
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG DB Link V5.3

User’s Manual

June 2009

usrdblink.book Page 1 Tuesday, July 28, 2009 7:27 PM

usrdblink.book Page 2 Tuesday, July 28, 2009 7:27 PM

Copyright notice
© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/licenses/notices.txt in the installed product.

usrdblink.book Page 3 Tuesday, July 28, 2009 7:27 PM

C O N T E N T S

usrdblink.book Page 4 Tuesday, July 28, 2009 7:27 PM
Table of Contents

IBM ILOG DB Link V5.3

Preface About This Manual . 10

Manual Organization .13

Where to Get More Information .15

Related Documentation .15

Further Reading .16

Chapter 1 Data Types. 15

Output Mode. .16

DB2 .17

Informix .17

MS SQL Server .19

ODBC .19

Oracle .21

Sybase .22

Special Features .23

Input Mode .24

Date As String .25

Numeric As String .26

MS SQL Server Limitation .26
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 4

usrdblink.book Page 5 Tuesday, July 28, 2009 7:27 PM
Chapter 2 Configuration Issues . 27

Environment Variables .28

DB2 .28

Informix .28

MS SQL Server .28

Oracle. .28

Configuration File .29

Format .29

Location .30

Resolving Library Names and Loading Libraries .31

Configuration Features .31

Date As String .31

Numeric As String .32

Numeric As Object .32

Array Bind .33

Array Fetch. .34

Asynchronous Processing Mode .34

Principle .35

Important Behavior Change .35

Drivers that Support Asynchronous Processing. .35

Functions that Use Asynchronous Processing. .36

Server Information .37

Chapter 3 Sessions & Connections . 41

Connection Handling through IldDbms Objects .42

Initiating a Session or a Connection. .42

Creating IldDbms Objects .44

Session Configuration .46

Disconnecting and Reconnecting. .48

Number of Connections .49

Destroying IldDbms Objects. .49

Accessing the Database Schema. .49
5 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

usrdblink.book Page 6 Tuesday, July 28, 2009 7:27 PM
Schema Entity Types .50

Schema Entity Names and Owners .51

Tables and Views. .53

Procedures and Functions .56

Synonyms .57

Abstract Data Types. .57

Table Privileges .58

Data Definition Language (DDL) .58

Transaction Control .59

Initiating a Transaction. .60

Committing a Transaction .61

Rolling Back a Transaction .62

Autocommit Mode .62

Cursor Allocation. .62

Extending the IldDbms Class .62

Use Notification .64

Subscribe to an Event .64

Unsubscribe from an Event .64

Differences between IldDbms and IldDbmsModel Classes .65

Chapter 4 Cursors . 67

IldRequest Objects. .68

Creating IldRequest Objects .68

Number of Active Cursors .69

Disposing of IldRequest Objects .69

Configuration Settings .70

Default Settings .70

Accessing and Changing the Configuration. .71

Array Modes. .71

Column and Parameter Descriptors. .73

Notion of Descriptors .73

Implementation Descriptors .74
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 6

usrdblink.book Page 7 Tuesday, July 28, 2009 7:27 PM
Application Descriptors .75

Processing SQL Statements .76

Immediate Execution .76

Deferred Execution .78

Results Retrieval .81

Handling Multiple Result Sets .81

Direct Access .82

Binding to User-Allocated Memory. .84

Binding Input Variables. .86

Standard Implementation. .86

Overloaded Version .87

Setting Parameter Values .88

Specific Considerations .88

Generic Data Types .89

Handling Date and Time Values .89

Handling Exact Numeric Values. .90

Large Objects (LOBs) .92

Sending Large Objects. .92

Different Ways of Retrieving Large Objects .93

Handling Abstract Data Type Values .95

Abstract Data Type Descriptor .95

Abstract Data Type Values .96

Extending the IldRequest Class .97

Differences between IldRequest and IldRequestModel Classes .98

Chapter 5 Queries . 99

Executing an SQL Query Immediately .100

Setting Up a Query for Multiple or Repeated Use. .100

Binding Application Memory to the Database API .101

Finding Out the Types and Sizes of Returned Columns .101

Retrieving Data. .102
7 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

usrdblink.book Page 8 Tuesday, July 28, 2009 7:27 PM
Chapter 6 Errors and Warnings . 103

Diagnostic Class .104

Accessing a Diagnostic Instance .104

Context Information .104

Warnings. .105

Errors .105

Error Handlers .105

Error Codes .106

IBM ILOG DB Link API Codes and Messages Table .107

Function Codes .112

SQLSTATE .112

Error Messages .112

Error Origin. .112

Erroneous IldDbms and IldRequest Objects .113

Error Reporter .114

Default Settings and Behavior .114

Output Error Stream. .114

Customizing the Error Handling Mechanism .116

Base Class. .117

Virtual Functions and Their Parameters. .117

Chapter 7 Compiling and Linking. 119

Compilation Flags .120

Compatibility with Previous Releases .120

RDBMS Flags .122

Dynamic Load .122

Mode and Flag .124

Target RDBMSs .124

Multiple Targets .124

RDBMS Prerequisites .124

IBM ILOG DB Link Libraries .124

Library Names .125
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 8

usrdblink.book Page 9 Tuesday, July 28, 2009 7:27 PM
Building Dynamically-Loadable Drivers under UNIX .126

Chapter 8 Code Samples. 127

Generic Examples .128

Basic Use .128

Handling Dates and Numbers .129

SQL Interpreter .129

Concurrent Connections and Cursors .130

Relation Searching. .131

Relation Names .131

Input Bindings .132

Output Bindings .132

Multiple Output Bindings .133

Handling LOBs. .133

Asynchronous Processing .133

RDBMS-Specific Examples .134

Informix .135

Oracle. .135

Sybase .138

Index . 141
9 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

P R E F A C E

usrdblink.book Page 10 Tuesday, July 28, 2009 7:27 PM
About This Manual

This manual tells you how to use the IBM® ILOG® DB Link libraries. More specifically, it
explains how to use classes and functions, and includes considerations about particular
relational database management systems (RDBMSs). Numerous examples are supplied to
help you configure IBM ILOG DB Link depending on your specific RDBMS.

What Is IBM ILOG DB Link?

IBM® ILOG® DB Link gives you a simple yet powerful interface to one or more RDBMSs.
Its API (Application Programming Interface) is independent of both the platform and the
RDBMS. This applies at several levels:

◆ With regard to the RDBMS APIs: The IBM ILOG DB Link API hides all the
proprietary, RDBMS-specific API calls, as well as RDBMS-specific call sequencing.
Using one single call, you can have your SQL statement executed.

◆ With regard to platforms and compilers: Your code can be used to communicate with
different RDBMSs simultaneously. As IBM ILOG DB Link is platform-independent,
you do not have to rewrite any code when changing your platform or compiler. The
IBM ILOG DB Link API is similar to the Call Level Interface (CLI) ISO standard but
adapted to the C++ language.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 10

usrdblink.book Page 11 Tuesday, July 28, 2009 7:27 PM
◆ With regard to the contents of the SQL statements: Usually, IBM ILOG DB Link
does not change the contents of the SQL statements you send to the RDBMS. The only
exception is for MS SQL Server, which does not support placeholders. The
IBM ILOG DB Link Library interface lacks the necessary functionality. In fact, most of
the time, IBM ILOG DB Link does not even read the SQL statements you send. This
allows you to send any query you want, but it also means that IBM ILOG DB Link does
not check whether your SQL code complies with a standard such as SQL92 or the SQL
implementation specific to a given RDBMS.

IBM ILOG DB Link accepts and processes queries that use RDBMS-specific features, but
such queries may cause an error with RDBMSs that lack the specific feature.

There are two ways of using IBM ILOG DB Link:

◆ If the target RDBMSs are known from the beginning, the application can be linked with
the appropriate drivers.

◆ If the application does not specify one or more target RDBMSs, it can be linked with the
IBM ILOG DB Link driver manager, which will dynamically load the appropriate
drivers when necessary.

Supported RDBMSs and Platforms

The number of RDBMSs and platforms on which IBM® ILOG® DB Link works has been
increased. However, not all possible combinations are available. Make sure that your
platform, compiler, archtecture and RDBMS versions match a combination marked Y for
“yes” in Table 1.

If the cell corresponding to your combination does not exist in the table, or if that cell
contains a dash or an N, you should contact your IBM sales representative.

When a port is obsolete, the cell contains an O. In that case, you are strongly advised to
switch to another port as soon as possible because future versions of IBM ILOG DB Link
will drop that port.
11 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

usrdblink.book Page 12 Tuesday, July 28, 2009 7:27 PM
Table 1 indicates which systems and compilers are available with a given RDBMS.

Table 1 Available Configurations for IBM ILOG DB Link

IBM® ILOG®
Portname

System Compiler
IBM®
DB2®

IBM®
Informix
®

MS
SQL
Server
*

ODBC OLE DB
Oracle
®

Sybase
®

(Default
architecture is
32 bits)

8.x & 9.x 5 to 11 2000,
2005

3.5x 2.x 9 to 11 11,12,
15

ultrasparc32_8_6.2 Solaris 2.8 Forte 6.2 O O - - - O O

ultrasparc64_8_6.2 Solaris 2.8
64 bits

Forte 6.2 Y Y - - - Y Y

ultrasparc32_10_11 Solaris 2.10 SunStudio 11 Y Y - - - Y Y

ultrasparc64_10_11 Solaris 2.8
64 bits

SunStudio 11 Y Y - - - Y Y

alpha_5.1_6.5 Compaq Tru64
V5.1

CXX 6.5 N O - - - Y Y

x86_RHEL4.0_3.4 Red Hat 4.0 gcc 3.4 Y Y - - - Y Y

x86-64_RHEL4.0_3.4 Red Hat Linux
4.0 64 bits

gcc 3.4 Y Y - - - Y Y

x86_sles10.0_4.1 Suze Linux 10.0 gcc 4.1 Y Y - - - Y Y

x86_.net2003_7.1 MS Visual
Studio .net2003

msvc 7.1 O O O O O O O

x86_.net2005_8.0 MS Visual
Studio .net2005

msvc 8.0 Y Y Y Y Y Y Y

x64_.net2005_8.0 MS Visual
Studio .net2005
64 bits

msvc 8.0 Y Y Y Y Y Y Y

x86_.net2008_9.0** MS Visual
Studio 2008

msvc 9.0 Y Y Y Y Y Y Y

x64_.net2008_9.0*** MS Visual
Studio 2008
64 bits

msvc 9.0 Y Y Y Y Y Y Y

rs6000_5.1_6.0 AIX 5.1 Visual Age
C++ 6.0

Y Y - - - Y Y

power32_5.2_7.0 AIX 5.2 PPC IBM XL C/C++
7.0

Y Y - - - Y Y

power64_5.2_7.0 AIX 5.2 PPC
64 bits

IBM XL C/C++
7.0

Y Y - - - Y Y
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 12

usrdblink.book Page 13 Tuesday, July 28, 2009 7:27 PM
What You Need to Know

This manual assumes that you are familiar with the operating system in which you are going
to use your product. Since this product is written for C++ developers, this manual also
assumes that you can write C++ code and that you have a working knowledge of your
coding environment. To work with IBM ILOG DB Link, you also need to know SQL.

Manual Organization

This manual is divided as follows:

◆ Data Types provides the correspondence between IBM ILOG DB Link types and
RDBMSs, first in output mode, then in input mode.

◆ Configuration Issues describes the environment variables required by
IBM ILOG DB Link for each RDBMS, as well as configuration-file issues and some
basic configuration features. This chapter also describes what implementation
information items can be retrieved from the server.

ia64_hpux11_6.17 Itanium HP UX
11.23 64 bits

aC++ 6.17 - Y - - - Y -

ia32_hpux11_6.17 Itanium HP UX
11.23

- Y - - - Y -

x64_solaris10_11 x86-64 Sun
Solaris 5.10

Sun Studio 11 Y - - - Y -

x86_solaris10_11 x86-64 Sun
Solaris10

Sun Studio 11 Y - - - Y -

hp32_11_3.73 HP-UX 11 aCC 3.73 Y Y - - - Y Y

hp64_11_3.73 HP-UX 11
64 bits

aCC 3.73 Y Y - - - Y Y

*Support for MS SQL native DBLib will be discontinued soon. Users are advised to switch to OLE DB port.
**This port was previously known as x86_windows_vs2008.
***This port was previously known as x64_windows_vs2008.

Table 1 Available Configurations for IBM ILOG DB Link (Continued)

IBM® ILOG®
Portname

System Compiler
IBM®
DB2®

IBM®
Informix
®

MS
SQL
Server
*

ODBC OLE DB
Oracle
®

Sybase
®

13 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

usrdblink.book Page 14 Tuesday, July 28, 2009 7:27 PM
◆ Sessions & Connections describes how to use the class IldDbms.

◆ Cursors describes how to use the class IldRequest.

◆ Queries explains how to prepare and execute queries, bind application memory to the
database API, access the column descriptors, and retrieve data.

◆ Errors and Warnings explains the error-handling mechanism implemented by
IBM ILOG DB Link.

◆ Compiling and Linking discusses compilation flags and compatibility issues, and
presents the IBM ILOG DB Link libraries.

◆ Code Samples describes the sample files that are shipped with your IBM ILOG DB Link
product.

Notation

The following typographic conventions apply throughout this manual:

◆ Code extracts and file names are written in courier typeface.

◆ Important ideas are emphasized like this.

Naming Conventions

Throughout this manual, we will refer to the “application” as a program that you have
written to make use of data in one or more databases, managed by one or more RDBMSs, all
linked by IBM ILOG DB Link.

◆ Basic type names begin with Il as they come from the common basic IBM ILOG library
(ilog.lib or libilog.a).

◆ The names of classes, and functions defined in the IBM ILOG DB Link library begin
with Ild.

◆ Constants, error codes, and options are written in uppercase letters, separated by an
underscore “_” if their name consists of more than one word:

ILD_BAD_FILE

◆ The names of classes, functions, C++ types, and enumerated values (enum) are written as
concatenated, capitalized words:

class IldDbms;

enum IldEntityType {IldTableEntity, IldViewEntity, IldADTEntity,
IldCallableEntity, IldSynonymEntity};

IldDbms* IldNewDbms(const char*, const char*);
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 14

usrdblink.book Page 15 Tuesday, July 28, 2009 7:27 PM
◆ The first word in names of arguments, instances, and member functions begins with a
lowercase letter. Other words in such a name begin with an uppercase letter. Data
members of classes and fields in structures are prefixed by an underscore “_”:

 IldRequest::getByteValue();

typedef struct {
IlInt _size;
IldByte* _value;

}

◆ Accessors begin with the keyword get followed by the name of the data member:

const char* getCursorName() const;

◆ Accessors for Boolean members begin with is followed by the name of the data
member:

IlBoolean isConnected() const;

◆ Modifiers begin with the keyword set followed by the name of the data member:

IldRequest& setCursorName (const char* cursName);

Where to Get More Information

This section tells you where you can find additional information about your product:

◆ Related Documentation lists the other printed and online manuals that make up the
IBM® ILOG® DB Link documentation kit.

◆ Further Reading is a short bibliography on the SQL language and RDBMSs.

Related Documentation

In addition to this manual, the IBM ILOG DB Link libraries come with the following
documentation:

◆ The Reference Manual describes the various classes and functions in alphabetical order.

◆ Release Notes contain important, last-minute information such as new features and
errata, that could not be included in the printed or HTML manuals.

◆ The readme.html file delivered in the standard distribution. This file contains the most
current information about platform prerequisites for IBM ILOG DB Link.

◆ Source code for examples delivered in the standard distribution.
15 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

usrdblink.book Page 16 Tuesday, July 28, 2009 7:27 PM
Further Reading

SQL Language

◆ “Information Technology - Database Languages - SQL, Part 2: Foundation (SQL/
Foundation),”

See also the other parts of the standard at http://www.iso.org/iso/
iso_catalogue.htm.

◆ “An Introduction to Database Systems” 7th edition, C.J. Date, Addison-Wesley, ISBN 0-
201-38590-2, August 1999.

◆ “A Guide to the SQL Standard” 4th edition, C.J.Date and H. Darwen, Addison-Wesley,
ISBN 0-201-96426-0, 1997.

◆ “Database Systems: the Complete Book”, 1st edition, H. Garcia-Molina, J. D. Ullman,
and J. D. Widom, Prentice Hall, ISBN 0-130319-95-3, October 2001.

◆ www.sql.org

RDBMSs

◆ DB2

● “SQL Reference”, IBM, DB2 Documentation, S10J-8165-01

● “Call Level Interface Guide and Reference”, IBM, DB2 Documentation, S10J-8159-
00

◆ Informix

● “Informix-ESQL/C Programmer's Manual”, Informix Press, Part Number 000-7629

● “Informix Answers Online” Version 1.6, CD, Part No. 000-6823

◆ ODBC

● “ODBC 3.0 Programmer's Reference and SDK Guide”, Microsoft® Press,
Part Number 097-0001688

◆ OLEDB

● “"OLE DB 2.0 Programmer's Reference and Data Access SDK", Microsoft® Press,
ISBN 0-7356-0590-4

◆ Oracle®

● “Programmer's Guide to the Oracle Call Interface”, Oracle,
Part Number 5411-70-1292

● “Oracle7 Server SQL Language Reference Manual”, Oracle,
Part Number 778-70-1292
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 16

http://www.iso.ch/iso/en/stdsdevelopment/tc/tclist/TechnicalCommitteeStandardsListPage.TechnicalCommitteeStandardsList?COMMID=160
http://www.iso.ch/iso/en/stdsdevelopment/tc/tclist/TechnicalCommitteeStandardsListPage.TechnicalCommitteeStandardsList?COMMID=160

usrdblink.book Page 17 Tuesday, July 28, 2009 7:27 PM
● “Oracle Call Interface” Release 8.0 Programmer’s Guide 2 Vol.
Part Numbers A54657-01 & A54655-01

◆ Sybase

● “Open Client Client Library/C Reference Manual”, Sybase, Part Number 32840-01-
1000-04

● “Open Client Client Library/C Programmer's Guide”, Sybase, Part Number 35570-
01-1000-03
17 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdblink.book Page 15 Tuesday, July 28, 2009 7:27 PM
1

Data Types

Individual IBM® ILOG® DB Link type definitions are provided in the Reference Manual.

The minimal set of ANSI database data types are translated to the same types for all
supported RDBMSs. The data types that are handled by IBM ILOG DB Link are the same
for input and for output. The database system input and output types are mapped to
IBM ILOG DB Link types according to tables that show which IBM ILOG DB Link type is
used to retrieve the database data.

A one-to-one correspondence between database data types and IBM ILOG DB Link types
cannot be established. The IBM ILOG DB Link principle for mapping is economy—that is,
IBM ILOG DB Link defines a minimal set of data types to which database types are
converted. This does not prevent IBM ILOG DB Link from converting all database data
types for each supported RDBMS.

This chapter is divided as follows:

◆ Output Mode provides the correspondence between IBM ILOG DB Link types and
RDBMSs in output mode.

◆ Input Mode provides the correspondence between IBM ILOG DB Link types and
RDBMSs in input mode.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 15

usrdblink.book Page 16 Tuesday, July 28, 2009 7:27 PM
Output Mode

IBM® ILOG® DB Link uses its own types, mapped to C or C++ types, structures, and
objects, to fetch or send the data values from or to a database server. Due to variations in the
way different RDBMSs implement their own types, the correspondence may vary. However,
the SQL standard types, when they exist, are handled by the same IBM ILOG DB Link
types, regardless of the RDBMS. That is:

◆ CHAR, VARCHAR, NCHAR, LVARCHAR, and NVARCHAR are mapped to IldStringType.

◆ INTEGER and SMALLINT are mapped to IldIntegerType.

◆ FLOAT, REAL, and DOUBLE PRECISION are mapped to IldRealType.

◆ NUMBER, NUMERIC, DECIMAL are mapped to:

● IldRealType when the default settings are active.

● IldStringType when the “numeric as string” feature is turned on.

● IlNumeric when the “numeric as object” feature is turned on.

◆ DATE, TIME, and TIMESTAMP are mapped to IldDateType or IldDateTimeType
when the “date as string” feature is turned off.

The following tables are organized by RDBMS. They show which IBM ILOG DB Link type
is used to retrieve data from the database. Tables for the following RDBMSs are provided:

◆ DB2

◆ Informix

◆ MS SQL Server

◆ ODBC

◆ Oracle

◆ Sybase
16 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Output Mode

usrdblink.book Page 17 Tuesday, July 28, 2009 7:27 PM
DB2

Informix

Table 1.1 Mapping between IBM ILOG DB Link Types and DB2 Types

IBM ILOG DB Link Type SQL Type

IldByteType -

IldStringType CHAR, CHAR FOR BIT DATA
VARCHAR, VARCHAR FOR BIT
DATA

IldDateType
IldDateTimeType

DATE
TIME
TIMESTAMP

IldRealType 1

IldNumericType

1 When the numeric as string feature is turned on, the column data types are
converted into IldStringType.

DECIMAL
NUMERIC
FLOAT
DOUBLE
REAL

IldIntegerType INTEGER, SMALLINT

IldLongTextType LONG VARCHAR

IldBinaryType LONG VARCHAR FOR BIT DATA

IldBLOBType BLOB

IldCLOBType CLOB

IldDecFloatType DEC_FLOAT

Table 1.2 Mapping between IBM ILOG DB Link Types and Informix Types

IBM ILOG DB Link Type SQL Type

IldByteType -

IldStringType CHAR, CHARACTER
NCHAR
CHARACTER VARYING,
VARCHAR
NVARCHAR, LVARCHAR
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 17

usrdblink.book Page 18 Tuesday, July 28, 2009 7:27 PM
IldDateType
IldDateTimeType

DATE
DATETIME
INTERVAL

IldRealType 1

IldNumericType

DEC, DECIMAL, NUMERIC
REAL, SMALLFLOAT
DOUBLE PRECISION, FLOAT

IldIntegerType INT, INTEGER
SMALLINT
SERIAL

IldMoneyType(1) MONEY

IldLongTextType TEXT

IldBinaryType BYTE

IldCollectionType 2 LIST, SET, MULTISET

IldObjectType(2) [NAMED] ROW

IldCLOBType CLOB

IldBLOBType BLOB

1 When the numeric as string feature is turned on, the column data types are
converted into IldStringType.

2 Only supported for Informix Universal Server.

Table 1.2 Mapping between IBM ILOG DB Link Types and Informix Types

IBM ILOG DB Link Type SQL Type
18 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Output Mode

usrdblink.book Page 19 Tuesday, July 28, 2009 7:27 PM
MS SQL Server

ODBC

Table 1.3 Mapping Between IBM ILOG DB Link Types and MS SQL Server Types

IBM ILOG DB Link Type SQL Type

IldByteType TINYINT
BIT

IldIntegerType SMALLINT
INT

IldRealType NUMERIC 1

DECIMAL(1)

FLOAT, DOUBLE
PRECISION
REAL

1 When the numeric as string feature is turned on, these column data types
are converted into IldStringType.

IldMoneyType SMALLMONEY
MONEY

IldDateType
IldDateTimeType

SMALLDATETIME
DATETIME

IldStringType CHAR, NCHAR
VARCHAR, NVARCHAR
BINARY

IldLongTextType TEXT

IldBinaryType IMAGE

Table 1.4 Mapping Between IBM ILOG DB Link Types and ODBC Types

IBM ILOG DB Link Type SQL Type

IldByteType SQL_BIT
SQL_TINYINT

IldIntegerType SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 19

usrdblink.book Page 20 Tuesday, July 28, 2009 7:27 PM
IldRealType SQL_FLOAT
SQL_DOUBLE
SQL_REAL

SQL_DECIMAL 1

SQL_NUMERIC(1)

IldStringType SQL_CHAR
SQL_VARCHAR
SQL_BINARY
SQL_VARBINARY

IldDateType
IldDateTimeType

SQL_DATE
SQL_TIME
SQL_TIMESTAMP

IldMoneyType 2

IldLongTextType SQL_LONGVARCHAR

IldBinaryType SQL_LONGVARBINARY

1 When the numeric as string feature is turned on, these column data
types are converted into IldStringType.

2 Database Money Type is translated to NUMERIC or DECIMAL.

Table 1.4 Mapping Between IBM ILOG DB Link Types and ODBC Types (Continued)

IBM ILOG DB Link Type SQL Type
20 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Output Mode

usrdblink.book Page 21 Tuesday, July 28, 2009 7:27 PM
Oracle

Table 1.5 Mapping Between IBM ILOG DB Link Types and Oracle Types

IBM ILOG DB Link Type SQL Type

IldByteType -

IldStringType CHAR, CHARACTER
VARCHAR, VARCHAR2, CHARACTER
VARYING,
CHAR VARYING
ROWID
MLSLABEL
RAW

IldIntegerType 1

IldRealType 2

IldNumericType

1 All numeric types are described through the external type SQLT_NUM. DB Link
differentiates between integer and floating-point numbers using the precision and scale values.
If the scale is non-null or is null and precision is null or greater than 10, or if both scale and
precision are null, then the default type is IldRealType. Otherwise, it is
IldIntegerType.
Such a protocol leaves a potential problem for numbers with a precision set to 10 and no scale.
They can overflow the C or C++ limit for integer values. If such an overflow occurs due to the
values stored in the database system, your application can use the “numeric as string” or
“numeric as object” features.

NUMBER, NUMERIC, DECIMAL, DEC,
INTEGER, INT, SMALLINT,
FLOAT, DOUBLE PRECISION, REAL,
BINARY_FLOAT, BINARY_DOUBLE

IldDateType 3

IldDateTimeType

DATE,TIMESTAMP, TIMESTAMP WITH TIME
ZONE, TIMESTAMP WITH LOCAL TIME
ZONE, INTERVAL YEAR TO MONTH,
INTERVAL DAY TO SECOND

IldMoneyType -

IldLongTextType LONG, LONGVARCHAR

IldBinaryType LONG RAW

IldCollectionType VARRAY
NESTED TABLE

IldObjectType OBJECT

IldCursorType CURSOR

IldBLOBType BLOB

IldCLOBType CLOB
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 21

usrdblink.book Page 22 Tuesday, July 28, 2009 7:27 PM
Sybase

2 When the numeric as string feature is turned on, these column data types are converted into
IldStringType.

3 When the date as string feature is turned off, these column data types are converted into
IldDateTimeType.

Table 1.6 Mapping Between IBM ILOG DB Link Types and Sybase Types

IBM ILOG DB Link Type SQL Type

IldByteType TINYINT
BIT

IldIntegerType SMALLINT
INT

IldRealType NUMERIC 1

DECIMAL(1)

FLOAT, DOUBLE
PRECISION
REAL

1 When the numeric as string feature is turned on, these column data types
are converted into IldStringType.

IldMoneyType SMALLMONEY
MONEY

IldDateType
IldDateTimeType

SMALLDATETIME
DATETIME

IldStringType CHAR, NCHAR
VARCHAR, NVARCHAR
BINARY

IldLongTextType TEXT

IldBinaryType IMAGE
22 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Output Mode

usrdblink.book Page 23 Tuesday, July 28, 2009 7:27 PM
Special Features

The following special features of the Output Mode are described:

◆ Date As String

◆ Numeric As String

◆ Numeric As Object

Date As String

When the “date as string” feature is turned off, IBM ILOG DB Link automatically sets the
column type to IldDateTimeType. As a consequence, it refuses to return the DATE,
DATETIME, or TIMESTAMP value in string form and raises the error ILD_TYPE_MISMATCH.

See the functions IldIldBase::useStringDate and
IldIldBase::setStringDateUse, for the IldRequest and IldDbms classes in the
IBM ILOG DB Link Reference Manual for more information. (Functions common to those
classes are documented in the IldIldBase class.)

Numeric As String

When the numeric as string feature is turned on, IBM ILOG DB Link retrieves the numeric-
type value in string form. If the member function IldRequest::getColRealValue is
inadvertently used to retrieve the column value, the result is unpredictable.

See the functions IldIldBase::useStringNumeric and
IldIldBase::setStringNumericUse, for the IldRequest and IldDbms classes in the
IBM ILOG DB Link Reference Manual for more information. (Functions common to those
classes are documented in the IldIldBase class.)

Numeric As Object

When the numeric as object feature is turned on, IBM ILOG DB Link silently retrieves the
numeric-type value in IlNumeric object form. If the function
IldRequest::getColRealValue is inadvertently used to retrieve the column value, the
result is unpredictable. The various features for numeric-type values retrieval are mutually
exclusive.

See the functions IldIldBase::useNumeric and IldIldBase::setNumericUse, for
the IldRequest and IldDbms classes in the IBM ILOG DB Link Reference Manual for
more information. (Functions common to those classes are documented in the IldIldBase
class.)
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 23

usrdblink.book Page 24 Tuesday, July 28, 2009 7:27 PM
Input Mode

The following table lists the RDBMS API type-names that IBM® ILOG® DB Link uses to
send parameter values to the RDBMSs.

