the invoking break to happen just after one of the visits of visits.

public IloConstraint justAfter(IloVisit visit) const

This member function constrains the invoking break to happen just after visit.

public IloConstraint performed() const

This member function returns a constraint stating that the invoking vehicle break must be performed. This
constraint is useful for creating goals to instantiate breaks when those breaks are involved in metaconstraints.

public void removeKey()

The following member function allows the user to remove the key set on the invoking object.

public void setKey(const char * key)

This member function allows the user to set key on the invoking object. This key is unique. Each break must
have a different key; otherwise, an exception is thrown.

public IloConstraint unperformed() const

This member function returns a constraint stating that the invoking vehicle break must not be performed. This
constraint is useful for creating goals to instantiate breaks when those breaks are involved in metaconstraints.

160

Class IloVehicleBreakConIterator
Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

An instance of the class IloVehicleBreakConIterator is an iterator that traverses all instances of the class
IloVehicleBreakCon in a model.

See Also: IloVehicleBreakCon

Constructor Summary

public IloVehicleBreakConIterator(IloModel mdl, IloBool deep=IloTrue)

public IloVehicleBreakConIterator(const IloVehicleBreakConIterator & iter)

Method Summary

public IloBool ok() const

public IloVehicleBreakCon operator*() const

public const IloVehicleBreakConIterator & operator++()

public const IloVehicleBreakConIterator & operator=(const
IloVehicleBreakConIterator & iter)

Constructors

public IloVehicleBreakConIterator(IloModel mdl, IloBool deep=IloTrue)

This constructor creates an iterator which will iterate over all instances of IloVehicleBreakCon in model mdl.
If the parameter deep has the value IloTrue, all submodels of mdl will form part of the iteration. If deep has
the value IloFalse, submodels will not be investigated by the iterator.

public IloVehicleBreakConIterator(const IloVehicleBreakConIterator & iter)

This copy constructor creates an iterator from another iterator iter. After execution, both the newly created
iterator and iter will be at the same position within the model.

Methods

public IloBool ok() const

This member function returns IloFalse if the iterator has scanned all instances of IloVehicleBreakCon in
the model. Otherwise, it returns IloTrue.

public IloVehicleBreakCon operator*() const

This operator returns the instance of IloVehicleBreakCon at which the iterator is currently pointing.

161

public const IloVehicleBreakConIterator & operator++()

This operator moves the iterator on to the next instance of IloVehicleBreakCon within the model, providing
one exists. The operator returns the invoking iterator at its new position.

public const IloVehicleBreakConIterator & operator=(const
IloVehicleBreakConIterator & iter)

This assignment operator copies the state of iter to the iterator on the left-hand side of the operator. After
execution, both iterators will be at the same position within the model.

162

Class IloVehicleEquiv
Definition file: ildispat/ilovehicleequiv.h
Include file: <ildispat/ilodispatcher.h>

This class is the handle class of IloVehicleEquivI, which is used to define equivalence of pairs of vehicles.

When distance functions are specified in Dispatcher, they can be cached, if distance computations are slow,
through IloDimension2::setCached. (Normally, caching of distance functions is disabled.) When the
distance depends not only on the starting and ending node, but the vehicle used to perform the trip, it becomes
useful to introduce the notion of vehicle equivalence.

If two vehicles are specified as equivalent with respect to a particular distance metric and the distance between
two nodes using one of the vehicles resides in the cache, the distance between the same two nodes using the
other vehicle can be assumed to be the same. Thus, fewer cache slots are used. It is functionally unnecessary to
specify a vehicle equivalence class in Dispatcher, but definition of such a class can lead to speed increases
through better caching of distance data.

See Also: IloAllVehiclesDifferent, IloAllVehiclesEquivalent, IloVehicleEquivEvalI, IloVehicleEquivI

Constructor and Destructor Summary

public IloVehicleEquiv(IloEnv env, IloVehicleEquivFunction equivFunction)

Method Summary

public void end()

public IloEnv getEnv() const

public IloInt getGroup(IloVehicle vehicle) const

public IloBool isEquivalent(IloVehicle vehicle1, IloVehicle vehicle2) const

public void update(IloEnv env) const

Constructors and Destructors

public IloVehicleEquiv(IloEnv env, IloVehicleEquivFunction equivFunction)

This constructor creates a vehicle equivalence object for the environment env, using vehicle equivalence
function equivFunction. In order to do this, the constructed handle will point to an implementation of type
IloVehicleEquivEvalI, which was constructed using equivFunction.

Methods

public void end()

This member function frees all resources used by the invoking vehicle equivalence object. You cannot use the
invoking vehicle equivalence object after a call to this member function.

public IloEnv getEnv() const

163

This member function returns the environment of the invoking vehicle equivalence object.

public IloInt getGroup(IloVehicle vehicle) const

This member function returns the group, which is internally created and managed by Dispatcher, for vehicle.

Two vehicles deemed equal by IloVehicleEquiv::isEquivalent have the same group identifier. Those
that are deemed different by isEquivalent have different group identifiers.

public IloBool isEquivalent(IloVehicle vehicle1, IloVehicle vehicle2) const

This member function makes a call to IloVehicleEquivI::isEquivalent and returns IloTrue if
vehicle1 and vehicle2 are equivalent. It returns IloFalse otherwise.

public void update(IloEnv env) const

This member function is called when the equivalence of vehicles may have changed, for example when a new
vehicle is created.

164

Class IloVehicleEquivEvalI
Definition file: ildispat/ilovehicleequiv.h
Include file: <ildispat/ilodispatcher.h>

This class is a special subclass of IloVehicleEquivI, which redefines the member function
IloVehicleEquivEvalI::isEquivalent using an equivalence function passed as an argument in the
constructor.

The type of this vehicle equivalence evaluation function is IloVehicleEquivFunction.

See Also: IloAllVehiclesDifferent, IloAllVehiclesEquivalent, IloVehicleEquiv, IloVehicleEquivI

Constructor and Destructor Summary

public IloVehicleEquivEvalI(IloEnv env, IloVehicleEquivFunction equivFunction)

Method Summary

public IloBool isEquivalent(IloVehicle vehicle1, IloVehicle vehicle2) const

Inherited Methods from IloVehicleEquivI

getEnv, getGroup, isEquivalent, update

Constructors and Destructors

public IloVehicleEquivEvalI(IloEnv env, IloVehicleEquivFunction equivFunction)

This constructor creates an instance of a vehicle equivalence class from a routing plan and an equivalence
function. It works by redefining IloVehicleEquivI::isEquivalent to use the function equivFunction.

Methods

public IloBool isEquivalent(IloVehicle vehicle1, IloVehicle vehicle2) const

This function makes a call to equivFunction, using two vehicles as arguments. If the two vehicles are
equivalent, IloTrue is returned. Otherwise, IloFalse is returned.

165

Class IloVehicleEquivI
Definition file: ildispat/ilovehicleequiv.h
Include file: <ildispat/ilodispatcher.h>

The equivalence of pairs of vehicles, for distance caching purposes, is specified by defining the pure virtual
member function IloVehicleEquivI::isEquivalent, which takes two vehicles as arguments.

If the equivalence of your vehicles can be expressed by a function rather than a class, you can use
IloVehicleEquivEvalI, or the constructor IloVehicleEquiv specifying a function.

When distance functions are specified in Dispatcher, they can be cached, if distance computations are slow,
through IloDimension2::setCached. (Normally, caching of distance functions is disabled.) When the
distance depends not only on the starting and ending node, but the vehicle used to perform the trip, it becomes
useful to introduce the notion of vehicle equivalence.

If two vehicles are specified as equivalent with respect to a particular distance metric and the distance between
two nodes using one of the vehicles resides in the cache, the distance between the same two nodes using the
other vehicle can be assumed to be the same. Thus, fewer cache slots are used. It is functionally unnecessary to
specify a vehicle equivalence class in Dispatcher, but definition of such a class can lead to speed increases
through better caching of distance data.

See Also: IloAllVehiclesDifferent, IloAllVehiclesEquivalent, IloVehicleEquiv, IloVehicleEquivEvalI

Constructor and Destructor Summary

public IloVehicleEquivI(IloEnv env)

Method Summary

public IloEnv getEnv() const

public IloInt getGroup(const IloVehicle vehicle) const

public virtual IloBool isEquivalent(IloVehicle vehicle1, IloVehicle vehicle2)
const

public void update()

Constructors and Destructors

public IloVehicleEquivI(IloEnv env)

This constructor creates a vehicle equivalence object associated with vehicles from the environment env.

Methods

public IloEnv getEnv() const

This member function returns the environment of the invoking vehicle equivalence object.

166

public IloInt getGroup(const IloVehicle vehicle) const

This member function returns the group, which is internally created and managed by Dispatcher, for vehicle.
Two vehicles deemed equivalent by isEquivalent have the same group identifier. Those that are deemed
different by isEquivalent have different group identifiers.

public virtual IloBool isEquivalent(IloVehicle vehicle1, IloVehicle vehicle2) const

This pure virtual member function returns IloTrue if the two instances of IloVehicle are equivalent.
Otherwise, it returns IloFalse.

public void update()

This member function is called when the equivalence of vehicles may have changed, for example when a new
vehicle is created.

Note

It is not normally necessary to redefine this function, as its default behavior is to update an internal table of
groups for the vehicles. However, it can be defined if additional behavior is desired.

In such a case, IloVehicleEquivI::update must always be called in any redefined update function. It is
recommended that this function be redefined with extreme care, and only where necessary.

NEEDS TO BE REMOVED AND REPLACED BY void update(IloEnv env)

167

Class IloVehicleIterator
Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

An instance of the class IloVehicleIterator is an iterator that traverses all instances of the class
IloVehicle in a model.

See Also: IloVehicle

Constructor Summary

public IloVehicleIterator(IloModel mdl, IloBool deep=IloTrue)

public IloVehicleIterator(const IloVehicleIterator & iter)

Method Summary

public IloBool ok() const

public IloVehicle operator*() const

public const IloVehicleIterator & operator++()

public const IloVehicleIterator & operator=(const IloVehicleIterator & iter)

Constructors

public IloVehicleIterator(IloModel mdl, IloBool deep=IloTrue)

This constructor creates an iterator which will iterate over all instances of IloVehicle in model mdl. If the
parameter deep has the value IloTrue, all submodels of mdl will form part of the iteration. If deep has the
value IloFalse, submodels will not be investigated by the iterator.

public IloVehicleIterator(const IloVehicleIterator & iter)

This copy constructor creates an iterator from another iterator iter. After execution, both the newly created
iterator and iter will be at the same position within the model.

Methods

public IloBool ok() const

This member function returns IloFalse if the iterator has scanned all instances of IloVehicle in the model.
Otherwise, it returns IloTrue.

public IloVehicle operator*() const

This operator returns the instance of IloVehicle at which the iterator is currently pointing.

168

public const IloVehicleIterator & operator++()

This operator moves the iterator on to the next instance of IloVehicle within the model, providing one exists.
The operator returns the invoking iterator at its new position.

public const IloVehicleIterator & operator=(const IloVehicleIterator & iter)

This assignment operator copies the state of iter to the iterator on the left-hand side of the operator. After
execution, both iterators will be at the same position within the model.

169

Class IloVehicleLIFOConstraint
Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This class is a subclass of IloConstraint. This constraint ensures that pickup and delivery visits are
performed in reverse order along the route of a vehicle. This is equivalent to stating that what is loaded last on
the vehicle must be unloaded first.

See Also: IloVehicle

Constructor Summary

public IloVehicleLIFOConstraint(IloVehicle vehicle)

Constructors

public IloVehicleLIFOConstraint(IloVehicle vehicle)

This constructor creates a last-in, first-out constraint on vehicle.

170

Class IloVehiclePair
Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This class represents a pair of vehicles.

See Also: IloVehicle

Constructor Summary

public IloVehiclePair(IloVehicle vehicle1, IloVehicle vehicle2)

Method Summary

public IloVehicle getVehicle1() const

public IloVehicle getVehicle2() const

Constructors

public IloVehiclePair(IloVehicle vehicle1, IloVehicle vehicle2)

This constructor creates a vehicle pair from the two vehicles vehicle1 and vehicle2.

Methods

public IloVehicle getVehicle1() const

This member function returns the first vehicle of the pair.

public IloVehicle getVehicle2() const

This member function returns the second vehicle of the pair.

171

Class IloVehicleToNumFunction
Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This class is the handle class of IloVehicleToNumFunctionI, the class that defines a function from a vehicle
to an IloNum. The member function IloVehicleToNumFunction::getValue returns the value
corresponding to a visit. The member function IloVehicleToNumFunction::getUnperformedValue
returns the value corresponding to the unperformed state of a visit. This function can be used to create an
IloNumVar whose domain is the values of the function accessed through an IloVehicleVar.

See Also: IloVehicle, IloVehicleVar

Constructor Summary

public IloVehicleToNumFunction()

public IloVehicleToNumFunction(IloVehicleToNumFunctionI * impl)

public IloVehicleToNumFunction(const IloVehicleToNumFunction & func)

public IloVehicleToNumFunction(IloEnv env, IloVehicleArray vehicles, IloNumArray
values)

public IloVehicleToNumFunction(IloEnv env, IloVehicleArray vehicles, IloNumArray
values, IloNum unperformedValue, IloNum defaultValue)

public IloVehicleToNumFunction(IloEnv env, IloVehicleArray vehicles, IloNumArray
values, IloNum unperformedValue)

public IloVehicleToNumFunction(IloEnv env, IloSimpleVehicleToNumFunction f)

Method Summary

public IloVehicleToNumFunctionI * getImpl() const

public IloNum getUnperformedValue() const

public IloNum getValue(IloVehicle vehicle) const

public IloNumVar operator()(IloVehicleVar var) const

public void operator=(const IloVehicleToNumFunction & func)

Constructors

public IloVehicleToNumFunction()

This constructor creates a vehicle to IloNum function whose handle pointer is null. This object must be assigned
before it can be used.

public IloVehicleToNumFunction(IloVehicleToNumFunctionI * impl)

This constructor creates a handle object (an instance of IloVehicleToNumFunction) from a pointer to an
implementation object (an instance of the class IloVehicleToNumFunctionI).

public IloVehicleToNumFunction(const IloVehicleToNumFunction & func)

172

This copy constructor creates a handle from a reference to a vehicle to IloNum function. That vehicle to IloNum
object and func both point to the same implementation object.

public IloVehicleToNumFunction(IloEnv env, IloVehicleArray vehicles, IloNumArray
values)

This constructor takes an array of vehicles and an array of values. Both arrays should have the same size. The
vehicle and the value with the same index in these arrays are associated.

public IloVehicleToNumFunction(IloEnv env, IloVehicleArray vehicles, IloNumArray
values, IloNum unperformedValue, IloNum defaultValue)

This constructor takes an array of vehicles and an array of values. The vehicle and the value with the same index
in these arrays are associated. The value unperformedValue corresponds to the visit unperformed state. The
value defaultValue is the value returned by the function for a vehicle for which no value has been specified.
The implementation object of the newly created handle is an instance of IloArrayVehicleToNumFunctionI.

public IloVehicleToNumFunction(IloEnv env, IloVehicleArray vehicles, IloNumArray
values, IloNum unperformedValue)

This constructor takes an array of vehicles and an array of values. The vehicle and the value with the same index
in these arrays are associated. The value unperformedValue corresponds to the visit unperformed state. The
implementation object of the newly created handle is an instance of IloArrayVehicleToNumFunctionI.

public IloVehicleToNumFunction(IloEnv env, IloSimpleVehicleToNumFunction f)

This constructor creates a vehicle to IloNum function based on f. The implementation object of the newly
created handle is an instance of IloEvalVehicleToNumFunctionI.

Methods

public IloVehicleToNumFunctionI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking function.

public IloNum getUnperformedValue() const

This member function returns the value associated with the visit unperformed state.

public IloNum getValue(IloVehicle vehicle) const

This member function returns the value associated with vehicle.

public IloNumVar operator()(IloVehicleVar var) const

173

This operator returns an IloNumVar constrained by var. For clarity, let's call f the invoking function. When var
is bound to the vehicle v, the value of the expression is f.getValue(v). More generally, the domain of the
IloNumVar is the set of values {gi| gi = f(vi)} where the vi are in the domain of var.

public void operator=(const IloVehicleToNumFunction & func)

This operator assigns an address to the handle pointer of the invoking vehicle to IloNum function. That address
is the location of the implementation object of the argument func. After the execution of this operator, the
invoking function and func both point to the same implementation object.

174

Class IloVehicleToNumFunctionI
Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This class is the implementation class of IloVehicleToNumFunction, the class that defines a function from a
vehicle to an IloNum. The virtual member function IloVehicleToNumFunctionI::getValue returns the
value corresponding to a vehicle. The virtual member function
IloVehicleToNumFunctionI::getUnperformedValue returns the value corresponding to the unperformed
state of a visit. This function can be used to create an IloNumVar whose domain is the values of the function
accessed through an IloVehicleVar.

Constructor and Destructor Summary

public IloVehicleToNumFunctionI(IloEnv env)

Method Summary

public virtual IloNum getUnperformedValue()

public virtual IloNum getValue(IloVehicle vehicle)

Constructors and Destructors

public IloVehicleToNumFunctionI(IloEnv env)

This constructor creates an implementation vehicle to IloNum object in the environment env.

Methods

public virtual IloNum getUnperformedValue()

This virtual member function can be redefined to return a numeric value corresponding to the unperformed state
of a visit. For a given function, the return value should not vary between two calls. By default, this member
function returns 0.

public virtual IloNum getValue(IloVehicle vehicle)

This pure virtual member function must be redefined to return a numeric value corresponding to vehicle. For a
given function, the return value should not vary between two calls with the same parameter.

175

Class IloVehicleVar
Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

A visit is performed by only one vehicle. A vehicle variable is a constrained variable representing the vehicle
performing the associated visit. In Solver, it is extracted to an IlcIntVar representing the index of the vehicle
performing the associated visit.

See Also: IloVehicle, IloVehicleToNumFunction

Method Summary

public IloVisit getVisit() const

Methods

public IloVisit getVisit() const

This member function returns the visit associated with the invoking vehicle variable.

176

Class IloVisit
Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

Visits represent the activities vehicles must perform. Visits are made at a node. Each visit has a service time
depending on dimensions. Visits can also have time windows in various dimensions—such as their visiting hours
and availability.

A visit is performed by only one vehicle.

See Also: IloDimension, IloDimension1, IloDimension2, IloVisitVar, IloVehicle, IloVisitArray,
IloVisitToNumFunction

Constructor Summary

public IloVisit(IloNode node, const char * name=0)

public IloVisit(IloNode node1, IloNode node2, const char * name=0)

Method Summary

public static IloBool Exists(IloEnv env, const char * key)

public static IloVisit Find(IloEnv env, const char * key)

public IloNumVar getCumulVar(IloDimension dim) const

public IloNumVar getDelayVar(IloDimension2 dim) const

public IloNum getDistanceTo(IloVisit visit, IloDimension2 dim,
IloVehicle vehicle) const

public IloNumVar getDurationVar(IloDimension2 dim) const

public IloNumToNumSegmentFunction getEndCost(IloDimension2 dim) const

public IloNumVar getEndCumulVar(IloDimension2 dim) const

public IloNode getEndNode() const

public const char * getKey() const

public IloVisitVar getNextVar() const

public IloNode getNode() const

public IloNum getPenaltyCost() const

public IloVisitVar getPrevVar() const

public IloNumVar getRankVar() const

public IloNumToNumSegmentFunction getStartCost(IloDimension2 dim) const

public IloNode getStartNode() const

public IloNumVar getTransitVar(IloDimension dim) const

public IloNumVar getTravelVar(IloDimension2 dim) const

public IloVehicleVar getVehicleVar() const

public IloNumVar getWaitVar(IloDimension2 dim) const

public IloConstraint isAfter(IloVisit visit) const

public IloConstraint isBefore(IloVisit visit) const

177

public IloBool isBreakable() const

public IloBool isFirstVisit() const

public IloBool isLastVisit() const

public IloBool operator!=(const IloVisit visit) const

public IloBool operator==(const IloVisit visit) const

public IloConstraint performed() const

public void removeKey()

public void setBreakable(IloBool val) const

public void setEndCost(IloDimension2 dim,
IloNumToNumSegmentFunction func)

public void setKey(const char * key)

public void setPenaltyCost(IloNum val) const

public void setStartCost(IloDimension2 dim,
IloNumToNumSegmentFunction func)

public IloConstraint unperformed(IloBool deep=IloTrue) const

Constructors

public IloVisit(IloNode node, const char * name=0)

This constructor creates a visit issued by node. The optional argument name, if provided, becomes the name of
the visit.

public IloVisit(IloNode node1, IloNode node2, const char * name=0)

This constructor creates a visit from two nodes, which means that the visit occurs on an arc rather than on a
single node. The starting node of the arc is node1; the ending node of the arc is node2. The optional argument
name, if provided, becomes the name of the visit.

Dispatcher computes the distance from this visit to a node N as the distance from node2 to N. Dispatcher
computes the distance to this visit from a node N as the distance from N to node1.

This type of visit can be used to model arc-routing (as opposed to node-routing) problems.

Methods

public static IloBool Exists(IloEnv env, const char * key)

This static member function returns IloTrue if an IloVisit object having key key exists and IloFalse if not.

public static IloVisit Find(IloEnv env, const char * key)

This static member function returns the object corresponding to the key key set using IloVisit::setKey. If
there is no object corresponding to key an IloException is thrown.

public IloNumVar getCumulVar(IloDimension dim) const

178

This member function returns the constrained cumulative expression associated with the invoking visit object and
the parameter dim.

The cumuls on dimensions are handled by constraints that are functionally equivalent to one constraint of the
following form for dimension d, and each pair of visits v1 and v2.

 IloIfThen(env,
 v1.isJustBefore(v2),
 v2.getCumulVar(d) == v1.getCumulVar(d)
 + v1.getTransitVar(d));

public IloNumVar getDelayVar(IloDimension2 dim) const

This member function returns the constrained delay variable associated with the invoking visit object and the
dimension dim.

