
IBM ILOG CP Optimizer V2.3

Getting Started with IBM ILOG
CP Optimizer

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Table of contents

Copyright notice...8

Welcome to IBM ILOG CP Optimizer..9
Overview..10

About this manual...11

Prerequisites..12

Related documentation...13

Installing IBM ILOG CP Optimizer..14

Location of examples..15

Typographic and naming conventions..16

Constraint programming with IBM ILOG CP Optimizer..19
Overview..21

The three-stage method..22

Describe...23

Model..25
Overview...26
Decision variables..27
Constraints...28

Solve...29
Overview...30

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Search space...31
Initial constraint propagation..32
Constructive search..33
Constraint propagation during search..34

Compile and test a simple application..35

Scheduling in CP Optimizer...38

Scheduling building blocks..39
Overview...40
Interval variables..41
Scheduling constraints...42

Compile and test...43

Review exercises...47
Exercises..48
Suggested answers..49

Modeling and solving a simple problem with integer variables: map coloring...51
Overview..52

Describe...53

Model..55

Solve...59

Review exercises...61
Exercises..62
Suggested answers..63

Complete program...65

Using arrays and objectives: warehouse location..67
Overview..68

Describe...69

Model..71

Solve...78

Review exercises...81
Exercises..82
Suggested answers..83

Complete program...85

Using specialized constraints and tuples: scheduling teams.............................87
Overview..88

Describe...89

Model..91

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

4

Solve...103

Review exercises...107
Exercises..108
Suggested answers..109

Complete program...110

Using expressions on interval variables: house building with earliness and
tardiness costs...111

Overview..112

Describe...113

Model..115

Solve...121

Review exercises...123
Exercises..124
Suggested answers..125

Complete program...126

Using no overlap constraints on interval variables: house building with
workers..127

Overview..128

Describe...129

Model..131

Solve...139

Review exercises...141
Exercises..142
Suggested answers..143

Complete program...144

Using interval variables with intensities: house building with resource
calendars...147

Overview..148

Describe...149

Model..151

Solve...158

Review exercises...161
Exercises..162
Suggested answers..163

Complete program...164

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

5

Using cumulative functions: house building with budget and resource pools.167
Overview..168

Describe...169

Model..171

Solve...179

Review exercises...181
Exercises..182
Suggested answers..183

Complete program...184

Using alternatives of interval variables: house building with worker allocation.187
Overview..188

Describe...189

Model..192

Solve...197

Review exercises...199
Exercises..200
Suggested answers..201

Complete program...202

Using state functions: house building with state incompatibilities..................205
Overview..206

Describe...207

Model..209

Solve...214

Review exercises...217
Exercises..218
Suggested answers..219

Complete program...220

Using search parameters: team building...223
Overview..224

Describe...225

Model..227

Solve...235

Review exercises...239
Exercises..240

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

6

Suggested answers..241

Complete program...242

Using search phases on integer variables: steel mill...243
Overview..244

Describe...245

Model..247

Solve...251

Review exercises...253
Exercises..254
Suggested answers..255

Complete program...256

Index..257

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

7

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks
IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are trademarks
or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or
other companies. A current list of IBM trademarks is available on the Web at "Copyright
and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 1987, 20098

http://www.ibm.com/legal/copytrade.shtml

Welcome to IBM ILOG CP Optimizer

This is the Getting Started with IBM ILOG CP Optimizer manual.

In this section

Overview
Describes CP Optimizer.

About this manual
Describes this manual.

Prerequisites
Describes the prerequisites for using this manual.

Related documentation
Lists the documentation related to this manual.

Installing IBM ILOG CP Optimizer
Describes where to find the instructions to install CP Optimizer.

Location of examples
Lists the location of the examples used in this manual.

Typographic and naming conventions
Describes the typographic and naming conventions used in this manual.

© Copyright IBM Corp. 1987, 2009 9

Overview

IBM® ILOG® CP Optimizer is a software library which provides a constraint programming
engine targeting both constraint satisfaction problems and optimization problems. This
engine, designed to be used in a “model & run” development process, contains powerful
methods for finding feasible solutions and improving them. The strength of the optimizer
removes the need for you to write and maintain a search strategy.

IBM ILOG CP Optimizer is based on IBM ILOG Concert Technology. Concert Technology
offers a library of classes and functions that enable you to define models for optimization
problems. Likewise, CP Optimizer offers a library of classes and functions that enable you
to find solutions to the models. Though the CP Optimizer defaults will prove sufficient to
solve most problems, CP Optimizer offers a variety of tuning classes and parameters to
control various algorithmic choices.

IBM ILOGCPOptimizer and Concert Technology provide application programming interfaces
(APIs) for Microsoft® .NET languages, C++ and Java™. The CP Optimizer part of an
application can be completely integrated with the rest of that application (for example, the
graphical user interface, connections to databases and so on) because it can share the same
objects.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

10

About this manual

This is the Getting Started with IBM ILOG CP Optimizer manual. It is composed of lessons
that use a procedural-based learning strategy. Each procedural-based lesson is built around
a sample problem, and you work on a partially completed code example. As you follow the
steps in the lesson, you complete the code and learn about the concepts. Then, you compile
and run the code and analyze the results. At the end of each lesson, there are review
exercises.

This manual is designed to be used by programmers whomay or may not have any knowledge
of constraint programming. The ideal usage context for this manual is sitting in front of your
computer, with IBM® ILOG® Concert Technology and IBM ILOG CP Optimizer installed.
You work through the lessons and exercises.

If you are a novice CP Optimizer user, start at the beginning of this manual, since the lessons
build on each other.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

11

Prerequisites

IBM® ILOG® CP Optimizer requires a working knowledge of the Microsoft® .NET
Framework, C++ or Java™. However, it does not require you to learn a new language since
it does not impose any syntactic extensions on your programming language of choice.

If you are experienced in constraint programming or operations research, you are probably
already familiar with many concepts used in this manual. However, no experience in
constraint programming or operations research is required to use this manual.

You should have IBM ILOG CP Optimizer and IBM ILOG Concert Technology installed in
your development environment before starting to use this manual. Moreover, you should be
able to compile, link and execute a sample program provided with IBM ILOG CP Optimizer.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

12

Related documentation

The following documentation ships with IBM® ILOG® CP Optimizer and will be useful for
you to refer to as you complete the lessons and exercises.

♦ The IBM ILOG CP Optimizer Reference Manuals document the IBM ILOG CP Optimizer
and IBM ILOG Concert Technology classes and functions used in the Getting Started with
IBM ILOG CP Optimizer Manual. The reference manuals also explain certain concepts
more formally. There are three reference manuals; one for each of the available APIs.

♦ The IBM ILOG CP Optimizer User’s Manual explains the topics covered in this Getting
Started with IBM ILOG CP Optimizer Manual in greater depth, with individual sections
about modeling, solving and tuning the CP Optimizer search process.

♦ The IBM ILOG CP Optimizer Release Notes list new and improved features, changes in
the library and documentation and issues addressed for each release.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

13

Installing IBM ILOG CP Optimizer

In this manual, it is assumed that you have already successfully installed the IBM® ILOG®
Concert Technology and CP Optimizer libraries on your platform (that is, the combination
of hardware and software you are using). If this is not the case, you will find installation
instructions in your IBM ILOG Electronic Product Delivery package. The instructions cover
all the details you need to know to install Concert Technology and CP Optimizer on your
system.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

14

Location of examples

In each lesson you work to fill in the missing parts of a partially completed code. These
partial codes are available for the C++ API and are located in the directory YourCPHome/
examples/tutorial/cpp. The completed examples are available for C++, C# and Java™.
These examples are in the directories YourCPHome/examples/src/cpp, YourCPHome/
examples/src/csharp and YourCPHome/examples/src/java, respectively. Each example
has the appropriate suffix. Thus the Java equivalent of color.cpp is Color.java, and the
C# version is Color.cs.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

15

Typographic and naming conventions

Important ideas are italicized the first time they appear.

In this manual, the examples are given in C++. In C++, the names of types, classes and
functions defined in the IBM® ILOG®CP Optimizer and Concert Technology libraries begin
with Ilo.

The name of a class is written as concatenated words with the first letter of each word in
upper case (that is, capital). For example,

IloIntVar

A lower case letter begins the first word in names of arguments, instances and member
functions. Other words in the identifier begin with an upper case letter. For example,

IloIntVar aVar;
IloIntVarArray::add;

Names of data members begin with an underscore, like this:

class Bin {
public:
IloIntVar _type;
IloIntVar _capacity;
IloIntVarArray _contents;
Bin (IloModel mod,

IloIntArray capacity,
IloInt nTypes,
IloInt nComponents);

void display(const IloCP cp);
};

Generally, accessors begin with the key word get. Accessors for Boolean members begin
with is. Modifiers begin with set.

Names of classes, methods and symbolic constants in the C# and the Java™ APIs correspond
very closely to those in the C++ API with these systematic exceptions:

♦ In the C# API and the Java API, namespaces are used. For Java, the namespaces are
ilog.cp and ilog.concert. For C#, the namespaces are ILOG.CP and ILOG.Concert.

♦ In the C++ API and Java API, the names of classes begin with the prefix Ilo whereas in
in the C# API they do not.

♦ In the C++ API and Java API, the names of methods conventionally begin with a lowercase
letter, for example, startNewSearch, whereas in the C# API, the names of methods
conventionally begin with an uppercase letter, for example, StartNewSearch according
to Microsoft® practice.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

16

To make porting easier from platform to platform, IBM ILOG CP Optimizer and Concert
Technology isolate characteristics that vary from system to system.

For that reason, you are encouraged to use the following identifiers for basic types in C++:

♦ IloInt stands for signed long integers;

♦ IloNum stands for double precision floating-point values ;

♦ IloBool stands for Boolean values: IloTrue and IloFalse.

You are not obliged to use these identifiers, but it is highly recommended if you plan to port
your application to other platforms.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

17

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

18

Constraint programming with IBM ILOG CP
Optimizer

This section describes the basic concepts of constraint programming.

In this section

Overview
Describes CP Optimizer.

The three-stage method
Describes the three-stage method for solving problems with CP Optimizer.

Describe
Describes the first stage in solving a problem with CP Optimizer.

Model
Describes the second stage in solving a problem with CP Optimizer.

Solve
Describes the third stage in solving a problem with CP Optimizer.

Compile and test a simple application
Describes how to compile and test an application in CP Optimizer.

Scheduling in CP Optimizer
Describes the scheduling capability of CP Optimizer.

© Copyright IBM Corp. 1987, 2009 19

Scheduling building blocks
Describes the basic scheduling building blocks available in CP Optimizer.

Compile and test
Describes how to compile and test a scheduling application.

Review exercises
Includes the review exercises and the suggested answers.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

20

Overview

In this lesson, you will learn how to:

♦ use the three-stage method to describe, model and solve problems;

♦ identify decision variables and constraints;

♦ understand basic constraint propagation and search;

♦ understand the basic building blocks of a scheduling model;

♦ compile a sample program to ensure your installation is working correctly.

IBM® ILOG® CP Optimizer is a software library which provides a constraint programming
engine targeting both constraint satisfaction problems and optimization problems. CP
Optimizer provides a library of re-usable and maintainable classes that can be used just as
they are, or extended to meet special needs. Those classes define objects in the problem
domain in a natural and intuitive way so that you can cleanly distinguish the problem
representation from the problem resolution.

One of the main advantages of constraint programming is that it enables you to represent
your problem explicitly in a natural and intuitive model, so that your problem representation
serves simultaneously as a declarative specification. This congruence between the problem
specification and the problem representation guarantees that the resolution of the constraints
does, indeed, solve the problem as defined. In other words, there is no “slip” between the
model of the problem and the implementation of its solution. CP Optimizer embodies this
advantage of modeling and solving in a ready-to-use library of tools.

CP Optimizer offers features specially adapted to solving problems in scheduling with
continuous time and resource allocation. There are, for example, classes of objects particularly
designed to represent such aspects as tasks and temporal constraints. CP Optimizer offers
you a workbench of modeling features that intuitively and naturally tackle the issues inherent
in scheduling and allocation problems.

IBM ILOGCPOptimizer and Concert Technology provide application programming interfaces
(APIs) for Microsoft® Framework .NET languages, C++ and Java™. The CP Optimizer part
of an application can be completely integrated with the rest of that application (for example,
the graphical user interface, connections to databases and so on) because it can share the
same objects.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

21

The three-stage method

To find a solution to a problem using IBM® ILOG® CP Optimizer, you use a three-stage
method: describe, model and solve.

The first stage is to describe the problem in natural language. For more information, see
the section Describe.

The second stage is to use IBM ILOG Concert Technology classes tomodel the problem. The
model is composed of decision variables and constraints.Decision variables are the unknown
information in a problem. Each decision variable has a domain of possible values. The
constraints are limits or restrictions on combinations of values for these decision variables.
The model may also contain an objective, an expression that can be maximized or minimized.
For more information, see the section Model.

The third stage is to use IBM ILOG CP Optimizer classes to solve the problem. Solving the
problem consists of finding a value for each decision variable while simultaneously satisfying
the constraints and maximizing or minimizing an objective, if one is included in the model.
The IBM ILOG CP Optimizer engine (also called “the optimizer”) uses two techniques for
solving optimization problems: constructive search and constraint propagation. For more
information, see the section Solve.

In this lesson, you will describe, model and solve a simple problem to understand the basic
concepts in constraint programming. The problem is to find values for x and y from the
following information:

♦ x + y = 17

♦ x - y = 5

♦ x can be any integer from 5 through 12

♦ y can be any integer from 2 through 17

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

22

Describe

The first stage is to describe the problem in natural language.

What is the unknown information, represented by the decision variables, in this problem?

♦ The values of x and y, where x is an integer between 5 and 12 inclusive and y is as integer
between 2 and 17 inclusive.

What are the limits or restrictions on combinations of these values, represented by the
constraints, in this problem?

♦ x + y = 17

♦ x - y = 5

Though the Describe stage of the process may seem trivial in a simple problem like this one,
you will find that taking the time to fully describe a more complex problem is vital for creating
a successful program. You will be able to code your program more quickly and effectively
if you take the time to describe the model, isolating the decision variables and constraints.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

23

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

24

Model

Describes the second stage in solving a problem with CP Optimizer.

In this section

Overview
Describes the second stage in solving a problem with CP Optimizer.

Decision variables
Describes the decision variables.

Constraints
Describes the constraints.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

25

Overview

The second stage is to use IBM® ILOG® Concert Technology classes tomodel the problem.
The model is composed of decision variables and constraints. The model may also contain
an objective, although in this case it does not. For more information on modeling with an
objective, see Using arrays and objectives: warehouse location.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

26

Decision variables

Decision variables represent the unknown information in a problem. Decision variables differ
from standard programming variables in that they have domains of possible values and may
have constraints placed on the allowed combinations of theses values. For this reason,
decision variables are also known as constrained variables. In this example, the decision
variables are x and y.

Each decision variable has a domain of possible values. In this example, the domain of
decision variable x is [5..12], or all integers from 5 to 12. The domain of decision variable y
is [2..17], or all integers from 2 to 17.

In IBM® ILOG® CP Optimizer and Concert Technology, square brackets denote the
domain of decision variables. For example, [5 12] denotes a domain as a set consisting

Note:

of precisely two integers, 5 and 12. In contrast, [5..12] denotes a domain as a range
of integers, that is, the interval of integers from 5 to 12, so it consists of 5, 6, 7, 8, 9,
10, 11 and 12.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

27

Constraints

Constraints are limits on the combinations of values for variables. There are two constraints
on the decision variables in this example: x + y = 17 and x - y = 5.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

28

Solve

Describes the third stage in solving a problem with CP Optimizer.

In this section

Overview
Describes the third stage in solving a problem with CP Optimizer.

Search space
Describes the search space.

Initial constraint propagation
Describes the initial constraint propagation.

Constructive search
Describes constructive search.

Constraint propagation during search
Describes constraint propagation during search.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

29

Overview

The third stage of the process is to use IBM® ILOG® CP Optimizer classes to search for a
solution and solve the problem. A solution is a set of value assignments to the constrained
variables such that each variable is assigned exactly one value from its domain and such
that together these values satisfy the constraints. If there is an objective in the model, then
an optimal solution is a solution that optimizes the objective function. Solving the problem
consists of finding a solution for the problem or an optimal solution, if an objective is included
in the model. The IBM ILOG CP Optimizer engine utilizes efficient algorithms for finding
solutions to Constraint satisfaction and optimization problems.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

30

Search space

The IBM® ILOG® CP Optimizer engine explores the search space to find a solution. The
search space is all combinations of values. One way to find a solution would be to explicitly
study each combination of values until a solution was found. Even for this simple problem,
this approach is obviously time-consuming and inefficient. For a more complicated problem
with many variables, the approach would be unrealistic.

The optimizer uses two techniques to find a solution: constructive search and constraint
propagation. Additionally, the optimizer performs two types of constraint propagation: initial
constraint propagation and constraint propagation during search.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

31

Initial constraint propagation

First, the IBM® ILOG® CP Optimizer engine performs an initial constraint propagation.
The initial constraint propagation removes values from domains that will not take part in
any solution. Before propagation, the domains are:

D(x) = [5 6 7 8 9 10 11 12]
D(y) = [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17]

To get an idea of how initial constraint propagation works, consider the constraint x + y = 17.
If you take the smallest number in the domain of x, which is 5, and add it to the largest
number in the domain of y, which is 17, the answer is 22. This combination of values (x = 5,
y = 17) violates the constraint x + y = 17. The only value of x that would work with y = 17
is x = 0. However, there is no value of 0 in the domain of x, so y cannot be equal to 17. The
value y = 17 cannot take part in any solution. The domain reduction algorithm employed by
the constraint propagation engine removes the value y = 17 from the domain of y. Similarly,
the propagation engine removes the following values from the domain of y: 13, 14, 15 and
16.

Likewise, if you take the largest number in the domain of x, which is 12, and add it to the
smallest number in the domain of y, which is 2, the answer is 14. This combination of values
(x = 12, y = 2) violates the constraint x + y = 17. The only value of x that would work with
y = 2 is x = 15. However, there is no value of 15 in the domain of x, so y cannot be equal to
2. The value of y = 2 cannot take part in any solution. the propagation engine removes the
value y = 2 from the domain of y. For the same reason, the domain reduction algorithm
employed by the propagation engine removes the following values from the domain of y: 2,
3 and 4.

After initial propagation for the constraint x + y = 17, the domains are:

D(x) = [5 6 7 8 9 10 11 12]
D(y) = [5 6 7 8 9 10 11 12]

Now, examine the constraint x - y = 5. If you take the value 5 in the domain of x, you can
see that the only value of y that would work with x = 5 is y = 0. However, there is no value
of 0 in the domain of y, so x cannot equal 5. The value x = 5 cannot take part in any solution.
The propagation engine removes the value x = 5 from the domain of x. Using similar logic,
the propagation engine removes the following values from the domain of x: 6, 7, 8 and 9.
Likewise, the domain reduction algorithm employed by the propagation engine removes the
following values from the domain of y: 8, 9, 10, 11 and 12.

Returning to the other constraint, there are no further values that can be removed from the
variables. After initial propagation, the search space has been reduced in size. The domains
are now:

D(x) = [10 11 12]
D(y) = [5 6 7]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

32

Constructive search

After initial constraint propagation, the search space is reduced. IBM® ILOG®CP Optimizer
will use a constructive search strategy to guide the search for a solution in the remaining
part of the search space. It may help to think of the strategy as one that traverses a search
tree. The root of the tree is the starting point in the search for a solution; each branch
descending from the root represents an alternative in the search. Each combination of values
in the search space can be seen as a leaf node of the search tree.

The IBM ILOG CP Optimizer engine executes a search strategy that guides the search for
a solution. The optimizer “tries” a value for a variable to see if this will lead to a solution.
To demonstrate how the optimizer uses search strategies to find a solution, consider a search
strategy that specifies that the optimizer should select variable x and assign it the lowest
value in the domain of x. For the first search move in this strategy, the optimizer assigns
the value 10 to the variable x. This move, or search tree branch, is not permanent. If a
solution is not found with x = 10, then the optimizer can undo this move and try a different
value of x.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

33

Constraint propagation during search

The IBM® ILOG® CP Optimizer engine performs constraint propagation during search.
This constraint propagation differs from the initial constraint propagation. The initial
constraint propagation removes all values from domains that will not take part in any solution.
Constraint propagation during search removes all values from the current domains that
violate the constraints. You can think of constraint propagation during search in the following
way. In order to “try” a value for a variable, the optimizer creates “test” or current domains.
When constraint propagation removes values from domains during search, values are only
removed from these “test” domains.

To continue the same example, suppose that, based on the search strategy, the optimizer
has assigned the value 10 to the decision variable x. Working with the constraint x + y = 17,
constraint propagation reduces the domain of y to [7]. However, this combination of values
(x = 10, y = 7) violates the constraint x - y = 5. The optimizer removes the value y = 7 from
the current domain of y. At this point, the domain of y is empty, and the optimizer encounters
a failure. The optimizer can then conclude that there is no possible solution with the value
of 10 assigned to x.

When the optimizer decides to try a different value for the decision variable x, the domain
of y is at first restored to the values [5 6 7]. It then reduces the domain of y based on the
new value assigned to x.

This simple example demonstrates the basic concepts of constructive search and constraint
propagation. To summarize, solving a problem consists of finding a value for each decision
variable while simultaneously satisfying the constraints. The IBM ILOG CP Optimizer engine
uses two techniques to find a solution: constructive search with search strategies and
constraint propagation. Additionally, the optimizer performs two types of constraint
propagation: initial constraint propagation and constraint propagation during search.

The initial constraint propagation removes values from domains that will not take part in
any solution. After initial constraint propagation, the search space is reduced. This remaining
part of the search space, where the IBM ILOG CP Optimizer engine will use constructive
search with a search strategy to search for a solution, is called the search tree. Constructive
search is a way to “try” a value for a variable to see if this will lead to a solution. The optimizer
performs constraint propagation during search. Constraint propagation during search
removes all values from the current or “test” domains that violate the constraints. If the
optimizer cannot find a solution after a series of choices, these can be reversed and
alternatives can be tried. The CP Optimizer engine continues to search using constructive
search and constraint propagation during search until a solution is found.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

34

Compile and test a simple application

This first lesson is designed to help you understand the basic concepts in constraint
programming. In future lessons, you will work through problems by describing, modeling
and solving problems using IBM® ILOG® Concert Technology and CP Optimizer classes.
In this lesson, you are provided with the completed example code so that you can test your
installation of IBM ILOG CP Optimizer.

In Modeling and solving a simple problem with integer variables: map coloring, you will
learn about the classes and member functions used in this program.

The following code using the C++ API models and solves the problem introduced in this
lesson:

#include <ilcp/cp.h>

int main(int argc, const char * argv[]){
IloEnv env;
try {
IloModel model(env);
IloIntVar x(env, 5, 12, “x”);
IloIntVar y(env, 2, 17, “y”);
model.add(x + y == 17);
model.add(x - y == 5);
IloCP cp(model);
if (cp.solve()){
cp.out() << std::endl << “Solution:” << std::endl;
cp.out() << “x = “ << cp.getValue(x) << std::endl;
cp.out() << “y = “ << cp.getValue(y) << std::endl;

}
}
catch (IloException& ex) {
env.out() << “Error: “ << ex << std::endl;

}
env.end();
return 0;

}

Open the example file YourCPHome/examples/src/cpp/intro.cpp in your development
environment. To test your installation of IBM ILOG CP Optimizer, build and run the program.
When you run the program, you should get results similar to this output:

! --
--
! Satisfiability problem - 2 variables, 2 constraints
! Initial process time : 0.00s (0.00s extraction + 0.00s propagation)
! . Log search space : 7.0 (before), 3.2 (after)
! . Memory usage : 315.4 Kb (before), 315.4 Kb (after)
! --
--
! Branches Non-fixed Branch decision

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

35

* 2 0.03s y != 5
! --
--
! Solution status : Terminated normally, solution found
! Number of branches : 2
! Number of fails : 1
! Total memory usage : 328.3 Kb (315.4 Kb CP Optimizer + 12.9 Kb Concert)

! Time spent in solve : 0.03s (0.03s engine + 0.00s extraction)
! Search speed (br. / s) : 64.0
! --
--

Solution:
x = 11
y = 6

The solution found by the IBM ILOG CP Optimizer engine is x = 11 and y = 6. In addition
to the solution, information regarding the progress of the optimizer is displayed; this
information is called the search log, or the log.

The first line of the log indicates the type of problem, along with the number of decision
variables and constraints in the model. In this case, there is no objective included in the
model, so the problem is reported to be a “Satisfiability problem”. When the model includes
an objective, the problem type is reported as a “Minimization problem” or a “Maximization
problem” depending on the type of objective. The next three lines of the log provide
information regarding the initial constraint propagation. The “Initial process time” is the
time in seconds spent at the root node of the search tree where the initial propagation
occurs. This time encompasses the time used by the optimizer to load the model, called
extraction, and the time spent in initial propagation. The value for “Log search space”
provides an estimate on the size of the depth-first search tree; this value is the log (base 2)
of the products of the domains sizes of all the decision variables of the problem. Typically,
the estimate of the size of the search tree should be smaller after the initial propagation, as
choices will have been eliminated. However, this value is always an overestimate of the log
of the number of remaining leaf nodes of the tree because it does not take into account the
action of propagation of constraints at each node. The memory used by the optimizer during
the initial propagation is reported.

In order to interpret the remainder of the log file, you may want to think about the search
as a binary tree. The root of the tree is the starting point in the search for a solution; each
branch descending from the root represents an alternative choice or decision in the search.
Each of these branches leads to a node where constraint propagation during search will
occur. If the branch does not lead to a failure and a solution is not found at a node, the node
is called a choice point. The optimizer can make an additional decision and create two new
alternative branches from the current node, or it can jump in the tree and search from
another node.

The lines in the next section of the progress log, are displayed periodically during the search
and describe the state of the search. The display frequency of the progress log can be
controlled with parameters of the optimizer. Since the problem in the lesson is a simple one,
only one update is displayed.

The progress information given in a progress log update includes:

♦ Branches: the number of branches explored in the binary search tree;

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

36

♦ Non-fixed: the number of uninstantiated (not fixed) model variables;

♦ Branch decision: the decision made at the branch currently under consideration by the
optimizer.

The final lines of the log provide information about the entire search, after the search has
terminated. This information about the search includes:

♦ Solution status: the conditions under which the search terminated;

♦ Number of branches: the number of branches explored in the binary search tree;

♦ Number of fails: the number of branches that did not lead to a solution;

♦ Total memory usage: the memory used by IBM ILOG Concert Technology and the IBM
ILOG CP Optimizer engine;

♦ Time spent in solve: the elapsed time from start to the end of the search displayed in
hh:mm:ss.ff format;

♦ Search speed: average time spent per branch.

In subsequent lessons in this manual, the log output is not included in the sections which
report the results. You can view the log information when you build and run the completed
programs.

The CP Optimizer search log is meant for visual inspection only, not for mechanized
parsing. In particular, the log may change from version to version of CP Optimizer in

Note:

order to improve the quality of information displayed in the log. Any code based on the
log output may have to be updated when a new version of CP Optimizer is released.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

37

Scheduling in CP Optimizer

IBM® ILOG® CP Optimizer offers features specially adapted to solving problems in
scheduling with continuous time and resource allocation. There are, for example, classes of
objects particularly designed to represent such aspects as tasks and temporal constraints.
CP Optimizer offers you a workbench of modeling features that intuitively and naturally
tackle the issues inherent in scheduling and allocation problems.

Scheduling with fine-grained time can be seen as the process of assigning start and end
times to intervals. Scheduling problems also require the management of minimal or maximal
capacity constraints for resources over time.

CP Optimizer provides features for modeling and solving scheduling problems where time
intervals (activities, operations, tasks) need to be placed in time and may have a resource
allocation aspect.

There are many other scheduling problem types that can be solved using CP Optimizer, such
as:

♦ combined scheduling and planning problems,

♦ combined scheduling and configuration problems and

♦ combined scheduling and sequencing problems.

Within these different problem types, a wide variety of constraints may need to be satisfied.
Different environments are subject to different constraints which contribute to the complexity
of the problem. For example, one factory scheduling problem may involve only machines as
resources, while another may also require the consideration of the abilities of human
operators. There also exists a wide variety in the size of scheduling problems. This size may
vary from a few dozen activities to hundreds of thousands of activities.

IBM ILOG CP Optimizer can be used to create a variety of scheduling applications, including:

♦ personnel and equipment scheduling for installation, maintenance and repair activities,

♦ finite capacity production scheduling,

♦ project planning and scheduling and

♦ logistic resources scheduling.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

38

Scheduling building blocks

Describes the basic scheduling building blocks available in CP Optimizer.

In this section

Overview
Describes the basic scheduling building blocks available in CP Optimizer.

Interval variables
Describes interval decision variables.

Scheduling constraints
Describes the scheduling constraints.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

39

Overview

Scheduling is the act of creating a schedule, which is a timetable for planned occurrences.
Scheduling may also involve allocating resources to activities over time.

A scheduling problem is defined by:

♦ a set of time intervals--definitions of activities, operations or tasks to be completed;

♦ a set of temporal constraints--definitions of possible relationships between the start and
end times of the intervals;

♦ a set of specialized constraints--definitions of the complex relationships on a set of intervals
due to the state and finite capacity of resources.

Many of the lessons in this manual provide deeper explanations of how CP Optimizer
facilitates the representation of scheduling problems.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

40

Interval variables

In IBM® ILOG® CP Optimizer, activities, operations and tasks are represented as interval
decision variables.

An interval has a start, an end, a length and a size. An interval variable allows for these
values to be variable within the model. The start is the lower endpoint of the interval and
the end is the upper endpoint of the interval. By default, the size is equal to the length,
which is the difference between the end and the start of the interval. In general, the size is
a lower bound on the length.

Also, an interval variable may be optional, and whether or not an interval is present in the
solution is represented by a decision variable. If an interval is not present in the solution,
this means that any constraints on this interval act like the interval is “not there.” Exact
semantics will depend on the specific constraint.

In CP Optimizer, the optionality of an interval is captured by the notion of a Boolean presence
status associated with each interval variable. Logical relations can be expressed between
the presence statuses of interval variables, allowing, for instance, to state that whenever
interval variable a is present then interval variable b must also be present.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

41

Scheduling constraints

Several types of constraints that can be placed on interval variables:

♦ precedence constraints, which ensure that the relative positions of intervals in the solution
(For example a precedence constraint can model a requirement that an interval a must
end before interval b starts, optionally with some minimum delay z.);

♦ no overlap constraints, which ensure that positions of intervals in the solution to be
disjoint in time;

♦ span constraints, which ensure that one interval covers the intervals in a set of intervals;

♦ alternative constraints, which ensure that exactly one of a set of intervals be present in
the solution;

♦ synchronize constraints, which ensure that a set of intervals start and end at the same
time as a given interval variable if it is present in the solution;

♦ cumulative expression constraints, which restrict the bounds of the domains of cumulative
expressions;

♦ state constraints, which ensure that an interval be positioned based on the value of a
state function.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

42

Compile and test

In this lesson, you are provided with a completed example code so that you can test your
installation of IBM® ILOG®CP Optimizer. InUsing expressions on interval variables: house
building with earliness and tardiness costs, you will learn about the classes and member
functions used in this program.

The problem is a house building problem in which there are ten tasks of fixed size, each of
which needs to be assigned a starting time. Using the C++ API, the code for creating the
environment, model and interval variables that represent the tasks is:

#include <ilcp/cp.h>

int main(int argc, const char * argv[]) {
IloEnv env;
try {
IloModel model(env);

/* CREATE THE TIME-INTERVALS. */
IloIntervalVar masonry (env, 35, “masonry “);
IloIntervalVar carpentry(env, 15, “carpentry “);
IloIntervalVar plumbing (env, 40, “plumbing “);
IloIntervalVar ceiling (env, 15, “ceiling “);
IloIntervalVar roofing (env, 5, “roofing “);
IloIntervalVar painting (env, 10, “painting “);
IloIntervalVar windows (env, 5, “windows “);
IloIntervalVar facade (env, 10, “facade “);
IloIntervalVar garden (env, 5, “garden “);
IloIntervalVar moving (env, 5, “moving “);

The constraints in this problem are precedence constraints; some tasks cannot start until
other tasks have ended. For example, the ceilings must be completed before painting can
begin. The set of precedence constraints for this problem can be added to the model with
the code:

model.add(IloEndBeforeStart(env, masonry, carpentry));
model.add(IloEndBeforeStart(env, masonry, plumbing));
model.add(IloEndBeforeStart(env, masonry, ceiling));
model.add(IloEndBeforeStart(env, carpentry, roofing));
model.add(IloEndBeforeStart(env, ceiling, painting));
model.add(IloEndBeforeStart(env, roofing, windows));
model.add(IloEndBeforeStart(env, roofing, facade));
model.add(IloEndBeforeStart(env, plumbing, facade));
model.add(IloEndBeforeStart(env, roofing, garden));
model.add(IloEndBeforeStart(env, plumbing, garden));
model.add(IloEndBeforeStart(env, windows, moving));
model.add(IloEndBeforeStart(env, facade, moving));
model.add(IloEndBeforeStart(env, garden, moving));

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

43

model.add(IloEndBeforeStart(env, painting, moving));

Here there is a special constraint, IloEndBeforeStart, which ensures that one interval
variable ends before the other starts. This constraint is handled specially by the engine. One
reason is to correctly treat the presence of intervals so that if one of the interval variables
is not present, the constraint is automatically satisfied, and another reason is for stronger
inference in constraint propagation.

