
IBM ILOG Dispatcher V4.7

User’s Manual

June 2009

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

http://www.ibm.com/legal/copytrade.shtml

C O N T E N T S
Preface Welcome to IBM ILOG Dispatcher. 15

What is Dispatcher? .15

How to Use Dispatcher with Solver .16

About this manual .16

How this manual is organized .17

Prerequisites .17

Related documentation .17

Installing IBM ILOG Dispatcher .17

Linking IBM ILOG Dispatcher. .18

Typographic and naming conventions .18

Include Files .19

Accessing software support .20

Contact via web .20

Contact via phone .21

Part I The Basics . 24

Chapter 1 IBM ILOG Dispatcher Concepts . 25

Describe .26

Model. .27

Basic Modeling Objects .27

Decision Variables .28

Dimensions .29

Using dimensions to model side constraints .30

Modeling other side constraints .35

Modeling costs and the objective .37

Summary: The Dispatcher Model. .38
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 3

Solve .39

Displaying the solution .42

Chapter 2 Modeling a Vehicle Routing Problem . 43

Describe .43

Model. .44

Declare the RoutingModel class .45

Define the addDimensions function .46

Define the createIloNodes function .47

Define the createVehicles function. .49

Define the createVisits function .51

Define the RoutingModel constructor. .53

Review Exercises .54

Suggested Answers. .54

Exercise 1 .54

Exercise 2 .54

Chapter 3 Solving a Vehicle Routing Problem . 55

Solve .55

Declare the RoutingSolver class .56

Define the RoutingSolver constructor .57

Define the findFirstSolution function .59

Define the improveWithNHood function .59

Define the printInformation function .62

Define the main function .62

Review Exercises .66

Suggested Answers. .67

Exercise 1 .67

Exercise 2 .67

Exercise 3 .67

Complete Program. .73

Complete Output .78
4 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Chapter 4 Minimizing the Number of Vehicles . 81

Describe .82

Model. .82

Declare the RoutingModel class .83

Define the RoutingModel constructor. .84

Define the loadGraphInformation function .85

Define the lastMinuteGraphChanges function .86

Define the addDimensions function .87

Define the createIloNodes function .87

Define the createVehicles function. .88

Define the createVisits function .89

Solve .90

Declare the RoutingSolver class .91

Define the RoutingSolver constructor .92

Define the findFirstSolution function .92

Define the improveWithNHood function .92

Define the closeEmptyVehicles function .93

Define the getShortestRoute function .94

Define the reduceActiveVehicles function .94

Define the printInformation function .96

Define the main function .97

Review Exercises .99

Suggested Answers. .100

Exercise 1 .100

Exercise 2 .100

Complete Program. .100

Complete Output .106

Chapter 5 Adding Visit Disjunctions . 119

Describe .120

Model. .120

Declare the RoutingModel class .121
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 5

Define the RoutingModel constructor. .122

Define the loadGraphInformation function .123

Define the lastMinuteGraphChanges function .123

Define the addDimensions function .124

Define the createIloNodes function .124

Define the createVehicles function. .125

Define the createVisits function .125

Define the createAdditionalVisits function .128

Define the function removeVisit .128

Solve .129

Declare the RoutingSolver class .129

Define the RoutingSolver constructor .129

Define the findFirstSolution function .130

Define the improveWithNHood function .130

Define the addNewVisit function .131

Define the removeVisitAndResolve function .132

Define the printInformation function .133

Define the main function .133

Review Exercises .137

Suggested Answers. .137

Exercise 1 .137

Exercise 2 .137

Complete Program. .137

Complete Output .143

Chapter 6 Multiple Tours per Vehicle . 149

Describe .150

Model. .150

Declare the RoutingModel class .151

Define the RoutingModel constructor. .152

Define the loadGraphInformation and lastMinuteGraphChanges functions.152

Define the addDimensions function .152
6 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Define the createIloNodes function .152

Define the createVehicles function. .153

Define the createVisits function .155

Solve .156

Declare the RoutingSolver class .157

Define the RoutingSolver constructor .157

Define the insertAllReturnVisits function .158

Define the orderVisits function .159

Define the insertCustomerVisits function .163

Define the improveWithNHood function .164

Define the printInformation function .165

Define the main function .165

Review Exercises .167

Suggested Answers. .167

Exercise 1 .167

Exercise 2 .168

Complete Program. .168

Complete Output .174

Part II Transportation Industry Solutions 178

Chapter 7 Pickup and Delivery Problems . 179

Describe .179

Model. .181

Solve .184

Review Exercises .185

Suggested Answers. .185

Exercise 1 .185

Exercise 2 .185

Exercise 3 .185

Complete Program. .186

Complete Output .190
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 7

Chapter 8 Adding Vehicle Breaks. 193

Describe .193

Model. .194

Solve .197

Review Exercises .200

Suggested Answers. .201

Exercise 1 .201

Exercise 2 .201

Exercise 3 .201

Complete Program. .202

Complete Output .209

Chapter 9 Adding Early and Late Costs. 223

Describe .223

Early and Late Cost Interdependence .224

Model. .226

Solve .227

Review Exercises .228

Suggested Answers. .229

Exercise 1 .229

Exercise 2 .229

Exercise 3 .229

Exercise 4 .230

Complete Program. .230

Complete Output .235

Chapter 10 Pickup and Delivery by Multiple Vehicles from Multiple Depots 239

Describe .240

Model. .242

Declare the Depot class .243

Define the Depot constructor .244

Define the Depot destructor .245
8 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Define the Depot::improve function .245

Define the Depot::fillModel function .245

Define the Depot::createOneVehicle function .246

Define the Depot::createVehicles function .247

Declare the RoutingModel class .248

Define the RoutingModel constructor. .249

Define the RoutingModel::parse function .249

Define the RoutingModel::createModel function .249

Define the RoutingModel::createDimensions function .250

Define the RoutingModel::createNodes function .251

Define the RoutingModel::createDepots function. .251

Define the RoutingModel::createVisits function .253

Solve .255

Declare the RoutingSolver class .256

Define the RoutingSolver constructor .256

Define the RoutingSolver::findFirstSolution function .257

Define the syncSolution functions .258

Define the RoutingSolver::improveDepots function .258

Define the RoutingSolver::improvePlan function .259

Define the RoutingSolver::printInformation function. .260

Define the main function .260

Review Exercises .263

Suggested Answers. .263

Exercise 1 .263

Exercise 2 .263

Exercise 3 .263

Complete Program. .264

Complete Output .272

Chapter 11 Modeling Complex Costs. 279

Describe cost1 .280

Model cost1 .280
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 9

Solve cost1 .281

Describe cost2 .282

Model cost2 .283

Solve cost2 .283

Review Exercises .284

Suggested Answers. .285

Exercise 1 .285

Exercise 2 .285

Exercise 3 .285

Complete cost1 Program. .286

Complete cost1 Output .291

Complete cost2 Program. .293

Complete cost2 Output .297

Chapter 12 Docking Bays: Modeling External Resources . 305

Describe .305

Model. .306

Solve .309

Review Exercises .311

Suggested Answers. .311

Exercise 1 .311

Exercise 2 .312

Exercise 3 .312

Exercise 4 .312

Complete Program. .312

Complete Output .318

Part III Field Service Solutions . 322

Chapter 13 Dispatching Technicians . 323

Describe .323

Model. .324
10 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve .328

Review Exercises .329

Suggested Answers. .330

Exercise 1 .330

Exercise 2 .330

Exercise 3 .330

Complete Program. .330

Complete Output .336

Chapter 14 Dispatching Technicians II . 339

Describe .339

Model. .340

Solve .349

Review Exercises .350

Suggested Answers. .350

Exercise 1 .350

Exercise 2 .351

Exercise 3 .351

Complete Program. .351

Complete Output .359

Chapter 15 CARP: Visiting Arcs Using Multiple Vehicles . 361

Describe .361

Model. .363

Solve .367

Review Exercises .374

Suggested Answers. .374

Exercise 1 .374

Exercise 2 .375

Exercise 3 .375

Complete Program. .375

Complete Output .382
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 11

Part IV Developing Dispatcher Applications 394

Chapter 16 Designing Dispatcher Models . 395

Simplify the model .395

Suggested procedure. .396

Decompose the problem .396

Temporal decomposition .397

Other modeling hints .406

Chapter 17 Developing Your Own First Solution Heuristics . 407

Using the predefined first solution heuristics. .407

Deciding which heuristic to use .408

More hints .408

Creating your own first solution heuristic. .409

Heuristic Description .409

Building Routes .409

Building a Complete Solution .411

Using the custom first solution goal .413

Using the Dispatcher First Solution Framework. .413

Creating the decision class .414

Creating the decision maker class .416

Creating the decision tracer class .418

Creating the first solution framework goal .419

Using the first solution framework goal .420

Chapter 18 Developing Your Own Neighborhoods. 421

Neighborhood Description .422

Defining the Neighborhood .422

Creating the Solution Delta .424

Implementing the Neighborhood .426

Appendix A Predefined First Solution Heuristics. 429

Example data .429
12 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Enumeration Heuristic .430

Savings Heuristic .431

Sweep Heuristic .433

Nearest-to-Depot Heuristic. .434

Nearest Addition Heuristic .435

Insertion Heuristic .437

Appendix B Predefined Neighborhoods . 439

Intra-Route Improvement: IloTwoOpt neighborhood .440

Intra-Route Improvement: IloOrOpt neighborhood. .440

Inter-Route Improvement: IloRelocate neighborhood .441

Inter-Route Improvement: IloCross neighborhood. .442

Inter-Route Improvement: IloExchange neighborhood .443

Other neighborhoods .444

Appendix C Predefined Search Heuristics and Metaheuristics . 445

Basic Search Heuristics .445

First Accept Search .446

Best Accept Search .446

MetaHeuristics .447

Tabu Search Metaheuristic .447

Guided Local Search Metaheuristic .448

Using Metaheuristics In Search .448

Tabu Search. .448

Guided Local Search .450

Guided Tabu Search .452

Index . 453
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 13

14 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

P R E F A C E
Welcome to IBM ILOG Dispatcher

This chapter introduces IBM® ILOG® Dispatcher. In it, you will learn:

◆ what Dispatcher is

◆ how to use it with Solver in a methodical way

◆ what is in this manual and how to use it with the reference manual

◆ where to find more information

If you are already familiar with Solver, then you know first-hand the advantages of that
generic tool for object-oriented constraint programming. It provides a library of re-usable
and maintainable C++ classes that can be exploited just as they are or extended to meet
special needs.

What is Dispatcher?

So, what exactly is Dispatcher? It’s a C++ library based on Solver, so it exploits all the
facilities of object-orientation and constraint programming, too. One product is meant to
work in combination with the other, and this manual aims to show you, through
programming examples, exactly how to exploit this powerful combination.

Dispatcher offers features especially adapted to solving problems in vehicle routing and
maintenance-technician dispatching. There are, for example, classes of objects particularly
designed to represent such aspects as routing plans themselves, their visits, their vehicles,
and their constraints, such as capacity or time-window constraints. Dispatcher offers you a
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 15

workbench of tools that tackle the issues inherent in vehicle routing and maintenance-
technician dispatching in a straightforward manner.

One of the main advantages of constraint programming is that it enables you to represent
your problem explicitly, so that your problem representation serves simultaneously as a
declarative specification. This congruence between the problem specification and the
problem representation guarantees that the resolution of the constraints does, indeed, solve
the problem as defined. In other words, there is no “slip” between the model of the problem
and the implementation of its solution. Dispatcher, like Solver, embodies this advantage of
modeling and solving in a ready-to-use library of tools.

How to Use Dispatcher with Solver

We mentioned that Dispatcher is based on Solver. What does this mean in practice? On the
whole, in Dispatcher, you’ll find predefined classes of objects that will adequately and
accurately represent aspects of your vehicle routing or technician dispatching problem. For
special purposes, however, you can easily extend Dispatcher by defining additional classes
yourself to represent objects particular to your problem.

In addition, if your routing problem includes unusual constraints not adequately represented
by the standard Solver routing constraints described in this manual, you can define
additional constraints that are specific to your problem.

Then with your problem well represented in the object model, you will use the control
primitives of Dispatcher to solve the problem. In other words, you will implement a heuristic
search procedure using the predefined features of Dispatcher. Throughout this manual, you
will find examples of how to use the control primitives of Dispatcher to search for a solution.

About this manual

This is the IBM ILOG Dispatcher User’s Manual. It is composed of lessons that use a
procedural-based learning strategy. Each lesson is built around a sample problem, and a user
works on a partially completed code example. As you follow the steps in the lesson, you
complete the code and learn about concepts. Then, you compile and run the code and
analyze the results. At the end of each lesson, there are review exercises.

The manual is designed to be used by C++ programmers who may or may not have any
knowledge of constraint programming. The ideal usage context for this manual is sitting in
front of your computer, with Dispatcher installed. You work through the lessons and
exercises.

If you are a novice Dispatcher user, start at the beginning of this manual, since the lessons
build on each other. If you are a more experienced Dispatcher user, you can jump ahead to a
later part of the manual, focusing on more advanced topics.
16 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

How this manual is organized

This manual is divided into four parts:

◆ Part I, The Basics

◆ Part I, Transportation Industry Solutions

◆ Part I, Field Service Solutions

◆ Part I, Developing Dispatcher Applications

Prerequisites

Dispatcher requires a working knowledge of C++. However, it does not require you to learn
a new language since it does not impose any syntactic extensions on C++.

If you are experienced in constraint programming or operations research, you are probably
already familiar with many concepts used in this manual. However, no experience in
constraint programming or operations research IBM ILOG is required to use this manual.

You should have IBM ILOG Dispatcher, IBM ILOG Solver and IBM ILOG Concert
Technology installed in your development environment before starting to use this manual.
You should be able to compile, link, and execute a sample program provided with
Dispatcher before starting to use this manual. For more information, see the sections
Installing IBM ILOG Dispatcher and Linking IBM ILOG Dispatcher.

Related documentation

The following documentation ships with IBM ILOG Dispatcher and will be useful for you to
refer to as you complete the lessons and exercises:

◆ The IBM ILOG Dispatcher Reference Manual fully documents all the Dispatcher C++
classes and member functions used in the User’s Manual. The Reference Manual also
explains certain concepts more formally. The Reference Manual provides the last word
on any given topic.

Installing IBM ILOG Dispatcher

In this manual, it is assumed that you have already successfully installed the Dispatcher,
Solver, and Concert Technology libraries on your platform (that is, the combination of
hardware and software you are using). If this is not the case, you will find installation
instructions in the jacket of the CD-ROM of the standard distribution of Dispatcher. The
instructions cover all the details you need to know to install Dispatcher, Concert Technology
and Solver on your system.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 17

Linking IBM ILOG Dispatcher

When you use Dispatcher, you link the Dispatcher, Solver, and Concert Technology libraries
to your application. The command that you use for linking depends on your platform. In the
standard distribution of the product, you will find a file that contains details appropriate to
your platform and that points you toward a subdirectory containing a suitable makefile or
project. If you are using UNIX, you will find the information in YourDispatcherHome/
README; on a PC, you will find comparable information in YourDispatcherHome/
readme.htm

Typographic and naming conventions

The names of types, classes, and functions defined in the library begin with Ilo or Ilc.
Those beginning with Ilo are predefined modeling and solving classes, functions, and types
provided with Dispatcher, Solver, and Concert Technology. You can use classes, functions,
and types in the Solver library that begin with Ilc to customize your code and extend the
library.

The name of a class is written as concatenated words with the first letter of each word in
upper case. For example,

A lower case letter begins the first word in names of arguments, instances, and member
functions. Other words in the identifier begin with an upper case letter. For example,

Names of data members begin with an underscore, like this:

Generally, accessors begin with the key word get. Accessors for Boolean members begin
with is. Modifiers begin with set.

IloIntVar

IloIntVar aVar;
IloIntVarArray::add;

class Bin {
public:
 IloIntVar _type;
 IloIntVar _capacity;
 IloIntVarArray _contents;
 Bin (IloModel mod,
 IloIntArray Capacity,
 IloInt nTypes,
 IloInt nComponents);
 void display(const IloSolver sol);
};
18 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

To make porting easier from platform to platform, Concert Technology isolates
characteristics that vary from system to system. For that reason, use the following names for
basic types in C++:

◆ IloInt stands for signed long integers

◆ IloAny stands for pointers (void*)

◆ IloNum stands for double precision floating-point values

◆ IloBool stands for Boolean values: IloTrue and IloFalse

You are not obliged to use these identifiers, but it is highly recommended if you plan to port
your application to other platforms.

Important ideas are italicized the first time they appear.

Include Files

In an effort to minimize the number of include files (that is, header files) that you have to
cope with, Dispatcher provides the basic file ilodispatcher.h. If you include it in your
application, you can exploit all the functions, classes, and member functions documented in
the IBM ILOG Dispatcher Reference Manual.

If you prefer to include only some of Dispatcher’s header files in your application, a list of
the individual files and an explanation of each one’s purpose follows:

◆ ilonode.h deals with geographical locations.

◆ ilovisit.h represents visits. These visits can be performed at a depot or at a
customer’s location.

◆ ilodim.h deals with the dimensions in which quantitative constraints (delays,
capacities, distances) are expressed.

◆ ilovehicle.h declares the objects representing vehicles.

◆ ilobreak.h declares the objects representing vehicle breaks.

◆ ilogoals.h contains declarations for the primitives that generate a first solution to a
problem.

◆ lsearch.h contains declarations for the iterative improvement techniques used to
improve the solution of a given problem.

◆ ilodist.h declares classes and functions related to distance and vehicle equivalence.

◆ ilorsol.h contains declarations for the routing solution class.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 19

IBM software support handbook

This guide contains important information on the procedures and practices followed in the
service and support of your IBM products. It does not replace the contractual terms and
conditions under which you acquired specific IBM Products or Services. Please review it
carefully. You may want to bookmark the site so you can refer back as required to the latest
information. We are interested in continuing to improve your IBM support experience, and
encourage you to provide feedback by clicking the Feedback link in the left navigation bar
on any page. The "IBM Software Support Handbook" can be found on the web at

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Accessing software support

When calling or submitting a problem to IBM Software Support about a particular service
request, please have the following information ready:

IBM Customer Number

The machine type/model/serial number (for Subscription and Support calls)

Company name

Contact name

Preferred means of contact (voice or email)

Telephone number where you can be reached if request is voice

Related product and version information

Related operating system and database information

Detailed description of the issue

Severity of the issue in relationship to the impact of it affecting your business needs

Contact via web

Open service requests is a tool to help clients find the right place to open any problem,
hardware or software, in any country where IBM does business. This is the starting place
when it is not evident where to go to open a service request.

Service Request (SR) tool offers Passport Advantage clients for distributed platforms online
problem management to open, edit and track open and closed PMRs by customer number.
Timesaving options: create new PMRs with prefilled demographic fields; describe problems
yourself and choose severity; submit PMRs directly to correct support queue; attach
troubleshooting files directly to PMR; receive alerts when IBM updates PMR; view reports
on open and closed PMRs.
20 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
https://www-304.ibm.com/support/electronic/portal/upr?category=2&locale=en_us
https://www-01.ibm.com/software/support/probsub.html

You can find information about assistance for SR at http://www.ibm.com/software/support/
help-contactus.html.

System Service Request (SSR) tool is similar to Electronic Service request in providing
online problem management capability for clients with support offerings in place on System
i, System p, System z, TotalStorage products, Linux, Windows, Dynix/PTX, Retail, OS/2,
Isogon, Candle on OS/390 and Consul z/OS legacy products.

IBMLink - SoftwareXcel support contracts offer clients on the System z platform the
IBMLink online problem management tool to open problem records and ask usage questions
on System z software products. You can open, track, update, and close a defect or problem
record; order corrective/preventive/toleration maintenance; search for known problems or
technical support information: track applicable problem reports: receive alerts on high
impact problems and fixes in error; and view planning information for new releases and
preventive maintenance.

Contact via phone

If you have an active service contract maintenance agreement with IBM , or are covered by
Program Services, you may contact customer support teams via telephone. For individual
countries, please visit the Technical Support section of the IBM Directory of worldwide
contacts via http://www.ibm.com/planetwide/.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 21

https://www14.software.ibm.com/webapp/set2/ssr/slprob
http://ibm.com/ibmlink
http://www.ibm.com/planetwide/

22 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Part I

The Basics

 This part consists of the following lessons:

◆ Chapter 1, IBM ILOG Dispatcher Concepts

◆ Chapter 2, Modeling a Vehicle Routing Problem

◆ Chapter 3, Solving a Vehicle Routing Problem

◆ Chapter 4, Minimizing the Number of Vehicles

◆ Chapter 5, Adding Visit Disjunctions

◆ Chapter 6, Multiple Tours per Vehicle

C H A P T E R
1

IBM ILOG Dispatcher Concepts

In this lesson, you will learn how to:

◆ use the three-stage method to describe, model, and solve problems

◆ learn how to use Dispatcher classes to model routing problems

◆ understand how to solve routing problems with local search

IBM® ILOG® Dispatcher is a C++ library that makes it easier to develop applications for
routing problems. It is based on IBM ILOG Concert Technology and IBM ILOG Solver, a
generic tool for object-oriented constraint programming. One of the key advantages of
constraint programming lies in the fact that it dissociates the representation of the problem,
called the model, from the search algorithms used to solve it.

To find a solution to a routing problem using Dispatcher, you use a three-stage method:
describe, model, and solve.

The first stage is to describe the problem in natural language. For more information, see the
section “Describe” on page 26.

The second stage is to use Dispatcher classes to model the problem. The model is composed
of basic objects: nodes—or geographic locations, visits, and vehicles. These objects are
associated with dimensions, such as weight, time, and distance. The decision variables in a
Dispatcher model are the variables representing if a visit is performed—performed-
variables—and the variables representing the visit immediately after a given visit—next-
variables. A solution to a routing problem—a routing plan—is defined by the values
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 25

assigned to each of these decision variables. A Dispatcher model also includes side
constraints, such as capacity constraints, time windows, and precedence constraints. The
objective is to lower the cost of a routing plan. The total cost of a routing plan is determined
by summing the total costs for all vehicles and adding any costs related to unperformed
visits. For more information, see the section “Model” on page 27.

The third stage is to use local search to solve the routing problem. Dispatcher uses a two-
phase method to solve problems. The first phase consists of generating a first solution that
satisfies the problem. In the second phase, you improve this first solution using local search.
For more information, see the section “Solve” on page 39.

This first lesson is designed to help you understand the basic concepts of Dispatcher. This
overview is somewhat theoretical; it presents the definitions of terms that appear in the rest
of the manual. In later lessons, you will work through problems by describing, modeling,
and solving routing problems. In these lessons, you will learn how to use the classes and
functions that you learn about here.

Describe

The first stage is to describe the problem in natural language. Routing can be defined as the
process of assigning visits to vehicles, while taking into account constraints such as capacity
or time windows, to produce a routing plan with the least possible cost.

The complexity of routing problems varies greatly. The Vehicle Routing Problem (VRP)
requires a set of vehicles to visit a set of customers from one or more depots. To solve a VRP
you have to solve two intertwined problems. An assignment problem—whether or not to
assign a particular visit to a given vehicle—is added to the geometry problem, where each
vehicle has to visit a given set of customers as expeditiously as possible. A second type of
routing problem, the Pickup and Delivery Problem (PDP), extends the VRP by allowing
pickups and deliveries within the same route.

Each class of routing problem—whether VRP, PDP, and so on—itself comes in many guises.
For example, the VRP may be modified by introducing multiple depots or alternative
delivery sites; by requiring vehicles to make multiple round trips or tours; or by coupling the
vehicle with a technician.

A problem may include different kinds of side constraints—such as capacity, time windows,
precedence, technician skill levels, and so on—or specific constraints that depend on the
business area of the application. Constraints may be added to allow for work breaks, such as
lunch and coffee breaks or overnight stops, to minimize the number of vehicles, or to
introduce costs for late deliveries or technical service.

There also exists wide variation in the size of routing problems. The size may vary from a
few dozen activities to thousands of visits. The methods that work well for small problems
may not be applicable to bigger problems, due to the increased complexity.
26 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Besides the diversity in the possible data of routing problems, different environments may
require different performance from the algorithms solving the problems. For example, in
some applications the construction of a routing plan must be performed in seconds while in
other applications computation times of a few days are allowed. Similarly, any feasible
solution is sufficient for many applications, whereas others require near-optimal solutions.

In each lesson in this manual, you will describe the routing problem before modeling and
solving it. Though the Describe stage of the process may seem trivial in certain simple
problems, you will find that taking the time to fully describe a more complex, real-world
problem is vital for creating a successful program. You will be able to code your program
more quickly and effectively if you take the time to describe the model before writing your
application.

Model

The second stage is to use the Dispatcher library of C++ classes and functions to implement
the concepts of nodes, visits, and vehicles in terms of constrained Solver variables and
constraints.

Basic Modeling Objects

Dispatcher models include the following basic objects: nodes, visits, and vehicles.

Nodes
Routing problems have a geometric component: the visits must be performed at specific
physical locations.

Dispatcher represents these physical locations as nodes. These nodes are then used to
compute distances and times (and subsequently cost) between customers and depots.

Theoretically, a node represents an intersection of roads or some other place where a vehicle
can stop, such as the buildings—factories, offices, houses, and so on—where visits are
made. Nodes can be depots (where the vehicles pick up the goods to be delivered) or
customer locations (where the goods or services are delivered). A node may be defined by
coordinates that give its location.

The following code shows how to create a node at coordinates x and y.

IloEnv env;
IloModel mdl(env);
IloNum x=4, y=-5;
IloNode node(env, x, y);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 27

Visits
A visit represents an activity that the vehicle has to perform. A visit occurs at a single node
or at a single arc (composed of two nodes), and it is performed by only one vehicle. You can
create many different visits at the same node.

The following code shows how to create a visit associated with a customer node.

Visits have quantities, which can be weights, volumes, numbers of objects, and so on. These
quantities represent the amount of a good picked up or dropped off by the vehicle at the visit.

Vehicles
Vehicles are resources that convey goods from one visit to another. A vehicle has a start and
an end visit and can have variable start and end times associated with those visits. In
Dispatcher, a vehicle can be created without start and end visits; this means the vehicle starts
and ends at a “dummy” node which is at distance 0 of all the other nodes.

The following code shows how to create a vehicle associated with the locations where it
must start and end its route.

Vehicles can be given capacities. These capacities represent the total quantity the vehicle
can carry. Capacity, like quantity, can be a weight, volume, number of objects, and so on.

Decision Variables

From a modeling perspective, each visit v is associated with a next-variable, representing
the visit immediately after v (accessible through the member function
IloVisit::getNextVar) and a performed-variable which is set to IloTrue if the v is
performed and IloFalse if it is not (accessible through the member function

Note: For more information on the classes and functions in the example code, see
Chapter 2, Modeling a Vehicle Routing Problem and Chapter 3, Solving a Vehicle Routing
Problem. You can also refer to the IBM ILOG Dispatcher Reference Manual.

IloEnv env;
IloModel mdl(env);
IloNode node(env);
IloVisit visit(node);
mdl.add(visit);

IloEnv env;
IloModel mdl(env);
IloNode depot(env);
IloVisit startVisit(depot);
IloVisit endVisit(depot);
IloVehicle vehicle(startVisit, endVisit);
mdl.add(vehicle);
28 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
IloVisit::performed). These variables are the decision variables of a routing problem:
a solution to a routing problem is uniquely described by the values they take.

Each time a visit is extracted it is associated with a unique integer identifier (accessible
through the member function IloDispatcher::getIndex). The next-variables are
extracted to instances of IlcIntVar which represent indices of visits.

To simplify programming with Dispatcher, the next-variables have been complemented by
redundant variables. The prev-variables, accessible through the member function
IloVisit::getPrevVar, are the constrained variables representing the visit immediately
before a given visit. They are also extracted to instances of IlcIntVar representing indices
of visits.

Another constrained variable associated with each visit is the vehicle variable (accessible
through IloVisit::getVehicleVar) which holds the vehicle performing the visit. As
with visits, once extracted, vehicles are associated with a unique integer identifier and
vehicle-variables are extracted to instances of IlcIntVar which correspond to these
indices.

Vehicles are also associated with a number of variables and objects. The start-visit and the
end-visit (accessible through IloVehicle::getFirstVisit and
IloVehicle::getLastVisit, respectively) represent the starting and ending points of
the vehicle’s route.

Dimensions

Dimensions are objects closely associated with visits and vehicles. The most common
dimensions are weight, time, and distance. Dimensions are used to model side constraints
such as capacity, time windows, deadlines, service delays, and so on. Dimensions are also
used to model costs and the objective. An understanding of dimensions and the constrained
variables derived from them is essential to understanding Dispatcher.

Vehicles may have different capacities in terms of weight (for solid goods, for example) or
volume (for liquids, for instance); routes may entail different costs or distances traveled;
visits may require different amounts of time (perhaps for waiting, unloading, reloading, and
so on). In short, there may be many different dimensions (such as weights, volumes,
distances, times) in a given routing problem. These dimensions are most closely associated
with vehicles (to model capacity and costs) and visits (to model quantities, delays, time
windows, and deadlines).

The class IloDimension makes it possible to handle easily the various dimensions that
occur in a problem. When you create an instance of IloDimension, a constrained variable
is associated with this dimension for each object (if needed). Constraints can subsequently
be posted on those variables.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 29

The class IloDimension has two subclasses to represent the intrinsic and extrinsic
dimensions of an object. An intrinsic dimension depends only on the single object with
which it is associated. An extrinsic dimension depends on two objects.

The subclass IloDimension1 represents the dimensions that are intrinsic to an object. For
example, weight is represented by IloDimension1 because the weight of an object
depends only on that object.

IloDimension2 represents the dimensions that are extrinsic to an object; that is, those
dimensions that depend on something outside the object itself. For example, time is usually
represented as an instance of IloDimension2 because the time to travel from one visit to
another depends on both those visits.

By definition, IloDimension2 is closely linked to the concept of distance. For that reason,
one of the data members of IloDimension2 is in fact an instance of IloDistance.

Objects of IloDistance define how distances are computed between nodes with respect to
a dimension and a vehicle. IloEuclidean computes the Euclidean distance between nodes
according to their coordinates. IloManhattan computes the grid pattern distance between
nodes. IloDispatcherGraph computes distance from a road network graph. A simple
C++ representation of IloDistance could be a pointer to a function. The following code
shows how to create three dimensions: weight, time, and distance:

Using dimensions to model side constraints

In Dispatcher, side constraints such as capacity, time windows, and deadlines are
implemented by associating one floating-point constrained variable per dimension with each
visit. These cumulative variables represent the accumulation of the dimension from the
beginning of the vehicle route to the visit. Constraints can then be placed on these variables.
They can be accessed through the member function IloVisit::getCumulVar.

While the cumulative variable is accessed through the visit, it is also linked to a specific
vehicle—the accumulation of a dimension, such as weight, is accumulated as one vehicle
makes visits along its route.

For example, if a truck starts empty from the depot and performs 4 visits, where it collects
goods of weight 4, 7, 8, and 3, respectively, the cumulative variable associated to the
dimension weight at the fourth visit is equal to 4+7+8 = 19 (the cumulative variable
corresponds to the quantity in the truck upon arrival at the visit). The constraint placed on

IloEnv env;
IloModel mdl(env);
IloDimension1 weight(env);
mdl.add(weight);
IloDimension2 time(env, IloEuclidean);
mdl.add(time);
IloDimension2 distance(env, IloEuclidean);
mdl.add(distance);
30 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
this cumulative variable is that it must be always less than or equal to the capacity of the
vehicle.

Dispatcher also uses transit variables to model side constraints. The transit variable
associated with a visit is a floating-point constrained variable which represents the change in
the cumulative variable between that visit and the following visit. It can be accessed through
the member function IloVisit::getTransitVar.

Cumulative and transit variables for dimensions—instances of both IloDimension1 and
IloDimension2—are defined by the path constraint. The path constraint is functionally
equivalent to one constraint of the following form for dimension d, and each pair of visits v1
and v2:

For instances of IloDimension2, such as time, the transit variable is defined as the sum of
the delay variable, the wait variable, and the travel variable. For a visit v and a dimension d,
the transit variables are maintained by the following rule:

The delay variable of v1, returned by v1.getDelayVar(d), is a floating-point constrained
variable which represents the delay in terms of dimension d at visit v1. This is useful to
represent the time needed to unload a truck. It can be accessed through the member function
IloVisit::getDelayVar.

The wait variable of v1, returned by v1.getWaitVar(d), is a floating-point constrained
variable which represents the additional quantity of dimension d consumed between v1 and
its successor, over the time required to serve v1 and travel from v1 to its successor. In the
case where d represents time, v1.getWaitVar(d) represents the waiting time. It can be
accessed through the member function IloVisit::getWaitVar.

The travel variable of v1, returned by v1.getTravelVar(d), is a floating-point
constrained variable which represents the quantity of dimension d taken by the vehicle
serving v1 to get to v2. It can be accessed through the member function
IloVisit::getTravelVar. The travel variable is maintained by the following rule:

mdl.add(IloIfThen(env,
 v1.getNextVar() == v2,
 v2.getCumulVar(d) == v1.getCumulVar(d) + v1.getTransitVar(d)
));

v.getTransitVar(d) == v.getDelayVar(d) + v.getTravelVar(d) + v.getWaitVar(d);

mdl.add(IloIfThen(env,
 v1.getNextVar() == v2 && v1.getVehicleVar() == veh,
 v1.getTravelVar(d) == v1.getDistanceTo(v2, d, veh)
 / veh.getSpeed(d)
));
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 31

In the previous code, v1.getVehicleVar().getSpeed(d) returns the speed of the
vehicle associated with the vehicle performing v1.

Modeling visit quantity constraints
Visits have quantities, which can be expressed using IloDimension1 objects. These
quantities, which can be weights, volumes, numbers of objects, and so on, represent the
amount of a good picked up or dropped off by the vehicle. A visit can have more than one
quantity associated with it. The quantity can be a positive or negative value or a variable.
The demand for each visit must also be defined in terms of dimensions and constraints.

For example, to model a visit quantity, you first define the dimension quantity and then
set a constraint on the transit variable associated with quantity using the member function
IloVisit::getTransitVar. Using the member function setBounds is a bit more
efficient in terms of memory and speed than using an equality or range constraint. However
you might need to use a constraint if you want to give different values to the transit variable
in different models or if you want to metapost the constraint. The following code shows how
to define quantity (an IloDimension1) and how to express the quantity of goods related
to visit:

Modeling vehicle capacity constraints
Vehicles have capacity; they cannot hold more than a certain weight or a given number of
pallets, for example. To express this idea, you define the dimension in which the capacity
will be expressed, and you post a constraint on the variable that represents capacity.

For example, to model a vehicle capacity, you first define the dimension weight and then
set a constraint on the dimension using the member function IloVehicle::setCapacity.

Notes: The introduction of a vehicle break can change the value of both wait and
cumulative variables. For more information on vehicle breaks, see Chapter 8, Adding
Vehicle Breaks.
To avoid getting infinite cumuls on IloDimension1 variables, make sure you do the
following: check for infinite bounds on vehicles' first and last visit dimension variables;
check for infinite bounds on visit transits (check for forgotten transits); and try to
instantiate the vehicle's first cumul when possible, which will automatically instantiate
cumuls along routes.

IloEnv env;
IloModel mdl(env);
IloNode node(env);
IloDimension1 quantity(env);
mdl.add(weight);
IloVisit visit(node);
mdl.add(visit);
visit.getTransitVar(quantity).setBounds(12,12); // 12 items
32 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
The following code shows how to define weight (an IloDimension1) and how to express
the capacity of a truck in terms of this intrinsic dimension.

Capacity constraints correspond to constraints on the bounds of the cumulative variables.
For example, the maximum load of a truck is handled internally by Dispatcher by setting
bounds on all the cumulative variables associated with weight. The constraint placed on this
cumulative variable is that it must be always less than or equal to the capacity of the vehicle.

Modeling time window constraints
Time windows occur in problems from many business sectors. For example, courier services
have to pickup parcels after a certain time, but before another. Likewise, deliveries usually
have to be made within a given time window—before one hour, but after another.

For example, to model a time window, you first define the dimension time and then set a
constraint on the cumulative variable associated with time using the member function
IloVisit::getCumulVar. To see how to implement a time window with one of these
cumulative variables, assume that a dimension, node and visit have been defined already,
like this:

To define a time window between 10 and 14, use the following code:

You can also define a time window between 10 and 14 like this:

Not all time windows consist of a continuous block of time, of course. There are situations
where the acceptable time window occurs in pieces. These are called disjoint time windows.
Deliveries that can be made only between 7 and 9 in the morning or between 5 and 7 in the
evening are an example of disjoint time windows.

IloEnv env;
IloModel mdl(env);
IloDimension1 weight(env);
mdl.add(weight);
IloVehicle vehicle(env);
vehicle.setCapacity(weight, 15000); // weight associated with vehicle
 // it has a capacity of 15000 kg

IloEnv env;
IloModel mdl(env);
IloDimension2 time(env, IloEuclidean);
IloInt x=4, y=-5;
IloNode node(env, x, y);
IloVisit visit(node);
mdl.add(visit);

mdl.add(visit.getCumulVar(time) >= 10);
mdl.add(visit.getCumulVar(time) <= 14);

mdl.add(10 <= visit.getCumulVar(time) <= 14);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 33

To represent a disjoint time window, Dispatcher provides the IloDimensionWindows
class. Using this class you can represent disjoint feasible periods of time. For example, to
represent two disjoint time windows, the first starting at 8 and ending at 10 and the second
starting at 14 and ending at 16, you could write:

You can then apply this window to a visit using the IloExecutionWindowsToVisitCon
constraint:

Modeling service delays constraints
A delay is often encountered when performing a visit. This delay can be expressed in terms
of distance (for example, to travel inside a large factory) or in terms of time (to unload the
truck, for instance).

For example, to model a service delay, you first define the dimensions time and volume.
You set a constraint on the transit variable associated with volume using the member
function IloVisit::getTransitVar. You then set a constraint on the delay variable
associated with time using the member function IloVisit::getDelayVar. The last line
of code expresses that the time needed to unload the truck is equal to 0.5 units of time per
unit of volume.

Modeling deadline constraints
It may be useful to set deadlines on vehicles. For example, in some problems the vehicle
must return to the depot before a certain time of the day.

IloDimensionWindows windows(env, time);
windows.setBounds(8, 16);
windows.setForbiddenInterval(10, 14);

mdl.add(IloExecutionWindowsToVisitCon(visit, windows));

IloEnv env;
IloModel mdl(env);
IloDimension1 volume(env);
mdl.add(volume);
IloDimension2 time(env, IloEuclidean);
mdl.add(time);
IloNode node(env);
IloVisit visit(node);
mdl.add(visit);
mdl.add(visit.getTransitVar(volume) == 10); // 10 m3
mdl.add(visit.getDelayVar(time) == .5*visit.getTransitVar(volume));
 // .5 minute / m3
34 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
For example, to model deadlines, you first define the dimension time. You also use the
member functions IloVehicle::getFirstVisit and IloVehicle::getLastVisit
together with IloVisit::getCumulVar.

In the following code fragment, vehicle is constrained to start at 8:

and to come back before 17:

Modeling other side constraints

Dispatcher provides specific constraints that enable you to model other important side
constraints, such as lunch breaks or visit disjunctions.

Modeling vehicle breaks
A vehicle break is a period of time in which a vehicle is not available to make a visit, such as
during the driver’s lunch period. In Dispatcher, breaks are modeled as constraints. A break is
performed by a vehicle on a dimension (usually time). The break has a start time, a duration,
and a position in the route, all of which can vary. A break can interrupt a customer visit or
not, as desired.

To create a break where vehicle is the vehicle performing the break, time is the
dimension, startLunch is the start variable, and 1.0 is the duration:

Once the break is created it is added, just like any constraint:

IloEnv env;
IloModel mdl(env);
IloDimension2 time(env, IloEuclidean);
IloNode depot(env);
IloVisit first(depot);
IloVisit last(depot);
IloVehicle vehicle(first, last);
mdl.add(vehicle);
const IloNum timeDeadline = 17;

mdl.add(first.getCumulVar(time) == 8);

mdl.add(last.getCumulVar(time) <= timeDeadline);

IloNumVar startLunch(env, 12.0, 13.0);
IloVehicleBreakCon lunch(vehicle, time, startLunch, 1.0)

mdl.add(lunch);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 35

After a break has been created and added to the routing plan, it must be instantiated. In
Dispatcher, this must be done when a move is taken. The following goal can be used for
doing so:

More than one break can be specified per vehicle, and breaks can be involved in meta-
constraints. For example:

For more information, see Chapter 8, Adding Vehicle Breaks.

When vehicle breaks are allowed to interrupt customer visits, two other visit-related
variables come into play. These are the duration variable and the end-cumul variable.

The duration variable represents the real time taken to process the visit. When a visit cannot
be broken by vehicle breaks, this is simply equal to the value of the delay variable of the
visit. However, in the case where visits can be so interrupted, the value of the duration
variable of a visit is equal to the value of the delay variable plus the durations of any vehicle
breaks which interrupt the visit.

At all times, the end-cumul variable is equal to the cumul variable plus the duration variable.
It represents the time at which processing of the visit is complete.

Modeling visit disjunctions
There are times when only one of two visits can be performed, or when alternative sites for a
delivery exist. To solve problems with these conditions, visit disjunctions can be created.

In Dispatcher, a visit can be performed (assigned to a vehicle) or unperformed. These
constraints can be used to set up visit disjunctions.

There are two constraints for stating that a visit has to be performed or not:

If there are two visits, and only one visit can be performed, a disjunction can be created as
follows:

For more information, see Chapter 5, Adding Visit Disjunctions.

IloInstantiateVehicleBreaks(env);

mdl.add(lunch && (coffee1 || coffee2));

IloConstraint IloVisit::performed() const;
IloConstraint IloVisit::unperformed() const;

mdl.add(visit1.performed() != visit2.performed());
36 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Modeling costs and the objective

The total cost of a routing plan is determined by summing the total costs for all vehicles and
adding any costs related to unperformed visits. The objective is usually to minimize the cost
of the routing plan, though sometimes the objective may also include other goals, such as
minimizing the number of vehicles (see Chapter 4, Minimizing the Number of Vehicles).

The cost variable of the entire routing plan can be obtained with
IloDispatcher::getCostVar().

Costs associated with visits
Visits can have a penalty cost associated with them, which represents the cost of not
performing the visit. Penalty costs can be expressed by the member function
IloVisit::setPenaltyCost(penaltyCost). By default, this cost is set to
IloInfinity, which means that the visit must be performed.

Costs associated with vehicles
The total cost of a vehicle is determined by summing the cost for each dimension specified
for the vehicle and adding any fixed costs for that vehicle. If a fixed cost is specified, it is
added to the cost of the vehicle if the vehicle is in use (that is, if the vehicle performs any
visits other than its first and last visits). The cost variable of a vehicle can be obtained with
the member function IloVehicle::getCostVar().

Cost can vary with many different dimensions: the distance traveled, the time spent, or the
number of stops. Costs in Dispatcher are attached to vehicles via
IloVehicle::setCost(IloDimension dim, IloNum unitCost). Fixed costs are
expressed by the member function IloVehicle::setCost(fixedCost).

The following code shows how to express a cost in terms of distance.

The statement vehicle.setCost(distance, 3.2) means that for each unit of distance
that the vehicle travels, 3.2 units of cost are accrued. Cost for the vehicle is computed by
multiplying the usage variable of the dimension (in this case, distance) by the coefficient
(3.2 in this case). If cost is specified in more than one dimension (for instance, time and
distance), the cost for each dimension specified for the vehicle is computed in the same
fashion.

Vehicle cost is bound as follows: the transit variables of all visits performed by the vehicle
(including the first and last visits representing the start and end points of the vehicle), are
added together to give the usage of the dimension for the vehicle. This usage is also

IloEnv env;
IloModel mdl(env);
IloDimension2 distance(env, IloEuclidean); // in mi.
mdl.add(distance);
IloVehicle vehicle(env);
vehicle.setCost(distance, 3.2); // $ 3.2 per mile
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 37

reinforced by bounds computed from the cumulative variable at the last visit plus the transit
variable at the last visit, minus the cumulative variable at the first visit, as follows. Suppose
time is an IloDimension2:

For more information on modeling costs, see Chapter 11, Modeling Complex Costs.

Summary: The Dispatcher Model

The different objects and variables associated with vehicles and visits are summarized in the
two following tables.

IloVisit first = vehicle.getFirstVisit();
IloVisit last = vehicle.getLastVisit();
IloNumVar usage = last.getCumulVar(time) + last.getTransitVar(time) -
 first.getCumulVar(time);

Table 1.1 Objects Associated with a Vehicle

Object Name Accessor

capacity IloNum IloVehicle::getCapacity(IloDimension1 d)
const;

cost IloNumVar IloVehicle::getCostVar() const;

first visit IloVisit IloVehicle::getFirstVisit() const;

index IloInt IloDispatcher::getIndex(IloVehicle) const;

last visit IloVisit IloVehicle::getLastVisit() const;

speed IloNum IloVehicle::getSpeed(IloDimension2 d) const;

Table 1.2 Objects Associated with a Visit

Object Name Accessor

cumul variable IloNumVar IloVisit::getCumulVar(IloDimension d)
const;

delay variable IloNumVar IloVisit::getDelayVar(IloDimension2 d)
const;

index IloInt IloDispatcher::getIndex(IloVisit) const;

next-variable IloVisitVar IloVisit::getNextVar() const;

prev-variable IloVisitVar IloVisit::getPrevVar() const;

transit variable IloNumVar IloVisit::getTransitVar(IloDimension d)
const;
38 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Solve

Dispatcher uses a two-phase approach for solving routing problems. The first phase consists
of generating a solution that satisfies the problem. In phase two, you improve this first
solution using local search.

Solving a routing problem can be translated into the simple question: “Who does what?” In
the case of the routing problem, this question can be answered by giving the list of visits
performed by each vehicle. This is a routing plan, which can be represented and accessed in
several ways:

◆ through an instance of the class IloModel, which contains all the objects of the routing
plan, such as visits and vehicles;

◆ through an instance of the class IloDispatcher, to access or modify the values of the
model’s variables during or after a search;

◆ through an instance of the class IloRoutingSolution, to access the routing plan
resulting from a search and stored in a solution.

To allow dynamic problem solving, optimization in Dispatcher is based on first generating a
solution, and then improving it using local search methods. As its name implies, local search
acts by locally modifying a given solution to decrease the cost using neighborhoods. The
central idea of a neighborhood is to define a set of solution changes that represent alternative
moves that can be taken. In the case of vehicle routing, this translates into modifying the
next-variables of some visit variables.

To achieve this in Dispatcher, a double representation of the problem is used. A passive
representation based on instances of IloRoutingSolution, depicting the last valid
solution encountered, is associated with each decision variable in the problem—the next-
vars, prev-vars and performed-vars. The saved values of the passive representation can be
accessed through member functions such as
IloRoutingSolution::getNext(IloVisit),
IloRoutingSolution::getPrev(IloVisit) and
IloRoutingSolution::isPerformed(IloVisit).

travel variable IloNumVar IloVisit::getTravelVar(IloDimension2 d);

vehicle variable IloVehicleVar IloVisit::getVehicleVar() const;

wait variable IloNumVar IloVisit::getWaitVar(IloDimension2 d);

Table 1.2 Objects Associated with a Visit

Object Name Accessor
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 39

An active representation of the problem is used to search for a new, modified solution using
neighborhoods.

Thus, the process for solving a problem using Dispatcher is:

1. Generate, create, or input a first solution.

2. Store the first solution in an instance of IloRoutingSolution.

3. Generate a new, modified, solution using a neighborhood.

4. Set the decision variables affected by the move operator to their new values.

5. Set the remaining decision variables to their saved values.

6. Propagate the constraints.

7. If the propagation fails, the new solution is refused. Otherwise, the solution is accepted
and the decision variables of the new solution are saved.

8. The domains of variables are restored to their initial values on backtracking.

Generating a first solution
In a normal Dispatcher application, you would generate a first solution using one of
Dispatcher’s predefined first solution generation functions. For more information, see
Chapter 3, Solving a Vehicle Routing Problem and Appendix A, Predefined First Solution
Heuristics. You could also load a first solution from a file or write your own first solution
generation method. For more information, see Chapter 17, Developing Your Own First
Solution Heuristics.

To demonstrate the concepts involved in local search, imagine that you have a simple
routing problem with one vehicle, one depot, and three customer visits.

IloEnv env;
IloModel mdl(env);
IloNode depot(env, 0.0, 0.0);
IloNode n1(env, 1.0, 1.0);
IloNode n2(env, 1.0, 0.0);
IloNode n3(env, 0.0, 1.0);
IloVisit visit1(n1, "Visit 1");
IloVisit visit2(n2, "Visit 2");
IloVisit visit3(n3, "Visit 3");
mdl.add(visit1);
mdl.add(visit2);
mdl.add(visit3);
IloVisit first(depot, "Start"), last(depot, "End");
IloVehicle w(first, last);
mdl.add(w);
40 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
You set the cost of the vehicle to be proportional to the distance traveled length.

You input a first solution where the vehicle starts at the depot, makes visit 1, then visit 2,
then visit 3, and finally returns to the depot. The cost of this routing plan would be 4.83
(). The following figure shows this routing plan.
Figure 1.1

Figure 1.1 First Routing Solution Created from Scratch

Improving the solution using local search
You then use local search to modify the next-variables of some variables and search for a
routing plan with a lower cost. To do this, you use Dispatcher’s predefined neighborhoods
and search heuristics to guide how the alternative moves in a neighborhood are taken. For
more information, see Chapter 3, Solving a Vehicle Routing Problem and Appendix B,
Predefined Neighborhoods.

The improved solution has a cost of 4. The following figure shows this routing plan.
Figure 1.2

Figure 1.2 Solution Improved with Local Search

IloDimension2 length(env, IloEuclidean);
w.setCost(length, 1);

2 2 2+

Depot

Visit 1

Visit2

Visit3

Depot

Visit3 Visit 1

Visit2
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 41

Displaying the solution

Each vehicle is associated with a route. For each vehicle, the route it serves is identified by
the first visit and last visit. More formally, a route is a set of visits that are served by one
vehicle.

The route of a given vehicle is accessible through an iterator, an instance of the class
IloDispatcher::RouteIterator for iterating on the route depicted by the state of the
extracted variables or IloRoutingSolution::RouteIterator for iterating on the route
saved in a solution. Both iterators are initialized with a vehicle.
RouteIterator::operator++ moves from one visit in the route to the next visit, while
RouteIterator::operator* returns the current visit pointed to by the iterator. The
following code shows how to use such iterators to display the route associated with a
vehicle.

IloSolver solver(mdl);
IloDispatcher dispatcher(solver);
for(IloDispatcher::RouteIterator ri(dispatcher, vehicle); ri.ok(); ++ri) {
 IloVisit visit = *ri;
 solver.out() << visit.getName() << " ";
}
solver.out() << endl;
42 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

C H A P T E R
2

Modeling a Vehicle Routing Problem

In this lesson, you will learn how to:

◆ model a vehicle routing problem

◆ create dimensions, nodes, visits, and vehicles

◆ use IBM® ILOG® Concert Technology’s csv reader functionality

◆ use the classes IloDimension1, IloDimension2, IloCsvReader, IloNode,
IloVisit, and IloVehicle

You will learn how to model a simple vehicle routing problem (VRP). To find a solution to a
problem using IBM® ILOG® Dispatcher, you will use the three-stage method: describe,
model, and solve. This lesson shows how to describe and model a VRP. The next lesson is a
continuation of this one and shows how to solve a VRP.

Describe

The problem of delivery by multiple vehicles is known as the Vehicle Routing Problem
(VRP). In a VRP, the goal is to build a set of routes, so that each visit is performed exactly
once. The aim is to minimize the global cost of these routes. The side constraints of a VRP,
such as time windows or capacity constraints, make it necessary to create several routes. A
solution to a VRP assigns customers to routes and builds those routes.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 43

The following figure shows a sample solution for a VRP:

Figure 2.1

Figure 2.1 Example of a Solution for a Vehicle Routing Problem

The first step is to write a natural language description of the problem.

The components of the routing model for this VRP include: vehicles, customers, and a
depot.

What are the constraints in this problem?

◆ Capacity constraints on vehicles. Vehicles can carry up to a maximum amount of goods,
which may be measured by weight, volume, number of parcels, and so on.

◆ Time constraints or windows related to customers. The customer’s time window is the
period of time during which a vehicle can make the visit.

◆ Opening and closing times at depots.

The objective is to minimize the cost of the delivery of all the goods.

Model

Once you have written a description of your problem, you can use Dispatcher classes to
model it. Dispatcher is based on IBM® ILOG® Concert Technology and IBM® ILOG®

Step 1 Describe the problem

Customer

Depot
44 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Solver. If you are not familiar with these products, please refer to the Concert Technology
and Solver documentation.

Open the example file YourDispatcherHome/examples/src/tutorial/
vrp_partial.cpp in your development environment. This file is a program that is only
partially completed. You will fill in the blanks in each step in this lesson. At the end of this
lesson, you will have completed the program code for modeling the problem. At the end of
the next lesson, you will have completed the code for solving the problem and you will be
able to compile and run it.

You will use object oriented programming techniques to write this program. In this lesson,
you create the RoutingModel class, which is used to build the model of the vehicle routing
problem. In the next lesson, you will create the RoutingSolver class, which is used to
solve the problem, and you will also create the main function and compile and run the
program.

Declare the RoutingModel class

The code for the declaration of the class RoutingModel is provided for you:

The class RoutingModel has five data members. The environment, an instance of the class
IloEnv, manages internal modeling issues. It handles output, memory management for
modeling objects, and termination of search algorithms. The model, an instance of the class
IloModel, is a container for modeling objects such as variables and constraints. For more
information on environments and models, see the IBM ILOG Solver Reference Manual. The
dimensions in this problem are time, distance, and weight. For more information on
dimensions, see Chapter 1, IBM ILOG Dispatcher Concepts.

Step 2 Open the example file

class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloDimension2 _time;
 IloDimension2 _distance;
 IloDimension1 _weight;

 void addDimensions();
 void createIloNodes(const char* nodeFileName);
 void createVehicles(const char* vehicleFileName);
 void createVisits(const char* visitsFileName);

public:
 RoutingModel(IloEnv env, int argc, char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
};
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 45

The class RoutingModel has four member functions, addDimensions,
CreateIloNodes, CreateVehicles, and CreateVisits, as well as a constructor. These
member functions and constructor are explained in the following sections. You can use the
public member functions getEnv and getModel to return the environment and model.

Define the addDimensions function

The member function addDimensions is used to create the three dimensions—weight,
time, and distance—and add them to the model. You must explicitly add the dimensions to
the model or Solver will not be able to use them in the search for a solution.

The following code is provided for you:

Next, you create the weight dimension.

Add the following code after the comment
//Create the weight dimension and add to model

The dimension _weight is an instance of the subclass IloDimension1. Weight is a
dimension that is intrinsic to an object and depends only on that object. For example, a
vehicle can carry a certain amount of weight or a visit can require a vehicle to drop off or
pick up a certain amount of weight. The constructor for IloDimension1 used in this lesson
takes two parameters: the environment and a name used for debug and trace purposes.

Now, you create the time and distance dimensions.

Add the following code after the comment
//Create the time and distance dimensions and add to model

void RoutingModel::addDimensions() {

Step 3 Create the weight dimension and add to model

 _weight =IloDimension1 (_env, "weight");
 _mdl.add(_weight);

Step 4 Create the time and distance dimensions and add to model

 _time =IloDimension2 (_env, IloEuclidean, "time");
 _mdl.add(_time);

 _distance =IloDimension2 (_env, IloEuclidean, "distance");
 _mdl.add(_distance);
}

46 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
The dimensions _time and _distance are instances of the subclass IloDimension2.
Time and distance are both extrinsic to an object—they depend on something outside the
object itself. For example, the time to travel from one visit to another depends on both those
visits. The constructor for IloDimension2 used in this lesson takes three parameters: the
environment, a distance function, and a name used for debug and trace purposes. The
distance function used is IloEuclidean, a predefined distance function that returns the
Euclidean distance between two locations. You can also use the predefined distance function
IloManhattan, which computes the grid distance between locations. You can obtain
distances from a graph using IloDispatcherGraph functionality (more on this in
Chapter 4, Minimizing the Number of Vehicles) or define your own distance functions.

Define the createIloNodes function

As you remember from Chapter 1, IBM ILOG Dispatcher Concepts, Dispatcher represents
physical locations as nodes. Nodes can be depots, where the vehicles pick up goods to be
delivered, or customer locations, where the goods are delivered. These nodes are then used
to compute distances and times—and therefore cost—between customers and the depot. In
this lesson, a node is defined by coordinates that give its location.

You will use Concert Technology’s csv reader functionality to input the node data from a csv
file. An instance of the class IloCsvReader is used to read a csv file. The constructor takes
two parameters. The first parameter is the environment and the second parameter is the name
of the csv file.

Add the following code after the comment //Create the node csv reader

Now, you use the nested class IloCsvReader::Iterator to create an iterator to step
through all the lines of the csv data file, except blank lines and commented lines. The
IloCsvReader operator * returns the current instance of IloCsvLine, which is the current
line in the csv file. You use the member function IloCsvLine::getStringByHeader to
return a pointer to the string contained in the field name in the csv line. In this lesson, this
name is the name of the customer site or depot.

Step 5 Create the node csv reader

void RoutingModel::createIloNodes(const char* nodeFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 47

Add the following code after the comment //Create the iterator

You then create an instance of IloNode using the data from the csv file. The constructor for
IloNode used in this lesson takes five parameters. The first parameter is the environment.
The second, third, and fourth parameters are the x, y, and z coordinates of the node. In this
lesson, the z coordinate is set to 0. The x and y coordinates are obtained by using the
member function IloCsvLine::getFloatByHeader to return a reference to the floating-
point values contained in the fields x and y in the csv line. The last parameter is a name used
for debug and trace purposes.

Add the following code after the comment //Create the node

Next, you set a unique key on the node in order to be able to access it easily when you create
vehicles and visits.

Add the following code after the comment //Set the key

Then, you move the iterator to the next line in the csv file using the
IloCsvReader::Iterator operator ++.

Add the following code after the comment
//Move to the next line in the csv file

Step 6 Create the iterator

 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * name = line.getStringByHeader("name");

Step 7 Create the node

 IloNode node(_env, line.getFloatByHeader("x"),
 line.getFloatByHeader("y"), 0, name);

Step 8 Set the key

 node.setKey(name);

Step 9 Move to the next line in the csv file

 ++it;
 }
48 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Finally, you should use the member function IloCsvReader::end to deallocate the
memory used by the csv reader. This code is provided for you:

Define the createVehicles function

As you remember from Chapter 1, IBM ILOG Dispatcher Concepts, vehicles have start and
end visits and capacities. In this lesson, you will use Concert Technology’s csv functionality
to input vehicle data from a csv file. You use the classes IloCsvReader,
IloCsvReader::Iterator, and IloCsvLine. This code is provided for you:

Next, you use the static member function IloNode::Find to find the nodes associated with
the first and last visits the vehicle makes. This static member function takes two parameters:
the environment and the key associated to the node.

Add the following code after the comment //Find the first and last nodes

Next, you create the vehicle’s first visit, an instance of the class IloVisit. In a VRP, the
first and last visits of a vehicle usually take place at the depot. The constructor for
IloVisit takes two parameters: an instance of IloNode and a name used for debug and
trace purposes.

Add the following code after the comment //Create the first visit

 csvNodeReader.end();
}

void RoutingModel::createVehicles(const char* vehicleFileName) {
 IloCsvReader csvVehicleReader(_env, vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader("first");
 char * namelast = line.getStringByHeader("last");
 char * name = line.getStringByHeader("name");
 IloNum capacity = line.getFloatByHeader("capacity");

Step 10 Find the first and last nodes

 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);

Step 11 Create the first visit

 IloVisit first(node1, "depot");
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 49

Then, you add constraints on the first visit to the model. The first constraint is that when the
vehicle makes its first visit to the depot, it will not have delivered any weight. You also add
the constraint that the vehicle cannot leave the first visit—the depot—until after the depot’s
opening time.

Add the following code after the comment //Add constraints to the first visit

Next, you create the vehicle’s last visit, which also takes place at the depot. You add the
constraint that the vehicle must arrive at the last visit—the depot—before the depot’s closing
time.

Add the following code after the comment
//Create the last visit and add constraints

Then you create the vehicle, an instance of the class IloVehicle. The constructor for
IloVehicle takes three parameters. The first two parameters are instances of IloVisit
representing the first and last visits of this vehicle—in this lesson, these both take place at
the depot. The last parameter is a name used for debug and trace purposes.

Add the following code after the comment //Create the vehicle

After you create a vehicle, you set a proportional cost associated with operating this vehicle
using the member function IloVehicle::setCost. This member function takes two
parameters. The first parameter is a dimension. In this lesson, the cost is proportional to the
distance the vehicle travels. The second parameter associates a unit of cost per unit of
dimension. In this lesson, the cost is directly proportional to the distance traveled and this
parameter is set to 1.0.

Step 12 Add constraints to the first visit

 _mdl.add(first.getCumulVar(_weight) == 0);
 _mdl.add(first.getCumulVar(_time) >= line.getFloatByHeader("open"));

Step 13 Create the last visit and add constraints

 IloVisit last(node2, "depot");
 _mdl.add(last.getCumulVar(_time) <= line.getFloatByHeader("close"));

Step 14 Create the vehicle

 IloVehicle vehicle(first, last, name);
50 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Add the following code after the comment //Set a cost for vehicle operation

You also set the capacity of the vehicle using the member function
IloVehicle::setCapacity.

Add the following code after the comment //Set the vehicle capacity

When you have finished creating the vehicle, you add it to the model.

Add the following code after the comment //Add the vehicle to the model

Finally, you move to the next line in the csv file. When the end of the file is reached, you
deallocate the memory used by the csv reader. This code is provided for:

Define the createVisits function

As you remember from Chapter 1, IBM ILOG Dispatcher Concepts, visits occur at a single
node and are performed by only one vehicle. A visit must be associated to a node, its
location. A visit also has a quantity—the amount of goods delivered to the location. A visit
can have a minimum time and a maximum time during which it can be performed—a time
window. Additionally, visits have a drop time—the amount time required to perform the
visit.

Step 15 Set a cost for vehicle operation

 vehicle.setCost(_distance, 1.0);

Step 16 Set the vehicle capacity

 vehicle.setCapacity(_weight, capacity);

Step 17 Add the vehicle to the model

 _mdl.add(vehicle);

 ++it;
 }
 csvVehicleReader.end();
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 51

In this lesson, you will use the csv reader functionality to input this visit data from a csv file.
You use the classes IloCsvReader, IloCsvReader::Iterator, and IloCsvLine. This
code is provided for you:

Next, you use the static member function IloNode::Find to find the node associated with
the visit.

Add the following code after the comment //Find the visit node

Next, you create a visit using an instance of IloVisit. The constructor for IloVisit takes
two parameters: an instance of IloNode and a name for debug and trace purposes. The
instance of IloNode represents the location of the visit. You add the constraint that the
amount of delay time at the visit must equal the drop time. You add the constraint that the
amount of weight dropped off at the visit must equal the quantity of goods to be delivered at
the visit. You also add the constraint that the visit must be performed within the visit time
window.

Add the following code after the comment
//Create the visit and add constraints

Then, you add the visit to the model.

void RoutingModel::createVisits(const char* visitsFileName) {
 IloCsvReader csvVisitReader(_env, visitsFileName);
 IloCsvReader::LineIterator it(csvVisitReader);
 while(it.ok()){
 IloCsvLine line = *it;
 //read visit data from files
 char * visitName = line.getStringByHeader("name");
 char * nodeName = line.getStringByHeader("node");
 IloNum quantity = line.getFloatByHeader("quantity");
 IloNum minTime = line.getFloatByHeader("minTime");
 IloNum maxTime = line.getFloatByHeader("maxTime");
 IloNum dropTime = line.getFloatByHeader("dropTime");

Step 18 Find the visit node

 IloNode node = IloNode::Find(_env, nodeName);

Step 19 Create the visit and add constraints

 IloVisit visit(node, visitName);
 _mdl.add(visit.getDelayVar(_time) == dropTime);
 _mdl.add(visit.getTransitVar(_weight) == quantity);
 _mdl.add(minTime <= visit.getCumulVar(_time) <= maxTime);
52 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Add the following code after the comment //Add the visit to the model

Finally, you move to the next line in the csv file. When the end of the file is reached, you
deallocate the memory used by the csv reader. This code is provided for you:

Define the RoutingModel constructor

The constructor allows you to specify the names of the input files using command line
syntax. If you do not specify input files, the defaults will be used. This constructor will be
called from the main function. It calls the following functions: addDimensions,
createIloNodes, createVehicles, and createVisits. The following code is
provided for you:

Step 20 Add the visit to the model

 _mdl.add(visit);

 ++it;
 }
 csvVisitReader.end();
}

 RoutingModel::RoutingModel(IloEnv env,
 int argc,
 char* argv[]):
 _env(env), _mdl(env) {
 addDimensions();

 //create IloNodes
 char * nodeFileName;
 if(argc < 2) nodeFileName =
 (char*) "../../../examples/data/vrp20/vrp20nodes.csv";
 else nodeFileName = argv[1];
 createIloNodes(nodeFileName);

 //create vehicles
 char * vehiclesFileName;
 if(argc < 3) vehiclesFileName =
 (char*) "../../../examples/data/vrp20/vrp20vehicles.csv";
 else vehiclesFileName = argv[2];
 createVehicles(vehiclesFileName);

 //create visits
 char * visitsFileName;
 if(argc < 4) visitsFileName =
 (char*) "../../../examples/data/vrp20/vrp20visits.csv";
 else visitsFileName = argv[3];
 createVisits(visitsFileName);
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 53

Now you have finished creating the RoutingModel class. In the next lesson, you will create
the RoutingSolver class and compile and run the program. The complete VRP program is
listed at the end of Chapter 3, Solving a Vehicle Routing Problem.

Review Exercises

1. To find a solution using Dispatcher, you use the three-stage method: describe, model, and
solve. What do each of these stages involve?

2. What are typical side constraints in a vehicle routing problem?

Suggested Answers

Exercise 1

To find a solution using Dispatcher, you use the three-stage method: describe, model, and
solve. What do each of these stages involve?

Suggested Answer

The first stage is to describe the problem in natural language.

The second stage is to use Dispatcher classes to model the problem.

The third stage is to use local search to solve the routing problem.

Exercise 2

What are typical side constraints in a vehicle routing problem?

Suggested Answer

 A Dispatcher model may include side constraints, such as capacity constraints, time
windows, and precedence constraints.
54 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

C H A P T E R
3

Solving a Vehicle Routing Problem

In this lesson, you will learn how to:

◆ solve a vehicle routing problem

◆ generate a first solution

◆ improve the solution using local search

◆ use the classes IloDispatcher, IloRoutingSolution, IloGoal,
IloDichotomize, IloRestoreSolution, IloSavingsGenerate, IloNHood,
IloTwoOpt, IloOrOpt, IloRelocate, IloCross, IloExchange, IloSingleMove,
and IloImprove

You will learn how to solve a simple vehicle routing problem (VRP). To find a solution to a
problem using IBM® ILOG® Dispatcher, you generate a first solution and then improve
this solution using local search. This lesson is a continuation of Chapter 2, Modeling a
Vehicle Routing Problem.

Solve

In many routing problems, good solutions must be computed very quickly. However, the
computational complexity of routing in general makes it impractical to use complete search
methods to obtain optimal solutions except for very small problems.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 55

Therefore, Dispatcher uses a two-phase approach for solving routing problems. The first
phase consists of generating a solution that satisfies the problem. In phase two, you improve
this first solution using local search.

Open the example file that you worked on in Chapter 2, Modeling a Vehicle Routing
Problem in your development environment. In this lesson, you will continue to fill in the
blanks at each step. At the end of this lesson, you will have completed the program code and
you will be able to compile and run it.

You will use object oriented programming techniques to write this program. In the previous
lesson, you created the RoutingModel class, which is used to model the problem. In this
lesson, you create the RoutingSolver class, which is used to solve the problem. You will
also create the main function and compile and run the program.

Declare the RoutingSolver class

The code for the declaration of the class RoutingSolver is provided for you:

The class RoutingSolver has eight data members. The environment, an instance of the
class IloEnv, manages internal modeling issues. The model, an instance of the class
IloModel, is a container for modeling objects such as variables and constraints. An
instance of the class IloSolver is used to solve the problem expressed in the model. An
instance of the class IloDispatcher organizes all the details of a routing problem,
including routes, vehicles, visits, and costs. An instance of the class IloRoutingSolution
stores the details of a solution to a routing problem. Three goals, instances of IloGoal, are
used in the search for a solution. Goals are the mechanism by which Solver implements
search strategies. For more information on goals, see the IBM ILOG Solver User’s Manual.

Step 1 Open the example file

class RoutingSolver {
 IloEnv _env;
 IloModel _mdl;
 IloSolver _solver;
 IloDispatcher _dispatcher;
 IloRoutingSolution _solution;
 IloGoal _instantiateCost;
 IloGoal _restoreSolution;
 IloGoal _goal;

public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloBool findFirstSolution();
 void improveWithNhood();
 void printInformation(const char* =0) const;
};
56 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
The class RoutingSolver has three member functions, findFirstSolution,
improveWithNhood, and printInformation, as well as a constructor. These member
functions and constructor are explained in the following sections.

Define the RoutingSolver constructor

The constructor takes an instance of RoutingModel as a parameter. The environment,
model, solver, dispatcher, and solution are initialized. This constructor will be called from
the main function. The following code is provided for you:

Next, the three goals used in the search for a solution are created.

Add the following code after the comment //Create the goal to instantiate cost

You use the function IloDichotomize to instantiate the cost variable to its minimum
value—Dispatcher’s constraints only provide a lower bound on the cost. The cost variable is
returned by the member function IloDispatcher::getCostVar. This variable is the sum
of the cost of the vehicles and of the unperformed visits. The function IloDichotomize
creates a goal which attempts to assign a value to the variable. To do so, it recursively
searches half the domain of the variable at a time. Since you are minimizing the cost
variable, you set the last parameter to IloFalse, which tries the lower half of the domain
first.

Next, you create the goal to restore the solution.

Add the following code after the comment
//Create the goal to restore the solution

 RoutingSolver::RoutingSolver(RoutingModel mdl):
 _env(mdl.getEnv()),
 _mdl(mdl.getModel()),
 _solver(mdl.getModel()),
 _dispatcher(_solver),
 _solution(mdl.getModel()){

Step 2 Create the goal to instantiate cost

 _instantiateCost =
 IloDichotomize(_env, _dispatcher.getCostVar(), IloFalse);

Step 3 Create the goal to restore the solution

 _restoreSolution = IloRestoreSolution(_env, _solution);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 57

This goal will be used in the solution improvement phase. Solver will try to iteratively
improve the solution. The last solution found will be the lowest cost solution. You will then
restore this last solution using the goal _restoreSolution.

Now, you create the goal to find a first solution.

Add the following code after the comment
//Create the goal to find a first solution

You use the savings heuristic to create a first solution using the predefined function
IloSavingsGenerate. Figure 3.1 shows how the savings generation heuristic works. For
problems with multiple vehicles, it is very important to consider the trade-off between more
vehicles with shorter routes and fewer vehicles with longer routes. For example, the
following figure shows two ways of making visits a and b.

Figure 3.1

Figure 3.1 The Savings Generation Heuristic

The savings of serving a and b in the same route, denoted savings (a, b), is defined as
savings (a, b) = cost (a, Depot) + cost (Depot, b) – cost (a, b). The savings heuristic
generates a solution based on this equation.

You can use other predefined heuristics to find a first solution including: sweep, nearest-to-
depot, nearest addition, insertion, and enumeration heuristics. For more information on

Step 4 Create the goal to find a first solution

 _goal = IloSavingsGenerate(_env) && _instantiateCost;
 }

a

b

a

b

D

D

58 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
predefined first solution heuristics, see Appendix A, Predefined First Solution Heuristics.
The first solution can also be loaded from a file or you can write your own first solution
heuristic. For more information, see Chapter 17, Developing Your Own First Solution
Heuristics.

After the heuristic finds a first solution, you use the goal _instantiateCost to find the
cost associated with this solution.

Define the findFirstSolution function

Now, you create the function that searches for the first solution.

Add the following code after the comment //Find the first solution

You use the member function IloSolver::solve to search for a solution using _goal.
This goal searches for a first solution using the savings heuristic. It then finds the cost
associated with this first solution.

Next, you use the member function IloRoutingSolution::store to store the solution
and its cost. These will be used in the solution improvement phase.

Add the following code after the comment //Store the first solution

Define the improveWithNHood function

After you have found a first solution, you create the neighborhoods you will use in the
solution improvement phase. The central idea of the neighborhood is to define a set of
solution changes, or deltas, that represent alternative moves that can be taken.
Neighborhoods are classified in two groups: those that modify only one route are known as
intra-route neighborhoods; those that make changes between routes are known as inter-route
neighborhoods. Inter-route neighborhoods can sometimes be used to improve a single route
and thus become—strictly speaking—intra-route neighborhoods themselves.

Step 5 Find the first solution

IloBool RoutingSolver::findFirstSolution() {
 if (!_solver.solve(_goal)) {
 _solver.error() << "Infeasible Routing Plan" << endl;
 return IloFalse;
 }

Step 6 Store the first solution

 _solution.store(_solver);
 return IloTrue;
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 59

Add the following code after the comment //Create the neighborhoods

This neighborhood, an instance of IloNHood, is composed of a combination of Dispatcher’s
predefined neighborhoods. These neighborhoods include: Two-Opt, OrOpt, Relocate, Cross,
and Exchange. Figure 3.2 shows how the Two-Opt neighborhood works. In this example, the
cost is proportional to the length of the route. The move eliminates the crossing by
destroying two arcs and creating two new arcs. The resulting route is shorter, and thus less
costly. For information about how the other predefined neighborhoods work, see
Appendix B, Predefined Neighborhoods.

Figure 3.2

Figure 3.2 The Two-Opt Neighborhood

Now, you use iterative improvement techniques to modify the first solution using the
neighborhoods you just created. Local search uses search heuristics to guide how the

Step 7 Create the neighborhoods

void RoutingSolver::improveWithNhood() {
 IloNHood nhood = IloTwoOpt(_env)
 + IloOrOpt(_env)
 + IloRelocate(_env)
 + IloCross(_env)
 + IloExchange(_env);
 _solver.out() << "Improving solution" << endl;
60 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
alternative moves in a neighborhood are taken. The search is iterative in that it tries a series
of moves in order to decrease the cost of the solution found.

In this lesson, Dispatcher uses the first accept search heuristic. First accept search takes the
first legal cost decreasing move encountered. The search continues to take such moves until
the neighborhood contains no legal cost-reducing moves. This point is usually termed a local
minimum. The word local is used to signify that this point is not guaranteed—and, in fact, is
not usually—a global minimum. This method accepts any legal improving move and so is
not too expensive in terms of computational cost. Thus, it is preferred when the problem is
very large or an optimized solution is required as quickly as possible.

Dispatcher also offers the best accept search heuristic, which works like the first accept
except that best accept search takes the legal move from the neighborhood that decreases
cost by the greatest amount. Dispatcher also offers metaheuristics, such as guided local
search and tabu search, that allow neighborhood moves that degrade the current solution to
escape current local minimums. For more information, see Appendix C, Predefined Search
Heuristics and Metaheuristics.

Add the following code after the comment //Improve the solution

You use the function IloSingleMove to return a goal that makes a single local move as
defined by a neighborhood and a search heuristic. The first legal move reducing costs
results. The goal scans the neighborhood nhood using _solution as the current solution.
The function IloSingleMove will first see if it can make a legal, cost-decreasing move
using the neighborhood IloTwoOpt. If it cannot, it tries IloOrOpt, and so on. The search
heuristic IloImprove is used to filter moves by implementing a greedy search heuristic. It
accepts only new routing plans that strictly decrease the cost and, thus, allows only
improvements in the objective. The subgoal _instantiateCost is executed after the
deltas from the neighborhood are applied to the current solution.

If a successful move can be found, the goal succeeds. The constrained variables are in the
state corresponding to the application of the move. This new state is saved to _solution
before the goal succeeds. If no successful move can be found, the goal fails, and _solution
is left unchanged. You then use the _restoreSolution goal you created in the
RoutingSolver constructor to restore this last solution.

Step 8 Improve the solution

 IloGoal improve = IloSingleMove(_env,
 _solution,
 nhood,
 IloImprove(_env),
 _instantiateCost);
 while (_solver.solve(improve)) {
 }
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 61

Add the following code after the comment //Restore the last solution

Define the printInformation function

The printInformation function displays the routing plans found during the first solution
generation and solution improvement phases and their costs. This function also displays
information about the search, including number of variables, number of constraints, elapsed
time since creation of search, number of fails, and number of choice points. The number of
choice points is linked to the number of explored alternatives in the search tree. The number
of fails is the number of incorrect decisions at choice points.

This code is provided for you:

Define the main function

After you finish creating the RoutingModel and RoutingSolver classes and the
printInformation function, you use them in the main function. You can use command
line syntax to pass the names of input files to the model. If you do not specify input files, the
defaults will be used. In the main function, you first create an environment. Then you create
an instance of the RoutingModel class, which takes the environment and input files as
parameters. You create an instance of the RoutingSolver class. This takes one parameter,
the model. You use an if loop to find a solution. If Solver finds a first solution, you print the
information and then improve the solution. When Solver finds a solution that cannot be

Step 9 Restore the last solution

 _solver.solve(_restoreSolution);
}

void RoutingSolver::printInformation(const char* heading) const {
 if(heading)
 _solver.out()<<heading<<endl;
 _solver.printInformation();
 _dispatcher.printInformation();
 _solver.out() << "===============" << endl
 << "Cost : " << _dispatcher.getTotalCost() << endl
 << "Number of vehicles used : "
 << _dispatcher.getNumberOfVehiclesUsed() << endl
 << "Solution : " << endl
 << _dispatcher << endl;
}

62 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
improved any further by the first accept search heuristic, Solver prints that solution. The
following code is provided for you:

Compile and run the program. You will get results that show the routing plan and
information for both the first solution and the improved solution. The first solution has a cost
of 417.834 units. The improved solution has a cost of 366.447 units. During the
improvement phase, Dispatcher made 11 moves and lowered the cost of the routing plan by
51.387 units. Both routing plans use four vehicles.

int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 if (solver.findFirstSolution()) {
 solver.printInformation("***First Solution***");
 solver.improveWithNhood();
 solver.printInformation("***Improved Solution***");
 }
 } catch(IloException& ex) {
 cerr << "Error: " << ex << endl;
 }
 env.end();
 return 0;
}

Step 10 Compile and run the program
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 63

First Solution Information

The first solution phase finds a solution with a total cost of 417.834 units:

Improved Solution Information

The solution improvement phase finds a solution with a total cost of 366.447 units after
making 11 cost-decreasing moves:

First Solution
Number of fails : 76
Number of choice points : 1051
Number of variables : 869
Number of constraints : 153
Reversible stack (bytes) : 92484
Solver heap (bytes) : 478660
Solver global heap (bytes) : 50860
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 701576
Elapsed time since creation : 0.06
Number of nodes : 21
Number of visits : 30
Number of vehicles : 5
Number of dimensions : 3
Number of accepted moves : 0
===============
Cost : 417.834
Number of vehicles used : 4

Improving solution
Improved Solution
Number of fails : 0
Number of choice points : 0
Number of variables : 869
Number of constraints : 149
Reversible stack (bytes) : 92484
Solver heap (bytes) : 478660
Solver global heap (bytes) : 62920
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 713636
Elapsed time since creation : 0
Number of nodes : 21
Number of visits : 30
Number of vehicles : 5
Number of dimensions : 3
Number of accepted moves : 11
===============
Cost : 366.447
Number of vehicles used : 4
64 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
First Solution Routing Plan

During the first solution phase, Dispatcher found the following routing plan using four
vehicles:

Here is how to interpret this program output:

vehicle1 :

-> depot weight[0] time[0..2.76114] distance[0..Inf) -> visit18

weight[0..87] time[15.8114..18.5725] distance[15.8114..Inf) indicates
that the truck (vehicle1) leaves the depot at 0 time units. At this point, the truck has
traveled 0 distance units and delivered 0 weight units. Next, the truck arrives at customer 18,
not earlier than 15.8114 time units, and not later than 18.5725 time units. At this point, the
truck has traveled at least 15.8114 distance units. The weight delivered at this point is still 0
weight units. Remember that weight is delivered after arrival.

Solution :
Unperformed visits : None
vehicle1 :
 -> depot weight[0] time[0..2.76114] distance[0..Inf) -> visit18 weight[0..87]
time[15.8114..18.5725] distance[15.8114..Inf) -> visit7 weight[12..99]
time[35.8114..38.5725] distance[25.8114..Inf) -> visit19 weight[17..104]
time[56.9917..59.7529] distance[36.9917..Inf) -> visit11 weight[34..121]
time[74.0628..76.8239] distance[44.0628..Inf) -> visit10 weight[46..133]
time[95.2431..98.0043] distance[55.2431..Inf) -> visit20 weight[62..149]
time[121.055..123.816] distance[71.0545..Inf) -> visit3 weight[71..158]
time[153.415..156.176] distance[93.4152..Inf) -> visit12 weight[84..171]
time[174.596..177.357] distance[104.596..Inf) -> visit1 weight[103..190]
time[201.239..204] distance[121.239..Inf) -> depot weight[113..200]
time[226.47..230] distance[136.47..Inf)
vehicle2 :
 -> depot weight[0] time[0..49.4126] distance[0..Inf) -> visit6 weight[0..114]
time[11.1803..60.5929] distance[11.1803..Inf) -> visit5 weight[3..117]
time[31.1803..80.5929] distance[21.1803..Inf) -> visit8 weight[29..143]
time[95..104.521] distance[35.1087..Inf) -> visit17 weight[38..152]
time[118.928..128.45] distance[49.0371..Inf) -> visit16 weight[40..154]
time[140.109..149.63] distance[60.2175..Inf) -> visit14 weight[59..173]
time[161.289..170.81] distance[71.3978..Inf) -> visit2 weight[79..193]
time[192.479..202] distance[92.5874..Inf) -> depot weight[86..200]
time[220.479..230] distance[110.587..Inf)
vehicle3 :
 -> depot weight[0] time[0..40.5862] distance[0..Inf) -> visit15 weight[0..173]
time[61..71] distance[30.4138..Inf) -> visit4 weight[8..181] time[149..159]
distance[59.5686..Inf) -> depot weight[27..200] time[184..230]
distance[84.5686..Inf)
vehicle4 :
 -> depot weight[0] time[0..74.9844] distance[0..Inf) -> visit9 weight[0..161]
time[97..107] distance[32.0156..Inf) -> visit13 weight[16..177] time[159..169]
distance[75.0272..Inf) -> depot weight[39..200] time[180.18..230]
distance[86.2076..Inf)
vehicle5 : Unused
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 65

Improved Solution Routing Plan

During the solution improvement phase, Dispatcher found the following routing plan:

As you can see, the improved solution still uses four vehicles, but with a lower cost. This
solution also better balances the visits between the trucks. In the first solution routing plan,
vehicle 1 makes nine visits, vehicle 2 makes six visits, and vehicles 3 and 4 each make two
visits. In the improved solution routing plan, vehicle 1 makes seven visits, vehicles 2 and 4
each make five visits, and vehicle 3 makes three visits.

The complete program and output are listed in “Complete Program” on page 73. You can
also view it online in the YourDispatcherHome/examples/src/vrp.cpp file.

Review Exercises

1. What are the two phases to finding a solution using Dispatcher?

Solution :
Unperformed visits : None
vehicle1 :
 -> depot weight[0] time[0..25.8217] distance[0..Inf) -> visit10 weight[0..112]
time[25.4951..51.3168] distance[25.4951..Inf) -> visit11 weight[16..128]
time[67..72.4972] distance[36.6754..Inf) -> visit19 weight[28..140]
time[84.0711..89.5683] distance[43.7465..Inf) -> visit7 weight[45..157]
time[105.251..110.749] distance[54.9268..Inf) -> visit18 weight[50..162]
time[125.251..130.749] distance[64.9268..Inf) -> visit6 weight[62..174]
time[146.432..151.929] distance[76.1072..Inf) -> visit13 weight[65..177]
time[163.503..169] distance[83.1783..Inf) -> depot weight[88..200]
time[184.683..230] distance[94.3586..Inf)
vehicle2 :
 -> depot weight[0] time[0..60.4561] distance[0..Inf) -> visit5 weight[0..124]
time[20.6155..81.0716] distance[20.6155..Inf) -> visit8 weight[26..150]
time[95..105] distance[34.5439..Inf) -> visit17 weight[35..159]
time[118.928..144.639] distance[48.4723..Inf) -> visit16 weight[37..161]
time[140.109..165.82] distance[59.6526..Inf) -> visit14 weight[56..180]
time[161.289..187] distance[70.833..Inf) -> depot weight[76..200]
time[203.305..230] distance[102.849..Inf)
vehicle3 :
 -> depot weight[0] time[0..30] distance[0..Inf) -> visit2 weight[0..166]
time[18..48] distance[18..Inf) -> visit15 weight[7..173] time[61..71]
distance[31..Inf) -> visit4 weight[15..181] time[149..159]
distance[60.1548..Inf) -> depot weight[34..200] time[184..230]
distance[85.1548..Inf)
vehicle4 :
 -> depot weight[0] time[0..45.8197] distance[0..Inf) -> visit12 weight[0..133]
time[15..60.8197] distance[15..Inf) -> visit3 weight[19..152] time[36.1803..82]
distance[26.1803..Inf) -> visit9 weight[32..165] time[97..107]
distance[41.1803..Inf) -> visit20 weight[48..181] time[118.18..177.508]
distance[52.3607..Inf) -> visit1 weight[57..190] time[144.673..204]
distance[68.8531..Inf) -> depot weight[67..200] time[169.904..230]
distance[84.0846..Inf)
vehicle5 : Unused
66 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Suggested Answers
2. What is a neighborhood?

3. Rewrite the example to sequentially generate first solutions using the following
predefined first solution heuristics: IloSavingsGenerate, IloSweepGenerate,
IloNearestDepotGenerate, IloNearestAdditionGenerate, and
IloInsertionGenerate. Analyze the output to see how the different first solution
heuristics change the first solution and its cost.

Suggested Answers

Exercise 1

What are the two phases to finding a solution using Dispatcher?

Suggested Answer

Dispatcher uses a two-phase method to solve problems. The first phase consists of
generating a first solution that satisfies the problem. In the second phase, you improve this
first solution using local search.

Exercise 2

What is a neighborhood?

Suggested Answer

The central idea of a neighborhood is to define a set of solution changes, or deltas, that
represent alternative moves that can be taken.

Exercise 3

Rewrite the example to sequentially generate first solutions using the following predefined
first solution heuristics: IloSavingsGenerate, IloSweepGenerate,
IloNearestDepotGenerate, IloNearestAdditionGenerate, and
IloInsertionGenerate. Analyze the output to see how the different first solution
heuristics change the first solution and its cost.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 67

Suggested Answer

To sequentially generate first solutions using different heuristics, create a function
IloRoutingSolver::sequentialGenerate. This function is called in the main
function using solver.sequentialGenerate():

Different first solution heuristics will work differently depending on the particulars of your
problem. In this example, using the sweep heuristic found the lowest cost solution, 270.403
units. The savings heuristic found the next lowest cost solution, 280.947 units, followed by
nearest-addition, insertion, and nearest-to-depot. The solution found using the nearest-to-
depot heuristic had a cost of 369.297 units. From this example, you can see that trying
different first solution heuristics can greatly change the cost of your final solution. For more
information on choosing the right first solution heuristic for you problem, see “Using the
predefined first solution heuristics” on page 407.

You can view this complete program and output online in the YourDispatcherHome/
examples/src/generate.cpp file.

void RoutingSolver::sequentialGenerate() {
 generate(IloSavingsGenerate(_env) && _instantiateCost,
 (char *)"Savings");
 generate(IloSweepGenerate(_env) && _instantiateCost,
 (char *)"Sweep");
 generate(IloNearestDepotGenerate(_env) && _instantiateCost,
 (char *)"Nearest to Depot");
 generate(IloNearestAdditionGenerate(_env) && _instantiateCost,
 (char *)"Nearest addition");
 generate(IloInsertionGenerate(_env, _instantiateCost),
 (char *)"Insertion");
}

68 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Suggested Answers
The following output is generated for the savings heuristic:

Savings
Number of fails : 38
Number of choice points : 1052
Number of variables : 390
Number of constraints : 98
Reversible stack (bytes) : 60324
Solver heap (bytes) : 337960
Solver global heap (bytes) : 42744
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 520600
Elapsed time since creation : 0.047
Number of nodes : 12
Number of visits : 21
Number of vehicles : 5
Number of dimensions : 2
Number of accepted moves : 0
===============
Cost : 280.947
Number of vehicles used : 4
Solution :
Unperformed visits : None
truck1 :
 -> depot weight[0..6] distance[0..Inf) -> visit5 weight[0..6]
distance[14.1421..Inf) -> visit10 weight[21..27] distance[28.3548..Inf) ->
visit9 weight[26..32] distance[40.3964..Inf) -> visit1 weight[37..43]
distance[64.6038..Inf) -> depot weight[44..50] distance[78.4963..Inf)
truck2 :
 -> depot weight[0..4] distance[0..Inf) -> visit3 weight[0..4]
distance[32.5576..Inf) -> visit2 weight[16..20] distance[47.8547..Inf) -> depot
weight[46..50] distance[68.8785..Inf)
truck3 :
 -> depot weight[0..8] distance[0..Inf) -> visit8 weight[0..8]
distance[22.0227..Inf) -> visit7 weight[23..31] distance[36.0584..Inf) -> depot
weight[42..50] distance[62.4781..Inf)
truck4 :
 -> depot weight[0..7] distance[0..Inf) -> visit6 weight[0..7]
distance[11.4018..Inf) -> visit4 weight[15..22] distance[32.4256..Inf) ->
visit11 weight[24..31] distance[59.0526..Inf) -> depot weight[43..50]
distance[71.0942..Inf)
truck5 : Unused
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 69

The following output is generated for the sweep heuristic:

Sweep
Number of fails : 14
Number of choice points : 1056
Number of variables : 390
Number of constraints : 93
Reversible stack (bytes) : 60324
Solver heap (bytes) : 337960
Solver global heap (bytes) : 42744
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 520600
Elapsed time since creation : 0
Number of nodes : 12
Number of visits : 21
Number of vehicles : 5
Number of dimensions : 2
Number of accepted moves : 0
===============
Cost : 270.403
Number of vehicles used : 4
Solution :
Unperformed visits : None
truck1 :
 -> depot weight[0..4] distance[0..Inf) -> visit4 weight[0..4]
distance[17.2047..Inf) -> visit5 weight[9..13] distance[37.6007..Inf) ->
visit10 weight[30..34] distance[51.8134..Inf) -> visit9 weight[35..39]
distance[63.855..Inf) -> depot weight[46..50] distance[86.9418..Inf)
truck2 :
 -> depot weight[0..1] distance[0..Inf) -> visit11 weight[0..1]
distance[12.0416..Inf) -> visit2 weight[19..20] distance[22.6717..Inf) -> depot
weight[49..50] distance[43.6955..Inf)
truck3 :
 -> depot weight[0..4] distance[0..Inf) -> visit3 weight[0..4]
distance[32.5576..Inf) -> visit1 weight[16..20] distance[51.767..Inf) -> visit8
weight[23..27] distance[63.4289..Inf) -> depot weight[46..50]
distance[85.4516..Inf)
truck4 :
 -> depot weight[0..16] distance[0..Inf) -> visit7 weight[0..16]
distance[26.4197..Inf) -> visit6 weight[19..35] distance[42.9121..Inf) -> depot
weight[34..50] distance[54.3139..Inf)
truck5 : Unused
70 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Suggested Answers
The following output is generated for the nearest-to-depot heuristic:

Nearest to Depot
Number of fails : 13
Number of choice points : 1055
Number of variables : 390
Number of constraints : 93
Reversible stack (bytes) : 60324
Solver heap (bytes) : 337960
Solver global heap (bytes) : 42744
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 520600
Elapsed time since creation : 0
Number of nodes : 12
Number of visits : 21
Number of vehicles : 5
Number of dimensions : 2
Number of accepted moves : 0
===============
Cost : 369.297
Number of vehicles used : 4
Solution :
Unperformed visits : None
truck1 :
 -> depot weight[0] distance[0..Inf) -> visit6 weight[0] distance[11.4018..Inf)
-> visit11 weight[15] distance[33.2421..Inf) -> visit1 weight[34]
distance[45.3251..Inf) -> visit4 weight[41] distance[76.3896..Inf) -> depot
weight[50] distance[93.5942..Inf)
truck2 :
 -> depot weight[0..1] distance[0..Inf) -> visit5 weight[0..1]
distance[14.1421..Inf) -> visit8 weight[21..22] distance[47.3837..Inf) ->
visit10 weight[44..45] distance[93.0017..Inf) -> depot weight[49..50]
distance[121.321..Inf)
truck3 :
 -> depot weight[0..9] distance[0..Inf) -> visit2 weight[0..9]
distance[21.0238..Inf) -> visit9 weight[30..39] distance[37.3026..Inf) -> depot
weight[41..50] distance[60.3894..Inf)
truck4 :
 -> depot weight[0..15] distance[0..Inf) -> visit7 weight[0..15]
distance[26.4197..Inf) -> visit3 weight[19..34] distance[61.434..Inf) -> depot
weight[35..50] distance[93.9916..Inf)
truck5 : Unused
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 71

The following output is generated for the nearest-addition heuristic:

Nearest addition
Number of fails : 21
Number of choice points : 1052
Number of variables : 390
Number of constraints : 98
Reversible stack (bytes) : 60324
Solver heap (bytes) : 341980
Solver global heap (bytes) : 42744
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 524620
Elapsed time since creation : 0.015
Number of nodes : 12
Number of visits : 21
Number of vehicles : 5
Number of dimensions : 2
Number of accepted moves : 0
===============
Cost : 285.232
Number of vehicles used : 4
Solution :
Unperformed visits : None
truck1 :
 -> depot weight[0] distance[0..Inf) -> visit6 weight[0] distance[11.4018..Inf)
-> visit7 weight[15] distance[27.8942..Inf) -> visit1 weight[34]
distance[50.7196..Inf) -> visit4 weight[41] distance[81.7841..Inf) -> depot
weight[50] distance[98.9887..Inf)
truck2 :
 -> depot weight[0..1] distance[0..Inf) -> visit11 weight[0..1]
distance[12.0416..Inf) -> visit2 weight[19..20] distance[22.6717..Inf) -> depot
weight[49..50] distance[43.6955..Inf)
truck3 :
 -> depot weight[0..13] distance[0..Inf) -> visit5 weight[0..13]
distance[14.1421..Inf) -> visit9 weight[21..34] distance[26.5115..Inf) ->
visit10 weight[32..45] distance[38.553..Inf) -> depot weight[37..50]
distance[66.8727..Inf)
truck4 :
 -> depot weight[0..11] distance[0..Inf) -> visit8 weight[0..11]
distance[22.0227..Inf) -> visit3 weight[23..34] distance[43.1177..Inf) -> depot
weight[39..50] distance[75.6754..Inf)
truck5 : Unused
72 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
The following output is generated for the insertion heuristic:

Complete Program

The complete VRP program follows. You can also view it online in the
YourDispatcherHome/examples/src/vrp.cpp file.