The delay-variable of v1, returned by v1.getDelayVar(d), represents the delay in terms of dimension d at
visit v1. This is useful for representing the time needed to load/unload a truck.

public IloNum getDistanceTo(IloVisit visit, IloDimension2 dim, IloVehicle vehicle)
const

This member function returns the distance from the invoking visit object to the object indicated by visit in the
dimension dim.

public IloNumVar getDurationVar(IloDimension2 dim) const

This member function returns the variable representing the duration of the invoking visit on dimension dim. In the
absence of vehicle breaks, or when the invoking visit is not breakable (see isBreakable and setBreakable),
this member function returns a variable that is always maintained to be equivalent to that returned by
getDelayVar(dim). In the presence of vehicle breaks that break the invoking visit, this variable is constrained
to be equal to the delay of the invoking visit plus the durations of any breaks that interrupt the visit.

public IloNumToNumSegmentFunction getEndCost(IloDimension2 dim) const

This member function returns a function representing the cost of performing the invoking visit according to the
value of its end-cumul variable for the extrinsic dimension dim.

public IloNumVar getEndCumulVar(IloDimension2 dim) const

This member function returns the variable representing the end of the execution of the invoking visit. It is equal to
the sum of the cumul variable (see getCumulVar(IloDimension)) and the duration variable (see
getDurationVar(IloDimension2)).

public IloNode getEndNode() const

This member function returns the end node of the invoking visit object. It should be called if different start and
end nodes were specified when creating the visit.

public const char * getKey() const

179

The following member function returns the key set on the invoking object

public IloVisitVar getNextVar() const

This member function returns the next-variable associated with the invoking visit object. This constrained variable
denotes the index of the visit served immediately after the invoking visit object.

public IloNode getNode() const

This member function returns the node corresponding to the location that issued the order for the invoking visit
object.

public IloNum getPenaltyCost() const

This member function returns the penalty cost that was set for not performing the visit to the invoking visit object.

public IloVisitVar getPrevVar() const

This member function returns the previous-variable associated with the invoking visit object. This constrained
variable denotes the index of the visit served immediately before the invoking visit object.

public IloNumVar getRankVar() const

This member function returns the rank of the invoking visit object. A visit with rankr is the rth visit in a route. The
visit returned by IloVehicle::getFirstVisit has rank 0.

public IloNumToNumSegmentFunction getStartCost(IloDimension2 dim) const

This member function returns a function representing the cost of performing the invoking visit according to the
value of its cumul variable for the extrinsic dimension dim.

public IloNode getStartNode() const

This member function returns the starting node of the invoking visit object. It should be called if different start and
end nodes were specified when creating the visit.

public IloNumVar getTransitVar(IloDimension dim) const

If dim is an instance of IloDimension1, this member function returns the constrained expression associated
with the invoking visit object representing the quantity of the dimension dim. If dim is an instance of
IloDimension2, this member function returns the constrained variable associated with the invoking visit object
representing the sum of the delay, travel, and wait variables.

180

The transit variable associated with a visit represents the change in the cumul between that visit and the
following visit. The way in which the transit variables are constrained varies according to the type of dimension
under consideration. For intrinsic dimensions (of type IloDimension1), transit variables are not constrained
(unless the user explicitly constrains them).

For a visit v and an extrinsic dimension dim2 (of type IloDimension2), the transit variables are maintained by
the following rule:

 v.getTransitVar(dim2) == v.getDelayVar(dim2)
 + v.getTravelVar(dim2)
 + v.getWaitVar(dim2);

Thus, the difference in extrinsic cumuls between any two successive visits is equal to the sum of the delay,
travel, and wait variables of the first of the pair of visits under consideration.

public IloNumVar getTravelVar(IloDimension2 dim) const

This member function returns the constrained travel expression associated with the invoking visit object and the
dimension dim.

The travel-variable of v1, returned by v1.getTravelVar(d), represents the quantity of dimension d taken by
w, the vehicle serving v1, to get to v2. It is maintained by the following rule:

 IloIfThen(env,
 v1.isJustBefore(v2) && w.visits(v1),
 v1.getTravelVar(d) == v1.getDistanceTo(v2, d, w)
 / w.getSpeed(d));

public IloVehicleVar getVehicleVar() const

This member function returns the constrained variable representing the index of the vehicle performing the
invoking visit object.

public IloNumVar getWaitVar(IloDimension2 dim) const

This member function returns the constrained wait variable associated with the invoking visit object and the
dimension dim.

The wait-variable of v1, returned by v1.getWaitVar(d), represents the additional quantity of dimension d
consumed between v1 and its successor, over the time required to serve v1 and travel from v1 to its successor.
In the case where d represents time, v1.getWaitVar(d) represents the waiting time.

public IloConstraint isAfter(IloVisit visit) const

This member function returns a constraint stating that the invoking visit object must be performed after visit if
they are on the same route.

public IloConstraint isBefore(IloVisit visit) const

This member function returns a constraint stating that the invoking visit object must be performed before visit if
they are on the same route.

181

public IloBool isBreakable() const

This member function returns IloTrue if the invoking visit object is breakable by an IloVehicleBreakCon
object. Otherwise, it returns IloFalse.

public IloBool isFirstVisit() const

This member function returns IloTrue if the invoking visit object is the first visit of a vehicle. Otherwise, it
returns IloFalse.

public IloBool isLastVisit() const

This member function returns IloTrue if the invoking visit object is the last visit of a vehicle. Otherwise, it
returns IloFalse.

public IloBool operator!=(const IloVisit visit) const

This operator returns IloTrue if the invoking visit object and visit point to different implementation objects.
Otherwise it returns IloFalse.

public IloBool operator==(const IloVisit visit) const

This operator returns IloTrue if the invoking visit object and visit both point to the same implementation
object. Otherwise, it returns IloFalse.

public IloConstraint performed() const

This member function returns a constraint stating that the invoking visit object must be performed by a vehicle. A
performed visit is a visit that is assigned to a vehicle.

Normally, it is not necessary to use this constraint. As long as no penalty cost has been set on a visit, this
constraint is satisfied automatically.

public void removeKey()

The following member function allows the user to remove the key set on the invoking object.

public void setBreakable(IloBool val) const

This member function sets the status of the invoking visit object to breakable. If a visit is breakable, a vehicle
break can interrupt the visit. By default, visits are not breakable.

public void setEndCost(IloDimension2 dim, IloNumToNumSegmentFunction func)

182

This function sets func as the function representing the cost of performing the invoking visit according to the
value of its end-cumul variable for the extrinsic dimension dim. It can be used to express earliness or tardiness
costs on the end time of a visit using the IloEarlinessFunction or IloTardinessFunction functions.

public void setKey(const char * key)

This member function allows the user to set key on the invoking object. This key is unique. Each visit must have
a different key; otherwise, an exception is thrown.

public void setPenaltyCost(IloNum val) const

This member function sets the cost of not performing a visit. By default, this cost is IloInfinity, which means
the visit must be performed. If a visit is disabled, its penalty cost is not taken into account.

In Dispatcher, the cost function can use negative elements and thus be negative itself if so desired. This member
function can be used with a negative value for val.

public void setStartCost(IloDimension2 dim, IloNumToNumSegmentFunction func)

This function sets func as the function representing the cost of performing the invoking visit according to the
value of its cumul variable for the extrinsic dimension dim. It can be used to express earliness or tardiness costs
on the start time of a visit using the IloEarlinessFunction or IloTardinessFunction functions.

Note

The segmented cost function must always take positive values.

public IloConstraint unperformed(IloBool deep=IloTrue) const

This member function returns a constraint stating that the invoking visit object must not be performed in a route.

183

Class IloVisitAlternativeConstraint
Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This class is a subclass of IloConstraint. This constraint constrains a single visit out of a given set to be
performed. It can be used to express alternatives between visits or visit disjunctions. All unperformed visits in the
alternative set will be charged their unperformed penalty.

The following code

 IloVisitAlternativeConstraint ct(env);
 ct.add(visit1);
 ct.add(visit2);
 model.add(ct);

is equivalent to writing

 model.add(visit1.performed() + visit2.performed() == 1);

Solutions containing visits constrained by this constraint can be modified using IloVisitAlternativeSwap.

In general, using this constraint will lead to increased performance from the local search neighborhoods provided
by Dispatcher.

See Also: IloVisit, IloVisitAlternativeSwap

Constructor Summary

public IloVisitAlternativeConstraint(IloEnv env)

Method Summary

public void add(IloVisit visit)

public IloBool contains(IloVisit visit) const

public void remove(IloVisit visit)

Constructors

public IloVisitAlternativeConstraint(IloEnv env)

This constructor creates a visit alternative constraint. Initially the set of alternative visits is empty.

Methods

public void add(IloVisit visit)

This member function adds a visit to the set of alternative visits.

public IloBool contains(IloVisit visit) const

184

This member function returns a Boolean stating whether visit is part of the alternative visit set.

public void remove(IloVisit visit)

This member function removes a visit from the set of alternative visits.

185

Class IloVisitDistance
Definition file: ildispat/ilovisitdist.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher lets you define the distance function for a dimension (for example, the distance, the time, or the cost
necessary for going from one visit to another).

This class is the handle class of the object that defines this distance function.

This handle class uses the virtual member function IloVisitDistanceI::computeDistance to retrieve
distance values.

See Also: IloDimension, IloDimension1, IloDimension2, IloVisitDistanceEvalI, IloVisitDistanceFunction,
IloVisitDistanceI, IloSimpleVisitDistanceEvalI, IloSimpleVisitDistanceFunction, IloComposedVisitDistance,
IloExplicitVisitDistance, IloSparseExplicitVisitDistance

Constructor and Destructor Summary

public IloVisitDistance(IloVisitDistanceI * dist=0)

public IloVisitDistance(const IloVisitDistance & dist)

public IloVisitDistance(IloEnv env, IloVisitDistanceFunction distFunction)

public IloVisitDistance(IloEnv env, IloSimpleVisitDistanceFunction distFunction)

public IloVisitDistance(IloVisitDistanceFunction distFunction, IloVehicleEquiv
equiv)

Method Summary

public void end()

public static IloBool Exists(IloEnv env, const char * key)

public static IloVisitDistance Find(IloEnv env, const char * key)

public IloNum getDistance(IloVisit visit1, IloVisit visit2,
IloVehicle vehicle) const

public IloInt getGroup(IloVehicle vehicle) const

public IloVisitDistanceI * getImpl() const

public const char * getKey()

public void refresh() const

public void removeKey()

public void setKey(const char * key)

186

Constructors and Destructors

public IloVisitDistance(IloVisitDistanceI * dist=0)

This constructor creates a handle object (an instance of IloVisitDistance) from a pointer to an object (an
instance of the implementation class IloVisitDistanceI).

public IloVisitDistance(const IloVisitDistance & dist)

This copy constructor creates a handle from a reference to a distance object. That distance object and dist both
point to the same implementation object.

When distance functions are specified in Dispatcher, they can be cached, if distance computations are slow,
through IloDimension2::setCached. (Normally, caching of distance functions is disabled.) When the
distance depends not only on the starting and ending visit, but also the vehicle used to perform the trip, it
becomes useful to introduce the notion of vehicle equivalence.

If two vehicles are specified as equivalent with respect to a particular distance metric and the distance between
two visits using one of the vehicles resides in the cache, the distance between the same two visits using the
other vehicle can be assumed to be the same. Thus, fewer cache slots are used. It is functionally unnecessary to
specify a vehicle equivalence class in Dispatcher, but definition of such a class can lead to speed increases
through better caching of distance data.

public IloVisitDistance(IloEnv env, IloVisitDistanceFunction distFunction)

This constructor creates a distance object in the environment env. The implementation object of the newly
created handle is an instance of the class IloVisitDistanceEvalI constructed with the distance function
distFunction.

public IloVisitDistance(IloEnv env, IloSimpleVisitDistanceFunction distFunction)

This constructor creates a distance object in the environment env. The implementation object of the newly
created handle is an instance of the class IloSimpleVisitDistanceEvalI constructed with the distance
function distFunction.

public IloVisitDistance(IloVisitDistanceFunction distFunction, IloVehicleEquiv
equiv)

This constructor creates a handle to a distance object. The implementation object of this newly created handle is
an instance of the class IloVisitDistanceEvalI constructed with the distance function distFunction for
the vehicle equivalence group equiv.

Methods

public void end()

This member function frees all resources used by the invoking distance object. You cannot use the invoking
distance object after a call to this member function.

187

public static IloBool Exists(IloEnv env, const char * key)

This static member function returns IloTrue if an IloVisitDistance object having key key exists and
IloFalse if not.

public static IloVisitDistance Find(IloEnv env, const char * key)

This static member function returns the object corresponding to the key key set using
IloVisitDistance::setKey. If there is no object corresponding to key an IloException is thrown.

public IloNum getDistance(IloVisit visit1, IloVisit visit2, IloVehicle vehicle)
const

This member function returns the distance from visit1 to visit2 using vehicle vehicle.

public IloInt getGroup(IloVehicle vehicle) const

This member function returns the group as specified by the vehicle equivalence object associated with vehicle.

public IloVisitDistanceI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking distance.

public const char * getKey()

This member function returns the key set on the invoking object

public void refresh() const

This member function flushes any internal caches on the distance function, and uses any vehicle equivalence
class specified in the constructor to update the group of each vehicle.

This member function thus allows the distance function to be changed. This means that after a call to refresh,
IloVisitDistanceI::computeDistance can return a different value for the same three parameters than
before the call to refresh. However, the new distance function must be as consistent as the old one in that
successive calls using the same parameters must produce the same distance value.

public void removeKey()

This member function allows the user to remove the key set on the invoking object.

public void setKey(const char * key)

188

This member function allows the user to set key on the invoking object. This key is unique. Each distance must
have a different key; otherwise, an exception is thrown.

189

Class IloVisitDistanceEvalI
Definition file: ildispat/ilovisitdist.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher lets you define the distance function for a dimension (for example, the distance, the time, or the cost
necessary for going from one node to another).

This class is an implementation class, a predefined subclass of IloVisitDistanceI, which you use to define
a new distance function expressed by an evaluation function. This evaluation function is of type
IloVisitDistanceFunction.

See Also: IloDimension, IloDimension1, IloDimension2, IloVisitDistance, IloVisitDistanceFunction,
IloVisitDistanceI

Constructor and Destructor Summary

public IloVisitDistanceEvalI(IloEnv env, IloVisitDistanceFunction distFunction)

public IloVisitDistanceEvalI(IloVisitDistanceFunction distFunction,
IloVehicleEquiv equiv)

Method Summary

public IloNum computeDistance(IloVisit visit1, IloVisit visit2, IloVehicle
vehicle) const

Inherited Methods from IloVisitDistanceI

computeDistance, getDistance, getGroup, refresh, setCache, unsetCache,
updateEquivalence

Constructors and Destructors

public IloVisitDistanceEvalI(IloEnv env, IloVisitDistanceFunction distFunction)

This constructor creates a new distance function from the evaluation function distFunction.

When distance functions are specified in Dispatcher, they can be cached, if distance computations are slow,
through IloDimension2::setCached. (Normally, caching of distance functions is disabled.) When the
distance depends not only on the starting and ending visit, but also the vehicle used to perform the trip, it
becomes useful to introduce the notion of vehicle equivalence.

If two vehicles are specified as equivalent with respect to a particular distance metric and the distance between
two visits using one of the vehicles resides in the cache, the distance between the same two visits using the
other vehicle can be assumed to be the same. Thus, fewer cache slots are used. It is functionally unnecessary to
specify a vehicle equivalence class in Dispatcher, but definition of such a class can lead to speed increases
using better caching of distance data.

public IloVisitDistanceEvalI(IloVisitDistanceFunction distFunction, IloVehicleEquiv
equiv)

190

This constructor creates a new distance function for the vehicle equivalence group equiv from the evaluation
function distFunction.

Methods

public IloNum computeDistance(IloVisit visit1, IloVisit visit2, IloVehicle vehicle)
const

This member function returns a numeric value that represents the distance between visit1 and visit2 for the
given vehicle. This is done using a call to distFunction passing visit1, visit2, and vehicle as
parameters.

191

Class IloVisitDistanceI
Definition file: ildispat/ilovisitdist.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher lets you define the distance function for a dimension (for example, the distance, the time, or the cost
necessary for going from one visit to another).

This class is the implementation class for IloVisitDistance, the class of object that defines a distance
function for a dimension. The virtual member function IloVisitDistanceI::computeDistance returns the
distance between two visits.

To express new distance functions, you can define a subclass of IloVisitDistanceI. If this distance can be
expressed by an evaluation function, you can use the predefined subclasses IloVisitDistanceEvalI or
IloSimpleVisitDistanceEvalI for that purpose.

See Also: IloDimension, IloDimension1, IloDimension2, IloVisitDistance

Constructor and Destructor Summary

public IloVisitDistanceI(IloEnv env, IloBool symmetric=IloFalse)

public IloVisitDistanceI(IloVehicleEquiv equiv, IloBool symmetric=IloFalse)

Method Summary

public virtual IloNum computeDistance(IloVisit visit1, IloVisit visit2,
IloVehicle vehicle) const

public virtual IloNum getDistance(IloVisit visit1, IloVisit visit2, IloVehicle
vehicle) const

public virtual IloInt getGroup(IloVehicle vehicle) const

public virtual void refresh()

public virtual void setCache(IloEnv env, IloInt log2Rows, IloInt log2Cols)

public virtual void unsetCache()

public void updateEquivalence(IloEnv env)

Constructors and Destructors

public IloVisitDistanceI(IloEnv env, IloBool symmetric=IloFalse)

This constructor creates an implementation distance object in the environment env.

When distance functions are specified in Dispatcher, they can be cached, if distance computations are slow,
through IloDimension2::setCached. (Normally, caching of distance functions is disabled.) When the
distance depends not only on the starting and ending visit, but also the vehicle used to perform the trip, it
becomes useful to introduce the notion of vehicle equivalence.

192

If two vehicles are specified as equivalent with respect to a particular distance metric and the distance between
two visits using one of the vehicles resides in the cache, the distance between the same two visits using the
other vehicle can be assumed to be the same. Thus, fewer cache slots are used. It is functionally unnecessary to
specify a vehicle equivalence class in Dispatcher, but definition of such a class can lead to speed increases
through better caching of distance data.

public IloVisitDistanceI(IloVehicleEquiv equiv, IloBool symmetric=IloFalse)

This constructor creates an implementation distance object for the vehicle equivalence group equiv.

Methods

public virtual IloNum computeDistance(IloVisit visit1, IloVisit visit2, IloVehicle
vehicle) const

You redefine this pure virtual member function to return a floating-point value that represents the distance from
visit1 to visit2. The return value of the function must depend only on visit1 and visit2, and must
produce the same value for each call with the same parameters.

public virtual IloNum getDistance(IloVisit visit1, IloVisit visit2, IloVehicle
vehicle) const

This member function returns the distance from visit1 to visit2, using vehicle vehicle. If caching is
enabled, this member function first searches the cache for the distance value. If the value is not found, this
function calls IloVisitDistanceI::computeDistance, returns the value obtained, and places that value
into the cache.

public virtual IloInt getGroup(IloVehicle vehicle) const

This member function returns the vehicle equivalence group for vehicle. In the case where the invoking object
was constructed with only an IloEnv, this function returns zero. Otherwise, it returns the group as specified by
the vehicle equivalence object associated with the implementation.

public virtual void refresh()

This member function flushes any internal caches on the distance function, and uses any vehicle equivalence
class specified in the constructor to update the group of each vehicle.

This member function thus allows the distance function to be changed. This means that after a call to refresh,
IloVisitDistanceI::computeDistance can return a different value for the same three parameters than
before the call to refresh. However, the new distance function must be as consistent as the old one in that
successive calls using the same parameters must produce the same distance value.

public virtual void setCache(IloEnv env, IloInt log2Rows, IloInt log2Cols)

This member function adds a cache to the invoking distance object so that distance computations can be cached.
The parameter env indicates the environment upon which the distance object is allocated. The cache is
set-associative with 2log2Rows rows, and a set-associative width of 2log2Cols.

193

The method IloDimension2::setCached uses this member function to add a cache to the distance object
associated with the invoking dimension. No cache is added if one already exists.

public virtual void unsetCache()

This member function stops caching of distance values.

public void updateEquivalence(IloEnv env)

This member function updates the vehicle equivalence group associated with the invoking distance object.

194

Class IloVisitIterator
Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

An instance of the class IloVisitIterator is an iterator that traverses all instances of the class IloVisit in
a model.

See Also: IloVisit

Constructor Summary

public IloVisitIterator(IloModel mdl, IloBool deep=IloTrue)

public IloVisitIterator(const IloVisitIterator & iter)

Method Summary

public IloBool ok() const

public IloVisit operator*() const

public const IloVisitIterator & operator++()

public const IloVisitIterator & operator=(const IloVisitIterator & iter)

Constructors

public IloVisitIterator(IloModel mdl, IloBool deep=IloTrue)

This constructor creates an iterator which will iterate over all instances of IloVisit in model mdl. If the
parameter deep has the value IloTrue, all submodels of mdl will form part of the iteration. If deep has the
value IloFalse, submodels will not be investigated by the iterator.

public IloVisitIterator(const IloVisitIterator & iter)

This copy constructor creates an iterator from another iterator iter. After execution, both the newly created
iterator and iter will be at the same position within the model.

Methods

public IloBool ok() const

This member function returns IloFalse if the iterator has scanned all instances of IloVisit in the model.
Otherwise, it returns IloTrue.

public IloVisit operator*() const

This operator returns the instance of IloVisit at which the iterator is currently pointing.