The interval variables and precedence constraints completely describe this simple problem.
An optimizer object (an instance of the class IloCP) is used to find a solution to the model,
assigning values to the start and end of each of the interval variables in the model. The last
part of the code for this example is:

IloCP cp(model);
if (cp.solve()) {
cp.out() << cp.domain(masonry) << std::endl;
cp.out() << cp.domain(carpentry) << std::endl;
cp.out() << cp.domain(plumbing) << std::endl;
cp.out() << cp.domain(ceiling) << std::endl;
cp.out() << cp.domain(roofing) << std::endl;
cp.out() << cp.domain(painting) << std::endl;
cp.out() << cp.domain(windows) << std::endl;
cp.out() << cp.domain(facade) << std::endl;
cp.out() << cp.domain(garden) << std::endl;
cp.out() << cp.domain(moving) << std::endl;

} else {
cp.out() << “No solution found. “ << std::endl;

}
cp.printInformation();

} catch (IloException& ex) {
env.out() << “Error: “ << ex << std::endl;

}
env.end();
return 0;

}

Open the example file YourCPHome/examples/src/cpp/sched_intro.cpp in your development
environment. To test your installation of IBM ILOG CP Optimizer, build and run the program.
When you run the program, you should get results similar to this search log output:

! --
--
! Satisfiability problem - 10 variables, 14 constraints
! Initial process time : 0.00s (0.00s extraction + 0.00s propagation)
! . Log search space : 33.2 (before), 33.2 (after)
! . Memory usage : 315.4 Kb (before), 315.4 Kb (after)
! --
--
! Branches Non-fixed Branch decision
* 12 0.00s on moving
! --

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

44

--
! Solution status : Terminated normally, solution found
! Number of branches : 12
! Number of fails : 0
! Total memory usage : 347.2 Kb (331.4 Kb CP Optimizer + 15.8 Kb Concert)

! Time spent in solve : 0.00s (0.00s engine + 0.00s extraction)
! Search speed (br. / s) : 1200.0
! --
--
masonry [1: 0 -- 35 --> 35]
carpentry [1: 35 -- 15 --> 50]
plumbing [1: 35 -- 40 --> 75]
ceiling [1: 35 -- 15 --> 50]
roofing [1: 50 -- 5 --> 55]
painting [1: 50 -- 10 --> 60]
windows [1: 55 -- 5 --> 60]
facade [1: 75 -- 10 --> 85]
garden [1: 75 -- 5 --> 80]
moving [1: 85 -- 5 --> 90]
Number of branches : 12
Number of fails : 0
Number of choice points : 13
Number of variables : 10
Number of constraints : 2
Total memory usage : 347.2 Kb (331.4 Kb CP + 15.8 Kb Concert)
Time in last solve : 0.00s (0.00s engine + 0.00s extraction)
Total time spent in CP : 0.02s

To understand the solution found by CP Optimizer to this satisfiability scheduling problem,
consider the line:

masonry [1: 0 -- 35 --> 35]

The interval variable representing the masonry task, which has size 35, has been assigned
the interval [0,35). Masonry starts at time 0 and ends at the time point 35.

Displaying interval variablesNote:

After a time interval has been assigned a start value (say s) and an end value (say e),
the interval is written as [s,e). The time interval does not include the endpoint e. If
another interval variable is constrained to be placed after this interval, it can start at
the time e.

In subsequent lessons in this manual, the log output is not included in the sections which
report the results. You can view the log information when you build and run the completed
programs.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

45

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

46

Review exercises

Includes the review exercises and the suggested answers.

In this section

Exercises
Lists the review exercises.

Suggested answers
Provides the suggested answers to the review exercises.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

47

Exercises

For answers, see Suggested answers.

1. To find a solution to a problem using CP Optimizer, you use the three-stage method:
describe, model and solve. What does each of these stages involve?

2. What are decision variables?

3. What are constraints?

4. What are the two techniques that the CP Optimizer uses to find a solution?

5. What are interval decision variables?

6. What are some types of constraints on interval decision variables?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

48

Suggested answers

Exercise 1
To find a solution to a problem using CP Optimizer, you use the three-stage method: describe,
model and solve. What does each of these stages involve?

Suggested answer
1. Describe

Write a natural language description of problem.

2. Model

Use Concert Technology classes and functions tomodel the problem: declare the variables
(unknowns) in the problem and add constraints on the variables to the model.

3. Solve

Use CP Optimizer classes and functions to search for a solution.

Exercise 2
What are decision variables?

Suggested answer
Decision variables are the unknown information in a problem. Each decision variable has a
domain of possible values.

Exercise 3
What are constraints?

Suggested answer
Constraints are limits on the combinations of values for decision variables.

Exercise 4
What are the two techniques that the CP Optimizer engine uses to find a solution?

Suggested answer
The CP Optimizer engine uses two techniques to find a solution: constructive search and
constraint propagation.

Exercise 5
What are interval decision variables?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

49

Suggested answer
Interval decision variables represent part of the unknown information in a scheduling
problem. Each interval decision variable represents the start, the end, the size and the length
of a task, activity or operation. An interval decision variable also represents whether or not
the interval is present in the solution.

Exercise 6
What are some types of constraints on interval decision variables?

Suggested answer
Some types of constraints on interval decision variables are precedence, no overlap, span,
alternative, synchronize, cumulative expression and state constraints.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

50

Modeling and solving a simple problem with
integer variables: map coloring

This section describes how to model and solve a simple problem using integer decision
variables.

In this section

Overview
Describes how to model and solve a simple problem with integer decision variables.

Describe
Describes the first stage in finding a solution to the map coloring problem.

Model
Describes the second stage in finding a solution to the map coloring problem.

Solve
Describes the third stage in finding a solution to the map coloring problem.

Review exercises
Includes the review exercises and suggested answers.

Complete program
Lists the location of the complete map coloring program and the results.

© Copyright IBM Corp. 1987, 2009 51

Overview

In this lesson, you will learn how to:

♦ use the classes IloEnv and IloModel to create an environment and a model;

♦ use the class IloIntVar to declare decision variables;

♦ use the class IloConstraint to place simple arithmetic constraints on decision variables;

♦ use the class IloCP to search for solutions and output the results.

You will learn how to model and solve a simple problem, a map coloring problem. To find a
solution to this problem using IBM® ILOG® CP Optimizer, you will use the three-stage
method: describe, model and solve.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

52

Describe

The problem involves choosing colors for the countries on a map in such a way that at most
four colors (blue, white, yellow, green) are used, and no pair of neighboring countries are
the same color. In this lesson, you will find a solution for a map coloring problem with six
countries: Belgium, Denmark, France, Germany, Luxembourg and the Netherlands. Map
coloring problems are closely related to graph coloring problems and have many real world
applications.

Map for coloring

Step 1: Describe the problem
The first step in modeling and solving a problem is to write a natural language description
of the problem, identifying the decision variables and the constraints on these variables.

Write a natural language description of this problem.

Answer these questions:

♦ What is the known information in this problem?

♦ What are the decision variables or unknowns in this problem?

♦ What are the constraints on these variables?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

53

Decision variables and constraintsNote:

Decision variables are the unknown information in a problem. Each decision variable
has a domain of possible values.

Constraints are limits or restrictions on combinations of values for decision variables.

For more information on decision variables and constraints, see the section Model.

Discussion
What is the known information in this problem?

♦ There are six known countries on a map.

♦ There are four known colors.

What are the decision variables or unknowns in this problem?

♦ The unknown is the connection between the country and the color: what color is each
country? In other words, there are six variables; each variable represents the color of a
specific country on the map. Each decision variable has a domain of four possible values:
blue, white, yellow and green.

What are the constraints on these variables?

♦ In this case, each constraint specifies that a country cannot be assigned the same color
as any of its neighbors. In other words, if the value of the decision variable representing
the color of Belgium is blue, then the value of the variable representing the color of
Germany cannot also be blue, since they are neighboring countries.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

54

Model

After you have written a description of your problem, you can use IBM® ILOG® Concert
Technology classes to model it. After you create a model of your problem, you can use IBM
ILOG CP Optimizer classes and functions to search for a solution.

Step 2: Open the example file
Open the example file YourCPHome/examples/tutorial/cpp/color_partial.cpp in your
development environment. This file is a program that is only partially completed. You will
fill in the blanks in each step in this lesson. At the end, you will have completed the program
code, and you can compile and run the program.

In this lesson, you include the header file <ilcp/cp.h>. To catch exceptions that may be
thrown, you use a try/catch block. The code for creating the array of names for the color
values and for printing out the solution found by the CP Optimizer engine is provided.

The first step in converting your natural language description of the problem into code using
Concert Technology classes is to create an environment and a model.

EnvironmentNote:

An instance of the class IloEnv manages the internal modeling issues, which include
handling output, memory management for modeling objects and termination of search
algorithms.

This instance is typically referred to as the environment. Normally an application needs
only one environment, but you can create as many environments as you wish.

In the C# and Java™ APIs, the environment object is not public. To free memory used
by a model in C# API, you use the method CP.End. To free memory used by a model
in the Java API, you use the method IloCP.end.

Step 3: Create the environment
Add the following code after the comment //Create the environment

IloEnv env;

The initialization of the environment creates internal data structures to be used in the rest
of the code. After this initialization is performed, you can create a model.

ModelNote:

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

55

A model is a container for modeling objects such as decision variables, objectives and
constraints.

The first argument passed to the constructor of the class IloModel is the environment. The
second argument is an optional name used for debug and trace purposes. Here is a
constructor:

IloModel(const IloEnv env, const char * name=0);

Step 4: Create the model
Add the following code after the comment //Create the model

IloModel model(env);

After solving your problem, you can reclaim memory for all modeling objects and clean up
internal data structures by calling IloEnv::end for every environment you have created.
This clean-up should always be done before you exit your application. The call to end the
environment is already included in the lesson code.

In the Microsoft® .NET Framework languages and Java™ APIs, all memory associated with
the solving of the problem is reclaimed automatically when the optimizer object is garbaged.

IBM ILOG Concert Technology gives you the means to represent the unknowns in this
problem, the color of each country on the map, as constrained integer, or decision, variables.

Decision VariableNote:

Integer decision variables are represented by IloIntVar in the C++ and Java APIs
and by IIntVar in the C# API of Concert Technology.

A constrained integer variable is a decision variable that has integers as possible
values. Typically, the possible values are represented as a domain of integers with an
upper bound and a lower bound. These variables are said to be constrained because
constraints can be placed on them.

The first argument passed to the constructor of the class IloIntVar is always the
environment. The second argument is the lower bound of the domain of possible values,
which defaults to 0. The third argument is the upper bound of the domain of possible values.
The upper bound defaults to IloIntMax, which represents the largest possible positive
integer on a given platform. The fourth argument is an optional name used for debug and
trace purposes. Here is a constructor:

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

56

IloIntVar(const IloEnv env,
IloInt lb = 0,
IloInt ub = IloIntMax
const char* name = 0);

After you create an environment and a model, you declare the decision variables, one for
each country. Each variable represents the unknown information, the color of the country.
The domain of each decision variable is [0..3] or 0 to 3 inclusive.

These values represent the possible colors:

♦ the value 0 represents the color blue;

♦ the value 1 represents the color white;

♦ the value 2 represents the color yellow;

♦ the value 3 represents the color green.

After the problem is solved, the values assigned to these decision variables will represent
the solution to the problem.

Step 5: Declare the decision variables
Add the following code after the comment //Declare the decision variables

IloIntVar Belgium(env, 0, 3), Denmark(env, 0, 3),
France(env, 0, 3), Germany(env, 0, 3),
Luxembourg(env, 0, 3), Netherlands(env, 0, 3);

IBM ILOG Concert Technology allows you to express constraints involving decision variables
using the following operators:

♦ equality (==),

♦ less than or equal to (<=),

♦ less than (<),

♦ greater than or equal to (>=),

♦ greater than (>) and

♦ not equal to (!=).

In this example, you use a constraint to require that if two countries are neighbors, they
cannot be the same color. For example, the statement Belgium != France indicates that
the neighbors France and Belgium should not share the same color. Explicitly, it means that
the value the CP Optimizer engine assigns to the decision variable Belgium cannot equal
the value the optimizer assigns to the variable France.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

57

ConstraintNote:

Constraints specify the restrictions on the values that may be assigned to decision
variables. To create a constraint for a model, you can:

♦ use an arithmetic operator between decision variables and expressions to return a
constraint,

♦ use a function that returns a constraint,

♦ use a specialized constraint or

♦ use a logical operator between constraints which returns a constraint.

Expressions, logical constraints and specialized constraints will all be introduced in
later lessons.

After you create a constraint, you must explicitly add it to the model in order for it to
be taken into account by the CP Optimizer engine.

You use the member function IloModel::add to add constraints to the model. You must
explicitly add a constraint to the model object or the CP Optimizer engine will not use it in
the search for a solution.

Step 6: Add the constraints
Add the following code after the comment //Add the constraints

model.add(Belgium != France);
model.add(Belgium != Germany);
model.add(Belgium != Netherlands);
model.add(Belgium != Luxembourg);
model.add(Denmark != Germany);
model.add(France != Germany);
model.add(France != Luxembourg);
model.add(Germany != Luxembourg);
model.add(Germany != Netherlands);

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

58

Solve

Solving a problem consists of finding a value for each decision variable so that all constraints
are satisfied. You may not always know beforehand whether there is a solution that satisfies
all the constraints of the problem. In some cases, there may be no solution. In other cases,
there may be many solutions to a problem.

You use an instance of the class IloCP to solve a problem expressed in a model.

OptimizerNote:

The class IloCP in the C++ API and the Java™ API and the class CP in the C# API
can be used to employ different algorithms for solving problems modeled with Concert
Technology modeling classes.

An object of this class is sometimes referred to as the optimizer.

The constructor for IloCP takes an IloModel as its argument.

Step 7: Create an instance of IloCP
Add the following code after the comment //Create an instance of IloCP

IloCP cp(model);

You now use the member function IloCP::solve, which solves the problem contained in
the model by using constructive search and constraint propagation. It is possible to modify
the search using tuning objects and search parameters (more on this in Using search
parameters: team building).

Step 8: Search for a solution
Add the following code after the comment //Search for a solution

if (cp.solve())

The member function IloCP::solve returns a Boolean value of type IloBool. If a solution
is found, a value of IloTrue is returned.

After a solution has been found, you can use member functions of IloAlgorithm, the base
class for algorithms in IBM® ILOG® Concert Technology, to examine that solution. The
member function IloAlgorithm::getValue takes a decision variable as an argument and
returns the value the IBM ILOG CP Optimizer engine has assigned to that variable. When
you print the solution, you associate each value with the name of a color using the array
Names[]. The value 0 is associated with Names[0], which is the first array element “blue”;

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

59

the value 1 is associated with Names[1], which is the second array element “white”; and so
on. The array Names[] is already created for you in the lesson code.

The member function IloAlgorithm::getStatus returns a status code which provides
information about the solution that the optimizer has found. The stream IloAlgorithm::out
is the communication stream for general output.

The code for displaying the solution has been provided for you:

cp.out() << std::endl << cp.getStatus() << “ Solution” << std::endl;
cp.out() << “Belgium: “ << Names[cp.getValue(Belgium)] << std::endl;

cp.out() << “Denmark: “ << Names[cp.getValue(Denmark)] << std::endl;

cp.out() << “France: “ << Names[cp.getValue(France)] << std::endl;

cp.out() << “Germany: “ << Names[cp.getValue(Germany)] << std::endl;

cp.out() << “Luxembourg: “ << Names[cp.getValue(Luxembourg)] <<
std::endl;

cp.out() << “Netherlands: “ << Names[cp.getValue(Netherlands)] <<
std::endl;

If there is more than one set of values for the variables that satisfy the constraints of
the problem, there is more than one solution.Within your problem, there may be certain

Note:

criteria that make one such set of values more appropriate than another as a solution.
This appropriateness is usually measured in terms of a cost function that can be
optimized.You can read more on cost functions, also called objectives, in Using arrays
and objectives: warehouse location

Step 9: Compile and run the program
Compile and run the program. You should get the following results:

Feasible Solution
Belgium: yellow
Denmark: blue
France: blue
Germany: white
Luxembourg: green
Netherlands: blue

As you can see, all four colors are used.

The complete program can be viewed online in the YourCPHome/examples/src/cpp/color.
cpp file.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

60

Review exercises

Includes the review exercises and suggested answers.

In this section

Exercises
Lists the review exercises.

Suggested answers
Provides the suggested answers to the review exercises.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

61

Exercises

For answers, see Suggested answers.

1. What is a decision variable?

2. How do you place a constraint on decision variables?

3. Change the code so that Germany and Denmark are always the same color. Except for
Germany and Denmark, no two neighboring countries are the same color.

4. Change the original code to include Switzerland in the map. Switzerland shares borders
with France and Germany. No two neighboring countries are the same color.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

62

Suggested answers

Exercise 1
What is a decision variable?

Suggested answer
A decision variable is a constrained integer variable that takes integers as possible values.
A constrained integer variable is represented in Concert Technology by the class IloIntVar.
The possible values are represented as a domain of integers with an upper bound and a
lower bound.

Exercise 2
How do you place a constraint on decision variables?

Suggested answer
You create an instance of the class IloConstraint and explicitly add that constraint to the
model using IloModel::add. If the constraint is not added to the model object, it will not
be considered in the search.

Exercise 3
Change the code so that Germany and Denmark are always the same color. Except for
Germany and Denmark, no two neighboring countries are the same color.

Suggested answer
The code that has changed from color.cpp follows. You can view the complete program
online in the file YourCPHome/examples/src/cpp/color_ex3.cpp.

This constraint between Denmark and Germany is changed to be:

model.add(Denmark == Germany);

You should obtain the following results:

Feasible Solution
Belgium: green
Denmark: white
France: yellow
Germany: white
Luxembourg: blue
Netherlands: blue

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

63

Exercise 4
Change the original code to include Switzerland in the map. Switzerland shares borders
with France and Germany. No neighboring countries are the same color.

Suggested answer
The code that has changed from color.cpp follows. You can view the complete program
online in the file YourCPHome/examples/src/cpp/color_ex4.cpp.

The declaration of the variables is changed as follows:

IloIntVar Belgium(env, 0, 3), Denmark(env, 0, 3), France(env, 0, 3),
Germany(env, 0, 3), Luxembourg(env, 0, 3), Netherlands(env, 0, 3),
Switzerland(env, 0, 3);

These additional constraints are added to the model:

model.add(France != Switzerland);
model.add(Germany != Switzerland);

This code is added to the solution display:

cp.out() << “Switzerland: “ << Names[cp.getValue(Switzerland)] <<
std::endl;

You should obtain the following results:

Feasible Solution
Belgium: green
Denmark: blue
France: yellow
Germany: white
Luxembourg: blue
Netherlands: blue
Switzerland: blue

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

64

Complete program

You can view the complete map coloring program online in the file YourCPHome/examples/
src/cpp/color.cpp.

Results

Feasible Solution
Belgium: yellow
Denmark: blue
France: blue
Germany: white
Luxembourg: green
Netherlands: blue

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

65

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

66

Using arrays and objectives: warehouse
location

This section describes how to model and solve a problem with arrays and an objective.

In this section

Overview
Describes how to model and solve a problem with arrays and an objective.

Describe
Describes the first stage in finding a solution to a warehouse location problem.

Model
Describes the second stage in finding a solution to a warehouse location problem.

Solve
Describes the third stage in finding a solution to a warehouse location problem.

Review exercises
Includes the review exercises and suggested answers.

Complete program
Lists the location of the complete warehouse location program and the results.

© Copyright IBM Corp. 1987, 2009 67

Overview

In this lesson, you will learn how to:

♦ use the template IloArray;

♦ use the class IloIntVarArray to declare arrays of decision variables;

♦ use the functions IloCount and IloScalProd;

♦ use arithmetic and element expressions;

♦ use objectives.

You will learn to model and solve a logistics problem, a facility location problem. To find an
optimal solution to this problem using IBM® ILOG® CP Optimizer, you will use the
three-stage method: describe, model and solve.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

68

Describe

In this lesson, you will solve a facility location problem for a company which has eight stores.
Each store must be supplied by one supplier warehouse. The company has five possible
locations where it can open a supplier warehouse: Bonn, Bordeaux, London, Paris and Rome.
The warehouse locations have varied supply capacities. A warehouse in Bordeaux or Rome
could supply only one store. A warehouse in London could supply two stores; a warehouse
in Bonn could supply three stores; and a warehouse in Paris could supply four stores. The
supply costs vary for each store and depend on which warehouse is the supplier. For example,
a store that is located in Paris would have low supply costs if it were supplied by a warehouse
also in Paris. That same store would have much higher supply costs if it were supplied by
the other warehouses. The cost of opening a warehouse depends on its location.

The table Supply costs for stores gives the cost of opening each warehouse and of supplying
each existing store from each of the potential supplier warehouse sites.

Supply costs for stores
RomeParisLondonBordeauxBonn

300340320200480cost

8451317424store 0

6861865457store 1

7191296757store 2

9482655454store 3

2761168198store 4

8794349213store 5

7812417254store 6

8989656454store 7

The problem is to find the most cost-effective solution to this problem, while ensuring that
each store is supplied by a warehouse. An objective is used to express the cost of each
potential solution

ObjectiveNote:

An objective expresses the cost of possible solutions. The optimal solution to an
optimization problem is the feasible solution that, depending on the problem type,
minimizes or maximizes the cost.

Step 1: Describe the problem
The first step in modeling and solving a problem is to write a natural language description
of the problem, identifying the decision variables and the constraints on these variables.

Write a natural language description of this problem. Answer these questions:

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

69

♦ What is the known information in this problem?

♦ What are the decision variables or unknowns in this problem?

♦ What are the constraints on these variables?

♦ What is the objective?

Discussion
What is the known information in this problem?

♦ There are eight stores.

♦ There are five potential supplier warehouse sites.

♦ The cost of opening each warehouse is known.

♦ The cost of supplying each existing store from each of the potential warehouse sites is
known.

What are the decision variables or the unknowns in this problem?

♦ The unknown is which warehouse should supply each store. In other words, there is a
decision variable for each store which indicates which warehouse will serve it. Each of
these variables has a domain of [0..4]. Each element of the domain represents one of the
potential warehouses.

♦ In addition, it is unknown whether or not a particular warehouse will be opened. There
is a decision variable for each warehouse which indicates whether it is to be opened.
Each of these variables has a domain of [0..1]. A value of 1 indicates that the warehouse
is to be opened; conversely, a value of 0 indicates that it is not to be opened.

What are the constraints on these variables?

♦ In this case, only one warehouse can supply a given store and a warehouse must be open
in order to serve any store.

♦ The number of stores supplied by a warehouse must not exceed the capacity of that
warehouse.

What is the objective?

♦ The objective is to find the most cost-effective solution, one that takes into account the
costs of supplying individual stores and the costs of opening warehouses.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

70

Model

After you have written a description of your problem, you can use IBM® ILOG® Concert
Technology classes to model it. After you create a model of your problem, you can use IBM
ILOG CP Optimizer classes and functions to search for a solution.

Step 2: Open the example file
Open the example file YourCPHome/examples/tutorial/cpp/facility_partial.cpp in your
development environment.

In this lesson, you include the header file <ilcp/cp.h>. To catch exceptions that may be
thrown, you use a try/catch block. The code to declare an environment and a model is
provided for you as is the code to declare the standard programming variables i and j for
use in loops:

int main(int argc, const char* argv[]){
IloEnv env;
try{
IloModel model(env);
IloInt i, j;

In this lesson, you will input data from the file YourCPHome/examples/data/facility.dat.
The code for opening the data file is provided for you:

const char* filename = “../../../examples/data/facility.dat”;
if (argc > 1)
filename = argv[1];

std::ifstream file(filename);
if (!file){
env.out() << “usage: “ << argv[0] << “ <file>” << std::endl;
throw FileError();

}

The data from the file YourCPHome/examples/data/facility.dat is:

[3, 1, 2, 4, 1]
[480, 200, 320, 340, 300]
[[24, 74, 31, 51, 84],
[57, 54, 86, 61, 68],
[57, 67, 29, 91, 71],
[54, 54, 65, 82, 94],
[98, 81, 16, 61, 27],
[13, 92, 34, 94, 87],
[54, 72, 41, 12, 78],
[54, 64, 65, 89, 89]]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

71

The first line of data is the capacity of each potential supplier warehouse: Bonn 3, Bordeaux
1, London 2, Paris 4 and Rome 1. The second line of data is the fixed cost associated with
opening each warehouse. The last part of the data is a matrix representing the relative cost
of supplying each existing store from each of the potential warehouse sites. Other than the
capacity data, this is the information presented in the table Supply costs for stores.

You create standard programming variables to represent the number of stores, nbStores,
and the number of supplier warehouses, nbLocations. You model the capacities and fixed
costs of the potential warehouses as arrays of integer values.

Array of integer valuesNote:

Arrays of integer values are represented by the class IloIntArray in the C++ API
of Concert Technology. These arrays are extensible.

When you use an array, you can access a value in that array by its index, and the
operator[] is overloaded for this purpose.

In the C# and Java™ APIs, the native arrays are used.

The constructor of the class IloIntArray takes an environment as its first argument. The
second argument is the number of integer values in the array, which is extensible. The
elements of the new array take the values that are passed as the remaining arguments. Here
is one constructor:

IloIntArray(const IloEnv env, IloInt n, const IloInt v0, ...);

In this lesson however, you create empty arrays which will be filled directly from the data
file. To do this, you pass solely the first argument, the environment, to the constructor.

You model the matrix of relative supply costs as an array of arrays. To create this cost matrix,
you use the Concert Technology template IloArray.

Extensible arrayNote:

In the C++ API, Concert Technology provides the template class IloArray which
makes it easy for you to create classes of arrays for elements of any given class. In
other words, you can use this template to create arrays of Concert Technology objects;
you can also use this template to create arrays of arrays (that is, multidimensional
arrays).

When you use an array, you can access a value in that array by its index, and the
operator[] is overloaded for this purpose.

The classes you create in this way consist of extensible arrays. That is, you can add
elements to the array as needed.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

72

To model the supply costs, you create an IloArray in which each of the elements is an
IloIntArray.

Step 3: Model the data
Add the following code after the comment //Model the data

IloIntArray capacity(env), fixedCost(env);
IloArray<IloIntArray> cost(env);
IloInt nbLocations;
IloInt nbStores;

Now, you input the data from the data file. The overloaded C++ operator>> directs input
from an input stream.

Step 4: Input the data
Add the following code after the comment //Input the data

file >> capacity >> fixedCost >> cost;

The number of stores can be deduced from the size of the cost matrix. The number of
supplier warehouses can be deduced from the size of the capacity array. Calculating these
values from the data read from the file allows you to easily extend the example by using
another data file. The code for determining the values of nbLocations and nbStores is
provided for you:

nbLocations = capacity.getSize();
nbStores = cost.getSize();

Next, you represent the first set of unknowns in this problem, the warehouse that will serve
each store. IBM® ILOG® Concert Technology gives you the means to represent these
unknowns as an array of constrained integer variables. You associate one decision variable
in the array with each store.

Array of decision variablesNote:

In the C++ API, arrays of constrained integer variables are represented by the class
IloIntVarArray in Concert Technology.

When you use an array, you can access a decision variable in that array by its index,
and the operator[] is overloaded for this purpose.

The constructor of the class IloIntVarArray takes an environment as its first argument.
The second argument is the number of decision variables in the array. Arrays are extensible,

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

73

so you can later increase or reduce the number of variables in the array. The third and fourth
arguments are the lower and upper bounds of the domain of possible values for each variable
in the array. When you use an array, you can access a variable in that array by its index,
and the operator[] is overloaded for this purpose. Here is a constructor:

IloIntVarArray (const IloEnv env,
IloInt n,
IloInt lb,
IloInt ub);

The first array of decision variables, called supplier, represents which supplier warehouse
should supply each store. This array has nbStores elements or, in this example, 10. The
domain of possible values for each of these variables represent the supplier warehouses. In
this example, a value of 0 represents Bonn, a value of 1 represents Bordeaux, a value of 2
represents London, a value of 3 represents Paris, and a value of 4 represents Rome.

For each store, the associated decision variable in the array supplier can be assigned one
value in a solution, so each solution will satisfy the constraint that a store must be served
by exactly one warehouse. The array of decision variables supplier will represent the
solution to the problem, after it has been solved.

Step 5: Declare the supplier decision variables
Add the following code after the comment //Declare the supplier decision variables

IloIntVarArray supplier(env, nbStores, 0, nbLocations - 1);

To represent whether a potential supplier warehouse site should be open or not, you declare
another array of decision variables, open. It has nbLocations elements or, in this example,
5. There are two possible values for each variable, 0 and 1. The value of 1 indicates that the
warehouse is open and 0 indicates that the warehouse is not open.

Step 6: Declare the warehouse open decision variables
Add the following code after the comment //Declare the warehouse open decision
variables

IloIntVarArray open(env, nbLocations, 0, 1);

Now you add the constraints. The first constraint states that the supplier warehouse used
by a given store must be open. In other words, the warehouse must be open if a store is to
be supplied by it. For example, if store 0 is supplied by the Rome warehouse, the constraint
states that the variable of the open array that is associated with the Rome warehouse must
be assigned the value 1. The Rome warehouse must be open.

This interdependence of the decision variable arrays supplier and open is modeled through
the use of an element expression.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

74

Element expressionNote:

The construction T[i] = v (where T is an instance of IloIntVarArray, i is an
instance of IloIntVar and v is an integer value) constrains the i-th element of T to
be equal to v.

In the C# and Java™ APIs, the respective methods CP.Element and IloCP.element
are used to create an element expression.

For each store i, the warehouse that supplies that store is represented by supplier[i]. To
indicate that supplier[i] must be open, you constrain open[supplier[i]] to be assigned
the value 1.

Step 7: Add the constraints on open warehouses
Add the following code after the comment //Add the constraint on open warehouses

for (i = 0; i < nbStores; i++)
model.add(open[supplier[i]] == 1);

Next, you need to compute the number of stores being supplied by a particular warehouse
and ensure that this value does not exceed the capacity of the warehouse. You can use the
IBM® ILOG® Concert Technology function IloCount to represent the number of times a
warehouse is assigned to be a supplier.

Counting expressionNote:

Using the function IloCount, you can create an expression that represents the number
of times a particular value is assigned to the decision variables in an array of constrained
integer variables.

Expressions are discussed in further detail in the following step.

The function IloCount takes two arguments, an array of decision variables and an integer
value, and returns an instance of IloIntExprArg that represents the number of times the
value appears in the array. The class IloIntExprArg is used internally by IBM ILOG Concert
Technology to build expressions; you should not use IloIntExprArg directly. Here is the
version of IloCount that you will use:

IloIntExprArg IloCount(const IloIntVarArray vars, IloInt value);

For each warehouse, you count the number of times it appears in the array supplier using
the function IloCount. You constrain this expression to be no greater than the warehouse
capacity using operator<=.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

75

Step 8: Add the constraints on warehouse capacity
Add the following code after the comment //Add the capacity constraints

for (j = 0; j < nbLocations; j++)
model.add(IloCount(supplier, j) <= capacity[j]);

Finally, you consider the objective. The objective in a constraint programming model is an
expression that can be maximized or minimized. Expressions in IBM® ILOG® Concert
Technology are generally represented by the classes IloExpr and its subclasses IloIntExpr
and IloNumExpr.

ExpressionNote:

Values may be combined with decision variables and other expressions to form
expressions.To combine values, variables and other expressions to form an expression,
you can use, among other functions, the operators:

♦ addition (+),

♦ subtraction (-),

♦ multiplication (*),

♦ division (/),

♦ self-assigned addition (+=) and

♦ self-assigned subtraction (-=).

Many Concert Technology functions, such as IloCount, return expressions. During search,
expressions have domains of possible values like decision variables. Unlike variables, these
domains are not stored but instead calculated based on the basic elements of the expression.

To build the objective expression, you need to represent the sum of the fixed costs of all the
warehouses that are to be opened. This cost can be modeled as the scalar product of the
fixedCost array and the open array. To express the fixed cost expression, you use the
Concert Technology function IloScalProd.

Scalar product expressionNote:

Using the function IloScalProd, you can create an expression that represents the
scalar product of two arrays.

The scalar product is also called the inner product or the weighted sum.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

76

The function IloScalProd takes two arguments, both arrays, and returns an instance of
IloIntExprArg that represents the scalar product of the two arrays. Although you should
not use an IloIntExprArg directly, it can be cast to an IloIntExpr, which you should use
instead. Here is the signature of the function IloScalProd that you will use:

IloIntExprArg IloScalProd(const IloIntVarArray vars,
const IloIntArray values);

You declare the integer expression obj to be the expression returned by the IloScalProd
function called with the arguments open and fixedCost. To complete the objective expression,
you must also add the supply costs to it. To express the cost of supplying each store from
the warehouse selected to supply it, you use an element expression. For each store i, the
cost of supplying the store from the assigned warehouse is cost[i][supplier[i]]. You can
incrementally add these costs to the expression obj by using the self-assigned addition
operator.

Step 9: Create the objective expression
Add the following code after the comment //Build the objective expression

IloIntExpr obj = IloScalProd(open, fixedCost);
for (i = 0; i < nbStores; i++)
obj += cost[i][supplier[i]];

To add the objective to the model, you first use the function IloMinimize, which creates an
instance of the class IloObjective. The function IloMinimize takes the environment as its
first argument and an expression as its second argument. The last argument is an optional
name used for debug and trace purposes. Here is signature of the IloMinimize function
that you will use:

IloObjective IloMinimize(const IloEnv env,
const IloExpr expr,
const char* name=0);

You then use the member function IloModel::add to add the objective to the model. You
must explicitly add an objective to the model or the CP Optimizer engine will not use it in
the search for a solution. If an objective has been added to the model, the optimizer will
search for an optimal solution which minimizes the value of the objective.

Step 10: Add the objective to the model
Add the following code after the comment //Add the objective to the model

model.add(IloMinimize(env, obj));

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

77

Solve

Solving the problem consists of finding values for all of the decision variables in such a way
that the values simultaneously satisfy the constraints andminimize the objective representing
the cost of the solution.

Step 11: Create an instance of IloCP
Add the following code after the comment //Create an instance of IloCP

IloCP cp(model);

You now use the member function IloCP::solve, which solves a problem by using
constructive search and constraint propagation.

Step 12: Search for a solution
Add the following code after the comment //Search for a solution

if (cp.solve())

The member function IloCP::solve will return a value of IloTrue if the optimizer is able
to find an optimal solution. To display the solution, you use the member functions and streams
IloAlgorithm::getStatus, IloAlgortihm::getValue and IloAlgorithm::out. The code
for displaying the solution is provided for you:

cp.out() << std::endl << “Optimal value: “ << cp.getValue(obj) << std::endl;

for (j = 0; j < nbLocations; j++){
if (cp.getValue(open[j]) == 1){
cp.out() << “Facility “ << j << “ is open, it serves stores “;
for (i = 0; i < nbStores; i++){
if (cp.getValue(supplier[i]) == j)
cp.out() << i << “ “;

}
cp.out() << std::endl;

}
}

Step 13: Compile and run the program
Compile and run the program. You should get the following results:

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

78

Optimal value: 1383
Facility 0 is open, it serves stores 2 5 7
Facility 1 is open, it serves stores 3
Facility 3 is open, it serves stores 0 1 4 6

As you can see, the optimal solution uses three warehouse sites: Bonn, Bordeaux, Paris. All
stores are supplied by a supplier warehouse and the total cost is 1383.

