I .. —
I . A
- - N N
_— I I ——
-_— L9 L& & |
- - L I - .-
I B N W
I BT Y _®

IBM ILOG Diagram for .NET V2.0
Using Graph Layout Algorithms

June 2009

© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

Preface Using Graph Layout Algorithms e 5
Introducing Graph LayouUt. 7
What is IBM ILOG Diagram for .NET Graph Layout i, 8

Graph Layout: A Brief Introduction 9

The Graph Layout Algorithms e 11

COmMMON FEALUIES oo e e e 14

Getting Started with Graph Layout Algorithms. 15
Using the Base Class GraphLayout. e 19
Using the API of the Base Class GraphLayout........... 19

Layout Parameters and Features in the GraphLayoutBase Class................... 23

Graph Layout Algorithms 35
Determining the Appropriate Layout Algorithm 36

Typical Ways for Choosing the Layout i 40

Generic Features and Parameters SUpPpOrt.t 43

Layout CharaCteriStiCst e e 44

Hierarchical Layout e 45

SaAMPIES . 46

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 1

What Types of Graphs? 48

Application DOMAINSo 48
FatUNES . . . 49
LIMItatioNS o 49
Brief Description of the Algorithm 50
Code SamPle . . . e 51
Generic Features and Parameters. i 52
Specific Parameters e 54
Incremental Mode 70
Layout CONSIraINTSot 78
For Experts: More INdiCeSttt 92
Tree LayOUL. . .. 93
SaAMPIES . o 95
What Types of Graphs?o e 96
Application DOMAINSo e 96
FatUNES . . . e 96
LiMItatioNSo 97
Brief Description of the Algorithm 98
Code SamPle . . . e 99
Generic Features and Parameterst e 99
Specific Parameters (All Tree Layout Modes)ot e 101
Free Layout MOOEot 104
Level Layout Mode e 117
Radial Layout MOde 119
Tip-Over Layout Modeso 125
For Experts: Additional Tipsand Tricks 127
Force-Directed Layout.ot 132
SaAMPIES . 133
What Types of Graphs?o 135
Application DOMAINSo e e 135
Features 135

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

LimitatioNS 135

Brief Description of the Algorithm 136
Code Sample . . . 136
Generic Features and Parameters 136
Specific Parameters 138
For Experts: Additional Features 139
Using the LinK Clippingo oo e 142
LinK LayOUL. . ..o 143
SaAMPIES . 145
What Types of Graphs? 146
Application DOMAINSo e 146
FeatUres 147
LimItatioNSo 148
Brief Description of the Algorithm 148
Code Sample 151
Generic Features and Parameters 152
Specific Parameters for Both Short and Long Layout Layout 152
Spacing Parameters in Short Link Layout 159
Spacing Parametersin Long Link Layout i 162
For Experts: Additional Features 164
For Experts: Special Options of the Short Link Layout 166
For Experts: Special Options of the Long Link Layout.o ... 173
Grid LAy OUL. . .. 176
SaAMIPIE . . 176
What Types of Graphs? 177
Application DOMAINSot e 177
FeatUrES . . . 178
Brief Description of the Algorithm 178
Code Sampleo 178
Generic Features and Parameters 179
Specific Parameters 180

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 3

SaAMPIE . 187
What Types of Graphs? 187
FatUNES . . . 187
LimItatioNS o 187
Brief Description of the Algorithm 187
Code SamIPle . . . 188
Generic Features and Parameters 188
Specific Parameters e 189
Performing Layout on Nested Graphs i e e 191
Using Advanced FeatUrest e e 197
Using a Graph Layout RepOrt.t e 198
Using Event Handlers e 201
Using the Graph Model 203
Laying Out Third-Party Graphs. e 207
Laying Out Connected Components of a Disconnected Graph 208
Using the Filtering Features to Lay OutaPartofaGraph......................... 209
Choosing the Layout Coordinate Spacettt e 210
Releasing Resources Used During theLayout. 212
Defining Your Own Type of Layoutt e 213
Related DOCUMENtAtioONo 218
Questions and Answers about Using the Layout Algorithms. 221
N EX .o 1

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Using Graph Layout Algorithms

Graph layout algorithms optimize the display of nodes and links with respect to each other
in graphs such as network topologies for telecommunication networks and systems
management applications.