Table 1.7 RDBMS API Type Symbols Used by IBM ILOG DB Link

IBM ILOG DB Link DB2 Informix MS SQL Server ODBC

IldByteType SQL_C_TINYINT CINTTYPE SQLINT1 SQL_C_TINYINT

IldIntegerType SQL_C_LONG CINTTYPE SQLINT4 SQL_C_INTEGER

IldRealType SQL_C_DOUBLE CDOUBLETYPE SQLFLT8 SQL_C_DOUBLE

IldStringType SQL_C_CHAR CCHARTYPE SQLCHAR SQL_C_CHAR

IldDateType
IldDateTimeType

SQL_C_CHAR CCHARTYPE SQLDATETIME SQL_C_CHAR

IldMoneyType SQL_C_DOUBLE CDOUBLETYPE SQLMONEY SQL_C_DOUBLE

IldLongTextType SQL_C_CHAR CLOCATOR SQLTEXT SQL_C_CHAR

IldBinaryType SQL_C_BINARY CLOCATOR SQLBIT SQL_C_BINARY

IldObjectType - CROWTYPE - -

IldCollectionType - CCOLLTYPE - -

IldCursorType - - - -

IldRefType - - - -

IldCLOBType SQL_CLOB_LOCATOR CLOCATOR - -

IldBLOBType SQL_BLOB_LOCATOR CLOCATOR - -

IBM ILOG DB Link
(Continued)

Oracle Sybase

IldByteType SQLT_INT CS_INT

IldIntegerType SQLT_INT CS_INT

IldRealType SQLT_FLT CS_FLOAT

IldStringType SQLT_STR CS_CHAR
24 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Input Mode

usrdblink.book Page 25 Tuesday, July 28, 2009 7:27 PM
The following special features of the Input Mode are described separately:

◆ Date As String

◆ Numeric As String

◆ MS SQL Server Limitation

Date As String

When the date as string feature is turned off, the IBM ILOG DB Link IldDateTime type
values are sent using different database client API type symbols.

IldDateType
IldDateTimeType

SQLT_STR CS_CHAR

IldMoneyType SQLT_FLT CS_FLOAT

IldLongTextType SQLT_STR CS_CHAR

IldBinaryType SQLT_LBI CS_BINARY

IldObjectType SQLT_NTY -

IldCollectionType SQLT_NTY -

IldCursorType SQLT_RSET -

IldRefType SQLT_REF -

IldCLOBType SQLT_CLOB -

IldBLOBType SQLT_BLOB -

DB2 SQL_C_TYPE_TIMESTAMP

Informix CDTIMETYPE

ODBC SQL_C_TIMESTAMP

Oracle SQL_TIMESTAMP

Sybase CS_DATETIME_TYPE

IBM ILOG DB Link
(Continued) Oracle Sybase
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 25

usrdblink.book Page 26 Tuesday, July 28, 2009 7:27 PM
Numeric As String

A similar change happens when the numeric as string feature is turned on:

MS SQL Server Limitation

MS SQL Server does not automatically convert string values into integer values; the
application must use the SQL function convert:

cout << "Data insertion : " << endl;
const char* insertStr =
 ((!strncmp(dbms->getName(), "oracle", 6)
 || !strcmp(dbms->getName(), "sqlbase")) ?
 "insert into ATABLE values(:1, :2)"
 : ((!strcmp(dbms->getName(), "mssql") ||
 !IldStrNICaseCmp(dbOdbc, "Microsoft SQL Server", 20)) ?
 "insert into ATABLE values (convert(numeric(28, 9), ?), ?)"
 : "insert into ATABLE values(?, ?)"));

DB2 SQL_C_NUMERIC

Informix CCHARTYPE

ODBC SQL_C_CHAR

Oracle SQLT_STR

Sybase CS_NUMERIC
26 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdblink.book Page 27 Tuesday, July 28, 2009 7:27 PM
2

Configuration Issues

This chapter is divided as follows:

◆ Environment Variables describes the environment variables required by
IBM® ILOG® DB Link for each RDBMS.

◆ Configuration File explains how to load the configuration files that are necessary to your
working environment.

◆ Configuration Features deals with configuration file issues and some basic configuration
features.

◆ Asynchronous Processing Mode describes the principle of asynchronous processing in
IBM ILOG DB Link, as well as the changes brought about by this mode.

◆ Server Information describes what implementation information items can be retrieved
from the server.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 27

usrdblink.book Page 28 Tuesday, July 28, 2009 7:27 PM
Environment Variables

Depending on the operating system and the target RDBMS, some environment variables
must be set. Some configurations also require that you add the appropriate paths to your
environment. These considerations are described for the following RDBMSs:

◆ DB2

◆ Informix

◆ MS SQL Server

◆ Oracle

DB2

The environment variables DB2DIR and DB2INSTANCE must be set.

Informix

◆ UNIX® systems require the following variables:

● INFORMIXDIR, which locates the Informix client installation.

● INFORMIXSERVER, which provides the name of the default server.

● DELIMIDENT=y, which must be defined if your application is to use delimited
identifiers, because IBM ILOG DB Link libraries are compiled with this variable.

● If you use shared libraries, add $INFORMIXDIR/lib and $INFORMIXDIR/lib/esql
to the appropriate path variable (PATH or LD_LIBRARY_PATH or SHLIB_PATH).

◆ On PCs, the use of the Informix Utility setnet32 sets all necessary variables in the
registry.

MS SQL Server

All needed information is set in the registry upon installation.

Oracle

◆ On UNIX systems, the environment variable ORACLE_HOME must be set. If you use
shared libraries, add $ORACLE_HOME/lib32 if running in 32bits, or $ORACLE_HOME/
lib if runnning 64bits,to the shared libraries path variable.

◆ On PCs, the variable ORACLE_HOME and numerous other values are set in the registry
upon installation, and %ORACLE_HOME%\bin is added to the PATH variable.
28 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Configuration File

usrdblink.book Page 29 Tuesday, July 28, 2009 7:27 PM
Configuration File

If you use the dynamic load feature, IBM® ILOG® DB Link looks for a configuration file
that describes the drivers allowed for the current platform before establishing a connection.

The following items concerning this configuration file are described:

◆ Format

◆ Location

◆ Resolving Library Names and Loading Libraries

Format

The default configuration file dblink.ini is included in the standard distribution. This file
contains a single section, [dblink], which lists all available drivers with the following
format:

[<dblink>]
<database name>=<library name>

where:

◆ <database name> is one of the database system names listed in section Connection
Arguments on page 44,

◆ <library name> is the root of the IBM ILOG DB Link driver-library name. See
Resolving Library Names and Loading Libraries.

Note: When the driver is linked statically, this file is not used.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 29

usrdblink.book Page 30 Tuesday, July 28, 2009 7:27 PM
Location

◆ On PCs, the configuration file is searched for first in the executable directory, and then in
the Windows® root directory.

A first scan looks for a file named after the executable name. For example, if the
application name is myApp, IBM ILOG DB Link first looks for a configuration file
named myapp.ini. If no such file is found, IBM ILOG DB Link looks for the default
file dblink.ini.

◆ On UNIX, the configuration file is first searched using the contents of the environment
variable ILDHOME, if it is defined. The suffix .ini is appended to the variable contents.
If no such file is found, it is searched for locally. If it is still not found,
IBM ILOG DB Link first looks for the default file dblink.ini in the directory defined
by ILDHOME, then locally.

Whichever the platform, if the entry is not found in the application configuration file
myapp.ini, it will be searched for in the default file dblink.ini.

If the configuration file is not found using this method, DBLink will use the following hard-
coded values:

◆ db2 = dbdb2

◆ db29x = dbdb29x

◆ informix9 = dbinf9

◆ mssql = dbmssql

◆ odbc = dbodbc

◆ oledb = dboledb

◆ oracle9 = dbora9

◆ oracle10=dbora10

◆ oracle11=dbora11

◆ sybase = ctsyb
30 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Configuration Features

usrdblink.book Page 31 Tuesday, July 28, 2009 7:27 PM
Resolving Library Names and Loading Libraries

This step exists only when loading a driver dynamically.

The library name is built from the value of the entry in the configuration file that
corresponds to the first argument passed to the inline function IldNewDbms. Depending on
the operating system, a prefix can be added (lib under UNIX) and an extension is appended
(.so for Solaris, Linux, AIX and Tru64 UNIX®, .dll for PCs, .sl for HP-UX).

The library is then loaded using the system library functions dedicated to that purpose.
These functions and their behavior vary from one operating system to another.

◆ On PCs, the function LoadLibrary automatically searches the library using the
contents of the environment variable PATH.

◆ In compliance to POSIX standard, on UNIX, the library is always searched in the
directories declared in the variable LD_LIBRARY_PATH.

Configuration Features

This section describes the way date-and-time values and numeric values are handled. It also
discusses the array modes whereby IBM ILOG DB Link sends or fetches several rows at a
time. The following items are described:

◆ Date As String

◆ Numeric As String

◆ Numeric As Object

◆ Array Bind

◆ Array Fetch

Date As String

Date-and-time related values can be sent and retrieved as strings. This entails a dependence
on the RDBMS configuration parameters and LOCALE settings. The behavior with date-and-
time column data types can be changed. The default behavior ensures compatibility with
older versions, but the new behavior allows you to use objects to handle date-and-time
values.

◆ To turn off the default behavior for all IldRequest objects created from a specific
IldDbms object or to set a specific IldRequest object to handle date-and-time related
values as objects, use the member function IldIldBase::setStringDateUse, with
its argument set to IlFalse.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 31

usrdblink.book Page 32 Tuesday, July 28, 2009 7:27 PM
◆ To find the current setting, use the member function IldIldBase::useStringDate,
which returns a Boolean value.

Both functions are inherited from the common base class IldIldBase.

The error ILD_TYPE_MISMATCH is raised when an application tries to send or retrieve a
date-and-time value as an object when the date as string feature is turned on. Likewise, the
same error is raised if an application tries to send or retrieve a date-and-time value as a string
—instead of as an object—when the date as string feature is turned off.

Numeric As String

Numeric data values (and decimal values when applicable) can be sent and retrieved as
double values. However, this causes a loss in precision. The behavior with respect to exact
numeric column data types can be changed.

The default behavior ensures compatibility with older versions, but you can change it to
preserve exact precision for very large numbers by handling these values as strings.

◆ To turn off the default behavior for all IldRequest objects created from a specific
IldDbms object or to set a specific IldRequest object to handle numeric values as
strings, use the member function IldIldBase::setStringNumericUse with its
argument set to IlTrue. To handle numeric values as numeric objects, use the member
function with its argument set to IlFalse, as shown below:

{
 // Data selection using numeric objects
 request->setStringNumericUse(IlFalse);
}

◆ To find the current setting, use the member function
IldIldBase::useStringNumeric. It returns a Boolean value.

Both member functions are inherited from the common base class IldIldBase. No error is
raised if an application retrieves a numeric value as double when the numeric as string
feature is turned on, but the returned value is irrelevant.

It is possible to bind a database numeric type variable as an IBM ILOG DB Link string
variable. The conversion is handled silently.

Numeric As Object

The numeric as string feature has a drawback: since the application depends upon the
current LOCALE, the fractional-part and thousands separators may change from one session
to another.

To avoid that external dependency, IBM ILOG DB Link allows you to send and retrieve
numeric and decimal values under object form. The class IlNumeric is intended for that
purpose.
32 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Configuration Features

usrdblink.book Page 33 Tuesday, July 28, 2009 7:27 PM
◆ To turn off the default behavior for all IldRequest objects created from a specific
IldDbms object or to set a specific IldRequest object to handle numeric values as
objects, use the member function IldIldBase::setNumericUse with its argument set
to IlTrue.

◆ To find the current setting, use the member function IldIldBase::useNumeric,
which returns a Boolean value.

Both member functions are inherited from the common base class IldIldBase.

◆ To retrieve the numeric value of a select-list column in object form, use the function
IldRequest::getColNumericValue. The error ILD_TYPE_MISMATCH is raised
when this function is used and the numeric as object feature has not been turned on.
Conversely, it is also an error to try to retrieve the value in string form if the feature is
turned on.

◆ A parameter value can be set using the function IldRequest::setParamValue and
retrieved by means of the function IldRequest::getParamNumericValue.

Array Bind

Array bind means that IBM ILOG DB Link sends several rows of parameter values each
time a prepared query is executed.

◆ To set the array bind mode, pass the number of rows you want to be sent at a time.

This number can be set as a default value for all IldRequest objects requested from one
IldDbms object but it can be changed for any particular instance of IldRequest
whenever needed.

◆ To set the default value for all newly created IldRequest objects, use the member
function IldDbms::setDefaultParamArraySize, passing it a positive integer value
as its argument. The new value is set to all cursors requested after that setting, but it is
not changed for cursors already held by the application. The current default array bind
size can be retrieved using the function IldDbms::getDefaultParamArraySize.

◆ For each IldRequest object, you can change the array size using the function
IldRequest::setParamArraySize with a positive integer as its argument. To be
effective, this setting must take place before the call to IldRequest::parse or
IldRequest::execute.

◆ To get the array size, use IldRequest::getParamArraySize and to reset it, use
IldRequest::removeParamArraySize.

For RDBMS whose API does not support this feature, IBM ILOG DB Link emulates it. This
is the case of Informix, which supports the array bind mode only for insert statements
within a transaction.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 33

usrdblink.book Page 34 Tuesday, July 28, 2009 7:27 PM
Array Fetch

Array fetch means that IBM ILOG DB Link fetches several rows at a time from the current
result set and buffer the returned values. This optimizes network traffic by reducing the
number of messages exchanged between the client application and the database server.

◆ To set the default value for all IldRequest objects requested from an IldDbms object,
use the function IldDbms::setDefaultColArraySize with a positive integer as its
argument. The cursors already held by the application are not affected by the setting.

◆ For each IldRequest object, this setting can be changed using the member function
IldRequest::setColArraySize with a positive integer as its argument, or reset
using IldRequest::removeColArraySize. To be effective, the setting must take
place before the first call to fetch.

◆ To get the current array size, use IldRequest::getColArraySize.

With ODBC, the array fetch feature is available only if the driver has level 2 compliance.

For RDBMS whose API does not support this feature, IBM ILOG DB Link emulates it, but
with no optimization effect on the network load.

Asynchronous Processing Mode

This section describes what this processing mode does, how it changes the application
behavior, what drivers currently support this mode and what member functions use it. The
following items are described:

◆ Principle

◆ Important Behavior Change

◆ Drivers that Support Asynchronous Processing

◆ Functions that Use Asynchronous Processing
34 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Asynchronous Processing Mode

usrdblink.book Page 35 Tuesday, July 28, 2009 7:27 PM
Principle

When this mode is turned on, the execution of a query immediately returns control to the
application.

The application must then be designed so as to call the function again with the very same
arguments until the query completes. To test the completion status, the application calls the
function IldRequest::isCompleted, which returns:

◆ IlTrue if:

● an error was raised, or

● the caller is inactive, or

● the query is completed.

◆ IlFalse if the execution of the query is still in progress.

Important Behavior Change

When the asynchronous processing mode is turned on, only ONE query can be active at a
time for a given connection. In this case, it is impossible to use two different IldRequest
objects pertaining to the same connection (an IldDbms object) simultaneously. However, it
is possible to allocate several IldRequest objects for the same connection, and use any of
these requests as soon as the previous operation is completed.

Drivers that Support Asynchronous Processing

The function IldDbms::isAsyncSupported returns IlTrue when the driver supports the
asynchronous processing mode. Currently these drivers are:

◆ oracle9, 10 and 11

◆ sybase

◆ mssql

◆ odbc, when the underlying ODBC driver supports it.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 35

usrdblink.book Page 36 Tuesday, July 28, 2009 7:27 PM
Functions that Use Asynchronous Processing

When the asynchronous processing mode is turned on, the following member functions must
be checked for completion before accessing their results:

◆ IldDbms class

● IldDbms::readRelation

● IldDbms::readRelationNames (overloaded)

● IldDbms::readRelationOwners

● IldDbms::subscribeEvent

● IldDbms::unSubscribeEvent

◆ IldRelation class

● IldRelation::getForeignKeys

● IldRelation::getIndexes

● IldRelation::getPrimaryKey

● IldRelation::getSpecialColumns

For these four functions, check with:

rel->getDbms().isCompleted()

For these two classes, the returned values are significant if, and only if, the following test
holds:

dbms->isCompleted() && !dbms->isErrorRaised()

◆ IldRequest class

● IldRequest::execute (overloaded)

● IldRequest::fetch

● IldRequest::insertBinary

● IldRequest::insertLongText

● IldRequest::getLargeObject

● IldRequest::getLargeObjectChunk

● IldRequest::parse

● IldRequest::startGetLargeObject
36 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Server Information

usrdblink.book Page 37 Tuesday, July 28, 2009 7:27 PM
Server Information

Information about implementation is retrieved by calling the function IldDbms::getInfo.
The first argument of this function takes its value in the enumeration type IldInfoItem.

The enumeration is defined in the file ildconst.h. It uses the CLI-defined symbols,
prefixed with the IBM ILOG DB Link prefix Ild, and complies with the CLI numeric
values of these symbols. The values returned by the function getInfo also are compliant
with the CLI specifications except for IldOuterJoinCapabilities, where a number is
returned instead of a one-character string.

For information items whose value is a string, the server usually returns the exact value to
the appropriate query, but for those with numeric values, these values are translated to
symbols derived from the CLI standard.

The following table lists the type of the output argument from the function
IldDbms::getInfo that is used to return the value of the item.

Table 2.1 Server Information Items

Symbol CLI Code Item Value Possible Values

IldAlterTable 86 integer Depending on the RDBMS SQL
implementation, this item returns a value
resulting from the logical OR combination of:

◆ IldAlterTableAddColumn (1),

◆ IldAlterTableDropColumn (2),

◆ IldAlterTableAlterColumn (4),

◆ IldAlterTableAddConstraint (8),
and

◆ IldAlterTableDropConstraint
(16).

IldCatalogName 10003 string

IldCollatingSequence 10004 string

IldCursorCommitBehavior 23 integer This item returns one of the following values,
depending on the connected RDBMS:

◆ IldCurBehaviorDelete (0),

◆ IldCurBehaviorClose (1), or

◆ IldCurBehaviorPreserve (2).
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 37

usrdblink.book Page 38 Tuesday, July 28, 2009 7:27 PM
IldCursorSensitivity 10001 integer This item returns one of the following values:
◆ IldCursorASensitive (0),

◆ IldCursorInSensitive (1), or

◆ IldCursorSensitive (2)

IldDataSourceName 2 string

IldDataSourceReadOnly 25 string

IldDBMSName 17 string

IldDBMSVersion 18 string

IldDefTransactionIsolation 26 integer This item returns one of the following values:
◆ IldTransIsolReadUncommitted (1),

◆ IldTransIsolReadCommitted (2),

◆ IldTransIsolRepeatableRead (3), or

◆ IldTransIsolSerializable (4)

IldDescribeParameter 10002 string

IldFetchDirection 8 integer This item returns a logical OR operation
between all supported fetch directions. For
databases that do not support scrollable
cursors, the only possible value will be
IldFetchDirectionNext (1).

◆ IldFetchDirectionNext (1),

◆ IldFetchDirectionFirst (2),

◆ IldFetchDirectionLast (4),

◆ IldFetchDirectionPrior (8),

◆ IldFetchDirectionAbsolute(16),
and

◆ IldFetchDirectionRelative (32)

IldGetDataExtension 81 integer For this item, the returned value is always the
sum of:

◆ IldGetDataAnyColumn (1) and

◆ IldGetDataAnyOrder (2)

because IBM ILOG DB Link implements these
capabilities for all supported RDBMSs.

Table 2.1 Server Information Items (Continued)

Symbol CLI Code Item Value Possible Values
38 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Server Information

usrdblink.book Page 39 Tuesday, July 28, 2009 7:27 PM
IldIdentifierCase 28 integer This item returns one of the following values:
◆ IldIdentifierUpper (1),

◆ IldIdentifierLower (2),

◆ IldIdentifierSensitive (3), or

◆ IldIdentifierMixed (4)

IldIntegrity 73 string

IldMaxCatalogNameLength 34 integer

IldMaxColumnsInGroupBy 97 integer

IldMaxColumnsInOrderBy 99 integer

IldMaxColumnsInSelect 100 integer

IldMaxColumnsInTable 101 integer

IldMaxColumnNameLength 30 integer

IldMaxConcurrentActivities 1 integer

IldMaxCursorNameLength 31 integer

IldMaxDriverConnections 0 integer

IldMaxIdentifierLength 10005 integer

IldMaxSchemaNameLength 32 integer

IldMaxStatementLength 105 integer

IldMaxTableNameLength 35 integer

IldMaxTablesInSelect 106 integer

IldMaxUserNameLength 107 integer

IldNullCollation 85 integer This item returns one of the following values,
depending on whether the RDBMS collates
null values first or last in the result sets:

◆ IldNullCollateHigh (0) or

◆ IldNullCollateLow (1)

IldOrderByColumnsInSelect 90 string

Table 2.1 Server Information Items (Continued)

Symbol CLI Code Item Value Possible Values
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 39

usrdblink.book Page 40 Tuesday, July 28, 2009 7:27 PM
For all items that return an integer value, the return value is 0 if the value is unknown.
When an error is raised during the retrieval of an information item, the integer argument
is set to -1 and the string argument is set to the empty string (the first character is a null
character).

IldOuterJoinCapabilities 115 integer This item returns a logical OR operation
between all supported outer join capabilities:

◆ IldOuterJoinLeft (1),

◆ IldOuterJoinRight (2),

◆ IldOuterJoinFull (4),

◆ IldOuterJoinNested (8),

◆ IldOuterJoinNotOrdered (16),

◆ IldOuterJoinInner (32), or

◆ IldOuterJoinAllOps (64)

IldScrollConcurrency 43 integer This item returns a logical OR operation
between all supported options:

◆ IldScrollReadOnly (1),

◆ IldScrollLock (2),

◆ IldScrollOptRowver (4), and

◆ IldScrollOptValues (8)

IldServerName 13 string

IldSpecialCharacters 94 string

IldTransactionCapable 46 integer This item returns one of the following values:
◆ IldTransCapableNone (0),

◆ IldTransCapableDML (1),

◆ IldTransCapableAll (2),

◆ IldTransCapableDDLCommit (3), or

◆ IldTransCapableDDLIgnore (4).

IldTransactionIsolationOpt 72 integer This item returns one of the following values:
◆ IldTransIsolReadUncommitted (1),

◆ IldTransIsolReadCommitted (2),

◆ IldTransIsolRepeatableRead (3), or

◆ IldTransIsolSerializable (4)

IldUserName 47 string

Table 2.1 Server Information Items (Continued)

Symbol CLI Code Item Value Possible Values
40 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdblink.book Page 41 Tuesday, July 28, 2009 7:27 PM
3

Sessions & Connections

An application can be designed to communicate with several RDBMSs at a time, each
communication being represented by a connection that makes up the active part of a session.
A connection can be closed and reopened using a different authentication.

IBM® ILOG® DB Link implements the session concept through the class IldDbms, which
is also the repository for the connection control.

IldDbmsModel, a twin class to IldDbms, is provided to develop drivers for RDBMS that
aren't currently supported by IBM ILOG DB Link. It supports the same functionalities as
IldDbms, plus the ability to be derived. So, in this manual, we describe the IldDbms class,
which is the main one. The few differences between the two twin classes are itemized in a
subsection.

This chapter is divided as follows, to reflect what this class allows:

◆ Connection Handling through IldDbms Objects—Connecting, disconnecting,
reconnecting.

◆ Accessing the Database Schema for database schema descriptions—Several classes of
descriptors exist to describe the various entities contained in the target database.

◆ Data Definition Language (DDL)—Executing DDL and DML statements.

◆ Transaction Control—All transactional operations, such as initiating, committing, or
rolling back a transaction.

◆ Cursor Allocation—Cursors are created on demand and then cached in a pool for reuse.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 41

usrdblink.book Page 42 Tuesday, July 28, 2009 7:27 PM
◆ Extending the IldDbms Class—This class cannot be derived, but you can extend its
functionalities under certain conditions. If you need to derive the IldDbms class, you
must use its twin class, IldDbmsModel.

◆ Use Notification—This feature lets you receive notifications from the RDBMS
asynchronously.

◆ Differences between IldDbms and IldDbmsModel Classes

Connection Handling through IldDbms Objects

With IBM ILOG DB Link, an application connects to an RDBMS through an object of the
class IldDbms. In fact, the first thing that IBM ILOG DB Link must do before an interactive
session can be initiated with a database server is to create such an IldDbms object.

This section explains how to create, manipulate, and delete IldDbms objects. It is divided as
follows:

◆ Initiating a Session or a Connection

◆ Creating IldDbms Objects

◆ Session Configuration

◆ Disconnecting and Reconnecting

◆ Number of Connections

◆ Destroying IldDbms Objects

Initiating a Session or a Connection

The only way to initiate a session or a connection is to create an IldDbms object. To do this,
use the inline function IldNewDbms. (This entry point is defined as an inline global function
in the header file dblink.h.) As a consequence, a connection is activated. It can be closed
by calling the function IldDbms::disconnect and reopened later by calling the function
IldDbms::connect.

When the IldDbms object is deleted, the connection is automatically closed and all
dependent objects are deleted.

Note: Several connections can be active at the same time. Their number is limited only by
the server configuration (not by IBM ILOG DB Link itself).
42 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Connection Handling through IldDbms Objects

usrdblink.book Page 43 Tuesday, July 28, 2009 7:27 PM
If the driver fails to establish the initial connection, an object from the class IldErrorDbms
is returned.

There are five cases where an error of type IldErrorDbms can be returned and only one
where an instance of IldErrorRequest is returned. All cases where an IldErrorDbms
error is returned are handled by the driver manager in the function IldAllocConnect.
Only the member function IldDbms::getFreeRequest may return an
IldErrorRequest error, when the connection is not established and the
error handler fails to fix it.

Error-Raising Conditions

◆ Null or empty strings as arguments

The arguments passed to the function IldNewDbms must not be null or empty strings.
Otherwise, an IldErrorDbms error is returned.

See Connection Arguments for details about these two arguments.

◆ Driver not linked or not found

● When the drivers are linked statically, the driver whose name is passed as first
argument to the function IldNewDbms must be found. Otherwise, an instance of
IldErrorDbms is created, initialized in an error state—that is, the function
IldIldBase::isErrorRaised returns IlTrue—and returned. (This function is
inherited from the common base class IldIldBase.)

● When the drivers are loaded dynamically and an entry with the proper name is missing
in the dblink.ini file, the same behavior occurs.

◆ Memory allocation failure

When the driver entry point is called and fails to return a valid address, the driver
manager creates and returns an IldErrorDbms error.

◆ Unknown driver

When using the dynamic load feature, if the RDBMS name is not found in the [dblink]
section of the configuration file, the driver manager returns an IldErrorDbms error.

◆ Improper driver found

When using the dynamic load feature, if the driver library is loaded properly but the entry
point cannot be found, the driver manager allocates and returns an IldErrorDbms error.

Warning: The class IldErrorDbms is not documented.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 43

usrdblink.book Page 44 Tuesday, July 28, 2009 7:27 PM
◆ Unconnected

When the connection is not established or has been closed, and the error handler did not
attempt to re-establish it or this attempt failed, the IldDbms::getFreeRequest
function allocates and returns an IldErrorRequest object.

The only time that the function IldNewDbms can return a null value is when no object can
be allocated because the application ran out of memory.

Creating IldDbms Objects

There is no public constructor for objects of the class IldDbms. To create IldDbms objects,
use the inline function IldNewDbms. This function is defined in your application as soon as
the file dblink.h is included. Its code is modified by the compile-time flags you define.

If your application is linked in dynamic load mode, no RDBMS-specific compile-time flag
is needed.

Throughout this manual, multiple examples show you how to use the function IldNewDbms.

{
 cout << "Connecting to: " << IldDbmsName << endl;
 IldDbms* dbms = IldNewDbms(IldDbmsName, IldConString);
 if (!dbms) cout << "Out of memory" << endl;
 if (dbms->isErrorRaised()) {
 IldDisplayError("Creating Dbms: ", dbms);
 delete [] queryBuffer;
 delete dbms;
 return 1;
 }
}

Automatic Connection

Creating an IldDbms object connects you to the RDBMS using the values passed to the
function IldNewDbms. This initial connection is required to test whether the server can be
reached and is ready for communication.

Connection Arguments

The function IldNewDbms takes two arguments, which are the DB Link name of the
database system and the connection string.

Warning: Even though the allocation may be successful, the creation of the IldDbms object
may still fail. To make sure the connection is successful, you must a) Check that
IldNewDbms returns a non-null pointer; b) Use the member function
IldIldBase::isErrorRaised to check whether the IldDbms object was successfully
allocated.
44 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Connection Handling through IldDbms Objects

usrdblink.book Page 45 Tuesday, July 28, 2009 7:27 PM
◆ The first argument is the name of the database system as known by IBM ILOG DB Link.
It must have one of the following values:

● db2

● db29x

● informix9

● mssql

● odbc

● oledb

● oracle9

● oracle10

● oracle11

● sybase

These names are all lowercase and must be entered exactly as shown. Any other names
are illegal when using IBM ILOG DB Link-supported drivers.

If the name you pass does not match one from the above list, IBM ILOG DB Link raises
either the error ILD_UNKNOWN_RDBMS, indicating that it does not recognize the RDBMS,
or ILD_LIB_NLNKD if the application did not link the driver statically.

◆ The second argument is the connection string. It must comply with a format that depends
on the target RDBMS.