The complete program can be viewed online in the YourCPHome/examples/src/cpp/facility.
cpp file.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

79

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

80

Review exercises

Includes the review exercises and suggested answers.

In this section

Exercises
Lists the review exercises.

Suggested answers
Provides the suggested answers to the review exercises.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

81

Exercises

For answers, see Suggested answers.

1. What is an element expression?

2. What is an objective?

3. Modify the program in this lesson to add the constraint that no supplier can serve both
stores 2 and 7.

4. Modify the program in this lesson to add the constraint that at most one of warehouses
0 (Bonn) and 3 (Paris) can be open.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

82

Suggested answers

Exercise 1
What is an element expression?

Suggested answer
An element expression is an expression created by using a constrained integer decision
variable as an index of an array.

Exercise 2
What is an objective?

Suggested answer
An objective is an expression which can be maximized or minimized. The cost of different
solutions can be expressed in an objective.

Exercise 3
Modify the program in this lesson to add the constraint that no supplier can serve both
stores 2 and 7.

Suggested answer
The code that has changed from facility.cpp follows. You can view the complete program
online in the file YourCPHome/examples/src/cpp/facility_ex3.cpp.

This additional constraint is added to the model:

model.add(supplier[2] != supplier[7]);

You should obtain the following results:

Optimal value: 1390
Facility 0 is open, it serves stores 0 5 7
Facility 1 is open, it serves stores 3
Facility 3 is open, it serves stores 1 2 4 6

Exercise 4
Modify the program in this lesson to add the constraint that at most one of warehouses 0
(Bonn) and 3 (Paris) can be open.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

83

Suggested answer
The code that has changed from facility.cpp follows. You can view the complete program
online in the file YourCPHome/examples/src/cpp/facility_ex4.cpp.

This additional constraint is added to the model:

model.add(open[0] + open[3] <= 1);

You should obtain the following results:

Optimal value: 1517
Facility 1 is open, it serves stores 3
Facility 2 is open, it serves stores 2 5
Facility 3 is open, it serves stores 0 1 6 7
Facility 4 is open, it serves stores 4

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

84

Complete program

You can view the complete facility location program online in the file YourCPHome/examples/
src/cpp/facility.cpp.

Results
Here are the results:

Optimal value: 1383
Facility 0 is open, it serves stores 2 5 7
Facility 1 is open, it serves stores 3
Facility 3 is open, it serves stores 0 1 4 6

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

85

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

86

Using specialized constraints and tuples:
scheduling teams

This section describes how to model and solve a problem using specialized constraints and
tuples.

In this section

Overview
Describes how to model and solve a problem using specialized constraints and tuples.

Describe
Describes the first stage in a sports league scheduling problem.

Model
Describes the second stage in a sports league scheduling problem.

Solve
Describes the third stage in a sports league scheduling problem.

Review exercises
Includes the review exercises and suggested answers.

Complete program
Lists the location of the complete sports scheduling program and the results.

© Copyright IBM Corp. 1987, 2009 87

Overview

In this lesson, you will learn how to:

♦ use constraints defined from allowed tuples;

♦ use the specialized constraints IloInverse and IloAllDiff;

♦ use the functions IloDiv and IloAbs;

♦ use logical constraints;

♦ use additional constraints to improve the solving performance;

♦ use search phases to tune the search strategy.

You will learn how to model and solve an assignment problem regarding the scheduling of
matches for a league of sports teams. To find an optimal solution to the problem using IBM®
ILOG® CP Optimizer, you will use the three-stage method: describe, model and solve.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

88

Describe

In this lesson, you will solve a sports league scheduling problem. The league has 10 teams
that play games over a season of 18 weeks. Each team has a home arena and plays every
other team in the league twice during the season, once in its home arena and once in the
opposing team’s home arena. For each of these games, the team playing at its home arena
is referred to as the home team; the team playing at the opponent’s arena is called the away
team. There are 90 games altogether.

Each of the 18 weeks in the season has five identical slots to which games can be assigned.
Each team plays once a week. For each pair of teams, these two teams are opponents twice
in a season; these two games must be scheduled in different halves of the season. Moreover,
these two games must be scheduled at least six weeks apart. A team must play at home
either the first or last week but not both.

A break is a sequence of consecutive weeks in which a team plays its games either all at
home or all away. No team can have a break longer than two weeks. The objective in this
problem is to minimize the total number of breaks the teams play.

Step 1: Describe the problem
The first step in modeling and solving a problem is to write a natural language description
of the problem, identifying the variables and the constraints on these variables.

Write a natural language description of this problem. Answer these questions:

♦ What is the known information in this problem?

♦ What are the variables or unknowns in this problem?

♦ What are the constraints on these variables?

♦ What is the objective?

Discussion
What is the known information in this problem?

♦ There are 10 teams.

♦ These teams play against one another during a season of 18 weeks. There are 5 slots for
games each week.

♦ Each team must play every other team exactly twice, once in each team’s home arena.
Each of these 90 games has a unique identifier in the range 0..89.

What are the variables or unknowns in this problem?

♦ The unknown information is which of the 90 games is played in each of the 90 slots. In
other words, there is a decision variable for each slot which indicates which game will
be assigned to it. Each of these constrained variables has a domain of [0..89]; each integer
of these domains is a game identifier.

What are the constraints on these variables?

♦ Each team must play exactly once each week.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

89

♦ Each game must be played exactly once.

♦ For each pair of teams, the two games in which the teams are opponents must be
scheduled in different halves of the season. Moreover, these games must be at least six
weeks apart.

♦ No team may have a break longer than two weeks.

♦ Each team must play exactly one of its first and last games at home.

What is the objective?

♦ The objective is to minimize the total number of breaks that are scheduled.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

90

Model

After you have written a description of your problem, you can use IBM® ILOG® Concert
Technology classes to model it.

Step 2: Open the example file
Open the example file YourCPHome/examples/tutorial/cpp/sports_partial.cpp in your
development environment.

In this lesson, you include the header file <ilcp/cp.h>. To catch exceptions that may be
thrown, you use a try/catch block. The code for declaring an environment and a model,
calculating the unique game identifiers and for printing out the solution found by the CP
Optimizer engine is provided for you.

First, you represent the data of the program. The number of teams, n, is set to a default of
10 in this example, but can be changed with an input argument. (For this problem, the
number of teams must always be even. If the number of teams is not even, it is increased
by 1.) The code for processing the input argument is provided for you:

IloInt n = 10;
if (argc > 1)
n = atoi(argv[1]);

if ((n % 2) == 1)
n++;

env.out() << “Finding schedule for “ << n << “ teams” << std::endl;

The number of weeks, nbWeeks, is 2*(n-1), or 18 in this example. The number of game slots
per week, nbGamesPerWeek, is nbTeams/2, or 5 in this example. The number of game slots,
nbGames, is equal to the number of weeks times the number of game slots per week, or 90
in this example. The number of games to be scheduled is equal to the number of game slots
available.

Step 3: Calculate the data
Add the following code after the comment //Calculate the data

IloInt nbWeeks = 2 * (n - 1);
IloInt nbGamesPerWeek = n / 2;
IloInt nbGames = n * (n - 1);

Each week has five slots; each slot must have a game assigned to it. The unknowns in this
problem are which game is assigned to which slot. To represent these unknowns, you declare
a matrix of decision variables, games, which is indexed on week and slot. To create the matrix
of variables, you create an array in which each element is an array of constrained integer
variables. The domain of values for each variable in games is the set of unique game
identifiers; in this example the domain of each variable is [0..89]. The matrix of variables

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

91

games will represent the solution to the problem after a solution has been found by the CP
Optimizer engine.

To help you model the constraints that involve the home and away teams, it will be useful
to be able to easily determine which team is the home team and which team is the away
team for each slot. You declare auxiliary variables that are not directly a part of the solution,
but make it easier to model the breaks and other constraints. You declare matrices of decision
variables which represent the teams that will play at home and away in each slot, called
home and away, respectively. These matrices are indexed on week and slot in the same
manner as the matrix games. The domain of the variables in each of these matrices are the
teams, represented by integers in the range [0..9].

Step 4: Declare the game, home team and away team variables
Add the following code after the comment //Declare the game, home team and away
team variables

IloIntVarArray2 games(env, nbWeeks);
IloIntVarArray2 home(env, nbWeeks);
IloIntVarArray2 away(env, nbWeeks);
for (IloInt i = 0; i < nbWeeks; i++) {
home[i] = IloIntVarArray(env, nbGamesPerWeek, 0, n - 1);
away[i] = IloIntVarArray(env, nbGamesPerWeek, 0, n - 1);
games[i] = IloIntVarArray(env, nbGamesPerWeek, 0, nbGames - 1);

}

For each slot, you need to link the variables in the arrays game, home and away. In other
words, you constrain that only certain configurations of home team, away team and game
identifiers are allowed. These allowed configurations can be modeled as a set of integer
tuples.

Set of tuplesNote:

An integer tuple is an ordered set of values represented by an array. A set of integer
tuples in a model is represented by an instance of IloIntTupleSet in the C++ and
Java™ APIs and by an instance of IIntTupleSet in the C# API.

The number of values in a tuple is known as the arity of the tuple.

The constructor of IloIntTupleSet takes the environment as its first argument, and the
arity as its second argument. Here is a constructor for IloIntTupleSet:

IloIntTupleSet(IloEnv env, const int arity);

You use the member function IloIntTupleSet::add to add tuples to the set.

In this example, the game identifier indicates a particular pairing of home team and away
team. Using the Game function, you see that the game in which Team 1 plays at home against

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

92

Team 2 is Game 10. This combination is a tuple. You would write it as (1, 2, 10). The number
of values in a tuple is known as the arity of the tuple. The tuple (1, 2, 10) has an arity of 3.
You calculate all allowed combinations of home team, away team and game identifier using
the Game function.

Step 5: Calculate the allowed tuples
Add the following code after the comment //Calculate the allowed tuples

IloIntTupleSet gha(env, 3);
IloIntArray tuple(env, 3);
for (IloInt i = 0; i < n; i++) {
tuple[0] = i;
for (IloInt j = 0; j < n; j++) {
if (i != j) {
tuple[1] = j;
tuple[2] = Game(i, j, n);
gha.add(tuple);

}
}

}

The complete set of possible combinations of home team, away team and game identifier
are enumerated in the set of tuples, gha. To constrain the values assigned to a given slot of
the matrices of home, away and games variables to be allowed combinations, you use the IBM
ILOG Concert Technology constraint IloAllowedAssignments.

Compatibility constraintNote:

The function IloAllowedAssignments takes an array of decision variables and a
set of tuples. It returns a constraint that specifies that the only possible combinations
of allowed values for the variables are the tuples in the tupleset.

The function IloAllowedAssignments returns an instance of an IloConstraint. The first
argument passed to this function is the environment. The second argument is the array of
decision variables. The third argument is the tupleset which enumerates the allowed
combinations of values for the array of variables. The arity of the tuples must be the same
as the length of the array of the decision variables. Here is the function signature you will
use:

IloConstraint IloAllowedAssignments(const IloEnv env,
const IloIntVarArray vars,
const IloIntTupleSet set);

For each slot, you build a small temporary array of decision variables from variables you
have already created. This new array has the home, away and games variables associated
with the given slot. Note that you are not creating new decision variables but creating an

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

93

alternate manner of referencing the previously created variables. Adding the compatibility
constraint that the allowed assignments for these variables must be in the set of tuples, gha,
ensures that these three matrices of variables are properly linked.

Step 6: Add the constraint on allowed combinations
Add the following code after the comment //Add the constraint on allowed combinations

for (IloInt i = 0; i < nbWeeks; i++) {
for (IloInt j = 0; j < nbGamesPerWeek; j++) {
IloIntVarArray vars(env);
vars.add(home[i][j]);
vars.add(away[i][j]);
vars.add(games[i][j]);
model.add(IloAllowedAssignments(env, vars, gha));

}
}

Now that the auxiliary variables are properly linked to the games variables, you begin to
model the constraints as outlined in the description of the problem. The first set of constraints
state that each team can play in exactly one slot a week. For each week, no team can appear
twice in the set of variables representing the teams playing at home and away for that week.
In other words, the home and away variables associated with a given week must all be
assigned different values in any solution. For each week, you create an array with all of the
home and away variables for that week. To state that the value assigned to each decision
variable in an array must be different from that of every other variable in that array, you
use the IBM ILOG Concert Technology predefined constraint IloAllDiff.

All different constraintNote:

Using specialized constraints, such as IloAllDiff, makes modeling simpler and the
solving more efficient.

The single constraint IloAllDiff on n variables is logically equivalent to n(n-1)/
2 instances of the “not equal” constraint, !=, between each pair of decision variables
in the array.

The class IloAllDiff is a subclass of the class IloConstraint. The constructor of IloAllDiff
takes the environment as its first argument. The second argument is the array of variables.
The third argument is an optional name used for debug and trace purposes. Here is the
function signature you will use:

IloAllDiff(const IloEnv env,
const IloIntVarArray vars = 0,
const char* name = 0);

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

94

To simplify creating the single array containing the home and away variables for a given
week, you use the add method of IloIntVarArray whose single argument is an
IloIntVarArray. This method appends the argument array to the invoking array.

Step 7: Add the alldiff constraint
Add the following code after the comment //Add the alldiff constraint

for (IloInt i = 0; i < nbWeeks; i++) {
IloIntVarArray teamsThisWeek(env);
teamsThisWeek.add(home[i]);
teamsThisWeek.add(away[i]);
model.add(IloAllDiff(env, teamsThisWeek));

}

Next, you add the constraints that the two games between a pair of teamsmust be in different
halves of the season and also must be at least six weeks apart (if there are fewer than 6
teams, this minimum distance is reduced). To simplify modeling this constraint, you create
auxiliary variables to represent the week of the season in which each game will be played.

You create the array weekOfGame which is indexed on game identifiers. Each element of this
array is a decision variable with a domain of the possible weeks, [0..17]. The value of each
variable in this array represents the week in which that game will be played.

To ensure that the weekOfGame variables are assigned the appropriate values, you need to
be able to determine the week of each game. Assuming that each game is played exactly
once, the week that game g is played is w, where there is an i such that game[w][i] is
assigned the value g. To model this relationship, you use two steps. First, you determine
which slot a game has been assigned to, then you determine the week of that slot.

To determine to which slot a game has been assigned, you create two arrays of decision
variables, each of length nbGames. One is a “flattened” version of the matrix games, called
allGames. The variables in allGames are not new variables, but provide an alternate view
on the original variables in games. The other array, allSlots, is indexed by the games. The
domain of each variable in allSlots is the set of values of the indices of allGames, [0..89].
Since allSlots[i] == j if and only if allGames[j] == i, the arrays have an inverse
relationship. This relationship can be modeled using the IBM ILOG Concert Technology
constraint IloInverse.

Inverse constraintNote:

Using specialized constraints, such as IloInverse, makes modeling simpler and the
solving more efficient.

The single constraint IloInverse ensures that for two arrays of decision variables
x and y of equal size

♦ for all i in the interval [0..n-1], y[x[i]] == i;

♦ for all j in the interval [0..n-1], x[y[j]] == j.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

95

The class IloInverse is a subclass of IloConstraint. The constructor of IloInverse takes
the environment as its first argument. The second argument is one array of decision variables.
The third argument is the other array of variables. Here is the function signature you will
use:

IloInverse(const IloEnv env,
const IloIntVarArray f,
const IloIntVarArray invf);

As the arrays are of the same length, this constraint also has the virtue of ensuring that in
any solution, the values assigned to all the variables within each array will be unique.

Step 8: Add the inverse constraint
Add the following code after the comment //Add the inverse constraint

IloIntVarArray weekOfGame(env, nbGames, 0, nbWeeks - 1);
IloIntVarArray allGames(env);
IloIntVarArray allSlots(env, nbGames, 0, nbGames - 1);
for (IloInt i = 0; i < nbWeeks; i++)
allGames.add(games[i]);

model.add(IloInverse(env, allGames, allSlots));

After you have established the connection between the arrays allSlots and allGames, you
write a constraint to represent to which week a game will be assigned. Using the array
allSlots, you can represent to which slot a game will be assigned. To determine to which
week a slot belongs, you can use integer division. For instance, slot i is in the week i div
nGamesPerWeek where div represents the integer division operator. IBM ILOG Concert
Technology provides a function IloDiv for use in integer expressions.

Integer division expressionNote:

Using the function IloDiv, you can create an expression that represents integer
division.

The function IloDiv takes two arguments, an integer expression (or variable) and an integer
value, and returns an instance of IloIntExprArg. The class IloIntExprArg is used internally
by IBM ILOG Concert Technology to build expressions. You should not use IloIntExprArg
directly. Here is the version of IloDiv that you will use:

IloIntExprArg IloDiv(const IloIntExprArg x, IloInt y);

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

96

Step 9: Add the week of game
Add the following code after the comment //Add the week of game constraint

for (IloInt i = 0; i < nbGames; i++)
model.add(weekOfGame[i] == IloDiv(allSlots[i], nbGamesPerWeek));

Now that you have a representation of the week in which each game will be played, you can
complete the second step in writing constraints to model the limitations on season half and
minimum length of time between the games. You determine the identifiers of the two games
played between each pair of teams and then constrain that if one game is scheduled in the
last half of the season, then the other game must be scheduled in the first half of the season
and that if one game is not scheduled in the last half of the season, then the other game
must not be scheduled in the first half of the season. This type of conditional constraint is
called a logical constraint.

Logical constraintNote:

A logical constraint is created by combining constraints or placing constraints on other
constraints. Logical constraints are based on the idea that constraints have value. IBM
ILOG CP Optimizer handles constraints not only as if they have a Boolean value, such
as true or false, but effectively as if the value is 0 or 1. This allows you to combine
constraints into expressions or impose constraints on constraints.

Constraints can be combined using arithmetic operators. With the C++ API, you can
also use the following logical operators to combine constraints:

♦ not (!),

♦ and (&&),

♦ or (||),

♦ equivalence (==),

♦ exclusive or (!=) (This overloaded C++ operator constrains its two arguments to
be unequal--different from each other.) and

♦ implication (<=) (This overloaded C++ operator is also the “less than or equal to”
operator. When its arguments are constraints, this operator functions as the
implication operator. The argument on the left side of the operator implies the
argument on the right side of the operator.).

Step 10: Create the different halves constraint
Add the following code after the comment //Create the different halves constraint

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

97

IloInt mid = nbWeeks / 2;
IloInt overlap = 0;
if (n >= 6)
overlap = IloMin(n / 2, 6);

for (IloInt i = 0; i < n; i++) {
for (IloInt j = i + 1; j < n; j++) {
IloInt g1 = Game(i, j, n);
IloInt g2 = Game(j, i, n);
model.add((weekOfGame[g1] >= mid) == (weekOfGame[g2] < mid));

To constrain that six weeks is the minimum length of time between the two games played
between a given pair of teams, you could write a logical constraint using a disjunction.
However, IBM ILOG Concert Technology provides a function IloAbs, which not only eases
modeling but may also improve performance in the search, since it providesmore information.

Absolute value expressionNote:

Using the function IloAbs, you can create an expression that represents the absolute
value of an expression.

Step 11: Create the distance constraint
Add the following code after the comment //Create the distance constraint

if (overlap != 0)
model.add(IloAbs(weekOfGame[g1] - weekOfGame[g2]) >= overlap);

}
}

You next write the constraint on the maximum size of breaks. No team can have a break of
length three or greater. In other words, in any sequence of three weeks, a team must play
at least one game at home and no more than two games at home. In order to count the
number of games at home in a sequence of three weeks, you create a matrix of auxiliary
variables indexed on team and week called playHome. The domain of each variable in this
matrix is [0..1]. A value of 0 indicates the team plays away that week and a value of 1 indicates
that the team plays at home that week.

To constrain each variable in playHome to be assigned the appropriate value, you use the
function IloCount. You constrain the value of the element of playHome for that week and
team by counting the number of times that a particular team plays at home during a particular
week (it must be 0 or 1).

For each team, you represent each sequence of three games with a subarray of the array
playHome. Using this subarray and the predefined IBM ILOG Concert Technology function
IloSum, you can represent the number of time the team plays at home during the three
weeks.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

98

Addition expressionNote:

Using the function IloSum, you can create an expression that represents the sum of
the decision variables in the array passed as an argument to the function.

For each team, you constrain the sum of each sequence of three playHome variables for each
team to take the value 1 or 2. To do this, you use a range constraint.

Range constraintNote:

A range constraint is useful when the value of a decision variable or expression must
fall between to values. In the C++ API, instead of writing two separate constraints, one
can be written in the form

lb <= exp <= ub, where lb and ub are the bounds and exp is the expression.

Step 12: Add the max break length constraint
Add the following code after the comment //Add max break length constraints

IloIntVarArray2 playHome(env, n);
for (IloInt i = 0; i < n; i++) {
playHome[i] = IloIntVarArray(env, nbWeeks, 0, 1);
for (IloInt j = 0; j < nbWeeks; j++)
model.add(playHome[i][j] == IloCount(home[j], i));

for (IloInt j = 0; j < nbWeeks -3; j++) {
IloIntVarArray window(env);
for (IloInt k = j; k < j + 3; k++)
window.add(playHome[i][k]);

model.add(1 <= IloSum(window) <= 2);
}

}

The final modeling constraint you add states that the team must play either its first game
or last game at home, but not both. For each team, you state that the value of its playHome
decision variable for the first week must not equal the value of its playHome variable for the
last week.

Step 13: Add the constraint on first and last weeks
Add the following code after the comment //Add the constraint on first and last
weeks

for (IloInt i = 0; i < n; i++)

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

99

model.add(playHome[i][0] != playHome[i][nbWeeks-1]);

To complete the model, you add the objective. The objective is constructed similarly to the
constraint on break length. Since each break has a length of at most two, you know that
there are at most nbWeeks/2 breaks for each team. For each team, you count the number
of breaks, which is now easily represented as two consecutive weeks for which the playHome
variables are assigned the same value, using an expression comprised of constraints using
a self-assigned addition operator. The variable breaks is set to be the total sum of all of the
breaks for all the teams. The objective is to minimize the value of breaks.

Step 14: Add the objective
Add the following code after the comment //Add the objective

IloIntVarArray teamBreaks(env, n, 0, nbWeeks / 2);
for (IloInt i = 0; i < n; i++) {
IloIntExpr nbreaks(env);
for (IloInt j = 1; j < nbWeeks; j++)
nbreaks += (playHome[i][j-1] == playHome[i][j]);

model.add(teamBreaks[i] == nbreaks);
}
IloIntVar breaks(env, n - 2, n * (nbWeeks / 2));
model.add(breaks == IloSum(teamBreaks));
model.add(IloMinimize(env, breaks));

While the model has now been fully expressed, there are additional constraints that can be
introduced to help improve the search. The first set of additional constraints are called
surrogate constraints. The second type of additional constraints are constraints used to
reduce symmetry.

Surrogate constraintNote:

A surrogate constraint makes explicit a property that satisfies a solution implicitly. In
fact, in some disciplines, surrogate constraints are known as implicit constraints for
that reason. Such a constraint should not change the nature of the solution, but its
propagation should delimit the general shape of the solution more quickly.

In any case where an implicit property makes good sense, or derives from experience,
or satisfies formal computations, its explicit implementation as a surrogate constraint
can be beneficial.

Since constraint propagation decreases the search space by reducing the domains of
variables, it is obviously important to express all necessary constraints. In some cases,
it is even a good idea to introduce surrogate constraints to reduce the size of the search
space by supplementary propagation.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

100

Processing supplementary constraints inevitably slows down execution. However, this
slowing down may be negligible in certain problems when it is compared with the
efficiency gained from reducing the size of the search space.

It is known that a team must play half of its games at home. This is already implicitly
expressed in the model within the set of tuples, so you are certain every solution will satisfy
this. However, adding an additional constraint on the playHome variables will improve the
constraint propagation.

Step 15: Add the surrogate constraints
Add the following code after the comment //Add surrogate constraints

for (IloInt i = 0; i < n; i++)
model.add(IloSum(playHome[i]) == nbWeeks / 2);

Since only breaks of size two are allowed, each team must have an even number of breaks.
This can be constrained using the IBM ILOG Concert Technology modulus operator,
operator%.

Step 16: Add more surrogate constraints
Add the following code after the comment //Add more surrogate constraints

for (IloInt i = 0; i < n; i++)
model.add((teamBreaks[i] % 2) == 0);

To help the search perform efficiently, it is also important to reduce symmetry.

Reduce symmetryNote:

he apparent complexity of a problem can often be reduced to a much smaller practical
complexity by detecting intrinsic symmetries. One way to reduce symmetry in a problem
is to introduce order.

There is no need to examine all the possible solutions when two or more constrained
variables satisfy all of the following conditions:

♦ the initial domains of these constrained variables are identical;

♦ these variables are subject to the same constraints;

♦ the variables can be permuted without changing the statement of the problem.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

101

By introducing order among these variables so that only one of these permutations is
found, you minimize the size of the search space.

Since the teams are interchangeable, you can fix the games scheduled for the first week.
This constraint removes only symmetric solutions; it does not eliminate any “real” solutions.

Step 17: Add constraints to reduce symmetry
Add the following code after the comment //Add constraints to fix first week

for (IloInt i = 0; i < nbGamesPerWeek; i++) {
model.add(home[0][i] == i * 2);
model.add(away[0][i] == i * 2 + 1);

}

Since the slots for a given week are identical with no distinguishing characteristics, you
reduce symmetry by forcing an order on which games are assigned to which slots within a
week.

Step 18: Add more constraints to reduce symmetry
Add the following code after the comment //Add the slot order constraint

for (IloInt i = 0; i < nbWeeks; i++)
for (IloInt j = 1; j < nbGamesPerWeek; j++)
model.add(games[i][j] > games[i][j-1]);

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

102

Solve

Solving the problem consists of finding values for all of the decision variables in such a way
that the values simultaneously satisfy the constraints andminimize the objective representing
the cost of the solution. To solve the problem expressed in the model, you create an instance
of the class IloCP.

Step 19: Create an instance of IloCP
Add the following code after the comment //Create an instance of IloCP

IloCP cp(model);

The search for an optimal solution in this problem could potentiality take a long time, so
you place a time limit on the solve process. The search will stop when the time limit is
reached, even if optimality of the current best solution is not guaranteed. You also add the
code to change the display frequency of the progress log of the search. Both of these are
done by setting parameters on the optimizer.

Step 20: Add the time limit
Add the following code after the comment //Add the time limit

cp.setParameter(IloCP::TimeLimit, 60);
cp.setParameter(IloCP::LogPeriod, 10000);

Since you know information about the structure of this problem, you can tune the optimizer
to help it perform better. While modeling the problem, you have introduced quite a few
auxiliary variables. However, the array allGames contains the solution, so it is best to assign
its values first. In fact, after all the decision variables in the array allGames have been
assigned values, the values for all of the other variables in the model will have been
determined through constraint propagation. A search strategy that chooses the variable in
this array which currently has the smallest index and assigns it a random value works well
in this problem.

To tune the optimizer, you first indicate that the search strategy should select from the
variables of allGames the variable with the smallest index that has not been assigned a
value. To do this, you pass the instance of the class IloIntVarEval that is returned by the
function IloVarIndex to the selector IloSelectSamllest and add this to a variable selector
array.

To indicate that you wish the search strategy to try to assign a random value to the variable
that has been chosen, you pass the selector returned by the IloSelectRandomValue function
to a value selector array.

Step 21: Create the search selectors
Add the following code after the comment //Create the search selectors

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

103

IloVarSelectorArray varSel(env);
varSel.add(IloSelectSmallest(IloVarIndex(env, allGames)));
IloValueSelectorArray valSel(env);
valSel.add(IloSelectRandomValue(env));

To inform the optimizer to use these selectors, you create an instance of the class
IloSearchPhase, which is the container for the information regarding tuning the search
strategy.

Step 22: Create the tuning object
Add the following code after the comment //Create the tuning object

IloSearchPhase phase(env, allGames, varSel, valSel);

As the search will likely terminate before optimality has been proven, you use a search that
allows you to examine intermediate solutions instead of using IloCP::solve. To be able to
display intermediate solutions, you use three other member functions of the class IloCP.
You first use the member function IloCP::startNewSearch, whose argument is an instance
of IloSearchPhase, to initialize the optimizer.

To look for a solution, you call IloCP::next in a loop. This tells the optimizer to:

♦ search for a solution in the manner defined by the tuning object passed to
IloCP::startNewSearch and

♦ add the constraint that the following solution must be better than the solution found
previously.

In other words, each time IloCP::next is called, the new solution will yield a better value
for the objective. If no limit has been specified with a search parameter, the last solution
found is the optimal solution.

In this lesson, you use a loop to find better and better solutions and print the cost for each
solution found.

After the while loop terminates, you should use the member function IloCP::end to terminate
the search and delete internal objects created by CP Optimizer to carry out the search. The
code for ending the optimizer is given for you in the lesson code.

Step 23: Search for a solution
Add the following code after the comment //Search for a solution

cp.startNewSearch(phase);
while (cp.next()) {

The objective for each solution found is displayed. The code for displaying each solution is
provided for you in the lesson code.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

104

Step 24: Compile and run the program
Compile and run the program. Your results may vary from the ones reported here since on
different systems the time limit will be reached at different points in the search.

Solution at 40

The complete program can be viewed online in the file YourCPHome/examples/src/cpp/
sports.cpp.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

105

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

106

Review exercises

Includes the review exercises and suggested answers.

In this section

Exercises
Lists the review exercises.

Suggested answers
Provides the suggested answers to the review exercises.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

107

Exercises

For answers, see Suggested answers.

1. What is a tuple?

2. What are two types of additional constraints that can improve the process of finding a
solution?

3. What is a logical constraint?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

108

Suggested answers

Exercise 1
What is a tuple?

Suggested answer
An tuple is an ordered set of values. For example, if you state that Team 1 must play Team
2 in Game 7, this is a tuple. You would write it as (1, 2, 7). In the C++ API, the tuple would
be represented by the array of values IloIntArray(env,3,1,2,7).

Exercise 2
What are two types of additional constraints that can improve the process of finding a
solution?

Suggested answer
Two types of constraints that can be added to improve constraint propagation and the search
are surrogate constraints and constraints that reduce symmetry. Surrogate constraints are
additional constraints that are valid for the model, but have not been explicitly expressed
in the modeling constraints. Constraints that reduce symmetry eliminate extra solutions
that can be considered as permutations of other solutions.

Exercise 3
What is a logical constraint?

Suggested answer
A logical constraint is created by combining constraints or placing constraints on other
constraints. Logical constraints are based on the idea that constraints have value. IBM®
ILOG® CP Optimizer handles constraints not only as if they have a Boolean value, such as
true or false, but effectively as if the value is 0 or 1. This allows you to combine constraints
into expressions or impose constraints on constraints

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

109

Complete program

You can view the complete sports scheduling program online in the file YourCPHome/
examples/src/cpp/sports.cpp.

Results
Your results may likely vary from the ones here since on different systems the time limit will
be reached at different points in the search.

Solution at 40

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

110

Using expressions on interval variables:
house building with earliness and tardiness

costs

This section describes modeling and solving a problemwith expressions on interval variables.

In this section

Overview
Describes modeling and solving a problem with expressions on interval variables.

Describe
Describes the first stage in finding a solution to a house building problem.

Model
Describes the second stage in finding a solution to a house building problem.

Solve
Describes the third stage in finding a solution to a house building problem.

Review exercises
Includes the review exercises.

Complete program
Lists where to find the complete house building problem.

© Copyright IBM Corp. 1987, 2009 111

Overview

In this lesson, you will learn how to:

♦ use the class IloIntervalVar;

♦ use the specialized constraint IloEndBeforeStart;

♦ use the expressions IloStartOf, IloStartEval, IloEndOf and IloEndEval;

♦ use the class IloNumToNumSegmentFunction;

♦ use the class IloCP to search for a solution to and output the results of a scheduling
problem.

You will learn how to model and solve a simple problem, a problem of scheduling the tasks
involved in building a house in such a manner that minimizes an objective. Here the objective
is to minimize the costs associated with preforming specific tasks before a preferred earliest
start date or after a preferred latest end date. Some tasks must necessarily take place before
other tasks, and each task has a given duration. To find a solution to this problem using
IBM® ILOG®CPOptimizer, you will use the three-stage method: describe, model and solve.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

112

Describe

The problem consists of assigning start dates to tasks in such a way that the resulting
schedule satisfies precedence constraints and minimizes an expression. The objective for
this problem is to minimize the earliness costs associated with starting certain tasks earlier
than a given date and tardiness costs associated with completing certain tasks later than a
given date.

For each task in the house building project, the following table shows the duration (measured
in days) of the task along with the tasks that must finish before the task can start.

House construction tasks
Preceding tasksDurationTask

35masonry

masonry15carpentry

masonry40plumbing

masonry15ceiling

carpentry5roofing

ceiling10painting

roofing5windows

roofing, plumbing10facade

roofing, plumbing5garden

windows, facade, garden, painting5moving

Other information for the problem includes the earliness and tardiness costs associated with
some tasks.

House construction task earliness costs
Cost per day for starting earlyPreferred earliest start dateTask

200.025masonry

300.075carpentry

100.075ceiling

House construction task tardiness costs
Cost per day for ending latePreferred latest end dateTask

400.0100moving

Solving the problem consists of determining starting dates for the tasks such that the cost,
determined by the earliness and lateness costs, is minimized.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

113

In CP Optimizer, the unit of time represented by an interval variable is not defined. As
a result, the size of the masonry task in this problem could be 35 hours or 35 weeks
or 35 months.

Note:

Step 1: Describe the problem
The first step in modeling and solving a problem is to write a natural language description
of the problem, identifying the decision variables and the constraints on these variables.

Write a natural language description of this problem. Answer these questions:

♦ What is the known information in this problem?

♦ What are the decision variables or unknowns in this problem?

♦ What are the constraints on these variables?

♦ What is the objective?

Discussion
What is the known information in this problem?