In This Section

Introducing Graph Layout

Introduces the IBM® ILOG® Diagram for .NET graph layout.
Getting Sarted with Graph Layout Algorithms

Explains how to configure and execute graph layout algorithms on a graph.
Using the Base Class GraphLayout

Describes the base class GraphLayout and its related generic features and parameters.
Graph Layout Algorithms

Introduces the graph layout algorithms of IBM ILOG Diagram for .NET.
Performing Layout on Nested Graphs

Explains how to define and perform graph layout algorithms on nested graphs.
Using Advanced Features

Describes the advanced features of graph layout algorithmsin
IBM ILOG Diagram for .NET.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 5

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Introducing Graph Layout

This section provides some background information on graphs and layouts, illustrates the
appropriate methodol ogy for using algorithms in various applications and contains a brief

introduction to the ready-to-use layout algorithms provided with
IBM® ILOG® Diagram for .NET.

In This Section
What isIBM ILOG Diagramfor .NET Graph Layout
Provides a brief introduction to the IBM ILOG Diagram for .NET graph layout.
Graph Layout: A Brief Introduction

Provides some background information about graph layout in general, not specifically
related to IBM ILOG Diagram for .NET graph layout.

The Graph Layout Algorithms
Illustrates the ready-to-use layout a gorithms.
Common Features

Lists the common features shared by the graph layout algorithms.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 7

What is IBM ILOG Diagram for .NET Graph Layout

8 IBM

Many types of complex business data can be best visualized as a set of hodes and
interconnecting links, more commonly called graph or network. Examples of graphsinclude
business organizational charts, workflow diagrams, telecom network displays, and
genealogical trees. Whenever these graphs become large or heavily interconnected, it
becomes difficult to see the relationships between the various nodes and links (the edges).
Thisiswhere IBM® ILOG® Diagram for .NET graph layout algorithms help.

IBM ILOG Diagram for .NET graph layout provides high-level, ready-to-use relationship
visualization services. It allows you to take any "messy" graph and apply a sophisticated
graph layout agorithm to rearrange the positions of the nodes and links. Theresult isamore
readable and understandabl e picture.

Take alook at two sample drawings of the same graph.

In the following illustration, no formal layout algorithm is used. The nodes were placed
randomly when the graph was drawn.

In the following illustration the drawing is obtained by using one of the layout algorithms
provided with IBM ILOG Diagram for .NET.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

- “ﬁlg}ﬁ =01
—H

In the second drawing, the layout algorithm has distributed the nodes in levels, avoiding
overlapping nodes and allowing to easily follow the flow of information. This drawing
presents a much more readable layout than does the first drawing.

Graph Layout:

IBM

A Brief Introduction

Simply speaking, a graph is a data structure which represents a set of entities, called nodes,
connected by a set of links. (A node can aso be referred to asa vertex. A link can aso be
referred to as an edge or a connection.) In practical applications, graphs are frequently used
to model avery wide range of things: computer networks, software program structures,
project management diagrams, and so on. Graphs are powerful models because they permit
applications to benefit from the results of graph theory research. For instance, efficient
methods are available for finding the shortest path between two nodes, the minimum cost
path, and so on.

Graph layout is used in graphical user interfaces of applications that need to display graph
models. To lay out a graph means to draw the graph so that an appropriate, readable
representation is produced. Essentially, this involves determining the location of the nodes
and the shape of the links. For some applications, the location of the nodes may be already
known (based on the geographical positions of the nodes, for example). However, for other
applications, the location is not known (a pure "logical" graph) or the known location, if

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 9

IBM

used, would produce an unreadabl e drawing of the graph. In these cases, the location of the
nodes must be computed.

But what is meant by an "appropriate" drawing of a graph? In practical applications, it is
often necessary for the graph drawing to respect certain quality criteria. These criteria may
vary depending on the application field or on a given standard of representation. It is often
difficult to tell what a good layout consists of. Each end user may have different, subjective
criteriafor qualifying alayout as "good". However, one common goal exists behind all the
criteriaand standards: the drawing must be easy to understand and provide easy navigation
through the complex structure of the graph.