195

public const IloVisitIterator & operator++()

This operator moves the iterator on to the next instance of IloVisit within the model, providing one exists. The
operator returns the invoking iterator at its new position.

public const IloVisitIterator & operator=(const IloVisitIterator & iter)

This assignment operator copies the state of iter to the iterator on the left-hand side of the operator. After
execution, both iterators will be at the same position within the model.

196

Class IloVisitPair
Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This class represents a pair of visits.

See Also: IloVisit

Constructor Summary

public IloVisitPair(IloVisit visit1, IloVisit visit2)

Method Summary

public IloVisit getVisit1() const

public IloVisit getVisit2() const

Constructors

public IloVisitPair(IloVisit visit1, IloVisit visit2)

This constructor creates a visit pair from the two visits visit1 and visit2.

Methods

public IloVisit getVisit1() const

This member function returns the first visit of the pair.

public IloVisit getVisit2() const

This member function returns the second visit of the pair.

197

Class IloVisitToNumFunction
Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This class is the handle class of IloVisitToNumFunctionI, the class that defines a function from a visit to an
IloNum. The member function IloVisitToNumFunction::getValue returns the value corresponding to a
visit. The member function IloVisitToNumFunction::getUnperformedValue returns the value
corresponding to the unperformed state of a visit. This function can be used to create an IloNumVar whose
domain is the values of the function accessed through an IloVisitVar.

See Also: IloVisitVar, IloVisit

Constructor Summary

public IloVisitToNumFunction()

public IloVisitToNumFunction(IloVisitToNumFunctionI * impl)

public IloVisitToNumFunction(const IloVisitToNumFunction & func)

public IloVisitToNumFunction(IloEnv env, IloVisitArray visits, IloNumArray values,
IloNum unperformedValue)

public IloVisitToNumFunction(IloEnv env, IloSimpleVisitToNumFunction f)

Method Summary

public IloVisitToNumFunctionI * getImpl() const

public IloNum getUnperformedValue() const

public IloNum getValue(IloVisit visit) const

public IloNumVar operator()(IloVisitVar var) const

public void operator=(const IloVisitToNumFunction & func)

Constructors

public IloVisitToNumFunction()

This constructor creates a visit to IloNum function whose handle pointer is null. This object must be assigned
before it can be used.

public IloVisitToNumFunction(IloVisitToNumFunctionI * impl)

This constructor creates a handle object (an instance of IloVisitToNumFunction) from a pointer to an
implementation object (an instance of the class IloVisitToNumFunctionI).

public IloVisitToNumFunction(const IloVisitToNumFunction & func)

This copy constructor creates a handle from a reference to a visit to IloNum function. That visit to IloNum object
and func both point to the same implementation object.

198

public IloVisitToNumFunction(IloEnv env, IloVisitArray visits, IloNumArray values,
IloNum unperformedValue)

This constructor takes an array of visits and an array of values. The visit and the value with the same index in
these arrays are associated. The value unperformedValue corresponds to the visit unperformed state. The
implementation object of the newly created handle is an instance of IloArrayVisitToNumFunctionI.

public IloVisitToNumFunction(IloEnv env, IloSimpleVisitToNumFunction f)

This constructor creates a visit to IloNum function based on f. The implementation object of the newly created
handle is an instance of IloEvalVisitToNumFunctionI.

Methods

public IloVisitToNumFunctionI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking function.

public IloNum getUnperformedValue() const

This member function returns the value associated with the visit unperformed state.

public IloNum getValue(IloVisit visit) const

This member function returns the value associated with visit.

public IloNumVar operator()(IloVisitVar var) const

This operator returns an IloNumVar constrained by var. For clarity, let's call f the invoking function. When var
is bound to the visit v, the value of the expression is f.getValue(v). More generally, the domain of the IloNumVar
is the set of values {gi| gi = f(vi)} where the vi are in the domain of var.

public void operator=(const IloVisitToNumFunction & func)

This operator assigns an address to the handle pointer of the invoking visit to IloNum function. That address is
the location of the implementation object of the argument func. After the execution of this operator, the invoking
function and func both point to the same implementation object.

199

Class IloVisitToNumFunctionI
Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This class is the implementation class of IloVisitToNumFunction, the class that defines a function from a
visit to an IloNum. The virtual member function IloVisitToNumFunctionI::getValue returns the value
corresponding to a visit. The virtual member function IloVisitToNumFunctionI::getUnperformedValue
returns the value corresponding to the unperformed state of a visit. This function can be used to create an
IloNumVar whose domain is the values of the function accessed through an IloVisitVar.

Constructor and Destructor Summary

public IloVisitToNumFunctionI(IloEnv env)

Method Summary

public virtual IloNum getUnperformedValue()

public virtual IloNum getValue(IloVisit visit)

Constructors and Destructors

public IloVisitToNumFunctionI(IloEnv env)

This constructor creates an implementation visit to IloNum object in the environment env.

Methods

public virtual IloNum getUnperformedValue()

This virtual member function can be redefined to return a numeric value corresponding to the unperformed state
of a visit. For a given function, the return value should not vary between two calls. By default, this member
function returns 0.

public virtual IloNum getValue(IloVisit visit)

This pure virtual member function must be redefined to return a numeric value corresponding to visit. For a
given function, the return value should not vary between two calls with the same parameter.

200

Class IloVisitVar
Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

A visit-variable is a constrained variable representing the visit served immediately before or after the associated
visit. In Solver, it is extracted to an IlcIntVar, representing the index of the next visit.

See Also: IloVisit, IloVisitToNumFunction

Method Summary

public IloVisit getVisit() const

Methods

public IloVisit getVisit() const

This member function returns the visit associated with the invoking visit-variable.

201

Class IloVisitVehicleCompat
Definition file: ildispat/ilocompat.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher lets you define compatibility relations between visits and vehicles. Compatibility relations are used to
build compatibility constraints that are used to restrict the possible choices of vehicles for a visit. This class is the
handle class for all visit/vehicle compatibility relations. This handle class uses the virtual member function
IloVisitVehicleCompatI::isCompatible to determine the compatibility between a visit and a vehicle.

Constructor Summary

public IloVisitVehicleCompat(IloVisitVehicleCompatI * impl=0)

public IloVisitVehicleCompat(const IloVisitVehicleCompat & other)

public IloVisitVehicleCompat(IloEnv env, IloVisitVehicleCompatPredicate predicate)

Method Summary

public void end()

public IloVisitVehicleCompatI * getImpl() const

public IloBool isCompatible(IloVisit visit, IloVehicle vehicle)

Constructors

public IloVisitVehicleCompat(IloVisitVehicleCompatI * impl=0)

This constructor creates a handle from a pointer to an implementation class. Called without argument, this
constructor creates an empty handle.

public IloVisitVehicleCompat(const IloVisitVehicleCompat & other)

This copy constructor creates a handle from a reference to another handle. The resulting object and other both
point to the same object.

public IloVisitVehicleCompat(IloEnv env, IloVisitVehicleCompatPredicate predicate)

This constructor creates a handle class from an environment and a compatibility predicate. The implementation
object of the newly created handle is an instance of the class IloVisitVehiclePredicateCompatI,
constructed with the predicate predicate.

Methods

public void end()

This member function frees all resources used by the invoking compatibility object. You cannot use the invoking
compatibility object after a call to this member function.

202

public IloVisitVehicleCompatI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking handle.

public IloBool isCompatible(IloVisit visit, IloVehicle vehicle)

This member function returns a Boolean stating whether visit and vehicle are compatible.

203

Class IloVisitVehicleCompatI
Definition file: ildispat/ilocompat.h
Include file: <ildispat/ilodispatcher.h>

This class is the implementation class of the handle class IloVisitVehicleCompat. The virtual member
function isCompatible returns a Boolean stating whether a visit and a vehicle are compatible. By compatible, it
is meant that the vehicle is a possible candidate for the visit. Compatibility relations are used to build a
compatibility constraint using the function IloCompatible.

To define a compatibility relation, you can define a subclass of IloVisitVehicleCompatI. If the compatibility
relation can be expressed with a predicate function, you can use the predefined subclass
IloVisitVehiclePredicateCompatI.

Constructor and Destructor Summary

protected IloVisitVehicleCompatI(IloEnv env)

Method Summary

public virtual IloBool isCompatible(IloVisit visit, IloVehicle vehicle)

Constructors and Destructors

protected IloVisitVehicleCompatI(IloEnv env)

This constructor creates an implementation compatibility relation in the environment env. As this class is a pure
virtual class, the constructor is declared as protected only.

Methods

public virtual IloBool isCompatible(IloVisit visit, IloVehicle vehicle)

You redefine this pure virtual member function to return IloTrue when the visit and vehicle are compatible,
IloFalse otherwise. Incompatible vehicles are removed from the possible vehicles by the compatibility
constraint built with a compatibility relation.

204

Class IloVisitVehiclePredicateCompatI
Definition file: ildispat/ilocompat.h
Include file: <ildispat/ilodispatcher.h>

This class is an implementation class, a predefined subclass of IloVisitVehicleCompatI, used to define a
compatibility relation best expressed by a predicate.

Constructor Summary

public IloVisitVehiclePredicateCompatI(IloEnv env, IloVisitVehicleCompatPredicate
predicate)

Method Summary

public virtual IloBool isCompatible(IloVisit visit, IloVehicle vehicle)

Inherited Methods from IloVisitVehicleCompatI

isCompatible

Constructors

public IloVisitVehiclePredicateCompatI(IloEnv env, IloVisitVehicleCompatPredicate
predicate)

This constructor creates a new compatibility implementation object from an environment and a compatibility
predicate.

Methods

public virtual IloBool isCompatible(IloVisit visit, IloVehicle vehicle)

This member function uses the predicate to return a Boolean stating whether visit and vehicle are compatible.

205

Class IloDimensionWindows::Iterator
Definition file: ildispat/iloproto.h
Include file: <ildispat/ilodispatcher.h>

Iterator is a class nested in the class IloDimensionWindows. It allows you to step through the permitted
intervals of a dimension windows constraint, in increasing interval lower bound order.

See Also: IloDimensionWindows, IloDimensionWindows::ForbiddenIterator

Constructor Summary

public Iterator(IloDimensionWindows win)

Method Summary

public IloNum getLB() const

public IloNum getUB() const

public IloBool ok() const

public Iterator & operator++()

Constructors

public Iterator(IloDimensionWindows win)

This constructor creates an iterator to traverse the permitted intervals contained in win.

Methods

public IloNum getLB() const

This member function returns the lower bound of the permitted interval to which the invoking iterator points.

public IloNum getUB() const

This member function returns the upper bound of the permitted interval to which the invoking iterator points.

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all the permitted intervals have been scanned.

public Iterator & operator++()

This left-increment operator shifts the current position of the iterator to the next permitted interval (the first one
starting after the current permitted interval).

206

207

Class IloNode::Iterator
Definition file: ildispat/ilonode.h
Include file: <ildispat/ilodispatcher.h>

Iterator is a class nested in the class IloNode. It allows you to step through all the nodes in a particular
environment.

See Also: IloNode

Constructor Summary

public Iterator(IloEnv env)

Method Summary

public IloBool ok()

public IloNode operator*() const

public Iterator & operator++()

Constructors

public Iterator(IloEnv env)

This constructor creates an iterator to traverse all the nodes in the environment env.

Methods

public IloBool ok()

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all the nodes have been scanned by the iterator.

public IloNode operator*() const

This operator returns the current instance of IloNode, the one to which the invoking iterator points.

public Iterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of IloNode in the route.

208

Class IloDispatcherGraph::Node
Definition file: ildispat/ilographdist.h
Include file: <ildispat/ilodispatcher.h>

Node is a class nested in the class IloDispatcherGraph. Instances of the class IloDispatcherGraph::Node
represent the nodes in the graph.

See Also: IloDispatcherGraph, IloDispatcherGraph::PathIterator, IloDispatcherGraph::Arc,
IloDispatcherGraph::AdjacencyListIterator, IloGraphDistance

Constructor and Destructor Summary

public Node(IloDispatcherGraph g, const IloInt id)

public Node(const Node & node)

public Node(IloDispatcherGraphI::NodeI * impl=0)

Method Summary

public IloDispatcherGraphI::NodeI * getImpl() const

public IloInt getIndex() const

Constructors and Destructors

public Node(IloDispatcherGraph g, const IloInt id)

This constructor creates an instance of a node in the graph g. The node identifier is set to the value given by id.

public Node(const Node & node)

This copy constructor creates a handle from a reference to a graph node object. That graph node object and
node both point to the same implementation object.

public Node(IloDispatcherGraphI::NodeI * impl=0)

This constructor creates a handle object (an instance of IloDispatcherGraphI::Node) from a pointer to an
implementation object (an instance of IloDispatcherGraphI::NodeI).

Methods

public IloDispatcherGraphI::NodeI * getImpl() const

This member function returns a pointer to the implementation object corresponding to the invoking graph node
object.

public IloInt getIndex() const

209

This member function returns the node's identifier.

210

Class IloDispatcherGraph::PathIterator
Definition file: ildispat/ilographdist.h
Include file: <ildispat/ilodispatcher.h>

PathIterator is a class nested in the class IloDispatcherGraph. An instance of the class
IloDispatcherGraph::PathIterator iterates over the instances of IloDispatcherGraph::Node,
composing the cheapest path between two instances of IloNode using an instance of IloVehicle. This
iterator can only be used if the graph stores cheapest paths.

See Also: IloDispatcherGraph, IloDispatcherGraph::Node, IloGraphDistance, IloVehicle

Constructor Summary

public PathIterator(IloDispatcherGraph g, IloNode node1, IloNode node2, IloVehicle
v)

Method Summary

public IloBool ok() const

public IloDispatcherGraph::Node operator*() const

public PathIterator & operator++()

Constructors

public PathIterator(IloDispatcherGraph g, IloNode node1, IloNode node2, IloVehicle
v)

This constructor creates an iterator to traverse the nodes in the graph g, composing the cheapest path between
node1 and node2 using vehicle v.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all the nodes have been scanned by the iterator.

public IloDispatcherGraph::Node operator*() const

This operator returns the current instance of Node, the one to which the invoking iterator points.

public PathIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of Node in the route.

211

Class IloDispatcher::RouteIterator
Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

RouteIterator is a class nested in the class IloDispatcher. It allows you to step through all the visits
performed by a given vehicle.

In fact, a route is the ordered set of visits made by a vehicle. A route is associated with each vehicle. For
example, if a truck leaves the depot for three days, then the route will consist of all the visits performed (for
deliveries, for pick-ups, for service calls, etc.) during this three-day period. The route of a vehicle is identified by
its first and last visit.

RouteIterator can only be used on a route which is in an instantiated state.

For more information, see the concept Iterators.

See Also: IloDispatcher, IloVehicle, IloVisit

Constructor Summary

public RouteIterator(IloDispatcher dispatcher, IloVehicle vehicle)

Method Summary

public IloBool ok() const

public IloVisit operator*() const

public RouteIterator & operator++()

Constructors

public RouteIterator(IloDispatcher dispatcher, IloVehicle vehicle)

This constructor creates an iterator to traverse all the visits in the route of vehicle in the dispatcher object
dispatcher. This includes the first and last visits in the route (usually the “depot”).

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all the visits have been scanned by the iterator.

public IloVisit operator*() const

This operator returns the current instance of IloVisit, the one to which the invoking iterator points.

public RouteIterator & operator++()

212

This left-increment operator shifts the current position of the iterator to the next instance of IloVisit in the
route.

213

Class IloRoutingSolution::RouteIterator
Definition file: ildispat/ilorsol.h
Include file: <ildispat/ilodispatcher.h>

RouteIterator is a class nested in the class IloRoutingSolution. It allows you to step through all the
visits performed by a given vehicle in a particular routing solution.

In fact, a route is the ordered set of visits made by a vehicle. A route is associated with each vehicle. For
example, if a truck leaves the depot for three days, then the route will consist of all the visits performed (for
deliveries, for pick-ups, for service calls, etc.) during this three-day period. The route of a vehicle is identified by
its first and last visit.

For more information, see the concept Iterators.

See Also: IloRoutingSolution, IloVehicle, IloVisit

Constructor Summary

public RouteIterator(IloRoutingSolution solution, IloVehicle vehicle)

Method Summary

public IloBool ok() const

public IloVisit operator*() const

public RouteIterator & operator++()

Constructors

public RouteIterator(IloRoutingSolution solution, IloVehicle vehicle)

This constructor creates an iterator to traverse all the visits in the route of vehicle in the routing solution
solution. This includes the first and last visits in the route (usually the “depot”).

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all the visits have been scanned by the iterator.

public IloVisit operator*() const

This operator returns the current instance of IloVisit, the one to which the invoking iterator points.

public RouteIterator & operator++()

214

This left-increment operator shifts the current position of the iterator to the next instance of IloVisit in the
route.

215

Class IloDispatcher::UnperformedVisitIterator
Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

UnperformedVisitIterator is a class nested in the class IloDispatcher. It allows you to step through all
the unperformed visits associated with a given routing plan.

For more information, see the concept Iterators.

See Also: IloDispatcher, IloVisit

Constructor Summary

public UnperformedVisitIterator(IloDispatcher dispatcher)

Method Summary

public IloBool ok() const

public IloVisit operator*() const

public UnperformedVisitIterator & operator++()

Constructors

public UnperformedVisitIterator(IloDispatcher dispatcher)

This constructor creates an iterator to traverse all the unperformed visits associated with the dispatcher object
dispatcher.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all unperformed visits have been scanned by the iterator.

public IloVisit operator*() const

This operator returns the current instance of IloVisit, the one to which the invoking iterator points.

public UnperformedVisitIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of IloVisit in the
routing plan.

216

Class IloRoutingSolution::UnperformedVisitIterator
Definition file: ildispat/ilorsol.h
Include file: <ildispat/ilodispatcher.h>

UnperformedVisitIterator is a class nested in the class IloRoutingSolution. It allows you to step
through all the unperformed visits associated with a given routing solution.

For more information, see the concept Iterators.

See Also: IloRoutingSolution, IloVisit

Constructor Summary

public UnperformedVisitIterator(IloRoutingSolution solution)

Method Summary

public IloBool ok() const

public IloVisit operator*() const

public UnperformedVisitIterator & operator++()

Constructors

public UnperformedVisitIterator(IloRoutingSolution solution)

This constructor creates an iterator to traverse all the unperformed visits associated with the routing solution
solution.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all unperformed visits have been scanned by the iterator.

public IloVisit operator*() const

This operator returns the current instance of IloVisit, the one to which the invoking iterator points.

public UnperformedVisitIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next unperformed instance of
IloVisit in the routing plan.

217

Class IloDispatcher::VehicleBreakConIterator
Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

This class creates an iterator that iterates over all vehicle- extracted vehicle breaks.

Constructor Summary

public VehicleBreakConIterator(IloDispatcher dispatcher, IloVehicle vehicle,
IloDimension2 dim)

Method Summary

public IloBool ok() const

public IloVehicleBreakCon operator*() const

public VehicleBreakConIterator & operator++()

Constructors

public VehicleBreakConIterator(IloDispatcher dispatcher, IloVehicle vehicle,
IloDimension2 dim)

This constructor creates an iterator that iterates over all vehicle- extracted vehicle breaks on vehicle vehicle
and dimension dim.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all unperformed visits have been scanned by the iterator.

public IloVehicleBreakCon operator*() const

This operator returns the current instance of IloVisit, the one to which the invoking iterator points.

public VehicleBreakConIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of IloVisit in the
routing plan.

218

Class IloRoutingSolution::VehicleIterator
Definition file: ildispat/ilorsol.h
Include file: <ildispat/ilodispatcher.h>

VehicleIterator is a class nested in the class IloRoutingSolution. It allows you to step through all the
vehicles associated with a given routing solution.

For more information, see the concept Iterators.

See Also: IloRoutingSolution, IloVehicle

Constructor Summary

public VehicleIterator(IloRoutingSolution solution)

Method Summary

public IloBool ok() const

public IloVehicle operator*() const

public VehicleIterator & operator++()

Constructors

public VehicleIterator(IloRoutingSolution solution)

This constructor creates an iterator to traverse all the vehicles associated with the routing solution solution.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all vehicles have been scanned by the iterator.

public IloVehicle operator*() const

This operator returns the current instance of IloVisit, the one to which the invoking iterator points.

public VehicleIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of IloVisit in the
routing plan.

219

Class IloRoutingSolution::VisitIterator
Definition file: ildispat/ilorsol.h
Include file: <ildispat/ilodispatcher.h>

VisitIterator is a class nested in the class IloRoutingSolution. It allows you to step through all the
visits associated with a given routing solution.

For more information, see the concept Iterators.

See Also: IloRoutingSolution, IloVisit

Constructor Summary

public VisitIterator(IloRoutingSolution solution)

Method Summary

public IloBool ok() const

public IloVisit operator*() const

public VisitIterator & operator++()

Constructors

public VisitIterator(IloRoutingSolution solution)

This constructor creates an iterator to traverse all the visits associated with the routing solution solution.

Methods

public IloBool ok() const

This member function returns IloTrue if the current position of the iterator is a valid one. It returns IloFalse if
all visits have been scanned by the iterator.

public IloVisit operator*() const

This operator returns the current instance of IloVisit, the one to which the invoking iterator points.

public VisitIterator & operator++()

This left-increment operator shifts the current position of the iterator to the next instance of IloVisit in the
routing plan.

220

Enumeration IloFSDecisionRejectCause
Definition file: ildispat/fsdecision.h
Include file: <ildispat/ilodispatcher.h>

This enumerated type is used to characterize the reason why a decision has been rejected in the isLegal test.

IloRejectCauseMake denotes a failure in the decision's make method.

IloRejectCauseCompletion denotes a rejection due to a failure in the decision's route completion goal, as
defined by the getRouteCompletionGoal method. If you are using predefined decision classes, these goals
perform a standard Dispatcher IloGenerateRoute goal.

IloRejectCauseJustifier denotes a rejection due to the justifier goal associated with the decision, as
returned by the getJustifierGoal method. Dispatcher predefined decision classes have empty justifier goals.