♦ There are ten house building tasks, each with a given duration. For each task, there is a
list of tasks that must be completed before the task can start. Some tasks also have costs
associated with an early start date or late end date.

What are the decision variables or unknowns in this problem?

♦ The unknowns are the dates that the tasks will start. The cost is determined by the
assigned start dates.

What are the constraints on these variables?

♦ In this case, each constraint specifies that a particular task may not begin until one or
more given tasks have been completed.

What is the objective?

♦ The objective is to minimize the cost incurred through earliness and tardiness costs.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

114

Model

After you have written a description of your problem, you can use IBM® ILOG® Concert
Technology classes to model it.

Step 2: Open the example file
Open the example file YourCPHome/examples/tutorial/cpp/sched_time_partial.cpp in
your development environment. This file is a program that is only partially completed. You
will fill in the blanks in each step in this lesson. At the end, you will have completed the
program code, and you can compile and run the program.

In this lesson, you include the header file <ilcp/cp.h>. To catch exceptions that may be
thrown, you use a try/catch block. The code for creating the environment and model and
for printing out the solution found by the CP Optimizer engine is provided.

IBM ILOG Concert Technology gives you the means to represent the unknowns in this
problem, the interval in which each task will occur, as interval variables.

Interval decision variableNote:

Tasks are represented by the class IloIntervallVar in IBM ILOG Concert
Technology.

An interval has a start time, an end time, a size and a length. An interval variable allows
for these values to be variable in the model.

The length of a present interval variable is equal to the difference between its end time
and its start time. The size is the actual amount of time the task takes to process. By
default, the size is equal to the length, which is the difference between the end and
the start of the interval. In general, the size is a lower bound on the length.

An interval variable may be optional. Whether an interval is present in the solution or
not is represented by a decision variable. If an interval is not present in the solution,
this means that any constraints on this interval act like the interval is “not there.” Exact
semantics will depend on the specific constraint.

Logical relations can be expressed between the presence statuses of interval variables,
allowing, for instance, to state that whenever the interval variable a is present then the
interval variable b must also be present.

After you create an environment and a model, you declare the interval variables, one for
each task. Each variable represents the unknown information, the scheduled interval for
each activity. After the problem is solved, the values assigned to these interval variables
will represent the solution to the problem. To improve the display of the solution, it is useful
to assign a name to each of the interval variables.

Here is the constructor for the class IloIntervalVar that you use in this lesson:

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

115

IloIntervalVar(const IloEnv env,
IloInt sz,
const char* name = 0);

The first argument passed to this constructor of the class IloIntervalVar is the environment.
The second argument is the size of the task. The third argument is an optional name used
for debug and trace purposes.

Step 3: Declare the interval variables
Add the following code after the comment //Declare the interval variables

IloIntervalVar masonry (env, 35, “masonry “);
IloIntervalVar carpentry(env, 15, “carpentry “);
IloIntervalVar plumbing (env, 40, “plumbing “);
IloIntervalVar ceiling (env, 15, “ceiling “);
IloIntervalVar roofing (env, 5, “roofing “);
IloIntervalVar painting (env, 10, “painting “);
IloIntervalVar windows (env, 5, “windows “);
IloIntervalVar facade (env, 10, “facade “);
IloIntervalVar garden (env, 5, “garden “);
IloIntervalVar moving (env, 5, “moving “);

In this example, certain tasks can start only after other tasks have been completed. IBM
ILOG CP Optimizer allows you to express constraints involving temporal relationships
between pairs of interval variables using precedence constraints.

Precedence constraintNote:

Constraints are represented by the class IloConstraint in IBM ILOG Concert
Technology.

Precedence constraints are used to specify when one interval variable must start or
end with respect to the start or end time of another interval. The following types of
precedence constraints are available; if a and b denote interval variables, both interval
variables are present and delay is a number or integer expression (0 by default),
then:

♦ IloEndBeforeEnd(env, a, b, delay) constrains that at least the given delay
should elapse between the end of a and the end of b. It imposes the inequality
endTime(a) + delay <= endTime(b).

♦ IloEndBeforeStart(env, a, b, delay) constrains that at least the given
delay should elapse between the end of a and the start of b. It imposes the inequality
endTime(a) + delay <= startTime(b).

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

116

♦ IloEndAtEnd(env, a, b, delay) constrains the given delay to separate the
end of a and the end of b. It imposes the equality endTime(a) + delay ==
endTime(b).

♦ IloEndAtStart(env, a, b, delay) constrains the given delay to separate
the end of a and the start of b. It imposes the equality endTime(a) + delay ==
startTime(b).

♦ IloStartBeforeEnd(env, a, b, delay) constrains that at least the given
delay should elapse between the start of a and the end of b. It imposes the inequality
startTime(a) + delay <= endTime(b).

♦ IloStartBeforeStart(env, a, b, delay) constrains that at least the given
delay should elapse between the start of a and the start of b. It imposes the inequality
startTime(a) + delay <= startTime(b).

♦ IloStartAtEnd(env, a, b, delay) constrains the given delay to separate
the start of a and the end of b. It imposes the equality startTime(a) + delay
== endTime(b).

♦ IloStartAtStart(env, a, b, delay) constrains the given delay to separate
the start of a and the start of b. It imposes the equality startTime(a) + delay
== startTime(b).

If either interval a or b is not present in the solution, the constraint is automatically
satisfied, and it is as if the constraint was never imposed.

You use the member function IloModel::add to add constraints to the model. You must
explicitly add a constraint to the model object or the CP Optimizer engine will not use it in
the search for a solution.

Step 4: Add the precedence constraints
Add the following code after the comment //Add the precedence constraints

model.add(IloEndBeforeStart(env, masonry, carpentry));
model.add(IloEndBeforeStart(env, masonry, plumbing));
model.add(IloEndBeforeStart(env, masonry, ceiling));
model.add(IloEndBeforeStart(env, carpentry, roofing));
model.add(IloEndBeforeStart(env, ceiling, painting));
model.add(IloEndBeforeStart(env, roofing, windows));
model.add(IloEndBeforeStart(env, roofing, facade));
model.add(IloEndBeforeStart(env, plumbing, facade));
model.add(IloEndBeforeStart(env, roofing, garden));
model.add(IloEndBeforeStart(env, plumbing, garden));
model.add(IloEndBeforeStart(env, windows, moving));
model.add(IloEndBeforeStart(env, facade, moving));
model.add(IloEndBeforeStart(env, garden, moving));

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

117

model.add(IloEndBeforeStart(env, painting, moving));

To model the cost for starting a task earlier than the preferred starting date, you write a
function based on the expression that represents the starting date of the given task. This
lesson illustrates two methods for creating this function. Concert Technology provides the
expression, IloStartOf, to represent the start time of an interval variable as an integer
expression. The single argument passed to the function IloStartOf is the appropriate
interval variable. Here is the function:

IloIntExprArg IloStartOf (const IloIntervalVar a);

To model the cost for starting a task earlier than the preferred starting date, you use the
expression IloStartOf that represents the start time of an interval variable as an integer
expression.

For each task that has an earliest preferred start date, you determine howmany days before
the preferred date it is scheduled to start using the expression IloStartOf; this expression
can be negative if the task starts after the preferred date. By taking the maximum of this
value and 0 using IloMax, you determine howmany days early the task is scheduled to start.
Weighting this value with the cost per day of starting early, you determine the cost associated
with the task.

Alternatively, you can represent the earliness cost as a piecewise linear function. Concert
Technology provides the class IloNumToNumSegmentFunction to model a piecewise linear
function.

Segment functionNote:

Piecewise linear functions are represented by the class
IloNumToNumSegmentFunction in IBM ILOG Concert Technology.

Each interval [x1, x2) on which the function is linear is called a segment.

When two consecutive segments of the function are co-linear, these segments are
merged so that the function is always represented with the minimal number of segments.

In this case, to create an instance of the IloNumToNumSegmentFunction, you use the function
IloPiecewiseLinear. The first argument passed to the function is the environment. The
second argument is an array of points that are the endpoints of the segments. The third
argument is an array of slopes. The fourth argument is a point, and the fifth argument is
the value of the function at that point. The sixth argument is an optional name used for
debug and trace purposes. Here is the function:

IloNumToNumSegmentFunction
IloPiecewiseLinearFunction(const IloEnv env,

const IloNumArray point,
const IloNumArray slope,
IloNum a,
IloNum fa,

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

118

const char* name = 0);

The piecewise linear function for the earliness function in this problem has two segments,
one from -IloInfinity to the preferred earliest start date and then one from the preferred
earliest start date to IloInfinity. The cost function on the leftmost interval is -weight; on
the rightmost interval, the function value is 0.

The function IloStartEval, when called with an interval variable and a segment function,
returns an expression that represents the value of the function at the start of the interval.

Step 5: Add the earliness function
Add the following code after the comment //Add the earliness function

IloNumExpr EarlinessCost(IloIntervalVar task, IloInt rd, IloNum weight, IloBool
useFunction) {
IloEnv env = task.getEnv();
if (useFunction) {
IloNumToNumSegmentFunction f =
IloPiecewiseLinearFunction(env,

IloNumArray(env, 1, rd),
IloNumArray(env, 2, -weight, 0.0),
rd, 0.0);

return IloStartEval(task, f);
}
else
return weight * IloMax(0, rd-IloStartOf(task));

}

The cost for ending a task later than the preferred date is modeled in a similar manner,
using the IloEndOf function or the IloNumToNumSegmentFunction class and IloEndEval
function provided by Concert Technology.

Step 5: Add the tardiness function
Add the following code after the comment //Add the tardiness function

IloNumExpr TardinessCost(IloIntervalVar task, IloInt dd, IloNum weight, IloBool
useFunction) {
IloEnv env = task.getEnv();
if (useFunction) {
IloNumToNumSegmentFunction f =

IloPiecewiseLinearFunction(env,
IloNumArray(env, 1, dd),
IloNumArray(env, 2, 0.0, weight),
dd, 0.0);

return IloEndEval(task, f);
}
else

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

119

return weight * IloMax(0, IloEndOf(task)-dd);
}

These two cost functions are used to create an expression that models the overall cost. The
resulting IloNumExpr is passed to an IloMinimize function, and the objective added to the
model.

Step 6: Add the objective
Add the following code after the comment //Add the objective

IloBool useFunction = IloTrue;
IloNumExpr cost(env);
cost += EarlinessCost(masonry, 25, 200.0, useFunction);
cost += EarlinessCost(carpentry, 75, 300.0, useFunction);
cost += EarlinessCost(ceiling, 75, 100.0, useFunction);
cost += TardinessCost(moving, 100, 400.0, useFunction);
model.add(IloMinimize(env, cost));

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

120

Solve

Solving a problem consists of finding a value for each decision variable so that all constraints
are satisfied. You may not always know beforehand whether there is a solution that satisfies
all the constraints of the problem. In some cases, there may be no solution. In other cases,
there may be many solutions to a problem.

You use an instance of the class IloCP to solve a problem expressed in a model. The
constructor for IloCP takes an IloModel as its argument.

Step 7: Create an instance of IloCP
Add the following code after the comment //Create an instance of IloCP

IloCP cp(model);

You now use the member function IloCP::solve, which solves the problem contained in
the model by using constructive search and constraint propagation.

Step 8: Search for a solution
Add the following code after the comment //Search for a solution

if (cp.solve()) {

The member function IloCP::solve returns a Boolean value of type IloBool. If a solution
is found, the value IloTrue is returned.

After a solution has been found, you can use the member functions IloCP::getObjValue
and IloCP::domain to examine the solution. The stream IloAlgorithm::out is the
communication stream for general output.

The code for displaying the solution has been provided for you:

cp.out() << “Cost Value: “ << cp.getObjValue() << std::endl;
cp.out() << cp.domain(masonry) << std::endl;
cp.out() << cp.domain(carpentry) << std::endl;
cp.out() << cp.domain(plumbing) << std::endl;
cp.out() << cp.domain(ceiling) << std::endl;
cp.out() << cp.domain(roofing) << std::endl;
cp.out() << cp.domain(painting) << std::endl;
cp.out() << cp.domain(windows) << std::endl;
cp.out() << cp.domain(facade) << std::endl;
cp.out() << cp.domain(garden) << std::endl;
cp.out() << cp.domain(moving) << std::endl;

} else {
cp.out() << “No solution found. “ << std::endl;

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

121

}
cp.printInformation();

Step 9: Compile and run the program
Compile and run the program. You should get the following results:

Cost Value: 5000
masonry [1: 20 -- 35 --> 55]
carpentry [1: 75 -- 15 --> 90]
plumbing [1: 55 -- 40 --> 95]
ceiling [1: 75 -- 15 --> 90]
roofing [1: 90 -- 5 --> 95]
painting [1: 90 -- 10 --> 100]
windows [1: 95 -- 5 --> 100]
facade [1: 95 -- 10 --> 105]
garden [1: 95 -- 5 --> 100]
moving [1: 105 -- 5 --> 110]

As you can see, the overall cost is 5000 and moving will be completed by day 110.

The complete program can be viewed online in the YourCPHome/examples/src/cpp/
sched_time.cpp file.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

122

Review exercises

Includes the review exercises.

In this section

Exercises
Lists the review exercises.

Suggested answers
Provides the answers to the review exercises.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

123

Exercises

For answers, see Suggested answers.

1. What is an interval variable?

2. What is a precedence constraint?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

124

Suggested answers

Exercise 1
What is an interval variable?

Suggested answer
An interval has a start, an end, a size and a length. An interval variable allows for these
values to be variable in the model.

The length of a present interval variable is equal to the difference between its end time and
its start time. The size is the actual amount of time the task takes to process. By default,
the size is equal to the length, which is the difference between the end and the start of the
interval. In general, the size is a lower bound on the length.

An interval variable may be optional. Whether an interval is present in the solution or not
is represented by a decision variable. If an interval is not present in the solution, this means
that any constraints on this interval acts like the interval is “not there.” Exact semantics
will depend on the specific constraint.

Logical relations can be expressed between the presence statuses of interval variables,
allowing, for instance, to state that whenever the interval variable a is present then the
interval variable b must also be present.

Exercise 2
What is a precedence constraint?

Suggested answer
A precedence constraint is a constraint that specifies when one interval variable must start
or end with respect to the start or end time of another interval variable.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

125

Complete program

You can view the complete house building program in the file YourCPHome/examples/src/
cpp/sched_time.cpp.

Results

Cost Value: 5000
masonry [1: 20 -- 35 --> 55]
carpentry [1: 75 -- 15 --> 90]
plumbing [1: 55 -- 40 --> 95]
ceiling [1: 75 -- 15 --> 90]
roofing [1: 90 -- 5 --> 95]
painting [1: 90 -- 10 --> 100]
windows [1: 95 -- 5 --> 100]
facade [1: 95 -- 10 --> 105]
garden [1: 95 -- 5 --> 100]
moving [1: 105 -- 5 --> 110]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

126

Using no overlap constraints on interval
variables: house building with workers

This section describes how to model and solve a problem using no overlap constraints.

In this section

Overview
Describes how to model and solve a problem with no overlap constraints.

Describe
Describes the first stage in modeling and solving a house building with workers problem.

Model
Describes the second stage in modeling and solving a house building with workers problem.

Solve
Describes the third stage in modeling and solving a house building with workers problem.

Review exercises
Includes the review exercises.

Complete program
Lists the complete house building with workers program.

© Copyright IBM Corp. 1987, 2009 127

Overview

In this lesson, you will learn how to:

♦ use the classes IloIntervalSequenceVar;

♦ use the specialized constraint IloNoOverlap;

♦ use the classes IloTransitionDistance and IloSpan;

♦ use the expression IloLengthOf.

You will learn how to model and solve a problem of scheduling the tasks involved in building
multiple houses in a manner that minimizes the costs associated with completing each house
after a given due date and with the length of time it takes to build each house. Some tasks
must necessarily take place before other tasks, and each task has a predefined size. Each
house has an earliest starting date. Moreover, there are two workers, each of whom must
perform a given subset of the necessary tasks, and there is a transition time associated with
a worker transferring from one house to another house. A task, once started, cannot be
interrupted. The objective is to minimize the cost, which is composed of tardiness costs for
certain tasks as well as a cost associated with the length of time it takes to complete each
house. To find a solution to this problem using IBM® ILOG® CP Optimizer, you will use the
three-stage method: describe, model and solve.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

128

Describe

The problem consists of assigning start dates to a set of tasks in such a way that the schedule
satisfies temporal constraints and minimizes an expression. The objective for this problem
is to minimize the tardiness costs associated with completing each house later than its
specified due date and the cost associated with the length of time it takes to complete each
house.

For each task type in the house building project, the following table shows the duration of
the task in days along with the tasks that must be finished before the task can start. In
addition, each type of task must be performed by a specific worker, Jim or Joe. A worker
can only work on one task at a time; each task, once started, may not be interrupted. The
time required to transfer from one house to another house is determined by a function based
on the location of the two houses.

House construction tasks
Preceding tasksWorkerDurationTask

Joe35masonry

masonryJoe15carpentry

masonryJim40plumbing

masonryJim15ceiling

carpentryJoe5roofing

ceilingJim10painting

roofingJim5windows

roofing, plumbingJoe10facade

roofing, plumbingJoe5garden

windows, facade, garden, paintingJim5moving

For each of the five houses that must be built, there is an earliest starting date, a due date
and a cost per day of completing the house later than the preferred due date.

House construction tardiness costs
Cost per day for ending latePreferred latest end dateEarliest starting dateHouse

100.012000

100.021201

100.03041512

200.0181593

100.04252434

Solving the problem consists of determining starting dates for the tasks such that the cost,
where the cost is determined by the lateness costs and length costs, is minimized.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

129

Step 1: Describe the problem
The first step in modeling and solving a problem is to write a natural language description
of the problem, identifying the decision variables and the constraints on these variables.

Write a natural language description of this problem. Answer these questions:

♦ What is the known information in this problem?

♦ What are the decision variables or unknowns in this problem?

♦ What are the constraints on these variables?

♦ What is the objective?

Discussion
What is the known information in this problem?

♦ There are five houses to be built by two workers. For each house, there are ten house
building tasks, each with a given size. Each house also has a given earliest starting date.
For each task, there is a list of tasks that must be completed before the task can start.
Each task must be performed by a given worker, and there is a transition time associated
with a worker transferring from one house to another house. There are costs associated
with completing each house after its preferred due date and with the length of time it
takes to complete each house.

What are the decision variables or unknowns in this problem?

♦ The unknowns are the start and end dates of the interval variables associated with the
tasks. Once fixed, these interval variables also determine the cost of the solution. For
some of the interval variables, there is a fixed minimum start date.

What are the constraints on these variables?

♦ There are constraints that specify a particular task may not begin until one or more given
tasks have been completed. In addition, there are constraints that specify that a worker
can be assigned to only one task at a time and that it takes time for a worker to travel
from one house to the other.

What is the objective?

♦ The objective is to minimize the cost incurred through tardiness and length costs.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

130

Model

After you have written a description of your problem, you can use IBM® ILOG® Concert
Technology classes to model it.

Step 2: Open the example file
Open the example file YourCPHome/examples/tutorial/cpp/sched_sequence_partial.cpp
in your development environment. This file is a program that is only partially completed.
You will fill in the blanks in each step in this lesson. At the end, you will have completed the
program code, and you can compile and run the program.

In this lesson, you include the header file <ilcp/cp.h>. To catch exceptions that may be
thrown, you use a try/catch block. The code for creating the environment and model and
for printing out the solution found by the CP Optimizer engine is provided.

In addition, the data related to the tasks, such as the tasks (Tasks), the number of tasks
(NbTasks), the names of the tasks (TaskNames) and sizes of the tasks (TaskDurations), are
provided.

After you create an environment and a model, you need to define the decision variables and
add the constraints and objective to the model. Since the requirements for each of the five
houses are similar, you use a function, MakeHouse, to create the decision variables, constraints
and costs associated with a house. The information about individual houses that must be
shared with the main function includes the cost expression and the set of tasks associated
with each worker. This set of tasks is needed in order to create the constraints for each
worker that involve tasks of different houses. In order to display the results of the
optimization, it is also useful to maintain an array of all the interval variables.

To access this global information, you create objects to be updated in the MakeHouse function.
An array of task interval variables, allTasks, stores all the interval variables that are created.
The overall cost is represented by a numerical expression called cost. For the worker Joe,
you create two arrays to be filled by the MakeHouse function: joeTasks, an array of interval
variables, and joeLocations, an array of integers. These two corresponding arrays are
indexed the same, so that for each index i, joeTasks[i] is performed at joeLocation[i].
A similar pair of arrays are created for the worker Jim. These four arrays are passed to the
MakeHouse function which adds elements to these arrays as the interval variables and
constraints are created

Step 3: Declare the objects needed for MakeHouse
Add the following code after the comment //Declare the objects needed for MakeHouse

IloNumExpr cost(env);
IloIntervalVarArray allTasks(env);
IloIntervalVarArray joeTasks(env);
IloIntervalVarArray jimTasks(env);
IloIntArray joeLocations(env);
IloIntArray jimLocations(env);

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

131

You pass the model, the cost expression, the array of all tasks, the arrays joeTasks, jimTasks,
joeLocations and jimLocations, the identifier of the current house, the earliest date the
house can be started, the preferred due date of the house and the cost per day of completing
the house late as arguments to the MakeHouse function.

Step 4: Create the MakeHouse function
Add the following code after the comment //Create the MakeHouse function

void MakeHouse(IloModel model,
IloNumExpr cost,
IloIntervalVarArray allTasks,
IloIntervalVarArray joeTasks,
IloIntervalVarArray jimTasks,
IloIntArray joeLocations,
IloIntArray jimLocations,
IloInt loc,
IloInt rd,
IloInt dd,
IloNum weight) {

Each house has a list of NbTasks that must be scheduled. Task i, where i is in 0..NbTasks
-1, has a size of TaskDurations[i] and the name TaskNames[i]. Using these, you build an
array tasks of interval variables. As you create each interval variable, you also add it to the
array allTasks that will be used to display the solution once the schedule has been
determined.

Step 5: Create the interval variables
Add the following code after the comment //Create the interval variables

char name[128];

IloIntervalVarArray tasks(env, NbTasks);
for (IloInt i=0; i<NbTasks; ++i) {
sprintf(name, "H%ld-%s", loc, TaskNames[i]);
tasks[i] = IloIntervalVar(env, TaskDurations[i], name);
allTasks.add(tasks[i]);

}

To model the cost associated with the length of time it takes to build a single house, you
create an interval variable that starts at the start of the first task of the house and ends at
the end of the last task. This interval variable must span the tasks.

Span constraintNote:

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

132

With the specialized constraint IloSpan, you can create a constraint that specifies
that one interval variable must exactly cover a set of interval variables.

In other words, the spanning interval a is present in the solution if and only if at least
one of the spanned interval variables is present and, in this case, the spanning interval
variable starts at the start of the interval variable scheduled earliest in the set and ends
at the end of the interval variable scheduled latest in the set.

The first argument passed to the constructor of the class IloSpan is the environment. The
second argument is the interval variable that will be constrained to cover the set of interval
variables. The third argument is the array of interval variables that are to be covered. The
final argument is an optional name used for debug and trace purposes. Here is a constructor:

IloSpan (const IloEnv env,
const IloIntervalVar a,
const IloIntervalVarArray bs,
const char *name =0);

You create an interval variable called house and constrain the variable to cover the array
of tasks, tasks.

Step 6: Add the house interval variable and span constraint
Add the following code after the comment //Add the house interval variable and span
constraint

sprintf(name, "H%ld", loc);
IloIntervalVar house(env, name);
model.add(IloSpan(env, house, tasks));

The tasks of the house building project have precedence constraints that are added to the
model. Moreover, each house has an earliest starting date which can be modeled with a
time bound modifier.

Interval variable modifierNote:

Properties of interval variables can be modified.

Time bound modifiers are used to limit the possible values that may be assigned to
the start, length, size, or end of an interval variable. These modifiers include
setStartMin, setStartMax, setEndMin, setEndMax, setLengthMin,
setLengthMax., setSizeMin and setSizeMax. For example, if a denotes an
interval variable and val is a number, then:

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

133

♦ a.setStartMin(val) constrains that a must not start before val or a is not
present in the solution. It imposes the inequality startTime(a) >= val.

Other modifiers of interval variables include setPresent, setAbsent and
setOptional which indicate whether or not an interval variable must be present.

Step 7: Add the precedence and time bound constraints
Add the following code after the comment //Add the precendence and time bound
constraints

house.setStartMin(rd);
model.add(IloEndBeforeStart(env, tasks[masonry], tasks[carpentry]));
model.add(IloEndBeforeStart(env, tasks[masonry], tasks[plumbing]));
model.add(IloEndBeforeStart(env, tasks[masonry], tasks[ceiling]));
model.add(IloEndBeforeStart(env, tasks[carpentry], tasks[roofing]));
model.add(IloEndBeforeStart(env, tasks[ceiling], tasks[painting]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[windows]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[facade]));
model.add(IloEndBeforeStart(env, tasks[plumbing], tasks[facade]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[garden]));
model.add(IloEndBeforeStart(env, tasks[plumbing], tasks[garden]));
model.add(IloEndBeforeStart(env, tasks[windows], tasks[moving]));
model.add(IloEndBeforeStart(env, tasks[facade], tasks[moving]));
model.add(IloEndBeforeStart(env, tasks[garden], tasks[moving]));
model.add(IloEndBeforeStart(env, tasks[painting], tasks[moving]));

Each of the tasks requires a particular worker. As a worker can perform only one task at a
time, it is necessary to know all of the tasks that a worker must perform and then constrain
that these intervals not overlap. Also, as there are transition times between houses that
must be taken into account, it is necessary to know where each task is to be performed. To
create the no overlap and transition time constraints in the main function, you add the
appropriate tasks to the arrays joeTasks and jimTasks. To indicate at which house the task
is performed, whenever a task is added to a worker’s task array, a location is added to that
worker’s location array.Thus the two corresponding arrays are indexed the same, so that
for each index i, joeTasks[i] is performed at joeLocation[i].

Step 8: Add the tasks to workers
Add the following code after the comment //Add the tasks to workers

joeTasks.add(tasks[masonry]);
joeLocations.add(loc);
joeTasks.add(tasks[carpentry]);
joeLocations.add(loc);
jimTasks.add(tasks[plumbing]);

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

134

jimLocations.add(loc);
jimTasks.add(tasks[ceiling]);
jimLocations.add(loc);
joeTasks.add(tasks[roofing]);
joeLocations.add(loc);
jimTasks.add(tasks[painting]);
jimLocations.add(loc);
jimTasks.add(tasks[windows]);
jimLocations.add(loc);
joeTasks.add(tasks[facade]);
joeLocations.add(loc);
joeTasks.add(tasks[garden]);
joeLocations.add(loc);
jimTasks.add(tasks[moving]);
jimLocations.add(loc);

To model the cost of building the house, you create a function that uses the function IloEndOf
to model the cost associated with a task being completed later than its preferred latest end
date.

Step 9: Add the tardiness cost function
Add the following code after the comment //Add the tardiness cost function

IloNumExpr TardinessCost(IloIntervalVar task, IloInt dd, IloNum weight) {
IloEnv env = task.getEnv();
return weight * IloMax(0, IloEndOf(task)-dd);

}

This cost function returns an expression that models the tardiness cost for the end date of
the house interval variable. The cost for building a house is the sum of the tardiness cost
and the number of days it takes from start to finish building the house. To model the cost
of the length of time it takes to build the house, you use the function IloLengthOf, which
returns an expression representing the length of an interval variable.

Step 10: Add the cost expression
Add the following code after the comment //Add the cost expression

cost += TardinessCost(house, dd, weight);
cost += IloLengthOf(house);

This completes the MakeHouse function. In the main function, you now call the MakeHouse
function, once for each house. At each call, the cost expression is incremented by the cost
associated with that house and additional elements are appended to the arrays allTasks,
joeTasks, jimTasks, joeLocations and jimLocations.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

135

Step 11: Create the houses
Add the following code after the comment //Create the houses

MakeHouse(model, cost, allTasks, joeTasks, jimTasks, joeLocations,
jimLocations, 0, 0, 120, 100.0);

MakeHouse(model, cost, allTasks, joeTasks, jimTasks, joeLocations,
jimLocations, 1, 0, 212, 100.0);

MakeHouse(model, cost, allTasks, joeTasks, jimTasks, joeLocations,
jimLocations, 2, 151, 304, 100.0);

MakeHouse(model, cost, allTasks, joeTasks, jimTasks, joeLocations,
jimLocations, 3, 59, 181, 200.0);

MakeHouse(model, cost, allTasks, joeTasks, jimTasks, joeLocations,
jimLocations, 4, 243, 425, 100.0);

You nowmodel the transition times associated with the workers transferring between houses.

Transition time objectNote:

The class IloTransitionDistance in IBM ILOG Concert Technology lets you build
a table of transition times to apply to a sequence of non-overlapping interval variables.
An instance of this class is a table of non-negative numbers, indexed by an integer
interval variable type associated with each interval variable.

Given an interval variable a1 that precedes (not necessarily directly) an interval variable
a2 in a sequence of non-overlapping interval variables, the transition time between a1
and a2 is an amount of time that must elapse between the end of a1 and the beginning
of a2.

The first argument passed to the constructor of the class IloTransitionDistance is the
environment. The second argument is the number of transition types. The final argument
is an optional name used for debug and trace purposes. Here is a constructor:

IloTransitionDistance(const IloEnv env,
IloInt size,
const char* name = 0);

In this problem, there are five houses, thus the number of types of interval variables is also
five. The transition time from one house to another is the absolute difference of the associated
house identifiers.

Step 12: Create the transition times
Add the following code after the comment //Create the transition times

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

136

IloTransitionDistance tt(env, 5);
for (i=0; i<5; ++i)
for (j=0; j<5; ++j)
tt.setValue(i, j, IloAbs(i-j));

To add the constraints that Jim and Joe can only perform one task at a time and must respect
transition times, you create a sequence variable that represents the order in which the
workers perform the tasks. Note that the sequence variable does not force the tasks to not
overlap or the order of tasks; in a future step you create a constraint that enforces these
relations on the sequence of interval variables.

Interval sequence decision variableNote:

Using the class IloIntervalSequenceVar in Concert Technology, you can create
a variable that represents a sequence of interval variables. The sequence can contain
a subset of the variables or be empty. In a solution, the sequence will represent a total
order over all the intervals in the set that are present in the solution.

The assigned order of interval variables in the sequence does not necessarily determine
their relative positions in time in the schedule.

The first argument passed to the constructor of the class IloIntervalSequenceVar is always
the environment. The second argument is the array of interval variables to be sequenced.
The third argument is the array of integer types of the interval variables in the second
argument. The final argument is an optional name used for debug and trace purposes. Here
is a constructor:

IloIntervalSequenceVar(const IloEnv env,
const IloIntervalVarArray a,
const IloIntArray types,
const char* name=0);

You create interval sequence variables for Jim and Joe, using the arrays of their tasks and
task locations as the arguments.

Step 13: Create the sequence variables
Add the following code after the comment //Create the sequence variables

IloIntervalSequenceVar joe(env, joeTasks, joeLocations, "Joe");
IloIntervalSequenceVar jim(env, jimTasks, jimLocations, "Jim");

Now that you have created the sequence variables, you must constrain each sequence such
that the interval variables do not overlap in the solution, that the transition times are

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

137

respected and that the sequence represents the relations of the interval variables in time.
To do this, you use the specialized constraint IloNoOverlap.

No overlap constraintNote:

Using the class IloNoOverlap in Concert Technology, you can constrain that an
interval sequence variable defines a chain of non-overlapping intervals that are present
in the solution. If a transition matrix is specified, it defines the minimal time that must
elapse between two intervals in the chain.

Note that intervals which are not present in the solution are automatically removed
from the sequence.

In this case, the first argument passed to the constructor of the class IloNoOverlap is the
environment. The second argument is the sequence of interval variables. The third argument
is the transition object. The final argument is an optional name used for debug and trace
purposes. Here is a constructor:

IloNoOverlap(const IloEnv env,
const IloIntervalSequenceVar seq,
const IloTransitionDistance ttime =0,
const char* name=0);

You add one no overlap constraint for the sequence interval variable for each worker.

Step 14: Add the no overlap constraints
Add the following code after the comment //Add the no overlap constraints

model.add(IloNoOverlap(env, joe, tt));
model.add(IloNoOverlap(env, jim, tt));

The objective of this problem is to minimize the cost as represented by the cost expression.

Step 15: Add the objective
Add the following code after the comment //Add the objective

model.add(IloMinimize(env, cost));

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

138

Solve

You use an instance of the class IloCP to solve a problem expressed in a model. The
constructor for IloCP takes an IloModel as its argument.

Step 16: Create an instance of IloCP
Add the following code after the comment //Create an instance of IloCP

IloCP cp(model);

You now use the member function IloCP::solve, which solves the problem contained in
the model by using constructive search and constraint propagation. The search for an optimal
solution in this problem could potentiality take a long time, so you place a fail limit on the
solve process. The search will stop when the fail limit is reached, even if optimality of the
current best solution is not guaranteed.

Step 17: Search for a solution
Add the following code after the comment //Search for a solution

cp.setParameter(IloCP::FailLimit, 30000);
if (cp.solve()) {

The member function IloCP::solve returns a Boolean value of type IloBool. If a solution
is found, the value IloTrue is returned.