What is a Good Layout?

To deal with the various needs of different applications, many classes of graph layout
algorithms have been developed. A layout algorithm addresses one or more quality criteria,
depending on the type of graph and the features of the algorithm, when laying out a graph.

The most common criteria are:

[Minimizing the number of link crossings

[Minimizing the total area of the drawing

[Minimizing the number of bends (in orthogonal drawings)
[Maximizing the smallest angle formed by consecutive incident links
[Maximizing the display of symmetries

How can alayout algorithm meet each of these quality criteria and standards of
representation? If you look at each individual criteria, some can be met quite easily, at |east
for some classes of graphs. For other classes, it may be quite difficult to produce a drawing
that meets the criteria. For example, minimizing the number of link crossingsisrelatively
simple for trees (that is, graphs without cycles). However, for general graphs, minimizing
the number of link crossingsisamathematical NP-complete problem (that is, with all known
algorithms, the time required to perform the layout grows very fast with the size of the
graph).

Moreover, if you want to meet several criteriaat the same time, an optimal solution ssimply
may not exist with respect to each individual criteria because many of the criteriaare
mutually contradictory. Time-consuming trade-offs may be necessary. In addition, itisnot a
trivial task to assign weights to each criteria. Multicriteria optimization is, in most cases, too
complex to implement and much too time-consuming. For these reasons, layout algorithms
are often based on heuristics and may provide less than optimal solutions with respect to one
or more of the criteria. Fortunately, in practical terms, the layout algorithms will still often
provide reasonably readable drawings.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Methods for Using Layout Algorithms

Layout algorithms can be employed in avariety of waysin the various applicationsin which
they are used. The most common ways of using an algorithm are the following:

[—Automatic Layout

The layout algorithm does everything without any user intervention, except perhaps the
choice of the layout algorithm to be used. Sometimes, a set or rules can be coded to
choose automatically (and dynamically) the most appropriate layout algorithm for the
particular type of graph being laid out.

[—Femiautomatic Layout

The end user is free to improve the result of the automatic layout procedure by hand. In
some cases, the end user can move and "pin" nodes at desired locations and perform the
layout again. In other cases, apart of the graph is automatically set as "read-only" and
the end user can modify the rest of the layout.

—Hatic layout

The layout algorithm is completely redone ("from scratch") each time the graph is
changed.

[Incremental layout

When the layout algorithm is performed a second time on a modified graph, it triesto
preserve the stability of the layout as much as possible. The layout is not performed
again from scratch. The layout algorithm also tries to save CPU time by using the
previous layout as an initial solution. Some layout algorithms and layout styles are
incremental by nature. For others, incremental layout may be impossible.

The Graph Layout Algorithms

The namespace IL OG.Diagrammer.GraphLayout of IBM® ILOG® Diagram for .NET
provides numerous ready-to-use layout algorithms. They are shown below with a short
description and sample illustrations. In addition, you can develop new layout algorithms
using the generic layout framework.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 11

Hierarchical Layout

A layout algorithm that arranges nodes
in horizontal or vertical levels such that
the links flow in a uniform direction.

- W
Qijj

g
T

K.
-+
—
ik
i
=
-h_a’

|

\

Tree Layout

A layout algorithm that arranges the
nodes of a tree horizontally or vertically,
starting from the root of the tree. A
radial layout mode allows you to
arrange the nodes of a tree on
concentric circles around the root of the
tree.

rET

Force-Directed Layout

A layout algorithm that can be used to
lay out any type of graph and allows
you to specify the length of the links.

?
. .1\1_f.5_rr<t<{

B =

A X

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Short Link Layout

A layout algorithm for "short" links that
reshapes the links of a graph without
moving the nodes.

Long Link Layout

A layout algorithm for "long" orthogonal |_L

without moving the nodes.

links that reshapes the links of a graph

Grid Layout

A layout algorithm that arranges the
disconnected nodes of a graph in rows,
in columns, or in the cells of a grid.