Fields:

IloRejectCauseUnknown = 0L

IloRejectCauseMake

IloRejectCauseCompletion

IloRejectCauseJustifier

221

Enumeration IloNearestAdditionBehavior
Definition file: ildispat/1stsol.h
Include file: <ildispat/ilodispatcher.h>

This enumerated type controls the behavior of the IloNearestAdditionGenerate goal during route
construction.

The mode IloNearestAdditionForward extends the route forward from the first visit to the nearest unrouted
visit.

The mode IloNearestAdditionBackward extends the route backward from the last visit to the nearest
unrouted visit.

The mode IloNearestAdditionBoth extends the route simultaneously in both directions; the nearest visit to
either the start or the end of the route is connected to that portion of the route. In the case of a tie, the route is
extended forward.

See Also: IloNearestAdditionGenerate

Fields:

IloNearestAdditionForward

IloNearestAdditionBackward

IloNearestAdditionBoth

IloNearestAdditionForward

IloNearestAdditionBackward

IloNearestAdditionBoth

IloNearestAdditionPDPFILO

222

Enumeration IloNearestAdditionExtension
Definition file: ildispat/fsdecision.h
Include file: <ildispat/ilodispatcher.h>

This enumerated type is used to characterize the two different ways to build a first solution in nearest-addition
types of heuristics. Serial mode denotes heuristics where at most one vehicle is open at a given time, while
parallel mode denotes a mode where several vehicles can be open simultaneously. This enumerated type is
used to build the specialized decision maker class dedicated to nearest addition heuristics.

The mode IloNearestAdditionSerial builds vehicle routes one at a time. This heuristic will build routes as
densely as possible, and leave part of the vehicles unused.

The mode IloNearestAdditionParallel denotes a nearest addition heuristic where several vehicles can
be open at the same time. The heuristic always looks for the best decision to test, regardless of the open
vehicles at that point, possibly opening many vehicles and building routes that are not close to capacity.

Fields:

IloNearestAdditionSerial

IloNearestAdditionParallel

223

Enumeration IloOutOfRouteReference
Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This enumerated type controls the behavior of the IloOutOfRouteConstraint constraint.

Fields:

IloFirstLastVisits

IloNextFirstPrevLastVisits

IloMaxDiameter

IloFirstLastVisits

IloNextFirstPrevLastVisits

IloMaxDiameter

224

Global function IloManhattan
public IloNum IloManhattan(IloNode node1, IloNode node2)

Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

This function is a pre-defined distance function that returns the Manhattan distance between two nodes for the
specified vehicle. This distance derives its name from the fact that it respects the distance imposed by a grid, as
does a vehicle moving through the grid-like city-block pattern of Manhattan.

Implementation

This function may be implemented like this:

 IloNum IloManhattan(IloNode node1, IloNode node2){
 IloNum x = node1.getX()-node2.getX();
 IloNum y = node1.getY()-node2.getY();
 IloNum z = node1.getZ()-node2.getZ();
 return IloAbs(x) + IloAbs(y) + IloAbs(z);
 }

Example

In the example below, the Manhattan distance between A and B is equal to . (The
z-coordinates of A and B are assumed to be equivalent.)

See Also: IloDistance, IloDistMax, IloEuclidean, IloGeographical, IloNode, IloSimpleDistanceFunction

225

Global function IloOrderedVisitPair
public IloConstraint IloOrderedVisitPair(IloEnv env, IloVisit visit1, IloVisit
visit2, const char * name=0)
public IlcConstraint IloOrderedVisitPair(IloSolver solver, IloVisit visit1,
IloVisit visit2, const char * name=0)

Definition file: ildispat/ilocon.h
Include file: <ildispat/ilodispatcher.h>

These functions create constraints which state that visit1 and visit2 must be performed by the same
vehicle, and that visit1 must precede visit2, but not necessarily directly. The parameter name, if specified,
becomes the name of the newly created constraint. These constraints also allow both visits to be unperformed
without violating the constraint.

To specify that the pair must be performed by a vehicle, use the member function IloVisit::performed().

The code

 mdl.add(IloOrderedVisitPair(env, visit1, visit2));

is semantically equivalent to

 mdl.add(visit1.getVehicleVar() == visit2.getVehicleVar());

 mdl.add(visit1.isBefore(visit2));

However, the code using IloOrderedVisitPair is more efficient.

See Also: IloVisit, operator==

226

Global function IloInstantiateVehicleBreaks
public IloGoal IloInstantiateVehicleBreaks(IloEnv env, IloNum precision=0.0,
IloBool independent=IloFalse)
public IloGoal IloInstantiateVehicleBreaks(IloEnv env, IloVehicle vehicle, IloNum
precision=0.0)
public IlcGoal IloInstantiateVehicleBreaks(IloSolver solver, IloNum precision=0.0,
IloBool independent=IloFalse)
public IlcGoal IloInstantiateVehicleBreaks(IloSolver solver, IloVehicle vehicle,
IloNum precision=0.0)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

These goals instantiate all breaks for the vehicle vehicle or all vehicle breaks contained in the environment
env or extracted by solver. Depending on whether env or solver is specified, these functions return an
IloGoal or IlcGoal.

The parameter precision is used to specify the required accuracy of the start times and durations. When the
difference between the minimum and maximum of the start time or duration is less than or equal to precision,
the domain of the corresponding variable is not reduced further. This can be used to increase solving speed
when absolute accuracy is not required. The default is 0.0 (absolute accuracy).

The parameter independent is used to indicate whether vehicles in the plan should be treated independently. If
it is set to IloTrue, the goal instantiates all vehicle breaks for the routing plan, but treats all vehicles
independently. Therefore, if the break instantiation is completely explored for a single vehicle and the break(s)
could not be placed, the whole goal fails rather than backtracking to a previous vehicle to explore another break
position on that vehicle before moving forward again. The default is IloFalse.

See Also: IloInstantiateVehicleBreak, IloInstantiateVehicleBreakDuration, IloInstantiateVehicleBreakPosition,
IloInstantiateVehicleBreakStart, IloVehicleBreakCon

227

Global function IloVisitAlternativeSwap
public IloNHood IloVisitAlternativeSwap(IloEnv env, IloDispatcherNHoodParameters
params)
public IloNHood IloVisitAlternativeSwap(IloEnv env)

Definition file: ildispat/perfnhood.h
Include file: <ildispat/ilodispatcher.h>

This function returns a neighborhood that modifies a solution by exchanging a performed visit constrained by an
IloVisitAlternativeConstraint constraint with another unperformed visit constrained by the same
constraint.

The optional parameter params can be used to customize the behavior of the neighborhood. In particular, the
vehicle array specified using setVehicles on the IloDispatcherNHoodParameters class will make the
neighborhood unperform visits only if they belong to the routes of these vehicles.

For more information, see the concept Neighborhoods.

See Also: IloCross, IloExchange, IloFPRelocate, IloMakePerformed, IloMakePerformedPair,
IloMakeUnperformed, IloOrOpt, IloRelocate, IloSwapPerform, IloTwoOpt, IloDispatcherNHoodParameters

228

Global function IloExchange
public IloNHood IloExchange(IloEnv env, IloDispatcherNHoodParameters params)
public IloNHood IloExchange(IloEnv)

Definition file: ildispat/lsearch.h
Include file: <ildispat/ilodispatcher.h>

This function returns a neighborhood that modifies a solution by exchanging two visits on different routes. These
exchanges can result in cheaper routes.

The optional parameter params can be used to customize the behavior of the neighborhood. In particular, the
vehicle array specified using IloDispatcherNHoodParameters::setVehicles will make the exchange
neighborhood operate only on the routes of these vehicles.

Examples:

The following figure shows the process of exchanging two visits. Here, we assume that the cost is proportional to
the length of the route. The neighborhood destroys four arcs and creates four new arcs. As a result total travel
distance, and thus cost, is less.

The following figure shows the process of exchanging two pairs of visits. Here, we assume that the cost is
proportional to the length of the route. The neighborhood destroys eight arcs and creates eight new arcs. As a
result total travel distance, and thus cost, is less.

229

For more information, see the concept Neighborhoods.

See Also: IloCross, IloFPRelocate, IloMakePerformed, IloMakePerformedPair, IloMakeUnperformed, IloOrOpt,
IloRelocate, IloSwapPerform, IloTwoOpt, IloVisitAlternativeSwap, IloDispatcherNHoodParameters

230

Global function IloInstantiateVehicleBreakPosition
public IloGoal IloInstantiateVehicleBreakPosition(IloEnv env, IloVehicleBreakCon
brk)
public IlcGoal IloInstantiateVehicleBreakPosition(IloSolver solver,
IloVehicleBreakCon brk)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal to instantiate
the position of the vehicle break brk. The “position” in the context of a break refers to a visit occurring
immediately before the break. This goal tries first to place the break in the arc with the most available idle spare
time.

See Also: IloInstantiateVehicleBreak, IloInstantiateVehicleBreakDuration, IloInstantiateVehicleBreaks,
IloInstantiateVehicleBreakStart, IloVehicleBreakCon

231

Global function IloMakeUnperformed
public IloNHood IloMakeUnperformed(IloEnv env, IloDispatcherNHoodParameters params)
public IloNHood IloMakeUnperformed(IloEnv env)

Definition file: ildispat/perfnhood.h
Include file: <ildispat/ilodispatcher.h>

This function returns a neighborhood that modifies a solution by causing a performed visit to be unperformed.

The optional parameter params can be used to customize the behavior of the neighborhood. In particular, the
vehicle array specified using setVehicles on the IloDispatcherNHoodParameters class will make the
neighborhood unperform visits only if they belong to the routes of these vehicles.

For more information, see the concept Neighborhoods.

See Also: IloCross, IloExchange, IloFPRelocate, IloOrOpt, IloMakePerformed, IloMakePerformedPair,
IloRelocate, IloSwapPerform, IloTwoOpt, IloVisitAlternativeSwap, IloDispatcherNHoodParameters

232

Global function IloTardinessFunction
public IloNumToNumSegmentFunction IloTardinessFunction(IloEnv env, IloNum
lateThresh, IloNum lateCost)

Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This function creates a piecewise linear function f such that:

if 0 <= x < tardyThresh, f(x) = 0,•
if tardyThresh <= x, f(x) = tardyCost * (x - tardyThresh).•

It can be used to express tardiness costs on visits, in conjunction with IloVisit::setStartCost() and
IloVisit::setEndCost(), where tardyCost is the cost per unit of dimension for performing a visit after
tardyThresh.

233

Global function IloVerbose
public IloOutputManip IloVerbose(IloDispatcher dispatcher)

Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

This function returns an output manipulator that expands the output data displayed by the overloaded operator.

Example

The following is an example of the output produced by the IloVerbose operator:

 Solution :
 Unperformed visits : None

 Vehicle 0
 Route : Depot -> 14 -> 15 -> 2 -> 4 -> 12 -> 3 -> Depot
 Time : Depot [0..39.5968], delay [0..39.5968] -> travel [32.0156], wait [0..39.5968]
 -> 14 [32.0156..71.6125], delay [10] -> travel [15.8114], wait [0..39.5968]
 -> 15 [61..97.4238], delay [10] -> travel [13], wait [0..36.4238]
 -> 2 [84..120.424], delay [10] -> travel [20.2237], wait [0..36.4238]
 -> 4 [149..150.648], delay [10] -> travel [15.8114], wait [0..1.64759]
 -> 12 [174.811..176.459], delay [10] -> travel [11.1803], wait [0..1.64759]
 -> 3 [195.992..197.639], delay [10] -> travel [22.3607], wait [0..1.64759]
 -> Depot [228.352..230], delay [0..Inf) -> travel [0], wait [0..Inf)
 Weight : Depot [0..114], quantity [0] -> 14 [0..114], quantity [20]
 -> 15 [20..134], quantity [8] -> 2 [28..142], quantity [7]
 -> 4 [35..149], quantity [19] -> 12 [54..168], quantity [19]
 -> 3 [73..187], quantity [13] -> Depot [86..200], quantity [0]
 Tardiness : Depot [0..Inf), quantity [0] -> 14 [0..Inf), quantity [0..230]
 -> 15 [0..Inf), quantity [0..230] -> 2 [0..Inf), quantity [0..230]
 -> 4 [0..Inf), quantity [0..230] -> 12 [0..Inf), quantity [0..230]
 -> 3 [0..Inf), quantity [0..230] -> Depot [0..Inf), quantity [0]
 Length : Depot [0..Inf), delay [0..Inf) -> travel [32.0156], wait [0..Inf)
 -> 14 [0..Inf), delay [0..Inf) -> travel [15.8114], wait [0..Inf)
 -> 15 [0..Inf), delay [0..Inf) -> travel [13], wait [0..Inf)
 -> 2 [0..Inf), delay [0..Inf) -> travel [20.2237], wait [0..Inf)
 -> 4 [0..Inf), delay [0..Inf) -> travel [15.8114], wait [0..Inf)
 -> 12 [0..Inf), delay [0..Inf) -> travel [11.1803], wait [0..Inf)
 -> 3 [0..Inf), delay [0..Inf) -> travel [22.3607], wait [0..Inf)
 -> Depot [0..Inf), delay [0..Inf) -> travel [0], wait [0..Inf)

 Vehicle 1
 Route : Depot -> 5 -> 16 -> 17 -> 8 -> 18 -> 6 -> 13 -> Depot
 Time : Depot [0..63.2233], delay [0..63.2233] -> travel [20.6155], wait [0..63.2233]
 -> 5 [20.6155..83.8389], delay [10] -> travel [11.1803], wait [0..63.2233]
 -> 16 [41.7959..105.019], delay [10] -> travel [11.1803], wait [0..63.2233]
 -> 17 [62.9762..126.2], delay [10] -> travel [13.9284], wait [0..63.2233]
 -> 8 [95..150.128], delay [10] -> travel [10.4403], wait [0..55.1279]
 -> 18 [115.44..170.568], delay [10] -> travel [11.1803], wait [0..55.1279]
 -> 6 [136.621..191.749], delay [10] -> travel [7.07107], wait [0..55.1279]
 -> 13 [159..208.82], delay [10] -> travel [11.1803], wait [0..49.8197]
 -> Depot [180.18..230], delay [0..Inf) -> travel [0], wait [0..Inf)
 Weight : Depot [0..106], quantity [0] -> 5 [0..106], quantity [26]
 -> 16 [26..132], quantity [19] -> 17 [45..151], quantity [2]
 -> 8 [47..153], quantity [9] -> 18 [56..162], quantity [12]
 -> 6 [68..174], quantity [3] -> 13 [71..177], quantity [23]
 -> Depot [94..200], quantity [0]
 Tardiness : Depot [0..Inf), quantity [0] -> 5 [0..Inf), quantity [0..230]
 -> 16 [0..Inf), quantity [0..230] -> 17 [0..Inf), quantity [0..230]
 -> 8 [0..Inf), quantity [0..230] -> 18 [0..Inf), quantity [0..230]
 -> 6 [0..Inf), quantity [0..230] -> 13 [0..Inf), quantity [0..230]
 -> Depot [0..Inf), quantity [0]
 Length : Depot [0..Inf), delay [0..Inf) -> travel [20.6155], wait [0..Inf)
 -> 5 [0..Inf), delay [0..Inf) -> travel [11.1803], wait [0..Inf)
 -> 16 [0..Inf), delay [0..Inf) -> travel [11.1803], wait [0..Inf)
 -> 17 [0..Inf), delay [0..Inf) -> travel [13.9284], wait [0..Inf)
 -> 8 [0..Inf), delay [0..Inf) -> travel [10.4403], wait [0..Inf)
 -> 18 [0..Inf), delay [0..Inf) -> travel [11.1803], wait [0..Inf)
 -> 6 [0..Inf), delay [0..Inf) -> travel [7.07107], wait [0..Inf)

234

 -> 13 [0..Inf), delay [0..Inf) -> travel [11.1803], wait [0..Inf)
 -> Depot [0..Inf), delay [0..Inf) -> travel [0], wait [0..Inf)

See Also: IloOutputManip, IloTerse

235

Global function IloGeographical
public IloNum IloGeographical(IloNode node1, IloNode node2)

Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

This function is a pre-defined distance function that returns the geographical distance between two nodes for a
specified vehicle. The x-coordinate of each node represents the longitude in degrees, and the y-coordinate
represents the latitude. The distance is computed on the unit sphere (that is, a sphere with a radius of 1).

The distance on the earth can be computed with the approximate radius of 6378.137 kilometers. For example,
using this function to compute the distance between Mountain View, California, (-122.067, 37.388) and Paris,
France, (2.333, 48.867) gives a distance of around 8981 kilometers.

Implementation

The function IloGeographical may be implemented like this:

 IloNum IloGeographical(IloNode node1, IloNode node2) {
 IloNum long1 = node1.getX() * IloPi / 180.0;
 IloNum lat1 = node1.getY() * IloPi / 180.0;
 IloNum long2 = node2.getX() * IloPi / 180.0;
 IloNum lat2 = node2.getY() * IloPi / 180.0;
 return acos(sin(lat1)*sin(lat2)
 + cos(lat1)*cos(lat2)
 *(cos(long1)*cos(long2) + sin(long1)*sin(long2))
);
 }

See Also: IloDistance, IloDistMax, IloEuclidean, IloManhattan, IloNode, IloSimpleDistanceFunction

236

Global function IloCompatible
public IloConstraint IloCompatible(IloVisitVehicleCompat compat, const char *
name=0)

Definition file: ildispat/ilocompat.h
Include file: <ildispat/ilodispatcher.h>

This function creates a compatibility constraint from a compatibility relation. This constraint ensures that only
compatible vehicles can be assigned to a visit.

As with all Solver constraints, this constraint should be added to an instance of IloModel. The parameter name,
if present, is used as the name of the constraint.

237

Global function IloEarlinessFunction
public IloNumToNumSegmentFunction IloEarlinessFunction(IloEnv env, IloNum
earlyThresh, IloNum earlyCost)

Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This function creates a piecewise linear function f such that:

if 0 <= x < earlyThresh, f(x) = earlyCost * (earlyThresh - x),•
if earlyThresh <= x, f(x) = 0.•

It can be used to express earliness costs on visits, in conjunction with IloVisit::setStartCost() and
IloVisit::setEndCost(), where earlyCost is the cost per unit of dimension for performing a visit before
earlyThresh.

238

Global function operator<<
public ostream & operator<<(ostream & stream, const IloDispatcher & plan)

Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

This operator has been overloaded to treat Dispatcher objects appropriately as output. It directs its output to an
output stream (normally, standard output) and displays information about its second argument plan.

See Also: IloDispatcher, IloOutputManip, IloRoutingSolution

239

Global function operator<<
public ostream & operator<<(ostream & stream, const IloOutputManip & manip)

Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

This operator has been overloaded to treat Dispatcher objects appropriately as output. It directs its output to an
output stream (normally, standard output) and displays information about its second argument manip.

See Also: IloDispatcher, IloOutputManip, IloRoutingSolution

240

Global function operator<<
public ostream & operator<<(ostream & stream, const IloRoutingSolution & solution)

Definition file: ildispat/ilorsol.h
Include file: <ildispat/ilodispatcher.h>

This operator has been overloaded to treat Dispatcher objects appropriately as output. It directs its output to an
output stream (normally, standard output) and displays information about its second argument solution.

See Also: IloDispatcher, IloOutputManip, IloRoutingSolution

241

Global function IloSortedNHood
public IloNHood IloSortedNHood(IloEnv env, IloNHood nhood, IloNumVar objVar)

Definition file: ildispat/lsearch.h
Include file: <ildispat/ilodispatcher.h>

This function returns a neighborhood that behaves as nhood, except that the neighborhood order is modified to
return deltas sorted by increasing the lower bound of the variable objVar. Deltas which do not contain variable
objVar are returned last.

In Dispatcher, all predefined neighborhoods return deltas containing the cost variable (the variable returned by
IloDispatcher::getCostVar). Its lower bound is an evaluation of the cost of the corresponding solution
computed by the neighborhood. Therefore IloSortedNHood can be used to (approximately) sort Dispatcher
neighborhoods according to cost.

For more information, see the concept Neighborhoods.

242

Global function IloSortedNHood
public IloNHood IloSortedNHood(IloEnv env, IloNHood nhood, IloComparator<
IloSolution > comparator)

Definition file: ildispat/lsearch.h
Include file: <ildispat/ilodispatcher.h>

This function returns a neighborhood that behaves as nhood, except that the neighborhood order is modified to
return deltas sorted using the solution comparator comparator.

Note

The only information the comparator uses is what is contained in the delta, which is nothing more than a partial
routing solution created by the neighborhoods.

Example

The following code creates a comparator for which the best delta is the one involving the vehicle with the highest
capacity:

ILOCOMPARATOR1(MyComparator,
 IloSolution, delta1, delta2,
 IloDimension1, dim1) {
 IloRoutingSolution rdelta1(delta1);
 IloNum maxCapacity1 = 0;
 for (IloRoutingSolution::VisitIterator iter1(rdelta1); iter1.ok(); ++iter1) {
 IloVisit visit = *iter1;
 if (rdelta1.isPerformed(visit)) {
 IloNum capacity = rdelta1.getVehicle(visit).getCapacity(dim1);
 maxCapacity1 = IloMax(capacity, maxCapacity1);
 }
 }
 IloRoutingSolution rdelta2(delta2);
 IloNum maxCapacity2 = 0;
 for (IloRoutingSolution::VisitIterator iter2(rdelta2); iter2.ok(); ++iter2) {
 IloVisit visit = *iter2;
 if (rdelta2.isPerformed(visit)) {
 IloNum capacity = rdelta2.getVehicle(visit).getCapacity(dim1);
 maxCapacity2 = IloMax(capacity, maxCapacity2);
 }
 }
 return maxCapacity1 > maxCapacity2;
}

It can be combined with a comparator created by IloSolutionValueComparator to only call MyComparator
when both deltas have the same cost:

 IloComparator<IloSolution> myComparator = MyComparator(env, pallets);
 IloLexicographicComparator<IloSolution> comparator(env);
 comparator.add(IloSolutionValueComparator(env, dispatcher.getCostVar()));
 comparator.add(myComparator);

The resulting comparator can be passed to IloSortedNHood to select the appropriate neighbor.