After a solution has been found, you can use the member functions IloCP::getObjValue
and IloCP::domain to examine the solution. The stream IloAlgorithm::out is the
communication stream for general output. The code for displaying the solution has been
provided for you:

cp.out() << "Solution with objective " << cp.getObjValue() << ":" <<
std::endl;

for (i=0; i<allTasks.getSize(); ++i) {
cp.out() << cp.domain(allTasks[i]) << std::endl;

}

Step 18: Compile and run the program
Compile and run the program. You should get the following results:

Solution with objective 13852:
H0-masonry [1: 1 -- 35 --> 36]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

139

H0-carpentry[1: 36 -- 15 --> 51]
H0-plumbing [1: 36 -- 40 --> 76]
H0-ceiling [1: 76 -- 15 --> 91]
H0-roofing [1: 51 -- 5 --> 56]
H0-painting [1: 91 -- 10 --> 101]
H0-windows [1: 101 -- 5 --> 106]
H0-facade [1: 97 -- 10 --> 107]
H0-garden [1: 107 -- 5 --> 112]
H0-moving [1: 112 -- 5 --> 117]
H1-masonry [1: 138 -- 35 --> 173]
H1-carpentry[1: 192 -- 15 --> 207]
H1-plumbing [1: 197 -- 40 --> 237]
H1-ceiling [1: 237 -- 15 --> 252]
H1-roofing [1: 207 -- 5 --> 212]
H1-painting [1: 252 -- 10 --> 262]
H1-windows [1: 262 -- 5 --> 267]
H1-facade [1: 252 -- 10 --> 262]
H1-garden [1: 262 -- 5 --> 267]
H1-moving [1: 267 -- 5 --> 272]
H2-masonry [1: 216 -- 35 --> 251]
H2-carpentry[1: 268 -- 15 --> 283]
H2-plumbing [1: 273 -- 40 --> 313]
H2-ceiling [1: 313 -- 15 --> 328]
H2-roofing [1: 283 -- 5 --> 288]
H2-painting [1: 328 -- 10 --> 338]
H2-windows [1: 338 -- 5 --> 343]
H2-facade [1: 333 -- 10 --> 343]
H2-garden [1: 328 -- 5 --> 333]
H2-moving [1: 343 -- 5 --> 348]
H3-masonry [1: 59 -- 35 --> 94]
H3-carpentry[1: 115 -- 15 --> 130]
H3-plumbing [1: 120 -- 40 --> 160]
H3-ceiling [1: 160 -- 15 --> 175]
H3-roofing [1: 130 -- 5 --> 135]
H3-painting [1: 175 -- 10 --> 185]
H3-windows [1: 185 -- 5 --> 190]
H3-facade [1: 180 -- 10 --> 190]
H3-garden [1: 175 -- 5 --> 180]
H3-moving [1: 190 -- 5 --> 195]
H4-masonry [1: 291 -- 35 --> 326]
H4-carpentry[1: 345 -- 15 --> 360]
H4-plumbing [1: 350 -- 40 --> 390]
H4-ceiling [1: 390 -- 15 --> 405]
H4-roofing [1: 360 -- 5 --> 365]
H4-painting [1: 405 -- 10 --> 415]
H4-windows [1: 415 -- 5 --> 420]
H4-facade [1: 390 -- 10 --> 400]
H4-garden [1: 400 -- 5 --> 405]
H4-moving [1: 420 -- 5 --> 425]

The complete program can be viewed online in the YourCPHome/examples/src/cpp/
sched_sequence.cpp file.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

140

Review exercises

Includes the review exercises.

In this section

Exercises
Lists the review exercises.

Suggested answers
Provides the answers to the review exercises.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

141

Exercises

For answers, see Suggested answers.

1. What is transition time?

2. What is a no overlap constraint?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

142

Suggested answers

Exercise 1
What is transition time?

Suggested answer
Given an interval variable a1 that precedes an interval variable a2 in a sequence of
non-overlapping interval variables, the transition time between a1 and a2 is the amount of
time that must elapse between the end of a1 and the beginning of a2.

Exercise 2
What is a no overlap constraint?

Suggested answer
A no overlap constraint, represented by the class IloNoOverlap, constrains a sequence of
interval variables to not overlap in time. This constraint also forces the scheduling of the
interval variables to respect a transition time table. If the interval variables are specified
as a IloIntervalSequenceVar, then the order of the intervals in sequence variable will be
forced to respect the temporal relations of the interval variables.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

143

Complete program

The complete house building program can be viewed online in the file YourCPHome/examples/
src/cpp/sched_sequence.cpp.

Results

Solution with objective 13852:
H0-masonry [1: 1 -- 35 --> 36]
H0-carpentry[1: 36 -- 15 --> 51]
H0-plumbing [1: 36 -- 40 --> 76]
H0-ceiling [1: 76 -- 15 --> 91]
H0-roofing [1: 51 -- 5 --> 56]
H0-painting [1: 91 -- 10 --> 101]
H0-windows [1: 101 -- 5 --> 106]
H0-facade [1: 97 -- 10 --> 107]
H0-garden [1: 107 -- 5 --> 112]
H0-moving [1: 112 -- 5 --> 117]
H1-masonry [1: 138 -- 35 --> 173]
H1-carpentry[1: 192 -- 15 --> 207]
H1-plumbing [1: 197 -- 40 --> 237]
H1-ceiling [1: 237 -- 15 --> 252]
H1-roofing [1: 207 -- 5 --> 212]
H1-painting [1: 252 -- 10 --> 262]
H1-windows [1: 262 -- 5 --> 267]
H1-facade [1: 252 -- 10 --> 262]
H1-garden [1: 262 -- 5 --> 267]
H1-moving [1: 267 -- 5 --> 272]
H2-masonry [1: 216 -- 35 --> 251]
H2-carpentry[1: 268 -- 15 --> 283]
H2-plumbing [1: 273 -- 40 --> 313]
H2-ceiling [1: 313 -- 15 --> 328]
H2-roofing [1: 283 -- 5 --> 288]
H2-painting [1: 328 -- 10 --> 338]
H2-windows [1: 338 -- 5 --> 343]
H2-facade [1: 333 -- 10 --> 343]
H2-garden [1: 328 -- 5 --> 333]
H2-moving [1: 343 -- 5 --> 348]
H3-masonry [1: 59 -- 35 --> 94]
H3-carpentry[1: 115 -- 15 --> 130]
H3-plumbing [1: 120 -- 40 --> 160]
H3-ceiling [1: 160 -- 15 --> 175]
H3-roofing [1: 130 -- 5 --> 135]
H3-painting [1: 175 -- 10 --> 185]
H3-windows [1: 185 -- 5 --> 190]
H3-facade [1: 180 -- 10 --> 190]
H3-garden [1: 175 -- 5 --> 180]
H3-moving [1: 190 -- 5 --> 195]
H4-masonry [1: 291 -- 35 --> 326]
H4-carpentry[1: 345 -- 15 --> 360]
H4-plumbing [1: 350 -- 40 --> 390]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

144

H4-ceiling [1: 390 -- 15 --> 405]
H4-roofing [1: 360 -- 5 --> 365]
H4-painting [1: 405 -- 10 --> 415]
H4-windows [1: 415 -- 5 --> 420]
H4-facade [1: 390 -- 10 --> 400]
H4-garden [1: 400 -- 5 --> 405]
H4-moving [1: 420 -- 5 --> 425]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

145

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

146

Using interval variables with intensities:
house building with resource calendars

This section describes how to model and solve a problem using interval variables with
intensities.

In this section

Overview
Describes how to model and solve a problem using interval variables with intensities.

Describe
Describes the first stage in finding a solution to a house building problem with resource
calendars.

Model
Describes the second stage in finding a solution to a house building problem with resource
calendars.

Solve
Describes the third stage in finding a solution to a house building problem with resource
calendars.

Review exercises
Includes the review exercises.

Complete program
Lists the location of the complete house building with resource calenders program.

© Copyright IBM Corp. 1987, 2009 147

Overview

In this lesson, you will learn how to:

♦ use the class IloNumToNumStepFunction;

♦ use an alternative constructor of the specialized constraint class IloNoOverlap;

♦ use intensity expressions;

♦ use the functions IloForbidStart and IloForbidEnd.

You will learn how to model and solve a house building problem, a problem of scheduling
the tasks involved in building multiple houses in such a manner that minimizes the overall
completion date of the houses. Some tasks must necessarily take place before other tasks,
and each task has a predefined size. Moreover, there are two workers, each of whom must
perform a given subset of the necessary tasks. Each worker has a calendar detailing the
days on which he does not work, such as weekends and holidays. On a worker’s day off, he
does no work on his tasks. His tasks may not be scheduled to start or end on these days.
Tasks that are in process by the worker are suspended during his days off. To find a solution
to this problem using IBM® ILOG® CP Optimizer, you will use the three-stage method:
describe, model and solve.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

148

Describe

The problem consists of assigning start dates to a set of tasks in such a way that the schedule
satisfies temporal constraints and minimizes an expression. The objective for this problem
is to minimize the overall completion date.

For each task type in the house building project, the following table shows the duration of
the task in days along with the tasks that must be finished before the task can start. In
addition, each type of task can be performed by a given one of the two workers, Jim and Joe.
A worker can only work on one task at a time; a task may be suspended during a worker’s
days off, but may not be interrupted by another task.

House construction tasks
Preceding tasksWorkerDurationTask

Joe35masonry

masonryJoe15carpentry

masonryJim40plumbing

masonryJim15ceiling

carpentryJoe5roofing

ceilingJim10painting

roofingJim5windows

roofing, plumbingJoe10facade

roofing, plumbingJoe5garden

windows, facade, garden, paintingJim5moving

Solving the problem consists of determining starting dates for the tasks such that the overall
completion date is minimized.

Step 1: Describe the problem
The first step in modeling and solving a problem is to write a natural language description
of the problem, identifying the decision variables and the constraints on these variables.

Write a natural language description of this problem. Answer these questions:

♦ What is the known information in this problem?

♦ What are the decision variables or unknowns in this problem?

♦ What are the constraints on these variables?

♦ What is the objective?

Discussion
What is the known information in this problem?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

149

♦ There are five houses to be built by two workers. For each house, there are ten house
building tasks, each with a given size. For each task, there is a list of tasks that must be
completed before the task can start. Each task must be performed by a given worker,
and each worker has a calendar listing his days off.

What are the decision variables or unknowns in this problem?

♦ The unknowns are the start and end times of tasks which also determine the overall
completion time. The actual length of a task depends on its position in time and on the
calendar of the associated worker.

What are the constraints on these variables?

♦ There are constraints that specify that a particular task may not begin until one or more
given tasks have been completed. In addition, there are constraints that specify that a
worker can be assigned to only one task at a time. A task cannot start or end during the
associated worker’s days off.

What is the objective?

♦ The objective is to minimize the overall completion date.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

150

Model

After you have written a description of your problem, you can use IBM® ILOG® Concert
Technology classes to model it.

Step 2: Open the example file
Open the example file YourCPHome/examples/tutorial/cpp/sched_calendar_partial.cpp
in your development environment. This file is a program that is only partially completed.
You will fill in the blanks in each step in this lesson. At the end, you will have completed the
program code, and you can compile and run the program.

In this lesson, you include the header file <ilcp/cp.h>. To catch exceptions that may be
thrown, you use a try/catch block. The code for creating the environment and model and
for printing out the solution found by the CP Optimizer engine is provided.

In addition, the data related to the tasks, such as the tasks (Tasks), the number of tasks
(NbTasks), the names of the tasks (TaskNames) and sizes of the tasks (TaskDurations), are
provided.

After you create an environment and a model, you need to define the decision variables and
add the constraints and objective to the model. Since the requirements for each of the five
houses are similar, you use a function, MakeHouse, to create the decision variables, constraints
and costs associated with a house. Information about individual houses that must be shared
with the main function includes the expressions needed to create the objective function and
the set of tasks associated with each worker. This set of tasks is needed in order to post the
no overlap constraints on a worker’s tasks. In order to display the results of the optimization,
it is also useful to maintain an array of all the interval variables.

To access this information, you create objects to be updated in the MakeHouse function. An
array of task interval variables, allTasks, stores all the interval variables that are created.
The cost expression involves the date at which moving is completed for each house; the
integer expression array ends is used to store this information. You create an array of interval
variables, joeTasks, to be filled by the MakeHouse function. A similar array is created for
Jim. These two arrays are passed to the MakeHouse function which adds elements to these
arrays as the variables are created.

Step 3: Declare the objects needed for MakeHouse
Add the following code after the comment //Declare the objects needed for MakeHouse

IloInt nbHouses = 5;
IloModel model(env);
IloIntExprArray ends(env);
IloIntervalVarArray allTasks(env);
IloIntervalVarArray joeTasks(env);
IloIntervalVarArray jimTasks(env);

You pass the model, the house identifier (a number in 0..nbHouses-1), the array of
expressions representing the completion dates of the houses, the array of all tasks and the
arrays joeTasks and jimTasks as arguments to the MakeHouse function.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

151

Step 4: Create the MakeHouse function
Add the following code after the comment //Create the MakeHouse function

void MakeHouse(IloModel model,
IloInt id,
IloIntExprArray ends,
IloIntervalVarArray allTasks,
IloIntervalVarArray joeTasks,
IloIntervalVarArray jimTasks) {

Each house has a list of NbTasks that must be scheduled. Task i, where i is in 0..NbTasks
-1, has a size of TaskDurations[i] and the name TaskNames[i]. Using these, you build an
array tasks of interval variables. As you create each interval variable, you also add it to the
array allTasks that will be used to display the solution once the schedule has been
determined.

Step 5: Create the interval variables
Add the following code after the comment //Create the interval variables

char name[128];
IloIntervalVarArray tasks(env, NbTasks);
for (IloInt i=0; i<NbTasks; ++i) {
sprintf(name, “H%ld-%s”, id, TaskNames[i]);
tasks[i] = IloIntervalVar(env, TaskDurations[i], name);
allTasks.add(tasks[i]);

}

The tasks of the house building project have precedence constraints that are added to the
model.

Step 6: Add the precedence constraints
Add the following code after the comment //Add the precendence constraints

model.add(IloEndBeforeStart(env, tasks[masonry], tasks[carpentry]));
model.add(IloEndBeforeStart(env, tasks[masonry], tasks[plumbing]));
model.add(IloEndBeforeStart(env, tasks[masonry], tasks[ceiling]));
model.add(IloEndBeforeStart(env, tasks[carpentry], tasks[roofing]));
model.add(IloEndBeforeStart(env, tasks[ceiling], tasks[painting]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[windows]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[facade]));
model.add(IloEndBeforeStart(env, tasks[plumbing], tasks[facade]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[garden]));
model.add(IloEndBeforeStart(env, tasks[plumbing], tasks[garden]));
model.add(IloEndBeforeStart(env, tasks[windows], tasks[moving]));

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

152

model.add(IloEndBeforeStart(env, tasks[facade], tasks[moving]));
model.add(IloEndBeforeStart(env, tasks[garden], tasks[moving]));
model.add(IloEndBeforeStart(env, tasks[painting], tasks[moving]));

Each of the tasks requires a particular worker. For expressing constraints related to workers,
such as no overlap and calendar constraints, it is necessary to know the set of tasks a
particular worker must perform. To maintain this information, you add the appropriate tasks
to the arrays joeTasks and jimTasks.

Step 7: Add the tasks to workers
Add the following code after the comment //Add the tasks to workers

joeTasks.add(tasks[masonry]);
joeTasks.add(tasks[carpentry]);
jimTasks.add(tasks[plumbing]);
jimTasks.add(tasks[ceiling]);
joeTasks.add(tasks[roofing]);
jimTasks.add(tasks[painting]);
jimTasks.add(tasks[windows]);
joeTasks.add(tasks[facade]);
joeTasks.add(tasks[garden]);
jimTasks.add(tasks[moving]);

Tomodel the cost of building the houses, you will need to determine the maximum completion
date among the individual house projects. To access the expression representing the
completion date of the house currently in consideration, you use the function IloEndOf on
the last task in building a house (here, it is the moving task) and store this expression in the
array ends.

Step 8: Add the cost expression
Add the following code after the comment //Add the cost expression

ends.add(IloEndOf(tasks[moving]));

This completes the MakeHouse function. In the main function, you now call the MakeHouse
function, once for each house. At each call, additional elements are appended to the arrays
ends, allTasks, joeTasks and jimTasks.

Step 9: Create the houses
Add the following code after the comment //Create the houses

for (IloInt h=0; h<nbHouses; ++h) {
MakeHouse(model, h, ends, allTasks, joeTasks, jimTasks);

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

153

}

To add the constraint that a worker can perform only one task at a time, you constrain that
the interval variables associated with that worker do not overlap in the solution. To do this,
you can use the specialized constraint IloNoOverlap, but with a slightly different constructor
than was used in Using no overlap constraints on interval variables: house building with
workers.

This constructor is a shortcut that avoids the need to explicitly define the interval sequence
variable when no additional constraints are required on the sequence variable. The first
argument passed to this constructor of the class IloNoOverlap is the environment. The
second argument is the array of interval variables that should not overlap. The third argument
is an optional transition parameter. The final argument is an optional name used for debug
and trace purposes. Here is a constructor:

IloNoOverlap(const IloEnv env,
const IloIntervalVarArray a,
const IloTransitionDistance ttime =0,
const char* name=0);

You add to the model one no overlap constraint on the array of interval variables for each
worker.

Step 10: Add the no overlap constraints
Add the following code after the comment //Add the no overlap constraints

model.add(IloNoOverlap(env, joeTasks));
model.add(IloNoOverlap(env, jimTasks));

To model the availability of a worker in regard to his days off, you first create a function
that represents his intensity over time. You specify that this function has a range of [0..100],
where the value 0 represents that the worker is not available and the value 100 represents
that the worker is available in regard to his calendar.

Concert Technology provides the class IloNumToNumStepFunction to represent a step
function that is defined everywhere on a given interval and can be used to model the intensity
of a worker.

Step functionNote:

Step functions are represented by the class IloNumToNumStepFunction in IBM
ILOG Concert Technology.

Each interval [x1, x2) on which the function has the same value is called a step.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

154

When two consecutive steps of the function have the same value, these steps are
merged so that the function is always represented with the minimal number of steps.

The first argument passed to the constructor of the class IloNumToNumStepFunction is the
environment. The second and third arguments define the interval on which the function is
defined. The fourth argument is the default value of the function on the defined interval.
The fifth argument is an optional name used for debug and trace purposes. Here is a
constructor:

IloNumToNumStepFunction(const IloEnv env,
IloNum xmin = -IloInfinity,
IloNum xmax = IloInfinity,
IloNum dval = 0.0,
const char* name = 0);

This constructor creates a step defined everywhere on the interval [xmin,xmax) whose
single step takes the value dval.

In this case, a worker’s calendar is simplest to describe in terms of noting exceptions to
being available to work, so you set the default value for his intensity to 100. Later you modify
the subintervals associated with his days off to take the value 0. Based on knowledge of the
problem, you can assume that it should take less than two years to build all five houses and
thus define the function’s interval as [0..2*365).

Step 11: Add the intensity step functions
Add the following code after the comment //Add the intensity step functions

IloNumToNumStepFunction joeCalendar(env, 0, 2*365, 100);
IloNumToNumStepFunction jimCalendar(env, 0, 2*365, 100);

To modify the step function to reflect a worker’s days off, you set the step value of the
subintervals associated with those days to the value 0. Since both workers have the weekends
off, you iterate through the weeks and set the step value for day 5 and 6 of each week to 0
(For this problem, day 0 is the start of a week.). For the holidays, you also set the values of
the associated intervals to zero.

Step 12: Add the weekends and holidays
Add the following code after the comment //Add the weekends and holidays

// Week-ends
for (IloInt w=0; w<2*52; ++w) {
joeCalendar.setValue(5+(7*w), 7+(7*w), 0);
jimCalendar.setValue(5+(7*w), 7+(7*w), 0);

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

155

}

// Holidays
joeCalendar.setValue(5, 12, 0);
joeCalendar.setValue(124, 131, 0);
joeCalendar.setValue(215, 236, 0);
joeCalendar.setValue(369, 376, 0);
joeCalendar.setValue(495, 502, 0);
joeCalendar.setValue(579, 600, 0);
jimCalendar.setValue(26, 40, 0);
jimCalendar.setValue(201, 225, 0);
jimCalendar.setValue(306, 313, 0);
jimCalendar.setValue(397, 411, 0);
jimCalendar.setValue(565, 579, 0);

To apply a worker’s intensity function to all of his tasks, you use the function
IloIntervalVar::setIntensity.

void IloIntervalVar::setIntensity(IloNumToNumStepFunction intensity,
IloInt granularity =100);

This method sets the step function intensity as the intensity function of the invoking interval
variable. Full intensity is represented by a value granularity. The argument intensity
should be an integral IloNumToNumStepFunctionwith values in the range [0..granularity].
In this example, the intensity values are only 0 and 100, and the granularity is 100.

When an intensity function is set on an interval variable, the interval will automatically be
prolonged if it overlaps any weekends and/or holidays. The size of the interval variable is
the time spent at the house to process the task, not including the worker’s days off. The
length is the difference between the start and the end of the interval.

A task could still be scheduled to start or end on a day off. In this problem, a worker’s tasks
cannot start or end during the worker’s days off. Concert Technology provides the constraints
IloForbidStart and IloForbidEnd to model these types of restrictions.

Forbidden interval placement constraintNote:

With the specialized constraint IloForbidStart, you can create a constraint that
specifies that an interval variable must not be scheduled to start at certain times.

The constraint takes an interval variable and a step function. If the interval variable is
present in the solution, then it is constrained to not start at a time when the value of
the step function is zero.

Concert Technology also provides IloForbidEnd and IloForbidExtent, which
respectively constrain an interval variable to not end and not overlap where the
associated step function is valued zero.

The first argument passed to the function IloForbidStart is the environment. The second
argument is the interval variable on which you want to place the constraint. The third

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

156

argument is the step function that defines a set of forbidden values for the start of the
interval variable: the interval variable cannot start at a point where the step function is 0.

Here is a function signature:

IloConstraint IloForbidStart (const IloEnv env,
const IloIntervalVar a
const IloNumToNumStepFunction func);

Step 13: Add the forbidden start and end constraints
Add the following code after the comment //Add the forbidden start and end
constraints

IloInt i;
for (i=0; i<joeTasks.getSize(); ++i) {
joeTasks[i].setIntensity(joeCalendar);
model.add(IloForbidStart(env, joeTasks[i], joeCalendar));
model.add(IloForbidEnd(env, joeTasks[i], joeCalendar));

}
for (i=0; i<jimTasks.getSize(); ++i) {
jimTasks[i].setIntensity(jimCalendar);
model.add(IloForbidStart(env, jimTasks[i], jimCalendar));
model.add(IloForbidEnd(env, jimTasks[i], jimCalendar));

}

The objective of this problem is to minimize the overall completion date (the completion
date of the house that is completed last). To do this, you minimize the maximal expression
in the array ends.

Step 14: Add the objective
Add the following code after the comment //Add the objective

model.add(IloMinimize(env, IloMax(ends)));

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

157

Solve

You use an instance of the class IloCP to solve a problem expressed in a model. The
constructor for IloCP takes an IloModel as its argument.

Step 15: Create an instance of IloCP
Add the following code after the comment //Create an instance of IloCP

IloCP cp(model);

You now use the member function IloCP::solve, which solves the problem contained in
the model by using constructive search and constraint propagation. The search for an optimal
solution in this problem could potentiality take a long time, so you place a fail limit on the
solve process. The search will stop when the fail limit is reached, even if optimality of the
current best solution is not guaranteed.

Step 16: Search for a solution
Add the following code after the comment //Search for a solution

cp.setParameter(IloCP::FailLimit, 10000);
if (cp.solve()) {

The member function IloCP::solve returns a Boolean value of type IloBool. If a solution
is found, the value IloTrue is returned.

After a solution has been found, you can use the member functions IloCP::getObjValue
and IloCP::domain to examine the solution. The stream IloAlgorithm::out is the
communication stream for general output.The code for displaying the solution has been
provided for you:

cp.out() << “Solution with objective “ << cp.getObjValue() << “:” <<
std::endl;

for (i=0; i<allTasks.getSize(); ++i) {
cp.out() << cp.domain(allTasks[i]) << std::endl;

}

Step 17: Compile and run the program
Compile and run the program. You should get the following results:

Solution with objective 638:
H0-masonry [1: 0 -- (35)54 --> 54]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

158

H0-carpentry[1: 301 -- (15)19 --> 320]
H0-plumbing [1: 77 -- (40)54 --> 131]
H0-ceiling [1: 56 -- (15)19 --> 75]
H0-roofing [1: 399 -- (5)5 --> 404]
H0-painting [1: 589 -- (10)14 --> 603]
H0-windows [1: 498 -- (5)7 --> 505]
H0-facade [1: 483 -- (10)12 --> 495]
H0-garden [1: 441 -- (5)5 --> 446]
H0-moving [1: 603 -- (5)7 --> 610]
H1-masonry [1: 210 -- (35)68 --> 278]
H1-carpentry[1: 280 -- (15)19 --> 299]
H1-plumbing [1: 428 -- (40)56 --> 484]
H1-ceiling [1: 316 -- (15)21 --> 337]
H1-roofing [1: 392 -- (5)5 --> 397]
H1-painting [1: 526 -- (10)14 --> 540]
H1-windows [1: 484 -- (5)7 --> 491]
H1-facade [1: 511 -- (10)12 --> 523]
H1-garden [1: 504 -- (5)5 --> 509]
H1-moving [1: 631 -- (5)7 --> 638]
H2-masonry [1: 105 -- (35)54 --> 159]
H2-carpentry[1: 364 -- (15)26 --> 390]
H2-plumbing [1: 337 -- (40)56 --> 393]
H2-ceiling [1: 393 -- (15)35 --> 428]
H2-roofing [1: 413 -- (5)5 --> 418]
H2-painting [1: 554 -- (10)28 --> 582]
H2-windows [1: 582 -- (5)7 --> 589]
H2-facade [1: 448 -- (10)12 --> 460]
H2-garden [1: 462 -- (5)5 --> 467]
H2-moving [1: 610 -- (5)7 --> 617]
H3-masonry [1: 161 -- (35)47 --> 208]
H3-carpentry[1: 343 -- (15)19 --> 362]
H3-plumbing [1: 253 -- (40)63 --> 316]
H3-ceiling [1: 232 -- (15)21 --> 253]
H3-roofing [1: 420 -- (5)5 --> 425]
H3-painting [1: 540 -- (10)14 --> 554]
H3-windows [1: 519 -- (5)7 --> 526]
H3-facade [1: 469 -- (10)12 --> 481]
H3-garden [1: 525 -- (5)5 --> 530]
H3-moving [1: 624 -- (5)7 --> 631]
H4-masonry [1: 56 -- (35)47 --> 103]
H4-carpentry[1: 322 -- (15)19 --> 341]
H4-plumbing [1: 133 -- (40)54 --> 187]
H4-ceiling [1: 189 -- (15)43 --> 232]
H4-roofing [1: 406 -- (5)5 --> 411]
H4-painting [1: 505 -- (10)14 --> 519]
H4-windows [1: 491 -- (5)7 --> 498]
H4-facade [1: 427 -- (10)12 --> 439]
H4-garden [1: 532 -- (5)5 --> 537]
H4-moving [1: 617 -- (5)7 --> 624]

You may notice that the results are displayed a little differently than in the previous lessons.
Here both the size and length of an interval variable are reported as these are not equal in
the solution to this problem.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

159

The complete house building program can be viewed online in the YourCPHome/examples/
src/cpp/sched_calendar.cpp file.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

160

Review exercises

Includes the review exercises.

In this section

Exercises
Lists the review exercises.

Suggested answers
Provides the answers to the review exercises.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

161

Exercises

For answers, see Suggested answers.

1. What is an intensity function?

2. What is the constraint IloForbidStart used to model?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

162

Suggested answers

Exercise 1
What is an intensity function?

Suggested answer
An intensity function is an integer step function defined by the Concert Technology class
IloNumToNumStepFunction. Using this class, you can set the intensity of a resource on
intervals in time, where intensity is measured as a percentage of full intensity, valued at
granularity, a specified integer granularity.

Exercise 2
What is the constraint IloForbidStart used to model?

Suggested answer
An IloForbidStart constraint is used to restrict an interval variable from starting in certain
intervals. These intervals can be modeled using a step function, where the forbidden intervals
are steps at which the function value is zero.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

163

Complete program

The complete house building program can be viewed online in the file YourCPHome/examples/
src/cpp/sched_calendar.cpp.

Results

Solution with objective 638:
H0-masonry [1: 0 -- (35)54 --> 54]
H0-carpentry[1: 301 -- (15)19 --> 320]
H0-plumbing [1: 77 -- (40)54 --> 131]
H0-ceiling [1: 56 -- (15)19 --> 75]
H0-roofing [1: 399 -- (5)5 --> 404]
H0-painting [1: 589 -- (10)14 --> 603]
H0-windows [1: 498 -- (5)7 --> 505]
H0-facade [1: 483 -- (10)12 --> 495]
H0-garden [1: 441 -- (5)5 --> 446]
H0-moving [1: 603 -- (5)7 --> 610]
H1-masonry [1: 210 -- (35)68 --> 278]
H1-carpentry[1: 280 -- (15)19 --> 299]
H1-plumbing [1: 428 -- (40)56 --> 484]
H1-ceiling [1: 316 -- (15)21 --> 337]
H1-roofing [1: 392 -- (5)5 --> 397]
H1-painting [1: 526 -- (10)14 --> 540]
H1-windows [1: 484 -- (5)7 --> 491]
H1-facade [1: 511 -- (10)12 --> 523]
H1-garden [1: 504 -- (5)5 --> 509]
H1-moving [1: 631 -- (5)7 --> 638]
H2-masonry [1: 105 -- (35)54 --> 159]
H2-carpentry[1: 364 -- (15)26 --> 390]
H2-plumbing [1: 337 -- (40)56 --> 393]
H2-ceiling [1: 393 -- (15)35 --> 428]
H2-roofing [1: 413 -- (5)5 --> 418]
H2-painting [1: 554 -- (10)28 --> 582]
H2-windows [1: 582 -- (5)7 --> 589]
H2-facade [1: 448 -- (10)12 --> 460]
H2-garden [1: 462 -- (5)5 --> 467]
H2-moving [1: 610 -- (5)7 --> 617]
H3-masonry [1: 161 -- (35)47 --> 208]
H3-carpentry[1: 343 -- (15)19 --> 362]
H3-plumbing [1: 253 -- (40)63 --> 316]
H3-ceiling [1: 232 -- (15)21 --> 253]
H3-roofing [1: 420 -- (5)5 --> 425]
H3-painting [1: 540 -- (10)14 --> 554]
H3-windows [1: 519 -- (5)7 --> 526]
H3-facade [1: 469 -- (10)12 --> 481]
H3-garden [1: 525 -- (5)5 --> 530]
H3-moving [1: 624 -- (5)7 --> 631]
H4-masonry [1: 56 -- (35)47 --> 103]
H4-carpentry[1: 322 -- (15)19 --> 341]
H4-plumbing [1: 133 -- (40)54 --> 187]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

164

H4-ceiling [1: 189 -- (15)43 --> 232]
H4-roofing [1: 406 -- (5)5 --> 411]
H4-painting [1: 505 -- (10)14 --> 519]
H4-windows [1: 491 -- (5)7 --> 498]
H4-facade [1: 427 -- (10)12 --> 439]
H4-garden [1: 532 -- (5)5 --> 537]
H4-moving [1: 617 -- (5)7 --> 624]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

165

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

166

Using cumulative functions: house building
with budget and resource pools

This section describes how to model and solve a problem using cumulative functions.

In this section

Overview
Describes how to model and solve a problem using cumulative functions.

Describe
Describes the first stage in finding a solution to a house building problem with budget and
resource pools.

Model
Describes the second stage in finding a solution to a house building problem with budget
and resource pools.

Solve
Describes the third stage in finding a solution to a house building problem with budget and
resource pools.

Review exercises
Includes the review exercises.

Complete program
Lists the location of the complete house building with budget and resource pools program.

© Copyright IBM Corp. 1987, 2009 167

Overview

In this lesson, you will learn how to:

♦ use the class IloCumulFunctionExpr;

♦ use the functions IloPulse, IloStepAtStart and IloStepAtEnd.

You will learn how to model and solve a house building problem, a problem of scheduling
the tasks involved in building multiple houses in such a manner that minimizes the overall
completion date of the houses. Some tasks must necessarily take place before other tasks,
and each task has a predefined size. Moreover, there are three workers, and each task
requires any one of the three workers. A worker can be assigned to at most one task at a
time. In addition, there is a cash budget with a starting balance. Each task requires a certain
amount of the cash budget at the start of the task, and the cash balance is increased every
sixty days. To find a solution to this problem using IBM® ILOG® CP Optimizer, you will use
the three-stage method: describe, model and solve.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

168

Describe

The problem consists of assigning start dates to a set of tasks in such a way that the schedule
satisfies temporal constraints and minimizes an expression. The objective for this problem
is to minimize the overall completion date. Each task requires 200 dollars per day of the
task, payable at the start of the task. Every sixty days, starting at day 0, the amount of 30,000
dollars is added to the cash balance.

For each task type in the house building project, the following table shows the duration of
the task in days along with the tasks that must be finished before the task can start. Each
task consumes any one of the three workers. A worker can only work on one task at a time;
each task, once started, may not be interrupted.

House construction tasks
Preceding TasksDurationTask

35masonry

masonry15carpentry

masonry40plumbing

masonry15ceiling

carpentry5roofing

ceiling10painting

roofing5windows

roofing, plumbing10facade

roofing, plumbing5garden

windows, facade, garden, painting5moving

There is an earliest starting date for each of the five houses that must be built.

House construction earliest starting date
Earliest starting dateHouse

310

01

902

1203

904

Solving the problem consists of determining starting dates for the tasks such that the overall
completion date is minimized.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

169

Step 1: Describe the problem
The first step in modeling and solving a problem is to write a natural language description
of the problem, identifying the decision variables and the constraints on these variables.

Write a natural language description of this problem. Answer these questions:

♦ What is the known information in this problem?

♦ What are the decision variables or unknowns in this problem?

♦ What are the constraints on these variables?

♦ What is the objective?

Discussion
What is the known information in this problem?

♦ There are five houses to be built by three workers. For each house, there are ten house
building tasks, each with a given size and cost. For each task, there is a list of tasks that
must be completed before the task can start. There is a starting cash balance of a given
amount, and each sixty days the cash balance is increased by a given amount.

What are the decision variables or unknowns in this problem?

♦ The unknowns are the dates that the tasks will start. Once starting dates have been fixed,
the overall completion date will also be fixed.

What are the constraints on these variables?

♦ There are constraints that specify that a particular task may not begin until one or more
given tasks have been completed. Each task requires any one of the three workers. In
addition, there are constraints that specify that a worker can be assigned to only one task
at a time. Before a task can start, the cash balance must be large enough to pay the cost
of the task.

What is the objective?

♦ The objective is to minimize the overall completion date.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

170

Model

After you have written a description of your problem, you can use IBM® ILOG® Concert
Technology classes to model it.

Step 2: Open the example file
Open the example file YourCPHome/examples/tutorial/cpp/sched_cumul_partial.cpp in
your development environment. This file is a program that is only partially completed. You
will fill in the blanks in each step in this lesson. At the end, you will have completed the
program code, and you can compile and run the program.