I—LI_I.—.
= | |
| ([| e

| [

B e[

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Random Layout

A layout algorithm that moves the
nodes of the graph at randomly
computed positions inside an user-
defined region.

Common Features

The graph layout algorithms share the following features:

[Customizable: All graph layout algorithms can be tailored through code and
interactively in Visual Studio using the Diagram Designer.

[Adaptableto any graph data structure: You can program your own graph data
structures and apply an IBM® ILOG® Diagram for .NET graph layout algorithm to
them.

[HExtensible: you can easily use the generic framework to implement your own graph
layout algorithm, or to combine smaller layout algorithmsinto alarger one.

[Juitablefor nested graphs: The graph layout framework provides capabilitiesto lay out
graphs that contain other graphs as nodes. It can even route intergraph links that run
between different subgraphs of a nested graph.

[_Economic and automatic: The graph layout framework has capabilities to perform a
layout only when needed, that is, when a parameter or adetail of the graph has changed.
Furthermore, the framework has the capability to react automatically to such a change.

[—Jelective: You can apply different layout algorithmsto different parts of a graph. For
instance, you can apply alayout only to the nodes and links meet user-defined
conditions.

[Timecontrolled: All layout algorithms can be set to stop automatically when atime has
elapsed. Some layout algorithms can even be interrupted during runtime.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Getting Started with Graph Layout
Algorithms

This section explains how to configure and perform a graph layout algorithm on a graph
contained in an IBM® ILOG® Diagram for .NET graphic container.

For more information on how to create graphs see Creating Diagrams with Nodes and Links
and Introducing Link and Anchor Classes.

The code extracts contained in this section can be found in the QuickStart/GraphL ayout
sample.

Creating and Configuring a Graph Layout Algorithm

The following example shows how to create an instance of the TreelL ayout class and sets
some of its parameters:

TreelLayout treelLayout = new TreeLayout () ;

treeLayout.FlowDirection = TreeLayoutFlowDirection.Bottom;
treeLayout.GloballLinkStyle = TreelLayoutGlobalLinkStyle.OrthogonalStyle;
Dim treeLayout As TreeLayout = New TreeLayout

treeLayout.FlowDirection = TreeLayoutFlowDirection.Bottom
treeLayout.GlobalLinkStyle = TreeLayoutGlobalLinkStyle.OrthogonalStyle

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 15

Attaching a Graph Layout Algorithm to a Graphic Container

Now you are going to attach the graph layout object to the graphic container to which it will
be applied. You can attach two different graph layout algorithms to a graphic container by
using the GraphLayout and LinkLayout properties of the GraphicContainer.

The GraphL ayout property contains a graph layout algorithm that arranges the nodes of the
graph like the Hiearchical Layout, Treel ayout, ForceDirectedLayout or GridLayout classes.

I Note: These algorithms often change the shapes of the links.

The LinkL ayout property contains a second graph layout algorithm that only changes the
shapes of the links without moving the nodes like the ShortLinkLayout or LongLinkLayout
agorithms.,

In most cases, these two properties ease the configuration of the graph layout algorithms.
For example, to build a business process diagram, a user would need to arrange the nodes of
the diagram (using the algorithm stored in the GraphL ayout property) while editing. He
would also need to route the links (using the algorithm stored in the LinkL ayout property)
to reduce link crossings, without moving the nodes again, because he might have moved
some nodes manually.

The following example shows how to attach a graph layout algorithm to a graphic container
(here referred to as group) using the GraphL ayout property:

Group group;

group.GraphLayout = treeLayout;
Dim group As Group
group.GraphLayout = treeLayout

Executing a Graph Layout Algorithm

To execute agraph layout algorithm attached to a graphic container, use the
PerformGraphL ayout method of the GraphicContainer class. This method executes the
graph layout algorithms defined by the GraphL ayout and/or LinkL ayout properties.

The behavior of the PerformGraphL ayout method is controlled by the following
properties of the GraphicContainer class:

[GraphLayoutActive: if this property istrue, the graph layout algorithm contained in the
GraphL ayout property will be called (if itisnot null).