Connection String Format

The format and contents of a connection string depend on the target RDBMS:

◆ DB2: [<user>]/[<password>]/<database name>

◆ Informix: [<user>]/[<password>]/<database name>[@<server>]

◆ MS SQL Server: <user>/<password>/<database name>/<server name>

◆ ODBC: <data source name>/[<user>]/[<password>]

◆ Oracle: [<user>]/[<password>][@<service>]

◆ Sybase: <user>/<password>/<database name>/<server name>

Values enclosed in square brackets are optional.

Note: With ODBC, you cannot pass the database name in the connection string. It can be
set through the odbc.ini file. Also, the slash marks ('/') are mandatory.

The ODBC driver also supports a connection string following the format:

"DRIVER= ...; DBQ=..."
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 45

usrdblink.book Page 46 Tuesday, July 28, 2009 7:27 PM
If the second argument passed to the function IldNewDbms does not comply with the
appropriate format, IBM ILOG DB Link raises the error ILD_BAD_DB_SPEC indicating that
the connection string is not valid for this RBDMS. Nothing can be done using that IldDbms
object until a valid connection is established.

Session Configuration

Default Error Reporter

When you create an IldDbms object, it is associated with a new IldErrorReporter
object. The default reporter is not accessible to the application. As a consequence, the
function IldDbms::getErrorReporter returns a null pointer if no user-derived error
reporter has been set.

To customize error handling, you can create your own error reporter class and instantiate it
for the IldDbms object reporter using the function IldDbms::setErrorReporter.

Default Configuration

The default settings for a session configuration are the following:

◆ The date as string feature is turned on.

◆ The numeric as string feature is turned off.

◆ The numeric as object feature is turned off.

◆ The array size for the array bind and array fetch modes is set to 1.

Checking the Default Configuration of a Connection

Once you have created the first object of the class IldDbms, you can access the following
configuration settings:

◆ To get the versions of the currently accessed RDBMS against which
IBM ILOG DB Link was tested, use the function IldDbms::getDbmsVersions.

◆ To get the main version number of the supported RDBMS, use the member function
IldDbms::getDbmsVersion.

◆ To get the information items obtained from the server, use IldDbms::getInfo.

None of these values can be changed, so they remain valid for all IldDbms objects your
application creates.
46 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Connection Handling through IldDbms Objects

usrdblink.book Page 47 Tuesday, July 28, 2009 7:27 PM
Checking the Current Configuration of a Connection

In the current IldDbms object, several session-wide parameters are set. Table 3.1 shows
what IldDbms member function you can use to check their values.

Changing the Configuration of a Connection

You can change the settings in your current connection configuration, as shown in Table 3.2:

Table 3.1 Checking the Current Configuration of a Connection

Use this member function... ...to get this setting. Default Value

IldDbms::getName IBM ILOG DB Link name of the currently
accessed RDBMS

IldDbms::getUser Name of the user who established the
connection

IldDbms::getDatabase Name of the database used to establish the
connection

IldDbms::getDefaultColArraySize Default size of the array used to fetch rows
when the SQL statement executed is a
select query

11

1 This default value means that rows will be fetched one by one. It is automatically used at creation time for all objects of the class
IldRequest that depend on that IldDbms object.

IldDbms::getDefaultParamArraySize Default size of the array used to send rows of
parameter values

12

2 This default value means that the parameter rows will be sent one by one. Like the fetch array size, this value is set at creation time for all
objects of the class IldRequest that depend on that IldDbms object.

IldIldBase::useStringDate Date as string feature IlTrue

IldIldBase::useStringNumeric Numeric as string feature IlFalse

IldIldBase::useNumeric Numeric as object feature IlFalse

Table 3.2 Changing the Settings of the Current Connection Configuration

Use To

 IldDbms::setDefaultColArraySize Change the default fetch array size1

 IldDbms::setDefaultParamArraySize Change the default parameter array size

 IldIldBase::setStringDateUse Turn off the date as string feature
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 47

usrdblink.book Page 48 Tuesday, July 28, 2009 7:27 PM
Disconnecting and Reconnecting

To disconnect from an RDBMS, you must call the function IldDbms::disconnect as
follows:

{
cout << "Disconnecting from: " << argv[1] << endl;
if (!dbms->disconnect())
 IldDisplayError("Disconnection failed: ", dbms);
}

This function:

◆ deletes all its attached IldRequest objects;

◆ deletes all its attached schema entity description objects;

◆ closes the connection to the RDBMS.

Once you have disconnected, you cannot create an IldRequest object from that same
IldDbms object. Any such attempt raises the error ILD_DBMS_NOT_CONNECTED and an
IldErrorRequest object is returned to the calling application.

With a disconnected IldDbms object, you can reconnect to any database from the same
database system by calling the member function IldDbms::connect. Its argument is a
connection string of the same format as the second argument passed to the function
IldNewDbms. If the IldDbms object was not properly disconnected prior to your call to
connect, the error ILD_ALREADY_CONNECTED is raised, indicating that the current object
is still in use or has not been properly disconnected yet.

{
cout << "New connection to: " << argv[1] << endl;
if (!dbms->connect(argv[2]))
 IldDisplayError("Reconnection failed: ", dbms);
}

 IldIldBase::setStringNumericUse Turn on the numeric as string feature

 IldIldBase::setNumericUse Turn on the numeric as object feature

1 The new values are inherited at creation time by all IldRequest objects built after one of these functions
has been called. Array size values for objects that were created before the call remain unchanged.

Note: The error reporter of the IldDbms object is inherited by all subsequently created
IldRequest objects.

Table 3.2 Changing the Settings of the Current Connection Configuration

Use To
48 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Accessing the Database Schema

usrdblink.book Page 49 Tuesday, July 28, 2009 7:27 PM
The member function IldDbms::disconnect is used in the example testerr where an
attempt to connect twice is made deliberately. The user-defined error reporter forces a
disconnection to enable the new connection to be made:

{
case ILD_ALREADY_CONNECTED:
 cout << endl
 << "USER WARNING: already connected to: "
 << dbms->getDatabase()
 << endl;
 dbms->disconnect();
 // The connection will be performed by DB Link itself.
 break;
}

Number of Connections

IBM ILOG DB Link has no built-in limitation to the number of connections an application
can create. The RDBMS itself raises an error when its maximum number of connections is
reached. This maximum may be configured.

The member function IldDbms::getNumberOfActiveConnections returns the number
of IldDbms objects created.

Destroying IldDbms Objects

All IldDbms objects created by an application must be destroyed before the application
exits to avoid memory leaks and possible dangling connections to the RDBMS.

The IldDbms destructor has the same effect on attached IldRequest objects and schema
entity description objects as a call to the function IldDbms::disconnect. All these
objects are destroyed, hence, there is no need to delete them. IBM ILOG DB Link takes care
of deleting them before deleting the IldDbms object itself.

Accessing the Database Schema

IBM ILOG DB Link offers several functions to access the database schema or catalog.

A schema entity is any autonomous structure in a schema: this includes tables, views, stored
procedures, user-defined data types, and synonyms. However, indexes or primary keys are
not schema entities because they cannot be described independently of a table.

Important: Objects of classes derived from IldDbmsModel DO NOT behave in this way:
IldRequestModel derived objects MUST be explicitly separately deleted.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 49

usrdblink.book Page 50 Tuesday, July 28, 2009 7:27 PM
Most entities belonging to a database schema can be described by means of special
descriptors. All schema entity descriptors are instances of classes derived from the class
IldSchemaEntity:

◆ IldRelation for tables and views

◆ IldCallable for procedures and functions

◆ IldSynonym for synonyms

◆ IldADTDescriptor for user-defined data types (supported only when connected to
Object-Relational Data Base Management Systems).

It is also possible to get only the entity names and owner names. Names are returned as
arrays of character strings by the following member functions of the class IldDbms:

◆ IldDbms::readRelationNames

◆ IldDbms::readProcedureNames

◆ IldDbms::readSynonymNames

◆ IldDbms::readAbstractTypeNames

All these functions take the owner name as an optional argument to restrict the returned
names to the entities that belong to that owner. These items are described in the following
order:

◆ Schema Entity Types

◆ Schema Entity Names and Owners

◆ Tables and Views

◆ Procedures and Functions

◆ Synonyms

◆ Abstract Data Types

◆ Table Privileges

Schema Entity Types

Any schema entity for which a descriptor class exists has an identifier in the enumeration
type IldEntityType declared in the file ild.h.

For any descriptor derived from IldSchemaEntity, the actual type of the descriptor can be
retrieved by calling the function IldSchemaEntity::getEntityType.
50 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Accessing the Database Schema

usrdblink.book Page 51 Tuesday, July 28, 2009 7:27 PM
These descriptors have only one possible identifier, except for the table or view descriptor
IldRelation, which can be identified by IldTableEntity or IldViewEntity, as
summarized in Table 3.3.

Schema Entity Names and Owners

◆ The names of all owners of any entity in the schema can be retrieved by calling the
function IldDbms::readOwners.

◆ The names and owners of any entity type in the schema can be retrieved as a cursor using
the function IldDbms::readEntityNames. This function takes the entity type as its
first argument and, optionally, an owner’s name as its second argument, and returns a
result set in form of a fetch-ready IldRequest object.

Names and Owners of Tables or Views

If you are interested only in table names, you can use the member function
IldDbms::readRelationNames. It returns an array of all table and view names found in
the schema. It is your responsibility to delete the array returned and the strings it contains,
preferably using the function IldDbms::freeNames:

{
 char** names = dbms->readRelationNames();
 if (names) {
 cout << "All relation names:" << endl;
 for (int i = 0; names[i] != 0 ; i++)
 cout << " " << names[i] << endl;
 dbms->freeNames(names);
 }
}

Table 3.3 Schema Entity Descriptors

Descriptors Identifiers

Table IldTableEntity

View IldViewEntity

Procedure or function IldCallableEntity

Synonym IldSynonymEntity

User-defined type (abstract data type) IldADTEntity

Error IldUnknownEntity
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 51

usrdblink.book Page 52 Tuesday, July 28, 2009 7:27 PM
Some database management systems, such as Oracle, allow different users to create different
tables with the same name. In this case, the array returned contains the same name several
times. The second argument is optional and changes the behavior of the function:

◆ If the user argument is specified, only the names of the tables that belong to the given
user name are returned.

◆ If not, all table names from the current schema are returned.

{
 cout << endl << "Give a USER name[CR for no USER]: ";
 cin.getline(str, 100);
 if (str[0]) {
 // We got a user.
 names = dbms->readRelationNames(str);
 if (names) {
 cout << "Relation names belonging to " << str << ": "
 << endl;
 for (int i = 0 ; names[i] != 0 ; i++) {
 cout << " " << names[i] << endl;
 }
 dbms->freeNames(names);
 }
 else
 cout << " NONE " << endl;
 }
}

If you want to know all table names and their owner names, the overloaded member function
IldDbms::readRelationNames returns an array of the table names and sets its parameter
to an array of the owner names. It is your responsibility to delete both arrays and the strings
they contain.

Procedure Names

All procedure and function names are returned by the function
IldDbms::readProcedureNames. If the optional user argument is specified, this
function returns only the names of the procedures and functions that belong to that user.

Synonym Names

All synonym names are returned by the function IldDbms::readSynonymNames. If the
optional user argument is specified, this function returns only the names of the synonyms
that belong to that user.

Note: This function is not supported for DB2, MS SQL Server, ODBC, and Sybase, which
do not have the notion of synonyms.
52 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Accessing the Database Schema

usrdblink.book Page 53 Tuesday, July 28, 2009 7:27 PM
Abstract Data Type Names

All abstract data type names are returned by the function
IldDbms::readAbstractTypeNames. If the optional user argument is specified, this
function returns only the names of the abstract data types that belong to that user.

Tables and Views

Within IBM ILOG DB Link, a database table or view is described as an object of the class
IldRelation. Such objects can be created by calling one of the following functions:

◆ IldDbms::readRelation: This function takes the table or view name as its first
argument, and the owner name as its optional second argument.

This function does not cache the returned object, which, therefore, must be deleted by the
application.

An overloaded version of this function takes only one argument, namely the numerical
identifier of the table or view. This second version is not supported by all RDBMS.

◆ IldDbms::getRelation. This function takes the table name as its first argument and
an owner name as its optional second argument. This function adds the created object to
the cache managed by the caller. Therefore, the object can be accessed later without
querying the server and can be deleted automatically when the caller is destroyed.

An overloaded version of this function takes only one argument, namely the numerical
identifier of the table or view. This second version is not supported by all RDBMSs.

Note: This function is only supported for ORDBMS (Object-Relational Data Base
Management Systems).

Warning: When a table description is returned by this function, it is not possible to get
its keys and indexes. If the application needs to hold a table description that is not
attached to a connection, it should get it from the next function, query the keys and
indexes, and then ask the description to be detached from the connection using the
function IldDbms::removeRelation.

Warning: Some database systems, such as Oracle, allow different users to own different
tables with the same name. With such systems, it is important to supply the user
parameter. Otherwise, IBM ILOG DB Link builds the IldRelation object based on
the first row returned from the database server and ignores the others.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 53

usrdblink.book Page 54 Tuesday, July 28, 2009 7:27 PM
{
cout << "Trying to retrieve an unknown relation: " << endl;
IldRelation* relation = dbms->getRelation("ATABLE");
if (!relation)
 relation = dbms->getRelation("atable", "");
if (!relation)
 // We print the error message.
 if (dbms->isErrorRaised())
 IldDisplayError(intentErr, dbms);
}

Types

IBM ILOG DB Link returns different types of relations, depending on the RDBMS you are
connected to. The available types are IldTableEntity and IldViewEntity.

The meaning of these symbols is straightforward. Depending on the target RDBMS, loading
the schema may create 0 or n IldRelation objects of type IldView Entity

Table Characteristics

Objects of the class IldRelation can be accessed to get the table characteristics, as shown
in Table 3.4:

The global function IldPrintRelation in the ildutil.cpp sample file shows how to
use these member functions. See Relation Searching on page 131 for details.

With the exception of the IldDbms object, no value returned by these functions can be
modified.

Table 3.4 Table Descriptors

Use this function... To get the following descriptor

IldSchemaEntity::getEntityType Type of the table

IldRelation::getCount Number of columns

IldSchemaEntity::getName Table name

IldSchemaEntity::getOwner Table owner

IldSchemaEntity::getDbms Related IldDbms object

IldRelation::getPrimaryKey Primary key, if any

IldRelation::getForeignKeys Foreign keys, if any

 IldRelation::getIndexes Indexes, if any

 IldRelation::getSpecialColumns Special columns (—that is, the columns that
uniquely identify one row in the table)
54 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Accessing the Database Schema

usrdblink.book Page 55 Tuesday, July 28, 2009 7:27 PM
Columns

From an IldRelation object, you can reach its column descriptions. IBM ILOG DB Link
preserves the column order, except with ODBC, where the column order is not specified.

A column description includes its name, size, IBM ILOG DB Link type, and native type
name, as well as the flag indicating whether it accepts null values. Use the following
member functions to get these attributes:

◆ Name: IldRelation::getColName(IlUShort).

◆ Size: IldRelation::getColSize(IlUShort). The column size is always in bytes. It
is the actual size (the maximum size for CHAR and VARCHAR database types) used by
IBM ILOG DB Link to store or send the data values.

◆ DB Link type: IldRelation::getColType(IlUShort). This function returns a
value from the enumeration IldColumnType.

◆ Native SQL type name: IldRelation::getColSQLType(IlUShort). This function
returns the name of the native SQL data type on the server.

◆ Null-values flag: IldRelation::isColNullable(IlUShort)

{
 for (i = 0; i < nbColumns; i++) {
 ostrstream ostr(ColumnSizeStr, 32);
 ostr << relation.getColSize(i) << ends;
 ItemsArray[0]._buffer = (char*)relation.getColName(i);
 ItemsArray[1]._buffer = (char*)relation.getColSQLType(i);
 ItemsArray[3]._buffer = (relation.isColNullable(i)
 ? "true" : "false");
 cout << IldFormatLine(4, ItemsArray, IlFalse) << endl;
 }
}

All these member functions take a column number as the argument. A valid column number
is:

◆ greater than or equal to 0, and

◆ strictly less than the value returned by IldRelation::getCount.

Keys, Indexes, and Special Columns

The primary key, foreign keys, indexes, and special column descriptors are not created at the
same time as the table description. They are retrieved from the database only the first time
they are accessed, using the IldRelation functions IldRelation::getPrimaryKey,
IldRelation::getForeignKeys, IldRelation::getIndexes, and
IldRelation::getSpecialColumns.

Note: The LOB-type columns do not follow this rule. Thus, the value returned by the
function getColSize is not meaningful for such columns.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 55

usrdblink.book Page 56 Tuesday, July 28, 2009 7:27 PM
If no keys of that type exist, the server is not queried again on the next call to one of these
functions.

Procedures and Functions

Within IBM ILOG DB Link, a database procedure or function is described as an object of
the class IldCallable. Such objects can be created by calling one of the following
member functions:

◆ IldDbms::readProcedure: This function takes the procedure or function name as its
first argument and an owner name as the optional second argument. The returned object
is not cached. Therefore, it is the application’s responsibility to delete it.

An overloaded version of this function takes only one argument, namely the numerical
identifier of the procedure or function. This second version is not supported by all
RDBMSs.

◆ IldDbms::getProcedure: This function takes the procedure or function name as its
first argument and an owner name as the optional second argument. The created object is
added to the cache managed by the caller. Therefore, the object can be accessed later
without querying the server and can be deleted automatically when the caller is
destroyed.

An overloaded version of this function takes only one argument, namely, the numerical
identifier of the procedure or function. This second version is not supported by all
RDBMSs.

SQL Type of the Object

The IldCallable object returned can represent either a stored procedure or a stored
function. To differentiate between the two, a call to IldCallable::isProcedure returns
IlTrue if it is a procedure description, or IlFalse otherwise.

Arguments

The formal arguments to the procedure or function are represented by objects of the class
IldArgument, which is derived from the class IldDescriptor. The number of arguments
is returned by a call to IldCallable::getArgumentsCount.

An IldArgument object describes the argument by:

◆ Its input or output mode: One of the three functions IldArgument::isInArgument,
IldArgument::isOutArgument, or IldArgument::isInOutArgument returns
IlFalse while the other two return IlTrue.

◆ A default value: The member function IldArgument::hasDefault tells whether the
argument has a default value or not.
56 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Accessing the Database Schema

usrdblink.book Page 57 Tuesday, July 28, 2009 7:27 PM
Return Values

The return values of a function are described by instances of the class IldDescriptor. The
number of returned values is given by IldCallable::getResultsCount.

Synonyms

Within IBM ILOG DB Link, a synonym is described as an object of the class IldSynonym.
Such objects can be created by calling one of the following functions:

◆ IldDbms::readSynonym: This function takes the synonym name as its first argument
and an owner name as the optional second argument. The returned object is not cached.
Therefore, it is the application’s responsibility to delete it.

An overloaded version of this function takes only one argument, namely, the numerical
identifier of the synonym. This second version is not supported by all RDBMSs.

◆ IldDbms::getSynonym: This function takes the synonym name as its first argument
and an owner name as the optional second argument. The created object is added to the
cache managed by the caller. Therefore, the object can be accessed later without
querying the server and can be deleted automatically when the caller is destroyed.

An overloaded version of this function takes only one argument, namely, the numerical
identifier of the synonym. This second version is not supported by all RDBMSs.

Abstract Data Types

Within IBM ILOG DB Link, an abstract data type is described as an object of the class
IldADTDescriptor. Such objects can be created by calling one of the following functions:

◆ IldDbms::readAbstractType: This function takes the abstract data type name as its
first argument and an owner name as the optional second argument. The returned object
is not cached. Therefore, it is the application’s responsibility to delete it.

An overloaded version of this function takes only one argument, namely, the numerical
identifier of the abstract data type.

◆ IldDbms::getAbstractType: This function takes the abstract data type name as its
first argument and an owner name as the optional second argument. The created object is
added to the cache managed by the caller. Therefore, the object can be accessed later
without querying the server and can be deleted automatically when the caller is
destroyed.

Note: None of these functions are supported with DB2, MS SQL Server, ODBC, and
Sybase because this concept does not exist in these database systems.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 57

usrdblink.book Page 58 Tuesday, July 28, 2009 7:27 PM
An overloaded version of this function takes only one argument, namely, the numerical
identifier of the abstract data type.

Table Privileges

The privileges given to a specific table / view can be accessed by calling the function
IldDbms::readTablePrivileges.

IldDbms::readTablePrivileges(const char* catalog,
 const char* schema,
 const char* table) ;

The first argument is used only by DBMSs that support three-part naming for tables
(qualifier.owner.name). In particular, this is not supported by Oracle, which uses only
schema.name.

Make sure that the table, schema, and catalog parameters are spelled with the correct case.
The RDBMS case method must be used.

If no specific trustee is given to a table, the result set for this table will be empty.

For Sybase:

◆ table name is required,

◆ no wildcard-characters are allowed.

Data Definition Language (DDL)

When a DDL (Data Definition Language) statement must be executed, you can use the
member function IldDbms::execute. This function behaves like the member function
IldRequest::execute. If required, IBM ILOG DB Link silently allocates an
IldRequest object and uses it.

This function can also be used for DML (Data Manipulation Language) statements, except
for the select statement. If you need to know the number of processed rows —modified,
inserted, or deleted— you must pass a valid pointer to an IlInt variable as the second
argument to the function IldDbms::execute (the first argument being the text of the SQL
statement). This is the only way since, unlike the class IldRequest, the class IldDbms has
no getStatus member function. You cannot use this function to perform select
statements because you cannot get the private IldRequest object that was used by the
IldDbms object.

Through the class IldSQLType, IBM ILOG DB Link offers a full interface to find out the
database type names to be used when creating a table. The application can retrieve the

Note: Both functions are only supported for ORDBMSs.
58 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Transaction Control

usrdblink.book Page 59 Tuesday, July 28, 2009 7:27 PM
proper RDBMS-dependent name for a column using the IldDbms::getTypeInfo
function, which takes its first argument from the list at the end of the ildconst.h file. This
function can return several objects in an array, or no objects if that specific type does not
exist in the currently connected RDBMS.

Transaction Control

Most RDBMSs can handle sequences of SQL statements as one block: all statements
succeed or all fail. This typical behavior is called a transaction mechanism.

In some rare cases, the RDBMS is not capable of handling transactions, because this
functionality either is not implemented or not enabled for the database, as with Informix.

A block is delimited by the initiation of the transaction and by its commitment or rollback.

The activation of the transaction mechanism can be checked by a call to one of the functions
IldDbms::isTransactionEnabled or
IldDbms::getInfo(IldTransactionCapable,...).

IBM ILOG DB Link offers a unified API that avoids RDBMS specificity. The member
functions in the API take two optional arguments. However, for portability considerations,
we urge you to always pass a value to each optional argument and to stick to the protocol
that consists of sending the SQL statements by means of the IldRequest object that
initiated the transaction. If you do not follow this rule when using MS SQL Server, you will
encounter an unexpected behavior: the request that initiates the transaction is not the one that
executes the SQL statements. This amounts to an empty transaction and results in the
following:

◆ If the transaction is rolled back, the changes to the database will not be undone.

◆ It the transaction is committed, the changes are executed but they are not validated.
Therefore, they are lost on disconnection.

With IBM ILOG DB Link, you can use member functions of the class IldDbms for any
transaction-related command, whatever your target RDBMS, as shown in Table 3.5:

Table 3.5 IldDbms Member Functions for Transaction-Related Commands

To Use the IldDms member function Comments

Initiate a transaction IldDbms::startTransaction Inoperative with Oracle and ODBC
ports

Commit a transaction IldDbms::commit
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 59

usrdblink.book Page 60 Tuesday, July 28, 2009 7:27 PM
For all these functions, the request argument (a pointer to an IldRequest object) is
optional for most of the supported RDBMSs. However, this argument is mandatory for the
Sybase and MS SQL Server database systems, which all require the IldRequest object to
control the commands that execute the SQL statements enclosed in the transaction.

Some RDBMSs have implemented the “auto-commit mode” feature. When on, this mode
commits each SQL statement when it is executed. Each database system has a unique notion
of transaction control and, therefore, a unique interface to implement it.

With Sybase and MS SQL Server, the first argument is mandatory for all transaction-control
functions. The second argument is used only for Sybase. Sybase TransactSQL allows you to
name a transaction. For all other ports, both arguments are ignored. The following items
relevant to transactions are described:

◆ Initiating a Transaction

◆ Committing a Transaction

◆ Rolling Back a Transaction

◆ Autocommit Mode

Initiating a Transaction

To initiate a transaction, call the member function IldDbms::startTransaction, as
shown in the following example:

{
 // A new transaction.
 cout << "Initiating a transaction." << endl;
 if (!dbms->startTransaction(request))
 IldDisplayError("Begin transaction failed:", dbms);
}

This function takes two arguments, which are optional for most RDBMSs.

◆ If specified, the first argument must be a pointer to an IldRequest object, which is used
to send the SQL statements that make up the body of the transaction.

◆ If specified, the second argument is a character string that is set as the transaction name.

Roll back a transaction IldDbms::rollback

Switch the auto-commit mode on
or off

IldDbms::autoCommitOn or
IldDbms::autoCommitOff

Inoperative with Sybase and
MS SQL Server.

Table 3.5 IldDbms Member Functions for Transaction-Related Commands

To Use the IldDms member function Comments
60 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Transaction Control

usrdblink.book Page 61 Tuesday, July 28, 2009 7:27 PM
With Informix, it is an error to start, commit, or roll back a transaction several times on a
connection. IBM ILOG DB Link ensures that superfluous calls to these functions will not
raise an error: they simply do nothing. However, you must be aware that the actual
transaction still starts with the first call to IldDbms::startTransaction and ends with
the first call to either IldDbms::commit or IldDbms::rollback.

Committing a Transaction

To commit a transaction, call the member function IldDbms::commit. This function takes
two optional arguments, as shown in the following example.

{
 cout << "Committing the transaction." << endl;
 if (!dbms->commit(request))
 IldDisplayError("Commit failed: ", dbms);
}

◆ If specified, the first optional argument must be a pointer to the IldRequest object used
to send the SQL statements that make up the body of the transaction—namely, the same
object that was used to initiate the transaction.

◆ If specified, the second optional argument is the same transaction name that was used to
initiate the transaction.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 61

usrdblink.book Page 62 Tuesday, July 28, 2009 7:27 PM
Rolling Back a Transaction

To roll back all effects of the SQL statements executed since the transaction was initiated,
call the member function IldDbms::rollback, as shown in the following example:

{
 cout << "Rolling back the transaction." << endl;
 if (!dbms->rollback(request))
 IldDisplayError("Rollback failed:", dbms);
}

This member function takes two optional arguments, which must be the same as those used
to initiate the transaction.

Autocommit Mode

To switch the autocommit mode on or off, use the member function
IldDbms::autoCommitOn or IldDbms::autoCommitOff. Like other transaction-control
functions, these functions take two optional arguments.

Cursor Allocation

A cursor is an instance of the class IldRequest. Although this name is currently used in
IBM ILOG DB Link manuals, it is not fully appropriate: an IldRequest object is actually
used to handle any SQL statement whether it needs a cursor or not.

The function IldDbms::getFreeRequest registers a newly created cursor in its cursor
array. When a cursor is deleted—either explicitly using the delete operator or implicitly on
disconnection—the corresponding connection is notified of the cursor disappearance.

Extending the IldDbms Class

It is not possible to derive from the class IldDbms because the actual objects handled by
your application are instances of its subclasses rather than instances of the base class.

Note: The autocommit mode, while ensuring commitment of every successful SQL
statement, exacts a very high price in terms of server work. You should avoid setting it on
when it is not required by the application context.

Important: IldRequestModel derived objectsdo not behave in this way because, by
defaut, they are not attached to any IldDbmsModel object.
62 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Extending the IldDbms Class

usrdblink.book Page 63 Tuesday, July 28, 2009 7:27 PM
If, for any reason, you need to extend the functionality of the IldDbms class, you can
retrieve the determining part for connection handling. The member function
IldDbms::getHook returns that part as a void pointer.

Table 3.6 shows what this function returns and what proprietary client interface you can call,
depending on the target database system.

On the other hand, the member function IldDbms::setHook may be used to initialize the
connection with an existing connection from an other application.

The IldDbms instance must be disconnected before using this function.

The connection given will not be closed when calling IldDbms::~IldDbms(), or when
calling IldDbms::disconnect(). Since it was allocated outside of IBM ILOG DB Link,
the application is responsible for closing it.

Table 3.6 Values Returned by the Member Function IldDbms::getHook

With this Database
System...

...the getHook function returns
...and lets you call the
following database proprietary
client interface.

DB2 the SQLHANDLE CLI (Call Level Interface)

Informix the connection name (a character string) Embedded SQL

MS SQL Server the pointer to the DBPROCESS structure DB Library function

ODBC the HDBC ODBC functions

OLE-DB the pointer to the IDBCreateSession structure OLE-DB functions

Oracle9, 10 or 11 the pointer to the OCISvcCtx structure OCI functions

Sybase the pointer to the CS_CONNECTION structure Client Library functions
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 63

usrdblink.book Page 64 Tuesday, July 28, 2009 7:27 PM
Use Notification

The notification is implemented in the ‘Enterprise’ or ‘Workstation’ editions of Oracle.