For more information, see the concept Neighborhoods.

For more information, see the class IloComparator documented in the IBM ILOG Solver Reference Manual.

243

Global function IloInstantiateVehicleBreak
public IloGoal IloInstantiateVehicleBreak(IloEnv env, IloVehicleBreakCon brk,
IloNum precision=0.0)
public IlcGoal IloInstantiateVehicleBreak(IloSolver solver, IloVehicleBreakCon brk,
IloNum precision=0.0)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

A wide selection of vehicle break instantiation goals is supplied with Dispatcher so that you can build your own
break instantiation goals. This is useful if you want to create breaks that have preferences, such as “take coffee
breaks as late as possible and lunch breaks as early as possible,” that cannot be encoded as constraints. As in
Solver, creating your own goals allows you to use variable or value ordering heuristics specific to your problem.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal to instantiate
the vehicle break constraint brk.

The instantiation proceeds as follows:

If it is possible that the break may not be performed, a choice point is created, and the break is NOT
performed. On backtracking, the break is performed, and steps 2 - 4 are carried out.

1.

The break's position is instantiated using IloInstantiateVehicleBreakPosition.2.
The break's duration is instantiated using IloInstantiateVehicleBreakDuration.3.
The break's start time is instantiated using IloInstantiateVehicleBreakStart.4.

The parameter precision is used to specify the required accuracy of start time and duration. When the
difference between the minimum and maximum of the start time or duration is less than or equal to precision,
the domain of the corresponding variable is not reduced further. This can be used to increase solving speed
when absolute accuracy is not required. The default is 0.0 (absolute accuracy).

Note

To increase performance when instantiating breaks on incomplete routing plans, we recommend that you
instantiate breaks only on vehicles with complete routes. The IloInstantiateVehicleBreaks goals do
this automatically.

See Also: IloInstantiateVehicleBreakDuration, IloInstantiateVehicleBreakPosition, IloInstantiateVehicleBreaks,
IloInstantiateVehicleBreakStart, IloVehicleBreakCon

244

Global function IloMakePerformed
public IloNHood IloMakePerformed(IloEnv env, IloDispatcherNHoodParameters params)
public IloNHood IloMakePerformed(IloEnv env)

Definition file: ildispat/perfnhood.h
Include file: <ildispat/ilodispatcher.h>

This function returns a neighborhood that modifies a solution by inserting an unperformed visit after a performed
one.

The optional parameter params can be used to customize the behavior of the neighborhood. In particular, the
vehicle array specified using setVehicles on the IloDispatcherNHoodParameters class will make the
neighborhood insert unperformed visits only on the routes of these vehicles.

For more information, see the concept Neighborhoods.

See Also: IloCross, IloExchange, IloFPRelocate, IloMakePerformedPair, IloMakeUnperformed, IloOrOpt,
IloRelocate, IloSwapPerform, IloTwoOpt, IloVisitAlternativeSwap, IloDispatcherNHoodParameters

245

Global function IloTerse
public IloOutputManip IloTerse(IloDispatcher dispatcher)

Definition file: ildispat/ilodispat.h
Include file: <ildispat/ilodispatcher.h>

This function returns an output manipulator that limits the output data displayed by the overloaded operator.
When this function is used, only the order in which visits are made is displayed.

Example

The following is an example of the output produced by the IloTerse operator:

Solution :
 Unperformed visits : None
 Vehicle 0 Route : Depot -> 52 -> 7 -> 19 -> 11 -> 64 -> 49 -> 36 -> 47
 -> 46 -> 8 -> 45 -> 17 -> 84 -> 5 -> 89 -> Depot
 Vehicle 1 Route : Depot -> 50 -> 33 -> 81 -> 34 -> 78 -> 79 -> 3 -> 77
 -> 76 -> 28 -> depot -> 53 -> 58 -> 2 -> 57 -> 15 -> 43
 -> 42 -> 14 -> 38 -> 44 -> 16 -> 61 -> 59 -> 95 -> Depot
 Vehicle 2 Route : Depot -> 18 -> 82 -> 48 -> 62 -> 20 -> 66 -> 65 -> 71
 -> 35 -> 9 -> 51 -> 1 -> depot -> 26 -> 4 -> 25 -> 55
 -> 54 -> 24 -> 29 -> 68 -> 80 -> 12 -> Depot
 Vehicle 3 Route : Depot -> 94 -> 96 -> 99 -> 60 -> 83 -> 88 -> 31 -> 10
 -> 63 -> 90 -> 32 -> 30 -> 70 -> 69 -> 27 -> depot
 -> 6 -> 93 -> 85 -> 86 -> 91 -> 100 -> 98 -> 37 -> 92
 -> 97 -> 87 -> 13 -> depot -> 40 -> 73 -> 74 -> 22
 -> 41 -> 23 -> 67 -> 39 -> 56 -> 75 -> 72 -> 21 -> Depot

See Also: IloOutputManip, IloVerbose

246

Global function IloSetVehicleVisitCumuls
public IlcGoal IloSetVehicleVisitCumuls(IloSolver solver, IloVehicle vehicle,
IloDimension2 dim, IloNum precision=1e-6)
public IloGoal IloSetVehicleVisitCumuls(IloEnv env, IloVehicle vehicle,
IloDimension2 dim, IloNum precision=1e-6)

Definition file: ildispat/setcumul.h
Include file: <ildispat/ilodispatcher.h>

The following goals greedily instantiate the cumul variables of some or all visits of the routing problem for a given
dimension. The instantiation tries to minimize the cumul and end-cumul costs attached to the visits taking into
account execution intervals and vehicle breaks. The parameter precision is used to specify the required accuracy
of the cumul values. When the difference between the minimum and maximum of the cumul variable is less than
or equal to precision, the domain of the variable is not reduced further. This can be used to increase solving
speed when absolute accuracy is not required. The default is 1e-6.

Depending on whether env or solver is specified, the functions return an IloGoal or IlcGoal to instantiate
the cumul variables of the visits performed by vehicle vehicle for dimension dim.

247

Global function IloInstantiateVehicleBreakStart
public IloGoal IloInstantiateVehicleBreakStart(IloEnv env, IloVehicleBreakCon brk,
IloNum precision=0.0, IloNum target=0.5)
public IlcGoal IloInstantiateVehicleBreakStart(IloSolver solver, IloVehicleBreakCon
brk, IloNum precision=0.0, IloNum target=0.5)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal to instantiate
the start time of the break brk. It is usually advisable to instantiate the position of the break first. (See
IloInstantiateVehicleBreakPosition.)

The parameter precision is used to specify the required accuracy of the start time. When the difference
between the minimum and maximum of the start time is less than or equal to precision, the domain of the
corresponding variable is not reduced further. This can be used to increase solving speed when absolute
accuracy is not required. The default is 0.0 (absolute accuracy).

A “middle” start time, indicated by the parameter target, is the default. The value of target must be between
0.0 and 1.0. The parameter is used as follows:

Choose a “mid” value of startTime.getMin() + startTime.getSize() * target.1.
Create a choice point, and try to instantiate the start time <= mid to its maximum value or the start
time >= mid to its minimum value.

2.

Explore the smallest portion first.3.

This is very useful for instantiating breaks in the middle of their window as instantiating them at the extremities
can leave zero slack in parts of the vehicle route. This may be undesirable.

See Also: IloInstantiateVehicleBreak, IloInstantiateVehicleBreakDuration, IloInstantiateVehicleBreakPosition,
IloInstantiateVehicleBreaks, IloVehicleBreakCon

248

Global function IloAllVehiclesDifferent
public IloBool IloAllVehiclesDifferent(IloVehicle vehicle1, IloVehicle vehicle2)

Definition file: ildispat/ilovehicleequiv.h
Include file: <ildispat/ilodispatcher.h>

This function returns IloFalse if the two vehicles passed as arguments are different with respect to a distance
function to be specified. This function, which is of type IloVehicleEquivFunction, can be used in the
definition of distance functions.

See Also: IloAllVehiclesEquivalent, IloVehicleEquiv, IloVehicleEquivI

249

Global function IloBoxVehiclePairPredicate
public IloVehiclePairPredicate IloBoxVehiclePairPredicate(IloEnv env, IloNum ratio)

Definition file: ildispat/ilovehiclepredicate.h
Include file: <ildispat/ilodispatcher.h>

This function returns a pre-defined vehicle pair predicate which is true for a pair of vehicles if the bounding boxes
of their respective routes have a big enough intersection:

let v1 and v2 be two vehicles,•
let A1 be the area of the bounding box of the route of v1,•
let A2 be the area of the bounding box of the route of v2,•
let AI be the area of the intersection of the two bounding boxes,•
the predicate accepts the pair (v1, v2) if ratio * IloMin(A1, A2) <= AI•

See Also: IloVehiclePairPredicate

250

Global function IloEuclidean
public IloNum IloEuclidean(IloNode node1, IloNode node2)

Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

This function is a pre-defined distance function that returns the Euclidean distance between two nodes.

Implementation

This function may be implemented like this:

 IloNum IloEuclidean(IloNode node1, IloNode node2){
 IloNum x = node1.getX()-node2.getX();
 IloNum y = node1.getY()-node2.getY();
 IloNum z = node1.getZ()-node2.getZ();
 return sqrt(x*x + y*y + z*z);
 }

Example

In the figure below, the Euclidean distance between A and B is equal to . (The
z-coordinates of A and B are assumed to be equivalent.)

See Also: IloDistance, IloDistMax, IloGeographical, IloManhattan, IloNode, IloSimpleDistanceFunction

251

Global function IloCouple
public void IloCouple(IloNHood nh, IloMetaHeuristic mh)

Definition file: ildispat/ilometa.h
Include file: <ildispat/ilodispatcher.h>

This function couples the specified neighborhood and metaheuristic. This is done by a sharing of data structures
between the neighborhood and metaheuristic.

When mh is of type IloDispatcherGLS, or is a composed metaheuristic (created by operator + between
metaheuristics) containing an instance of IloDispatcherGLS, the neighborhood must be coupled to the
metaheuristic. Otherwise, an IloException is thrown when you try to use the instance of IloDispatcherGLS
in the search.

See Also: IloDispatcherGLS, IloDecouple

252

Global function IloTwoOpt
public IloNHood IloTwoOpt(IloEnv env, IloDispatcherNHoodParameters params, IloBool
norestarts=IloTrue)
public IloNHood IloTwoOpt(IloEnv env, IloBool norestarts=IloTrue)

Definition file: ildispat/lsearch.h
Include file: <ildispat/ilodispatcher.h>

This function returns a neighborhood that modifies a solution by breaking two arcs.

The optional argument params can be specified to customize the behavior of the neighborhood.

In particular, if a vehicle array has been passed to IloDispatcherNHoodParameters::setVehicles, the
function returns a neighborhood that uses the two-opt heuristic on the routes of the specified array of vehicles.

The neighborhood IloTwoOpt starts looking for new neighbors at the place where the last modification took
place. This behavior has changed from that of Dispatcher versions 3.2 and earlier. In earlier versions,
IloTwoOpt would look for new neighbors starting from the first visit of the last modified vehicle. When the flag
norestarts is set to IloFalse, the behavior of IloTwoOpt is that of Dispatcher versions 3.2 and earlier.

Two-Opt Heuristic

Take an initial route.1.
Remove two arcs from the route, and try the other possible reconnection of the remaining parts of the
route.

2.

If the cost has been reduced and if all constraints are satisfied, go back to Step 2.3.
End.4.

With this heuristic, directional flows between visits may be reversed. The presence of tight time constraints can
therefore decrease its effectiveness.

Example

The following figure illustrates this process. Here, we assume that the cost is proportional to the length of the
tour. The neighborhood eliminates the crossing by destroying two arcs and creating two new arcs. The resulting
route is shorter, and thus less costly.

For more information, see the concept Neighborhoods.

See Also: IloCross, IloExchange, IloFPRelocate, IloMakePerformed, IloMakePerformedPair,

253

IloMakeUnperformed, IloOrOpt, IloRelocate, IloSwapPerform, IloVisitAlternativeSwap,
IloDispatcherNHoodParameters

254

Global function IloVehicleDependentDelayConstraint
public IloConstraint IloVehicleDependentDelayConstraint(IloDimension2 dim, IloVisit
visit, IloVehicleToNumFunction func)

Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This constraint allows you to model a vehicle dependent delay on the dimension specified by dim for the visit
specified by visit.

For example, if the service time for visit is 10 if it is performed by vehicle1 and 8 if it is performed by vehicle2
you must create a function func to model this situation. This function is an instance of
IloVehicleToNumFunction created with vehicle1 and vehicle2 and the corresponding values 10 and 8. For
more information on how to create functions, see the available constructors for the class
IloVehicleToNumFunction. Then you use the function func to create the vehicle dependent delay constraint
for visit on time dimension dim. Finally, you add this constraint to the model.

See Also: IloDimension2, IloVisit, IloVehicleToNumFunction

255

Global function IloMax
public IloNumToNumSegmentFunction IloMax(IloNum value, IloNumToNumSegmentFunction
f)
public IloNumToNumSegmentFunction IloMax(IloNumToNumSegmentFunction f, IloNum
value)

Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This function returns a piecewise linear function g representing the maximum of value and function f: for all x,
g(x) = max(value, f(x)).

256

Global function operator==
public IloConstraint operator==(IloVisit visit, IloVisitVar var)
public IloConstraint operator==(IloVisitVar var, IloVisit visit)

Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This operator creates and returns an equality constraint between its arguments.

These constraints state that the visit associated with var either must come directly before visit or must come
directly after visit, depending on the meaning of var (a variable representing either a next or a previous visit).

See Also: IloVisitVar, IloVisit

257

Global function operator==
public IloConstraint operator==(IloVehicleVar vehicleVar1, IloVehicleVar
vehicleVar2)

Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This operator creates and returns an equality constraint between its arguments.

This constraint states that the visit associated with vehicleVar1 and the visit associated with vehicleVar2
must be performed by the same vehicle.

See Also: IloVehicle, IloVehicleVar

258

Global function operator==
public IloConstraint operator==(IloVehicleArray vehicles, IloVehicleVar vehicleVar)
public IloConstraint operator==(IloVehicleVar vehicleVar, IloVehicleArray vehicles)

Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This operator creates and returns an equality constraint between its arguments. When one of the arguments is
an array, the constraint specifies an equality with one element of the array.

These constraints state that the visit associated with vehicleVar must be performed by one element of
vehicles.

See Also: IloVehicleArray, IloVehicleVar

259

Global function operator==
public IloConstraint operator==(IloVisitArray visits, IloVisitVar var)
public IloConstraint operator==(IloVisitVar var, IloVisitArray visits)

Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This operator creates and returns an equality constraint between its arguments. When one of the arguments is
an array, the constraint specifies an equality with one element of the array.

These constraints state that the visit associated with var either must come directly before one element of
visits or must come directly after one element of visits, depending on the meaning of var (a variable
representing either a next or a previous visit).

See Also: IloVisitVar, IloVisit

260

Global function operator==
public IloConstraint operator==(IloVehicle vehicle, IloVehicleVar vehicleVar)
public IloConstraint operator==(IloVehicleVar vehicleVar, IloVehicle vehicle)

Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This operator creates and returns an equality constraint between its arguments.

These constraints state that the visit associated with vehicleVar must be performed by vehicle.

See Also: IloVehicle, IloVehicleVar

261

Global function IloDecouple
public void IloDecouple(IloNHood nh, IloMetaHeuristic mh)

Definition file: ildispat/ilometa.h
Include file: <ildispat/ilodispatcher.h>

This function decouples a previously coupled neighborhood/ metaheuristic pair.

If nh and mh are not coupled, an IloException is thrown.

See Also: IloDispatcherGLS, IloCouple

262

Global function IloGraphDistance
public IloDistance IloGraphDistance(IloDispatcherGraph graph)

Definition file: ildispat/ilographdist.h
Include file: <ildispat/ilodispatcher.h>

This function returns an instance of IloDistance for which the distance between two nodes for a specified
vehicle is the value of the cheapest path between the two nodes using the specified vehicle. The value returned
will depend on the instance of IloDimension2 with which the distance instance is associated.

Implementation

The function IloGraphDistance may be implemented like this:

 IloDispatcherGraph graph(env);
 IloDistance dist = IloGraphDistance(graph);
 IloDimension2 dim(env, dist);

If we suppose that node1 and node2 are instances of IloNode and that vehicle is an instance of
IloVehicle, then dist.getDistance(node1, node2, vehicle) returns
graph.getDistance(node1, node2, vehicle, dim).

See Also: IloDispatcherGraph, IloNode, IloVehicle

263

Global function IloMin
public IloNumToNumSegmentFunction IloMin(IloNum value, IloNumToNumSegmentFunction
f)
public IloNumToNumSegmentFunction IloMin(IloNumToNumSegmentFunction f, IloNum
value)

Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This function returns a piecewise linear function g representing the minimum of value and function f: for all x,
g(x) = min(value, f(x)).

264

Global function IloSolutionValueComparator
public IloComparator< IloSolution > IloSolutionValueComparator(IloEnv env,
IloNumVar objVar)

Definition file: ildispat/lsearch.h

This function returns a solution comparator for which a solution S1 is better than a solution S2 if objVar has a
lower value in S1 than in S2.

For more information, see the class IloComparator, documented in the IBM ILOG Solver Reference Manual.

See Also: IloSortedNHood

265

Global function IloOrOpt
public IloNHood IloOrOpt(IloEnv env, IloDispatcherNHoodParameters params, IloBool
norestarts=IloTrue)
public IloNHood IloOrOpt(IloEnv env, IloBool norestarts=IloTrue)

Definition file: ildispat/lsearch.h
Include file: <ildispat/ilodispatcher.h>

This function returns a neighborhood that modifies a solution by using the or-opt heuristic. This consists of
relocating segments of visits in the same route. These changes can result in lower cost.

The optional argument params can be specified to customize the behavior of the neighborhood.

In particular, if a vehicle array has been passed to IloDispatcherNHoodParameters::setVehicles, the
function returns a neighborhood that uses the or-opt heuristic only on the routes of the specified array of vehicles.

The neighborhood IloOrOpt starts looking for new neighbors at the place where the last modification took
place. This behavior has changed from that of Dispatcher versions 3.2 and earlier. In earlier versions, IloOrOpt
would look for new neighbors starting from the first visit of the last modified vehicle. When the flag norestarts
is set to IloFalse, the behavior of IloTwoOpt is that of Dispatcher versions 3.2 and earlier.

Or-Opt Heuristic

Start with an initial route.1.
Move parts composed of one visit elsewhere in the route.2.
If the cost has been reduced and if all constraints are satisfied, go back to Step 2.3.
When all such moves have been tested, try moving parts of the route composed of two consecutive
visits.

4.

After testing all moves of parts composed of two consecutive visits, try moving parts of the route
composed of three consecutive visits.

5.

Example

The following figure illustrates the process. Here, the cost is assumed to be proportional to the length of the
route. The operator eliminates the crossing by destroying three arcs and creating three new arcs. The resulting
route is shorter, and thus less costly.

For more information, see the concept Neighborhoods.

See Also: IloCross, IloExchange, IloFPRelocate, IloMakePerformed, IloMakePerformedPair,
IloMakeUnperformed, IloRelocate, IloSwapPerform, IloTwoOpt, IloVisitAlternativeSwap,

266

IloDispatcherNHoodParameters

267

Global function IloAllVehiclesEquivalent
public IloBool IloAllVehiclesEquivalent(IloVehicle vehicle1, IloVehicle vehicle2)

Definition file: ildispat/ilovehicleequiv.h
Include file: <ildispat/ilodispatcher.h>

This function returns IloTrue if the two vehicles passed as arguments are equivalent with respect to a distance
function to be specified. This function, which is of type IloVehicleEquivFunction, can be used in the
definition of distance functions.

See Also: IloAllVehiclesDifferent, IloVehicleEquiv, IloVehicleEquivI

268

Global function IloIntraRelocate
public IloNHood IloIntraRelocate(IloEnv env, IloDispatcherNHoodParameters params)

Definition file: ildispat/lsearch.h
Include file: <ildispat/ilodispatcher.h>

This function returns a neighborhood that modifies a solution by relocating individual visits to a new position in
the same route. These relocations can result in cheaper routes.

The optional argument params can be specified to customize the behavior of the neighborhood.

This function is similar to IloRelocate, except that it relocates visits to a new position in the same route. Since
it explores fewer options for the relocated visit, this neighborhood is potentially smaller than one created by
IloRelocate.

For more information, see the concept Neighborhoods.

See Also: IloRelocate, IloCross, IloExchange, IloFPRelocate, IloMakePerformed, IloMakePerformedPair,
IloMakeUnperformed, IloOrOpt, IloSwapPerform, IloTwoOpt, IloVisitAlternativeSwap,
IloDispatcherNHoodParameters

269

Global function IloRelocate
public IloNHood IloRelocate(IloEnv env, IloDispatcherNHoodParameters params)
public IloNHood IloRelocate(IloEnv env)

Definition file: ildispat/lsearch.h
Include file: <ildispat/ilodispatcher.h>

This function returns a neighborhood that modifies a solution by relocating individual visits to a new position in
another route. These relocations can result in cheaper routes.

The optional argument params can be specified to customize the behavior of the neighborhood.

In particular, if a vehicle array has been passed to IloDispatcherNHoodParameters::setVehicles, the
function returns a relocate neighborhood that operates on the routes of these vehicles.

If IloDispatcherNHoodParameters::setIgnorePairs has been called with IloTrue as argument the
neighborhood will perform a move only involving single visits. Otherwise pairs of visits can be moved together.
This is the case when pairs of visits must be performed by the same vehicle. This move operator is useful for
optimizing problems such as the Pickup-and-Delivery Problem (PDP).