16 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

CLinkLayoutActive: if this property istrue, the graph layout algorithm contained in the
LinkLayout property will be called (if it is not null). The Link Layout agorithm will
always be called after the graph layout algorithm when both are specified and active.

[DayoutRecursively: if this parameter istrue, the algorithm is executed recursively on all
the subcontainers contained in the graphic container. See Performing Layout on Nested
Graphs for more details.

By default, all the three properties are true, so the Perfor mGraphL ayout method performs

both the graph layout and Link Layout algorithms (if they are specified) on the graphic

container and recursively on its subcontainers.

The following example shows how to execute the graph layout algorithms attached to a

Group:

group . PerformGraphLayout () ;
group . PerformGraphLayout ()

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 17

18

IBM

ILOG DIAGRAM FOR

.NET 2.0

GRAPH LAYOUT

Using the Base Class GraphLayout

This section introduces you to the API of the base class GraphL ayout and describes the
generic features and parameters.

In This Section
Using the API of the Base Class GraphLayout
Explains how to use the base class GraphL ayout.
Layout Parameters and Features in the GraphLayout Base Class

Explains how to use the parameters and features defined by the base class
GraphL ayout.

Using the API of the Base Class GraphLayout

This section covers the following topics:
[The Base Class: GraphLayout

[Instantiating a Subclass of GraphLayout
[Attaching/Detaching a Graph
[—Performing a Layout

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 19

[Further Information

The Base Class: GraphLayout

The GraphLayout class is the base class for all layout algorithms. This classis an abstract
class and cannot be used directly. You must use one of its subclasses: HierarchicalLayout,
TreeLayout, ForceDirectedLayout, ShortLinkLayout, LongLinkLayout, GridLayout, and
RandomL ayout. You can also create your own subclasses to implement other layout
algorithms. See Defining Your Own Type of Layout.

Degspite thefact that only subclasses of GraphL ayout are directly used to obtain the layouts,
itisstill useful to learn about this class because it contains methods that are inherited (or

overridden) by the subclasses. And, of course, you will need to understand it if you subclass
it yourself.

Warning: In many cases, the basic operations such as specifying the layout to be applied to
a Graphic Container and performing it can be done using the simple API directly on the
class Graphic Container, as explained in Getting Sarted with Graph Layout Algorithms.

Instantiating a Subclass of GraphLayout

The class GraphL ayout is an abstract class. It has no constructors. You will instantiate a
subclass as shown in the following example:

TreeLayout layout = new TreeLayout () ;
Dim layout As Treelayout = New TreelLayout

Attaching/Detaching a Graph

Warning: In many cases, attaching the layout can be done using the simple API directly on
the class Graphic Container, as explained in Getting Sarted with Graph Layout
Algorithms.

You must attach the graph before performing the layout. The method Attach, defined on the
class GraphL ayout, allows you to specify the graph you want to lay out. For example:

GraphicContainer graph = new Group () ;
/* Add nodes and links to the container here */
layout .Attach (container) ;

Dim graph As GraphicContainer = New Group

' Add nodes and links to the container here
layout .Attach (graph)

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

The Attach method does nothing if the specified graph is already attached. If a different
graph is attached, this method first detaches this old graph, then attaches the new one. You
can obtain the attached graph using the method GetGraphicContainer. If the graphis
attached in this way, a default graph model is created internally. For details on the graph
model, see Using the Graph Model. The attached graph model can be obtained by calling the
method GetGraphModel.

Warning: You are not allowed to attach a default model created internally to any other
layout instance, nor to useit in any way once it has been detached from the layout instance.
For details, see Using the Class GraphicContainer Adapter.

After layout, when you no longer need the layout instance, you should call the method
Detach.

If the Detach method is not called, some objects may not be garbage-collected. This method
also performs clean-up operations on the graph, such as removing properties that may have
been added to the graph objects by the layout algorithm. It also removes layout parameters

of nodes and links.

Note: A layout instance should stay attached as long asits layout parameters are relevant
for the graph. Only when the layout parameters, and therefore the entire layout instance,
become irrelevant for this graph should it be detached.