In this lesson, you include the header file <ilcp/cp.h>. To catch exceptions that may be
thrown, you use a try/catch block. The code for creating the environment and model and
for printing out the solution found by the CP Optimizer engine is provided.

In addition, the data related to the tasks, such as the tasks (Tasks), the number of tasks
(NbTasks), the names of the tasks (TaskNames) and sizes of the tasks (TaskDurations), are
provided. The number of workers (NbWorkers) is also provided.

After you create an environment and a model, you need to define the decision variables and
add the constraints and objective to the model. Since the requirements for each of the five
houses are similar, you use a function, MakeHouse, to create the decision variables, constraints
and costs associated with each house. Information about individual houses that must be
shared with the main function includes the expressions needed to create the objective
function and information about worker usage and the cash balance. In order to display the
results of the optimization, it is also useful to maintain an array of all the interval variables.

To access this information, you create objects to be updated in the MakeHouse function. An
array of task interval variables, allTasks, stores all the interval variables that are created.
The cost expression involves the date at which moving is completed for each house, and the
integer expression array ends is used to store this information. In addition, the expressions
used to represent worker usage and the cash balance are included in the global information
that is updated in each call to the MakeHouse function.

Since the workers are equivalent in this problem, it is better to represent them as one pool
of workers instead of as individual workers with no overlap constraints as was done in the
earlier examples. This representation removes symmetry. The expression representing usage
of the pool of workers can be modified by the interval variables that require a worker.

To model both the limited number of workers and the limited budget, you need to represent
the sum of individual contributions of interval variables. In the case of the cash budget,
some tasks consume some of the budget at the start. In the case of the workers, a task
requires a worker only for the duration of the task. Concert Technology provides the class
IloCumulFunctionExpr to represent the sum of individual contributions of interval variables.

Cumulative function expressionNote:

A cumulative function, represented in IBM ILOG Concert Technology by
IloCumulFunctionExpr, can be used to model a resource usage function over

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

171

time. This function can be computed as a sum of interval variable demands on a
resource over time.

An interval usually increases the cumulated resource usage function at its start time
and decreases it when it releases the resource at its end time (pulse function).

For resources that can be produced and consumed by activities (for instance the
contents of an inventory or a tank), the resource level can also be described as a
function of time. A production activity will increase the resource level at the start or
end time of the activity whereas a consuming activity will decrease it. The cumulated
contribution of activities on the resource can be represented by a function of time, and
constraints can be posted on this function (for instance, a maximal or a safety level).

A cumulative function expression can be computed as a sum of the following types of
elementary demands:

♦ IloStep, which increases or decreases the level of the function by a given amount
at a given time;

♦ IloPulse, which increases or decreases the level of the function by a given amount
for the length of a given interval variable or fixed interval;

♦ IloStepAtStart, which increases or decreases the level of the function by a
given amount at the start of a given interval variable;

♦ IloStepAtEnd, which increases or decreases the level of the function by a given
amount at the end of a given interval variable.

A cumulative function expression can be constrained to model limited resource capacity
by constraining that the function be <= the capacity.

To illustrate, consider a cumulative resource usage function that measures how much of a
resource is being used. There are two intervals, A and B, bound in time, and each interval
increases the cumulative function expression by one unit over its duration. For each interval,
this modification to the cumulative resource usage function can be made by incrementing
the cumulative function with the elementary function IloPulse, created with the interval
and the given amount. Given this, the function would take the profile as in the figure “Pulse
on Cumulative Function Expression.”

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

172

Pulse on Cumulative Function Expression

As another example, consider a function measuring a consumable resource, similar to the
budget resource. Consider that the level of the resource is zero, until time 2 when the value
is increased to 4; modeled by modifying the cumulative function with the elementary cumul
function IloStep at time 2. There are two intervals, A and B, fixed in time. Interval A
decreases the level of the resource by 3 at the start of the interval, modeled by applying
IloStepAtStart, created with Interval A and the value (3), to the cumulative function.
Interval B increases the level of the resource by 2 at the end of the interval, modeled by
applying IloStepAtEnd, created with Interval B and the value (2), to the cumulative function
for the interval. Given this, the function would take the profile as in the figure “Step on
Cumulative Function Expression.”.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

173

Step on Cumulative Function Expression

For the house building problem, you create two cumulative function expression objects, one
to represent the usage of the workers and the other to represent the cash balance. The
constructor of the class IloCumulFunctionExpr takes one argument, the environment.

Step 3: Declare the objects needed for MakeHouse
Add the following code after the comment //Declare the objects needed for MakeHouse

IloCumulFunctionExpr workersUsage(env);
IloCumulFunctionExpr cash(env);
IloIntExprArray ends(env);
IloIntervalVarArray allTasks(env);

To set the increases to the cash balance, you use the function IloStep, which can be used
to increment or decrement the cumulative function expression by a fixed amount on a given
date. The first argument passed to this function is the environment. The second argument
is the date at which the function should be modified. The third argument is the amount by
which the function should be changed; this must be a non-negative value.

IloCumulFunctionExpr IloStep(const IloEnv env, IloInt t, IloInt v);

For setting the increases to the cash balance, the cumulative function expression for the
cash balance should be incremented by the appropriate amount, 30,000 dollars, every 60
days, starting at day 0.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

174

Step 4: Add the cash payment expression
Add the following code after the comment //Add the cash payment expression

for (IloInt p=0; p<5; ++p)
cash += IloStep(env, 60*p, 30000);

You need to pass the model, the house identifier, the earliest start date of the house, the
cumulative function expressions for the worker usage and cash balance, the array of
expressions representing the completion dates of the houses and the array of all the tasks
as arguments to the MakeHouse function.

Step 5: Create the MakeHouse function
Add the following code after the comment //Create the MakeHouse function

void MakeHouse(IloModel model,
IloInt id,
IloInt rd,
IloCumulFunctionExpr& workersUsage,
IloCumulFunctionExpr& cash,
IloIntExprArray ends,
IloIntervalVarArray allTasks) {

Each house has a list of NbTasks that must be scheduled. Task i, where i is in 0..NbTasks
-1, has a size of TaskDurations[i] and the name TaskNames[i]. Using these, you build an
array tasks of interval variables. As you create each interval variable, you also add it to the
array allTasks that will be used to display the solution once the schedule has been computed.

Each task also requires one worker from the start to the end of the task interval. To represent
the fact that a worker is required for the task, you modify the cumulative function expression,
workerUsage. Since it is not known when a task will begin or end, you use the function
IloPulse. The first argument passed to this function is the interval during which the function
should be modified. The second argument is the amount by which the function should be
changed; this must be a non-negative value.

IloCumulFunctionExpr IloPulse(const IloIntervalVar a, IloInt v);

Moreover, each task requires a payment equal to 200 dollars a day for the length of the
task, payable at the start of the task. For each task, you use the function IloStepAtStart
to adjust the cash balance cumulative function expression.

Step 6: Create the interval variables
Add the following code after the comment //Create the interval variables

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

175

char name[128];
IloIntervalVarArray tasks(env, NbTasks);
for (IloInt i=0; i<NbTasks; ++i) {
sprintf(name, “H%ld-%s”, id, TaskNames[i]);
IloIntervalVar task(env, TaskDurations[i], name);
tasks[i] = task;
allTasks.add(task);
workersUsage += IloPulse(task, 1);
cash -= IloStepAtStart(task, 200 * TaskDurations[i]);

}

The tasks have precedence constraints that are added to the model. Moreover, each house
has an earliest starting date.

Step 7: Add the temporal constraints
Add the following code after the comment //Add the temporal constraints

tasks[masonry].setStartMin(rd);
model.add(IloEndBeforeStart(env, tasks[masonry], tasks[carpentry]));
model.add(IloEndBeforeStart(env, tasks[masonry], tasks[plumbing]));
model.add(IloEndBeforeStart(env, tasks[masonry], tasks[ceiling]));
model.add(IloEndBeforeStart(env, tasks[carpentry], tasks[roofing]));
model.add(IloEndBeforeStart(env, tasks[ceiling], tasks[painting]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[windows]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[facade]));
model.add(IloEndBeforeStart(env, tasks[plumbing], tasks[facade]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[garden]));
model.add(IloEndBeforeStart(env, tasks[plumbing], tasks[garden]));
model.add(IloEndBeforeStart(env, tasks[windows], tasks[moving]));
model.add(IloEndBeforeStart(env, tasks[facade], tasks[moving]));
model.add(IloEndBeforeStart(env, tasks[garden], tasks[moving]));
model.add(IloEndBeforeStart(env, tasks[painting], tasks[moving]));

Tomodel the cost of building the houses, you will need to determine the maximum completion
date among the individual house projects. To determine the expression representing the
completion date of the house currently in consideration, you use the function IloEndOf on
the last task in building a house (here, it is the moving task) and store this expression in the
array ends.

Step 8: Add the objective expression
Add the following code after the comment //Add the objective expression

ends.add(IloEndOf(tasks[moving]));

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

176

This completes the MakeHouse function. In the main function, you now call the MakeHouse
function, once for each house. At each call, additional elements are appended to the arrays
ends and allTasks, and the expressions for worker usage and the cash balance are modified.

Step 9: Create the houses
Add the following code after the comment //Create the houses

MakeHouse(model, 0, 31, workersUsage, cash, ends, allTasks);
MakeHouse(model, 1, 0, workersUsage, cash, ends, allTasks);
MakeHouse(model, 2, 90, workersUsage, cash, ends, allTasks);
MakeHouse(model, 3, 120, workersUsage, cash, ends, allTasks);
MakeHouse(model, 4, 90, workersUsage, cash, ends, allTasks);

To add the constraint that the cash balance must remain positive, you constrain the
cumulative function expression representing the cash to be non-negative. (Note that by
default the function is constrained to be non-negative, but the cumulative expression function
must be added to the model in order for the optimizer to take it into account during the
search.)

Step 10: Add the cash balance constraint
Add the following code after the comment //Add the cash balance constraint

model.add(0 <= cash);

To add the constraint that there can be only three workers working at a given time, you
constrain the cumulative function expression representing worker usage to be no greater
than the value NbWorkers.

Step 11: Add the worker usage constraint
Add the following code after the comment //Add the worker usage constraint

model.add(workersUsage <= NbWorkers);

The objective of this problem is to minimize the overall completion date (the completion
date of the house that is completed last). To do this, you minimize the maximal expression
in the array ends.

Step 12: Add the objective
Add the following code after the comment //Add the objective

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

177

model.add(IloMinimize(env, IloMax(ends)));

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

178

Solve

You use an instance of the class IloCP to solve a problem expressed in a model. The
constructor for IloCP takes an IloModel as its argument.

Step 13: Create an instance of IloCP
Add the following code after the comment //Create an instance of IloCP

IloCP cp(model);

You now use the member function IloCP::solve, which solves the problem contained in
the model by using constructive search and constraint propagation. The search for an optimal
solution in this problem could potentiality take a long time, so you place a fail limit on the
solve process. The search will stop when the fail limit is reached, even if optimality of the
current best solution is not guaranteed.

Step 14: Search for a solution
Add the following code after the comment //Search for a solution

cp.setParameter(IloCP::FailLimit, 10000);
if (cp.solve()) {

The member function IloCP::solve returns a Boolean value of type IloBool. If a solution
is found, the value IloTrue is returned.

After a solution has been found, you can use the member functions IloCP::getObjValue
and IloCP::domain to examine the solution. The stream IloAlgorithm::out is the
communication stream for general output. The code for displaying the solution has been
provided for you:

cp.out() << “Solution with objective “ << cp.getObjValue() << “:” <<
std::endl;

for (IloInt i=0; i<allTasks.getSize(); ++i) {
cp.out() << cp.domain(allTasks[i]) << std::endl;

}

Step 15: Compile and run the program
Compile and run the program. You should get the following results:

Solution with objective 285:
H0-masonry [1: 31 -- 35 --> 66]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

179

H0-carpentry[1: 66 -- 15 --> 81]
H0-plumbing [1: 81 -- 40 --> 121]
H0-ceiling [1: 70 -- 15 --> 85]
H0-roofing [1: 85 -- 5 --> 90]
H0-painting [1: 110 -- 10 --> 120]
H0-windows [1: 95 -- 5 --> 100]
H0-facade [1: 255 -- 10 --> 265]
H0-garden [1: 240 -- 5 --> 245]
H0-moving [1: 270 -- 5 --> 275]
H1-masonry [1: 0 -- 35 --> 35]
H1-carpentry[1: 35 -- 15 --> 50]
H1-plumbing [1: 50 -- 40 --> 90]
H1-ceiling [1: 35 -- 15 --> 50]
H1-roofing [1: 50 -- 5 --> 55]
H1-painting [1: 60 -- 10 --> 70]
H1-windows [1: 55 -- 5 --> 60]
H1-facade [1: 100 -- 10 --> 110]
H1-garden [1: 90 -- 5 --> 95]
H1-moving [1: 280 -- 5 --> 285]
H2-masonry [1: 120 -- 35 --> 155]
H2-carpentry[1: 155 -- 15 --> 170]
H2-plumbing [1: 195 -- 40 --> 235]
H2-ceiling [1: 205 -- 15 --> 220]
H2-roofing [1: 195 -- 5 --> 200]
H2-painting [1: 265 -- 10 --> 275]
H2-windows [1: 270 -- 5 --> 275]
H2-facade [1: 240 -- 10 --> 250]
H2-garden [1: 250 -- 5 --> 255]
H2-moving [1: 275 -- 5 --> 280]
H3-masonry [1: 121 -- 35 --> 156]
H3-carpentry[1: 180 -- 15 --> 195]
H3-plumbing [1: 195 -- 40 --> 235]
H3-ceiling [1: 180 -- 15 --> 195]
H3-roofing [1: 200 -- 5 --> 205]
H3-painting [1: 255 -- 10 --> 265]
H3-windows [1: 250 -- 5 --> 255]
H3-facade [1: 255 -- 10 --> 265]
H3-garden [1: 265 -- 5 --> 270]
H3-moving [1: 275 -- 5 --> 280]
H4-masonry [1: 90 -- 35 --> 125]
H4-carpentry[1: 125 -- 15 --> 140]
H4-plumbing [1: 140 -- 40 --> 180]
H4-ceiling [1: 180 -- 15 --> 195]
H4-roofing [1: 156 -- 5 --> 161]
H4-painting [1: 245 -- 10 --> 255]
H4-windows [1: 161 -- 5 --> 166]
H4-facade [1: 240 -- 10 --> 250]
H4-garden [1: 265 -- 5 --> 270]
H4-moving [1: 275 -- 5 --> 280]

The complete program can be viewed online in the YourCPHome/examples/src/cpp/
sched_cumul.cpp file.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

180

Review exercises

Includes the review exercises.

In this section

Exercises
Lists the review exercises.

Suggested answers
Provides the answers to the review exercises.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

181

Exercises

For answers, see Suggested answers.

1. What is a cumulative function?

2. From what elements can a cumulative function be computed?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

182

Suggested answers

Exercise 1
What is a cumulative function?

Suggested answer
An instance of the class IloCumulFunctionExpr represents the sum of individual contributions
of interval variables. An interval usually increases the cumulated resource usage function
at its start time and decreases it when it releases the resource at its end time (pulse function).

For resources that can be produced and consumed by activities (for instance the contents
of an inventory or a tank), the resource level can also be described as a function of time.
Production activities will increase the resource level whereas consuming activities will
decrease it. The cumulated contribution of activities on the resource can be represented by
a function of time, and constraints can be posted on this function (for instance, a maximal
or a safety level).

Exercise 2
From what elements can a cumulative function be computed?

Suggested answer
A cumulative function expression can be computed as a sum of the following types of
elementary demands:

♦ IloStep, which modifies the level of the function by a given amount at a given time;

♦ IloPulse, which modifies the level of the function by a given amount for the length of a
given interval variable;

♦ IloStepAtStart, which modifies the level of the function by a given amount at the start
of a given interval variable;

♦ IloStepAtEnd, which modifies the level of the function by a given amount at the end of
a given interval variable.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

183

Complete program

The complete house building can be viewed online in the file YourCPHome/examples/src/
cpp/sched_cumul.cpp.

Results

Solution with objective 285:
H0-masonry [1: 31 -- 35 --> 66]
H0-carpentry[1: 66 -- 15 --> 81]
H0-plumbing [1: 81 -- 40 --> 121]
H0-ceiling [1: 70 -- 15 --> 85]
H0-roofing [1: 85 -- 5 --> 90]
H0-painting [1: 110 -- 10 --> 120]
H0-windows [1: 95 -- 5 --> 100]
H0-facade [1: 255 -- 10 --> 265]
H0-garden [1: 240 -- 5 --> 245]
H0-moving [1: 270 -- 5 --> 275]
H1-masonry [1: 0 -- 35 --> 35]
H1-carpentry[1: 35 -- 15 --> 50]
H1-plumbing [1: 50 -- 40 --> 90]
H1-ceiling [1: 35 -- 15 --> 50]
H1-roofing [1: 50 -- 5 --> 55]
H1-painting [1: 60 -- 10 --> 70]
H1-windows [1: 55 -- 5 --> 60]
H1-facade [1: 100 -- 10 --> 110]
H1-garden [1: 90 -- 5 --> 95]
H1-moving [1: 280 -- 5 --> 285]
H2-masonry [1: 120 -- 35 --> 155]
H2-carpentry[1: 155 -- 15 --> 170]
H2-plumbing [1: 195 -- 40 --> 235]
H2-ceiling [1: 205 -- 15 --> 220]
H2-roofing [1: 195 -- 5 --> 200]
H2-painting [1: 265 -- 10 --> 275]
H2-windows [1: 270 -- 5 --> 275]
H2-facade [1: 240 -- 10 --> 250]
H2-garden [1: 250 -- 5 --> 255]
H2-moving [1: 275 -- 5 --> 280]
H3-masonry [1: 121 -- 35 --> 156]
H3-carpentry[1: 180 -- 15 --> 195]
H3-plumbing [1: 195 -- 40 --> 235]
H3-ceiling [1: 180 -- 15 --> 195]
H3-roofing [1: 200 -- 5 --> 205]
H3-painting [1: 255 -- 10 --> 265]
H3-windows [1: 250 -- 5 --> 255]
H3-facade [1: 255 -- 10 --> 265]
H3-garden [1: 265 -- 5 --> 270]
H3-moving [1: 275 -- 5 --> 280]
H4-masonry [1: 90 -- 35 --> 125]
H4-carpentry[1: 125 -- 15 --> 140]
H4-plumbing [1: 140 -- 40 --> 180]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

184

H4-ceiling [1: 180 -- 15 --> 195]
H4-roofing [1: 156 -- 5 --> 161]
H4-painting [1: 245 -- 10 --> 255]
H4-windows [1: 161 -- 5 --> 166]
H4-facade [1: 240 -- 10 --> 250]
H4-garden [1: 265 -- 5 --> 270]
H4-moving [1: 275 -- 5 --> 280]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

185

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

186

Using alternatives of interval variables:
house building with worker allocation

The section describes how to model and solve a problem using optional interval variables.

In this section

Overview
Describes how to model and solve a problem using optional interval variables.

Describe
Describes the first stage in finding a solution to the house building problem with worker
allocation requirements.

Model
Describes the second stage in finding a solution to the house building problem with worker
allocation requirements.

Solve
Describes the third stage in finding a solution to the house building problem with worker
allocation requirements.

Review exercises
Includes the review exercise.

Complete program
Lists the location of the complete house building with worker allocation problem.

© Copyright IBM Corp. 1987, 2009 187

Overview

In this lesson, you will learn how to:

♦ use the class IloAlternative;

♦ use the specialized constraint IloPresenceOf.

You will learn how to model and solve a house building problem, a problem of scheduling
the tasks involved in building multiple houses. Some tasks must necessarily take place before
other tasks, and each task has a predefined size. Each house has a maximal completion date.
Moreover, there are three workers, and one of the three is required for each task. The three
workers have varying levels of skills with regard to the various tasks; if a worker has no skill
for a particular task, he may not be assigned to the task. For some pairs of tasks, if a
particular worker performs one of the pair on a house, then the same worker must be
assigned to the other of the pair for that house. The objective is to find a solution that
maximizes the task associated skill levels of the workers assigned to the tasks. To find a
solution to this problem using IBM® ILOG® CP Optimizer, you will use the three-stage
method: describe, model and solve.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

188

Describe

The problem consists of assigning start dates to a set of tasks in such a way that the schedule
satisfies temporal constraints and minimizes an expression. The objective for this problem
is to maximize the task associated skill levels of the workers assigned to the tasks.

For each task type in the house building project, the following table shows the duration of
the task in days along with the tasks that must be finished before the task can start. A worker
can only work on one task at a time; each task, once started, may not be interrupted.

House construction tasks
Preceding tasksDurationTask

35masonry

masonry15carpentry

masonry40plumbing

masonry15ceiling

carpentry5roofing

ceiling10painting

roofing5windows

roofing, plumbing10facade

roofing, plumbing5garden

windows, facade, garden, painting5moving

All of the houses must be completed by a deadline of day 318. There are three workers with
varying skill levels in regard to the ten tasks. If a worker has a skill level of zero for a task,
he may not be assigned to that type of task.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

189

Worker-task skill levels
JimJackJoeTask

059masonry

507carpentry

070plumbing

085ceiling

076roofing

690painting

508windows

055facade

955garden

806moving

For Jack, if he performs roofing or facade on a house, then he must perform the other on
that house. For Jim, if he performs garden or moving on a house, then he must perform the
other on that house. For Joe, if he performs masonry or carpentry on a house, then he must
perform the other on that house. Also, if Joe performs carpentry or roofing on a house, then
he must perform the other on that house.

Solving the problem consists of determining starting dates for the tasks and assigning a
worker to each task such that sum of the skill levels used for the tasks is maximized.

Step 1: Describe the problem
The first step in modeling and solving a problem is to write a natural language description
of the problem, identifying the decision variables and the constraints on these variables.

Write a natural language description of this problem. Answer these questions:

♦ What is the known information in this problem?

♦ What are the decision variables or unknowns in this problem?

♦ What are the constraints on these variables?

♦ What is the objective?

Discussion
What is the known information in this problem?

♦ There are five houses to be built by three workers. For each house, there are ten house
building tasks, each with a given size. For each task, there is a list of tasks that must be
completed before the task can start. Each worker has a skill level associated with each
task. There is an overall deadline for the work to be completed on the five houses.

What are the decision variables or unknowns in this problem?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

190

♦ The unknowns are the dates that the tasks will start. Also, unknown is which worker will
be assigned to each task.

What are the constraints on these variables?

♦ There are constraints that specify that a particular task may not begin until one or more
given tasks have been completed. In addition, there are constraints that specify that each
task must have one worker assigned to it, that a worker can be assigned to only one task
at a time and that a worker can be assigned only to tasks for which he has some level of
skill. There are pairs of tasks that if one for a house is done by a particular worker, then
the other for that house must be done by the same worker.

What is the objective?

♦ The objective is to maximize the skill levels used.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

191

Model

After you have written a description of your problem, you can use IBM® ILOG® Concert
Technology classes to model it.

Step 2: Open the example file
Open the example file YourCPHome/examples/tutorial/cpp/sched_optional_partial.cpp
in your development environment. This file is a program that is only partially completed.
You will fill in the blanks in each step in this lesson. At the end, you will have completed the
program code, and you can compile and run the program.

In this lesson, you include the header file <ilcp/cp.h>. To catch exceptions that may be
thrown, you use a try/catch block. The code for creating the environment and model and
for printing out the solution found by the CP Optimizer engine is provided.

In addition, the data related to the tasks, such as the tasks (Tasks), the number of tasks
(NbTasks), the names of the tasks (TaskNames) and sizes of the tasks (TaskDurations) and
the data related to the workers, such as the workers (Workers), number of workers
(NbWorkers) and the names of workers (WorkerNames), are provided. The matrix of skill levels
(SkillsMatrix), one level for each worker/task pair and functions to return the skill level
based on worker and task identifiers are also provided.

After you create an environment and a model, you need to define the decision variables and
add the constraints and objective to the model. Since the requirements for each of the five
houses are similar, you use a function MakeHouse. to create the decision variables, constraints
and objective associated with each house. Information about individual houses that must
be shared with the main function includes the expressions needed to create the objective
function and, for each worker, the array of interval variables associated with the worker, in
order to create the constraint regarding non overlapping intervals. In order to display the
results of the optimization, it is also useful to maintain an array of all the interval variables.

To access this information, you create objects that will be updated in the MakeHouse function.
The objective expression is represented by the integer expression skill. An array of task
interval variables, allTasks, stores all the interval variables that are created. To maintain
the interval variables related to each worker, you use an array of arrays of interval variables
called workerTasks, that will be filled by the calls to MakeHouse.

Step 3: Declare the objects needed for MakeHouse
Add the following code after the comment //Declare the objects needed for MakeHouse

IloInt nbHouses = 5;
IloInt deadline = 318;
IloModel model(env);
IloIntExpr skill(env);
IloIntervalVarArray allTasks(env);
IloIntervalVarArray2 workerTasks(env, NbWorkers);
IloInt h, w;
for (w=0; w<NbWorkers; ++w)

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

192

workerTasks[w] = IloIntervalVarArray(env);

You need to pass the model, the objective expression, the array of all tasks, the matrix of
worker interval variables, the house identifier and the overall deadline as arguments to the
MakeHouse function.

Step 4: Create the MakeHouse function
Add the following code after the comment //Create the MakeHouse function

void MakeHouse(IloModel model,
IloIntExpr skill,
IloIntervalVarArray allTasks,
IloIntervalVarArray2 workerTasks,
IloInt id,
IloInt deadline) {

Each house has a list of NbTasks that must be scheduled. Task i, where i is in 0..NbTasks
-1, has a size of TaskDurations[i] and the name TaskNames[i]. Using these, you build an
array tasks of interval variables.

Each task also requires one of the three workers from the start to the end of the interval.
The worker assigned must have a non-negative level of skill on the task. To model this worker
choice, you create an array of interval variables, one interval variable for each possible
worker. You set these interval variables to be optional, so that each one may or may not be
present in the solution. You also add each interval variable to the array allTasks that will
be used to display the solution once the schedule has been determined. You also store these
interval variables in a matrix called TaskMatrix, which is indexed on task and worker. This
matrix will be used within the MakeHouse function in a later step.

If one of these interval variables is present in the solution, then its presence must be counted
in the objective. Thus for each of these possible tasks, you increment the objective by the
product of the skill level and the expression representing the presence of the time interval
in the solution. The function IloPresenceOf takes the environment and an interval variable
and returns a constraint that is true if the interval variable is present and false if it is absent.

To constrain the solution so that exactly one of this array of interval variables is to be present
in the solution, you use the specialized constraint IloAlternative.

Alternative intervals constraintNote:

With the specialized constraint IloAlternative, you can create a constraint between
an interval variable and a set of interval variables that specifies that if the given interval
variable is present in the solution, then exactly one interval variable of the set is present
in the solution.

In other words, consider an alternative constraint created with an interval variable a
and an array of interval variables bs. If a is present in the solution, then exactly one

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

193

of the interval variables in bs will be present, and a starts and ends together with this
chosen interval. If a is absent in the solution, then none of the interval variables in bs
will be present.

The first argument passed to the constructor of the class IloAlternative is the environment.
The second argument is the interval variable. The third argument is the array of interval
variables that are the “alternatives”. The final argument is an optional name used for debug
and trace purposes. Here is a constructor:

IloAlternative(const IloEnv env,
const IloIntervalVar a,
const IloIntervalVarArray bs,
const char* name =0);

Step 5: Create the interval variables
Add the following code after the comment //Create the interval variables

char name[128];
IloIntervalVarArray tasks(env, NbTasks);
IloIntervalVarArray2 taskMatrix(env, NbTasks);

for (IloInt i=0; i<NbTasks; ++i) {
sprintf(name, “H%ld-%s “, id, TaskNames[i]);
tasks[i] = IloIntervalVar(env, TaskDurations[i], name);
taskMatrix[i] = IloIntervalVarArray(env, NbWorkers);

/* ALLOCATING TASKS TO WORKERS. */
IloIntervalVarArray alttasks(env);
for (IloInt w=0; w<NbWorkers; ++w) {
if (HasSkill(w, i)) {
sprintf(name, “H%ld-%s-%s “, id, TaskNames[i], WorkerNames[w]);
IloIntervalVar wtask(env, TaskDurations[i], name);
wtask.setOptional();
alttasks.add(wtask);
taskMatrix[i][w]=wtask;
workerTasks[w].add(wtask);
allTasks.add(wtask);
/* DEFINING MAXIMIZATION OBJECTIVE. */
skill += SkillLevel(w, i)*IloPresenceOf(env, wtask);

}
}
model.add(IloAlternative(env, tasks[i], alttasks));

}

The tasks in the model have precedence constraints that are added to the model. Moreover,
the “moving” task must be complete by the deadline.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

194

Step 6: Add the temporal constraints
Add the following code after the comment //Add the temporal constraints

tasks[moving].setEndMax(deadline);
model.add(IloEndBeforeStart(env, tasks[masonry], tasks[carpentry]));
model.add(IloEndBeforeStart(env, tasks[masonry], tasks[plumbing]));
model.add(IloEndBeforeStart(env, tasks[masonry], tasks[ceiling]));
model.add(IloEndBeforeStart(env, tasks[carpentry], tasks[roofing]));
model.add(IloEndBeforeStart(env, tasks[ceiling], tasks[painting]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[windows]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[facade]));
model.add(IloEndBeforeStart(env, tasks[plumbing], tasks[facade]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[garden]));
model.add(IloEndBeforeStart(env, tasks[plumbing], tasks[garden]));
model.add(IloEndBeforeStart(env, tasks[windows], tasks[moving]));
model.add(IloEndBeforeStart(env, tasks[facade], tasks[moving]));
model.add(IloEndBeforeStart(env, tasks[garden], tasks[moving]));
model.add(IloEndBeforeStart(env, tasks[painting], tasks[moving]));

For each house and each given pair of tasks and worker that must have continuity, you
constrain that if the interval variable for one of the two tasks for the worker is present, then
the interval variable associated with that worker and the other task must also be present.
To represent if a task is performed by a worker, you again use the constraint IloPresenceOf.

Step 7: Add the same worker constraints
Add the following code after the comment //Add same worker constraints

model.add(IloPresenceOf(env, taskMatrix[masonry][joe]) ==
IloPresenceOf(env, taskMatrix[carpentry][joe]));

model.add(IloPresenceOf(env, taskMatrix[roofing][jack]) ==
IloPresenceOf(env, taskMatrix[facade][jack]));

model.add(IloPresenceOf(env, taskMatrix[carpentry][joe]) ==
IloPresenceOf(env, taskMatrix[roofing][joe]));

model.add(IloPresenceOf(env, taskMatrix[garden][jim]) ==
IloPresenceOf(env, taskMatrix[moving][jim]));

This completes the MakeHouse function. In the main function, you now call the MakeHouse
function, once for each house. At each call, the objective expression, skill, is updated and
additional elements are appended to the arrays allTasks and the arrays in the matrix
workerTasks. The deadline and house identifier are also passed to the MakeHouse function.

Step 8: Create the houses
Add the following code after the comment //Create the houses

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

195

for (h=0; h<nbHouses; ++h)
MakeHouse(model, skill, allTasks, workerTasks, h, deadline);

To add the constraints that a given worker can be assigned only one task at a time, you use
the classes IloIntervalSequenceVar and IloNoOverlap as in Using no overlap constraints
on interval variables: house building with workers.

Step 9: Add the no overlap constraints
Add the following code after the comment //Add the no overlap constraints

for (w=0; w<NbWorkers; ++w) {
IloIntervalSequenceVar seq(env, workerTasks[w], WorkerNames[w]);
model.add(IloNoOverlap(env, seq));

}

The objective of this problem is to maximize the skill levels used for all the tasks, so you
maximize the expression in the array skill.

Step 10: Add the objective
Add the following code after the comment //Add the objective

model.add(IloMaximize(env, skill));

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

196

Solve

You use an instance of the class IloCP to solve a problem expressed in a model. The
constructor for IloCP takes an IloModel as its argument.

Step 11: Create an instance of IloCP
Add the following code after the comment //Create an instance of IloCP

IloCP cp(model);

You now use the member function IloCP::solve, which solves the problem contained in
the model by using constructive search and constraint propagation. The search for an optimal
solution in this problem could potentiality take a long time, so you place a fail limit on the
solve process. The search will stop when the fail limit is reached, even if optimality of the
current best solution is not guaranteed.

Step 12: Search for a solution
Add the following code after the comment //Search for a solution

cp.setParameter(IloCP::FailLimit, 10000);
if (cp.solve()) {

The member function IloCP::solve returns a Boolean value of type IloBool. If a solution
is found, the value IloTrue is returned.