// -- -*- C++ -*-

Insertion
Number of fails : 11
Number of choice points : 13680
Number of variables : 390
Number of constraints : 93
Reversible stack (bytes) : 60324
Solver heap (bytes) : 341980
Solver global heap (bytes) : 473476
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 955352
Elapsed time since creation : 0.078
Number of nodes : 12
Number of visits : 21
Number of vehicles : 5
Number of dimensions : 2
Number of accepted moves : 0
===============
Cost : 320.843
Number of vehicles used : 4
Solution :
Unperformed visits : None
truck1 :
 -> depot weight[0..4] distance[0..Inf) -> visit4 weight[0..4]
distance[17.2047..Inf) -> visit2 weight[9..13] distance[54.2182..Inf) -> visit1
weight[39..43] distance[66.5875..Inf) -> depot weight[46..50]
distance[80.4799..Inf)
truck2 :
 -> depot weight[0..2] distance[0..Inf) -> visit5 weight[0..2]
distance[14.1421..Inf) -> visit9 weight[21..23] distance[26.5115..Inf) ->
visit3 weight[32..34] distance[57.5115..Inf) -> depot weight[48..50]
distance[90.0691..Inf)
truck3 :
 -> depot weight[0..16] distance[0..Inf) -> visit7 weight[0..16]
distance[26.4197..Inf) -> visit6 weight[19..35] distance[42.9121..Inf) -> depot
weight[34..50] distance[54.3139..Inf)
truck4 :
 -> depot weight[0..3] distance[0..Inf) -> visit10 weight[0..3]
distance[28.3196..Inf) -> visit11 weight[5..8] distance[50.2513..Inf) -> visit8
weight[24..27] distance[73.9579..Inf) -> depot weight[47..50]
distance[95.9806..Inf)
truck5 : Unused
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 73

// File: examples/src/vrp.cpp
// --

#include <ildispat/ilodispatcher.h>

ILOSTLBEGIN
///
// Modeling

class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloDimension2 _time;
 IloDimension2 _distance;
 IloDimension1 _weight;

 void addDimensions();
 void createIloNodes(const char* nodeFileName);
 void createVehicles(const char* vehicleFileName);
 void createVisits(const char* visitsFileName);

public:
 RoutingModel(IloEnv env, int argc, char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
};

RoutingModel::RoutingModel(IloEnv env,
 int argc,
 char* argv[]):
 _env(env), _mdl(env) {
 addDimensions();

 //create IloNodes
 char * nodeFileName;
 if(argc < 2) nodeFileName =
 (char*) “../../../examples/data/vrp20/vrp20nodes.csv”;
 else nodeFileName = argv[1];
 createIloNodes(nodeFileName);

 //create vehicles
 char * vehiclesFileName;
 if(argc < 3) vehiclesFileName =
 (char*) “../../../examples/data/vrp20/vrp20vehicles.csv”;
 else vehiclesFileName = argv[2];
 createVehicles(vehiclesFileName);

 //create visits
 char * visitsFileName;
 if(argc < 4) visitsFileName =
 (char*) “../../../examples/data/vrp20/vrp20visits.csv”;
 else visitsFileName = argv[3];
 createVisits(visitsFileName);
}

// create distance functions for dimensions, add dimensions to model
74 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
void RoutingModel::addDimensions() {

 _weight =IloDimension1 (_env, “weight”);
 _mdl.add(_weight);

 _time =IloDimension2 (_env, IloEuclidean, “time”);
 _mdl.add(_time);

 _distance =IloDimension2 (_env, IloEuclidean, “distance”);
 _mdl.add(_distance);
}

//create IloNodes
void RoutingModel::createIloNodes(const char* nodeFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);

 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * name = line.getStringByHeader(“name”);

 IloNode node(_env, line.getFloatByHeader(“x”),
 line.getFloatByHeader(“y”), 0, name);

 node.setKey(name);

 ++it;
 }

 csvNodeReader.end();
}

//create vehicles
void RoutingModel::createVehicles(const char* vehicleFileName) {
 IloCsvReader csvVehicleReader(_env, vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader(“first”);
 char * namelast = line.getStringByHeader(“last”);
 char * name = line.getStringByHeader(“name”);
 IloNum capacity = line.getFloatByHeader(“capacity”);

 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);

 IloVisit first(node1, “depot”);

 _mdl.add(first.getCumulVar(_weight) == 0);
 _mdl.add(first.getCumulVar(_time) >= line.getFloatByHeader(“open”));

 IloVisit last(node2, “depot”);
 _mdl.add(last.getCumulVar(_time) <= line.getFloatByHeader(“close”));

 IloVehicle vehicle(first, last, name);

 vehicle.setCost(_distance, 1.0);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 75

 vehicle.setCapacity(_weight, capacity);

 _mdl.add(vehicle);

 ++it;
 }
 csvVehicleReader.end();
}

//create visits
void RoutingModel::createVisits(const char* visitsFileName) {
 IloCsvReader csvVisitReader(_env, visitsFileName);
 IloCsvReader::LineIterator it(csvVisitReader);
 while(it.ok()){
 IloCsvLine line = *it;
 //read visit data from files
 char * visitName = line.getStringByHeader(“name”);
 char * nodeName = line.getStringByHeader(“node”);
 IloNum quantity = line.getFloatByHeader(“quantity”);
 IloNum minTime = line.getFloatByHeader(“minTime”);
 IloNum maxTime = line.getFloatByHeader(“maxTime”);
 IloNum dropTime = line.getFloatByHeader(“dropTime”);

 IloNode node = IloNode::Find(_env, nodeName);

 IloVisit visit(node, visitName);
 _mdl.add(visit.getDelayVar(_time) == dropTime);
 _mdl.add(visit.getTransitVar(_weight) == quantity);
 _mdl.add(minTime <= visit.getCumulVar(_time) <= maxTime);

 _mdl.add(visit);

 ++it;
 }
 csvVisitReader.end();
}

///
// Solving
class RoutingSolver {
 IloEnv _env;
 IloModel _mdl;
 IloSolver _solver;
 IloDispatcher _dispatcher;
 IloRoutingSolution _solution;
 IloGoal _instantiateCost;
 IloGoal _restoreSolution;
 IloGoal _goal;

public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloBool findFirstSolution();
 void improveWithNhood();
 void printInformation(const char* =0) const;
};

RoutingSolver::RoutingSolver(RoutingModel mdl):
76 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 _env(mdl.getEnv()),
 _mdl(mdl.getModel()),
 _solver(mdl.getModel()),
 _dispatcher(_solver),
 _solution(mdl.getModel()){

 _instantiateCost =
 IloDichotomize(_env, _dispatcher.getCostVar(), IloFalse);

 _restoreSolution = IloRestoreSolution(_env, _solution);

 _goal = IloSavingsGenerate(_env) && _instantiateCost;
 }

// Solving : find first solution
IloBool RoutingSolver::findFirstSolution() {
 if (!_solver.solve(_goal)) {
 _solver.error() << “Infeasible Routing Plan” << endl;
 return IloFalse;
 }

 _solution.store(_solver);
 return IloTrue;
}

//Improve solution using nhood
void RoutingSolver::improveWithNhood() {
 IloNHood nhood = IloTwoOpt(_env)
 + IloOrOpt(_env)
 + IloRelocate(_env)
 + IloCross(_env)
 + IloExchange(_env);
 _solver.out() << “Improving solution” << endl;

 IloGoal improve = IloSingleMove(_env,
 _solution,
 nhood,
 IloImprove(_env),
 _instantiateCost);
 while (_solver.solve(improve)) {
 }

 _solver.solve(_restoreSolution);
}

// Display Dispatcher information
void RoutingSolver::printInformation(const char* heading) const {
 if(heading)
 _solver.out()<<heading<<endl;
 _solver.printInformation();
 _dispatcher.printInformation();
 _solver.out() << “===============” << endl
 << “Cost : “ << _dispatcher.getTotalCost() << endl
 << “Number of vehicles used : “
 << _dispatcher.getNumberOfVehiclesUsed() << endl
 << “Solution : “ << endl
 << _dispatcher << endl;
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 77

///
int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 if (solver.findFirstSolution()) {
 solver.printInformation(“***First Solution***”);
 solver.improveWithNhood();
 solver.printInformation(“***Improved Solution***”);
 }
 } catch(IloException& ex) {
 cerr << “Error: “ << ex << endl;
 }
 env.end();
 return 0;
}

Complete Output

/**
First Solution
Number of fails : 76
Number of choice points : 1051
Number of variables : 869
Number of constraints : 153
Reversible stack (bytes) : 92484
Solver heap (bytes) : 478660
Solver global heap (bytes) : 50860
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 701576
Elapsed time since creation : 0.06
Number of nodes : 21
Number of visits : 30
Number of vehicles : 5
Number of dimensions : 3
Number of accepted moves : 0
===============
Cost : 417.834
Number of vehicles used : 4
Solution :
Unperformed visits : None
vehicle1 :
 -> depot weight[0] time[0..2.76114] distance[0..Inf) -> visit18 weight[0..87]
time[15.8114..18.5725] distance[15.8114..Inf) -> visit7 weight[12..99]
time[35.8114..38.5725] distance[25.8114..Inf) -> visit19 weight[17..104]
time[56.9917..59.7529] distance[36.9917..Inf) -> visit11 weight[34..121]
time[74.0628..76.8239] distance[44.0628..Inf) -> visit10 weight[46..133]
time[95.2431..98.0043] distance[55.2431..Inf) -> visit20 weight[62..149]
time[121.055..123.816] distance[71.0545..Inf) -> visit3 weight[71..158]
time[153.415..156.176] distance[93.4152..Inf) -> visit12 weight[84..171]
78 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
time[174.596..177.357] distance[104.596..Inf) -> visit1 weight[103..190]
time[201.239..204] distance[121.239..Inf) -> depot weight[113..200]
time[226.47..230] distance[136.47..Inf)
vehicle2 :
 -> depot weight[0] time[0..49.4126] distance[0..Inf) -> visit6 weight[0..114]
time[11.1803..60.5929] distance[11.1803..Inf) -> visit5 weight[3..117]
time[31.1803..80.5929] distance[21.1803..Inf) -> visit8 weight[29..143]
time[95..104.521] distance[35.1087..Inf) -> visit17 weight[38..152]
time[118.928..128.45] distance[49.0371..Inf) -> visit16 weight[40..154]
time[140.109..149.63] distance[60.2175..Inf) -> visit14 weight[59..173]
time[161.289..170.81] distance[71.3978..Inf) -> visit2 weight[79..193]
time[192.479..202] distance[92.5874..Inf) -> depot weight[86..200]
time[220.479..230] distance[110.587..Inf)
vehicle3 :
 -> depot weight[0] time[0..40.5862] distance[0..Inf) -> visit15 weight[0..173]
time[61..71] distance[30.4138..Inf) -> visit4 weight[8..181] time[149..159]
distance[59.5686..Inf) -> depot weight[27..200] time[184..230]
distance[84.5686..Inf)
vehicle4 :
 -> depot weight[0] time[0..74.9844] distance[0..Inf) -> visit9 weight[0..161]
time[97..107] distance[32.0156..Inf) -> visit13 weight[16..177] time[159..169]
distance[75.0272..Inf) -> depot weight[39..200] time[180.18..230]
distance[86.2076..Inf)
vehicle5 : Unused
Improving solution
Improved Solution
Number of fails : 0
Number of choice points : 0
Number of variables : 869
Number of constraints : 149
Reversible stack (bytes) : 92484
Solver heap (bytes) : 478660
Solver global heap (bytes) : 62920
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 713636
Elapsed time since creation : 0
Number of nodes : 21
Number of visits : 30
Number of vehicles : 5
Number of dimensions : 3
Number of accepted moves : 11
===============
Cost : 366.447
Number of vehicles used : 4
Solution :
Unperformed visits : None
vehicle1 :
 -> depot weight[0] time[0..25.8217] distance[0..Inf) -> visit10 weight[0..112]
time[25.4951..51.3168] distance[25.4951..Inf) -> visit11 weight[16..128]
time[67..72.4972] distance[36.6754..Inf) -> visit19 weight[28..140]
time[84.0711..89.5683] distance[43.7465..Inf) -> visit7 weight[45..157]
time[105.251..110.749] distance[54.9268..Inf) -> visit18 weight[50..162]
time[125.251..130.749] distance[64.9268..Inf) -> visit6 weight[62..174]
time[146.432..151.929] distance[76.1072..Inf) -> visit13 weight[65..177]
time[163.503..169] distance[83.1783..Inf) -> depot weight[88..200]
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 79

time[184.683..230] distance[94.3586..Inf)
vehicle2 :
 -> depot weight[0] time[0..60.4561] distance[0..Inf) -> visit5 weight[0..124]
time[20.6155..81.0716] distance[20.6155..Inf) -> visit8 weight[26..150]
time[95..105] distance[34.5439..Inf) -> visit17 weight[35..159]
time[118.928..144.639] distance[48.4723..Inf) -> visit16 weight[37..161]
time[140.109..165.82] distance[59.6526..Inf) -> visit14 weight[56..180]
time[161.289..187] distance[70.833..Inf) -> depot weight[76..200]
time[203.305..230] distance[102.849..Inf)
vehicle3 :
 -> depot weight[0] time[0..30] distance[0..Inf) -> visit2 weight[0..166]
time[18..48] distance[18..Inf) -> visit15 weight[7..173] time[61..71]
distance[31..Inf) -> visit4 weight[15..181] time[149..159]
distance[60.1548..Inf) -> depot weight[34..200] time[184..230]
distance[85.1548..Inf)
vehicle4 :
 -> depot weight[0] time[0..45.8197] distance[0..Inf) -> visit12 weight[0..133]
time[15..60.8197] distance[15..Inf) -> visit3 weight[19..152] time[36.1803..82]
distance[26.1803..Inf) -> visit9 weight[32..165] time[97..107]
distance[41.1803..Inf) -> visit20 weight[48..181] time[118.18..177.508]
distance[52.3607..Inf) -> visit1 weight[57..190] time[144.673..204]
distance[68.8531..Inf) -> depot weight[67..200] time[169.904..230]
distance[84.0846..Inf)
vehicle5 : Unused
Press any key to continue
*/
80 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

C H A P T E R
4

Minimizing the Number of Vehicles

In this lesson, you will learn how to:

◆ minimize the number of vehicles in a routing problem

◆ create a road network graph and compute shortest paths

◆ use the classes and functions IloDispatcherGraph, IloGraphDistance,
IloMakePerformed, IloMakeUnperformed, IloSwapPerform,
IloRoutingSolution::RouteIterator,
IloRoutingSolution::getRouteSize, and IloVisit::setPenaltyCost

You will learn how to solve a vehicle routing problem (VRP) where the main objective is to
reduce the number of vehicles. Dispatcher’s graph functionality is also introduced in this
lesson. You will learn how to create a graph representing a road network and to compute the
shortest paths between visits from this graph. The graph functionality can be used to
compute distance and time dimensions in any routing problem. Conversely, you could also
use Euclidean, Manhattan, or another type of distance computation for the problem in this
lesson.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 81

Describe

This problem is the same as the problem presented in Chapter 2, Modeling a Vehicle Routing
Problem except that the objective is to reduce the number of vehicles before minimizing
distance or time.

The first step is to write a natural language description of the problem.

The components of the routing model for this problem are the same as for a standard VRP:
vehicles, customers, and a depot.

The constraints in this problem are the same as those in a standard VRP: time windows,
vehicle capacity, and visit quantities.

The objective is to minimize the number of vehicles used as well as minimizing the total
length of the solution.

Model

Once you have written a description of your problem, you can use Dispatcher classes to
model it.

Open the example file YourDispatcherHome/examples/src/tutorial/
minvehcl_partial.cpp in your development environment. This file is a program that is
only partially completed. You will fill in the blanks in each step in this lesson. At the end of
this lesson, you will have completed the code for the problem and you will be able to
compile and run it.

As in Chapter 2, Modeling a Vehicle Routing Problem, you create a RoutingModel class,
which is used to model the problem.

Step 1 Describe the problem

Step 2 Open the example file
82 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Declare the RoutingModel class

The code for the declaration of the class RoutingModel is provided for you:

There are only a few differences between the RoutingModel class used in a standard VRP
and the RoutingModel class used in this problem.

The dimensions in this problem are time and weight. Unlike in Chapter 2, Modeling a
Vehicle Routing Problem, distance is not a dimension. In this example, only the dimensions
representing time and weight are required to set side constraints and to compute the cost.
However, you could add a distance dimension if you wanted to include this dimension in the
model.

The graph, an instance of the class IloDispatcherGraph, allows you create a graph
representing a road network topology on which instances of IloNode can be positioned.
This graph is composed of graph nodes—which are different from IloNodes—and arcs
connecting these graph nodes. The cost in time and distance for traversing an arc is loaded
from a file, as well as any penalties associated with making turns. See “Define the
RoutingModel constructor” on page 84.

IloDispatcherGraph computes the shortest paths between nodes for each vehicle. It is
this shortest path that is used to create the dimension _time in this problem. See “Define the
addDimensions function” on page 87.

You must associate the graph nodes with instances of IloNode that represent depot and visit
locations. See “Define the createIloNodes function” on page 87.

The class RoutingModel introduces two member functions related to
IloDispatcherGraph functionality: loadGraphInformation and

class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloDispatcherGraph _graph;
 IloDimension2 _time;
 IloDimension1 _weight;

 void addDimensions();
 void loadGraphInformation (char* arcFileName, char* turnFileName);
 void lastMinuteGraphChanges ();
 void createIloNodes(char* nodeFileName, char* coordFileName);
 void createVehicles(char* vehicleFileName);
 void createVisits(char* visitsFileName);

public:
 RoutingModel(IloEnv env, int argc, char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
};
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 83

lastMinuteGraphChanges. See “Define the loadGraphInformation function” on page 85
and “Define the lastMinuteGraphChanges function” on page 86.

Define the RoutingModel constructor

The constructor is defined as in Chapter 2, Modeling a Vehicle Routing Problem, except that
it also allows you to specify the names of the input files relating to the road network graph. If
you do not specify input files, the defaults will be used. In addition to files with node,
vehicle, and visit data, as in Chapter 2, Modeling a Vehicle Routing Problem, this
constructor loads information from an arc file, a turn file, and a node coordinates file. The
arc file contains the arc name, the “from” graph node, the “to” graph node, the time to
traverse the arc, and the distance between the two graph nodes that define the arc. The turn
file contains two arcs and the time penalty associated with the turn between the two arcs. For
example, a left turn may take longer than a right turn at certain intersections. By default, all
turns are permitted with no penalty. The node coordinates file contains the name of a graph
node and its x and y coordinates. It is used to associate a graph node and an IloNode
representing a visit location.

This constructor will be called from the main function. It calls the following functions:
addDimensions, loadGraphInformation, createIloNodes, createVehicles, and
createVisits.
84 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
The following code is provided for you:

Define the loadGraphInformation function

First, you build the road network graph using the function loadGraphInformation. This
function takes the arc file and turn file as parameters. The member function
IloDispatcherGraph::createArcsFromFile loads the network topology from a csv
file and creates all necessary arcs and nodes. The member function
IloDispatcheGraph::loadArcDimensionDataFromFile loads the arc cost
information relating to the dimension _time from the arc file. The member function

RoutingModel::RoutingModel(IloEnv env,
 int argc,
 char* argv[]):
 _env(env), _mdl(env), _graph(env) {
 addDimensions();

 // Load dispatcher graph information from file, and
 // add instance-specific features.
 char * arcFileName;
 if(argc < 2) arcFileName =
 (char*) "../../../examples/data/dispatcherGraphData/gridNetwork.csv";
 else arcFileName = argv[1];
 char * turnFileName;
 if(argc < 3) turnFileName =
 (char*) "../../../examples/data/dispatcherGraphData/turnData.csv";
 else turnFileName = argv[2];
 loadGraphInformation (arcFileName, turnFileName);

 // Create IloNodes and associate them to graph nodes
 char * nodeFileName;
 if(argc < 4) nodeFileName =
 (char*) "../../../examples/data/vrp200/vrp200nodes.csv";
 else nodeFileName = argv[3];
 char * nodeCoordsFile;
 if(argc < 5) nodeCoordsFile =
 (char*) "../../../examples/data/dispatcherGraphData/coordTable.csv";
 else nodeCoordsFile = argv[4];
 createIloNodes(nodeFileName, nodeCoordsFile);

 // Create vehicles
 char * vehiclesFileName;
 if(argc < 6) vehiclesFileName =
 (char*) "../../../examples/data/vrp200/vrp200vehicles.csv";
 else vehiclesFileName = argv[5];
 createVehicles(vehiclesFileName);

 // Create visits
 char * visitsFileName;
 if(argc < 7) visitsFileName =
 (char*) "../../../examples/data/vrp200/vrp200visits.csv";
 else visitsFileName = argv[6];
 createVisits(visitsFileName);
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 85

IloDispatcherGraph::loadTurnDimensionDataFromFile loads turn penalty
information from the turn file. By default, all turns are allowed with no penalty. The
loadGraphInformation function calls the lastMinuteGraphChanges function to
allow for direct manipulation of the road network graph.

Add the following code after the comment //Load the graph information

Define the lastMinuteGraphChanges function

A road network graph may need to be modified directly at the last minute due to traffic,
accidents, or construction work. IloDispatcherGraph includes functionality to allow you
to modify the network topology and costs by direct manipulation. The member function
IloDispatcherGraph::forbidArcUse sets the cost of the arc to infinity. The member
function IloDispatcherGraph::setTurnPenalty sets the penalty cost of turning from
one arc to another along the dimension. In this example, the penalty for turning from arc
1323 to arc 1544 is 12 time units.

Add the following code after the comment
//Make last minute graph modifications

Step 3 Load the graph information

void RoutingModel::loadGraphInformation (char* arcFileName,
 char* turnFileName) {
 _graph.createArcsFromFile (arcFileName);
 _graph.loadArcDimensionDataFromFile (arcFileName, _time);
 _graph.loadTurnDimensionDataFromFile(turnFileName, _time);
 lastMinuteGraphChanges();
}

Step 4 Make last minute graph modifications

void RoutingModel::lastMinuteGraphChanges () {
 _graph.forbidArcUse(_graph.getArcByEnds(2785-1, 2785));
 _graph.forbidArcUse(_graph.getArcByEnds(2785+1, 2785));
 _graph.forbidArcUse(_graph.getArcByEnds(2785-56, 2785));
 _graph.setTurnPenalty(_graph.getArc(1323), _graph.getArc(1544), _time, 12);
}

86 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Define the addDimensions function

The member function addDimensions is used to create the two dimensions, _weight and
_time, and add them to the model. The weight dimension is created in the same way as in
Chapter 2, Modeling a Vehicle Routing Problem. This code is provided for you:

The time is computed from the road network graph. The dimension _time is an instance of
the subclass IloDimension2. The constructor for IloDimension2 takes three parameters:
the environment, a distance function, and a name used for debug and trace purposes. In this
lesson, the distance function is SP_time. This is the shortest path in time computed from the
road network graph. To create SP_time, you use the function IloGraphDistance, which
returns an instance of IloDistance for which the distance—or time—between two nodes
for a specified vehicle is the value of the shortest path between the two nodes using the
specified vehicle.

Add the following code after the comment
//Create the time dimension and add to model

In this example, you could also use the predefined distance functions IloEuclidean or
IloManhattan or define your own distance function.

Define the createIloNodes function

You create the nodes in the same way you did in Chapter 2, Modeling a Vehicle Routing
Problem, except that you must associate the graph nodes to the instances of IloNode. You
use the csv reader functionality to input node data and node coordinate data from csv files.
You use the member function IloDispatcherGraph::associatebyCoordsInFile to
look up the coordinates of a given IloNode in a csv file and automatically associate it to the
graph node with matching coordinates.

void RoutingModel::addDimensions() {
 _weight =IloDimension1 (_env, "weight");
 _mdl.add(_weight);

Step 5 Create the time dimension and add to model

 IloDistance SP_time = IloGraphDistance (_graph);
 _time =IloDimension2 (_env, SP_time, "time");
 _mdl.add(_time);
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 87

Add the following code after the comment
//Associate the graph nodes to the IloNode

Here is the complete code for defining the createIloNodes function:

Define the createVehicles function

You create vehicles in the same way you did in Chapter 2, Modeling a Vehicle Routing
Problem. You use csv reader functionality to input vehicle data from a csv file. The vehicles
have start and end visits. You add side constraints that the vehicles must leave the depot after
it opens and return to the depot before it closes. You set the capacities of the vehicles using
IloVehicle::setCapacity and the dimension _weight. Using

Step 6 Associate the graph nodes to the IloNodes

 _graph.associateByCoordsInFile (node, coordFileName);

void RoutingModel::createIloNodes(char* nodeFileName, char* coordFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * name = line.getStringByHeader("name");
 IloNode node(_env, line.getFloatByHeader("x"),
 line.getFloatByHeader("y"), 0, name);
 node.setKey(name);

 _graph.associateByCoordsInFile (node, coordFileName);

 ++it;
 }
 csvNodeReader.end();
}

88 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
IloVehicle::setCost, the cost of each vehicle is set to be directly proportional to the
dimension _time. This code is provided for you:

Define the createVisits function

You create visits in the same way you did in Chapter 2, Modeling a Vehicle Routing
Problem, except that you set a penalty cost for not performing a visit. You use csv reader
functionality to input visit data from a csv file. A visit must be associated to a node, its
location. A visit also has a quantity—the amount of goods delivered to the location. A visit
can have a minimum time and a maximum time during which it can be performed—a time
window. Additionally, visits have a drop time—the amount time required to perform the
visit. These side constraints are modeled using the dimensions _time and _weight and the
delay, transit, and cumulative variables associated with the visit.

You use the member function IloVisit::setPenaltyCost to set the cost of not
performing a visit to 1000 cost units. This allows the visit to not be performed. During the
solution improvement phase of problem solving, you will want to be able to allow some
visits to be temporarily unperformed. The penalty cost allows you to do this. See the section
“Solve” on page 90 for more information.

void RoutingModel::createVehicles(char* vehicleFileName) {
 IloCsvReader csvVehicleReader(_env, vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader("first");
 char * namelast = line.getStringByHeader("last");
 char * name = line.getStringByHeader("name");
 IloNum capacity = line.getFloatByHeader("capacity");
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);
 IloVisit first(node1, "depot");
 _mdl.add(first.getCumulVar(_weight) == 0);
 _mdl.add(first.getCumulVar(_time) >= line.getFloatByHeader("open"));
 IloVisit last(node2, "depot");
 _mdl.add(last.getCumulVar(_time) <= line.getFloatByHeader("close"));
 IloVehicle vehicle(first, last, name);
 vehicle.setCost(_time, 1.0);
 vehicle.setCapacity(_weight, capacity);
 _mdl.add(vehicle);
 ++it;
 }
 csvVehicleReader.end();
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 89

Add the following code after the comment
//Set the penalty cost on unperformed visits

Here is the complete code defining the createVisits function:

Solve

Because the standard approach to vehicle routing problems described in Lesson 3 Solving a
Vehicle Routing Problem can be inefficient when tackling the problem of minimizing the
number of vehicles used to solve a VRP, this lesson presents another method, based on the
use of instances of IloRoutingSolution and dynamic insertion of visits.

Here is a short description of the proposed heuristic:

1. Find a first solution.

2. Save the current solution in _solution, an instance of IloRoutingSolution.

3. Improve the first solution using neighborhoods.

Step 7 Set the penalty cost on unperformed visits

 visit.setPenaltyCost(1000);

void RoutingModel::createVisits(char* visitsFileName) {
 IloCsvReader csvVisitReader(_env, visitsFileName);
 IloCsvReader::LineIterator it(csvVisitReader);
 while(it.ok()){
 IloCsvLine line = *it;
 //read visit data from files
 char * visitName = line.getStringByHeader("name");
 char * nodeName = line.getStringByHeader("node");
 IloNum quantity = line.getFloatByHeader("quantity");
 IloNum minTime = line.getFloatByHeader("minTime");
 IloNum maxTime = line.getFloatByHeader("maxTime");
 IloNum dropTime = line.getFloatByHeader("dropTime");
 IloNode node = IloNode::Find(_env, nodeName);
 IloVisit visit(node, visitName);
 _mdl.add(visit.getDelayVar(_time) == dropTime);
 _mdl.add(visit.getTransitVar(_weight) == quantity);
 _mdl.add(minTime <= visit.getCumulVar(_time) <= maxTime);
 _mdl.add(visit);

 visit.setPenaltyCost(1000);

 ++it;
 }
 csvVisitReader.end();
}

90 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
4. Close any empty vehicles so that they cannot take part in any solution.

5. Let v be the non-empty vehicle with the fewest visits. Empty v by constraining the visits
assigned to it so that they must be performed by some other vehicle, disabling v, and
finding a new solution. (There will always be a solution if the visits have a finite penalty
cost and can therefore be unperformed.)

6. Improve the new solution, minimizing its cost.

7. If there are no unperformed visits, go to 2.

8. If there are unperformed visits, enable v, and restore solution.

9. The solution with the minimal number of vehicles is solution.

As in Chapter 3, Solving a Vehicle Routing Problem, you create the RoutingSolver class,
which is used to solve the vehicle routing problem.

Declare the RoutingSolver class

The code for the declaration of the class RoutingSolver is provided for you:

There are only a few differences between the RoutingSolver class used in a standard VRP
and the RoutingSolver class used in this problem. There are three additional member
functions: getShortestRoute, closeEmptyVehicles, and reduceActiveVehicles.
These member functions are explained in the following sections.

class RoutingSolver {
 IloEnv _env;
 IloModel _mdl;
 IloSolver _solver;
 IloDispatcher _dispatcher;
 IloRoutingSolution _solution;
 IloGoal _instantiateCost;
 IloGoal _generateGoal;
 IloGoal _restoreSolution;
 IloVehicle getShortestRoute ();

public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloBool findFirstSolution ();
 void improveWithNhood ();
 void closeEmptyVehicles ();
 void reduceActiveVehicles ();
 void printInformation(const char* =0) const;
};
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 91

Define the RoutingSolver constructor

The RoutingSolver constructor is defined as in Chapter 3, Solving a Vehicle Routing
Problem. It takes an instance of RoutingModel as a parameter. The environment, model,
solver, dispatcher, and solution are initialized. The goal to instantiate cost is created using
the function IloDichotomize. You use the predefined first solution generation heuristic
IloSavingsGenerate to create the first solution. The goal to restore the solution is created
using IloRestoreSolution. This constructor will be called from the main function. This
code is provided for you:

Define the findFirstSolution function

Now, you create the function that searches for the first solution. This function is the same as
the one you created in Chapter 3, Solving a Vehicle Routing Problem. You search for a
solution using _generateGoal and store the solution and its cost using the member
function IloRoutingSolution::store. This code is provided for you:

Define the improveWithNHood function

After you have found a first solution, you create the neighborhoods you will use in the
solution improvement phase. As in Chapter 3, Solving a Vehicle Routing Problem, you use
the predefined neighborhoods IloRelocate, IloExchange, IloCross, IloTwoOpt, and
IloOrOpt. Additionally, you use three other predefined neighborhoods:
IloMakePerformed, IloMakeUnperformed, and IloSwapPerform. The function
IloMakePerformed returns a neighborhood that modifies a solution by inserting an
unperformed visit after a performed one. The function IloMakeUnperformed returns a

 RoutingSolver::RoutingSolver(RoutingModel mdl):
 _env(mdl.getEnv()),
 _mdl(mdl.getModel()),
 _solver(mdl.getModel()),
 _dispatcher(_solver),
 _solution(mdl.getModel()){
 _instantiateCost =
 IloDichotomize(_env, _dispatcher.getCostVar(), IloFalse);
 _generateGoal = IloSavingsGenerate(_env) && _instantiateCost;
 _restoreSolution = IloRestoreSolution(_env, _solution);
 }

IloBool RoutingSolver::findFirstSolution() {
 if (!_solver.solve(_generateGoal)) {
 _solver.error() << "Infeasible Routing Plan" << endl;
 return IloFalse;
 }
 _solution.store(_solver);
 return IloTrue;
}

92 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
neighborhood that modifies a solution by causing a performed visit to be unperformed. The
function IloSwapPerform returns a neighborhood that modifies a solution by exchanging a
performed visit with an unperformed one. These neighborhoods are used to improve a
solution after emptying a vehicle and constraining the visits assigned to it to be performed
by some other vehicle.

For more information about how predefined neighborhoods work, see Appendix B,
Predefined Neighborhoods.

Add the following code after the comment //Create the neighborhoods

The rest of the function is defined as in Chapter 3, Solving a Vehicle Routing Problem. You
use the function IloSingleMove to return a goal that makes a single local move as defined
by a neighborhood and a search heuristic. The following code is provided for you:

Define the closeEmptyVehicles function

Next, you define the closeEmptyVehicles function. You use an instance of
IloIterator and the member function IloRoutingSolution::getRouteSize to
locate any vehicles that have an empty route. Vehicles that are not used in the solution have a
route size of 0 (zero). You constrain these vehicles to be closed by adding the constraint that
the next-variable of their first visit is set equal to their last visit. In other words, they never
leave the depot.

Step 8 Create the neighborhoods

void RoutingSolver::improveWithNhood() {
 IloNHood nhood = (IloRelocate(_env) + IloExchange(_env) + IloCross(_env))
 + (IloTwoOpt(_env) + IloOrOpt(_env))
 + (IloMakePerformed(_env)
 + IloMakeUnperformed(_env)
 + IloSwapPerform(_env));

 _solver.out() << "Improving solution" << endl;
 IloGoal improve = IloSingleMove(_env,
 _solution,
 nhood,
 IloImprove(_env),
 _instantiateCost);
 while (_solver.solve(improve)) {
 }
 _solver.solve(_restoreSolution);
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 93

Add the following code after the comment //Close empty vehicles

Define the getShortestRoute function

Now you locate the vehicle with the smallest number of visits, since this is vehicle that you
will want to empty. An IloIterator is used to search through the vehicles in the problem.
The member function IloRoutingSolution::getRouteSize returns the number of
visits in the stored route of each vehicle.

Add the following code after the comment
//Find the vehicle with the shortest route

Define the reduceActiveVehicles function

To reduce the number of active vehicles, you first use the function getShortestRoute to
find the vehicle with the smallest number of visits. You make a copy of the solution and use
an IloRoutingSolution::RouteIterator to move through the route of the selected
vehicle. You add a vehicle incompatibility constraint on each visit associated with the
vehicle, stating that the visit should not be assigned to the vehicle you are trying to empty.

Step 9 Close empty vehicles

void RoutingSolver::closeEmptyVehicles() {
 for (IloIterator<IloVehicle> iter(_env); iter.ok(); ++iter) {
 IloVehicle vehicle = *iter;
 IloInt size = _solution.getRouteSize(vehicle);
 if (size == 0) {
 _mdl.add(vehicle.getFirstVisit().getNextVar() == vehicle.getLastVisit());
 }
 }
}

Step 10 Find the vehicle with the shortest route

IloVehicle RoutingSolver::getShortestRoute() {
 IloInt bestSize = 1000000;
 IloVehicle bestVehicle;
 for (IloIterator<IloVehicle> iter(_env); iter.ok(); ++iter) {
 IloVehicle vehicle = *iter;
 IloInt size = _solution.getRouteSize(vehicle);
 if (size < bestSize && size != 0) {
 bestSize = size;
 bestVehicle = vehicle;
 }
 }
 return bestVehicle;
}

94 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Add the following code after the comment //Empty the vehicle

You then remove the visit from the solution, which sets the state of the visit to unperformed
in the solution. You use the function IloInsertVisit to insert the unperformed visit back
into the routing plan. This goal always succeeds because the visit has a finite penalty cost,
which allows it be unperformed.

Add the following code after the comment
//Insert the unperformed visits into the routing plan

Then you improve the solution, using the neighborhoods IloMakePerformed,
IloMakeUnperformed, and IloSwapPerform to try to perform the visits belonging to the
emptied vehicle. If, after improvement, the number of unperformed visits is 0 (zero) and the
vehicle is still empty, then this vehicle is closed by constraining the next-variable of the first
visit to be set equal to the last visit of the vehicle. You then search for the next vehicle to
empty, that is the one whose route size is now shortest. When you cannot empty any more
vehicles and still perform all the visits, the loop breaks and the last vehicle that was
unsuccessfully emptied is added back to the routing solution.

Step 11 Empty the vehicle

void RoutingSolver::reduceActiveVehicles () {
 IloVehicle vehicle = getShortestRoute();
 IloRoutingSolution solCopy(_env);
 IloBool vehicleClosed = IloTrue;
 IloGoal sync = IloRestoreSolution(_env, _solution)
 && IloStoreSolution(_env, _solution);
 while (vehicleClosed && vehicle.getImpl()) {
 solCopy.copy(_solution);
 _solver.out() << "Emptying " << vehicle.getName() << " ..." << endl;
 IloAnd andCt(_env);
 _mdl.add(andCt);
 for (IloRoutingSolution::RouteIterator iter(solCopy, vehicle);
 iter.ok();
 ++iter) {
 IloVisit visit = *iter;
 if (!visit.isFirstVisit() && !visit.isLastVisit()) {
 andCt.add(vehicle != visit.getVehicleVar());

Step 12 Insert the unperformed visits into the routing plan

 _solution.remove(visit);
 _solver.solve(sync);
 IloGoal insert = IloInsertVisit(_env, visit, _solution);
 _solver.solve(insert);
 _solution.add(visit);
 _solution.store(_solver);
 }
 }
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 95

Add the following code after the comment //Improve the solution

Finally, you restore the last solution found, which is the solution that uses the smallest
number of vehicles.

Add the following code after the comment //Restore the solution

Define the printInformation function

The printInformation function is the same as in Chapter 3, Solving a Vehicle Routing
Problem. This code is provided for you:

Step 13 Improve the solution

 improveWithNhood();
 if (_solution.getNumberOfUnperformedVisits() == 0
 && _solution.getRouteSize(vehicle) == 0) {
 _mdl.add(vehicle.getFirstVisit().getNextVar()
 == vehicle.getLastVisit());
 vehicle = getShortestRoute();
 }
 else {
 _mdl.remove(andCt);
 _solution.copy(solCopy);
 vehicleClosed = IloFalse;
 }
 }

Step 14 Restore the solution

 _solver.solve(_restoreSolution);
}

void RoutingSolver::printInformation(const char* heading) const {
 if(heading)
 _solver.out()<<heading<<endl;
 _solver.printInformation();
 _dispatcher.printInformation();
 _solver.out() << "===============" << endl
 << "Cost : " << _dispatcher.getTotalCost() << endl
 << "Number of vehicles used : "
 << _dispatcher.getNumberOfVehiclesUsed() << endl
 << "Solution : " << endl
 << _dispatcher << endl;
}

96 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Define the main function

After you finish creating the RoutingModel and RoutingSolver classes and the
printInformation function, you use them in the main function. You can use command
line syntax to pass the names of input files to the model. If you do not specify input files, the
defaults will be used. In the main function, you first create an environment. Then you create
an instance of the RoutingModel class, which takes the environment and input files as
parameters. You create an instance of the RoutingSolver class. This takes one parameter,
the model. You use an if loop to find a solution. If Dispatcher finds a first solution, you
print the information and then improve the solution. Then you close all empty vehicles. You
use the function reduceActiveVehicles to search for the vehicle with the fewest number
of visits and empty it. You try to find a new solution without using this vehicle. If you find a
new solution, you improve it. After solution improvement, you empty the vehicle that now
has the fewest number of visits. When you cannot empty any more vehicles and still find a
solution, you have minimized the number of vehicles. This solution is then printed. The
following code is provided for you:

Compile and run the program. You will get results that show the routing plan and
information for the first solution, the initial improved solution, and the solution found after
reducing the number of active vehicles. The first solution uses 20 vehicles. The initial
improved solution uses 17 vehicles. The solution found after reducing the number of active
vehicles uses 16 vehicles.

int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 if (solver.findFirstSolution()) {
 solver.printInformation("***First Solution***");
 solver.improveWithNhood();
 solver.printInformation("***Solution after improvements with nhood***");
 solver.closeEmptyVehicles();
 solver.reduceActiveVehicles();
 solver.printInformation("***Solution after reducing active vehicles***");
 }
 } catch(IloException& ex) {
 cerr << "Error: " << ex << endl;
 }
 env.end();
 return 0;
}

Step 15 Compile and run the program
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 97

First solution information

The first solution phase finds a solution using 20 vehicles with a total cost of 2554.03 units:

Improved Solution Information

The solution improvement phase finds a solution using 17 vehicles with a total cost of
2073.11 units-:

First Solution
Number of fails : 50659
Number of choice points : 1077
Number of variables : 5504
Number of constraints : 881
Reversible stack (bytes) : 578904
Solver heap (bytes) : 2504836
Solver global heap (bytes) : 1187724
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 13164
Total memory used (bytes) : 4353040
Elapsed time since creation : 9.483
Number of nodes : 201
Number of visits : 300
Number of vehicles : 50
Number of dimensions : 2
Number of accepted moves : 0
===============
Cost : 2554.03
Number of vehicles used : 20

Solution after improvements with nhood
Number of fails : 0
Number of choice points : 0
Number of variables : 5504
Number of constraints : 878
Reversible stack (bytes) : 578904
Solver heap (bytes) : 2089268
Solver global heap (bytes) : 1203804
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 35196
Total memory used (bytes) : 3975584
Elapsed time since creation : 0.07
Number of nodes : 201
Number of visits : 300
Number of vehicles : 50
Number of dimensions : 2
Number of accepted moves : 222
===============
Cost : 2073.11
Number of vehicles used : 17
98 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Review Exercises
Solution information after reducing active vehicles

After solution improvement, vehicle 20 has the fewest number of visits. (See the section
“Complete Output” on page 106.) The reduceActiveVehicles function empties vehicle
20, assigns its visits to other vehicles, and improves the solution. Now, vehicle 7 has the
fewest number of visits. The reduceActiveVehicles function empties vehicle 7, tries to
assign its visits to other vehicles, but is not able to do so. The last solution found is restored.
The solution after reducing active vehicles uses 16 vehicles with a total cost of 2072.93
units:

The complete program and output are listed in “Complete Program” on page 100. You can
also view it online in the YourDispatcherHome/examples/src/minvehcl.cpp file.

Review Exercises

1. How do you associate the graph nodes created using IloDispatcherGraph::Node
with the nodes created using IloNode?

2. How is the visit penalty cost used in this problem?

Emptying vehicle20 ...
Improving solution
Emptying vehicle7 ...
Improving solution
Solution after reducing active vehicles
Number of fails : 0
Number of choice points : 0
Number of variables : 5504
Number of constraints : 917
Reversible stack (bytes) : 578904
Solver heap (bytes) : 2089592
Solver global heap (bytes) : 1207824
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 35196
Total memory used (bytes) : 3979928
Elapsed time since creation : 0.061
Number of nodes : 201
Number of visits : 300
Number of vehicles : 50
Number of dimensions : 2
Number of accepted moves : 238
===============
Cost : 2072.93
Number of vehicles used : 16
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 99

Suggested Answers

Exercise 1

How do you associate the graph nodes created using IloDispatcherGraph::Node with
the nodes created using IloNode?

Suggested Answer

You use the member function IloDispatcherGraph::associatebyCoordsInFile to
look up the coordinates of a given IloNode in a csv file and automatically associate it to the
graph node with matching coordinates.

Exercise 2

How is the visit penalty cost used in this problem?

Suggested Answer

You use the member function IloVisit::setPenaltyCost to set the cost of not
performing a visit to 1000 cost units. This allows the visit to not be performed. During the
solution improvement phase of problem solving, you will want to be able to allow some
visits to be temporarily unperformed. The penalty cost allows you to do this.

Complete Program

The complete program follows. You can also view it online in the YourDispatcherHome/
examples/src/minvehcl.cpp file.

// -- -*- C++ -*-
// File: examples/src/minvehcl.cpp
// --

#include <ildispat/ilodispatcher.h>

ILOSTLBEGIN
///
// Modeling
class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloDispatcherGraph _graph;
 IloDimension2 _time;
 IloDimension1 _weight;

 void addDimensions();
 void loadGraphInformation (char* arcFileName, char* turnFileName);
 void lastMinuteGraphChanges ();
100 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 void createIloNodes(char* nodeFileName, char* coordFileName);
 void createVehicles(char* vehicleFileName);
 void createVisits(char* visitsFileName);

public:
 RoutingModel(IloEnv env, int argc, char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
};

// Create distance functions for dimensions, add dimensions to model
void RoutingModel::addDimensions() {
 _weight =IloDimension1 (_env, “weight”);
 _mdl.add(_weight);

 IloDistance SP_time = IloGraphDistance (_graph);
 _time =IloDimension2 (_env, SP_time, “time”);
 _mdl.add(_time);
}

RoutingModel::RoutingModel(IloEnv env,
 int argc,
 char* argv[]):
 _env(env), _mdl(env), _graph(env) {
 addDimensions();

 // Load dispatcher graph information from file, and
 // add instance-specific features.
 char * arcFileName;
 if(argc < 2) arcFileName =
 (char*) “../../../examples/data/dispatcherGraphData/gridNetwork.csv”;
 else arcFileName = argv[1];
 char * turnFileName;
 if(argc < 3) turnFileName =
 (char*) “../../../examples/data/dispatcherGraphData/turnData.csv”;
 else turnFileName = argv[2];
 loadGraphInformation (arcFileName, turnFileName);

 // Create IloNodes and associate them to graph nodes
 char * nodeFileName;
 if(argc < 4) nodeFileName =
 (char*) “../../../examples/data/vrp200/vrp200nodes.csv”;
 else nodeFileName = argv[3];
 char * nodeCoordsFile;
 if(argc < 5) nodeCoordsFile =
 (char*) “../../../examples/data/dispatcherGraphData/coordTable.csv”;
 else nodeCoordsFile = argv[4];
 createIloNodes(nodeFileName, nodeCoordsFile);

 // Create vehicles
 char * vehiclesFileName;
 if(argc < 6) vehiclesFileName =
 (char*) “../../../examples/data/vrp200/vrp200vehicles.csv”;
 else vehiclesFileName = argv[5];
 createVehicles(vehiclesFileName);

 // Create visits
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 101

 char * visitsFileName;
 if(argc < 7) visitsFileName =
 (char*) “../../../examples/data/vrp200/vrp200visits.csv”;
 else visitsFileName = argv[6];
 createVisits(visitsFileName);
}

// Load network topology and travel costs from files.
void RoutingModel::loadGraphInformation (char* arcFileName,
 char* turnFileName) {
 _graph.createArcsFromFile (arcFileName);
 _graph.loadArcDimensionDataFromFile (arcFileName, _time);
 _graph.loadTurnDimensionDataFromFile(turnFileName, _time);
 lastMinuteGraphChanges();
}

// Make modifications to network conditions based on latest information.
void RoutingModel::lastMinuteGraphChanges () {
 _graph.forbidArcUse(_graph.getArcByEnds(2785-1, 2785));
 _graph.forbidArcUse(_graph.getArcByEnds(2785+1, 2785));
 _graph.forbidArcUse(_graph.getArcByEnds(2785-56, 2785));
 _graph.setTurnPenalty(_graph.getArc(1323), _graph.getArc(1544), _time, 12);
}

// Create IloNodes
void RoutingModel::createIloNodes(char* nodeFileName, char* coordFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * name = line.getStringByHeader(“name”);
 IloNode node(_env, line.getFloatByHeader(“x”),
 line.getFloatByHeader(“y”), 0, name);
 node.setKey(name);

 _graph.associateByCoordsInFile (node, coordFileName);

 ++it;
 }
 csvNodeReader.end();
}

// Create vehicles
void RoutingModel::createVehicles(char* vehicleFileName) {
 IloCsvReader csvVehicleReader(_env, vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader(“first”);
 char * namelast = line.getStringByHeader(“last”);
 char * name = line.getStringByHeader(“name”);
 IloNum capacity = line.getFloatByHeader(“capacity”);
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);
 IloVisit first(node1, “depot”);
 _mdl.add(first.getCumulVar(_weight) == 0);
 _mdl.add(first.getCumulVar(_time) >= line.getFloatByHeader(“open”));
 IloVisit last(node2, “depot”);
102 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 _mdl.add(last.getCumulVar(_time) <= line.getFloatByHeader(“close”));
 IloVehicle vehicle(first, last, name);
 vehicle.setCost(_time, 1.0);
 vehicle.setCapacity(_weight, capacity);
 _mdl.add(vehicle);
 ++it;
 }
 csvVehicleReader.end();
}

// Create visits
void RoutingModel::createVisits(char* visitsFileName) {
 IloCsvReader csvVisitReader(_env, visitsFileName);
 IloCsvReader::LineIterator it(csvVisitReader);
 while(it.ok()){
 IloCsvLine line = *it;
 //read visit data from files
 char * visitName = line.getStringByHeader(“name”);
 char * nodeName = line.getStringByHeader(“node”);
 IloNum quantity = line.getFloatByHeader(“quantity”);
 IloNum minTime = line.getFloatByHeader(“minTime”);
 IloNum maxTime = line.getFloatByHeader(“maxTime”);
 IloNum dropTime = line.getFloatByHeader(“dropTime”);
 IloNode node = IloNode::Find(_env, nodeName);
 IloVisit visit(node, visitName);
 _mdl.add(visit.getDelayVar(_time) == dropTime);
 _mdl.add(visit.getTransitVar(_weight) == quantity);
 _mdl.add(minTime <= visit.getCumulVar(_time) <= maxTime);
 _mdl.add(visit);

 visit.setPenaltyCost(1000);

 ++it;
 }
 csvVisitReader.end();
}

///
// Solving
class RoutingSolver {
 IloEnv _env;
 IloModel _mdl;
 IloSolver _solver;
 IloDispatcher _dispatcher;
 IloRoutingSolution _solution;
 IloGoal _instantiateCost;
 IloGoal _generateGoal;
 IloGoal _restoreSolution;
 IloVehicle getShortestRoute ();

public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloBool findFirstSolution ();
 void improveWithNhood ();
 void closeEmptyVehicles ();
 void reduceActiveVehicles ();
 void printInformation(const char* =0) const;
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 103

};

RoutingSolver::RoutingSolver(RoutingModel mdl):
 _env(mdl.getEnv()),
 _mdl(mdl.getModel()),
 _solver(mdl.getModel()),
 _dispatcher(_solver),
 _solution(mdl.getModel()){
 _instantiateCost =
 IloDichotomize(_env, _dispatcher.getCostVar(), IloFalse);
 _generateGoal = IloSavingsGenerate(_env) && _instantiateCost;
 _restoreSolution = IloRestoreSolution(_env, _solution);
 }

// Solving : find first solution
IloBool RoutingSolver::findFirstSolution() {
 if (!_solver.solve(_generateGoal)) {
 _solver.error() << “Infeasible Routing Plan” << endl;
 return IloFalse;
 }
 _solution.store(_solver);
 return IloTrue;
}

//Improve solution using nhood
void RoutingSolver::improveWithNhood() {
 IloNHood nhood = (IloRelocate(_env) + IloExchange(_env) + IloCross(_env))
 + (IloTwoOpt(_env) + IloOrOpt(_env))
 + (IloMakePerformed(_env)
 + IloMakeUnperformed(_env)
 + IloSwapPerform(_env));

 _solver.out() << “Improving solution” << endl;
 IloGoal improve = IloSingleMove(_env,
 _solution,
 nhood,
 IloImprove(_env),
 _instantiateCost);
 while (_solver.solve(improve)) {
 }
 _solver.solve(_restoreSolution);
}

void RoutingSolver::closeEmptyVehicles() {
 for (IloIterator<IloVehicle> iter(_env); iter.ok(); ++iter) {
 IloVehicle vehicle = *iter;
 IloInt size = _solution.getRouteSize(vehicle);
 if (size == 0) {
 _mdl.add(vehicle.getFirstVisit().getNextVar() == vehicle.getLastVisit());
 }
 }
}

IloVehicle RoutingSolver::getShortestRoute() {
 IloInt bestSize = 1000000;
 IloVehicle bestVehicle;
 for (IloIterator<IloVehicle> iter(_env); iter.ok(); ++iter) {
 IloVehicle vehicle = *iter;
104 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 IloInt size = _solution.getRouteSize(vehicle);
 if (size < bestSize && size != 0) {
 bestSize = size;
 bestVehicle = vehicle;
 }
 }
 return bestVehicle;
}

void RoutingSolver::reduceActiveVehicles () {
 IloVehicle vehicle = getShortestRoute();
 IloRoutingSolution solCopy(_env);
 IloBool vehicleClosed = IloTrue;
 IloGoal sync = IloRestoreSolution(_env, _solution)
 && IloStoreSolution(_env, _solution);
 while (vehicleClosed && vehicle.getImpl()) {
 solCopy.copy(_solution);
 _solver.out() << “Emptying “ << vehicle.getName() << “ ...” << endl;
 IloAnd andCt(_env);
 _mdl.add(andCt);
 for (IloRoutingSolution::RouteIterator iter(solCopy, vehicle);
 iter.ok();
 ++iter) {
 IloVisit visit = *iter;
 if (!visit.isFirstVisit() && !visit.isLastVisit()) {
 andCt.add(vehicle != visit.getVehicleVar());

 _solution.remove(visit);
 _solver.solve(sync);
 IloGoal insert = IloInsertVisit(_env, visit, _solution);
 _solver.solve(insert);
 _solution.add(visit);
 _solution.store(_solver);
 }
 }

 improveWithNhood();
 if (_solution.getNumberOfUnperformedVisits() == 0
 && _solution.getRouteSize(vehicle) == 0) {
 _mdl.add(vehicle.getFirstVisit().getNextVar()
 == vehicle.getLastVisit());
 vehicle = getShortestRoute();
 }
 else {
 _mdl.remove(andCt);
 _solution.copy(solCopy);
 vehicleClosed = IloFalse;
 }
 }

 _solver.solve(_restoreSolution);
}

// Display Dispatcher information
void RoutingSolver::printInformation(const char* heading) const {
 if(heading)
 _solver.out()<<heading<<endl;
 _solver.printInformation();
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 105

 _dispatcher.printInformation();
 _solver.out() << “===============” << endl
 << “Cost : “ << _dispatcher.getTotalCost() << endl
 << “Number of vehicles used : “
 << _dispatcher.getNumberOfVehiclesUsed() << endl
 << “Solution : “ << endl
 << _dispatcher << endl;
}

///
int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 if (solver.findFirstSolution()) {
 solver.printInformation(“***First Solution***”);
 solver.improveWithNhood();
 solver.printInformation(“***Solution after improvements with nhood***”);
 solver.closeEmptyVehicles();
 solver.reduceActiveVehicles();
 solver.printInformation(“***Solution after reducing active vehicles***”);
 }
 } catch(IloException& ex) {
 cerr << “Error: “ << ex << endl;
 }
 env.end();
 return 0;
}

Complete Output

/**
First Solution
Number of fails : 50659
Number of choice points : 1077
Number of variables : 5504
Number of constraints : 881
Reversible stack (bytes) : 578904
Solver heap (bytes) : 2504836
Solver global heap (bytes) : 1187724
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 13164
Total memory used (bytes) : 4353040
Elapsed time since creation : 9.483
Number of nodes : 201
Number of visits : 300
Number of vehicles : 50
Number of dimensions : 2
Number of accepted moves : 0
===============
Cost : 2554.03
Number of vehicles used : 20
Solution :
106 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
Unperformed visits : None
vehicle1 :
 -> depot weight[0] time[0..95.8002] -> visit34 weight[0]
time[0.89247..96.6927] -> visit54 weight[20] time[10.9266..106.727] -> visit74
weight[40] time[20.9608..116.761] -> visit94 weight[60] time[30.9949..126.795]
-> visit114 weight[80] time[41.0291..136.829] -> visit134 weight[100]
time[51.0632..146.863] -> visit154 weight[120] time[61.0974..156.898] ->
visit174 weight[140] time[71.1315..166.932] -> visit194 weight[160]
time[81.1657..176.966] -> visit14 weight[180] time[91.1998..187] -> depot
weight[200] time[102.092..230]
vehicle2 :
 -> depot weight[0] time[0..48.4869] -> visit117 weight[0]
time[0.808264..49.2952] -> visit137 weight[2] time[10.8423..59.3293] ->
visit157 weight[4] time[20.8764..69.3633] -> visit177 weight[6]
time[30.9104..79.3974] -> visit197 weight[8] time[40.9445..89.4314] -> visit36
weight[10] time[51.2..99.687] -> visit56 weight[29] time[61.2348..109.722] ->
visit76 weight[48] time[71.2696..119.757] -> visit96 weight[67]
time[81.3044..129.791] -> visit116 weight[86] time[91.3391..139.826] ->
visit136 weight[105] time[101.374..149.861] -> visit156 weight[124]
time[111.409..159.896] -> visit176 weight[143] time[121.443..169.93] ->
visit196 weight[162] time[131.478..179.965] -> visit16 weight[181]
time[141.513..190] -> depot weight[200] time[152.371..230]
vehicle3 :
 -> depot weight[0] time[0..55.5455] -> visit97 weight[0..1]
time[0.808264..56.3537] -> visit191 weight[2..3] time[67..67.1946] -> visit39
weight[14..15] time[77.167..77.3617] -> visit59 weight[31..32]
time[87.2006..87.3953] -> visit79 weight[48..49] time[97.2342..97.4289] ->
visit99 weight[65..66] time[107.268..107.462] -> visit119 weight[82..83]
time[117.301..117.496] -> visit139 weight[99..100] time[127.335..127.53] ->
visit159 weight[116..117] time[137.369..137.563] -> visit179 weight[133..134]
time[147.402..147.597] -> visit199 weight[150..151] time[157.436..157.63] ->
visit19 weight[167..168] time[167.469..167.664] -> visit7 weight[184..185]
time[177.731..177.926] -> visit27 weight[189..190] time[187.768..187.963] ->
visit47 weight[194..195] time[197.805..198] -> depot weight[199..200]
time[208.427..230]
vehicle4 :
 -> depot weight[0] time[0..76.375] -> visit166 weight[0..1]
time[0.409416..76.7844] -> visit186 weight[3..4] time[10.4645..86.8395] ->
visit85 weight[6..7] time[20.7051..97.0801] -> visit105 weight[32..33]
time[30.746..107.121] -> visit125 weight[58..59] time[40.787..117.162] ->
visit145 weight[84..85] time[50.8279..127.203] -> visit165 weight[110..111]
time[60.8689..137.244] -> visit185 weight[136..137] time[70.9098..147.285] ->
visit37 weight[162..163] time[81.096..157.471] -> visit57 weight[164..165]
time[91.1301..167.505] -> visit77 weight[166..167] time[101.164..177.539] ->
visit17 weight[168..169] time[111.198..187.573] -> visit5 weight[170..171]
time[121.384..197.759] -> visit6 weight[196..197] time[131.625..208] -> depot
weight[199..200] time[142.034..230]
vehicle5 :
 -> depot weight[0] time[0..5.70798] -> visit40 weight[0]
time[0.741903..6.44988] -> visit60 weight[9] time[10.7752..16.4832] -> visit80
weight[18] time[20.8086..26.5166] -> visit100 weight[27] time[30.8419..36.5499]
-> visit120 weight[36] time[40.8753..46.5832] -> visit140 weight[45]
time[50.9086..56.6166] -> visit160 weight[54] time[60.9419..66.6499] ->
visit180 weight[63] time[70.9753..76.6832] -> visit200 weight[72]
time[81.0086..86.7166] -> visit20 weight[81] time[91.0419..96.7499] -> visit9
weight[90] time[101.292..107] -> visit3 weight[106] time[111.542..136.8] ->
visit23 weight[119] time[121.576..146.833] -> visit43 weight[132]
time[131.609..156.867] -> visit63 weight[145] time[141.642..166.9] -> visit83
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 107

weight[158] time[151.676..176.933] -> visit103 weight[171]
time[161.709..186.967] -> visit123 weight[184] time[171.742..197] -> visit26
weight[197] time[182.663..208] -> depot weight[200] time[193.073..230]
vehicle6 :
 -> depot weight[0] time[0..3.69563] -> visit158 weight[0]
time[0.490256..4.18588] -> visit178 weight[12] time[10.5339..14.2296] ->
visit198 weight[24] time[20.5776..24.2732] -> visit67 weight[36]
time[30.7804..34.4761] -> visit87 weight[41] time[40.8176..44.5133] -> visit107
weight[46] time[50.8548..54.5505] -> visit127 weight[51] time[60.892..64.5877]
-> visit147 weight[56] time[70.9292..74.6249] -> visit167 weight[61]
time[80.9664..84.662] -> visit187 weight[66] time[91.0036..94.6992] -> visit188
weight[71] time[101.304..105] -> visit45 weight[80] time[111.641..137.094] ->
visit65 weight[106] time[121.682..147.135] -> visit25 weight[132]
time[131.723..157.176] -> visit18 weight[158] time[142.035..167.488] -> visit38
weight[170] time[152.078..177.532] -> visit58 weight[182]
time[162.122..187.576] -> visit46 weight[194] time[172.491..197.945] -> visit66
weight[197] time[182.546..208] -> depot weight[200] time[192.956..230]
vehicle7 :
 -> depot weight[0] time[0..5.95457] -> visit70 weight[0..1]
time[0.589454..6.54403] -> visit90 weight[16..17] time[10.6236..16.5782] ->
visit110 weight[32..33] time[20.6578..26.6123] -> visit130 weight[48..49]
time[30.6919..36.6465] -> visit150 weight[64..65] time[40.7261..46.6806] ->
visit170 weight[80..81] time[50.7602..56.7148] -> visit190 weight[96..97]
time[60.7944..66.7489] -> visit11 weight[112..113] time[71.0454..77] -> visit10
weight[124..125] time[81.2965..150.78] -> visit30 weight[140..141]
time[91.3307..160.815] -> visit50 weight[156..157] time[101.365..170.849] ->
visit1 weight[172..173] time[111.742..181.226] -> visit21 weight[182..183]
time[121.778..191.262] -> visit2 weight[192..193] time[132.516..202] -> depot
weight[199..200] time[142.926..230]
vehicle8 :
 -> depot weight[0] time[0..5.71284] -> visit41 weight[0..11]
time[0.446525..6.15937] -> visit61 weight[10..21] time[10.4823..16.1952] ->
visit81 weight[20..31] time[20.5181..26.231] -> visit101 weight[30..41]
time[30.5539..36.2668] -> visit121 weight[40..51] time[40.5897..46.3026] ->
visit141 weight[50..61] time[50.6255..56.3384] -> visit161 weight[60..71]
time[60.6613..66.3742] -> visit181 weight[70..81] time[70.6971..76.4099] ->
visit163 weight[80..91] time[81.0037..86.7165] -> visit183 weight[93..104]
time[91.037..96.7498] -> visit189 weight[106..117] time[101.287..107] ->
visit143 weight[122..133] time[111.537..141.029] -> visit4 weight[135..146]
time[149..151.446] -> visit22 weight[154..165] time[159.401..161.847] ->
visit42 weight[161..172] time[169.439..171.886] -> visit62 weight[168..179]
time[179.478..181.924] -> visit82 weight[175..186] time[189.516..191.962] ->
visit102 weight[182..193] time[199.554..202] -> depot weight[189..200]
time[209.964..230]
vehicle9 :
 -> depot weight[0] time[0..3.12711] -> visit142 weight[0..23]
time[0.409943..3.53706] -> visit162 weight[7..30] time[10.4481..13.5752] ->
visit182 weight[14..37] time[20.4863..23.6134] -> visit86 weight[21..44]
time[30.999..34.1262] -> visit106 weight[24..47] time[41.0541..44.1812] ->
visit126 weight[27..50] time[51.1092..54.2363] -> visit146 weight[30..53]
time[61.1643..64.2914] -> visit98 weight[33..56] time[71.5335..74.6606] ->
visit118 weight[45..68] time[81.5772..84.7043] -> visit138 weight[57..80]
time[91.6209..94.748] -> visit168 weight[69..92] time[101.873..105] -> visit78
weight[78..101] time[112.125..153.476] -> visit13 weight[90..113]
time[159..164.073] -> visit122 weight[113..136] time[169.281..174.355] ->
visit12 weight[120..143] time[179.858..184.931] -> visit32 weight[139..162]
time[189.892..194.966] -> visit52 weight[158..181] time[199.927..205] -> depot
weight[177..200] time[210.235..230]
108 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
vehicle10 :
 -> depot weight[0] time[0..56.0521] -> visit92 weight[0..32]
time[0.308232..56.3604] -> visit112 weight[19..51] time[10.3427..66.3949] ->
visit132 weight[38..70] time[20.3772..76.4294] -> visit152 weight[57..89]
time[30.4117..86.4639] -> visit172 weight[76..108] time[40.4462..96.4984] ->
visit169 weight[95..127] time[97..107] -> visit192 weight[111..143]
time[107.502..148.665] -> visit24 weight[130..162] time[149..159] -> visit72
weight[149..181] time[159.335..205] -> depot weight[168..200]
time[169.643..230]
vehicle11 :
 -> depot weight[0] time[0..64.929] -> visit195 weight[0..113]
time[61..65.6378] -> visit171 weight[8..121] time[72.3622..77] -> visit148
weight[20..133] time[95..95.9483] -> visit29 weight[29..142] time[106.052..107]
-> visit44 weight[45..158] time[149..158.426] -> visit33 weight[64..177]
time[159.574..169] -> depot weight[87..200] time[169.937..230]
vehicle12 :
 -> depot weight[0] time[0..64.929] -> visit175 weight[0..113]
time[61..65.6378] -> visit151 weight[8..121] time[72.3622..77] -> visit128
weight[20..133] time[95..95.9483] -> visit49 weight[29..142] time[106.052..107]
-> visit64 weight[45..158] time[149..158.426] -> visit53 weight[64..177]
time[159.574..169] -> depot weight[87..200] time[169.937..230]
vehicle13 :
 -> depot weight[0] time[0..64.929] -> visit155 weight[0..113]
time[61..65.6378] -> visit131 weight[8..121] time[72.3622..77] -> visit108
weight[20..133] time[95..95.9483] -> visit69 weight[29..142] time[106.052..107]
-> visit84 weight[45..158] time[149..158.426] -> visit73 weight[64..177]
time[159.574..169] -> depot weight[87..200] time[169.937..230]
vehicle14 :
 -> depot weight[0] time[0..64.929] -> visit135 weight[0..113]
time[61..65.6378] -> visit111 weight[8..121] time[72.3622..77] -> visit88
weight[20..133] time[95..95.9483] -> visit89 weight[29..142] time[106.052..107]
-> visit104 weight[45..158] time[149..158.426] -> visit93 weight[64..177]
time[159.574..169] -> depot weight[87..200] time[169.937..230]
vehicle15 :
 -> depot weight[0] time[0..64.929] -> visit115 weight[0..113]
time[61..65.6378] -> visit91 weight[8..121] time[72.3622..77] -> visit68
weight[20..133] time[95..95.9483] -> visit109 weight[29..142]
time[106.052..107] -> visit124 weight[45..158] time[149..158.426] -> visit113
weight[64..177] time[159.574..169] -> depot weight[87..200] time[169.937..230]
vehicle16 :
 -> depot weight[0] time[0..64.929] -> visit95 weight[0..113] time[61..65.6378]
-> visit71 weight[8..121] time[72.3622..77] -> visit48 weight[20..133]
time[95..95.9483] -> visit129 weight[29..142] time[106.052..107] -> visit144
weight[45..158] time[149..158.426] -> visit133 weight[64..177]
time[159.574..169] -> depot weight[87..200] time[169.937..230]
vehicle17 :
 -> depot weight[0] time[0..64.929] -> visit75 weight[0..113] time[61..65.6378]
-> visit51 weight[8..121] time[72.3622..77] -> visit28 weight[20..133]
time[95..95.9483] -> visit149 weight[29..142] time[106.052..107] -> visit164
weight[45..158] time[149..158.426] -> visit153 weight[64..177]
time[159.574..169] -> depot weight[87..200] time[169.937..230]
vehicle18 :
 -> depot weight[0] time[0..64.929] -> visit55 weight[0..129] time[61..65.6378]
-> visit31 weight[8..137] time[72.3622..77] -> visit8 weight[20..149]
time[95..105] -> visit184 weight[29..158] time[149..158.426] -> visit173
weight[48..177] time[159.574..169] -> depot weight[71..200] time[169.937..230]
vehicle19 :
 -> depot weight[0] time[0..70.2912] -> visit35 weight[0..169] time[61..71] ->
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 109

visit193 weight[8..177] time[159..169] -> depot weight[31..200]
time[169.363..230]
vehicle20 :
 -> depot weight[0] time[0..70.2912] -> visit15 weight[0..192] time[61..71] ->
depot weight[8..200] time[71.7088..230]
vehicle21 : Unused
vehicle22 : Unused
vehicle23 : Unused
vehicle24 : Unused
vehicle25 : Unused
vehicle26 : Unused
vehicle27 : Unused
vehicle28 : Unused
vehicle29 : Unused
vehicle30 : Unused
vehicle31 : Unused
vehicle32 : Unused
vehicle33 : Unused
vehicle34 : Unused
vehicle35 : Unused
vehicle36 : Unused
vehicle37 : Unused
vehicle38 : Unused
vehicle39 : Unused
vehicle40 : Unused
vehicle41 : Unused
vehicle42 : Unused
vehicle43 : Unused
vehicle44 : Unused
vehicle45 : Unused
vehicle46 : Unused
vehicle47 : Unused
vehicle48 : Unused
vehicle49 : Unused
vehicle50 : Unused
Improving solution
Solution after improvements with nhood
Number of fails : 0
Number of choice points : 0
Number of variables : 5504
Number of constraints : 878
Reversible stack (bytes) : 578904
Solver heap (bytes) : 2089268
Solver global heap (bytes) : 1203804
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 35196
Total memory used (bytes) : 3975584
Elapsed time since creation : 0.07
Number of nodes : 201
Number of visits : 300
Number of vehicles : 50
Number of dimensions : 2
Number of accepted moves : 222
===============
Cost : 2073.11
Number of vehicles used : 17
110 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
Solution :
Unperformed visits : None
vehicle1 : Unused
vehicle2 : Unused
vehicle3 : Unused
vehicle4 : Unused
vehicle5 :
 -> depot weight[0] time[0..5.70798] -> visit40 weight[0..4]
time[0.741903..6.44988] -> visit60 weight[9..13] time[10.7752..16.4832] ->
visit80 weight[18..22] time[20.8086..26.5166] -> visit100 weight[27..31]
time[30.8419..36.5499] -> visit120 weight[36..40] time[40.8753..46.5832] ->
visit140 weight[45..49] time[50.9086..56.6166] -> visit160 weight[54..58]
time[60.9419..66.6499] -> visit180 weight[63..67] time[70.9753..76.6832] ->
visit200 weight[72..76] time[81.0086..86.7166] -> visit20 weight[81..85]
time[91.0419..96.7499] -> visit9 weight[90..94] time[101.292..107] -> visit83
weight[106..110] time[111.542..118.483] -> visit103 weight[119..123]
time[121.576..128.516] -> visit123 weight[132..136] time[131.609..138.55] ->
visit3 weight[145..149] time[141.642..148.583] -> visit184 weight[158..162]
time[152.059..159] -> visit192 weight[177..181] time[162.394..205] -> depot
weight[196..200] time[172.702..230]
vehicle6 :
 -> depot weight[0] time[0..43.3555] -> visit30 weight[0..56]
time[0.589454..43.9449] -> visit119 weight[16..72] time[10.845..54.2005] ->
visit59 weight[33..89] time[20.8786..64.2341] -> visit31 weight[50..106]
time[67..74.4011] -> visit147 weight[62..118] time[77.261..84.662] -> visit127
weight[67..123] time[87.2981..94.6992] -> visit188 weight[72..128]
time[97.5989..105] -> visit17 weight[81..137] time[107.907..117.811] -> visit97
weight[83..139] time[117.942..127.845] -> visit157 weight[85..141]
time[127.976..137.879] -> visit196 weight[87..143] time[138.231..148.135] ->
visit4 weight[106..162] time[149.096..159] -> visit52 weight[125..181]
time[159.431..205] -> depot weight[144..200] time[169.739..230]
vehicle7 :
 -> depot weight[0] time[0..76.1618] -> visit11 weight[0..124] time[67..77] ->
visit10 weight[12..136] time[77.2511..96.5791] -> visit109 weight[28..152]
time[97..107] -> visit63 weight[44..168] time[107.25..194.749] -> visit32
weight[57..181] time[117.502..205] -> depot weight[76..200] time[127.81..230]
vehicle8 :
 -> depot weight[0] time[0..5.64133] -> visit41 weight[0..5]
time[0.446525..6.08785] -> visit61 weight[10..15] time[10.4823..16.1236] ->
visit81 weight[20..25] time[20.5181..26.1594] -> visit101 weight[30..35]
time[30.5539..36.1952] -> visit121 weight[40..45] time[40.5897..46.231] ->
visit141 weight[50..55] time[50.6255..56.2668] -> visit161 weight[60..65]
time[60.6613..66.3026] -> visit21 weight[70..75] time[70.6971..76.3384] ->
visit163 weight[80..85] time[81.0037..86.645] -> visit183 weight[93..98]
time[91.037..96.6783] -> visit189 weight[106..111] time[101.287..106.928] ->
visit99 weight[122..127] time[111.964..117.605] -> visit137 weight[139..144]
time[122.639..128.28] -> visit117 weight[141..146] time[132.673..138.314] ->
visit25 weight[143..148] time[142.859..148.5] -> visit86 weight[169..174]
time[153.099..158.741] -> visit13 weight[172..177] time[163.359..169] -> depot
weight[195..200] time[173.722..230]
vehicle9 :
 -> depot weight[0] time[0..56.2644] -> visit182 weight[0..4]
time[0.409943..56.6744] -> visit35 weight[7..11] time[61..66.9732] -> visit34
weight[15..19] time[71.3385..77.3117] -> visit36 weight[35..39]
time[81.5948..87.568] -> visit48 weight[54..58] time[95..97.986] -> visit85
weight[63..67] time[105.336..108.322] -> visit105 weight[89..93]
time[115.377..118.363] -> visit145 weight[115..119] time[125.418..128.404] ->
visit45 weight[141..145] time[135.459..138.445] -> visit146 weight[167..171]
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 111

time[145.7..148.686] -> visit26 weight[170..174] time[155.755..158.741] ->
visit173 weight[173..177] time[166.014..169] -> depot weight[196..200]
time[176.377..230]
vehicle10 :
 -> depot weight[0] time[0..45.5461] -> visit112 weight[0..1]
time[0.308232..45.8543] -> visit132 weight[19..20] time[10.3427..55.8888] ->
visit152 weight[38..39] time[20.3772..65.9233] -> visit172 weight[57..58]
time[30.4117..75.9578] -> visit12 weight[76..77] time[40.4462..85.9923] ->
visit43 weight[95..96] time[50.6977..96.2438] -> visit169 weight[108..109]
time[97..106.494] -> visit110 weight[124..125] time[107.421..116.915] ->
visit199 weight[140..141] time[117.676..127.17] -> visit197 weight[157..158]
time[128.351..137.845] -> visit177 weight[159..160] time[138.385..147.879] ->
visit24 weight[161..162] time[149.506..159] -> visit72 weight[180..181]
time[159.841..205] -> depot weight[199..200] time[170.149..230]
vehicle11 :
 -> depot weight[0] time[0..32.7593] -> visit122 weight[0..1]
time[0.409943..33.1692] -> visit54 weight[7..8] time[10.8925..43.6518] ->
visit74 weight[27..28] time[20.9266..53.6859] -> visit195 weight[47..48]
time[61..64.0244] -> visit171 weight[55..56] time[72.3622..75.3866] -> visit187
weight[67..68] time[82.6231..85.6475] -> visit148 weight[72..73]
time[95..95.9483] -> visit29 weight[81..82] time[106.052..107] -> visit134
weight[97..98] time[117.579..127.497] -> visit114 weight[117..118]
time[127.614..137.532] -> visit94 weight[137..138] time[137.648..147.566] ->
visit44 weight[157..158] time[149..158.426] -> visit33 weight[176..177]
time[159.574..169] -> depot weight[199..200] time[169.937..230]
vehicle12 :
 -> depot weight[0] time[0..65.6019] -> visit50 weight[0..21]
time[0.589454..66.1914] -> visit151 weight[16..37] time[67..76.4425] -> visit67
weight[28..49] time[77.261..86.7034] -> visit128 weight[33..54]
time[95..97.0042] -> visit56 weight[42..63] time[105.418..107.422] -> visit136
weight[61..82] time[115.453..117.457] -> visit116 weight[80..101]
time[125.488..127.492] -> visit96 weight[99..120] time[135.522..137.527] ->
visit76 weight[118..139] time[145.557..147.561] -> visit84 weight[137..158]
time[156.422..158.426] -> visit73 weight[156..177] time[166.996..169] -> depot
weight[179..200] time[177.359..230]
vehicle13 :
 -> depot weight[0] time[0..54.2267] -> visit22 weight[0..19]
time[0.409943..54.6366] -> visit155 weight[7..26] time[61..64.9355] -> visit14
weight[15..34] time[71.3385..75.274] -> visit16 weight[35..54]
time[81.5948..85.5303] -> visit108 weight[54..73] time[95..95.9483] -> visit69
weight[63..82] time[106.052..107] -> visit154 weight[79..98]
time[117.579..127.497] -> visit194 weight[99..118] time[127.614..137.532] ->
visit174 weight[119..138] time[137.648..147.566] -> visit64 weight[139..158]
time[149..158.426] -> visit53 weight[158..177] time[159.574..169] -> depot
weight[181..200] time[169.937..230]
vehicle14 :
 -> depot weight[0] time[0..63.3156] -> visit135 weight[0..57]
time[61..64.0244] -> visit111 weight[8..65] time[72.3622..75.3866] -> visit47
weight[20..77] time[82.6231..85.6475] -> visit88 weight[25..82]
time[95..95.9483] -> visit89 weight[34..91] time[106.052..107] -> visit70
weight[50..107] time[116.473..117.865] -> visit90 weight[66..123]
time[126.507..127.899] -> visit1 weight[82..139] time[136.884..138.276] ->
visit143 weight[92..149] time[147.191..148.583] -> visit124 weight[105..162]
time[157.608..159] -> visit92 weight[124..181] time[167.942..205] -> depot
weight[143..200] time[178.251..230]
vehicle15 :
 -> depot weight[0] time[0..54.929] -> visit42 weight[0..72]
time[0.409943..55.339] -> visit115 weight[7..79] time[61..65.6378] -> visit91
112 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
weight[15..87] time[72.3622..77] -> visit150 weight[27..99]
time[82.6132..96.5791] -> visit49 weight[43..115] time[97..107] -> visit170
weight[59..131] time[107.421..153.318] -> visit87 weight[75..147]
time[117.769..163.666] -> visit38 weight[80..152] time[127.972..173.869] ->
visit58 weight[92..164] time[138.016..183.913] -> visit158 weight[104..176]
time[148.059..193.956] -> visit118 weight[116..188] time[158.103..204] -> depot
weight[128..200] time[168.593..230]
vehicle16 :
 -> depot weight[0] time[0..54.929] -> visit62 weight[0..36]
time[0.409943..55.339] -> visit95 weight[7..43] time[61..65.6378] -> visit71
weight[15..51] time[72.3622..77] -> visit190 weight[27..63]
time[82.6132..95.9518] -> visit129 weight[43..79] time[97..106.373] -> visit130
weight[59..95] time[107.421..116.794] -> visit159 weight[75..111]
time[117.676..127.049] -> visit139 weight[92..128] time[127.71..137.083] ->
visit23 weight[109..145] time[138.637..148.009] -> visit144 weight[122..158]
time[149.054..158.426] -> visit133 weight[141..177] time[159.627..169] -> depot
weight[164..200] time[169.99..230]
vehicle17 :
 -> depot weight[0] time[0..52.7706] -> visit82 weight[0..64]
time[0.409943..53.1805] -> visit75 weight[7..71] time[61..63.4794] -> visit51
weight[15..79] time[72.3622..74.8416] -> visit179 weight[27..91]
time[82.5292..85.0086] -> visit28 weight[44..108] time[95..95.3838] -> visit149
weight[53..117] time[106.052..106.436] -> visit27 weight[69..133]
time[116.821..117.205] -> visit7 weight[74..138] time[126.858..127.242] ->
visit167 weight[79..143] time[136.895..137.279] -> visit181 weight[84..148]
time[147.319..147.703] -> visit164 weight[94..158] time[158.043..158.426] ->
visit153 weight[113..177] time[168.616..169] -> depot weight[136..200]
time[178.979..230]
vehicle18 :
 -> depot weight[0] time[0..52.3532] -> visit142 weight[0..46]
time[0.409943..52.7631] -> visit55 weight[7..53] time[61..63.062] -> visit131
weight[15..61] time[72.3622..74.4241] -> visit39 weight[27..73]
time[82.5292..84.5911] -> visit79 weight[44..90] time[92.5628..94.6248] ->
visit8 weight[61..107] time[102.938..105] -> visit65 weight[70..116]
time[113.274..118.349] -> visit125 weight[96..142] time[123.315..128.39] ->
visit106 weight[122..168] time[133.556..138.631] -> visit126 weight[125..171]
time[143.611..148.686] -> visit166 weight[128..174] time[153.666..158.741] ->
visit113 weight[131..177] time[163.925..169] -> depot weight[154..200]
time[174.288..230]
vehicle19 :
 -> depot weight[0] time[0..14.9558] -> visit66 weight[0..38]
time[0.409416..15.3652] -> visit186 weight[3..41] time[10.4645..25.4203] ->
visit6 weight[6..44] time[20.5196..35.4753] -> visit178 weight[9..47]
time[30.8888..45.8446] -> visit198 weight[21..59] time[40.9325..55.8883] ->
visit107 weight[33..71] time[51.1353..66.0911] -> visit191 weight[38..76]
time[67..76.3521] -> visit19 weight[50..88] time[77.167..86.5191] -> visit68
weight[67..105] time[95..96.8943] -> visit77 weight[76..114]
time[105.309..107.203] -> visit57 weight[78..116] time[115.343..117.237] ->
visit37 weight[80..118] time[125.377..127.271] -> visit176 weight[82..120]
time[135.632..137.527] -> visit156 weight[101..139] time[145.667..147.561] ->
visit104 weight[120..158] time[156.532..158.426] -> visit93 weight[139..177]
time[167.106..169] -> depot weight[162..200] time[177.469..230]
vehicle20 :
 -> depot weight[0] time[0..60.2912] -> visit162 weight[0..178]
time[0.409943..60.7011] -> visit15 weight[7..185] time[61..71] -> visit2
weight[15..193] time[71.2989..202] -> depot weight[22..200] time[81.7088..230]
vehicle21 :
 -> depot weight[0] time[0..53.0535] -> visit102 weight[0..24]
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 113

time[0.409943..53.4634] -> visit175 weight[7..31] time[61..63.7623] -> visit138
weight[15..39] time[71.8984..74.6606] -> visit78 weight[27..51]
time[81.9421..84.7043] -> visit98 weight[39..63] time[91.9857..94.748] ->
visit168 weight[51..75] time[102.238..105] -> visit18 weight[60..84]
time[112.49..118.106] -> visit5 weight[72..96] time[122.802..128.418] ->
visit185 weight[98..122] time[132.843..138.459] -> visit165 weight[124..148]
time[142.884..148.5] -> visit46 weight[150..174] time[153.124..158.741] ->
visit193 weight[153..177] time[163.384..169] -> depot weight[176..200]
time[173.747..230]
vehicle22 : Unused
vehicle23 : Unused
vehicle24 : Unused
vehicle25 : Unused
vehicle26 : Unused
vehicle27 : Unused
vehicle28 : Unused
vehicle29 : Unused
vehicle30 : Unused
vehicle31 : Unused
vehicle32 : Unused
vehicle33 : Unused
vehicle34 : Unused
vehicle35 : Unused
vehicle36 : Unused
vehicle37 : Unused
vehicle38 : Unused
vehicle39 : Unused
vehicle40 : Unused
vehicle41 : Unused
vehicle42 : Unused
vehicle43 : Unused
vehicle44 : Unused
vehicle45 : Unused
vehicle46 : Unused
vehicle47 : Unused
vehicle48 : Unused
vehicle49 : Unused
vehicle50 : Unused
Emptying vehicle20 ...
Improving solution
Emptying vehicle7 ...
Improving solution
Solution after reducing active vehicles
Number of fails : 0
Number of choice points : 0
Number of variables : 5504
Number of constraints : 917
Reversible stack (bytes) : 578904
Solver heap (bytes) : 2089592
Solver global heap (bytes) : 1207824
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 35196
Total memory used (bytes) : 3979928
Elapsed time since creation : 0.061
Number of nodes : 201
Number of visits : 300
114 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
Number of vehicles : 50
Number of dimensions : 2
Number of accepted moves : 238
===============
Cost : 2072.93
Number of vehicles used : 16
Solution :
Unperformed visits : None
vehicle1 : Unused
vehicle2 : Unused
vehicle3 : Unused
vehicle4 : Unused
vehicle5 :
 -> depot weight[0] time[0..5.70798] -> visit40 weight[0..4]
time[0.741903..6.44988] -> visit60 weight[9..13] time[10.7752..16.4832] ->
visit80 weight[18..22] time[20.8086..26.5166] -> visit100 weight[27..31]
time[30.8419..36.5499] -> visit120 weight[36..40] time[40.8753..46.5832] ->
visit140 weight[45..49] time[50.9086..56.6166] -> visit160 weight[54..58]
time[60.9419..66.6499] -> visit180 weight[63..67] time[70.9753..76.6832] ->
visit200 weight[72..76] time[81.0086..86.7166] -> visit20 weight[81..85]
time[91.0419..96.7499] -> visit9 weight[90..94] time[101.292..107] -> visit83
weight[106..110] time[111.542..118.483] -> visit103 weight[119..123]
time[121.576..128.516] -> visit123 weight[132..136] time[131.609..138.55] ->
visit3 weight[145..149] time[141.642..148.583] -> visit184 weight[158..162]
time[152.059..159] -> visit192 weight[177..181] time[162.394..205] -> depot
weight[196..200] time[172.702..230]
vehicle6 :
 -> depot weight[0] time[0..43.3555] -> visit30 weight[0..56]
time[0.589454..43.9449] -> visit119 weight[16..72] time[10.845..54.2005] ->
visit59 weight[33..89] time[20.8786..64.2341] -> visit31 weight[50..106]
time[67..74.4011] -> visit147 weight[62..118] time[77.261..84.662] -> visit127
weight[67..123] time[87.2981..94.6992] -> visit188 weight[72..128]
time[97.5989..105] -> visit17 weight[81..137] time[107.907..117.811] -> visit97
weight[83..139] time[117.942..127.845] -> visit157 weight[85..141]
time[127.976..137.879] -> visit196 weight[87..143] time[138.231..148.135] ->
visit4 weight[106..162] time[149.096..159] -> visit52 weight[125..181]
time[159.431..205] -> depot weight[144..200] time[169.739..230]
vehicle7 :
 -> depot weight[0] time[0..54.929] -> visit2 weight[0..109]
time[0.409943..55.339] -> visit15 weight[7..116] time[61..65.6378] -> visit11
weight[15..124] time[72.3622..77] -> visit10 weight[27..136]
time[82.6132..96.5791] -> visit109 weight[43..152] time[97..107] -> visit63
weight[59..168] time[107.25..194.749] -> visit32 weight[72..181]
time[117.502..205] -> depot weight[91..200] time[127.81..230]
vehicle8 :
 -> depot weight[0] time[0..5.64133] -> visit41 weight[0..5]
time[0.446525..6.08785] -> visit61 weight[10..15] time[10.4823..16.1236] ->
visit81 weight[20..25] time[20.5181..26.1594] -> visit101 weight[30..35]
time[30.5539..36.1952] -> visit121 weight[40..45] time[40.5897..46.231] ->
visit141 weight[50..55] time[50.6255..56.2668] -> visit161 weight[60..65]
time[60.6613..66.3026] -> visit21 weight[70..75] time[70.6971..76.3384] ->
visit163 weight[80..85] time[81.0037..86.645] -> visit183 weight[93..98]
time[91.037..96.6783] -> visit189 weight[106..111] time[101.287..106.928] ->
visit99 weight[122..127] time[111.964..117.605] -> visit137 weight[139..144]
time[122.639..128.28] -> visit117 weight[141..146] time[132.673..138.314] ->
visit25 weight[143..148] time[142.859..148.5] -> visit86 weight[169..174]
time[153.099..158.741] -> visit13 weight[172..177] time[163.359..169] -> depot
weight[195..200] time[173.722..230]
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 115

vehicle9 :
 -> depot weight[0] time[0..56.2644] -> visit182 weight[0..4]
time[0.409943..56.6744] -> visit35 weight[7..11] time[61..66.9732] -> visit34
weight[15..19] time[71.3385..77.3117] -> visit36 weight[35..39]
time[81.5948..87.568] -> visit48 weight[54..58] time[95..97.986] -> visit85
weight[63..67] time[105.336..108.322] -> visit105 weight[89..93]
time[115.377..118.363] -> visit145 weight[115..119] time[125.418..128.404] ->
visit45 weight[141..145] time[135.459..138.445] -> visit146 weight[167..171]
time[145.7..148.686] -> visit26 weight[170..174] time[155.755..158.741] ->
visit173 weight[173..177] time[166.014..169] -> depot weight[196..200]
time[176.377..230]
vehicle10 :
 -> depot weight[0] time[0..45.5461] -> visit112 weight[0..1]
time[0.308232..45.8543] -> visit132 weight[19..20] time[10.3427..55.8888] ->
visit152 weight[38..39] time[20.3772..65.9233] -> visit172 weight[57..58]
time[30.4117..75.9578] -> visit12 weight[76..77] time[40.4462..85.9923] ->
visit43 weight[95..96] time[50.6977..96.2438] -> visit169 weight[108..109]
time[97..106.494] -> visit110 weight[124..125] time[107.421..116.915] ->
visit199 weight[140..141] time[117.676..127.17] -> visit197 weight[157..158]
time[128.351..137.845] -> visit177 weight[159..160] time[138.385..147.879] ->
visit24 weight[161..162] time[149.506..159] -> visit72 weight[180..181]
time[159.841..205] -> depot weight[199..200] time[170.149..230]
vehicle11 :
 -> depot weight[0] time[0..32.7593] -> visit122 weight[0..1]
time[0.409943..33.1692] -> visit54 weight[7..8] time[10.8925..43.6518] ->
visit74 weight[27..28] time[20.9266..53.6859] -> visit195 weight[47..48]
time[61..64.0244] -> visit171 weight[55..56] time[72.3622..75.3866] -> visit187
weight[67..68] time[82.6231..85.6475] -> visit148 weight[72..73]
time[95..95.9483] -> visit29 weight[81..82] time[106.052..107] -> visit134
weight[97..98] time[117.579..127.497] -> visit114 weight[117..118]
time[127.614..137.532] -> visit94 weight[137..138] time[137.648..147.566] ->
visit44 weight[157..158] time[149..158.426] -> visit33 weight[176..177]
time[159.574..169] -> depot weight[199..200] time[169.937..230]
vehicle12 :
 -> depot weight[0] time[0..65.6019] -> visit50 weight[0..21]
time[0.589454..66.1914] -> visit151 weight[16..37] time[67..76.4425] -> visit67
weight[28..49] time[77.261..86.7034] -> visit128 weight[33..54]
time[95..97.0042] -> visit56 weight[42..63] time[105.418..107.422] -> visit136
weight[61..82] time[115.453..117.457] -> visit116 weight[80..101]
time[125.488..127.492] -> visit96 weight[99..120] time[135.522..137.527] ->
visit76 weight[118..139] time[145.557..147.561] -> visit84 weight[137..158]
time[156.422..158.426] -> visit73 weight[156..177] time[166.996..169] -> depot
weight[179..200] time[177.359..230]
vehicle13 :
 -> depot weight[0] time[0..54.2267] -> visit22 weight[0..19]
time[0.409943..54.6366] -> visit155 weight[7..26] time[61..64.9355] -> visit14
weight[15..34] time[71.3385..75.274] -> visit16 weight[35..54]
time[81.5948..85.5303] -> visit108 weight[54..73] time[95..95.9483] -> visit69
weight[63..82] time[106.052..107] -> visit154 weight[79..98]
time[117.579..127.497] -> visit194 weight[99..118] time[127.614..137.532] ->
visit174 weight[119..138] time[137.648..147.566] -> visit64 weight[139..158]
time[149..158.426] -> visit53 weight[158..177] time[159.574..169] -> depot
weight[181..200] time[169.937..230]
vehicle14 :
 -> depot weight[0] time[0..53.3156] -> visit162 weight[0..50]
time[0.409943..53.7256] -> visit135 weight[7..57] time[61..64.0244] -> visit111
weight[15..65] time[72.3622..75.3866] -> visit47 weight[27..77]
time[82.6231..85.6475] -> visit88 weight[32..82] time[95..95.9483] -> visit89
116 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
weight[41..91] time[106.052..107] -> visit70 weight[57..107]
time[116.473..117.865] -> visit90 weight[73..123] time[126.507..127.899] ->
visit1 weight[89..139] time[136.884..138.276] -> visit143 weight[99..149]
time[147.191..148.583] -> visit124 weight[112..162] time[157.608..159] ->
visit92 weight[131..181] time[167.942..205] -> depot weight[150..200]
time[178.251..230]
vehicle15 :
 -> depot weight[0] time[0..54.929] -> visit42 weight[0..72]
time[0.409943..55.339] -> visit115 weight[7..79] time[61..65.6378] -> visit91
weight[15..87] time[72.3622..77] -> visit150 weight[27..99]
time[82.6132..96.5791] -> visit49 weight[43..115] time[97..107] -> visit170
weight[59..131] time[107.421..153.318] -> visit87 weight[75..147]
time[117.769..163.666] -> visit38 weight[80..152] time[127.972..173.869] ->
visit58 weight[92..164] time[138.016..183.913] -> visit158 weight[104..176]
time[148.059..193.956] -> visit118 weight[116..188] time[158.103..204] -> depot
weight[128..200] time[168.593..230]
vehicle16 :
 -> depot weight[0] time[0..54.929] -> visit62 weight[0..36]
time[0.409943..55.339] -> visit95 weight[7..43] time[61..65.6378] -> visit71
weight[15..51] time[72.3622..77] -> visit190 weight[27..63]
time[82.6132..95.9518] -> visit129 weight[43..79] time[97..106.373] -> visit130
weight[59..95] time[107.421..116.794] -> visit159 weight[75..111]
time[117.676..127.049] -> visit139 weight[92..128] time[127.71..137.083] ->
visit23 weight[109..145] time[138.637..148.009] -> visit144 weight[122..158]
time[149.054..158.426] -> visit133 weight[141..177] time[159.627..169] -> depot
weight[164..200] time[169.99..230]
vehicle17 :
 -> depot weight[0] time[0..52.7706] -> visit82 weight[0..64]
time[0.409943..53.1805] -> visit75 weight[7..71] time[61..63.4794] -> visit51
weight[15..79] time[72.3622..74.8416] -> visit179 weight[27..91]
time[82.5292..85.0086] -> visit28 weight[44..108] time[95..95.3838] -> visit149
weight[53..117] time[106.052..106.436] -> visit27 weight[69..133]
time[116.821..117.205] -> visit7 weight[74..138] time[126.858..127.242] ->
visit167 weight[79..143] time[136.895..137.279] -> visit181 weight[84..148]
time[147.319..147.703] -> visit164 weight[94..158] time[158.043..158.426] ->
visit153 weight[113..177] time[168.616..169] -> depot weight[136..200]
time[178.979..230]
vehicle18 :
 -> depot weight[0] time[0..52.3532] -> visit142 weight[0..46]
time[0.409943..52.7631] -> visit55 weight[7..53] time[61..63.062] -> visit131
weight[15..61] time[72.3622..74.4241] -> visit39 weight[27..73]
time[82.5292..84.5911] -> visit79 weight[44..90] time[92.5628..94.6248] ->
visit8 weight[61..107] time[102.938..105] -> visit65 weight[70..116]
time[113.274..118.349] -> visit125 weight[96..142] time[123.315..128.39] ->
visit106 weight[122..168] time[133.556..138.631] -> visit126 weight[125..171]
time[143.611..148.686] -> visit166 weight[128..174] time[153.666..158.741] ->
visit113 weight[131..177] time[163.925..169] -> depot weight[154..200]
time[174.288..230]
vehicle19 :
 -> depot weight[0] time[0..14.9558] -> visit66 weight[0..38]
time[0.409416..15.3652] -> visit186 weight[3..41] time[10.4645..25.4203] ->
visit6 weight[6..44] time[20.5196..35.4753] -> visit178 weight[9..47]
time[30.8888..45.8446] -> visit198 weight[21..59] time[40.9325..55.8883] ->
visit107 weight[33..71] time[51.1353..66.0911] -> visit191 weight[38..76]
time[67..76.3521] -> visit19 weight[50..88] time[77.167..86.5191] -> visit68
weight[67..105] time[95..96.8943] -> visit77 weight[76..114]
time[105.309..107.203] -> visit57 weight[78..116] time[115.343..117.237] ->
visit37 weight[80..118] time[125.377..127.271] -> visit176 weight[82..120]
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 117

time[135.632..137.527] -> visit156 weight[101..139] time[145.667..147.561] ->
visit104 weight[120..158] time[156.532..158.426] -> visit93 weight[139..177]
time[167.106..169] -> depot weight[162..200] time[177.469..230]
vehicle20 : Unused
vehicle21 :
 -> depot weight[0] time[0..53.0535] -> visit102 weight[0..24]
time[0.409943..53.4634] -> visit175 weight[7..31] time[61..63.7623] -> visit138
weight[15..39] time[71.8984..74.6606] -> visit78 weight[27..51]
time[81.9421..84.7043] -> visit98 weight[39..63] time[91.9857..94.748] ->
visit168 weight[51..75] time[102.238..105] -> visit18 weight[60..84]
time[112.49..118.106] -> visit5 weight[72..96] time[122.802..128.418] ->
visit185 weight[98..122] time[132.843..138.459] -> visit165 weight[124..148]
time[142.884..148.5] -> visit46 weight[150..174] time[153.124..158.741] ->
visit193 weight[153..177] time[163.384..169] -> depot weight[176..200]
time[173.747..230]
vehicle22 : Unused
vehicle23 : Unused
vehicle24 : Unused
vehicle25 : Unused
vehicle26 : Unused
vehicle27 : Unused
vehicle28 : Unused
vehicle29 : Unused
vehicle30 : Unused
vehicle31 : Unused
vehicle32 : Unused
vehicle33 : Unused
vehicle34 : Unused
vehicle35 : Unused
vehicle36 : Unused
vehicle37 : Unused
vehicle38 : Unused
vehicle39 : Unused
vehicle40 : Unused
vehicle41 : Unused
vehicle42 : Unused
vehicle43 : Unused
vehicle44 : Unused
vehicle45 : Unused
vehicle46 : Unused
vehicle47 : Unused
vehicle48 : Unused
vehicle49 : Unused
vehicle50 : Unused

*/
118 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

C H A P T E R
5

Adding Visit Disjunctions

In this lesson, you will learn how to:

◆ add visit disjunctions

◆ modify an existing routing plan by adding or removing visits

◆ use the classes and functions IloInsertVisit, IloRoutingSolution::remove,
IloRoutingSolution::add, IloNHoodArray, IloConcatenate,
IloVisit::performed, IloVisit::unperformed, and IloVisitArray

You will learn how to model and solve a vehicle routing problem (VRP) where only one of a
pair of visits can be performed or where there are alternate sites available for a visit. For
example, a customer may have more than one site available to receive deliveries. Dispatcher
provides visit disjunctions to model these types of problems.

You will also learn how to add and remove visits from an existing routing plan in a dynamic
problem. In many situations, it may be necessary to take an order and add a visit to an
existing routing plan. It may also be the case that an order is cancelled by a customer.
Recomputing the plan from scratch would be far too time-consuming, so Dispatcher allows
you to add or remove a visit by modifying an existing solution.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 119

Describe

This problem presented here is similar to a standard VRP, except that each delivery to a
customer is represented by two visits, only one of which can be performed. Each of these
visits has a penalty cost for not being performed, and the total cost of the solution includes
the penalty cost of the unperformed visits.

The first step is to write a natural language description of the problem.

The components of the routing model for this problem are the same as for a standard VRP:
vehicles, customers, and a depot. However, each delivery to a customer is represented by two
alternative visits.