Performing a Layout

Warning: In many cases, performing the layout can be done using the simple API directly
on the class Graphic Container, as explained in Getting Sarted with Graph Layout
Algorithms.

The PerformLayout method starts the layout algorithm using the currently attached graph
and the current settings for the layout parameters. The method returns a report object that
contains information about the behavior of the layout algorithm.

GraphLayoutReport PerformLayout ()
GraphLayoutReport PerformLayout (bool force, bool traverse)

Thefirst version of the method is equivalent to the second called with afalse value for both
arguments. If the argument force isfalse, the layout algorithm first verifies whether it is

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 21

necessary to perform the layout. It checksinternal flags to see whether the graph or any of
the parameters have been changed since the last time the layout was successfully performed.
A "change" can be any of the following:

[Modes or links have been added or removed.

[Modes or links have been moved or reshaped.

[_The value of alayout parameter has been modified.

[_The transformer of aview (class DiagramView) of the graph has changed.

Users often do not want the layout to be computed again if no changes occurred. If there
were no changes, the method Per for mL ayout returns without performing the layout. Note
that if the argument force is passed astrue, the verification is no longer performed.

The argument traverse determines whether the layout is performed recursively in a nested
graph. For details, see Performing Layout on Nested Graphs.

The protected abstract method Layout is then called. This means that the control is passed to
the subclasses that are implementing this method. The implementation computes the layout
and moves the nodes to new positions and/or reshapes the links.

The PerformL ayout method returns an instance of GraphL ayoutReport (or of a subclass)
that contains information about the behavior of the layout algorithm. It tells you whether the
algorithm performed normally, or whether a particular, predefined case occurred. (For a
more detailed description of the layout report, see Using a Graph Layout Report.)

Note that the layout report that is returned can be an instance of a subclass of

GraphL ayoutReport depending on the particular subclass of GraphL ayout you are using.
For example, it will be an instance of LongLinkLayoutReport if you are using the class
LongLinkLayout. Subclasses of GraphL ayoutReport are used to store layout algorithm-
dependent information.

Further Information
You can find more information about the class GraphL ayout in the following sections:

[Dayout Parameters and Features in the GraphLayout Base Class contains the methods
that are related to the customization of the layout agorithms.

[Wsing Event Handlers tells you about the layout event handler mechanism.
[Defining Your Own Type of Layout tells you how to implement new subclasses.

For details on GraphL ayout and other graph layout classes, see the API Reference
Documentation.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Layout Parameters and Features in the GraphLayout Base Class
The GraphL ayout base class defines a number of generic features and parameters. These
features and parameters can be used to customize the layout algorithms,

Although the GraphL ayout class defines the generic parameters, it does not control how
they are used by its subclasses. Each layout algorithm (that is, each subclass of

GraphL ayout) supports a subset of the generic features and determines the way in which it
uses the generic parameters. When you create your own layout algorithm by subclassing
GraphL ayout, you decide whether you want to use the features and the way in which you
are going to use them.

The GraphL ayout base class defines the following generic features:
—Allowed Time
[Automatic Layout
[—Coordinates Mode
[Layout of Connected Components
[Nayout Region
—1ink Clipping
[Llink Connection Box
[—Percentage of Completion Calculation
[Preserve Fixed Links
[Preserve Fixed Nodes
[—Random Generator Seed Value
—Hop Immediately

If you are using one of the subclasses provided with IBM® ILOG® Diagram for .NET,
check the documentation for that subclass to know whether it supports a given parameter
and whether it interprets the parameter in a particular way.

Allowed Time

Several layout algorithms can be designed to stop computation when a user-defined time
specification is exceeded. This may be done for different reasons: as a security measure to
avoid along computation time on very large graphs or as an upper limit for algorithms that
iteratively improve a current solution and have no other criteriato stop the computation.

To specify that the allowed duration, use the property AllowedTime. Thetimeisin
milliseconds. The default value is 32000 (32 seconds).

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 23

If you write your own subclass of GraphL ayout, use the method IsLayoutTimeElapsed to
know whether the specified time was exceeded.