The following entities are required:

◆ a queue (either persistent or not),

◆ a subscriber attached to this queue,

◆ a trigger for the event.

The trigger will send a message to the queue, and the application will be notified that an
event was generated.

This feature lets you receive notifications from the RDBMS asynchronously. This means
that the application may be performing any task when the notification is received. A handler
is automatically called when the notification is received. When it is completed, the execution
will continue the interrupted task.

Subscribe to an Event

Subscription to an event is done using the following function:

IldDbms::subscribeEvent(const char* name,
 IldNotifFunction usrCB,
 IlAny usrData) ;

The name given will be <queue name>:<agent name>.

◆ usrCB is the handle that will be called when the event is received.

◆ usrData is a buffer from the application that will be transmitted to the callback
function.

Unsubscribe from an Event

Unsubscribing is done using the following function:

IldDbms::unSubscribeEvent(const char* name) ;

◆ name is the name that identifies the event (the one used to subscribe to the event).

This function is to be called when you no longer need to receive notifications for a given
event.
64 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Differences between IldDbms and IldDbmsModel Classes

usrdblink.book Page 65 Tuesday, July 28, 2009 7:27 PM
Differences between IldDbms and IldDbmsModel Classes

IldDbmsModel provides the same functionalities as IldDbms, plus the ability to be derived.
This derivation capability introduces a few differences with the IldDbms class, as follows:

◆ IldDbmsModel instances are allocated directly by their constructor. The schema of
using a function such as IldNewDbms() is not used for the IldDbmsModel class.

◆ The IldDbms::getFreeRequest member function cannot be used to instantiate a
request with an object of the IldDbmsModel class. Instead, you must use the
IldRequestModel::IldRequestModel constructor, with the IldDbmsModel
instance as a parameter.

◆ When an IldDbms instance is deleted, the IldRequest instances that are linked to it are
automatically deleted. This functionality is not implemented for the IldDbmsModel
class. You must delete all IldRequestModel instances allocated using the given
IldDbmsModel instance.

(This is because IldRequestModel instances may be allocated on the stack, as
automatic instances. Therefore, IBM ILOG DB Link has no control over the deletion of
those instances. They will be deleted when the block in which they have been allocated
ends.)
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 65

usrdblink.book Page 66 Tuesday, July 28, 2009 7:27 PM
66 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdblink.book Page 67 Tuesday, July 28, 2009 7:27 PM
4

Cursors

IBM® ILOG® DB Link implements cursors as instances of the class IldRequest or
IldRequestModel. IldRequestModel is the twin class to IldRequest, but in addition it
provides the ability to be derived. In this manual we describe the IldRequest class, which
is the main class. All its features also apply to the IldRequestModel class. The few
differences between the two twin classes are itemized in a subsection.

This chapter is divided as follows:

◆ IldRequest Objects — Creating, manipulating, and deleting IldRequest objects.

◆ Configuration Settings — Default settings, accessing and changing the configuration,
and array modes.

◆ Column and Parameter Descriptors — The concept of descriptors, implementation
descriptors, and application descriptors.

◆ Processing SQL Statements — Immediate execution, deferred execution, and preparing a
statement.

◆ Results Retrieval — Fetching and handling result sets.

◆ Binding Input Variables — How to use the IldRequest::bindParam function.

◆ Generic Data Types — Handling date, time, and numeric values.

◆ Large Objects (LOBs) — Sending and retrieving large objects.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 67

usrdblink.book Page 68 Tuesday, July 28, 2009 7:27 PM
◆ Handling Abstract Data Type Values — Using the descriptors of user-defined data types
with ORDBMSs.

◆ Extending the IldRequest Class — This class cannot be derived but you can extend its
functionalities under certain conditions. If you need to derive the IldRequest class,
you must use its twin class, IldRequestModel.

◆ Differences between IldRequest and IldRequestModel Classes

IldRequest Objects

This section explains how to create, manipulate, and delete IldRequest objects. It is
divided as follows:

◆ Creating IldRequest Objects

◆ Number of Active Cursors

◆ Disposing of IldRequest Objects

Creating IldRequest Objects

No public constructor exists for the class IldRequest. The IldRequest constructor is
private to its class so it cannot be called from your application.

To create an IldRequest object, you must have already created an IldDbms object using
the function IldNewDbms.

The only way to create a cursor is to ask an IldDbms object to deliver one using the function
IldDbms::getFreeRequest, as shown in the following example:

{
 cout << "Creating a request: " << endl;
 IldRequest* request = dbms->getFreeRequest();
 if (dbms->isErrorRaised()) {
 IldDisplayError("Creation of request failed: ", dbms);
 delete dbms;
 exit(1);
}

The IldDbms::getFreeRequest function does not necessarily allocate a new
IldRequest object each time it is called, but instead, it may reuse any IldRequest object
68 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

IldRequest Objects

usrdblink.book Page 69 Tuesday, July 28, 2009 7:27 PM
that has been previously released (see Releasing an IldRequest Object for more
information).

If an error is raised but you do not check it, you will be using a special object instead of the
normal IldRequest object. Using this special object will, in turn, raise an error
ILD_USING_ERROR_REQUEST each time any function is called with it.

Number of Active Cursors

The number of IldRequest objects you can create is limited only by the database system
configuration (for example, 50 with the Oracle default configuration).

To get the number of active IldRequest objects, you call the member function
IldDbms::getNumberOfRequests. This number corresponds to the number of
IldRequest objects that actually exist, not the number of IldRequest objects for which
an SQL statement is being processed. That is, even if an IldRequest object has been
released, it is still considered active (see next section for more information).

Disposing of IldRequest Objects

Disposing of an IldRequest object involves releasing it and destroying it.

Releasing an IldRequest Object

When you are finished using an IldRequest object, you can tell IBM ILOG DB Link that
you are not going to use it any longer and that the object is at its disposal. To do so, use the
member function IldRequest::release.

Destroying an IldRequest Object

An IldRequest object can be destroyed and its server-side allocated resources released on
an explicit or implicit basis.

◆ To destroy an IldRequest object explicitly, just call the C++ operator delete on it.
The IldRequest::~IldRequest destructor notifies the related IldDbms object of its
disappearance.

Warning: It is possible for the allocation of an IldRequest object to succeed (partially,
for example), while the creation of the object not succeed. In such a situation, memory was
at least partially allocated, but the returned object cannot be used to execute a query. For
that reason, you must always check that no errors were raised in the IldDbms object.

Warning: You must be careful not to use an IldRequest object once it has been
released. Instead, you must ask the IldDbms object to supply a new IldRequest object
(which could be the same).
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 69

usrdblink.book Page 70 Tuesday, July 28, 2009 7:27 PM
◆ To destroy an IldRequest object implicitly, all you have to do is leave the object where
it is. Actually, the destruction of the related IldDbms object causes the appropriate
destructor to be called.

Releasing Versus Destroying

IBM ILOG DB Link tries to manage the memory allocated for IldRequest objects as
sparingly as possible. This is why you are strongly advised to use the function
IldRequest::release rather than calling the operator delete when it comes to
disposing of an IldRequest object.

Using the pair IldDbms::getFreeRequest/IldRequest::release is, on average,
faster than using the pair IldDbms::getFreeRequest/delete because, with the first pair,
the IldRequest object is not deleted and will be reused on a further call to
IldDbms::getFreeRequest.

Configuration Settings

This section describes how to access and change configuration settings and tells you more
about the array bind and array fetch modes. It is divided as follows:

◆ Default Settings

◆ Accessing and Changing the Configuration

◆ Array Modes

Default Settings

Any IldRequest object returned by the function IldDbms::getFreeRequest is
configured using the current configuration setting from its related IldDbms object.

Thus, it inherits the array fetch size and the parameter array size, as well as the settings for
the date as string, numeric as string, and numeric as object features.

Note: The error reporter is not reset when an IldRequest object has been released and
is later reassigned by IldDbms::getFreeRequest.
70 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Configuration Settings

usrdblink.book Page 71 Tuesday, July 28, 2009 7:27 PM
Accessing and Changing the Configuration

Table 4.1 shows what member functions of the class IldRequest you can use to change the
default configuration settings.

Array Modes

IBM ILOG DB Link can handle several rows at a time, whether input or output data. The
default setting, however, is one row at a time.

Each IldRequest object inherits the settings of its related IldDbms object. The default
settings can be changed at the IldDbms level.

While using array modes enhances performance —at the network communication level for
array fetch and with respect to CPU time for array bind—you must be aware that
IBM ILOG DB Link pre-allocates memory for data values and null indicators. The data
buffers are allocated the maximum size required for the column data types, except for the
LOB types IldLongTextType and IldBinaryType, for which the buffer size is limited to
64 Kilobytes. Consequently, on some systems with limited memory, setting the array mode
to a high number of rows may cause an allocation failure.

Array Bind Mode

◆ To set the array bind mode, specify the number of rows you want to send at a time. This
number is a maximum and can be changed by the value of the second argument passed to
the member function IldRequest::execute.

For each IldRequest object, you can change the array size using the function
IldRequest::setParamArraySize with a positive integer as its argument:

Table 4.1 Changing the Default Configuration Settings

Use To

IldRequest::setColArraySize Change the fetch array size

IldRequest::removeColArraySize Return the cursor to the default fetching
protocol (one row at a time)

IldRequest::getColArraySize Retrieve the current fetch array size

IldRequest::setParamArraySize Set the parameter array size

IldRequest::removeParamArraySize Return the cursor to the default binding
protocol (one parameter row at a time)

IldRequest::getParamArraySize Retrieve the current parameter array size
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 71

usrdblink.book Page 72 Tuesday, July 28, 2009 7:27 PM
{
 cout << "Host variables array size set to 2" << endl;
 request->setParamArraySize(2);
}

◆ To get the array size, use the member function IldRequest::getParamArraySize.

◆ To reset the array size, use the function IldRequest::removeParamArraySize.

Array Fetch Mode

Since the cursor-relative positioning and absolute positioning are not implemented, these
features do not prevent you from using the function IldRequest::fetch.

◆ To set the default value for all newly created IldRequest objects, use the function
IldDbms::setDefaultColArraySize with a positive integer as its argument.

{
 dbms->setDefaultColArraySize((IlUInt)10);
}

◆ To change this setting for a given IldRequest object, use the member function
IldRequest::setColArraySize with a positive integer as its argument.

◆ To reset this setting, use the function IldRequest::removeColArraySize.

◆ To get the current array size, use the function IldRequest::getColArraySize.

With ODBC, the array fetch mode is available only if the driver has level-2 compliance.

Warning: To be effective, the array bind size must be set before the function parse or
execute is called.

Warning: To be effective, the array fetch size must be set before the first call to the
fetch member function.
72 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Column and Parameter Descriptors

usrdblink.book Page 73 Tuesday, July 28, 2009 7:27 PM
Column and Parameter Descriptors

This section presents application and implementation descriptors as implemented by
IBM ILOG DB Link. It is divided as follows:

◆ Notion of Descriptors

◆ Implementation Descriptors

◆ Application Descriptors

Notion of Descriptors

CLI Definition

The CLI standard defines descriptors at implementation- and application- levels.

◆ At implementation level —that is, from the database server point of view— the
descriptors are called IRD (Implementation Row Descriptor) and IPD (Implementation
Parameter Descriptor).

◆ At application level, the descriptors are called ARD (Application Row Descriptor) and
APD (Application Parameter Descriptor).

Likewise, IBM ILOG DB Link also differentiates between implementation level and
application level, but refers to row descriptors as column descriptors and uses the same
classes for column and parameter descriptors.

Implementation Within IBM ILOG DB Link

IBM ILOG DB Link uses two classes to describe the properties of a column or parameter:

◆ IldDescriptor: Declared in the file ildent.h, this class is used to describe a column
or parameter type on the server side.

◆ IldAppDescriptor: A subclass of IldDescriptor declared in the file ildtuple.h,
this class is used to hold the type descriptor and the column or parameter values and
indicators on the application side.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 73

usrdblink.book Page 74 Tuesday, July 28, 2009 7:27 PM
Implementation Descriptors

An instance of IldDescriptor holds the following information about the column or
parameter. Table 4.2 shows the corresponding member functions:

Type Codes

SQL data type codes are defined as constants in the section Type Codes of the
ildconst.h header file. Most of them have a name that is very similar to their CLI name
but a few of them differ. The names are prefixed with IldSQL.

Their values are the ones defined in the CLI standard.

The CLI specification has been extended to negative values so as to provide support for all
types of all supported RDBMSs.

Table 4.2 IldDescriptor Member Functions

Use this Member Function To get

IldDescriptor::getType IBM ILOG DB Link type

IldDescriptor::getSqlType SQL data type code

IldDescriptor::getName Column name

IldDescriptor::getSize Maximum data size (in bytes)

IldDescriptor::getPrecision Precision (for columns of a numeric type) - 0
if irrelevant

IldDescriptor::getScale Scale (for columns of a numeric type) - 0 if
irrelevant

IldDescriptor::getSqlTypeName SQL type name in the server

IldDescriptor::isNullable Nullability flag

IldDescriptor::getADTDescriptor Abstract type descriptor (for columns of
IBM ILOG DB Link type) - null otherwise

Note: Since most RDBMSs do not have the capability of describing the parameters of a
query, the contents of the IldDescriptor object for a parameter are undefined until it is
bound using the member function IldRequest::bindParam.
74 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Column and Parameter Descriptors

usrdblink.book Page 75 Tuesday, July 28, 2009 7:27 PM
Application Descriptors

An instance of IldAppDescriptor adds the following information to its base class
IldDescriptor:

In addition:

◆ The member function IldAppDescriptor::isExtValue lets you know whether the
value buffer was allocated by IBM ILOG DB Link or is bound to some application
memory space. This function returns IlFalse in the first case or IlTrue in the second.

◆ The member function IldAppDescriptor::isExtNulls lets you know whether the
null-indicator buffer was allocated by IBM ILOG DB Link or is bound to some
application memory space. This function returns IlFalse in the first case or IlTrue in
the second.

Simple IldDescriptor objects exist only for user-defined data-type attribute descriptors
of type IldADTDescriptor. All other accesses to descriptors return instances of derived
classes:

◆ The function IldRelation::getColumn returns instances of the derived class
IldColumn.

◆ The functions IldRequest::getColDescriptor and
IldRequest::getParamDescriptor return instances of the derived class
IldAppDescriptor.

Table 4.3 Member functions added by IldAppDescriptor to IldDescriptor

Information Member Function

Size of one element in the value buffer (in
bytes)

 IldAppDescriptor::getBufferSize

Value buffer IldAppDescriptor::getValue

Indicator buffer IldAppDescriptor::getNulls
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 75

usrdblink.book Page 76 Tuesday, July 28, 2009 7:27 PM
Processing SQL Statements

SQL statement are usually sent for processing one at a time. However, some RDBMSs allow
you to send a batch of several statements at once: such is the case of Sybase, MS SQL
Server, and ODBC if the underlying RDBMS allows it.

Although it is not forbidden by IBM ILOG DB Link, we do not recommend using batches of
statements. Stored procedures are far more convenient.

Two different processes exist with respect to statement execution:

◆ Immediate Execution: The SQL statement is sent to the server immediately via the
function IldRequest::execute.

◆ Deferred Execution: The execution process is broken down into the following steps:

● The SQL statement is prepared by the function IldRequest::parse.

● The parameters are bound and set.

● The actual execution takes place when the function IldRequest::execute is
called.

You should choose immediate execution when the query has no placeholder (or parameter)
and will be used only once.

Immediate Execution

To execute an SQL statement immediately, use the member function
IldRequest::execute, which takes two arguments:

◆ The first argument is the SQL statement string.

◆ The second argument, rowCount, is optional. If specified, it must be a valid pointer to an
IlInt variable, which will be set to the number of processed rows if the statement is
delete, insert, or update.

Once the call to IldRequest::execute succeeds, you can retrieve the execution status via
the member function IldRequest::getStatus. This member function returns the
number of processed rows if the SQL statement is delete, insert, or update. If it is a

Note: rowCount is zero after a select query is executed. For performance reasons, most
RDBMSs do not “look ahead” to set this value for a query.
76 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Processing SQL Statements

usrdblink.book Page 77 Tuesday, July 28, 2009 7:27 PM
select statement, the returned value is the number of rows actually fetched —namely 0
when the execution has just been completed.

If the execution fails, the returned value, usually -1, is not meaningful.

{
 if (!request->execute(queryBuffer))
 IldDisplayError("Executing: ", request);
 else {
 if (!request->fetch())
 IldDisplayError("Fetching: ", request);
 else if (request->hasTuple())
 // Loop with two levels, since ODBC, Sybase, and MS SQL Server
 // can have several result sets for one command.
 do {
 if (request->getColCount()) {
 IldPrintTuple(request, IldNames);
 IldPrintTuple(request, IldSeparators);
 IldPrintTuple(request);
 while (request->fetch().hasTuple())
 IldPrintTuple(request);
 cout << endl;
 if (request->isErrorRaised())
 IldDisplayError("Fetching: ", request);
 }
 } while (request->fetch().hasTuple());
 else if (request->getColCount()) {
 IldPrintTuple(request, IldNames);
 IldPrintTuple(request, IldSeparators);
 cout << endl << "No row found." << endl;
 }
 else if ((count = request->getStatus()) > 0)
 cout << count << " modified line(s)" << endl;
 }
}

It is also possible to get the attributes of the returned rows from the result set, using the
following member functions:

◆ IldRequest::getColName to get the column names,

◆ IldRequest::getColType to get the column types,

◆ IldRequest::getColSize to get the column sizes.

If the SQL statement is select, you can retrieve the rows using the member function
IldRequest::fetch. When used after execution of any other SQL statement, this member
function is ineffective, but no error is raised.

Note: An SQL statement that is to be executed immediately must not contain any
parameters.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 77

usrdblink.book Page 78 Tuesday, July 28, 2009 7:27 PM
Deferred Execution

It is not always useful to execute a query immediately, either because it contains
placeholders for which values must be passed or because you want to reuse the same query
and thus avoid the time needed to prepare it for execution.

The database system must prepare a query before executing it. Preparing a query involves:

1. Parsing the query and checking the SQL syntax,

2. Preparing an execution plan,

3. Calling the query optimizer.

These steps can take place only once, rather than repeatedly, if you intend to use the same
query several times —whether containing placeholder values or not.

To send the same query several times, you must follow this protocol:

1. Prepare the query by calling IldRequest::parse.

2. Bind the placeholders by calling IldRequest::bindParam.

3. If needed, bind output columns by calling IldRequest::bindCol.

4. For each execution, pass values to the placeholders by calling the function
IldRequest::setParamValue.

5. Call IldRequest::execute.

Here is an example:

{
 const char* selectStr = (!strcmp(dbms->getName(), "oracle") ||
 !strcmp(dbms->getName(), "sqlbase")) ?
 "select * from DBLTABLE where no > :1"
 :
 "select * from DBLTABLE where no > ?";
 cout << "Parsing a request containing a host variable: " << endl;
 cout << "\t" << selectStr << endl;
 if (!request->parse(selectStr)) {
 IldDisplayError("Parse failed: ", request);
 Ending(dbms, request);
 }
 cout << endl;
 cout << "Host variable bind with integer type and value 0" << endl;
 if (!request->bindParam((IlUShort)0, IldIntegerType)) {
 IldDisplayError("Binding failed: ", request);

Note: When using any of the member functions related to the result set or to the
parameters set, remember that IBM ILOG DB Link follows the C or C++ convention,
where indexes start from 0, rather than the standard SQL convention, where indexes start
at 1.
78 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Processing SQL Statements

usrdblink.book Page 79 Tuesday, July 28, 2009 7:27 PM
 Ending(dbms, request);
 }
 request->setParamValue((IlInt)0, 0);
 cout << "Executing the request" << endl;
 if (!request->execute()) {
 IldDisplayError("Execute failed: ", request);
 Ending(dbms, request);
 }
 cout << endl;
 cout << "Results from the request: " << endl;
 if (request->getColCount()) {
 while (request->fetch().hasTuple()) {
 if (!request->isColNull(0))
 cout << request->getColIntegerValue(0);
 else
 cout << "-";
 cout << "\t";
 if (!request->isColNull(1))
 cout << request->getColStringValue(1);
 else
 cout << "-";
 cout << endl;
 }
 }
}

Preparing a Statement

To prepare a statement, issue a call to IldRequest::parse. Its argument is the SQL
statement string to be prepared. Its action is roughly equivalent to the SQL statements
PREPARE and DESCRIBE.

This parse method must not be called for statements that cannot be prepared. These
statements vary depending on the RDBMS you are connected to. Check the RDBMS client
API manuals for information about which statements can be prepared.

Multiple Execution

Multiple execution means that one call to the member function IldRequest::execute
will process several rows in the database. This function takes two optional arguments:

◆ The first argument is a pointer to an IlInt variable. After execution is successful, this
argument is set to the number of processed rows.

Warning: Parsing a request discards any previously parsed queries, as well as all
pending result sets of the IldRequest object.

Note: A simple select statement that includes no placeholder should not be prepared
when you use the ODBC port. The resulting data will be irrelevant in the bound memory
space.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 79

usrdblink.book Page 80 Tuesday, July 28, 2009 7:27 PM
◆ The second argument, a number of type IlUInt, is the number of times the query has to
be executed. When specified, this number must be positive and less than or equal to the
value returned by a call to the function IldRequest::getParamArraySize.

{
 // Since the "count" argument is set to 1, there will be only one
 // update performed despite the variable array size set to 2 !!
 if (!request->execute(&rowCount, 1)) {
 IldDisplayError("Execution failed: ", request);
 Ending(dbms, request);
 cout << "Row processed count " << rowCount << endl << endl;
}

Repeated Execution

Once prepared, a query can be executed as many times as needed by successive calls to the
overloaded member function IldRequest::execute. Before each execution, you can set
new bindings for the input variables (placeholders) and the output columns. You must also
pass the values of the input variables.

Example:

{
 for (int i = 0; i < 5; i++) {
 cout << "Set " << i << "th variable to name: "
 << names[i] << " and age: " << ages[i] << endl;
 request->setParamValue(names[i], 0, 0);
 request->setParamValue(ages[i], 1, 0);

 // execute the insertion
 cout << "Inserting row" << endl;
 if (!request->execute(&n)) {
 IldDisplayError("Execution failed: ", request);
 delete cust;
 Ending(dbms, request);
 }
 cout << n << "row(s) inserted." << endl;
 }
}

A frequent mistake is to use the basic member function IldRequest::execute. This
function takes a string as its first argument, thus causing an error, in this context, due to
unbound variables.

Note: When you use ODBC, this second argument can be set only if the driver is ODBC
level 2 compliant. Also with ODBC, the array bind mode can be used only if the driver is
ODBC level 2 compliant.
80 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Results Retrieval

usrdblink.book Page 81 Tuesday, July 28, 2009 7:27 PM
Results Retrieval

Once an SQL select statement has been executed as a query, the resulting data can be
fetched using the member function IldRequest::fetch or
IldRequest::fetchScroll.

The member function IldRequest::fetchScroll is implemented for RDBMSs that
enable this feature: Informix®, Mssql, Oracle® and Odbc.

You can go back in the result set when you use this function, while IldRequest::fetch
lets you only access the records that follow it.

To activate this feature, you must activate the scrollable cursor mode by calling
IldRequest::setScrollable(IlTrue). This feature is not activated by default because
it requires additional resources on the server side. Furthermore, the RDBMS may restrict the
set of queries you can run. For instance, with Informix, you cannot fetch a BYTE or TEXT
column using a scrollable cursor.

When the column array size is used to fetch several rows at the same time, the <n> last rows
will be retrieved if fetchOrientation == IldFetchDirectionLast.

Once fetched, the data can be read using the specialized accessors
IldRequest::getCol<type>Value, where <type> is one of the valid
IBM ILOG DB Link column type names (see Direct Access for details).

A faster way to retrieve and send data is to bind application-allocated memory to
IBM ILOG DB Link. This can be done for input values as well as for output columns.

The following items are described individually:

◆ Handling Multiple Result Sets

◆ Direct Access

◆ Binding to User-Allocated Memory

Handling Multiple Result Sets

A result set is returned at fetch time for each SQL select statement. Sybase and
MS SQL Server return several result sets for a stored procedure call.

When the target RDBMS allows queries to be sent in batches, there may exist several
successive result sets to be fetched. In this case, IBM ILOG DB Link retrieves the first set,
then returns the value IlFalse from the call to IldRequest::hasTuple.

To make sure that there is no other result set to be fetched, you must issue another call to
IldRequest::fetch and then a call to IldRequest::hasTuple, as shown in the
following example:

{

I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 81

usrdblink.book Page 82 Tuesday, July 28, 2009 7:27 PM
 cout << "\tResult sets: " << endl;
 while (request->fetch().hasTuple()) {
 if (request->getColCount()) {
 IldPrintTuple(request, IldNames);
 IldPrintTuple(request, IldSeparators);
 do {
 IldPrintTuple(request);
 } while (request->fetch().hasTuple());
 }
 else {
 IlInt count = 0;
 if ((count = request->getStatus()) > 0)
 cout << count << " modified row"
 << ((count > 1) ? "s" : "") << endl;
 }
 cout << endl;
 }
}

Direct Access

To retrieve data, you can either:

◆ use the IBM ILOG DB Link API alone with type-related member functions,

◆ or bind the application memory space on output.

IBM ILOG DB Link data accessors are of the form IldRequest::getCol<type>Value
where <type> can be one of the following IBM ILOG DB Link types:

◆ ADT

◆ Binary

◆ Byte

◆ Date

◆ DateTime

◆ Integer

◆ LongText

◆ Money

◆ Numeric

◆ Real

◆ Ref

◆ String

Here is an example:

{
 // Selection of the data accessor.
 if (request->isColNull(i))
 ItemsArray[i]._buffer = "-";
82 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Results Retrieval

usrdblink.book Page 83 Tuesday, July 28, 2009 7:27 PM
 else
 switch (request->getColType(i)) {
 case IldDateType:
 ItemsArray[i]._buffer =
 IldStrRTrim((char*)request->getColDateValue(i));
 break;
 case IldDateTimeType:
 ItemsArray[i]._buffer =
 IldDateTimeToString(request->getColDateTimeValue(i));
 break;
 case IldStringType:
 ItemsArray[i]._mode = IldLeft;
 ItemsArray[i]._buffer =
 (char*)request->getPurgedStringValue(i);
 break;
 case IldLongTextType:
 ItemsArray[i]._mode = IldLeft;
 ItemsArray[i]._buffer =
 IldStrRTrim((char*)request->getLongTextValue(i));
 break;
 case IldMoneyType: {
 ItemsArray[i]._buffer = &BuffersArray[i * IldBufSize];
 ostrstream ostr(&BuffersArray[i * IldBufSize],
 (int)IldBufSize);
 ostr << '$' << request->getMoneyValue(i) << ends;
 break;
 }
 case IldRealType: {
 ItemsArray[i]._buffer = &BuffersArray[i * IldBufSize];
 ostrstream ostr(&BuffersArray[i * IldBufSize],
 (int)IldBufSize);
 ostr << request->getRealValue(i) << ends;
 break;
 }
 case IldByteType: {
 ItemsArray[i]._buffer = &BuffersArray[i * IldBufSize];
 ostrstream ostr(&BuffersArray[i * IldBufSize],
 IldBufSize);
 ostr << (short)request->getByteValue(i) << ends;
 break;
 }
 case IldIntegerType: {
 ItemsArray[i]._buffer = &BuffersArray[i * IldBufSize];
 ostrstream ostr(&BuffersArray[i * IldBufSize],
 IldBufSize);
 ostr << request->getIntegerValue(i) << ends;
 break;
 }
 case IldBinaryType: {
 ItemsArray[i]._buffer = "...";
 break;
 }
 case IldUnknownType: {
 ItemsArray[i]._buffer = "???";
 break;
 }
 }
}

I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 83

usrdblink.book Page 84 Tuesday, July 28, 2009 7:27 PM
Also, you should keep in mind that:

◆ When the value is of type IldStringType, IldBinaryType, or IldLongTextType,
it must be copied over to the memory allocated by your application because after the next
call to IldRequest::fetch, the value will be undetermined.

◆ Values returned for columns of type IldDateTimeType or IldNumericType are
automatically copied into the receiving object.

◆ Values returned for columns of type IldObjectType or IldCollectionType become
the property of the application. Therefore, the application must delete them when they
are no longer needed.

Binding to User-Allocated Memory

An interesting optimization consists of retrieving the data directly into your application
memory space. To achieve this, use one of the overloaded member functions
IldRequest::bindCol. The first one uses the column index in the result set as a key,
whereas the second one uses the column name.

If you choose this method, be aware that when IBM ILOG DB Link compares the strings,
the comparison is case-sensitive. Some RDBMSs use only uppercase while others use
lowercase letters, or are case-sensitive themselves.

To find out how your target RDBMS handles character cases, you can call the function
IldDbms::getInfo for information item IldIdentifierCase.