The constraints in this problem are the same as those in a standard VRP: time windows,
vehicle capacity, and visit quantities.

The objective is to minimize the total cost of the solution. This cost includes the penalty
costs for not performing the visit in each pair that is unperformed.

Model

Once you have written a description of your problem, you can use Dispatcher classes to
model it.

Open the example file YourDispatcherHome/examples/src/tutorial/
disjunct_partial.cpp in your development environment. This file is a program that is
only partially completed. You will fill in the blanks in each step in this lesson. At the end of
this lesson, you will have completed the code for the problem and you will be able to
compile and run it.

As in Chapter 2, Modeling a Vehicle Routing Problem, you create a RoutingModel class,
which is used to model the problem.

Step 1 Describe the problem

Step 2 Open the example file
120 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Declare the RoutingModel class

The code for the declaration of the class RoutingModel is provided for you:

There are only a few differences between the RoutingModel class used in a standard VRP
and the RoutingModel class used in this problem.

The dimensions in this problem are time, weight, and distance.

An instance of the class IloDispatcherGraph allows you create a graph representing a
road network topology on which instances of IloNode can be positioned.
IloDispatcherGraph computes the shortest paths between nodes for each vehicle. It is
this shortest path that is used to create the dimensions _time and _distance in this
problem. See “Define the addDimensions function” on page 124. Dispatcher’s graph
functionality is introduced in Chapter 4, Minimizing the Number of Vehicles.

The function getSwapArray is used to access a neighborhood created to swap alternative
visits and implement visit disjunctions. See “Define the createVisits function” on page 125.
The member functions createAdditionalVisits and removeVisit are used to add and
remove visits from the model. See “Define the createAdditionalVisits function” on page 128
and “Define the function removeVisit” on page 128.

class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloDispatcherGraph _graph;
 IloDimension1 _weight;
 IloDimension2 _time;
 IloDimension2 _distance;
 IloNHoodArray _swapArray;

 void addDimensions();
 void loadGraphInformation (const char * arcFileName,
 const char* turnFileName);
 void lastMinuteGraphChanges ();
 void createIloNodes(const char * nodeFileName, const char* coordFileName);
 void createVehicles(const char * vehicleFileName);
 void createVisits(const char * visitsFileName);

public:
 RoutingModel(IloEnv env, int argc, char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
 IloNHoodArray getSwapArray() const {return _swapArray;}
 IloVisit createAdditionalVisits (int argc, char* argv[]);
 void removeVisit (IloVisit);
};
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 121

Define the RoutingModel constructor

The constructor is defined as in Chapter 4, Minimizing the Number of Vehicles. If you do not
specify input files, the defaults will be used. This constructor will be called from the main
function. It calls the following functions: addDimensions, loadGraphInformation,
createIloNodes, createVehicles, and createVisits.

The following code is provided for you:

RoutingModel::RoutingModel(IloEnv env,
 int argc,
 char* argv[]):
 _env(env), _mdl(env), _graph(env) {
 addDimensions();

 // Load dispatcher graph information and add instance-specific features.
 char * arcFileName;
 if(argc < 2) arcFileName =
 (char*) "../../../examples/data/dispatcherGraphData/gridNetwork.csv";
 else arcFileName = argv[1];
 char * turnFileName;
 if(argc < 3) turnFileName =
 (char*) "../../../examples/data/dispatcherGraphData/turnData.csv";
 else turnFileName = argv[2];
 loadGraphInformation (arcFileName, turnFileName);

 //create IloNodes and associate them to graph nodes
 char * nodeFileName;
 if(argc < 4) nodeFileName =
 (char*) "../../../examples/data/vrp50/vrp50nodes.csv";
 else nodeFileName = argv[3];
 char * nodeCoordsFile;
 if(argc < 5) nodeCoordsFile =
 (char*) "../../../examples/data/dispatcherGraphData/coordTable.csv";
 else nodeCoordsFile = argv[4];
 createIloNodes(nodeFileName, nodeCoordsFile);

 //create vehicles
 char * vehiclesFileName;
 if(argc < 6) vehiclesFileName =
 (char*) "../../../examples/data/vrp50/vrp50vehicles.csv";
 else vehiclesFileName = argv[5];
 createVehicles(vehiclesFileName);

 //create visits
 char * visitsFileName;
 if(argc < 7) visitsFileName =
 (char*) "../../../examples/data/vrp50/vrp50visits.csv";
 else visitsFileName = argv[6];
 createVisits(visitsFileName);
}

122 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Define the loadGraphInformation function

The loadGraphInformation function is defined as in Chapter 4, Minimizing the Number
of Vehicles. First, you build the road network graph using the function
loadGraphInformation. Then you load the network topology from a csv file and create
all necessary arcs and nodes. The member function
IloDispatcherGraph::loadArcDimensionDataFromFile loads the arc cost
information relating to the dimensions _time and _distance. The member function
IloDispatcherGraph::loadTurnDimensionDataFromFile loads turn penalty
information from the turn file. By default, all turns are allowed with no penalty. The
loadGraphInformation function calls the lastMinuteGraphChanges function to
allow for direct manipulation of the road network graph. The following code is provided for
you:

Define the lastMinuteGraphChanges function

The lastMinuteGraphChanges function is defined as in Chapter 4, Minimizing the
Number of Vehicles. The following code is provided for you:

void RoutingModel::loadGraphInformation (const char* arcFileName,
 const char* turnFileName) {
 _graph.createArcsFromFile (arcFileName);
 _graph.loadArcDimensionDataFromFile (arcFileName, _time);
 _graph.loadArcDimensionDataFromFile (arcFileName, _distance);
 _graph.loadTurnDimensionDataFromFile(turnFileName, _time);
 lastMinuteGraphChanges();
}

void RoutingModel::lastMinuteGraphChanges () {
 _graph.forbidArcUse(_graph.getArcByEnds(2785-1, 2785));
 _graph.forbidArcUse(_graph.getArcByEnds(2785+1, 2785));
 _graph.forbidArcUse(_graph.getArcByEnds(2785-56, 2785));
 _graph.setTurnPenalty(_graph.getArc(1323), _graph.getArc(1544), _time, 12);
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 123

Define the addDimensions function

The addDimensions function is defined as in Chapter 4, Minimizing the Number of
Vehicles. The _time and _distance dimensions are computed using the shortest path from
the road network graph. This code is provided for you:

In this example, you could also use the predefined distance functions IloEuclidean or
IloManhattan or define your own distance function.

Define the createIloNodes function

The createIloNodes function is defined as in Chapter 4, Minimizing the Number of
Vehicles. You use IBM® ILOG® Concert Technology’s csv functionality to input node data
and node coordinate data from csv files. You use the member function
IloDispatcherGraph::associatebyCoordsInFile to look up the coordinates of a
given IloNode in a csv file and automatically associate it to the graph node with matching
coordinates. Here is the complete code for defining the createIloNodes function:

void RoutingModel::addDimensions() {
 _weight =IloDimension1 (_env, "weight");
 _mdl.add(_weight);

 IloDistance SP_time = IloGraphDistance (_graph);
 _time =IloDimension2 (_env, SP_time, "time");
 _mdl.add(_time);

 IloDistance SP_distance = IloGraphDistance (_graph);
 _distance =IloDimension2 (_env, SP_distance, "distance");
 _mdl.add(_distance);
}

void RoutingModel::createIloNodes(const char * nodeFileName,
 const char* coordFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * name = line.getStringByHeader("name");
 IloNode node(_env, line.getFloatByHeader("x"),
 line.getFloatByHeader("y"), 0, name);
 node.setKey(name);
 _graph.associateByCoordsInFile (node, coordFileName);
 ++it;
 }
 csvNodeReader.end();
}

124 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Define the createVehicles function

The createVehicles function is defined as in Chapter 4, Minimizing the Number of
Vehicles. You use csv reader functionality to input vehicle data from a csv file. The vehicles
have start and end visits. You add side constraints that the vehicles must leave the depot after
it opens and return to the depot before it closes. You set the capacities of the vehicles using
IloVehicle::setCapacity and the dimension _weight. Using
IloVehicle::setCost, the cost of each vehicle is set to be directly proportional to the
dimensions _time and _distance. This code is provided for you:

Define the createVisits function

Now you create the visits. In this problem, since each visit can be performed at either of two
alternative sites, the visits are created in pairs. These pairs are themselves each a
neighborhood, since they represent alternative moves that can be taken in a search for a
solution—they can be swapped or exchanged with each other. The array of neighborhoods
_swapArray is created using the constructor IloNHoodArray. This constructor creates an
array of neighborhoods associated with environment _env. The size of the array is the value
returned by csvVisitReader.getNbOfItems divided by 2. There are half as many
neighborhood pairs as there are visits.

 void RoutingModel::createVehicles(const char * vehicleFileName) {
 IloCsvReader csvVehicleReader(_env, vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader("first");
 char * namelast = line.getStringByHeader("last");
 char * name = line.getStringByHeader("name");
 IloNum capacity = line.getFloatByHeader("capacity");
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);
 IloVisit first(node1, "depot");
 _mdl.add(first.getCumulVar(_weight) == 0);
 IloVisit last(node2, "depot");
 _mdl.add(last.getCumulVar(_distance) >= line.getFloatByHeader("open"));
 _mdl.add(last.getCumulVar(_distance) <= line.getFloatByHeader("close"));
 IloVehicle vehicle(first, last, name);
 vehicle.setCapacity(_weight, capacity);
 vehicle.setCost(_time, 1.0);
 vehicle.setCost(_distance, 1.0);
 _mdl.add(vehicle);
 ++it;
 }
 csvVehicleReader.end();
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 125

Add the following code after the comment //Create the visit swap array

Now the pairs of visits are created. Each visit of a pair is created in the same way. You use
csv reader functionality to input visit data from a csv file. A visit must be associated to a
node, its location. A visit also has a quantity—the amount of goods delivered to the location.
A visit can have a minimum time and a maximum time during which it can be performed—a
time window. Additionally, visits have a drop time—the amount time required to perform
the visit. These side constraints are modeling using the dimensions _time and _weight and
the delay, transit, and cumulative variables associated with the visit.

You use the member function IloVisit::setPenaltyCost to set the cost of not
performing visit1 to 20 units. This allows the visit to not be performed, since only one
visit of each pair will be performed.

Add the following code after the comment // Create the first visit of the pair

The second visit of the pair is created in the same way as the first, except that it has a
different penalty cost. You use the member function IloVisit::setPenaltyCost to set
the cost of not performing visit2 to 10 units. This means that the solution will be more
likely to include the visit1 of each pair, rather than the visit2 of each pair, since the

Step 3 Create the visit swap array

void RoutingModel::createVisits(const char* visitsFileName) {
 IloCsvReader csvVisitReader(_env, visitsFileName);
 _swapArray = IloNHoodArray (_env, csvVisitReader.getNumberOfItems()/2);
 IloInt i=0;
 IloCsvReader::LineIterator it(csvVisitReader);
 while(it.ok()){

Step 4 Create the first visit of the pair

 IloCsvLine line1 = *it;
 //read visit data from files
 char * visitName1 = line1.getStringByHeader("name");
 char * nodeName1 = line1.getStringByHeader("node");
 IloNum quantity1 = line1.getFloatByHeader("quantity");
 IloNum minTime1 = line1.getFloatByHeader("minTime");
 IloNum maxTime1 = line1.getFloatByHeader("maxTime");
 IloNode node1 = IloNode::Find(_env, nodeName1);
 IloVisit visit1(node1, visitName1);
 _mdl.add(visit1.getTransitVar(_weight) == quantity1);
 visit1.setPenaltyCost(20);
 _mdl.add(minTime1 <= visit1.getCumulVar(_time) <= maxTime1);
 _mdl.add(visit1);
 ++it;
126 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
penalty for not performing visit1 of each pair is higher than the penalty for not performing
visit2. The following code is provided for you:

Once both visits are created, you post a constraint that ensures that only one of the two visits
is performed. You use the member function IloVisit::unperformed to add this
constraint.

Add the following code after the comment
//Add the visit disjunction constraint

You then create an array of visits that includes visit1 and visit2. You create a
neighborhood using the function IloSwapPerform that will modify the solution by
exchanging the performed visit of the pair with the unperformed visit of the pair. This is
used in the solution improvement phase.

Add the following code after the comment //Create the swap neighborhood

 IloCsvLine line2 = *it;
 char * visitName2 = line2.getStringByHeader("name");
 char * nodeName2 = line2.getStringByHeader("node");
 IloNum quantity2 = line2.getFloatByHeader("quantity");
 IloNum minTime2 = line2.getFloatByHeader("minTime");
 IloNum maxTime2 = line2.getFloatByHeader("maxTime");
 IloNode node2 = IloNode::Find(_env, nodeName2);
 IloVisit visit2(node2, visitName2);
 _mdl.add(visit2.getTransitVar(_weight) == quantity2);
 visit2.setPenaltyCost(10);
 _mdl.add(minTime2 <= visit2.getCumulVar(_time) <= maxTime2);
 _mdl.add(visit2);
 ++it;

Step 5 Add the visit disjunction constraint

 _mdl.add(visit1.unperformed() + visit2.unperformed() == 1);

Step 6 Create the swap neighborhood

 IloVisitArray visits(_env, 2);
 visits[0] = visit1; visits[1] = visit2;
 _swapArray[i] = IloSwapPerform(_env, visits);
 ++i;
 }
 csvVisitReader.end();
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 127

Define the createAdditionalVisits function

To create a new visit in the model, you create an instance of IloNode corresponding to the
customer location. You use the member function
IloDispatcherGraph::associateByCoordsInFile to look up the coordinates of this
IloNode in a csv file and automatically associate it to the graph node with matching
coordinates. You then create an instance of IloVisit located at the customer node. This
visit has a delay time of 10 units, a quantity of 12 units, and a time window. You use the
member function IloModel::add(IloVisit) to add the visit from the model.

Add the following code after the comment //Create an additional visit

Define the function removeVisit

You use the member function IloModel::remove(IloVisit) to remove a visit from the
model.

Add the following code after the comment //Remove the visit from the model

Step 7 Create an additional visit

IloVisit RoutingModel::createAdditionalVisits (int argc, char * argv[]) {
 char * nodeCoordsFile;
 if(argc < 5) nodeCoordsFile =
 (char*) "../../../examples/data/dispatcherGraphData/coordTable.csv";
 else nodeCoordsFile = argv[4];
 IloNode customer(_env, 43, 63);
 _graph.associateByCoordsInFile (customer, nodeCoordsFile);
 IloVisit visit(customer, "Extra visit");
 _mdl.add(visit.getDelayVar(_time) == 10);
 _mdl.add(visit.getTransitVar(_weight) == 12);
 _mdl.add(70 <= visit.getCumulVar(_time) <= 120);
 _mdl.add(visit);
 return visit;
}

Step 8 Remove the visit from the model

void RoutingModel::removeVisit (IloVisit visit) {
 _mdl.remove(visit);
}

128 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Solve

You search for a solution using the two-phase approach shown in Chapter 3, Solving a
Vehicle Routing Problem. The only difference is that you use the swap neighborhoods you
created from the visit pairs. You also dynamically modify the solution by adding and
removing a visit from an existing routing plan.

As in Chapter 3, Solving a Vehicle Routing Problem, you create the RoutingSolver class,
which is used to solve the vehicle routing problem.

Declare the RoutingSolver class

The code for the declaration of the class RoutingSolver is provided for you:

There are only a few differences between the RoutingSolver class used in a standard VRP
and the RoutingSolver class used in this problem. There are two additional member
functions: addNewVisit and removeVisitAndResolve. These member functions are
explained in the following sections.

Define the RoutingSolver constructor

The RoutingSolver constructor is defined as in Chapter 3, Solving a Vehicle Routing
Problem. It takes an instance of RoutingModel as a parameter. The environment, model,
solver, dispatcher, and solution are initialized. The goal to instantiate cost is created using
the function IloDichotomize. You use the predefined first solution generation heuristic
IloSavingsGenerate to create the first solution. The goal to restore the solution is created

class RoutingSolver {
 IloEnv _env;
 IloModel _mdl;
 IloSolver _solver;
 IloDispatcher _dispatcher;
 IloRoutingSolution _solution;
 IloGoal _instantiateCost;
 IloGoal _generalGoal;
 IloGoal _restoreSolution;

public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloBool findFirstSolution ();
 void improveWithNhood (IloNHoodArray swap);
 IloBool addNewVisit (IloVisit visit);
 IloBool removeVisitAndResolve (IloVisit visit);
 void printInformation(const char* =0) const;
};
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 129

using IloRestoreSolution. This constructor will be called from the main function. This
code is provided for you:

Define the findFirstSolution function

Now, you create the function that searches for the first solution. This function is the same as
the one you created in Chapter 3, Solving a Vehicle Routing Problem. You search for a
solution using _generalGoal and store the solution and its cost using the member function
IloRoutingSolution::store. This code is provided for you:

Define the improveWithNHood function

After you have found a first solution, you create the neighborhoods you will use in the
solution improvement phase. You use the constructor IloNHoodArray to create an array of
six neighborhoods called nhoodArray. Five of these neighborhoods are the predefined
neighborhoods IloRelocate, IloExchange, IloCross, IloTwoOpt, and IloOrOpt.
The neighborhood nhoodArray[2] is created using the function IloConcatenate to join
together the array of swap neighborhoods you created in the section “Define the createVisits
function” on page 125. You also use the function IloConcatenate to join together all the
neighborhoods in nHoodArray and create nhood.

For more information about how predefined neighborhoods work, see Appendix B,
Predefined Neighborhoods.

 RoutingSolver::RoutingSolver(RoutingModel mdl):
 _env(mdl.getEnv()),
 _mdl(mdl.getModel()),
 _solver(mdl.getModel()),
 _dispatcher(_solver),
 _solution(mdl.getModel()){
 _instantiateCost =
 IloDichotomize(_env, _dispatcher.getCostVar(), IloFalse);
 _generalGoal = IloSavingsGenerate(_env) && _instantiateCost;
 _restoreSolution = IloRestoreSolution(_env, _solution);
 }

IloBool RoutingSolver::findFirstSolution() {
 if (!_solver.solve(_generalGoal)) {
 _solver.error() << "Infeasible Routing Plan" << endl;
 return IloFalse;
 }
 _solution.store(_solver);
 return IloTrue;
}

130 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Add the following code after the comment //Create the neighborhoods

The rest of the function is defined as in Chapter 3, Solving a Vehicle Routing Problem. You
use the function IloSingleMove to return a goal that makes a single local move as defined
by a neighborhood and a search heuristic. The following code is provided for you:

Define the addNewVisit function

Once new visits have been added to an existing routing plan using the function
createAdditionalVisits, they can be inserted into the existing solution using the
function addNewVisit. This function uses IloRoutingSolution::add to directly add
the new visit to the solution. When it is added, its saved state is unperformed. To make the
visit performed, you create a goal using IloInsertVisit, which eliminates the need to
recompute the routing plan from scratch. If the visit cannot be inserted in the solution, the
goal fails. If the visit is inserted, the new solution is stored.

Step 9 Create the neighborhoods

void RoutingSolver::improveWithNhood(IloNHoodArray swap) {
 IloNHoodArray nhoodArray(_env, 6);
 nhoodArray[0] = IloTwoOpt(_env);
 nhoodArray[1] = IloOrOpt(_env);
 nhoodArray[2] = IloConcatenate(_env, swap);
 nhoodArray[3] = IloExchange(_env);
 nhoodArray[4] = IloRelocate(_env);
 nhoodArray[5] = IloCross(_env);
 IloNHood nhood = IloConcatenate(_env, nhoodArray);

 _solver.out() << "Improving solution" << endl;
 IloGoal improve = IloSingleMove(_env,
 _solution,
 nhood,
 IloImprove(_env),
 _instantiateCost);
 while (_solver.solve(improve)) {
 }
 _solver.solve(_restoreSolution);
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 131

Add the following code after the comment //Add a new visit

Define the removeVisitAndResolve function

To remove that same new visit from the solution, you use the function
removeVisitAndResolve. This function uses IloRoutingSolution::remove to
directly remove the new visit to the solution. You then restore the solution.

Add the following code after the comment //Remove the visit and resolve

Step 10 Add a new visit

IloBool RoutingSolver::addNewVisit (IloVisit visit) {
 IloGoal insert = IloInsertVisit(_env, visit, _solution, _instantiateCost);
 if (!_solver.solve(insert)) {
 _solver.out() << "Cannot insert new visit in solution" << endl;
 return IloFalse;
 }
 _solution.add(visit);
 _solution.store(_solver);
 return IloTrue;
}

Step 11 Remove the visit and resolve

IloBool RoutingSolver::removeVisitAndResolve (IloVisit visit) {
 _solution.remove(visit);
 if (_solver.solve(_restoreSolution))
 return IloTrue;
 else return IloFalse;
}

132 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Define the printInformation function

The printInformation function is the same as in Chapter 3, Solving a Vehicle Routing
Problem. This code is provided for you:

Define the main function

After you finish creating the RoutingModel and RoutingSolver classes and the
printInformation function, you use them in the main function. You can use command
line syntax to pass the names of input files to the model. If you do not specify input files, the
defaults will be used. In the main function, you first create an environment. Then you create
an instance of the RoutingModel class, which takes the environment and input files as
parameters. You create an instance of the RoutingSolver class. This takes one parameter,
the model. You use an if loop to find a solution. If Solver finds a first solution, you improve
the solution. Then, you use the function createAdditionalVisits to add a visit to the
model and the function addNewVisit to dynamically add the visit to the routing plan

void RoutingSolver::printInformation(const char* heading) const {
 if(heading)
 _solver.out()<<heading<<endl;
 _solver.printInformation();
 _dispatcher.printInformation();
 _solver.out() << "===============" << endl
 << "Cost : " << _dispatcher.getTotalCost() << endl
 << "Number of vehicles used : "
 << _dispatcher.getNumberOfVehiclesUsed() << endl
 << "Solution : " << endl
 << _dispatcher << endl;
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 133

without recomputing the solution from scratch. You print this solution and then remove the
visit. The following code is provided for you:

Compile and run the program. You will get results that show the routing plan and
information for the first solution and the improved solution. You will also get results that
show how the solution changes when you add an additional visit and then remove it.

int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 if (solver.findFirstSolution()) {
 solver.printInformation("***First Solution***");
 solver.improveWithNhood(mdl.getSwapArray());
 solver.printInformation("***Solution after improvements with nhood***");
 IloVisit visit = mdl.createAdditionalVisits (argc, argv);
 if (solver.addNewVisit (visit)) {
 solver.printInformation("***Solution including new visit***");
 mdl.removeVisit(visit);
 if (solver.removeVisitAndResolve (visit)) {
 solver.printInformation("***Solution after removing visit***");
 }
 }
 }
 } catch(IloException& ex) {
 cerr << "Error: " << ex << endl;
 }
 env.end();
 return 0;
}

Step 12 Compile and run the program
134 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
First solution information

The first solution phase finds a solution using 2 vehicles with a total cost of 1012.11 units:

Improved Solution Information

The solution improvement phase finds a solution using 2 vehicles with a total cost of
716.945 units after making 24 cost-decreasing moves:

First Solution
Number of fails : 245
Number of choice points : 1057
Number of variables : 2064
Number of constraints : 348
Reversible stack (bytes) : 156804
Solver heap (bytes) : 892720
Solver global heap (bytes) : 132324
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1261420
Elapsed time since creation : 1.593
Number of nodes : 51
Number of visits : 70
Number of vehicles : 10
Number of dimensions : 3
Number of accepted moves : 0
===============
Cost : 1012.11
Number of vehicles used : 2

Solution after improvements with nhood
Number of fails : 0
Number of choice points : 0
Number of variables : 2064
Number of constraints : 344
Reversible stack (bytes) : 156804
Solver heap (bytes) : 892720
Solver global heap (bytes) : 148404
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1277500
Elapsed time since creation : 0.01
Number of nodes : 51
Number of visits : 70
Number of vehicles : 10
Number of dimensions : 3
Number of accepted moves : 24
===============
Cost : 716.945
Number of vehicles used : 2
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 135

Solution information including new visit

After including a new visit, the total cost is now 763.538:

Solution information after removing visit

After removing the visit, the routing plan again has a total cost of 716.945:

The complete program and output are listed in “Complete Program” on page 137. You can
also view it online in the YourDispatcherHome/examples/src/disjunct.cpp file.

Number of fails : 1
Number of choice points : 1049
Number of variables : 2091
Number of constraints : 345
Reversible stack (bytes) : 156804
Solver heap (bytes) : 892720
Solver global heap (bytes) : 559036
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1688132
Elapsed time since creation : 1.462
Number of nodes : 52
Number of visits : 71
Number of vehicles : 10
Number of dimensions : 3
Number of accepted moves : 24
===============
Cost : 763.538
Number of vehicles used : 2

Solution after removing visit
Number of fails : 0
Number of choice points : 0
Number of variables : 2068
Number of constraints : 345
Reversible stack (bytes) : 156804
Solver heap (bytes) : 892720
Solver global heap (bytes) : 559036
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1688132
Elapsed time since creation : 1.482
Number of nodes : 52
Number of visits : 70
Number of vehicles : 10
Number of dimensions : 3
Number of accepted moves : 24
===============
Cost : 716.945
Number of vehicles used : 2
136 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Review Exercises
Review Exercises

1. How is the visit penalty cost used in this problem?

2. How do you add a visit without recomputing the routing plan from scratch?

Suggested Answers

Exercise 1

How is the visit penalty cost used in this problem?

Suggested Answer

You use the member function IloVisit::setPenaltyCost to set the cost of not
performing visit1 to 20 units. This allows the visit to not be performed, since only one
visit of each pair will be performed. You use the member function
IloVisit::setPenaltyCost to set the cost of not performing visit2 to 10 units. This
means that the solution will be more likely to include the visit1 of each pair, rather than
the visit2 of each pair, since the penalty for not performing visit1 of each pair is higher
than the penalty for not performing visit2.

Exercise 2

How do you add a visit without recomputing the routing plan from scratch?

Suggested Answer

You use IloRoutingSolution::add to directly add the new visit to the solution. When it
is added, its saved state is unperformed. To make the visit performed, you create a goal using
IloInsertVisit, which eliminates the need to recompute the routing plan from scratch. If
the visit cannot be inserted in the solution, the goal fails. If the visit is inserted, the new
solution is stored.

Complete Program

The complete program follows. You can also view it online in the YourDispatcherHome/
examples/src/disjunct.cpp file.

// -- -*- C++ -*-
// File: examples/src/disjunct.cpp
// --
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 137

#include <ildispat/ilodispatcher.h>

ILOSTLBEGIN
///
// Modeling
class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloDispatcherGraph _graph;
 IloDimension1 _weight;
 IloDimension2 _time;
 IloDimension2 _distance;
 IloNHoodArray _swapArray;

 void addDimensions();
 void loadGraphInformation (const char * arcFileName,
 const char* turnFileName);
 void lastMinuteGraphChanges ();
 void createIloNodes(const char * nodeFileName, const char* coordFileName);
 void createVehicles(const char * vehicleFileName);
 void createVisits(const char * visitsFileName);

public:
 RoutingModel(IloEnv env, int argc, char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
 IloNHoodArray getSwapArray() const {return _swapArray;}
 IloVisit createAdditionalVisits (int argc, char* argv[]);
 void removeVisit (IloVisit);
};

RoutingModel::RoutingModel(IloEnv env,
 int argc,
 char* argv[]):
 _env(env), _mdl(env), _graph(env) {
 addDimensions();

 // Load dispatcher graph information and add instance-specific features.
 char * arcFileName;
 if(argc < 2) arcFileName =
 (char*) “../../../examples/data/dispatcherGraphData/gridNetwork.csv”;
 else arcFileName = argv[1];
 char * turnFileName;
 if(argc < 3) turnFileName =
 (char*) “../../../examples/data/dispatcherGraphData/turnData.csv”;
 else turnFileName = argv[2];
 loadGraphInformation (arcFileName, turnFileName);

 //create IloNodes and associate them to graph nodes
 char * nodeFileName;
 if(argc < 4) nodeFileName =
 (char*) “../../../examples/data/vrp50/vrp50nodes.csv”;
 else nodeFileName = argv[3];
 char * nodeCoordsFile;
 if(argc < 5) nodeCoordsFile =
 (char*) “../../../examples/data/dispatcherGraphData/coordTable.csv”;
 else nodeCoordsFile = argv[4];
138 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 createIloNodes(nodeFileName, nodeCoordsFile);

 //create vehicles
 char * vehiclesFileName;
 if(argc < 6) vehiclesFileName =
 (char*) “../../../examples/data/vrp50/vrp50vehicles.csv”;
 else vehiclesFileName = argv[5];
 createVehicles(vehiclesFileName);

 //create visits
 char * visitsFileName;
 if(argc < 7) visitsFileName =
 (char*) “../../../examples/data/vrp50/vrp50visits.csv”;
 else visitsFileName = argv[6];
 createVisits(visitsFileName);
}

// create distance functions for dimensions, add dimensions to model
void RoutingModel::addDimensions() {
 _weight =IloDimension1 (_env, “weight”);
 _mdl.add(_weight);

 IloDistance SP_time = IloGraphDistance (_graph);
 _time =IloDimension2 (_env, SP_time, “time”);
 _mdl.add(_time);

 IloDistance SP_distance = IloGraphDistance (_graph);
 _distance =IloDimension2 (_env, SP_distance, “distance”);
 _mdl.add(_distance);
}

// load network topology and travel costs from files.
void RoutingModel::loadGraphInformation (const char* arcFileName,
 const char* turnFileName) {
 _graph.createArcsFromFile (arcFileName);
 _graph.loadArcDimensionDataFromFile (arcFileName, _time);
 _graph.loadArcDimensionDataFromFile (arcFileName, _distance);
 _graph.loadTurnDimensionDataFromFile(turnFileName, _time);
 lastMinuteGraphChanges();
}

// Make modifications to network conditions based on latest information.
void RoutingModel::lastMinuteGraphChanges () {
 _graph.forbidArcUse(_graph.getArcByEnds(2785-1, 2785));
 _graph.forbidArcUse(_graph.getArcByEnds(2785+1, 2785));
 _graph.forbidArcUse(_graph.getArcByEnds(2785-56, 2785));
 _graph.setTurnPenalty(_graph.getArc(1323), _graph.getArc(1544), _time, 12);
}

//create IloNodes
void RoutingModel::createIloNodes(const char * nodeFileName,
 const char* coordFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * name = line.getStringByHeader(“name”);
 IloNode node(_env, line.getFloatByHeader(“x”),
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 139

 line.getFloatByHeader(“y”), 0, name);
 node.setKey(name);
 _graph.associateByCoordsInFile (node, coordFileName);
 ++it;
 }
 csvNodeReader.end();
}

//create vehicles
void RoutingModel::createVehicles(const char * vehicleFileName) {
 IloCsvReader csvVehicleReader(_env, vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader(“first”);
 char * namelast = line.getStringByHeader(“last”);
 char * name = line.getStringByHeader(“name”);
 IloNum capacity = line.getFloatByHeader(“capacity”);
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);
 IloVisit first(node1, “depot”);
 _mdl.add(first.getCumulVar(_weight) == 0);
 IloVisit last(node2, “depot”);
 _mdl.add(last.getCumulVar(_distance) >= line.getFloatByHeader(“open”));
 _mdl.add(last.getCumulVar(_distance) <= line.getFloatByHeader(“close”));
 IloVehicle vehicle(first, last, name);
 vehicle.setCapacity(_weight, capacity);
 vehicle.setCost(_time, 1.0);
 vehicle.setCost(_distance, 1.0);
 _mdl.add(vehicle);
 ++it;
 }
 csvVehicleReader.end();
}

//create visits
void RoutingModel::createVisits(const char* visitsFileName) {
 IloCsvReader csvVisitReader(_env, visitsFileName);
 _swapArray = IloNHoodArray (_env, csvVisitReader.getNumberOfItems()/2);
 IloInt i=0;
 IloCsvReader::LineIterator it(csvVisitReader);
 while(it.ok()){

 IloCsvLine line1 = *it;
 //read visit data from files
 char * visitName1 = line1.getStringByHeader(“name”);
 char * nodeName1 = line1.getStringByHeader(“node”);
 IloNum quantity1 = line1.getFloatByHeader(“quantity”);
 IloNum minTime1 = line1.getFloatByHeader(“minTime”);
 IloNum maxTime1 = line1.getFloatByHeader(“maxTime”);
 IloNode node1 = IloNode::Find(_env, nodeName1);
 IloVisit visit1(node1, visitName1);
 _mdl.add(visit1.getTransitVar(_weight) == quantity1);
 visit1.setPenaltyCost(20);
 _mdl.add(minTime1 <= visit1.getCumulVar(_time) <= maxTime1);
 _mdl.add(visit1);
 ++it;
140 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 IloCsvLine line2 = *it;
 char * visitName2 = line2.getStringByHeader(“name”);
 char * nodeName2 = line2.getStringByHeader(“node”);
 IloNum quantity2 = line2.getFloatByHeader(“quantity”);
 IloNum minTime2 = line2.getFloatByHeader(“minTime”);
 IloNum maxTime2 = line2.getFloatByHeader(“maxTime”);
 IloNode node2 = IloNode::Find(_env, nodeName2);
 IloVisit visit2(node2, visitName2);
 _mdl.add(visit2.getTransitVar(_weight) == quantity2);
 visit2.setPenaltyCost(10);
 _mdl.add(minTime2 <= visit2.getCumulVar(_time) <= maxTime2);
 _mdl.add(visit2);
 ++it;

 _mdl.add(visit1.unperformed() + visit2.unperformed() == 1);

 IloVisitArray visits(_env, 2);
 visits[0] = visit1; visits[1] = visit2;
 _swapArray[i] = IloSwapPerform(_env, visits);
 ++i;
 }
 csvVisitReader.end();
}

 // Modify problem set-up by adding a new visit.
 // Associate new visit to graph node.
IloVisit RoutingModel::createAdditionalVisits (int argc, char * argv[]) {
 char * nodeCoordsFile;
 if(argc < 5) nodeCoordsFile =
 (char*) “../../../examples/data/dispatcherGraphData/coordTable.csv”;
 else nodeCoordsFile = argv[4];
 IloNode customer(_env, 43, 63);
 _graph.associateByCoordsInFile (customer, nodeCoordsFile);
 IloVisit visit(customer, “Extra visit”);
 _mdl.add(visit.getDelayVar(_time) == 10);
 _mdl.add(visit.getTransitVar(_weight) == 12);
 _mdl.add(70 <= visit.getCumulVar(_time) <= 120);
 _mdl.add(visit);
 return visit;
}

void RoutingModel::removeVisit (IloVisit visit) {
 _mdl.remove(visit);
}

///
// Solving
class RoutingSolver {
 IloEnv _env;
 IloModel _mdl;
 IloSolver _solver;
 IloDispatcher _dispatcher;
 IloRoutingSolution _solution;
 IloGoal _instantiateCost;
 IloGoal _generalGoal;
 IloGoal _restoreSolution;

public:
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 141

 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloBool findFirstSolution ();
 void improveWithNhood (IloNHoodArray swap);
 IloBool addNewVisit (IloVisit visit);
 IloBool removeVisitAndResolve (IloVisit visit);
 void printInformation(const char* =0) const;
};

RoutingSolver::RoutingSolver(RoutingModel mdl):
 _env(mdl.getEnv()),
 _mdl(mdl.getModel()),
 _solver(mdl.getModel()),
 _dispatcher(_solver),
 _solution(mdl.getModel()){
 _instantiateCost =
 IloDichotomize(_env, _dispatcher.getCostVar(), IloFalse);
 _generalGoal = IloSavingsGenerate(_env) && _instantiateCost;
 _restoreSolution = IloRestoreSolution(_env, _solution);
 }

// Solving : find first solution
IloBool RoutingSolver::findFirstSolution() {
 if (!_solver.solve(_generalGoal)) {
 _solver.error() << “Infeasible Routing Plan” << endl;
 return IloFalse;
 }
 _solution.store(_solver);
 return IloTrue;
}

//Improve solution using nhood
void RoutingSolver::improveWithNhood(IloNHoodArray swap) {
 IloNHoodArray nhoodArray(_env, 6);
 nhoodArray[0] = IloTwoOpt(_env);
 nhoodArray[1] = IloOrOpt(_env);
 nhoodArray[2] = IloConcatenate(_env, swap);
 nhoodArray[3] = IloExchange(_env);
 nhoodArray[4] = IloRelocate(_env);
 nhoodArray[5] = IloCross(_env);
 IloNHood nhood = IloConcatenate(_env, nhoodArray);

 _solver.out() << “Improving solution” << endl;
 IloGoal improve = IloSingleMove(_env,
 _solution,
 nhood,
 IloImprove(_env),
 _instantiateCost);
 while (_solver.solve(improve)) {
 }
 _solver.solve(_restoreSolution);
}

IloBool RoutingSolver::addNewVisit (IloVisit visit) {
 IloGoal insert = IloInsertVisit(_env, visit, _solution, _instantiateCost);
 if (!_solver.solve(insert)) {
 _solver.out() << “Cannot insert new visit in solution” << endl;
 return IloFalse;
142 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 }
 _solution.add(visit);
 _solution.store(_solver);
 return IloTrue;
}

IloBool RoutingSolver::removeVisitAndResolve (IloVisit visit) {
 _solution.remove(visit);
 if (_solver.solve(_restoreSolution))
 return IloTrue;
 else return IloFalse;
}

// Display Dispatcher information
void RoutingSolver::printInformation(const char* heading) const {
 if(heading)
 _solver.out()<<heading<<endl;
 _solver.printInformation();
 _dispatcher.printInformation();
 _solver.out() << “===============” << endl
 << “Cost : “ << _dispatcher.getTotalCost() << endl
 << “Number of vehicles used : “
 << _dispatcher.getNumberOfVehiclesUsed() << endl
 << “Solution : “ << endl
 << _dispatcher << endl;
}

///
int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 if (solver.findFirstSolution()) {
 solver.printInformation(“***First Solution***”);
 solver.improveWithNhood(mdl.getSwapArray());
 solver.printInformation(“***Solution after improvements with nhood***”);
 IloVisit visit = mdl.createAdditionalVisits (argc, argv);
 if (solver.addNewVisit (visit)) {
 solver.printInformation(“***Solution including new visit***”);
 mdl.removeVisit(visit);
 if (solver.removeVisitAndResolve (visit)) {
 solver.printInformation(“***Solution after removing visit***”);
 }
 }
 }
 } catch(IloException& ex) {
 cerr << “Error: “ << ex << endl;
 }
 env.end();
 return 0;
}

Complete Output

/**
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 143

First Solution
Number of fails : 245
Number of choice points : 1057
Number of variables : 2064
Number of constraints : 348
Reversible stack (bytes) : 156804
Solver heap (bytes) : 892720
Solver global heap (bytes) : 132324
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1261420
Elapsed time since creation : 1.593
Number of nodes : 51
Number of visits : 70
Number of vehicles : 10
Number of dimensions : 3
Number of accepted moves : 0
===============
Cost : 1012.11
Number of vehicles used : 2
Solution :
Unperformed visits : visit1 visit3 visit5 visit7 visit9 visit12 visit13 visit15
visit18 visit20 visit21 visit23 visit26 visit27 visit29 visit31 visit33 visit35
visit37 visit40 visit41 visit44 visit45 visit48 visit50
vehicle1 :
 -> depot weight[0] time[0..103.367] distance[0..2] -> visit34 weight[0..1]
time[0.741619..104.109] distance[38..40] -> visit19 weight[14..15]
time[0.86081..104.228] distance[45..47] -> visit47 weight[31..32]
time[1.04517..104.412] distance[56..58] -> visit36 weight[58..59]
time[1.21219..104.58] distance[66..68] -> visit46 weight[63..64]
time[1.41234..104.78] distance[78..80] -> visit8 weight[64..65] time[95..105]
distance[91..93] -> visit17 weight[73..74] time[95.3086..175.83]
distance[109..111] -> visit49 weight[75..76] time[95.4785..176]
distance[119..121] -> visit16 weight[105..106] time[95.5642..180.936]
distance[124..126] -> visit14 weight[124..125] time[95.8205..181.193]
distance[139..141] -> visit43 weight[144..145] time[96.0725..181.445]
distance[154..156] -> visit42 weight[151..152] time[96.2458..181.618]
distance[164..166] -> visit39 weight[156..157] time[96.3014..181.674]
distance[167..169] -> visit25 weight[187..188] time[172..182]
distance[185..187] -> visit24 weight[193..194] time[172.316..190]
distance[200..202] -> visit6 weight[196..197] time[172.627..208]
distance[213..215] -> depot weight[199..200] time[173.036..Inf)
distance[228..230]
vehicle2 :
 -> depot weight[0] time[0..76.2884] distance[0..10] -> visit32 weight[0..52]
time[0.309653..76.5981] distance[13..23] -> visit2 weight[23..75]
time[0.409943..76.6984] distance[18..28] -> visit11 weight[30..82] time[67..77]
distance[33..43] -> visit38 weight[42..94] time[83..93] distance[60..70] ->
visit22 weight[58..110] time[83.7578..158.666] distance[105..115] -> visit4
weight[76..128] time[149..159] distance[125..135] -> visit28 weight[95..147]
time[149.536..193.391] distance[156..166] -> visit30 weight[111..163]
time[149.975..193.83] distance[180..190] -> visit10 weight[132..184]
time[150.145..194] distance[190..200] -> depot weight[148..200]
time[150.734..Inf) distance[220..230]
vehicle3 : Unused
vehicle4 : Unused
144 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
vehicle5 : Unused
vehicle6 : Unused
vehicle7 : Unused
vehicle8 : Unused
vehicle9 : Unused
vehicle10 : Unused
Improving solution
Solution after improvements with nhood
Number of fails : 0
Number of choice points : 0
Number of variables : 2064
Number of constraints : 344
Reversible stack (bytes) : 156804
Solver heap (bytes) : 892720
Solver global heap (bytes) : 148404
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1277500
Elapsed time since creation : 0.01
Number of nodes : 51
Number of visits : 70
Number of vehicles : 10
Number of dimensions : 3
Number of accepted moves : 24
===============
Cost : 716.945
Number of vehicles used : 2
Solution :
Unperformed visits : visit1 visit4 visit5 visit8 visit9 visit12 visit13 visit15
visit18 visit20 visit22 visit23 visit26 visit28 visit30 visit31 visit33 visit35
visit38 visit40 visit41 visit44 visit46 visit48 visit50
vehicle1 :
 -> depot weight[0] time[0..76.2884] distance[0..54] -> visit32 weight[0..46]
time[0.309653..76.5981] distance[13..67] -> visit2 weight[23..69]
time[0.409943..76.6984] distance[18..72] -> visit11 weight[30..76] time[67..77]
distance[33..87] -> visit14 weight[42..88] time[67.2136..184.748]
distance[45..99] -> visit43 weight[62..108] time[67.4656..185]
distance[60..114] -> visit42 weight[69..115] time[67.6389..185.944]
distance[70..124] -> visit39 weight[74..120] time[67.6945..186]
distance[73..127] -> visit21 weight[105..151] time[68.1551..188.853]
distance[99..153] -> visit3 weight[116..162] time[68.7423..189.441]
distance[134..188] -> visit29 weight[129..175] time[69.3016..190]
distance[163..217] -> visit27 weight[138..184] time[69.4863..215]
distance[171..225] -> depot weight[154..200] time[69.6058..Inf)
distance[176..230]
vehicle2 :
 -> depot weight[0] time[0..174.972] distance[0..46] -> visit6 weight[0..29]
time[0.409416..175.382] distance[15..61] -> visit37 weight[3..32]
time[0.756408..175.729] distance[30..76] -> visit25 weight[11..40]
time[172..175.787] distance[33..79] -> visit16 weight[17..46]
time[172.127..175.914] distance[40..86] -> visit49 weight[36..65]
time[172.213..176] distance[45..91] -> visit17 weight[66..95]
time[172.383..177.34] distance[55..101] -> visit45 weight[68..97]
time[172.537..177.494] distance[64..110] -> visit47 weight[84..113]
time[172.876..177.833] distance[84..130] -> visit36 weight[111..140]
time[173.043..178] distance[94..140] -> visit19 weight[116..145]
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 145

time[173.26..182.437] distance[107..153] -> visit10 weight[133..162]
time[173.516..182.693] distance[122..168] -> visit34 weight[149..178]
time[173.823..183] distance[140..186] -> visit7 weight[163..192]
time[173.966..189.645] distance[148..194] -> visit24 weight[168..197]
time[174.321..190] distance[166..212] -> depot weight[171..200]
time[174.813..Inf) distance[184..230]
vehicle3 : Unused
vehicle4 : Unused
vehicle5 : Unused
vehicle6 : Unused
vehicle7 : Unused
vehicle8 : Unused
vehicle9 : Unused
vehicle10 : Unused
Solution including new visit
Number of fails : 1
Number of choice points : 1049
Number of variables : 2091
Number of constraints : 345
Reversible stack (bytes) : 156804
Solver heap (bytes) : 892720
Solver global heap (bytes) : 559036
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1688132
Elapsed time since creation : 1.462
Number of nodes : 52
Number of visits : 71
Number of vehicles : 10
Number of dimensions : 3
Number of accepted moves : 24
===============
Cost : 763.538
Number of vehicles used : 2
Solution :
Unperformed visits : visit1 visit4 visit5 visit8 visit9 visit12 visit13 visit15
visit18 visit20 visit22 visit23 visit26 visit28 visit30 visit31 visit33 visit35
visit38 visit40 visit41 visit44 visit46 visit48 visit50
vehicle1 :
 -> depot weight[0] time[0..76.2884] distance[0..18] -> visit32 weight[0..34]
time[0.309653..76.5981] distance[13..31] -> visit2 weight[23..57]
time[0.409943..76.6984] distance[18..36] -> visit11 weight[30..64] time[67..77]
distance[33..51] -> visit14 weight[42..76] time[67.2136..117.971]
distance[45..63] -> visit43 weight[62..96] time[67.4656..118.223]
distance[60..78] -> visit42 weight[69..103] time[67.6389..118.396]
distance[70..88] -> visit39 weight[74..108] time[67.6945..118.452]
distance[73..91] -> visit21 weight[105..139] time[68.1551..118.913]
distance[99..117] -> visit3 weight[116..150] time[68.7423..119.5]
distance[134..152] -> Extra visit weight[129..163] time[70..120]
distance[164..182] -> visit29 weight[141..175] time[80.6518..190]
distance[199..217] -> visit27 weight[150..184] time[80.8365..215]
distance[207..225] -> depot weight[166..200] time[80.9559..Inf)
distance[212..230]
vehicle2 :
 -> depot weight[0] time[0..174.972] distance[0..46] -> visit6 weight[0..29]
time[0.409416..175.382] distance[15..61] -> visit37 weight[3..32]
146 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
time[0.756408..175.729] distance[30..76] -> visit25 weight[11..40]
time[172..175.787] distance[33..79] -> visit16 weight[17..46]
time[172.127..175.914] distance[40..86] -> visit49 weight[36..65]
time[172.213..176] distance[45..91] -> visit17 weight[66..95]
time[172.383..177.34] distance[55..101] -> visit45 weight[68..97]
time[172.537..177.494] distance[64..110] -> visit47 weight[84..113]
time[172.876..177.833] distance[84..130] -> visit36 weight[111..140]
time[173.043..178] distance[94..140] -> visit19 weight[116..145]
time[173.26..182.437] distance[107..153] -> visit10 weight[133..162]
time[173.516..182.693] distance[122..168] -> visit34 weight[149..178]
time[173.823..183] distance[140..186] -> visit7 weight[163..192]
time[173.966..189.645] distance[148..194] -> visit24 weight[168..197]
time[174.321..190] distance[166..212] -> depot weight[171..200]
time[174.813..Inf) distance[184..230]
vehicle3 : Unused
vehicle4 : Unused
vehicle5 : Unused
vehicle6 : Unused
vehicle7 : Unused
vehicle8 : Unused
vehicle9 : Unused
vehicle10 : Unused
Solution after removing visit
Number of fails : 0
Number of choice points : 0
Number of variables : 2068
Number of constraints : 345
Reversible stack (bytes) : 156804
Solver heap (bytes) : 892720
Solver global heap (bytes) : 559036
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1688132
Elapsed time since creation : 1.482
Number of nodes : 52
Number of visits : 70
Number of vehicles : 10
Number of dimensions : 3
Number of accepted moves : 24
===============
Cost : 716.945
Number of vehicles used : 2
Solution :
Unperformed visits : visit1 visit4 visit5 visit8 visit9 visit12 visit13 visit15
visit18 visit20 visit22 visit23 visit26 visit28 visit30 visit31 visit33 visit35
visit38 visit40 visit41 visit44 visit46 visit48 visit50
vehicle1 :
 -> depot weight[0] time[0..76.2884] distance[0..54] -> visit32 weight[0..46]
time[0.309653..76.5981] distance[13..67] -> visit2 weight[23..69]
time[0.409943..76.6984] distance[18..72] -> visit11 weight[30..76] time[67..77]
distance[33..87] -> visit14 weight[42..88] time[67.2136..184.748]
distance[45..99] -> visit43 weight[62..108] time[67.4656..185]
distance[60..114] -> visit42 weight[69..115] time[67.6389..185.944]
distance[70..124] -> visit39 weight[74..120] time[67.6945..186]
distance[73..127] -> visit21 weight[105..151] time[68.1551..188.853]
distance[99..153] -> visit3 weight[116..162] time[68.7423..189.441]
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 147

distance[134..188] -> visit29 weight[129..175] time[69.3016..190]
distance[163..217] -> visit27 weight[138..184] time[69.4863..215]
distance[171..225] -> depot weight[154..200] time[69.6058..Inf)
distance[176..230]
vehicle2 :
 -> depot weight[0] time[0..174.972] distance[0..46] -> visit6 weight[0..29]
time[0.409416..175.382] distance[15..61] -> visit37 weight[3..32]
time[0.756408..175.729] distance[30..76] -> visit25 weight[11..40]
time[172..175.787] distance[33..79] -> visit16 weight[17..46]
time[172.127..175.914] distance[40..86] -> visit49 weight[36..65]
time[172.213..176] distance[45..91] -> visit17 weight[66..95]
time[172.383..177.34] distance[55..101] -> visit45 weight[68..97]
time[172.537..177.494] distance[64..110] -> visit47 weight[84..113]
time[172.876..177.833] distance[84..130] -> visit36 weight[111..140]
time[173.043..178] distance[94..140] -> visit19 weight[116..145]
time[173.26..182.437] distance[107..153] -> visit10 weight[133..162]
time[173.516..182.693] distance[122..168] -> visit34 weight[149..178]
time[173.823..183] distance[140..186] -> visit7 weight[163..192]
time[173.966..189.645] distance[148..194] -> visit24 weight[168..197]
time[174.321..190] distance[166..212] -> depot weight[171..200]
time[174.813..Inf) distance[184..230]
vehicle3 : Unused
vehicle4 : Unused
vehicle5 : Unused
vehicle6 : Unused
vehicle7 : Unused
vehicle8 : Unused
vehicle9 : Unused
vehicle10 : Unused

*/
148 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

C H A P T E R
6

Multiple Tours per Vehicle

In this lesson, you will learn how to:

◆ solve a problem that allows vehicles to make multiple tours

◆ use a submodel to generate a first solution

◆ use the classes and functions IloNearestAdditionGenerate,
IloVehicle::setCost(fixedCost), and
IloRoutingSolution::RouteIterator

In a VRP, the goal is to build a set of routes with each vehicle leaving from the depot and
returning there at the end of the route. However, in some cases it can be advantageous to
have vehicles make a return visit to the depot during the work period to pick up or drop off
goods, for example when vehicles have limited capacity. It may be more cost-efficient to
have one truck make several additional loading and unloading stops at the depot (tours) than
to use several vehicles.

In this lesson, you will model and solve a VRP with multiple tours per vehicle. You will also
use a submodel to generate the first solution.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 149

Describe

The problem presented here is similar to a standard VRP, except that each vehicle can make
multiple tours.

The first step is to write a natural language description of the problem.

The components of the routing model for this problem are the same as for a standard VRP:
vehicles, customers, and a depot. In addition, return visits to the depot are modeled.

Some of the constraints in this problem are the same as those in a standard VRP: vehicle
capacity and visit quantities. There are no time windows for visits and no opening or closing
times at the depot. However, there is a constraint on the total amount of distance each vehicle
can travel.

The objective is to minimize the total cost of the solution. The total cost of the routing plan is
the total cost for all vehicles added to any costs related to unperformed visits. In this model,
vehicle fixed costs and negative penalty costs for return visits are used to encourage multiple
tours per vehicle:

◆ In addition to a cost proportional to the distance traveled, each vehicle also has a fixed
cost associated with it. Thus, using fewer vehicles will lower the total cost of the
solution.

◆ By default, the penalty cost for not performing a visit is IloInfinity, which forces the
visit to be performed. In this problem, the return visits to the depot have a small negative
penalty cost. If the return visit is performed, there is no additional cost added to the
solution. If the return visit is not performed, then there is a small negative penalty cost.
This makes not performing the return visit a slightly more favorable decision than
performing the return visit, since you are minimizing the total cost. However, the
negative penalty is so small that not performing the visit does not greatly affect the
overall cost of the solution. This enables Dispatcher to make optimization decisions as to
whether additional return visits to the depot are desirable.

Model

Once you have written a description of your problem, you can use Dispatcher classes to
model it.

Step 1 Describe the problem
150 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Open the example file YourDispatcherHome/examples/src/tutorial/
multitr_partial.cpp in your development environment. This file is a program that is
only partially completed. You will fill in the blanks in each step in this lesson. At the end of
this lesson, you will have completed the code for the problem and you will be able to
compile and run it.

As in Chapter 2, Modeling a Vehicle Routing Problem, you create a RoutingModel class,
which is used to model the problem.

Declare the RoutingModel class

The code for the declaration of the class RoutingModel is provided for you:

There are only a few differences between the RoutingModel class used in a standard VRP
and the RoutingModel class used in this problem.

The dimensions in this problem are weight and distance. As in Chapter 4, Minimizing the
Number of Vehicles, you use an instance of the class IloDispatcherGraph to compute the
shortest paths between nodes for each vehicle. It is this shortest path that is used to create the
dimension _distance in this model. See “Define the addDimensions function” on
page 152.

You create _unorderedVisitArray, an instance of IloVisitArray that will be used in
the submodel to generate a first solution.

Step 2 Open the example file

class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloDispatcherGraph _graph;
 IloDimension2 _distance;
 IloDimension1 _weight;
 IloVisitArray _unorderedVisitArray;

 void addDimensions();
 void loadGraphInformation (const char* arcFileName);
 void lastMinuteGraphChanges ();
 void createIloNodes(const char* nodeFileName, const char* coordFileName);
 void createVehicles(const char* vehicleFileName);
 void createVisits(const char* visitsFileName);

public:
 RoutingModel(IloEnv env, int argc, char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
 IloDispatcherGraph getGraph() const {return _graph;}
 IloVisitArray getUnorderedVisitArray () const {return _unorderedVisitArray;}
};
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 151

The function getGraph is used to access the road network graph in the submodel. The
member function getUnorderedVisitArray is used in the submodel to access the array
of unordered visits.

Define the RoutingModel constructor

The constructor is defined as in Chapter 4, Minimizing the Number of Vehicles. If you do not
specify input files, the defaults will be used. This constructor is invoked from the main
function. It calls the following functions: addDimensions, loadGraphInformation,
createIloNodes, createVehicles, and createVisits.

Define the loadGraphInformation and lastMinuteGraphChanges functions

These functions are defined as in Chapter 4, Minimizing the Number of Vehicles.

Define the addDimensions function

The member function addDimensions is used to create the two dimensions, _weight and
_distance, and add them to the model. The _weight dimension is defined as in
Chapter 2, Modeling a Vehicle Routing Problem. The _distance dimension is computed
using the shortest path from the road network graph, as in Chapter 4, Minimizing the
Number of Vehicles. This code is provided for you:

In this example, you could also use the predefined distance functions IloEuclidean or
IloManhattan or define your own distance function.

Define the createIloNodes function

The createIloNodes function is defined as in Chapter 4, Minimizing the Number of
Vehicles. You use csv reader functionality to input node data and node coordinate data from
csv files. You use the member function
IloDispatcherGraph::associatebyCoordsInFile to look up the coordinates of a

void RoutingModel::addDimensions() {
 _weight =IloDimension1 (_env, "weight");
 _mdl.add(_weight);

 IloDistance SP_distance = IloGraphDistance (_graph);
 _distance =IloDimension2 (_env, SP_distance, "distance");
 _mdl.add(_distance);

}

152 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
given IloNode in a csv file and automatically associate it to the graph node with matching
coordinates. Here is the complete code for defining the createIloNodes function:

Define the createVehicles function

The createVehicles function is defined as in Chapter 4, Minimizing the Number of
Vehicles, except that you add a fixed cost to each vehicle and you add an upper bound to the
distance traveled by each vehicle.

You use IloVehicle::setCost(IloDimension dim, IloNum unitCost) to set the
cost of each vehicle to be directly proportional to the dimension _distance. This is the way
that you have set costs on vehicles in the lessons you have worked on so far.

Add the following code after the comment
//Set the vehicle cost proportional to the dimension

To model this problem, each vehicle also has a fixed cost associated with it in addition to a
cost proportional to the distance traveled. You use IloVehicle::setCost(fixedCost)
to set a fixed cost of 250 units on each vehicle. Thus, using fewer vehicles will lower the
total cost of the solution.

Add the following code after the comment //Set the fixed vehicle cost

void RoutingModel::createIloNodes(const char* nodeFileName,
 const char* coordFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * name = line.getStringByHeader("name");
 IloNode node(_env, line.getFloatByHeader("x"),
 line.getFloatByHeader("y"), 0, name);
 node.setKey(name);
 _graph.associateByCoordsInFile (node, coordFileName);
 ++it;
 }
 csvNodeReader.end();
}

Step 3 Set the vehicle cost proportional to the dimension

 vehicle.setCost(_distance, 1.0);

Step 4 Set the fixed vehicle cost

 vehicle.setCost(250.0);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 153

You also add a constraint using IloVisit::getCumulVar that the total distance traveled
by the vehicle has an upper bound of 350 distance units. Since vehicles can return to the
depot and there is a fixed cost for using a vehicle, Dispatcher will try to find a solution with
as few vehicles as possible. However, a vehicle can only travel a certain distance during a
work period. This constraint makes sure that the route of the vehicle is not longer than that
specified distance.

Add the following code after the comment
//Add the constraint on total distance traveled by vehicle

As in Chapter 2, Modeling a Vehicle Routing Problem, you use csv reader functionality to
input vehicle data from a csv file. The vehicles have start and end visits. You set the
capacities of the vehicles using IloVehicle::setCapacity and the dimension _weight.
Here is the complete code for defining the createVehicles function:

Step 5 Add the constraint on total distance traveled by vehicle

 last.getCumulVar(_distance).setUb(350);

void RoutingModel::createVehicles(const char* vehicleFileName) {
 IloCsvReader csvVehicleReader(_env, vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader("first");
 char * namelast = line.getStringByHeader("last");
 char * name = line.getStringByHeader("name");
 IloNum capacity = line.getFloatByHeader("capacity");
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);
 IloVisit first(node1, "depot");
 _mdl.add(first.getCumulVar(_weight) == 0);
 IloVisit last(node2, "depot");
 IloVehicle vehicle(first, last, name);

 vehicle.setCost(250.0);

 vehicle.setCost(_distance, 1.0);

 vehicle.setCapacity(_weight, capacity);
 last.getCumulVar(_distance).setUb(350);

 _mdl.add(vehicle);
 ++it;
 }
 csvVehicleReader.end();
}

154 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Define the createVisits function

The createVisits function is defined as in Chapter 4, Minimizing the Number of Vehicles,
except that instead of directly adding each visit to the model, you add each visit to an array
of unordered visits. This array of unordered array of visits will be ordered in the submodel
and used to create a first solution. The visits created by this function are the customer visits.
The return visits to the depot are created by a member function of the class
RoutingSolver. See “Define the insertAllReturnVisits function” on page 158.

Add the following code after the comment
//Add the visit to the array of unordered visits

Likewise, the constraint on visit quantity is not added directly to the model. It is added by
setting both the upper and lower bounds of the transit variable associated with the dimension
_weight equal to quantity.

Add the following code after the comment
//Add the constraint on visit quantity

Step 6 Add the visit to the array of unordered visits

 _unorderedVisitArray.add(visit);

Step 7 Add the constraint on visit quantity

 visit.getTransitVar(_weight).setBounds(quantity, quantity);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 155

Here is the complete code for defining the createVisits function:

Solve

As in Chapter 3, Solving a Vehicle Routing Problem, you search for a solution using the two-
phase approach of generating a first solution and then improving it. However, in this lesson
you create a first solution in several steps.

Here is a short description of the proposed heuristic:

1. Create the return visits and insert them into the first solution.

2. Use a submodel to find a logical order for the customer visits using the predefined first
solution heuristic IloNearestAdditionGenerate.

3. Insert the ordered customer visits into the first solution.

4. Improve the first solution using neighborhoods.

As in Chapter 3, Solving a Vehicle Routing Problem, you create the RoutingSolver class,
which is used to solve the vehicle routing problem.

 void RoutingModel::createVisits(const char* visitsFileName) {
 IloCsvReader csvVisitReader(_env, visitsFileName);
 IloCsvReader::LineIterator it(csvVisitReader);
 while(it.ok()){
 IloCsvLine line = *it;
 //read visit data from files
 char * visitName = line.getStringByHeader("name");
 char * nodeName = line.getStringByHeader("node");
 IloNum quantity = line.getFloatByHeader("quantity");
 IloNode node = IloNode::Find(_env, nodeName);
 IloVisit visit(node, visitName);

 visit.getTransitVar(_weight).setBounds(quantity, quantity);

 _unorderedVisitArray.add(visit);

 ++it;
 }
 csvVisitReader.end();
}

156 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Declare the RoutingSolver class

The code for the declaration of the class RoutingSolver is provided for you:

There are several important differences between the RoutingSolver class used in a
standard VRP and the RoutingSolver class used in this problem. There is an additional
data member, _orderedVisitArray, an instance of IloVisitArray that will be used in
the submodel. In the submodel, the visits in the _unorderedVisitArray created in the
RoutingModel class will be ordered and added to the _orderedVisitArray created in
the RoutingSolver class.

You do not use a single function to find the first solution, as you have in the previous lessons
in this part. Instead, the first solution is generated using three functions:
insertAllReturnVisits, orderVisits, and insertCustomerVisits. These
functions are explained in the following sections.

Define the RoutingSolver constructor

The RoutingSolver constructor is defined as in Chapter 3, Solving a Vehicle Routing
Problem, except that you do not create a goal for finding the first solution. The
RoutingSolver constructor takes an instance of RoutingModel as a parameter. The
environment, model, solver, dispatcher, and solution are initialized. The goal to instantiate
cost is created using the function IloDichotomize. The goal to restore the solution is

class RoutingSolver {
 IloEnv _env;
 IloModel _mdl;
 IloSolver _solver;
 IloDispatcher _dispatcher;
 IloRoutingSolution _solution;
 IloGoal _instantiateCost;
 IloGoal _restoreSolution;
 IloVisitArray _orderedVisitArray;

public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 void insertAllReturnVisits ();
 void orderVisits (IloVisitArray visitArray,
 IloDispatcherGraph graph);
 bool insertCustomerVisits ();
 void improveWithNhood();
 void printInformation(const char* =0) const;

};
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 157

created using IloRestoreSolution. This constructor will be called from the main
function. This code is provided for you:

Define the insertAllReturnVisits function

Next, you define the insertAllReturnVisits function which does the following:

◆ creates the return visits

◆ sets a penalty cost on them

◆ adds them to the model

◆ inserts them into the solution

You loop on each vehicle and create two return visits to the depot for each vehicle. This
allows each vehicle to perform three tours. During the solution improvement phase, the
number of tours can be rebalanced between vehicles.

Add the following code after the comment //Create the return visits

Now, you use IloVisit::setPenaltyCost to set a negative penalty cost on the return
visit. By default, the penalty cost for not performing a visit is IloInfinity, which forces
the visit to be performed. If the return visit is performed, there is no additional cost added to
the solution. If the return visit is not performed, then there is a small negative penalty cost.
This makes not performing the return visit a slightly more favorable decision than
performing the return visit, since you are minimizing the total cost. However, the negative
penalty is so small that not performing the visit does not greatly affect the overall cost of the
solution.

RoutingSolver::RoutingSolver(RoutingModel mdl):
 _env(mdl.getEnv()),
 _mdl(mdl.getModel()),
 _solver(mdl.getModel()),
 _dispatcher(_solver),
 _solution(mdl.getModel()){
 _instantiateCost =
 IloDichotomize(_env, _dispatcher.getCostVar(), IloFalse);
 _restoreSolution = IloRestoreSolution (_env, _solution);
 }

Step 8 Create the return visits

void RoutingSolver::insertAllReturnVisits () {
 _solver.out() << "Inserting return visits" << endl;
 IloNode depot = IloNode::Find(_env, "depot");
 for (IloVehicleIterator vehIt(_mdl); vehIt.ok(); ++vehIt) {
 IloVehicle vehicle = *vehIt;
 for (IloInt i = 0; i < 2; i++) {
 IloVisit visit(depot, "depot");
158 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Add the following code after the comment
//Set the return visit negative penalty cost

Next, you add the return visit to the model using IloModel::add.

Add the following code after the comment //Add the return visit to the model

You insert the return visit directly into the route of the vehicle by creating a goal using
IloInsertVisit. This function makes visit performed without the need to recompute
the routing plan from scratch. If the visit cannot be inserted, the goal fails and the visit is
removed from the model. If the visit is inserted in the vehicle route, you use the function
IloRoutingSolution::add to directly add the return visit to the solution. The new
solution is then stored.

Add the following code after the comment
//Insert the return visits into the first solution

Define the orderVisits function

Now you create the submodel that is used to order the customer visits so that they can be
inserted into the first solution along with the return visits. This submodel is a version of a
basic routing problem, the Traveling Salesperson Problem (TSP). The description of this

Step 9 Set the return visit negative penalty cost

 visit.setPenaltyCost(-0.1);

Step 10 Add the return visit to the model

 _mdl.add (visit);

Step 11 Insert the return visits into the first solution

 IloGoal insert =
 IloInsertVisit(_env, visit, vehicle, _solution, _instantiateCost);
 if (!_solver.solve(insert)) {
 _solver.out() << "Cannot insert new visit in solution" << endl;
 _mdl.remove(visit);
 }
 else {
 _solution.add(visit);
 _solution.store(_solver);
 }
 }
 }
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 159

problem is fairly simple: a set of locations are given, the goal is to build a closed route
(closed in the sense that it ends where it begins) that goes through each of these locations
exactly once, while minimizing the cost. Unlike a standard VRP, a TSP uses only one
vehicle.

The TSP submodel takes the unordered array of customer visits from the VRP model and a
single vehicle and finds a solution. You then iterate over the route of the vehicle and create
the array of ordered visits. These ordered visits can then be inserted in the first solution of
the VRP model. If you had just inserted the visits from the unordered visit array into the first
solution, this would have likely resulted in a more costly first solution. Inserting the visits
that have already been ordered into the first solution will create a lower cost first solution.

Here is the heuristic used in the submodel to create the ordered array of customer visits:

1. Create the submodel.

2. Add one vehicle.

3. Add the customer visits from the unordered visit array.

4. Find a first solution using the predefined heuristic IloNearestAdditionGenerate.

5. Improve the solution.

6. Iterate over the route of the vehicle, adding the customer visits to the ordered visit array.

First, you define the orderVisits function to take two parameters: an instance of the
unordered visit array and an instance of IloDispatcherGraph. Then, you create the
submodel tspModel using an instance of IloModel. With Concert Technology, you can
create more than one model in a given environment.

Add the following code after the comment //Create the submodel

Next, you add the dimension and vehicle to the submodel. You create the first and last visits
the vehicle will make—these two visits are to the same location, the first visit in the array of
unordered customer visits. You create the vehicle and add it to the TSP submodel. Then you
create the distance dimension using a distance function that is the shortest path in distance
computed from the road network graph. You set the cost of the vehicle to be directly
proportional to the distance dimension dim and add the dimension dim to the TSP
submodel.

Step 12 Create the submodel

void RoutingSolver::orderVisits(IloVisitArray unorderedVisitArray,
 IloDispatcherGraph graph) {
 IloModel tspModel(_env);
160 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Add the following code after the comment
//Add the dimension and vehicle to the submodel

You add the visits to the TSP submodel by looping through unorderedVisitArray and
adding each visit to the model. Since you are only concerned with generating an order based
on location, you do not add any constraints on visit quantity.

Add the following code after the comment
//Add the customer visits to the submodel

As in a standard VRP, you create an instance of IloSolver, an instance of
IloDispatcher, and a goal to instantiate cost.

Add the following code after the comment
//Create the solver, dispatcher, and cost goal in the submodel

Next, you find a first solution and store it. To find the first solution to the TSP, you use the
predefined first solution heuristic IloNearestAdditionGenerate. The nearest addition
heuristic builds a first solution route by adding visits to the route. The visit added to the route
is the visit closest—that is, the least costly to get to—to the end of the current partial route of
the vehicle. After this visit is added, the heuristic finds the visit that is closest to the visit just
added to the end of the current partial route, and so on, until all visits are added. For more

Step 13 Add the dimension and vehicle to the submodel

 IloInt nbOfVisits = unorderedVisitArray.getSize();
 IloVisit first(unorderedVisitArray[0].getNode(), "first");
 IloVisit last(unorderedVisitArray[0].getNode(), "last");
 IloVehicle vehicle(first, last, "TSP");
 tspModel.add(vehicle);
 IloDistance dist = IloGraphDistance (graph);
 IloDimension2 dim(_env, dist, IloFalse);
 vehicle.setCost(dim, 1.0);
 tspModel.add(dim);

Step 14 Add the customer visits to the submodel

 for (IloInt i = 1; i < nbOfVisits; i++)
 tspModel.add(unorderedVisitArray[i]);

Step 15 Create the solver, dispatcher, and cost goal in the submodel

 IloSolver solver(tspModel);
 IloDispatcher dispatcher(solver);
 IloGoal instCost = IloDichotomize(_env, dispatcher.getCostVar(), IloFalse);
 solver.out() << "Producing insertion order" << endl;
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 161

information about IloNearestAdditionGenerate, see Appendix A, Predefined First
Solution Heuristics.

Add the following code after the comment
//Find the first solution in the submodel and store it

Now you improve the first solution using the IloTwoOpt neighborhood. For more
information about this neighborhood, see Appendix B, Predefined Neighborhoods.

Add the following code after the comment
//Improve the first solution in the submodel

Now, you create _orderedVisitArray, an instance of IloVisitArray. You iterate over
the route of the vehicle, adding visits from the route to _orderedVisitArray.

Add the following code after the comment
//Create the array of ordered customer visits in the submodel

Finally, you use the member functions IloNHood::end, IloSolver::end, and
IloRoutingSolution::end to deallocate the memory used by these objects in the
submodel.

Step 16 Find the first solution in the submodel and store it

 solver.solve(IloNearestAdditionGenerate(_env) && instCost);
 IloRoutingSolution rsolution(tspModel);
 rsolution.store(solver);

Step 17 Improve the first solution in the submodel

 IloNHood nhood = IloTwoOpt(_env);
 IloMetaHeuristic improve = IloImprove(_env);
 IloGoal move = IloSingleMove(_env, rsolution, nhood, improve, instCost);
 while (solver.solve(move)) {
 }

Step 18 Create the array of ordered customer visits in the submodel

 _orderedVisitArray = IloVisitArray (_env, nbOfVisits);
 IloRoutingSolution::RouteIterator rit(rsolution, vehicle);
 ++rit;
 _orderedVisitArray[0] = unorderedVisitArray[0];
 for (IloInt k = 1; k < nbOfVisits; ++k, ++rit)
 _orderedVisitArray[k] = *rit;
162 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Add the following code after the comment //End the objects in the submodel

Define the insertCustomerVisits function

You use the insertCustomerVisits function to add the ordered visits from
_orderedVisitArray to the first solution in the multitour model. As you remember, you
already added the return visits to the first solution in the section “Define the
insertAllReturnVisits function” on page 158.

Add the following code after the comment
//Add the ordered customer visits to the model

You insert the visit directly into the first solution by creating a goal using
IloInsertVisit. This function makes visit performed without the need to recompute
the routing plan from scratch. If the visit cannot be inserted, the goal fails. If the visit can be
inserted, you use the function IloRoutingSolution::add to directly add the visit to the
solution. The new solution is then stored.

Step 19 End the objects in the submodel

 nhood.end();
 solver.end();
 rsolution.end();
}

Step 20 Add the ordered customer visits to the model

bool RoutingSolver::insertCustomerVisits () {
 _solver.out() << "Inserting customer visits" << endl;
 for (IloInt i = 0; i < _orderedVisitArray.getSize(); i++) {
 IloVisit visit = _orderedVisitArray[i];
 _mdl.add(visit);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 163

Add the following code after the comment
//Insert the ordered customer visits into the first solution

Define the improveWithNHood function

After you have created a first solution by inserting the return visits and ordered visits from
the submodel into the first solution, you create the neighborhoods you will use in the
solution improvement phase. As in Chapter 3, Solving a Vehicle Routing Problem, you use
the predefined neighborhoods IloRelocate, IloExchange, IloCross, IloTwoOpt, and
IloOrOpt. Additionally, you use two other predefined neighborhoods:
IloMakePerformed and IloMakeUnperformed. The function IloMakePerformed
returns a neighborhood that modifies a solution by inserting an unperformed visit after a
performed one. The function IloMakeUnperformed returns a neighborhood that modifies
a solution by causing a performed visit to be unperformed. These neighborhoods are used to
improve a solution by making return visits performed and unperformed.

For more information about how predefined neighborhoods work, see Appendix B,
Predefined Neighborhoods.

Step 21 Insert the ordered customer visits into the first solution

 IloGoal insert =
 IloInsertVisit(_env, visit, vehicle, _solution, _instantiateCost);
 if (!_solver.solve(insert)) {
 _solver.out() << "Cannot insert new visit in solution" << endl;
 _mdl.remove(visit);
 }
 else {
 _solution.add(visit);
 _solution.store(_solver);
 }
 }
 }
}

164 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
This code is provided for you:

Define the printInformation function

The printInformation function is the same as in Chapter 3, Solving a Vehicle Routing
Problem.

Define the main function

After you finish creating the RoutingModel and RoutingSolver classes and the
printInformation function, you use them in the main function. You can use command
line syntax to pass the names of input files to the model. If you do not specify input files, the
defaults will be used. In the main function, you first create an environment. Then you create
an instance of the RoutingModel class, which takes the environment and input files as
parameters. You create an instance of the RoutingSolver class, which takes the model as a
parameter. You call the member function RoutingSolver::insertAllReturnVisits to
add the return visits to the first solution. You call the member function
RoutingSolver::orderVisits to create a submodel and order the customer visits. This
member function takes two parameters: the unordered visit array and the graph from the
routing model mdl. You call the member function
RoutingSolver::insertCustomerVisits to insert the ordered customer visits into the

void RoutingSolver::improveWithNhood() {
 IloNHood nhood = IloRelocate(_env)
 + IloTwoOpt(_env)
 + IloOrOpt(_env)
 + IloCross(_env)
 + IloExchange(_env)
 + IloMakeUnperformed(_env)
 + IloMakePerformed(_env);
 _solver.out() << "Improving solution" << endl;
 IloGoal improve = IloSingleMove(_env,
 _solution,
 nhood,
 IloImprove(_env),
 _instantiateCost);
 while (_solver.solve(improve)) {
 }
 _solver.solve(_restoreSolution);
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 165

first solution. You use Solver to improve the first solution and print this solution. The
following code is provided for you:

Compile and run the program. You will get results that show the routing plan and
information for the improved solution. The solution uses 4 vehicles. Each vehicle makes one
return visit to the depot, that is, each vehicle performs two tours. There are 12 unused return
visits. See “Complete Output” on page 174 for details. The solution improvement phase

int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 solver.insertAllReturnVisits();
 solver.orderVisits(mdl.getUnorderedVisitArray(), mdl.getGraph());
 if (solver.insertCustomerVisits()) {
 solver.improveWithNhood();
 solver.printInformation("***Solution after improvements with nhood***");
 }
 } catch(IloException& ex) {
 cerr << "Error: " << ex << endl;
 }
 env.end();
 return 0;
}

Step 22 Compile and run the program
166 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Review Exercises
finds a solution using 4 vehicles with a total cost of 2114.8 units after making 139 cost-
decreasing moves:

The complete program and output are listed in “Complete Program” on page 168. You can
also view it online in the YourDispatcherHome/examples/src/multitr.cpp file.

Review Exercises

1. How are vehicle fixed costs used to encourage multiple tours per vehicle?

2. How are negative penalty costs for return visits used to encourage multiple tours per
vehicle?

Suggested Answers

Exercise 1

How are vehicle fixed costs used to encourage multiple tours per vehicle?

Inserting return visits
Producing insertion order
Inserting customer visits
Improving solution
Solution after improvements with nhood
Number of fails : 0
Number of choice points : 0
Number of variables : 2196
Number of constraints : 132
Reversible stack (bytes) : 192984
Solver heap (bytes) : 687828
Solver global heap (bytes) : 1021680
And stack (bytes) : 20124
Or stack (bytes) : 48264
Search Stack (bytes) : 4044
Constraint queue (bytes) : 13164
Total memory used (bytes) : 1988088
Elapsed time since creation : 0.016
Number of nodes : 101
Number of visits : 132
Number of vehicles : 8
Number of dimensions : 2
Number of accepted moves : 139
===============
Cost : 2114.8
Number of vehicles used : 4
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 167

Suggested Answer

In addition to a cost proportional to the distance traveled, each vehicle also has a fixed cost
associated with it. Thus, using fewer vehicles will lower the total cost of the solution.

Exercise 2

How are negative penalty costs for return visits used to encourage multiple tours per
vehicle?

Suggested Answer

By default, the penalty cost for not performing a visit is IloInfinity, which forces the
visit to be performed. In this problem, the return visits to the depot have a small negative
penalty cost. If the return visit is performed, there is no additional cost added to the solution.
If the return visit is not performed, then there is a small negative penalty cost. This makes
not performing the return visit a slightly more favorable decision than performing the return
visit, since you are minimizing the total cost. However, the negative penalty is so small that
not performing the visit does not greatly affect the overall cost of the solution. This enables
Dispatcher to make optimization decisions as to whether additional return visits to the depot
are desirable.

Complete Program

The complete program follows. You can also view it online in the YourDispatcherHome/
examples/src/multitr.cpp file.

// -- -*- C++ -*-
// File: examples/src/multitr.cpp
// --

#include <ildispat/ilodispatcher.h>

ILOSTLBEGIN
///
// Modeling
class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloDispatcherGraph _graph;
 IloDimension2 _distance;
 IloDimension1 _weight;
 IloVisitArray _unorderedVisitArray;

 void addDimensions();
 void loadGraphInformation (const char* arcFileName);
 void lastMinuteGraphChanges ();
 void createIloNodes(const char* nodeFileName, const char* coordFileName);
 void createVehicles(const char* vehicleFileName);
168 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 void createVisits(const char* visitsFileName);

public:
 RoutingModel(IloEnv env, int argc, char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
 IloDispatcherGraph getGraph() const {return _graph;}
 IloVisitArray getUnorderedVisitArray () const {return _unorderedVisitArray;}
};

RoutingModel::RoutingModel(IloEnv env,
 int argc,
 char* argv[]):
 _env(env),
 _mdl(env),
 _graph(env),
 _unorderedVisitArray(env){
 addDimensions();

 // Load dispatcher graph information from file .
 // Add instance-specific features to network
 char * arcFileName;
 if(argc < 2) arcFileName =
 (char*) “../../../examples/data/dispatcherGraphData/gridNetwork.csv”;
 else arcFileName = argv[1];
 char * turnFileName;
 if(argc < 3) turnFileName =
 (char*) “../../../examples/data/dispatcherGraphData/turnData.csv”;
 else turnFileName = argv[2];
 loadGraphInformation (arcFileName);

 //create IloNodes and associate them to graph nodes
 char * nodeFileName;
 if(argc < 4) nodeFileName =
 (char*) “../../../examples/data/vrp100/vrp100nodes.csv”;
 else nodeFileName = argv[3];
 char * nodeCoordsFile;
 if(argc < 5) nodeCoordsFile =
 (char*) “../../../examples/data/dispatcherGraphData/coordTable.csv”;
 else nodeCoordsFile = argv[4];
 createIloNodes(nodeFileName, nodeCoordsFile);

 //create vehicles
 char * vehiclesFileName;
 if(argc < 6) vehiclesFileName =
 (char*) “../../../examples/data/vrp100/vrp100vehicles.csv”;
 else vehiclesFileName = argv[5];
 createVehicles(vehiclesFileName);

 //create visits
 char * visitsFileName;
 if(argc < 7) visitsFileName =
 (char*) “../../../examples/data/vrp100/vrp100visits.csv”;
 else visitsFileName = argv[6];
 createVisits(visitsFileName);
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 169

// create distance functions for dimensions, add dimensions to model
void RoutingModel::addDimensions() {
 _weight =IloDimension1 (_env, “weight”);
 _mdl.add(_weight);

 IloDistance SP_distance = IloGraphDistance (_graph);
 _distance =IloDimension2 (_env, SP_distance, “distance”);
 _mdl.add(_distance);

}

// load network topology and travel costs from files.
// note that by default, all turns are allowed with no penalty.
void RoutingModel::loadGraphInformation (const char* arcFileName) {
 _graph.createArcsFromFile (arcFileName);
 _graph.loadArcDimensionDataFromFile (arcFileName, _distance);
 lastMinuteGraphChanges();
}

// Make modifications to network conditions based on latest information.
void RoutingModel::lastMinuteGraphChanges () {
 _graph.forbidArcUse(_graph.getArcByEnds(2785-1, 2785));
 _graph.forbidArcUse(_graph.getArcByEnds(2785+1, 2785));
 _graph.forbidArcUse(_graph.getArcByEnds(2785-56, 2785));
}

//create IloNodes
void RoutingModel::createIloNodes(const char* nodeFileName,
 const char* coordFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * name = line.getStringByHeader(“name”);
 IloNode node(_env, line.getFloatByHeader(“x”),
 line.getFloatByHeader(“y”), 0, name);
 node.setKey(name);
 _graph.associateByCoordsInFile (node, coordFileName);
 ++it;
 }
 csvNodeReader.end();
}

//create vehicles
void RoutingModel::createVehicles(const char* vehicleFileName) {
 IloCsvReader csvVehicleReader(_env, vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader(“first”);
 char * namelast = line.getStringByHeader(“last”);
 char * name = line.getStringByHeader(“name”);
 IloNum capacity = line.getFloatByHeader(“capacity”);
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);
 IloVisit first(node1, “depot”);
 _mdl.add(first.getCumulVar(_weight) == 0);
 IloVisit last(node2, “depot”);
170 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 IloVehicle vehicle(first, last, name);

 vehicle.setCost(250.0);

 vehicle.setCost(_distance, 1.0);

 vehicle.setCapacity(_weight, capacity);
 last.getCumulVar(_distance).setUb(350);

 _mdl.add(vehicle);
 ++it;
 }
 csvVehicleReader.end();
}

//create visits
void RoutingModel::createVisits(const char* visitsFileName) {
 IloCsvReader csvVisitReader(_env, visitsFileName);
 IloCsvReader::LineIterator it(csvVisitReader);
 while(it.ok()){
 IloCsvLine line = *it;
 //read visit data from files
 char * visitName = line.getStringByHeader(“name”);
 char * nodeName = line.getStringByHeader(“node”);
 IloNum quantity = line.getFloatByHeader(“quantity”);
 IloNode node = IloNode::Find(_env, nodeName);
 IloVisit visit(node, visitName);

 visit.getTransitVar(_weight).setBounds(quantity, quantity);

 _unorderedVisitArray.add(visit);

 ++it;
 }
 csvVisitReader.end();
}

///
// Solving
class RoutingSolver {
 IloEnv _env;
 IloModel _mdl;
 IloSolver _solver;
 IloDispatcher _dispatcher;
 IloRoutingSolution _solution;
 IloGoal _instantiateCost;
 IloGoal _restoreSolution;
 IloVisitArray _orderedVisitArray;

public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 void insertAllReturnVisits ();
 void orderVisits (IloVisitArray visitArray,
 IloDispatcherGraph graph);
 bool insertCustomerVisits ();
 void improveWithNhood();
 void printInformation(const char* =0) const;
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 171

};

RoutingSolver::RoutingSolver(RoutingModel mdl):
 _env(mdl.getEnv()),
 _mdl(mdl.getModel()),
 _solver(mdl.getModel()),
 _dispatcher(_solver),
 _solution(mdl.getModel()){
 _instantiateCost =
 IloDichotomize(_env, _dispatcher.getCostVar(), IloFalse);
 _restoreSolution = IloRestoreSolution (_env, _solution);
 }

void RoutingSolver::insertAllReturnVisits () {
 _solver.out() << “Inserting return visits” << endl;
 IloNode depot = IloNode::Find(_env, “depot”);
 for (IloVehicleIterator vehIt(_mdl); vehIt.ok(); ++vehIt) {
 IloVehicle vehicle = *vehIt;
 for (IloInt i = 0; i < 2; i++) {
 IloVisit visit(depot, “depot”);

 visit.setPenaltyCost(-0.1);

 _mdl.add (visit);

 IloGoal insert =
 IloInsertVisit(_env, visit, vehicle, _solution, _instantiateCost);
 if (!_solver.solve(insert)) {
 _solver.out() << “Cannot insert new visit in solution” << endl;
 _mdl.remove(visit);
 }
 else {
 _solution.add(visit);
 _solution.store(_solver);
 }
 }
 }
}

void RoutingSolver::orderVisits(IloVisitArray unorderedVisitArray,
 IloDispatcherGraph graph) {
 IloModel tspModel(_env);

 IloInt nbOfVisits = unorderedVisitArray.getSize();
 IloVisit first(unorderedVisitArray[0].getNode(), “first”);
 IloVisit last(unorderedVisitArray[0].getNode(), “last”);
 IloVehicle vehicle(first, last, “TSP”);
 tspModel.add(vehicle);
 IloDistance dist = IloGraphDistance (graph);
 IloDimension2 dim(_env, dist, IloFalse);
 vehicle.setCost(dim, 1.0);
 tspModel.add(dim);

 for (IloInt i = 1; i < nbOfVisits; i++)
 tspModel.add(unorderedVisitArray[i]);

 IloSolver solver(tspModel);
172 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 IloDispatcher dispatcher(solver);
 IloGoal instCost = IloDichotomize(_env, dispatcher.getCostVar(), IloFalse);
 solver.out() << “Producing insertion order” << endl;

 solver.solve(IloNearestAdditionGenerate(_env) && instCost);
 IloRoutingSolution rsolution(tspModel);
 rsolution.store(solver);

 IloNHood nhood = IloTwoOpt(_env);
 IloMetaHeuristic improve = IloImprove(_env);
 IloGoal move = IloSingleMove(_env, rsolution, nhood, improve, instCost);
 while (solver.solve(move)) {
 }

 _orderedVisitArray = IloVisitArray (_env, nbOfVisits);
 IloRoutingSolution::RouteIterator rit(rsolution, vehicle);
 ++rit;
 _orderedVisitArray[0] = unorderedVisitArray[0];
 for (IloInt k = 1; k < nbOfVisits; ++k, ++rit)
 _orderedVisitArray[k] = *rit;

 nhood.end();
 solver.end();
 rsolution.end();
}

bool RoutingSolver::insertCustomerVisits () {
 _solver.out() << “Inserting customer visits” << endl;
 for (IloInt i = 0; i < _orderedVisitArray.getSize(); i++) {
 IloVisit visit = _orderedVisitArray[i];
 _mdl.add(visit);

 IloGoal insert = IloInsertVisit(_env, visit, _solution, _instantiateCost);
 if (!_solver.solve(insert)) {
 _solver.error() << “Could not generate an initial solution” << endl;
 return IloFalse;
 }
 else {
 _solution.add(visit);
 _solution.store(_solver);
 }
 }
 return IloTrue;
}

//Improve solution using nhood
void RoutingSolver::improveWithNhood() {
 IloNHood nhood = IloRelocate(_env)
 + IloTwoOpt(_env)
 + IloOrOpt(_env)
 + IloCross(_env)
 + IloExchange(_env)
 + IloMakeUnperformed(_env)
 + IloMakePerformed(_env);
 _solver.out() << “Improving solution” << endl;
 IloGoal improve = IloSingleMove(_env,
 _solution,
 nhood,
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 173

 IloImprove(_env),
 _instantiateCost);
 while (_solver.solve(improve)) {
 }
 _solver.solve(_restoreSolution);
}

// Display Dispatcher information
void RoutingSolver::printInformation(const char* heading) const {
 if(heading)
 _solver.out()<<heading<<endl;
 _solver.printInformation();
 _dispatcher.printInformation();
 _solver.out() << “===============” << endl
 << “Cost : “ << _dispatcher.getTotalCost() << endl
 << “Number of vehicles used : “
 << _dispatcher.getNumberOfVehiclesUsed() << endl
 << “Solution : “ << endl
 << _dispatcher << endl;
}

//
int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 solver.insertAllReturnVisits();
 solver.orderVisits(mdl.getUnorderedVisitArray(), mdl.getGraph());
 if (solver.insertCustomerVisits()) {
 solver.improveWithNhood();
 solver.printInformation(“***Solution after improvements with nhood***”);
 }
 } catch(IloException& ex) {
 cerr << “Error: “ << ex << endl;
 }
 env.end();
 return 0;
}

Complete Output

/**
Inserting return visits
Producing insertion order
Inserting customer visits
Improving solution
Solution after improvements with nhood
Number of fails : 0
Number of choice points : 0
Number of variables : 2196
Number of constraints : 132
Reversible stack (bytes) : 192984
Solver heap (bytes) : 687828
Solver global heap (bytes) : 1021680
And stack (bytes) : 20124
174 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
Or stack (bytes) : 48264
Search Stack (bytes) : 4044
Constraint queue (bytes) : 13164
Total memory used (bytes) : 1988088
Elapsed time since creation : 0.016
Number of nodes : 101
Number of visits : 132
Number of vehicles : 8
Number of dimensions : 2
Number of accepted moves : 139
===============
Cost : 2114.8
Number of vehicles used : 4
Solution :
Unperformed visits : depot depot depot depot depot depot depot depot depot
depot depot depot
vehicle1 : Unused
vehicle2 : Unused
vehicle3 :
 -> depot weight[0] distance[0..78] -> visit32 weight[0..7] distance[1..79] ->
visit28 weight[23..30] distance[8..86] -> visit80 weight[39..46]
distance[15..93] -> visit68 weight[45..52] distance[17..95] -> visit54
weight[81..88] distance[32..110] -> visit58 weight[99..106] distance[42..120] -
> visit87 weight[117..124] distance[58..136] -> visit100 weight[143..150]
distance[68..146] -> visit98 weight[160..167] distance[72..150] -> visit99
weight[170..177] distance[78..156] -> visit96 weight[179..186]
distance[81..159] -> visit6 weight[190..197] distance[87..165] -> depot
weight[193..200] distance[102..180] -> visit24 weight[0..4] distance[120..198]
-> visit60 weight[3..7] distance[121..199] -> visit5 weight[6..10]
distance[127..205] -> visit16 weight[32..36] distance[142..220] -> visit86
weight[51..55] distance[150..228] -> visit17 weight[86..90] distance[163..241]
-> visit84 weight[88..92] distance[170..248] -> visit83 weight[95..99]
distance[179..257] -> visit45 weight[106..110] distance[188..266] -> visit46
weight[122..126] distance[202..280] -> visit36 weight[123..127]
distance[214..292] -> visit47 weight[128..132] distance[224..302] -> visit48
weight[155..159] distance[233..311] -> visit7 weight[191..195]
distance[242..320] -> depot weight[196..200] distance[272..350]
vehicle4 : Unused
vehicle5 : Unused
vehicle6 :
 -> depot weight[0] distance[0..18] -> visit22 weight[0..4] distance[35..53] ->
visit75 weight[18..22] distance[40..58] -> visit23 weight[36..40]
distance[52..70] -> visit56 weight[65..69] distance[61..79] -> visit55
weight[71..75] distance[73..91] -> visit76 weight[73..77] distance[95..113] ->
visit50 weight[86..90] distance[102..120] -> visit70 weight[99..103]
distance[121..139] -> visit30 weight[104..108] distance[128..146] -> visit10
weight[125..129] distance[138..156] -> visit88 weight[141..145]
distance[150..168] -> visit31 weight[150..154] distance[155..173] -> visit90
weight[177..181] distance[163..181] -> visit27 weight[180..184]
distance[171..189] -> depot weight[196..200] distance[176..194] -> visit53
weight[0..4] distance[182..200] -> visit40 weight[14..18] distance[191..209] ->
visit41 weight[23..27] distance[211..229] -> visit15 weight[28..32]
distance[225..243] -> visit67 weight[36..40] distance[234..252] -> visit92
weight[61..65] distance[252..270] -> visit59 weight[63..67] distance[255..273]
-> visit93 weight[91..95] distance[258..276] -> visit61 weight[113..117]
distance[264..282] -> visit8 weight[126..130] distance[285..303] -> visit49
weight[135..139] distance[291..309] -> visit18 weight[165..169]
distance[306..324] -> visit52 weight[177..181] distance[316..334] -> visit63
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 175

weight[186..190] distance[323..341] -> depot weight[196..200]
distance[332..350]
vehicle7 :
 -> depot weight[0] distance[0..116] -> visit12 weight[0..1] distance[15..131]
-> visit29 weight[19..20] distance[26..142] -> visit51 weight[28..29]
distance[47..163] -> visit9 weight[38..39] distance[55..171] -> visit35
weight[54..55] distance[63..179] -> visit20 weight[62..63] distance[70..186] ->
visit11 weight[71..72] distance[95..211] -> visit62 weight[83..84]
distance[106..222] -> visit19 weight[102..103] distance[117..233] -> visit34
weight[119..120] distance[124..240] -> visit82 weight[133..134]
distance[134..250] -> visit64 weight[149..150] distance[138..254] -> visit78
weight[158..159] distance[158..274] -> visit79 weight[161..162]
distance[171..287] -> visit71 weight[184..185] distance[178..294] -> depot
weight[199..200] distance[192..308] -> visit89 weight[0..115]
distance[201..317] -> visit94 weight[15..130] distance[209..325] -> visit95
weight[42..157] distance[213..329] -> visit13 weight[62..177]
distance[219..335] -> depot weight[85..200] distance[234..350]
vehicle8 :
 -> depot weight[0] distance[0..72] -> visit2 weight[0..4] distance[18..90] ->
visit73 weight[7..11] distance[27..99] -> visit74 weight[16..20]
distance[33..105] -> visit39 weight[24..28] distance[47..119] -> visit57
weight[55..59] distance[48..120] -> visit42 weight[62..66] distance[56..128] ->
visit43 weight[67..71] distance[66..138] -> visit38 weight[74..78]
distance[86..158] -> visit44 weight[90..94] distance[101..173] -> visit14
weight[108..112] distance[109..181] -> visit91 weight[128..132]
distance[118..190] -> visit85 weight[129..133] distance[122..194] -> visit25
weight[170..174] distance[125..197] -> visit37 weight[176..180]
distance[128..200] -> visit97 weight[184..188] distance[134..206] -> depot
weight[196..200] distance[158..230] -> visit26 weight[0..3] distance[173..245]
-> visit21 weight[17..20] distance[183..255] -> visit72 weight[28..31]
distance[189..261] -> visit4 weight[53..56] distance[201..273] -> visit77
weight[72..75] distance[226..298] -> visit3 weight[86..89] distance[230..302] -
> visit81 weight[99..102] distance[239..311] -> visit33 weight[125..128]
distance[243..315] -> visit65 weight[136..139] distance[246..318] -> visit66
weight[156..159] distance[248..320] -> visit1 weight[181..184]
distance[258..330] -> visit69 weight[191..194] distance[264..336] -> depot
weight[197..200] distance[278..350]

*/
176 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Part II

Transportation Industry Solutions

This part consists of the following lessons:

◆ Chapter 7, Pickup and Delivery Problems

◆ Chapter 8, Adding Vehicle Breaks

◆ Chapter 9, Adding Early and Late Costs

◆ Chapter 10, Pickup and Delivery by Multiple Vehicles from Multiple Depots

◆ Chapter 11, Modeling Complex Costs

◆ Chapter 12, Docking Bays: Modeling External Resources

C H A P T E R
7

Pickup and Delivery Problems

In this lesson, you will learn how to:

◆ model pickups and deliveries in the same route

◆ create pairs of visits

◆ use the member function IloOrderedVisitPair

Describe

The problem of en route pickup and delivery is known as the Pickup and Delivery Problem
(PDP). It is an extension of the Vehicle Routing Problem (VRP). The important new features
of this problem are that pickups can occur en route at customer sites (away from the central
depot), and that deliveries are allowed in the same route. This occurs, for example, with
transportation systems for handicapped people, where a person can be picked up at one place
and dropped at another without going through the central depot. A PDP can be either a
single-depot or multiple-depot problem.

PDP problems involve the same kinds of constraints as standard VRPs, with several
differences. One is that the vehicle may reach its capacity limit en route (after multiple
pickup visits) rather than while loading at the depot. Another difference is that because
pickups are occurring en route, the pickups become subject to delays and time windows, just
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 179

as with the drop off visits. In addition, the pickup and delivery visits are often constrained to
be performed by the same vehicle, in order to avoid a return trip to the central depot.

The following figure shows a sample solution for a PDP:

Figure 7.1

Figure 7.1 An Example PDP Solution

The first step is to write a natural language description of the problem. A good way to start
this process is to analyze the constraints and objectives.

What are the constraints in this problem?

◆ Delivery trucks will pick up parcels en route and deliver them on the same route. This is
called an ordered visit. No parcels will return to the depot before delivery.