Examples:

The following figure shows the process of relocating a visit. Here, we assume that the cost is proportional to the
length of the route. The neighborhood destroys three arcs and creates three new arcs. As a result total travel
distance, and thus cost, is less.

The following figure shows the process of relocating a pair of visits. Here, we assume that the cost is proportional
to the length of the route. The neighborhood destroys six arcs and creates six new arcs. As a result total travel
distance, and thus cost, is less.

270

For more information, see the concept Neighborhoods.

See Also: IloCross, IloExchange, IloFPRelocate, IloMakePerformed, IloMakePerformedPair,
IloMakeUnperformed, IloOrOpt, IloSwapPerform, IloTwoOpt, IloVisitAlternativeSwap,
IloDispatcherNHoodParameters

271

Global function IloAllUnperformedGenerate
public IloGoal IloAllUnperformedGenerate(IloEnv env)
public IlcGoal IloAllUnperformedGenerate(IloSolver solver)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal that creates
a solution in which all visits are unperformed. For this goal to succeed, all visits must have a finite penalty cost,
set through IloVisit::setPenaltyCost.

This goal quickly creates an initial solution that can be optimized with Dispatcher's improvement methods.
Optimization in this case corresponds to reducing penalty cost by performing visits, and, as usual, reducing the
cost of the vehicle routes.

See Also: IloDispatcherGenerate, IloInsertionGenerate, IloNearestAdditionGenerate, IloNearestDepotGenerate,
IloSavingsGenerate, IloSweepGenerate, IloVisit

272

Global function operator!=
public IloConstraint operator!=(IloVisit visit, IloVisitVar var)
public IloConstraint operator!=(IloVisitVar var, IloVisit visit)

Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This operator creates and returns an inequality constraint between its arguments.

These constraints state that the visit associated with var either cannot come directly before visit or cannot
come directly after visit, depending on the meaning of var (a variable representing a next or a previous visit).

See Also: IloVisitVar, IloVisit, IloVisitArray

273

Global function operator!=
public IloConstraint operator!=(IloVehicle vehicle, IloVehicleVar vehicleVar)
public IloConstraint operator!=(IloVehicleVar vehicleVar, IloVehicle vehicle)

Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This operator creates and returns an inequality constraint between its arguments.

These constraints state that the visit associated with vehicleVar cannot be performed by vehicle.

See Also: IloVehicle, IloVehicleVar

274

Global function operator!=
public IloConstraint operator!=(IloVehicleVar vehicleVar1, IloVehicleVar
vehicleVar2)

Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This operator creates and returns an inequality constraint between its arguments.

This constraint states that the visit associated with vehicleVar1 and the visit associated with vehicleVar2
cannot be performed by the same vehicle.

See Also: IloVehicle, IloVehicleVar

275

Global function operator!=
public IloConstraint operator!=(IloVehicleArray vehicles, IloVehicleVar vehicleVar)
public IloConstraint operator!=(IloVehicleVar vehicleVar, IloVehicleArray vehicles)

Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This operator creates and returns an inequality constraint between its arguments. When one of the arguments is
an array, the constraint specifies an inequality with all elements of the array.

These constraints state that the visit associated with vehicleVar cannot be performed by any element of
vehicles.

See Also: IloVehicleArray, IloVehicleVar

276

Global function operator!=
public IloConstraint operator!=(IloVisitArray visits, IloVisitVar var)
public IloConstraint operator!=(IloVisitVar var, IloVisitArray visits)

Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This operator creates and returns an inequality constraint between its arguments. When one of the arguments is
an array, the constraint specifies an inequality with all elements of the array.

These constraints state that the visit associated with var either cannot come directly before any element of
visits or cannot come directly after any element of visits, depending on the meaning of var (a variable
representing a next or a previous visit).

See Also: IloVisitVar, IloVisit, IloVisitArray

277

Global function IloDistMax
public IloNum IloDistMax(IloNode node1, IloNode node2)

Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

This function is a pre-defined distance function that returns the “maximum-distance” between two nodes. Here,
maximum is defined as the maximum of the three absolute values representing the differences between the x-,
y-, and z- coordinates of the two nodes.

Implementation

This function may be implemented like this:

 IloNum IloDistMax(IloNode node1, IloNode node2) {
 IloNum x = IloAbs(node1.getX()-node2.getX());
 IloNum y = IloAbs(node1.getY()-node2.getY());
 IloNum z = IloAbs(node1.getZ()-node2.getZ());
 return IloMax(x, IloMax(y, z));
 }

Example

In the figure below, the “maximum-distance” between A and B is equal to .
(The z-coordinates of A and B are assumed to be equivalent.)

See Also: IloDistance, IloEuclidean, IloGeographical, IloManhattan, IloNode

278

Global function IloInstantiateTransits
public IloGoal IloInstantiateTransits(IloEnv env, IloVehicle vehicle, IloDimension
dim)
public IlcGoal IloInstantiateTransits(IloSolver solver, IloVehicle vehicle,
IloDimension dim)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

These goals instantiate the transit variables for different aspects of the routing problem. A transit variable exists
for each visit and dimension pair and corresponds to the usage of the dimension from the visit to the next visit in
the route. Each of these goals tries to instantiate the transit to its smallest value.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal to instantiate
the transit variables for all visits on the specified vehicle, but only for the specified dimension.

See Also: IloDimension, IloVehicle

279

Global function IloInstantiateTransits
public IloGoal IloInstantiateTransits(IloEnv env, IloDimension dim)
public IlcGoal IloInstantiateTransits(IloSolver solver, IloDimension dim)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

These goals instantiate the transit variables for different aspects of the routing problem. A transit variable exists
for each visit and dimension pair and corresponds to the usage of the dimension from the visit to the next visit in
the route. Each of these goals tries to instantiate the transit to its smallest value.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal to instantiate
the transit variables for all visits, but only for the specified dimension.

See Also: IloDimension, IloVehicle

280

Global function IloInstantiateTransits
public IloGoal IloInstantiateTransits(IloEnv env, IloVehicle vehicle)
public IlcGoal IloInstantiateTransits(IloSolver solver, IloVehicle vehicle)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

These goals instantiate the transit variables for different aspects of the routing problem. A transit variable exists
for each visit and dimension pair and corresponds to the usage of the dimension from the visit to the next visit in
the route. Each of these goals tries to instantiate the transit to its smallest value.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal to instantiate
the transit variables for all visits on the specified vehicle and in all dimensions.

See Also: IloDimension, IloVehicle

281

Global function IloInstantiateTransits
public IloGoal IloInstantiateTransits(IloEnv env)
public IlcGoal IloInstantiateTransits(IloSolver solver)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

These goals instantiate the transit variables for different aspects of the routing problem. A transit variable exists
for each visit and dimension pair and corresponds to the usage of the dimension from the visit to the next visit in
the route. Each of these goals tries to instantiate the transit to its smallest value.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal to instantiate
the transit variables for all visits in all dimensions.

See Also: IloDimension, IloVehicle

282

Global function IloInsertVisit
public IloGoal IloInsertVisit(IloEnv env, IloVisit visit, IloRoutingSolution
solution, IloDispatcherInsertionParameters param=0)
public IloGoal IloInsertVisit(IloEnv env, IloVisit visit, IloRoutingSolution
solution, IloDispatcherGoalFactory goalFactory, IloDispatcherInsertionParameters
param=0)
public IlcGoal IloInsertVisit(IloSolver solver, IloVisit visit, IloRoutingSolution
solution, IloDispatcherInsertionParameters param=0)
public IlcGoal IloInsertVisit(IloSolver solver, IloVisit visit, IloRoutingSolution
solution, IloDispatcherGoalFactory goalFactory, IloDispatcherInsertionParameters
param=0)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

These functions return goals that insert visit into a routing solution using a best insertion algorithm.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal to insert
visit at the cheapest place in solution. If visit is already in solution, a re-insertion is performed. These
functions also allow you to specify a secondary goal to be satisfied using the IloDispatcherGoalFactory
parameter. If a subgoal is specified, it executes after each insertion attempt.

See Also: IloVisit

283

Global function IloInsertVisit
public IloGoal IloInsertVisit(IloEnv env, IloVisit visit, IloVehicle vehicle,
IloRoutingSolution solution, IloDispatcherInsertionParameters param=0)
public IloGoal IloInsertVisit(IloEnv env, IloVisit visit, IloVehicle vehicle,
IloRoutingSolution solution, IloDispatcherGoalFactory goalFactory,
IloDispatcherInsertionParameters param=0)
public IlcGoal IloInsertVisit(IloSolver solver, IloVisit visit, IloVehicle vehicle,
IloRoutingSolution solution, IloDispatcherInsertionParameters param=0)
public IlcGoal IloInsertVisit(IloSolver solver, IloVisit visit, IloVehicle vehicle,
IloRoutingSolution solution, IloDispatcherGoalFactory goalFactory,
IloDispatcherInsertionParameters param=0)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

These functions return goals that insert visit into a routing solution using a best insertion algorithm.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal to insert
visit at the cheapest place in vehicle in solution. If visit is already in vehicle, a re-insertion is
performed. These functions also allow you to specify a secondary goal to be satisfied using the
IloDispatcherGoalFactory parameter. If a subgoal is specified, it executes after each insertion attempt.

See Also: IloVisit

284

Global function IloInsertVisit
public IloGoal IloInsertVisit(IloEnv env, IloVisit visit, IloVisit visitBefore,
IloRoutingSolution solution)
public IloGoal IloInsertVisit(IloEnv env, IloVisit visit, IloVisit visitBefore,
IloRoutingSolution solution, IloGoal subGoal)
public IlcGoal IloInsertVisit(IloSolver solver, IloVisit visit, IloVisit
visitBefore, IloRoutingSolution solution)
public IlcGoal IloInsertVisit(IloSolver solver, IloVisit visit, IloVisit
visitBefore, IloRoutingSolution solution, IlcGoal subGoal)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

These functions return goals that insert visit into a routing solution using a best insertion algorithm.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal to insert
visit after visitBefore in solution. If visit is already in solution, a re-insertion is performed. These
functions also allow you to specify a secondary goal to be satisfied. If a subgoal is specified, it executes after
each insertion attempt.

See Also: IloVisit

285

Global function IloInsertVisit
public IloGoal IloInsertVisit(IloEnv env, IloVisit visit, IloVehicleArray vehicles,
IloRoutingSolution solution, IloDispatcherInsertionParameters param=0)
public IloGoal IloInsertVisit(IloEnv env, IloVisit visit, IloVehicleArray vehicles,
IloRoutingSolution solution, IloDispatcherGoalFactory goalFactory,
IloDispatcherInsertionParameters param=0)
public IlcGoal IloInsertVisit(IloSolver solver, IloVisit visit, IloVehicleArray
vehicles, IloRoutingSolution solution, IloDispatcherInsertionParameters param=0)
public IlcGoal IloInsertVisit(IloSolver solver, IloVisit visit, IloVehicleArray
vehicles, IloRoutingSolution solution, IloDispatcherGoalFactory goalFactory,
IloDispatcherInsertionParameters param=0)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

These functions return goals that insert visit into a routing solution using a best insertion algorithm.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal to insert
visit at the cheapest place in vehicles in solution. If visit is already in vehicles, a re-insertion is
performed. These functions also allow you to specify a secondary goal to be satisfied using the
IloDispatcherGoalFactory parameter. If a subgoal is specified, it executes after each insertion attempt.

See Also: IloVisit

286

Global function IloFunctionDistance
public IloVisitDistance IloFunctionDistance(IloNumToNumSegmentFunction f,
IloVisitDistance d)

Definition file: ildispat/ilovisitdist.h
Include file: <ildispat/ilodispatcher.h>

This function returns a distance object for which distances between visits are the distances returned by
f(dval), where dval is the distance returned by d.

287

Global function IloAffineFunction
public IloNumToNumSegmentFunction IloAffineFunction(IloEnv env, IloNum slope,
IloNum a, IloNum fa)

Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

This function creates an affine function f of slope slope such that f(a) = fa. In other words, for all x, f(x) = slope *
(x - a) + fa.

288

Global function IloInsertionGenerate
public IloGoal IloInsertionGenerate(IloEnv env, IloDispatcherInsertionParameters
iparam=0)
public IloGoal IloInsertionGenerate(IloEnv, IloDispatcherGoalFactory goalFactory,
IloDispatcherInsertionParameters iparam=0)
public IlcGoal IloInsertionGenerate(IloSolver solver,
IloDispatcherInsertionParameters iparam=0)
public IlcGoal IloInsertionGenerate(IloSolver solver, IloDispatcherGoalFactory
goalFactory, IloDispatcherInsertionParameters iparam=0)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher provides various heuristic algorithms to build a first solution for a routing plan, among them, an
insertion heuristic.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal that builds a
solution to the routing model using an algorithm which consists of inserting visits at the lowest cost position at the
time of insertion. Note that this insertion point will not necessarily be the visit's lowest cost position when the
entire routing plan has been constructed.

These functions also allow you to specify a secondary goal to be satisfied using the
IloDispatcherGoalFactory parameter. If a subgoal is specified, it executes after each insertion attempt.

This function uses IloInsertVisit in the insertion process.

If not all visits can be inserted, the goal fails. In this case it may be better to start with an empty routing plan and
insert visits using IloInsertVisit. Another option is to relax the problem, for example by adding more
vehicles or allowing visits to be unperformed by setting a penalty cost on them.

Insertion Heuristic

Let all vehicles have empty routes.1.
Let L be the list of unassigned visits.2.
Take a visit v in L.3.
Insert v in a route at a feasible position where there will be the least increase in cost. If there is no
feasible position, then the goal fails.

4.

Remove v from L.5.
If L is not empty, go to 3.6.

Example

The following figure provides an example of the use of IloInsertionGenerate on a VRP with capacity
constraints. The coordinates of the depot are (30,40). The capacity of the truck is 50 and there are 11 visits to
perform. The tuples (x,y,quantity) of the visits are (17,63,19), (31,62,23), (52,64,16), (21,47,15), (37,52,7),
(49,49,30), (42,41,19), (20,26,9), (40,30,21), (52,33,11) and (51,21,5).

289

If the cost of the routing plan is equal to the Euclidean distance traveled, the cost in this example is 320.83.

See Also: IloAllUnperformedGenerate, IloDispatcherGenerate, IloNearestAdditionGenerate,
IloNearestDepotGenerate, IloSavingsGenerate, IloSweepGenerate

290

Global function IloSweepGenerate
public IloGoal IloSweepGenerate(IloEnv env)
public IloGoal IloSweepGenerate(IloEnv env, IloDispatcherGoalFactory goalFactory)
public IlcGoal IloSweepGenerate(IloSolver solver)
public IlcGoal IloSweepGenerate(IloSolver solver, IloDispatcherGoalFactory
goalFactory)
public IloGoal IloSweepGenerate(IloEnv env, IloSearchLimit limit)
public IloGoal IloSweepGenerate(IloEnv env, IloDispatcherGoalFactory goalFactory,
IloSearchLimit limit)
public IlcGoal IloSweepGenerate(IloSolver solver, IlcSearchLimit limit)
public IlcGoal IloSweepGenerate(IloSolver solver, IloDispatcherGoalFactory
goalFactory, IlcSearchLimit limit)
public IloGoal IloSweepGenerate(IloEnv, IloDispatcherFSParameters param)
public IlcGoal IloSweepGenerate(IloSolver, IloDispatcherFSParameters param)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher provides various heuristic algorithms to build a first solution for a routing plan, among them, the
sweep heuristic.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal that builds a
solution to the problem at hand using the sweep heuristic. These functions also allow you to specify a secondary
goal to be satisfied using the IloDispatcherGoalFactory parameter.

This goal relies on the x- and y-coordinates of nodes. Thus, each node in the routing plan must have its x- and
y-coordinates defined before this method can be executed.

In the heuristic IloSweepGenerate, the goal IloGenerateRoute is used each time Dispatcher extends a
route to ensure that the proposed extension is feasible. When the extension is not feasible, the search tree
created by IloGenerateRoute is often too large to completely explore.

The parameter limit, if specified, places a limit on the search carried out in the route generation goal. This limit
does not apply to any additional subgoals that you specify. If you also wish search to be limited in any additional
goal, then a search limit should be applied to it individually.

The parameter IloDispatcherFSParameters can be used to parameterize IloSweepGenerate in a variety
of ways. Owing to the various different parameters that can be passed, passing these directly in the constructor
of the first solution method can be cumbersome. The handle class IloDispatcherFSParameters
encapsulates the different types of parameters that can be passed. For more information, see
IloDispatcherFSParameters.

Sweep Heuristic

Let O be a site from which vehicles leave (usually a depot), and let A (different from O) be another site
which serves as a reference.

1.

Sort all the sites S in the routing plan by increasing angle AOS. Put the result in a list L.2.
The visits corresponding to the sites in L will be allocated to the vehicles in that order as long as
constraints are respected.

3.

If all vehicles have been used, the remaining visits are constrained to be unperformed. If one or more of
these visits must be performed, the goal fails.

4.

Example

The following figure provides an example of the use of IloSweepGenerate on a VRP with capacity constraints.
The coordinates of the depot are (30,40). The capacity of the truck is 50 and there are 11 visits to perform. The
tuples (x,y,quantity) of the visits are (17,63,19), (31,62,23), (52,64,16), (21,47,15), (37,52,7), (49,49,30),
(42,41,19), (20,26,9), (40,30,21), (52,33,11) and (51,21,5).

291

IloSweepGenerate calculates 4 routes with total quantities collected of 34, 46, 49 and 46. If the cost of the
routing plan is equal to the Euclidean distance traveled, the cost in this example is 270.40.

See Also: IloAllUnperformedGenerate, IloDispatcherGenerate, IloInsertionGenerate,
IloNearestAdditionGenerate, IloNearestDepotGenerate, IloSavingsGenerate

292

Global function IloCross
public IloNHood IloCross(IloEnv env, IloDispatcherNHoodParameters params)
public IloNHood IloCross(IloEnv env)

Definition file: ildispat/lsearch.h
Include file: <ildispat/ilodispatcher.h>

This function returns a neighborhood that modifies a solution by exchanging the end parts of two routes. Chains
of any length can be exchanged, and such exchanges can result in cheaper routes. The cross neighborhood is
also capable (by an exchange of segments beginning just after the first visit) of swapping all visits of one vehicle
with those of another.

The optional parameter params can be used to customize the behavior of the neighborhood. In particular, the
vehicle array specified using IloDispatcherNHoodParameters::setVehicles will make the cross
neighborhood operate only on the routes of these vehicles.

Example

The following figure illustrates the process. Here, we assume that the cost is proportional to the length of the
route. The neighborhood eliminates the crossing by destroying two arcs and creating two new arcs. The resulting
routes are shorter, and thus less costly.

For more information, see the concept Neighborhoods.

See Also: IloExchange, IloFPRelocate, IloMakePerformed, IloMakePerformedPair, IloMakeUnperformed,
IloOrOpt, IloRelocate, IloSwapPerform, IloTwoOpt, IloVisitAlternativeSwap, IloDispatcherNHoodParameters

293

Global function IloNearestDepotGenerate
public IloGoal IloNearestDepotGenerate(IloEnv env)
public IlcGoal IloNearestDepotGenerate(IloSolver solver)
public IloGoal IloNearestDepotGenerate(IloEnv env, IloDispatcherGoalFactory
goalFactory)
public IlcGoal IloNearestDepotGenerate(IloSolver solver, IloDispatcherGoalFactory
goalFactory)
public IloGoal IloNearestDepotGenerate(IloEnv env, IloSearchLimit limit)
public IlcGoal IloNearestDepotGenerate(IloSolver solver, IlcSearchLimit limit)
public IloGoal IloNearestDepotGenerate(IloEnv env, IloDispatcherGoalFactory
goalFactory, IloSearchLimit limit)
public IlcGoal IloNearestDepotGenerate(IloSolver solver, IloDispatcherGoalFactory
goalFactory, IlcSearchLimit limit)
public IloGoal IloNearestDepotGenerate(IloEnv, IloDispatcherFSParameters param)
public IlcGoal IloNearestDepotGenerate(IloSolver, IloDispatcherFSParameters param)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher provides various heuristic algorithms to build a first solution for a routing plan, among them, the
nearest to depot heuristic.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal that builds a
solution to the problem at hand using an algorithm that adds the visit that is the nearest to the “depot.” These
functions also allow you to specify a secondary goal to be satisfied using the IloDispatcherGoalFactory
parameter.

In the heuristic IloNearestDepotGenerate, the goal IloGenerateRoute is used each time Dispatcher
extends a route to ensure that the proposed extension is feasible. When the extension is not feasible, the search
tree created by IloGenerateRoute is often too large to completely explore.

The parameter limit, if specified, places a limit on the search carried out in the route generation goal. This limit
does not apply to any additional subgoals that you specify. If you also wish search to be limited in any additional
goal, then a search limit should be applied to it individually.

The parameter IloDispatcherFSParameters can be used to parameterize IloNearestDepotGenerate in
a variety of ways. Owing to the various different parameters that can be passed, passing these directly in the
constructor of the first solution method can be cumbersome. The handle class IloDispatcherFSParameters
encapsulates the different types of parameters that can be passed. For more information, see
IloDispatcherFSParameters.

Nearest to Depot Heuristic

For all vehicles:

Denote the vehicle to be considered by w.1.
Start with a partial route consisting of the departure from the depot.2.
Find the visit v which is closest to the starting point of the current partial route of w. If it is not possible to
find such a visit without violating constraints, close the current partial route of w, choose another empty
vehicle and go to step 2. If no empty vehicles remain, the goal fails.

3.

Add v to the end of the partial route.4.
If there are more visits to schedule, go to step 3.5.
If all vehicles have been used, the remaining visits are constrained to be unperformed. If one or more of
these visits must be performed, the goal fails.

6.