Here is an example:

{
 // 1/ parse a selection request
 const char* selectStr = "select NAME, AGE from BINDTABLE";
 cout << "Parsing select request: " << selectStr << endl;
 if (!request->parse(selectStr)) {
 IldDisplayError("Parse failed: ", request);
 delete cust;
 Ending(dbms, request);
 }
 cout << endl;
 // 2/ declare binding of outputs
 cout << "Binding output: " << endl;
 cout << " column NAME bound to customer name slot" << endl;
 if (!request->bindCol((IlUShort)0, IldStringType,
 cust->name, 20)) {
 IldDisplayError("Column binding failed:", request);
 delete cust;
 Ending(dbms, request);
 }
 cout << " column AGE bound to customer age slot" << endl;
 if (!request->bindCol(1, IldIntegerType, &(cust->age))) {
 IldDisplayError("Column binding failed:", request);
 delete cust;
 Ending(dbms, request);
84 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Results Retrieval

usrdblink.book Page 85 Tuesday, July 28, 2009 7:27 PM
 }
 cout << endl;
 // 3/ execute the select request
 cout << "Executing the select request" << endl;
 if (!request->execute()) {
 IldDisplayError("Execution failed: ", request);
 delete cust;
 Ending(dbms, request);
 }
}

I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 85

usrdblink.book Page 86 Tuesday, July 28, 2009 7:27 PM
Binding Input Variables

To bind input variables, you will use the member function IldRequest::bindParam.

This section differentiates the standard implementation of this function from its overloaded
versions, and explains how to set parameter values. It is divided as follows:

◆ Standard Implementation

◆ Overloaded Version

◆ Setting Parameter Values

◆ Specific Considerations

Standard Implementation

This function can take up to eight arguments, from which only the first two ones are
mandatory, the others being optional:

◆ The first argument is the chronological order of the variable in the statement, that is, in a
left-to-right reading, its order of appearance in the statement string.

◆ The second argument is the IBM ILOG DB Link type of the data.

◆ The third argument is the data size in bytes. It is ignored for fixed-size types (such as
integer, real, byte) but it can be used for all other type bindings. However, the error
ILD_BAD_VARIABLE_SIZE is raised if the size passed is too small to handle the values.

◆ The fourth and fifth arguments are, respectively, a pointer to the data and a pointer to the
null indicator.

◆ The sixth argument indicates the variable output status. It is needed only with Sybase on
stored procedure calls.

The following code extract is taken from the sample file sybproc.cpp and shows how
this argument is used:

{
 cout << "Binding parameters: " << endl;
 cout << " @intparam" << endl;
 if (!request->bindParam("@intparam", IldIntegerType)) {
 IldDisplayError("Binding of @intparam failed: ", request);
 delete dbms;
 return 1;
 }
 cout << " @sintparam" << endl;
 if (!request->bindParam("@sintparam", IldIntegerType,
 -1, 0, 0, IlTrue)) {
 IldDisplayError("Binding of @sintparam failed: ", request);
 delete dbms;
 return 1;
 }
86 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Binding Input Variables

usrdblink.book Page 87 Tuesday, July 28, 2009 7:27 PM
 cout << " @floatparam" << endl;
 if (!request->bindParam("@floatparam", IldRealType,
 -1, 0, 0, IlTrue)) {
 IldDisplayError("Binding of @floatparam failed: ", request);
 delete dbms;
 return 1;
 }
 cout << " @charparam" << endl;
 if (!request->bindParam("@charparam", IldStringType, 20,
 0, 0, IlTrue)) {
 IldDisplayError("Binding of @charparam failed: ", request);
 delete dbms;
 return 1;
 }
}

◆ The seventh argument is the actual number of values in the array argument. This
argument is only used with Oracle for stored procedure calls where array arguments are
required.

◆ The eighth argument is a valid abstract data type descriptor. It is only used with
ORDBMSs and is mandatory if the parameter is bound to IldCollectionType or
IldObjectType types.

Overloaded Version

There is an overloaded version of the function IldRequest::bindParam that is reserved
for use with Oracle. Its first argument is a character string holding the parameter name the
way Oracle expects it, that is, in the format ':'<parameter name>.

Since Oracle also supports the format ':'<parameter number>, the first implementation
of the bindParam function can also be used with them, as shown in the following RDBMS
example sbinding:

Warning: IBM ILOG DB Link manages the memory allocation for data buffers internally.
In case of long strings, as with Oracle VARCHAR or Informix CHAR, the allocated buffer
may be too small if the size is not supplied at binding time. If your parameter is longer
than 255 characters, pass the actual maximum size as the third argument to the function
IldRequest::bindParam.

Warning: Despite standardization, Oracle does not support the question mark as a
variable identifier.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 87

usrdblink.book Page 88 Tuesday, July 28, 2009 7:27 PM
{
 cout << "Binding input variable :name of type string" << endl;
 if (!request->bindParam((IlUShort)0, IldStringType, 20)) {
 IldDisplayError("Variable binding failed:", request);
 delete cust;
 Ending(dbms, request);
 }
 cout << "Binding input variable :age of type integer" << endl;
 if (!request->bindParam(1, IldIntegerType)) {
 IldDisplayError("Variable binding failed:", request);
 delete cust;
 Ending(dbms, request);
 }
}

Setting Parameter Values

Just before calling the function IldRequest::execute, you must supply values for the
parameters through the function IldRequest::setParamValue, as shown in the
following example:

{
 IlInt n = 0;
 for (int i = 0; i < 5; i++) {
 cout << "Set " << i << "th variable to name: "
 << names[i] << " and age: " << ages[i] << endl;
 request->setParamValue(names[i], 0, 0);
 request->setParamValue(ages[i], 1, 0);

 // execute the insertion
 cout << "Inserting row" << endl;
 if (!request->execute(&n)) {
 IldDisplayError("Execution failed: ", request);
 delete cust;
 Ending(dbms, request);
 }
 cout << n << "row(s) inserted." << endl;
 }
}

Specific Considerations

You must be careful when using variables of Oracle CHAR data type. For this data type, the
values in the database are padded with blanks. A common error is to set parameter values for
these columns, without padding the values with blanks.

For instance, with table article (name char(10), id char(10)), the query "select name from
article where id = '0'" works correctly.

However, when calling parse for query "select name from article where id = :1", you have to
fill the bind variable with spaces so that the equality operator retrieves the expected values.
88 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Generic Data Types

usrdblink.book Page 89 Tuesday, July 28, 2009 7:27 PM
Generic Data Types

Some database data types cannot be easily translated to C or C++ types. This section
explains how IBM ILOG DB Link deals with this particular issue for:

◆ Handling Date and Time Values

◆ Handling Exact Numeric Values

Handling Date and Time Values

Date-and-time related data types are handled through different conversion protocols
depending on the database systems. To achieve portability, IBM ILOG DB Link offers a
feature that allows date-and-time values to be sent and retrieved as objects of the class
IldDateTime.

The IBM ILOG DB Link class IldDateTime is a transparent container where you can put
or get the separate components of a date-and-time value. Its fields extend the time precision
to milliseconds.

After turning the date as string feature off, you can use an IldDateTime object just like any
other data type.

◆ To put a date-and-time value into a variable, use the member function
IldRequest::setParamValue, like this:

{
 IldDateTime* dt = new IldDateTime(1996, 3, 2); // 1996/03/02
 request->setParamValue(dt, 1);
}

◆ To retrieve a date-and-time value, use the function
IldRequest::getColDateTimeValue, as in the following code extract:

{
 // Print selected item values.
 do {
 if (!request->fetch())
 IldDisplayError("Fetch failed:", request);
 else if (request->hasTuple()) {
 cout << request->getColStringValue(0) << "\t";
 IldDateTime dt = request->getColDateTimeValue(1);
 if (request->isErrorRaised())
 IldDisplayError("Cannot retrieve DateTime: ", request);
 else {
 cout << dt.getYear() << "/" << dt.getMonth() << "/"

Note: The millisecond precision of the class IldDateTime introduces a small
discrepancy when connected to Informix, where a millionth of a second precision is
possible.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 89

usrdblink.book Page 90 Tuesday, July 28, 2009 7:27 PM
 << dt.getDay() << " " << dt.getHour() << ":"
 << dt.getMinute() << ":" << dt.getSecond() << endl;
 }
 }
 } while (request->hasTuple());
}

These two member functions raise an error of type ILD_TYPE_MISMATCH if the date as
string feature is turned on.

At creation, all fields of an IldDateTime object are initialized by default at zero.

Handling Exact Numeric Values

Exact numeric types sometimes hold values that cannot be converted into integer values.
They can be turned into floating-point values but with a loss in significant digits.
IBM ILOG DB Link allows you to send or retrieve such values as character strings or
objects to avoid that loss of precision.

Numeric As String

Very large numeric or decimal values can be handled as strings to preserve precision. To do
so, turn on the numeric as string feature before you use the string-dedicated
IBM ILOG DB Link member functions IldRequest::setParamValue and
IldRequest::getColStringValue.

◆ To turn on the feature:

{
 // Data selection
 request->setStringNumericUse(IlTrue);
}

◆ To send huge exact numeric values as strings:

{
 request->setParamValue("9876543210987.654321098", 0);
}

◆ To retrieve such huge numeric values as strings:

{
 // Print selected item values.
 do {
 if (!request->fetch())
 IldDisplayError("Fetch failed:", request);
 else if (request->hasTuple()) {
 cout << request->getColStringValue(0) << "\t"
 << request->getColDateValue(1) << endl;
 }
 } while (request->hasTuple());
}

90 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Generic Data Types

usrdblink.book Page 91 Tuesday, July 28, 2009 7:27 PM
Numeric As Object

To gain full independence from the RDBMS server and client host localization, an
application can use the numeric as object feature to handle values of data types DECIMAL
and NUMERIC. The feature is enabled by a call to the function
IldIldBase::setNumericUse with an argument value of IlTrue.

When using Oracle, due to the existence of the numeric type, NUMBER, numeric values are
handled as objects as soon as that feature is turned on.

An IlNumeric object can be converted to and from the type IlInt but its value can also be
accessed as a character string, which will be built following the C locale (no thousands
separator and a dot as the decimal separator).

◆ To turn on the feature:

{
 // Use numeric objects
 request->setNumericUse(IlTrue);
}

◆ To send numeric object values:

{
 IlNumeric* num = new IlNumeric;
 num->set("987654321.654321");
 request->setParamValue(num, 0);
}

◆ To retrieve a numeric object value use the function
IldRequest::getColNumericValue, like this:

{
 // Print selected item values.
 do {
 if (!request->fetch())
 IldDisplayError("Fetch failed:", request);
 else if (request->hasTuple()) {
 IlNumeric num = request->getColNumericValue(0);
 if (!request->isErrorRaised()) {
 char numValue[ILD_MAX_NUM_LEN];
 num.get(numValue, ILD_MAX_NUM_LEN);
 cout << numValue << "";
 }
 }
 } while (request->hasTuple());
}

I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 91

usrdblink.book Page 92 Tuesday, July 28, 2009 7:27 PM
Large Objects (LOBs)

With IBM ILOG DB Link, your application can handle Large OBjects (LOBs) either as a
whole or in memory chunks.

LOBs can be sent to the RDBMS only from memory-stored data, but they can be retrieved as
a whole into memory or as whole into a named file, or in chunks into application-allocated
memory.

Retrieving LOBs in chunks depends on the RDBMS: most RDBMSs allow retrieval only in
consecutive chunks. The only exception to this is Oracle whose API supports positioned
retrieval.

The various RDBMSs use different type names for LOBs and have different protocols to
send and retrieve these kinds of values. The term LOB is used for data types that allow
values of unlimited size. (This is theoretical. In practice, the size is always limited to two
gigabytes).

This section is divided in 2 parts:

◆ Sending Large Objects

◆ Different Ways of Retrieving Large Objects

Sending Large Objects

With IBM ILOG DB Link, you have only one way of sending LOBs to the database server,
namely through the member functions IldRequest::insertLongText or
IldRequest::insertBinary.

Both member functions actually update an already existing row using the discrimination
clause passed in the fifth argument. This argument must contain a valid where clause,
reduced to the predicate part —that is, without the where keyword.

Sending Text Data

The member function IldRequest::insertLongText takes five arguments:

◆ the text data buffer,

◆ the data length,

◆ a table name,

◆ a column name,

◆ a reduced where clause.
92 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Large Objects (LOBs)

usrdblink.book Page 93 Tuesday, July 28, 2009 7:27 PM
This code extract shows that you must send the column data as a whole.

{
 // Prepare the where clause of the update
 ostr.seekp(ios::beg);
 ostr << " NAME = '" << name << "'" << ends;
 // Find out file size
 int len = inFile.seekg(0, ios::end).tellg();
 char* buff = new char [len + 1];
 if (!buff) {
 cout << "Memory exhausted: cannot allocate text buffer" << endl;
 res = IlFalse;
 }
 else {
 // Read in data
 inFile.seekg(0, ios::beg); // Back to beginning of file
 inFile.read(buff, len);

 // Proper text insertion.
 if (!request->insertLongText(buff, len, "USERTABLE",
 "VALUE", str))
 res = IlFalse;
}

Sending Binary Data

The member function IldRequest::insertBinary takes four arguments:

◆ An IldBytes structure holding the data and its length,

◆ A table name,

◆ A column name, and

◆ A reduced where clause.

Different Ways of Retrieving Large Objects

To retrieve LOBs, you can choose one of the following three methods:

◆ Getting the whole contents at once into memory (with some limitations);

◆ Getting the whole contents at once into a file;

◆ Getting the contents in memory chunks.

Retrieving into Memory

◆ Long Text Values

To retrieve a large text value at once into memory, after having successfully executed an
SQL select statement, use the function IldRequest::getColLongTextValue.

Warning: The memory chunk internally allocated by IBM ILOG DB Link is limited to
64 Kilobytes.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 93

usrdblink.book Page 94 Tuesday, July 28, 2009 7:27 PM
{
 while (request->fetch().hasTuple())
 cout << request->getColLongTextValue(0) << endl;
}

◆ Long Binary Values

To retrieve a large binary value at once into memory, after having successfully executed an
SQL select statement, use the member function IldRequest::getColBinaryValue.

Retrieving into a Named File

To retrieve a large text value at once into a named file, use the member function
IldRequest::getLargeObject. The member function itself issues the initial SQL
select statement. There is no program limit on the size of the data value.

This function can be used for IldLongTextType values as well as for IldBinaryType
values. It takes the following four arguments:

◆ The table name,

◆ The column name,

◆ A reduced where clause,

◆ The full path name of the file where the column data is to be saved.

{
 if (!request->getLargeObject("DBLTEXT", "TVAL",
 "NAME = '1st Text'","/tmp/text1")) {
 IldDisplayError("Text retrieval failed:", request);
 Ending(dbms, request);
 }
}

Retrieving in Chunks of Memory

To retrieve a large text or binary value in chunks of memory:

1. Initiate the process by a call to the function IldRequest::startGetLargeObject,
which issues the initial SQL select statement.

This function takes the following three arguments:

● The table name,

● The column name,

● The reduced where clause.

Warning: The memory chunk internally allocated by IBM ILOG DB Link is limited to
64 Kilobytes.
94 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Handling Abstract Data Type Values

usrdblink.book Page 95 Tuesday, July 28, 2009 7:27 PM
2. Iterate by calling the function IldRequest::getLargeObjectChunk until the
offset argument is left unchanged by the call, meaning that no more data was returned.

Since you pass the address of a preallocated memory chunk as the second argument to the
call, it is up to you to decide the memory limitation.

The third argument is ignored on input for all RDBMSs except Oracle. Oracle allows you to
fetch from any offset in the column value.

All other database systems only allow retrieving chunks by ascending, not by overlapping,
indexes. On output, the argument is set to its entry value, increased by the total number of
bytes actually read so far.

These functions can be used for IldLongTextType values as well as for IldBinaryType
values.

Handling Abstract Data Type Values

Since abstract data types (also called user-defined data types) are supported only for
ORDBMSs, the corresponding values make sense only when connected to databases that
have this capability. Two such RDBMSs are currently supported: Oracle® and Informix®
Universal Server, also called Informix9 in the IBM ILOG DB Link documentation.

The following items are described:

◆ Abstract Data Type Descriptor

◆ Abstract Data Type Values

Abstract Data Type Descriptor

Descriptor Class

A descriptor is used to describe abstract data types. This descriptor is implemented by the
class IldADTDescriptor.

Such a descriptor can be embedded in an IldDescriptor instance if the described column
or parameter is of a user-defined type, that is, when the function
IldDescriptor::getType returns either IldObjectType or IldCollectionType
objects.

Categories of User-Defined Data Types

A value of a user-defined data type is always an instance of IldADTValue, whether a
“horizontal” structure (object for Oracle, named row or unnamed row for Informix
Universal Server) or a “vertical” structure (varray or nested table for Oracle, list,
set, or multiset for Informix US).
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 95

usrdblink.book Page 96 Tuesday, July 28, 2009 7:27 PM
To differentiate between them, the user-defined data type descriptor can be queried using the
function getType, which returns an IldADTType value, according to Table 4.4:

The type of a user-defined data type descriptor can only be a value from the enumeration
IldADTType declared in the file ild.h. In other words, an IldADTDescriptor instance
can represent one of the following:

◆ An Oracle varray if its type is IldADTArray,

◆ An Oracle object or an Informix US named row or unnamed row if its type is
IldADTObject,

◆ An Oracle nested table if its type is IldADTTable, or

◆ An Informix US list, set, or multiset if its type is IldADTList.

Abstract Data Type Values

Values of an abstract data type are handled using instances of the class IldADTValue. Such
a value keeps a reference to the abstract data type descriptor, which can be accessed by
calling the function IldADTValue::getDescriptor.

Retrieving Values from the Result Set

An IldADTValue object is returned by the function IldRequest::getColADTValue.
This object becomes the application’s property. This means that the application must delete
it once done with it.

Sending Values as Parameters

Once a parameter has been bound to the IBM ILOG DB Link types IldObjectType or
IldCollectionType using the member function IldRequest::bindParam, values can
be passed using the overloaded function setParamValue. The first parameter of this
function can be deleted immediately after the call because IBM ILOG DB Link copies it.

Table 4.4 Categories of User-Defined Data Types

This type Is used for these data types

IldADTObject Objects and named rows

IldADTTable Nested tables

IldADTList Lists, sets, and multisets

IldADTArray Varrays
96 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Extending the IldRequest Class

usrdblink.book Page 97 Tuesday, July 28, 2009 7:27 PM
Accessing Attribute Values

Whether the object represents the value of an object type or the value of a collection type,
the individual attribute or slot values are retrieved using the same accessor functions of the
form get<type>Value() where <type> can be one of:

◆ String

◆ Integer

◆ Real

◆ Byte

◆ Money

◆ Date

◆ Numeric

◆ DateTime

◆ Bytes

◆ ADT

◆ Ref

Extending the IldRequest Class

It is not possible to derive from the class IldRequest because the actual objects handled by
your application are not instances of the IldRequest base class but instances of subclasses
of this class.

If, for any reason, you need to extend the functionality of the IBM ILOG DB Link class
IldRequest, you can retrieve the determining part for handling statements.

The member function IldRequest::getHook returns it as a void pointer (IlAny). The
actual return value depends on the target RDBMS, as shown in Table 4.5:

Warning: The values returned for string and ADT types must be copied by the
application.

Table 4.5 Values Returned by the Member Function IldRequest::getHook

With this Database System... ...the getHook function returns
...and lets you call the
following database
proprietary client interface.

DB2 the SQLHANDLE CLI (Call Level Interface)

Informix the cursor name Embedded SQL
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 97

usrdblink.book Page 98 Tuesday, July 28, 2009 7:27 PM
Differences between IldRequest and IldRequestModel Classes

IldRequestModel provides the same functionalities as IldRequest, plus the ability to be
derived. This derivation capability introduces a few differences with the IldRequest class,
as follows:

◆ IldRequestModel instances are allocated using their constructor, and not using the
IldDbms::getFreeRequest member function of the IldDbmsModel class.

◆ IldRequestModel objects are not automatically cleaned when deleting the
IldDbmsModel instance through which they were allocated.

MS SQL Server the pointer to the DBCURSOR structure DB Library function

ODBC the HSTMT ODBC functions

OLE-DB the pointer to the IDBCreateCommand
structure

OLE-DB functions

Oracle 9i, 10g and 11g the pointer to the OCIStmt structure OCI function

Sybase the pointer to the CS_COMMAND structure Client Library functions

Table 4.5 Values Returned by the Member Function IldRequest::getHook

With this Database System... ...the getHook function returns
...and lets you call the
following database
proprietary client interface.
98 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdblink.book Page 99 Tuesday, July 28, 2009 7:27 PM
5I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Queries

This chapter is divided into the following sections:

◆ Executing an SQL Query Immediately

◆ Setting Up a Query for Multiple or Repeated Use

◆ Binding Application Memory to the Database API

◆ Finding Out the Types and Sizes of Returned Columns

◆ Retrieving Data
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 99

usrdblink.book Page 100 Tuesday, July 28, 2009 7:27 PM
Executing an SQL Query Immediately

Some SQL statements sent by your application can be:

◆ “one shot” queries, such as DDL statements (create table, drop table, and so on),

◆ or, select or delete queries, known beforehand.

For immediate execution, you do not even need to create an IldRequest object. The
IldDbms object can process such statements by means of the function
IldDbms::execute.

However, you can also use an IldRequest object for that purpose by calling the function
IldRequest::execute.

When the execution succeeds, you may bind the returned data columns to application
memory by using the member function IldRequest::bindCol.

Setting Up a Query for Multiple or Repeated Use

When your application reuses the same basic SQL statement several times, at once or in
various places, with different values as parameters, you can allocate an IldRequest object,
which will be used to prepare the query for execution and will be kept until actual execution
is needed.

Such a query contains placeholders in the form of question marks, “?”, as defined in the ISO
SQL standard, or even in an RDBMS-specific form, such as “:1” or “:var”. These last two
forms are supported only by Oracle which does not support the standard placeholder format.
As a consequence, queries that need to be prepared cannot be made portable on all RDBMSs
and your application code must allow for this.

The general procedure to set up a query for multiple or repeated use is the following:

1. Call the function IldRequest::parse to prepare a parameterized query.

Once the query has been prepared successfully, you must bind the variables (which are
the program counterpart of the placeholders) to the proper type and, possibly, to the
application memory.

2. To do so, use the member function IldRequest::bindParam.

Before actual execution, set the variable values either in your application memory or in
the IBM® ILOG® DB Link internal memory.

3. To do so, use the member function IldRequest::setParamValue.

An overloaded version of that member function exists for each possible
IBM ILOG DB Link type.
100 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Binding Application Memory to the Database API

usrdblink.book Page 101 Tuesday, July 28, 2009 7:27 PM
When there are many rows to be inserted, this schema can be implemented in two
different ways:

● As a loop inserting one row at a time.

For each row of parameter values, call IldRequest::setParamValue for all
parameters, then call IldRequest::execute.

● As a batch inserting several rows at once.

4. Using the array bind mode, pass all parameter values, up to the number of rows indicated
by IldRequest::getParamArraySize.

5. Call the member function IldRequest::execute.

If there are fewer rows than the bind array size, you can pass the actual number of rows
as the second parameter to the function IldRequest::execute.

Binding Application Memory to the Database API

On both input and output, you can bind application memory to the API of the RDBMS by
calling the function IldRequest::bindParam for input or IldRequest::bindCol for
output.

◆ Input bindings must be done after the query has been successfully prepared.

◆ Output bindings make sense only if the query is an SQL select statement or an SQL
execute procedure statement that returns rows. In the case of immediate execution,
output bindings can be done after the execution and before the first call to the member
function IldRequest::fetch.

In the case of a prepared query, the bindings can take place after the function
IldRequest::execute has been called.

Finding Out the Types and Sizes of Returned Columns

Once the select statement has been prepared using the function IldRequest::parse or
executed using the function IldRequest::execute, the application can gain access to the
column descriptors.

The number of select list columns is given by a call to the member function
IldRequest::getColCount. Then, for any index between 0 and that value, the function
IldRequest::getColDescriptor returns an instance of the class IldDescriptor.

Table 4.2 on page 74 shows the IldDescriptor information you can get on the
corresponding column.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 101

usrdblink.book Page 102 Tuesday, July 28, 2009 7:27 PM
Retrieving Data

Depending on your implementation, the application can either retrieve data in its own
memory space or let IBM® ILOG® DB Link handle all memory allocation and data
retrieval.

The simplest way is to process the SQL statements and then ask IBM ILOG DB Link for the
column data values via the function IldRequest::getCol<data type>Value, where
<data type> is one of IBM ILOG DB Link-supported types. All accessors check their
argument values. Therefore, the data type for which the accessor is made must match the
actual column binding type, and the indexes to the result set, column, and row numbers
(optional) must not be out of bounds.

When you use accessors to data types like string or binary, you must copy the returned
value to application-allocated memory. This is done because the next data fetch reuses the
same internal memory, and, consequently, the previously fetched data will be lost.
102 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdblink.book Page 103 Tuesday, July 28, 2009 7:27 PM
6

Errors and Warnings

This chapter explains the error handling mechanism implemented by
IBM® ILOG® DB Link and covers the following topics:

◆ Diagnostic Class — The class IldDiagnostic.

◆ Warnings — Querying the classes IldDbms and IldRequest on various information
messages.

◆ Errors — Error codes and messages as raised by IBM ILOG DB Link.

◆ Error Reporter — Default settings and behavior of the IBM ILOG DB Link error
handling mechanism, and the output error stream.

◆ Customizing the Error Handling Mechanism
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 103

usrdblink.book Page 104 Tuesday, July 28, 2009 7:27 PM
Diagnostic Class

The IldDiagnostic class contains information about the context of an error or warning.
The following items are described:

◆ Accessing a Diagnostic Instance

◆ Context Information

Accessing a Diagnostic Instance

The information provided by a given instance of IldDiagnostic is relevant only if the
function IldIldBase::isErrorRaised or IldIldBase::isInformationRaised:

◆ has been called before the function IldIldBase::getError or
IldIldBase::getInformation, respectively, and

◆ returned IlTrue.

Otherwise, the IldIldBase::getError or IldIldBase::getInformation function
may return either null or an instance of IldDiagnostic whose contents are irrelevant.

If any context information items need to be kept, the application must copy the
corresponding values into its own memory space because the contents of the
IldDiagnostic object might be overwritten during subsequent execution of a query.

Context Information

The object contains the following information items about the context in which it was
created or filled:

◆ Code: This number can originate from IBM® ILOG® DB Link or from the server.

◆ Native code of the error: When the error is raised by IBM ILOG DB Link, it is set to 0.
Otherwise, it has the same value as the code.

◆ Function code: The IBM ILOG DB Link symbolic code for the function in which the
error was raised.

◆ Origin: The layer that raised the error.

◆ sqlstate: Either the value returned by the server, the value set by IBM ILOG DB Link, or
no value at all.

◆ Message text: The text associated with the error.
104 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Warnings

usrdblink.book Page 105 Tuesday, July 28, 2009 7:27 PM
Warnings

Objects of the classes IldDbms and IldRequest can be queried about the arrival of
warnings or other information messages.

When such a message is received, a flag is raised in the object. To test the flag, call the
function IldIldBase::isInformationRaised. If the return value is IlTrue, a warning
or information message has been received. You can read its symbolic code and text by
calling the member function IldIldBase::getInformationCode or
IldIldBase::getInformationMessage. For example:

if (request->isInformationRaised()) {
 cout << "Information: " << endl;
 cout << "\t" << request->getInformationMessage() << endl;
}

Platforms: When your application is connected to Sybase, these information messages
originate from the TransactSQL function print.

Errors

This section is divided as follows:

◆ Error Handlers

◆ Error Codes

◆ IBM ILOG DB Link API Codes and Messages Table

◆ Function Codes

◆ SQLSTATE

◆ Error Messages

◆ Error Origin

◆ Erroneous IldDbms and IldRequest Objects

Error Handlers

In the process of exchanging information with a database system, there are numerous
opportunities for errors. These can be raised by IBM® ILOG® DB Link, by the client API
of the RDBMS, or even by the database server.

IBM ILOG DB Link implements error handlers to catch errors. All IldDbms and
IldRequest objects must have an attached IldErrorReporter object. In fact, when
IldDbms and IldRequest objects are created, an error handler is automatically attached.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 105

usrdblink.book Page 106 Tuesday, July 28, 2009 7:27 PM
However, you can change the default error handler for an object of a class derived from
IldErrorReporter.

Platforms: When using Sybase, your application must not replace the message or error
handlers by the Sybase library routine ct_callback with the parameter
CS_CLIENTMSG_CB or CS_SERVERMSG_CB. Such a call made by your application would
break the error handling mechanism of IBM ILOG DB Link. The same problem occurs with
MS SQL Server and the DB Library functions dberrhandle and dbmsghandle. Your
application must conform to the protocol defined in Customizing the Error Handling
Mechanism on page 116.

Error Codes

ILOG DB Link defines error codes associated with error messages. Some of these codes
correspond to anomalies detected by the library. Additionally, there are error codes and
messages corresponding to those raised within an RDBMS itself. ILOG DB Link provides
the necessary interface for your application to recover gracefully (whenever possible) from
these two kinds of errors in the class IldErrorReporter.

Error codes returned by the member function IldIldBase::getErrorCode may originate
from IBM ILOG DB Link or from the RDBMS. You cannot tell the origin of the error from
that number only, because IBM ILOG DB Link error codes are negative, just like most
RDBMS error codes.

However, you can differentiate between them through the error origin: the function
IldIldBase::getErrorOrigin returns IldDblink if the error was trapped by the
IBM ILOG DB Link API, or IldRDBMServer if the error was trapped by the server.
Moreover, Sybase allows you to distinguish the errors raised in the server from those raised
in the client API: for the latter, the origin is of type IldClientAPI.