◆ Capacity constraints on the vehicles have different ramifications than for a VRP; for
example, the truck may reach a maximum capacity constraint along the route, rather than
when departing the depot.

◆ Pickups as well as deliveries have constraints on the time windows (times that the parcel
can be picked up from or delivered to a customer site).

The objective is to minimize the cost of the delivery of all the parcels.

Step 1 Describe the problem

Customer

Depot

1

2

3

4

5

6
7

8

9

10

11

12
Pickup for 2

Delivery from 1

Pickup for 5

Pickup for 6

Delivery from 3

Delivery from 4Pickup for 8

Delivery from 7

Pickup for 12

Pickup for 11

Delivery from 10

Delivery
From 9
180 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Model

Once you have written a description of your problem, you can use Dispatcher classes to
model it.

Open the example file YourDispatcherHome/examples/src/tutorial/
pdp_partial.cpp in your development environment.

As in the previous examples, you will use a RoutingModel class to call the functions that
create the dimensions, nodes, vehicles, and visits. For this example, this does not vary from
the form you have used before.

Add the following code after the comment //Declare the RoutingModel class.

The RoutingModel class is identified as belonging to the model _mdl and the environment
_env. Next, you will create the functions that RoutingModel calls.

Step 2 Open the example file

Step 3 Declare the RoutingModel class

class RoutingModel {
 IloEnv _env;
 IloModel _mdl;

 void createDimensions();
 void createIloNodes(char* nodeFileName);
 void createVehicles(char* vehicleFileName);
 void createVisits(char* visitsFileName);
public:
 RoutingModel(IloEnv env,
 int argc,
 char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
};
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 181

Add the following code after the comment //Create the dimensions.

These dimensions are used in determining the cost and feasibility of potential routes. For
example, weight is used for keeping track of the capacity constraints on the truck, and
time is used to ensure that the truck is available during necessary time windows. The
dimension distance will not be constrained for any vehicle, so you use IloFalse to
prevent its propagation (although it is used to determine the cost of the route). Preventing its
propagation improves performance. Just as in the VRP, time and distance are computed
as Euclidian distance, although other options are available.

The member function setKey is used on dimensions to make it easy to find them in other
functions, such as createVisits and createVehicles.

The function createVehicles constrains vehicles to visit the depot first and last, and adds
the capacity constraint weight to the vehicles. The constraint of time is added to ensure
compliance with the time windows, and distance is added to compute the cost of using the
vehicle.

Add the following code after the comment //Create the vehicles.

This code is the second part of the createVehicles function. The first part of the iteration
reads in the truck capacity and the opening and closing times of the depot, which are then

Step 4 Create the dimensions

void RoutingModel::createDimensions() {
 IloDimension1 weight(_env, "Weight");
 weight.setKey("Weight");
 _mdl.add(weight);
 IloDimension2 time(_env, IloEuclidean, "Time");
 time.setKey("Time");
 _mdl.add(time);
 IloDimension2 distance(_env, IloEuclidean, IloFalse, "Distance");
 distance.setKey("Distance");
 _mdl.add(distance);
}

Step 5 Create the vehicles

 IloVisit first(node1, "depot");
 _mdl.add(first.getCumulVar(weight) == 0);
 _mdl.add(first.getCumulVar(time) >= openTime);

 IloVisit last(node2, "depot");
 _mdl.add(last.getCumulVar(time) <= closeTime);
 IloVehicle vehicle(first, last, name);
 vehicle.setCost(distance, 1.0);
 vehicle.setCapacity(weight, capacity);
 _mdl.add(vehicle);
182 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
assigned as the first and last visits of the vehicle. The Find function is also used to locate the
dimensions (identified with setKey, previously) as shown in the code provided for you:

The next function called by the class RoutingModel is createIloNodes, and it is
provided for you. createIloNodes reads in the (x, y) coordinates of each node, which are
used to compute the Euclidian distances between visits.

Next, you must create the pickup and delivery visits. The function createVisits is similar
in format to createVehicles; that is, the first part of the iteration reads in data associated
with each visit, like the pickup location (pickupNode), the parcel to be picked up
(quantity), the time window (pickupMinTime and pickupMaxTime), and the amount of
time it takes to pickup the parcel (pickupTime). Corresponding data for the drop off is also
processed. Then, the second section of the iteration actually creates and adds the pickup and
delivery visits.

Add the following code after the comment //Create the pickup visits.

This section of the function CreateVisits ensures that the pickups and deliveries will
occur within the time windows, including any delays associated with the pickup and drop
off.

Add the following code for the drop off visits after the comment
//Create the delivery visits.

You have now added the pickups and deliveries; but nothing yet guarantees that a delivery
will occur after the pickup. The member function IloOrderedVisitPair is used to fix the
order of two events.

 IloDimension1 weight = IloDimension1::Find(_env, "Weight");
 IloDimension2 time = IloDimension2::Find(_env, "Time");
 IloDimension2 distance = IloDimension2::Find(_env, "Distance");

Step 6 Create the pickup visits

 IloVisit pickup(pickupNode, pickupVisitName);
 _mdl.add(pickup.getDelayVar(time) == pickupTime);
 _mdl.add(pickup.getTransitVar(weight) == quantity);
 _mdl.add(pickupMinTime <= pickup.getCumulVar(time) <= pickupMaxTime);
 _mdl.add(pickup);

Step 7 Create the delivery visits

 IloVisit delivery(deliveryNode, deliveryVisitName);
 _mdl.add(delivery.getDelayVar(time) == dropTime);
 _mdl.add(delivery.getTransitVar(weight) == -quantity);
 _mdl.add(deliveryMinTime <= delivery.getCumulVar(time) <= deliveryMaxTime);
 _mdl.add(delivery);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 183

Add the following code after the comment
//Create the pickup and delivery order constraint.

The function IloOrderedVisitPair ensures that pickup occurs before delivery in the
environment _env. This line of code is within the iterator of createVisits, so each parcel
pickup is paired with the drop off.

Solve

The solution is computed, improved, and displayed by methods previously presented for the
VRP problem. One thing to note is that the program pdp.cpp, as written, can also be used to
resolve a problem where some or all of the parcels are initially in the depot.

The solution improvement phase finds a solution using 9 vehicles with a cost of 1078.88
units:

Step 8 Create the pickup and delivery order constraint

 _mdl.add(IloOrderedVisitPair(_env, pickup, delivery));

Step 9 Compile and run the program

1291.75
Improving solution
Number of fails : 0
Number of choice points : 0
Number of variables : 2329
Number of constraints : 410
Reversible stack (bytes) : 197004
Solver heap (bytes) : 1009300
Solver global heap (bytes) : 144384
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1430260
Elapsed time since creation : 0.02
Number of nodes : 51
Number of visits : 80
Number of vehicles : 15
Number of dimensions : 3
Number of accepted moves : 23
===============
Cost : 1078.88
Number of vehicles used : 9
184 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Review Exercises
The complete program and output are listed in “Complete Program” on page 186. You can
also view it online in the YourDispatcherHome/examples/src/pdp.cpp file.

Review Exercises

For answers, see “Suggested Answers” on page 185.

1. What is an ordered visit?

2. What function is used to ensure that ordered visits occur?

3. Does using this ordered visit function necessarily mean that the same vehicle will be
performing both the pickup and the delivery visits?

Suggested Answers

Exercise 1

What is an ordered visit?

Suggested Answer

An ordered visit means that one visit (in this example, a pickup) is constrained to occur
before another visit (in this example, a delivery).

Exercise 2

What function is used to ensure that ordered visits occur?

Suggested Answer

IloOrderedVisitPair.

Exercise 3

Does using the ordered visit function (IloOrderedVisitPair) necessarily mean that the
same vehicle will be performing both the pickup and the delivery visits?

Suggested Answer

Yes. See the description of IloOrderedVisitPair in the IBM ILOG Dispatcher
Reference Manual for details.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 185

Complete Program

The complete program follows. You can also view it online in the file
YourDispatcherHome/examples/src/pdp.cpp.

// -- -*- C++ -*-
// File: examples/src/pdp.cpp
// --

#include <ildispat/ilodispatcher.h>

ILOSTLBEGIN
///
// Modeling
class RoutingModel {
 IloEnv _env;
 IloModel _mdl;

 void createDimensions();
 void createIloNodes(char* nodeFileName);
 void createVehicles(char* vehicleFileName);
 void createVisits(char* visitsFileName);
public:
 RoutingModel(IloEnv env,
 int argc,
 char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
};

RoutingModel::RoutingModel(IloEnv env,
 int argc,
 char * argv[])
 : _env(env), _mdl(env){

 createDimensions();

 char* nodeFileName;
 if(argc < 4)
 nodeFileName = (char *) “../../../examples/data/pdp/nodes.csv”;
 else
 nodeFileName = argv[3];
 createIloNodes(nodeFileName);

 char* vehiclesFileName;
 if (argc < 2)
 vehiclesFileName = (char *) “../../../examples/data/pdp/vehicles.csv”;
 else
 vehiclesFileName = argv[1];
 createVehicles(vehiclesFileName);

 char* visitsFileName;
 if (argc < 3)
 visitsFileName =
186 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 (char*) “../../../examples/data/pdp/visits.csv”;
 else
 visitsFileName = argv[2];
 createVisits(visitsFileName);
}

// Add dimensions
void RoutingModel::createDimensions() {
 IloDimension1 weight(_env, “Weight”);
 weight.setKey(“Weight”);
 _mdl.add(weight);
 IloDimension2 time(_env, IloEuclidean, “Time”);
 time.setKey(“Time”);
 _mdl.add(time);
 IloDimension2 distance(_env, IloEuclidean, IloFalse, “Distance”);
 distance.setKey(“Distance”);
 _mdl.add(distance);
}

// Create IloNodes
void RoutingModel::createIloNodes(char* nodeFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char* name = line.getStringByHeader(“name”);
 IloNode node(_env,
 line.getFloatByHeader(“x”),
 line.getFloatByHeader(“y”),
 0,
 name);
 node.setKey(name);
 ++it;
 }
 csvNodeReader.end();
}

// Create vehicles
void RoutingModel::createVehicles(char* vehicleFileName) {

 IloDimension1 weight = IloDimension1::Find(_env, “Weight”);
 IloDimension2 time = IloDimension2::Find(_env, “Time”);
 IloDimension2 distance = IloDimension2::Find(_env, “Distance”);

 IloCsvReader csvVehicleReader(_env, vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader(“first”);
 char * namelast = line.getStringByHeader(“last”);
 char * name = line.getStringByHeader(“name”);
 IloNum capacity = line.getFloatByHeader(“capacity”);
 IloNum openTime = line.getFloatByHeader(“open”);
 IloNum closeTime = line.getFloatByHeader(“close”);
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);

 IloVisit first(node1, “depot”);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 187

 _mdl.add(first.getCumulVar(weight) == 0);
 _mdl.add(first.getCumulVar(time) >= openTime);

 IloVisit last(node2, “depot”);
 _mdl.add(last.getCumulVar(time) <= closeTime);
 IloVehicle vehicle(first, last, name);
 vehicle.setCost(distance, 1.0);
 vehicle.setCapacity(weight, capacity);
 _mdl.add(vehicle);

 ++it;
 }
 csvVehicleReader.end();
}

// Create visits
void RoutingModel::createVisits(char* visitsFileName) {
 IloDimension1 weight = IloDimension1::Find(_env, “Weight”);
 IloDimension2 time = IloDimension2::Find(_env, “Time”);
 IloCsvReader csvVisitReader(_env, visitsFileName);
 IloCsvReader::LineIterator it(csvVisitReader);
 while(it.ok()){
 IloCsvLine line = *it;
 //read visit data from files
 char * pickupVisitName = line.getStringByHeader(“pickup”);
 char * pickupNodeName = line.getStringByHeader(“pickupNode”);
 char * deliveryVisitName = line.getStringByHeader(“delivery”);
 char * deliveryNodeName = line.getStringByHeader(“deliveryNode”);
 IloNum quantity = line.getFloatByHeader(“quantity”);
 IloNum pickupMinTime = line.getFloatByHeader(“pickupMinTime”);
 IloNum pickupMaxTime = line.getFloatByHeader(“pickupMaxTime”);
 IloNum deliveryMinTime = line.getFloatByHeader(“deliveryMinTime”);
 IloNum deliveryMaxTime = line.getFloatByHeader(“deliveryMaxTime”);
 IloNum dropTime = line.getFloatByHeader(“dropTime”);
 IloNum pickupTime = line.getFloatByHeader(“pickupTime”);

 // read data nodes from the file nodes.csv
 // and create pickup and delivery nodes

 IloNode pickupNode = IloNode::Find(_env, pickupNodeName);
 IloNode deliveryNode = IloNode::Find(_env, deliveryNodeName);

 //create and add pickup and delivery visits

 IloVisit pickup(pickupNode, pickupVisitName);
 _mdl.add(pickup.getDelayVar(time) == pickupTime);
 _mdl.add(pickup.getTransitVar(weight) == quantity);
 _mdl.add(pickupMinTime <= pickup.getCumulVar(time) <= pickupMaxTime);
 _mdl.add(pickup);

 IloVisit delivery(deliveryNode, deliveryVisitName);
 _mdl.add(delivery.getDelayVar(time) == dropTime);
 _mdl.add(delivery.getTransitVar(weight) == -quantity);
 _mdl.add(deliveryMinTime <= delivery.getCumulVar(time) <= deliveryMaxTime);
 _mdl.add(delivery);

 //add pickup and delivery order constraint
 _mdl.add(IloOrderedVisitPair(_env, pickup, delivery));
188 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 ++it;
 }
 csvVisitReader.end();
}

///
// Solving
class RoutingSolver {
 IloModel _mdl;
 IloSolver _solver;
 IloRoutingSolution _solution;

 IloBool findFirstSolution(IloGoal goal);
 void greedyImprove(IloNHood nhood, IloGoal subGoal);
 void improve(IloGoal subgoal);
public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloRoutingSolution getSolution() const { return _solution; }
 void printInformation() const;
 void solve();
};

RoutingSolver::RoutingSolver(RoutingModel mdl)
 : _mdl(mdl.getModel()), _solver(mdl.getModel()), _solution(mdl.getModel()) {}

// Solving : find first solution
IloBool RoutingSolver::findFirstSolution(IloGoal goal) {
 if (!_solver.solve(goal)) {
 _solver.error() << “Infeasible Routing Plan” << endl;
 return IloFalse;
 }
 IloDispatcher dispatcher(_solver);
 _solver.out() << dispatcher.getTotalCost() << endl;
 _solution.store(_solver);
 return IloTrue;
}

// Improve solution using nhood
void RoutingSolver::greedyImprove(IloNHood nhood, IloGoal subGoal) {
 _solver.out() << “Improving solution” << endl;
 IloEnv env = _solver.getEnv();
 nhood.reset();
 IloGoal improve = IloSingleMove(env,
 _solution,
 nhood,
 IloImprove(env),
 subGoal);
 while (_solver.solve(improve)) {}
}

// Improve solution
void RoutingSolver::improve(IloGoal subGoal) {
 IloEnv env = _solver.getEnv();
 IloNHood nhood = IloTwoOpt(env)
 + IloOrOpt(env)
 + IloRelocate(env)
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 189

 + IloCross(env)
 + IloExchange(env);
 greedyImprove(nhood, subGoal);
}

// Display Dispatcher information
void RoutingSolver::printInformation() const {
 IloDispatcher dispatcher(_solver);
 _solver.printInformation();
 dispatcher.printInformation();
 _solver.out() << “===============” << endl
 << “Cost : “ << dispatcher.getTotalCost() << endl
 << “Number of vehicles used : “
 << dispatcher.getNumberOfVehiclesUsed() << endl
 << “Solution : “ << endl
 << dispatcher << endl;
}

// Solving
void RoutingSolver::solve() {
 IloDispatcher dispatcher(_solver);
 IloEnv env = _solver.getEnv();
 // Subgoal
 IloGoal instantiateCost = IloDichotomize(env,
 dispatcher.getCostVar(),
 IloFalse);
 IloGoal restoreSolution = IloRestoreSolution(env, _solution);
 IloGoal goal = IloSavingsGenerate(env) && instantiateCost;

 // Solving
 if (findFirstSolution(goal)) {
 improve(instantiateCost);
 _solver.solve(restoreSolution);
 }
}

///

int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 solver.solve();
 solver.printInformation();
 } catch(IloException& ex) {
 cerr << “Error: “ << ex << endl;
 }
 env.end();
 return 0;
}

Complete Output

/**
1291.75
190 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
Improving solution
Number of fails : 0
Number of choice points : 0
Number of variables : 2329
Number of constraints : 410
Reversible stack (bytes) : 197004
Solver heap (bytes) : 1009300
Solver global heap (bytes) : 144384
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1430260
Elapsed time since creation : 0.02
Number of nodes : 51
Number of visits : 80
Number of vehicles : 15
Number of dimensions : 3
Number of accepted moves : 23
===============
Cost : 1078.88
Number of vehicles used : 9
Solution :
Unperformed visits : None
vehicle1 :
 -> depot Weight[0] Time[0..19.1001] Distance[0..Inf) -> visit35 Weight[0..162]
Time[41.0366..60.1367] Distance[0..Inf) -> visit49 Weight[8..170]
Time[108.115..127.216] Distance[0..Inf) -> visit36 Weight[38..200]
Time[127.06..146.16] Distance[0..Inf) -> visit50 Weight[30..192]
Time[183.9..203] Distance[0..Inf) -> depot Weight[0..162] Time[210.87..230]
Distance[0..Inf)
vehicle2 :
 -> depot Weight[0] Time[0..18.7919] Distance[0..Inf) -> visit21 Weight[0..140]
Time[18.0278..36.8197] Distance[0..Inf) -> visit22 Weight[11..151]
Time[38.0278..56.8197] Distance[0..Inf) -> visit23 Weight[0..140] Time[68..78]
Distance[0..Inf) -> visit39 Weight[29..169] Time[86.6023..137.537]
Distance[0..Inf) -> visit24 Weight[60..200] Time[120.14..171.074]
Distance[0..Inf) -> visit40 Weight[31..171] Time[157.065..208] Distance[0..Inf)
-> depot Weight[0..140] Time[178.246..230] Distance[0..Inf)
vehicle3 :
 -> depot Weight[0] Time[0..18.5452] Distance[0..Inf) -> visit43 Weight[0..172]
Time[34.176..52.7212] Distance[0..Inf) -> visit44 Weight[7..179] Time[69..79]
Distance[0..Inf) -> visit17 Weight[0..172] Time[96.088..145.639]
Distance[0..Inf) -> visit5 Weight[2..174] Time[116.088..165.639]
Distance[0..Inf) -> visit18 Weight[28..200] Time[137.268..186.82]
Distance[0..Inf) -> visit6 Weight[26..198] Time[158.449..208] Distance[0..Inf)
-> depot Weight[0..172] Time[179.629..230] Distance[0..Inf)
vehicle4 :
 -> depot Weight[0] Time[0..13.1563] Distance[0..Inf) -> visit33 Weight[0..175]
Time[24.7588..37.9152] Distance[0..Inf) -> visit29 Weight[11..186]
Time[49.6249..62.7813] Distance[0..Inf) -> visit34 Weight[20..195]
Time[72.6633..85.8197] Distance[0..Inf) -> visit9 Weight[9..184] Time[97..107]
Distance[0..Inf) -> visit30 Weight[25..200] Time[122..174] Distance[0..Inf) ->
visit10 Weight[16..191] Time[142..194] Distance[0..Inf) -> depot Weight[0..175]
Time[177.495..230] Distance[0..Inf)
vehicle5 :
 -> depot Weight[0] Time[0..14.5761] Distance[0..Inf) -> visit31 Weight[0..144]
Time[17.4642..32.0404] Distance[0..Inf) -> visit19 Weight[27..171]
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 191

Time[45.3528..59.9289] Distance[0..Inf) -> visit11 Weight[44..188] Time[67..77]
Distance[0..Inf) -> visit32 Weight[56..200] Time[92.5242..143.816]
Distance[0..Inf) -> visit20 Weight[29..173] Time[113.295..164.586]
Distance[0..Inf) -> visit12 Weight[12..156] Time[153.708..205] Distance[0..Inf)
-> depot Weight[0..144] Time[178.708..230] Distance[0..Inf)
vehicle6 :
 -> depot Weight[0] Time[0..19.9727] Distance[0..Inf) -> visit41 Weight[0..164]
Time[28.8617..48.8345] Distance[0..Inf) -> visit15 Weight[5..169] Time[61..71]
Distance[0..Inf) -> visit13 Weight[13..177] Time[109..125.282] Distance[0..Inf)
-> visit42 Weight[36..200] Time[133.318..149.6] Distance[0..Inf) -> visit14
Weight[31..195] Time[152.537..168.82] Distance[0..Inf) -> visit16
Weight[8..172] Time[173.718..190] Distance[0..Inf) -> depot Weight[0..164]
Time[212.872..230] Distance[0..Inf)
vehicle7 :
 -> depot Weight[0] Time[0..40.5736] Distance[0..Inf) -> visit37 Weight[0..192]
Time[21.2132..61.7868] Distance[0..Inf) -> visit38 Weight[8..200] Time[83..93]
Distance[0..Inf) -> visit25 Weight[0..192] Time[172..175.639] Distance[0..Inf)
-> visit26 Weight[6..198] Time[204.361..208] Distance[0..Inf) -> depot
Weight[0..192] Time[225.541..230] Distance[0..Inf)
vehicle8 : Unused
vehicle9 :
 -> depot Weight[0] Time[0..61.5802] Distance[0..Inf) -> visit7 Weight[0..173]
Time[21.2132..82.7934] Distance[0..Inf) -> visit8 Weight[5..178] Time[95..105]
Distance[0..Inf) -> visit45 Weight[0..173] Time[111.403..134.827]
Distance[0..Inf) -> visit46 Weight[16..189] Time[132.173..155.597]
Distance[0..Inf) -> visit47 Weight[0..173] Time[152.173..175.597]
Distance[0..Inf) -> visit48 Weight[27..200] Time[168.577..192] Distance[0..Inf)
-> depot Weight[0..173] Time[206.379..230] Distance[0..Inf)
vehicle10 :
 -> depot Weight[0] Time[0..55.7316] Distance[0..Inf) -> visit27 Weight[0..177]
Time[5..60.7316] Distance[0..Inf) -> visit28 Weight[16..193]
Time[21.7082..77.4398] Distance[0..Inf) -> visit1 Weight[0..177]
Time[43.7082..99.4398] Distance[0..Inf) -> visit3 Weight[10..187]
Time[68.2684..124] Distance[0..Inf) -> visit4 Weight[23..200] Time[149..159]
Distance[0..Inf) -> visit2 Weight[10..187] Time[179.224..202] Distance[0..Inf)
-> depot Weight[0..177] Time[207.224..230] Distance[0..Inf)
vehicle11 : Unused
vehicle12 : Unused
vehicle13 : Unused
vehicle14 : Unused
vehicle15 : Unused
*/
192 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

C H A P T E R
8

Adding Vehicle Breaks

In this lesson, you will learn how to:

◆ use the class IloVehicleBreakCon to construct breaks such as coffee breaks, lunch
breaks, and overnight breaks

◆ constrain breaks and instantiate breaks in the solution

◆ use the member function setSpeed

Describe

The vehicle routing problems presented so far have presented an ideal situation: continuous
availability of vehicles. However, in real-world problems, the people driving these vehicles
need to occasionally interrupt the trips. These interruptions might include coffee and lunch
breaks, and if the trips are longer than one working day, overnight breaks. In Dispatcher,
these interruptions are modeled as vehicle breaks.

A vehicle break is performed by a vehicle on a particular dimension (usually time), has
bounds for the start time, and possibly a variable duration with bounds as well. Breaks can
interrupt visits or not, but by default visits are unbreakable. Note that breaks themselves
cannot be interrupted.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 193

Breaks are created as constraints on vehicles. More than one break can be specified per
vehicle, and breaks can be involved in metaconstraints. Constraints can be applied across a
number of breaks to ensure that drivers take an appropriate amount of time off.

The problem considered in this lesson is a PDP problem. Pickups and deliveries are
considered over a five-day period, with vehicle breaks taken each day for morning and
afternoon coffee, and lunch. Overnight rest periods are modeled as breaks with a minimal
number of rest hours to take between two consecutive night breaks.

The first step is to write a natural language description of the problem. A good way to start
this process is to analyze the variables and objectives.

What are the constraints in this problem?

◆ Just as for a standard PDP, delivery trucks will pick up parcels en route and deliver them
on the same route.

◆ The drivers of the vehicles require morning and afternoon coffee breaks, a lunch break,
and an overnight break.

The objective is to minimize the cost of the delivery of all the parcels, while meeting all the
break requirements.

Model

Once you have written a description of your problem, you can use Dispatcher classes to
model it.

Open the example file YourDispatcherHome/examples/src/tutorial/
breaks_partial.cpp in your development environment.

As in the previous examples, you will use a RoutingModel class to call the functions that
create the dimensions, nodes, vehicles, and visits. In this example, the RoutingModel class
also calls functions that create and constrain the breaks.

Step 1 Describe the problem

Step 2 Open the example file
194 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Add the following code after the comment //Declare the RoutingModel class

Two new functions appear in RoutingModel to model breaks: createVehicleBreaks
and createBreaksRelation.

The function createVehicles is very similar to previous examples, but introduces a new
member function.

l

Add the following code after the comment //Create the vehicles.

The member function IloVehicle::setSpeed sets the speed of vehicle over the
dimension time to be 30.0.

Next, you will create the vehicle breaks.

Step 3 Declare the RoutingModel class

class RoutingModel {
 IloEnv _env;
 IloModel _mdl;

 void createDimensions();
 void createNodes(char* nodeFileName);
 void createVehicles(char* vehicleFileName);
 void createVisits(char* visitsFileName);
 void createVehicleBreaks(char* vehcileBreaksFileName);
 void createBreaksRelation(char* breaksRelationFileName);

Step 4 Create the vehicles

 IloVisit first(node1, "Depot");
 _mdl.add(first.getCumulVar(weight) == 0);
 _mdl.add(first.getCumulVar(time) >= line.getFloatByHeader("open"));

 IloVisit last(node2, "Depot");
 _mdl.add(last.getCumulVar(time) <= line.getFloatByHeader("close"));
 IloVehicle vehicle(first, last, name);
 vehicle.setCost(length, 1.0);
 vehicle.setSpeed(time, 30.0);
 vehicle.setCapacity(weight, capacity);
 vehicle.setKey(name);
 _mdl.add(vehicle);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 195

l

Add the following code after the comment //Create the vehicle breaks.

This section of code iterates over all vehicle breaks, regardless of the break name (coffee,
lunch, and so on), and adds them to the model. startLB, startUB, durationLB, and
durationUB refer to the lower and upper bounds on the start and duration of each break.
The various break starts and durations (with their associated bounds) are calculated over the
24 hours of the delivery days, and the resulting vehicle break constraint is then applied to
vehicle with the constructor IloVehicleBreakCon.

The following code is the first section of RoutingModel::createVehicleBreaks, and is
provided for you. This shows how the data is read and identified from the vehicle breaks
input file.

Step 5 Create the vehicle breaks

 IloVehicle vehicle = IloVehicle::Find(_env, vehicleName);
 for (IloInt i = 0; i < nbDays; i++) {
 char name[100];
 IloNumVar breakStart(_env,(i * 24) + startLB, (i * 24) + startUB);
 IloNumVar breakDuration(_env, durationLB, durationUB);
 sprintf(name,"%s-day%ld",breakName,i + 1);
 IloVehicleBreakCon breaks(vehicle, time, breakStart, breakDuration,
name);
 breaks.setKey(name);
 _mdl.add(breaks);

void RoutingModel::createVehicleBreaks(char* vehicleBreaksFileName) {
 IloDimension2 time = IloDimension2::Find(_env, "Time");

 IloCsvReader csvVehicleBreaksReader(_env, vehicleBreaksFileName);
 IloCsvReader::LineIterator it(csvVehicleBreaksReader);
 while (it.ok()) {
 IloCsvLine line = *it;
 char* vehicleName = line.getStringByHeader("vehicle");
 char* breakName = line.getStringByHeader("breakName");
 IloNum startLB = line.getFloatByHeader("startLB");
 IloNum startUB = line.getFloatByHeader("startUB");
 IloNum durationLB = line.getFloatByHeader("durationLB");
 IloNum durationUB = line.getFloatByHeader("durationUB");
 IloInt nbDays = line.getIntByHeader("nbDays");
196 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
l

Add the following code after the comment //Create the break constraints

This code is a section of the function RoutingModel::createBreaksRelation.
break1, break2, totalDuration, and constraint are read in from the breaks relation
input file. break1 and break2 are added together, and the totalDuration is constrained
to be equal, at least, or at most the amount of break time specified.

Solve

The solve portion of the example needs to add the breaks to the solution and instantiate
them. You will add the breaks to the solution with a function called addBreaks.

Step 6 Create the break constraints

 IloNumVar breakDuration(_env);
 IloVehicleBreakCon vehicleBreakCon1 = IloVehicleBreakCon::Find(_env,
break1);
 if (strlen(break2) != 0) {
 IloVehicleBreakCon vehicleBreakCon2 = IloVehicleBreakCon::Find(_env,
break2);
 _mdl.add(breakDuration == vehicleBreakCon1.getDurationVar()
 + vehicleBreakCon2.getDurationVar());
 }
 else {
 _mdl.add(breakDuration == vehicleBreakCon1.getStartVar()
 + vehicleBreakCon1.getDurationVar());
 }
 if (strcmp(constraint,"equal") == 0)
 _mdl.add(breakDuration == totalDuration);
 if (strcmp(constraint,"at least") == 0)
 _mdl.add(breakDuration >= totalDuration);
 if (strcmp(constraint,"at most") == 0)
 _mdl.add(breakDuration <= totalDuration);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 197

l

Add the following code after the comment //Create the RoutingSolver class.

Notice the differences in RoutingSolver compared to the PDP version: there is a second
IloRoutingSolution called _breaks. Additionally, a function addBreaks is present,
which adds the breaks to _breaks.

l

Add the following code after the comment
//Add breaks to the _breaks routing solution.

Next, the breaks must be instantiated to ensure that the start times and durations are set in the
solution.

Step 7 Create the RoutingSolver class

class RoutingSolver {
 IloModel _mdl;
 IloEnv _env;
 IloSolver _solver;
 IloRoutingSolution _solution;
 IloRoutingSolution _breaks;

 IloBool findFirstSolution(IloGoal goal);
 void greedyImprove(IloNHood nhood, IloGoal subGoal);
 void improve(IloGoal subgoal);
 void addBreaks();

Step 8 Add breaks to the _breaks routing solution

//add breaks to _breaks routing solution
void RoutingSolver::addBreaks() {
 IloVehicleBreakConIterator it(_mdl);
 while (it.ok()) {
 _breaks.add(*it);
 ++it;
 }
}

198 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
l

Add the following code after the comment //Instantiate the vehicle breaks.

The goal IloInstantiateVehicleBreaks instantiates the breaks of all vehicles (decides
exactly where, when, and for how long they are taken) in the environment _env. Many other
break instantiation goals are provided to increase flexibility and allow you to build your own
goals, if desired (see the IBM ILOG Dispatcher Reference Manual for more information).

The parameter 1.0/60.0 ensures that a precision of one minute is used in calculating the
break times, and IloTrue means that the goal will instantiate all the breaks in the routing
plan, independent vehicle by independent vehicle.

The goal instantiateBreaks is created with an instance of IloLimitSearch. This
ensures that the solution search will fail if no initial solution is found after 100 iterations. A
goal is created to instantiate the cost variable for the dispatcher. A first solution is then
sought. The goal IloSavingsGenerate builds that first solution. If a first solution is
found, the solution is improved using neighborhoods. Note that in the proposed solution,
only a simple greedy search is used. You might want to try improvement methods other than
the basic IloImprove; for example IloDispatcherGLS or
IloDispatcherTabuSearch.

If no first solution is found, the program ends.

Step 9 Instantiate the vehicle breaks

void RoutingSolver::solve() {
 IloDispatcher dispatcher(_solver);

 //add breaks to _breaks routing solution
 addBreaks();

 // Subgoals

 //The IloInstantiateVehicleBreaks goal uses a precision of 1 minutes
 //and treats all vehicles independently in the instantiation of
 //vehicle breaks
 IloGoal instantiateBreaks = IloLimitSearch(_env,
 IloInstantiateVehicleBreaks(_env,
1.0/60.0, IloTrue),
 IloFailLimit(_env, 100));

 IloGoal instantiateCost = IloDichotomize(_env,
 dispatcher.getCostVar(),
 IloFalse);

 IloGoal subGoal = instantiateBreaks && instantiateCost;
 IloGoal goal = IloSavingsGenerate(_env, instantiateBreaks) &&
instantiateCost;
 IloGoal restoreSolution = IloRestoreSolution(_env, _solution) &&
IloRestoreSolution(_env, _breaks);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 199

The solution improvement phase finds a solution using 6 vehicles with a cost of 1097.5
units:

The complete program and output are listed in “Complete Program” on page 202. You can
also view it online in the YourDispatcherHome/examples/src/breaks.cpp file.

Review Exercises

For answers, see “Suggested Answers” on page 201.

1. What class is used to construct a vehicle break constraint?

2. Visits can be interrupted by breaks, but the default is that visits are not interruptible by
breaks. Do you think that this option is controlled with the class that is used to construct
a vehicle break constraint, or with the class that is used to model visits?

Step 10 Compile and run the program

 1127.84
Improving solution
Number of fails : 0
Number of choice points : 0
Number of variables : 3364
Number of constraints : 1118
Reversible stack (bytes) : 554784
Solver heap (bytes) : 2460520
Solver global heap (bytes) : 156444
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 17172
Total memory used (bytes) : 3257332
Elapsed time since creation : 0.04
Number of nodes : 51
Number of visits : 80
Number of vehicles : 15
Number of dimensions : 3
Number of accepted moves : 4
===============
Cost : 1097.5
Number of vehicles used : 6

200 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Suggested Answers
3. In the following code, the parameter IloFalse ensures that the goal instantiates all the
breaks in the routing plan by considering all the vehicles during the instantiation process.
If this parameter were changed to IloTrue, and thereby each vehicle were considered
independently from the others, what do you think would be the likely impact on the
instantiation processing time and to the goal failure rate?

Suggested Answers

Exercise 1

What class is used to construct a vehicle break constraint?

Suggested Answer

IloVehicleBreakCon.

Exercise 2

Visits can be interrupted by breaks, but the default is that visits are not interruptible by
breaks. Do you think that this option is controlled with the class that is used to construct a
vehicle break constraint, or with the class that is used to model visits?

Suggested Answer

This option is controlled with the class IloVisit, the class used to model visits. Using this
class allows each visit to be individually controlled as to whether it can be interrupted or not.

Exercise 3

In the following code, the parameter IloFalse ensures that the goal instantiates all the
breaks in the routing plan by considering all the vehicles during the instantiation process. If
this parameter were changed to IloTrue, and thereby each vehicle were considered
independently from the others, what do you think would be the likely impact on the
instantiation processing time and to the goal failure rate?

 IloGoal instantiateBreaks = IloLimitSearch(_env,
 IloInstantiateVehicleBreaks(_env,
 1.0/60.0, IloFalse),
 IloFailLimit(_env, 100));

IloGoal instantiateBreaks = IloLimitSearch(_env,
 IloInstantiateVehicleBreaks(_env,
 1.0/60.0, IloFalse),
 IloFailLimit(_env, 100));
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 201

Suggested Answer

The instantiation processing time would likely decrease and the goal failure rate would
likely increase.

When set to IloTrue, this parameter means that if the break instantiation for a single
vehicle is searched entirely and the break cannot be placed, then the goal fails. In other
words, there is no attempt to backtrack to a previous vehicle to explore other break positions
that may work in a successive attempt going forward.

Complete Program

The complete program follows. You can also view it online in the file
YourDispatcherHome/examples/src/breaks.cpp.

// -- -*- C++ -*-
// File: examples/src/breaks.cpp
// --

#include <ildispat/ilodispatcher.h>

ILOSTLBEGIN

///
// Modeling
class RoutingModel {
 IloEnv _env;
 IloModel _mdl;

 void createDimensions();
 void createNodes(char* nodeFileName);
 void createVehicles(char* vehicleFileName);
 void createVisits(char* visitsFileName);
 void createVehicleBreaks(char* vehcileBreaksFileName);
 void createBreaksRelation(char* breaksRelationFileName);

public:
 RoutingModel(IloEnv env,int argc,char* argv[]);
 ~RoutingModel() {
 }
 IloEnv getEnv() const {
 return _env;
 }
 IloModel getModel() const {
 return _mdl;
 }
};

RoutingModel::RoutingModel(IloEnv env,int argc,char* argv[]):_env(env),
_mdl(env) {
 createDimensions();
202 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 char* nodeFileName;
 if (argc < 4)
 nodeFileName = (char *) “../../../examples/data/break/nodes.csv”;
 else
 nodeFileName = argv[3];
 createNodes(nodeFileName);

 char* vehiclesFileName;
 if (argc < 2)
 vehiclesFileName = (char *) “../../../examples/data/break/vehicles.csv”;
 else
 vehiclesFileName = argv[1];
 createVehicles(vehiclesFileName);

 char* visitsFileName;
 if (argc < 3)
 visitsFileName = (char *) “../../../examples/data/break/visits.csv”;
 else
 visitsFileName = argv[2];
 createVisits(visitsFileName);

 char* vehicleBreaksFileName;
 if (argc < 5)
 vehicleBreaksFileName = (char *) “../../../examples/data/break/
vehicleBreaks.csv”;
 else
 vehicleBreaksFileName = argv[4];
 createVehicleBreaks(vehicleBreaksFileName);

 char* breaksRelationFileName;
 if (argc < 6)
 breaksRelationFileName = (char *) “../../../examples/data/break/
breaksRelation.csv”;
 else
 breaksRelationFileName = argv[5];
 createBreaksRelation(breaksRelationFileName);
}

// Create dimensions
void RoutingModel::createDimensions() {
 IloDimension2 time(_env, IloEuclidean, “Time”);
 time.setKey(“Time”);
 _mdl.add(time);
 IloDimension2 length(_env, IloEuclidean, IloFalse, “Length”);
 length.setKey(“Length”);
 _mdl.add(length);
 IloDimension1 weight(_env, “Weight”);
 weight.setKey(“Weight”);
 _mdl.add(weight);
}

// Create nodes
void RoutingModel::createNodes(char* nodeFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
 IloCsvReader::LineIterator it(csvNodeReader);
 while (it.ok()) {
 IloCsvLine line = *it;
 char* name = line.getStringByHeader(“name”);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 203

 IloNode node(_env, line.getFloatByHeader(“x”), line.getFloatByHeader(“y”),
0, name);
 node.setKey(name);
 ++it;
 }
 csvNodeReader.end();
}

// Create vehicles
void RoutingModel::createVehicles(char* vehicleFileName) {
 IloDimension1 weight = IloDimension1::Find(_env, “Weight”);
 IloDimension2 time = IloDimension2::Find(_env, “Time”);
 IloDimension2 length = IloDimension2::Find(_env, “Length”);

 IloCsvReader csvVehicleReader(_env,vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while (it.ok()) {
 IloCsvLine line = *it;
 char* namefirst = line.getStringByHeader(“first”);
 char* namelast = line.getStringByHeader(“last”);
 char* name = line.getStringByHeader(“name”);
 IloNum capacity = line.getFloatByHeader(“capacity”);
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);

 IloVisit first(node1, “Depot”);
 _mdl.add(first.getCumulVar(weight) == 0);
 _mdl.add(first.getCumulVar(time) >= line.getFloatByHeader(“open”));

 IloVisit last(node2, “Depot”);
 _mdl.add(last.getCumulVar(time) <= line.getFloatByHeader(“close”));
 IloVehicle vehicle(first, last, name);
 vehicle.setCost(length, 1.0);
 vehicle.setSpeed(time, 30.0);
 vehicle.setCapacity(weight, capacity);
 vehicle.setKey(name);
 _mdl.add(vehicle);

 ++it;
 }
 csvVehicleReader.end();
}

// Create visits
void RoutingModel::createVisits(char* visitsFileName) {
 IloDimension1 weight = IloDimension1::Find(_env, “Weight”);
 IloDimension2 time = IloDimension2::Find(_env, “Time”);
 IloCsvReader csvVisitReader(_env,visitsFileName);
 IloCsvReader::LineIterator it(csvVisitReader);
 while (it.ok()) {
 IloCsvLine line = *it;
 //read visit data from files
 char* pickupVisitName = line.getStringByHeader(“pickup”);
 char* pickupNodeName = line.getStringByHeader(“pickupNode”);
 char* deliveryVisitName = line.getStringByHeader(“delivery”);
 char* deliveryNodeName = line.getStringByHeader(“deliveryNode”);
 IloNum quantity = line.getFloatByHeader(“quantity”);
 IloNum pickupMinTime = line.getFloatByHeader(“pickupMinTime”);
204 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 IloNum pickupMaxTime = line.getFloatByHeader(“pickupMaxTime”);
 IloNum deliveryMinTime = line.getFloatByHeader(“deliveryMinTime”);
 IloNum deliveryMaxTime = line.getFloatByHeader(“deliveryMaxTime”);
 IloNum dropTime = line.getFloatByHeader(“dropTime”);
 IloNum pickupTime = line.getFloatByHeader(“pickupTime”);

 IloNode pickupNode = IloNode::Find(_env, pickupNodeName);
 IloNode deliveryNode = IloNode::Find(_env, deliveryNodeName);

 //create and add pickup and delivery visits
 IloVisit pickup(pickupNode, pickupVisitName);
 _mdl.add(pickup.getDelayVar(time) == pickupTime);
 _mdl.add(pickup.getTransitVar(weight) == quantity);
 _mdl.add(pickupMinTime <= pickup.getCumulVar(time) <= pickupMaxTime);
 _mdl.add(pickup);
 IloVisit delivery(deliveryNode, deliveryVisitName);
 _mdl.add(delivery.getDelayVar(time) == dropTime);
 _mdl.add(delivery.getTransitVar(weight) == -quantity);
 _mdl.add(deliveryMinTime <= delivery.getCumulVar(time) <= deliveryMaxTime);
 _mdl.add(delivery);
 //add pickup and delivery order constraint
 _mdl.add(IloOrderedVisitPair(_env, pickup, delivery));
 ++it;
 }
 csvVisitReader.end();
}

//create vehicle breaks
void RoutingModel::createVehicleBreaks(char* vehicleBreaksFileName) {
 IloDimension2 time = IloDimension2::Find(_env, “Time”);

 IloCsvReader csvVehicleBreaksReader(_env, vehicleBreaksFileName);
 IloCsvReader::LineIterator it(csvVehicleBreaksReader);
 while (it.ok()) {
 IloCsvLine line = *it;
 char* vehicleName = line.getStringByHeader(“vehicle”);
 char* breakName = line.getStringByHeader(“breakName”);
 IloNum startLB = line.getFloatByHeader(“startLB”);
 IloNum startUB = line.getFloatByHeader(“startUB”);
 IloNum durationLB = line.getFloatByHeader(“durationLB”);
 IloNum durationUB = line.getFloatByHeader(“durationUB”);
 IloInt nbDays = line.getIntByHeader(“nbDays”);

 IloVehicle vehicle = IloVehicle::Find(_env, vehicleName);
 for (IloInt i = 0; i < nbDays; i++) {
 char name[100];
 IloNumVar breakStart(_env,(i * 24) + startLB, (i * 24) + startUB);
 IloNumVar breakDuration(_env, durationLB, durationUB);
 sprintf(name,”%s-day%ld”,breakName,i + 1);
 IloVehicleBreakCon breaks(vehicle, time, breakStart, breakDuration,
name);
 breaks.setKey(name);
 _mdl.add(breaks);

 }
 ++it;
 }
 csvVehicleBreaksReader.end();
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 205

}

//add breaks constraints
void RoutingModel::createBreaksRelation(char* breaksRelationFileName) {
 IloCsvReader csvBreaksRelationReader(_env, breaksRelationFileName);
 IloCsvReader::LineIterator it(csvBreaksRelationReader);
 while (it.ok()) {
 IloCsvLine line = *it;
 char* break1 = line.getStringByHeader(“break1”);
 char* break2 = line.getStringByHeader(“break2”);
 IloNum totalDuration = line.getFloatByHeader(“totalDuration”);
 char* constraint = line.getStringByHeader(“constraint”);

 IloNumVar breakDuration(_env);
 IloVehicleBreakCon vehicleBreakCon1 = IloVehicleBreakCon::Find(_env,
break1);
 if (strlen(break2) != 0) {
 IloVehicleBreakCon vehicleBreakCon2 = IloVehicleBreakCon::Find(_env,
break2);
 _mdl.add(breakDuration == vehicleBreakCon1.getDurationVar()
 + vehicleBreakCon2.getDurationVar());
 }
 else {
 _mdl.add(breakDuration == vehicleBreakCon1.getStartVar()
 + vehicleBreakCon1.getDurationVar());
 }
 if (strcmp(constraint,”equal”) == 0)
 _mdl.add(breakDuration == totalDuration);
 if (strcmp(constraint,”at least”) == 0)
 _mdl.add(breakDuration >= totalDuration);
 if (strcmp(constraint,”at most”) == 0)
 _mdl.add(breakDuration <= totalDuration);

 ++it;
 }
 csvBreaksRelationReader.end();
}

///
// Solving
class RoutingSolver {
 IloModel _mdl;
 IloEnv _env;
 IloSolver _solver;
 IloRoutingSolution _solution;
 IloRoutingSolution _breaks;

 IloBool findFirstSolution(IloGoal goal);
 void greedyImprove(IloNHood nhood, IloGoal subGoal);
 void improve(IloGoal subgoal);
 void addBreaks();

public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {
 }
 IloRoutingSolution getSolution() const {
206 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 return _solution;
 }
 void printInformation() const;
 void solve();
};

RoutingSolver::RoutingSolver(RoutingModel mdl):_mdl(mdl.getModel()),
 _env(mdl.getEnv()),
 _solver(mdl.getModel()),
 _solution(mdl.getModel()),
 _breaks(mdl.getEnv()) {
}

// Solving : find first solution
IloBool RoutingSolver::findFirstSolution(IloGoal goal) {
 if (!_solver.solve(goal)) {
 _solver.error() << “Infeasible Routing Plan” << endl;
 return IloFalse;
 }
 IloDispatcher dispatcher(_solver);
 _solver.out() << dispatcher.getTotalCost() << endl;
 _solution.store(_solver);
 _breaks.store(_solver);
 return IloTrue;
}

// Improve solution using nhood
void RoutingSolver::greedyImprove(IloNHood nhood, IloGoal subGoal) {
 _solver.out() << “Improving solution” << endl;
 IloEnv env = _solver.getEnv();
 nhood.reset();
 IloGoal improve = IloSingleMove(env,
 _solution,
 nhood,
 IloImprove(env),
 subGoal);
 while (_solver.solve(improve))
 _breaks.store(_solver);
}

// Improve solution
void RoutingSolver::improve(IloGoal subGoal) {
 IloNHood nhood = IloTwoOpt(_env)
 + IloOrOpt(_env)
 + IloRelocate(_env)
 + IloCross(_env)
 + IloExchange(_env);
 greedyImprove(nhood,subGoal);
}

//add breaks to _breaks routing solution
void RoutingSolver::addBreaks() {
 IloVehicleBreakConIterator it(_mdl);
 while (it.ok()) {
 _breaks.add(*it);
 ++it;
 }
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 207

// Display Dispatcher information
void RoutingSolver::printInformation() const {
 IloDispatcher dispatcher(_solver);
 _solver.printInformation();
 dispatcher.printInformation();
 _solver.out() << “===============” << endl
 << “Cost : “ << dispatcher.getTotalCost() << endl
 << “Number of vehicles used : “ <<
dispatcher.getNumberOfVehiclesUsed() << endl
 << “Solution : “ << endl
 << IloVerbose(dispatcher) << endl;
}

// Solving
void RoutingSolver::solve() {
 IloDispatcher dispatcher(_solver);

 //add breaks to _breaks routing solution
 addBreaks();

 // Subgoals

 //The IloInstantiateVehicleBreaks goal uses a precision of 1 minutes
 //and treats all vehicles independently in the instantiation of vehicle
breaks
 IloGoal instantiateBreaks = IloLimitSearch(_env,
 IloInstantiateVehicleBreaks(_env,
1.0/60.0, IloTrue),
 IloFailLimit(_env, 100));

 IloGoal instantiateCost = IloDichotomize(_env,
 dispatcher.getCostVar(),
 IloFalse);

 IloGoal subGoal = instantiateBreaks && instantiateCost;
 IloGoal goal = IloSavingsGenerate(_env, instantiateBreaks) &&
instantiateCost;
 IloGoal restoreSolution = IloRestoreSolution(_env, _solution) &&
IloRestoreSolution(_env, _breaks);

 // Solving
 if (findFirstSolution(goal)) {
 improve(subGoal);
 _solver.solve(restoreSolution);
 }
}

///
int main(int argc,char* argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env,argc,argv);
 RoutingSolver solver(mdl);
 solver.solve();
 solver.printInformation();
 }
 catch (IloException& ex) {
208 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 cerr << “Error: “ << ex << endl;
 }
 env.end();
 return 0;
}

Complete Output

///
// Output

/**
1127.84
Improving solution
Number of fails : 0
Number of choice points : 0
Number of variables : 3364
Number of constraints : 1118
Reversible stack (bytes) : 554784
Solver heap (bytes) : 2460520
Solver global heap (bytes) : 156444
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 17172
Total memory used (bytes) : 3257332
Elapsed time since creation : 0.04
Number of nodes : 51
Number of visits : 80
Number of vehicles : 15
Number of dimensions : 3
Number of accepted moves : 4
===============
Cost : 1097.5
Number of vehicles used : 6
Solution :
Unperformed visits : None

vehicle1
Cost coefficients : Length[1]
 Route : Depot -> visit33 -> visit9 -> visit34 -> visit35 -> visit10 ->
visit19 -> visit20 -> visit36 -> Depot
 Time : Depot [9..9.21235], delay [0..0.212353] -> travel [0.825295], wait
[0..0.212353] -> visit33 [9.82529..10.0376], delay [0.25] -> travel [0.274874],
wait [52.4375..52.7135] -> visit9 [63..63.0637], delay [0.25] -> travel
[0.372678], wait [0..0.063661] -> visit34 [63.6227..63.6863], delay [0.25] ->
travel [0.339935], wait [19.7237..19.9248] -> visit35 [84..84.1374], delay
[0.25] -> travel [1.11255], wait [0.5..0.637445] -> visit10 [85.8626..86],
delay [0.25] -> travel [0.5], wait [0..0.637445] -> visit19 [86.6126..87.25],
delay [0.25] -> travel [1.01379], wait [0.25..2.87365] -> visit20
[88.1263..90.75], delay [0.25] -> travel [1.44299], wait [11.557..14.8006] ->
visit36 [104..104.62], delay [0.25] -> travel [1.38002], wait [0..0.619984] ->
Depot [105.63..106.25], delay [0..0.619984] -> travel [0], wait [1..Inf)
TransitSum [102.522..Inf)
 Length : Depot [0..Inf), delay [0..Inf) -> travel [24.7588], wait [0..Inf) ->
visit33 [0..Inf), delay [0..Inf) -> travel [8.24621], wait [0..Inf) -> visit9
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 209

[0..Inf), delay [0..Inf) -> travel [11.1803], wait [0..Inf) -> visit34
[0..Inf), delay [0..Inf) -> travel [10.198], wait [0..Inf) -> visit35 [0..Inf),
delay [0..Inf) -> travel [33.3766], wait [0..Inf) -> visit10 [0..Inf), delay
[0..Inf) -> travel [15], wait [0..Inf) -> visit19 [0..Inf), delay [0..Inf) ->
travel [30.4138], wait [0..Inf) -> visit20 [0..Inf), delay [0..Inf) -> travel
[43.2897], wait [0..Inf) -> visit36 [0..Inf), delay [0..Inf) -> travel
[41.4005], wait [0..Inf) -> Depot [0..Inf), delay [0..Inf) -> travel [0], wait
[0..Inf) TransitSum [217.864..Inf)
 Weight : Depot [0], quantity [0..173] -> visit33 [0..173], quantity [11] ->
visit9 [11..184], quantity [16] -> visit34 [27..200], quantity [-11] -> visit35
[16..189], quantity [8] -> visit10 [24..197], quantity [-16] -> visit19
[8..181], quantity [17] -> visit20 [25..198], quantity [-17] -> visit36
[8..181], quantity [-8] -> Depot [0..173], quantity (-Inf..Inf) TransitSum (-
Inf..Inf)
 Breaks : lunch1-day1 after visit33, Time : start [12.2383..12.25], duration
[0.5]
 lunch1-day2 after visit33, Time : start [36.2383..36.25], duration
[0.5]
 lunch1-day3 after visit33, Time : start [60.2383..60.25], duration
[0.5]
 lunch1-day4 after visit35, Time : start [84.6133..84.625], duration
[0.5]
 lunch1-day5 after Depot, Time : start [108.238..108.25], duration
[0.5]
 morningCoffee1-day1 after visit33, Time : start [10.2744..10.2876],
duration [0.25]
 morningCoffee1-day2 after visit33, Time : start [34.2344..34.25],
duration [0.25]
 morningCoffee1-day3 after visit33, Time : start [58.2344..58.25],
duration [0.25]
 morningCoffee1-day4 after visit34, Time : start [82.2344..82.25],
duration [0.25]
 morningCoffee1-day5 after Depot, Time : start [106.234..106.25],
duration [0.25]
 aftenoonCoffee1-day1 after visit33, Time : start [15.4844..15.5],
duration [0.25]
 aftenoonCoffee1-day2 after visit33, Time : start [39.4844..39.5],
duration [0.25]
 aftenoonCoffee1-day3 after visit34, Time : start [63.9204..63.9363],
duration [0.25]
 aftenoonCoffee1-day4 after visit19, Time : start [87.4844..87.5],
duration [0.25]
 aftenoonCoffee1-day5 after Depot, Time : start [111.484..111.5],
duration [0.25]
 night1-day1 after visit33, Time : start [18.9844..19], duration [7]
 night1-day2 after visit33, Time : start [42.9844..43], duration [10]
 night1-day3 after visit34, Time : start [66.9844..67], duration [7]
 night1-day4 after visit20, Time : start [90.9844..91], duration [10]

vehicle2
Cost coefficients : Length[1]
 Route : Depot -> visit1 -> visit3 -> visit2 -> visit41 -> visit4 -> visit13
-> visit37 -> visit14 -> visit43 -> visit38 -> visit44 -> visit42 -> Depot
 Time : Depot [9..9.49228], delay [0..0.492282] -> travel [0.507718], wait
[0..0.492282] -> visit1 [9.50772..10], delay [0.25] -> travel [0.485341], wait
[20.2647..22.36] -> visit3 [31..32.603], delay [0.25] -> travel [1.14698], wait
[0..1.60302] -> visit2 [32.397..34], delay [0.25] -> travel [0.406885], wait
[23.3431..25.0711] -> visit41 [58..58.125], delay [0.25] -> travel [0.612826],
210 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
wait [0.25..0.393669] -> visit4 [59.1128..59.2565], delay [0.25] -> travel
[0.849837], wait [0..0.143669] -> visit13 [60.2127..60.3563], delay [0.25] ->
travel [0.372678], wait [21.521..22.542] -> visit37 [82.5..83.3773], delay
[0.25] -> travel [0.372678], wait [0..0.877322] -> visit14 [83.1227..84], delay
[0.25] -> travel [0.354338], wait [2.89566..3.89798] -> visit43 [87.5..87.625],
delay [0.25] -> travel [0.603692], wait [16.5213..17.3916] -> visit38
[105..105.745], delay [0.25] -> travel [0.360555], wait [0.25..0.995311] ->
visit44 [106.417..106.606], delay [0.25] -> travel [0.438432], wait
[0..0.189054] -> visit42 [107.105..107.294], delay [0.25] -> travel [0.849837],
wait [0..0.189054] -> Depot [108.205..108.394], delay [0..0.189054] -> travel
[0], wait [0.75..Inf) TransitSum [102.242..Inf)
 Length : Depot [0..Inf), delay [0..Inf) -> travel [15.2315], wait [0..Inf) ->
visit1 [0..Inf), delay [0..Inf) -> travel [14.5602], wait [0..Inf) -> visit3
[0..Inf), delay [0..Inf) -> travel [34.4093], wait [0..Inf) -> visit2 [0..Inf),
delay [0..Inf) -> travel [12.2066], wait [0..Inf) -> visit41 [0..Inf), delay
[0..Inf) -> travel [18.3848], wait [0..Inf) -> visit4 [0..Inf), delay [0..Inf)
-> travel [25.4951], wait [0..Inf) -> visit13 [0..Inf), delay [0..Inf) ->
travel [11.1803], wait [0..Inf) -> visit37 [0..Inf), delay [0..Inf) -> travel
[11.1803], wait [0..Inf) -> visit14 [0..Inf), delay [0..Inf) -> travel
[10.6301], wait [0..Inf) -> visit43 [0..Inf), delay [0..Inf) -> travel
[18.1108], wait [0..Inf) -> visit38 [0..Inf), delay [0..Inf) -> travel
[10.8167], wait [0..Inf) -> visit44 [0..Inf), delay [0..Inf) -> travel
[13.1529], wait [0..Inf) -> visit42 [0..Inf), delay [0..Inf) -> travel
[25.4951], wait [0..Inf) -> Depot [0..Inf), delay [0..Inf) -> travel [0], wait
[0..Inf) TransitSum [220.854..Inf)
 Weight : Depot [0], quantity [0..164] -> visit1 [0..164], quantity [10] ->
visit3 [10..174], quantity [13] -> visit2 [23..187], quantity [-10] -> visit41
[13..177], quantity [5] -> visit4 [18..182], quantity [-13] -> visit13
[5..169], quantity [23] -> visit37 [28..192], quantity [8] -> visit14
[36..200], quantity [-23] -> visit43 [13..177], quantity [7] -> visit38
[20..184], quantity [-8] -> visit44 [12..176], quantity [-7] -> visit42
[5..169], quantity [-5] -> Depot [0..164], quantity (-Inf..Inf) TransitSum (-
Inf..Inf)
 Breaks : lunch2-day1 after visit1, Time : start [12.2383..12.25], duration
[0.5]
 lunch2-day2 after visit2, Time : start [36.2383..36.25], duration
[0.5]
 lunch2-day3 after visit13, Time : start [60.594..60.6063], duration
[0.5]
 lunch2-day4 after visit14, Time : start [84.2383..84.25], duration
[0.5]
 lunch2-day5 after Depot, Time : start [108.385..108.394], duration
[0.5]
 morningCoffee2-day1 after visit1, Time : start [10.2344..10.25],
duration [0.25]
 morningCoffee2-day2 after visit2, Time : start [34.2344..34.25],
duration [0.25]
 morningCoffee2-day3 after visit41, Time : start [58.3594..58.375],
duration [0.25]
 morningCoffee2-day4 after visit13, Time : start [82.2344..82.25],
duration [0.25]
 morningCoffee2-day5 after visit38, Time : start [106.167..106.178],
duration [0.25]
 aftenoonCoffee2-day1 after visit1, Time : start [15.4844..15.5],
duration [0.25]
 aftenoonCoffee2-day2 after visit2, Time : start [39.4844..39.5],
duration [0.25]
 aftenoonCoffee2-day3 after visit13, Time : start [63.4844..63.5],
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 211

duration [0.25]
 aftenoonCoffee2-day4 after visit43, Time : start [87.8594..87.875],
duration [0.25]
 aftenoonCoffee2-day5 after Depot, Time : start [111.484..111.5],
duration [0.25]
 night2-day1 after visit1, Time : start [18.9844..19], duration [7]
 night2-day2 after visit2, Time : start [42.9844..43], duration [10]
 night2-day3 after visit13, Time : start [66.9844..67], duration [7]
 night2-day4 after visit43, Time : start [90.9844..91], duration [10]

vehicle3
Cost coefficients : Length[1]
 Route : Depot -> visit47 -> visit48 -> visit11 -> visit49 -> visit50 ->
visit12 -> Depot
 Time : Depot [9..10.25], delay [0..1.25] -> travel [1.14018], wait
[1.85982..5.10982] -> visit47 [14.5..15.25], delay [0.25] -> travel [0.213437],
wait [23.2866..24.0444] -> visit48 [39..39.0078], delay [0.25] -> travel
[0.492161], wait [0..0.00783923] -> visit11 [39.7422..39.75], delay [0.25] ->
travel [0.477261], wait [41.5227..41.6556] -> visit49 [82..82.125], delay
[0.25] -> travel [1.53551], wait [22.5895..23.4272] -> visit50
[106.5..107.213], delay [0.25] -> travel [0.412311], wait [0..0.712689] ->
visit12 [107.5..107.875], delay [0.25] -> travel [0.5], wait [0..0.375] ->
Depot [108.25..108.625], delay [0..0.375] -> travel [0], wait [0.75..Inf)
TransitSum [101.484..Inf)
 Length : Depot [0..Inf), delay [0..Inf) -> travel [34.2053], wait [0..Inf) ->
visit47 [0..Inf), delay [0..Inf) -> travel [6.40312], wait [0..Inf) -> visit48
[0..Inf), delay [0..Inf) -> travel [14.7648], wait [0..Inf) -> visit11
[0..Inf), delay [0..Inf) -> travel [14.3178], wait [0..Inf) -> visit49
[0..Inf), delay [0..Inf) -> travel [46.0652], wait [0..Inf) -> visit50
[0..Inf), delay [0..Inf) -> travel [12.3693], wait [0..Inf) -> visit12
[0..Inf), delay [0..Inf) -> travel [15], wait [0..Inf) -> Depot [0..Inf), delay
[0..Inf) -> travel [0], wait [0..Inf) TransitSum [143.126..Inf)
 Weight : Depot [0], quantity [0..158] -> visit47 [0..158], quantity [27] ->
visit48 [27..185], quantity [-27] -> visit11 [0..158], quantity [12] -> visit49
[12..170], quantity [30] -> visit50 [42..200], quantity [-30] -> visit12
[12..170], quantity [-12] -> Depot [0..158], quantity (-Inf..Inf) TransitSum (-
Inf..Inf)
 Breaks : lunch3-day1 after Depot, Time : start [12.2383..12.25], duration
[0.5]
 lunch3-day2 after visit47, Time : start [36.2383..36.25], duration
[0.5]
 lunch3-day3 after visit11, Time : start [60.2383..60.25], duration
[0.5]
 lunch3-day4 after visit49, Time : start [84.2383..84.25], duration
[0.5]
 lunch3-day5 after Depot, Time : start [108.613..108.625], duration
[0.5]
 morningCoffee3-day1 after Depot, Time : start [10.2344..10.25],
duration [0.25]
 morningCoffee3-day2 after visit47, Time : start [34.2344..34.25],
duration [0.25]
 morningCoffee3-day3 after visit11, Time : start [58.2344..58.25],
duration [0.25]
 morningCoffee3-day4 after visit49, Time : start [82.3594..82.375],
duration [0.25]
 morningCoffee3-day5 after visit49, Time : start [106.234..106.25],
duration [0.25]
 aftenoonCoffee3-day1 after visit47, Time : start [15.4844..15.5],
212 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
duration [0.25]
 aftenoonCoffee3-day2 after visit11, Time : start [39.9922..40],
duration [0.25]
 aftenoonCoffee3-day3 after visit11, Time : start [63.4844..63.5],
duration [0.25]
 aftenoonCoffee3-day4 after visit49, Time : start [87.4844..87.5],
duration [0.25]
 aftenoonCoffee3-day5 after Depot, Time : start [111.484..111.5],
duration [0.25]
 night3-day1 after visit47, Time : start [18.9844..19], duration [7]
 night3-day2 after visit11, Time : start [42.9844..43], duration [10]
 night3-day3 after visit11, Time : start [66.9844..67], duration [7]
 night3-day4 after visit49, Time : start [90.9844..91], duration [10]

vehicle4
Cost coefficients : Length[1]
 Route : Depot -> visit15 -> visit16 -> visit5 -> visit6 -> visit17 ->
visit23 -> visit39 -> visit25 -> visit24 -> visit29 -> visit40 -> visit18 ->
visit30 -> visit26 -> visit21 -> visit22 -> Depot
 Time : Depot [9..10.25], delay [0..1.25] -> travel [1.01379], wait
[0.75..5.23621] -> visit15 [13..15.25], delay [0.25] -> travel [0.833333], wait
[0.25..3.29399] -> visit16 [16..17.3773], delay [0.25] -> travel [0.372678],
wait [0..1.37732] -> visit5 [16.6227..18], delay [0.25] -> travel [0.333333],
wait [16.4167..18.794] -> visit6 [35..36], delay [0.25] -> travel [0.666667],
wait [1.08333..3.08333] -> visit17 [38..39], delay [0.25] -> travel [1.86339],
wait [14.8866..17.8866] -> visit23 [56..58], delay [0.25] -> travel [0.286744],
wait [2.96326..6.71326] -> visit39 [61.5..63.25], delay [0.25] -> travel
[0.314466], wait [15.1855..19.1855] -> visit25 [79..81.25], delay [0.25] ->
travel [0.5], wait [0..2.25] -> visit24 [81..82], delay [0.25] -> travel
[0.235702], wait [2.25258..3.60159] -> visit29 [84.7383..85.0873], delay [0.25]
-> travel [0.980363], wait [0..0.349011] -> visit40 [85.9686..86.3177], delay
[0.25] -> travel [0.833333], wait [0..0.349011] -> visit18 [87.052..87.401],
delay [0.25] -> travel [0.942809], wait [0.25..2.50521] -> visit30
[88.4948..90.75], delay [0.25] -> travel [1.01379], wait [13.9862..16.3664] ->
visit26 [106..106.125], delay [0.25] -> travel [0.333333], wait
[0.25..0.416667] -> visit21 [106.833..107], delay [0.25] -> travel [0.333333],
wait [2.41667..3.00957] -> visit22 [110..110.426], delay [0.25] -> travel
[0.897527], wait [0..0.426236] -> Depot [111.148..111.574], delay [0..0.426236]
-> travel [0], wait [0.25..Inf) TransitSum [101.56..Inf)
 Length : Depot [0..Inf), delay [0..Inf) -> travel [30.4138], wait [0..Inf) ->
visit15 [0..Inf), delay [0..Inf) -> travel [25], wait [0..Inf) -> visit16
[0..Inf), delay [0..Inf) -> travel [11.1803], wait [0..Inf) -> visit5 [0..Inf),
delay [0..Inf) -> travel [10], wait [0..Inf) -> visit6 [0..Inf), delay [0..Inf)
-> travel [20], wait [0..Inf) -> visit17 [0..Inf), delay [0..Inf) -> travel
[55.9017], wait [0..Inf) -> visit23 [0..Inf), delay [0..Inf) -> travel
[8.60233], wait [0..Inf) -> visit39 [0..Inf), delay [0..Inf) -> travel
[9.43398], wait [0..Inf) -> visit25 [0..Inf), delay [0..Inf) -> travel [15],
wait [0..Inf) -> visit24 [0..Inf), delay [0..Inf) -> travel [7.07107], wait
[0..Inf) -> visit29 [0..Inf), delay [0..Inf) -> travel [29.4109], wait [0..Inf)
-> visit40 [0..Inf), delay [0..Inf) -> travel [25], wait [0..Inf) -> visit18
[0..Inf), delay [0..Inf) -> travel [28.2843], wait [0..Inf) -> visit30
[0..Inf), delay [0..Inf) -> travel [30.4138], wait [0..Inf) -> visit26
[0..Inf), delay [0..Inf) -> travel [10], wait [0..Inf) -> visit21 [0..Inf),
delay [0..Inf) -> travel [10], wait [0..Inf) -> visit22 [0..Inf), delay
[0..Inf) -> travel [26.9258], wait [0..Inf) -> Depot [0..Inf), delay [0..Inf) -
> travel [0], wait [0..Inf) TransitSum [352.638..Inf)
 Weight : Depot [0], quantity [0..132] -> visit15 [0..132], quantity [8] ->
visit16 [8..140], quantity [-8] -> visit5 [0..132], quantity [26] -> visit6
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 213

[26..158], quantity [-26] -> visit17 [0..132], quantity [2] -> visit23
[2..134], quantity [29] -> visit39 [31..163], quantity [31] -> visit25
[62..194], quantity [6] -> visit24 [68..200], quantity [-29] -> visit29
[39..171], quantity [9] -> visit40 [48..180], quantity [-31] -> visit18
[17..149], quantity [-2] -> visit30 [15..147], quantity [-9] -> visit26
[6..138], quantity [-6] -> visit21 [0..132], quantity [11] -> visit22
[11..143], quantity [-11] -> Depot [0..132], quantity (-Inf..Inf) TransitSum (-
Inf..Inf)
 Breaks : lunch4-day1 after Depot, Time : start [12.2383..12.25], duration
[0.5]
 lunch4-day2 after visit6, Time : start [36.2383..36.25], duration
[0.5]
 lunch4-day3 after visit23, Time : start [60.2383..60.25], duration
[0.5]
 lunch4-day4 after visit24, Time : start [84.2383..84.25], duration
[0.5]
 lunch4-day5 after visit21, Time : start [108.238..108.25], duration
[0.5]
 morningCoffee4-day1 after Depot, Time : start [10.2344..10.25],
duration [0.25]
 morningCoffee4-day2 after visit5, Time : start [34.2344..34.25],
duration [0.25]
 morningCoffee4-day3 after visit23, Time : start [58.2344..58.25],
duration [0.25]
 morningCoffee4-day4 after visit24, Time : start [82.2344..82.25],
duration [0.25]
 morningCoffee4-day5 after visit26, Time : start [106.359..106.375],
duration [0.25]
 aftenoonCoffee4-day1 after visit15, Time : start [15.4844..15.5],
duration [0.25]
 aftenoonCoffee4-day2 after visit17, Time : start [39.4844..39.5],
duration [0.25]
 aftenoonCoffee4-day3 after visit39, Time : start [63.4844..63.5],
duration [0.25]
 aftenoonCoffee4-day4 after visit18, Time : start [87.6401..87.651],
duration [0.25]
 aftenoonCoffee4-day5 after Depot, Time : start [111.56..111.574],
duration [0.25]
 night4-day1 after visit5, Time : start [18.9844..19], duration [7]
 night4-day2 after visit17, Time : start [42.9844..43], duration [10]
 night4-day3 after visit39, Time : start [66.9844..67], duration [7]
 night4-day4 after visit30, Time : start [90.9844..91], duration [10]

vehicle5
Cost coefficients : Length[1]
 Route : Depot -> visit7 -> visit8 -> visit45 -> visit46 -> Depot
 Time : Depot [9..10.25], delay [0..1.25] -> travel [0.707107], wait
[3.29289..5.91789] -> visit7 [15.5..15.625], delay [0.25] -> travel [0.406885],
wait [41.7181..41.9681] -> visit8 [58..58.125], delay [0.25] -> travel
[0.213437], wait [1.91156..2.16156] -> visit45 [60.5..60.625], delay [0.25] ->
travel [0.359011], wait [24.766..25.1749] -> visit46 [86..86.2839], delay
[0.25] -> travel [1.18228], wait [0..0.283862] -> Depot [87.4323..87.7161],
delay [0..0.283862] -> travel [0], wait [11.25..Inf) TransitSum [101.484..Inf)
 Length : Depot [0..Inf), delay [0..Inf) -> travel [21.2132], wait [0..Inf) ->
visit7 [0..Inf), delay [0..Inf) -> travel [12.2066], wait [0..Inf) -> visit8
[0..Inf), delay [0..Inf) -> travel [6.40312], wait [0..Inf) -> visit45
[0..Inf), delay [0..Inf) -> travel [10.7703], wait [0..Inf) -> visit46
[0..Inf), delay [0..Inf) -> travel [35.4683], wait [0..Inf) -> Depot [0..Inf),
214 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
delay [0..Inf) -> travel [0], wait [0..Inf) TransitSum [86.0615..Inf)
 Weight : Depot [0], quantity [0..184] -> visit7 [0..184], quantity [5] ->
visit8 [5..189], quantity [-5] -> visit45 [0..184], quantity [16] -> visit46
[16..200], quantity [-16] -> Depot [0..184], quantity (-Inf..Inf) TransitSum (-
Inf..Inf)
 Breaks : lunch5-day1 after Depot, Time : start [12.2383..12.25], duration
[0.5]
 lunch5-day2 after visit7, Time : start [36.2383..36.25], duration
[0.5]
 lunch5-day3 after visit45, Time : start [60.8594..60.875], duration
[0.5]
 lunch5-day4 after visit45, Time : start [84.2383..84.25], duration
[0.5]
 lunch5-day5 after Depot, Time : start [108.238..108.25], duration
[0.5]
 morningCoffee5-day1 after Depot, Time : start [10.2344..10.25],
duration [0.25]
 morningCoffee5-day2 after visit7, Time : start [34.2344..34.25],
duration [0.25]
 morningCoffee5-day3 after visit8, Time : start [58.3594..58.375],
duration [0.25]
 morningCoffee5-day4 after visit45, Time : start [82.2344..82.25],
duration [0.25]
 morningCoffee5-day5 after Depot, Time : start [106.234..106.25],
duration [0.25]
 aftenoonCoffee5-day1 after visit7, Time : start [15.8594..15.875],
duration [0.25]
 aftenoonCoffee5-day2 after visit7, Time : start [39.4844..39.5],
duration [0.25]
 aftenoonCoffee5-day3 after visit45, Time : start [63.4844..63.5],
duration [0.25]
 aftenoonCoffee5-day4 after Depot, Time : start [87.7073..87.7161],
duration [0.25]
 aftenoonCoffee5-day5 after Depot, Time : start [111.484..111.5],
duration [0.25]
 night5-day1 after visit7, Time : start [18.9844..19], duration [7]
 night5-day2 after visit7, Time : start [42.9844..43], duration [10]
 night5-day3 after visit45, Time : start [66.9844..67], duration [7]
 night5-day4 after Depot, Time : start [90.9844..91], duration [10]

vehicle6
Cost coefficients : Length[1]
 Route : Depot -> visit31 -> visit32 -> visit27 -> visit28 -> Depot
 Time : Depot [9..10.25], delay [0..1.25] -> travel [0.582142], wait
[25.9179..29.6679] -> visit31 [38..39.25], delay [0.25] -> travel [0.582142],
wait [18.9179..21.1679] -> visit32 [59..60], delay [0.25] -> travel [0.966667],
wait [44.7833..45.9083] -> visit27 [106..106.125], delay [0.25] -> travel
[0.223607], wait [3.40139..4.56557] -> visit28 [110..111.039], delay [0.25] ->
travel [0.210819], wait [0..1.03918] -> Depot [110.461..111.5], delay
[0..1.03918] -> travel [0], wait [0.25..Inf) TransitSum [101.484..Inf)
 Length : Depot [0..Inf), delay [0..Inf) -> travel [17.4642], wait [0..Inf) ->
visit31 [0..Inf), delay [0..Inf) -> travel [17.4642], wait [0..Inf) -> visit32
[0..Inf), delay [0..Inf) -> travel [29], wait [0..Inf) -> visit27 [0..Inf),
delay [0..Inf) -> travel [6.7082], wait [0..Inf) -> visit28 [0..Inf), delay
[0..Inf) -> travel [6.32456], wait [0..Inf) -> Depot [0..Inf), delay [0..Inf) -
> travel [0], wait [0..Inf) TransitSum [76.9613..Inf)
 Weight : Depot [0], quantity [0..173] -> visit31 [0..173], quantity [27] ->
visit32 [27..200], quantity [-27] -> visit27 [0..173], quantity [16] -> visit28
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 215

[16..189], quantity [-16] -> Depot [0..173], quantity (-Inf..Inf) TransitSum (-
Inf..Inf)
 Breaks : lunch6-day1 after Depot, Time : start [12.2383..12.25], duration
[0.5]
 lunch6-day2 after Depot, Time : start [36.2383..36.25], duration
[0.5]
 lunch6-day3 after visit32, Time : start [60.2383..60.25], duration
[0.5]
 lunch6-day4 after visit32, Time : start [84.2383..84.25], duration
[0.5]
 lunch6-day5 after visit27, Time : start [108.238..108.25], duration
[0.5]
 morningCoffee6-day1 after Depot, Time : start [10.2344..10.25],
duration [0.25]
 morningCoffee6-day2 after Depot, Time : start [34.2344..34.25],
duration [0.25]
 morningCoffee6-day3 after visit31, Time : start [58.2344..58.25],
duration [0.25]
 morningCoffee6-day4 after visit32, Time : start [82.2344..82.25],
duration [0.25]
 morningCoffee6-day5 after visit27, Time : start [106.359..106.375],
duration [0.25]
 aftenoonCoffee6-day1 after Depot, Time : start [15.4844..15.5],
duration [0.25]
 aftenoonCoffee6-day2 after visit31, Time : start [39.4844..39.5],
duration [0.25]
 aftenoonCoffee6-day3 after visit32, Time : start [63.4844..63.5],
duration [0.25]
 aftenoonCoffee6-day4 after visit32, Time : start [87.4844..87.5],
duration [0.25]
 aftenoonCoffee6-day5 after Depot, Time : start [111.484..111.5],
duration [0.25]
 night6-day1 after Depot, Time : start [18.9844..19], duration [7]
 night6-day2 after visit31, Time : start [42.9844..43], duration [10]
 night6-day3 after visit32, Time : start [66.9844..67], duration [7]
 night6-day4 after visit32, Time : start [90.9844..91], duration [10]

vehicle7 : Unused
 Breaks : lunch7-day1 after Depot, Time : start [12.2383..12.25], duration
[0.5]
 lunch7-day2 after Depot, Time : start [36.2383..36.25], duration
[0.5]
 lunch7-day3 after Depot, Time : start [60.2383..60.25], duration
[0.5]
 lunch7-day4 after Depot, Time : start [84.2383..84.25], duration
[0.5]
 lunch7-day5 after Depot, Time : start [108.238..108.25], duration
[0.5]
 morningCoffee7-day1 after Depot, Time : start [10.2344..10.25],
duration [0.25]
 morningCoffee7-day2 after Depot, Time : start [34.2344..34.25],
duration [0.25]
 morningCoffee7-day3 after Depot, Time : start [58.2344..58.25],
duration [0.25]
 morningCoffee7-day4 after Depot, Time : start [82.2344..82.25],
duration [0.25]
 morningCoffee7-day5 after Depot, Time : start [106.234..106.25],
duration [0.25]
216 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 aftenoonCoffee7-day1 after Depot, Time : start [15.4844..15.5],
duration [0.25]
 aftenoonCoffee7-day2 after Depot, Time : start [39.4844..39.5],
duration [0.25]
 aftenoonCoffee7-day3 after Depot, Time : start [63.4844..63.5],
duration [0.25]
 aftenoonCoffee7-day4 after Depot, Time : start [87.4844..87.5],
duration [0.25]
 aftenoonCoffee7-day5 after Depot, Time : start [111.484..111.5],
duration [0.25]
 night7-day1 after Depot, Time : start [18.9844..19], duration [7]
 night7-day2 after Depot, Time : start [42.9844..43], duration [10]
 night7-day3 after Depot, Time : start [66.9844..67], duration [7]
 night7-day4 after Depot, Time : start [90.9844..91], duration [10]

vehicle8 : Unused
 Breaks : lunch8-day1 after Depot, Time : start [12.2383..12.25], duration
[0.5]
 lunch8-day2 after Depot, Time : start [36.2383..36.25], duration
[0.5]
 lunch8-day3 after Depot, Time : start [60.2383..60.25], duration
[0.5]
 lunch8-day4 after Depot, Time : start [84.2383..84.25], duration
[0.5]
 lunch8-day5 after Depot, Time : start [108.238..108.25], duration
[0.5]
 morningCoffee8-day1 after Depot, Time : start [10.2344..10.25],
duration [0.25]
 morningCoffee8-day2 after Depot, Time : start [34.2344..34.25],
duration [0.25]
 morningCoffee8-day3 after Depot, Time : start [58.2344..58.25],
duration [0.25]
 morningCoffee8-day4 after Depot, Time : start [82.2344..82.25],
duration [0.25]
 morningCoffee8-day5 after Depot, Time : start [106.234..106.25],
duration [0.25]
 aftenoonCoffee8-day1 after Depot, Time : start [15.4844..15.5],
duration [0.25]
 aftenoonCoffee8-day2 after Depot, Time : start [39.4844..39.5],
duration [0.25]
 aftenoonCoffee8-day3 after Depot, Time : start [63.4844..63.5],
duration [0.25]
 aftenoonCoffee8-day4 after Depot, Time : start [87.4844..87.5],
duration [0.25]
 aftenoonCoffee8-day5 after Depot, Time : start [111.484..111.5],
duration [0.25]
 night8-day1 after Depot, Time : start [18.9844..19], duration [7]
 night8-day2 after Depot, Time : start [42.9844..43], duration [10]
 night8-day3 after Depot, Time : start [66.9844..67], duration [7]
 night8-day4 after Depot, Time : start [90.9844..91], duration [10]

vehicle9 : Unused
 Breaks : lunch9-day1 after Depot, Time : start [12.2383..12.25], duration
[0.5]
 lunch9-day2 after Depot, Time : start [36.2383..36.25], duration
[0.5]
 lunch9-day3 after Depot, Time : start [60.2383..60.25], duration
[0.5]
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 217

 lunch9-day4 after Depot, Time : start [84.2383..84.25], duration
[0.5]
 lunch9-day5 after Depot, Time : start [108.238..108.25], duration
[0.5]
 morningCoffee9-day1 after Depot, Time : start [10.2344..10.25],
duration [0.25]
 morningCoffee9-day2 after Depot, Time : start [34.2344..34.25],
duration [0.25]
 morningCoffee9-day3 after Depot, Time : start [58.2344..58.25],
duration [0.25]
 morningCoffee9-day4 after Depot, Time : start [82.2344..82.25],
duration [0.25]
 morningCoffee9-day5 after Depot, Time : start [106.234..106.25],
duration [0.25]
 aftenoonCoffee9-day1 after Depot, Time : start [15.4844..15.5],
duration [0.25]
 aftenoonCoffee9-day2 after Depot, Time : start [39.4844..39.5],
duration [0.25]
 aftenoonCoffee9-day3 after Depot, Time : start [63.4844..63.5],
duration [0.25]
 aftenoonCoffee9-day4 after Depot, Time : start [87.4844..87.5],
duration [0.25]
 aftenoonCoffee9-day5 after Depot, Time : start [111.484..111.5],
duration [0.25]
 night9-day1 after Depot, Time : start [18.9844..19], duration [7]
 night9-day2 after Depot, Time : start [42.9844..43], duration [10]
 night9-day3 after Depot, Time : start [66.9844..67], duration [7]
 night9-day4 after Depot, Time : start [90.9844..91], duration [10]

vehicle10 : Unused
 Breaks : lunch10-day1 after Depot, Time : start [12.2383..12.25], duration
[0.5]
 lunch10-day2 after Depot, Time : start [36.2383..36.25], duration
[0.5]
 lunch10-day3 after Depot, Time : start [60.2383..60.25], duration
[0.5]
 lunch10-day4 after Depot, Time : start [84.2383..84.25], duration
[0.5]
 lunch10-day5 after Depot, Time : start [108.238..108.25], duration
[0.5]
 morningCoffee10-day1 after Depot, Time : start [10.2344..10.25],
duration [0.25]
 morningCoffee10-day2 after Depot, Time : start [34.2344..34.25],
duration [0.25]
 morningCoffee10-day3 after Depot, Time : start [58.2344..58.25],
duration [0.25]
 morningCoffee10-day4 after Depot, Time : start [82.2344..82.25],
duration [0.25]
 morningCoffee10-day5 after Depot, Time : start [106.234..106.25],
duration [0.25]
 aftenoonCoffee10-day1 after Depot, Time : start [15.4844..15.5],
duration [0.25]
 aftenoonCoffee10-day2 after Depot, Time : start [39.4844..39.5],
duration [0.25]
 aftenoonCoffee10-day3 after Depot, Time : start [63.4844..63.5],
duration [0.25]
 aftenoonCoffee10-day4 after Depot, Time : start [87.4844..87.5],
duration [0.25]
218 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 aftenoonCoffee10-day5 after Depot, Time : start [111.484..111.5],
duration [0.25]
 night10-day1 after Depot, Time : start [18.9844..19], duration [7]
 night10-day2 after Depot, Time : start [42.9844..43], duration [10]
 night10-day3 after Depot, Time : start [66.9844..67], duration [7]
 night10-day4 after Depot, Time : start [90.9844..91], duration [10]

vehicle11 : Unused
 Breaks : lunch11-day1 after Depot, Time : start [12.2383..12.25], duration
[0.5]
 lunch11-day2 after Depot, Time : start [36.2383..36.25], duration
[0.5]
 lunch11-day3 after Depot, Time : start [60.2383..60.25], duration
[0.5]
 lunch11-day4 after Depot, Time : start [84.2383..84.25], duration
[0.5]
 lunch11-day5 after Depot, Time : start [108.238..108.25], duration
[0.5]
 morningCoffee11-day1 after Depot, Time : start [10.2344..10.25],
duration [0.25]
 morningCoffee11-day2 after Depot, Time : start [34.2344..34.25],
duration [0.25]
 morningCoffee11-day3 after Depot, Time : start [58.2344..58.25],
duration [0.25]
 morningCoffee11-day4 after Depot, Time : start [82.2344..82.25],
duration [0.25]
 morningCoffee11-day5 after Depot, Time : start [106.234..106.25],
duration [0.25]
 aftenoonCoffee11-day1 after Depot, Time : start [15.4844..15.5],
duration [0.25]
 aftenoonCoffee11-day2 after Depot, Time : start [39.4844..39.5],
duration [0.25]
 aftenoonCoffee11-day3 after Depot, Time : start [63.4844..63.5],
duration [0.25]
 aftenoonCoffee11-day4 after Depot, Time : start [87.4844..87.5],
duration [0.25]
 aftenoonCoffee11-day5 after Depot, Time : start [111.484..111.5],
duration [0.25]
 night11-day1 after Depot, Time : start [18.9844..19], duration [7]
 night11-day2 after Depot, Time : start [42.9844..43], duration [10]
 night11-day3 after Depot, Time : start [66.9844..67], duration [7]
 night11-day4 after Depot, Time : start [90.9844..91], duration [10]

vehicle12 : Unused
 Breaks : lunch12-day1 after Depot, Time : start [12.2383..12.25], duration
[0.5]
 lunch12-day2 after Depot, Time : start [36.2383..36.25], duration
[0.5]
 lunch12-day3 after Depot, Time : start [60.2383..60.25], duration
[0.5]
 lunch12-day4 after Depot, Time : start [84.2383..84.25], duration
[0.5]
 lunch12-day5 after Depot, Time : start [108.238..108.25], duration
[0.5]
 morningCoffee12-day1 after Depot, Time : start [10.2344..10.25],
duration [0.25]
 morningCoffee12-day2 after Depot, Time : start [34.2344..34.25],
duration [0.25]
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 219

 morningCoffee12-day3 after Depot, Time : start [58.2344..58.25],
duration [0.25]
 morningCoffee12-day4 after Depot, Time : start [82.2344..82.25],
duration [0.25]
 morningCoffee12-day5 after Depot, Time : start [106.234..106.25],
duration [0.25]
 aftenoonCoffee12-day1 after Depot, Time : start [15.4844..15.5],
duration [0.25]
 aftenoonCoffee12-day2 after Depot, Time : start [39.4844..39.5],
duration [0.25]
 aftenoonCoffee12-day3 after Depot, Time : start [63.4844..63.5],
duration [0.25]
 aftenoonCoffee12-day4 after Depot, Time : start [87.4844..87.5],
duration [0.25]
 aftenoonCoffee12-day5 after Depot, Time : start [111.484..111.5],
duration [0.25]
 night12-day1 after Depot, Time : start [18.9844..19], duration [7]
 night12-day2 after Depot, Time : start [42.9844..43], duration [10]
 night12-day3 after Depot, Time : start [66.9844..67], duration [7]
 night12-day4 after Depot, Time : start [90.9844..91], duration [10]

vehicle13 : Unused
 Breaks : lunch13-day1 after Depot, Time : start [12.2383..12.25], duration
[0.5]
 lunch13-day2 after Depot, Time : start [36.2383..36.25], duration
[0.5]
 lunch13-day3 after Depot, Time : start [60.2383..60.25], duration
[0.5]
 lunch13-day4 after Depot, Time : start [84.2383..84.25], duration
[0.5]
 lunch13-day5 after Depot, Time : start [108.238..108.25], duration
[0.5]
 morningCoffee13-day1 after Depot, Time : start [10.2344..10.25],
duration [0.25]
 morningCoffee13-day2 after Depot, Time : start [34.2344..34.25],
duration [0.25]
 morningCoffee13-day3 after Depot, Time : start [58.2344..58.25],
duration [0.25]
 morningCoffee13-day4 after Depot, Time : start [82.2344..82.25],
duration [0.25]
 morningCoffee13-day5 after Depot, Time : start [106.234..106.25],
duration [0.25]
 aftenoonCoffee13-day1 after Depot, Time : start [15.4844..15.5],
duration [0.25]
 aftenoonCoffee13-day2 after Depot, Time : start [39.4844..39.5],
duration [0.25]
 aftenoonCoffee13-day3 after Depot, Time : start [63.4844..63.5],
duration [0.25]
 aftenoonCoffee13-day4 after Depot, Time : start [87.4844..87.5],
duration [0.25]
 aftenoonCoffee13-day5 after Depot, Time : start [111.484..111.5],
duration [0.25]
 night13-day1 after Depot, Time : start [18.9844..19], duration [7]
 night13-day2 after Depot, Time : start [42.9844..43], duration [10]
 night13-day3 after Depot, Time : start [66.9844..67], duration [7]
 night13-day4 after Depot, Time : start [90.9844..91], duration [10]

vehicle14 : Unused
220 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 Breaks : lunch14-day1 after Depot, Time : start [12.2383..12.25], duration
[0.5]
 lunch14-day2 after Depot, Time : start [36.2383..36.25], duration
[0.5]
 lunch14-day3 after Depot, Time : start [60.2383..60.25], duration
[0.5]
 lunch14-day4 after Depot, Time : start [84.2383..84.25], duration
[0.5]
 lunch14-day5 after Depot, Time : start [108.238..108.25], duration
[0.5]
 morningCoffee14-day1 after Depot, Time : start [10.2344..10.25],
duration [0.25]
 morningCoffee14-day2 after Depot, Time : start [34.2344..34.25],
duration [0.25]
 morningCoffee14-day3 after Depot, Time : start [58.2344..58.25],
duration [0.25]
 morningCoffee14-day4 after Depot, Time : start [82.2344..82.25],
duration [0.25]
 morningCoffee14-day5 after Depot, Time : start [106.234..106.25],
duration [0.25]
 aftenoonCoffee14-day1 after Depot, Time : start [15.4844..15.5],
duration [0.25]
 aftenoonCoffee14-day2 after Depot, Time : start [39.4844..39.5],
duration [0.25]
 aftenoonCoffee14-day3 after Depot, Time : start [63.4844..63.5],
duration [0.25]
 aftenoonCoffee14-day4 after Depot, Time : start [87.4844..87.5],
duration [0.25]
 aftenoonCoffee14-day5 after Depot, Time : start [111.484..111.5],
duration [0.25]
 night14-day1 after Depot, Time : start [18.9844..19], duration [7]
 night14-day2 after Depot, Time : start [42.9844..43], duration [10]
 night14-day3 after Depot, Time : start [66.9844..67], duration [7]
 night14-day4 after Depot, Time : start [90.9844..91], duration [10]

vehicle15 : Unused
 Breaks : lunch15-day1 after Depot, Time : start [12.2383..12.25], duration
[0.5]
 lunch15-day2 after Depot, Time : start [36.2383..36.25], duration
[0.5]
 lunch15-day3 after Depot, Time : start [60.2383..60.25], duration
[0.5]
 lunch15-day4 after Depot, Time : start [84.2383..84.25], duration
[0.5]
 lunch15-day5 after Depot, Time : start [108.238..108.25], duration
[0.5]
 morningCoffee15-day1 after Depot, Time : start [10.2344..10.25],
duration [0.25]
 morningCoffee15-day2 after Depot, Time : start [34.2344..34.25],
duration [0.25]
 morningCoffee15-day3 after Depot, Time : start [58.2344..58.25],
duration [0.25]
 morningCoffee15-day4 after Depot, Time : start [82.2344..82.25],
duration [0.25]
 morningCoffee15-day5 after Depot, Time : start [106.234..106.25],
duration [0.25]
 aftenoonCoffee15-day1 after Depot, Time : start [15.4844..15.5],
duration [0.25]
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 221

 aftenoonCoffee15-day2 after Depot, Time : start [39.4844..39.5],
duration [0.25]
 aftenoonCoffee15-day3 after Depot, Time : start [63.4844..63.5],
duration [0.25]
 aftenoonCoffee15-day4 after Depot, Time : start [87.4844..87.5],
duration [0.25]
 aftenoonCoffee15-day5 after Depot, Time : start [111.484..111.5],
duration [0.25]
 night15-day1 after Depot, Time : start [18.9844..19], duration [7]
 night15-day2 after Depot, Time : start [42.9844..43], duration [10]
 night15-day3 after Depot, Time : start [66.9844..67], duration [7]
 night15-day4 after Depot, Time : start [90.9844..91], duration [10]

*/
222 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

C H A P T E R
9

Adding Early and Late Costs

In this lesson, you will learn how to:

◆ create a soft deadline

◆ model costs for both early and late deliveries

◆ use the member function setStartCost, and the functions IloEarlinessFunction
and IloTardinessFunction.

Describe

In standard vehicle routing problems, an optimal solution is found by building a set of routes
to perform each visit and minimizing the cost of the routes. The cost of any vehicle is
usually a linear combination of the length and duration of its route.

However, in the real world, the number of available vehicles may be limited or the distances
so great that it may not be possible to perform all visits within the specified time windows.
This may mean additional costs to the customer as a lack of stock leads to lost sales or a
slowdown in a manufacturing line. This introduces a new type of cost into the solution, a
cost based on the lateness of deliveries.

In Dispatcher, this type of problem can be modeled by “softening” the delivery deadlines by
introducing an associated cost for “tardy” deliveries.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 223

In soft deadline problems, the best delivery time is usually just the earliest possible delivery
time. However, in some cases, costs can arise for early deliveries as well. For example, a
customer may incur extra storage and handling expenses if a delivery is too early to be used
immediately, or if it exceeds the customer’s normal storage capacity.

The example in this chapter considers both late and early delivery costs. This substantially
increases the difficulty, since making an initial delivery on time may cause subsequent
deliveries to be late and costly; making the subsequent deliveries on time may cause the
initial delivery to be costly as it is too early. Each visit in a route has more
interdependencies; in some cases, it may be beneficial to have a vehicle wait to make a
delivery.

Early and Late Cost Interdependence

Figure 9.1 illustrates a cost-time relationship for a single delivery that has both early and late
costs. Cost for an early delivery declines as it approaches the earliest desired arrival time
(tmin), at which point cost is zero. After the latest desired arrival time (tmax), cost
increases as time increases.

Figure 9.1

Figure 9.1 Cost-time for one delivery with earliness and lateness costs

The relationship becomes more complex when you consider two visits, V1 and V2, such that
V2 is directly after V1 on the route. Figure 9.2 depicts the cost function for these visits based
upon arrival time at V1, where the time window for V1 is [2, 5]; the time window for V2 is
[4, 8]; and the transit time from V1 to V2 is 1.

COST

ARRIVAL TIMEtmin tmax
224 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Describe
Figure 9.2

Figure 9.2 Cost-time for two deliveries with earliness and lateness costs

Under certain circumstances, a vehicle might need to wait between V1 and V2, causing an
effective increase in the transit time. Figure 9.3 depicts the same two visits, V1 and V2, but
with a transit time of 3.

Figure 9.3

Figure 9.3 Revised cost-time for two deliveries with earliness and lateness costs

This illustrates the importance of determining waiting times in order to identify optimal
arrival times.

COST

 ARRIVAL TIME AT V1

1 2 3 4 5 6 7 8 9

COST

 ARRIVAL TIME AT V1

1 2 3 4 5 6 7 8 9
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 225

The first step is to write a natural language description of the problem. A good way to start
this process is to analyze the variables and objectives.

What are the constraints in this problem?

◆ Just as for a standard PDP, delivery trucks will pick up parcels en route and deliver them
on the same route. As a consequence, capacity constraints on the vehicles may reach a
limit along the route, rather than when departing the depot.

◆ Pickups as well as deliveries have constraints on the time windows when the parcel can
be picked up or delivered. Pickup or delivery activities outside these time windows incur
additional costs for the delivery.

The objective is to minimize the cost of the delivery of all the parcels.

Model

Once you have written a description of your problem, you can use Dispatcher classes to
model it.

Open the example file YourDispatcherHome/examples/src/tutorial/
earlytardy_partial.cpp in your development environment.

The problem in this lesson is the same as the PDP problem in Chapter 8 that you have
already worked with, except that costs are added for early and late deliveries.

The early and tardy costs are added in the function createVisits.

Add the following code after the comment //Add the early and tardy costs.

The integer variables earlyCost and tardyCost are used later by
IloEarlinessFunction and IloTardinessFunction to compute the cost of the
delivery schedules.

Step 1 Describe the problem

Step 2 Open the example file

Step 3 Add the early and tardy costs

 IloInt earlyCost = 5;
 IloInt tardyCost = 10;
226 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
l

Add the following code after the comment
//Add the earliness and tardiness functions.

IloEarlinessFunction is used to compute the total cost of an early pickup time from the
earlyCost variable and the amount of time that the delivery is early.
IloTardinessFunction similarily computes the tardy cost. The output of these two
functions is added together to compute the cost of the pickup visit. The total cost is then
assigned to the pickup visit with the member function setStartCost. setStartCost is
used (as opposed to setEndCost) to express the fact that the cost will be a function of the
cumul variable (as opposed to the endCumul variable).

This process is also performed for every delivery visit.