After a solution has been found, you can use the member functions IloCP::getObjValue
and IloCP::domain to examine the solution. The stream IloAlgorithm::out is the
communication stream for general output. The code for displaying the solution has been
provided for you:

cp.out() << “Solution with objective “ << cp.getObjValue() << “:” <<
std::endl;

for (IloInt i=0; i<allTasks.getSize(); ++i) {
if (cp.isPresent(allTasks[i]))
cp.out() << cp.domain(allTasks[i]) << std::endl;

}

Step 13: Compile and run the program
Compile and run the program. You should get the following results:

Solution with objective 357:

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

197

H0-masonry-Joe [1: 0 -- 35 --> 35]
H0-carpentry-Joe [1: 170 -- 15 --> 185]
H0-plumbing-Jack [1: 65 -- 40 --> 105]
H0-ceiling-Jack [1: 50 -- 15 --> 65]
H0-roofing-Joe [1: 215 -- 5 --> 220]
H0-painting-Jim [1: 65 -- 10 --> 75]
H0-windows-Joe [1: 250 -- 5 --> 255]
H0-facade-Joe [1: 265 -- 10 --> 275]
H0-garden-Jim [1: 220 -- 5 --> 225]
H0-moving-Jim [1: 275 -- 5 --> 280]
H1-masonry-Joe [1: 35 -- 35 --> 70]
H1-carpentry-Joe [1: 140 -- 15 --> 155]
H1-plumbing-Jack [1: 215 -- 40 --> 255]
H1-ceiling-Jack [1: 105 -- 15 --> 120]
H1-roofing-Joe [1: 225 -- 5 --> 230]
H1-painting-Jim [1: 120 -- 10 --> 130]
H1-windows-Joe [1: 240 -- 5 --> 245]
H1-facade-Joe [1: 275 -- 10 --> 285]
H1-garden-Jim [1: 255 -- 5 --> 260]
H1-moving-Jim [1: 285 -- 5 --> 290]
H2-masonry-Joe [1: 105 -- 35 --> 140]
H2-carpentry-Joe [1: 155 -- 15 --> 170]
H2-plumbing-Jack [1: 175 -- 40 --> 215]
H2-ceiling-Joe [1: 185 -- 15 --> 200]
H2-roofing-Joe [1: 230 -- 5 --> 235]
H2-painting-Jim [1: 200 -- 10 --> 210]
H2-windows-Joe [1: 245 -- 5 --> 250]
H2-facade-Joe [1: 255 -- 10 --> 265]
H2-garden-Jim [1: 235 -- 5 --> 240]
H2-moving-Jim [1: 265 -- 5 --> 270]
H3-masonry-Joe [1: 70 -- 35 --> 105]
H3-carpentry-Joe [1: 200 -- 15 --> 215]
H3-plumbing-Jack [1: 255 -- 40 --> 295]
H3-ceiling-Jack [1: 120 -- 15 --> 135]
H3-roofing-Joe [1: 220 -- 5 --> 225]
H3-painting-Jim [1: 135 -- 10 --> 145]
H3-windows-Joe [1: 235 -- 5 --> 240]
H3-facade-Joe [1: 295 -- 10 --> 305]
H3-garden-Jim [1: 295 -- 5 --> 300]
H3-moving-Jim [1: 305 -- 5 --> 310]
H4-masonry-Jack [1: 0 -- 35 --> 35]
H4-carpentry-Jim [1: 103 -- 15 --> 118]
H4-plumbing-Jack [1: 135 -- 40 --> 175]
H4-ceiling-Jack [1: 35 -- 15 --> 50]
H4-roofing-Jack [1: 295 -- 5 --> 300]
H4-painting-Jim [1: 93 -- 10 --> 103]
H4-windows-Joe [1: 305 -- 5 --> 310]
H4-facade-Jack [1: 300 -- 10 --> 310]
H4-garden-Jim [1: 300 -- 5 --> 305]
H4-moving-Jim [1: 310 -- 5 --> 315]

The complete program can be viewed online in the YourCPHome/examples/src/cpp/
sched_optional.cpp file.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

198

Review exercises

Includes the review exercise.

In this section

Exercises
Lists the review exercises.

Suggested answers
Provides the answers to the review exercises.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

199

Exercises

For answers, see Suggested answers.

1. What is an alternative constraint?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

200

Suggested answers

Exercise 1
What is an alternative constraint?

Suggested answer
An alternative constraint is a constraint that specifies that if a given interval is present in
the solution, then exactly one interval variable of the given set is present in the solution.

In other words, consider an alternative constraint created with an interval variable a and
an array of interval variables bs. If a is present in the solution, then exactly one of the interval
variables in bs will be present, and interval variable a starts and ends together with this
chosen one.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

201

Complete program

The complete house building program can be viewed online in the file YourCPHome/examples/
src/cpp/sched_optional.cpp.

Results

Solution with objective 357:
H0-masonry-Joe [1: 0 -- 35 --> 35]
H0-carpentry-Joe [1: 170 -- 15 --> 185]
H0-plumbing-Jack [1: 65 -- 40 --> 105]
H0-ceiling-Jack [1: 50 -- 15 --> 65]
H0-roofing-Joe [1: 215 -- 5 --> 220]
H0-painting-Jim [1: 65 -- 10 --> 75]
H0-windows-Joe [1: 250 -- 5 --> 255]
H0-facade-Joe [1: 265 -- 10 --> 275]
H0-garden-Jim [1: 220 -- 5 --> 225]
H0-moving-Jim [1: 275 -- 5 --> 280]
H1-masonry-Joe [1: 35 -- 35 --> 70]
H1-carpentry-Joe [1: 140 -- 15 --> 155]
H1-plumbing-Jack [1: 215 -- 40 --> 255]
H1-ceiling-Jack [1: 105 -- 15 --> 120]
H1-roofing-Joe [1: 225 -- 5 --> 230]
H1-painting-Jim [1: 120 -- 10 --> 130]
H1-windows-Joe [1: 240 -- 5 --> 245]
H1-facade-Joe [1: 275 -- 10 --> 285]
H1-garden-Jim [1: 255 -- 5 --> 260]
H1-moving-Jim [1: 285 -- 5 --> 290]
H2-masonry-Joe [1: 105 -- 35 --> 140]
H2-carpentry-Joe [1: 155 -- 15 --> 170]
H2-plumbing-Jack [1: 175 -- 40 --> 215]
H2-ceiling-Joe [1: 185 -- 15 --> 200]
H2-roofing-Joe [1: 230 -- 5 --> 235]
H2-painting-Jim [1: 200 -- 10 --> 210]
H2-windows-Joe [1: 245 -- 5 --> 250]
H2-facade-Joe [1: 255 -- 10 --> 265]
H2-garden-Jim [1: 235 -- 5 --> 240]
H2-moving-Jim [1: 265 -- 5 --> 270]
H3-masonry-Joe [1: 70 -- 35 --> 105]
H3-carpentry-Joe [1: 200 -- 15 --> 215]
H3-plumbing-Jack [1: 255 -- 40 --> 295]
H3-ceiling-Jack [1: 120 -- 15 --> 135]
H3-roofing-Joe [1: 220 -- 5 --> 225]
H3-painting-Jim [1: 135 -- 10 --> 145]
H3-windows-Joe [1: 235 -- 5 --> 240]
H3-facade-Joe [1: 295 -- 10 --> 305]
H3-garden-Jim [1: 295 -- 5 --> 300]
H3-moving-Jim [1: 305 -- 5 --> 310]
H4-masonry-Jack [1: 0 -- 35 --> 35]
H4-carpentry-Jim [1: 103 -- 15 --> 118]
H4-plumbing-Jack [1: 135 -- 40 --> 175]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

202

H4-ceiling-Jack [1: 35 -- 15 --> 50]
H4-roofing-Jack [1: 295 -- 5 --> 300]
H4-painting-Jim [1: 93 -- 10 --> 103]
H4-windows-Joe [1: 305 -- 5 --> 310]
H4-facade-Jack [1: 300 -- 10 --> 310]
H4-garden-Jim [1: 300 -- 5 --> 305]
H4-moving-Jim [1: 310 -- 5 --> 315]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

203

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

204

Using state functions: house building with
state incompatibilities

This section describes how to model and solve a problem using state functions.

In this section

Overview
Describes how to model and solve a problem using state functions.

Describe
Describes the first stage in finding a solution to the house building problem with state
incompatibilities.

Model
Describes the second stage in finding a solution to the house building problem with state
incompatibilities.

Solve
Describes the third stage in finding a solution to the house building problem with state
incompatibilities.

Review exercises
Includes the review exercises.

Complete program
Lists the location of the complete house building with state incompatibilities program.

© Copyright IBM Corp. 1987, 2009 205

Overview

In this lesson, you will learn how to:

♦ use the class IloStateFunction;

♦ use the specialized constraint IloAlwaysEqual.

You will learn how to model and solve a house building problem, a problem of scheduling
the tasks involved in building multiple houses. Some tasks must necessarily take place before
other tasks, and each task has a predefined size. Moreover, there are two workers, and each
task requires either one of the two workers. A subset of the tasks require that the house be
clean, whereas other tasks make the house dirty. A transition time is needed to change the
state of the house from dirty to clean. To find a solution to this problem using IBM® ILOG®
CP Optimizer, you will use the three-stage method: describe, model and solve.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

206

Describe

The problem consists of assigning start dates to a set of tasks in such a way that the schedule
satisfies temporal constraints and minimizes an expression. The objective for this problem
is to minimize the overall completion date.

For each task type in the house building project, the following table shows the duration of
the task in days along with state of the house during the task. A worker can only work on
one task at a time; each task, once started, may not be interrupted.

House construction tasks
Preceding tasksStateDurationTask

dirty35masonry

masonrydirty15carpentry

masonryclean40plumbing

masonryclean15ceiling

carpentrydirty5roofing

ceilingclean10painting

roofingdirty5windows

roofing, plumbing10facade

roofing, plumbing5garden

windows, facade, garden, painting5moving

Solving the problem consists of determining starting dates for the tasks such that the overall
completion date is minimized.

Step 1: Describe the problem
The first step in modeling and solving a problem is to write a natural language description
of the problem, identifying the decision variables and the constraints on these variables.

Write a natural language description of this problem. Answer these questions:

♦ What is the known information in this problem?

♦ What are the decision variables or unknowns in this problem?

♦ What are the constraints on these variables?

♦ What is the objective?

Discussion
What is the known information in this problem?

♦ There are five houses to be built by two workers. For each house, there are ten house
building tasks, each with a given size. For each task, there is a list of tasks that must be

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

207

completed before the task can start. There are two workers. There is a transition time
associated with changing the state of a house from dirty to clean.

What are the decision variables or unknowns in this problem?

♦ The unknowns are the dates that the tasks will start. The cost is determined by the
assigned start dates.

What are the constraints on these variables?

♦ There are constraints that specify that a particular task may not begin until one or more
given tasks have been completed. Each task requires either one of the two workers. Some
tasks have a specified house cleanliness state.

What is the objective?

♦ The objective is to minimize the overall completion date.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

208

Model

After you have written a description of your problem, you can use IBM® ILOG® Concert
Technology classes to model it.

Step 2: Open the example file
Open the example file YourCPHome/examples/tutorial/cpp/sched_state_partial.cpp in
your development environment. This file is a program that is only partially completed. You
will fill in the blanks in each step in this lesson. At the end, you will have completed the
program code, and you can compile and run the program.

In this lesson, you include the header file <ilcp/cp.h>. To catch exceptions that may be
thrown, you use a try/catch block. The code for creating the environment and model and
for printing out the solution found by the CP Optimizer engine is provided.

In addition, the data related to the tasks, such as the tasks (Tasks), the number of tasks
(NbTasks), the names of the tasks (TaskNames) and sizes of the tasks (TaskDurations) and
constants representing the number of houses (NbHouses), the number of workers (NbWorkers)
and the two cleanliness states (Clean and Dirty) are provided.

After you create an environment and a model, you need to define the decision variables and
add the constraints and objective to the model. Since the requirements for each of the five
houses are similar, you use a function MakeHouse. to create the decision variables, constraints
and objective associated with each house. Information about individual houses that must
be shared with the main function includes the expressions needed to create the objective
function and information about worker usage. In order to display the results of the
optimization, it is also useful to maintain an array of all the interval variables.

To access this information, you create objects that will be updated in the MakeHouse function.
The cost expression involves the date at which moving is completed for each house; the
integer expression array ends is used to store this information. An array of task interval
variables, allTasks, stores all the interval variables that are created. In addition, the
expression used to represent worker usage is included in the global information that is
updated in each call to the MakeHouse function.

Since the workers are equivalent in this problem, it is better to represent them as one pool
of workers instead of as individual workers with no overlap constraints as was done in the
earlier examples. This representation removes symmetry. The cumulative function expression
representing usage of the pool of workers can be modified by the interval variables that
require a worker.

Step 3: Declare the objects needed for MakeHouse
Add the following code after the comment //Declare the objects needed for MakeHouse

IloInt i;
IloModel model(env);
IloIntExprArray ends(env);
IloIntervalVarArray allTasks(env);

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

209

IloCumulFunctionExpr workers(env);

The transition time from a dirty state to a clean state is the same value for all houses. Thus
you can create one IloTransitionDistance object that can be shared by all houses. Here
there are two transition types.

Step 4: Create the transition times
Add the following code after the comment //Create the transition times

IloTransitionDistance ttime(env, 2);
ttime.setValue(Dirty, Clean, 1);

You need to pass the model, the house identifier, the array of expressions representing the
completion dates of the houses, the array of all tasks, the cumulative function expression
for the worker usage and the transition object as arguments to the MakeHouse function.

Step 5: Create the MakeHouse function
Add the following code after the comment //Create the MakeHouse function

void MakeHouse(IloModel model,
IloInt id,
IloIntExprArray ends,
IloIntervalVarArray allTasks,
IloCumulFunctionExpr& workers,
IloTransitionDistance ttime) {

Each house has a list of NbTasks that must be scheduled. Task i, where i is in 0..NbTasks
-1, has a size of TaskDurations[i] and the name TaskNames[i]. Using these, you build an
array tasks of interval variables.

Each task also requires one worker from the start to the end of the task interval. To represent
the fact that a worker is required for the task, you modify the cumulative function expression,
workerUsage, using the function IloPulse.

You also add each interval variable to the array allTasks that will be used to display the
solution once the schedule has been determined.

Step 6: Create the interval variables
Add the following code after the comment //Create the interval variables

char name[128];
IloIntervalVarArray tasks(env, NbTasks);
for (IloInt i=0; i<NbTasks; ++i) {
sprintf(name, “H%ld-%s”, id, TaskNames[i]);

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

210

tasks[i] = IloIntervalVar(env, TaskDurations[i], name);
workers += IloPulse(tasks[i], 1);
allTasks.add(tasks[i]);

}

The tasks in the model have precedence constraints that are added to the model.

Step 7: Add the temporal constraints
Add the following code after the comment //Add the temporal constraints

model.add(IloEndBeforeStart(env, tasks[masonry], tasks[carpentry]));
model.add(IloEndBeforeStart(env, tasks[masonry], tasks[plumbing]));
model.add(IloEndBeforeStart(env, tasks[masonry], tasks[ceiling]));
model.add(IloEndBeforeStart(env, tasks[carpentry], tasks[roofing]));
model.add(IloEndBeforeStart(env, tasks[ceiling], tasks[painting]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[windows]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[facade]));
model.add(IloEndBeforeStart(env, tasks[plumbing], tasks[facade]));
model.add(IloEndBeforeStart(env, tasks[roofing], tasks[garden]));
model.add(IloEndBeforeStart(env, tasks[plumbing], tasks[garden]));
model.add(IloEndBeforeStart(env, tasks[windows], tasks[moving]));
model.add(IloEndBeforeStart(env, tasks[facade], tasks[moving]));
model.add(IloEndBeforeStart(env, tasks[garden], tasks[moving]));
model.add(IloEndBeforeStart(env, tasks[painting], tasks[moving]));

Certain tasks require the house to be clean, and other tasks cause the house to be dirty. To
model the possible states of the house, Concert Technology provides the class
IloStateFunction to represent the disjoint states through time.

State functionNote:

A state function, represented in IBM ILOG Concert Technology by IloStateFunction,
is a decision variable whose value is a set of non-overlapping intervals over which the
function maintains a particular non-negative integer state. In between those intervals,
the state of the function is not defined, typically because of an ongoing transition
between two states.

You create one state function object in each execution of MakeHouse, one for each house.

The first argument passed to the constructor of the class IloStateFunction is the
environment. The second argument is the transition time object. The final argument is an
optional name used for debug and trace purposes. Here is a constructor:

IloStateFunction(const IloEnv env,
const IloTransitionDistance tdist,

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

211

const char* name =0);

To model the state required or imposed by a task, you create a constraint that specifies the
state of the house throughout the interval variable representing that task.

Constraint on cumul function expressionNote:

With the specialized constraint IloAlwaysEqual, you can create a constraint that
specifies the value of a state function over the interval variable.

The constraint takes a state function, an interval variable and a state value. Whenever
the interval variable is present, then the state function is defined everywhere between
the start and the end of the interval variable and remains equal to the specified state
value over this interval.

The first argument passed to the function IloAlwaysEqual is the environment. The second
argument is the state function. The third argument is the interval variable on which you
want to place the constraint. The fourth argument is the state value that the state function
must take during the interval.

Here is a function signature:

IloConstraint IloAlwaysEqual(const IloEnv env,
const IloStateFunction f,
const IloIntervalVar a,
IloInt v);

You create a state function and constrain the state function to take the appropriate values
during the tasks that require the house to be in a specific state.

Step 8: Add the state constraints
Add the following code after the comment //Add the state constraints

IloStateFunction houseState(env, ttime);
model.add(IloAlwaysEqual(env, houseState, tasks[masonry], Dirty));
model.add(IloAlwaysEqual(env, houseState, tasks[carpentry], Dirty));
model.add(IloAlwaysEqual(env, houseState, tasks[plumbing], Clean));
model.add(IloAlwaysEqual(env, houseState, tasks[ceiling], Clean));
model.add(IloAlwaysEqual(env, houseState, tasks[roofing], Dirty));
model.add(IloAlwaysEqual(env, houseState, tasks[painting], Clean));
model.add(IloAlwaysEqual(env, houseState, tasks[windows], Dirty));

Tomodel the cost of building the houses, you will need to determine the maximum completion
date among the individual house projects. To access the expression representing the
completion date of the house currently in consideration, you use the function IloEndOf on

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

212

the last task in building a house (here, it is the moving task) and store this expression in the
array ends.

Step 9: Add the cost expression
Add the following code after the comment //Add the cost expression

ends.add(IloEndOf(tasks[moving]));

This completes the MakeHouse function. In the main function, you now call the MakeHouse
function, once for each house. At each call, the cumulative expression, workers, is updated
and additional elements are appended to the arrays ends and allTasks. The model, house
identifier and transition object are also passed to the MakeHouse function.

Step 10: Create the houses
Add the following code after the comment //Create the houses

for (i=0; i<NbHouses; ++i) {
MakeHouse(model, i, ends, allTasks, workers, ttime);

}

To add the constraint that there can be only two workers working at a given time, you
constrain the cumulative function expression representing worker usage to be no greater
than the value NbWorkers.

Step 11: Add the cumulative constraints
Add the following code after the comment //Add the cumulative constraints

model.add(workers <= NbWorkers);

The objective of this problem is to minimize the overall completion date (the completion
date of the house that is completed last). To do this, you minimize the maximal expression
in the array ends.

Step 12: Add the objective
Add the following code after the comment //Add the objective

model.add(IloMinimize(env, IloMax(ends)));

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

213

Solve

You use an instance of the class IloCP to solve a problem expressed in a model. The
constructor for IloCP takes an IloModel as its argument.

Step 13: Create an instance of IloCP
Add the following code after the comment //Create an instance of IloCP

IloCP cp(model);

You now use the member function IloCP::solve, which solves the problem contained in
the model by using constructive search and constraint propagation. The search for an optimal
solution in this problem could potentiality take a long time, so you place a fail limit on the
solve process. The search will stop when the fail limit is reached, even if optimality of the
current best solution is not guaranteed.

Step 14: Search for a solution
Add the following code after the comment //Search for a solution

cp.setParameter(IloCP::FailLimit, 10000);
if (cp.solve()) {

The member function IloCP::solve returns a Boolean value of type IloBool. If a solution
is found, the value IloTrue is returned.

After a solution has been found, you can use the member functions IloCP::getObjValue
and IloCP::domain to examine the solution. The stream IloAlgorithm::out is the
communication stream for general output.The code for displaying the solution has been
provided for you:

cp.out() << “Solution with objective “ << cp.getObjValue() << “:” <<
std::endl;

for (i=0; i<allTasks.getSize(); ++i) {
cp.out() << cp.domain(allTasks[i]) << std::endl;

}

Step 15: Compile and run the program
Compile and run the program. You should get the following results:

Solution with objective 357:
H0-masonry-Joe [1: 0 -- 35 --> 35]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

214

H0-carpentry-Joe [1: 170 -- 15 --> 185]
H0-plumbing-Jack [1: 65 -- 40 --> 105]
H0-ceiling-Jack [1: 50 -- 15 --> 65]
H0-roofing-Joe [1: 215 -- 5 --> 220]
H0-painting-Jim [1: 65 -- 10 --> 75]
H0-windows-Joe [1: 250 -- 5 --> 255]
H0-facade-Joe [1: 265 -- 10 --> 275]
H0-garden-Jim [1: 220 -- 5 --> 225]
H0-moving-Jim [1: 275 -- 5 --> 280]
H1-masonry-Joe [1: 35 -- 35 --> 70]
H1-carpentry-Joe [1: 140 -- 15 --> 155]
H1-plumbing-Jack [1: 215 -- 40 --> 255]
H1-ceiling-Jack [1: 105 -- 15 --> 120]
H1-roofing-Joe [1: 225 -- 5 --> 230]
H1-painting-Jim [1: 120 -- 10 --> 130]
H1-windows-Joe [1: 240 -- 5 --> 245]
H1-facade-Joe [1: 275 -- 10 --> 285]
H1-garden-Jim [1: 255 -- 5 --> 260]
H1-moving-Jim [1: 285 -- 5 --> 290]
H2-masonry-Joe [1: 105 -- 35 --> 140]
H2-carpentry-Joe [1: 155 -- 15 --> 170]
H2-plumbing-Jack [1: 175 -- 40 --> 215]
H2-ceiling-Joe [1: 185 -- 15 --> 200]
H2-roofing-Joe [1: 230 -- 5 --> 235]
H2-painting-Jim [1: 200 -- 10 --> 210]
H2-windows-Joe [1: 245 -- 5 --> 250]
H2-facade-Joe [1: 255 -- 10 --> 265]
H2-garden-Jim [1: 235 -- 5 --> 240]
H2-moving-Jim [1: 265 -- 5 --> 270]
H3-masonry-Joe [1: 70 -- 35 --> 105]
H3-carpentry-Joe [1: 200 -- 15 --> 215]
H3-plumbing-Jack [1: 255 -- 40 --> 295]
H3-ceiling-Jack [1: 120 -- 15 --> 135]
H3-roofing-Joe [1: 220 -- 5 --> 225]
H3-painting-Jim [1: 135 -- 10 --> 145]
H3-windows-Joe [1: 235 -- 5 --> 240]
H3-facade-Joe [1: 295 -- 10 --> 305]
H3-garden-Jim [1: 295 -- 5 --> 300]
H3-moving-Jim [1: 305 -- 5 --> 310]
H4-masonry-Jack [1: 0 -- 35 --> 35]
H4-carpentry-Jim [1: 103 -- 15 --> 118]
H4-plumbing-Jack [1: 135 -- 40 --> 175]
H4-ceiling-Jack [1: 35 -- 15 --> 50]
H4-roofing-Jack [1: 295 -- 5 --> 300]
H4-painting-Jim [1: 93 -- 10 --> 103]
H4-windows-Joe [1: 305 -- 5 --> 310]
H4-facade-Jack [1: 300 -- 10 --> 310]
H4-garden-Jim [1: 300 -- 5 --> 305]
H4-moving-Jim [1: 310 -- 5 --> 315]

The complete program can be viewed online in the YourCPHome/examples/src/cpp/
sched_state.cpp file.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

215

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

216

Review exercises

Includes the review exercises.

In this section

Exercises
Lists the review exercises.

Suggested answers
Provides the answers to the review questions.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

217

Exercises

For answers, see Suggested answers.

1. What is a state function?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

218

Suggested answers

Exercise 1
What is a state function?

Suggested answer
A state function is a decision variable whose value is a set of non-overlapping intervals over
which the function maintains a particular non-negative integer state. In between those
intervals, the state of the function is not defined, typically because of an ongoing transition
between two states.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

219

Complete program

The complete house building program can be viewed online in the file YourCPHome/examples/
src/cpp/sched_state.cpp.

Results

Solution with objective 357:
H0-masonry-Joe [1: 0 -- 35 --> 35]
H0-carpentry-Joe [1: 170 -- 15 --> 185]
H0-plumbing-Jack [1: 65 -- 40 --> 105]
H0-ceiling-Jack [1: 50 -- 15 --> 65]
H0-roofing-Joe [1: 215 -- 5 --> 220]
H0-painting-Jim [1: 65 -- 10 --> 75]
H0-windows-Joe [1: 250 -- 5 --> 255]
H0-facade-Joe [1: 265 -- 10 --> 275]
H0-garden-Jim [1: 220 -- 5 --> 225]
H0-moving-Jim [1: 275 -- 5 --> 280]
H1-masonry-Joe [1: 35 -- 35 --> 70]
H1-carpentry-Joe [1: 140 -- 15 --> 155]
H1-plumbing-Jack [1: 215 -- 40 --> 255]
H1-ceiling-Jack [1: 105 -- 15 --> 120]
H1-roofing-Joe [1: 225 -- 5 --> 230]
H1-painting-Jim [1: 120 -- 10 --> 130]
H1-windows-Joe [1: 240 -- 5 --> 245]
H1-facade-Joe [1: 275 -- 10 --> 285]
H1-garden-Jim [1: 255 -- 5 --> 260]
H1-moving-Jim [1: 285 -- 5 --> 290]
H2-masonry-Joe [1: 105 -- 35 --> 140]
H2-carpentry-Joe [1: 155 -- 15 --> 170]
H2-plumbing-Jack [1: 175 -- 40 --> 215]
H2-ceiling-Joe [1: 185 -- 15 --> 200]
H2-roofing-Joe [1: 230 -- 5 --> 235]
H2-painting-Jim [1: 200 -- 10 --> 210]
H2-windows-Joe [1: 245 -- 5 --> 250]
H2-facade-Joe [1: 255 -- 10 --> 265]
H2-garden-Jim [1: 235 -- 5 --> 240]
H2-moving-Jim [1: 265 -- 5 --> 270]
H3-masonry-Joe [1: 70 -- 35 --> 105]
H3-carpentry-Joe [1: 200 -- 15 --> 215]
H3-plumbing-Jack [1: 255 -- 40 --> 295]
H3-ceiling-Jack [1: 120 -- 15 --> 135]
H3-roofing-Joe [1: 220 -- 5 --> 225]
H3-painting-Jim [1: 135 -- 10 --> 145]
H3-windows-Joe [1: 235 -- 5 --> 240]
H3-facade-Joe [1: 295 -- 10 --> 305]
H3-garden-Jim [1: 295 -- 5 --> 300]
H3-moving-Jim [1: 305 -- 5 --> 310]
H4-masonry-Jack [1: 0 -- 35 --> 35]
H4-carpentry-Jim [1: 103 -- 15 --> 118]
H4-plumbing-Jack [1: 135 -- 40 --> 175]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

220

H4-ceiling-Jack [1: 35 -- 15 --> 50]
H4-roofing-Jack [1: 295 -- 5 --> 300]
H4-painting-Jim [1: 93 -- 10 --> 103]
H4-windows-Joe [1: 305 -- 5 --> 310]
H4-facade-Jack [1: 300 -- 10 --> 310]
H4-garden-Jim [1: 300 -- 5 --> 305]
H4-moving-Jim [1: 310 -- 5 --> 315]

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

221

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

222

Using search parameters: team building

This section describes how to model and solve a problem using search parameters.

In this section

Overview
Describes how to model and solve a problem using search parameters.

Describe
Describes the first stage in finding a solution to the team configuration problem.

Model
Describes the second stage in finding a solution to the team configuration problem.

Solve
Describes the third stage in finding a solution to the team configuration problem.

Review exercises
Includes the review exercises and suggested answers.

Complete program
Lists the location of the complete team configuration problem and the results.

© Copyright IBM Corp. 1987, 2009 223

Overview

In this lesson, you will learn how to:

♦ use subproblems to build data for modeling constraints;

♦ use search parameters to modify constraint propagation.

You will learn how to model and solve an assignment problem regarding configuring teams
at a corporation. To find an optimal solution to the problem using IBM® ILOG®CPOptimizer,
you will use the three-stage method: describe, model and solve.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

224

Describe

In this lesson, you will search for a solution to a team configuration problem. A corporation
is planning an orientation day for new hires. During the day, the people attending the
orientation, both new hires and existing employees, need to be separated into teams. There
are 30 new hires and 30 existing employees who must be assigned to teams. These 60
employees from six service units need to be assigned to one of 10 teams, each of which has
six slots. Each team must have three new hires and three existing employees assigned to it.
At most four people from the same service unit can be on the same team. Twenty of the new
hires have been paired with a coach, who is an existing employee from the same service
unit as the newly hired employee. Both people of a pair must be on the same team.

The sixty people are labeled with unique identifiers in the range 0 to 59. The existing
employees are assigned odd values, and the new hires are assigned even values. For the
service unit memberships, Service A is the range of people with identifiers numbered 0 to
19, Service B is 20-39, Service C is 40-44, Service D is 45-49, Service E is 50-54, and Service
F is 55-59. The pairs are the first six pairs from Services A and B and the first two pairs
from Services C, D, E and F.

People from Services A and B cannot be assigned to the same team, and people from Services
E and F cannot be assigned to the same team.

Using the identifiers, the additional preference constraints can be written as:

♦ person number 5 wants to be with person 41 or person 51,

♦ person number 15 wants to be with person 40 or person 51,

♦ person number 25 wants to be with person 40 or person 50, and

♦ person 20 is to be on the same team as person 24, or person 22 is to be on the same team
as person 50.

Step 1: Describe the problem
The first step in modeling and solving a problem is to write a natural language description
of the problem, identifying the decision variables and the constraints on these variables.

Write a natural language description of this problem. Answer these questions:

♦ What are the decision variables or unknowns in this problem?

♦ What are the constraints on these variables?

Discussion
What is the known information in this problem?

♦ There are thirty existing employees and thirty new hires. Each person belongs to one of
six service units, and there are twenty coach/new-hire pairs.

♦ There are ten teams with six slots each.

What are the decision variables or unknowns in this problem?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

225

♦ The unknown is to which team each person will be assigned. In other words, there is a
decision variable for each of the 60 slots. The domain of each of these variables is the set
of employees, or [0..59].

What are the constraints on these variables?

♦ Each team must have three existing employees and three new hires.

♦ Coach/new hire pairs must be assigned to the same team.

♦ No team can have more than four people from a given service unit.

♦ No team can have people from both Services A and B nor from both Services E and F.

♦ There are four constraints which describe additional preferences.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

226

Model

After you have written a description of your problem, you can use IBM® ILOG® Concert
Technology classes to model it.

Step 2: Open the example file
Open the example file YourCPHome/examples/tutorial/cpp/teambuilding_partial.cpp
in your development environment. This file is a program that is only partially completed.
You will fill in the blanks in each step in this lesson. At the end, you will have completed the
program code and you can compile and run the program.

In this lesson, you include the header file <ilcp/cp.h>. To catch exceptions that may be
thrown, you use a try/catch block. The code for declaring an environment and a model,
for calculating the coaching pairs and for printing out the solution found by the IBM® ILOG®
CP Optimizer engine is provided for you.

First, you represent the data of the program. The number of people, nbPersons, is set to 60
in this example, but can be easily modified. The number of teams, nbTeams, is 10 in this
example. The size of a team, teamSize, is 6 in this example.

const IloInt nbPersons = 60;
const IloInt nbTeams = 10;
const IloInt teamSize = 6;
const IloInt nbServices = 6;

As the teams and the slots in each team are interchangeable, there is a lot of symmetry in
this problem. To remove the symmetry, you will use a two-step process to solve this problem
along with adding extra constraints. The first step is to determine a set of integer tuples,
such that each tuple represents a possible set of new hires and existing employees to be
assigned to a single team with six slots. The second step is to select a feasible set of ten of
these tuples, one for each team, as the solution.

The first step requires solving a subproblem using IBM ILOG CP Optimizer. Since this
subproblem is a constraint programming problem itself, you follow the three step process
to solve the subproblem.

Step 3: Describe the subproblem
In this subproblem, you will search for all possible combinations for a single team. There
are 60 employees from six service units who can to be assigned to a team of six people. The
team must have three existing employees and three new hires assigned to it. At most four
people from the same service unit can be on the team. If one person from a coach/new hire
pair is on the team, the other must be as well.

The sixty people are labeled with unique identifiers in the range 0 to 59. The existing
employees are those with odd numbered identifiers, and the new hires are those with even
numbered identifiers. The service unit memberships are the same as outlined in the
description.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

227

Employees from Services A and B cannot be on a team together, and employees from Services
E and F cannot be on a team together.

Discussion
What is the known information in this subproblem?

♦ There are thirty existing employees and thirty new hires. Each employee belongs to one
of six service units, and there are twenty coach/new hire pairs.

♦ There is one team with slots for six people.

What are the decision variables or unknowns in this problem?

♦ The unknown is all of the possible combinations of employees that can be assigned to
one team. In other words, there are six decision variables, one for each slot. The domain
of each of these variables is the set of employees, or [0..59].

What are the constraints on these variables?

♦ The team must have three existing employees and three new hires.

♦ The team cannot have just one person from a coach/new hire pair.

♦ The team cannot have more than four people from a given service unit.

♦ The team cannot have people from both Services A and B nor from both Services E and
F.

This subproblem is modeled and solved in the function MakeTeamTuples, which returns an
instance of IloIntTupleSet. The tupleset is the set of all feasible solutions to the subproblem.
In this function, the code for creating the environment and model for the subproblem and
for filling the data arrays newEmployee and service, both indexed on the person identifiers,
is provided for you. Each element of the array service states to which service unit the
associated person belongs, where the value 0 indicates the person is an employee of Service
A, the value 1 indicates the person is in Service B, etc. The array newEmployee is a Boolean
array; an element of newEmployee has the value 1 if and only if that person is a new hire.

Each tuple in the set to be returned has teamSize, or 6, elements. You create the
IloIntTupleSet using the global environment that is the input argument to the function
MakeTeamTuples.

Step 4: Create the set of tuples
Add the following code after the comment //Add the tupleset

IloIntTupleSet ts(globalEnv, teamSize);

Each solution to the subproblem is an integer tuple of size teamSize. To represent the
subproblem unknowns, you declare an array of decision variables, teamMembers, of length
teamSize. The possible values for these variables are the person identifiers, or [0..nbPersons
-1].

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

228

Step 5: Create the team members variable array
Add the following code after the comment //Add the team members variable array

IloIntVarArray teamMembers(env, teamSize, 0, nbPersons-1);

Next, you begin to add the subproblem constraints. To model the constraint that there must
be an equal number of new and existing employees on a team, you use an expression
nbNewEmployees to count the number of new employees assigned to the array teamMembers.
You use element expressions to determine if the person assigned to each element of
teamMembers is a new employee and use the self-assigned addition operator on the expression
to find the total number of new employees assigned to teamMembers. You constrain this
expression to be equal to half the number of people on the team.