Note: It is not possible to access the default reporter. Thus, when no reporter has been set
by the application, although the function IldIldBase::getErrorReporter returns
null, a reporter is actually set.
106 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Errors

usrdblink.book Page 107 Tuesday, July 28, 2009 7:27 PM
IBM ILOG DB Link API Codes and Messages Table

The following table gives you a list of all error messages generated by the
IBM ILOG DB Link API together with the corresponding error codes. The reasons for the
errors are also included.

Table 6.1 Error Codes and Messages

Error Code (Symbol) Error Message (String) Comment

ILD_ALREADY_CONNECTED Current object is already
connected

This error can be raised by the function
IldDbms::connect if an active connection is
already open.

ILD_BAD_COLUMN_INDEX Bad column index This error is raised by the function
IldRequest::getColName when the
column descriptor has no name or the given
index is out of bounds.

ILD_BAD_COLUMN_NAME Bad column name This error is raised by the function
IldRequest::getColIndex when no
column with the given name is found in the
results set descriptors.

ILD_BAD_DB_SPEC Bad format for database
specification

This error is raised at connection time when the
given connection string does not match the
RDBMS-specific format requested.

ILD_BAD_EXECUTE_COUNT Bad count for execute function This error is raised when the function
IldRequest::execute is called for a
prepared query whose second argument is
greater than the size of the bind array.

ILD_BAD_FILE File cannot be opened for write
operation

This error is raised by the function
IldRequest::getLargeObject when the
file indicated by the fileName argument is write-
protected.

ILD_BAD_VARIABLE_SIZE Bad size for variable being
bound

 This error is raised when binding a column with
a byte size that is too small for the data type
used.

ILD_CANNOT_RESIZE_TUPLE Cannot resize tuple This error is raised while describing a results
set or binding a parameter when an internal
allocation failed

ILD_CBCK_INIT Callback initialization failed This error can be raised only within a
connection to Sybase. If such an error occurs,
contact IBM customer support.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 107

usrdblink.book Page 108 Tuesday, July 28, 2009 7:27 PM
ILD_CON_ALLOC Connection allocation failed This error can be raised only within a
connection to Sybase. If such an error occurs,
contact IBM customer support.

ILD_CON_INIT Connection initialization failed This error can be raised only within a
connection to Sybase. If such an error occurs,
contact IBM customer support.

ILD_CTXT_ALLOC Context allocation failed This error can be raised only within a
connection to Sybase. If such an error occurs,
contact IBM customer support.

ILD_CTXT_INIT Context initialization failed This error can be raised only within a
connection to Sybase. If such an error occurs,
contact IBM customer support.

ILD_DATE_CONVERT Date conversion failed This error is raised when a conversion fails,
either from the RDBMS internal format to a
date value or, conversely, from a date value to
the RDBMS internal format.

ILD_DBMS_FATAL_ERROR Fatal Dbms error This error is raised after an unrecoverable error
occurs. After the error is raised, the connection
is in an unpredictable state and must not be
reused. The IldDbms object must be
destroyed.

ILD_DBMS_NOT_CONNECTED Dbms is not connected This error is raised each time a function from
the class IldDbms is called while the
connection is closed.

ILD_IGN_EXT_ROWS Extra row(s) ignored WARNING ONLY
This is a warning emitted by member functions
such as IldRequest::getLargeObject
when the given condition is not restrictive
enough and several rows are returned.

ILD_INVALID_HANDLE Invalid handle This error is raised when the underlying control
structure used to communicate with the server
is out of order.

Table 6.1 Error Codes and Messages (Continued)

Error Code (Symbol) Error Message (String) Comment
108 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Errors

usrdblink.book Page 109 Tuesday, July 28, 2009 7:27 PM
ILD_INVALID_PARAMETER Data exception, invalid
parameter value

This error is raised when a function of
IBM ILOG DB Link is called with an invalid
value. For example, the userCallBack
parameter (which is the user function called
when the event occurs) in the
IldDbms::subscribeEvent function can
not be null. If it is, the program will crash
when the event occurs.

ILD_INVALID_SEQUENCE Calling this function is not
allowed at this time

This error is raised when a function is called
when some other function should have been
called prior to this one.

ILD_LIB_MSMTCH Library mismatch If your application was linked in dynamic mode,
this error is raised when the driver manager
finds a library with the right name but with no
proper entry point.

ILD_LIB_NLNKD RDBMS library not linked If your application was linked in static mode,
this error is raised when the target RDBMS
library has not been linked or the RDBMS
name is not recognized.

ILD_LOCK_NAME_MISMATCH Lock name mismatches This error can be raised only when an attempt
is made to unlock an IldRequest object using
the wrong name or an empty name for the lock
to be released.

ILD_MAX_CURS_LEN Cursor name truncated WARNING ONLY
This warning is raised when the name passed
for a cursor is too long for the target RDBMS.

ILD_MEMORY_EXHAUSTED Memory exhausted This error is raised when an allocation fails.

ILD_NO_DYN_LIB Dynamic library not found If your application was linked in dynamic mode,
this error is raised when the driver manager
cannot find the designated driver library.

ILD_NO_HANDLER Error handler not called This error can be raised only within a
connection to Sybase. If such an error occurs,
contact IBM customer support.

ILD_NO_MORE_TUPLES No more tuples This error is raised when an accessor to
column data is used and no row has been
returned from the server.

Table 6.1 Error Codes and Messages (Continued)

Error Code (Symbol) Error Message (String) Comment
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 109

usrdblink.book Page 110 Tuesday, July 28, 2009 7:27 PM
ILD_NO_REPORTER Error reporter cannot be null This error is raised by the functions
IldDbms::setErrorReporter and
IldRequest::setErrorReporter when
the argument passed is null.

ILD_NOT_IMPLEMENTED Not implemented for current
RDBMS

This error is raised when an attempt is made to
use a functionality that cannot be implemented
for the target RDBMS.

ILD_NOT_SCROLL_MODE Scrollable cursor mode must
be activated

This error is raised when an attempt is made to
use the function
IldRequest::fetchScroll in the following
context:
A value of the fetchOrientation parameter is
different from IldFetchDirectionNext.
Scrollable cursor mode is not activated (see
member function
IldRequest::setScrollable).

ILD_NUM_CONVERT Numeric conversion failed This error is raised when a conversion fails,
either from the RDBMS internal format to a
numeric value or, conversely, from a numeric
value to the RDBMS internal format.

ILD_OFFSET Offset INFORMATION ONLY
This is not an error but merely part of an error
message.

ILD_OUT_OF_RANGE Index out of range This error is raised when an attempt is made to
bind an output column using an index greater
than the actual number of columns in the
results set.

ILD_RDBMS_CONN Must give RDBMS name and
connection string

This error is raised when trying to create an
IldDbms object and either the RDBMS name
or the connection string was null or started
with a null character.

ILD_REQUEST_REQUIRED IldRequest object missing This error can be raised only when connected
to Sybase, or MS SQL Server. With these
RDBMSs, the transaction-handling IldDbms
functions require that a valid IldRequest
object be passed.

Table 6.1 Error Codes and Messages (Continued)

Error Code (Symbol) Error Message (String) Comment
110 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Errors

usrdblink.book Page 111 Tuesday, July 28, 2009 7:27 PM
ILD_TYPE_MISMATCH Value accessor mismatch This error is raised if an output or input column
is bound to a type, in the IBM ILOG DB Link
sense, that is not possible or not allowed by the
configuration settings (for example, binding a
column to IldDateType while the
IldRequest object is set to use the “date as
object” feature).

ILD_UNCHGEABLE Cannot modify a server
initialization parameter

This error can be raised only within a
connection to Oracle, when an attempt is made
to modify the request time-out.

ILD_UNDEF_LINK_MODE Unknown DB Link driver
linkage mode

The application must be linked with either the
dblnkdyn or dblnkot library. If none is used,
this error is raised when trying to allocate a
connection.

ILD_UNKN_ERRMSG Unknown error message REPLACEMENT MESSAGE
This is a replacement message, not an error. It
is raised when the RDBMS API fails to give the
proper message for an error.

ILD_UNKNOWN_CODE Unknown error code This error is raised when a function call to the
underlying RDBMS API returns an unexpected
value. If such an error occurs, contact IBM
customer support.

ILD_UNKNOWN_ENTITY Unknown relation This error is raised when a schema entity
description is not available because it does not
exist in the database.

ILD_UNKNOWN_RDBMS Unknown RDBMS This error is raised when an IldDbms object is
created and the given RDBMS name is not
recognized by the driver manager. It can be
raised only if the application is linked in
dynamic mode.

ILD_UNKNOWN_TYPE Unknown column type This error is raised if an attempt is made to bind
an output column or an input parameter to a
type that is not supported for the target
RDBMS.

Table 6.1 Error Codes and Messages (Continued)

Error Code (Symbol) Error Message (String) Comment
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 111

usrdblink.book Page 112 Tuesday, July 28, 2009 7:27 PM
Function Codes

Each documented function has a unique identifier whose symbolic name mimics its name.
For example, the identifier for the function IldDbms::disconnect is
ILD_D_DISCONNECT. These identifiers are defined by the enumeration type IldFuncId in
the file ild.h, under the section “Db Link Function Ids.”

SQLSTATE

Whenever the RDBMS gives access to the SQLSTATE value, IBM ILOG DB Link registers
that value. The text of the SQLSTATE message can be retrieved using the member function
IldIldBase::getErrorSqlstate. The content of the text is volatile —that is, it may be
overwritten by other data. Therefore, you must copy it if you want to keep a trace of the
error.

Error Messages

The text of an error message can be retrieved using the member function
IldIldBase::getErrorMessage. The content of the text is volatile, that is, it may be
overwritten by other data. Therefore, you must copy it if you want to keep a trace of the
error.

For error message strings, see Table 6.1 on page 107.

Error Origin

The enumeration type IldErrorOrigin indicates the various sources of errors:
IBM ILOG DB Link itself, the client API of the RDBMS, or the database server.

ILD_USING_ERROR_DBMS Using Error Dbms object This error is raised by any function of the class
IldDbms when this function is used against an
object that was not properly built. This occurs
when an error is raised because an error
occurred when the IldDbms object is created
or when the initial connection is processed.

ILD_USING_ERROR_REQUEST Using Error Request object This error is raised by any function of the class
IldRequest when the object has not been
allocated properly, usually because the
attached IldDbms object has not been
connected to the server.

Table 6.1 Error Codes and Messages (Continued)

Error Code (Symbol) Error Message (String) Comment
112 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Errors

usrdblink.book Page 113 Tuesday, July 28, 2009 7:27 PM
Depending on the layer in which the error was raised, IBM ILOG DB Link sets the error
origin to a different value of IldErrorOrigin.

enum IldErrorOrigin {
 IldUnknownOrigin,
 IldDbLink,
 IldClientAPI,
 IldRDBMServer
};

When the error is raised by an IBM ILOG DB Link function, the origin is set to IldDbLink.

Platforms: When connected to a Sybase server, the origin will be set to IldClientAPI if
the CLIENT callback has been activated. Otherwise, it is set to IldRDBMServer.

Erroneous IldDbms and IldRequest Objects

If a very serious error is raised when an object is created, the return value you receive may
be of the class IldErrorDbms or IldErrorRequest (instead of the object you expect).

Instances of these classes will never process any SQL statement. They always raise an error,
either ILD_USING_ERROR_DBMS or ILD_USING_ERROR_REQUEST.

◆ ILD_USING_ERROR_DBMS: An erroneous connection object is returned only when an
IldDbms object cannot be allocated.

◆ ILD_USING_ERROR_REQUEST: An erroneous request object is returned only when you
try to get a new IldRequest object even though the related IldDbms object is not
connected.

Warning: You must explicitly delete these erroneous objects.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 113

usrdblink.book Page 114 Tuesday, July 28, 2009 7:27 PM
Error Reporter

This section explains how an error reporter is created and how an output error stream can be
attached to it. It is divided as follows:

◆ Default Settings and Behavior

◆ Output Error Stream

Default Settings and Behavior

When an IldDbms object is created, an IldErrorReporter object is attached to it. This
object is inherited by all IldRequest objects created from that IldDbms object.

The output stream field of the IldErrorReporter object is not set on creation.

IBM ILOG DB Link guarantees that, when an error is raised, the IldErrorReporter
object will call one of the following member functions:

◆ IldErrorReporter::dblinkError if the error was raised by the
IBM ILOG DB Link API, or

◆ IldErrorReporter::dbmsError if the error was raised by the database server or the
RDBMS client API.

Output Error Stream

An output stream (an instance of the C++ class ostream) can be attached to an
IldErrorReporter object. Once an output stream has been attached, the error handling
mechanism will output the code and text of the error through that stream.

An output stream is attached by a call to the function IldErrorReporter::setOStream
and can be retrieved by a call to the function IldErrorReporter::getOStream.

The error code and text are formatted in the output stream like this:

<function name> = <error code> = <error text>

where <function name> indicates the IBM ILOG DB Link member function (from the
list in Table 6.2) in which the error was raised:

Table 6.2 Error-raising Member Functions in the Class IldDbms

Class IldDbms

Constructor autoCommitOn autoCommitOff

commit connect disconnect
114 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Error Reporter

usrdblink.book Page 115 Tuesday, July 28, 2009 7:27 PM
execute getAbstractType getHook

getInfo getName getProcedure

getRelation getSynonym getTypeInfo

readAbstractTypeNames readEntityNames readOwners

readRelationNames readRelationOwners readProcedureNames

readSynonymNames readPrimaryKey readForeignKeys

readIndexes readSpecialColumns rollBack

setCursorMode setErrorReporter setTimeOut

startTransaction

Table 6.3 Error-raising Member Functions in the Class IldRequest

Class IldRequest

Constructor Destructor bindCol

bindParam closeCursor execute

fetch getColADTValue getColBinaryValue

getColByteValue getColDateTimeValue getColIndex

getColIntegerValue getColLongTextValue getColMoneyValue

getColName getColNumericValue getColRealValue

getColReferenceValue getLargeObject getParamBinaryValue

getParamCursorValue getParamDateTimeValue getParamIndex

getParamNumericValue getStatus insertLongText

insertBinary isColNull isNullIndicatorOn

isParamNull parse release

removeColLock removeColArraySize removeParamArraySize

removeParamLock setColArraySize setColPos

Table 6.2 Error-raising Member Functions in the Class IldDbms

Class IldDbms
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 115

usrdblink.book Page 116 Tuesday, July 28, 2009 7:27 PM
Customizing the Error Handling Mechanism

IBM ILOG DB Link assumes that the client application will have to run 24 hours a day,
seven days a week, so it provides a full error-handling mechanism that does not allow the
application to exit prematurely. This mechanism captures warning messages and errors. Its
mainspring is an object of the class IldErrorReporter.

To a certain extent, you can customize the mechanism by subtyping this class. Doing so
enables you to set your own error reporters on every object of the classes IldDbms and
IldRequest, by using the member functions IldDbms::setErrorReporter or
IldRequest::setErrorReporter. It is an error to try to set a null value as the error
reporter since the error ILD_NO_REPORTER is then raised in the calling object.

Customizing the error handling mechanism is done in two main steps:

1. Derive from the class IldErrorReporter and define the virtual functions
IldErrorReporter::dbmsError and IldErrorReporter::dblinkError:

class UserErrorReporter: public IldErrorReporter {
public:
virtual void dbmsError(IlInt,
 const char*,
 const char*,
 IldDbms*,
 IldRequest* = 0,
 const char* = 0) const;
virtual void dblinkError(IlInt,
 const char*,
 const char*,
 IldDbms*,
 IldRequest* = 0,
 const char* = 0,
 IlInt = (IlInt)0,
 const IldRelation* = 0) const;
};

2. Create an instance of your derived class and attach it to the IBM ILOG DB Link object
you choose.

// The following UserErrorReporter objects will be
// destroyed by the IldDbms and IldRequest destructors
// respectively.
UserErrorReporter* dbmsReporter = new UserErrorReporter;

setCursorName setErrorReporter setParamArraySize

setParamNullInd setParamValue setReadOnly

Table 6.3 Error-raising Member Functions in the Class IldRequest

Class IldRequest
116 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Customizing the Error Handling Mechanism

usrdblink.book Page 117 Tuesday, July 28, 2009 7:27 PM
UserErrorReporter* requestReporter = new UserErrorReporter;
...
cout << "Error reporter set to user defined one" << endl;
dbms->setErrorReporter(dbmsReporter);
...
cout << "Setting request error reporter to user defined one" << endl;
request->setErrorReporter(requestReporter);

Base Class

In objects of the class IldErrorReporter, the following fields can be set when an error is
raised:

IldDbms* _dbms;
IldRequest* _request;
IldRelation* _relation;
const char* _query;
IlInt _index;
IlInt _size;

An accessor function exists for each of these fields. For example, the field _dbms is read
with the accessor IldErrorReporter::getDbms. The same naming convention is used
for all fields.

Most fields also have a modifier function, but it is neither advisable nor practical to use it.
After the whole internal processing of the error is complete, one of the two member
functions IldErrorReporter::dblinkError or IldErrorReporter::dbmsError is
called.

Virtual Functions and Their Parameters

◆ The member function IldErrorReporter::dbmsError takes the following
arguments:

● the function code,

● the function name,

● the error text,

● the IldDbms object (if appropriate),

● the IldRequest object (if appropriate),

● the connection string (if appropriate).

void UserErrorReporter::dbmsError(IlInt errorType,
 const char* function,
 const char* message,
 IldDbms* dbms,
 IldRequest* request,
 const char* string) const;
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 117

usrdblink.book Page 118 Tuesday, July 28, 2009 7:27 PM
◆ The member function IldErrorReporter::dblinkError takes the following
arguments:

● the function code,

● the function name,

● the error text,

● the IldDbms object (if appropriate),

● the IldRequest object (if appropriate),

● the connection string (if appropriate),

● the index value (if appropriate),

● the IldRelation object (if appropriate).

void UserErrorReporter::dblinkError(IlInt errorType,
 const char* function,
 const char* message,
 IldDbms* dbms,
 IldRequest* request,
 const char* string,
 IlInt index,
 const IldRelation* relation)
 const;

In both lists, “if appropriate” means that these arguments can have a null value if the
function where the error is raised does not use such an object. One of the two arguments
dbms and request must be non-null.
118 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdblink.book Page 119 Tuesday, July 28, 2009 7:27 PM
7

Compiling and Linking

This chapter deals with compilation and compatibility issues, and presents the
IBM® ILOG® DB Link libraries. It is divided as follows:

◆ Compilation Flags

◆ Target RDBMSs

◆ IBM ILOG DB Link Libraries

Warning: The IBM ILOG DB Link include file “dblink.h” must always be included in
your application. It defines a static variable that will initialize the driver linkage mode
(either static if you use dblnkst + RDBMS compilation flag, or dynamic if you use
dblnkdyn).
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 119

usrdblink.book Page 120 Tuesday, July 28, 2009 7:27 PM
Compilation Flags

IBM ILOG DB Link can be present in an application using two different protocols:

◆ The target RDBMSs are known at compile-link time:

RDBMS-specific flags are used at compile time and the IBM® ILOG® DB Link drivers
corresponding to the target RDBMSs are linked to the application, together with the
RDBMS client libraries.

◆ The application is generic with respect to the RDBMSs:

No compile-time flag is used. The link-time options only refer to the
IBM ILOG DB Link driver manager library.

When you use IBM ILOG DB Link to write an application dedicated to a specific RDBMS,
you must set some specific compiler flags. These flags depend on the target RDBMS and on
the mode in which the code will be linked.

While reading the header files, IBM ILOG DB Link defines other flags that you can use to
achieve portability.

This section is divided as follows:

◆ Compatibility with Previous Releases

◆ RDBMS Flags

◆ Dynamic Load

◆ Mode and Flag

Compatibility with Previous Releases

Some changes in IBM ILOG DB Link V5.3 cause incompatibilities with code written for
IBM ILOG DB Link 4.x. The current version is not binary compatible with previous ones.

Generic Data Types

IBM ILOG DB Link V5.3 no longer defines its own basic data types (IldInt, IldShort,
and so on). Instead, it uses the IFC (IBM ILOG Foundation Classes) data types (IlInt,
IlShort, and so on).

If you want to port an application that was developed with IBM ILOG DB Link 4.x to
IBM ILOG DB Link V5.3, you need to make the changes listed in the following table.

Warning: Never mix both protocols in the same application, because linking with the
driver manager is incompatible with “static” linkage of the drivers.
120 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Compilation Flags

usrdblink.book Page 121 Tuesday, July 28, 2009 7:27 PM
Here is the list of changes to implement for the conversion:

Library Organization

The organization of libraries has also changed.

◆ With previous releases, there was one library for each supported database plus the library
dblink to support dynamic loading.

◆ This release contains:

● A specific library that contains the IBM ILOG DB Link kernel: dbkernel.

● Plus one library for each supported RDBMS.

● Plus two libraries defining whether RDBMS libraries are linked statically or
dynamically: dblnkst and dblnkdyn.

Table 7.1 New Macros for IBM ILOG DB Link V5.3

Old Macro New Macro

ILDWINDOWS WINDOWS

ILDSTD IL_STD

ILDSTDUSE IL_STDUSE

ILDSTDPREF IL_STDPREF

ILD_MAX_NUM_LEN IL_MAX_NUM_LEN

Table 7.2 IFC Generic Data Types for IBM ILOG DB Link V5.3

Old Data Type New Data Type

IldBoolean IlBoolean

IldFalse IlFalse

IldTrue IlTrue

IldInt IlInt

IldUInt IlUInt

IldAny IlAny

IldUShort IlUShort

IldByte IlUChar

IldNumeric IlNumeric
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 121

usrdblink.book Page 122 Tuesday, July 28, 2009 7:27 PM
So if you want your application to be linked statically with, for instance, IBM DB2 and
Oracle 9 drivers, it must be linked with:

dblnkst + dbdb2 + dbora9 + dbkernel

If you want the application to use dynamically loadable drivers, it must be linked with:

dblnkdyn + dbkernel

RDBMS Flags

There is one compiler flag for each supported RDBMS:

● DB2: ILDDB2

● Informix: ILDINFORMIX

● MS SQL Server: ILDMSSQL

● ODBC: ILDODBC

● OLE-DB: ILDOLEDB

● Oracle: ILDORACLE

● Sybase: ILDSYBASE

There must be at least one of these flags per compilation to allow the corresponding driver to
be effectively linked at link time. If not, no error will be issued at compile time or at link
time. At runtime, however, it will not be possible to create any connection.

The makefiles for all examples have a variable that defines one of these flags:

DBMSCCFLAGS=-DILDORACLE

Dynamic Load

IBM ILOG DB Link is delivered as a set of libraries that include:

◆ a kernel library: libdbkernel.a (or dbkernel.lib)

◆ a dynamic driver manager: libdblnkdyn.a (or dblnkdyn.lib)

◆ a static driver manager: libdblnkst.a (or dblnkst.lib)

◆ a set of drivers, possibly several per support.

On PCs, there is no difference between a driver and the delivered DLL.

Important: With certain systems, the order of the libraries is important. You must use first
the library that defines the link mode (static or dynamic), then, if used, the
IBM ILOG DB Link RDBMS driver, then finally the IBM ILOG DB Link kernel.
122 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Compilation Flags

usrdblink.book Page 123 Tuesday, July 28, 2009 7:27 PM
The kernel and dynamic load libraries ([lib]dbkernel and [lib]dblnkdyn) are
themselves dynamically loadable on all UNIX® platforms.

On UNIX, the delivered shared libraries are not built as dynamically loadable drivers. On a
per-platform basis, a makefile named Makefile.drv is delivered, which allows you to
build the drivers using the delivered object files. You cannot build a driver unless you have
installed the RDBMS client libraries in a version that includes shared libraries. Thus, if the
target RDBMS is Informix, you need at least version 7.2, and if the target is Oracle you need
at least version 9.0. See Building Dynamically-Loadable Drivers under UNIX on page 126
for more information.

The drivers can be loaded only if their access path is present in an environment variable
LD_LIBRARY_PATH.

Use of the dynamic load facility is demonstrated by a number of example files, which you
can find in the directories examples/dblink/<port name>. The makefiles in these
directories build the same examples as the ones that can be found in the dedicated
directories. The makefiles in the dblink database differ from the others in that the
DBMSCCFLAGS and DBMSLDFLAGS variable are empty, and the DBLIB variable is set to
dblink.

Warning: The only variables that can be modified in these makefiles are those regarding
the list of RDBMS-dedicated libraries. The object files list must not be modified nor must
the driver manager library be added to the library list.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 123

usrdblink.book Page 124 Tuesday, July 28, 2009 7:27 PM
Mode and Flag

IBM ILOG DB Link is delivered as a set of libraries compiled in various compilation
modes.

◆ For UNIX®, there are two compilation modes per port: static_pic, and shared (and
some variants like static_stl and shared_stl under AIX, and so on.) When your
application is linked with the shared mode library, be sure you add the path to the library
in the environment variable LD_LIBRARY_PATH before running it.

◆ For Windows® (NT, 2000, XP, or Vista), there are at least three compilation modes:
stat_mta, stat_mda, dll_mda, with the compiler flag IL_STD. At runtime, the PATH
environment variable must indicate the directory where the IBM ILOG DB Link library
is installed.

Target RDBMSs

This section deals with:

◆ Multiple Targets, and

◆ RDBMS Prerequisites.

Multiple Targets

When the application is targeted for several database systems, just add the proper
compilation flags and the proper RDBMS client libraries.

RDBMS Prerequisites

To build an executable application using IBM ILOG DB Link, you need to have the RDBMS
client kit (available separately).

IBM ILOG DB Link Libraries

This section provides a table of the IBM® ILOG® DB Link libraries and draws your
attention to the special make files supplied to enable you to rebuild dynamically-loadable
drivers. It is divided as follows:

◆ Library Names

◆ Building Dynamically-Loadable Drivers under UNIX
124 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

IBM ILOG DB Link Libraries

usrdblink.book Page 125 Tuesday, July 28, 2009 7:27 PM
Library Names

Table 7.3 provides the names of IBM ILOG DB Link libraries. These names have been
stripped of their suffix. The suffix depends on the operating system and compilation mode. It
can be one of:

◆ .a,

◆ .so,

◆ .sl,

◆ .lib, or

◆ .dll.

Table 7.3 IBM ILOG DB Link Libraries

RDBMS UNIX® Name Windows® Name

IBM ILOG DB Link driver
manager

libdbkernel dbkernel

Static Load Mode libdblnkst dblnkst

 Dynamic load mode libdblnkdyn dblnkdyn

DB2 libdbdb2 dbdb2

DB2 libdbdb29x dbdb29x

Informix Universal Server libdbinf9 dbinf9

Microsoft® SQL Server® - dbmssql

ODBC - dbodbc

OLE-DB (for Microsoft
SQL Server)

- dboledb

Oracle v9i libdbora9 dbora9

Oracle v10g libdbora10 dbora10

Oracle v11 libdbora11 dbora11

Sybase libctsyb ctsyb
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 125

usrdblink.book Page 126 Tuesday, July 28, 2009 7:27 PM
Building Dynamically-Loadable Drivers under UNIX

The delivery includes special makefiles to rebuild the dynamically-loadable drivers. These
files are named Makefile.drv.

For all ports, these files use variables to locate the RDBMS client libraries. These variables
follow the UNIX® convention of each RDBMS:

◆ DB2DIR for DB2

◆ INFORMIXDIR for Informix

◆ ORACLE_HOME for Oracle

◆ SYBASE for Sybase

The delivery includes the object files needed to rebuild the drivers. These files are separated
into two groups: the IBM ILOG DB Link kernel files and the RDBMS-specific files. The
IBM ILOG DB Link kernel files are always the same but the RDBMS files change
depending on the client libraries.

On UNIX ports, you need to set the value of RDBMS dedicated variables:

◆ INFLIBS for Informix

◆ ORALIBS for Oracle

◆ SYBLIBS for Sybase

For the AIX port, the driver build process uses a special script called makeC++SharedLib,
which is part of the compiler distribution.

To build the drivers, the client libraries must be “sharable” libraries—that is, .so files on
UNIX®. The only exception is AIX, under which drivers can be built even from .a library
files. If your current version of the client software does not include this type of library,
building the drivers is impossible.

Warning: Do not mix RDBMS-specific files for one version with client libraries for
another; even though the drivers building process may succeed, the runtime behavior is
unpredictable and usually results in a memory fault.
126 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrdblink.book Page 127 Tuesday, July 28, 2009 7:27 PM
8

Code Samples

The IBM ILOG DB Link distribution includes a number of code samples that are delivered
on an “as is” basis and are intended for information only. You can reuse their source code to
implement parts of your application.

This chapter is divided as follows:

◆ Generic Examples — The examples presented in this section do not depend on your
target RDBMs.

◆ RDBMS-Specific Examples — This section details a few sample files that were designed
for the Informix, Oracle, and Sybase RDBMS respectively.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 127

usrdblink.book Page 128 Tuesday, July 28, 2009 7:27 PM
Generic Examples

The sample files presented in this section focus on the following IBM ILOG DB Link
functionalities:

◆ Basic Use — An illustration of the simplest use that can be made of IBM ILOG DB Link
libraries.