The remainder of the modeling code is the same or similar to pdp.cpp, presented in
Chapter 7, Pickup and Delivery Problems.

Solve

The solution is computed, improved, and displayed by methods previously presented for the
VRP problem, with one addition.

The solve portion of the problem needs to account for the fact that time needs to be
instantiated. In our previous examples, the earliest possible delivery time was always the
optimal delivery time. In this example, that is not necessarily true due to the possibility of
early delivery charges; shifting the schedule to the earliest possible time may actually
increase the cost of the schedule.

Step 4 Add the earliness and tardiness functions

 pickup.setStartCost(time,
 IloEarlinessFunction(_env,
 pickupMinTime, earlyCost)
 + IloTardinessFunction(_env,
 pickupMaxTime, tardyCost));

 delivery.setStartCost(time,
 IloEarlinessFunction(_env,
 deliveryMinTime, earlyCost)
 + IloTardinessFunction(_env,
 deliveryMaxTime, tardyCost));
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 227

l

Add the following code after the comment //Instantiate time.

The solution improvement phase finds a solution using 9 vehicles with a cost of 1128.95
units:

The complete program and output are listed in “Complete Program” on page 230. You can
also view it online in the YourDispatcherHome/examples/src/earlytardy.cpp file.

Review Exercises

For answers, see “Suggested Answers” on page 229.

1. What is a soft deadline?

2. What function is used in this example to model a soft deadline?

Step 5 Instantiate time

 IloGoal subGoal = IloSetVisitCumuls(env,
 IloDimension2::Find(env, "Time"),
 1e-6)
 && instantiateCost;

Step 6 Compile and run the program

3706.08
Improving solution
Number of fails : 0
Number of choice points : 1049
Number of variables : 2329
Number of constraints : 410
Reversible stack (bytes) : 213084
Solver heap (bytes) : 1049500
Solver global heap (bytes) : 1363004
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 2705160
Elapsed time since creation : 0.016
Number of nodes : 51
Number of visits : 80
Number of vehicles : 15
Number of dimensions : 3
Number of accepted moves : 44
===============
Cost : 1128.95
Number of vehicles used : 9

228 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Suggested Answers
3. Are additional functions used to model early costs?

4. The solving and goals portion of the code is shown below. How would this section of
code change if there were no early costs?

Suggested Answers

Exercise 1

What is a soft deadline?

Suggested Answer

A soft deadline is a deadline that can be violated, but at a cost.

Exercise 2

What function is used in this example to model a soft deadline?

Suggested Answer

IloTardinessFunction is used to model a soft deadline.

Exercise 3

Are additional functions used to model early costs?

void RoutingSolver::solve() {
 IloDispatcher dispatcher(_solver);
 IloEnv env = _solver.getEnv();
 // Subgoals
 IloGoal instantiateCost = IloDichotomize(env,
 dispatcher.getCostVar(),
 IloFalse);

 IloGoal subGoal = IloSetVisitCumuls(env,
 IloDimension2::Find(env, "Time"),
 1e-6)
 && instantiateCost;

 IloGoal restoreSolution = IloRestoreSolution(env, _solution) && subGoal;
 IloGoal goal = IloSavingsGenerate(env) && subGoal;

 // Solving
 if (findFirstSolution(goal)) {
 improve(subGoal);
 _solver.solve(restoreSolution);
 }
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 229

Suggested Answer

Yes. IloEarlinessFunction is used to compute the cost of an early delivery.

Exercise 4

How would the solving and goals code change if there were no early costs?

Suggested Answer

If there were no early costs, there would be no need to instantiate time, as the earliest
possible delivery time would be the best delivery time. The modified code follows.

Complete Program

The complete program follows. You can also view it online in the file
YourDispatcherHome/examples/src/earlytardy.cpp.

// -- -*- C++ -*-
// File: examples/src/earlytardy.cpp
// --

#include <ildispat/ilodispatcher.h>

ILOSTLBEGIN
///
// Modeling
class RoutingModel {
 IloEnv _env;
 IloModel _mdl;

 void createDimensions();
 void createNodes(char* nodeFileName);
 void createVehicles(char* vehicleFileName);

void RoutingSolver::solve() {
 IloDispatcher dispatcher(_solver);
 IloEnv env = _solver.getEnv();
 // Subgoals
 IloGoal subGoal = IloDichotomize(env,
 dispatcher.getCostVar(),
 IloFalse);
 IloGoal restoreSolution = IloRestoreSolution(env, _solution) && subGoal;
 IloGoal goal = IloSavingsGenerate(env) && subGoal;

 // Solving
 if (findFirstSolution(goal)) {
 improve(subGoal);
 _solver.solve(restoreSolution);
 }
}

230 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 void createVisits(char* visitsFileName);
public:
 RoutingModel(IloEnv env, int argc, char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
};

RoutingModel::RoutingModel(IloEnv env, int argc, char * argv[])
 : _env(env), _mdl(env) {

 createDimensions();

 char* nodeFileName;
 if(argc < 4)
 nodeFileName = (char *) “../../../examples/data/pdp/nodes.csv”;
 else
 nodeFileName = argv[3];
 createNodes(nodeFileName);

 char* vehiclesFileName;
 if (argc < 2)
 vehiclesFileName = (char *) “../../../examples/data/pdp/vehicles.csv”;
 else
 vehiclesFileName = argv[1];
 createVehicles(vehiclesFileName);

 char* visitsFileName;
 if (argc < 3)
 visitsFileName = (char*) “../../../examples/data/pdp/visits.csv”;
 else
 visitsFileName = argv[2];
 createVisits(visitsFileName);
}

// Create dimensions
void RoutingModel::createDimensions() {
 IloDimension2 time(_env, IloEuclidean, “Time”);
 time.setKey(“Time”);
 _mdl.add(time);
 IloDimension2 length(_env, IloEuclidean, IloFalse, “Length”);
 length.setKey(“Length”);
 _mdl.add(length);
 IloDimension1 weight(_env, “Weight”);
 weight.setKey(“Weight”);
 _mdl.add(weight);
}

// Create nodes
void RoutingModel::createNodes(char* nodeFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char* name = line.getStringByHeader(“name”);
 IloNode node(_env,
 line.getFloatByHeader(“x”),
 line.getFloatByHeader(“y”),
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 231

 0,
 name);
 node.setKey(name);
 ++it;
 }
 csvNodeReader.end();
}

// Create vehicles
void RoutingModel::createVehicles(char* vehicleFileName) {
 IloDimension1 weight = IloDimension1::Find(_env, “Weight”);
 IloDimension2 time = IloDimension2::Find(_env, “Time”);
 IloDimension2 length = IloDimension2::Find(_env, “Length”);

 IloCsvReader csvVehicleReader(_env, vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader(“first”);
 char * namelast = line.getStringByHeader(“last”);
 char * name = line.getStringByHeader(“name”);
 IloNum capacity = line.getFloatByHeader(“capacity”);
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env,namelast);

 IloVisit first(node1, “Depot”);
 _mdl.add(first.getCumulVar(weight) == 0);
 _mdl.add(first.getCumulVar(time) >= line.getFloatByHeader(“open”));

 IloVisit last(node2, “Depot”);
 _mdl.add(last.getCumulVar(time) <= line.getFloatByHeader(“close”));
 IloVehicle vehicle(first, last, name);
 vehicle.setCost(length, 1.0);
 vehicle.setCapacity(weight, capacity);
 _mdl.add(vehicle);
 ++it;
 }
 csvVehicleReader.end();
}

// Create visits
void RoutingModel::createVisits(char* visitsFileName) {

 IloInt earlyCost = 5;
 IloInt tardyCost = 10;

 IloDimension1 weight = IloDimension1::Find(_env, “Weight”);
 IloDimension2 time = IloDimension2::Find(_env, “Time”);

 IloCsvReader csvVisitReader(_env, visitsFileName);
 IloCsvReader::LineIterator it(csvVisitReader);
 while(it.ok()){
 IloCsvLine line = *it;
 //read visit data from files
 char * pickupVisitName = line.getStringByHeader(“pickup”);
 char * pickupNodeName = line.getStringByHeader(“pickupNode”);
 char * deliveryVisitName = line.getStringByHeader(“delivery”);
 char * deliveryNodeName = line.getStringByHeader(“deliveryNode”);
232 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 IloNum quantity = line.getFloatByHeader(“quantity”);
 IloNum pickupMinTime = line.getFloatByHeader(“pickupMinTime”);
 IloNum pickupMaxTime = line.getFloatByHeader(“pickupMaxTime”);
 IloNum deliveryMinTime = line.getFloatByHeader(“deliveryMinTime”);
 IloNum deliveryMaxTime = line.getFloatByHeader(“deliveryMaxTime”);
 IloNum dropTime = line.getFloatByHeader(“dropTime”);
 IloNum pickupTime = line.getFloatByHeader(“pickupTime”);

 // read data nodes from the file nodes.csv
 // and creat pickup and delivery nodes

 IloNode pickupNode = IloNode::Find(_env, pickupNodeName);
 IloNode deliveryNode = IloNode::Find(_env, deliveryNodeName);
 //create and add pickup and delivery visits
 IloVisit pickup(pickupNode, pickupVisitName);
 _mdl.add(pickup.getDelayVar(time) == pickupTime);
 _mdl.add(pickup.getTransitVar(weight) == quantity);

 pickup.setStartCost(time,
 IloEarlinessFunction(_env,
 pickupMinTime, earlyCost)
 + IloTardinessFunction(_env,
 pickupMaxTime, tardyCost));

 _mdl.add(pickup);
 IloVisit delivery(deliveryNode, deliveryVisitName);
 _mdl.add(delivery.getDelayVar(time) == dropTime);
 _mdl.add(delivery.getTransitVar(weight) == -quantity);

 delivery.setStartCost(time,
 IloEarlinessFunction(_env,
 deliveryMinTime, earlyCost)
 + IloTardinessFunction(_env,
 deliveryMaxTime, tardyCost));

 _mdl.add(delivery);
 //add pickup and delivery order constraint
 _mdl.add(IloOrderedVisitPair(_env, pickup, delivery));
 ++it;
 }
 csvVisitReader.end();
}

///
// Solving
class RoutingSolver {
 IloModel _mdl;
 IloSolver _solver;
 IloRoutingSolution _solution;

 IloBool findFirstSolution(IloGoal goal);
 void greedyImprove(IloNHood nhood, IloGoal subGoal);
 void improve(IloGoal subgoal);
public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloRoutingSolution getSolution() const { return _solution; }
 void printInformation() const;
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 233

 void solve();
};

RoutingSolver::RoutingSolver(RoutingModel mdl)
 : _mdl(mdl.getModel()), _solver(mdl.getModel()), _solution(mdl.getModel()) {}

// Solving : find first solution
IloBool RoutingSolver::findFirstSolution(IloGoal goal) {
 if (!_solver.solve(goal)) {
 _solver.error() << “Infeasible Routing Plan” << endl;
 return IloFalse;
 }
 IloDispatcher dispatcher(_solver);
 _solver.out() << dispatcher.getTotalCost() << endl;
 _solution.store(_solver);
 return IloTrue;
}

// Improve solution using nhood
void RoutingSolver::greedyImprove(IloNHood nhood, IloGoal subGoal) {
 _solver.out() << “Improving solution” << endl;
 IloEnv env = _solver.getEnv();
 nhood.reset();
 IloGoal improve = IloSingleMove(env,
 _solution,
 nhood,
 IloImprove(env),
 subGoal);
 while (_solver.solve(improve)) {}
}

// Improve solution
void RoutingSolver::improve(IloGoal subGoal) {
 IloEnv env = _solver.getEnv();
 IloNHood nhood = IloTwoOpt(env)
 + IloOrOpt(env)
 + IloRelocate(env)
 + IloCross(env)
 + IloExchange(env);
 greedyImprove(nhood, subGoal);
}

// Display Dispatcher information
void RoutingSolver::printInformation() const {
 IloDispatcher dispatcher(_solver);
 _solver.printInformation();
 dispatcher.printInformation();
 _solver.out() << “===============” << endl
 << “Cost : “ << dispatcher.getTotalCost() << endl
 << “Number of vehicles used : “
 << dispatcher.getNumberOfVehiclesUsed() << endl
 << “Solution : “ << endl
 << dispatcher << endl;
}

// Solving
void RoutingSolver::solve() {
 IloDispatcher dispatcher(_solver);
234 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 IloEnv env = _solver.getEnv();
 // Subgoals
 IloGoal instantiateCost = IloDichotomize(env,
 dispatcher.getCostVar(),
 IloFalse);

 IloGoal subGoal = IloSetVisitCumuls(env,
 IloDimension2::Find(env, “Time”),
 1e-6)
 && instantiateCost;

 IloGoal restoreSolution = IloRestoreSolution(env, _solution) && subGoal;
 IloGoal goal = IloSavingsGenerate(env) && subGoal;

 // Solving
 if (findFirstSolution(goal)) {
 improve(subGoal);
 _solver.solve(restoreSolution);
 }
}

///
int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 solver.solve();
 solver.printInformation();
 } catch(IloException& ex) {
 cerr << “Error: “ << ex << endl;
 }
 env.end();
 return 0;
}

Complete Output

/**
3706.08
Improving solution
Number of fails : 0
Number of choice points : 1049
Number of variables : 2329
Number of constraints : 410
Reversible stack (bytes) : 213084
Solver heap (bytes) : 1049500
Solver global heap (bytes) : 1363004
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 2705160
Elapsed time since creation : 0.016
Number of nodes : 51
Number of visits : 80
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 235

Number of vehicles : 15
Number of dimensions : 3
Number of accepted moves : 44
===============
Cost : 1128.95
Number of vehicles used : 9
Solution :
Unperformed visits : None
vehicle1 :
 -> Depot Time[0..1e-006] Length[0..Inf) Weight[0] -> visit35
Time[41.0366..41.0366] Length[0..Inf) Weight[0..162] -> visit49
Time[108.115..108.115] Length[0..Inf) Weight[8..170] -> visit36
Time[127.06..127.06] Length[0..Inf) Weight[38..200] -> visit50
Time[183.9..183.9] Length[0..Inf) Weight[30..192] -> Depot Time[210.87..210.87]
Length[0..Inf) Weight[0..162]
vehicle2 : Unused
vehicle3 :
 -> Depot Time[0..1e-006] Length[0..Inf) Weight[0] -> visit21
Time[18.0278..18.0278] Length[0..Inf) Weight[0..129] -> visit39
Time[45.0278..45.0278] Length[0..Inf) Weight[11..140] -> visit23
Time[66.7218..66.7218] Length[0..Inf) Weight[42..171] -> visit22
Time[87.9021..87.9021] Length[0..Inf) Weight[71..200] -> visit40
Time[113.713..113.713] Length[0..Inf) Weight[60..189] -> visit24
Time[150.639..150.639] Length[0..Inf) Weight[29..158] -> visit25
Time[175.639..175.639] Length[0..Inf) Weight[0..129] -> visit26 Time[208..208]
Length[0..Inf) Weight[6..135] -> Depot Time[229.18..229.18] Length[0..Inf)
Weight[0..129]
vehicle4 :
 -> Depot Time[0..1e-006] Length[0..Inf) Weight[0] -> visit45
Time[29.1548..29.1548] Length[0..Inf) Weight[0..156] -> visit46
Time[49.9251..49.9251] Length[0..Inf) Weight[16..172] -> visit47
Time[69.9251..69.9251] Length[0..Inf) Weight[0..156] -> visit48
Time[86.3282..86.3282] Length[0..Inf) Weight[27..183] -> visit19
Time[104.574..104.574] Length[0..Inf) Weight[0..156] -> visit31
Time[132.463..132.463] Length[0..Inf) Weight[17..173] -> visit32
Time[159.927..159.927] Length[0..Inf) Weight[44..200] -> visit20
Time[180.698..180.698] Length[0..Inf) Weight[17..173] -> Depot
Time[222.32..222.32] Length[0..Inf) Weight[0..156]
vehicle5 :
 -> Depot Time[0..1e-006] Length[0..Inf) Weight[0] -> visit33
Time[24.7588..24.7588] Length[0..Inf) Weight[0..175] -> visit29
Time[49.6249..49.6249] Length[0..Inf) Weight[11..186] -> visit34
Time[72.6633..72.6633] Length[0..Inf) Weight[20..195] -> visit9 Time[97..97]
Length[0..Inf) Weight[9..184] -> visit30 Time[122..122] Length[0..Inf)
Weight[25..200] -> visit10 Time[142..142] Length[0..Inf) Weight[16..191] ->
Depot Time[177.495..177.495] Length[0..Inf) Weight[0..175]
vehicle6 :
 -> Depot Time[0..1e-006] Length[0..Inf) Weight[0] -> visit1
Time[15.2315..15.2315] Length[0..Inf) Weight[0..167] -> visit7
Time[46.2553..46.2553] Length[0..Inf) Weight[10..177] -> visit8 Time[95..95]
Length[0..Inf) Weight[15..182] -> visit13 Time[131.907..131.907] Length[0..Inf)
Weight[10..177] -> visit14 Time[163.12..163.12] Length[0..Inf) Weight[33..200]
-> visit2 Time[194.31..194.31] Length[0..Inf) Weight[10..177] -> Depot
Time[222.31..222.31] Length[0..Inf) Weight[0..167]
vehicle7 :
 -> Depot Time[0..1e-006] Length[0..Inf) Weight[0] -> visit41
Time[28.8617..28.8617] Length[0..Inf) Weight[0..174] -> visit15 Time[61..61]
Length[0..Inf) Weight[5..179] -> visit42 Time[80.2195..80.2195] Length[0..Inf)
236 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
Weight[13..187] -> visit16 Time[106.344..106.344] Length[0..Inf) Weight[8..182]
-> visit5 Time[127.524..127.524] Length[0..Inf) Weight[0..174] -> visit6
Time[147.524..147.524] Length[0..Inf) Weight[26..200] -> Depot
Time[168.705..168.705] Length[0..Inf) Weight[0..174]
vehicle8 :
 -> Depot Time[0..1e-006] Length[0..Inf) Weight[0] -> visit37
Time[21.2132..21.2132] Length[0..Inf) Weight[0..192] -> visit38 Time[83..83]
Length[0..Inf) Weight[8..200] -> visit17 Time[118..118] Length[0..Inf)
Weight[0..192] -> visit18 Time[146.028..146.028] Length[0..Inf) Weight[2..194]
-> Depot Time[171.839..171.839] Length[0..Inf) Weight[0..192]
vehicle9 :
 -> Depot Time[0..1e-006] Length[0..Inf) Weight[0] -> visit43
Time[34.176..34.176] Length[0..Inf) Weight[0..193] -> visit44 Time[69..69]
Length[0..Inf) Weight[7..200] -> Depot Time[110.89..110.89] Length[0..Inf)
Weight[0..193]
vehicle10 :
 -> Depot Time[0..1e-006] Length[0..Inf) Weight[0] -> visit27 Time[5..5]
Length[0..Inf) Weight[0..159] -> visit11 Time[67..67] Length[0..Inf)
Weight[16..175] -> visit3 Time[117.311..117.311] Length[0..Inf) Weight[28..187]
-> visit4 Time[152.311..152.311] Length[0..Inf) Weight[41..200] -> visit12
Time[178.123..178.123] Length[0..Inf) Weight[28..187] -> visit28
Time[197.342..197.342] Length[0..Inf) Weight[16..175] -> Depot
Time[213.667..213.667] Length[0..Inf) Weight[0..159]
vehicle11 : Unused
vehicle12 : Unused
vehicle13 : Unused
vehicle14 : Unused
vehicle15 : Unused

*/
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 237

238 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

C H A P T E R
10

Pickup and Delivery by Multiple Vehicles
from Multiple Depots

In this lesson, you will learn how to:

◆ decompose a problem

◆ use a mixed iterative solving technique

◆ maintain the coherence of submodels

The problem of pickup and delivery by multiple vehicles from multiple depots is known as
the Multiple-Depot Pickup and Delivery Problem (MDPDP). For many distribution
companies in the real world, customers are widely geographically separated, making pickup
or delivery from a single depot too costly. A possible solution is to open anything from a few
to many depots as “home bases” for vehicles. This problem shows you how to model and
solve a problem where there is more than one vehicle depot. In this problem each visit must
be assigned to a particular truck. Each truck is itself assigned to a particular depot. The aim
is still to minimize the global cost of the routes serving all the visits. Moreover, since
MDPDP problems are usually large, this problem aims to increase performance by
decomposing the problem into smaller subproblems, bringing them all together for a
complete solution.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 239

Describe

In terms of the specification of the problem, a multiple depot pickup and delivery problem is
much the same as a standard single depot problem. The main difference is that not all
vehicles are located at the same node. Multiple depot problems may also have some
properties which are local to each depot, for instance opening hours, although such
variations are not addressed here. The constraints here are the usual ones of vehicle capacity
and time windows. The object is to minimize the total distance traveled.

Figure 10.1

Figure 10.1 Example of a Solution for a Multiple Depot Pickup and Delivery Problem

Cost : 1322.51
240 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Describe
The MDPDP problem is broken down to a set of subproblems using Concert Technology:
one subproblem per depot. Each subproblem is then improved independently. This has the
advantage that the whole problem can be solved more quickly. However, there is a
disadvantage. By decomposing the problem, the quality of solution obtained can be poorer
than if the problem were considered as a whole. This problem, therefore, uses a mixed
technique where each subproblem is improved independently and then the whole problem is
improved. The process is then iterated with the subproblems being improved once more in
light of the changes made while optimizing the whole problem. This process continues until
some stopping condition is met. In this example, the stopping condition is that no more
improvement takes place. This process is shown in the following figure:

Figure 10.2

Figure 10.2 Solution Process Using Subproblems

To perform the decomposition of the problem into subproblems, one model, an instance of
IloModel, per subproblem is maintained. Each of these models contains the dimensions of
the problem and the vehicles particular to the depot in question. In addition, each such model
contains constraints particular to the depot, such as the time constraints on vehicles based at
that depot. A model of the whole problem, containing the depot models, is also maintained.
The assignment of depots to visits is not known in advance, and, in fact, may change during

Optimize Plan

Improve Depot n

Improve Depot 1

Done YES

NO

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 241

the improvement process. It will thus be necessary to add visits to and remove visits from
models. To ease this process, a small model is created for each visit which holds the visit
along with constraints pertaining to the visit itself (for instance, time windows). In this way,
visits, together with their pertinent constraints, can be transferred from model to model. A
reference to this model is stored in the visit itself using IloVisit::setObject(IloAny).
A model is also created to manage the dimensions used by all models.

The solution process is iterative. Each depot model is improved and then the whole problem
is improved. This latter phase is one that can cause visits to migrate from one depot to
another. In other words, moves can be performed that cause a vehicle from a different depot
to perform a visit. When the next iteration to improve depots begins, a synchronization needs
to be performed. During this synchronization, the submodels are updated with the changes
made during the improvement stage of the whole problem.

This problem demonstrates three main techniques of Dispatcher problem solving: the
decomposition of a problem, a mixed iterative solving technique, and the maintenance of the
coherence of submodels.

The first step is to write a natural language description of the problem.

The components of the routing model for this problem are the same as for a standard PDP,
except that there are multiple depots. Vehicles are associated with a specific depot.

The constraints in this problem are the same as those in a standard PDP: vehicle capacity,
time windows, and visit quantities.

The objective is to minimize the total cost of the solution, which is directly proportional to
the total distance traveled by all vehicles.

Model

Once you have written a description of your problem, you can use Dispatcher classes to
model it. This solution process is highly depot based. It is worth introducing a class for
depots which encapsulates the composition of the depot, along with methods for improving
the solution for a depot. You will also create a RoutingModel class, as in a standard PDP.

Open the example file YourDispatcherHome/examples/src/tutorial/
mdpdp_partial.cpp in your development environment. This file is a program that is only
partially completed. You will fill in the blanks in each step in this lesson. At the end of this

Step 1 Describe the problem

Step 2 Open the example file
242 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
lesson, you will have completed the code for the problem and you will be able to compile
and run it.

Declare the Depot class

The code for the declaration of the Depot class is provided for you:

class Depot {
private:
 IloEnv _env;
 IloNode _node;
 IloInt _nbOfTrucks;
 IloInt _capacity;
 IloNum _openTime;
 IloNum _closeTime;
 IloVehicleArray _vehicles;
 IloVisitArray _visits;
 IloModel _model;
 IloNHood _nhood;
 IloMetaHeuristic _mh;
public:
 Depot(IloEnv env, const char *name, IloNum x, IloNum y,
 IloInt nbOfTrucks, IloInt capacity,
 IloNum openTime, IloNum closeTime
);
 ~Depot();

 const char* getName() const { return _node.getName();}
 void add(IloExtractable ex) { _model.add(ex); }
 void add(IloVehicle vehicle) { _vehicles.add(vehicle); _model.add(vehicle); }
 IloModel getModel() const { return _model; }
 IloBool improve(IloSolver solver, IloRoutingSolution rs, IloGoal g);
 void fillModel(IloRoutingSolution rs);

 void createVehicles(IloDimension2 time, IloDimension2 length, IloDimension1
weight);
 IloVehicle createOneVehicle(IloInt vehicleIndex,
 IloDimension2 time,
 IloDimension2 length,
 IloDimension1 weight);
};
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 243

Define the Depot constructor

A depot is built from an instance of IloEnv and is given a name name. The following code
is provided for you:

In order to improve solutions for this depot, a neighborhood _nhood and greedy
metaheuristic _mh are created. As the subproblem of improving the solution to a single depot
is likely to be relatively small, five move operators are used in the neighborhood.

Add the following code after the comment //Create the depot neighborhood

Add the following code after the comment //Create the depot search heuristic

Depot
::Depot(IloEnv env, const char *name, IloNum x, IloNum y,
 IloInt nbOfTrucks, IloInt capacity,
 IloNum openTime, IloNum closeTime
)
 : _env(env),
 _node(env, x, y, 0, name),
 _nbOfTrucks(nbOfTrucks),
 _capacity(capacity),
 _openTime(openTime),
 _closeTime(closeTime),
 _vehicles(env),
 _visits(env),
 _model(env)

{

Step 3 Create the depot neighborhood

 _nhood = IloTwoOpt(env) + IloOrOpt(env) + IloRelocate(env) +
 IloCross(env) + IloExchange(env)
 //+ IloRelocateTours(env)
 ;

Step 4 Create the depot search heuristic

 _mh = IloImprove(env);
}

244 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Define the Depot destructor

A destructor cleans up the temporary objects. This code is provided for you:

Define the Depot::improve function

You define a method improve that is used for improving the solution rs passed as an
argument. A solver solver and a goal g to be executed at each move are also passed as
parameters. The number of moves made is returned. First, the neighborhood and greedy
metaheuristic are reset. Then, the improvement goal is created using IloSingleMove. An
improvement loop is then entered, which stops when no move can improve the cost of the
current solution. Finally, the number of moves made is returned. The following code is
provided for you:

Define the Depot::fillModel function

The class Depot also requires the ability to synchronize its internal model with a routing
solution. To perform this you first empty the model of the visit models which previously
comprised the model. You then scan the solution for the vehicles which are based at this
depot, and for each one, find out which visits are made by these vehicles. These visits (or
more accurately, the models pertaining to these visits) must then be placed in the depot
model. You keep track of which visits are in the model in the array _visits.

Depot::~Depot() {
 _nhood.end();
 _mh.end();
 _vehicles.end();
 _visits.end();
}

IloBool Depot::improve(IloSolver solver, IloRoutingSolution rs, IloGoal g) {
 _nhood.reset();
 _mh.reset();
 IloGoal improve = IloSingleMove(_env, rs, _nhood, _mh, g);
 solver.out() << " Optimizing depot " << getName() << " "
 << rs.getSolution().getObjectiveValue() << flush;
 IloBool moves = 0;
 while (solver.solve(improve)) ++moves;
 solver.out() << " ---> " << rs.getSolution().getObjectiveValue() << endl;
 return (moves>0);
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 245

Add the following code after the comment //Fill the depot model

Define the Depot::createOneVehicle function

You add a function to create a vehicle associated to the depot. The vehicles have first and last
visits at their associated depot. You add side constraints that the vehicles must leave the
depot after it opens and return to the depot before it closes. You set the capacity of the
vehicle. The cost of each vehicle is set to be directly proportional to the dimension length.

Step 5 Fill the depot model

 void Depot::fillModel(IloRoutingSolution rs) {
 IloInt i;
 for (i = 0; i < _visits.getSize(); i++)
 _model.remove((IloModelI *)_visits[i].getObject());
 _visits.end();
 _visits = IloVisitArray(_env);
 for (i = 0; i < _vehicles.getSize(); i++) {
 for (IloRoutingSolution::RouteIterator r(rs, _vehicles[i]); r.ok(); ++r) {
 IloVisit visit = *r;
 if (!visit.isFirstVisit() && !visit.isLastVisit()) {
 _visits.add(visit);
 _model.add((IloModelI*)visit.getObject());
 }
 }
 }
}

246 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Ad the following code after the comment
//Create one vehicle associated to the depot

Define the Depot::createVehicles function

You create a function that will be called by RoutingModel::createDepots. This loop
will be used to create the vehicles attached to each depot. This code is provided for you:

Step 6 Create one vehicle associated to the depot

IloVehicle Depot::createOneVehicle(IloInt vehicleIndex,
 IloDimension2 time,
 IloDimension2 length,
 IloDimension1 weight) {
 char namebuf[128];
 const char* depotName = getName();

 sprintf(namebuf, "Truck %ld leaving %s", vehicleIndex, depotName);
 IloVisit first(_node, namebuf);
 sprintf(namebuf, "Truck %ld returning to %s", vehicleIndex, depotName);
 IloVisit last (_node, namebuf);
 sprintf(namebuf, "Vehicle %ld of Depot %s", vehicleIndex, getName());
 IloVehicle vehicle(first, last, namebuf);
 vehicle.setCost(length, 1.0);
 vehicle.setCapacity(weight, _capacity);
 add(vehicle);
 add(first.getCumulVar(time) >= _openTime);
 add(last.getCumulVar(time) <= _closeTime);
 last.getCumulVar(weight).setBounds(0,0);
 first.getCumulVar(length).setBounds(0,0);
 first.getDelayVar(length).setBounds(0,0);
 first.getWaitVar(length).setBounds(0,0);
 last.getDelayVar(length).setBounds(0,0);
 last.getWaitVar(length).setBounds(0,0);

 vehicle.setObject(this);
 return vehicle;
}

void Depot::createVehicles(IloDimension2 time,
 IloDimension2 length,
 IloDimension1 weight) {
 for (IloInt v=0; v < _nbOfTrucks; ++v) {
 IloVehicle vehicle = createOneVehicle(v, time, length, weight);
 _vehicles[v] = vehicle;
 }
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 247

Declare the RoutingModel class

As in Chapter 7, Pickup and Delivery Problems, you create a RoutingModel class, which is
used to model the problem. There are several important differences between the
RoutingModel class used in a standard PDP and the RoutingModel class used in this
problem. There is a model for the whole problem _mdl and a model for the dimensions
_dimModel. Instead of a createVehicles function, you have a createDepots function.
The createDepots function will call the Depot class constructor and create the submodel
for each depot. The createVisits function creates small submodels for each pickup and
delivery visit. The RoutingModel class uses Concert Technology’s ability to maintain
nested submodels to maintain the coherence of the model for the whole problem and the
submodels for each depot, the submodels for each pickup and delivery visit, and the
submodel for dimensions. The code for the declaration of the class RoutingModel is
provided for you:

class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloModel _dimModel;
 IloDistance _distance;
 IloDimension2 _time;
 IloDimension2 _length;
 IloDimension1 _weight;
 const char* _depotPath; // "../../../examples/data/mdvrp/depots.csv";
 const char* _visitPath; // "../../../examples/data/mdvrp/vrp100.csv";
 const char* _nodePath; // "../../../examples/data/mdvrp/node100.csv";

 IloInt _nbOfDepots;
 Depot** _depots;
protected:
 void createDimensions();
 void createNodes (const char* nodePath);
 void createDepots(const char* depotPath);
 void createVisits(const char* orderPath);
public:
 RoutingModel(IloEnv env);
 ~RoutingModel() {}

 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
 IloInt getNumberOfDepots() const { return _nbOfDepots;}
 Depot* getDepot(IloInt d) const {
 assert(d >= 0);
 assert(d < _nbOfDepots);
 return _depots[d];
 }
 void parse(int argc, char** argv);
 void init();
 void createModel();

};
248 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Define the RoutingModel constructor

The constructor is defined on the environment env. This constructor will be called from the
main function. This code is provided for you:

Define the RoutingModel::parse function

This member function allows you to specify the names of the input files using command line
syntax. If you do not specify input files, the defaults in the RoutingModel constructor will
be used. This member function is called from the main function.

Add the following code after the comment //Parse the input files

Define the RoutingModel::createModel function

You define a member function to create the model _mdl for the whole problem. It calls the
functions that create the dimensions, nodes, depots, and visits. This function will be called
from the main function.

RoutingModel::RoutingModel(IloEnv env)
 : _env(env),
 _depotPath("../../../examples/data/mdpdp/depots.csv"),
 _visitPath("../../../examples/data/mdpdp/vrp100.csv"),
 _nodePath ("../../../examples/data/mdpdp/node100.csv"),
 _nbOfDepots(0),
 _depots(0)
{
}

Step 7 Parse the input files

 void RoutingModel::parse(int argc, char** argv) {
 if (argc >= 4) {
 _depotPath = argv[1];
 _visitPath = argv[2];
 _nodePath = argv[3];
 }
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 249

Add the following code after the comment //Create the model

Define the RoutingModel::createDimensions function

Now, you declare three dimensions: _time and _length, computed as Euclidean distance,
and _weight, used for capacity constraints. Note that Euclidean distance is used here for
both time and length, but that other kinds of distance may be used as needed. As the model
for each depot will require dimensions to be added, you keep the dimensions together in a
model called _dimModel.

Add the following code after the comment //Add the dimensions

Step 8 Create the model

void RoutingModel::createModel() {
 _mdl = IloModel(_env);
 createDimensions();
 createNodes(_nodePath);
 createDepots(_depotPath);
 createVisits(_visitPath);
}

Step 9 Add the dimensions

void RoutingModel::createDimensions() {
 _dimModel = IloModel(_env);

 _distance = IloDistance(_env, IloEuclidean);
 _weight = IloDimension1(_env, "weight");
 _dimModel.add(_weight);

 _time = IloDimension2(_env, _distance , "time");
 _dimModel.add(_time);

 _length = IloDimension2(_env, _distance , "distance");
 _dimModel.add(_length);

 _mdl.add(_dimModel);
}

250 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Define the RoutingModel::createNodes function

The createNodes function is defined as in Lesson 7 Pickup and Delivery Problems. You
use Concert Technology’s csv reader functionality to input node data and node coordinate
data from csv files. Here is the complete code for defining the createNodes function:

Define the RoutingModel::createDepots function

You use csv reader functionality to input depot data from csv files. For each of the depots,
you get the number of trucks per depot (nbOfTrucks), its coordinates (x and y), and its
opening and closing times (openTime and closeTime). An array of pointers to class type
Depot are created. This array is then populated by a loop that creates the depots. For each
depot, the function Depot::createVehicles is called to create the vehicles associated
with each depot and the model containing all dimensions _dimModel is added to the depot
model. Finally, each depot model is added to the model of the whole problem _mdl.

void RoutingModel::createNodes(const char* nodePath) {
 IloCsvReader nodeReader(_env, nodePath);
 for (IloCsvReader::LineIterator it(nodeReader); it.ok(); ++it) {
 IloCsvLine line = *it;
 const char* name = line.getStringByHeader("name");
 IloNode node(_env,
 line.getFloatByHeader("x"),
 line.getFloatByHeader("y"),
 0, // no Z coordinate here.
 name);
 node.setKey(name);
 }
 nodeReader.end();
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 251

Add the following code after the comment //Create the depot

Step 10 Create the depot

void RoutingModel::createDepots(const char* depotPath) {
 IloCsvReader depotReader(_env, depotPath);
 _nbOfDepots = depotReader.getNumberOfItems();
 _depots = new (_env) Depot* [_nbOfDepots];

 IloInt depotIndex = 0;
 for (IloCsvReader::LineIterator it(depotReader); it.ok(); ++it, ++depotIndex)
{
 IloCsvLine line = *it;
 const char* name = line.getStringByHeader("name");
 IloNum x = line.getFloatByHeader("x");
 IloNum y = line.getFloatByHeader("y");
 IloNum openTime = line.getFloatByHeader("openTime");
 IloNum closeTime = line.getFloatByHeader("closeTime");
 IloInt nbOfTrucks = line.getIntByHeader("nbOfTrucks");
 IloInt capacity = line.getIntByHeader("capacity");

 Depot* depot =
 new (_env) Depot(_env, name, x, y, nbOfTrucks, capacity, openTime,
closeTime);
 _depots[depotIndex] = depot;
 }
 depotReader.end();
 IloInt d;
 for (d=0; d < _nbOfDepots; ++d) {
 Depot* depot = _depots[d];
 depot->createVehicles(_time, _length, _weight);
 depot->add(_dimModel);
 _mdl.add(depot->getModel());
 }

}

252 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Define the RoutingModel::createVisits function

You use csv reader functionality to input visits from csv files. You then create a node for
each pickup and delivery visit. This code is provided for you:

You next create the submodel for each pickup and delivery visit.

Add the following code after the comment //Create visit models

You create a pickup visit and add the constraints. Each visit takes a certain amount of time
(pickupTime) and involves the delivery of a certain quantity of good. It must be
performed within a given time window. The visit is added to the submodel pickupModel.

void RoutingModel::createVisits(const char* visitPath) {
 IloCsvReader orderReader(_env, visitPath);
 IloCsvReader::LineIterator it(orderReader);
 while (it.ok()) {
 IloCsvLine line = *it;
 //read visit data from files
 char * pickupVisitName = line.getStringByHeader("pickup");
 char * pickupNodeName = line.getStringByHeader("pickupNode");
 char * deliveryVisitName = line.getStringByHeader("delivery");
 char * deliveryNodeName = line.getStringByHeader("deliveryNode");
 IloNum quantity = line.getFloatByHeader("quantity");
 IloNum pickupMinTime = line.getFloatByHeader("pickupMinTime");
 IloNum pickupMaxTime = line.getFloatByHeader("pickupMaxTime");
 IloNum deliveryMinTime = line.getFloatByHeader("deliveryMinTime");
 IloNum deliveryMaxTime = line.getFloatByHeader("deliveryMaxTime");
 IloNum dropTime = line.getFloatByHeader("dropTime");
 IloNum pickupTime = line.getFloatByHeader("pickupTime");
 //read data nodes from the file nodes.csv and creat pickup and delivery
nodes
 IloNode pickupNode = IloNode::Find(_env, pickupNodeName);
 IloNode deliveryNode = IloNode::Find(_env, deliveryNodeName);

Step 11 Create visit models

 IloModel pickupModel(_env);
 IloModel deliveryModel(_env);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 253

Add the following code after the comment //Create pickup

You follow the same procedure to create the delivery visit, add constraints, and add the
delivery visit to the submodel deliveryModel.

Add the following code after the comment //Create delivery

Finally, you add the pickup and delivery order constraint to the pickupModel. A reference
to the deliveryModel is placed via delivery.setObject. This means that the
submodel for a delivery can be retrieved from the delivery at any time. Finally, each
pickupModel and deliveryModel are added to the model of the whole problem _mdl.

Add the following code after the comment //Order the pickup and delivery

Step 12 Create pickup

 IloVisit pickup(pickupNode, pickupVisitName);
 pickupModel.add(pickup.getDelayVar(_time) == pickupTime);
 pickupModel.add(pickup.getTransitVar(_weight) == quantity);
 pickupModel.add(pickupMinTime <= pickup.getCumulVar(_time) <=
pickupMaxTime);
 pickupModel.add(pickup);
 pickup.setObject((IloAny)pickupModel.getImpl());
 pickup.getDelayVar(_length).setBounds(0,0);
 pickup.getWaitVar(_length).setBounds(0,0);

Step 13 Create delivery

 IloVisit delivery(deliveryNode, deliveryVisitName);
 deliveryModel.add(delivery.getDelayVar(_time) == dropTime);
 deliveryModel.add(delivery.getTransitVar(_weight) == -quantity);
 deliveryModel.add(deliveryMinTime <= delivery.getCumulVar(_time) <=
deliveryMaxTime);
 deliveryModel.add(delivery);
 delivery.getDelayVar(_length).setBounds(0,0);
 delivery.getWaitVar(_length).setBounds(0,0);

Step 14 Order the pickup and delivery

 pickupModel.add(IloOrderedVisitPair(_env, pickup, delivery));
 delivery.setObject((IloAny)deliveryModel.getImpl());
 _mdl.add(pickupModel);
 _mdl.add(deliveryModel);
 ++it;
 }
 orderReader.end();
}

254 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Solve

As in Chapter 7, Pickup and Delivery Problems, you search for a solution using the two-
phase approach of generating a first solution and then improving it. However, in this
example the solution process is iterative. Each depot model is improved and then the whole
problem is improved. When the next iteration to improve depots begins, a synchronization
needs to be performed. During this synchronization, the submodels are updated with the
changes made during the improvement stage of the whole problem.

Here is a short description of the proposed heuristic:

1. Find a first solution.

2. Improve the solution at each depot.

3. Synchronize the solution with the full model.

4. Improve the whole routing plan. This phase is one that can cause visits to migrate from
one depot to another. In other words, moves can be performed that cause a vehicle from a
different depot to perform a visit.

5. Return to Step 2 until no further improvement is possible.

6. Do a final solution synchronization.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 255

Declare the RoutingSolver class

The code for the declaration of the class RoutingSolver is provided for you:

There are several important differences between the RoutingSolver class used in a
standard PDP and the RoutingSolver class used in this problem. These include several
member functions used in the iterative solution process: syncSolution, improveDepots,
and improvePlan.

Define the RoutingSolver constructor

The RoutingSolver constructor takes an instance of RoutingModel as a parameter. The
goal to instantiate cost is created using the function IloDichotomize. The goal to restore
the solution is created using IloRestoreSolution. The goal used to find the first solution
is created by the predefined first solution heuristic IloNearestAdditionGenerate. The
nearest addition heuristic builds a first solution route by adding visits to the route. The visit
added to the route is the visit closest—that is, the least costly to get to—to the end of the
current partial route of the vehicle. After this visit is added, the heuristic finds the visit that is
closest to the visit just added to the end of the current partial route, and so on until all visits
are added. For more information about IloNearestAdditionGenerate, see Appendix A,
Predefined First Solution Heuristics. The neighborhood _nhood used for the improvement
of the entire problem is smaller than that for the improvement of a depot. Here only
IloRelocate and IloExchange are used to increase the solving performance on this large

class RoutingSolver {
 RoutingModel& _routing;
 IloModel _mdl;
 IloSolver _solver;
 IloDispatcher _dispatcher;
 IloRoutingSolution _solution;
 IloGoal _instantiateCost;
 IloGoal _restoreSolution;
 IloGoal _fsGoal;
 IloNHood _nhood;
 IloMetaHeuristic _greedy;
 IloGoal _move;

public:
 RoutingSolver(RoutingModel& routingModel);
 ~RoutingSolver() {}

 IloEnv getEnv() const { return _mdl.getEnv();}
 void syncSolution(IloModel mdl, IloSolution s, IloGoal g);
 void syncSolution();
 IloBool findFirstSolution();
 IloBool improveDepots();
 IloBool improvePlan();
 void printInformation() const;
};
256 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
problem. A greedy search heuristic is used. This constructor will be called from the main
function. This code is provided for you:

Define the RoutingSolver::findFirstSolution function

The function findFirstSolution searches for a solution using the goals _fsGoal and
_instantiateCost. If successful, the solution is stored. If no first solution is found, the
program reports that it was unsuccessful in finding a first solution. All other parts of the
program remain unchanged. The following code is provided for you:

You do not need one solution per depot. One solution to the whole problem is sufficient. You
will simply extract the part of it that you wish to work on. This is possible for two reasons.
First, operations such as store and restore on solutions ignore parts of the solution that
are not extracted. Therefore, a solution can cover more variables than have been extracted
with no problems. Second, Dispatcher's neighborhoods (such as IloRelocate) ignore
nonextracted parts of the solution and only generate neighbors for extracted parts. The result

 RoutingSolver::RoutingSolver(RoutingModel& routingModel)
 : _routing(routingModel),
 _mdl(routingModel.getModel()),
 _solver(routingModel.getModel()),
 _dispatcher(_solver),
 _solution(routingModel.getModel())
{
 IloEnv env = getEnv();
 _instantiateCost =
 IloDichotomize(env, _dispatcher.getCostVar(), IloFalse);
 _restoreSolution = IloRestoreSolution(env, _solution);
 _fsGoal = IloNearestAdditionGenerate(env);

 _nhood = IloRelocate(env) + IloExchange(env);
 _greedy = IloImprove(env);

}

IloBool RoutingSolver::findFirstSolution() {
 if (!_solver.solve(_fsGoal && _instantiateCost)) {
 _solver.error() << "Infeasible Routing Plan" << endl;
 return IloFalse;
 }
 _solution.store(_solver);
 _solver.out() << "First solution with cost: "
 << _solution.getObjectiveValue()
 << endl;
 return IloTrue;
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 257

is that you can perform local search over an extracted part of the routing solution, while the
remainder remains unchanged.

Define the syncSolution functions

You define a function that takes the model for the whole problem _mdl and a solution, and
synchronizes the solution with the model. As discussed, the objective stored in the solution
may be inconsistent with the model you wish to work on. You correct this with the following
function which extracts the model passed, then restores and stores the solution. A subgoal is
also executed. After storing, the solution's objective is consistent with the model. This
function is used in the improvement iteration phase.

Add the following code after the comment //Synchronize the solution

The following member function is called after the iterative improvements have ended to do a
final solution synchronization. This code is provided for you:

Define the RoutingSolver::improveDepots function

If a first solution is found, the solution is improved using local search. You iterate over all
depots, using Depot::fillModel to populate each model. You then update the cost of the
global solution according to the model of this depot. You use Depot::improve to attempt
to reduce the cost of the routing for this depot. Finally, the solution is synchronized with the
global model.

Note: There is one part of the solution that will always be extracted, regardless of the part
of the solution being optimized: the objective. Thus, if you extract a submodel and restore
the corresponding part of a routing solution, the stored value of the objective reflects only
the cost of the submodel and not the whole solution. This is a situation where the cost value
of a solution must be treated with care. The function syncSolution ensures that the cost
value is consistent with that computed from the extracted model.

Step 15 Synchronize the solution

void RoutingSolver::syncSolution(IloModel mdl, IloSolution s, IloGoal g) {
 _solver.extract(mdl);
 if (!_solver.solve(IloRestoreSolution(_solver.getEnv(), s) && g))
 _solver.out() << "Synchronization failed" << endl;
 else
 s.store(_solver);
}

void RoutingSolver::syncSolution() {
 syncSolution(_mdl, _solution, _instantiateCost);
}

258 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Add the following code after the comment //Improve the depots

Define the RoutingSolver::improvePlan function

After the routing for all depots has been improved independently, the routing for the problem
as a whole is improved. After resetting the neighborhood and greedy metaheuristic, an
improvement loop is entered to improve the cost of all depots using the goal _move. If there
was some improvement, then you go back to an independent improvement of each depot.
Otherwise, you leave the main improvement loop.

Step 16 Improve the depots

IloBool RoutingSolver::improveDepots() {
 IloEnv env = getEnv();
 _move =
 IloSingleMove(env, _solution, _nhood, _greedy, _instantiateCost);

 _solver.out() << endl << "Improvement loop" << endl;
 _solver.out() << "================" << endl;
 IloBool improved = IloTrue;
 IloInt nbOfDepots = _routing.getNumberOfDepots();
 improved = IloFalse;
 for (IloInt d = 0; d < nbOfDepots; ++d) {
 Depot* depot = _routing.getDepot(d);
 depot->fillModel(_solution);
 syncSolution(depot->getModel(), _solution, _instantiateCost);
 if (depot->improve(_solver, _solution, _instantiateCost)) {
 improved = IloTrue;
 }
 }

 // sync back to full model.
 syncSolution(_mdl, _solution, _instantiateCost);
 return improved;
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 259

Add the following code after the comment //Improve the routing plan

Define the RoutingSolver::printInformation function

The printInformation function is the same as in Chapter 7, Pickup and Delivery
Problems.

Define the main function

After you finish creating the Depot, RoutingModel, and RoutingSolver classes, you use
them in the main function. You can use command line syntax to pass the names of input files
to the model. If you do not specify input files, the defaults will be used. In the main
function, you first create an environment. Then you create an instance of the
RoutingModel class and parse the input files. You create the model for the whole problem
with the member function RoutingModel::createModel. You create an instance of the
RoutingSolver class. You find a first solution and then use iterative improvement to

Step 17 Improve the routing plan

IloBool RoutingSolver::improvePlan() {
 _solver.out() << "Optimizing plan "
 << _solution.getSolution().getObjectiveValue()
 << flush;
 _nhood.reset();
 _greedy.reset();
 IloInt nbImproved = 0;
 while (_solver.solve(_move)) { ++nbImproved;}
 _solver.out() << " ---> "
 << _solution.getSolution().getObjectiveValue() << endl;
 return (nbImproved > 0);
}

260 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
improve the depots and the routing plan. You synchronize the final solution and print this
solution. The following code is provided for you:

int main(int argc, char* argv[]) {
 IloEnv env;
 try {
 RoutingModel routingModel(env);
 routingModel.parse(argc, argv);
 routingModel.createModel();

 RoutingSolver rsolver(routingModel);
 if (rsolver.findFirstSolution()) {
 IloBool improved = IloTrue;
 do {
 improved =
 rsolver.improveDepots() && rsolver.improvePlan();
 } while (improved);
 }
 rsolver.syncSolution();
 rsolver.printInformation();
 } catch (IloException& ex) {
 env.out() << "Error: " << ex << endl;
 }
 env.end();
 return 0;
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 261

Compile and run the program. The first solution has a cost of 1397.52 units. After three
improvement loops, the solution has a cost of 983.385 units. The solution uses 15 vehicles:

The complete program and output are listed in “Complete Program” on page 264. You can
also view it online in the YourDispatcherHome/examples/src/mdpdp.cpp file.

Step 18 Compile and run the program

Number of fails : 0
Number of choice points : 0
Number of variables : 7354
Number of constraints : 1280
Reversible stack (bytes) : 944724
Solver heap (bytes) : 2509244
Solver global heap (bytes) : 2446204
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 20176
Total memory used (bytes) : 5988760
Elapsed time since creation : 0.461
Number of nodes : 103
Number of visits : 260
Number of vehicles : 30
Number of dimensions : 3
Number of accepted moves : 141
===============
Cost : 983.385
Number of vehicles used : 15
First solution with cost: 1397.52

Improvement loop
================
 Optimizing depot Depot 0 509.991 ---> 411.418
 Optimizing depot Depot 1 385.144 ---> 351.056
 Optimizing depot Depot 2 502.382 ---> 345.504
Optimizing plan 1107.98 ---> 1073.71

Improvement loop
================
 Optimizing depot Depot 0 412.393 ---> 391.898
 Optimizing depot Depot 1 325.838 ---> 323.948
 Optimizing depot Depot 2 335.482 ---> 310.54
Optimizing plan 1026.39 ---> 992.007

Improvement loop
================
 Optimizing depot Depot 0 385.09 ---> 378.142
 Optimizing depot Depot 1 323.948 ---> 323.948
 Optimizing depot Depot 2 282.968 ---> 281.295
 Optimizing plan 983.385 ---> 983.385
262 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Review Exercises
Review Exercises

1. Why do you only need one solution for the whole problem?

2. Which part of the solution will always be extracted, regardless of the part of the solution
being optimized?

3. How is a reference to a visit model stored in the visit itself?

Suggested Answers

Exercise 1

Why do you only need one solution for the whole problem?

Suggested Answer

One solution to the whole problem is sufficient. You will simply extract the part of it that
you wish to work on. This is possible for two reasons. First, operations such as store and
restore on solutions ignore parts of the solution that are not extracted. Therefore, a
solution can cover more variables than have been extracted with no problems. Second,
Dispatcher's neighborhoods (such as IloRelocate) ignore nonextracted parts of the
solution and only generate neighbors for extracted parts. The result is that you can perform
local search over an extracted part of the routing solution, while the remainder remains
unchanged.

Exercise 2

Which part of the solution will always be extracted, regardless of the part of the solution
being optimized?

Suggested Answer

The objective will always be extracted. Thus, if you extract a submodel and restore the
corresponding part of a routing solution, the stored value of the objective reflects only the
cost of the submodel and not the whole solution. This is a situation where the cost value of a
solution must be treated with care. The function syncSolution ensures that the cost value
is consistent with that computed from the extracted model.

Exercise 3

How is a reference to a visit model stored in the visit itself?
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 263

Suggested Answer

A pointer to the model implementation is stored in the object field using
IloVisit::setObject(IloAny).

Complete Program

The complete program for mpdpd.cpp follows. You can also view it online in the file
YourDispatcherHome/examples/src/mdpdp.cpp.

// -- -*- C++ -*-
// File: examples/src/mdpdp.cpp
// --

#include <ildispat/ilodispatcher.h>

ILOSTLBEGIN

class Depot {
private:
 IloEnv _env;
 IloNode _node;
 IloInt _nbOfTrucks;
 IloInt _capacity;
 IloNum _openTime;
 IloNum _closeTime;
 IloVehicleArray _vehicles;
 IloVisitArray _visits;
 IloModel _model;
 IloNHood _nhood;
 IloMetaHeuristic _mh;

public:
 Depot(IloEnv env, const char *name, IloNum x, IloNum y,
 IloInt nbOfTrucks, IloInt capacity,
 IloNum openTime, IloNum closeTime
);
 ~Depot();

 const char* getName() const { return _node.getName();}
 void add(IloExtractable ex) { _model.add(ex); }
 void add(IloVehicle vehicle) { _vehicles.add(vehicle); _model.add(vehicle); }
 IloModel getModel() const { return _model; }
 IloBool improve(IloSolver solver, IloRoutingSolution rs, IloGoal g);
 void fillModel(IloRoutingSolution rs);

 void createVehicles(IloDimension2 time, IloDimension2 length, IloDimension1
weight);
 IloVehicle createOneVehicle(IloInt vehicleIndex,
 IloDimension2 time,
 IloDimension2 length,
 IloDimension1 weight);
};
264 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
Depot
::Depot(IloEnv env, const char *name, IloNum x, IloNum y,
 IloInt nbOfTrucks, IloInt capacity,
 IloNum openTime, IloNum closeTime
)
 : _env(env),
 _node(env, x, y, 0, name),
 _nbOfTrucks(nbOfTrucks),
 _capacity(capacity),
 _openTime(openTime),
 _closeTime(closeTime),
 _vehicles(env),
 _visits(env),
 _model(env)

{

 _nhood = IloTwoOpt(env) + IloOrOpt(env) + IloRelocate(env) +
 IloCross(env) + IloExchange(env)
 //+ IloRelocateTours(env)
 ;

 _mh = IloImprove(env);
}

Depot::~Depot() {
 _nhood.end();
 _mh.end();
 _vehicles.end();
 _visits.end();
}

IloBool Depot::improve(IloSolver solver, IloRoutingSolution rs, IloGoal g) {
 _nhood.reset();
 _mh.reset();
 IloGoal improve = IloSingleMove(_env, rs, _nhood, _mh, g);
 solver.out() << “ Optimizing depot “ << getName() << “ “
 << rs.getSolution().getObjectiveValue() << flush;
 IloBool moves = 0;
 while (solver.solve(improve)) ++moves;
 solver.out() << “ ---> “ << rs.getSolution().getObjectiveValue() << endl;
 return (moves>0);
}

void Depot::fillModel(IloRoutingSolution rs) {
 IloInt i;
 for (i = 0; i < _visits.getSize(); i++)
 _model.remove((IloModelI *)_visits[i].getObject());
 _visits.end();
 _visits = IloVisitArray(_env);
 for (i = 0; i < _vehicles.getSize(); i++) {
 for (IloRoutingSolution::RouteIterator r(rs, _vehicles[i]); r.ok(); ++r) {
 IloVisit visit = *r;
 if (!visit.isFirstVisit() && !visit.isLastVisit()) {
 _visits.add(visit);
 _model.add((IloModelI*)visit.getObject());
 }
 }
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 265

 }
}

void Depot::createVehicles(IloDimension2 time,
 IloDimension2 length,
 IloDimension1 weight) {
 for (IloInt v=0; v < _nbOfTrucks; ++v) {
 IloVehicle vehicle = createOneVehicle(v, time, length, weight);
 _vehicles[v] = vehicle;
 }
}

IloVehicle Depot::createOneVehicle(IloInt vehicleIndex,
 IloDimension2 time,
 IloDimension2 length,
 IloDimension1 weight) {
 char namebuf[128];
 const char* depotName = getName();

 sprintf(namebuf, “Truck %ld leaving %s”, vehicleIndex, depotName);
 IloVisit first(_node, namebuf);
 sprintf(namebuf, “Truck %ld returning to %s”, vehicleIndex, depotName);
 IloVisit last (_node, namebuf);
 sprintf(namebuf, “Vehicle %ld of Depot %s”, vehicleIndex, getName());
 IloVehicle vehicle(first, last, namebuf);
 vehicle.setCost(length, 1.0);
 vehicle.setCapacity(weight, _capacity);
 add(vehicle);
 add(first.getCumulVar(time) >= _openTime);
 add(last.getCumulVar(time) <= _closeTime);
 last.getCumulVar(weight).setBounds(0,0);
 first.getCumulVar(length).setBounds(0,0);
 first.getDelayVar(length).setBounds(0,0);
 first.getWaitVar(length).setBounds(0,0);
 last.getDelayVar(length).setBounds(0,0);
 last.getWaitVar(length).setBounds(0,0);

 vehicle.setObject(this);
 return vehicle;
}

class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloModel _dimModel;
 IloDistance _distance;
 IloDimension2 _time;
 IloDimension2 _length;
 IloDimension1 _weight;
 const char* _depotPath; // “../../../examples/data/mdvrp/depots.csv”;
 const char* _visitPath; // “../../../examples/data/mdvrp/vrp100.csv”;
 const char* _nodePath; // “../../../examples/data/mdvrp/node100.csv”;

 IloInt _nbOfDepots;
 Depot** _depots;

protected:
 void createDimensions();
266 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 void createNodes (const char* nodePath);
 void createDepots(const char* depotPath);
 void createVisits(const char* orderPath);

public:
 RoutingModel(IloEnv env);
 ~RoutingModel() {}

 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
 IloInt getNumberOfDepots() const { return _nbOfDepots;}
 Depot* getDepot(IloInt d) const {
 assert(d >= 0);
 assert(d < _nbOfDepots);
 return _depots[d];
 }

 void parse(int argc, char** argv);
 void init();
 void createModel();

};

RoutingModel::RoutingModel(IloEnv env)
 : _env(env),
 _depotPath(“../../../examples/data/mdpdp/depots.csv”),
 _visitPath(“../../../examples/data/mdpdp/vrp100.csv”),
 _nodePath (“../../../examples/data/mdpdp/node100.csv”),
 _nbOfDepots(0),
 _depots(0)
{
}

void RoutingModel::parse(int argc, char** argv) {
 if (argc >= 4) {
 _depotPath = argv[1];
 _visitPath = argv[2];
 _nodePath = argv[3];
 }
}

void RoutingModel::createModel() {
 _mdl = IloModel(_env);
 createDimensions();
 createNodes(_nodePath);
 createDepots(_depotPath);
 createVisits(_visitPath);
}

void RoutingModel::createDimensions() {
 _dimModel = IloModel(_env);

 _distance = IloDistance(_env, IloEuclidean);
 _weight = IloDimension1(_env, “weight”);
 _dimModel.add(_weight);

 _time = IloDimension2(_env, _distance , “time”);
 _dimModel.add(_time);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 267

 _length = IloDimension2(_env, _distance , “distance”);
 _dimModel.add(_length);

 _mdl.add(_dimModel);
}

void RoutingModel::createNodes(const char* nodePath) {
 IloCsvReader nodeReader(_env, nodePath);
 for (IloCsvReader::LineIterator it(nodeReader); it.ok(); ++it) {
 IloCsvLine line = *it;
 const char* name = line.getStringByHeader(“name”);
 IloNode node(_env,
 line.getFloatByHeader(“x”),
 line.getFloatByHeader(“y”),
 0, // no Z coordinate here.
 name);
 node.setKey(name);
 }
 nodeReader.end();
}

void RoutingModel::createDepots(const char* depotPath) {
 IloCsvReader depotReader(_env, depotPath);
 _nbOfDepots = depotReader.getNumberOfItems();
 _depots = new (_env) Depot* [_nbOfDepots];

 IloInt depotIndex = 0;
 for (IloCsvReader::LineIterator it(depotReader); it.ok(); ++it, ++depotIndex)
{
 IloCsvLine line = *it;
 const char* name = line.getStringByHeader(“name”);
 IloNum x = line.getFloatByHeader(“x”);
 IloNum y = line.getFloatByHeader(“y”);
 IloNum openTime = line.getFloatByHeader(“openTime”);
 IloNum closeTime = line.getFloatByHeader(“closeTime”);
 IloInt nbOfTrucks = line.getIntByHeader(“nbOfTrucks”);
 IloInt capacity = line.getIntByHeader(“capacity”);

 Depot* depot =
 new (_env) Depot(_env, name, x, y, nbOfTrucks, capacity, openTime,
closeTime);
 _depots[depotIndex] = depot;
 }
 depotReader.end();

 IloInt d;
 for (d=0; d < _nbOfDepots; ++d) {
 Depot* depot = _depots[d];
 depot->createVehicles(_time, _length, _weight);
 depot->add(_dimModel);
 _mdl.add(depot->getModel());
 }

}

void RoutingModel::createVisits(const char* visitPath) {
 IloCsvReader orderReader(_env, visitPath);
268 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 IloCsvReader::LineIterator it(orderReader);
 while (it.ok()) {
 IloCsvLine line = *it;
 //read visit data from files
 char * pickupVisitName = line.getStringByHeader(“pickup”);
 char * pickupNodeName = line.getStringByHeader(“pickupNode”);
 char * deliveryVisitName = line.getStringByHeader(“delivery”);
 char * deliveryNodeName = line.getStringByHeader(“deliveryNode”);
 IloNum quantity = line.getFloatByHeader(“quantity”);
 IloNum pickupMinTime = line.getFloatByHeader(“pickupMinTime”);
 IloNum pickupMaxTime = line.getFloatByHeader(“pickupMaxTime”);
 IloNum deliveryMinTime = line.getFloatByHeader(“deliveryMinTime”);
 IloNum deliveryMaxTime = line.getFloatByHeader(“deliveryMaxTime”);
 IloNum dropTime = line.getFloatByHeader(“dropTime”);
 IloNum pickupTime = line.getFloatByHeader(“pickupTime”);
 //read data nodes from the file nodes.csv and creat pickup and delivery
nodes
 IloNode pickupNode = IloNode::Find(_env, pickupNodeName);
 IloNode deliveryNode = IloNode::Find(_env, deliveryNodeName);

 //create and add pickup and delivery visits
 IloModel pickupModel(_env);
 IloModel deliveryModel(_env);

 IloVisit pickup(pickupNode, pickupVisitName);
 pickupModel.add(pickup.getDelayVar(_time) == pickupTime);
 pickupModel.add(pickup.getTransitVar(_weight) == quantity);
 pickupModel.add(pickupMinTime <= pickup.getCumulVar(_time) <=
pickupMaxTime);
 pickupModel.add(pickup);
 pickup.setObject((IloAny)pickupModel.getImpl());
 pickup.getDelayVar(_length).setBounds(0,0);
 pickup.getWaitVar(_length).setBounds(0,0);

 IloVisit delivery(deliveryNode, deliveryVisitName);
 deliveryModel.add(delivery.getDelayVar(_time) == dropTime);
 deliveryModel.add(delivery.getTransitVar(_weight) == -quantity);
 deliveryModel.add(deliveryMinTime <= delivery.getCumulVar(_time) <=
deliveryMaxTime);
 deliveryModel.add(delivery);
 delivery.getDelayVar(_length).setBounds(0,0);
 delivery.getWaitVar(_length).setBounds(0,0);

 //add pickup and delivery order constraint
 pickupModel.add(IloOrderedVisitPair(_env, pickup, delivery));
 delivery.setObject((IloAny)deliveryModel.getImpl());
 _mdl.add(pickupModel);
 _mdl.add(deliveryModel);
 ++it;
 }
 orderReader.end();
}

class RoutingSolver {
 RoutingModel& _routing;
 IloModel _mdl;
 IloSolver _solver;
 IloDispatcher _dispatcher;
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 269

 IloRoutingSolution _solution;
 IloGoal _instantiateCost;
 IloGoal _restoreSolution;
 IloGoal _fsGoal;
 IloNHood _nhood;
 IloMetaHeuristic _greedy;
 IloGoal _move;

public:
 RoutingSolver(RoutingModel& routingModel);
 ~RoutingSolver() {}

 IloEnv getEnv() const { return _mdl.getEnv();}
 void syncSolution(IloModel mdl, IloSolution s, IloGoal g);
 void syncSolution();
 IloBool findFirstSolution();
 IloBool improveDepots();
 IloBool improvePlan();
 void printInformation() const;
};

RoutingSolver::RoutingSolver(RoutingModel& routingModel)
 : _routing(routingModel),
 _mdl(routingModel.getModel()),
 _solver(routingModel.getModel()),
 _dispatcher(_solver),
 _solution(routingModel.getModel())
{
 IloEnv env = getEnv();
 _instantiateCost =
 IloDichotomize(env, _dispatcher.getCostVar(), IloFalse);
 _restoreSolution = IloRestoreSolution(env, _solution);
 _fsGoal = IloNearestAdditionGenerate(env);

 _nhood = IloRelocate(env) + IloExchange(env);
 _greedy = IloImprove(env);

}
void RoutingSolver::printInformation() const {
 _solver.printInformation();
 _dispatcher.printInformation();
 _solver.out() << “===============” << endl
 << “Cost : “ << _dispatcher.getTotalCost() << endl
 << “Number of vehicles used : “
 << _dispatcher.getNumberOfVehiclesUsed() << endl
 << “Solution : “ << endl
 << _dispatcher << endl;
}

// Solving : find first solution
IloBool RoutingSolver::findFirstSolution() {
 if (!_solver.solve(_fsGoal && _instantiateCost)) {
 _solver.error() << “Infeasible Routing Plan” << endl;
 return IloFalse;
 }
 _solution.store(_solver);
 _solver.out() << “First solution with cost: “
 << _solution.getObjectiveValue()
270 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 << endl;
 return IloTrue;
}

IloBool RoutingSolver::improveDepots() {
 IloEnv env = getEnv();
 _move =
 IloSingleMove(env, _solution, _nhood, _greedy, _instantiateCost);

 _solver.out() << endl << “Improvement loop” << endl;
 _solver.out() << “================” << endl;
 IloBool improved = IloTrue;
 IloInt nbOfDepots = _routing.getNumberOfDepots();
 improved = IloFalse;
 for (IloInt d = 0; d < nbOfDepots; ++d) {
 Depot* depot = _routing.getDepot(d);
 depot->fillModel(_solution);
 syncSolution(depot->getModel(), _solution, _instantiateCost);
 if (depot->improve(_solver, _solution, _instantiateCost)) {
 improved = IloTrue;
 }
 }

 // sync back to full model.
 syncSolution(_mdl, _solution, _instantiateCost);
 return improved;
}

IloBool RoutingSolver::improvePlan() {
 _solver.out() << “Optimizing plan “
 << _solution.getSolution().getObjectiveValue()
 << flush;
 _nhood.reset();
 _greedy.reset();
 IloInt nbImproved = 0;
 while (_solver.solve(_move)) { ++nbImproved;}
 _solver.out() << “ ---> “
 << _solution.getSolution().getObjectiveValue() << endl;
 return (nbImproved > 0);
}

void RoutingSolver::syncSolution(IloModel mdl, IloSolution s, IloGoal g) {
 _solver.extract(mdl);
 if (!_solver.solve(IloRestoreSolution(_solver.getEnv(), s) && g))
 _solver.out() << “Synchronization failed” << endl;
 else
 s.store(_solver);
}

void RoutingSolver::syncSolution() {
 syncSolution(_mdl, _solution, _instantiateCost);
}

int main(int argc, char* argv[]) {
 IloEnv env;
 try {
 RoutingModel routingModel(env);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 271

 routingModel.parse(argc, argv);
 routingModel.createModel();

 RoutingSolver rsolver(routingModel);
 if (rsolver.findFirstSolution()) {
 IloBool improved = IloTrue;
 do {
 improved =
 rsolver.improveDepots() && rsolver.improvePlan();
 } while (improved);
 }
 rsolver.syncSolution();
 rsolver.printInformation();
 } catch (IloException& ex) {
 env.out() << “Error: “ << ex << endl;
 }
 env.end();
 return 0;
}

Complete Output

/**
 * Complete program output:
First solution with cost: 1397.52

Improvement loop
================
 Optimizing depot Depot 0 509.991 ---> 411.418
 Optimizing depot Depot 1 385.144 ---> 351.056
 Optimizing depot Depot 2 502.382 ---> 345.504
Optimizing plan 1107.98 ---> 1073.71

Improvement loop
================
 Optimizing depot Depot 0 412.393 ---> 391.898
 Optimizing depot Depot 1 325.838 ---> 323.948
 Optimizing depot Depot 2 335.482 ---> 310.54
Optimizing plan 1026.39 ---> 992.007

Improvement loop
================
 Optimizing depot Depot 0 385.09 ---> 378.142
 Optimizing depot Depot 1 323.948 ---> 323.948
 Optimizing depot Depot 2 282.968 ---> 281.295
 Optimizing plan 983.385 ---> 983.385
Number of fails : 0
Number of choice points : 0
Number of variables : 7354
Number of constraints : 1280
Reversible stack (bytes) : 944724
Solver heap (bytes) : 2509244
Solver global heap (bytes) : 2446204
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
272 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
Constraint queue (bytes) : 20176
Total memory used (bytes) : 5988760
Elapsed time since creation : 0.461
Number of nodes : 103
Number of visits : 260
Number of vehicles : 30
Number of dimensions : 3
Number of accepted moves : 141
===============
Cost : 983.385
Number of vehicles used : 15
Solution :
Unperformed visits : None
Vehicle 0 of Depot Depot 0 : Unused
Vehicle 1 of Depot Depot 0 :
 -> Truck 1 leaving Depot 0 weight[0..200] time[0..4.62966] distance[0] ->
Pvisit21 weight[0] time[18.0278..22.6574] distance[18.0278] -> visit21
weight[11] time[18.0278..22.6574] distance[18.0278] -> Pvisit72 weight[0]
time[32.4999..37.1296] distance[22.4999] -> visit72 weight[25]
time[32.4999..37.1296] distance[22.4999] -> Pvisit75 weight[0]
time[47.8851..52.5147] distance[27.8851..27.8851] -> visit75 weight[18]
time[47.8851..52.5147] distance[27.8851..27.8851] -> Pvisit23 weight[0]
time[66.3703..71] distance[36.3703..36.3703] -> visit23 weight[29] time[68..71]
distance[36.3703..36.3703] -> Pvisit67 weight[0] time[90..93]
distance[48.3703..48.3703] -> visit67 weight[25] time[90..93]
distance[48.3703..48.3703] -> Pvisit39 weight[0] time[109.899..123.401]
distance[58.2698..58.2698] -> visit39 weight[31] time[109.899..123.401]
distance[58.2698..58.2698] -> Pvisit56 weight[0] time[126.899..140.401]
distance[65.2698..65.2698] -> visit56 weight[6] time[126.899..140.401]
distance[65.2698..65.2698] -> Pvisit74 weight[0] time[143.971..157.472]
distance[72.3409..72.3409] -> visit74 weight[8] time[149..157.472]
distance[72.3409..72.3409] -> Pvisit73 weight[0] time[163.472..171.945]
distance[76.813..76.813] -> visit73 weight[9] time[163.472..171.945]
distance[76.813..76.813] -> Pvisit2 weight[0] time[182.472..190.945]
distance[85.813..85.813] -> visit2 weight[7] time[182.472..190.945]
distance[85.813..85.813] -> Pvisit58 weight[0] time[201.528..210]
distance[94.8684..94.8684] -> visit58 weight[18] time[201.528..210]
distance[94.8684..94.8684] -> Truck 1 returning to Depot 0 weight[0]
time[220.583..230] distance[103.924..103.924]
Vehicle 2 of Depot Depot 0 :
 -> Truck 2 leaving Depot 0 weight[0..200] time[0..68.1115] distance[0] ->
Pvisit89 weight[0] time[9..77.1115] distance[9] -> visit89 weight[15]
time[9..77.1115] distance[9] -> Pvisit8 weight[0] time[36.8885..105]
distance[26.8885] -> visit8 weight[9] time[95..105] distance[26.8885] ->
Pvisit18 weight[0] time[115.44..204] distance[37.3289..37.3289] -> visit18
weight[12] time[115.44..204] distance[37.3289..37.3289] -> Truck 2 returning to
Depot 0 weight[0] time[141.252..230] distance[53.1402..53.1402]
Vehicle 3 of Depot Depot 0 :
 -> Truck 3 leaving Depot 0 weight[0..200] time[0..37.7199] distance[0] ->
Pvisit27 weight[0] time[5..42.7199] distance[5] -> visit27 weight[16]
time[5..42.7199] distance[5] -> Pvisit69 weight[0] time[22.2801..60]
distance[12.2801..12.2801] -> visit69 weight[6] time[50..60]
distance[12.2801..12.2801] -> Pvisit31 weight[0] time[67.8102..185]
distance[20.0904..20.0904] -> visit31 weight[27] time[67.8102..185]
distance[20.0904..20.0904] -> Pvisit88 weight[0] time[82.8102..200]
distance[25.0904..25.0904] -> visit88 weight[9] time[82.8102..200]
distance[25.0904..25.0904] -> Truck 3 returning to Depot 0 weight[0]
time[112.046..230] distance[44.3257..44.3257]
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 273

Vehicle 4 of Depot Depot 0 :
 -> Truck 4 leaving Depot 0 weight[0..200] time[0..8.78027] distance[0] ->
Pvisit52 weight[0] time[11.3137..20.094] distance[11.3137] -> visit52 weight[9]
time[11.3137..20.094] distance[11.3137] -> Pvisit7 weight[0]
time[31.2132..39.9935] distance[21.2132] -> visit7 weight[5]
time[31.2132..39.9935] distance[21.2132] -> Pvisit62 weight[0]
time[50.1575..58.9377] distance[30.1575] -> visit62 weight[19]
time[58..58.9377] distance[30.1575] -> Pvisit11 weight[0] time[76.0623..77]
distance[38.2197] -> visit11 weight[12] time[76.0623..77] distance[38.2197] ->
Pvisit19 weight[0] time[93.1333..96.0544] distance[45.2908] -> visit19
weight[17] time[93.1333..96.0544] distance[45.2908] -> Pvisit47 weight[0]
time[111.196..114.117] distance[53.3531] -> visit47 weight[27]
time[111.196..114.117] distance[53.3531] -> Pvisit36 weight[0]
time[128.407..131.328] distance[60.5642..60.5642] -> visit36 weight[5]
time[128.407..131.328] distance[60.5642..60.5642] -> Pvisit49 weight[0]
time[147.351..150.272] distance[69.5084..69.5084] -> visit49 weight[30]
time[147.351..150.272] distance[69.5084..69.5084] -> Pvisit64 weight[0]
time[170.079..173] distance[82.2364..82.2364] -> visit64 weight[9]
time[170.079..173] distance[82.2364..82.2364] -> Truck 4 returning to Depot 0
weight[0] time[226.598..230] distance[128.755..128.755]
Vehicle 5 of Depot Depot 0 : Unused
Vehicle 6 of Depot Depot 0 :
 -> Truck 6 leaving Depot 0 weight[0..200] time[0..92.1834] distance[0] ->
Pvisit53 weight[0] time[4.47214..96.6556] distance[4.47214] -> visit53
weight[14] time[95..96.6556] distance[4.47214] -> Pvisit28 weight[0]
time[112.211..113.867] distance[11.6832..11.6832] -> visit28 weight[16]
time[112.211..113.867] distance[11.6832..11.6832] -> Pvisit26 weight[0]
time[130.273..131.929] distance[19.7455..19.7455] -> visit26 weight[17]
time[130.273..131.929] distance[19.7455..19.7455] -> Pvisit40 weight[0]
time[147.344..149] distance[26.8166..26.8166] -> visit40 weight[9]
time[147.344..149] distance[26.8166..26.8166] -> Pvisit13 weight[0]
time[167.344..169] distance[36.8166..36.8166] -> visit13 weight[23]
time[167.344..169] distance[36.8166..36.8166] -> Truck 6 returning to Depot 0
weight[0] time[188.525..230] distance[47.9969..47.9969]
Vehicle 7 of Depot Depot 0 : Unused
Vehicle 8 of Depot Depot 0 : Unused
Vehicle 9 of Depot Depot 0 : Unused
Vehicle 0 of Depot Depot 1 :
 -> Truck 0 leaving Depot 1 weight[0..200] time[0..77.1716] distance[0] ->
Pvisit33 weight[0] time[1..78.1716] distance[1] -> visit33 weight[11]
time[1..78.1716] distance[1] -> Pvisit81 weight[0] time[13.8284..91]
distance[3.82843] -> visit81 weight[26] time[13.8284..91] distance[3.82843] ->
Pvisit9 weight[0] time[29.8284..107] distance[9.82843..9.82843] -> visit9
weight[16] time[97..107] distance[9.82843..9.82843] -> Pvisit51 weight[0]
time[113.325..147.821] distance[16.153..16.153] -> visit51 weight[10]
time[113.325..147.821] distance[16.153..16.153] -> Pvisit20 weight[0]
time[131.387..165.884] distance[24.2152..24.2152] -> visit20 weight[9]
time[131.387..165.884] distance[24.2152..24.2152] -> Pvisit30 weight[0]
time[148.458..182.955] distance[31.2863..31.2863] -> visit30 weight[21]
time[148.458..182.955] distance[31.2863..31.2863] -> Pvisit1 weight[0]
time[169.503..204] distance[42.3317..42.3317] -> visit1 weight[10]
time[169.503..204] distance[42.3317..42.3317] -> Truck 0 returning to Depot 1
weight[0] time[191.669..230] distance[54.4972..54.4972]
Vehicle 1 of Depot Depot 1 :
 -> Truck 1 leaving Depot 1 weight[0..200] time[0..97] distance[0] -> Pvisit79
weight[0] time[5..102] distance[5] -> visit79 weight[23] time[92..102]
distance[5] -> Pvisit3 weight[0] time[105.606..176.172]
distance[8.60555..8.60555] -> visit3 weight[13] time[105.606..176.172]
274 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
distance[8.60555..8.60555] -> Pvisit77 weight[0] time[118.434..189]
distance[11.434..11.434] -> visit77 weight[14] time[179..189]
distance[11.434..11.434] -> Truck 1 returning to Depot 1 weight[0]
time[197..230] distance[19.434..19.434]
Vehicle 2 of Depot Depot 1 :
 -> Truck 2 leaving Depot 1 weight[0..200] time[0..60.4037] distance[0] ->
Pvisit50 weight[0] time[7.2111..67.6148] distance[7.2111] -> visit50 weight[13]
time[7.2111..67.6148] distance[7.2111] -> Pvisit76 weight[0] time[22.5963..83]
distance[12.5963] -> visit76 weight[13] time[73..83] distance[12.5963] ->
Pvisit12 weight[0] time[90.0711..133.159] distance[19.6673..19.6673] -> visit12
weight[19] time[90.0711..133.159] distance[19.6673..19.6673] -> Pvisit4
weight[0] time[115.882..158.971] distance[35.4787..35.4787] -> visit4
weight[19] time[149..158.971] distance[35.4787..35.4787] -> Pvisit80 weight[0]
time[176.029..186] distance[52.5081..52.5081] -> visit80 weight[6]
time[176.029..186] distance[52.5081..52.5081] -> Pvisit68 weight[0]
time[188.029..198] distance[54.5081..54.5081] -> visit68 weight[36]
time[188.029..198] distance[54.5081..54.5081] -> Truck 2 returning to Depot 1
weight[0] time[210.399..230] distance[66.8774..66.8774]
Vehicle 3 of Depot Depot 1 :
 -> Truck 3 leaving Depot 1 weight[0..200] time[0..3.08082] distance[0] ->
Pvisit78 weight[0] time[8.06226..11.1431] distance[8.06226] -> visit78
weight[3] time[8.06226..11.1431] distance[8.06226] -> Pvisit34 weight[0]
time[23.0623..26.1431] distance[13.0623] -> visit34 weight[14]
time[23.0623..26.1431] distance[13.0623] -> Pvisit35 weight[0]
time[43.2603..46.3411] distance[23.2603] -> visit35 weight[8]
time[43.2603..46.3411] distance[23.2603] -> Pvisit71 weight[0]
time[59.9685..63.0493] distance[29.9685] -> visit71 weight[15]
time[59.9685..63.0493] distance[29.9685] -> Pvisit65 weight[0]
time[80.2641..83.3449] distance[40.2641] -> visit65 weight[20]
time[80.2641..83.3449] distance[40.2641] -> Pvisit66 weight[0]
time[103.866..106.946] distance[53.8656..53.8656] -> visit66 weight[25]
time[103.866..106.946] distance[53.8656..53.8656] -> Pvisit32 weight[0]
time[128.426..131.507] distance[68.4258..68.4258] -> visit32 weight[23]
time[128.426..131.507] distance[68.4258..68.4258] -> Pvisit90 weight[0]
time[142.898..145.979] distance[72.898..72.898] -> visit90 weight[3]
time[142.898..145.979] distance[72.898..72.898] -> Pvisit63 weight[0]
time[157.37..160.451] distance[77.3701..77.3701] -> visit63 weight[10]
time[157.37..160.451] distance[77.3701..77.3701] -> Pvisit10 weight[0]
time[176.857..179.938] distance[86.8569..86.8569] -> visit10 weight[16]
time[176.857..179.938] distance[86.8569..86.8569] -> Pvisit70 weight[0]
time[194.919..198] distance[94.9192..94.9192] -> visit70 weight[5]
time[194.919..198] distance[94.9192..94.9192] -> Truck 3 returning to Depot 1
weight[0] time[221.682..230] distance[111.682..111.682]
Vehicle 4 of Depot Depot 1 :
 -> Truck 4 leaving Depot 1 weight[0..200] time[0..92.5507] distance[0] ->
Pvisit29 weight[0] time[14.2127..106.763] distance[14.2127] -> visit29
weight[9] time[14.2127..106.763] distance[14.2127] -> Pvisit24 weight[0]
time[31.2837..123.834] distance[21.2837..21.2837] -> visit24 weight[3]
time[31.2837..123.834] distance[21.2837..21.2837] -> Pvisit55 weight[0]
time[53.4493..146] distance[33.4493..33.4493] -> visit55 weight[2]
time[136..146] distance[33.4493..33.4493] -> Pvisit25 weight[0]
time[149.606..174.958] distance[37.0548..37.0548] -> visit25 weight[6]
time[172..174.958] distance[37.0548..37.0548] -> Pvisit54 weight[0]
time[194.042..197] distance[49.0964..49.0964] -> visit54 weight[18]
time[194.042..197] distance[49.0964..49.0964] -> Truck 4 returning to Depot 1
weight[0] time[226.402..230] distance[71.4571..71.4571]
Vehicle 5 of Depot Depot 1 : Unused
Vehicle 6 of Depot Depot 1 : Unused
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 275

Vehicle 7 of Depot Depot 1 : Unused
Vehicle 8 of Depot Depot 1 : Unused
Vehicle 9 of Depot Depot 1 : Unused
Vehicle 0 of Depot Depot 2 : Unused
Vehicle 1 of Depot Depot 2 :
 -> Truck 1 leaving Depot 2 weight[0..200] time[0..71.4822] distance[0] ->
Pvisit98 weight[0] time[4.12311..75.6054] distance[4.12311] -> visit98
weight[10] time[4.12311..75.6054] distance[4.12311] -> Pvisit99 weight[0]
time[19.2221..90.7044] distance[9.22213..9.22213] -> visit99 weight[9]
time[83..90.7044] distance[9.22213..9.22213] -> Pvisit84 weight[0]
time[103.296..111] distance[19.5178..19.5178] -> visit84 weight[7]
time[103.296..111] distance[19.5178..19.5178] -> Pvisit5 weight[0]
time[117.419..162.292] distance[23.6409..23.6409] -> visit5 weight[26]
time[117.419..162.292] distance[23.6409..23.6409] -> Pvisit93 weight[0]
time[134.127..179] distance[30.3491..30.3491] -> visit93 weight[22]
time[134.127..179] distance[30.3491..30.3491] -> Pvisit100 weight[0]
time[150.127..195] distance[36.3491..36.3491] -> visit100 weight[17]
time[185..195] distance[36.3491..36.3491] -> Truck 1 returning to Depot 2
weight[0] time[196..230] distance[37.3491..37.3491]
Vehicle 2 of Depot Depot 2 :
 -> Truck 2 leaving Depot 2 weight[0..200] time[0..11.566] distance[0] ->
Pvisit37 weight[0] time[3.60555..15.1716] distance[3.60555] -> visit37
weight[8] time[3.60555..15.1716] distance[3.60555] -> Pvisit92 weight[0]
time[16.434..28] distance[6.43398] -> visit92 weight[2] time[18..28]
distance[6.43398] -> Pvisit94 weight[0] time[34.4031..62.5951]
distance[12.8371] -> visit94 weight[27] time[34.4031..62.5951]
distance[12.8371] -> Pvisit95 weight[0] time[47.5654..75.7574]
distance[15.9994..15.9994] -> visit95 weight[20] time[47.5654..75.7574]
distance[15.9994..15.9994] -> Pvisit97 weight[0] time[60.5654..88.7574]
distance[18.9994..18.9994] -> visit97 weight[12] time[60.5654..88.7574]
distance[18.9994..18.9994] -> Pvisit87 weight[0] time[74.808..103]
distance[23.242..23.242] -> visit87 weight[26] time[93..103]
distance[23.242..23.242] -> Truck 2 returning to Depot 2 weight[0]
time[113.05..230] distance[33.2919..33.2919]
Vehicle 3 of Depot Depot 2 :
 -> Truck 3 leaving Depot 2 weight[0..200] time[0..6.359] distance[0] ->
Pvisit85 weight[0] time[5.38516..11.7442] distance[5.38516] -> visit85
weight[41] time[5.38516..11.7442] distance[5.38516] -> Pvisit61 weight[0]
time[19.8573..26.2163] distance[9.8573..9.8573] -> visit61 weight[13]
time[19.8573..26.2163] distance[9.8573..9.8573] -> Pvisit17 weight[0]
time[39.0768..45.4358] distance[19.0768..19.0768] -> visit17 weight[2]
time[39.0768..45.4358] distance[19.0768..19.0768] -> Pvisit45 weight[0]
time[57.1391..63.4981] distance[27.1391..27.1391] -> visit45 weight[16]
time[57.1391..63.4981] distance[27.1391..27.1391] -> Pvisit46 weight[0]
time[77.9094..84.2684] distance[37.9094..37.9094] -> visit46 weight[1]
time[77.9094..84.2684] distance[37.9094..37.9094] -> Pvisit48 weight[0]
time[99.6141..105.973] distance[49.6141..49.6141] -> visit48 weight[36]
time[99.6141..105.973] distance[49.6141..49.6141] -> Pvisit82 weight[0]
time[114.999..121.358] distance[54.9993..54.9993] -> visit82 weight[16]
time[114.999..121.358] distance[54.9993..54.9993] -> Pvisit83 weight[0]
time[135.049..141.408] distance[65.0492..65.0492] -> visit83 weight[11]
time[135.049..141.408] distance[65.0492..65.0492] -> Pvisit60 weight[0]
time[149.292..155.651] distance[69.2918..69.2918] -> visit60 weight[3]
time[149.292..155.651] distance[69.2918..69.2918] -> Pvisit6 weight[0]
time[168.236..174.595] distance[78.2361..78.2361] -> visit6 weight[3]
time[168.236..174.595] distance[78.2361..78.2361] -> Pvisit96 weight[0]
time[182.479..188.838] distance[82.4787..82.4787] -> visit96 weight[11]
time[182.479..188.838] distance[82.4787..82.4787] -> Pvisit59 weight[0]
276 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
time[195.641..202] distance[85.641..85.641] -> visit59 weight[28]
time[195.641..202] distance[85.641..85.641] -> Truck 3 returning to Depot 2
weight[0] time[213.257..230] distance[93.2568..93.2568]
Vehicle 4 of Depot Depot 2 :
 -> Truck 4 leaving Depot 2 weight[0..200] time[0..64.5676] distance[0] ->
Pvisit44 weight[0] time[7.61577..72.1833] distance[7.61577] -> visit44
weight[18] time[69..72.1833] distance[7.61577] -> Pvisit38 weight[0]
time[89.8167..93] distance[18.4324..18.4324] -> visit38 weight[16]
time[89.8167..93] distance[18.4324..18.4324] -> Pvisit86 weight[0]
time[112.855..162.576] distance[31.4708..31.4708] -> visit86 weight[35]
time[112.855..162.576] distance[31.4708..31.4708] -> Pvisit16 weight[0]
time[129.18..178.901] distance[37.7954..37.7954] -> visit16 weight[19]
time[129.18..178.901] distance[37.7954..37.7954] -> Pvisit91 weight[0]
time[144.279..194] distance[42.8944..42.8944] -> visit91 weight[1]
time[144.279..194] distance[42.8944..42.8944] -> Truck 4 returning to Depot 2
weight[0] time[157.884..230] distance[46.5..46.5]
Vehicle 5 of Depot Depot 2 :
 -> Truck 5 leaving Depot 2 weight[0..200] time[0..25.474] distance[0] ->
Pvisit14 weight[0] time[7.61577..33.0897] distance[7.61577] -> visit14
weight[20] time[7.61577..33.0897] distance[7.61577] -> Pvisit43 weight[0]
time[28.2459..53.7199] distance[18.2459] -> visit43 weight[7]
time[28.2459..53.7199] distance[18.2459] -> Pvisit15 weight[0] time[45.526..71]
distance[25.526..25.526] -> visit15 weight[8] time[61..71]
distance[25.526..25.526] -> Pvisit41 weight[0] time[83.1655..138.604]
distance[37.6916..37.6916] -> visit41 weight[5] time[83.1655..138.604]
distance[37.6916..37.6916] -> Pvisit22 weight[0] time[97.4082..152.847]
distance[41.9342..41.9342] -> visit22 weight[18] time[97.4082..152.847]
distance[41.9342..41.9342] -> Pvisit57 weight[0] time[120.561..176]
distance[55.0871..55.0871] -> visit57 weight[7] time[120.561..176]
distance[55.0871..55.0871] -> Pvisit42 weight[0] time[138.561..194]
distance[63.0871..63.0871] -> visit42 weight[5] time[138.561..194]
distance[63.0871..63.0871] -> Truck 5 returning to Depot 2 weight[0]
time[156.371..230] distance[70.8974..70.8974]
Vehicle 6 of Depot Depot 2 : Unused
Vehicle 7 of Depot Depot 2 : Unused
Vehicle 8 of Depot Depot 2 : Unused
Vehicle 9 of Depot Depot 2 : Unused

*/
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 277

278 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

C H A P T E R
11

Modeling Complex Costs

In this lesson, you will learn how to:

◆ model vehicle costs with variable cost coefficients

◆ use the member function setCost to apply cost coefficient functions

◆ use the function IloNumToNumSegmentFunction

In this lesson, you model problems which apply complex costs via variable cost coefficient
functions. In previous lessons, costs were typically based on linear combinations of the route
distance, time, or vehicle load. This lesson introduces variable cost coefficients, which are
values that can be applied to route dimensions in order to determine the route cost. These
variable coefficient functions allow you to model vehicle costs with greater flexibility, and
thereby extend your ability to apply a wide variety of cost calculations to your routing
problems.

The first example in this lesson, cost1.cpp, models a last-visit-dependent cost, and it starts
with “Describe cost1” on page 280. The second example, cost2.cpp, applies higher transit
costs as route distance thresholds are passed, and that lesson begins with “Describe cost2”
on page 282.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 279

Describe cost1

Routing problem costs may be highly dependent on the location of specific customer visits.
This problem examines the case where the location of the last customer visit determines the
cost coefficient of the entire route. This type of problem could represent a business need to
have the last customer visit as close to the depot as possible.

The first step is to write a natural language description of the problem. The constraints and
objectives for cost1.cpp are the same as for the PDP; in particular, the objective is to
minimize the costs of the delivery of all the parcels. The difference in this lesson lies in the
way the costs are calculated with cost coefficients. In cost1.cpp, vehicle costs are derived
from a calculation based on the x-coordinate of the vehicle’s last visit before returning to the
depot.

Model cost1

Once you have written a description of your problem, you can use Dispatcher classes to
model it.

Open the example file YourDispatcherHome/examples/src/tutorial/
cost1_partial.cpp in your development environment.

This problem is modeled as for a PDP, with only the creation and addition of a cost
coefficient function.

Add the following code after the comment
//Create the LastVisitCostCoef function.

The LastVisitCostCoef is a function of the type IloSimpleVisitToNumFunction,
and it creates the cost coefficient from the x-coordinate of visit.

Next, you set the vehicle cost in the createVehicles function.

Step 1 Describe the problem

Step 2 Open the example file

Step 3 Create the LastVisitCostCoef function

IloNum LastVisitCostCoef(IloVisit visit) {
 IloNode node = visit.getNode();
 return ((IloInt)(node.getX()) % 5) + 1;
}

280 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve cost1
Add the following code after the comment //Add the cost function.

These lines in createVehicles create the vehicle cost. coefFunction is created as an
IloVisitToNumFunction which allows you to associate IloNum values with visits.

The member function IloVehicle::setCost is used here to associate a visit-dependent
proportional cost with vehicle. The parameter
vehicle.getLastVisit().getPrevVar() returns the location variable with which
coefFunction calculates the cost applied to distance. Note that the visit returned by
vehicle.getLastVisit().getPrevVar() corresponds to the last customer visit
performed before returning to the depot.

Solve cost1

The solution for cost1.cpp is computed, improved, and displayed by methods previously
presented for the PDP problem.

Step 4 Add the cost function

 IloVisitToNumFunction coefFunction(_env, LastVisitCostCoef);
 vehicle.setCost(distance,
 coefFunction,
 vehicle.getLastVisit().getPrevVar());
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 281

The solution improvement phase finds a solution using 10 vehicles with a cost of 1203.79
units:

The complete cost1.cpp program and output is presented in “Complete cost1 Program” on
page 286.

Describe cost2

There are numerous reasons why you may want to put a “penalty” cost on high mileage in a
route solution. For example, there may be a desire to simply limit the amount of driving
time, or a desire to keep all the vehicles in a solution near the same mileage. One way to
achieve this is to apply higher costs when the vehicle mileage for any particular route passes
certain thresholds. In cost2.cpp, vehicle costs are calculated from the length of the trip;
longer trips result in higher costs.

The first step is to write a natural language description of the problem. The constraints and
objectives for cost2.cpp are the same as for the PDP; in particular, the objective is to
minimize the costs of the delivery of all the parcels. The difference in this lesson lies in the

Step 5 Compile and run the cost1 program

 2286.23
Improving solution
Number of fails : 0
Number of choice points : 0
Number of variables : 2344
Number of constraints : 440
Reversible stack (bytes) : 201024
Solver heap (bytes) : 1017340
Solver global heap (bytes) : 144384
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1442320
Elapsed time since creation : 0.02
Number of nodes : 51
Number of visits : 80
Number of vehicles : 15
Number of dimensions : 3
Number of accepted moves : 24
===============
Cost : 1203.79
Number of vehicles used : 10

Step 1 Describe the problem
282 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model cost2
way the costs are calculated. In cost2.cpp, the cost is determined from the total length of
the vehicle route, which then determines the value returned by the segmented function.

Model cost2

Once you have written a description of your problem, you can use Dispatcher classes to
model it.

Open the example file YourDispatcherHome/examples/src/tutorial/
cost2_partial.cpp in your development environment.

In this example, the cost function is added as an IloNumToNumSegmentFunction in the
createVehicles function.

Add the following code after the comment //Add the vehicle cost function.

First, a standard proportional cost is applied on the distance traveled (cost per unit distance is
1). Then, costFunction is created with a default value of 0. The member function
setSlope is then used to change the value of the function, depending on the range given.

Solve cost2

The solution for cost2.cpp is computed, improved, and displayed by methods previously
presented for the PDP problem.

Step 2 Open the example file

Step 3 Add the vehicle cost function

 vehicle.setCost(distance, 1);
 IloNumToNumSegmentFunction costFunction(_env);
 costFunction.setSlope(75, 100, 37.5, 0.5);
 costFunction.setSlope(100, IloInfinity, 100, 1);
 vehicle.setCost(distance, costFunction);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 283

The solution improvement phase finds a solution using 13 vehicles with a cost of 1900.16
units:

The complete cost2.cpp program and output is presented in “Complete cost2 Program” on
page 293.

Review Exercises

For answers, see “Suggested Answers” on page 285.

1. What member function is used to associate a visit-dependent proportional cost with a
vehicle?

2. What Dispatcher class is used to associate IloNum values with vehicle visits?

3. The following section of code is from the createVehicles function of cost1.cpp. If
the code .getPrevVar() were removed, all the other code in cost1.cpp remained the
same, and the depot were located at (0,0), what would be the resulting cost coefficient?

Step 4 Compile and run the cost2 program

 2583.49
Improving solution
Number of fails : 0
Number of choice points : 0
Number of variables : 2359
Number of constraints : 440
Reversible stack (bytes) : 201024
Solver heap (bytes) : 1025380
Solver global heap (bytes) : 269064
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1575040
Elapsed time since creation : 0.01
Number of nodes : 51
Number of visits : 80
Number of vehicles : 15
Number of dimensions : 3
Number of accepted moves : 28
===============
Cost : 1900.16
Number of vehicles used : 13

 IloVisitToNumFunction coefFunction(_env, LastVisitCostCoef);
 vehicle.setCost(distance,
 coefFunction,
 vehicle.getLastVisit().getPrevVar());
284 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Suggested Answers
Suggested Answers

Exercise 1

What member function is used to associate a visit-dependent proportional cost with a
vehicle?