Step 6: Add the constraint on number of new employees
Add the following code after the comment //Add the constraint on the number of new
employees

IloIntExpr nbNewEmployees(env);
for (i = 0; i < teamSize; i++)
nbNewEmployees += newEmployee[teamMembers[i]];

model.add(nbNewEmployees == teamSize / 2);

To model the constraint that pairs must be together, you constrain that each member of the
pair be assigned to teamMembers an equal number of times (in a later step you will add a
constraint that ensures each person is assigned to teamMembers at most once in any given
solution). You count how many times that person has been assigned to elements of
teamMembers by using the IBM ILOG Concert Technology function IloCount. To make sure
that either both or neither person in a pair is assigned to variables in teamMembers, you
constrain that the number of times each person in the pair is assigned to the array
teamMembers is equal. Here you use the array coaching which is initialized in the main
program such that the i-th element has the value of -1 if the i-th person does not have a
coach or the identifier of the coach if the i-th person has a coach.

Step 7: Add the constraint on coaching pairs
Add the following code after the comment //Add the constraint on coaching pairs

for (i = 0; i < 60; i += 2) {
if (coaching[i] >= 0)
model.add(IloCount(teamMembers, i) == IloCount(teamMembers, coaching[i]

));
}

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

229

To add the constraints on incompatible service units and the maximum number of people
from a service unit that may be on the same team, you need to be able to represent the
service unit of each employee. To do this, you create an array of auxiliary constrained integer
variables serviceVar, which is indexed similarly to teamMembers. (For example, the third
element of serviceVar represents to which service unit the person assigned to the third
element of teamMembers belongs. These variables are linked using an element expression
and the service data array.

Step 8: Add the service variables array
Add the following code after the comment //Add the service unit variables

IloIntVarArray serviceVar(env, teamSize, 0, nbServices - 1);
for (i = 0; i < teamSize; i++)
model.add(serviceVar[i] == service[teamMembers[i]]);

You add the constraints that at most four people from a single service unit can be assigned
to the same team using the IBM® ILOG® Concert Technology function IloCount and the
array serviceVar.

Step 9: Add the constraint on cardinality of service unit on team
Add the following code after the comment //Add the constraint on cardinality of
service unit on team

for (i = 0; i < nbServices; i++)
model.add(IloCount(serviceVar, i) <= 4);

Employees of Services A and Bmay not be on the same team; likewise, employees of Services
E and F may not be on the same team. To model this, you again use the IBM ILOG Concert
Technology function IloCount, but instead of constraining the expression returned, you use
it to form the subconstraints of logical constraints. These logical constraints state that the
count of employees from either Service A or Service B who are assigned to the team must
be zero, and likewise for Services E and F.

Step 10: Add the constraint on disjoint service units
Add the following code after the comment //Add the constraint on disjoint service
units

model.add(IloCount(serviceVar, 0) == 0 || IloCount(serviceVar, 1) == 0);
model.add(IloCount(serviceVar, 4) == 0 || IloCount(serviceVar, 5) == 0);

As the elements, or slots, of the array teamMembers are not ordered, the search will likely
encounter symmetry. In order to reduce symmetry, you introduce order among the variables
in the array as discussed in Using specialized constraints and tuples: scheduling teams. By

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

230

introducing this order, you also ensure that no employee will be assigned to teamMembers
more than once in any solution.

Step 11: Add the symmetry reducing constraint
Add the following code after the comment //Add the symmetry reducing constraint

for (i = 0; i < teamSize-1; i++)
model.add(teamMembers[i] < teamMembers[i+1]);

You now search for all possible solutions to the submodel. Each solution is a valid assignment
for one team. As each solution is found, the assigned values are stored in an integer tuple
which is then added to the set of tuples that will be returned to the main program. You
create an integer tuple, or array, to temporarily store each newly found valid team. You use
an instance of IloCP to find the solutions to the problem in the model. Since you will need
to find all solutions for this subproblem instead of one solution, you will not use IloCP::solve,
which terminates after a single solution has been found, in the case that there is a solution.

When solving a problem that does not have an objective, the member functions
IloCP::startNewSearch and IloCP::next can be used in a while loop to find all feasible
solutions to a problem. The function IloCP::startNewSearch initializes the optimizer, the
function IloCP::next searches for a new solution in the search space. The function
IloCP::end cleans up the internal memory and data structures used by the optimizer.

Step 12: Begin the search for a solution to the subproblem
Add the following code after the comment //Start the search

IloIntArray tuple(globalEnv, teamSize);
IloCP cp(model);
cp.setParameter(IloCP::LogVerbosity, IloCP::Quiet);
cp.setParameter(IloCP::SearchType, IloCP::DepthFirst);
cp.startNewSearch();
while (cp.next()) {

As each solution is found, you copy the values assigned to the decision variables in the array
teamMembers and store these values in a tuple. You add this new tuple to the tupleset and
search for another solution. This loop is repeated until all solutions have been found.

Step 13: Search for all solutions to the subproblem
Add the following code after the comment //Search for all solutions

for (IloInt i = 0; i < teamSize; i++)
tuple[i] = cp.getValue(teamMembers[i]);

ts.add(tuple);

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

231

}

The search terminates after all possible team tuples have been found. In order to clean up
and reclaim the memory, you end the search and end the environment for the subproblem.
You return the created tupleset of team configurations to the main program. Since the
tupleset was created on the environment of the main program and not for the subproblem,
it will not be destroyed in the clean up of the subproblem.

Step 14: Clean up the subproblem
Add the following code after the comment //End the env for the subproblem

cp.end();
env.end();
return ts;

Now that you have completed searching for all possible assignments for one team, you need
to select ten of these tuples such that the employees are all assigned to teams and such that
the additional preference constraints are satisfied.

You represent the people assigned to the teams with a matrix of constrained integer variables
group, which is indexed on the team and slot. The array of constrained variables group[i]
is the group of people assigned to the i-th team. Each element of group can be assigned a
value in the interval [0..nbPersons-1].

For each group[i], or set of people on a team, the only possible values are those in the
tupleset retuned by the function MakeTeamTuple. To model this, you use the IBM® ILOG®
Concert Technology function IloAllowedAssignments.

Step 15: Add the group variables and allowed assignments
Add the following code after the comment //Add the group variables and allowed
assignments

IloArray<IloIntVarArray> groups(env, nbTeams);
for (i = 0; i < nbTeams; i++) {
groups[i] = IloIntVarArray(env, teamSize, 0, nbPersons-1);
model.add(IloAllowedAssignments(env,groups[i], tupleSet));

}

Since each person can be assigned to only one team, you must ensure that in any solution
every variable in the array group takes a unique value. First you flatten the matrix groups
into an array of decision variables. These are not new decision variables, but merely an
alternate representation of the variables created previously. Then by using this new array
as the argument to the constraint IloAllDiff, you can assure that no person will be assigned
to two team slots and also that every person will be assigned to a slot.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

232

Step 16: Add the all diff constraint
Add the following code after the comment //Add the all diff constraint

IloIntVarArray allVars(env, nbPersons);
IloInt s = 0, w, p;
for (w = 0; w < nbTeams; ++w) {
for (p = 0; p < teamSize; ++p) {
allVars[s] = groups[w][p];
++s;

}
}
model.add(IloAllDiff(env, allVars));

To add the four preference constraints, you need to represent the team to which each
employee is assigned. You declare an array of decision variables team of length nbPersons.
The domain of each of the variables in team is [0..nbTeams-1] and the value assigned to
team[i] represents the team to which person i is assigned.

Step 17: Add the team variables
Add the following code after the comment //Add the team variables

IloIntVarArray team(env, nbPersons, 0, nbTeams);
for (w = 0; w < nbTeams; ++w) {
for (p = 0; p < teamSize; ++p) {
model.add(team[groups[w][p]]==w);

}
}

Using these variables, you add logical constraints to model the four preference constraints.

Step 18: Add the preference constraints
Add the following code after the comment //Add the preference constraints

model.add(team[5]== team[41] || team[5]==team[51]);
model.add(team[15]== team[40] || team[15]==team[51]);
model.add(team[25]== team[40] || team[25]==team[50]);
model.add(team[20]== team[24] || team[22]==team[50]);

Since the teams are all equivalent, each unique solution could be represented in 10!
“different” solutions to this model. To reduce the symmetry in the search, you add constraints
to introduce order to the groups. The person assigned to the initial slot in each element
array of group should have a larger identifier than the person assigned to the initial slot of
the previous element array of group.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

233

Step 19: Add the symmetry constraint
Add the following code after the comment //Add the symmetry constraint

for (i=0; i<nbTeams-1; i++)
model.add(groups[i][0] < groups[i+1][0]);

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

234

Solve

Solving a problem using constraint programming consists of assigning a value to each
decision variable so that all constraints are satisfied. You may not always know beforehand
whether there is a solution that satisfies all the constraints of the problem. In some cases,
there may be no solution. In other cases, there may be many solutions to a problem.

You use an instance of the class IloCP to solve a problem expressed in a model. The
constructor for IloCP takes an instance of IloModel as an argument.

Step 20: Create an instance of IloCP
Add the following code after the comment //Create an instance of IloCP

IloCP cp(model);

In this problem, using the built-in search leads to a long search time. To modify the search
to make it more efficient, you use a search tuning parameter to change the inference level
of the IloAllDiff constraint.

Each constraint is associated with a domain reduction algorithm. This algorithm performs
domain reductions based on the associated constraint; the algorithm will remove values
from the current domains of variables that do not belong to a solution. Constraint propagation
is the mechanism used to communicate the effects of these domain reductions.

For some types of constraints, you can set an inference level that specifies the type of domain
reduction algorithm. For specialized constraints such as IloAllDiff, the reduction algorithm
varies depending on the inference level. This inference level can be changed by setting a
parameter on IloCP.

To understand the difference between the inference levels, consider the IloAllDiff
constraint. You can view this constraint in two ways. It can be seen as a set of inequality
constraints or as one specialized constraint. For example, consider a graph coloring problem
with three nodes: x, y and z. All the nodes must be colored a different color. Node x can be
colored red or blue; node y can be colored red or blue; and node z can be colored red, blue,
or yellow. If you set the inference level of IloAllDiff to the basic level using the tuning
parameter, the domain reduction algorithm treats this specialized constraint as a set of
inequality constraints. Looking at each set of binary constraints individually, the domain
reduction algorithm is not able to reduce the domains.

If you set the inference level of IloAllDiff to the extended level, the domain reduction
algorithm treats this constraint as a truly specialized constraint. The reduction algorithm
is not able to reduce the domains of x and y. However, the reduction algorithm can “realize”
that between them, variables x and y must use both of the values red and blue. This leaves
only the value of yellow available for variable z.

Given that the extended level is the most thorough inference level, why would you use any
other inference level? There is a trade-off in using the extended level. In general, the extended
level takes longer. The basic inference level is less thorough, but faster. The medium level
is a compromise between the two levels--faster than the extended level and more thorough
than the basic. However, these are general rules and are not true for every situation.
Depending on your application, different inference levels may be appropriate.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

235

You use the member function IloCP::setParameter to set the inference levels for specialized
constraints. This function takes two arguments: the first specifies the type of specialized
constraint, the second specifies the inference level.

Step 21: Modify the search
Add the following code after the comment //Modify the search

cp.setParameter(IloCP::AllDiffInferenceLevel, IloCP::Extended);

You now use the member function IloCP::solve, which searches for a single solution to
the problem using constructive search and constraint propagation.

Step 22: Search for a solution
Add the following code after the comment //Search for a solution

if (cp.solve()) {
cp.out() << std::endl << “SOLUTION” << std::endl;
for (p=0; p < nbTeams; ++p) {
cp.out() << “team “ << p << “ : “;
for (w=0; w < teamSize; ++w) {
cp.out() << cp.getValue(groups[p][w]) << “ “;

}
cp.out() << std::endl;

}
}
else
cp.out() << “**** NO SOLUTION ****” << std::endl;

Step 23: Compile and run the program
Compile and run the program. You should get the following results:

SOLUTION
team 0 : 0 1 2 3 55 56
team 1 : 4 5 15 18 50 51
team 2 : 6 7 16 19 45 46
team 3 : 8 9 12 14 49 59
team 4 : 10 11 13 17 44 54
team 5 : 20 21 24 25 40 41
team 6 : 22 23 32 33 57 58
team 7 : 26 27 38 39 52 53
team 8 : 28 29 34 35 42 43
team 9 : 30 31 36 37 47 48

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

236

The complete program can be viewed online in the YourCPHome/examples/src/cpp/
teambuilding.cpp file.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

237

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

238

Review exercises

Includes the review exercises and suggested answers.

In this section

Exercises
Lists the review exercises.

Suggested answers
Provides the suggested answers to the review exercises.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

239

Exercises

For answers, see Suggested answers.

1. What is a search parameter?

2. Compare the search time with and without the search parameter that sets the inference
level for the IloAllDiff constraint.

3. How can a subproblem help in modeling the original problem?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

240

Suggested answers

Exercise 1
What is a search parameter?

Suggested answer
Setting search parameters such as IloAllDiffInferenceLevel allows the user to try different
strategies to solve the problem. Increasing the inference level to IloCP::Extended may
increase the time spent in constraint propagation after each choice, but it may also reduce
the domains in such a way as to reduce the size of the search tree.

Search parameters also control the log output, the time limit and the search techniques that
are used.

Exercise 2
Compare the search time with and without the search parameter that sets the inference
level for the IloAllDiff constraint.

Suggested answer
The number of decisions required to find a solution is much greater and the running time
is much longer when removing the inference level search parameter.

Exercise 3
How can a subproblem help in modeling the original problem?

Suggested answer
You can build data for the original problem by creating and solving a subproblem. Sometimes
this is useful if the original problem is too large to model or if there is symmetry that can
be removed by generating data.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

241

Complete program

The complete team building program can be viewed online in the file YourCPHome/examples/
src/cpp/teambuilding.cpp.

Results

SOLUTION
team 0 : 0 1 2 3 55 56
team 1 : 4 5 15 18 50 51
team 2 : 6 7 16 19 45 46
team 3 : 8 9 12 14 49 59
team 4 : 10 11 13 17 44 54
team 5 : 20 21 24 25 40 41
team 6 : 22 23 32 33 57 58
team 7 : 26 27 38 39 52 53
team 8 : 28 29 34 35 42 43
team 9 : 30 31 36 37 47 48

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

242

Using search phases on integer variables:
steel mill

This section describes how to model and solve a problem using search phases.

In this section

Overview
Describes how to model and solve a problem using search phases.

Describe
Describes the first stage in finding a solution to the steel mill problem.

Model
Describes the second stage in finding a solution to the steel mill problem.

Solve
Describes the third stage in finding a solution to the steel mill problem.

Review exercises
Includes the review exercises and suggested answers.

Complete program
Lists the location of the complete steel mill program and the results.

© Copyright IBM Corp. 1987, 2009 243

Overview

In this lesson, you will learn how to:

♦ use the specialized constraint IloPack;

♦ use the specialized constraint IloOr;

♦ use search phases to direct the search.

You will learn to model and solve a problem regarding selecting steel slabs of various sizes
and assigning a batch of steel coil orders to the selected slabs. This problem is based on
problem 38 in the CSP Library (www.csplib.org). To find an optimal solution to this problem
using IBM® ILOG® CP Optimizer, you will use the three-stage method: describe, model
and solve.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

244

Describe

In this lesson, you will solve an assignment problem. A steel mill needs to process a batch
of coil orders using steel slabs of varying sizes. Each order has a size and a color associated
with it. This color represents the specific process used to build the coil. A coil order must
be built from only one slab. A slab can be used to process multiple coil orders from the batch;
however, there can be at most two colors among the set of orders assigned to a given slab.

There are a finite number of slab sizes, but there are an unlimited number of slabs of each
size available. The cumulative sum of the sizes of the coil orders assigned to a particular
slab is called its load. The load assigned to a slab must not exceed the size, or capacity, of
the slab. In addition, the production plan should minimize the unused capacity, the waste,
of the selected slabs.

In the data set for this problem, there are 12 orders. In this batch of orders, there are eight
different colors represented. As there are 12 orders and no order can be split among slabs,
it is possible to deduce that at most 12 slabs will be needed.

Step 1: Describe the problem
The first step in modeling and solving a problem is to write a natural language description
of the problem, identifying the decision variables and the constraints on these variables.

Write a natural language description of this problem. Answer these questions:

♦ What is the known information in this problem?

♦ What are the decision variables or unknowns in this problem?

♦ What are the constraints on these variables?

♦ What is the objective?

Discussion
What is the known information in this problem?

♦ There are 12 orders of varying colors and sizes.

♦ There are steel slabs of various sizes available. At most 12 slabs will be used.

What are the decision variables or unknowns in this problem?

♦ The unknowns are what size slabs will be selected and to which slab each order will be
assigned. In other words, there is a decision variable associated with each order that
indicates to which slab the order will be assigned. The domain of each of these variables
is the set of slabs, or [0..11]. This formulation makes the assumption that the selected
slabs have a placement, in other words, there is a first slab, a second slab and so on.

What are the constraints on these variables?

♦ Each slab can be assigned orders of at most two different colors. The load of a slab is
equal to the cumulative sum of the size of the orders assigned to it.

What is the objective?

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

245

♦ The objective is to minimize loss, where loss is the excess capacity of a slab, the unused
capacity of the selected slabs.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

246

Model

After you have written a description of your problem, you can use IBM® ILOG® Concert
Technology classes to model it. After you create a model of your problem, you can use IBM
ILOG CP Optimizer classes and member functions to search for a solution.

Step 2: Open the example file
Open the example file YourCPHome/examples/tutorial/cpp/steelmill_partial.cpp in
your development environment. This file is a program that is only partially completed. You
will fill in the blanks in each step in this lesson. At the end, you will have completed the
program code and you can compile and run the program.

The first step in converting your natural language description of the problem into code using
IBM ILOG Concert Technology classes is to create an environment and a model.

Step 3: Create the environment and model
The following code which creates the environment and model has been provided for you

int main(int argc, const char * argv[]) {
IloEnv env;
try {
IloModel model(env);
IloInt m, o, c, q;

You create standard variables to represent the number of orders, nbOrders, the maximum
number of slabs needed, nbSlabs, and the number of colors, nbColors. You model the order
sizes and colors as arrays of integer values. The possible sizes, or capacities, of the slabs
are also modeled as an array.

Step 4: Create the data
Add the following code after the comment //Create the data

IloInt nbOrders = 12;
IloInt nbSlabs = 12;
IloInt nbColors = 8;
IloIntArray capacities(env, 20, 0, 11, 13, 16, 17, 19, 20,

23, 24, 25, 26, 27, 28, 29,
30, 33, 34, 40, 43, 45);

IloIntArray sizes(env, nbOrders, 22, 9, 9, 8, 8, 6, 5, 3, 3, 3, 2, 2);

IloIntArray colors(env, nbOrders, 5, 3, 4, 5, 7, 3, 6, 0, 2, 3, 1, 5)
;

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

247

The first array of decision variables represents which slab should be used to process each
order. To represent this information, you declare an array of decision variables where. This
array has nbOrders elements or, in this example, 12. The possible values for these variables
represent the ordered slabs. In this example, a value of 0 represents the first slab, a value
of 1 represents the second slab, and so on. The array of decision variables where will
represent the solution to the problem, after the CP Optimizer engine has found a solution.

The second array of decision variables represents the load assigned to each slab. To represent
this information, you declare an array of decision variables load. This array has nbSlabs
elements, or, in this example, 12. The possible values for these variables represent the
cumulative sum of the sizes of the orders assigned to each slab. The minimum load is 0 and
the maximum load is the cumulative sum of the sizes of the entire batch of orders.

Step 5: Declare the decision variables
Add the following code after the comment //Declare the decision variables

IloIntVarArray where(env, nbOrders, 0, nbSlabs-1);
IloIntVarArray load(env, nbSlabs, 0, IloSum(sizes));

You now begin to add the constraints. First you create the constraint that links the where
and load variables. For each slab, its load must be equal to the sum of sizes of orders that
are assigned to it. To model this, you use the predefined constraint IloPack.

Load balancing constraintNote:

Using specialized constraints, such as IloPack, makes modeling simpler and solving
more efficient.

The constraint IloPack maintains the load of a set of containers, given a set of
weighted items and an assignment of items to containers.

The class IloPack is a subclass of the class IloConstraint. The first argument of the
constructor of IloPack is the environment. The second argument is the array of load variables.
The third argument is the array for assignments, in this case the slab to which each order
is assigned. The fourth argument is the array of order sizes or weights. The fifth argument
is an optional name used for debug and trace purposes. Here is the constructor you will use:

IloPack(const IloEnv env,
const IloIntVarArray load,
const IloIntVarArray where,
const IloIntArray weight,
const char * name=0);

The arrays where and sizes are indexed by the orders. For each slab i, the packing constraint
requires that the value of load[i] is equal to the sum of the sizes[j] such that the value
of where[j] is i.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

248

Step 6: Add the pack constraint
Add the following code after the comment //Add the pack constraint

model.add(IloPack(env, load, where, sizes));

Next, you create the constraints to constrain the number of colors represented by the orders
assigned to a slab. For a given slab, you create an array of expressions colorExpArraywhich
is indexed on the set of colors. Each element has a domain of[0..1] and indicates whether
or not at least one order of the corresponding color is assigned to the slab. For each color,
you need to determine if an order of that color has been assigned to the given slab. Using
the array colorExpArray and the predefined IBM ILOG Concert Technology constraint
IloOr, you can link the order assignments to the colorExpArray to represent whether an
order of a particular color has been assigned to the slab.

Disjunctive constraintNote:

Using specialized constraints such as IloOr makes modeling easier.

An instance of IloOr represents a disjunctive constraint. In other words, it defines a
disjunctive-OR among any number of constraints. To add a constraint to this logical
constraint, you use the method IloOr::add.

For example, you may write:

IloOr or(env); or.add(constraint1); or.add(constraint2); or.add
(constraint3);

Those lines are equivalent to:

IloConstraint or = constraint1 || constraint2 || constraint3;

For a given slab m and a given color, you iterate through the orders. If the order, o, is of the
given color, then you add the constraint (where[o] == m) to the IloOr logical constraint.
If any one of the orders of the given color is assigned to the given slab, then the value of
the expression will be 1.

Finally, you constrain the sum of the elements of the colorExpArray to be no greater than
two.

Step 7: Add the color constraints
Add the following code after the comment //Add the color constraints

for(m = 0; m < nbSlabs; m++) {
IloExprArray colorExpArray(env);
for(c = 0; c < nbColors; c++) {
IloOr orExp(env);

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

249

for(o = 0; o < nbOrders; o++){
if (colors[o] == c){
orExp.add(where[o] == m);

}
}
colorExpArray.add(orExp);

}
model.add(IloSum(colorExpArray) <= 2);

}

To create the objective expression, you calculate an expression to represent the loss for
each slab. First you determine, for each possible value of load, the minimum sized slab
needed and thus the loss that would be incurred. If a slab has a given load, the loss is the
difference between the load assigned to the slab and the minimal size slab needed to process
the load.

Step 8: Add the objective
Add the following code after the comment //Add the objective

IloIntArray lossValues(env);
lossValues.add(0);
for(q = 1; q < capacities.getSize(); q++){
for(IloInt p = capacities[q-1] + 1; p <= capacities[q]; p++){
lossValues.add(capacities[q] - p);

}
}
IloExpr obj(env);
for(m = 0; m < nbSlabs; m++){
obj += lossValues[load[m]];

}
model.add(IloMinimize(env, obj));

Since the slabs are ordered with no distinguishing characteristics, reordering the slabs
would produce a number of equivalent solutions. One way to reduce symmetry is to introduce
order among variables, as was done in previous lessons. You add constraints that state that
the ordered slabs must have decreasing loads. This constraint eliminates some, though not
all, symmetric solutions.

Step 9: Add the constraints to reduce symmetry
Add the following code after the comment //Add the constraints to reduce symmetry

for(m = 1; m < nbSlabs; m++){
model.add(load[m-1] >= load[m]);

}

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

250

Solve

Solving a problem using constraint programming consists of assigning a value to each
decision variable so that all constraints are satisfied and minimize the objective representing
the cost of the solution. You may not always know beforehand whether there is a solution
that satisfies all the constraints of the problem. In some cases, there may be no solution. In
other cases, there may be many solutions to a problem.

You use an instance of the class IloCP to solve a problem expressed in a model. The
constructor for IloCP takes an instance of IloModel as an argument.

Step 10: Create an instance of IloCP
Add the following code after the comment //Create an instance of IloCP

IloCP cp(model);

Since you know information about the structure of this problem, you can tune the optimizer
to help it perform better. Once all the decision variables in the array where have been
assigned values, the values for all of the other variables in the model will have been
determined through constraint propagation. A search strategy that assigns values to the
variables in this array first works well in this problem.

To tune the search to concentrate on the where variables, you create an instance of the class
IloSearchPhasewhich takes the environment and the array of where variables as arguments.
This tuning object is then passed as an argument to the IloCP::solve method.

Step 11: Search for a solution
Add the following code after the comment //Search for a solution

if (cp.solve(IloSearchPhase(env, where))){
cp.out() << “Optimal value: “ << cp.getValue(obj) << std::endl;
for (m = 0; m < nbSlabs; m++) {
IloInt p = 0;
for (o = 0; o < nbOrders; o++)
p += cp.getValue(where[o]) == m;

if (p == 0) continue;
cp.out() << “Slab “ << m << “ is used for order”;
if (p > 1) cp.out() << “s”;
cp.out() << “ :”;
for (o = 0; o < nbOrders; o++) {
if (cp.getValue(where[o]) == m)
cp.out() << “ “ << o;

}
cp.out() << std::endl;

}

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

251

}

Step 12: Compile and run the program
Compile and run the program. You should get the following results:

Optimal value: 0
Slab 0 is used for orders : 0 8
Slab 1 is used for orders : 2 11
Slab 2 is used for orders : 5 6
Slab 3 is used for orders : 1 10
Slab 4 is used for orders : 3 9
Slab 5 is used for orders : 4 7

As you can see, sixslabs are used and the orders have been distributed such that there is
no loss.

The complete program can be viewed online in the YourCPHome/examples/src/cpp/
steelmill.cpp file.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

252

Review exercises

Includes the review exercises and suggested answers.

In this section

Exercises
Lists the review exercises.

Suggested answers
Provides the suggested answers to the review exercises.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

253

Exercises

For answers, see Suggested answers.

1. What is the packing constraint?

2. Modify the code to add a fixed of cost of six for each slab used.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

254

Suggested answers

Exercise 1
What is the packing constraint?

Suggested answer
The constraint IloPack maintains the load of a set of containers, given a set of weighted
items and an assignment of items to containers.

Exercise 2
Modify the code to add a fixed of cost for each slab used.

Suggested answer
The code that has changed from steelmill.cpp follows. You can view the complete program
online in the file YourCPHome/examples/src/cpp/steelmill_ex3.cpp.

Just before the objective is added to the model, the additional variables and constraints are
added to the code:

IloInt fixedCost=1;
IloIntVarArray used(env,nbSlabs,0,1);
for (m=0; m < nbSlabs; m++)

model.add((load[m] > 0) == used[m]);
obj += fixedCost*IloSum(used);

The solution to the problem using the data given in the lesson code and using a fixed cost
of 5 has assigned orders to five slabs.

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

255

Complete program

The complete steel mill program can be viewed online in the file YourCPHome/examples/
src/cpp/steelmill.cpp.

Results

Optimal value: 0
Slab 0 is used for orders : 0 8
Slab 1 is used for orders : 2 11
Slab 2 is used for orders : 5 6
Slab 3 is used for orders : 1 10
Slab 4 is used for orders : 3 9
Slab 5 is used for orders : 4 7

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

256

Symbols
.NET languages 16

A
adding

constraint to model 57, 116
objective to model 77

array
appending 94

assignment problem 224

B
branch 35
branch decision 35

C
C++ 16
capacity 171
choice point 35
constrained variable 27
constraint

adding to model 57, 116
all different 232
allowed assignments 232
alternative 42, 193
compatibility 232
cumulative expression 42, 177, 213
definition 22, 28
logical 230
no overlap 42, 137, 153
operators 57
precedence 42, 116
span 42, 132
specialized 40
state 42
symmetry reducing 230, 233, 250
synchronize 42
temporal 40
types 42

constraint propagation
during search 34
improving performance 235
inference level 235
initial 32
types 31

cumulative function 171

D
data

input 71
decision variable

definition 22, 27
domain 22
matrix 91

domain
example 27
variable 22

domain reduction 32
example 32
introduction 32

E
example

assignment problem 224
map coloring 52
sports league scheduling 89
subproblem 224
warehouse location 69

expression 76
array 249
counting 230
element 74
integer 75
representation 76

extraction 35

F
fail limit 139, 197, 214

© Copyright IBM Corp. 1987, 2009 257

I N D E X

Index

G
graph coloring problem 52

I
IloAlgorithm class 59

getStatus method 59
getValue method 59
out method 59, 121, 158

IloAllDiff class 232, 235
IloAllowedAssignments function 232
IloAlternative constraint 193
IloCount function 75, 229, 230
IloCP class 59, 121

AllDiffInferenceLevel parameter 235
end method 104, 231
getStatus method 59
getValue method 59
LogVerbosity parameter 103
next method 104, 231
out method 59, 121, 158
setParameter method 103, 235
solve method 59, 104, 121, 158, 251
startNewSearch method 104, 231
TimeLimit parameter 103

IloCumulFunctionExpr class 171
IloEndBeforeStart 116
IloEndEval function 119
IloEndOf function 119, 134, 153, 212
IloEnv class

end method 56
IloExpr class 76
IloForbidEnd class 155
IloForbidExtend class 155
IloForbidStart class 155
IloIntervalSequenceVar class 136, 195
IloIntervalVar class

setIntensity method 155
IloIntExpr class 76
IloIntExprArg class 75
IloIntMax constant 56
IloIntTupleSet class 228
IloIntVarArray class

add method 94
IloIntVarEval class 103
IloLengthOf function 135
IloMinimize function 77
IloModel class

add method 57, 116
IloNoOverlap class 137, 153, 195
IloNumExpr class 76
IloNumToNumSegmentFunction class 117
IloNumToNumStepFunction class 154

setValue method 155
IloObjective class 77
IloPiecewiseLinear function 117

IloPresenceOf function 193
IloScalProd function 76
IloSearchPhase class 103, 251
IloSelectRandomValue function 103
IloSelectSmallest function 103
IloSpan class 132
IloStartEval function 117
IloStartOf function 117
IloStateFunction class 211
IloTransitionDistance class 136
IloTupleSet class

add method 92
IloValueSelector class 103
IloValueSelectorArray typedef 103
IloVarIndex class 103
IloVarSelectorArray typedef 103
inference level 235
input 71
installing 14
interval 40

definition 41
interval variable

end 119, 153, 212
length 135
modifier 133
optional 193
sequence 136
start 117

J
Java 16

L
league scheduling problem 89
limit

fail 139, 197, 214
time 103

log 35, 103

M
map coloring problem 52
matrix

decision variable 91
memory 56, 104
memory usage 35
minimize 77
model

contents 22
subproblem 227

O
objective

adding to model 77
expression 22
minimize 77
representation 77
solution 30

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

258

optimizer 22

P
piecewise linear 117
platform specific information 16
problem description 23

R
root node 33

S
scheduling

application types 38
building blocks 40
definition of 38
problem types 38

search
access all solutions 231
access intermediate solutions 104

search engine 22
search limit 103
search log 43
search move 33
search parameter

inference level 235
propagation 103, 235
time limit 103

search phase 104, 251
search space 31
search strategy 34, 251
search tree 33
selector 103, 251
sequence interval variable 136
solution

feasible 30
optimal 30

solution status 35
solve 30, 59, 121
state function 211
step function 154

T
time

elapsed 35
limit 103

transition time 136
tuple

set 228
tupleset 228

U
using a subproblem 227

V
variable

auxiliary 91
constrained 27
decision 22, 27

W
warehouse location problem 69

G E T T I N G S T A R T E D W I T H I B M I L O G C P
O P T I M I Z E R

259

	Table of contents
	Copyright notice
	Welcome to IBM ILOG CP Optimizer
	Overview
	About this manual
	Prerequisites
	Related documentation
	Installing IBM ILOG CP Optimizer
	Location of examples
	Typographic and naming conventions

	Constraint programming with IBM ILOG CP Optimizer
	Overview
	The three-stage method
	Describe
	Model
	Overview
	Decision variables
	Constraints

	Solve
	Overview
	Search space
	Initial constraint propagation
	Constructive search
	Constraint propagation during search

	Compile and test a simple application
	Scheduling in CP Optimizer
	Scheduling building blocks
	Overview
	Interval variables
	Scheduling constraints

	Compile and test
	Review exercises
	Exercises
	Suggested answers

	Modeling and solving a simple problem with integer variables: map coloring
	Overview
	Describe
	Model
	Solve
	Review exercises
	Exercises
	Suggested answers

	Complete program

	Using arrays and objectives: warehouse location
	Overview
	Describe
	Model
	Solve
	Review exercises
	Exercises
	Suggested answers

	Complete program

	Using specialized constraints and tuples: scheduling teams
	Overview
	Describe
	Model
	Solve
	Review exercises
	Exercises
	Suggested answers

	Complete program

	Using expressions on interval variables: house building with earliness and tardiness costs
	Overview
	Describe
	Model
	Solve
	Review exercises
	Exercises
	Suggested answers

	Complete program

	Using no overlap constraints on interval variables: house building with workers
	Overview
	Describe
	Model
	Solve
	Review exercises
	Exercises
	Suggested answers

	Complete program

	Using interval variables with intensities: house building with resource calendars
	Overview
	Describe
	Model
	Solve
	Review exercises
	Exercises
	Suggested answers

	Complete program

	Using cumulative functions: house building with budget and resource pools
	Overview
	Describe
	Model
	Solve
	Review exercises
	Exercises
	Suggested answers

	Complete program

	Using alternatives of interval variables: house building with worker allocation
	Overview
	Describe
	Model
	Solve
	Review exercises
	Exercises
	Suggested answers

	Complete program

	Using state functions: house building with state incompatibilities
	Overview
	Describe
	Model
	Solve
	Review exercises
	Exercises
	Suggested answers

	Complete program

	Using search parameters: team building
	Overview
	Describe
	Model
	Solve
	Review exercises
	Exercises
	Suggested answers

	Complete program

	Using search phases on integer variables: steel mill
	Overview
	Describe
	Model
	Solve
	Review exercises
	Exercises
	Suggested answers

	Complete program

	Index