Example

The following figure provides an example of the use of IloNearestDepotGenerate on a VRP with capacity
constraints. The coordinates of the depot are (30,40). The capacity of the truck is 50 and there are 11 visits to
perform. The tuples (x,y,quantity) of the visits are (17,63,19), (31,62,23), (52,64,16), (21,47,15), (37,52,7),

294

(49,49,30), (42,41,19), (20,26,9), (40,30,21), (52,33,11) and (51,21,5).

IloNearestDepotGenerate calculates 4 routes with total quantities collected of 50, 35, 41 and 49. If the cost
of the routing plan is equal to the Euclidean distance traveled, the cost in this example is 369.30.

See Also: IloAllUnperformedGenerate, IloDispatcherGenerate, IloInsertionGenerate,
IloNearestAdditionGenerate, IloSavingsGenerate, IloSweepGenerate

295

Global function IloSetVisitCumuls
public IlcGoal IloSetVisitCumuls(IloSolver solver, IloDimension2 dim, IloNum
precision=1e-6)
public IloGoal IloSetVisitCumuls(IloEnv env, IloDimension2 dim, IloNum
precision=1e-6)

Definition file: ildispat/setcumul.h
Include file: <ildispat/ilodispatcher.h>

The following goals greedily instantiate the cumul variables of some or all visits of the routing problem for a given
dimension. The instantiation tries to minimize the cumul and end-cumul costs attached to the visits taking into
account execution intervals and vehicle breaks. The parameter precision is used to specify the required accuracy
of the cumul values. When the difference between the minimum and maximum of the cumul variable is less than
or equal to precision, the domain of the variable is not reduced further. This can be used to increase solving
speed when absolute accuracy is not required. The default is 1e-6.

Depending on whether env or solver is specified, the functions return an IloGoal or IlcGoal to instantiate
the cumul variables of all visits for dimension dim.

296

Global function IloInstantiateVehicleBreakDuration
public IloGoal IloInstantiateVehicleBreakDuration(IloEnv env, IloVehicleBreakCon
brk, IloNum precision=0.0, IloNum target=0.0)
public IlcGoal IloInstantiateVehicleBreakDuration(IloSolver solver,
IloVehicleBreakCon brk, IloNum precision=0.0, IloNum target=0.0)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal to instantiate
the duration of the vehicle break brk.

The parameter precision is used to specify the required accuracy of the duration. When the difference
between the minimum and maximum of the duration is less than or equal to precision, the domain of the
corresponding variable is not reduced further. This can be used to increase solving speed when absolute
accuracy is not required. The default is 0.0 (absolute accuracy).

A minimum duration, indicated by the parameter target, is the default. The parameter is used as follows:

Choose a “mid” value of duration.getMin() + duration.getSize() * target.1.
Create a choice point, and try to instantiate the duration <= mid to its maximum value or the duration
>= mid to its minimum value.

2.

Explore the smallest portion first.3.

See Also: IloInstantiateVehicleBreak, IloInstantiateVehicleBreakPosition, IloInstantiateVehicleBreaks,
IloInstantiateVehicleBreakStart, IloVehicleBreakCon

297

Global function IloFinalizePlan
public IloGoal IloFinalizePlan(IloEnv env)
public IlcGoal IloFinalizePlan(IloSolver solver)

Definition file: ildispat/fsdecision.h
Include file: <ildispat/ilodispatcher.h>

When building a Dispatcher routing plan, the resulting plan may not be complete. This means that some visits are
left unassigned, and that some routes are not complete. By complete, we mean that route visits must have their
next variables instantiated from first to last. The routing plan may not be complete if, for example, only a subset
of visits had been passed to the decision maker, or if a time-out occurred. An incomplete plan cannot be stored in
an IloRoutingSolution, as some decision variables are left unbound.

The IloFinalizePlan function returns a goal that fixes an incomplete plan, if possible.

The goal performs the two functions:

Sets all visits that have no route assigned to unperformed.1.
Closes all incomplete routes.2.

Note that this goal may still fail. If, for example, a mandatory visit, having infinite penalty cost, has been left
unassigned, then the IloFinalizePlan goal will try to set it to be unperformed, and fail.

You should run this goal after a decision maker attempts to finalize the plan and reach a state where the plan can
be saved into an IloRoutingSolution.

298

Global function IloDispatcherGenerate
public IloGoal IloDispatcherGenerate(IloEnv env)
public IlcGoal IloDispatcherGenerate(IloSolver solver)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher provides various algorithms to build a first solution for a routing problem, among them, a basic,
complete enumeration method.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal that builds a
solution to the problem at hand using an algorithm that completely explores the search space using backtracking.
Of course, this method should only be used for small problems.

Example

The figure below provides an example of the use of IloDispatcherGenerate on a Vehicle Routing Problem
(VRP) with capacity constraints. The coordinates of the depot are (30,40). The capacity of the truck is 50 and
there are 11 visits to perform. The tuples (x,y,quantity) of the visits are (17,63,19), (31,62,23), (52,64,16),
(21,47,15), (37,52,7), (49,49,30), (42,41,19), (20,26,9), (40,30,21), (52,33,11) and (51,21,5).

IloDispatcherGenerate calculates 4 routes with total quantities collected of 39, 42, 46 and 48. If the cost of
the routing plan is equal to the Euclidean distance traveled, the cost in this example is 352.57.

See Also: IloAllUnperformedGenerate, IloInsertionGenerate, IloNearestAdditionGenerate,
IloNearestDepotGenerate, IloSavingsGenerate, IloSweepGenerate

299

Global function operator+
public IloDistance operator+(IloDistance d1, IloDistance d2)

Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

This operator returns a distance object for which the distance between two nodes is the sum of the distances
between these two nodes returned by d1 and d2.

300

Global function operator+
public IloVisitDistance operator+(IloVisitDistance d1, IloVisitDistance d2)

Definition file: ildispat/ilovisitdist.h
Include file: <ildispat/ilodispatcher.h>

This operator returns a distance object for which the distance between two visits is the sum of the distances
between these two visits returned by d1 and d2.

301

Global function operator+
public IloNumExprArg operator+(IloTravelSumVar travelSumVar, IloDelaySumVar
delaySumVar)
public IloNumExprArg operator+(IloDelaySumVar delaySumVar, IloTravelSumVar
travelSumVar)

Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

This function creates a constrained expression representing the sum of a delay sum variable and of a travel sum
variable.

This expression can be used to limit the amount of work performed by a vehicle.

302

Global function IloGenerateRoute
public IloGoal IloGenerateRoute(IloEnv env, IloVehicle vehicle)
public IlcGoal IloGenerateRoute(IloSolver solver, IloVehicle vehicle)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

This function returns a goal that generates a route for vehicle using a complete search method. The route
generated is composed of visits that must be placed on the vehicle, that is, those which have constraints
specifying that the only legal vehicle is vehicle.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal.

To generate a route for a vehicle containing a specific set of visits, you can add constraints to limit the legal
vehicles for the visits to the vehicle, use the goal, and then remove those constraints afterwards.

303

Global function IloFPRelocate
public IloNHood IloFPRelocate(IloEnv env, IloDispatcherNHoodParameters params)
public IloNHood IloFPRelocate(IloEnv env)

Definition file: ildispat/lsearch.h
Include file: <ildispat/ilodispatcher.h>

This function returns a neighborhood that modifies a solution by relocating individual visits to a new position in
another route. These relocations can result in cheaper routes.

The optional argument params can be specified to customize the behavior of the neighborhood.

This function is similar to IloRelocate for PDP problems, except that it explores more options for the delivery
component of a pickup-delivery pair that is being relocated. For example, consider one pair of pickup-delivery
visits: p1-d1. IloRelocate would try to move p1 after a performed pickup visit p and d1 immediately after the
corresponding delivery visit d. IloFPRelocate would try to move p1 after a performed visit v, and then try to
locate d1 at every position on the route of the vehicle performing v. Thus, this neighborhood is potentially larger
than that created by IloRelocate.

For more information, see the concept Neighborhoods.

See Also: IloRelocate, IloCross, IloExchange, IloMakePerformed, IloMakePerformedPair, IloMakeUnperformed,
IloOrOpt, IloSwapPerform, IloTwoOpt, IloVisitAlternativeSwap, IloDispatcherNHoodParameters

304

Global function IloGetDispatcherDefaultVehicleEquivalence
public IloVehicleEquiv IloGetDispatcherDefaultVehicleEquivalence(IloEnv env)

Definition file: ildispat/iloroutingplan.h
Include file: <ildispat/ilodispatcher.h>

This function returns Dispatcher's default vehicle equivalence class. Two vehicles are equivalent according to this
class if:

they share the same cost function•
the vehicles are equivalent according to the distance of the extrinsic dimensions appearing in their cost
function

•

the start visits of the vehicles are located at the same node•
the end visits of the vehicles are located at the same node•

See Also: IloDispatcherNHoodParameters, IloVehicle, IloVehicleEquiv

305

Global function IloSameNodeArcPredicate
public IloArcPredicate IloSameNodeArcPredicate(IloEnv env)

Definition file: ildispat/iloarcpredicate.h
Include file: <ildispat/ilodispatcher.h>

This function returns an arc predicate which is satisfied if the two visits of an arc are located at the same node
(an instance of IloNode). An arc is created when two visits are consecutive on a vehicle.

See Also: IloArcPredicate

306

Global function IloMergeAndRelocateTours
public IloNHood IloMergeAndRelocateTours(IloEnv env, IloDispatcherNHoodParameters
params, IloInt nbTours=2)
public IloNHood IloMergeAndRelocateTours(IloEnv env, IloInt nbTours=2)

Definition file: ildispat/reltours.h
Include file: <ildispat/ilodispatcher.h>

A tour is a sequence of pickup and delivery visits (visits constrained by an IloOrderedVisitPair constraint)
such that:

if the tour contains a pickup, it contains the corresponding delivery,•
if the tour contains a delivery, it contains the corresponding pickup,•
if a pickup is before the tour in the route, then its corresponding delivery is before the tour.•

This function returns a neighborhood that modifies a solution by merging consecutive tours into one tour,
relocating the new tour to a new position in the route of another vehicle and repairing the new tour if it violates
the capacity constraints of the vehicle to which it was moved. The neighborhood will also define neighbors which
only perform the merging and repairing and not relocating.

Merging tours is done by building a new tour which starts with the pickups of the tours being merged and ends
with the corresponding deliveries. The relative order is kept of, respectively, the pickups and the deliveries.

Repairing a tour is done by splitting it into smaller tours. When the capacity of the vehicle is exceeded by a
pickup, the current tour is ended (using the necessary deliveries) and a new tour is started.

The optional argument params can be specified to customize the behavior of the neighborhood.

In particular, if a vehicle array has been passed to IloDispatcherNHoodParameters::setVehicles, the
function returns a neighborhood that operates on the routes of these vehicles.

The parameter nbTours specifies the maximum number of consecutive tours the neighborhood is going to
merge. By default, up to two tours will be merged.

The following figure shows one tour relocated:

307

The following figure shows two tours merged and relocated:

308

The following figure shows two tours merged, relocated, and repaired due to capacity of destination vehicle:

309

310

Global function IloSavingsGenerate
public IloGoal IloSavingsGenerate(IloEnv env)
public IloGoal IloSavingsGenerate(IloEnv env, IloSearchLimit limit)
public IloGoal IloSavingsGenerate(IloEnv env, IloInt size)
public IloGoal IloSavingsGenerate(IloEnv env, IloInt size, IloSearchLimit limit)
public IloGoal IloSavingsGenerate(IloEnv env, IloDispatcherGoalFactory goalFactory)
public IloGoal IloSavingsGenerate(IloEnv env, IloDispatcherGoalFactory goalFactory,
IloSearchLimit limit)
public IloGoal IloSavingsGenerate(IloEnv env, IloInt size, IloDispatcherGoalFactory
goalFactory)
public IloGoal IloSavingsGenerate(IloEnv env, IloInt size, IloDispatcherGoalFactory
goalFactory, IloSearchLimit limit)
public IlcGoal IloSavingsGenerate(IloSolver solver)
public IlcGoal IloSavingsGenerate(IloSolver solver, IlcSearchLimit limit)
public IlcGoal IloSavingsGenerate(IloSolver solver, IloInt size)
public IlcGoal IloSavingsGenerate(IloSolver solver, IloInt size, IlcSearchLimit
limit)
public IlcGoal IloSavingsGenerate(IloSolver solver, IloDispatcherGoalFactory
goalFactory)
public IlcGoal IloSavingsGenerate(IloSolver solver, IloDispatcherGoalFactory
goalFactory, IlcSearchLimit limit)
public IlcGoal IloSavingsGenerate(IloSolver solver, IloInt size,
IloDispatcherGoalFactory goalFactory)
public IlcGoal IloSavingsGenerate(IloSolver solver, IloInt size,
IloDispatcherGoalFactory goalFactory, IlcSearchLimit limit)
public IloGoal IloSavingsGenerate(IloEnv, IloDispatcherFSParameters param)
public IlcGoal IloSavingsGenerate(IloSolver, IloDispatcherFSParameters param)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher provides various heuristic algorithms to build a first solution for a routing plan, among them, the
savings heuristic. The savings heuristic builds first solutions for both single depot and multiple depot vehicle
routing problems.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal that builds a
solution to the problem at hand using the savings heuristic. These functions also allow you to specify a
secondary goal to be satisfied using the IloDispatcherGoalFactory parameter.

The argument size forces the savings heuristic to consider only the n closest visits (in terms of cost). While this
may reduce the quality of the solution generated, reducing the number of neighbors can dramatically reduce the
amount of memory needed to store the array of savings. If size is not specified, all visits are considered.

In the heuristic IloSavingsGenerate, the goal IloGenerateRoute is used each time Dispatcher extends a
route to ensure that the proposed extension is feasible. When the extension is not feasible, the search tree
created by IloGenerateRoute is often too large to completely explore.

The parameter limit, if specified, places a limit on the search carried out in the route generation goal. This limit
does not apply to any additional subgoals that you specify. If you also wish search to be limited in any additional
goal, then a search limit should be applied to it individually.

The parameter IloDispatcherFSParameters can be used to parameterize IloSavingsGenerate in a
variety of ways. Owing to the various different parameters that can be passed, passing these directly in the
constructor of the first solution method can be cumbersome. The handle class IloDispatcherFSParameters
encapsulates the different types of parameters that can be passed. For more information, see
IloDispatcherFSParameters.

Savings Heuristic

For all vehicles v having a starting visit S and an ending visit E, and for all pairs of visits (i, j), compute1.

311

the savings function: savings(i, j, v) = Mincost(i) + Mincost(j) - cost(S, i, v) - cost(i, j, v) - cost(j, E, v)
where Mincost(i) is the minimum value of cost(S', i, v') + cost(i, E', v') using vehicle v' (starting at S' and
ending at E').
Sort the arcs (i, j, v) according to savings(i, j, v) in descending order, and put them in a list L.2.
Scan L to find a feasible arc (i, j, v) that can be used to create an initial partial route for v. If no such
legal arc can be found, go to step 5, otherwise remove the chosen arc from L.

3.

Scan L to find an arc (i', j', v) that can be added to the start or end of the current partial route of vehicle
v. If no such arc can be found, close vehicle v and go to step 3, otherwise remove the arc from L, and
repeat step 4.

4.

If all visits are scheduled, the goal succeeds. If there are unscheduled visits, they are constrained to be
unperformed.

5.

Example

The following figure provides an example of the use of IloSavingsGenerate on a VRP with capacity
constraints. The coordinates of the depot are (30,40). The capacity of the truck is 50 and there are 11 visits to
perform. The tuples (x,y,quantity) of the visits are (17,63,19), (31,62,23), (52,64,16), (21,47,15), (37,52,7),
(49,49,30), (42,41,19), (20,26,9), (40,30,21), (52,33,11) and (51,21,5).

IloSavingsGenerate calculates 4 routes with total quantities collected of 42, 46, 44 and 43. If the cost of the
routing plan is equal to the Euclidean distance traveled, the cost in this example is 280.95.

See Also: IloAllUnperformedGenerate, IloDispatcherGenerate, IloInsertionGenerate,
IloNearestAdditionGenerate, IloNearestDepotGenerate, IloSweepGenerate

312

Global function operator*
public IloDistance operator*(IloNum c, IloDistance d)

Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

This operator returns a distance object for which distances between nodes are the distances returned by d
multiplied by a constant c.

313

Global function operator*
public IloVisitDistance operator*(IloNum c, IloVisitDistance d)

Definition file: ildispat/ilovisitdist.h
Include file: <ildispat/ilodispatcher.h>

This operator returns a distance object for which distances between visits are the distances returned by d
multiplied by a constant c.

314

Global function operator*
public IloDistance operator*(IloDistance d, IloNum c)

Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

This operator returns a distance object for which distances between nodes are the distances returned by d
multiplied by a constant c.

315

Global function operator*
public IloVisitDistance operator*(IloVisitDistance d, IloNum c)

Definition file: ildispat/ilovisitdist.h
Include file: <ildispat/ilodispatcher.h>

This operator returns a distance object for which distances between visits are the distances returned by d
multiplied by a constant c.

316

Global function IloNearestAdditionGenerate
public IloGoal IloNearestAdditionGenerate(IloEnv env)
public IloGoal IloNearestAdditionGenerate(IloEnv env, IloInt size)
public IloGoal IloNearestAdditionGenerate(IloEnv, IloDispatcherGoalFactory
goalFactory)
public IloGoal IloNearestAdditionGenerate(IloEnv env, IloInt size,
IloDispatcherGoalFactory goalFactory)
public IloGoal IloNearestAdditionGenerate(IloEnv env, IloSearchLimit limit)
public IloGoal IloNearestAdditionGenerate(IloEnv env, IloInt size, IloSearchLimit
limit)
public IloGoal IloNearestAdditionGenerate(IloEnv env, IloDispatcherGoalFactory
goalFactory, IloSearchLimit limit)
public IloGoal IloNearestAdditionGenerate(IloEnv env, IloInt size,
IloDispatcherGoalFactory goalFactory, IloSearchLimit limit)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver, IloInt size)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver,
IloDispatcherGoalFactory goalFactory)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver, IloInt size,
IloDispatcherGoalFactory goalFactory)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver, IlcSearchLimit limit)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver, IloInt size,
IlcSearchLimit limit)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver,
IloDispatcherGoalFactory goalFactory, IlcSearchLimit limit)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver, IloInt size,
IloDispatcherGoalFactory goalFactory, IlcSearchLimit limit)
public IloGoal IloNearestAdditionGenerate(IloEnv, IloNearestAdditionBehavior,
IloDispatcherFSParameters param)
public IlcGoal IloNearestAdditionGenerate(IloSolver, IloNearestAdditionBehavior,
IloDispatcherFSParameters param)
public IloGoal IloNearestAdditionGenerate(IloEnv env, IloNearestAdditionBehavior
mode)
public IloGoal IloNearestAdditionGenerate(IloEnv env, IloInt size,
IloNearestAdditionBehavior mode)
public IloGoal IloNearestAdditionGenerate(IloEnv env, IloDispatcherGoalFactory
goalFactory, IloNearestAdditionBehavior mode)
public IloGoal IloNearestAdditionGenerate(IloEnv env, IloInt size,
IloDispatcherGoalFactory goalFactory, IloNearestAdditionBehavior mode)
public IloGoal IloNearestAdditionGenerate(IloEnv env, IloSearchLimit limit,
IloNearestAdditionBehavior mode)
public IloGoal IloNearestAdditionGenerate(IloEnv env, IloInt size, IloSearchLimit
limit, IloNearestAdditionBehavior mode)
public IloGoal IloNearestAdditionGenerate(IloEnv env, IloDispatcherGoalFactory
goalFactory, IloSearchLimit limit, IloNearestAdditionBehavior mode)
public IloGoal IloNearestAdditionGenerate(IloEnv env, IloInt size,
IloDispatcherGoalFactory goalFactory, IloSearchLimit limit,
IloNearestAdditionBehavior mode)
public IloGoal IloNearestAdditionGenerate(IloEnv, IloDispatcherFSParameters param)
public IlcGoal IloNearestAdditionGenerate(IloSolver, IloDispatcherFSParameters
param)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver,
IloNearestAdditionBehavior mode)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver, IloInt size,
IloNearestAdditionBehavior mode)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver,
IloDispatcherGoalFactory goalFactory, IloNearestAdditionBehavior mode)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver, IloInt size,
IloDispatcherGoalFactory goalFactory, IloNearestAdditionBehavior mode)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver, IlcSearchLimit limit,

317

IloNearestAdditionBehavior mode)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver, IloInt size,
IlcSearchLimit limit, IloNearestAdditionBehavior mode)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver,
IloDispatcherGoalFactory goalFactory, IlcSearchLimit limit,
IloNearestAdditionBehavior mode)
public IlcGoal IloNearestAdditionGenerate(IloSolver solver, IloInt size,
IloDispatcherGoalFactory goalFactory, IlcSearchLimit limit,
IloNearestAdditionBehavior mode)

Definition file: ildispat/ilogoals.h
Include file: <ildispat/ilodispatcher.h>

Dispatcher provides various heuristic algorithms to build a first solution for a routing plan, among them, the
nearest addition heuristic. The nearest addition heuristic builds first solutions for both single depot and multiple
depot vehicle routing problems.

Depending on whether env or solver is specified, these functions return an IloGoal or IlcGoal that builds a
solution to the problem at hand using the nearest addition heuristic. These functions also allow you to specify a
secondary goal to be satisfied using the IloDispatcherGoalFactory parameter.

The argument size forces the nearest addition heuristic to consider only the n closest visits (in terms of cost).
While this may reduce the quality of the solution generated, reducing the number of neighbors can dramatically
reduce the amount of memory needed to store the array of nearest additions. If size is not specified, all visits
are considered.

In the heuristic IloNearestAdditionGenerate, the goal IloGenerateRoute is used each time Dispatcher
extends a route to ensure that the proposed extension is feasible. When the extension is not feasible, the search
tree created by IloGenerateRoute is often too large to completely explore.