Suggested Answer

IloVehicle::setCost.

Exercise 2

What Dispatcher class is used to associate IloNum values with vehicle visits?

Suggested Answer

IloVisitToNumFunction.

Exercise 3

The following section of code is from the createVehicles function of cost1.cpp. If the
code .getPrevVar() were removed, all the other code in cost1.cpp remained the same,
and the depot is located at (0,0), what would be the resulting cost coefficient?

Suggested Answer

Removing .getPrevVar() would mean that coefFunction uses the very last visit—the
return to the depot visit—as the visit to use in calculating the cost coefficient. The coefficient
is based on the x-coordinate of this visit; so if the depot were located at (0,0), then the cost
would be based on a coefficient of 1. See the following code for the function
LastVisitCostCoef.

 IloVisitToNumFunction coefFunction(_env, LastVisitCostCoef);
 vehicle.setCost(distance,
 coefFunction,
 vehicle.getLastVisit().getPrevVar());

IloNum LastVisitCostCoef(IloVisit visit) {
 IloNode node = visit.getNode();
 return ((IloInt)(node.getX()) % 5) + 1;
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 285

Complete cost1 Program

The complete program and output for cost1.cpp follows. You can also view it online in the
file YourDispatcherHome/examples/src/cost1.cpp.

// -- -*- C++ -*-
// File: examples/src/cost1.cpp
// --

#include <ildispat/ilodispatcher.h>

ILOSTLBEGIN

///
// Modeling
class RoutingModel {
 IloEnv _env;
 IloModel _mdl;

 void createDimensions();
 void createIloNodes(char* nodeFileName);
 void createVehicles(char* vehicleFileName);
 void createVisits(char* visitsFileName);
public:
 RoutingModel(IloEnv env,
 int argc,
 char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
};

RoutingModel::RoutingModel(IloEnv env,
 int argc,
 char * argv[])
 : _env(env), _mdl(env){

 createDimensions();

 char* nodeFileName;
 if(argc < 4)
 nodeFileName = (char *) “../../../examples/data/pdp/nodes.csv”;
 else
 nodeFileName = argv[3];
 createIloNodes(nodeFileName);

 char* vehiclesFileName;
 if (argc < 2)
 vehiclesFileName = (char *) “../../../examples/data/pdp/vehicles.csv”;
 else
 vehiclesFileName = argv[1];
 createVehicles(vehiclesFileName);

 char* visitsFileName;
 if (argc < 3)
286 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete cost1 Program
 visitsFileName =
 (char*) “../../../examples/data/pdp/visits.csv”;
 else
 visitsFileName = argv[2];
 createVisits(visitsFileName);
}

// Create dimensions
void RoutingModel::createDimensions() {
 IloDimension1 weight(_env, “Weight”);
 weight.setKey(“Weight”);
 _mdl.add(weight);
 IloDimension2 time(_env, IloEuclidean, “Time”);
 time.setKey(“Time”);
 _mdl.add(time);
 IloDimension2 distance(_env, IloEuclidean, IloFalse, “Distance”);
 distance.setKey(“Distance”);
 _mdl.add(distance);
}

// Create IloNodes
void RoutingModel::createIloNodes(char* nodeFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char* name = line.getStringByHeader(“name”);
 IloNode node(_env,
 line.getFloatByHeader(“x”),
 line.getFloatByHeader(“y”),
 0,
 name);
 node.setKey(name);
 ++it;
 }
 csvNodeReader.end();
}

IloNum LastVisitCostCoef(IloVisit visit) {
 IloNode node = visit.getNode();
 return ((IloInt)(node.getX()) % 5) + 1;
}

// Create vehicles
void RoutingModel::createVehicles(char* vehicleFileName) {
 IloDimension1 weight = IloDimension1::Find(_env, “Weight”);
 IloDimension2 time = IloDimension2::Find(_env, “Time”);
 IloDimension2 distance = IloDimension2::Find(_env, “Distance”);
 IloCsvReader csvVehicleReader(_env, vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader(“first”);
 char * namelast = line.getStringByHeader(“last”);
 char * name = line.getStringByHeader(“name”);
 IloNum capacity = line.getFloatByHeader(“capacity”);
 IloNum openTime = line.getFloatByHeader(“open”);
 IloNum closeTime = line.getFloatByHeader(“close”);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 287

 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);

 IloVisit first(node1, “depot”);
 _mdl.add(first.getCumulVar(weight) == 0);
 _mdl.add(first.getCumulVar(time) >= openTime);

 IloVisit last(node2, “depot”);
 _mdl.add(last.getCumulVar(time) <= closeTime);
 IloVehicle vehicle(first, last, name);

 IloVisitToNumFunction coefFunction(_env, LastVisitCostCoef);
 vehicle.setCost(distance,
 coefFunction,
 vehicle.getLastVisit().getPrevVar());

 vehicle.setCapacity(weight, capacity);
 _mdl.add(vehicle);
 ++it;
 }
 csvVehicleReader.end();
}

// Create visits
void RoutingModel::createVisits(char* visitsFileName) {
 IloDimension1 weight = IloDimension1::Find(_env, “Weight”);
 IloDimension2 time = IloDimension2::Find(_env, “Time”);
 IloCsvReader csvVisitReader(_env, visitsFileName);
 IloCsvReader::LineIterator it(csvVisitReader);
 while(it.ok()){
 IloCsvLine line = *it;
 //read visit data from files
 char * pickupVisitName = line.getStringByHeader(“pickup”);
 char * pickupNodeName = line.getStringByHeader(“pickupNode”);
 char * deliveryVisitName = line.getStringByHeader(“delivery”);
 char * deliveryNodeName = line.getStringByHeader(“deliveryNode”);
 IloNum quantity = line.getFloatByHeader(“quantity”);
 IloNum pickupMinTime = line.getFloatByHeader(“pickupMinTime”);
 IloNum pickupMaxTime = line.getFloatByHeader(“pickupMaxTime”);
 IloNum deliveryMinTime = line.getFloatByHeader(“deliveryMinTime”);
 IloNum deliveryMaxTime = line.getFloatByHeader(“deliveryMaxTime”);
 IloNum dropTime = line.getFloatByHeader(“dropTime”);
 IloNum pickupTime = line.getFloatByHeader(“pickupTime”);

 // read data nodes from the file nodes.csv
 // and create pickup and delivery nodes

 IloNode pickupNode = IloNode::Find(_env, pickupNodeName);
 IloNode deliveryNode = IloNode::Find(_env, deliveryNodeName);

 //create and add pickup and delivery visits
 IloVisit pickup(pickupNode, pickupVisitName);
 _mdl.add(pickup.getDelayVar(time) == pickupTime);
 _mdl.add(pickup.getTransitVar(weight) == quantity);
 _mdl.add(pickupMinTime <= pickup.getCumulVar(time) <= pickupMaxTime);
 _mdl.add(pickup);
 IloVisit delivery(deliveryNode, deliveryVisitName);
 _mdl.add(delivery.getDelayVar(time) == dropTime);
288 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete cost1 Program
 _mdl.add(delivery.getTransitVar(weight) == -quantity);
 _mdl.add(deliveryMinTime <= delivery.getCumulVar(time) <= deliveryMaxTime);
 _mdl.add(delivery);
 //add pickup and delivery order constraint
 _mdl.add(IloOrderedVisitPair(_env, pickup, delivery));
 ++it;
 }
 csvVisitReader.end();
}

///
// Solving
class RoutingSolver {
 IloModel _mdl;
 IloSolver _solver;
 IloRoutingSolution _solution;

 IloBool findFirstSolution(IloGoal goal);
 void greedyImprove(IloNHood nhood, IloGoal subGoal);
 void improve(IloGoal subgoal);
public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloRoutingSolution getSolution() const { return _solution; }
 void printInformation() const;
 void solve();
};

RoutingSolver::RoutingSolver(RoutingModel mdl)
 : _mdl(mdl.getModel()), _solver(mdl.getModel()), _solution(mdl.getModel()) {}

// Solving : find first solution
IloBool RoutingSolver::findFirstSolution(IloGoal goal) {
 if (!_solver.solve(goal)) {
 _solver.error() << “Infeasible Routing Plan” << endl;
 return IloFalse;
 }
 IloDispatcher dispatcher(_solver);
 _solver.out() << dispatcher.getTotalCost() << endl;
 _solution.store(_solver);
 return IloTrue;
}

// Improve solution using nhood
void RoutingSolver::greedyImprove(IloNHood nhood, IloGoal subGoal) {
 _solver.out() << “Improving solution” << endl;
 IloEnv env = _solver.getEnv();
 nhood.reset();
 IloGoal improve = IloSingleMove(env,
 _solution,
 nhood,
 IloImprove(env),
 subGoal);
 while (_solver.solve(improve)) {}
}

// Improve solution
void RoutingSolver::improve(IloGoal subGoal) {
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 289

 IloEnv env = _solver.getEnv();
 IloNHood nhood = IloTwoOpt(env)
 + IloOrOpt(env)
 + IloRelocate(env)
 + IloCross(env)
 + IloExchange(env);
 greedyImprove(nhood, subGoal);
}

// Display Dispatcher information
void RoutingSolver::printInformation() const {
 IloDispatcher dispatcher(_solver);
 _solver.printInformation();
 dispatcher.printInformation();
 _solver.out() << “===============” << endl
 << “Cost : “ << dispatcher.getTotalCost() << endl
 << “Number of vehicles used : “
 << dispatcher.getNumberOfVehiclesUsed() << endl
 << “Solution : “ << endl
 << dispatcher << endl;
}

// Solving
void RoutingSolver::solve() {
 IloDispatcher dispatcher(_solver);
 IloEnv env = _solver.getEnv();
 // Subgoal
 IloGoal instantiateCost = IloDichotomize(env,
 dispatcher.getCostVar(),
 IloFalse);
 IloGoal restoreSolution = IloRestoreSolution(env, _solution);
 IloGoal goal = IloSavingsGenerate(env) && instantiateCost;

 // Solving
 if (findFirstSolution(goal)) {
 improve(instantiateCost);
 _solver.solve(restoreSolution);
 }
}

///

int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 solver.solve();
 solver.printInformation();
 } catch(IloException& ex) {
 cerr << “Error: “ << ex << endl;
 }
 env.end();
 return 0;
}

290 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete cost1 Program
Complete cost1 Output

/**
2286.23
Improving solution
Number of fails : 0
Number of choice points : 0
Number of variables : 2344
Number of constraints : 440
Reversible stack (bytes) : 201024
Solver heap (bytes) : 1017340
Solver global heap (bytes) : 144384
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1442320
Elapsed time since creation : 0.02
Number of nodes : 51
Number of visits : 80
Number of vehicles : 15
Number of dimensions : 3
Number of accepted moves : 24
===============
Cost : 1203.79
Number of vehicles used : 10
Solution :
Unperformed visits : None
vehicle1 :
 -> depot Weight[0] Time[0..12.414] Distance[0..Inf) -> visit35 Weight[0..175]
Time[41.0366..53.4506] Distance[0..Inf) -> visit19 Weight[8..183]
Time[99.2963..111.71] Distance[0..Inf) -> visit36 Weight[25..200]
Time[122.296..134.71] Distance[0..Inf) -> visit20 Weight[17..192]
Time[175.586..188] Distance[0..Inf) -> depot Weight[0..175] Time[217.209..230]
Distance[0..Inf)
vehicle2 :
 -> depot Weight[0] Time[0..18.7919] Distance[0..Inf) -> visit21 Weight[0..140]
Time[18.0278..36.8197] Distance[0..Inf) -> visit22 Weight[11..151]
Time[38.0278..56.8197] Distance[0..Inf) -> visit23 Weight[0..140] Time[68..78]
Distance[0..Inf) -> visit39 Weight[29..169] Time[86.6023..137.537]
Distance[0..Inf) -> visit24 Weight[60..200] Time[120.14..171.074]
Distance[0..Inf) -> visit40 Weight[31..171] Time[157.065..208] Distance[0..Inf)
-> depot Weight[0..140] Time[178.246..230] Distance[0..Inf)
vehicle3 :
 -> depot Weight[0] Time[0..47.076] Distance[0..Inf) -> visit5 Weight[0..145]
Time[20.6155..67.6915] Distance[0..Inf) -> visit17 Weight[26..171]
Time[40.6155..87.6915] Distance[0..Inf) -> visit45 Weight[28..173]
Time[58.6778..105.754] Distance[0..Inf) -> visit46 Weight[44..189]
Time[79.4481..126.524] Distance[0..Inf) -> visit47 Weight[28..173]
Time[99.4481..146.524] Distance[0..Inf) -> visit48 Weight[55..200]
Time[115.851..162.927] Distance[0..Inf) -> visit18 Weight[28..173]
Time[139.744..186.82] Distance[0..Inf) -> visit6 Weight[26..171]
Time[160.924..208] Distance[0..Inf) -> depot Weight[0..145] Time[182.104..230]
Distance[0..Inf)
vehicle4 :
 -> depot Weight[0] Time[0..13.1563] Distance[0..Inf) -> visit33 Weight[0..175]
Time[24.7588..37.9152] Distance[0..Inf) -> visit29 Weight[11..186]
Time[49.6249..62.7813] Distance[0..Inf) -> visit34 Weight[20..195]
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 291

Time[72.6633..85.8197] Distance[0..Inf) -> visit9 Weight[9..184] Time[97..107]
Distance[0..Inf) -> visit30 Weight[25..200] Time[122..174] Distance[0..Inf) ->
visit10 Weight[16..191] Time[142..194] Distance[0..Inf) -> depot Weight[0..175]
Time[177.495..230] Distance[0..Inf)
vehicle5 :
 -> depot Weight[0] Time[0..22.3215] Distance[0..Inf) -> visit27 Weight[0..145]
Time[5..27.3215] Distance[0..Inf) -> visit31 Weight[16..161]
Time[27.6491..49.9706] Distance[0..Inf) -> visit11 Weight[43..188] Time[67..77]
Distance[0..Inf) -> visit32 Weight[55..200] Time[92.5242..143.223]
Distance[0..Inf) -> visit28 Weight[28..173] Time[135.082..185.78]
Distance[0..Inf) -> visit12 Weight[12..157] Time[154.301..205] Distance[0..Inf)
-> depot Weight[0..145] Time[179.301..230] Distance[0..Inf)
vehicle6 :
 -> depot Weight[0] Time[0..19.9727] Distance[0..Inf) -> visit41 Weight[0..164]
Time[28.8617..48.8345] Distance[0..Inf) -> visit15 Weight[5..169] Time[61..71]
Distance[0..Inf) -> visit13 Weight[13..177] Time[109..125.282] Distance[0..Inf)
-> visit42 Weight[36..200] Time[133.318..149.6] Distance[0..Inf) -> visit14
Weight[31..195] Time[152.537..168.82] Distance[0..Inf) -> visit16
Weight[8..172] Time[173.718..190] Distance[0..Inf) -> depot Weight[0..164]
Time[212.872..230] Distance[0..Inf)
vehicle7 :
 -> depot Weight[0] Time[0..18.5452] Distance[0..Inf) -> visit43 Weight[0..193]
Time[34.176..52.7212] Distance[0..Inf) -> visit44 Weight[7..200] Time[69..79]
Distance[0..Inf) -> visit25 Weight[0..193] Time[172..175.639] Distance[0..Inf)
-> visit26 Weight[6..199] Time[204.361..208] Distance[0..Inf) -> depot
Weight[0..193] Time[225.541..230] Distance[0..Inf)
vehicle8 :
 -> depot Weight[0] Time[0..0.750223] Distance[0..Inf) -> visit1 Weight[0..182]
Time[15.2315..15.9818] Distance[0..Inf) -> visit37 Weight[10..192]
Time[61.0366..61.7868] Distance[0..Inf) -> visit38 Weight[18..200]
Time[92.2498..93] Distance[0..Inf) -> visit2 Weight[10..192] Time[134.561..202]
Distance[0..Inf) -> depot Weight[0..182] Time[162.561..230] Distance[0..Inf)
vehicle9 :
 -> depot Weight[0] Time[0..61.5802] Distance[0..Inf) -> visit7 Weight[0..195]
Time[21.2132..82.7934] Distance[0..Inf) -> visit8 Weight[5..200] Time[95..105]
Distance[0..Inf) -> depot Weight[0..195] Time[131.249..230] Distance[0..Inf)
vehicle10 :
 -> depot Weight[0] Time[0..5.75685] Distance[0..Inf) -> visit49 Weight[0..170]
Time[43.9318..49.6886] Distance[0..Inf) -> visit50 Weight[30..200]
Time[99.9969..105.754] Distance[0..Inf) -> visit3 Weight[0..170]
Time[118.243..124] Distance[0..Inf) -> visit4 Weight[13..183]
Time[153.243..159] Distance[0..Inf) -> depot Weight[0..170] Time[188.243..230]
Distance[0..Inf)
vehicle11 : Unused
vehicle12 : Unused
vehicle13 : Unused
vehicle14 : Unused
vehicle15 : Unused

*/
292 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete cost2 Program
Complete cost2 Program

The complete program and output for cost2.cpp follows. You can also view it online in the
file YourDispatcherHome/examples/src/cost2.cpp.

// -- -*- C++ -*-
// File: examples/src/cost2.cpp
// --

#include <ildispat/ilodispatcher.h>

ILOSTLBEGIN
///
// Modeling
class RoutingModel {
 IloEnv _env;
 IloModel _mdl;

 void createDimensions();
 void createIloNodes(char* nodeFileName);
 void createVehicles(char* vehicleFileName);
 void createVisits(char* visitsFileName);
public:
 RoutingModel(IloEnv env,
 int argc,
 char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
};

RoutingModel::RoutingModel(IloEnv env,
 int argc,
 char * argv[])
 : _env(env), _mdl(env){

 createDimensions();

 char* nodeFileName;
 if(argc < 4)
 nodeFileName = (char *) “../../../examples/data/pdp/nodes.csv”;
 else
 nodeFileName = argv[3];
 createIloNodes(nodeFileName);

 char* vehiclesFileName;
 if (argc < 2)
 vehiclesFileName = (char *) “../../../examples/data/pdp/vehicles.csv”;
 else
 vehiclesFileName = argv[1];
 createVehicles(vehiclesFileName);

 char* visitsFileName;
 if (argc < 3)
 visitsFileName =
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 293

 (char*) “../../../examples/data/pdp/visits.csv”;
 else
 visitsFileName = argv[2];
 createVisits(visitsFileName);
}

// Create dimensions
void RoutingModel::createDimensions() {
 IloDimension1 weight(_env, “Weight”);
 weight.setKey(“Weight”);
 _mdl.add(weight);
 IloDimension2 time(_env, IloEuclidean, “Time”);
 time.setKey(“Time”);
 _mdl.add(time);
 IloDimension2 distance(_env, IloEuclidean, IloFalse, “Distance”);
 distance.setKey(“Distance”);
 _mdl.add(distance);
}

// Create IloNodes
void RoutingModel::createIloNodes(char* nodeFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char* name = line.getStringByHeader(“name”);
 IloNode node(_env,
 line.getFloatByHeader(“x”),
 line.getFloatByHeader(“y”),
 0,
 name);
 node.setKey(name);
 ++it;
 }
 csvNodeReader.end();
}

// Create vehicles
void RoutingModel::createVehicles(char* vehicleFileName) {
 IloDimension1 weight = IloDimension1::Find(_env, “Weight”);
 IloDimension2 time = IloDimension2::Find(_env, “Time”);
 IloDimension2 distance = IloDimension2::Find(_env, “Distance”);
 IloCsvReader csvVehicleReader(_env, vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader(“first”);
 char * namelast = line.getStringByHeader(“last”);
 char * name = line.getStringByHeader(“name”);
 IloNum capacity = line.getFloatByHeader(“capacity”);
 IloNum openTime = line.getFloatByHeader(“open”);
 IloNum closeTime = line.getFloatByHeader(“close”);
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);

 IloVisit first(node1, “depot”);
 _mdl.add(first.getCumulVar(weight) == 0);
 _mdl.add(first.getCumulVar(time) >= openTime);
294 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete cost2 Program
 IloVisit last(node2, “depot”);
 _mdl.add(last.getCumulVar(time) <= closeTime);
 IloVehicle vehicle(first, last, name);

 vehicle.setCost(distance, 1);
 IloNumToNumSegmentFunction costFunction(_env);
 costFunction.setSlope(75, 100, 37.5, 0.5);
 costFunction.setSlope(100, IloInfinity, 100, 1);
 vehicle.setCost(distance, costFunction);

 vehicle.setCapacity(weight, capacity);
 _mdl.add(vehicle);
 ++it;
 }
 csvVehicleReader.end();
}

// Create visits
void RoutingModel::createVisits(char* visitsFileName) {
 IloDimension1 weight = IloDimension1::Find(_env, “Weight”);
 IloDimension2 time = IloDimension2::Find(_env, “Time”);
 IloCsvReader csvVisitReader(_env, visitsFileName);
 IloCsvReader::LineIterator it(csvVisitReader);
 while(it.ok()){
 IloCsvLine line = *it;
 //read visit data from files
 char * pickupVisitName = line.getStringByHeader(“pickup”);
 char * pickupNodeName = line.getStringByHeader(“pickupNode”);
 char * deliveryVisitName = line.getStringByHeader(“delivery”);
 char * deliveryNodeName = line.getStringByHeader(“deliveryNode”);
 IloNum quantity = line.getFloatByHeader(“quantity”);
 IloNum pickupMinTime = line.getFloatByHeader(“pickupMinTime”);
 IloNum pickupMaxTime = line.getFloatByHeader(“pickupMaxTime”);
 IloNum deliveryMinTime = line.getFloatByHeader(“deliveryMinTime”);
 IloNum deliveryMaxTime = line.getFloatByHeader(“deliveryMaxTime”);
 IloNum dropTime = line.getFloatByHeader(“dropTime”);
 IloNum pickupTime = line.getFloatByHeader(“pickupTime”);

 // read data nodes from the file nodes.csv
 // and create pickup and delivery nodes

 IloNode pickupNode = IloNode::Find(_env, pickupNodeName);
 IloNode deliveryNode = IloNode::Find(_env, deliveryNodeName);

 //create and add pickup and delivery visits
 IloVisit pickup(pickupNode, pickupVisitName);
 _mdl.add(pickup.getDelayVar(time) == pickupTime);
 _mdl.add(pickup.getTransitVar(weight) == quantity);
 _mdl.add(pickupMinTime <= pickup.getCumulVar(time) <= pickupMaxTime);
 _mdl.add(pickup);
 IloVisit delivery(deliveryNode, deliveryVisitName);
 _mdl.add(delivery.getDelayVar(time) == dropTime);
 _mdl.add(delivery.getTransitVar(weight) == -quantity);
 _mdl.add(deliveryMinTime <= delivery.getCumulVar(time) <= deliveryMaxTime);
 _mdl.add(delivery);
 //add pickup and delivery order constraint
 _mdl.add(IloOrderedVisitPair(_env, pickup, delivery));
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 295

 ++it;
 }
 csvVisitReader.end();
}

///
// Solving
class RoutingSolver {
 IloModel _mdl;
 IloSolver _solver;
 IloRoutingSolution _solution;

 IloBool findFirstSolution(IloGoal goal);
 void greedyImprove(IloNHood nhood, IloGoal subGoal);
 void improve(IloGoal subgoal);
public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloRoutingSolution getSolution() const { return _solution; }
 void printInformation() const;
 void solve();
};

RoutingSolver::RoutingSolver(RoutingModel mdl)
 : _mdl(mdl.getModel()), _solver(mdl.getModel()), _solution(mdl.getModel()) {}

// Solving : find first solution
IloBool RoutingSolver::findFirstSolution(IloGoal goal) {
 if (!_solver.solve(goal)) {
 _solver.error() << “Infeasible Routing Plan” << endl;
 return IloFalse;
 }
 IloDispatcher dispatcher(_solver);
 _solver.out() << dispatcher.getTotalCost() << endl;
 _solution.store(_solver);
 return IloTrue;
}

// Improve solution using nhood
void RoutingSolver::greedyImprove(IloNHood nhood, IloGoal subGoal) {
 _solver.out() << “Improving solution” << endl;
 IloEnv env = _solver.getEnv();
 nhood.reset();
 IloGoal improve = IloSingleMove(env,
 _solution,
 nhood,
 IloImprove(env),
 subGoal);
 while (_solver.solve(improve)) {}
}

// Improve solution
void RoutingSolver::improve(IloGoal subGoal) {
 IloEnv env = _solver.getEnv();
 IloNHood nhood = IloTwoOpt(env)
 + IloOrOpt(env)
 + IloRelocate(env)
 + IloCross(env)
296 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete cost2 Program
 + IloExchange(env);
 greedyImprove(nhood, subGoal);
}

// Display Dispatcher information
void RoutingSolver::printInformation() const {
 IloDispatcher dispatcher(_solver);
 _solver.printInformation();
 dispatcher.printInformation();
 _solver.out() << “===============” << endl
 << “Cost : “ << dispatcher.getTotalCost() << endl
 << “Number of vehicles used : “
 << dispatcher.getNumberOfVehiclesUsed() << endl
 << “Solution : “ << endl
 << IloVerbose(dispatcher) << endl;
}

// Solving
void RoutingSolver::solve() {
 IloDispatcher dispatcher(_solver);
 IloEnv env = _solver.getEnv();
 // Subgoal
 IloGoal instantiateCost = IloDichotomize(env,
 dispatcher.getCostVar(),
 IloFalse);
 IloGoal restoreSolution = IloRestoreSolution(env, _solution);
 IloGoal goal = IloSavingsGenerate(env) && instantiateCost;

 // Solving
 if (findFirstSolution(goal)) {
 improve(instantiateCost);
 _solver.solve(restoreSolution);
 }
}
///

int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 solver.solve();
 solver.printInformation();
 } catch(IloException& ex) {
 cerr << “Error: “ << ex << endl;
 }
 env.end();
 return 0;
}

Complete cost2 Output

/**
2583.49
Improving solution
Number of fails : 0
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 297

Number of choice points : 0
Number of variables : 2359
Number of constraints : 440
Reversible stack (bytes) : 201024
Solver heap (bytes) : 1025380
Solver global heap (bytes) : 269064
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1575040
Elapsed time since creation : 0.01
Number of nodes : 51
Number of visits : 80
Number of vehicles : 15
Number of dimensions : 3
Number of accepted moves : 28
===============
Cost : 1900.16
Number of vehicles used : 13
Solution :
Unperformed visits : None

vehicle1
Cost coefficients : Distance[2]
 Route : depot -> visit35 -> visit49 -> visit36 -> visit50 -> depot
 Weight : depot [0], quantity [0..162] -> visit35 [0..162], quantity [8] ->
visit49 [8..170], quantity [30] -> visit36 [38..200], quantity [-8] -> visit50
[30..192], quantity [-30] -> depot [0..162], quantity (-Inf..Inf) TransitSum (-
Inf..Inf)
 Time : depot [0..19.1001], delay [0..19.1001] -> travel [41.0366], wait
[0..19.1001] -> visit35 [41.0366..60.1367], delay [10] -> travel [57.0789],
wait [0..19.1001] -> visit49 [108.115..127.216], delay [10] -> travel
[8.94427], wait [0..19.1001] -> visit36 [127.06..146.16], delay [10] -> travel
[46.8402], wait [0..19.1001] -> visit50 [183.9..203], delay [10] -> travel
[16.9706], wait [0..19.1295] -> depot [210.87..230], delay [0..Inf) -> travel
[0], wait [0..Inf) TransitSum [210.87..Inf)
 Distance : depot [0..Inf), delay [0..Inf) -> travel [41.0366], wait [0..Inf)
-> visit35 [0..Inf), delay [0..Inf) -> travel [57.0789], wait [0..Inf) ->
visit49 [0..Inf), delay [0..Inf) -> travel [8.94427], wait [0..Inf) -> visit36
[0..Inf), delay [0..Inf) -> travel [46.8402], wait [0..Inf) -> visit50
[0..Inf), delay [0..Inf) -> travel [16.9706], wait [0..Inf) -> depot [0..Inf),
delay [0..Inf) -> travel [0], wait [0..Inf) TransitSum [170.87..Inf)

vehicle2
Cost coefficients : Distance[2]
 Route : depot -> visit21 -> visit22 -> visit23 -> visit39 -> visit24 ->
visit40 -> depot
 Weight : depot [0], quantity [0..140] -> visit21 [0..140], quantity [11] ->
visit22 [11..151], quantity [-11] -> visit23 [0..140], quantity [29] -> visit39
[29..169], quantity [31] -> visit24 [60..200], quantity [-29] -> visit40
[31..171], quantity [-31] -> depot [0..140], quantity (-Inf..Inf) TransitSum (-
Inf..Inf)
 Time : depot [0..18.7919], delay [0..18.7919] -> travel [18.0278], wait
[0..18.7919] -> visit21 [18.0278..36.8197], delay [10] -> travel [10], wait
[0..18.7919] -> visit22 [38.0278..56.8197], delay [10] -> travel [11.1803],
wait [0..18.7919] -> visit23 [68..78], delay [10] -> travel [8.60233], wait
[0..50.9346] -> visit39 [86.6023..137.537], delay [10] -> travel [23.5372],
298 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete cost2 Program
wait [0..50.9346] -> visit24 [120.14..171.074], delay [10] -> travel [26.9258],
wait [0..50.9346] -> visit40 [157.065..208], delay [10] -> travel [11.1803],
wait [0..51.7543] -> depot [178.246..230], delay [0..Inf) -> travel [0], wait
[0..Inf) TransitSum [169.454..Inf)
 Distance : depot [0..Inf), delay [0..Inf) -> travel [18.0278], wait [0..Inf)
-> visit21 [0..Inf), delay [0..Inf) -> travel [10], wait [0..Inf) -> visit22
[0..Inf), delay [0..Inf) -> travel [11.1803], wait [0..Inf) -> visit23
[0..Inf), delay [0..Inf) -> travel [8.60233], wait [0..Inf) -> visit39
[0..Inf), delay [0..Inf) -> travel [23.5372], wait [0..Inf) -> visit24
[0..Inf), delay [0..Inf) -> travel [26.9258], wait [0..Inf) -> visit40
[0..Inf), delay [0..Inf) -> travel [11.1803], wait [0..Inf) -> depot [0..Inf),
delay [0..Inf) -> travel [0], wait [0..Inf) TransitSum [109.454..Inf)

vehicle3
Cost coefficients : Distance[1.5..2]
 Route : depot -> visit7 -> visit8 -> visit45 -> visit46 -> visit47 ->
visit48 -> depot
 Weight : depot [0], quantity [0..173] -> visit7 [0..173], quantity [5] ->
visit8 [5..178], quantity [-5] -> visit45 [0..173], quantity [16] -> visit46
[16..189], quantity [-16] -> visit47 [0..173], quantity [27] -> visit48
[27..200], quantity [-27] -> depot [0..173], quantity (-Inf..Inf) TransitSum (-
Inf..Inf)
 Time : depot [0..61.5802], delay [0..61.5802] -> travel [21.2132], wait
[0..61.5802] -> visit7 [21.2132..82.7934], delay [10] -> travel [12.2066], wait
[0..61.5802] -> visit8 [95..105], delay [10] -> travel [6.40312], wait
[0..23.4234] -> visit45 [111.403..134.827], delay [10] -> travel [10.7703],
wait [0..23.4234] -> visit46 [132.173..155.597], delay [10] -> travel [10],
wait [0..23.4234] -> visit47 [152.173..175.597], delay [10] -> travel
[6.40312], wait [0..23.4234] -> visit48 [168.577..192], delay [10] -> travel
[27.8029], wait [0..23.6205] -> depot [206.379..230], delay [0..Inf) -> travel
[0], wait [0..Inf) TransitSum [154.799..Inf)
 Distance : depot [0..Inf), delay [0..Inf) -> travel [21.2132], wait [0..Inf)
-> visit7 [0..Inf), delay [0..Inf) -> travel [12.2066], wait [0..Inf) -> visit8
[0..Inf), delay [0..Inf) -> travel [6.40312], wait [0..Inf) -> visit45
[0..Inf), delay [0..Inf) -> travel [10.7703], wait [0..Inf) -> visit46
[0..Inf), delay [0..Inf) -> travel [10], wait [0..Inf) -> visit47 [0..Inf),
delay [0..Inf) -> travel [6.40312], wait [0..Inf) -> visit48 [0..Inf), delay
[0..Inf) -> travel [27.8029], wait [0..Inf) -> depot [0..Inf), delay [0..Inf) -
> travel [0], wait [0..Inf) TransitSum [94.7992..Inf)

vehicle4
Cost coefficients : Distance[2]
 Route : depot -> visit33 -> visit29 -> visit34 -> visit9 -> visit30 ->
visit10 -> depot
 Weight : depot [0], quantity [0..175] -> visit33 [0..175], quantity [11] ->
visit29 [11..186], quantity [9] -> visit34 [20..195], quantity [-11] -> visit9
[9..184], quantity [16] -> visit30 [25..200], quantity [-9] -> visit10
[16..191], quantity [-16] -> depot [0..175], quantity (-Inf..Inf) TransitSum (-
Inf..Inf)
 Time : depot [0..13.1563], delay [0..13.1563] -> travel [24.7588], wait
[0..13.1563] -> visit33 [24.7588..37.9152], delay [10] -> travel [14.8661],
wait [0..13.1563] -> visit29 [49.6249..62.7813], delay [10] -> travel
[13.0384], wait [0..13.1563] -> visit34 [72.6633..85.8197], delay [10] ->
travel [11.1803], wait [0..13.1563] -> visit9 [97..107], delay [10] -> travel
[15], wait [0..52] -> visit30 [122..174], delay [10] -> travel [10], wait
[0..52] -> visit10 [142..194], delay [10] -> travel [25.4951], wait
[0..52.5049] -> depot [177.495..230], delay [0..Inf) -> travel [0], wait
[0..Inf) TransitSum [174.339..Inf)
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 299

 Distance : depot [0..Inf), delay [0..Inf) -> travel [24.7588], wait [0..Inf)
-> visit33 [0..Inf), delay [0..Inf) -> travel [14.8661], wait [0..Inf) ->
visit29 [0..Inf), delay [0..Inf) -> travel [13.0384], wait [0..Inf) -> visit34
[0..Inf), delay [0..Inf) -> travel [11.1803], wait [0..Inf) -> visit9 [0..Inf),
delay [0..Inf) -> travel [15], wait [0..Inf) -> visit30 [0..Inf), delay
[0..Inf) -> travel [10], wait [0..Inf) -> visit10 [0..Inf), delay [0..Inf) ->
travel [25.4951], wait [0..Inf) -> depot [0..Inf), delay [0..Inf) -> travel
[0], wait [0..Inf) TransitSum [114.339..Inf)

vehicle5
Cost coefficients : Distance[2]
 Route : depot -> visit31 -> visit19 -> visit11 -> visit32 -> visit20 ->
visit12 -> depot
 Weight : depot [0], quantity [0..144] -> visit31 [0..144], quantity [27] ->
visit19 [27..171], quantity [17] -> visit11 [44..188], quantity [12] -> visit32
[56..200], quantity [-27] -> visit20 [29..173], quantity [-17] -> visit12
[12..156], quantity [-12] -> depot [0..144], quantity (-Inf..Inf) TransitSum (-
Inf..Inf)
 Time : depot [0..14.5761], delay [0..14.5761] -> travel [17.4642], wait
[0..14.5761] -> visit31 [17.4642..32.0404], delay [10] -> travel [17.8885],
wait [0..14.5761] -> visit19 [45.3528..59.9289], delay [10] -> travel
[7.07107], wait [0..14.5761] -> visit11 [67..77], delay [10] -> travel
[15.5242], wait [0..51.2917] -> visit32 [92.5242..143.816], delay [10] ->
travel [10.7703], wait [0..51.2917] -> visit20 [113.295..164.586], delay [10] -
> travel [30.4138], wait [0..51.2917] -> visit12 [153.708..205], delay [10] ->
travel [15], wait [0..51.2917] -> depot [178.708..230], delay [0..Inf) ->
travel [0], wait [0..Inf) TransitSum [174.132..Inf)
 Distance : depot [0..Inf), delay [0..Inf) -> travel [17.4642], wait [0..Inf)
-> visit31 [0..Inf), delay [0..Inf) -> travel [17.8885], wait [0..Inf) ->
visit19 [0..Inf), delay [0..Inf) -> travel [7.07107], wait [0..Inf) -> visit11
[0..Inf), delay [0..Inf) -> travel [15.5242], wait [0..Inf) -> visit32
[0..Inf), delay [0..Inf) -> travel [10.7703], wait [0..Inf) -> visit20
[0..Inf), delay [0..Inf) -> travel [30.4138], wait [0..Inf) -> visit12
[0..Inf), delay [0..Inf) -> travel [15], wait [0..Inf) -> depot [0..Inf), delay
[0..Inf) -> travel [0], wait [0..Inf) TransitSum [114.132..Inf)

vehicle6
Cost coefficients : Distance[1.5..2]
 Route : depot -> visit41 -> visit15 -> visit42 -> visit16 -> visit5 ->
visit6 -> depot
 Weight : depot [0], quantity [0..174] -> visit41 [0..174], quantity [5] ->
visit15 [5..179], quantity [8] -> visit42 [13..187], quantity [-5] -> visit16
[8..182], quantity [-8] -> visit5 [0..174], quantity [26] -> visit6 [26..200],
quantity [-26] -> depot [0..174], quantity (-Inf..Inf) TransitSum (-Inf..Inf)
 Time : depot [0..19.9727], delay [0..19.9727] -> travel [28.8617], wait
[0..19.9727] -> visit41 [28.8617..48.8345], delay [10] -> travel [12.1655],
wait [0..19.9727] -> visit15 [61..71], delay [10] -> travel [9.21954], wait
[0..60.4756] -> visit42 [80.2195..140.695], delay [10] -> travel [16.1245],
wait [0..60.4756] -> visit16 [106.344..166.82], delay [10] -> travel [11.1803],
wait [0..60.4756] -> visit5 [127.524..188], delay [10] -> travel [10], wait
[0..60.4756] -> visit6 [147.524..208], delay [10] -> travel [11.1803], wait
[0..61.2953] -> depot [168.705..230], delay [0..Inf) -> travel [0], wait
[0..Inf) TransitSum [158.732..Inf)
 Distance : depot [0..Inf), delay [0..Inf) -> travel [28.8617], wait [0..Inf)
-> visit41 [0..Inf), delay [0..Inf) -> travel [12.1655], wait [0..Inf) ->
visit15 [0..Inf), delay [0..Inf) -> travel [9.21954], wait [0..Inf) -> visit42
[0..Inf), delay [0..Inf) -> travel [16.1245], wait [0..Inf) -> visit16
[0..Inf), delay [0..Inf) -> travel [11.1803], wait [0..Inf) -> visit5 [0..Inf),
300 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete cost2 Program
delay [0..Inf) -> travel [10], wait [0..Inf) -> visit6 [0..Inf), delay [0..Inf)
-> travel [11.1803], wait [0..Inf) -> depot [0..Inf), delay [0..Inf) -> travel
[0], wait [0..Inf) TransitSum [98.732..Inf)

vehicle7
Cost coefficients : Distance[1..2]
 Route : depot -> visit27 -> visit28 -> visit25 -> visit26 -> depot
 Weight : depot [0], quantity [0..184] -> visit27 [0..184], quantity [16] ->
visit28 [16..200], quantity [-16] -> visit25 [0..184], quantity [6] -> visit26
[6..190], quantity [-6] -> depot [0..184], quantity (-Inf..Inf) TransitSum (-
Inf..Inf)
 Time : depot [0..114.52], delay [0..114.52] -> travel [5], wait
[0..114.52] -> visit27 [5..119.52], delay [10] -> travel [6.7082], wait
[0..114.52] -> visit28 [21.7082..136.228], delay [10] -> travel [29.4109], wait
[0..114.52] -> visit25 [172..175.639], delay [10] -> travel [22.3607], wait
[0..3.63932] -> visit26 [204.361..208], delay [10] -> travel [11.1803], wait
[0..4.45898] -> depot [225.541..230], delay [0..Inf) -> travel [0], wait
[0..Inf) TransitSum [114.66..Inf)
 Distance : depot [0..Inf), delay [0..Inf) -> travel [5], wait [0..Inf) ->
visit27 [0..Inf), delay [0..Inf) -> travel [6.7082], wait [0..Inf) -> visit28
[0..Inf), delay [0..Inf) -> travel [29.4109], wait [0..Inf) -> visit25
[0..Inf), delay [0..Inf) -> travel [22.3607], wait [0..Inf) -> visit26
[0..Inf), delay [0..Inf) -> travel [11.1803], wait [0..Inf) -> depot [0..Inf),
delay [0..Inf) -> travel [0], wait [0..Inf) TransitSum [74.6601..Inf)

vehicle8
Cost coefficients : Distance[1.5..2]
 Route : depot -> visit37 -> visit38 -> depot
 Weight : depot [0], quantity [0..192] -> visit37 [0..192], quantity [8] ->
visit38 [8..200], quantity [-8] -> depot [0..192], quantity (-Inf..Inf)
TransitSum (-Inf..Inf)
 Time : depot [0..40.5736], delay [0..40.5736] -> travel [21.2132], wait
[0..40.5736] -> visit37 [21.2132..61.7868], delay [10] -> travel [21.2132],
wait [0..40.5736] -> visit38 [83..93], delay [10] -> travel [42.4264], wait
[0..94.5736] -> depot [135.426..230], delay [0..Inf) -> travel [0], wait
[0..Inf) TransitSum [104.853..Inf)
 Distance : depot [0..Inf), delay [0..Inf) -> travel [21.2132], wait [0..Inf)
-> visit37 [0..Inf), delay [0..Inf) -> travel [21.2132], wait [0..Inf) ->
visit38 [0..Inf), delay [0..Inf) -> travel [42.4264], wait [0..Inf) -> depot
[0..Inf), delay [0..Inf) -> travel [0], wait [0..Inf) TransitSum [84.8528..Inf)

vehicle9
Cost coefficients : Distance[1..2]
 Route : depot -> visit3 -> visit4 -> depot
 Weight : depot [0], quantity [0..187] -> visit3 [0..187], quantity [13] ->
visit4 [13..200], quantity [-13] -> depot [0..187], quantity (-Inf..Inf)
TransitSum (-Inf..Inf)
 Time : depot [0..101.639], delay [0..101.639] -> travel [22.3607], wait
[0..101.639] -> visit3 [22.3607..124], delay [10] -> travel [25], wait
[0..101.639] -> visit4 [149..159], delay [10] -> travel [25], wait [0..46] ->
depot [184..230], delay [0..Inf) -> travel [0], wait [0..Inf) TransitSum
[92.3607..Inf)
 Distance : depot [0..Inf), delay [0..Inf) -> travel [22.3607], wait [0..Inf)
-> visit3 [0..Inf), delay [0..Inf) -> travel [25], wait [0..Inf) -> visit4
[0..Inf), delay [0..Inf) -> travel [25], wait [0..Inf) -> depot [0..Inf), delay
[0..Inf) -> travel [0], wait [0..Inf) TransitSum [72.3607..Inf)

vehicle10
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 301

Cost coefficients : Distance[1.5..2]
 Route : depot -> visit43 -> visit44 -> depot
 Weight : depot [0], quantity [0..193] -> visit43 [0..193], quantity [7] ->
visit44 [7..200], quantity [-7] -> depot [0..193], quantity (-Inf..Inf)
TransitSum (-Inf..Inf)
 Time : depot [0..18.5452], delay [0..18.5452] -> travel [34.176], wait
[0..18.5452] -> visit43 [34.176..52.7212], delay [10] -> travel [16.2788], wait
[0..18.5452] -> visit44 [69..79], delay [10] -> travel [31.8904], wait
[0..119.11] -> depot [110.89..230], delay [0..Inf) -> travel [0], wait [0..Inf)
TransitSum [102.345..Inf)
 Distance : depot [0..Inf), delay [0..Inf) -> travel [34.176], wait [0..Inf) -
> visit43 [0..Inf), delay [0..Inf) -> travel [16.2788], wait [0..Inf) ->
visit44 [0..Inf), delay [0..Inf) -> travel [31.8904], wait [0..Inf) -> depot
[0..Inf), delay [0..Inf) -> travel [0], wait [0..Inf) TransitSum [82.3453..Inf)

vehicle11
Cost coefficients : Distance[1..2]
 Route : depot -> visit17 -> visit18 -> depot
 Weight : depot [0], quantity [0..198] -> visit17 [0..198], quantity [2] ->
visit18 [2..200], quantity [-2] -> depot [0..198], quantity (-Inf..Inf)
TransitSum (-Inf..Inf)
 Time : depot [0..145.558], delay [0..145.558] -> travel [30.4138], wait
[0..145.558] -> visit17 [30.4138..175.972], delay [10] -> travel [18.0278],
wait [0..145.558] -> visit18 [58.4416..204], delay [10] -> travel [15.8114],
wait [0..145.747] -> depot [84.253..230], delay [0..Inf) -> travel [0], wait
[0..Inf) TransitSum [84.253..Inf)
 Distance : depot [0..Inf), delay [0..Inf) -> travel [30.4138], wait [0..Inf)
-> visit17 [0..Inf), delay [0..Inf) -> travel [18.0278], wait [0..Inf) ->
visit18 [0..Inf), delay [0..Inf) -> travel [15.8114], wait [0..Inf) -> depot
[0..Inf), delay [0..Inf) -> travel [0], wait [0..Inf) TransitSum [64.253..Inf)

vehicle12
Cost coefficients : Distance[1..2]
 Route : depot -> visit13 -> visit14 -> depot
 Weight : depot [0], quantity [0..177] -> visit13 [0..177], quantity [23] ->
visit14 [23..200], quantity [-23] -> depot [0..177], quantity (-Inf..Inf)
TransitSum (-Inf..Inf)
 Time : depot [0..144.606], delay [0..144.606] -> travel [11.1803], wait
[0..144.606] -> visit13 [109..155.787], delay [10] -> travel [21.2132], wait
[0..46.7868] -> visit14 [140.213..187], delay [10] -> travel [32.0156], wait
[0..47.7712] -> depot [182.229..230], delay [0..Inf) -> travel [0], wait
[0..Inf) TransitSum [84.4092..Inf)
 Distance : depot [0..Inf), delay [0..Inf) -> travel [11.1803], wait [0..Inf)
-> visit13 [0..Inf), delay [0..Inf) -> travel [21.2132], wait [0..Inf) ->
visit14 [0..Inf), delay [0..Inf) -> travel [32.0156], wait [0..Inf) -> depot
[0..Inf), delay [0..Inf) -> travel [0], wait [0..Inf) TransitSum [64.4092..Inf)

vehicle13
Cost coefficients : Distance[1..2]
 Route : depot -> visit1 -> visit2 -> depot
 Weight : depot [0], quantity [0..190] -> visit1 [0..190], quantity [10] ->
visit2 [10..200], quantity [-10] -> depot [0..190], quantity (-Inf..Inf)
TransitSum (-Inf..Inf)
 Time : depot [0..144.211], delay [0..144.211] -> travel [15.2315], wait
[0..144.211] -> visit1 [15.2315..159.442], delay [10] -> travel [32.5576], wait
[0..144.211] -> visit2 [57.7892..202], delay [10] -> travel [18], wait
[0..144.211] -> depot [85.7892..230], delay [0..Inf) -> travel [0], wait
[0..Inf) TransitSum [85.7892..Inf)
302 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete cost2 Program
 Distance : depot [0..Inf), delay [0..Inf) -> travel [15.2315], wait [0..Inf)
-> visit1 [0..Inf), delay [0..Inf) -> travel [32.5576], wait [0..Inf) -> visit2
[0..Inf), delay [0..Inf) -> travel [18], wait [0..Inf) -> depot [0..Inf), delay
[0..Inf) -> travel [0], wait [0..Inf) TransitSum [65.7892..Inf)

vehicle14 : Unused

vehicle15 : Unused

*/
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 303

304 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

C H A P T E R
12

Docking Bays: Modeling External
Resources

In this lesson, you will learn how to:

◆ model a shared external resource that is used by vehicles

◆ create an activity that uses that resource

◆ incorporate IBM ILOG Scheduler into your Dispatcher programs

Describe

Vehicles and their drivers may occasionally need resources that can be considered “external”
to the delivery process itself. For example, there may be handling resources such as people,
cranes, or docking bays at a depot that are necessary to load the trucks, or there may be
trailers (shared between vehicles) that are used for the deliveries. External resources can be
modeled with IBM ILOG Scheduler and incorporated into your Dispatcher program, thus
increasing your ability to model various delivery problems.

This lesson demonstrates the use of external resources by starting with a standard Pickup
and Delivery Problem (PDP) and adding the requirement to use one of a limited number of
depot docking bays to load the trucks. Three docking bays are used to load up to 15 vehicles.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 305

There is a break on each docking bay, which represents a break for the people loading the
vehicles.

The first step is to write a natural language description of the problem. A good way to start
this process is to analyze the constraints and objectives.

What are the constraints in this problem?

◆ Delivery trucks must be loaded at a limited number of docking bays at the depot.

◆ There is a break on the docking bay resource that represents a break for the people
loading the trucks.

◆ Constraints that exist for a regular PDP exist here as well, such as pickups and deliveries
with time window constraints, and capacity constraints on the trucks. In this example, a
csv data file positions all pickups at the docking bays.

The objective is to minimize the cost of the delivery of all the parcels.

Model

Once you have written a description of this problem, you can use Dispatcher and Scheduler
classes to model it.

Open the example file YourDispatcherHome/examples/src/tutorial/
bays_partial.cpp in your development environment.

This lesson requires the IBM ILOG Scheduler library to model the resource and the pickup
activity.

Add the following code after the comment //Include the Scheduler library.

As in the previous examples, you will use a RoutingModel class to call the functions that
create the dimensions, nodes, vehicles, and visits. In this example, RoutingModel includes
some Scheduler code and a function to create the docking bays.

Step 1 Describe the problem

Step 2 Open the example file

Step 3 Include the Scheduler library

#include <ilsched/iloscheduler.h>
306 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Add the following code after the comment //Declare the RoutingModel class.

The docking bays are modeled in Scheduler as an instance of IloDiscreteResource. A
discrete resource has a capacity that can vary over time, but is always available only as a
positive integer.

The integer variable _schedGranularity is used as a scaling factor to relate floating-point
dimension variables of Dispatcher to the integer values of the Scheduler resource time
variables.

The function createDepotDockingBays creates the docking bays and their associated
breaks.

Step 4 Declare the RoutingModel class

class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloDiscreteResource _bays;
 IloInt _schedGranularity;

 void createDepotDockingBays(char* baysFileName);
 void createDimensions();
 void createNodes(char* nodeFileName);
 void createVehicles(char* vehicleFileName);
 void createVisits(char* visitsFileName);
public:
 RoutingModel(IloEnv env,
 int argc,
 char* argv[],
 IloInt schedGranularity = 100);
 ~RoutingModel() {}
 IloDiscreteResource getBays() const { return _bays; }
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
};
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 307

Add the following code after the comment //Create the docking bays.

Data for the discrete resource is read in from a csv file. The horizon is used to set the
ending point of the time window over which the resource capacity constraints are enforced.
The horizon is multiplied by a granularity (_schedGranularity) of 100 and then
applied to an instance of IloSchedulerEnv (schedEnv). IloSchedulerEnv serves as
the repository of all the default parameters used in creating Scheduler modeling objects.

The code _bays = IloDiscreteResource(_env, nbOfBays); creates the docking
bays as a discrete resource of capacity nbOfBays (in this example, “3”).

The break start and end times are also multiplied by _schedGranularity and then added
to the _bays resource.

Here is an example to demonstrate the effect of the granularity: assume that v is a visit
initially starting after 1.56 and ending before 3.34, with a duration of 1. If
_schedGranularity == 1, then v will start after 2 and end before 3.34, and the resource
will be required between 2 and 3. If _schedGranularity == 100, then v will start after
1.56 and end before 3.34, and the resource will be required at least between 156 and 256.

The dimensions, nodes, and vehicles are created just as for the PDP. The visits require
additional code to model the docking bay pickups.

Step 5 Create the docking bays

void RoutingModel::createDepotDockingBays(char* baysFileName) {
 // Scheduler environment settings
 IloCsvReader csvBaysReader(_env, baysFileName);
 IloCsvReader::LineIterator it(csvBaysReader);
 while (it.ok()) {
 IloCsvLine line = *it;
 IloSchedulerEnv schedEnv(_env);
 IloInt horizon = line.getIntByHeader("horizon");
 IloInt nbOfBays = line.getIntByHeader("bays");
 IloInt breakStart = line.getIntByHeader("breakStart");
 IloInt breakEnd = line.getIntByHeader("breakEnd");

 schedEnv.setHorizon(horizon * _schedGranularity);
 _bays = IloDiscreteResource(_env, nbOfBays);
 _bays.addBreak(breakStart * _schedGranularity,
 breakEnd * _schedGranularity);
 ++it;
 }
 csvBaysReader.end();
}

308 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Add the following code after the comment //Create the docking bay pickups.

This section of the function CreateVisits models the pickup and loading activity at the
docking bay as a Scheduler activity vehicleLoad. The Scheduler member function
IloActivity::setBreakable allows vehicleLoad to be interrupted by the personnel
break. The member function IloActivity::requires is a resource constraint that states
that the activity vehicleLoad requires (or consumes) exactly one of the resource _bays.
For discrete resources, the activity requires the stated resource capacity at all times after the
activity’s start time (for the entire time the activity is occurring).

The activity vehicleLoad is constructed with a start time of start, an end time of end,
and a processing time (total time the activity occurs) of process. Note that start, end and
process are constructed from the floating point cumul and delay variables, which are then
scaled by the granularity.

This section of code links the Dispatcher pickup visits to the Scheduler activities. It is
important to have the visit cover the entire time of the activity; in other words, both start at
the same time and the visits end after the activity end time (cumulVar + delayVar).

The processing time is constrained to be greater than or equal to the actual time to perform
the pickup (it can be more than that due to breaks). The delay variable of the pickup is
greater than or equal to the pickupTime to take into account the fact that the visit covers the
activity, which itself can be interrupted by a break.

Solve

The solution is largely computed, improved, and displayed by methods previously presented
for the PDP problem, but with two additions. A small section of code is added to iterate
through the Scheduler activity, and a Scheduler subgoal is added to instantiate the starting
times of the visits.

Step 6 Create the docking bay pickups

 IloNumVar process(_env, 0, pickupMaxTime * _schedGranularity, ILOINT);
 IloActivity vehicleLoad(_env, process);
 IloNumVar start(_env, 0, pickupMaxTime * _schedGranularity, ILOINT);
 IloNumVar end(_env, 0, pickupMaxTime * _schedGranularity, ILOINT);
 _mdl.add(start == vehicleLoad.getStartExpr());
 _mdl.add(end == vehicleLoad.getEndExpr());
 vehicleLoad.setName(pickupVisitName);
 vehicleLoad.setBreakable();
 _mdl.add(vehicleLoad.requires(_bays, 1));
 _mdl.add(start == pickup.getCumulVar(time) * _schedGranularity);
 _mdl.add(end <= (pickup.getCumulVar(time) + pickup.getDelayVar(time))
 * _schedGranularity);
 _mdl.add(process >= pickupTime * _schedGranularity);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 309

Add the following code after the comment //Add the activity iteration.

This section of the function RoutingSolver::printInformation iterates through the
activity schedule to retrieve solution information for display.

Add the following code after the comment //Add the subgoals.

The predefined Scheduler subgoal IloSetTimesForward instantiates the activity
variables, which via propagation, in turn instantiates the time variables of the visits. It is
necessary to do this to make certain that the current solution is feasible.

Step 7 Add the activity iteration

 IlcScheduler sched(_solver);
 for (IlcActivityIterator iter(sched); iter.ok(); ++iter) {
 _solver.out() << *iter << endl;

Step 8 Add the subgoals

 IloGoal instantiateCost = IloDichotomize(env,
 dispatcher.getCostVar(),
 IloFalse);
 IloGoal schedGoal = IloSetTimesForward(env);
 IloGoal subGoal = schedGoal && instantiateCost;
 IloGoal restoreSolution = IloRestoreSolution(env, _solution) && subGoal;
 IloGoal goal = IloSavingsGenerate(env, schedGoal) && instantiateCost;
310 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Review Exercises
The solution improvement phase finds a solution using 6 vehicles with a cost of 1432.17
units:

Review Exercises

For answers, see “Suggested Answers” on page 311.

1. What is a discrete resource?

2. What Scheduler class is used to model a discrete resource?

3. What member function do you use to model an activity using a resource?

4. What member function do you use to allow an activity to be interrupted by breaks?

Suggested Answers

Exercise 1

What is a discrete resource?

Step 9 Compile and run the program

 1641.01
Improving solution
Number of fails : 0
Number of choice points : 1068
Number of variables : 2215
Number of constraints : 564
Reversible stack (bytes) : 385944
Solver heap (bytes) : 1041460
Solver global heap (bytes) : 184996
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 9148
Total memory used (bytes) : 1689960
Running time since creation : 0.023437
Number of nodes : 51
Number of visits : 70
Number of vehicles : 15
Number of dimensions : 3
Number of accepted moves : 11
===============
Cost : 1432.17
Number of vehicles used : 6
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 311

Suggested Answer

A discrete resource is a resource that has a discrete capacity; that is, the resource is available
in units of positive integers, and the resource is either being used in its entirety (1) or it is
fully available. Examples include three bricklayers, five trucks, or seven docking bays.

Exercise 2

What Scheduler class is used to model a discrete resource?

Suggested Answer

IloDiscreteResource.

Exercise 3

What member function do you use to model an activity using a resource?

Suggested Answer

In this example, you used the IBM ILOG Scheduler member function
IloActivity::requires. Depending on the type of the resource, there are other member
functions available to model resource consumption.

Exercise 4

What member function do you use to allow an activity to be interrupted by breaks?

Suggested Answer

The IBM ILOG Scheduler member function IloActivity::setBreakable allows an
activity to be interrupted by breaks.

Complete Program

The complete program follows. You can also view it online in the file
YourDispatcherHome/examples/src/bays.cpp.

// -- -*- C++ -*-
// File: examples/src/bays.cpp
// --

#include <ildispat/ilodispatcher.h>

#include <ilsched/iloscheduler.h>

ILOSTLBEGIN
312 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
///
// Modeling
class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloDiscreteResource _bays;
 IloInt _schedGranularity;

 void createDepotDockingBays(char* baysFileName);
 void createDimensions();
 void createNodes(char* nodeFileName);
 void createVehicles(char* vehicleFileName);
 void createVisits(char* visitsFileName);
public:
 RoutingModel(IloEnv env,
 int argc,
 char* argv[],
 IloInt schedGranularity = 100);
 ~RoutingModel() {}
 IloDiscreteResource getBays() const { return _bays; }
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
};

RoutingModel::RoutingModel(IloEnv env,
 int argc,
 char * argv[],
 IloInt schedGranularity)
 : _env(env), _mdl(env), _schedGranularity(schedGranularity) {

 createDimensions();

 char* nodeFileName;
 if(argc < 4)
 nodeFileName = (char *) “../../../examples/data/pdp/nodes.csv”;
 else
 nodeFileName = argv[3];
 createNodes(nodeFileName);

 char* baysFileName;
 if (argc < 5)
 baysFileName = (char*) “../../../examples/data/bays.csv”;
 else
 baysFileName = argv[4];
 createDepotDockingBays(baysFileName);

 char* vehiclesFileName;
 if (argc < 2)
 vehiclesFileName = (char *) “../../../examples/data/pdp/vehicles.csv”;
 else
 vehiclesFileName = argv[1];
 createVehicles(vehiclesFileName);

 char* visitsFileName;
 if (argc < 3)
 visitsFileName =
 (char*) “../../../examples/data/pdp/visitsWithPickupInDepot.csv”;
 else
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 313

 visitsFileName = argv[2];
 createVisits(visitsFileName);
}

// Create docking bays
void RoutingModel::createDepotDockingBays(char* baysFileName) {
 // Scheduler environment settings
 IloCsvReader csvBaysReader(_env, baysFileName);
 IloCsvReader::LineIterator it(csvBaysReader);
 while (it.ok()) {
 IloCsvLine line = *it;
 IloSchedulerEnv schedEnv(_env);
 IloInt horizon = line.getIntByHeader(“horizon”);
 IloInt nbOfBays = line.getIntByHeader(“bays”);
 IloInt breakStart = line.getIntByHeader(“breakStart”);
 IloInt breakEnd = line.getIntByHeader(“breakEnd”);

 schedEnv.setHorizon(horizon * _schedGranularity);
 _bays = IloDiscreteResource(_env, nbOfBays);
 _bays.addBreak(breakStart * _schedGranularity,
 breakEnd * _schedGranularity);
 ++it;
 }
 csvBaysReader.end();
}

// Create dimensions
void RoutingModel::createDimensions() {
 IloDimension1 weight(_env, “Weight”);
 weight.setKey(“Weight”);
 _mdl.add(weight);
 IloDimension2 time(_env, IloEuclidean, “Time”);
 time.setKey(“Time”);
 _mdl.add(time);
 IloDimension2 distance(_env, IloEuclidean, IloFalse, “Distance”);
 distance.setKey(“Distance”);
 _mdl.add(distance);
}

// Create nodes
void RoutingModel::createNodes(char* nodeFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char* name = line.getStringByHeader(“name”);
 IloNode node(_env,
 line.getFloatByHeader(“x”),
 line.getFloatByHeader(“y”),
 0,
 name);
 node.setKey(name);
 ++it;
 }
 csvNodeReader.end();
}

// Create vehicles
314 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
void RoutingModel::createVehicles(char* vehicleFileName) {
 IloDimension1 weight = IloDimension1::Find(_env, “Weight”);
 IloDimension2 time = IloDimension2::Find(_env, “Time”);
 IloDimension2 distance = IloDimension2::Find(_env, “Distance”);

 IloCsvReader csvVehicleReader(_env, vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader(“first”);
 char * namelast = line.getStringByHeader(“last”);
 char * name = line.getStringByHeader(“name”);
 IloNum capacity = line.getFloatByHeader(“capacity”);
 IloNum openTime = line.getFloatByHeader(“open”);
 IloNum closeTime = line.getFloatByHeader(“close”);
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);

 IloVisit first(node1, “depot”);
 _mdl.add(first.getCumulVar(weight) == 0);
 _mdl.add(first.getCumulVar(time) >= openTime);

 IloVisit last(node2, “depot”);
 _mdl.add(last.getCumulVar(time) <= closeTime);
 IloVehicle vehicle(first, last, name);
 vehicle.setCost(distance, 1.0);
 vehicle.setCost(time, 1.0);
 vehicle.setCapacity(weight, capacity);
 _mdl.add(vehicle);
 ++it;
 }
 csvVehicleReader.end();
}

// Create visits
void RoutingModel::createVisits(char* visitsFileName) {
 IloDimension1 weight = IloDimension1::Find(_env, “Weight”);
 IloDimension2 time = IloDimension2::Find(_env, “Time”);

 IloCsvReader csvVisitReader(_env, visitsFileName);
 IloCsvReader::LineIterator it(csvVisitReader);
 while(it.ok()){
 IloCsvLine line = *it;
 //read visit data from files
 char * pickupVisitName = line.getStringByHeader(“pickup”);
 char * pickupNodeName = line.getStringByHeader(“pickupNode”);
 char * deliveryVisitName = line.getStringByHeader(“delivery”);
 char * deliveryNodeName = line.getStringByHeader(“deliveryNode”);
 IloNum quantity = line.getFloatByHeader(“quantity”);
 IloNum pickupMinTime = line.getFloatByHeader(“pickupMinTime”);
 IloNum pickupMaxTime = line.getFloatByHeader(“pickupMaxTime”);
 IloNum deliveryMinTime = line.getFloatByHeader(“deliveryMinTime”);
 IloNum deliveryMaxTime = line.getFloatByHeader(“deliveryMaxTime”);
 IloNum dropTime = line.getFloatByHeader(“dropTime”);
 IloNum pickupTime = line.getFloatByHeader(“pickupTime”);

 // read data nodes from the file nodes.csv
 // and create pickup and delivery nodes
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 315

 IloNode pickupNode = IloNode::Find(_env, pickupNodeName);
 IloNode deliveryNode = IloNode::Find(_env, deliveryNodeName);
 //create and add pickup and delivery visits
 IloVisit pickup(pickupNode, pickupVisitName);
 _mdl.add(pickup.getDelayVar(time) >= pickupTime);
 _mdl.add(pickup.getTransitVar(weight) == quantity);
 _mdl.add(pickupMinTime <= pickup.getCumulVar(time) <= pickupMaxTime);
 _mdl.add(pickup);
 IloVisit delivery(deliveryNode, deliveryVisitName);
 _mdl.add(delivery.getDelayVar(time) == dropTime);
 _mdl.add(delivery.getTransitVar(weight) == -quantity);
 _mdl.add(deliveryMinTime <= delivery.getCumulVar(time) <= deliveryMaxTime);
 _mdl.add(delivery);
 //add pickup and delivery order constraint
 _mdl.add(IloOrderedVisitPair(_env, pickup, delivery));

 // Pickup requiring docking bay

 IloNumVar process(_env, 0, pickupMaxTime * _schedGranularity, ILOINT);
 IloActivity vehicleLoad(_env, process);
 IloNumVar start(_env, 0, pickupMaxTime * _schedGranularity, ILOINT);
 IloNumVar end(_env, 0, pickupMaxTime * _schedGranularity, ILOINT);
 _mdl.add(start == vehicleLoad.getStartExpr());
 _mdl.add(end == vehicleLoad.getEndExpr());
 vehicleLoad.setName(pickupVisitName);
 vehicleLoad.setBreakable();
 _mdl.add(vehicleLoad.requires(_bays, 1));
 _mdl.add(start == pickup.getCumulVar(time) * _schedGranularity);
 _mdl.add(end <= (pickup.getCumulVar(time) + pickup.getDelayVar(time))
 * _schedGranularity);
 _mdl.add(process >= pickupTime * _schedGranularity);

 ++it;
 }
 csvVisitReader.end();
}

///
// Solving
class RoutingSolver {
 IloModel _mdl;
 IloSolver _solver;
 IloRoutingSolution _solution;

 IloBool findFirstSolution(IloGoal goal);
 void greedyImprove(IloNHood nhood, IloGoal subGoal);
 void improve(IloGoal subgoal);
public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloRoutingSolution getSolution() const { return _solution; }
 void printInformation() const;
 void solve();
};

RoutingSolver::RoutingSolver(RoutingModel mdl)
 : _mdl(mdl.getModel()), _solver(mdl.getModel()), _solution(mdl.getModel()) {}
316 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
// Solving : find first solution
IloBool RoutingSolver::findFirstSolution(IloGoal goal) {
 if (!_solver.solve(goal)) {
 _solver.error() << “Infeasible Routing Plan” << endl;
 return IloFalse;
 }
 IloDispatcher dispatcher(_solver);
 _solver.out() << dispatcher.getTotalCost() << endl;
 _solution.store(_solver);
 return IloTrue;
}

// Improve solution using nhood
void RoutingSolver::greedyImprove(IloNHood nhood, IloGoal subGoal) {
 _solver.out() << “Improving solution” << endl;
 IloEnv env = _solver.getEnv();
 nhood.reset();
 IloGoal improve = IloSingleMove(env,
 _solution,
 nhood,
 IloImprove(env),
 subGoal);
 while (_solver.solve(improve)) {}
}

// Improve solution
void RoutingSolver::improve(IloGoal subGoal) {
 IloEnv env = _solver.getEnv();
 IloNHood nhood = IloTwoOpt(env)
 + IloOrOpt(env)
 + IloRelocate(env)
 + IloCross(env)
 + IloExchange(env);
 greedyImprove(nhood, subGoal);
}

// Display Dispatcher information
void RoutingSolver::printInformation() const {
 IloDispatcher dispatcher(_solver);
 _solver.printInformation();
 dispatcher.printInformation();
 _solver.out() << “===============” << endl
 << “Cost : “ << dispatcher.getTotalCost() << endl
 << “Number of vehicles used : “
 << dispatcher.getNumberOfVehiclesUsed() << endl
 << “Solution : “ << endl
 << dispatcher << endl;

 IlcScheduler sched(_solver);
 for (IlcActivityIterator iter(sched); iter.ok(); ++iter) {
 _solver.out() << *iter << endl;

 }
}

// Solving
void RoutingSolver::solve() {
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 317

 IloDispatcher dispatcher(_solver);
 IloEnv env = _solver.getEnv();

 // Subgoals
 IloGoal instantiateCost = IloDichotomize(env,
 dispatcher.getCostVar(),
 IloFalse);
 IloGoal schedGoal = IloSetTimesForward(env);
 IloGoal subGoal = schedGoal && instantiateCost;
 IloGoal restoreSolution = IloRestoreSolution(env, _solution) && subGoal;
 IloGoal goal = IloSavingsGenerate(env, schedGoal) && instantiateCost;

 // Solving
 if (findFirstSolution(goal)) {
 improve(subGoal);
 _solver.solve(restoreSolution);
 }
}

///

int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 IloInt schedGranularity = 100;
 RoutingModel mdl(env, argc, argv, schedGranularity);
 RoutingSolver solver(mdl);
 solver.solve();
 solver.printInformation();
 } catch(IloException& ex) {
 cerr << “Error: “ << ex << endl;
 }
 env.end();
 return 0;
}

Complete Output

/**
1641.01
Improving solution
Number of fails : 0
Number of choice points : 1068
Number of variables : 2215
Number of constraints : 564
Reversible stack (bytes) : 385944
Solver heap (bytes) : 1041460
Solver global heap (bytes) : 184996
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 9148
Total memory used (bytes) : 1689960
Running time since creation : 0.023437
Number of nodes : 51
Number of visits : 70
318 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
Number of vehicles : 15
Number of dimensions : 3
Number of accepted moves : 11
===============
Cost : 1432.17
Number of vehicles used : 6
Solution :
Unperformed visits : None
vehicle1 :
 -> depot Weight[0] Time[0] Distance[0.. Inf) -> pickup11 Weight[0..171]
Time[0] Distance[0.. Inf) -> pickup19 Weight[12..183] Time[10] Distance[0..
Inf) -> delivery19 Weight[29..200] Time[52.0156..59.9289] Distance[0.. Inf) ->
delivery11 Weight[12..183] Time[69.0867..77] Distance[0.. Inf) -> depot
Weight[0..171] Time[112.628..230] Distance[0.. Inf)
vehicle2 :
 -> depot Weight[0] Time[0] Distance[0.. Inf) -> pickup3 Weight[0..143] Time[0]
Distance[0.. Inf) -> pickup9 Weight[13..156] Time[10] Distance[0.. Inf) ->
pickup12 Weight[29..172] Time[20] Distance[0.. Inf) -> pickup20 Weight[48..191]
Time[40] Distance[0.. Inf) -> delivery20 Weight[57..200] Time[81.6228..85.8197]
Distance[0.. Inf) -> delivery9 Weight[48..191] Time[102.803..107] Distance[0..
Inf) -> delivery3 Weight[32..175] Time[127.803..183.82] Distance[0.. Inf) ->
delivery12 Weight[19..162] Time[148.983..205] Distance[0.. Inf) -> depot
Weight[0..143] Time[173.983..230] Distance[0.. Inf)
vehicle3 :
 -> depot Weight[0] Time[0] Distance[0.. Inf) -> pickup7 Weight[0..146] Time[0]
Distance[0.. Inf) -> pickup8 Weight[5..151] Time[10] Distance[0.. Inf) ->
pickup5 Weight[14..160] Time[20] Distance[0.. Inf) -> pickup18 Weight[40..186]
Time[40] Distance[0.. Inf) -> pickup17 Weight[52..198] Time[50] Distance[0..
Inf) -> delivery7 Weight[54..200] Time[81.2132..82.7934] Distance[0.. Inf) ->
delivery8 Weight[49..195] Time[103.42..105] Distance[0.. Inf) -> delivery17
Weight[40..186] Time[127.348..162.82] Distance[0.. Inf) -> delivery5
Weight[38..184] Time[147.348..182.82] Distance[0.. Inf) -> delivery18
Weight[12..158] Time[168.528..204] Distance[0.. Inf) -> depot Weight[0..146]
Time[194.34..230] Distance[0.. Inf)
vehicle4 :
 -> depot Weight[0] Time[0..50] Distance[0.. Inf) -> pickup1 Weight[0..174]
Time[50] Distance[0.. Inf) -> pickup10 Weight[10..184] Time[60] Distance[0..
Inf) -> delivery10 Weight[26..200] Time[95.4951..178.444] Distance[0.. Inf) ->
delivery1 Weight[10..184] Time[121.051..204] Distance[0.. Inf) -> depot
Weight[0..174] Time[146.283..230] Distance[0.. Inf)
vehicle5 :
 -> depot Weight[0] Time[0..20] Distance[0.. Inf) -> pickup15 Weight[0..174]
Time[20] Distance[0.. Inf) -> delivery15 Weight[8..182] Time[70.4138..70.4162]
Distance[0.. Inf) -> pickup4 Weight[0..174] Time[110.83..110.83] Distance[0..
Inf) -> pickup2 Weight[19..193] Time[120.83..120.83] Distance[0.. Inf) ->
delivery4 Weight[26..200] Time[155.83..159] Distance[0.. Inf) -> delivery2
Weight[7..181] Time[186.054..202] Distance[0.. Inf) -> depot Weight[0..174]
Time[214.054..230] Distance[0.. Inf)
vehicle6 :
 -> depot Weight[0] Time[0..40] Distance[0.. Inf) -> pickup6 Weight[0..135]
Time[40] Distance[0.. Inf) -> pickup16 Weight[3..138] Time[50] Distance[0..
Inf) -> pickup14 Weight[22..157] Time[60] Distance[0.. Inf) -> pickup13
Weight[42..177] Time[70] Distance[0.. Inf) -> delivery16 Weight[65..200]
Time[109.155..116.606] Distance[0.. Inf) -> delivery14 Weight[46..181]
Time[130.335..137.787] Distance[0.. Inf) -> delivery13 Weight[26..161]
Time[161.548..169] Distance[0.. Inf) -> delivery6 Weight[3..138]
Time[178.619..208] Distance[0.. Inf) -> depot Weight[0..135] Time[199.8..230]
Distance[0.. Inf)
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 319

vehicle7 : Unused
vehicle8 : Unused
vehicle9 : Unused
vehicle10 : Unused
vehicle11 : Unused
vehicle12 : Unused
vehicle13 : Unused
vehicle14 : Unused
vehicle15 : Unused

pickup20 [4000 -- (1000) 1000 --> 5000]
pickup19 [1000 -- (1000) 1000 --> 2000]
pickup18 [4000 -- (1000) 1000 --> 5000]
pickup17 [5000 -- (1000..1158) 1000..1158 --> 6000..6158]
pickup16 [5000 -- (1000) 1000 --> 6000]
pickup15 [2000 -- (1000) 2000 --> 4000]
pickup14 [6000 -- (1000) 1000 --> 7000]
pickup13 [7000 -- (1000..1745) 1000..1745 --> 8000..8745]
pickup12 [2000 -- (1000) 2000 --> 4000]
pickup11 [0 -- (1000) 1000 --> 1000]
pickup10 [6000 -- (1000..9294) 1000..9294 --> 7000..15294]
pickup9 [1000 -- (1000) 1000 --> 2000]
pickup8 [1000 -- (1000) 1000 --> 2000]
pickup7 [0 -- (1000) 1000 --> 1000]
pickup6 [4000 -- (1000) 1000 --> 5000]
pickup5 [2000 -- (1000) 2000 --> 4000]
pickup4 [11083 -- (1000) 1000 --> 12083]
pickup3 [0 -- (1000) 1000 --> 1000]
pickup2 [12083 -- (1000..1317) 1000..1317 --> 13083..13400]
pickup1 [5000 -- (1000) 1000 --> 6000]

*/
320 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Part III

Field Service Solutions

This part consists of the following lessons:

◆ Chapter 13, Dispatching Technicians

◆ Chapter 14, Dispatching Technicians II

◆ Chapter 15, CARP: Visiting Arcs Using Multiple Vehicles

C H A P T E R
13

Dispatching Technicians

In this lesson, you will learn how to:

◆ model a technician routing problem

◆ match differing technician skill levels with multiple customer skill requirements

◆ use intrinsic dimensions to model a skill cost.

Describe

A typical real-world routing problem involves dispatching technicians, such as repair
persons or equipment installers, to customer sites. This type of problem can be viewed as a
type of Vehicle Routing Problem, except that technicians must be routed along with the
vehicles. Customer visits can also require a quantity of goods to be picked up or delivered.

Technicians may have different skill levels, and customer visits require a particular skill set
to complete a job. Therefore you need to model these skills and apply constraints and costs
to them. One way to model this is with a fixed charge for each technician based on skill
level, regardless of the job skill required at the actual customer site. As long as the technician
has at least the appropriate level of skill, the visit can occur. However, this can lead to
obvious inequities, if highly-trained technicians are performing less-demanding visits.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 323

There is a different and often better way to model these costs that would maximize the
quality of service. If a technician type is well suited to performing a certain visit, then the
cost for that technician/visit pair should be low. If a technician type is not well suited to
performing a visit, the cost for that technician/visit pair should be high.

In this example, five technicians with different skill levels perform customer visits with ten
different skill requirements. The costs for a particular visit can vary significantly, depending
on the technician skill level used.

The first step is to write a natural language description of the problem. A good way to start
this process is to analyze the constraints and objectives.

What are the constraints in this problem?

◆ There are five technicians with differing skill levels, and numerous customer visits each
with one of ten different skill requirements.

◆ There is one technician per vehicle.

◆ Each customer visit requires a technician, and any technician can visit any customer.
However, the cost for each visit varies depending on both the technician skill level and
the skill required at the visit.

The objective is to minimize the cost of supplying technicians to visit all customer sites.

Model

Once you have written a description of your problem, you can use Dispatcher classes to
model it.

Open the example file YourDispatcherHome/examples/src/tutorial/
technic2_partial.cpp in your development environment.

As in the previous examples, you will use a RoutingModel class to call the functions that
create the dimensions, nodes, vehicles (technicians), and visits.

Step 1 Describe the problem

Step 2 Open the example file
324 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Add the following code after the comment //Declare the RoutingModel class.

The function createDimensions defines the skillPenalty dimension. The
createTechnicians function is similar to the createVehicles function of previous
lessons, in that it adds an IloVehicle to the model. The function
setVisitsSkillPenalty calculates the cost of each visit and adds it to the model. The
other functions are similar to their counterparts in the previous lessons.

Add the following code after the comment //Create the dimensions.

Instances of IloDimension1 are intrinsic dimensions; this means that the value of the
dimension depends only on the object itself (such as an object’s weight), and not on any
other factors. The dimension skillPenalty will be used to assign a cost to the visit of each
vehicle, just as weight or capacity were used in previous lessons. The second parameter is
set to IloFalse in order to speed up search; this is permissible as no constraints are posted
on variables related to the skillPenalty. However, skillPenalty can still be used in the
cost function.

The function createTechnicians adds vehicles named technician to the model.

Step 3 Declare the RoutingModel class

class RoutingModel {
 IloEnv _env;
 IloModel _mdl;

 void createDimensions();
 void createIloNodes(char* nodeFileName);
 void createTechnicians(char* technicianFileName);
 void createVisits(char* visitsFileName);
 void setVisitsSkillPenalty(char * skillCostsFileName,
 char * visitSkillsFileName,
 char * techSkillsFileName);

Step 4 Create the dimensions

void RoutingModel::createDimensions() {
 IloDimension1 skillPenalty(_env, IloFalse, "SkillPenalty");
 _mdl.add(skillPenalty);
 skillPenalty.setKey("SkillPenalty");
 IloDimension2 time(_env, IloEuclidean, "Time");
 time.setKey("Time");
 _mdl.add(time);
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 325

Add the following code after the comment //Create the vehicle/technicians.

As there is only one technician per vehicle, it is convenient to represent the vehicle with the
name technician. This section of createTechnicians sets the cost for the vehicles
based on the dimensions of time and skillPenalty.

The first section of createTechnicians is similar to what you have worked with in the
createVehicles function of previous lessons, with the addition of some code to ensure
that a skillPenalty of zero is associated with the first and last visits to the depot.

Step 5 Create the vehicle/technicians

 IloVehicle technician(first, last, name);
 technician.setCost(time, 1.0);
 technician.setCost(skillPenalty, 1.0);
 technician.setKey(name);
 _mdl.add(technician);

void RoutingModel::createTechnicians(char* techFileName) {
 IloDimension2 time = IloDimension2::Find(_env, "Time");
 IloDimension1 skillPenalty = IloDimension1::Find(_env, "SkillPenalty");
 IloCsvReader csvTechReader(_env, techFileName);
 IloCsvReader::LineIterator it(csvTechReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader("first");
 char * namelast = line.getStringByHeader("last");
 char * name = line.getStringByHeader("name");
 IloNum openTime = line.getFloatByHeader("open");
 IloNum closeTime = line.getFloatByHeader("close");
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);

 IloVisit first(node1, "depot");
 _mdl.add(first.getTransitVar(skillPenalty) == 0);
 _mdl.add(first.getCumulVar(time) >= openTime);

 IloVisit last(node2, "depot");
 _mdl.add(last.getCumulVar(time) <= closeTime);
 _mdl.add(last.getTransitVar(skillPenalty) == 0);
326 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Add the following code after the comment
//Create the setVisitsSkillPenalty function.

This section of the function creates the vehicle array techs with the vehicle instances
technician. The IloCsvReader instance csvVisitSkillsReader reads the skills
required at each customer visit; csvTechSkillsReader reads the skill level of each
technician; and csvSkillCostsReader reads the cost for each technician skill type to
perform a visit to a customer site.

The next section of setVisitsSkillPenalty creates an array of the cost for each visit,
named visitCost. To create this array, the visit skill required for each visit
(visitSkillName) is read from a csv file. The cost to make this visit with the various
techSkill levels is read with csvSkillCostsReader as an IloCsvLine costline.

Step 6 Create the setVisitsSkillPenalty function

void RoutingModel::setVisitsSkillPenalty(char * skillCostsFileName,
 char * visitSkillsFileName,
 char * techSkillsFileName) {
 IloDimension1 skillPenalty = IloDimension1::Find(_env, "SkillPenalty");
 IloCsvReader csvVisitSkillsReader(_env, visitSkillsFileName);
 IloCsvReader csvTechSkillsReader(_env, techSkillsFileName);
 IloCsvReader csvSkillCostsReader(_env, skillCostsFileName);
 IloInt nbOfTech = csvTechSkillsReader.getNumberOfItems();
 IloVehicleArray techs(_env, nbOfTech);
 IloInt i = 0;
 IloCsvReader::LineIterator it(csvTechSkillsReader);
 while(it.ok()){
 IloCsvLine line = *it;
 char * techName = line.getStringByHeader("name");
 IloVehicle technician = IloVehicle::Find(_env, techName);
 techs[i] = technician;
 i++;
 ++it;
 }
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 327

Then in Iterator it3 the value in costline corresponding to the appropriate
techSkillName is stored in the array visitCost.

Add the following code after the comment //Add the skill cost.

In this section of setVisitsSkillPenalty, the IloVehicleToNumFunction
constructor associates the values of the array visitCost to the vehicle/technicians of the
array techs. Then visit.getVehicleVar returns the vehicle/technician for the visit, and
the cost for that visit is applied to the IloNumVar skillCostVar. Finally, this is added to
the model in the dimension skillPenalty.

Solve

The solution is computed, improved, and displayed by methods previously presented for the
PDP problem.

 IloCsvReader::LineIterator it2(csvVisitSkillsReader);
 while(it2.ok()){
 IloCsvLine line = *it2;
 char * visitName = line.getStringByHeader("name");
 IloVisit visit = IloVisit::Find(_env, visitName);
 char * visitSkillName = line.getStringByHeader("VisitSkillName");
 IloCsvLine costline = csvSkillCostsReader.getLineByKey(1, visitSkillName);
 IloNumArray visitCost(_env, nbOfTech);
 IloInt k = 0;
 IloCsvReader::LineIterator it3(csvTechSkillsReader);
 while(it3.ok()){
 IloCsvLine line1 = *it3;
 char * techSkillName = line1.getStringByHeader("TechSkillName");
 visitCost[k] = costline.getFloatByHeader(techSkillName);
 k++;
 ++it3;
 }

Step 7 Add the skill cost

 IloVehicleToNumFunction function(_env, techs, visitCost);
 IloNumVar skillCostVar (function(visit.getVehicleVar()));
 _mdl.add(visit.getTransitVar(skillPenalty) == skillCostVar);
328 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Review Exercises
The solution improvement phase finds a solution using 5 vehicles with a cost of 1441.04
units:

Review Exercises

For answers, see “Suggested Answers” on page 330.

1. What Dispatcher class can be used to associate IloNumArray values with an array of
vehicles?

2. What is an intrinsic dimension?

3. What Dispatcher class is used to represent intrinsic dimensions?

Step 8 Compile and run the program

/**
1619.09
Improving solution
Number of fails : 0
Number of choice points : 0
Number of variables : 619
Number of constraints : 232
Reversible stack (bytes) : 76404
Solver heap (bytes) : 402280
Solver global heap (bytes) : 481592
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1039848
Elapsed time since creation : 0
Number of nodes : 21
Number of visits : 30
Number of vehicles : 5
Number of dimensions : 2
Number of accepted moves : 16
===============
Cost : 1441.04
Number of vehicles used : 5
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 329

Suggested Answers

Exercise 1

What Dispatcher class can be used to associate IloNumArray values with an array of
vehicles?

Suggested Answer

IloVehicleToNumFunction.

Exercise 2

What is an intrinsic dimension?

Suggested Answer

An intrinsic dimension is a dimension that depends only on the object itself, not on any other
factors.

Exercise 3

What Dispatcher class is used to represent intrinsic dimensions?

Suggested Answer

IloDimension1.

Complete Program

The complete program follows. You can also view it online in the file
YourDispatcherHome/examples/src/technic2_complete.cpp.

// -- -*- C++ -*-
// File: examples/src/technic2.cpp
// --

#include <ildispat/ilodispatcher.h>

ILOSTLBEGIN

///
// Modeling
class RoutingModel {
 IloEnv _env;
 IloModel _mdl;

 void createDimensions();
330 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 void createIloNodes(char* nodeFileName);
 void createTechnicians(char* technicianFileName);
 void createVisits(char* visitsFileName);
 void setVisitsSkillPenalty(char * skillCostsFileName,
 char * visitSkillsFileName,
 char * techSkillsFileName);

public:
 RoutingModel(IloEnv env,
 int argc,
 char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
};

RoutingModel::RoutingModel(IloEnv env,
 int argc,
 char * argv[])
 : _env(env), _mdl(env){

 createDimensions();

 char* nodeFileName;
 if(argc < 4)
 nodeFileName = (char *) “../../../examples/data/technic2/nodes.csv”;
 else
 nodeFileName = argv[3];
 createIloNodes(nodeFileName);

 char* technicianFileName;
 if (argc < 2)
 technicianFileName = (char *) “../../../examples/data/technic2/
technicians.csv”;
 else
 technicianFileName = argv[1];
 createTechnicians(technicianFileName);

 char* visitsFileName;
 if (argc < 3)
 visitsFileName =
 (char*) “../../../examples/data/technic2/visits.csv”;
 else
 visitsFileName = argv[2];
 createVisits(visitsFileName);

 //set the correct skillPenalty for visits
 char * visitSkillsFileName = (char *) “../../../examples/data/technic2/
visitSkills.csv”;
 char * techSkillsFileName = (char *) “../../../examples/data/technic2/
techSkills.csv”;
 char * skillCostsFileName = (char *) “../../../examples/data/technic2/
skillCosts.csv”;

 if(argc >= 4)
 visitSkillsFileName = argv[4];
 if(argc >= 5) {
 visitSkillsFileName = argv[4];
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 331

 techSkillsFileName = argv[5];
 }
 if(argc >= 6) {
 visitSkillsFileName = argv[4];
 techSkillsFileName = argv[5];
 skillCostsFileName = argv[6];
 }
 setVisitsSkillPenalty(skillCostsFileName, visitSkillsFileName,
techSkillsFileName);

}

// Add dimensions
void RoutingModel::createDimensions() {
 IloDimension1 skillPenalty(_env, IloFalse, “SkillPenalty”);
 _mdl.add(skillPenalty);
 skillPenalty.setKey(“SkillPenalty”);
 IloDimension2 time(_env, IloEuclidean, “Time”);
 time.setKey(“Time”);
 _mdl.add(time);
}

// Create IloNodes
void RoutingModel::createIloNodes(char* nodeFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char* name = line.getStringByHeader(“name”);
 IloNode node(_env,
 line.getFloatByHeader(“x”),
 line.getFloatByHeader(“y”),
 0,
 name);
 node.setKey(name);
 ++it;
 }
 csvNodeReader.end();
}

// Create technicians
void RoutingModel::createTechnicians(char* techFileName) {
 IloDimension2 time = IloDimension2::Find(_env, “Time”);
 IloDimension1 skillPenalty = IloDimension1::Find(_env, “SkillPenalty”);
 IloCsvReader csvTechReader(_env, techFileName);
 IloCsvReader::LineIterator it(csvTechReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader(“first”);
 char * namelast = line.getStringByHeader(“last”);
 char * name = line.getStringByHeader(“name”);
 IloNum openTime = line.getFloatByHeader(“open”);
 IloNum closeTime = line.getFloatByHeader(“close”);
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);

 IloVisit first(node1, “depot”);
 _mdl.add(first.getTransitVar(skillPenalty) == 0);
332 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 _mdl.add(first.getCumulVar(time) >= openTime);

 IloVisit last(node2, “depot”);
 _mdl.add(last.getCumulVar(time) <= closeTime);
 _mdl.add(last.getTransitVar(skillPenalty) == 0);

 IloVehicle technician(first, last, name);
 technician.setCost(time, 1.0);
 technician.setCost(skillPenalty, 1.0);
 technician.setKey(name);
 _mdl.add(technician);

 ++it;
 }
 csvTechReader.end();
}

// Create visits
void RoutingModel::createVisits(char* visitsFileName) {
 IloDimension2 time = IloDimension2::Find(_env, “Time”);
 IloCsvReader csvVisitReader(_env, visitsFileName);
 IloCsvReader::LineIterator it(csvVisitReader);
 while(it.ok()){
 IloCsvLine line = *it;
 //read visit data from files
 char * visitName = line.getStringByHeader(“name”);
 char * nodeName = line.getStringByHeader(“node”);
 IloNum minTime = line.getFloatByHeader(“minTime”);
 IloNum maxTime = line.getFloatByHeader(“maxTime”);
 IloNum dropTime = line.getFloatByHeader(“dropTime”);
 IloNode node = IloNode::Find(_env, nodeName);
 IloVisit visit(node, visitName);
 _mdl.add(visit.getDelayVar(time) == dropTime);
 _mdl.add(minTime <= visit.getCumulVar(time) <= maxTime);
 visit.setKey(visitName);
 _mdl.add(visit);
 ++it;
 }
 csvVisitReader.end();
}

//set the correct skillPenalty for visits
void RoutingModel::setVisitsSkillPenalty(char * skillCostsFileName,
 char * visitSkillsFileName,
 char * techSkillsFileName) {
 IloDimension1 skillPenalty = IloDimension1::Find(_env, “SkillPenalty”);
 IloCsvReader csvVisitSkillsReader(_env, visitSkillsFileName);
 IloCsvReader csvTechSkillsReader(_env, techSkillsFileName);
 IloCsvReader csvSkillCostsReader(_env, skillCostsFileName);
 IloInt nbOfTech = csvTechSkillsReader.getNumberOfItems();
 IloVehicleArray techs(_env, nbOfTech);
 IloInt i = 0;
 IloCsvReader::LineIterator it(csvTechSkillsReader);
 while(it.ok()){
 IloCsvLine line = *it;
 char * techName = line.getStringByHeader(“name”);
 IloVehicle technician = IloVehicle::Find(_env, techName);
 techs[i] = technician;
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 333

 i++;
 ++it;
 }

 IloCsvReader::LineIterator it2(csvVisitSkillsReader);
 while(it2.ok()){
 IloCsvLine line = *it2;
 char * visitName = line.getStringByHeader(“name”);
 IloVisit visit = IloVisit::Find(_env, visitName);
 char * visitSkillName = line.getStringByHeader(“VisitSkillName”);
 IloCsvLine costline = csvSkillCostsReader.getLineByKey(1, visitSkillName);
 IloNumArray visitCost(_env, nbOfTech);
 IloInt k = 0;
 IloCsvReader::LineIterator it3(csvTechSkillsReader);
 while(it3.ok()){
 IloCsvLine line1 = *it3;
 char * techSkillName = line1.getStringByHeader(“TechSkillName”);
 visitCost[k] = costline.getFloatByHeader(techSkillName);
 k++;
 ++it3;
 }

 IloVehicleToNumFunction function(_env, techs, visitCost);
 IloNumVar skillCostVar (function(visit.getVehicleVar()));
 _mdl.add(visit.getTransitVar(skillPenalty) == skillCostVar);

 ++it2;
 }
 csvVisitSkillsReader.end();
 csvTechSkillsReader.end();
 csvSkillCostsReader.end();

}

///
// Solving
class RoutingSolver {
 IloModel _mdl;
 IloSolver _solver;
 IloRoutingSolution _solution;

 IloBool findFirstSolution(IloGoal goal);
 void greedyImprove(IloNHood nhood, IloGoal subGoal);
 void improve(IloGoal subgoal);
public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloRoutingSolution getSolution() const { return _solution; }
 void printInformation() const;
 void solve();
};

RoutingSolver::RoutingSolver(RoutingModel mdl)
 : _mdl(mdl.getModel()), _solver(mdl.getModel()), _solution(mdl.getModel()) {}

// Solving : find first solution
IloBool RoutingSolver::findFirstSolution(IloGoal goal) {
 if (!_solver.solve(goal)) {
334 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 _solver.error() << “Infeasible Routing Plan” << endl;
 return IloFalse;
 }
 IloDispatcher dispatcher(_solver);
 _solver.out() << dispatcher.getTotalCost() << endl;
 _solution.store(_solver);
 return IloTrue;
}

// Improve solution using nhood
void RoutingSolver::greedyImprove(IloNHood nhood, IloGoal subGoal) {
 _solver.out() << “Improving solution” << endl;
 IloEnv env = _solver.getEnv();
 nhood.reset();
 IloGoal improve = IloSingleMove(env,
 _solution,
 nhood,
 IloImprove(env),
 subGoal);
 while (_solver.solve(improve)) {}
}

// Improve solution
void RoutingSolver::improve(IloGoal subGoal) {
 IloEnv env = _solver.getEnv();
 IloNHood nhood = IloTwoOpt(env)
 + IloOrOpt(env)
 + IloRelocate(env)
 + IloCross(env)
 + IloExchange(env);
 greedyImprove(nhood, subGoal);
}

// Display Dispatcher information
void RoutingSolver::printInformation() const {
 IloDispatcher dispatcher(_solver);
 _solver.printInformation();
 dispatcher.printInformation();
 _solver.out() << “===============” << endl
 << “Cost : “ << dispatcher.getTotalCost() << endl
 << “Number of vehicles used : “
 << dispatcher.getNumberOfVehiclesUsed() << endl
 << “Solution : “ << endl
 << dispatcher << endl;
}

// Solving
void RoutingSolver::solve() {
 IloDispatcher dispatcher(_solver);
 IloEnv env = _solver.getEnv();
 // Subgoal
 IloGoal instantiateCost = IloDichotomize(env,
 dispatcher.getCostVar(),
 IloFalse);
 IloGoal restoreSolution = IloRestoreSolution(env, _solution);
 IloGoal goal = IloInsertionGenerate(env, instantiateCost);

 // Solving
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 335

 if (findFirstSolution(goal)) {
 improve(instantiateCost);
 _solver.solve(restoreSolution);
 }
}

///

int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 solver.solve();
 solver.printInformation();
 } catch(IloException& ex) {
 cerr << “Error: “ << ex << endl;
 }
 env.end();
 return 0;
}

Complete Output

/**
1619.09
Improving solution
Number of fails : 0
Number of choice points : 0
Number of variables : 619
Number of constraints : 232
Reversible stack (bytes) : 76404
Solver heap (bytes) : 402280
Solver global heap (bytes) : 481592
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1039848
Elapsed time since creation : 0
Number of nodes : 21
Number of visits : 30
Number of vehicles : 5
Number of dimensions : 2
Number of accepted moves : 16
===============
Cost : 1441.04
Number of vehicles used : 5
Solution :
Unperformed visits : None
tech1 :
 -> depot SkillPenalty[0..Inf) Time[0..157.82] -> visit13 SkillPenalty[0..Inf)
Time[159..169] -> depot SkillPenalty[0..Inf) Time[180.18..230]
tech2 :
 -> depot SkillPenalty[0..Inf) Time[0..13.173] -> visit14 SkillPenalty[0..Inf)
Time[32.0156..45.1886] -> visit15 SkillPenalty[0..Inf) Time[61..71] -> depot
336 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
SkillPenalty[0..Inf) Time[101.414..230]
tech3 :
 -> depot SkillPenalty[0..Inf) Time[0..7.46725] -> visit6 SkillPenalty[0..Inf)
Time[11.1803..18.6476] -> visit5 SkillPenalty[0..Inf) Time[31.1803..38.6476] ->
visit16 SkillPenalty[0..Inf) Time[52.3607..59.8279] -> visit17
SkillPenalty[0..Inf) Time[73.541..81.0083] -> visit7 SkillPenalty[0..Inf)
Time[108.541..116.008] -> visit19 SkillPenalty[0..Inf) Time[129.721..137.189] -
> visit10 SkillPenalty[0..Inf) Time[154.721..162.189] -> visit20
SkillPenalty[0..Inf) Time[180.533..188] -> depot SkillPenalty[0..Inf)
Time[222.156..230]
tech4 :
 -> depot SkillPenalty[0..Inf) Time[0..32.9017] -> visit1 SkillPenalty[0..Inf)
Time[15.2315..48.1333] -> visit3 SkillPenalty[0..Inf) Time[39.7918..72.6935] ->
visit9 SkillPenalty[0..Inf) Time[97..97.6935] -> visit12 SkillPenalty[0..Inf)
Time[132.495..133.189] -> visit4 SkillPenalty[0..Inf) Time[158.306..159] ->
visit2 SkillPenalty[0..Inf) Time[188.53..202] -> depot SkillPenalty[0..Inf)
Time[216.53..230]
tech5 :
 -> depot SkillPenalty[0..Inf) Time[0..37.2929] -> visit11 SkillPenalty[0..Inf)
Time[67..70.8339] -> visit8 SkillPenalty[0..Inf) Time[101.166..105] -> visit18
SkillPenalty[0..Inf) Time[121.606..204] -> depot SkillPenalty[0..Inf)
Time[147.418..230]
*/
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 337

338 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

C H A P T E R
14

Dispatching Technicians II

In this lesson, you will learn how to:

◆ model the vehicle-visit compatibility constraint

◆ model various technician job skill levels

◆ use the Dispatcher class IloVisitVehicleCompat

Describe

In Lesson 13, Dispatching Technicians, the concept of routing skilled technicians to
customer sites was introduced. In that lesson, any technician could visit any customer site to
perform any job, but the cost would vary depending on the level of the skill delivered and the
level of the skill needed at the customer site.