To indicate whether a subclass of GraphL ayout supports this mechanism, use the method
SupportsAllowedTime. The default implementation returns false. A subclass can override
this method to return true to indicate that this mechanism is supported.

Automatic Layout

For some layout algorithms, it may be suitable to have the layout automatically performed
again after each change of the graph, that is, when anode or link moves, is added, or is
removed. Automatic layout is most useful for link layouts, in a situation where the shape of
the links must remain optimal after each editing action of the end-user. It also works well
with other layout algorithms, such as ForceDirectedLayout, that offer an incremental
behavior, that is, for which asmall change of the graph usually produces only asmall change
of the layout. Automatic layout is generally not suitable for non-incremental layout
agorithms.

To enable automatic layout, use the property AutoL ayout.
The following hints are important:

[Automatic layout works well if the GraphicContainer instance is not attached to other
layouts. If multiple layouts are used for the same GraphicContainer instance, they may
mutually affect each other. In this case, it is recommended to have at most one of the
multiple layouts in automatic mode.

[_The following example shows how to perform multiple changes al at the sametimein
the GraphicContainer instance when automatic layout is switched on. Automatic layout
is performed only once at the end of all the changes:

layout .Attach(graph) ;
layout .AutoLayout = true;

// switch the notification of changes off
graph.setContentsAdjusting (true) ;
try {

// ... perform multiple changes without any automatic layout
} finally {

// now the graph notifies layout about the changes:

// therefore, only one automatic layout is performed
graph.setContentsAdjusting(false) ;

For more information about automatic layout, see the method PerformAutoLayout in the
API Reference Documentation.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

Coordinates Mode

The geometry, that is, the position and size, of the graphic objects that are used to represent
nodes and linksin a GraphicContainer instance is subject to atransformer (see the class
Transform). By default, the layout a gorithms consider the geometry of the nodes and links
of aGraphicContainer in acoordinate space that is appropriate for most cases. In some
situations, it can be useful to specify a different coordinate space. For details, see Choosing
the Layout Coordinate Space.

To specify, for instance, the view coordinate space, use the property CoordinatesM ode.
The values are:
[CoordinatesM ode.GraphicContainer Coor dinates

The geometry of the graph is computed using the coordinate space of the
GraphicContainer attached to the layout instance, without applying any transformation.

Use this mode:
. if you visualize the graph at zoom level 1, or
. if youdo not visualizeit at all (no DiagramView), or

. if the graph contains only objects which drawing grows and shrinks proportionally
with the zoom level.

Inall these cases, thereis no need to take the transformer zoom level into account during
the layout.

Note that in this mode the dimensional parameters of the layout algorithms are
considered specified in the coordinates of the Graphic Container.

[CoordinatesM ode.ViewCoor dinates

The geometry of the graph is computed in the coordinate space of the DiagramView.
More exactly, all the coordinates are transformed using the current reference transformer.

This mode should be used if you want the dimensional parameters of the layout
algorithms to be considered as being specified in diagram view coordinates.

[CoordinatesM ode.l nver seViewCoordinates

The geometry of the graph is computed using the coordinate space of the diagram view
and then applying the inverse transformation. This modeis equivalent to the "graphic
container coordinates’ mode if the geometry of the graphic objects strictly obeys the
transformer, that is, the drawing of all objects grows and shrinks proportionally with the
zoom level. (A small difference may exist because of the limited precision of the
computations.)

On the contrary, if the drawing of some graphic objects does not grow and shrink
proportionally with the zoom level (for example, links with a maximum width), this

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 25

See Also

26

mode gives different results from the graphic container coordinates mode. These results
areoptimal if the graph is visualized using the same transformer as the one taken into
account during the layout.

Note that in this mode the dimensional parameters of the layout algorithms are
considered specified in graphic container coordinates.

The default mode is Coor dinatesM ode.l nver seViewCoor dinates.

Fecifying the Coordinates Mode

Layout of Connected Components

The base class GraphL ayout provides generic support for the layout of a disconnected
graph (composed of connected components).