◆ Handling Dates and Numbers

◆ SQL Interpreter — A small-scale interpreter that sends (to the database server) the
queries that the user types, and then retrieves the result set.

◆ Concurrent Connections and Cursors

◆ Relation Searching — Using the member function IldDbms::getRelation.

◆ Relation Names — Using the member functions IldDbms::readRelationNames and
IldDbms::readRelationOwners.

◆ Input Bindings — Illustrating several combinations of input bindings.

◆ Output Bindings — How to use user-allocated and internally-allocated memory.

◆ Multiple Output Bindings

◆ Handling LOBs — How to use some specific IldRequest member functions.

◆ Asynchronous Processing

Basic Use

The sample example illustrates the simplest use that can be made of IBM ILOG DB Link
libraries. It is independent of any RDBMS and is built from the files sample.cpp and
ildutil.cpp.

It connects to the database server and checks whether the connection is properly established,
and then creates an IldRequest object used to execute all SQL statements.

The SQL statements consist of:

◆ Creating a table: CREATE TABLE

◆ Inserting rows: INSERT INTO

◆ Selecting the whole table contents: SELECT *

◆ Finally, dropping the table: DROP TABLE

Neither the insert nor the select statements use parameters. They are executed
immediately using the function IldRequest::execute.
128 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Generic Examples

usrdblink.book Page 129 Tuesday, July 28, 2009 7:27 PM
After each call to this function, the error status is checked using the operator “!”, which is
applied to the reference to the caller returned by the function.

The disconnection and deletion of the IldRequest object are implicit: the deletion of the
IldDbms object takes care of both aspects.

Handling Dates and Numbers

The datasmpl example shows how to handle dates and exact numeric values. It is built
from the files datasmpl.cpp and ildutil.cpp. This example is RDBMS-dependent in
that it changes the column data types according to the RDBMS name. See the global
functions IldGetDateTypeName and IldGetNumericTypeName in the file
datasmpl.cpp.

This example creates a table with two columns, the first holding numeric values, the second
holding dates. For insertions, it uses the protocol for repeated execution with bound
variables.

◆ The insertions are made with the date as string feature turned off. The second time the
IldRequest::bindParam function is called, the value IldDateTime is passed as the
column type argument.

◆ For the two first insertions, the exact numeric input is bound using the IldStringType
column type. This choice allows you to send such values as
“9876543210987.654321098” to the database server with no precision loss.

◆ For the following insertions, the numeric as objects feature is turned on. The second
parameter is then bound using the IldNumericType value for the column type
argument.

◆ After insertion, the table is read by three successive select statements.

● For the first selection, the values are retrieved with the numeric as string feature
turned on, and the date type values are retrieved using IldDateTime objects.

● For the second selection, the date as string feature is turned back on.

● For the third selection, the feature numeric as objects is turned back on.

◆ Before dropping the table, the previous cursor is explicitly closed using the function
IldRequest::closeCursor. The drop table statement is executed using the
IldDbms::execute function.

SQL Interpreter

The ildsql example is a simplified SQL interpreter that sends to the database server the
queries that the user types, and then retrieves the result set (if any). It is built from the files
ildsql.cpp and ildutil.cpp. This example is fully RDBMS-independent.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 129

usrdblink.book Page 130 Tuesday, July 28, 2009 7:27 PM
When retrieving a row from a result set, the example first checks that the column is not null
for the current row.

Then, it dynamically calls the appropriate data accessors (IldRequest::getCol<data
type>Value functions) as determined through the IBM ILOG DB Link type contained in
the column descriptor (IldRelation::getColType). The code for the IldPrintTuple
function is to be found in the file ildutil.cpp. This function makes use of all column type
accessors.

This example can also handle more sophisticated statements like commit or rollback, and
it even implements a table description facility through the command describe <table
name>.

The kernel of the interpreter contains 35 lines of code, including error checking of each call
to the RDBMS.

This example also supports the retrieval of multiple result sets because the fetch loop is
doubled, that is, a first do-while loop retrieves the first row of a result set while the inner
while loop fetches all remaining rows. When the inner loop stops due to a negative result
from the call to IldRequest::hasTuple, the outer loop adds one more call to
IldRequest::fetch, which starts retrieving the next result set, if any, and getting the
result set column descriptions. If this call fails, no error is raised but the outer loop stops as
well.

These nested loops are necessary because MS SQL Server, ODBC, and Sybase each have
the capability to return several result sets for one execute call, which is the case when the
SQL statement is a stored procedure call.

See the code in file ildsql.cpp for the other available options.

Concurrent Connections and Cursors

The example multidb illustrates the concurrence of connections and cursors. This example
is built from the files multidb.cpp and ildutil.cpp.

◆ Three different connections are created as three IldDbms objects. Each of them has three
cursors attached in the form of three IldRequest objects that are used to create tables
and issue SQL select statements on these tables.

◆ Insertions are made into the tables using different cursors from the same connection.

◆ The tables are then fetched using the different cursors from a same connection for each
table, the calls to IldRequest::fetch being intertwined.

◆ When the connection objects have been deleted, the cursor array is cleaned up. This is
done to avoid keeping references to cursors that have become invalid because they have
been deleted as a result of the corresponding connections being destroyed.

◆ The tables are then dropped using a new connection.
130 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Generic Examples

usrdblink.book Page 131 Tuesday, July 28, 2009 7:27 PM
Relation Searching

The readrel example illustrates the use of the member function IldDbms::getRelation
to retrieve a table description from the database schema.

The example is built from the files readrel.cpp and ildutil.cpp.

After connecting to the database server, this code sample tries to retrieve the description of a
table that should not exist in the database.

Then, a table with a primary key is created before its description is retrieved and printed.

The table description displays the owner, name, and type of the relation. Its columns show
the column name, native SQL type, size (in bytes), and nullability. Finally, the primary key
and index descriptions are displayed.

The IldPrintRelation global function tries to get all possible keys and indexes from the
table. It successively calls the IldRelation member functions
IldRelation::getPrimaryKey, IldRelation::getForeignKeys,
IldRelation::getIndexes, and IldRelation::getSpecialColumns.

Refer to the file ildutil.cpp to see the code for this function.

In the next step, the descriptor is deleted. Then, the IldDbms object is requested to get this
descriptor using its index in the cache, hence an error.

An error is generated once more in the next step, which consists of dropping the table, and
then trying to retrieve its description.

Relation Names

The relnames example illustrates the use of two IldDbms member functions:

◆ IldDbms::readRelationNames, both with and without the owner array output
argument

◆ IldDbms::readRelationOwners

It is built from the files relnames.cpp and ildutil.cpp.

1. This sample file first queries the database server for all table names that get printed.

2. Then, the database is searched for all relation owner names.

3. Then, it retrieves all relation names and all their respective owner names.

4. Finally, it asks the user for an owner name that is used to query the database for all the
names of all the relations belonging to that owner.

Each function returns one or two arrays of strings that are deleted using the function
IldDbms::freeNames. Using this function is mandatory when running on a PC that uses
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 131

usrdblink.book Page 132 Tuesday, July 28, 2009 7:27 PM
IBM ILOG DB Link libraries in DLL forms. Otherwise, a memory access error occurs
during their deletion.

Input Bindings

The smplbnd example illustrates most of the possible combinations of input bindings. It is
built from the files smplbnd.cpp and ildutil.cpp.

1. In the first step, rows are inserted, one by one, into a newly created table. This is
achieved using immediate execution through the function IldRequest::execute.

2. Then, a select statement with a variable in the where clause is prepared for repeated
execution. It is executed twice with different values for the variable.

3. Then, an insert statement, where all inputs are supplied through variables, is prepared
for multiple execution. The array bind feature is set so that two rows will be inserted at
once for each execution.

One variable per row is set to null by the function IldRequest::setParamNullInd.
After that insertion, a select statement is issued to check that the rows were inserted
and the null values used despite the values that were actually passed to the parameter.

4. Finally, an update statement with parameters is prepared and executed, but in the call to
IldRequest::execute, a second argument is passed. This argument constrains the
number of rows to update to 1 despite the bind array size of 2. The last select statement
checks that only one row has been updated.

Output Bindings

The sbinding example illustrates how to use:

◆ user-allocated memory to retrieve column data,

◆ internally-allocated memory for parameters,

◆ user-allocated memory for parameters.

It is built from the files sbinding.cpp and ildutil.cpp.

1. First, it connects to the database server and creates a table.

2. Then, input variables are used to insert rows in the newly created table. The prepared
insert statement is used in repeated execution mode. The parameter values are passed
to IBM ILOG DB Link, which assigns the necessary memory allocations.

3. The inserted rows are then fetched and the returned values are passed as the attributes of
a user-defined object by binding the output columns via the function
IldRequest::bindCol.
132 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

Generic Examples

usrdblink.book Page 133 Tuesday, July 28, 2009 7:27 PM
4. Finally, new rows are inserted using user-allocated memory for the parameter bindings.
Then, a select statement is executed and the function IldRequest::fetch brings
column data in the user object fields.

For both select statements, null indicator buffers are bound but are not checked at fetch
time. This is not safe but the returned rows are known not to contain any null values.

Multiple Output Bindings

The rebindcl example illustrates the use of multiple bindings.

It is built from the files rebindcl.cpp and ildutil.cpp.

If the application needs to keep in memory the data retrieved from the RDBMS, it has to
copy the data to its own internal buffers, since the buffer specified by the first
IldRequest::bindCol operation will be overwritten by each successive
IldRequest::fetch operation to record the newly retrieved data.

So, to avoid the overhead required to copy the data retrieved to another location, the
bindCol function may be called between each fetch operation to specify a new memory
area.

Handling LOBs

The ildtext and ildbin examples show how to handle LOBs (Large OBjects) with the
use of the IldRequest functions IldRequest::insertLongText,
IldRequest::insertBinary, IldRequest::getColLongTextValue, and
IldRequest::getLargeObject. They are built from the files ildbin.cpp,
ildtext.cpp, and ildutil.cpp.

These two samples take the data from two files whose names are given by the user, process
the insertion into an ad-hoc table, and then retrieve the data into two new files.

The clob and blob examples show how to handle new CLOB and BLOB data types
(reserved to Informix 9 and Oracle). These new data types are handled the same way as basic
LOB types, so there is a common file between ildtext / clob (file lobtext.cpp) and
ildbin / blob (file lobbin.cpp).

Asynchronous Processing

The async sample shows how the asynchronous feature may be used.

This feature is not implemented by every RDBMS. It may be used only against Mssql, Odbc
(depending on driver capabilities), Oracle, and Sybase.

With the other RDBMSs, the sample will print a message to indicate that the feature is not
implemented.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 133

usrdblink.book Page 134 Tuesday, July 28, 2009 7:27 PM
The sample will perform the following tasks:

◆ Set asynchronous status ON, and check that this worked correctly.

◆ Execute a simple insert and select operation.

◆ Run several queries simultaneously. This is to demonstrate that in asynchronous mode,
when the application sends a request to the RDBMS, it gets the control back
immediately, even if the RDBMS did not complete its task. Then, the application is free
to do some other task. In this sample, we chose to submit other request to the RDBMS.
Then, from time to time, the application has to check each request to ensure that it is
completed.

◆ The cancel feature is also used to cancel a request too long to complete (run the sample
with the '-c' parameter, (run the sample with no parameters for information on its usage)).

RDBMS-Specific Examples

A few RDBMS-specific examples are shipped with the standard distribution. They illustrate
RDBMS-specific features.

◆ Informix

For Informix9 or Informix US, the inf9obj.cpp sample file illustrates how to access
named row and collection type columns.

◆ Oracle

For Oracle, the oraproc.cpp file is an example of stored procedures while the
oracurs.cpp file is an example of how to use an output parameter of cursor type.

For Oracle, the ora8obj.cpp example illustrates how to access varrays and objects on
selection, and how to use parameters of object and collection types.

For Oracle, the notif.cpp example shows how an application can register to a list of
events, and then get asynchronously notified when some of these events occur.

◆ Sybase

For Sybase, you can find the following sample files:

● sybproc for an example of a stored procedure call,

● sybtrig for an example of a trigger firing,

● sybcomp for an example of the compute clause.
134 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

RDBMS-Specific Examples

usrdblink.book Page 135 Tuesday, July 28, 2009 7:27 PM
Informix

SQL3 Features

The inf9obj example, built from the files inf9obj.cpp and ildutil.cpp, can only be
run against an Informix Universal Server. Thus, the first argument passed to the
IldNewDbms inline function is hard-coded.

In this example, a distinct type to be used in a collection and a named row type are
created. These types are used to define two tables in which the following objects are
inserted:

◆ A first row using a fully literal statement with an IldObjectType typed parameter,

◆ Then, other rows using a parameterized insert statement with an
IldCollectionType typed parameter.

For the first object parameter insertion, the abstract data type descriptor is retrieved by its
name using the function IldDbms::getAbstractType. However, this is not possible for
the second insertion because the collection parameter needs an anonymous abstract type
descriptor. This descriptor is retrieved via the table column description using the function
IldDbms::getRelation. Then, the column abstract data type descriptor is accessed via
the IldDescriptor::getADTDescriptor member function.

◆ Finally, two select statements are issued against the tables and the fetched rows are
printed.

Stored Procedure Call

The infproc example is built from the files infproc.cpp and ildutil.cpp. Two
procedures are created:

◆ The first procedure queries the catalog table systables for all table names and
identifiers that match its second argument and whose owner is the one passed as its first
argument. The matching table names and identifiers are returned as a standard result set
that will be fetched.

◆ The second procedure sends an array of parameter values to be inserted in a temporary
table.

Oracle

Stored Procedure Call

The oraproc example is built from the files oraproc.cpp and ildutil.cpp. It creates a
PL/SQL package that contains a type definition and a procedure. Then, the procedure is
called and the output values of the parameters are printed.

The procedure takes two parameters:
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 135

usrdblink.book Page 136 Tuesday, July 28, 2009 7:27 PM
◆ The first one is a scalar integer and is used as an index for an array.

◆ The second one is an array that is modified by the procedure.

The parameter array size is mandatory since one of the parameters is of type array. Because
the first parameter is a non-null scalar integer, its bind call does not need to use the optional
arguments for the null indicator, the input/output status, or the actual array size. The user
address of the value buffer is given but, because it is a fixed-size value type, the default value
for size (-1) is passed: IBM ILOG DB Link will take care of the actual size.

For the second parameter, a specific array size is passed as the seventh argument in the bind
call. That size is smaller than the maximum. Due to the procedure execution, it is clear that
the actual value of the first parameter must be smaller than or equal to the actual array size of
the second parameter.

The procedure sets some values for some elements of the array but it also sets an element to
the null value, as can be seen when the returned array is printed.

The actual procedure call must be enclosed in an anonymous PL/SQL block.

The values of the parameters are retrieved using the IBM ILOG DB Link API but the user
memory slots can also be accessed directly. The IBM ILOG DB Link API also tests whether
the parameter values are null but this can have been checked by directly accessing the value
of the user indicators that were bound using the IldRequest::bindCol function.

The first parameter does not require that a user-allocated memory space be bound.

The third argument to the binding of the second parameter is the actual user-side size of one
element of the array.

The sixth argument to the binding of the second parameter is ignored by
IBM ILOG DB Link for Oracle. Its value can therefore be set to IlFalse without any
change in the execution behavior.

Cursor Output Parameter

The oracurs example is built from the files oracurs.cpp and ildutil.cpp. It creates a
PL/SQL package that contains two type definitions and a procedure. Then, the procedure is
called and the output values of the parameters are printed.

The procedure takes two parameters:

◆ The first one is a cursor that will be set during execution.

◆ The second one is a number used to restrict the select statement executed.

The sample first creates a table in which it inserts some rows before creating the package
and calling the procedure. The returned value of the first parameter is then fetched just as
with a usual IldRequest object that would have been used to execute a select statement.

This sample cannot be run against an Oracle server whose version is lower than 7.3.
136 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

RDBMS-Specific Examples

usrdblink.book Page 137 Tuesday, July 28, 2009 7:27 PM
Object Handling

The ora8obj example, built from the files ora8obj.cpp and ildutil.cpp, illustrates
how the user-defined data-type features of Oracle are handled. It cannot be run against a
server with a version lower than 8. This example is divided into three steps:

1. In the first step, an object type, a collection type, and tables with columns of those types
are created. A parameter of IldObjectType type is used. Its value is built using the
abstract data type descriptor returned from a call to the member function
IldDbms::getAbstractType.

2. In the second step, rows are inserted using parameterized queries. A parameter of
IldCollectionType type is used. Its value is also built using an abstract type
descriptor.

3. In the third step, the contents of both tables are retrieved and printed.

Notification Sample

The notif example, built from the files notif.cpp and ildutil.cpp, demonstrates how
the notification mechanism is implemented.

This feature is implemented only for the Oracle81 driver (this is a new feature in this
database).

It is delivered with three SQL command files. These files need to be executed using SQL-
Plus, for example. They achieve the following requirements:

◆ notifocr.sql for 'Notification objects creation'. This batch is to be executed first to
create the queues required by the RDBMS to implement the notification mechanism.

◆ notif.sql. This batch will generate events that will be detected by the DBLink notif
sample. It should be executed twice, when the DBLink sample is running.

◆ notifodr.sql for 'Notification objects drop'. This batch is to be executed once the
DBLink sample is completed, to clean the queues and various objects created by
notifocr.sql.

The notif sample demonstrates the following features:

◆ Subscribe to two different events: 'PUBSUB.INSERT_NOTIF:AGENT', and
'PUBSUB.UPDATE_NOTIF:AGENT'. When the subscription is done, a specific
callback function is attached to these two events: 'insertCallBack' and 'updateCallBack'.
Each callback function will display a specific message to show that it was called, and the
insert callback will count the number of insert events.

◆ The sample will then wait for three insert operations. Note that the application may
perform any operation during this time, and it is notified asynchronously when an event
occurs. To simplify the sample, a sleep operation is done to wait for the events to be
generated.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 137

usrdblink.book Page 138 Tuesday, July 28, 2009 7:27 PM
◆ Then, the sample will unsubscribe the update event. The same notif.sql batch is to be
executed a second time to demonstrate that the update event is not received any more.

Sybase

Stored Procedure Call

The sybproc example is a free adaptation of the Sybase example rpc.c. It is built with the
files sybproc.cpp and ildutil.cpp.

◆ It declares a stored procedure whose arguments are all output arguments, except the first
one.

◆ A call to that procedure is then parsed, the parameters bound, and their values supplied.

◆ After execution, the various result sets returned are fetched in a double loop.

◆ Finally, the parameters output values are printed.

This sample shows the restrictions that exist when calling stored procedures against a
Sybase server:

◆ Despite the fact that the statement must be prepared using the function
IldRequest::parse, it cannot be executed several times.

◆ The execute SQL reserved word is mandatory. It is used as the only indicator of a
procedure call during the parsing phase. This is one of the few cases where
IBM ILOG DB Link needs to scan the query string,

If the procedure call only needs input parameters, you can simply use the
IldRequest::execute function and pass the parameter values to the query string.
For example:

request->execute("sp_helpdb mydb");

Another Sybase-specific feature with regard to stored procedure calls is that the output
parameter values cannot be accessed before all result sets have been completely fetched.

Error Due to Trigger Firing

The sybtrig example is built from the files sybtrig.cpp and ildutil.cpp. It
illustrates how to capture an error raised in a trigger fired by a delete event.

This example creates a table with a trigger attached to the delete event and inserts a row in
the table such that it is protected against deletion by the trigger.

Then, it tries to delete the row, which causes the trigger to be fired. The trigger sends a
TransactSQL print statement, rolls back the transaction, and raises a user-defined error.

The print statement is received as an information message and it is turned into a warning
by IBM ILOG DB Link. The raiserror statement is actually returned as an error and is
interpreted as such by IBM ILOG DB Link.
138 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

RDBMS-Specific Examples

usrdblink.book Page 139 Tuesday, July 28, 2009 7:27 PM
Compute Clauses

The sybcomp example, made of the files sybcomp.cpp and ildutil.cpp, illustrates the
use of the Sybase compute clause.

This example:

◆ Creates a table,

◆ Inserts a few rows in this table,

◆ Issues a select statement that includes two compute clauses:

● one for the minimum and maximum values of the column,

● one for the average value of the column.

The three fetch loops show that after the normal result set containing the fetched rows, there
is one result set for each individual compute clause.
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 139

usrdblink.book Page 140 Tuesday, July 28, 2009 7:27 PM
140 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

I N D E X

usrdblink.book Page 141 Tuesday, July 28, 2009 7:27 PM
Index

A

abstract data types 57
descriptor 51, 135, 137
handling 95
names 53

ANSI database data types 15
application descriptors 75
array bind mode 33, 46, 71, 80, 101, 132
array fetch mode 34, 46, 71, 72
asynchronous processing 133
asynchronous processing mode 34
autocommit mode 60, 62
autoCommitOff member function for IldDbms 60, 62,

114
autoCommitOn member function for IldDbms 60, 62,

114
automatic connection 44

B

batch processing of SQL statements 76, 81, 101
bibliography 16
binary data

retrieving 94
sending 93

bind application memory to the database API 101
bind input variables with Oracle or SQL Base 87
bindCol member function for IldRequest 78, 84, 100,

101, 115, 132

binding
application memory 101
input variables 80, 86
returned data columns to application memory 100
variables 86

bindings
multiple output 133

bindParam member function for IldRequest 74, 78,
86, 87, 96, 100, 101, 115, 129

C

call stored procedures 135, 138
case sensitivity 84
CHAR data type 16, 55
CLI standard 10, 37, 73, 74
closeCursor member function for IldRequest 115,

129
closing a connection 42, 48
codes

for errors 106
for functions 112

columns
attributes 55
descriptors 73, 101
types 17 to 25

commit a transaction 61
commit member function for IldDbms 59, 61, 114
commit statement 130
compatibility with previous releases 120
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 141

usrdblink.book Page 142 Tuesday, July 28, 2009 7:27 PM
Compilation Flags 120
compilation flags 44, ?? to 124
compiling 119 to 126
compute clause 139
configuration 27 to 47

file 29, 43
settings 70 to 72

connect member function for IldDbms 42, 48, 49, 114
connection string format 45
connections 41 to 65

concurrent 130
dangling 49
maximum number 42, 49

create an IldRequest object 68
creating

IldDbms objects 42, 44
IldRequest objects 68

cursors 67 to 98
allocating 62
concurrent 130
handling 42
retrieving a schema entity name or owner as 51

customize the error handling mechanism 46, 116

D

dangling connections, avoiding 49
data types 15 to 26

abstract 53
generic 89
ILOG generic 120
LOBs 71
maximum size 92

database schema 49
Date As String feature

and IldDateTime objects 89, 90
and input mode 25
and output mode 16, 23
current configuration 47
default configuration 46
defined 31

DATE data type 16
DB Link 5.0

compatibility with previous releases 120
library organization 121

new macros 121
porting from previous releases 120

DB Link types 17, 74, 96
binding input variables 86
related data accessors 82

DB2
available system and compiler 12
bibliography 16
compiler flag 122
connection string 45
Date As String input 25
environment variables 28
mapping between DB Link types and SQL types

input mode 24
output mode 17

Numeric As String input 26
synonyms not supported 52, 57

DB2DIR environment variable 28, 126
DB2INSTANCE environment variable 28
dbkernel library 121
DBLIB variable 123
dblinkError member function for

IldErrorReporter 114, 116, 117, 118
dblnkdyn library 121
dblnkst library 121
dbmsError member function for IldErrorReporter

114, 116, 117
DECIMAL data type 16, 91
default configuration settings 46, 70
default error reporter 46, 106, 114
deferred execution 78
delete operator 62, 69
delete statement 76, 100
deleting

cursors 62
descriptors 48
erroneous objects 113
IldDbms objects 42, 49
IldRequest objects 48, 69

DELIMIDENT environment variable 28
DESCRIBE SQL statement 79
descriptors

deleting 48
for abstract data types 95, 135, 137
for columns 101
142 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

usrdblink.book Page 143 Tuesday, July 28, 2009 7:27 PM
for schema entities 50
getting type of 51
IldDbms destructor 49
notion 73
return values 57

diagnostic 104
disconnect member function for IldDbms 42, 48, 112,

114
disconnecting from an RDBMS 48
DLL libraries 122, 132
DOUBLE PRECISION data type 16
drivers 120, 122

linking statically 43
loading dynamically 29, 43

drop table statement 129
dynamic driver manager 122
dynamic load mode 43, 44, 122

E

enumerations
IldADTType 96
IldColumnType 55
IldEntityType 50
IldErrorOrigin 112
IldInfoItem 37

environment variables 28, 123
error handler 103 to 118

customizing 116 to 118
default 105

error reporter 48, 70, 114 to 116
customizing 116
default 46, 106

errors 103 to 118
codes 104, 106
descriptor identifier 51
due to trigger firing, sample file 138
IldErrorDbms class 43
origin 104, 112
output stream 114

events
subscribing 64
unsubscribing 64

exact numeric values, handling 32, 90 to 91, 129
examples

binding input variables with Oracle or SQLBase 87
creating an IldRequest object 68
exact numeric values 90 to 91
generic 128 to 134
multiple result set 81
repeated execution of a query 80
retrieving data

directly 82
into the application memory space 84

sending text data 93
setting parameter values 88
SQL statement

differed execution 78
immediate execution 77

using the sixth argument to bindParam 86
execute a query repeatedly 80
execute an SQL statement

immediately 77
later 78

execute member function
IldDbms class 58, 100, 115, 129
IldRequest class 33, 36, 58, 71, 72, 76, 78, 79, 80,

88, 100, 101, 115, 128, 132, 138
execute member function for IldRequest 76
execute procedure statement 101
execute SQL reserved word 138
execution modes for SQL statements 76

F

fetch array size 71
fetch member function

IldRequest class 36
fetch member function for IldRequest 34, 72, 77, 81,

84, 101, 115, 130, 133
fetch multiple result sets 81
fetchScroll member function for IldRequest 81
find out the types and sizes of returned columns 101
FLOAT data type 16
foreign keys 54

descriptors 55
freeNames member function for IldDbms 51, 131
functions 56

codes 112
descriptors 50
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 143

usrdblink.book Page 144 Tuesday, July 28, 2009 7:27 PM
IldNewDbms 42, 43, 68, 135

G

getAbstractType member function for IldDbms 57,
115, 135, 137

getADTDescriptor member function for
IldDescriptor 74, 135

getArgumentsCount member function for
IldCallable 56

getBufferSize member function for
IldAppDescriptor 75

getColADTValue member function for IldRequest
96, 115

getColArraySize member function for IldRequest
34, 71, 72

getColBinaryValue member function for
IldRequest 94, 115

getColByteValue member function for IldRequest
115

getColCount member function for IldRequest 101
getColDateTimeValue member function for

IldRequest 89, 115
getColDescriptor member function for IldRequest

75, 101
getColIndex member function for IldRequest 115
getColIntegerValue member function for

IldRequest 115
getColLongTextValue member function for

IldRequest 93, 115, 133
getColMoneyValue member function for IldRequest

115
getColName member function

IldRelation class 55
IldRequest class 77, 115

getColNumericValue member function for
IldRequest 33, 91, 115

getColRealValue member function for IldRequest
23, 115

getColReferenceValue member function for
IldRequest 115

getColSize member function
IldRelation class 55
IldRequest class 77

getColSQLType member function for IldRelation 55

getColStringValue member function for
IldRequest 90

getColType member function
IldRelation class 55, 130
IldRequest class 77

getColTypeValue member function for IldRequest
81, 82

getColumn member function for IldRelation 75
getCount member function for IldRelation 54, 55
getDatabase member function for IldDbms 47
getDbms member function

IldErrorReporter class 117
IldRelation class 54

getDbmsVersion member function for IldDbms 46
getDbmsVersions member function for IldDbms 46
getDefaultColArraySize member function for

IldDbms 47
getDefaultParamArraySize member function for

IldDbms 33, 47
getDescriptor member function for IldADTValue 96
getEntityType member function for IldRelation 54
getEntityType member function for

IldSchemaEntity 50
getError member function for IldIldBase 104
getErrorCode member function for IldIldBase 106
getErrorMessage member function for IldIldBase

112
getErrorOrigin member function for IldIldBase

106
getErrorReporter member function

IldDbms class 46
IldIldBase class 106

getErrorSqlstate member function for IldIldBase
112

getForeignKeys member function
IldRelation class 36

getForeignKeys member function for IldRelation
54, 55, 131

getFreeRequest member function for IldDbms 43, 44,
62, 68, 70

getHook member function
IldDbms class 63, 115
IldRequest class 97

getIndexes member function
IldRelation class 36
144 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

usrdblink.book Page 145 Tuesday, July 28, 2009 7:27 PM
getIndexes member function for IldRelation 54, 55,
131

getInfo member function for IldDbms 37, 46, 59, 84,
115

getInformation member function for IldIldBase
104

getInformationCode member function for
IldIldBase 105

getInformationMessage member function for
IldIldBase 105

getLargeObject member function
IldRequest class 36

getLargeObject member function for IldRequest
94, 115, 133

getLargeObjectChunk member function
IldRequest class 36

getLargeObjectChunk member function for
IldRequest 95

getName member function
IldDbms class 47, 115
IldDescriptor class 74
IldRelation class 54

getNulls member function for IldAppDescriptor 75
getNumberOfActiveConnections member function

for IldDbms 49
getNumberOfRequests member function for IldDbms

69
getOStream member function for IldErrorReporter

114
getOwner member function for IldRelation 54
getParamArraySize member function for