This lesson examines the case where each customer visit requires a specific set of three skills
(the job or visit profile) to complete the visit. However, not all technicians possess the
appropriate skills. The problem therefore consists of routing the technicians to jobs that they
can be accomplish. Furthermore, most technicians can perform various jobs at customer
sites, but with different levels of effectiveness.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 339

The first step is to write a natural language description of the problem. A good way to start
this process is to analyze the constraints and objectives.

What are the constraints in this problem?

◆ Customer visits require specific skills from a pool of technicians with differing ability
levels.

◆ There are ten different job profiles (VisitProfileID) required at the customer sites,
and there are five different technicians skill profiles (TechProfileID) with which to
perform the customer jobs.

◆ The ability level of each technician at a particular skill (skillnLevel) varies from zero
(not able to perform that skill) to five (“expert”). There is a constraint of a minimum
ability level per skill. For example, a job may require level 3 at skill 1, level 4 at skill 2,
and level 5 at skill 3.

◆ There are time constraints on some visits and the depot, as well as a service time.

The objective is to minimize the cost of routing the technicians to all customer sites.

Model

Once you have written a description of your problem, you can use Dispatcher classes to
model it.

Open the example file YourDispatcherHome/examples/src/tutorial/
technic1_partial.cpp in your development environment.

This program starts with a class that models both skill requirements for jobs and skills
provided by technicians.

Step 1 Describe the problem

Step 2 Open the example file
340 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Add the following code after the comment //Declare the SkillProfile class.

The SkillProfile class maps a level for each technician skill. The function
SkillProfile::isGreaterThanOrEqual follows, and is used to ensure that the skill
level meets the constraint of the job profile.

Step 3 Declare the SkillProfile class

class SkillProfile {
 IloEnv _env;
 IloInt _nbOfSkills;
 IloInt* _skillLevels;
public:
 SkillProfile(IloEnv env, IloInt nbOfSkills):
 _env(env),
 _nbOfSkills(nbOfSkills),
 _skillLevels(0)
 {
 _skillLevels = new (env) IloInt [nbOfSkills];
 for (IloInt s=0; s< _nbOfSkills; ++s) _skillLevels[s] = 0;
 }
 void setSkillLevel(IloInt skillIndex, IloInt level=1) {
 _skillLevels[skillIndex] = level; }

 /**
 * Returns true if <code>other</code> is comparable with this
 * and is greater.
 */
 IloBool isGreaterThanOrEqual(const SkillProfile* other);

IloBool SkillProfile::isGreaterThanOrEqual(const SkillProfile* other) {
 for(IloInt index = 0;
 index < _nbOfSkills && other->_nbOfSkills; ++index) {
 if (_skillLevels[index] < other->_skillLevels[index]) {
 return IloFalse;
 }
 }
 return IloTrue;
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 341

Add the following code after the comment //Declare the RoutingModel class.

The only dimension defined in createDimensions is time, and createIloNodes is
similar to previous lessons. createTechnicians is similar to the same function in
Chapter 13, Dispatching Technicians. The other functions in RoutingModel are new, and
these are associated with the technician skills, levels, and visit requirements.

The following is the first section of RoutingModel and is provided for you:

Step 4 Declare the RoutingModel class

 void createDimensions();
 void createIloNodes(const char* nodePath);
 void createSkillProfiles(const char* profilePath);
 void setTechnicianSkillProfiles(const char* techProfilePath);
 void setVisitSkillProfiles(const char* visitProfilePath);
 void createTechnicians(const char* technicianPath);
 void createVisits(const char* visitsPath);

 void postCompatibility();

class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloArray<SkillProfile*> _profiles;
 IloInt _nbOfSkills;

 const char* _nodePath;
 const char* _technicianPath;
 const char* _visitPath;
 const char* _profilePath;
 const char* _techProfilePath; // table binding profiles to tecnicians
 const char* _visitProfilePath; // table binding profiles to visits
342 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Add the following code after the comment
//Create the getSkillProfile function.

Skill profiles, both for jobs and technicians, are stored in an array and identified by a unique
ID. Retrieving the profile from its ID is performed by a lazy accessor technique. Missing
array slots are filled with zeros; then, if a returned profile is null, a new profile is created,
stored, and returned.

The final section of RoutingModel follows:

Add the following code after the comment //Create the parse function.

Step 5 Create the getSkillProfile function

 SkillProfile* getSkillProfile(IloInt profileId) {
 if (_profiles.getSize() <= profileId) {
 for (IloInt p= _profiles.getSize(); p <= profileId; ++p) {
 _profiles.add((SkillProfile*) 0);
 }
 }
 SkillProfile* profile = _profiles[profileId] ;
 if (0 == profile) {
 profile = new (_env) SkillProfile(_env, _nbOfSkills);
 _profiles[profileId] = profile;
 }
 return profile;
 }

public:
 RoutingModel(IloEnv env);
 ~RoutingModel() {}

 void parse(int argc, char** argv);
 void createModel();

 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
};

Step 6 Create the parse function

void RoutingModel::parse(int argc, char** argv) {
 if (argc > 1) _visitPath = argv[1];
 if (argc > 2) _technicianPath = argv[2];
 if (argc > 3) _visitProfilePath = argv[3];
 if (argc > 4) _techProfilePath = argv[4];
 if (argc > 5) _profilePath = argv[5];
 if (argc > 6) _nodePath = argv[6];
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 343

_visitPath accesses the data for the visit: the time window during which the visit can
occur, and the service time. The technicians are identified through _technicianPath.
_visitProfilePath accesses the map of visits to the visit skill profile IDs.
_techProfilePath accesses the map of technicians to the technician skill profile IDs, and
_profilePath accesses the technician skill ability levels and the skill ability levels
required at the customer visits.

Add the following code after the comment //Add the vehicle/technician.

RoutingModel::RoutingModel(IloEnv env)
 : _env(env),
 _mdl(env),
 _profiles(env),
 _nbOfSkills(3),
 _nodePath("../../../examples/data/technic1/nodes.csv"),
 _technicianPath("../../../examples/data/technic1/technicians.csv"),
 _visitPath("../../../examples/data/technic1/visits.csv"),
 _profilePath("../../../examples/data/technic1/SkillProfiles.csv"),
 _techProfilePath("../../../examples/data/technic1/techSkills.csv"),
 _visitProfilePath("../../../examples/data/technic1/visitSkills.csv")
{ }

Step 7 Add the vehicle/technician

 IloVehicle technician(first, last, name);
 technician.setCost(time, 1.0);
 technician.setKey(name);
 _mdl.add(technician);
344 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
This code is a section of createTechnicians, and adds the vehicle/technician with the
sole cost factor of time. The first section of the function follows.

Add the following code after the comment //Add the PenaltyCost.

minTime and maxTime are the time windows for a paticular visit. The member function
IloVisit::setPenaltyCost is used to set the cost of not performing a visit. By default,
the penalty cost is IloInfinity, which means that visits must be performed in a solution if
a value is not set with this member function.

void RoutingModel::createTechnicians(const char* techPath) {
 IloDimension2 time = IloDimension2::Find(_env, "Time");
 IloCsvReader csvTechReader(_env, techPath);
 char namebuf[128];
 IloCsvReader::LineIterator it(csvTechReader);
 for(; it.ok(); ++it) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader("first");
 char * namelast = line.getStringByHeader("last");
 char * name = line.getStringByHeader("name");
 IloNum openTime = line.getFloatByHeader("open");
 IloNum closeTime = line.getFloatByHeader("close");
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);

 sprintf(namebuf, "start_%s", name);
 IloVisit first(node1, namebuf);
 _mdl.add(first.getCumulVar(time) >= openTime);

 sprintf(namebuf, "end_%s", name);
 IloVisit last(node2, namebuf);
 _mdl.add(last.getCumulVar(time) <= closeTime);

Step 8 Add the PenaltyCost

 _mdl.add(visit.getDelayVar(time) == serviceTime);
 _mdl.add(minTime <= visit.getCumulVar(time) <= maxTime);
 visit.setPenaltyCost(10000);
 visit.setKey(visitName);
 _mdl.add(visit);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 345

The following code is the first section of createVisits.

Add the following code after the comment
//Define the createSkillProfiles function.

This function reads the csv file and creates the skill profiles of the technicians and visits; the
levels of each skill that are available from the technician or required at the customer visit.

void RoutingModel::createVisits(const char* visitsPath) {
 IloDimension2 time = IloDimension2::Find(_env, "Time");
 IloCsvReader csvVisitReader(_env, visitsPath);
 IloCsvReader::LineIterator it(csvVisitReader);
 for(;it.ok(); ++it) {
 IloCsvLine line = *it;
 //read visit data from files
 char * visitName = line.getStringByHeader("name");
 char * nodeName = line.getStringByHeader("node");
 IloNum minTime = line.getFloatByHeader("minTime");
 IloNum maxTime = line.getFloatByHeader("maxTime");
 IloNum serviceTime = line.getFloatByHeader("dropTime");
 IloNode node = IloNode::Find(_env, nodeName);
 IloVisit visit(node, visitName);

Step 9 Define the createSkillProfiles function

void RoutingModel::createSkillProfiles(const char* profilePath) {
 IloCsvReader skillProfileReader(_env, profilePath);
 for(IloCsvReader::LineIterator it(skillProfileReader); it.ok(); ++it) {
 IloCsvLine line = *it;
 IloInt profileId = line.getIntByHeader("id");
 IloInt skill1Level = line.getIntByHeader("Skill1Level");
 IloInt skill2Level = line.getIntByHeader("Skill2Level");
 IloInt skill3Level = line.getIntByHeader("Skill3Level");

 SkillProfile* profile = getSkillProfile(profileId);
 assert(0 != profile);

 profile->setSkillLevel(0, skill1Level);
 profile->setSkillLevel(1, skill2Level);
 profile->setSkillLevel(2, skill3Level);
 }
 skillProfileReader.end();
}

346 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
Add the following code after the comment
//Define the setTechnicianSkillProfiles function.

This function implements the mapping between the technician and the skill profile. The
profile itself is stored in the object field of the IloVehicle (for technicians) or IloVisit
(for visits), as an IloAny void* pointer. Attaching profiles to a vehicle/visit is crucial to
the implementation of the compatibility constraint, which takes one vehicle and one visit.

Add the following code after the comment
//Define the setVisitSkillProfiles function.

This function identifies the visitProfileId required at each customer visit.

Step 10 Define the setTechnicianSkillProfiles function

void RoutingModel::setTechnicianSkillProfiles(const char* techProfilePath) {
 // now read the techProfilePath table.
 IloCsvReader techProfileReader(_env, techProfilePath);
 for (IloCsvReader::LineIterator tpit(techProfileReader); tpit.ok(); ++tpit) {
 IloCsvLine line = *tpit;
 const char* techName = line.getStringByHeader("name");
 IloInt profileId = line.getIntByHeader("TechProfileId");
 IloVehicle tech = IloVehicle::Find(_env, techName);
 SkillProfile* profile = getSkillProfile(profileId);
 if (0 != tech.getImpl() && 0 != profile) {
 tech.setObject((IloAny)profile);
 }
 }
 techProfileReader.end();
}

Step 11 Define the setVisitSkillProfiles function

void RoutingModel::setVisitSkillProfiles(const char* visitProfilePath) {
 // now read the techProfilePath table.
 IloCsvReader visitProfileReader(_env, visitProfilePath);
 for (IloCsvReader::LineIterator vpit(visitProfileReader); vpit.ok(); ++vpit)
{
 IloCsvLine line = *vpit;
 const char* visitName = line.getStringByHeader("name");
 IloInt profileId = line.getIntByHeader("VisitProfileId");
 IloVisit visit = IloVisit::Find(_env, visitName);
 SkillProfile* profile = getSkillProfile(profileId);
 if (0 != visit.getImpl() && 0 != profile) {
 visit.setObject((IloAny)profile);
 }
 }
 visitProfileReader.end();
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 347

Add the following code after the comment
//Define the AreSkillsCompatible predicate.

This predicate checks the compatibility relation between a visit and a technician. A visit is
compatible with a technician if the visit profile is subsumed by the technician profile. A
special case is also considered for a visit with no profile where all technicians are
compatible.

Add the following code after the comment
//Define the postCompatibility function.

IBM ILOG Dispatcher provides a way for you to define compatibility relations between
visits and vehicles. These relations can then be used to build compatibility constraints. In
this example the constructor IloVisitVehicleCompat uses the predicate
AreSkillsCompatible to build the compatibility relation. The function IloCompatible
is then used to create the compatibility constraint to ensure that only compatible vehicles are
used on a visit.

The compatibility constraint is used to check that only compatible visit/vehicle assignments
are built, by removing incompatible vehicles. A predicate is used for convenience; you can
also subclass a predefined class for more complex cases.

Step 12 Define the AreSkillsCompatible predicate

static IloBool AreSkillsCompatible(IloVisit visit, IloVehicle vehicle) {
 SkillProfile* visitProfile = (SkillProfile*)visit.getObject();
 SkillProfile* techProfile = (SkillProfile*)vehicle.getObject();
 if (0 != visitProfile) {
 if (0 != techProfile) {
 return techProfile->isGreaterThanOrEqual(visitProfile);
 } else {
 return IloFalse;
 }
 } else {
 return IloTrue;
 }
}

Step 13 Define the postCompatibility function

void RoutingModel::postCompatibility() {
 IloVisitVehicleCompat compat(_env, AreSkillsCompatible);
 _mdl.add(IloCompatible(compat, "skill compatibility"));
}

348 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Solve

The solution is computed, improved, and displayed by methods previously presented for the
PDP problem, with the addition of one goal.

Add the following code after the comment //Add the goals.

IloInsertionGenerate is an insertion heuristic algorithm used to build a first solution
for a routing plan. An insertion heuristic builds a solution to the routing model using an
algorithm which consists of inserting visits at the lowest cost position at the time of
insertion. This insertion point will not necessarily be the visit's lowest cost position when the
entire routing plan has been constructed.

Step 14 Add the goals

 IloGoal instantiateCost =
 IloDichotomize(env, dispatcher.getCostVar(), IloFalse);
 IloGoal restoreSolution = IloRestoreSolution(env, _solution);
 IloGoal goal =
 IloInsertionGenerate(env) && instantiateCost ;
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 349

The solution improvement phase finds a solution using 4 vehicles with a cost of 619.143
units

Review Exercises

For answers, see “Suggested Answers” on page 350.

1. What Dispatcher class is used to build a compatibility relation?

2. What predefined function is used to create a compatibility constraint from a
compatibility relation?

3. What is an insertion heuristic algorithm used for?

Suggested Answers

Exercise 1

What Dispatcher class is used to build a compatibility relation?

Step 15 Compile and run the program

First Solution with cost: 735.716
Improving solution
Improved Solution
Number of fails : 0
Number of choice points : 1049
Number of variables : 479
Number of constraints : 108
Reversible stack (bytes) : 68364
Solver heap (bytes) : 333940
Solver global heap (bytes) : 70960
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 552836
Elapsed time since creation : 0
Number of nodes : 21
Number of visits : 30
Number of vehicles : 5
Number of dimensions : 1
Number of accepted moves : 13
===============
Cost : 619.143
Number of vehicles used : 4
350 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
Suggested Answer

IloVisitVehicleCompat.

Exercise 2

What predefined function is used to create a compatibility constraint from a compatibility
relation?

Suggested Answer

IloCompatible.

Exercise 3

What is an insertion heuristic algorithm used for?

Suggested Answer

An insertion heuristic algorithm is used to build a first solution for a routing plan. An
insertion heuristic builds a solution to the routing model using an algorithm which consists
of inserting visits at the lowest cost position at the time of insertion.

Complete Program

The complete program follows. You can also view it online in the file
YourDispatcherHome/examples/src/technic1.cpp.

// -- -*- C++ -*-
// File: examples/src/technic1.cpp
// --

#include <ildispat/ilodispatcher.h>

ILOSTLBEGIN

/**
 * This example shows the use of the visit-vehicle compatibility constraint.
 * The constraint is defined using skill proficiency vectors, attached
 * to both visits and vehicles.
 *
 *
 */

/**
 * The SkillProfile class is used to model vector a skill proficiencies.
 * it maps a level for each skill.
 */
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 351

class SkillProfile {
 IloEnv _env;
 IloInt _nbOfSkills;
 IloInt* _skillLevels;
public:
 SkillProfile(IloEnv env, IloInt nbOfSkills):
 _env(env),
 _nbOfSkills(nbOfSkills),
 _skillLevels(0)
 {
 _skillLevels = new (env) IloInt [nbOfSkills];
 for (IloInt s=0; s< _nbOfSkills; ++s) _skillLevels[s] = 0;
 }
 void setSkillLevel(IloInt skillIndex, IloInt level=1) {
 _skillLevels[skillIndex] = level; }

 /**
 * Returns true if <code>other</code> is comparable with this
 * and is greater.
 */
 IloBool isGreaterThanOrEqual(const SkillProfile* other);

 virtual void display(ILOSTD(ostream)& os) const {
 os << “[“;
 for (IloInt s=0; s< _nbOfSkills; ++s) {
 os << _skillLevels[s];
 if (s < _nbOfSkills-1) os << “, “;
 }
 os << “]”;
 }

};

inline ostream& operator<<(ostream& os, const SkillProfile& profile) {
 profile.display(os); return os;
}

IloBool SkillProfile::isGreaterThanOrEqual(const SkillProfile* other) {
 for(IloInt index = 0;
 index < _nbOfSkills && other->_nbOfSkills; ++index) {
 if (_skillLevels[index] < other->_skillLevels[index]) {
 return IloFalse;
 }
 }
 return IloTrue;
}

class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloArray<SkillProfile*> _profiles;
 IloInt _nbOfSkills;

 const char* _nodePath;
 const char* _technicianPath;
 const char* _visitPath;
352 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 const char* _profilePath;
 const char* _techProfilePath; // table binding profiles to tecnicians
 const char* _visitProfilePath; // table binding profiles to visits

 void createDimensions();
 void createIloNodes(const char* nodePath);
 void createSkillProfiles(const char* profilePath);
 void setTechnicianSkillProfiles(const char* techProfilePath);
 void setVisitSkillProfiles(const char* visitProfilePath);
 void createTechnicians(const char* technicianPath);
 void createVisits(const char* visitsPath);

 void postCompatibility();

 /**
 * Lazy accessor to the profile table, with id as key.
 * First, missing array slots are filled with zeroes.
 * Then, if returned profile is null,
 * a new profile is created, stored and returned.
 */
 SkillProfile* getSkillProfile(IloInt profileId) {
 if (_profiles.getSize() <= profileId) {
 for (IloInt p= _profiles.getSize(); p <= profileId; ++p) {
 _profiles.add((SkillProfile*) 0);
 }
 }
 SkillProfile* profile = _profiles[profileId] ;
 if (0 == profile) {
 profile = new (_env) SkillProfile(_env, _nbOfSkills);
 _profiles[profileId] = profile;
 }
 return profile;
 }

public:
 RoutingModel(IloEnv env);
 ~RoutingModel() {}

 void parse(int argc, char** argv);
 void createModel();

 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
};

RoutingModel::RoutingModel(IloEnv env)
 : _env(env),
 _mdl(env),
 _profiles(env),
 _nbOfSkills(3),
 _nodePath(“../../../examples/data/technic1/nodes.csv”),
 _technicianPath(“../../../examples/data/technic1/technicians.csv”),
 _visitPath(“../../../examples/data/technic1/visits.csv”),
 _profilePath(“../../../examples/data/technic1/SkillProfiles.csv”),
 _techProfilePath(“../../../examples/data/technic1/techSkills.csv”),
 _visitProfilePath(“../../../examples/data/technic1/visitSkills.csv”)
{ }
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 353

void RoutingModel::parse(int argc, char** argv) {
 if (argc > 1) _visitPath = argv[1];
 if (argc > 2) _technicianPath = argv[2];
 if (argc > 3) _visitProfilePath = argv[3];
 if (argc > 4) _techProfilePath = argv[4];
 if (argc > 5) _profilePath = argv[5];
 if (argc > 6) _nodePath = argv[6];
}

void RoutingModel::createModel() {
 createDimensions();
 createIloNodes(_nodePath);
 createTechnicians(_technicianPath);
 createVisits(_visitPath);
 createSkillProfiles(_profilePath);
 setTechnicianSkillProfiles(_techProfilePath);
 setVisitSkillProfiles(_visitProfilePath);
 postCompatibility();
}

// Create dimensions
void RoutingModel::createDimensions() {
 IloDimension2 time(_env, IloEuclidean, “Time”);
 time.setKey(“Time”);
 _mdl.add(time);
}

// Create IloNodes
void RoutingModel::createIloNodes(const char* nodePath) {
 IloCsvReader csvNodeReader(_env, nodePath);
 IloCsvReader::LineIterator it(csvNodeReader);
 while (it.ok()) {
 IloCsvLine line = *it;
 char* name = line.getStringByHeader(“name”);
 IloNode node(_env,
 line.getFloatByHeader(“x”),
 line.getFloatByHeader(“y”),
 0,
 name);
 node.setKey(name);
 ++it;
 }
 csvNodeReader.end();
}

// Create vehicles
void RoutingModel::createTechnicians(const char* techPath) {
 IloDimension2 time = IloDimension2::Find(_env, “Time”);
 IloCsvReader csvTechReader(_env, techPath);
 char namebuf[128];
 IloCsvReader::LineIterator it(csvTechReader);
 for(; it.ok(); ++it) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader(“first”);
 char * namelast = line.getStringByHeader(“last”);
 char * name = line.getStringByHeader(“name”);
 IloNum openTime = line.getFloatByHeader(“open”);
 IloNum closeTime = line.getFloatByHeader(“close”);
354 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);

 sprintf(namebuf, “start_%s”, name);
 IloVisit first(node1, namebuf);
 _mdl.add(first.getCumulVar(time) >= openTime);

 sprintf(namebuf, “end_%s”, name);
 IloVisit last(node2, namebuf);
 _mdl.add(last.getCumulVar(time) <= closeTime);

 IloVehicle technician(first, last, name);
 technician.setCost(time, 1.0);
 technician.setKey(name);
 _mdl.add(technician);

 }
 csvTechReader.end();
}

// Create visits
void RoutingModel::createVisits(const char* visitsPath) {
 IloDimension2 time = IloDimension2::Find(_env, “Time”);
 IloCsvReader csvVisitReader(_env, visitsPath);
 IloCsvReader::LineIterator it(csvVisitReader);
 for(;it.ok(); ++it) {
 IloCsvLine line = *it;
 //read visit data from files
 char * visitName = line.getStringByHeader(“name”);
 char * nodeName = line.getStringByHeader(“node”);
 IloNum minTime = line.getFloatByHeader(“minTime”);
 IloNum maxTime = line.getFloatByHeader(“maxTime”);
 IloNum serviceTime = line.getFloatByHeader(“dropTime”);
 IloNode node = IloNode::Find(_env, nodeName);
 IloVisit visit(node, visitName);

 _mdl.add(visit.getDelayVar(time) == serviceTime);
 _mdl.add(minTime <= visit.getCumulVar(time) <= maxTime);
 visit.setPenaltyCost(10000);
 visit.setKey(visitName);
 _mdl.add(visit);

 }
 csvVisitReader.end();
}

void RoutingModel::createSkillProfiles(const char* profilePath) {
 IloCsvReader skillProfileReader(_env, profilePath);
 for(IloCsvReader::LineIterator it(skillProfileReader); it.ok(); ++it) {
 IloCsvLine line = *it;
 IloInt profileId = line.getIntByHeader(“id”);
 IloInt skill1Level = line.getIntByHeader(“Skill1Level”);
 IloInt skill2Level = line.getIntByHeader(“Skill2Level”);
 IloInt skill3Level = line.getIntByHeader(“Skill3Level”);

 SkillProfile* profile = getSkillProfile(profileId);
 assert(0 != profile);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 355

 profile->setSkillLevel(0, skill1Level);
 profile->setSkillLevel(1, skill2Level);
 profile->setSkillLevel(2, skill3Level);
 }
 skillProfileReader.end();
}

void RoutingModel::setTechnicianSkillProfiles(const char* techProfilePath) {
 // now read the techProfilePath table.
 IloCsvReader techProfileReader(_env, techProfilePath);
 for (IloCsvReader::LineIterator tpit(techProfileReader); tpit.ok(); ++tpit) {
 IloCsvLine line = *tpit;
 const char* techName = line.getStringByHeader(“name”);
 IloInt profileId = line.getIntByHeader(“TechProfileId”);
 IloVehicle tech = IloVehicle::Find(_env, techName);
 SkillProfile* profile = getSkillProfile(profileId);
 if (0 != tech.getImpl() && 0 != profile) {
 tech.setObject((IloAny)profile);
 }
 }
 techProfileReader.end();
}

void RoutingModel::setVisitSkillProfiles(const char* visitProfilePath) {
 // now read the techProfilePath table.
 IloCsvReader visitProfileReader(_env, visitProfilePath);
 for (IloCsvReader::LineIterator vpit(visitProfileReader); vpit.ok(); ++vpit)
{
 IloCsvLine line = *vpit;
 const char* visitName = line.getStringByHeader(“name”);
 IloInt profileId = line.getIntByHeader(“VisitProfileId”);
 IloVisit visit = IloVisit::Find(_env, visitName);
 SkillProfile* profile = getSkillProfile(profileId);
 if (0 != visit.getImpl() && 0 != profile) {
 visit.setObject((IloAny)profile);
 }
 }
 visitProfileReader.end();
}

/**
 * This predicate codes the compatibility relation between a visit and a
 * technician. A visit is compatible with a technician if the
 * visit profile is subsumed by the technician profile.
 * To be defensive, a special case is also considered, when
 * the visit has no profile, then all technicians are compatible.
 */
static IloBool AreSkillsCompatible(IloVisit visit, IloVehicle vehicle) {
 SkillProfile* visitProfile = (SkillProfile*)visit.getObject();
 SkillProfile* techProfile = (SkillProfile*)vehicle.getObject();
 if (0 != visitProfile) {
 if (0 != techProfile) {
 return techProfile->isGreaterThanOrEqual(visitProfile);
 } else {
 return IloFalse;
 }
 } else {
 return IloTrue;
356 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 }
}

void RoutingModel::postCompatibility() {
 IloVisitVehicleCompat compat(_env, AreSkillsCompatible);
 _mdl.add(IloCompatible(compat, “skill compatibility”));
}

// Solving
class RoutingSolver {
 IloModel _mdl;
 IloSolver _solver;
 IloRoutingSolution _solution;

 IloBool findFirstSolution(IloGoal goal);
 void greedyImprove(IloNHood nhood, IloGoal subGoal);
 void improve(IloGoal subgoal);
public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloRoutingSolution getSolution() const { return _solution; }
 void printInformation(const char* heading = 0) const;
 void solve();
};

RoutingSolver::RoutingSolver(RoutingModel mdl)
 : _mdl(mdl.getModel()), _solver(mdl.getModel()), _solution(mdl.getModel()) {}

// Solving : find first solution
IloBool RoutingSolver::findFirstSolution(IloGoal goal) {
 if (!_solver.solve(goal)) {
 _solver.error() << “Infeasible Routing Plan” << endl;
 return IloFalse;
 }
 _solution.store(_solver);
 return IloTrue;
}

// Improve solution using nhood
void RoutingSolver::greedyImprove(IloNHood nhood, IloGoal subGoal) {
 _solver.out() << “Improving solution” << endl;
 IloEnv env = _solver.getEnv();
 nhood.reset();
 IloGoal improve = IloSingleMove(env,
 _solution,
 nhood,
 IloImprove(env),
 subGoal);
 while (_solver.solve(improve)) {}
}

// Improve solution
void RoutingSolver::improve(IloGoal subGoal) {
 IloEnv env = _solver.getEnv();
 IloNHood nhood =
 IloMakePerformed(env)
 +
 IloTwoOpt(env)
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 357

 + IloOrOpt(env)
 + IloRelocate(env)
 + IloCross(env)
 + IloExchange(env);
 greedyImprove(nhood, subGoal);
}

// Display Dispatcher information
void RoutingSolver::printInformation(const char* heading) const {
 if (0 != heading) {
 _solver.out() << heading << endl;
 }
 IloDispatcher dispatcher(_solver);
 _solver.printInformation();
 dispatcher.printInformation();
 _solver.out() << “===============” << endl
 << “Cost : “ << dispatcher.getTotalCost() << endl
 << “Number of vehicles used : “
 << dispatcher.getNumberOfVehiclesUsed() << endl
 << “Solution : “ << endl
 << dispatcher << endl;
}

// Solving
void RoutingSolver::solve() {
 IloDispatcher dispatcher(_solver);
 IloEnv env = _solver.getEnv();

 IloGoal instantiateCost =
 IloDichotomize(env, dispatcher.getCostVar(), IloFalse);
 IloGoal restoreSolution = IloRestoreSolution(env, _solution);
 IloGoal goal =
 IloInsertionGenerate(env) && instantiateCost ;

 // Solving
 if (findFirstSolution(goal)) {
 _solver.out() << “First Solution with cost: “
 << _solution.getObjectiveValue() << endl;
 improve(instantiateCost);
 _solver.solve(restoreSolution && instantiateCost);
 printInformation(“***Improved Solution***”);
 }
}

///

int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env);
 mdl.parse(argc, argv);
 mdl.createModel();

 RoutingSolver rsolver(mdl);
 rsolver.solve();
 } catch(IloException& ex) {
 cerr << “Error: “ << ex << endl;
 }
358 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 env.end();
 return 0;
}

Complete Output

/**
First Solution with cost: 735.716
Improving solution
Improved Solution
Number of fails : 0
Number of choice points : 1049
Number of variables : 479
Number of constraints : 108
Reversible stack (bytes) : 68364
Solver heap (bytes) : 333940
Solver global heap (bytes) : 70960
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 552836
Elapsed time since creation : 0
Number of nodes : 21
Number of visits : 30
Number of vehicles : 5
Number of dimensions : 1
Number of accepted moves : 13
===============
Cost : 619.143
Number of vehicles used : 4
Solution :
Unperformed visits : None
tech1 :
 -> start_tech1 Time[0..59.6393] -> visit3 Time[22.3607..82] -> visit9
Time[97..107] -> visit20 Time[118.18..188] -> end_tech1 Time[159.803..230]
tech2 :
 -> start_tech2 Time[0..16.6953] -> visit14 Time[32.0156..48.7109] -> visit17
Time[64.3763..81.0716] -> visit8 Time[95..105] -> visit19 Time[122.72..162.82]
-> visit7 Time[143.9..184] -> visit18 Time[163.9..204] -> end_tech2
Time[189.712..230]
tech3 :
 -> start_tech3 Time[0..30] -> visit2 Time[18..48] -> visit15 Time[61..71] ->
visit16 Time[96..110.749] -> visit5 Time[117.18..131.929] -> visit6
Time[137.18..151.929] -> visit13 Time[159..169] -> end_tech3 Time[180.18..230]
tech4 :
 -> start_tech4 Time[0..23.4691] -> visit10 Time[25.4951..48.9642] -> visit11
Time[67..70.1445] -> visit1 Time[103.401..106.545] -> visit12
Time[130.044..133.189] -> visit4 Time[155.855..159] -> end_tech4
Time[190.855..230]
tech5 : Unused

*/
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 359

360 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

C H A P T E R
15

CARP: Visiting Arcs Using
Multiple Vehicles

In this lesson, you will learn how to:

◆ model a routing problem to visit arcs

◆ use the class IloDispatcherGraph to store and compute the costs of the arcs

◆ use a metaheuristic in search with IloDispatcherGLS

Describe

In the vehicle routing problems presented in the previous lessons the goal was to perform
visits located at given nodes. There is another type of problem where the goal is to visit arcs
instead, arcs being a link between two nodes (arcs typically represent streets or road
segments). This type of problem can involve activities such as winter gritting (dispensing
salt or grit on snow-covered roads), door-to-door mail delivery, street cleaning, or garbage
collecting. This chapter focuses on a particular type of problem called a Capacitated Arc
Routing Problem (CARP) in which vehicles have a limited capacity.

The main difference in considering an arc problem is that a visit is not defined as a trip to a
node, but is rather the path (arc) between two nodes. A quantity of a good is delivered to
each arc and vehicles can carry a limited amount of goods (capacity). Time windows are not
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 361

considered here although they could easily be modeled. All vehicles are identical and
perform a single tour leaving and arriving at a unique depot.

Distances between nodes are computed from a graph representing the network of roads. For
a given dimension d, the distance between two nodes n1 and n2 using a vehicle v is the sum
of the value according to d of all the arcs on the cheapest path going from n1 to n2 using v.
The cheapest path is the path of minimum cost using v. Furthermore, the distance between
two visits located at arc (n1, n2) and arc (n3, n4) is defined to be the distance between nodes
n2 and n3.

In this example, two extrinsic dimensions are used, one representing time and the other
length. Both dimensions have their distance function based on the graph; the shortest path
between two nodes depends on the arcs that are available in the graph. The cost function is a
linear combination of the duration and of the length of the route of the vehicles.

The following figure shows a sample road network for an arc problem with eight nodes and
12 arcs (the example in this lesson has 52 nodes).

Figure 15.1

Figure 15.1 An Example Arc Problem

The arrows show in which direction an arc can be taken (a double arrow means it can be
taken in both directions). The values on the arcs indicate respectively the duration in time
and length of the arc. The third number represents the quantity of goods to be delivered to
this arc; when a third number is not present the arc does not need to be visited.

77

11
00

22

66

33

44

55

2,8

2,2,8

1,1,5

3,2,3

4,3,8

2,3,9
5,3,1

9,5,61,2,4

6,2,8

5,4,5

7,5,9

77

11
00

22

66

33

44

55

2,8

2,2,8

1,1,5

3,2,3

4,3,8

2,3,9
5,3,1

9,5,61,2,4

6,2,8

5,4,5

7,5,9
362 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
The first step is to write a natural language description of the problem. A good way to start
this process is to analyze the constraints and objectives. The primary constraint in this
problem is that vehicles must deliver a quantity of goods to selected arcs on the road
network. Not all arcs need to be visited (that is, have goods delivered along the arc), but
those arcs may be travelled through anyway in order to minimize the travel cost.

The objective is to minimize the cost of the delivery of the quantity of goods along the arcs.

Model

Once you have written a description of your problem, you can use Dispatcher classes to
model it.

Open the example file YourDispatcherHome/examples/src/tutorial/
carp_partial.cpp in your development environment.

As in the previous lessons, you will use a RoutingModel class to call the functions that
create the dimensions, nodes, vehicles, and visits. For this example, RoutingModel also
calls a function to create the graph that represents the road network.

Add the following code after the comment //Declare the RoutingModel class.

An instance of IloDispatcherGraph is declared (_graph); this instance is used to create
a road network of nodes. It can then be used to compute and store the cheapest paths
between nodes based on the cost functions for any given vehicle.

Step 1 Describe the problem

Step 2 Open the example file

Step 3 Declare the RoutingModel class

class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloDispatcherGraph _graph;
 IloDimension2 _time;
 IloDimension2 _distance;
 IloDimension1 _weight;

 void addDimensions();
 void loadGraphInformation (char* arcFileName);
 void CreateIloNodes(char* nodeFileName, char* coordFileName);
 void CreateVehicles(char* vehicleFileName);
 void CreateVisits(char* visitsFileName);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 363

The function loadGraphInformation is used to load and create the arcs and the arc costs
that are stored in _graph.

The remaining code of RoutingModel is provided for you, and it calls a function
(modifyGraphArcCost) that allows you to modify the cost of an arc within the code itself,
rather than in a csv data file.

The function RoutingModel:addDimensions uses a shortest path calculation to represent
the dimensions of time and distance in the graph network.

Add the following code after the comment //Create the distance functions.

The shortest path time and distance functions (SP_time and SP_distance) are defined and
added to the model (instead of the predefined functions IloEuclidian and
IloManhatten that you have used before).

The next function creates the graph containing the arcs.

Add the following code after the comment //Load the graph information.

The member function IloDispatcherGraph::createArcsFromFile loads the road
network data from a csv file, and creates the necessary nodes and arcs. The member function

public:
 RoutingModel(IloEnv env, int argc, char* argv[]);
 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
 void modifyGraphArcCost();
 IloDispatcherGraph getGraph() const { return _graph; }
};

Step 4 Create the distance functions

 IloDistance SP_time = IloGraphDistance (_graph);
 _time =IloDimension2 (_env, SP_time, "time");
 _mdl.add(_time);

 IloDistance SP_distance = IloGraphDistance (_graph);
 _distance =IloDimension2 (_env, SP_distance, "distance");
 _mdl.add(_distance);
}

Step 5 Load the graph information

void RoutingModel::loadGraphInformation (char* arcFileName) {
 _graph.createArcsFromFile (arcFileName);
 _graph.loadArcDimensionDataFromFile (arcFileName, _time);
 _graph.loadArcDimensionDataFromFile (arcFileName, _distance);
}

364 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Model
IloDispatcherGraph::loadArcDimensionDataFromFile loads the arc cost data
from a csv file.

The function CreateIloNodes includes a command to associate the IloNodes to the
graph nodes.

Add the following code after the comment //Create the nodes.

Instances of IloNode must be positioned within the graph. This can be done node-by-node
with the method IloDispatcherGraph::setLocation, but this becomes impractical
with even modestly sized networks. Instead, in this lesson you use the method
associateByCoordsInFile to look up the coordinates of a given IloNode in a csv file,
and then automatically associate the node to the graph node with matching coordinates.

Next, you create the vehicles with a cost function that uses a cost ratio.

Add the following code after the comment //Set the vehicle costs.

The following line of code appears earlier in the CreateVehicles function:

The costRatio is data from the vehicle csv file, and can be used, for example, to model
vehicles that have different operating costs. Using different cost ratios for the different
vehicles will change the solution paths; paths depend not only on the distance between
nodes, but also on the way vehicle costs are calculated.

Next, the CreateVisits function adds the actual arc visits to the model.

Step 6 Create the nodes

 _graph.associateByCoordsInFile (node, coordFileName);

Step 7 Set the vehicle costs

 vehicle.setCost(_time, 100 * costRatio);
 vehicle.setCost(_distance, 100 * (1- costRatio));
 vehicle.setCapacity(_weight, capacity);
 _mdl.add(vehicle);

 IloNum costRatio = line.getFloatByHeader("costRatio");
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 365

Add the following code after the comment //Create the visits.

This code is the second part of the createVisits function. The first part of the iteration
reads in the nodes, time and distance values, and quantity to be delivered per visit.

To create an arc visit rather than a visit to a single node, you provide two node names to the
IloVisit constructor. If the visit to the arc is symmetric—that is, the cost to visit the arc
is the same regardless of which node is visited first—then both possible paths for the arc
visit are added to the model with zero penalty cost.

The constraint _mdl.add(visit1.performed() + visit2.performed() == 1)
states that just one of those two visits must be performed.

In problems of this type it may sometimes be desirable to be able to quickly modify the costs
of certain paths, due to traffic or road conditions, experimental modeling, or other reasons.
You may not want to edit your data files to model these factors; the function
modifyGraphArcCost is used for this purpose.

Step 8 Create the visits

 IloNode node1 = IloNode::Find(_env, nodeName1);
 IloNode node2 = IloNode::Find(_env, nodeName2);

 IloVisit visit1(node1, node2, visitName);
 _mdl.add(visit1.getTransitVar(_weight) == quantity);
 _mdl.add(visit1.getDelayVar(_time) == timeValue);
 _mdl.add(visit1.getDelayVar(_distance) == distanceValue);
 _mdl.add(visit1);
 if(symmetric) {
 visit1.setPenaltyCost(0);
 char visitName2[16];
 sprintf(visitName2, "%s%c", visitName, c);
 IloVisit visit2(node2, node1, visitName2);
 _mdl.add(visit2.getTransitVar(_weight) == quantity);
 _mdl.add(visit2.getDelayVar(_time) == timeValue);
 _mdl.add(visit2.getDelayVar(_distance) == distanceValue);
 visit2.setPenaltyCost(0);
 _mdl.add(visit2);
 _mdl.add(visit1.performed() + visit2.performed() == 1);
366 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Add the following code after the comment //Modify graph arc costs.

This function is used to quickly modify the cost of a few particular arcs. This may be
appropriate if, for example, conditions merit a temporary increase in the cost of visiting an
arc. The impact on the solution cost can be significant.

Solve

The solving section of this example introduces metaheuristics. In previous lessons,
heuristics terminated when no cost-reducing move could be found at a local minimum.
Metaheuristics allow the search to continue by allowing neighborhood moves that degrade
the current solution and allow the search to move from the current position. This degradation
must be carefully controlled, however, to prevent the search from moving to very poor
solutions. This control is provided by various types of metaheuristics. The type used in this
lesson is based on guided local search (GLS).

Guided local search works by making a series of greedy searches, each to a local minimum.
However, it reduces a different cost function from the original. If the original cost function is
represented by c, then guided local search attempts to reduce the cost c+wp, where p is a
penalty term that is adjusted every time a local minimum is reached, and w is a constant. So,
in essence, guided local search tries to minimize a combination of the true cost and a penalty
term. The weighting constant w is an important search parameter that determines how
important the penalty term is with respect to the true cost.

Guided local search is constructed so that the penalty term is higher when the search moves
to solutions that resemble previous ones. This is done by recording certain arcs as “bad”
each time a local minimum is reached. When these arcs appear in a solution, the penalty
term is increased. Guided local search determines which arcs are bad based upon the cost of
the arc in the solution and how often that arc has previously appeared at local minima.

More complete details of the use of metaheuristics can be found in Appendix C, Predefined
Search Heuristics and Metaheuristics and in the IBM ILOG Dispatcher Reference Manual.

Step 9 Modify graph arc costs

void RoutingModel::modifyGraphArcCost() {
 IloDispatcherGraph::Arc arc1 = _graph.getArc(3916); //Arc from 1043 to 987
 IloDispatcherGraph::Arc arc2 = _graph.getArc(4134); //Arc from 1043 to 1042
 IloDispatcherGraph::Arc arc3 = _graph.getArc(4136); //Arc from 1043 to 1044
 IloDispatcherGraph::Arc arc4 = _graph.getArc(4137); //Arc from 1043 to 1099

 _graph.setArcCost(arc1, _time, 10);
 _graph.setArcCost(arc2, _time, 10);
 _graph.setArcCost(arc3, _time, 10);
 _graph.setArcCost(arc4, _time, 10);
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 367

The first step in the solving section is to create the RoutingSolver function.

Add the following code after the comment //Create the RoutingSolver function.

The function improveWithFastGLS uses the metaheuristic IloDispatcherGLS to get out
of the local minimum solution to find a better one.

Two new functions appear in the class RoutingSolver for this lesson:
modifyFilterLevelAndRestore and restoreSolution.

Add the following code after the comment
//Modify filter level and restore solution.

This function changes the filter level of the propagation before restoring the solution.
IlcMedium is the highest level of propagation, and takes considerably longer than IlcLow.
This function is called to have better propagation of the cumul variables and to have a better
display of the solution.

Step 10 Create the RoutingSolver function

 void greedyImprove(IloNHood nhood, IloGoal subGoal);
 void improve(IloGoal subgoal);
 void improveWithFastGLS(IloNHood nhood, IloInt nbOfIter, IloGoal subgoal);
public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloRoutingSolution getSolution() const { return _solution; }
 void printInformation() const;
 IloBool findFirstSolution();
 void improveWithNHood(IloInt nbIter);
 void modifyFilterLevelAndRestore();
 void restoreSolution();
 void displayPaths(IloDispatcherGraph graph);
};

Step 11 Modify filter level and restore solution

void RoutingSolver::modifyFilterLevelAndRestore() {
 _dispatcher.setFilterLevel(IlcMedium);
 IloNum cost = _solution.getObjectiveValue();
 _solver.solve(_restoreSolution
 && IloSetMax(_env, _dispatcher.getCostVar(), cost));
 _dispatcher.setFilterLevel(IlcLow);
}

368 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Add the following code after the comment //Add the restoreSolution function.

This function is called by main to restore the solution after modifyGraphArcCost has
been called to modify the original arc cost data.

The next function, improveWithFastGLS, uses the metaheuristic IloDispatcherGLS to
get out of the local minimum solution to find a better one.

Add the following code after the comment //Add the metaheuristic function.

Step 12 Add the restoreSolution function

void RoutingSolver::restoreSolution() {
 _solver.solve(_restoreSolution && _instantiateCost);
 _solution.store(_solver);
 _solver.out() << "Modified cost: " << _dispatcher.getTotalCost() << endl;
}

Step 13 Add the metaheuristic function

void RoutingSolver::improveWithFastGLS(IloNHood nhood,
 IloInt nbOfIter,
 IloGoal instantiateCost) {
 nhood.reset();
 _solver.out() << "Improving with first-accept GLS" << endl;
 IloRoutingSolution rsol = _solution.makeClone(_env);
 IloRoutingSolution best = _solution.makeClone(_env);
 IloDispatcherGLS dgls(_env, 0.2);
 IloGoal move = IloSingleMove(_env, rsol, nhood, dgls, instantiateCost);
 move = move && IloStoreBestSolution(_env, best);
 IloNumVar costVar = _dispatcher.getCostVar();
 IloCouple(nhood, dgls);
 for (IloInt i = 0; i < nbOfIter; i++) {
 if (_solver.solve(move)) {
 _solver.out() << "Cost = " << _solver.getMax(costVar) << endl;
 } else {
 _solver.out() << "---" << endl;
 if (dgls.complete()) break;
 }
 }
 _solver.out() << endl;
 IloDecouple(nhood, dgls);
 IloGoal restoreSolution = IloRestoreSolution(_env, best) && instantiateCost;
 _solver.solve(restoreSolution);
 _solution.store(_solver);
 rsol.end();
 best.end();
 dgls.end();
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 369

IloDispatcherGLS tries to penalize “bad” arcs—arcs with a high cost. However, if an arc
has been penalized a number of times, the importance of cost reduces. This is due to the fact
that if an arc has been penalized a large number of times and is still in the solution, there
may be no better arc with which to replace it and it is probably best to start looking
elsewhere to place penalties.

The functions IloCouple and IloDecouple connect and disconnect a neighborhood to a
metaheuristic. The neighborhood must be coupled to an instance of IloDispatcherGLS,
otherwise an exception is thrown.

Locate the following code after the comment //The display paths function.

The function displayPaths is used to display the route of each vehicle following the
actual paths on the road network. An instance of IloIterator<IloVehicle> is used to
iterate over the vehicles, and an instance of IloDispatcher::RouteIterator is used to
iterate over the visits of each vehicle. IloDispatcherGraph::PathIterator is used to
iterate over the nodes present on the shortest path between visits.

Step 14 The display paths function

void RoutingSolver::displayPaths(IloDispatcherGraph graph) {
 _env.out() << "Paths" << endl;
 for (IloIterator<IloVehicle> iter1(_env); iter1.ok(); ++iter1) {
 IloVehicle vehicle = *iter1;
 IloVisit visit1 = vehicle.getFirstVisit();
 for (IloDispatcher::RouteIterator iter2(_dispatcher, vehicle);
 iter2.ok();
 ++iter2) {
 IloVisit visit2 = *iter2;
 if (visit1 != visit2) {
 _env.out() << visit1.getName() << " {"
 << graph.getLocation(visit1.getStartNode())
 .getIndex();
 for (IloDispatcherGraph::PathIterator iter3(graph,
 visit1.getEndNode(),
 visit2.getStartNode(),
 vehicle);
 iter3.ok();
 ++iter3) {
 _env.out() << " -> " << (*iter3).getIndex();
 }
 _env.out() << "} -> ";
 visit1 = visit2;
 }
 }
 _env.out() << vehicle.getLastVisit().getName() << endl;
 }
 _env.out() << endl;
}

370 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
Finally, main calls these functions.

Add the following code after the comment //Add the main function.

Note that three sets of results are displayed: a set before and a set after the first
modifyFilterLevelAndRestore function is called to change the propagation to
IlcMedium, and one set after modifyGraphArcCost is called, increasing the cost of
certain arcs.

The complete program and output are presented in “Complete Program” on page 375.

Step 15 Add the main function

int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 if (solver.findFirstSolution()) {
 solver.printInformation();
 solver.improveWithNHood(250);
 solver.modifyFilterLevelAndRestore();
 solver.printInformation();
 solver.displayPaths(mdl.getGraph());
 mdl.modifyGraphArcCost();
 solver.restoreSolution();
 solver.improveWithNHood(50);
 solver.modifyFilterLevelAndRestore();
 solver.printInformation();
 solver.displayPaths(mdl.getGraph());
 }
 } catch(IloException& ex) {
 cerr << "Error: " << ex << endl;
 }
 env.end();
 return 0;
}

Step 16 Compile and run the program
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 371

First Solution Information

The first solution phase, before improveWithNHood(250) and
modifyFilterLevelAndRestore have been called, finds a solution using 3 vehicles with
a cost of 8100.14 units:

Improved Solution Information

The first solution is improved with improveWithNHood(250) and
modifyFilterLevelAndRestore:

8100.14
Number of fails : 218
Number of choice points : 1048
Number of variables : 1550
Number of constraints : 197
Reversible stack (bytes) : 132684
Solver heap (bytes) : 715840
Solver global heap (bytes) : 83476
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1011572
Elapsed time since creation : 1.602
Number of nodes : 52
Number of visits : 55
Number of vehicles : 5
Number of dimensions : 3
Number of accepted moves : 0
===============
Cost : 8100.14
Number of vehicles used : 3

Improving solution
Improving with first-accept GLS

Cost = 7781.68
Cost = 7712.67
Cost = 7616.17
Cost = 7592.99

372 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Solve
The solution improvement phase continues lowering the cost until it finds a solution using 3
vehicles with a cost of 7413.03 units:

Solution Information with Modified Arc Costs

Now the problem is solved a second time. The cost is modified with modifyGraphArcCost
and then reoptimized with improveWithNHood(50). Note that the modified cost is large
until the solution is improved.

Cost = 7546.96
Cost = 7546.96

Number of fails : 0
Number of choice points : 0
Number of variables : 2086
Number of constraints : 601
Reversible stack (bytes) : 221124
Solver heap (bytes) : 1636420
Solver global heap (bytes) : 99556
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 18172
Total memory used (bytes) : 2043684
Elapsed time since creation : 0.13
Number of nodes : 52
Number of visits : 55
Number of vehicles : 5
Number of dimensions : 3
Number of accepted moves : 193
===============
Cost : 7413.03
Number of vehicles used : 3

Modified cost: 8311.26
Improving solution
Improving with first-accept GLS

Cost = 7506.89
Cost = 7482.83

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 373

This solution improvement phase continues lowering the cost until it finds a solution using 3
vehicles with a cost of 7459.55 units:

Review Exercises

For answers, see “Suggested Answers” on page 374.

1. How do you create an arc visit, instead of a visit to a single node?

2. What is the class name of the guided local search metaheuristic in Dispatcher?

3. What do the functions IloCouple and IloDecouple do?

Suggested Answers

Exercise 1

How do you create an arc visit, instead of a visit to a single node?

Suggested Answer

You pass two node names to the IloVisit constructor instead of just one node name.

Cost = 7626.4

Number of fails : 0
Number of choice points : 0
Number of variables : 2086
Number of constraints : 601
Reversible stack (bytes) : 221124
Solver heap (bytes) : 1636420
Solver global heap (bytes) : 99556
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 18172
Total memory used (bytes) : 2043684
Elapsed time since creation : 0.12
Number of nodes : 52
Number of visits : 55
Number of vehicles : 5
Number of dimensions : 3
Number of accepted moves : 230
===============
Cost : 7459.55
Number of vehicles used : 3
374 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
Exercise 2

What is the class name of the guided local search metaheuristic in Dispatcher?

Suggested Answer

IloDispatcherGLS.

Exercise 3

What do the functions IloCouple and IloDecouple do?

Suggested Answer

The functions IloCouple and IloDecouple are used to connect and disconnect a
neighborhood to a metaheuristic, in this example, to IloDispatcherGLS. The
neighborhood must be coupled to an instance of IloDispatcherGLS, otherwise an
exception is thrown when you try to use the instance in the search.

Complete Program

The complete program follows. You can also view it online in the file
YourDispatcherHome/examples/src/carp.cpp.

// -- -*- C++ -*-
// File: examples/src/carp.cpp
// --

#include <ildispat/ilodispatcher.h>

ILOSTLBEGIN

///
// Modeling
class RoutingModel {
 IloEnv _env;
 IloModel _mdl;
 IloDispatcherGraph _graph;
 IloDimension2 _time;
 IloDimension2 _distance;
 IloDimension1 _weight;

 void addDimensions();
 void loadGraphInformation (char* arcFileName);
 void CreateIloNodes(char* nodeFileName, char* coordFileName);
 void CreateVehicles(char* vehicleFileName);
 void CreateVisits(char* visitsFileName);

public:
 RoutingModel(IloEnv env, int argc, char* argv[]);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 375

 ~RoutingModel() {}
 IloEnv getEnv() const { return _env; }
 IloModel getModel() const { return _mdl; }
 void modifyGraphArcCost();
 IloDispatcherGraph getGraph() const { return _graph; }
};

RoutingModel::RoutingModel(IloEnv env,
 int argc,
 char* argv[]):
 _env(env), _mdl(env), _graph(env) {
 addDimensions();

 // load dispatcher graph information from file and add instance-specific
features
 char * arcFileName;
 if(argc < 5) arcFileName = (char *) “../../../examples/data/
dispatcherGraphData/gridNetwork.csv”;
 else arcFileName = argv[4];

 loadGraphInformation (arcFileName);

//create IloNodes
 char * nodeFileName;
 if(argc < 4) nodeFileName = (char *) “../../../examples/data/carp/
nodes.csv”;
 else nodeFileName = argv[3];
 char * nodeCoordsFile;
 if(argc < 6) nodeCoordsFile = (char *) “../../../examples/data/carp/
coordTable.csv”;
 else nodeCoordsFile = argv[5];
 CreateIloNodes(nodeFileName, nodeCoordsFile);

 //create vehicles
 char * vehiclesFileName;
 if(argc < 2) vehiclesFileName = (char *) “../../../examples/data/carp/
vehicles.csv”;
 else vehiclesFileName = argv[1];
 CreateVehicles(vehiclesFileName);

 //create visits
 char * visitsFileName;
 if(argc < 3) visitsFileName = (char *) “../../../examples/data/carp/
visits.csv”;
 else visitsFileName = argv[2];
 CreateVisits(visitsFileName);
}

// Create distance functions for dimensions, add dimensions to model
void RoutingModel::addDimensions() {
 _weight =IloDimension1 (_env, “weight”);
 _mdl.add(_weight);

 IloDistance SP_time = IloGraphDistance (_graph);
 _time =IloDimension2 (_env, SP_time, “time”);
 _mdl.add(_time);

 IloDistance SP_distance = IloGraphDistance (_graph);
376 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 _distance =IloDimension2 (_env, SP_distance, “distance”);
 _mdl.add(_distance);
}

// load network topology and travel costs from files.
void RoutingModel::loadGraphInformation (char* arcFileName) {
 _graph.createArcsFromFile (arcFileName);
 _graph.loadArcDimensionDataFromFile (arcFileName, _time);
 _graph.loadArcDimensionDataFromFile (arcFileName, _distance);
}

//create IloNodes
void RoutingModel::CreateIloNodes(char* nodeFileName, char* coordFileName) {
 IloCsvReader csvNodeReader(_env, nodeFileName);
 IloCsvReader::LineIterator it(csvNodeReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * name = line.getStringByHeader(“name”);
 IloNode node(_env, line.getFloatByHeader(“x”),
 line.getFloatByHeader(“y”), 0, name);
 node.setKey(name);

 _graph.associateByCoordsInFile (node, coordFileName);

 ++it;
 }
 csvNodeReader.end();
}

//create vehicles
void RoutingModel::CreateVehicles(char* vehicleFileName) {
 IloCsvReader csvVehicleReader(_env, vehicleFileName);
 IloCsvReader::LineIterator it(csvVehicleReader);
 while(it.ok()) {
 IloCsvLine line = *it;
 char * namefirst = line.getStringByHeader(“first”);
 char * namelast = line.getStringByHeader(“last”);
 char * name = line.getStringByHeader(“name”);
 IloNum capacity = line.getFloatByHeader(“capacity”);

 IloNum costRatio = line.getFloatByHeader(“costRatio”);

 IloNode node1 = IloNode::Find(_env, namefirst);
 IloNode node2 = IloNode::Find(_env, namelast);
 IloVisit first(node1, “depot”);
 _mdl.add(first.getCumulVar(_distance) == 0);
 _mdl.add(first.getCumulVar(_time) == 0);
 IloVisit last(node2, “depot”);
 IloVehicle vehicle(first, last, name);

 vehicle.setCost(_time, 100 * costRatio);
 vehicle.setCost(_distance, 100 * (1- costRatio));
 vehicle.setCapacity(_weight, capacity);
 _mdl.add(vehicle);

 ++it;
 }
 csvVehicleReader.end();
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 377

}

//create visits
void RoutingModel::CreateVisits(char* visitsFileName) {
 IloCsvReader csvVisitReader(_env, visitsFileName);
 IloCsvReader::LineIterator it(csvVisitReader);
 char c = ‘s’;
 while(it.ok()){
 IloCsvLine line = *it;
 //read visit data from files
 char * visitName = line.getStringByHeader(“name”);
 char * nodeName1 = line.getStringByHeader(“nodeName1”);
 char * nodeName2 = line.getStringByHeader(“nodeName2”);
 IloInt symmetric = line.getIntByHeader(“symmetric”);
 IloNum quantity = line.getFloatByHeader(“quantity”);
 IloNum timeValue = line.getFloatByHeader(“time”);
 IloNum distanceValue = line.getFloatByHeader(“distance”);

 IloNode node1 = IloNode::Find(_env, nodeName1);
 IloNode node2 = IloNode::Find(_env, nodeName2);

 IloVisit visit1(node1, node2, visitName);
 _mdl.add(visit1.getTransitVar(_weight) == quantity);
 _mdl.add(visit1.getDelayVar(_time) == timeValue);
 _mdl.add(visit1.getDelayVar(_distance) == distanceValue);
 _mdl.add(visit1);
 if(symmetric) {
 visit1.setPenaltyCost(0);
 char visitName2[16];
 sprintf(visitName2, “%s%c”, visitName, c);
 IloVisit visit2(node2, node1, visitName2);
 _mdl.add(visit2.getTransitVar(_weight) == quantity);
 _mdl.add(visit2.getDelayVar(_time) == timeValue);
 _mdl.add(visit2.getDelayVar(_distance) == distanceValue);
 visit2.setPenaltyCost(0);
 _mdl.add(visit2);
 _mdl.add(visit1.performed() + visit2.performed() == 1);

 }
 ++it;
 }
 csvVisitReader.end();
}

 // Modify problem set-up by modifying the cost of un arc in the graph

void RoutingModel::modifyGraphArcCost() {
 IloDispatcherGraph::Arc arc1 = _graph.getArc(3916); //Arc from 1043 to 987
 IloDispatcherGraph::Arc arc2 = _graph.getArc(4134); //Arc from 1043 to 1042
 IloDispatcherGraph::Arc arc3 = _graph.getArc(4136); //Arc from 1043 to 1044
 IloDispatcherGraph::Arc arc4 = _graph.getArc(4137); //Arc from 1043 to 1099

 _graph.setArcCost(arc1, _time, 10);
 _graph.setArcCost(arc2, _time, 10);
 _graph.setArcCost(arc3, _time, 10);
 _graph.setArcCost(arc4, _time, 10);
}

378 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
///
// Solving
class RoutingSolver {
 IloModel _mdl;
 IloSolver _solver;
 IloRoutingSolution _solution;
 IloEnv _env;
 IloDispatcher _dispatcher;
 IloGoal _instantiateCost;
 IloGoal _restoreSolution;
 IloGoal _goal;

 void greedyImprove(IloNHood nhood, IloGoal subGoal);
 void improve(IloGoal subgoal);
 void improveWithFastGLS(IloNHood nhood, IloInt nbOfIter, IloGoal subgoal);
public:
 RoutingSolver(RoutingModel mdl);
 ~RoutingSolver() {}
 IloRoutingSolution getSolution() const { return _solution; }
 void printInformation() const;
 IloBool findFirstSolution();
 void improveWithNHood(IloInt nbIter);
 void modifyFilterLevelAndRestore();
 void restoreSolution();
 void displayPaths(IloDispatcherGraph graph);
};

RoutingSolver::RoutingSolver(RoutingModel mdl):
 _mdl(mdl.getModel()),
 _solver(mdl.getModel()),
 _solution(mdl.getModel()),
 _env(mdl.getEnv()),
 _dispatcher(_solver) {
 _instantiateCost = IloGoal (IloDichotomize(_env, _dispatcher.getCostVar(),
IloFalse));
 _restoreSolution = IloGoal(IloRestoreSolution(_env, _solution));
 _goal = IloGoal(IloSavingsGenerate(_env) && _instantiateCost);
 }

// Solving : find first solution
IloBool RoutingSolver::findFirstSolution() {
 if (!_solver.solve(_goal)) {
 _solver.error() << “Infeasible Routing Plan” << endl;
 return IloFalse;
 }
 _solver.out() << _dispatcher.getTotalCost() << endl;
 _solution.store(_solver);
 return IloTrue;
}

// Improve solution using nhood
void RoutingSolver::greedyImprove(IloNHood nhood, IloGoal subGoal) {
 _solver.out() << “Improving solution” << endl;
 nhood.reset();
 IloGoal improve = IloSingleMove(_env,
 _solution,
 nhood,
 IloImprove(_env),
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 379

 subGoal);
 while (_solver.solve(improve)) {}
}

// Modify dispatcher filter level and resolve
void RoutingSolver::modifyFilterLevelAndRestore() {
 _dispatcher.setFilterLevel(IlcMedium);
 IloNum cost = _solution.getObjectiveValue();
 _solver.solve(_restoreSolution
 && IloSetMax(_env, _dispatcher.getCostVar(), cost));
 _dispatcher.setFilterLevel(IlcLow);
}

// Modify graph arc cost and resolve
void RoutingSolver::restoreSolution() {
 _solver.solve(_restoreSolution && _instantiateCost);
 _solution.store(_solver);
 _solver.out() << “Modified cost: “ << _dispatcher.getTotalCost() << endl;
}

void RoutingSolver::improveWithFastGLS(IloNHood nhood,
 IloInt nbOfIter,
 IloGoal instantiateCost) {
 nhood.reset();
 _solver.out() << “Improving with first-accept GLS” << endl;
 IloRoutingSolution rsol = _solution.makeClone(_env);
 IloRoutingSolution best = _solution.makeClone(_env);
 IloDispatcherGLS dgls(_env, 0.2);
 IloGoal move = IloSingleMove(_env, rsol, nhood, dgls, instantiateCost);
 move = move && IloStoreBestSolution(_env, best);
 IloNumVar costVar = _dispatcher.getCostVar();
 IloCouple(nhood, dgls);
 for (IloInt i = 0; i < nbOfIter; i++) {
 if (_solver.solve(move)) {
 _solver.out() << “Cost = “ << _solver.getMax(costVar) << endl;
 } else {
 _solver.out() << “---” << endl;
 if (dgls.complete()) break;
 }
 }
 _solver.out() << endl;
 IloDecouple(nhood, dgls);
 IloGoal restoreSolution = IloRestoreSolution(_env, best) && instantiateCost;
 _solver.solve(restoreSolution);
 _solution.store(_solver);
 rsol.end();
 best.end();
 dgls.end();
}

// Display Dispatcher information
void RoutingSolver::printInformation() const {
 _solver.printInformation();
 _dispatcher.printInformation();
 _solver.out() << “===============” << endl
 << “Cost : “ << _dispatcher.getTotalCost() << endl
 << “Number of vehicles used : “
 << _dispatcher.getNumberOfVehiclesUsed() << endl
380 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
 << “Solution : “ << endl
 << _dispatcher << endl;
}

// Solving
void RoutingSolver::improveWithNHood(IloInt nbIter) {
 IloNHood nhood = IloTwoOpt(_env)
 + IloOrOpt(_env)
 + IloRelocate(_env)
 + IloExchange(_env)
 + IloCross(_env)
 + IloSwapPerform(_env);

 greedyImprove(nhood, _instantiateCost);
 improveWithFastGLS(nhood, nbIter, _instantiateCost);
}

void RoutingSolver::displayPaths(IloDispatcherGraph graph) {
 _env.out() << “Paths” << endl;
 for (IloIterator<IloVehicle> iter1(_env); iter1.ok(); ++iter1) {
 IloVehicle vehicle = *iter1;
 IloVisit visit1 = vehicle.getFirstVisit();
 for (IloDispatcher::RouteIterator iter2(_dispatcher, vehicle);
 iter2.ok();
 ++iter2) {
 IloVisit visit2 = *iter2;
 if (visit1 != visit2) {
 _env.out() << visit1.getName() << “ {“
 << graph.getLocation(visit1.getStartNode())
 .getIndex();
 for (IloDispatcherGraph::PathIterator iter3(graph,
 visit1.getEndNode(),
 visit2.getStartNode(),
 vehicle);
 iter3.ok();
 ++iter3) {
 _env.out() << “ -> “ << (*iter3).getIndex();
 }
 _env.out() << “} -> “;
 visit1 = visit2;
 }
 }
 _env.out() << vehicle.getLastVisit().getName() << endl;
 }
 _env.out() << endl;
}

///
int main(int argc, char * argv[]) {
 IloEnv env;
 try {
 RoutingModel mdl(env, argc, argv);
 RoutingSolver solver(mdl);
 if (solver.findFirstSolution()) {
 solver.printInformation();
 solver.improveWithNHood(250);
 solver.modifyFilterLevelAndRestore();
 solver.printInformation();
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 381

 solver.displayPaths(mdl.getGraph());
 mdl.modifyGraphArcCost();
 solver.restoreSolution();
 solver.improveWithNHood(50);
 solver.modifyFilterLevelAndRestore();
 solver.printInformation();
 solver.displayPaths(mdl.getGraph());
 }
 } catch(IloException& ex) {
 cerr << “Error: “ << ex << endl;
 }
 env.end();
 return 0;
}

Complete Output

//output

/**
8100.14
Number of fails : 218
Number of choice points : 1048
Number of variables : 1550
Number of constraints : 197
Reversible stack (bytes) : 132684
Solver heap (bytes) : 715840
Solver global heap (bytes) : 83476
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
Constraint queue (bytes) : 11160
Total memory used (bytes) : 1011572
Elapsed time since creation : 1.602
Number of nodes : 52
Number of visits : 55
Number of vehicles : 5
Number of dimensions : 3
Number of accepted moves : 0
===============
Cost : 8100.14
Number of vehicles used : 3
Solution :
Unperformed visits : visit2 visit3s visit4s visit6 visit7s visit9s visit10
visit11s visit12 visit14s visit15 visit17s visit19 visit20s visit22s visit23s
visit25 visit26
vehicle1 :
 -> depot weight[0..150] time[0] distance[0] -> visit16 weight[0..4]
time[0.308232..Inf) distance[15..Inf) -> visit19s weight[2..6]
time[3.00777..Inf) distance[61..Inf) -> visit25s weight[11..15]
time[4.14869..Inf) distance[71..Inf) -> visit17 weight[27..31]
time[5.00869..Inf) distance[72..Inf) -> visit13 weight[39..43]
time[5.96301..Inf) distance[82..Inf) -> visit7 weight[62..66]
time[7.40416..Inf) distance[97..Inf) -> visit27 weight[67..71]
time[7.90416..Inf) distance[98..Inf) -> visit6s weight[87..91]
time[8.80905..Inf) distance[105..Inf) -> visit24 weight[90..94]
382 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
time[9.05905..Inf) distance[106..Inf) -> visit4 weight[110..114]
time[9.70781..Inf) distance[111..Inf) -> visit2s weight[129..133]
time[11.265..Inf) distance[127..Inf) -> visit1 weight[136..140]
time[13.1035..Inf) distance[148..Inf) -> depot weight[146..150]
time[14.8287..Inf) distance[185..Inf)
vehicle2 :
 -> depot weight[0..150] time[0] distance[0] -> visit18 weight[0..6]
time[0.559723..Inf) distance[30..Inf) -> visit22 weight[17..23]
time[1.62321..Inf) distance[45..Inf) -> visit21 weight[42..48]
time[2.73992..Inf) distance[72..Inf) -> visit23 weight[65..71]
time[3.70439..Inf) distance[87..Inf) -> visit20 weight[80..86]
time[5.1382..Inf) distance[108..Inf) -> visit26s weight[100..106]
time[6.10098..Inf) distance[122..Inf) -> visit9 weight[119..125]
time[7.15098..Inf) distance[123..Inf) -> visit8 weight[135..141]
time[8.01789..Inf) distance[133..Inf) -> depot weight[144..150]
time[9.35878..Inf) distance[158..Inf)
vehicle3 :
 -> depot weight[0..150] time[0] distance[0] -> visit15s weight[0..36]
time[0.380972..Inf) distance[14..Inf) -> visit14 weight[8..44]
time[1.97156..Inf) distance[25..Inf) -> visit12s weight[28..64]
time[3.86793..Inf) distance[33..Inf) -> visit11 weight[47..83]
time[5.03332..Inf) distance[45..Inf) -> visit3 weight[59..95]
time[6.29017..Inf) distance[60..Inf) -> visit5 weight[72..108]
time[7.87694..Inf) distance[83..Inf) -> visit10s weight[98..134]
time[9.99977..Inf) distance[127..Inf) -> depot weight[114..150]
time[11.2586..Inf) distance[148..Inf)
vehicle4 : Unused
vehicle5 : Unused
Improving solution
Improving with first-accept GLS

Cost = 7781.68
Cost = 7712.67
Cost = 7616.17
Cost = 7592.99

Cost = 7616.02
Cost = 7549.36
Cost = 7573.36
Cost = 7502.99
Cost = 7479.5

Cost = 7456.5

Cost = 7552.36
Cost = 7529.36
Cost = 7505.91
Cost = 7482.26
Cost = 7458.55
Cost = 7433.43

Cost = 7456.43

Cost = 7433.43
Cost = 7433.43

Cost = 7456.43
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 383

Cost = 7433.43

Cost = 7575.43
Cost = 7551.78
Cost = 7528.07
Cost = 7502.95

Cost = 7479.95

Cost = 7526.15

Cost = 7549.15
Cost = 7618.33
Cost = 7505.86
Cost = 7482.68
Cost = 7482.68

Cost = 7505.73

Cost = 7482.68

Cost = 7436.48
Cost = 7413.03

Cost = 7459.74
Cost = 7459.72
Cost = 7459.66

Cost = 7530.93
Cost = 7530.68
Cost = 7513.94
Cost = 7490.93

Cost = 7514.11

Cost = 7632.87
Cost = 7609.22
Cost = 7585.51
Cost = 7560.39
Cost = 7560.39

Cost = 7652.79
Cost = 7652.4
Cost = 7536.94
Cost = 7629.74
Cost = 7629.59
Cost = 7627.35
Cost = 7649.45
Cost = 7625.07
Cost = 7581.32
Cost = 7558.23
Cost = 7558.16

Cost = 7558.99
Cost = 7535.9
Cost = 7512.85
Cost = 7489.67
384 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
Cost = 7489.32
Cost = 7489.24

Cost = 7512.29

Cost = 7489.24

Cost = 7627.91
Cost = 7696
Cost = 7672.91
Cost = 7649.86
Cost = 7626.83
Cost = 7626.48
Cost = 7626.4

Cost = 7558.16

Cost = 7581.21

Cost = 7558.16

Cost = 7558.99
Cost = 7535.9
Cost = 7581.25

Cost = 7535.9
Cost = 7512.85
Cost = 7512.5
Cost = 7512.42

Cost = 7604.73
Cost = 7581.64
Cost = 7558.59
Cost = 7558.23

Cost = 7626.56
Cost = 7602.18
Cost = 7602.11

Cost = 7738.97
Cost = 7715.52

Cost = 7738.99
Cost = 7625.16
Cost = 7697
Cost = 7696.8
Cost = 7652.02
Cost = 7605.16
Cost = 7582.11
Cost = 7581.99
Cost = 7558.28

Cost = 7581.46
Cost = 7649.54

Cost = 7581.46

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 385

Cost = 7558.28
Cost = 7558.28

Cost = 7581.46

Cost = 7650.46
Cost = 7650.29
Cost = 7558.28

Cost = 7627.13
Cost = 7603.84

Cost = 7626.9
Cost = 7581.39
Cost = 7558.11

Cost = 7561.15
Cost = 7538.1
Cost = 7514.92
Cost = 7491.21
Cost = 7466.09
Cost = 7466.1

Cost = 7536.55
Cost = 7515.17
Cost = 7514.81
Cost = 7514.74
Cost = 7491.1
Cost = 7465.98

Cost = 7604.65
Cost = 7581.6
Cost = 7558.42
Cost = 7558.06
Cost = 7558.06

Cost = 7626.18
Cost = 7601.8
Cost = 7601.73

Cost = 7579.64

Cost = 7603.51
Cost = 7580.46
Cost = 7557.28
Cost = 7533.22
Cost = 7533.23

Cost = 7509.93

Cost = 7670.08
Cost = 7646.64
Cost = 7556.28

Cost = 7646.64

Cost = 7623.28
386 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
Cost = 7556.28
Cost = 7533.54
Cost = 7510.49

Cost = 7532.81
Cost = 7512.71
Cost = 7489.07

Cost = 7557.27
Cost = 7532.88
Cost = 7532.81

Cost = 7649.13
Cost = 7672.02
Cost = 7648.97
Cost = 7625.79
Cost = 7625.79

Cost = 7697.6
Cost = 7652.79
Cost = 7629.5
Cost = 7582.3
Cost = 7581.94
Cost = 7581.82

Cost = 7650.54
Cost = 7626.9

Cost = 7603.84

Cost = 7620.59

Cost = 7572.57
Cost = 7572.36
Cost = 7525.99
Cost = 7525.94

Cost = 7572.65
Cost = 7572.64
Cost = 7731.5
Cost = 7708.5
Cost = 7593.25
Cost = 7570.03
Cost = 7569.96

Cost = 7546.96
Cost = 7546.96

Number of fails : 0
Number of choice points : 0
Number of variables : 2086
Number of constraints : 601
Reversible stack (bytes) : 221124
Solver heap (bytes) : 1636420
Solver global heap (bytes) : 99556
And stack (bytes) : 20124
Or stack (bytes) : 44244
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 387

Search Stack (bytes) : 4044
Constraint queue (bytes) : 18172
Total memory used (bytes) : 2043684
Elapsed time since creation : 0.13
Number of nodes : 52
Number of visits : 55
Number of vehicles : 5
Number of dimensions : 3
Number of accepted moves : 193
===============
Cost : 7413.03
Number of vehicles used : 3
Solution :
Unperformed visits : visit2 visit3s visit4s visit6 visit7s visit9s visit10
visit11 visit12 visit14s visit15 visit17s visit19 visit20 visit22s visit23s
visit25 visit26
vehicle1 :
 -> depot weight[0..150] time[0] distance[0] -> visit25s weight[0..2]
time[0.503581..0.503581] distance[21..21] -> visit17 weight[16..18]
time[1.36358..1.36358] distance[22..22] -> visit13 weight[28..30]
time[2.3179..2.3179] distance[32..32] -> visit6s weight[51..53]
time[3.68681..3.68681] distance[43..43] -> visit24 weight[54..56]
time[3.93681..3.93681] distance[44..44] -> visit4 weight[74..76]
time[4.58557..4.58557] distance[49..49] -> visit7 weight[93..95]
time[5.97477..5.97477] distance[55..55] -> visit27 weight[98..100]
time[6.47477..6.47477] distance[56..56] -> visit2s weight[118..120]
time[7.51843..7.51843] distance[71..71] -> visit1 weight[125..127]
time[9.35692..9.35692] distance[92..92] -> visit3 weight[135..137]
time[10.6721..10.6721] distance[111..111] -> depot weight[148..150]
time[12.2627..12.2627] distance[129..129]
vehicle2 :
 -> depot weight[0..150] time[0] distance[0] -> visit15s weight[0..5]
time[0.380972..0.380972] distance[14..14] -> visit14 weight[8..13]
time[1.97156..1.97156] distance[25..25] -> visit12s weight[28..33]
time[3.86793..3.86793] distance[33..33] -> visit11s weight[47..52]
time[5.01769..5.01769] distance[44..44] -> visit5 weight[59..64]
time[6.54135..6.54135] distance[75..75] -> visit16 weight[85..90]
time[8.25959..8.25959] distance[95..95] -> visit18 weight[87..92]
time[10.3843..10.3843] distance[110..110] -> visit22 weight[104..109]
time[11.4478..11.4478] distance[125..125] -> visit10s weight[129..134]
time[12.5504..12.5504] distance[151..151] -> depot weight[145..150]
time[13.8091..13.8091] distance[172..172]
vehicle3 :
 -> depot weight[0..150] time[0] distance[0] -> visit21 weight[0..39]
time[0.589454..0.589454] distance[30..30] -> visit23 weight[23..62]
time[1.55392..1.55392] distance[45..45] -> visit19s weight[38..77]
time[2.91295..2.91295] distance[61..61] -> visit20s weight[47..86]
time[4.16945..4.16945] distance[79..79] -> visit26s weight[67..106]
time[5.1485..5.1485] distance[94..94] -> visit9 weight[86..125]
time[6.1985..6.1985] distance[95..95] -> visit8 weight[102..141]
time[7.0654..7.0654] distance[105..105] -> depot weight[111..150]
time[8.4063..8.4063] distance[130..130]
vehicle4 : Unused
vehicle5 : Unused
Paths
depot {1995 -> 1995 -> 2051 -> 2107 -> 2163 -> 2219 -> 2275 -> 2331 -> 2330 ->
2329 -> 2328 -> 2327 -> 2326 -> 2325 -> 2324 -> 2323 -> 2322 -> 2321 -> 2320 ->
2319 -> 2318 -> 2317 -> 2316} -> visit25s {2316 -> 2260} -> visit17 {2260 ->
388 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
2134 -> 2133 -> 2077 -> 2021 -> 1965 -> 1909 -> 1853 -> 1797 -> 1741 -> 1685} -
> visit13 {1685 -> 1684 -> 1628 -> 1572 -> 1516 -> 1460 -> 1404 -> 1348 -> 1292
-> 1236 -> 1237 -> 1238} -> visit6s {1238 -> 1182} -> visit24 {1182 -> 1126 ->
1127 -> 1128 -> 1129 -> 1130} -> visit4 {1130 -> 1186 -> 1242 -> 1298 -> 1354 -
> 1355 -> 1356} -> visit7 {1356 -> 1300} -> visit27 {1300 -> 1244 -> 1188 ->
1132 -> 1076 -> 1020 -> 964 -> 908 -> 852 -> 796 -> 740 -> 684 -> 628 -> 629 ->
630 -> 631} -> visit2s {631 -> 575 -> 519 -> 463 -> 407 -> 351 -> 295 -> 296 ->
297 -> 298 -> 299 -> 300 -> 301 -> 302 -> 303 -> 304 -> 305 -> 306 -> 307 ->
308 -> 309 -> 310} -> visit1 {310 -> 254 -> 255 -> 256 -> 257 -> 258 -> 259 ->
315 -> 371 -> 427 -> 483 -> 539 -> 595 -> 651 -> 707 -> 763 -> 819 -> 875 ->
931 -> 987} -> visit3 {987 -> 1043 -> 1099 -> 1155 -> 1211 -> 1267 -> 1323 ->
1379 -> 1435 -> 1491 -> 1547 -> 1603 -> 1659 -> 1715 -> 1771 -> 1827 -> 1883 ->
1939 -> 1995} -> depot
depot {1995 -> 1995 -> 1939 -> 1883 -> 1827 -> 1771 -> 1715 -> 1714 -> 1713 ->
1712 -> 1711 -> 1710 -> 1709 -> 1708 -> 1707 -> 1706} -> visit15s {1706 -> 1705
-> 1704 -> 1703 -> 1702 -> 1701 -> 1700 -> 1699 -> 1698 -> 1697 -> 1696 ->
1695} -> visit14 {1695 -> 1639 -> 1583 -> 1527 -> 1528 -> 1529 -> 1530 -> 1531
-> 1532} -> visit12s {1532 -> 1476 -> 1477 -> 1478 -> 1479 -> 1480 -> 1481 ->
1482 -> 1483 -> 1484 -> 1485 -> 1486} -> visit11s {1486 -> 1430 -> 1431 -> 1432
-> 1433 -> 1434 -> 1435 -> 1436 -> 1437 -> 1438 -> 1439 -> 1440 -> 1441 -> 1442
-> 1443 -> 1444 -> 1445 -> 1446 -> 1447 -> 1448 -> 1449 -> 1450 -> 1451 -> 1452
-> 1453 -> 1454 -> 1455 -> 1399 -> 1343 -> 1287 -> 1231 -> 1175} -> visit5
{1175 -> 1231 -> 1287 -> 1343 -> 1399 -> 1455 -> 1511 -> 1567 -> 1623 -> 1679 -
> 1735 -> 1791 -> 1847 -> 1903 -> 1959 -> 2015 -> 2014 -> 2013 -> 2012 -> 2011
-> 2010} -> visit16 {2010 -> 2066 -> 2067 -> 2068 -> 2069 -> 2070 -> 2071 ->
2127 -> 2183 -> 2239 -> 2295 -> 2351 -> 2407 -> 2463 -> 2519 -> 2575} ->
visit18 {2575 -> 2631 -> 2687 -> 2743 -> 2799 -> 2855 -> 2911 -> 2967 -> 3023 -
> 3079 -> 3135 -> 3191 -> 3247 -> 3303 -> 3359 -> 3415} -> visit22 {3415 ->
3471 -> 3470 -> 3414 -> 3358 -> 3302 -> 3246 -> 3190 -> 3134 -> 3078 -> 3022 ->
2966 -> 2910 -> 2854 -> 2853 -> 2852 -> 2851 -> 2850 -> 2849 -> 2848 -> 2847 ->
2846 -> 2845 -> 2844 -> 2843 -> 2842 -> 2841} -> visit10s {2841 -> 2785 -> 2729
-> 2673 -> 2617 -> 2561 -> 2505 -> 2449 -> 2393 -> 2337 -> 2281 -> 2225 -> 2169
-> 2113 -> 2057 -> 2001 -> 2000 -> 1999 -> 1998 -> 1997 -> 1996 -> 1995} ->
depot
depot {1995 -> 1995 -> 2051 -> 2107 -> 2163 -> 2219 -> 2275 -> 2331 -> 2387 ->
2443 -> 2499 -> 2555 -> 2611 -> 2667 -> 2723 -> 2779 -> 2835 -> 2891 -> 2947 ->
3003 -> 3059 -> 3115 -> 3171 -> 3227 -> 3283 -> 3339 -> 3395 -> 3394 -> 3393 ->
3392 -> 3391 -> 3390} -> visit21 {3390 -> 3389 -> 3445 -> 3501 -> 3557 -> 3613
-> 3669 -> 3668 -> 3667 -> 3666 -> 3665 -> 3664 -> 3663 -> 3662 -> 3661 ->
3660} -> visit23 {3660 -> 3659 -> 3660 -> 3604 -> 3548 -> 3492 -> 3436 -> 3380
-> 3324 -> 3268 -> 3212 -> 3156 -> 3100 -> 3044 -> 2988 -> 2932 -> 2876} ->
visit19s {2876 -> 2820 -> 2876 -> 2932 -> 2988 -> 3044 -> 3100 -> 3156 -> 3155
-> 3154 -> 3153 -> 3152 -> 3151 -> 3150 -> 3149 -> 3148 -> 3147 -> 3146 ->
3145} -> visit20s {3145 -> 3144 -> 3088 -> 3032 -> 2976 -> 2920 -> 2864 -> 2808
-> 2752 -> 2696 -> 2640 -> 2584 -> 2528 -> 2472 -> 2473 -> 2474} -> visit26s
{2474 -> 2418} -> visit9 {2418 -> 2362 -> 2306 -> 2250 -> 2194 -> 2138 -> 2082
-> 2083 -> 2084 -> 2085 -> 2086} -> visit8 {2086 -> 2142 -> 2143 -> 2144 ->
2145 -> 2146 -> 2147 -> 2148 -> 2149 -> 2150 -> 2151 -> 2152 -> 2153 -> 2154 ->
2155 -> 2156 -> 2157 -> 2158 -> 2159 -> 2160 -> 2161 -> 2162 -> 2163 -> 2107 ->
2051 -> 1995} -> depot
depot {1995 -> 1995} -> depot
depot {1995 -> 1995} -> depot
Modified cost: 8311.26
Improving solution
Improving with first-accept GLS

Cost = 7506.89
Cost = 7482.83
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 389

Cost = 7483

Cost = 7482.83

Cost = 7505.88

Cost = 7482.83

Cost = 7529.53
Cost = 7529.52
Cost = 7529.45

Cost = 7600.73
Cost = 7600.48
Cost = 7583.73
Cost = 7655.14
Cost = 7632.13

Cost = 7724.91

Cost = 7779.65
Cost = 7751.15
Cost = 7632.13
Cost = 7560.73

Cost = 7560.9
Cost = 7537.45

Cost = 7560.63

Cost = 7679.39
Cost = 7655.94
Cost = 7632.29
Cost = 7608.58
Cost = 7583.46
Cost = 7583.46

Cost = 7629.59
Cost = 7627.35
Cost = 7649.45
Cost = 7625.07
Cost = 7581.32
Cost = 7558.23
Cost = 7558.16
Cost = 7626.4

Number of fails : 0
Number of choice points : 0
Number of variables : 2086
Number of constraints : 601
Reversible stack (bytes) : 221124
Solver heap (bytes) : 1636420
Solver global heap (bytes) : 99556
And stack (bytes) : 20124
Or stack (bytes) : 44244
Search Stack (bytes) : 4044
390 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Complete Program
Constraint queue (bytes) : 18172
Total memory used (bytes) : 2043684
Elapsed time since creation : 0.12
Number of nodes : 52
Number of visits : 55
Number of vehicles : 5
Number of dimensions : 3
Number of accepted moves : 230
===============
Cost : 7459.55
Number of vehicles used : 3
Solution :
Unperformed visits : visit2 visit3 visit4s visit6 visit7s visit9s visit10
visit11 visit12 visit14s visit15 visit17s visit19 visit20 visit22s visit23s
visit25 visit26
vehicle1 :
 -> depot weight[0..150] time[0] distance[0] -> visit25s weight[0..2]
time[0.503581..0.503581] distance[21..21] -> visit17 weight[16..18]
time[1.36358..1.36358] distance[22..22] -> visit13 weight[28..30]
time[2.3179..2.3179] distance[32..32] -> visit6s weight[51..53]
time[3.68681..3.68681] distance[43..43] -> visit24 weight[54..56]
time[3.93681..3.93681] distance[44..44] -> visit4 weight[74..76]
time[4.58557..4.58557] distance[49..49] -> visit7 weight[93..95]
time[5.97477..5.97477] distance[55..55] -> visit27 weight[98..100]
time[6.47477..6.47477] distance[56..56] -> visit2s weight[118..120]
time[7.51843..7.51843] distance[71..71] -> visit1 weight[125..127]
time[9.35692..9.35692] distance[92..92] -> visit3s weight[135..137]
time[10.6915..10.6915] distance[112..112] -> depot weight[148..150]
time[12.3351..12.3351] distance[133..133]
vehicle2 :
 -> depot weight[0..150] time[0] distance[0] -> visit15s weight[0..5]
time[0.380972..0.380972] distance[14..14] -> visit14 weight[8..13]
time[1.97156..1.97156] distance[25..25] -> visit12s weight[28..33]
time[3.86793..3.86793] distance[33..33] -> visit11s weight[47..52]
time[5.01769..5.01769] distance[44..44] -> visit5 weight[59..64]
time[6.54135..6.54135] distance[75..75] -> visit16 weight[85..90]
time[8.25959..8.25959] distance[95..95] -> visit18 weight[87..92]
time[10.3843..10.3843] distance[110..110] -> visit22 weight[104..109]
time[11.4478..11.4478] distance[125..125] -> visit10s weight[129..134]
time[12.5504..12.5504] distance[151..151] -> depot weight[145..150]
time[13.8091..13.8091] distance[172..172]
vehicle3 :
 -> depot weight[0..150] time[0] distance[0] -> visit21 weight[0..39]
time[0.589454..0.589454] distance[30..30] -> visit23 weight[23..62]
time[1.55392..1.55392] distance[45..45] -> visit19s weight[38..77]
time[2.91295..2.91295] distance[61..61] -> visit20s weight[47..86]
time[4.16945..4.16945] distance[79..79] -> visit26s weight[67..106]
time[5.1485..5.1485] distance[94..94] -> visit9 weight[86..125]
time[6.1985..6.1985] distance[95..95] -> visit8 weight[102..141]
time[7.0654..7.0654] distance[105..105] -> depot weight[111..150]
time[8.4063..8.4063] distance[130..130]
vehicle4 : Unused
vehicle5 : Unused
Paths
depot {1995 -> 1995 -> 2051 -> 2107 -> 2163 -> 2219 -> 2275 -> 2331 -> 2330 ->
2329 -> 2328 -> 2327 -> 2326 -> 2325 -> 2324 -> 2323 -> 2322 -> 2321 -> 2320 ->
2319 -> 2318 -> 2317 -> 2316} -> visit25s {2316 -> 2260} -> visit17 {2260 ->
2134 -> 2133 -> 2077 -> 2021 -> 1965 -> 1909 -> 1853 -> 1797 -> 1741 -> 1685} -
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 391

> visit13 {1685 -> 1684 -> 1628 -> 1572 -> 1516 -> 1460 -> 1404 -> 1348 -> 1292
-> 1236 -> 1237 -> 1238} -> visit6s {1238 -> 1182} -> visit24 {1182 -> 1126 ->
1127 -> 1128 -> 1129 -> 1130} -> visit4 {1130 -> 1186 -> 1242 -> 1298 -> 1354 -
> 1355 -> 1356} -> visit7 {1356 -> 1300} -> visit27 {1300 -> 1244 -> 1188 ->
1132 -> 1076 -> 1020 -> 964 -> 908 -> 852 -> 796 -> 740 -> 684 -> 628 -> 629 ->
630 -> 631} -> visit2s {631 -> 575 -> 519 -> 463 -> 407 -> 351 -> 295 -> 296 ->
297 -> 298 -> 299 -> 300 -> 301 -> 302 -> 303 -> 304 -> 305 -> 306 -> 307 ->
308 -> 309 -> 310} -> visit1 {310 -> 254 -> 255 -> 256 -> 257 -> 258 -> 259 ->
315 -> 371 -> 427 -> 483 -> 539 -> 595 -> 651 -> 707 -> 763 -> 819 -> 875 ->
931 -> 987 -> 1043} -> visit3s {1043 -> 987 -> 988 -> 1044 -> 1100 -> 1156 ->
1212 -> 1268 -> 1324 -> 1380 -> 1436 -> 1492 -> 1548 -> 1604 -> 1660 -> 1716 ->
1772 -> 1828 -> 1884 -> 1940 -> 1996 -> 1995} -> depot
depot {1995 -> 1995 -> 1939 -> 1883 -> 1827 -> 1771 -> 1715 -> 1714 -> 1713 ->
1712 -> 1711 -> 1710 -> 1709 -> 1708 -> 1707 -> 1706} -> visit15s {1706 -> 1705
-> 1704 -> 1703 -> 1702 -> 1701 -> 1700 -> 1699 -> 1698 -> 1697 -> 1696 ->
1695} -> visit14 {1695 -> 1639 -> 1583 -> 1527 -> 1528 -> 1529 -> 1530 -> 1531
-> 1532} -> visit12s {1532 -> 1476 -> 1477 -> 1478 -> 1479 -> 1480 -> 1481 ->
1482 -> 1483 -> 1484 -> 1485 -> 1486} -> visit11s {1486 -> 1430 -> 1431 -> 1432
-> 1433 -> 1434 -> 1435 -> 1436 -> 1437 -> 1438 -> 1439 -> 1440 -> 1441 -> 1442
-> 1443 -> 1444 -> 1445 -> 1446 -> 1447 -> 1448 -> 1449 -> 1450 -> 1451 -> 1452
-> 1453 -> 1454 -> 1455 -> 1399 -> 1343 -> 1287 -> 1231 -> 1175} -> visit5
{1175 -> 1231 -> 1287 -> 1343 -> 1399 -> 1455 -> 1511 -> 1567 -> 1623 -> 1679 -
> 1735 -> 1791 -> 1847 -> 1903 -> 1959 -> 2015 -> 2014 -> 2013 -> 2012 -> 2011
-> 2010} -> visit16 {2010 -> 2066 -> 2067 -> 2068 -> 2069 -> 2070 -> 2071 ->
2127 -> 2183 -> 2239 -> 2295 -> 2351 -> 2407 -> 2463 -> 2519 -> 2575} ->
visit18 {2575 -> 2631 -> 2687 -> 2743 -> 2799 -> 2855 -> 2911 -> 2967 -> 3023 -
> 3079 -> 3135 -> 3191 -> 3247 -> 3303 -> 3359 -> 3415} -> visit22 {3415 ->
3471 -> 3470 -> 3414 -> 3358 -> 3302 -> 3246 -> 3190 -> 3134 -> 3078 -> 3022 ->
2966 -> 2910 -> 2854 -> 2853 -> 2852 -> 2851 -> 2850 -> 2849 -> 2848 -> 2847 ->
2846 -> 2845 -> 2844 -> 2843 -> 2842 -> 2841} -> visit10s {2841 -> 2785 -> 2729
-> 2673 -> 2617 -> 2561 -> 2505 -> 2449 -> 2393 -> 2337 -> 2281 -> 2225 -> 2169
-> 2113 -> 2057 -> 2001 -> 2000 -> 1999 -> 1998 -> 1997 -> 1996 -> 1995} ->
depot
depot {1995 -> 1995 -> 2051 -> 2107 -> 2163 -> 2219 -> 2275 -> 2331 -> 2387 ->
2443 -> 2499 -> 2555 -> 2611 -> 2667 -> 2723 -> 2779 -> 2835 -> 2891 -> 2947 ->
3003 -> 3059 -> 3115 -> 3171 -> 3227 -> 3283 -> 3339 -> 3395 -> 3394 -> 3393 ->
3392 -> 3391 -> 3390} -> visit21 {3390 -> 3389 -> 3445 -> 3501 -> 3557 -> 3613
-> 3669 -> 3668 -> 3667 -> 3666 -> 3665 -> 3664 -> 3663 -> 3662 -> 3661 ->
3660} -> visit23 {3660 -> 3659 -> 3660 -> 3604 -> 3548 -> 3492 -> 3436 -> 3380
-> 3324 -> 3268 -> 3212 -> 3156 -> 3100 -> 3044 -> 2988 -> 2932 -> 2876} ->
visit19s {2876 -> 2820 -> 2876 -> 2932 -> 2988 -> 3044 -> 3100 -> 3156 -> 3155
-> 3154 -> 3153 -> 3152 -> 3151 -> 3150 -> 3149 -> 3148 -> 3147 -> 3146 ->
3145} -> visit20s {3145 -> 3144 -> 3088 -> 3032 -> 2976 -> 2920 -> 2864 -> 2808
-> 2752 -> 2696 -> 2640 -> 2584 -> 2528 -> 2472 -> 2473 -> 2474} -> visit26s
{2474 -> 2418} -> visit9 {2418 -> 2362 -> 2306 -> 2250 -> 2194 -> 2138 -> 2082
-> 2083 -> 2084 -> 2085 -> 2086} -> visit8 {2086 -> 2142 -> 2143 -> 2144 ->
2145 -> 2146 -> 2147 -> 2148 -> 2149 -> 2150 -> 2151 -> 2152 -> 2153 -> 2154 ->
2155 -> 2156 -> 2157 -> 2158 -> 2159 -> 2160 -> 2161 -> 2162 -> 2163 -> 2107 ->
2051 -> 1995} -> depot
depot {1995 -> 1995} -> depot
depot {1995 -> 1995} -> depot

*/
392 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Part IV

Developing Dispatcher Applications

This part consists of the following lessons:

◆ Chapter 16, Designing Dispatcher Models

◆ Chapter 17, Developing Your Own First Solution Heuristics\

◆ Chapter 18, Developing Your Own Neighborhoods

C H A P T E R
16

Designing Dispatcher Models

In this lesson, you will learn how to:

◆ simplify a model

◆ decompose a problem

◆ use other modeling hints

This chapter offers a few design principles gleaned from experienced users of Dispatcher.
These principles are meant to help you to avoid the errors often made by new users of
Dispatcher when they design a model for a problem. Of course, not every problem benefits
from a mechanical application of every principle mentioned in this lesson, but in general
these principles should help you develop robust and efficient Dispatcher examples.