The parameter limit, if specified, places a limit on the search carried out in the route generation goal. This limit
does not apply to any additional subgoals that you specify. If you also wish search to be limited in any additional
goal, then a search limit should be applied to it individually.

The parameter mode, if specified, indicates the behavioral mode of the heuristic
IloNearestAdditionGenerate during execution. The behavioral mode determines how the heuristic extends
routes. The mode IloNearestAdditionForward extends the route forward from the first visit. The mode
IloNearestAdditionBackward extends the route backward from the last visit. The mode
IloNearestAdditionBoth extends the route simultaneously in both directions. In the case of
IloNearestAdditionBoth, the nearest visit to either the start or the end of the route is connected to that
portion of the route. In the case of a tie, the route is extended forward. If mode is unspecified,
IloNearestAdditionForward is assumed.

The parameter IloDispatcherFSParameters can be used to parameterize
IloNearestAdditionGenerate in a variety of ways. Owing to the various different parameters that can be
passed, passing these directly in the constructor of the first solution method can be cumbersome. The handle
class IloDispatcherFSParameters encapsulates the different types of parameters that can be passed. For
more information, see IloDispatcherFSParameters.

Nearest Addition Heuristic

For all vehicles v starting at visit S, and for all visits i find the couple (V, I) minimizing cost(S, i, v) such
that (S, i) is a feasible partial route for v. If none is found, go to step 5.

1.

Start with a partial route consisting of the (S, I) for vehicle V.2.
Find the visit J that minimizes cost(i, j, v) and that can extend the current partial route of V. If it is not
possible to find such a visit without violating constraints, close the current partial route of V and go to
step 1.

3.

Add J to the end of the partial route of V and let I = J. Go to step 3.4.
If all visits are scheduled, the goal succeeds. If there are unscheduled visits, they are constrained to be
unperformed.

5.

318

Note

This explanation describes the heuristic IloNearestAdditionGenerate operating in the behavioral mode
IloNearestAdditionForward.

Example

The following figure provides an example of the use of IloNearestAdditionGenerate on a VRP with
capacity constraints. The coordinates of the depot are (30,40). The capacity of the truck is 50 and there are 11
visits to perform. The tuples (x,y,quantity) of the visits are (17,63,19), (31,62,23), (52,64,16), (21,47,15),
(37,52,7), (49,49,30), (42,41,19), (20,26,9), (40,30,21), (52,33,11) and (51,21,5).

IloNearestAdditionGenerate calculates 4 routes with total quantities collected of 50, 39, 49 and 37. If the
cost of the routing plan is equal to the Euclidean distance traveled, the cost in this example is 285.23.

See Also: IloAllUnperformedGenerate, IloDispatcherGenerate, IloInsertionGenerate, IloNearestDepotGenerate,
IloSavingsGenerate, IloSweepGenerate

319

Global function IloMakePerformedPair
public IloNHood IloMakePerformedPair(IloEnv env, IloDispatcherNHoodParameters
params)
public IloNHood IloMakePerformedPair(IloEnv env)

Definition file: ildispat/perfnhood.h
Include file: <ildispat/ilodispatcher.h>

This function returns a neighborhood that modifies a solution by making an unperformed visit pair performed. For
each vehicle route in which the pair is inserted, every combination of positions for the two visits will be tried. This
behavior is different from the one of IloMakePerformed which will only try to move the pair immediately after a
performed pair of visits.

The optional parameter params can be used to customize the behavior of the neighborhood. In particular, the
vehicle array specified using setVehicles on the IloDispatcherNHoodParameters class will make the
neighborhood insert only the visits on the routes of these vehicles.

For more information, see the concept Neighborhoods.

See Also: IloCross, IloExchange, IloFPRelocate, IloMakePerformed, IloMakeUnperformed, IloOrOpt,
IloRelocate, IloSwapPerform, IloTwoOpt, IloVisitAlternativeSwap, IloDispatcherNHoodParameters

320

Global function IloSwapPerform
public IloNHood IloSwapPerform(IloEnv env, IloDispatcherNHoodParameters params)
public IloNHood IloSwapPerform(IloEnv env)

Definition file: ildispat/perfnhood.h
Include file: <ildispat/ilodispatcher.h>

This function returns a neighborhood that modifies a solution by exchanging a performed visit with an
unperformed one.

The optional parameter params can be used to customize the behavior of the neighborhood. In particular, the
vehicle array specified using setVehicles on the IloDispatcherNHoodParameters class will make the
neighborhood unperform visits only if they belong to the routes of these vehicles.

For more information, see the concept Neighborhoods.

See Also: IloCross, IloExchange, IloFPRelocate, IloMakePerformed, IloMakePerformedPair,
IloMakeUnperformed, IloOrOpt, IloRelocate, IloTwoOpt, IloVisitAlternativeSwap, IloDispatcherNHoodParameters

321

Global function IloDistanceThresholdArcPredicate
public IloArcPredicate IloDistanceThresholdArcPredicate(IloEnv env, IloDimension2
dim, IloNum threshold)

Definition file: ildispat/iloarcpredicate.h
Include file: <ildispat/ilodispatcher.h>

This function returns an arc predicate which is satisfied if the distance between the two visits of an arc is less
than threshold. The distance is computed using the distance object corresponding to the extrinsic dimension
dim. An arc is created when two visits are consecutive on a vehicle.

See Also: IloArcPredicate

322

Global function IloDistanceThresholdArcPredicate
public IloArcPredicate IloDistanceThresholdArcPredicate(IloEnv env, IloDistance
distance, IloNum threshold)

Definition file: ildispat/iloarcpredicate.h
Include file: <ildispat/ilodispatcher.h>

This function returns an arc predicate which is satisfied if the distance between the two visits of an arc is less
than threshold. The distance is computed using distance. An arc is created when two visits are consecutive
on a vehicle.

See Also: IloArcPredicate

323

Global function IloRejectNeighbor
public void IloRejectNeighbor(IloSolver solver, IloNHood nhood,
IloNeighborIdentifier nid)
public void IloRejectNeighbor(IloSolver solver, IloNHood nhood,
IlcNeighborIdentifier nid)

Definition file: ildispat/lsearch.h
Include file: <ildispat/ilodispatcher.h>

This function notifies a neighborhood nhood that the neighbor corresponding to nid has been rejected.

This function can be used to reject neighbors when a fail occurs in a subgoal called after the deltas from the
neighborhood are applied to the current solution.

Implementation

Here is an implementation of such a usage:

 ILCGOAL2(RejectNHood,
 IloNHood, nh,
 IlcNeighborIdentifier, nid) {
 IloSolver solver = getSolver();
 IloRejectNeighbor(solver, nh, nid);
 return IloGoalFail(solver);
 }

 ILCGOAL5(SingleMove,
 IloSolution, solution,
 IloNHood, nh,
 IloMetaHeuristic, mh,
 IlcSearchSelector, sel,
 IlcGoal, subgoal) {
 IloSolver solver = getSolver();
 IloSolutionDeltaCheck check;
 if (mh.getImpl()) check = mh.getDeltaCheck();

 IlcNeighborIdentifier nid(solver);
 IlcGoal scan = IloScanNHood(solver,
 nh,
 nid,
 solution,
 check);
 IlcGoal testGoal = IloTest(solver, mh, nid);
 IlcGoal exploreNHood = IlcAnd(
 IloStart(solver, mh, solution),
 scan,
 testGoal,
 IlcOr(subgoal, RejectNHood(solver, nh, nid)),
 testGoal
);

 IlcGoal saveGoal = IlcAnd(IloNotify(solver, nh, nid),
 IloNotify(solver, mh, nid),
 IloStoreSolution(solver, solution)
);

 return IlcAnd(IlcSelectSearch(exploreNHood, sel), saveGoal);
 }

The predefined neighborhoods provided in Dispatcher take this information into account to reduce the actual
number of neighbors to examine. This results in a potential speedup of the search.

For more information, see the concept Neighborhoods.

324

Typedef IloArcPredicate
Definition file: ildispat/iloarcpredicate.h
Include file: <ildispat/ilodispatcher.h>

IloPredicate< IloVisitPair > IloArcPredicate

This C++ type represents a predicate on a pair of visits. This typedef allows you to write less code when you
heavily use Dispatcher predicate classes.

An arc is created when two visits are consecutive on a vehicle. Arc predicates can be set using Dispatcher
neighborhood parameters. These predicates can limit the scope of neighborhoods, which usually improves the
performance of the search and potentially the quality of the resulting solutions. Functions are available to return
arc predicates based on distance thresholds and whether the two visits of an arc are located at the same node.
Operators are available to return the conjunction, disjunction, and negation of arc predicates. For more
information, see IloPredicate, operator &&, operator ||, operator !=, and IloIfThenElse,
documented in the IBM ILOG Solver Reference Manual.

The member function IloDispatcherNHoodParameters::setArcFocusPredicate can be used to forbid
neighborhoods from accepting new arcs which do not satisfy the predicate. The member function
IloDispatcherNHoodParameters::setArcKeeperPredicate can be used to forbid neighborhoods from
removing arcs which satisfy the predicate.

See Also: IloVisit, IloVisitPair, IloExplicitArcPredicate, IloDistanceThresholdArcPredicate,
IloSameNodeArcPredicate, IloDispatcherNHoodParameters::setArcFocusPredicate,
IloDispatcherNHoodParameters::setArcKeeperPredicate

325

Typedef IloDistanceFunction
Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

IloNum(* IloDistanceFunction)(IloNode, IloNode, IloVehicle)

This C++ type represents a pointer to a function that takes three arguments, two nodes and a vehicle, and
returns a numeric value which is the distance for traveling between the two specified nodes using the specified
vehicle. This “distance” can used to represent a variety of other values, such as costs or times.

See Also: IloDimension, IloDimension1, IloDimension2, IloDistance

326

Typedef IloSimpleDistanceFunction
Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>

IloNum(* IloSimpleDistanceFunction)(IloNode, IloNode)

This C++ type represents a pointer to a function that takes two nodes as arguments and returns a numeric value
which is the distance for traveling between the two specified nodes. This “distance” can used to represent a
variety of other values, such as costs or times.

See Also: IloDimension, IloDimension1, IloDimension2, IloDistance, IloEuclidean, IloGeographical, IloManhattan

327

Typedef IloSimpleVehicleToNumFunction
Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

IloNum(* IloSimpleVehicleToNumFunction)(IloVehicle)

This C++ type represents a pointer to a function that takes a vehicle and returns a numeric value. Functions of
this type can be used to create an instance of the IloEvalVehicleToNumFunctionI class.

328

Typedef IloSimpleVisitDistanceFunction
Definition file: ildispat/ilovisitdist.h
Include file: <ildispat/ilodispatcher.h>

IloNum(* IloSimpleVisitDistanceFunction)(IloVisit, IloVisit)

This C++ type represents a pointer to a function that takes two visits as arguments and returns a numeric value
which is the distance for traveling between the two specified visits. This “distance” can be used to represent a
variety of other values, such as costs or times.

See Also: IloDimension, IloDimension1, IloDimension2, IloVisitDistance

329

Typedef IloSimpleVisitToNumFunction
Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

IloNum(* IloSimpleVisitToNumFunction)(IloVisit)

This C++ type represents a pointer to a function that takes a visit and returns a numeric value. Functions of this
type can be used to create an instance of the IloEvalVisitToNumFunctionI class.

330

Typedef IloVehicleArray
Definition file: ildispat/ilovehicle.h
Include file: <ildispat/ilodispatcher.h>

IloSimpleArray< IloVehicle > IloVehicleArray

This C++ type represents an array of instances of IloVehicle.

See Also: IloVehicle

331

Typedef IloVehicleEquivFunction
Definition file: ildispat/ilovehicleequiv.h
Include file: <ildispat/ilodispatcher.h>

IloBool(* IloVehicleEquivFunction)(IloVehicle, IloVehicle)

This C++ type represents a pointer to a function that takes two arguments and returns a Boolean value. The two
arguments are instances of the class IloVehicle. The function determines whether or not the two vehicles
specified are equivalent with respect to a distance function to be specified.

See Also: IloAllVehiclesDifferent, IloAllVehiclesEquivalent, IloVehicleEquiv, IloVehicleEquivI

332

Typedef IloVehiclePairPredicate
Definition file: ildispat/ilovehiclepredicate.h
Include file: <ildispat/ilodispatcher.h>

IloPredicate< IloVehiclePair > IloVehiclePairPredicate

This C++ type represents a predicate on a pair of vehicles. This typedef allows you to write less code when you
heavily use Dispatcher predicate classes.

Vehicle pair predicates can be set using Dispatcher neighborhood parameters. These predicates can limit the
scope of neighborhoods, which usually improves the performance of the search and potentially the quality of the
resulting solutions. Operators are available to return the conjunction, disjunction, and negation of vehicle pair
predicates. For more information, see IloPredicate, operator &&, operator ||, operator !=, and
IloIfThenElse, documented in the IBM ILOG Solver Reference Manual.

The member function IloDispatcherNHoodParameters::setVehiclePairFocusPredicate can be
used to forbid neighborhoods from performing moves between pairs of vehicle which do not satisfy the predicate.

See Also: IloVehicle, IloVehiclePair, IloBoxVehiclePairPredicate,
IloDispatcherNHoodParameters::setVehiclePairFocusPredicate

333

Typedef IloVisitArray
Definition file: ildispat/ilovisit.h
Include file: <ildispat/ilodispatcher.h>

IloSimpleArray< IloVisit > IloVisitArray

This C++ type represents an array of instances of IloVisit.

See Also: IloVisit

334

Typedef IloVisitDistanceFunction
Definition file: ildispat/ilovisitdist.h
Include file: <ildispat/ilodispatcher.h>

IloNum(* IloVisitDistanceFunction)(IloVisit, IloVisit, IloVehicle)

This C++ type represents a pointer to a function that takes three arguments, two visits and a vehicle, and returns
a numeric value which is the distance for traveling between the two specified visits using the specified vehicle.
This “distance” can be used to represent a variety of other values, such as costs or times.

See Also: IloDimension, IloDimension1, IloDimension2, IloVisitDistance

335

Typedef IloVisitVehicleCompatPredicate
Definition file: ildispat/ilocompat.h
Include file: <ildispat/ilodispatcher.h>

IloBool(* IloVisitVehicleCompatPredicate)(IloVisit, IloVehicle)

This C++ type represents a pointer to a function that takes as arguments a visit and a vehicle and returns a
Boolean. The Boolean is true if the visit and vehicle are compatible with each other, false otherwise.

336

Variable IloEarthRadiusInKm
Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>
This constant can be used with IloGeographical to compute actual distances in kilometers and is set to
6378.137 kilometers.

337

Variable IloEarthRadiusInMiles
Definition file: ildispat/ilodist.h
Include file: <ildispat/ilodispatcher.h>
This constant can be used with IloGeographical to compute actual distances in miles and is set to 3963.19
miles.

338

	Table of Contents
	About This Manual
	Concepts
	Group optim.dispatcher
	Class IloDispatcherGraph::AdjacencyListIterator
	Class IloDispatcherGraph::Arc
	Class IloDimensionWindows::ForbiddenIterator
	Class IloArrayVehicleToNumFunctionI
	Class IloArrayVisitToNumFunctionI
	Class IloComposedDistance
	Class IloComposedVisitDistance
	Class IloDefaultDecisionTracerI
	Class IloDefaultFSDecisionMakerI
	Class IloDefaultVisitVehicleFSDecisionI
	Class IloDelaySumVar
	Class IloDimension
	Class IloDimension1
	Class IloDimension1Iterator
	Class IloDimension2
	Class IloDimension2Iterator
	Class IloDimensionIterator
	Class IloDimensionWindows
	Class IloDispatcher
	Class IloDispatcherFSParameters
	Class IloDispatcherGLS
	Class IloDispatcherGoalFactory
	Class IloDispatcherGoalFactoryI
	Class IloDispatcherGraph
	Class IloDispatcherNHoodParameters
	Class IloDispatcherTabuSearch
	Class IloDistance
	Class IloDistanceEvalI
	Class IloDistanceI
	Class IloEvalVehicleToNumFunctionI
	Class IloEvalVisitToNumFunctionI
	Class IloEverywhereNode
	Class IloExecutionWindowsToVisitCon
	Class IloExplicitArcPredicate
	Class IloExplicitDistance
	Class IloExplicitVisitDistance
	Class IloFSDecisionI
	Class IloFSDecisionMakerI
	Class IloFSDecisionTracerI
	Class IloNADecisionI
	Class IloNADecisionMakerI
	Class IloNode
	Class IloOutOfRouteConstraint
	Class IloOutputManip
	Class IloPairDecisionI
	Class IloProductDimension
	Class IloRoutingSolution
	Class IloSimpleDistanceEvalI
	Class IloSimpleVisitDistanceEvalI
	Class IloSingleVehicleFSDecisionI
	Class IloSparseExplicitDistance
	Class IloSparseExplicitVisitDistance
	Class IloTravelSumVar
	Class IloVehicle
	Class IloVehicleBreakCon
	Class IloVehicleBreakConIterator
	Class IloVehicleEquiv
	Class IloVehicleEquivEvalI
	Class IloVehicleEquivI
	Class IloVehicleIterator
	Class IloVehicleLIFOConstraint
	Class IloVehiclePair
	Class IloVehicleToNumFunction
	Class IloVehicleToNumFunctionI
	Class IloVehicleVar
	Class IloVisit
	Class IloVisitAlternativeConstraint
	Class IloVisitDistance
	Class IloVisitDistanceEvalI
	Class IloVisitDistanceI
	Class IloVisitIterator
	Class IloVisitPair
	Class IloVisitToNumFunction
	Class IloVisitToNumFunctionI
	Class IloVisitVar
	Class IloVisitVehicleCompat
	Class IloVisitVehicleCompatI
	Class IloVisitVehiclePredicateCompatI
	Class IloDimensionWindows::Iterator
	Class IloNode::Iterator
	Class IloDispatcherGraph::Node
	Class IloDispatcherGraph::PathIterator
	Class IloDispatcher::RouteIterator
	Class IloRoutingSolution::RouteIterator
	Class IloDispatcher::UnperformedVisitIterator
	Class IloRoutingSolution::UnperformedVisitIterator
	Class IloDispatcher::VehicleBreakConIterator
	Class IloRoutingSolution::VehicleIterator
	Class IloRoutingSolution::VisitIterator
	Enumeration IloFSDecisionRejectCause
	Enumeration IloNearestAdditionBehavior
	Enumeration IloNearestAdditionExtension
	Enumeration IloOutOfRouteReference
	Global function IloManhattan
	Global function IloOrderedVisitPair
	Global function IloInstantiateVehicleBreaks
	Global function IloVisitAlternativeSwap
	Global function IloExchange
	Global function IloInstantiateVehicleBreakPosition
	Global function IloMakeUnperformed
	Global function IloTardinessFunction
	Global function IloVerbose
	Global function IloGeographical
	Global function IloCompatible
	Global function IloEarlinessFunction
	Global function operator<<
	Global function operator<<
	Global function operator<<
	Global function IloSortedNHood
	Global function IloSortedNHood
	Global function IloInstantiateVehicleBreak
	Global function IloMakePerformed
	Global function IloTerse
	Global function IloSetVehicleVisitCumuls
	Global function IloInstantiateVehicleBreakStart
	Global function IloAllVehiclesDifferent
	Global function IloBoxVehiclePairPredicate
	Global function IloEuclidean
	Global function IloCouple
	Global function IloTwoOpt
	Global function IloVehicleDependentDelayConstraint
	Global function IloMax
	Global function operator==
	Global function operator==
	Global function operator==
	Global function operator==
	Global function operator==
	Global function IloDecouple
	Global function IloGraphDistance
	Global function IloMin
	Global function IloSolutionValueComparator
	Global function IloOrOpt
	Global function IloAllVehiclesEquivalent
	Global function IloIntraRelocate
	Global function IloRelocate
	Global function IloAllUnperformedGenerate
	Global function operator!=
	Global function operator!=
	Global function operator!=
	Global function operator!=
	Global function operator!=
	Global function IloDistMax
	Global function IloInstantiateTransits
	Global function IloInstantiateTransits
	Global function IloInstantiateTransits
	Global function IloInstantiateTransits
	Global function IloInsertVisit
	Global function IloInsertVisit
	Global function IloInsertVisit
	Global function IloInsertVisit
	Global function IloFunctionDistance
	Global function IloAffineFunction
	Global function IloInsertionGenerate
	Global function IloSweepGenerate
	Global function IloCross
	Global function IloNearestDepotGenerate
	Global function IloSetVisitCumuls
	Global function IloInstantiateVehicleBreakDuration
	Global function IloFinalizePlan
	Global function IloDispatcherGenerate
	Global function operator+
	Global function operator+
	Global function operator+
	Global function IloGenerateRoute
	Global function IloFPRelocate
	Global function IloGetDispatcherDefaultVehicleEquivalence
	Global function IloSameNodeArcPredicate
	Global function IloMergeAndRelocateTours
	Global function IloSavingsGenerate
	Global function operator*
	Global function operator*
	Global function operator*
	Global function operator*
	Global function IloNearestAdditionGenerate
	Global function IloMakePerformedPair
	Global function IloSwapPerform
	Global function IloDistanceThresholdArcPredicate
	Global function IloDistanceThresholdArcPredicate
	Global function IloRejectNeighbor
	Typedef IloArcPredicate
	Typedef IloDistanceFunction
	Typedef IloSimpleDistanceFunction
	Typedef IloSimpleVehicleToNumFunction
	Typedef IloSimpleVisitDistanceFunction
	Typedef IloSimpleVisitToNumFunction
	Typedef IloVehicleArray
	Typedef IloVehicleEquivFunction
	Typedef IloVehiclePairPredicate
	Typedef IloVisitArray
	Typedef IloVisitDistanceFunction
	Typedef IloVisitVehicleCompatPredicate
	Variable IloEarthRadiusInKm
	Variable IloEarthRadiusInMiles