IldRequest 33, 71, 72, 80, 101
getParamBinaryValue member function for

IldRequest 115
getParamCursorValue member function for

IldRequest 115
getParamDateTimeValue member function for

IldRequest 115
getParamDescriptor member function for

IldRequest 75
getParamIndex member function for IldRequest 115
getParamNumericValue member function for

IldRequest 115
getParamValue member function for IldRequest 33
getPrecision member function for IldDescriptor

74
getPrimaryKey member function

IldRelation class 36
getPrimaryKey member function for IldRelation

54, 55, 131
getProcedure member function for IldDbms 56, 115
getRelation member function for IldDbms 53, 115,

131, 135
getResultsCount member function for IldCallable

57
getScale member function for IldDescriptor 74
getSize member function for IldDescriptor 74
getSpecialColumns member function

IldRelation class 36
getSpecialColumns member function for

IldRelation 54, 55, 131
getSqlType member function for IldDescriptor 74
getSqlTypeName member function for

IldDescriptor 74
getStatus member function for IldRequest 76, 115
getSynonym member function for IldDbms 57, 115
getType member function

IldDescriptor class 74, 95
IldRequest class 96

getTypeInfo member function for IldDbms 59, 115
getUser member function for IldDbms 47
getValue member function for IldAppDescriptor 75

H

handle exact numeric values 90 to 91, 129
handle LOBs 133
hasDefault member function for IldArgument 56
hasTuple member function for IldRequest 81, 130

I

IBM Informix
available system and compiler 12

identifiers
for schema entities 51

ILD_ALREADY_CONNECTED error 48, 107
ILD_BAD_COLUMN_INDEX error 107
ILD_BAD_COLUMN_NAME error 107
ILD_BAD_DB_SPEC error 46, 107
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 145

usrdblink.book Page 146 Tuesday, July 28, 2009 7:27 PM
ILD_BAD_EXECUTE_COUNT error 107
ILD_BAD_FILE error 107
ILD_BAD_VARIABLE_SIZE error 107
ILD_CANNOT_RESIZE_TUPLE error 107
ILD_CBCK_INIT error 107
ILD_CON_ALLOC error 108
ILD_CON_INIT error 108
ILD_CTXT_ALLOC error 108
ILD_CTXT_INIT error 108
ILD_D_DISCONNECT function identifier 112
ILD_DATE_CONVERT error 108
ILD_DBMS_FATAL_ERROR error 108
ILD_DBMS_NOT_CONNECTED error 48, 108
ILD_IGN_EXT_ROWS error 108
ILD_INVALID_HANDLE error 108
ILD_INVALID_PARAMETER error 109
ILD_INVALID_SEQUENCE error 109
ILD_LIB_MSMTCH error 109
ILD_LIB_NLNKD error 45, 109
ILD_LOCK_NAME_MISMATCH error 109
ILD_MAX_CURS_LEN error 109
ILD_MEMORY_EXHAUSTED error 109
ILD_NO_DYN_LIB error 109
ILD_NO_HANDLER error 109
ILD_NO_MORE_TUPLES error 109
ILD_NO_REPORTER error 110
ILD_NOT_IMPLEMENTED error 110
ILD_NOT_SCROLL_MODE error 110
ILD_NUM_CONVERT error 110
ILD_OFFSET error 110
ILD_OUT_OF_RANGE error 110
ILD_RDBMS_CONN error 110
ILD_REQUEST_REQUIRED error 110
ILD_TYPE_MISMATCH error 32, 33, 111
ILD_UNCHGEABLE error 111
ILD_UNDEF_LINK_MODE error 111
ILD_UNKN_ERRMSG error 111
ILD_UNKNOWN_CODE error 111
ILD_UNKNOWN_RDBMS error 45, 111
ILD_UNKNOWN_RELATION error 111
ILD_UNKNOWN_TYPE error 111
ILD_USING_ERROR_DBMS error 112
ILD_USING_ERROR_REQUEST error 112
IldADTDescriptor class 50, 57, 95
IldADTEntity type 51

IldADTType enumeration 96
IldADTValue class 95, 96

getDescriptor member function 96
IldADTXxx types 96
IldAppDescriptor class 73, 75

getBufferSize member function 75
getNulls member function 75
getValue member function 75
isExtNulls member function 75
isExtValue member function 75

IldArgument class 56
hasDefault member function 56
isInArgument member function 56
isInOutArgument member function 56
isOutArgument member function 56

IldBinaryType column type 17 to 25, 71, 84, 94, 95
IldBLOBType column type 17 to 25
IldBytes structure 93
IldByteType column type 17 to 24
IldCallable class 50, 56

getArgumentsCount member function 56
getResultsCount member function 57
isProcedure member function 56

IldCallableEntity type 51
IldClientAPI error origin type 106, 113
IldCLOBType column type 17, 21 to 25
IldCollectionType column type 18 to 25, 84, 87, 95,

96, 135, 137
IldColumnType enumeration type 55
IldCursorType column type 21 to 25
IldDateTime class 89
IldDateTime type 129
IldDateTimeType column type 17 to 25, 84
IldDateType column type 17 to 25
IldDblink error origin type 106, 113
IldDbms class 33, 41

autoCommitOff member function 60, 62
autoCommitOn member function 60, 62
commit member function 59, 61
connect member function 42, 48
destructor 49
differences with IldDbmsModel 65
disconnect member function 42, 48, 49, 112
execute member function 58, 100, 129
freeNames member function 51, 131
146 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

usrdblink.book Page 147 Tuesday, July 28, 2009 7:27 PM
getAbstractType member function 57, 135, 137
getDatabase member function 47
getDbmsVersion member function 46
getDbmsVersions member function 46
getDefaultColArraySize member function 47
getDefaultParamArraySize member function 33,

47
getErrorReporter member function 46
getFreeRequest member function 43, 44, 62, 68, 70
getHook member function 63
getInfo member function 37, 46, 59, 84
getName member function 47
getNumberOfActiveConnections member

function 49
getNumberOfRequests member function 69
getProcedure member function 56
getRelation member function 53, 131, 135
getSynonym member function 57
getTypeInfo member function 59
getUser member function 47
isAsyncSupported member function 35
isErrorRaised member function 43, 44
isTransactionEnabled member function 59
no subclassing 62
readAbstractType member function 57
readAbstractTypeNames member function 50, 53
readEntityNames member function 51
readOwners member function 51
readProcedure member function 56
readProcedureNames member function 50, 52
readRelation member function 36, 53
readRelationNames member function 36, 50, 51,

52, 131
readRelationOwners member function 36, 131
readSynonym member function 57
readSynonymNames member function 50, 52
readTablePrivileges member function 58
removeRelation member function 53
rollback member function 60, 61, 62
setDefaultColArraySize member function 34,

47, 72
setDefaultParamArraySize member function 33,

47
setErrorReporter member function 46, 116
setHook member function 63

setNumericUse member function 23
setStringDateUse member function 23, 31
setStringNumericUse member function 23
startTransaction member function 59, 60, 61
subscribeEvent member function 36
unSubscribeEvent member function 36
useNumeric member function 23, 47
useStringDate member function 23, 47
useStringNumeric member function 23, 47

IldDbms objects 31, 33, 34, 35, 42 to 49
checking errors raised 69
deleting 49
erroneous 113
warnings 105

IldDbmsModel class 41
differences with IldDbms 65

IldDecFloatType column type 17
IldDescriptor class 56, 73, 95, 101

getADTDescriptor member function 74, 135
getName member function 74
getPrecision member function 74
getScale member function 74
getSize member function 74
getSqlType member function 74
getSqlTypeName member function 74
getType member function 74, 95
isNullable member function 74

IldDiagnostic 104
IldEntityType enumeration type 50
IldErrorDbms class 43, 113
IldErrorOrigin enumeration type 112
IldErrorReporter class 46, 105, 114, 116

dblinkError member function 114, 116, 117, 118
dbmsError member function 114, 116, 117
getDbms member function 117
getOStream member function 114
setOStream member function 114

IldErrorRequest class 43, 48, 113
IldFuncId enumeration type 112
ILDHOME environment variable 30
IldIdentifierCase info item 84
IldIldBase class 23, 32, 33, 43

getError member function 104
getErrorCode member function 106
getErrorMessage member function 112
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 147

usrdblink.book Page 148 Tuesday, July 28, 2009 7:27 PM
getErrorOrigin member function 106
getErrorReporter member function 106
getErrorSqlstate member function 112
getInformation member function 104
getInformationCode member function 105
getInformationMessage member function 105
isErrorRaised member function 104
isInformationRaised member function 104, 105
setNumericUse member function 48
setStringNumericUse member function 48

IldInfoItem enumeration type 37
IldIntegerType column type 17 to 24
IldLongTextType column type 17 to 25, 71, 84, 94, 95
IldMoneyType column type 18 to 25
IldNewDbms inline function 31, 42, 43, 44, 48, 68, 135
IldNumericType type 17, 84, 129
IldObjectType data type 18 to 25, 84, 87, 95, 96, 135,

137
IldRDBMServer error origin type 106, 113
IldRealType data type 17 to 24
IldRefType column type 25
IldRelation class 50, 51, 53

getColName member function 55
getColSize member function 55
getColSQLType member function 55
getColType member function 55, 130
getColumn member function 75
getCount member function 54, 55
getDbms member function 54
getEntityType member function 54
getForeignKeys member function 36, 54, 55, 131
getIndexes member function 36, 54, 55, 131
getName member function 54
getOwner member function 54
getPrimaryKey member function 36, 54, 55, 131
getSpecialColumns member function 36, 54, 55,

131
isCollNullable member function 55

IldRelation objects 54
IldRequest class 33, 62, 67

bindCol member function 78, 84, 100, 101, 132
bindParam member function 74, 78, 86, 87, 96, 100,

101, 129
closeCursor member function 129
destructor 69, 115

differences with IldRequestModel 98
error-raising member functions 115 to 116
execute member function 33, 36, 58, 71, 72, 76, 78,

79, 80, 88, 100, 101, 128, 132, 138
fetch member function 34, 36, 72, 77, 81, 84, 101,

130, 133
fetchScroll member function 81
getColADTValue member function 96
getColArraySize member function 34, 71, 72
getColBinaryValue member function 94
getColCount member function 101
getColDateTimeValue member function 89
getColDescriptor member function 75, 101
getColLongTextValue member function 93, 133
getColName member function 77
getColNumericValue member function 33, 91
getColRealValue member function 23
getColSize member function 77
getColStringValue member function 90
getColType member function 77
getColTypeValue member function 81, 82
getHook member function 97
getLargeObject member function 36, 94, 133
getLargeObjectChunk member function 36, 95
getParamArraySize member function 33, 71, 72,

80, 101
getParamDescriptor member function 75
getParamValue member function 33
getStatus member function 76
getType member function 96
hasTuple member function 81, 130
insertBinary member function 36, 92, 133
insertLongText member function 36, 92, 133
isCompleted member function 35
no subclassing 97
parse member function 33, 36, 72, 76, 78, 79, 100,

101, 138
release member function 69, 70
removeColArraySize member function 34, 71, 72
removeParamArraySize member function 33, 71,

72
setColArraySize member function 34, 71, 72
setErrorReporter member function 116
setNumericUse member function 23, 33
setNumericUse method 91
148 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

usrdblink.book Page 149 Tuesday, July 28, 2009 7:27 PM
setParamArraySize member function 33, 71
setParamNullInd member function 132
setParamValue member function 33, 78, 88, 89, 90,

96, 100, 101
setStringDateUse member function 23, 31
setStringNumericUse member function 23, 32
startGetLargeObject member function 36, 94
useNumeric member function 23, 33
useStringDate member function 23, 32
useStringNumeric member function 23, 32

IldRequest objects 31, 35, 47, 48, 49, 58, 68 to 70
erroneous 113
inherited settings 71
result set 51
transactions 60
warnings 105

IldRequestModel class 67
differences with IldRequest 98

IldSchemaEntity class 50
getEntityType member function 50

IldSQLType class 58
IldStringType data type 17 to 24, 84, 129
IldSynonym class 50, 57
IldSynonymEntity type 51
IldTableEntity type 51
IldUnknownEntity type 51
IldView type 54
IldViewEntity type 51
IlInt type 58, 76, 79, 91
IlNumeric class 32, 91
IlNumeric type 23
IlUInt type 80
immediate execution 76, 100, 101
indexes 49, 54

descriptors 55
INFLIBS variable 126
Informix

abstract data types 95
array bind mode, limitation 33
bibliography 16
CHAR type 87
compiler flag 122
connection string 45
Date As String input 25
disabling the transaction functionality 59

environment variables 28
mapping between DB Link types and SQL types

input mode 24
output mode 17

Numeric As String input 26
precision in date-and-time values 89
specific example 135
transaction control 61
Unix variable 126

INFORMIXDIR environment variable 28, 126
INFORMIXSERVER environment variable 28
initiate a transaction 60
initiating

sessions and connections 42
transactions 60

inline function IldNewDbms 44, 48, 68, 135
input bindings 80, 86, 101, 132
input mode

correspondence between types and RDBMSs 24 to 26
special features 25

insert statement 33, 76, 128, 132, 135
insertBinary member function

IldRequest class 36
insertBinary member function for IldRequest 92,

115, 133
insertLongText member function

IldRequest class 36
insertLongText member function for IldRequest

92, 115, 133
INTEGER data type 16
isAsyncSupported member function

IldDbms class 35
isCollNull member function for IldRequest 115
isColNullable member function for IldRelation 55
isCompleted member function

IldRequest class 35
isErrorRaised member function

IldDbms class 43, 44
IldIldBase class 104

isExtNulls member function for IldAppDescriptor
75

isExtValue member function for IldAppDescriptor
75

isInArgument member function for IldArgument 56
isInformationRaised member function for
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 149

usrdblink.book Page 150 Tuesday, July 28, 2009 7:27 PM
IldIldBase 104, 105
isInOutArgument member function for IldArgument

56
isNullable member function for IldDescriptor 74
isNullIndicatorOn member function for

IldRequest 115
isOutArgument member function for IldArgument 56
isParamNull member function for IldRequest 115
isProcedure member function for IldCallable 56
isTransactionEnabled member function for

IldDbms 59

K

keys, descriptors 55
keywords

where 92, 94

L

libraries 31, 124
linking 119 to 126
list Informix data structure 95
LoadLibrary function 31
LOBs

data types 55, 71
handling 133
retrieving 93 to 95
sending 92

LOCALE settings 31, 32
LVARCHAR data type 16

M

makefiles 126
memory

allocation 69, 71, 87, 102, 132
allocation failure 43
leaks, avoiding 49
retrieving LOBs 92

MS SQL Server
available system and compiler 12
compiler flag 122
connection string 45
environment variables 28

error handler 106
integer input 26
mapping between DB Link types and SQL types

input mode 24
output mode 19

multiple result sets 81, 130
placeholders not supported 11
processing statements in batch 76
synonyms not supported 52, 57
transaction control 60

multiple bindings 133
multiple execution 79, 100
multiple output bindings 133
multiple result sets 81
multiset Informix data structure 95

N

names
of libraries, resolving 31
of relations 131
of schema entities, retrieving 51 to 53

naming conventions 14
native SQL types 55
NCHAR data type 16
nested table Oracle data structure 95
notation 14
notification

sample 137
notification mechanism 137
notification of users 64
NUMBER data type 16, 91
number of connections 49
Numeric As Object feature 16, 21, 23, 32, 46, 47, 48, 91,

129
Numeric As String feature 16, 17, 18, 19, 20, 21, 23, 26, 32,

46, 47, 90, 129
NUMERIC data type 16, 91
numeric values, handling 32, 90, 129
NVARCHAR data type 16

O

object files 123, 126
object Oracle data structure 95
150 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

usrdblink.book Page 151 Tuesday, July 28, 2009 7:27 PM
obsolete ports 11
ODBC

array bind mode 80
array fetch mode 34, 72
available system and compiler 12
bibliography 16
column order 55
compiler flag 122
connection string 45
Date As String input 25
mapping between DB Link types and SQL types

input mode 24
output mode 19

multiple execution of SQL statements 80
multiple result sets 130
Numeric As String input 26
processing statements in batch 76
SQL select statement 79
synonyms not supported 52, 57
transaction control 59

OLE DB
available system and compiler 12

OLEDB
bibliography 16

Oracle
abstract data types 95
available system and compiler 12
bibliography 16
binding input variables 87
compiler flag 122
connection string 45
Date As String input 25
environment variables 28
mapping between DB Link types and SQL types

input mode 24
output mode 21

maximum number of active cursors 69
Numeric As Object feature 91
Numeric As String input 26
question mark not supported 87, 100
retrieving LOBs 92, 95
specific example 135
tables with same names 52, 53
transaction control 59
Unix variable 126

VARCHAR type 87
ORALIBS variable 126
ORDBMS

abstract data types 50, 53, 58, 95
output bindings 80, 101, 132
output mode

correspondence between types and RDBMSs 16 to 23
special features 23

overflow problems 21
owners of schema entities 51 to 53

P

parameters
array size 71
descriptors 73
sending values as 96
setting 88

parse member function
IldRequest class 36

parse member function for IldRequest 33, 72, 76, 78,
79, 100, 101, 115, 138

PATH environment variable 28
placeholders 76, 78, 79, 80, 100
platforms supported 11
ports, obsolete 11
precision 89
PREPARE SQL statement 79
prerequisites 13
primary keys 49, 54

descriptors 55
print statement 138
privileges 58
procedures 56

descriptors 50
names 52

Q

queries ?? to 102
question mark not supported 87, 100

R

raiserror statement 138
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 151

usrdblink.book Page 152 Tuesday, July 28, 2009 7:27 PM
RDBMSs
bibliography 16
case sensitivity 84
corresponding types 15 to 26
limits on number of IldRequest objects 69
multiple targets 124
specific features 134
supported 11

readAbstractType member function for IldDbms 57
readAbstractTypeNames member function for

IldDbms 50, 53, 115
readEntityNames member function for IldDbms 51,

115
readForeignKeys member function for IldDbms 115
readIndexes member function for IldDbms 115
readOwners member function for IldDbms 51, 115
readPrimaryKey member function for IldDbms 115
readProcedure member function for IldDbms 56
readProcedureNames member function for IldDbms

50, 52, 115
readRelation member function

IldDbms class 36
readRelation member function for IldDbms 53
readRelationNames member function

IldDbms class 36
readRelationNames member function for IldDbms

50, 51, 52, 115, 131
readRelationOwners member function

IldDbms class 36
readRelationOwners member function for IldDbms

115, 131
readSpecialColumns member function for IldDbms

class 115
readSynonym member function for IldDbms 57
readSynonymNames member function for IldDbms 50,

52, 115
readTablePrivileges member function for IldDbms

58
REAL data type 16
reconnecting to a database 48
relations

names 131
searching 131

release member function for IldRequest 69, 70, 115
releasing IldRequest objects 69

removeColArraySize member function for
IldRequest 34, 71, 72, 115

removeColLock member function for IldRequest 115
removeParamArraySize member function for

IldRequest 33, 71, 72, 115
removeParamLock member function for IldRequest

115
removeRelation member function for IldDbms 53
repeated execution 80, 100
result sets

handling multiple 81
pending 79
retrieving values from 96
using related member functions 78

retrieve
a table description from the database schema 131
data 102

directly 82
into the application memory space 84

long text values 93
multiple result set 130
relation names 131

retrieving
a table description from the database schema 131
current fetch/parameter array size 71
data 102
date-and-time values 89
exact numeric values 90
LOBs 92, 93, 93 to 95
multiple result sets 130
query execution status 76
relation names 131
results 81 to 85
values from the result set 96

return values, descriptors 57
roll back a transaction 62
rollback member function for IldDbms 60, 61, 62, 115
rollback statement 130
rolling back a transaction 62
row Informix data structure 95
rows

handling several at a time 71, 101
retrieving from a result set 130
152 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

usrdblink.book Page 153 Tuesday, July 28, 2009 7:27 PM
S

sbinding.cpp sample file 87
schema entities

descriptors 48, 49, 50
names 51
owners 51
types 50

select statement 58, 81, 93, 94, 100, 101, 128 to 139
send

numeric object values 91
text data 93
the same query several times 78

Server Information 37
sessions 41 to 65
set parameter values 88
set up a query for multiple or repeated use 100
setColArraySize member function for IldRequest

34, 71, 72, 115
setColPos member function for IldRequest 115
setCursorMode member function for IldDbms 115
setCursorName member function for IldRequest 116
setDefaultColArraySize member function for

IldDbms 34, 47, 72
setDefaultParamArraySize member function for

IldDbms 33, 47
setErrorReporter member function

IldDbms class 46, 115, 116
IldRequest class 116

setHook member function
IldDbms class 63

setnet32 Informix utility 28
setNumericUse member function

IldDbms class 23
IldIldBase class 48
IldRequest class 23, 33

setNumericUse method
IldRequest class 91

setOStream member function for IldErrorReporter
114

setParamArraySize member function for
IldRequest 33, 71, 116

setParamNullInd member function for IldRequest
116, 132

setParamValue member function for IldRequest 33,

78, 88, 89, 90, 96, 100, 101, 116
setReadOnly member function for IldRequest 116
setStringDateUse member function

IldDbms class 23, 31, 47
IldRequest class 23, 31

setStringNumericUse member function
IldDbms class 23
IldIldBase class 48
IldRequest class 23, 32

setTimeOut member function for IldDbms 115
shared libraries 28, 123
shared Unix compilation mode 124
SMALLINT data type 16
special columns 54
SQL data types 17, 74
SQL interpreter, example 129
SQL language, bibliography 16
SQL statements

commit 130
delete 100
drop table 129
execute procedure 101
executing a sequence as one block 59
in sample files 128 to 139
insert 33, 128, 132, 135
print 138
processing 76 to 80
raiserror 138
rollback 130
rolling back 62
select 93, 94, 100, 101, 128 to 139
sending 60
update 132

SQL syntax, checking 78
SQL92 standard 11
SQLBase

bibliography 17
SQL-Plus 137
SQLSTATE value 104, 112
startGetLargeObject member function

IldRequest class 36
startGetLargeObject member function for

IldRequest 94
startTransaction member function for IldDbms 59,

61
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 153

usrdblink.book Page 154 Tuesday, July 28, 2009 7:27 PM
startTransaction member function for IldDbms
class 60

static driver manager 122
stored procedure calls 135, 138
subscribeEvent member function

IldDbms class 36
subscribing to events 64
Sybase

available system and compiler 12
bibliography 17
compiler flag 122
compute clause 139
connection string 45
Date As String input 25
error handler 106
informative messages 105
mapping between DB Link types and SQL types

input mode 24
output mode 22

multiple result sets 81, 130
Numeric As String input 26
processing statements in batch 76
specific example 138
synonyms not supported 52, 57
tracing error origin 106
transaction control 60
Unix variable 126
variable output status 86

SYBASE variable 126
SYBLIBS variable 126
synonyms 57

descriptors 50
names 52

system
MS Visual Studio 2008 12
MS Visual Studio 2008 64 bits 12
Solaris 2.8 64 bits 12

systems supported 12

T

tables 53
characteristics 54
descriptors 50
different with same names 52, 53

names 51
owners 51

text data
retrieving 93
sending 92

TIME data type 16
time values, as handled by DB Link 89
TIMESTAMP data type 16
transactions 59 to 62
turn on the Numeric As Object feature 91
turn on the Numeric As String feature 90
types

IldADTXxx 96
IldBinaryType 71, 84, 94, 95
IldClientAPI 106, 113
IldCollectionType 84, 87, 95, 96, 135, 137
IldDateTime 129
IldDateTimeType 84
IldDblink 106, 113
IldFuncId 112
IldLongTextType 71, 84, 94, 95
IldNumericType 84, 129
IldObjectType 84, 87, 95, 96, 135, 137
IldRDBMServer 106, 113
IldStringType 17 to 24, 84, 129
IldTableEntity 51
IldView 54
IldViewEntity 51
IlInt 58, 76, 79, 91
IlUInt 80

U

unbound variables 80
Unix

compilation modes 124
unsubscribeEvent member function

IldDbms class 36
unsubscribing from events 64
update statement 76, 132
use the function IldNewDbms 44
use the sixth argument to bindParam 86
useNumeric

 member function for IldDbms 23, 47
 member function for IldRequest 23, 33
154 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

usrdblink.book Page 155 Tuesday, July 28, 2009 7:27 PM
user-allocated memory 84, 132, 136
user-defined data types 50

attribute descriptors 75
useStringDate

 member function for IldDbms 23, 47
 member function for IldRequest 23, 32

useStringNumeric
 member function for IldDbms 23, 47
 member function for IldRequest 23, 32

V

value buffer 75
VARCHAR data type 16, 55
variables

binding 80, 86
unbound 80
Unix RDBMS-dedicated 126

varray Oracle data structure 95
views 53

descriptors 50
names 51
owners 51

W

warnings 103 to 118
where clause 92, 94, 132
Windows compiling 124
I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L 155

usrdblink.book Page 156 Tuesday, July 28, 2009 7:27 PM
156 I B M I L O G D B L I N K V 5 . 3 — U S E R ’ S M A N U A L

	IBM ILOG DB Link V5.3 User’s Manual
	Table of Contents
	About This Manual
	Manual Organization
	Where to Get More Information
	Related Documentation
	Further Reading

	Data Types
	Output Mode
	DB2
	Informix
	MS SQL Server
	ODBC
	Oracle
	Sybase
	Special Features

	Input Mode
	Date As String
	Numeric As String
	MS SQL Server Limitation

	Configuration Issues
	Environment Variables
	DB2
	Informix
	MS SQL Server
	Oracle

	Configuration File
	Format
	Location
	Resolving Library Names and Loading Libraries

	Configuration Features
	Date As String
	Numeric As String
	Numeric As Object
	Array Bind
	Array Fetch

	Asynchronous Processing Mode
	Principle
	Important Behavior Change
	Drivers that Support Asynchronous Processing
	Functions that Use Asynchronous Processing

	Server Information

	Sessions & Connections
	Connection Handling through IldDbms Objects
	Initiating a Session or a Connection
	Creating IldDbms Objects
	Session Configuration
	Disconnecting and Reconnecting
	Number of Connections
	Destroying IldDbms Objects

	Accessing the Database Schema
	Schema Entity Types
	Schema Entity Names and Owners
	Tables and Views
	Procedures and Functions
	Synonyms
	Abstract Data Types
	Table Privileges

	Data Definition Language (DDL)
	Transaction Control
	Initiating a Transaction
	Committing a Transaction
	Rolling Back a Transaction
	Autocommit Mode

	Cursor Allocation
	Extending the IldDbms Class
	Use Notification
	Subscribe to an Event
	Unsubscribe from an Event

	Differences between IldDbms and IldDbmsModel Classes

	Cursors
	IldRequest Objects
	Creating IldRequest Objects
	Number of Active Cursors
	Disposing of IldRequest Objects

	Configuration Settings
	Default Settings
	Accessing and Changing the Configuration
	Array Modes

	Column and Parameter Descriptors
	Notion of Descriptors
	Implementation Descriptors
	Application Descriptors

	Processing SQL Statements
	Immediate Execution
	Deferred Execution

	Results Retrieval
	Handling Multiple Result Sets
	Direct Access
	Binding to User-Allocated Memory

	Binding Input Variables
	Standard Implementation
	Overloaded Version
	Setting Parameter Values
	Specific Considerations

	Generic Data Types
	Handling Date and Time Values
	Handling Exact Numeric Values

	Large Objects (LOBs)
	Sending Large Objects
	Different Ways of Retrieving Large Objects

	Handling Abstract Data Type Values
	Abstract Data Type Descriptor
	Abstract Data Type Values

	Extending the IldRequest Class
	Differences between IldRequest and IldRequestModel Classes

	Queries
	Executing an SQL Query Immediately
	Setting Up a Query for Multiple or Repeated Use
	Binding Application Memory to the Database API
	Finding Out the Types and Sizes of Returned Columns
	Retrieving Data

	Errors and Warnings
	Diagnostic Class
	Accessing a Diagnostic Instance
	Context Information

	Warnings
	Errors
	Error Handlers
	Error Codes
	IBM ILOG DB Link API Codes and Messages Table
	Function Codes
	SQLSTATE
	Error Messages
	Error Origin
	Erroneous IldDbms and IldRequest Objects

	Error Reporter
	Default Settings and Behavior
	Output Error Stream

	Customizing the Error Handling Mechanism
	Base Class
	Virtual Functions and Their Parameters

	Compiling and Linking
	Compilation Flags
	Compatibility with Previous Releases
	RDBMS Flags
	Dynamic Load
	Mode and Flag

	Target RDBMSs
	Multiple Targets
	RDBMS Prerequisites

	IBM ILOG DB Link Libraries
	Library Names
	Building Dynamically-Loadable Drivers under UNIX

	Code Samples
	Generic Examples
	Basic Use
	Handling Dates and Numbers
	SQL Interpreter
	Concurrent Connections and Cursors
	Relation Searching
	Relation Names
	Input Bindings
	Output Bindings
	Multiple Output Bindings
	Handling LOBs
	Asynchronous Processing

	RDBMS-Specific Examples
	Informix
	Oracle
	Sybase

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