The most important modeling hints are to begin by simplifying your problem and to
decompose a large problem. See “Simplify the model” on page 395 and “Decompose the
problem” on page 396. For other assorted modeling hints, see “Other modeling hints” on
page 406.

Simplify the model

When you begin developing your Dispatcher model, the most important thing you can do is
to simplify the model. If you start by trying to design a model for a complex problem with
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 395

many constraints and a complex cost function, you will be frustrated. You need to
understand where the complexity in your problem is coming from before you can add it to
the model. If you do not, the solution may have a poor quality. After you have developed
your simplified model and found a first solution, you can progressively add the complexity
back to your model.

Try to get your problem to resemble, as closely as possible, one of the distributed examples.
For a vehicle routing problem, try to simplify your problem until it resembles vrp.cpp. For
a pickup-and-delivery problem, do the same with pdp.cpp and likewise for an arc routing
problem and carp.cpp.

How to simplify a problem? Try the following:

◆ Remove as many constraints as possible, including breaks, variable delays, extra
dimensions, and so on. You can keep capacity, time windows, and pickup-and-delivery
constraints in your simplified model.

◆ Remove alternative depots, and so on.

◆ Remove Dispatcher graph functionality.

◆ Simplify the cost function. One useful idea is to linearize the cost function and
overestimate the cost.

Suggested procedure

The following is a suggested procedure for designing a Dispatcher application:

1. Prepare a data set for which you already have a solution and fit it into the csv data
format.

2. Simplify the model following the suggestions in this section.

3. Use a simplified cost function to find a solution and then compute the real cost
afterwards. Compare this real cost to the cost of existing solutions.

4. Add the removed constraints one-by-one back to the model, moving from the simplest to
the most complex. In parallel, restore the complexity to your cost function.

Decompose the problem

There are two main ways to decompose a problem: geographical and temporal. An example
of a geographical decomposition is to preallocate to depots and to create subproblems for
each depot. An example of a temporal decomposition is a problem where technicians return
to their base every night. You create subproblems for each day.
396 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Decompose the problem
Why decompose a problem? The complexity of Dispatcher is O(n2). This empirical
complexity varies, at the very least, with the square of the number of visits. If you have n
visits and k subproblems, you have n/k visits per problem. Therefore, if you decompose the
problem the complexity is reduced to

k(n/k)2 = n2/k

You do pay a price by decomposing the problem. The solution will not be as good as one
found for the whole problem. However, you can overcome this limitation by using an
iterative solution process. Each subproblem is improved and then the whole problem is
improved. This gives you the performance advantages of problem decomposition, while still
allowing you to find a good overall solution.

Into how many subproblems should you decompose your problem? It is most useful to
decompose your problem into logical subproblems based on your problem: number of
depots, number of days, number of weeks, and so on. Even if you decompose into only 2-5
subproblems, you will already see substantial performance advantages.

In Lesson 10, Pickup and Delivery by Multiple Vehicles from Multiple Depots, you
performed a geographical decomposition. You solved subproblems for each depot and then
solved the whole problem. You will use this same technique in this section to solve a
temporal decomposition problem. In this problem, you will solve a technician dispatching
problem by decomposing the problem into subproblems for each day.

Temporal decomposition

To show how to use temporal decomposition, you will solve a technician dispatching
problem. As in Chapter 13, Dispatching Technicians, you will model and solve this problem
using RoutingModel and RoutingSolver classes. There are 5 technicians who must
perform 50 visits over 3 days. There are 5 different skill levels, depending on technician.
Certain visits require technicians of a certain skill level. A SkillCosts class is used to
model costs and maximize the quality of service. If a technician type is well suited to
performing a certain visit, then the cost for that technician/visit pair should be low. If a
technician type is not well suited to performing a visit, the cost for that technician/visit pair
should be high.

You will also create a Day class to create submodels of the problem for each of the 3 days.
One model, an instance of IloModel, per day is maintained. Each of these models contains
the dimensions of the problem and the technicians assigned to work that day. A model of the
whole problem, containing the day submodels, is also maintained.

Note: It is important to be careful of the connections between subproblems in temporal
decompositions. You must be aware of how the days or weeks connect when the whole
problem is solved.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 397

The solution process is iterative. Each day submodel is improved and then the whole
problem is improved. This latter phase is one that can cause visits to migrate from one day to
another. In other words, moves can be performed that cause a technician to perform a visit
on a different day. When the next iteration to improve days begins, a synchronization needs
to be performed. During this synchronization, the submodels are updated with the changes
made during the improvement stage of the whole problem.

Only the parts of this example that are changed from Chapter 13, Dispatching Technicians
are shown here. You can view the complete program and output online in the
YourDispatcherHome/examples/src/technicianDispatching.cpp file.
398 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Decompose the problem
Declare the Day class

The code for the declaration of the Day class follows:

class Day {
private:
 IloEnv _env;
 IloNode _node;
 IloInt _nbOfTechnicians;
 IloInt _capacity;
 IloNum _openTime;
 IloNum _closeTime;
 IloVehicleArray _technicians;
 IloVisitArray _visits;
 IloModel _model;
 IloNHood _nhood;
 IloMetaHeuristic _mh;
 IloInt _index;
 char * _name;

public:
 Day(IloEnv env,
 IloInt index,
 const char *name,
 IloNode node,
 IloInt nbOfTechnicians,
 IloInt capacity,
 IloNum openTime,
 IloNum closeTime);
 ~Day();

 const char* getName() const { return _name;}
 void add(IloExtractable ex) { _model.add(ex); }
 void add(IloVehicle technician) {
 _technicians.add(technician);
 _model.add(technician);
 }
 IloInt getIndex() const { return _index; }
 IloModel getModel() const { return _model; }
 IloVehicleArray getTechnicians() const { return _technicians; }
 IloBool improve(IloSolver solver, IloRoutingSolution rs, IloGoal g);
 void fillModel(IloRoutingSolution rs);

 void createTechnicians(IloDimension2 time, IloDimension1 skillPenalty);
 IloVehicle createOneTechnician (IloInt technicianIndex,
 IloDimension2 time,
 IloDimension1 skillPenalty);
};
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 399

Define the Day constructor

A day is built from an instance of IloEnv and is given a name name:

In order to improve solutions for this day, a neighborhood _nhood and a greedy
metaheuristic _mh are created. As the subproblem of improving the solution for a single day
is likely to be relatively small, five move operators are used in the neighborhood.

A day destructor is also defined:

Define the Day::Improve function

You define a method improve that is used for improving the solution rs passed as an
argument. A solver solver and a goal g to be executed at each move are also passed as
parameters. The number of moves made is returned. First, the neighborhood and greedy
metaheuristic are reset. Then, the improvement goal is created using IloSingleMove. An

Day::Day (IloEnv env,
 IloInt index,
 const char *name,
 IloNode node,
 IloInt nbOfTechnicians,
 IloInt capacity,
 IloNum openTime,
 IloNum closeTime)
 : _env(env),
 _node(node),
 _nbOfTechnicians(nbOfTechnicians),
 _capacity(capacity),
 _openTime(openTime),
 _closeTime(closeTime),
 _technicians(env),
 _visits(env),
 _model(env),
 _index(index) {

 _nhood = IloTwoOpt(env)
 + IloOrOpt(env)
 + IloRelocate(env)
 + IloCross(env)
 + IloExchange(env)
 //+ IloRelocateTours(env)
 ;
 _mh = IloImprove(env);

Day::~Day() {
 _nhood.end();
 _mh.end();
 _technicians.end();
 _visits.end();
 _env.getImpl()->free(_name, sizeof(char) * (strlen(_name) + 1));
}

400 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Decompose the problem
improvement loop is then entered, which stops when no move can improve the cost of the
current solution. Finally, the number of moves made is returned.

Define the Day::fillModel function

The class Day also requires the ability to synchronize its internal model with a routing
solution. To perform this you first empty the model of the visit models which previously
comprised the model. You then scan the solution for the technicians who are working on this
day, and for each one, find out which visits are made by these technicians. These visits (or
more accurately, the models pertaining to these visits) must then be placed in the day model.
You keep track of which visits are in the model in the array _visits.

Define the Day::createOneTechnician function

You add a function to create a technician associated to the day. The technicians have first and
last visits each day. You add side constraints that the technicians must leave the depot after it

IloBool Day::improve(IloSolver solver, IloRoutingSolution rs, IloGoal g) {
 _nhood.reset();
 _mh.reset();
 IloGoal improve = IloSingleMove(_env, rs, _nhood, _mh, g);
 solver.out() << " Optimizing day " << getName() << " "
 << rs.getSolution().getObjectiveValue() << flush;
 IloBool moves = 0;
 while (solver.solve(improve)) ++moves;
 solver.out() << " ---> " << rs.getSolution().getObjectiveValue() << endl;
 return (moves>0);
}

void Day::fillModel(IloRoutingSolution rs) {
 IloInt i;
 for (i = 0; i < _visits.getSize(); i++)
 _model.remove((IloModelI *)_visits[i].getObject());
 _visits.end();
 _visits = IloVisitArray(_env);
 for (i = 0; i < _technicians.getSize(); i++) {
 for (IloRoutingSolution::RouteIterator r(rs, _technicians[i]); r.ok(); ++r)
{
 IloVisit visit = *r;
 if (!visit.isFirstVisit() && !visit.isLastVisit()) {
 _visits.add(visit);
 _model.add((IloModelI*)visit.getObject());
 }
 }
 }
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 401

opens and return to the depot before it closes. You set the cost of the technician. The cost of
each technician is directly proportional to the dimension time and the skillPenalty.

Define the Day::createTechnicians function

You create a function that will be called by RoutingModel::createDays. This loop will
be used to create the technicians assigned to work each day.

Define the RoutingModel::createDays function

You use Concert Technology’s csv reader functionality to input day data from csv files. For
each of the days, you get the number of technicians (nbOfTechnicians), the depot
(nodeName), and its opening and closing times (openTime and closeTime). An array of
pointers to class type Day are created. This array is then populated by a loop that creates the
days. For each day, the function Day::createTechnicians is called to create the
technicians associated with each day and the model containing all dimensions _dimModel is

IloVehicle Day::createOneTechnician(IloInt technicianIndex,
 IloDimension2 time,
 IloDimension1 skillPenalty) {
 char namebuf[128];
 const char* dayName = getName();

 IloVisit first(_node, "depot");
 IloVisit last (_node, "depot");
 sprintf(namebuf, "Technician %ld working on %s", technicianIndex, dayName);
 IloVehicle technician(first, last, namebuf);
 add(technician);
 add(first.getCumulVar(time) >= _openTime);
 add(last.getCumulVar(time) <= _closeTime);
 add(first.getTransitVar(skillPenalty) == 0);
 add(last.getTransitVar(skillPenalty) == 0);
 technician.setCost(time, 1.0);
 technician.setCost(skillPenalty, 1.0);
 technician.setKey(namebuf);

 technician.setObject(this);
 return technician;
}

void Day::createTechnicians(IloDimension2 time,
 IloDimension1 skillPenalty) {
 for (IloInt v=0; v < _nbOfTechnicians; v++) {
 createOneTechnician(v, time, skillPenalty);
 }
}

402 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Decompose the problem
added to the day model. Finally, each day model is added to the model of the whole problem
_mdl.

Define the createSkillCostFunction

The function createSkillCostFunction creates the vehicle array technicians. The
IloCsvReader instance csvVisitSkillsReader reads the skills required at each
customer visit; csvTechSkillsReader reads the skill level of each technician; and
csvSkillCostsReader reads the cost for each technician skill type to perform a visit to a
customer site.

The next section of createSkillCostFunction creates an array of the cost for each visit,
named skillCosts. To create this array, the visit skill required for each visit
(VisitSkillName) is read from a csv file. The cost to make this visit with the various
techSkill levels is read with csvSkillCostsReader as an IloCsvLine costline.

void RoutingModel::createDays(const char* daysFileName) {
 IloCsvReader dayReader(_env, daysFileName);
 _nbOfDays = dayReader.getNumberOfItems();
 _days = new (_env) Day* [_nbOfDays];

 IloInt dayIndex = 0;
 for (IloCsvReader::LineIterator it(dayReader); it.ok(); ++it, ++dayIndex) {
 IloCsvLine line = *it;
 const char* name = line.getStringByHeader("name");
 char * nodeName = line.getStringByHeader("nodeName");
 IloNum openTime = line.getFloatByHeader("openTime");
 IloNum closeTime = line.getFloatByHeader("closeTime");
 IloInt nbOfTechnicians = line.getIntByHeader("nbOfTechnicians");
 IloInt capacity = line.getIntByHeader("capacity");

 IloNode depot = IloNode::Find(_env, nodeName);

 Day* day = new (_env) Day(_env,
 dayIndex,
 name,
 depot,
 nbOfTechnicians,
 capacity,
 openTime,
 closeTime);
 _days[dayIndex] = day;
 }
 dayReader.end();

 IloInt d;
 for (d=0; d < _nbOfDays; ++d) {
 Day* day = _days[d];
 day->createTechnicians(_time, _skillPenalty);
 day->add(_dimModel);
 _mdl.add(day->getModel());
 }

}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 403

Then the value in costline corresponding to the appropriate TechSkillName is stored in
the array skillCosts.

Finally, the IloVehicleToNumFunction constructor associates the values of the array
skillCosts to the vehicle/technicians of the array technicians.

Define the RoutingSolver::improveDays function

If a first solution is found, the solution is improved using local search. You iterate over all
days, using Day::fillModel to populate each model. You then update the cost of the
global solution according to the model of this day. You use Day::improve to attempt to

IloVehicleToNumFunction
SkillCosts::createSkillCostFunction(Day* day,
 IloVisit visit,
 IloCsvReader csvVisitSkillsReader,
 IloCsvReader csvTechSkillsReader,
 IloCsvReader csvSkillCostsReader) {
 IloVehicleArray technicians = day->getTechnicians();
 IloInt size = technicians.getSize();
 IloNumArray skillCosts(_env, size);
 IloCsvLine line1 = csvVisitSkillsReader.getLineByKey(1, visit.getName());
 char* skillName = line1.getStringByHeader("VisitSkillName");
 IloCsvLine costline = csvSkillCostsReader.getLineByKey(1, skillName);
 for (IloInt i = 0; i < size; i++) {
 IloVehicle technician = technicians[i];
 IloCsvLine line2 = csvTechSkillsReader.getLineByKey(1,
technician.getName());
 char * techSkillName = line2.getStringByHeader("TechSkillName");
 skillCosts[i] = costline.getFloatByHeader(techSkillName);
 }
 return IloVehicleToNumFunction(_env, technicians, skillCosts, 0);
}

404 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Decompose the problem
reduce the cost of the routing for this day. Finally, the solution is synchronized with the
global model.

Define the RoutingSolver::improvePlan function

After the routing for all days has been improved independently, the routing for the problem
as a whole is improved. After resetting the neighborhood and greedy metaheuristic, an
improvement loop is entered to improve the cost of all days using the goal _move. If there

IloBool RoutingSolver::improveDays() {
 IloEnv env = getEnv();
 _move =
 IloSingleMove(env, _solution, _nhood, _greedy, _instantiateCost);

 _solver.out() << endl << "Improvement loop" << endl;
 _solver.out() << "================" << endl;
 IloBool improved = IloTrue;
 IloInt nbOfDays= _routing.getNumberOfDays();
 improved = IloFalse;
 for (IloInt d = 0; d < nbOfDays; ++d) {
 Day* day = _routing.getDay(d);
 day->fillModel(_solution);
 syncSolution(day->getModel(), _solution, _instantiateCost);
 if (day->improve(_solver, _solution, _instantiateCost)) {
 improved = IloTrue;
 }
 }
 // sync back to full model.

 syncSolution(_mdl, _solution, _instantiateCost);
 return improved;
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 405

was some improvement, then you go back to an independent improvement of each day.
Otherwise, you leave the main improvement loop.

Other modeling hints

This section lists some other modeling hints that may be useful to you as you design your
Dispatcher application.

In problems where the same truck makes many returns to the depot, you may want to use
shorter routes. For example, if you have the same truck make 10 visits to the depot, you may
end up with a route with 50-100 visits. Since local search complexity is O(n2) of the length
of the route, you may want to split one physical truck into several symbolic trucks. You can
constrain the last visit of truck 1 to be before first visit of truck 2, and so on. This will
improve local search performance.

In problems, such as taxi dispatching and concrete delivery, where vehicles go from one
location to another and are either empty or full, you may want to model these as arc routing
problems. However, if both visits have time windows or other constraints, then they should
be modeled as two nodes. The first solution and local search will see them as a single visit
since the next variable is bound.

IloBool RoutingSolver::improvePlan() {
 _solver.out() << "Optimizing plan "
 << _solution.getSolution().getObjectiveValue()
 << flush;
 _nhood.reset();
 _greedy.reset();
 IloInt nbImproved = 0;
 while (_solver.solve(_move)) { ++nbImproved;}
 _solver.out() << " ---> "
 << _solution.getSolution().getObjectiveValue() << endl;
 return (nbImproved > 0);
}

void RoutingSolver::syncSolution(IloModel mdl, IloSolution s, IloGoal g) {
 _solver.extract(mdl);
 if (!_solver.solve(IloRestoreSolution(_solver.getEnv(), s) && g))
 _solver.out() << "Synchronization failed" << endl;
 else {
 s.store(_solver);
 }
}

void RoutingSolver::syncSolution() {
 syncSolution(_mdl, _solution, _instantiateCost);
}

406 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

C H A P T E R
17

Developing Your Own First Solution
Heuristics

In this lesson, you will learn how to:

◆ decide which predefined first solution heuristics to use

◆ write your own first solution heuristic

◆ use the Dispatcher first solution framework

Dispatcher offers a variety of predefined heuristics for use in generating a first solution. To
better understand which predefined first solution heuristics to use with your problem, see
“Using the predefined first solution heuristics” on page 407. The process of writing a simple
first solution heuristic gives you a better understanding of the concepts. See “Creating your
own first solution heuristic” on page 409. Dispatcher also provides an open framework to
define custom first solution heuristics. See “Using the Dispatcher First Solution Framework”
on page 413

Using the predefined first solution heuristics

This section offers some insights into the relative complexity of the various predefined first
solution heuristics. These hints are meant to help you decide which heuristics to use with
your problem. Of course, every problem is different and no set of guidelines can account for
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 407

all this diversity. A best approach is to start by following these guidelines, but to be flexible
in trying different first solution heuristics. It can also be interesting to try several first
solution methods and to apply local search to these different methods. You may also want to
apply local search to an existing first solution.

If you are not able to create a first solution using the predefined heuristics, you may want to
build your own. In other situations, you may want to build your own first solution heuristic
because your problem has a specific structure that is not reflected in the predefined
heuristics. For example, you may want to load your own trucks first and then load trucks
belonging to contractors. For these situations, you can build your own first solution directly
or using the Dispatcher first solution framework.

Deciding which heuristic to use

The Dispatcher predefined first solution heuristics can be placed in a rough hierarchy based
on performance (with the fastest heuristic listed first):

Sweep > nearest-to-depot > nearest addition > savings > insertion > generate

However, certain problems respond more effectively to certain heuristics. Here are some
general guidelines:

◆ If your vehicles have fixed starting and ending points, use a savings heuristic. Otherwise,
use nearest addition.

◆ If your vehicles have fixed starting and ending points, the problem is not too constrained,
and you have coordinates, use sweep.

◆ When the problem is really hard to solve and not too large, use insertion directly or insert
visits one-by-one using IloInsertVisit. This approach can also be interesting if you
want to update an already existing solution or if you already know the order of some
visits.

◆ Only use generate on small problems.

More hints

The size parameter in the nearest addition and savings heuristics limits the number of
possible next visits to the n-closest one, according to cost. This parameter can lower memory
consumption and also speed up search. The parameter size should be fixed and not
proportional to the size of the problem. A good number to try is something between 50 and
100 visits. As always, testing to find the best fit for your problem and environment works
best.

The parameter mode indicates the behavioral mode of the nearest addition heuristic during
execution. The mode IloNearestAdditionForward extends the route forward from the
first visit. The mode IloNearestAdditionBackward extends the route backward from
the last visit. The mode IloNearestAdditionBoth extends the route simultaneously in
408 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Creating your own first solution heuristic
both directions. In general, it is best to use the backwards mode with outbound problems
(few pickups, many delivery locations). The forwards mode works best with inbound
problems (few deliveries, many pickup locations).

Creating your own first solution heuristic

Although Dispatcher offers a variety of predefined heuristics for use in generating a first
solution, the process of writing a simple one gives you a better understanding of the
concepts. Knowing how to write your own first solution heuristic can also be useful when
facing certain specific problems that the predefined heuristics do not cover. This section
describes how to write your own efficient search goal based on a greedy addition heuristic.

To show how to create your own first solution heuristic, you will solve a PDP problem.
Except for the custom first solution heuristic, you will model and solve this problem in the
same way as shown in Lesson 7, Pickup and Delivery Problems. The only difference is that
you create your own first solution goal and that you call this goal in the
RoutingSolver::solve function instead of a predefined first solution goal. Only the
changed parts of the example are shown in this section. You can view the complete program
and output online in the YourDispatcherHome/examples/src/firstsol.cpp file.

Heuristic Description

For the sake of simplicity, the heuristic chosen supposes that the cost of the vehicles only
depends on one dimension dim. It sequentially builds the routes for the vehicles which have
the largest capacity, extending these routes with the cheapest visits after each step of visit
addition.

Here is how the algorithm works:

1. Select an open vehicle w with the largest capacity. If there is none, the algorithm ends.

2. Start a partial route consisting of the first visit of w. Let vl be the last visit of this partial
route.

3. Find a visit v which minimizes the cost of going from vl to v using vehicle w. If it is not
possible to find such a visit without violating constraints, close the current partial route
of w and go to step 1.

4. Add v to the end of the partial route and let vl = v. Go to step 3.

Building Routes

The goal that builds the route for a given vehicle is the central goal of the search. Given the
addition heuristic approach described in the preceding section, the goal iteratively chooses
visits and tests to see if the selected visit can extend the current partial route.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 409

Visits are chosen in order to minimize the cost increase of the current partial route. This is
done by iterating on the possible successors of the last visit of the current partial route. The
heuristic selects the cheapest visit that is not a first or a last visit and the vehicle variable that
contains the current vehicle.

An internal search tests if the visit can extend the current partial route by checking if the
route can be closed with the addition of the newly selected visit. The goal used for this
search constrains the selected visit to directly follow the last visit of the current route, using
IloDispatcher::setNext(IloVisit, IloVisit), and closes the route using
IloGenerateRoute(IloSolver, IloVehicle). Note that it is better to limit the search
when closing the route to avoid spending too much time proving that the route cannot be
closed.

If the selected visit can extend the route, it is constrained to do so, using
IloDispatcher::setNext(IloVisit, IloVisit), and becomes the new last visit of
the current partial route. The iteration ends when no more visits can be found to extend the
partial route.

IloVisit ChooseCheapestVisit(IloDispatcher dispatcher,
 IloVehicle vehicle,
 IloVisit visit) {
 IloInt vehIndex = dispatcher.getIndex(vehicle);
 IlcIntVar nextVar = dispatcher.getNextVar(visit);
 IloVisit bestVisit;
 IloNum bestCost = IloInfinity;
 for (IlcIntExpIterator iter(nextVar); iter.ok(); ++iter) {
 IloVisit v = dispatcher.getVisit(*iter);
 IloNum cost = dispatcher.getCost(visit, v, vehicle);
 IlcIntVar vehicleVar = dispatcher.getVehicleVar(v);
 if (cost < bestCost
 && !v.isFirstVisit()
 && !v.isLastVisit()
 && vehicleVar.isInDomain(vehIndex)) {
 bestVisit = v;
 bestCost = cost;
 }
 }
 return bestVisit;
}

ILCGOAL3(AddArcTestGoal,
 IloVisit&, visit1,
 IloVisit&, visit2,
 IloVehicle&, vehicle) {
 IloSolver solver = getSolver();
 IloDispatcher dispatcher(solver);
 dispatcher.setNext(visit1, visit2);
 return IloLimitSearch(solver,
 IloGenerateRoute(solver, vehicle),
 IloFailLimit(solver, 100));
}

410 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Creating your own first solution heuristic
Here is the code for generating a route:

Building a Complete Solution

The last goal to be written recursively chooses a vehicle and builds its route. It considers the
visits which have not yet been assigned to any vehicle by the end of the search and marks
those visits as “unperformed.” Choosing a vehicle is done by iterating over all vehicles and
finding one which has an incomplete route and which has the largest capacity for dimension
dim.

ILCGOAL1(Ilc_VehicleGenerateSolution, IloVehicle, vehicle) {
 IloSolver solver = getSolver();
 IloDispatcher dispatcher(solver);
 IloVisit visit1 = vehicle.getFirstVisit();
 IloVisit visit2 = ChooseCheapestVisit(dispatcher, vehicle, visit1);
 IlcGoal testGoal = AddArcTestGoal(solver, visit1, visit2, vehicle);
 while (visit2.getImpl() != 0) {
 if (solver.solve(testGoal, IloTrue)) {
 dispatcher.setNext(visit1, visit2);
 visit1 = visit2;
 } else {
 solver.add(dispatcher.getNextVar(visit1) != dispatcher.getIndex(visit2));
 }
 visit2 = ChooseCheapestVisit(dispatcher, vehicle, visit1);
 }
 solver.solve(IloGenerateRoute(solver, vehicle));
 return 0;
}

IloVehicle ChooseLargestVehicle(IloDispatcher dispatcher, IloDimension1 dim) {
 IloEnv env = dispatcher.getEnv();
 IloVehicle bestVehicle;
 IloNum bestCapacity = - IloInfinity;
 for (IloIterator<IloVehicle> vehIter(env); vehIter.ok(); ++vehIter) {
 IloVehicle vehicle = *vehIter;
 IloNum capa = vehicle.getCapacity(dim);
 if (capa > bestCapacity && !dispatcher.isRouteComplete(vehicle)) {
 bestVehicle = vehicle;
 bestCapacity = capa;
 }
 }
 return bestVehicle;
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 411

Building a route for the selected vehicle is done using the goals described in the preceding
sections. The search ends by making unassigned visits unperformed when all open vehicles
have been used.

In order to have more propagation from the path constraints during search the filter level is
set to IlcBasic.

To use this goal, a subclass of IlcGoal, in your Concert Technology modeling environment
you wrap it using the Solver ILOCPGOALWRAPPER macro.

ILCGOAL0(UnperformVisits) {
 IloSolver solver = getSolver();
 IloDispatcher dispatcher(solver);
 IloEnv env = dispatcher.getEnv();
 for (IloIterator<IloVisit> visIter(env); visIter.ok(); ++visIter) {
 IloVisit visit = *visIter;
 if (!dispatcher.getVehicleVar(visit).isBound())
 solver.add(dispatcher.unperformed(visit));
 }
 return 0;
}

ILCGOAL1(Ilc_GenerateFirstSolution, IloDimension1, dim) {
 IloSolver solver = getSolver();
 IloDispatcher dispatcher(solver);
 dispatcher.setFilterLevel(IlcBasic);
 IloVehicle vehicle = ChooseLargestVehicle(dispatcher, dim);
 if (vehicle.getImpl() == 0) return UnperformVisits(solver);
 return IlcAnd(Ilc_VehicleGenerateSolution(solver, vehicle), this);
}

ILOCPGOALWRAPPER1(GenerateFirstSolution, solver, IloDimension1, dim) {
 return Ilc_GenerateFirstSolution(solver, dim);
}

Note: This approach can be adapted to the user's needs by customizing the functions
selecting the vehicles and the visits.
412 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Using the Dispatcher First Solution Framework
Using the custom first solution goal

The custom first solution goal GenerateFirstSolution is called in the
RoutingSolver::solve function.

Using the Dispatcher First Solution Framework

Dispatcher provides an open framework to define custom first solution heuristics. A first
solution heuristic builds a routing plan by assigning visits (or groups of visits) to vehicles. It
does so by considering elementary decisions, and either rejecting them as infeasible, or
committing them into the solution that is being built.

To show how to use the Dispatcher First Solution Framework to create your own first
solution heuristic, you will solve a PDP problem. Except for creating and using the first
solution framework goal, you will model and solve this problem in the same way as shown
in Lesson 7, Pickup and Delivery Problems. Only the changed parts of the example are
shown in this section. You can view the complete program online in the
YourDispatcherHome/examples/src/fsframepdp.cpp file.

You will perform the following steps to create a first solution framework goal:

◆ Create a decision class PDPDecision with four member functions: make, evaluate,
calcFeasibility, and display.

void RoutingSolver::solve() {
 IloDispatcher dispatcher(_solver);
 IloEnv env = _solver.getEnv();
 IloDimension1 weight = IloDimension1::Find(env, "Weight");
 // Subgoal
 IloGoal instantiateCost = IloDichotomize(env,
 dispatcher.getCostVar(),
 IloFalse);
 IloGoal restoreSolution = IloRestoreSolution(env, _solution);
 IloGoal goal = GenerateFirstSolution(env, weight) && instantiateCost;

 // Solving
 if (findFirstSolution(goal)) {
 improve(instantiateCost);
 _solver.solve(restoreSolution);
 }
}

Note: This example is designed to show how to use the Dispatcher First Solution
Framework. It is not intended to scale for use with problems that have large numbers of
vehicles or orders.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 413

◆ Create a decision maker class PDPDecisionMakerI with three member functions:
init, getBestDecision, and getBestSerialDecision. This class will use the
decision class PDPDecision.

◆ Create a decision tracer class PDPDecisionTracerI.

◆ Create the first solution goal IloPDPFSGoal.

Creating the decision class

First, you create your decision class PDPDecision. This is a subclass of
IloPairDecisionI, an abstract class that is a subclass of
IloSingleVehicleFSDecisionI, involving one vehicle, and a pair of pickup and
delivery visits. This class is dedicated to PDP heuristics.

The abstract class IloSingleVehicleFSDecisionI handles decisions concerning one
vehicle. To simplify the decision comparison process, a cost is associated to decisions,
computed by a new virtual member function called evaluate. Subclassing from this class
requires you to define an evaluate member function. In addition, you will also define the
following member functions: make, calcFeasibility, and display.

The constructor for PDPDecision takes three parameters: a vehicle, a pickup visit, and a
delivery visit.

class PDPDecision : public IloPairDecisionI {

public:
 PDPDecision(IloVehicle vehicle,
 IloVisit pickup, IloVisit delivery);

 virtual void make(IloFSDecisionMakerI * dm);
 virtual IloNum evaluate(IloFSDecisionMakerI* dm) const;
 virtual IloBool calcFeasibility(IloFSDecisionMakerI* dm) const ;
 virtual void display(ostream& os) const;
};

PDPDecision
::PDPDecision(IloVehicle vehicle, IloVisit pickup, IloVisit delivery)
 : IloPairDecisionI(vehicle, pickup, delivery) {}
414 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Using the Dispatcher First Solution Framework
The function make performs the decision. It is called after a decision has been selected and
checked for feasibility.

The evaluate member function computes a cost that is used to select a best decision to
execute. Decisions with the lowest cost are preferred.

The calcFeasibility member function is used to filter infeasible decisions before calling
solver.solve to save CPU time.

void PDPDecision::make(IloFSDecisionMakerI* dm) {
 IloDispatcher dispatcher = dm->getDispatcher();
 IloVisit up = getOutChainEnd(dispatcher);
 IloVisit down = getInChainStart(dispatcher);

 dispatcher.setNext(up, getPickup());
 dispatcher.setNext(getDelivery(), down);
}

IloNum PDPDecision::evaluate(IloFSDecisionMakerI* dm) const {
 IloDispatcher dispatcher = dm->getDispatcher();
 IloVisit up = getOutChainEnd(dispatcher);
 IloVisit down = getInChainStart(dispatcher);
 IloVehicle vehicle(getVehicle());

 IloNum cost = 0;

 cost += dispatcher.getCost(up, getPickup(), vehicle);
 cost += dispatcher.getCost(getDelivery(), down, vehicle);
 return cost;
}

IloBool PDPDecision::calcFeasibility(IloFSDecisionMakerI * dm) const {
 IloBool ok = IloPairDecisionI::calcFeasibility(dm);
 IloDispatcher dispatcher = dm->getDispatcher();
 IloVisit up = getOutChainEnd(dispatcher);
 IloVisit down = getInChainStart(dispatcher);
 if (ok) {
 ok = IsArcLinkable(dispatcher, up, getPickup())
 && IsArcLinkable(dispatcher, getPickup(), getDelivery())
 && IsArcLinkable(dispatcher, getDelivery(), down)
 ;
 }
 if (ok) {
 IloDimension2 time = IloDimension2::Find(dispatcher.getEnv(), "Time");
 ok = canInsertPairOnDimension
 (dispatcher, time, getVehicle(), up, down, getPickup(), getDelivery());
 }
 return ok;
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 415

The display member function displays the decision object.

Creating the decision maker class

Now, you create IloPDPDecisionMakerI, a specialized decision maker class for PDP
problems. It will use the decision class PDPDecision that you just created. You will define
three member functions: init, getBestDecision, and getBestSerialDecision.

The member function init iterates on all visit pairs that are extracted in the dispatcher and,
for each visit, looks for all vehicles that can be assigned to these visits. For each compatible
set (vehicle, pickup, delivery) it then does two things. First, it decides whether or not it is
worth creating a PDPDecision decision for the set. If the set (vehicle, pickup, delivery) is

void PDPDecision::display(ostream& os) const {
 os << "[<-" << getPickup().getName()
 << ".(" << getVehicle().getName() << ")."
 << getDelivery().getName() << "->]"
 ;
}

class PDPDecisionMakerI : public IloFSDecisionMakerI {
private:
 IloVehicle _current;

 IloFSDecisionI* getBestSerialDecision();
public:
 PDPDecisionMakerI(IloDispatcher dispatcher);

 virtual void init();
 virtual IloFSDecisionI* getBestDecision();
};
416 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Using the Dispatcher First Solution Framework
not “interesting” then no decision is created and this possibility will not be considered by the
first solution framework. If the set is “interesting,” then this decision is stored.

The member function getBestDecision is the implementation of the virtual member
function defined in the abstract IloNADecisionMakerI class. In this example, the
extension mode is serial. Therefore, the decision maker fills vehicles one at a time, and this
member function returns the best decision concerning the currently open vehicle. At the
beginning, no vehicle is open, and the member function returns the best decision among all
possible decisions. Afterwards, the decision's vehicle becomes the current vehicle, and only
decisions registered with this vehicle are considered. When the vehicle is full, the decision

PDPDecisionMakerI
::PDPDecisionMakerI(IloDispatcher dispatcher)
 : IloFSDecisionMakerI(dispatcher),
 _current(0) {}

void PDPDecisionMakerI::init() {
 _current = 0;
// cout << "starting PDP decision maker init()"<< endl;
 IloDispatcher dispatcher(getDispatcher());
 IloEnv env = dispatcher.getEnv();

 // iterate on all posted ordered sequences.
 for (IloDispatcher::OrderedVisitPairIterator vpiter(dispatcher);
 vpiter.ok(); ++vpiter) {
 IloVisit pickup = vpiter.getPickup();
 IloVisit delivery = vpiter.getDelivery();
 IlcIntVar pickupVclVar = dispatcher.getVehicleVar(pickup);
 IlcIntVar deliveryVclVar = dispatcher.getVehicleVar(delivery);
 for (IloDispatcher::VehicleIterator
 vehIter(dispatcher); vehIter.ok(); ++vehIter) {
 IloVehicle vehicle = *vehIter;
 IlcInt vehIndex = dispatcher.getIndex(vehicle);
 if (pickupVclVar.isInDomain(vehIndex) &&
 deliveryVclVar.isInDomain(vehIndex)) {
 IloFSDecisionI* decision =
 new (env) PDPDecision(vehicle, pickup, delivery);
 storeDecision(decision);
 }
 }
 }
 //cout << "end PDP decision maker init()"<< endl;
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 417

maker looks again for the best global decision and chooses a new current decision, or
terminates.

Creating the decision tracer class

You can monitor events happening while building the first solution using decisions. A
decision tracer can be attached to a decision maker object. The decision maker object will
call the virtual member functions of the tracer objects to notify certain events. For example,
each time a decision is chosen, the tracer object is notified. Dispatcher also provides a
default tracer that does nothing. Subclassing from the default tracer
IloDefaultDecisionTracerI only requires the definition of the member functions you
want to trace, not all of them.

IloFSDecisionI* PDPDecisionMakerI::getBestDecision() {
 //return getBestGlobalDecision();
 return getBestSerialDecision();
}

IloFSDecisionI* PDPDecisionMakerI::getBestSerialDecision() {
 IloFSDecisionI * d = 0;
 if (0 != _current.getImpl()) {
 d = getBestVehicleDecision(_current);
 }
 if (0 == d) {
 IloFSDecisionI * bestVehicleDecision = getBestVehicleDecision();
 if (0 != bestVehicleDecision) {
 IloSingleVehicleFSDecisionI * vehDecision =
 (IloSingleVehicleFSDecisionI*)bestVehicleDecision;
 _current = vehDecision->getVehicle();
 d = bestVehicleDecision;
 } else {
 _current = 0;
 }
 }
 return d;
}

418 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Using the Dispatcher First Solution Framework
In this example, you use the default tracer to define only the notifyChosen trace member
function.

Creating the first solution framework goal

When building a Dispatcher routing plan, the resulting plan may not be complete. This
means that some visits are left unassigned, and that some routes are not complete. By
complete, it is meant that route visits must have their next variables instantiated from first to
last. The routing plan may not be complete if, for example, only a subset of visits had been
passed to the decision maker, or if a time-out occurred. An incomplete plan cannot be stored
in an IloRoutingSolution, as some decision variables are left unbound.

The IloFinalizePlan function returns a goal that fixes an incomplete plan, if possible.

The goal performs the two functions:

◆ sets all visits that have no route assigned to unperformed

◆ closes all incomplete routes

You should run this goal after a decision maker attempts to finalize the plan and reach a state
where the plan can be saved into an IloRoutingSolution.

class PDPDecisionTracerI : public IloDefaultDecisionTracerI {
 IloInt _nbChosen;
public:
 PDPDecisionTracerI(IloDispatcher dsp)
 : IloDefaultDecisionTracerI(dsp),
 _nbChosen(0) {}

 virtual void notifyChosen(const IloFSDecisionI * d) {
 ++_nbChosen;
 cout << _nbChosen << "> chosen: " << (*d) << endl;
 }
};

ILCGOAL0(PDPFinalizeGoal) {
 cout << "start to finalize plan" << endl;
 return IloFinalizePlan(getSolver());
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 419

Finally, you write the goal IlcPDPFSGoal, which creates the decision maker and the
decision tracer.

To use this goal, a subclass of IlcGoal, in your Concert Technology modeling environment
you wrap it using the Solver ILOCPGOALWRAPPER macro.

Using the first solution framework goal

The first solution framework goal IloPDPFSGoal is called in the
RoutingSolver::solve function.

ILCGOAL0(IlcPDPFSGoal) {
 IloSolver solver(getSolver());
 IloDispatcher dispatcher(getSolver());

 PDPDecisionMakerI* dm =
 new (solver.getHeap()) PDPDecisionMakerI(dispatcher);

 // put a tracer for debug
 PDPDecisionTracerI* tracer =
 new (solver.getHeap()) PDPDecisionTracerI(dispatcher);
 dm->setTracer(tracer);

 return IlcAnd(dm, PDPFinalizeGoal(solver));
}

ILOCPGOALWRAPPER0(IloPDPFSGoal, solver) {
 return IlcPDPFSGoal(solver);
}

void RoutingSolver::solve() {
 IloDispatcher dispatcher(_solver);
 IloEnv env = _solver.getEnv();
 // Subgoal
 IloGoal instantiateCost = IloDichotomize(env,
 dispatcher.getCostVar(),
 IloFalse);
 IloGoal restoreSolution = IloRestoreSolution(env, _solution);
 IloGoal goal = IloSavingsGenerate(env);
 goal = IloPDPFSGoal(env);

 // Solving
 if (findFirstSolution(goal && instantiateCost)) {
 improve(instantiateCost);
 _solver.solve(restoreSolution);
 }
}

420 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

C H A P T E R
18

Developing Your Own Neighborhoods

In this lesson, you will learn how to:

◆ define your own neighborhood

◆ create a solution delta

◆ implement your neighborhood

The predefined neighborhoods that Dispatcher offers are sufficient for most first solution
improvements. Occasionally, you may want to write your own neighborhood. This section
provides an example of how to create your own neighborhood solely for the user who is
comfortable with using the predefined neighborhoods and who encounters the need to create
a neighborhood.

The predefined neighborhoods provided with Dispatcher may not perform well on certain
routing problems. For example, in a routing problem where there are constraints stating that
after a visit A, visits B, C, and D must follow directly, neighborhoods like IloRelocate
will not be able to move A, B, C, or D on its own to a new vehicle; the constraints forbid it.
For problems with such tight constraints, you can write your own neighborhood to perform
the movements you require. In the above example, you could create a neighborhood which
was capable of moving A, B, C, and D as a single block to another location.

The following example uses a type of “restricted exchange.” This is a neighborhood exactly
like IloExchange, except that only visits within a certain distance of each other are
considered for exchange. The other pairs of visits are ignored. To write your own
neighborhood in Dispatcher, you subclass the class IloNHoodI. This is the exact same way
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 421

you would create a neighborhood in Solver. A neighborhood is created through redefining
virtual methods such as start, getSize, and define. The only difference between the
methods used in Solver and those used in Dispatcher is that in Dispatcher you deal with
routing objects (visits) and their associated attributes (next visit, previous visit, and vehicle).
However, the method is essentially the same.

The following example relies heavily on your knowledge of Solver's local search methods.
So, if you have not already done so, you should read about local search in the IBM ILOG
Solver User's Manual before creating your own neighborhood.

Neighborhood Description

It is often a good idea to break down a neighborhood into its simplest form. This technique is
used here. This new neighborhood exchanges all pairs of visits within a certain distance of
each other. You can then break down this neighborhood such that there is a single
neighborhood per visit which exchanges just this visit with all others in its vicinity. Then, by
using IloConcatenate on an array of such subneighborhoods (one for each visit), you can
achieve the desired result. Unfortunately, with this idea, an unwanted symmetry is
introduced; each pair of visits within the distance limit will be considered twice. For
example, consider the swap of visit pair A/B. The neighborhood which swaps visit A with its
close neighbors and the neighborhood which swaps visit B with its close neighbors will both
consider the same swap. Therefore, you add an additional rule. Given a total order for the
visits, a subneighborhood which exchanges visit A with the visits in its vicinity can only
exchange visit A with visits ranked after visit A in the total order.

To simplify the design of the subneighborhood, you specify the “focus” visit and the set of
visits that can be used in an exchange. The code relating to proximity and the symmetry rule
exists outside of this neighborhood. It is invoked only to construct the set of visits which will
be exchanged with the “focus” visit.

Defining the Neighborhood

You begin by defining a neighborhood which exchanges the visit here with each one of a set
of predefined visits there. You also declare other fields which are used internally:
rsolution holds the current solution and size holds the size of the neighborhood (the
number of neighbors). The fields prevHere and nextHere are used to hold the previous
and next visits of here in the current solution. The field vehHere holds the vehicle
422 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Neighborhood Description
performing the visit here and the field perfHere returns whether the visit here is
performed or not.

You then declare the methods for the new neighborhood class. You use a constructor which
takes a visit to swap and an array of visits with which this “focus” visit can be swapped.
Three virtual member functions of IloNHoodI are also redefined: start, define, and
getSize. The latter is implemented inline.

The constructor of the subneighborhood builds the base class and installs the passed
parameters.

The start method is called by local search goals such as IloSingleMove to indicate the
current solution. You keep a reference to the current solution, which is cast into an
IloRoutingSolution for later use. (Casting the solution to an IloRoutingSolution
allows you to use API suitable for routing problems on the solution. Note that the solution
itself is not altered in any way by this cast; it simply allows the use of a routing-based API
on the solution.) The start method also performs operations that need only to be done
once. For example, you retrieve the following from the solution: the preceding and following
visits of here, the vehicle performing the visit here, and whether or not the visit is
performed. (If here is not performed, the values of the other three pieces of information are
later ignored.) You also calculate the size of the neighborhood, which is the size of the
there set. However, in order to be robust, you must set the size of the neighborhood to 0 if
here is not in the current solution (in which case it does not make sense to involve it in a

class LocalizedExchangeI : public IloNHoodI {
private:
 IloVisit _here;
 IloVisitArray _there;
 IloRoutingSolution _rsolution;
 IloInt _size;

 IloVisit _prevHere;
 IloVisit _nextHere;
 IloVehicle _vehHere;
 IloBool _perfHere;

public:
 LocalizedExchangeI(IloEnv env, IloVisit visit, IloVisitArray arr);
 void start(IloSolver, IloSolution);
 IloSolution define(IloSolver, IloInt);
 IloInt getSize(IloSolver) const { return _size; }
};

LocalizedExchangeI::LocalizedExchangeI(IloEnv env,
 IloVisit visit,
 IloVisitArray arr)
 : IloNHoodI(env), _here(visit), _there(arr) { }
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 423

move), or if the visit is not extracted (in which case attempting to move it will cause Solver
to throw an exception later.)

The define method is usually the main workhorse of any neighborhood definition. It takes
an index and converts it to a solution delta. (The solution delta is a solution holding only the
part of the current solution which needs to be changed, together with its new value.) This
delta needs to be of type IloSolution, not of type IloRoutingSolution, although it
can be cast to an IloRoutingSolution to perform routing operations on it. The first thing
you do in define is to determine what the index signifies. (In other words, you determine to
which swap the index corresponds.) This is easily done as here is swapped with
there[index]. Then you perform various checks which allow you to ignore this neighbor
in certain circumstances. Specifically, when the solution does not contain the visit
there[index], or when this visit is not extracted, you can ignore the neighbor. Likewise,
when both visits are unperformed (a swap is useless), or when both visits are served by the
same vehicle (the move you define is only inter-route, but could be generalized), you ignore
the neighbor. The neighbor is ignored by returning an empty handle (here you use return
0 to perform this action).

Creating the Solution Delta

You now create the structure representing the neighbor: the solution delta. This is done by
creating an empty solution delta (an instance of IloSolution). You also create a routing
solution rdelta from this delta, so that routing operations can be performed on delta.
Note that the delta should not be created as an IloRoutingSolution as this also performs

void LocalizedExchangeI::start(IloSolver solver,
 IloSolution solution) {
 _rsolution = IloRoutingSolution(solution);
 if (solver.isExtracted(_here) && solution.contains(_here)) {
 _size = _there.getSize();
 _prevHere = _rsolution.getPrev(_here);
 _nextHere = _rsolution.getNext(_here);
 _vehHere = _rsolution.getVehicle(_here);
 _perfHere = _rsolution.isPerformed(_here);
 }
 else
 _size = 0;
}

IloSolution LocalizedExchangeI::define(IloSolver solver, IloInt index) {
 IloVisit v = _there[index];
 if (!_rsolution.getSolution().contains(v)) return 0;
 if (!solver.isExtracted(v)) return 0;
 IloBool perfV = _rsolution.isPerformed(v);
 if (!_perfHere && !perfV) return 0;
 if (_perfHere && perfV && _vehHere == _rsolution.getVehicle(v)) return 0;
424 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Neighborhood Description
other operations, such as adding an objective to the routing solution, which is not
appropriate here.

You now perform the “swap.” This is done in two stages. In the first stage, v is moved into
the place of here, and in the second, here is moved into the former place of v. When you
“insert” v into the place where here formerly was, you involve three visits: the visit
preceding here in the current solution, the visit following here in the current solution, and
v itself. The visit preceding here in the current solution will keep all its attributes in the
delta, except that its following visit will be set to v, rather than here. A similar situation
holds for the visit following here in the current solution. Most of the state of these visits is
preserved in the delta. For this reason, their state is copied from the current solution. Then,
the vehicle, previous visit, and next visit of v are set. The action of setting the next and
previous visits of v also correctly sets the next and previous visits of the connected visits, so
that consistency of the solution is maintained, and no explicit action is required for those
visits. In the case where here is not performed, the “insertion” simply makes v
unperformed.

The symmetric “insertion” is almost identical. The only difference is that the current
preceding and following visits, as well as the vehicle serving v, need to be retrieved from the
current solution first.

 IloSolution delta(getEnv());
 IloRoutingSolution rdelta(delta);
 rdelta.add(_here);
 rdelta.add(v);

 if (_perfHere) {
 rdelta.setVehicle(v, _vehHere);
 rdelta.add(_nextHere); delta.copy(_nextHere, _rsolution);
 rdelta.add(_prevHere); delta.copy(_prevHere, _rsolution);
 rdelta.setNext(v, _nextHere);
 rdelta.setPrev(v, _prevHere);
 }
 else
 rdelta.setUnperformed(v);

 if (perfV) {
 rdelta.setVehicle(_here, _rsolution.getVehicle(v));
 IloVisit nextV = _rsolution.getNext(v);
 IloVisit prevV = _rsolution.getPrev(v);
 rdelta.add(nextV); delta.copy(nextV, _rsolution);
 rdelta.add(prevV); delta.copy(prevV, _rsolution);
 rdelta.setNext(_here, nextV);
 rdelta.setPrev(_here, prevV);
 }
 else
 rdelta.setUnperformed(_here);
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 425

Finally, the delta is returned, which concludes the definition of the LocalizedExchangeI
class.

Implementing the Neighborhood

Recall that the above function only swaps a single visit with a predefined set of visits. Our
initial goal was to create a neighborhood which would swap all visits within a certain range
of each other. This more complete neighborhood is constructed by the following function.
The essential technique is quite simple. You construct an array of neighborhoods, one
corresponding to each visit (an instance of LocalizedExchange). The set of visits for each
LocalizedExchange is calculated according to a proximity rule and to a symmetry rule.
The array of neighborhoods is then concatenated to produce one larger neighborhood. The
function is passed with the following parameters:

◆ an array of visits to consider for swaps (This should correspond to all real visits of the
problem. In other words, it should not include visits which are first or last visits of a
vehicle.)

◆ an instance of IloDimension2 used for measuring distances

◆ a vehicle which is used as a “measuring vehicle” (A distance in Dispatcher depends on a
dimension and a vehicle. Therefore, a vehicle is needed to compute the distances.)

◆ a limit on the round trip between the two visits (If the actual distance of the round trip is
less than this value, the two visits will be considered for swapping. A round trip is used
to avoid ambiguity problems which may occur with asymmetric distance functions.)

 return delta;
}

426 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Implementing the Neighborhood
Given this information, the implementation of the function follows:

You can view the entire program and output online in the file YourDispatcherHome/
examples/src/newnhood.cpp.

IloNHood LocalizedExchange(IloEnv env,
 IloVisitArray visits,
 IloDimension2 dim,
 IloVehicle modelVehicle,
 IloNum roundTrip) {
 IloNHoodArray nhoods(env, visits.getSize() - 1);
 for (IloInt i = 0; i < visits.getSize() - 1; i++) {
 IloVisit v = visits[i];
 IloVisitArray arr(env);
 for (IloInt j = i + 1; j < visits.getSize(); j++) {
 IloVisit w = visits[j];
 IloNum dist2 = v.getDistanceTo(w, dim, modelVehicle) +
 w.getDistanceTo(v, dim, modelVehicle);
 if (dist2 <= roundTrip) arr.add(w);
 }
 nhoods[i] = new (env) LocalizedExchangeI(env, v, arr);
 }
 return IloConcatenate(env, nhoods);
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 427

428 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

A P P E N D I X
A

Predefined First Solution Heuristics

Dispatcher offers a variety of predefined first solution heuristics for use in generating a first
solution. Each predefined first solution heuristic is explained in this appendix. To show how
the different predefined first solution heuristics work, their results on the same example
problem are shown in each section of this appendix. The following predefined first solution
heuristics are provided by Dispatcher: enumeration, savings, sweep, nearest-to-depot,
nearest addition, and insertion.

Example data

The following example data is used in this appendix to demonstrate how each predefined
first solution heuristic works. The goal of the example is to compute a route that starts and
ends at the depot and visits each node exactly once. The length of the route is computed
according to Euclidean distance.

In the following figure, the depot is represented as a black circle. The other circles represent
visits to make at various locations. The coordinates of the depot are (30,40). The capacity of
the truck is 50 and there are 11 visits to perform. The tuples (x,y,quantity) of the visits are
(17,63,19), (31,62,23), (52,64,16), (21,47,15), (37,52,7), (49,49,30), (42,41,19), (20,26,9),
(40,30,21), (52,33,11) and (51,21,5).
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 429

A. Predefined First Solution Heuristics
Figure A.1

Figure A.1 Example data: depot and visits

Enumeration Heuristic

Dispatcher provides a basic, complete enumeration method for generating a first solution.
The enumeration heuristic builds a solution to the problem using an algorithm that
completely explores the search space using backtracking. This method should only be used
for small problems.

This heuristic is implemented in Dispatcher as the goal IloDispatcherGenerate.

The following figure provides an example of the use of IloDispatcherGenerate on the
example VRP with capacity constraints. The cost of this solution is 352.57.

Cost : 285.23
430 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Figure A.2

Figure A.2 Sample solution using enumeration heuristic

Savings Heuristic

For problems with multiple vehicles, it is very important to consider the trade-off between
more vehicles with shorter routes and fewer vehicles with longer routes. For example, the
following figure shows two ways of making visits a and b.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 431

A. Predefined First Solution Heuristics
Figure A.3

Figure A.3 Principle of the savings heuristic

The savings of serving a and b in the same route, denoted savings (a, b), is defined as
savings (a, b) = cost (a, Depot) + cost (Depot, b) – cost (a, b). The savings heuristic
generates a solution based on this equation. It works like this:

1. Choose an arbitrary visit O (usually the depot), and for all pairs of visits (i, j), compute
the savings function: savings(i, j) = cost (i, O) + cost (O, j) – cost(i, j).

2. Sort the arcs (i, j) according to savings(i, j) in descending order, and put them in a list L.

3. If all visits are scheduled, the goal succeeds.

4. If there are unscheduled visits, choose an untried vehicle v from the plan. If there are no
untried vehicles, the unscheduled visits are constrained to be unperformed. If one of
these visits must be performed, the goal fails.

5. Scan L to find an arc that can be used to create an initial partial route for v. If no such
legal arc can be found, go to step 4, otherwise remove the chosen arc from L.

6. Scan L to find an arc that can be added to the start or end of the route. If no such arc can
be found, go to step 3, otherwise remove the arc from L, and repeat step 6.

This heuristic is implemented in Dispatcher as the goal IloSavingsGenerate.

The following figure provides an example of the use of IloSavingsGenerate on the
example VRP with capacity constraints. The cost of this solution is 280.947.

a

b

a

b

D

D

432 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Figure A.4

Figure A.4 Sample solution using savings heuristic

Sweep Heuristic

The sweep heuristic builds routes by sweeping around the depot:

1. Let O be a site from which vehicles leave (usually a depot), and let A (different from O)
be another site which serves as a reference.

2. Sort all the sites S in the routing plan by increasing angle AOS. Put the result in a list L.

3. The visits corresponding to the sites in L will be allocated to the vehicles in that order as
long as constraints are respected.

4. If all vehicles have been used, the remaining visits are constrained to be unperformed. If
one of these visits must be performed, the goal fails.

This heuristic is implemented in Dispatcher as the goal IloSweepGenerate.

Cost : 280.95
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 433

A. Predefined First Solution Heuristics
The following figure provides an example of the use of IloSweepGenerate on the
example VRP with capacity constraints. The cost of this solution is 270.403.

Figure A.5

Figure A.5 Sample solution using sweep heuristic

Nearest-to-Depot Heuristic

The nearest-to-depot heuristic builds routes by adding the visits close to the depot first.

For all vehicles:

1. Denote the vehicle to be considered by w.

2. Start with a partial route consisting of the departure from the depot.

3. Find the visit v which is closest to the starting point of the current partial route of w. If it
is not possible to find such a visit without violating constraints, close the current partial
route of w, choose another empty vehicle and go to step 2. If no empty vehicles remain,
the goal fails.

Cost : 270.40
434 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

4. Add v to the end of the partial route.

5. Go to step 3.

6. If all vehicles have been used, the remaining visits are constrained to be unperformed. If
one of these visits must be performed, the goal fails.

This heuristic is implemented as the goal IloNearestDepotGenerate.

The following figure provides an example of the use of IloNearestDepotGenerate on
the example VRP with capacity constraints. The cost of this solution is 369.297.

Figure A.6

Figure A.6 Sample solution using nearest-to-depot heuristic

Nearest Addition Heuristic

The nearest addition heuristic is very similar to the nearest-to-depot heuristic just described.
It often gives better results because the visit added to the route is the one closer to the end of
the route, not the one closer to the depot.

Cost : 369.30
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 435

A. Predefined First Solution Heuristics
For all vehicles:

1. Denote the vehicle to be considered by w.

2. Start with a partial route consisting of the departure from the depot.

3. Find the visit v which is closest (that is, least costly to get to) to the end of the current
partial route of w. If it is not possible to find such a visit without violating constraints,
close the current partial route w, choose another empty vehicle and go to step 2. If no
empty vehicles exist, the goal fails.

4. Add v to the end of the partial route.

5. Go to step 3.

6. If all vehicles have been used, the remaining visits are constrained to be unperformed. If
one of these visits must be performed, the goal fails.

This heuristic is implemented in Dispatcher as the goal IloNearestAdditionGenerate.

The following figure provides an example of the use of IloNearestAdditionGenerate
on the example VRP with capacity constraints.The cost of this solution is 285.232.
436 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

Figure A.7

Figure A.7 Sample solution using nearest addition heuristic

Insertion Heuristic

The insertion heuristic works by inserting each visit (in the order they were created) at the
best possible place, in terms of cost.

1. Let all vehicles have empty routes.

2. Let L be the list of unassigned visits.

3. Take a visit v in L.

4. Insert v in a route at a feasible position where there will be the least increase in cost. If
there is no feasible position, then the goal fails.

5. Remove v from L.

6. If L is not empty, go to 3.

Cost : 285.23
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 437

A. Predefined First Solution Heuristics
This heuristic is implemented in Dispatcher as the goal IloInsertionGenerate.

The following figure provides an example of the use of IloInsertionGenerate on the
example VRP with capacity constraints.The cost of this solution is 300.681.

Figure A.8

Figure A.8 Sample solution using insertion heuristic
438 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

A P P E N D I X
B

Predefined Neighborhoods

Dispatcher offers a variety of predefined neighborhoods for use in improving a solution.
Each predefined neighborhood is explained in this appendix.

The heuristics that generate a first solution to a routing problem find a “good” feasible
solution very quickly. These first solutions can be further improved by using neighborhoods
to reduce the costs of the routes they find. The central idea of the neighborhood is to define a
set of solution changes, or deltas, that represent alternative moves that can be taken.
Neighborhoods are classified in three groups: those that modify only one route are known as
intra-route neighborhoods; those that make changes between routes are known as inter-route
neighborhoods; and those that change whether visits are performed or not. Interestingly
enough, the inter-route neighborhoods can sometimes be used to improve a single route and
thus become intra-route neighborhoods themselves.

The following predefined neighborhoods are provided by Dispatcher: Two-Opt, Or-Opt,
Relocate, Cross, Exchange, and several neighborhoods that change whether visits are
performed or not.

Note: If visit v2 is forced to follow immediately after visit v1 because of a constraint, the
predefined neighborhoods will move the two visits v1 and v2 as a unit, or a chain.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 439

B. Predefined Neighborhoods
Intra-Route Improvement: IloTwoOpt neighborhood

In a Two-Opt neighborhood two arcs in a single route are cut and reconnected to improve the
total cost of the route, as follows:

1. Take an initial route.

2. Remove two arcs from the route, and try the other possible reconnecting of the remaining
parts of the route.

3. If the cost has been reduced and if all constraints are satisfied, go back to Step 2.

4. End.

With this neighborhood, directional flows between visits may be reversed. The presence of
tight time constraints can therefore decrease its effectiveness. Two-Opt is implemented by
the function IloTwoOpt.

The following figure illustrates this process. Here, we assume that the cost is proportional to
the length of the route. The move eliminates the crossing by destroying two arcs and creating
two new arcs. The resulting route is shorter, and thus less costly.

Figure B.1

Figure B.1 Using a Two-Opt neighborhood

Intra-Route Improvement: IloOrOpt neighborhood

In an Or-Opt neighborhood segments of visits in the same route are relocated.
440 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

1. Start with an initial route.

2. Move parts composed of one visit elsewhere in the route.

3. If the cost has been reduced and if all constraints are satisfied, go back to Step 2.

4. When all such moves have been tested, try moving parts of the route composed of two
consecutive visits.

5. After testing all moves of parts composed of two consecutive visits, try moving parts of
the route composed of three consecutive visits.

Or-Opt is implemented by the function IloOrOpt.

The following figure illustrates the process. Here, the cost is assumed to be proportional to
the length of the route. The move eliminates the crossing by destroying three arcs and
creating three new arcs. The resulting route is shorter, and thus less costly.

Figure B.2

Figure B.2 Using an Or-Opt neighborhood

Inter-Route Improvement: IloRelocate neighborhood

In a relocate neighborhood a visit is inserted in another route if all constraints—such as
capacity and time—are still satisfied. This method can be generalized if more than one visit
of a route is moved at the same time. When pairs of visits are moved, the neighborhood is
useful for optimizing problems such as the Pickup-and-Delivery Problem (PDP). Relocate is
implemented by the function IloRelocate.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 441

B. Predefined Neighborhoods
The following figure shows the process. Here, we assume that the cost is proportional to the
length of the route. The move destroys three arcs and creates three new arcs. As a result total
travel distance, and thus cost, is less.

Figure B.3

Figure B.3 Using a Relocate neighborhood

The function IloFPRelocate returns a neighborhood that modifies a solution by relocating
individual visits to a new position in another route. This function is similar to IloRelocate
for PDP problems, except that it explores more options for the delivery component of a
pickup- delivery pair that is being relocated. For example, consider two pairs of pickup-
delivery visits: p1-d1 and p2-d2. IloRelocate would try to move p2 after p1 and d2
immediately after d1. IloFPRelocate would try to move p2 after p1, and then try to locate
d2 at every position after d1. Thus, this neighborhood is potentially larger than that created
by IloRelocate.

Inter-Route Improvement: IloCross neighborhood

In a cross neighborhood the ends of two routes are exchanged: the first part of route A is
connected to the last part (end) of route B and the first part of route B is connected to the last
part (end) of route A. Cross is implemented by the function IloCross.
442 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

The following figure illustrates the process. The cost is assumed to be proportional to the
length of the route. The move eliminates the crossing by destroying two arcs and creating
two new arcs. The resulting routes are shorter, and thus less costly.

Figure B.4

Figure B.4 Using a Cross neighborhood

Inter-Route Improvement: IloExchange neighborhood

In an exchange neighborhood, two visits of two different routes swap places if all constraints
are still satisfied. This method can be generalized if more than one visit of a route is
exchanged at the same time. When a pair of visits is exchanged, this neighborhood is useful
for optimizing problems such as the Pickup-and-Delivery Problem (PDP). Exchange is
implemented by the function IloExchange.

The following figure shows the process. The cost is assumed to be proportional to the length
of the route. The move eliminates the crossings by destroying four arcs and creating four
new arcs. The resulting routes are shorter, and thus less costly.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 443

B. Predefined Neighborhoods
Figure B.5

Figure B.5 Using an Exchange neighborhood

Other neighborhoods

Dispatcher provides predefined neighborhoods that change whether a visit is performed or
not.

The function IloMakePerformed returns a neighborhood that modifies a solution by
inserting an unperformed visit after a performed one. The function
IloMakePerformedPair returns a neighborhood that modifies a solution by making an
unperformed visit pair performed. For each vehicle route in which the pair is inserted, every
combination of positions for the two visits will be tried. This behavior is different from the
one of IloMakePerformed which will only try to move the pair immediately after a
performed pair of visits.

The function IloMakeUnperformed returns a neighborhood that modifies a solution by
causing a performed visit to be unperformed.

The function IloSwapPerform returns a neighborhood that modifies a solution by
exchanging a performed visit with an unperformed one.
444 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

A P P E N D I X
C

Predefined Search Heuristics and
Metaheuristics

Before reading this appendix, you should read the IBM® ILOG® Solver User’s Manual
chapter on local search. Dispatcher uses Solver’s basic local search facilities, while defining
its own neighborhoods and metaheuristics.

Basic Search Heuristics

Basic heuristics are those which accept only new routing plans that strictly decrease the cost.
For Dispatcher, these comprise two search methods, first accept and best accept. First accept
search takes any legal cost decreasing move (the first one encountered), whereas best accept
search takes the legal move from the neighborhood that decreases cost by the greatest
amount. Both searches continue to take such moves until the neighborhood contains no legal
cost-reducing moves. This point is usually termed a local minimum (under the assumption
that you are minimizing the objective), as all neighborhood moves are “uphill.” The word
“local” is used to signify that this point is not guaranteed (and in fact is not usually) a global
minimum.

Although the above description entails making improving moves until a local minimum is
reached, the local search methods provided by Solver are completely open in the sense that
control is returned to user code after each move has been made. Therefore, local search can
be stopped at any point along the way should a limit (such as time) be exhausted, or an
external event occur requiring the optimization to stop.
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 445

C. Predefined Search Heuristics and Metaheuristics
First Accept Search

This method accepts any legal improving move and so is not too expensive in terms of
computational cost. Thus, it is preferred when the problem is very large or an optimized
solution is required as quickly as possible. Dispatcher code to implement a first accept
search is shown below. We assume an IloDispatcher (dispatcher),
IloRoutingSolution (solution), IloEnv (env), and IloSolver (solver) are
already defined.

The following code creates a goal that instantiates the cost to its minimum value
(Dispatcher’s constraints only provide a lower bound on the cost) and a neighborhood
composed of three basic routing neighborhoods (relocate, exchange, and 2-opt).

A greedy heuristic (which allows only improvements in the objective) called IloImprove is
used to reject all degrading moves. The IloSingleMove goal is used to construct a move.
As no search selector is passed to it, the first legal move reducing cost results. The
instCost goal is executed just before testing each move.

Then a loop is entered, where moves are accepted until no more legal improving ones exist.
Finally, the improved solution is moved to Dispatcher’s model using the
IloRestoreSolution goal.

Best Accept Search

This method accepts the most profitable (in terms of cost) legal improving move and so is
more expensive in terms of computational cost than the first accept method just described.
For some problems, however, the results can be better than those provided by first accept.
You should experiment on your own problem to find the best fit.

In terms of code, performing a best accept search is very much like a first accept search
except that a selector is passed to IloSingleMove to select the best neighborhood move.
Code for implementing a best accept search is shown below:

IloGoal instCost = IloDichotomize(env, dispatcher.getCostVar(), IloFalse);
IloNHood nhood = IloRelocate(env) + IloExchange(env) + IloTwoOpt(env);

IloMetaHeuristic improve = IloImprove(env);
IloGoal move = IloSingleMove(env, solution, nhood, improve, instCost);

while (solver.solve(move));
solver.solve(IloRestoreSolution(env, solution));

IloGoal instCost = IloDichotomize(env, dispatcher.getCostVar(), IloFalse);
IloNHood nhood = IloRelocate(env) + IloExchange(env) + IloTwoOpt(env);
IloMetaHeuristic improve = IloImprove(env);
IloSearchSelector selBest = IloMinimizeVar(env, dispatcher.getCostVar());
IloGoal move = IloSingleMove(env, solution, nhood, improve, selBest, instCost);
while (solver.solve(move));
solver.solve(IloRestoreSolution(env, solution));
446 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

MetaHeuristics

The basic search heuristics (which use IloImprove) terminate when no cost-reducing
move can be found, at a local minimum. However, in many cases we would like to go on
searching, hoping to find better solutions than the one at the current local minimum. To do
this, we need to allow neighborhood moves that degrade the current solution to allow the
search to move from the current position. However, the ways in which degrading moves are
accepted must be carefully controlled to prevent the search from moving to very poor
solutions. This more subtle control is provided by what we term metaheuristics.

Dispatcher provides two basic metaheuristics specialized for routing problems. The first of
these is a tabu search metaheuristic and the second one is based on guided local search.
Various search mechanisms can be created depending upon the way in which these two basic
metaheuristics are combined with search selectors. Tabu search and guided local search can
also be combined to produce a hybrid, which might be termed guided tabu search.

The following sections detail ways to generate different search methods using the
metaheuristics provided with Dispatcher.

Tabu Search Metaheuristic

A detailed description of the operation of Dispatcher’s tabu search metaheuristic is given in
the IBM ILOG Dispatcher Reference Manual. Here, we give a brief description of its
operation.

Objects of the class IloDispatcherTabuSearch allow degrading moves to be accepted
by the local search process and attempt to avoid moving the search cycle to places it has
previously been. To prevent cycling, a metaheuristic could, of course, store every solution it
had visited and forbid a return to any such point. However this has a significant memory
burden. Therefore, IloDispatcherTabuSearch uses the popular technique of the tabu
list. The tabu list is a list of “features” of a solution that are forbidden, or alternatively, that
must be present. Features are added and dropped from a list when a neighborhood move is
made.

In Dispatcher, the features are the arcs of the current solution, and two tabu lists are
maintained, one that dictates which arcs must not be part of any new solution, and the other
that dictates which arcs must be part of any new solution. By maintaining finite lists, tabu
search is encouraged to explore solutions with different arcs. The length of time a feature
remains on a list (the tenure) is important and affects how driven the search is to avoid
solutions which resemble previous ones. This is a parameter of
IloDispatcherTabuSearch, and can be altered dynamically during the search process.

Another aspect of IloDispatcherTabuSearch is the aspiration criterion, which allows a
neighborhood move to be accepted despite being tabu. The purpose of the aspiration
criterion is to prevent the search from being overly inhibited by the tabu process. The
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 447

C. Predefined Search Heuristics and Metaheuristics
aspiration criterion in IloDispatcherTabuSearch makes it possible to accept any move
that improves on the best cost found so far.

Guided Local Search Metaheuristic

Guided local search is an alternative to tabu search for allowing the search process to move
out of local minima. As in tabu search, how the search can move around is restricted. Guided
local search works by making a series of greedy searches, each to a local minimum.
However, it reduces a different cost function from the original. If the original cost function is
represented by c, then guided local search attempts to reduce the cost c+wp, where p is a
penalty term that is adjusted every time a local minimum is reached, and w is a constant. So,
in essence, guided local search tries to minimize a combination of the true cost and a penalty
term. The weighting constant w is an important search parameter that determines how
important the penalty term is with respect to the true cost.

Guided local search is constructed so that the penalty term is higher when the search moves
to solutions that resemble previous ones, and in this sense it is similar to tabu search. This is
done by recording certain arcs as “bad” each time a local minimum is reached. When these
arcs appear in a solution, the penalty term is increased. Guided local search determines
which arcs are bad based upon the cost of the arc in the solution and how often that arc has
previously appeared at local minima. More complete details of the operation of guided local
search are given in the IBM ILOG Dispatcher Reference Manual.

Using Metaheuristics In Search

The tabu search metaheuristic and the guided local search metaheuristic described above are
implemented by the classes IloDispatcherTabuSearch and IloDispatcherGLS.
IloImprove can be used to create both first and best accept search strategies depending on
the choice of search selector used. Similarly, tabu and guided local search can be combined
with selectors (and even each other), to produced various types of metaheuristic search
strategies for Dispatcher.

Some templates for search strategies using these two metaheuristics are presented in the
following sections. You, however, are free to implement more complex strategies. For
example, maintaining a set of good solutions found during search, and occasionally
restarting search from one of these can be an effective technique.

The following are several variations on a theme for performing search, although since they
are largely similar, only the first is presented in detail.

Tabu Search

A basic tabu search process uses the IloDispatcherTabuSearch metaheuristic and takes
the best move at each iteration. However, the tabu search metaheuristic is not well suited for
taking the first move at each step, as search can move very quickly to poor quality areas of
448 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

the search space. The following code shows how you might implement a function to perform
such a tabu search process. In this code, the tabu tenure is varied during search, which can
cut down on the search moving in cycles around the same area.

The function resets the neighborhood and set up the various objects used in the search.
Resetting Dispatcher’s neighborhoods (and indeed metaheuristics) is always recommended
before starting a new search, as neighborhoods and metaheuristics maintain internal data
structures which are well defined within a single search, but not if search is restarted from an
arbitrary point. As you are creating the tabu search metaheuristic, there is no need to reset it,
but the neighborhood is passed here, and so a reset is performed.

Two duplicates are made of the current solution—one to be used during search and one to
store the best solution found during search. The first is made as you do not wish to change
the solution passed, only to present the improved solution on return from the function. The
second is made because with search methods that can accept cost degrading moves, the best
solution found is not necessarily the current solution.

The tabu search metaheuristic is created with an initial tenure of 12 moves.

The goal to make a single move is constructed using IloSingleMove. Then, a secondary
goal (IloStoreBestSolution) is attached that stores the new solution as the best one if
its cost is better than the previous best.

The optimization loop is then entered, making up to a maximum of 150 moves, or stopping
when no move could be made and the metaheuristic returns IloTrue from its complete
method.

The tenure can be dynamically changed during search, and this is demonstrated by changing
its value after certain numbers of iterations. Other techniques you can use are to change the

void RoutingSolver::improveWithTabu() {
 _nhood.reset();
 IloRoutingSolution rsol = _solution.makeClone(_env);
 IloRoutingSolution best = _solution.makeClone(_env);
 IloDispatcherTabuSearch dts(_env, 12);
 IloSearchSelector sel = IloMinimizeVar(_env, _cost);
 IloGoal move = IloSingleMove(_env, rsol, _nhood, dts, sel, _instantiateCost);
 move = move && IloStoreBestSolution(_env, best);
 for (IloInt i = 0; i < 150; i++) {
 if (i == 70) dts.setTenure(20);
 if (i == 85) dts.setTenure(5);
 if (i == 105) dts.setTenure(12);
 if (_solver.solve(move))
 _solver.out() << "Cost = " << _solver.getMax(_cost) << endl;
 else
 if (dts.complete()) break;
 }
 _solver.solve(_restoreSolution);
 rsol.end();
 best.end();
 dts.end();
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 449

C. Predefined Search Heuristics and Metaheuristics
tenure to a random value in a range every so many iterations, or to perform such a change
after a certain number of iterations without improvement to the best solution found.

Finally, the best solution is restored, and the memory for the temporary solutions reclaimed
by using IloSolution::end().

The following figure shows an example of the variation of the cost using such a tabu search
on a VRP. The x-axis represents the number of iterations performed.The y-axis represents
the value of the cost. The dashed line represents the best cost found so far for a given
iteration, while the solid line represents the current cost function. From this figure, you can
see the basic descent during the first iterations (when the dashed line is overlapped by the
solid line), then degrading moves are used to explore the search space and eventually
improve the best solution.

Figure C.1

Figure C.1 Cost Variation: Using Tabu Search on a VRP

Guided Local Search

There are two basic types of search that can be performed using the guided local search
(GLS) metaheuristic, depending upon which type of search selector is used to choose the

1240

1260

1280

1300

1320

1340

1360

1380

1400

0 100 200 300 400 500 600 700 800 900

D
is

ta
nc

e

Iterations

Current
Best
450 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

neighborhood move. You can choose the best legal move at each stage, resulting in the code
shown below:

There are two peculiarities which are markedly different from the previous tabu search
example. The first are the lines of code using IloCouple and IloDecouple. These
functions connect (and disconnect) a neighborhood to a metaheuristic. The neighborhood
must be coupled to an instance of IloDispatcherGLS otherwise an IloException is
thrown when you try to use the instance in the search.

The following figure shows the variation of the cost using GLS on the same VRP as the Tabu
Search example. The x-axis represents the number of iterations performed. The y-axis
represents the value of the cost. The dashed line represents the best cost found so far for a
given iteration, while the solid line represents the current cost function. From this figure, you
can see the basic descent during the first iterations (when the dashed line is overlapped by
the solid line), then degrading moves being used to explore the search space and eventually
improve the best solution. What can be seen from this figure is that the “jumps” of the GLS
metaheuristic are much larger than those of the basic Tabu Search. This is the consequence
of the long-term memory feature of GLS. On this example also, GLS gives better results
than Tabu Search.

void RoutingSolver::improveWithGLS() {
 _nhood.reset();
 IloRoutingSolution rsol = _solution.makeClone(_env);
 IloRoutingSolution best = _solution.makeClone(_env);
 IloDispatcherGLS dgls(_env, 0.2);
 IloSearchSelector sel = IloMinimizeVar(_env, dgls.getPenalizedCostVar());
 IloGoal move = IloSingleMove(_env, rsol, _nhood, dgls, sel,
_instantiateCost);
 move = move && IloStoreBestSolution(_env, best);
 IloCouple(_nhood, dgls);
 for (IloInt i = 0; i < 150; i++) {
 if (_solver.solve(move))
 _solver.out() << "Cost = " << _solver.getMax(_cost) << endl;
 else {
 _solver.out() << "---" << endl;
 if (dgls.complete()) break;
 }
 }
 IloDecouple(_nhood, dgls);
 IloGoal restoreSolution = IloRestoreSolution(_env, best) && _instantiateCost;
 _solver.solve(restoreSolution);
 rsol.end();
 best.end();
 dgls.end();
}

I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 451

C. Predefined Search Heuristics and Metaheuristics
Figure C.2

Figure C.2 Cost Variation: Using GLS on a VRP

Guided Tabu Search

Simple Tabu Search and Guided Local Search can be mixed together. Arcs present in the
solution are penalized just as with GLS, while a tabu list is handled just as in tabu search.
Therefore, the short-term memory feature of simple tabu search is enhanced with a long-
term memory, acting as a diversifying scheme.This results in a very effective metaheuristic,
that can often produce good quality solutions in much fewer iterations than either simple
Guided Local Search or Tabu Search.

1240

1260

1280

1300

1320

1340

1360

1380

1400

0 200 400 600 800 1000

D
is

ta
nc

e

Iterations

Current
Best
452 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

I N D E X
Index

Numerics

2-opt neighborhood 440

A

add visits 119, 131
alternate sites 119
arc 85, 361

distances between nodes 362
arc cost 86, 362
array of neighborhoods 130

B

bays 305
best accept search 445, 446
breaks 196
building routes 409

C

capacitated arc routing problem 361
capacity 26, 32

constraints on 32
limited 361
measuring 44
setting for vehicle 28
vehicle 240

coherence of submodels 242

compatibility constraints 348
complex costs 283
concrete delivery 406
constrained variable 29
constraint 26

compatibility 348
modeling vehicle break 35
on capacity 32
on cumul variable bounds 33
on late deliveries 26
on number of vehicles 26
on vehicle 194
setting up visit disjunctions 36
time 241
visit disjunction 127

cost 26, 37
arc 86
calculating routing plan 37
calculating vehicle 37
computing on arcs 362
early and late 224
fixed 37
from total length of route 283
minimizing 43, 239, 410
turn penalty 86
vehicle fixed 150, 153
visit penalty 89, 158

cost coefficients 279
cost ratios 365
cranes 305
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 453

cross neighborhood 442
csv reader 47
cumulative variables 30
current partial route 410
customer location

alternative 26
definition 27
time constraints on 44

customer support 20

D

decision variable 29, 39
declaring

length 250
time 250
weight 250

decomposition
problem 241, 242, 396

delay variable 34
delivery and pickup visits 183
delta

solution 424
depot

assigning trucks to multiple 239
definition 27
multiple 26

depot docking bays 305
designing Dispatcher models 395
destructor 245
dimension 29, 46

associating constrained variable with 29
definition 29
extrinsic 30
intrinsic 30

disjoint time window 33
disjunctions

visits 119
dispatching technicians 323, 339
distance 30, 46

Euclidean 30, 250
grid pattern 30
Manhattan 30
minimize 240

docking bays 305

E

earliness 223
enumeration heuristic 430
environment 45
Euclidean distance 30, 250
exchange neighborhood 443
extrinsic dimension 30

F

first accept search 61, 445, 446
first solution 40

generating 407, 409
first solution framework 413
first solution heuristics 429

relative complexity 407
writing 409

first solution hints 407
fixed cost 37

vehicle 150, 153

G

geographical decomposition 396
GLS 367
granularity 308
graph functionality 83
greedy search 448
grid pattern distance 30
guided local search 367, 450
guided local search (gls) 448
guided tabu search 452

H

heuristic 409
construction

enumeration 430
insertion 437
nearest addition 435
nearest-to-depot 434
savings 58, 432
sweep 433
454 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

I

IBM ILOG Scheduler 305
IlcGoal 412, 420
IloAny type definition 19
IloBool type definition 19
IloConcatenate 130
IloCouple 451
ILOCPGOALWRAPPER 412, 420
IloCross 92, 442
IloCsvReader 47
IloDecouple 451
IloDichotomize 57
IloDimension 29
IloDimension1 30, 32, 46
IloDimension2 30, 47
IloDiscreteResource 307
IloDispatcher 39, 56, 410, 446

getCostVar 37
getIndex 29, 38

IloDispatcher::RouteIterator 42
operator* 42
operator++ 42

IloDispatcherGenerate 430
IloDispatcherGLS 368
IloDispatcherGraph 83, 363
IloDispatcherTabuSearch 447, 448
IloDistance 30
IloEarlinessFunction 226
IloEnv 45, 244, 446
IloEuclidean 30
IloExchange 92, 443
IloFPRelocate 442
IloGenerateRoute 410
IloGoal 56
IloImprove 61, 447
IloInfinity 37
IloInsertionGenerate 67, 349, 438
IloInsertVisit 159
IloInstantiateVehicleBreaks 199
IloInt type definition 19
IloLimitSearch 199
IloMakePerformed 92, 444
IloMakePerformedPair 444
IloMakeUnperformed 92, 444

IloManhattan 30
IloModel 39, 45, 241, 397
IloNearestAdditionGenerate 67, 436
IloNearestDepotGenerate 67, 435
IloNHood 60
IloNHoodArray 130
IloNode 28, 48
IloNum type definition 19
IloNumToNumSegmentFunction 283
IloOrderedVisitPair 184
IloOrOpt 61, 92, 441
IloRelocate 92, 441
IloRestoreSolution 92, 446
IloRoutingSolution 39, 56, 90, 446

getNext 39
getPrev 39
isPerformed 39

IloRoutingSolution::RouteIterator 42
operator* 42
operator++ 42

IloSavingsGenerate 58, 67, 432
IloSetTimesForward 310
IloSimpleVisitToNumFunction 280
IloSingleMove 61, 245, 400, 446, 449
IloSolution

end 450
IloSolver 56, 446
IloStoreBestSolution 449
IloSwapPerform 92, 444
IloSweepGenerate 67, 433
IloTardinessFunction 226
IloTwoOpt 61, 92, 440
IloVehicle 50

getCapacity 38
getCostVar 37, 38
getFirstVisit 29, 35, 38
getLastVisit 29, 35, 38
getSpeed 32, 38
setCapacity 33
setCost 37

IloVisit 49, 52, 242, 264
getCumul 33, 34
getCumulVar 30, 31, 35, 38
getDelayVar 38
getNextVar 28, 38
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 455

getPrevVar 29, 38
getTransitVar 38
getTravelVar 39
getVehicleVar 29, 32, 39
getWaitVar 39
performed 29

IloVisitArray 157
IloVisitToNumFunction 281
IloVisitVehicleCompat 348
improvement loop 259, 406
improving

solution 258, 404
insertion heuristic 437
insertion of visits 90
installing Solver 17
intrinsic dimension 30
iterative solution process 242, 255, 398
iterative solving

mixed 242
iterator 42

L

lateness 223
limited

capacity 361
linking library to application 18
local minimum

escaping 448
local search 41, 56
loop

improvement 259, 406

M

Manhattan distance 30
metaheuristic 244, 367
minimize

cost 410
distance 240

minimizing number of vehicles 90
minimizing the number of vehicles 81
mixed iterative solving 242
model 45, 241, 397
modeling hints 395, 406

move operators 244
Multiple Depot Pickup and Delivery Problem 240
Multiple Depot Vehicle Routing Problem (MDVRP) 239

improving the solution 258, 404
multiple tours heuristic 156
multiple tours per vehicle 149

N

naming
accessors 18
arguments 18
Boolean accessors 18
classes 18
conventions 18
data members 18
instances 18
member functions 18
modifiers 18

nearest addition heuristic 435
nearest-to-depot heuristic 434
neighborhood 244

2-opt 440
cross 442
exchange 443
inter-route 59, 439
intra-route 59, 439
or-opt 440
relocate 441
swap 127

neighborhood array 130
neighborhoods 60, 421

writing 421
network, road 362
next-variable

modifying 39
node 27

arc 362
definition 27
specifying coordinates 27

O

operators
move 244
456 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

ordered visit pairs 184
or-opt neighborhood 440

P

path constraint 31
penalty cost 158

associating with visit 37
visit 150

personal computer (pc)
linking Solver library on 18

Pickup and Delivery Problem (PDP) 26
pickup and delivery visits 183
problem decomposition 241, 242, 396
problem size 26

Q

quantities 28

R

relocate neighborhood 441
remove visit 119, 132
resources 305
restore solution 61
road network 362
route

building 409
building a set of 43
current partial 410
definition 42

routing 26
routing plan 26

calculating total cost 37
cost variable 37

routing problem
multiple depots 240

routing solution 245, 401

S

savings heuristic 58, 432
search

best accept 445, 446

first accept 445, 446
greedy 448
guided local 450
guided tabu 452
tabu 447

search method
guided local search (gls) 448
local 41, 56

shortest path 83, 87, 364
simplify the model 395
skill levels 324
skills 339
solution

degrading current 447
improving 258, 404
improving with degrading moves 447
iterative 242, 255, 398
restore 61
routing 245, 401

solution delta 424
speed

vehicle 195
submodel

TSP 160
submodel coherence 242
subproblems 241
support

customer 20
swap array

visits 126
swap neighborhood 127
sweep heuristic 433
synchronization 242, 245, 255, 258, 398, 401, 405

T

tabu list 447
tabu search 447

aspiration criterion 447
tardiness 223
taxi dispatching 406
technicians

dispatching 323, 339, 397
temporal decomposition 396, 397
time 46
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 457

time constraints 241
time window 26, 33, 240

disjoint 34
implementing constraint on 33
setting for visit 253
softening 223

tour
multiple 26

TSP submodel 160
turn 85
turn penalty cost 86
two-phase approach 56
types in Solver 19

U

UNIX
linking Solver library on 18

unperformed visits 411, 412

V

variable
constrained 29
cost 37
cumulative 33
decision 29, 39
delay 31, 34
prev- 29
transit 31
travel 31
vehicle 29
wait 31

vehicle
and capacity constraints 44
calculating total cost 37
cost variable 37
definition 28
end-visit 29
fixed cost 37
implementing breaks on 35
implementing deadlines on 34
limit on number available 223
multiple tours 149
setting capacity 28

start-visit 29
vehicle break 26, 193

changing value of wait and cumul variables 32
definition 35
duration 35, 193
implementing 35
interrupting customer visit 193
position 35
start time 35, 193

vehicle breaks 196
vehicle capacity 240
vehicle fixed cost 150, 153
Vehicle Routing Problem (VRP) 26, 43
vehicle speed 195
vehicles 26

minimizing number of 81, 90
visit 26

add 119
associating penalty cost 37
creating disjunctions 36
creating node 253
cumul variable 33
definition 28
delay variable 31
identifier 28
inserting 159
interrupting with vehicle break 193
penalty cost 89
performed 36
performing in route 43
pickup and delivery 183
prev-variable 29
remove 119
transit variable 31
travel variable 31
unperformed 36, 411, 412
vehicle variable 29
wait variable 31

visit array 155
visit disjunction constraint 127
visit disjunctions 119
visit pairs 184
visit penalty cost 150, 158
visit swap array 126
458 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

W

weight 46
writing a first solution heuristic 409
I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L 459

460 I B M I L O G D I S P A T C H E R — U S E R ’ S M A N U A L

	User’s Manual
	Welcome to IBM ILOG Dispatcher
	What is Dispatcher?
	How to Use Dispatcher with Solver
	About this manual
	How this manual is organized
	Prerequisites
	Related documentation
	Installing IBM ILOG Dispatcher
	Linking IBM ILOG Dispatcher
	Typographic and naming conventions
	Include Files
	IBM software support handbook
	Accessing software support
	Contact via web
	Contact via phone

	The Basics
	IBM ILOG Dispatcher Concepts
	Describe
	Model
	Basic Modeling Objects
	Nodes
	Visits
	Vehicles

	Decision Variables
	Dimensions
	Using dimensions to model side constraints
	Modeling visit quantity constraints
	Modeling vehicle capacity constraints
	Modeling time window constraints
	Modeling service delays constraints
	Modeling deadline constraints

	Modeling other side constraints
	Modeling vehicle breaks
	Modeling visit disjunctions

	Modeling costs and the objective
	Costs associated with visits
	Costs associated with vehicles

	Summary: The Dispatcher Model

	Solve
	Generating a first solution
	Improving the solution using local search
	Displaying the solution

	Modeling a Vehicle Routing Problem
	Describe
	Model
	Declare the RoutingModel class
	Define the addDimensions function
	Define the createIloNodes function
	Define the createVehicles function
	Define the createVisits function
	Define the RoutingModel constructor

	Review Exercises
	Suggested Answers
	Exercise 1
	Suggested Answer

	Exercise 2
	Suggested Answer

	Solving a Vehicle Routing Problem
	Solve
	Declare the RoutingSolver class
	Define the RoutingSolver constructor
	Define the findFirstSolution function
	Define the improveWithNHood function
	Define the printInformation function
	Define the main function
	First Solution Information
	Improved Solution Information
	First Solution Routing Plan
	Improved Solution Routing Plan

	Review Exercises
	Suggested Answers
	Exercise 1
	Suggested Answer

	Exercise 2
	Suggested Answer

	Exercise 3
	Suggested Answer

	Complete Program
	Complete Output

	Minimizing the Number of Vehicles
	Describe
	Model
	Declare the RoutingModel class
	Define the RoutingModel constructor
	Define the loadGraphInformation function
	Define the lastMinuteGraphChanges function
	Define the addDimensions function
	Define the createIloNodes function
	Define the createVehicles function
	Define the createVisits function

	Solve
	Declare the RoutingSolver class
	Define the RoutingSolver constructor
	Define the findFirstSolution function
	Define the improveWithNHood function
	Define the closeEmptyVehicles function
	Define the getShortestRoute function
	Define the reduceActiveVehicles function
	Define the printInformation function
	Define the main function
	First solution information
	Improved Solution Information
	Solution information after reducing active vehicles

	Review Exercises
	Suggested Answers
	Exercise 1
	Suggested Answer

	Exercise 2
	Suggested Answer

	Complete Program
	Complete Output

	Adding Visit Disjunctions
	Describe
	Model
	Declare the RoutingModel class
	Define the RoutingModel constructor
	Define the loadGraphInformation function
	Define the lastMinuteGraphChanges function
	Define the addDimensions function
	Define the createIloNodes function
	Define the createVehicles function
	Define the createVisits function
	Define the createAdditionalVisits function
	Define the function removeVisit

	Solve
	Declare the RoutingSolver class
	Define the RoutingSolver constructor
	Define the findFirstSolution function
	Define the improveWithNHood function
	Define the addNewVisit function
	Define the removeVisitAndResolve function
	Define the printInformation function
	Define the main function
	First solution information
	Improved Solution Information
	Solution information including new visit
	Solution information after removing visit

	Review Exercises
	Suggested Answers
	Exercise 1
	Suggested Answer

	Exercise 2
	Suggested Answer

	Complete Program
	Complete Output

	Multiple Tours per Vehicle
	Describe
	Model
	Declare the RoutingModel class
	Define the RoutingModel constructor
	Define the loadGraphInformation and lastMinuteGraphChanges functions
	Define the addDimensions function
	Define the createIloNodes function
	Define the createVehicles function
	Define the createVisits function

	Solve
	Declare the RoutingSolver class
	Define the RoutingSolver constructor
	Define the insertAllReturnVisits function
	Define the orderVisits function
	Define the insertCustomerVisits function
	Define the improveWithNHood function
	Define the printInformation function
	Define the main function

	Review Exercises
	Suggested Answers
	Exercise 1
	Suggested Answer

	Exercise 2
	Suggested Answer

	Complete Program
	Complete Output

	Transportation Industry Solutions
	Pickup and Delivery Problems
	Describe
	Model
	Solve
	Review Exercises
	Suggested Answers
	Exercise 1
	Suggested Answer

	Exercise 2
	Suggested Answer

	Exercise 3
	Suggested Answer

	Complete Program
	Complete Output

	Adding Vehicle Breaks
	Describe
	Model
	Solve
	Review Exercises
	Suggested Answers
	Exercise 1
	Suggested Answer

	Exercise 2
	Suggested Answer

	Exercise 3
	Suggested Answer

	Complete Program
	Complete Output

	Adding Early and Late Costs
	Describe
	Early and Late Cost Interdependence

	Model
	Solve
	Review Exercises
	Suggested Answers
	Exercise 1
	Suggested Answer

	Exercise 2
	Suggested Answer

	Exercise 3
	Suggested Answer

	Exercise 4
	Suggested Answer

	Complete Program
	Complete Output

	Pickup and Delivery by Multiple Vehicles from Multiple Depots
	Describe
	Model
	Declare the Depot class
	Define the Depot constructor
	Define the Depot destructor
	Define the Depot::improve function
	Define the Depot::fillModel function
	Define the Depot::createOneVehicle function
	Define the Depot::createVehicles function
	Declare the RoutingModel class
	Define the RoutingModel constructor
	Define the RoutingModel::parse function
	Define the RoutingModel::createModel function
	Define the RoutingModel::createDimensions function
	Define the RoutingModel::createNodes function
	Define the RoutingModel::createDepots function
	Define the RoutingModel::createVisits function

	Solve
	Declare the RoutingSolver class
	Define the RoutingSolver constructor
	Define the RoutingSolver::findFirstSolution function
	Define the syncSolution functions
	Define the RoutingSolver::improveDepots function
	Define the RoutingSolver::improvePlan function
	Define the RoutingSolver::printInformation function
	Define the main function

	Review Exercises
	Suggested Answers
	Exercise 1
	Suggested Answer

	Exercise 2
	Suggested Answer

	Exercise 3
	Suggested Answer

	Complete Program
	Complete Output

	Modeling Complex Costs
	Describe cost1
	Model cost1
	Solve cost1
	Describe cost2
	Model cost2
	Solve cost2
	Review Exercises
	Suggested Answers
	Exercise 1
	Suggested Answer

	Exercise 2
	Suggested Answer

	Exercise 3
	Suggested Answer

	Complete cost1 Program
	Complete cost1 Output

	Complete cost2 Program
	Complete cost2 Output

	Docking Bays: Modeling External Resources
	Describe
	Model
	Solve
	Review Exercises
	Suggested Answers
	Exercise 1
	Suggested Answer

	Exercise 2
	Suggested Answer

	Exercise 3
	Suggested Answer

	Exercise 4
	Suggested Answer

	Complete Program
	Complete Output

	Field Service Solutions
	Dispatching Technicians
	Describe
	Model
	Solve
	Review Exercises
	Suggested Answers
	Exercise 1
	Suggested Answer

	Exercise 2
	Suggested Answer

	Exercise 3
	Suggested Answer

	Complete Program
	Complete Output

	Dispatching Technicians II
	Describe
	Model
	Solve
	Review Exercises
	Suggested Answers
	Exercise 1
	Suggested Answer

	Exercise 2
	Suggested Answer

	Exercise 3
	Suggested Answer

	Complete Program
	Complete Output

	CARP: Visiting Arcs Using Multiple Vehicles
	Describe
	Model
	Solve
	First Solution Information
	Improved Solution Information
	Solution Information with Modified Arc Costs

	Review Exercises
	Suggested Answers
	Exercise 1
	Suggested Answer

	Exercise 2
	Suggested Answer

	Exercise 3
	Suggested Answer

	Complete Program
	Complete Output

	Developing Dispatcher Applications
	Designing Dispatcher Models
	Simplify the model
	Suggested procedure

	Decompose the problem
	Temporal decomposition
	Declare the Day class
	Define the Day constructor
	Define the Day::Improve function
	Define the Day::fillModel function
	Define the Day::createOneTechnician function
	Define the Day::createTechnicians function
	Define the RoutingModel::createDays function
	Define the createSkillCostFunction
	Define the RoutingSolver::improveDays function
	Define the RoutingSolver::improvePlan function

	Other modeling hints

	Developing Your Own First Solution Heuristics
	Using the predefined first solution heuristics
	Deciding which heuristic to use
	More hints

	Creating your own first solution heuristic
	Heuristic Description
	Building Routes
	Building a Complete Solution
	Using the custom first solution goal

	Using the Dispatcher First Solution Framework
	Creating the decision class
	Creating the decision maker class
	Creating the decision tracer class
	Creating the first solution framework goal
	Using the first solution framework goal

	Developing Your Own Neighborhoods
	Neighborhood Description
	Defining the Neighborhood
	Creating the Solution Delta

	Implementing the Neighborhood

	Predefined First Solution Heuristics
	Example data
	Enumeration Heuristic
	Savings Heuristic
	Sweep Heuristic
	Nearest-to-Depot Heuristic
	Nearest Addition Heuristic
	Insertion Heuristic

	Predefined Neighborhoods
	Intra-Route Improvement: IloTwoOpt neighborhood
	Intra-Route Improvement: IloOrOpt neighborhood
	Inter-Route Improvement: IloRelocate neighborhood
	Inter-Route Improvement: IloCross neighborhood
	Inter-Route Improvement: IloExchange neighborhood
	Other neighborhoods

	Predefined Search Heuristics and Metaheuristics
	Basic Search Heuristics
	First Accept Search
	Best Accept Search
	MetaHeuristics
	Tabu Search Metaheuristic
	Guided Local Search Metaheuristic
	Using Metaheuristics In Search
	Tabu Search
	Guided Local Search
	Guided Tabu Search

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