To enable the placement of disconnected graphs, use the property
L ayoutOf ConnectedComponentsEnabl ed.

Note: One of the layout classes, Hierarchical Layout, has a built-in algorithm for placing
connected components. This algorithmis enabled by default and fits the most common
situations. For this layout class, the generic mechanism provided by the base class
GraphLayout is disabled by default.

When enabled, a default instance of the class GridLayout is used internally to place the
disconnected graphs. If necessary, you can customize this layout:
GridLayout gridLayout new GridLayout () ;

gridLayout .LayoutMode GridLayoutMode.TileToRows;
gridLayout.TopMargin = 20f;

layout .LayoutOfConnectedComponents = gridLayout;
Dim gridLayout As GridLayout = New GridLayout
gridLayout.LayoutMode = GridLayoutMode.TileToRows
gridLayout.TopMargin = 20F

layout .LayoutOfConnectedComponents = gridLayout

For Experts

The various capabilities of the class GridL ayout cover most of the likely needs for the
placement of disconnected graphs. However, if necessary, you can write your own subclass
of GraphL ayout to place disconnected graphs and specify it instead of GridL ayout:

MyGridLayout myGridLayout = new MyGridLayout () ;
// Settings for myGridLayout, if necessary

layout .LayoutOfConnectedComponents = gridLayout;
Dim gridLayout As MyGridLayout = New MyGridLayout
' Settings for myGridLayout, i1f necessary

layout .LayoutOfConnectedComponents = gridLayout

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

To indicate whether a subclass of GraphL ayout supports this mechanism, use the method
SupportsL ayoutOf ConnectedComponents.

The default implementation returns false. You can write a subclass to override this behavior.

Layout Region

Some layout algorithms can control the size of the graph drawing and can take into account
a user-defined layout region.

The layout region the layout region is usually the rectangl e that the graph must fit (exactly or
approximately) after the layout is performed, or the rectangle which influences the position
and/or size of the resulting layout.

To specify the layout region, use the property LayoutRegion. The layout region is
interpreted according to the LayoutRegionM ode property:

[GraphL ayoutRegionM ode.Rectanglel nGraphicContainer Coor dinates

The value of the property L ayoutRegion isinterpreted as arectangle in the coordinate
system of the GraphicContainer to which this layout is attached.

[GraphL ayoutRegionM ode.Rectanglel nViewCoor dinates

The value of the property L ayoutRegion isinterpreted as arectangle in the coordinate
system of the reference view. The reference view is the first view (an object of type
IDiagramView) that displays the GraphicContainer to which thislayout is attached.

[GraphL ayoutRegionM ode.ViewBounds

The value of the property L ayoutRegion isignored, and the layout region is the bounds of
the reference view.

To access the layout region, use the method GetSpecL ayoutRegion. This method returns the
rectangle that defines the specified layout region. The dimensions of the rectangle arein the
coordinates of the attached graphic container.

Thelayout algorithms call adifferent method: GetCalcLayoutRegion. This method first tries
to use the layout region specification by calling the method GetSpecL ayoutRegion. If this
method does not return an invalid rectangle (Rectangle2D.Invalid), thisrectangle is
returned. Otherwise, the method tries to estimate an appropriate layout region according to
the number and size of the nodes in the attached graph. If no graph is attached, or the
attached graph is empty, it returns a default rectangle (0, 0, 1000, 1000).

To indicate whether a subclass of GraphL ayout supports the layout region mechanism, use
the method SupportsL ayoutRegion.

The default implementation returns false. A subclass can override this method in order to
return trueto indicate that this mechanism is supported.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 27

Note: The implementation of the protected abstract method Layout is solely responsible for
whether the layout region is taken into account when calculating the layout, and in which
manner.

Link Clipping

If the nodes of a graph have a nonrectangular shape such as a triangle, rhombus, or circle,
the layout algorithms can place the connection points of the links exactly on the border of
the shape, instead of placing them at the border of the bounding box of the nodes.

The clipping of the connection points can be enabled or disabled using the property
LinkClipping. The default valueistrue.

Link Connection Box

If alayout algorithm cal culates specific connection points, it places the connection points of
links by default at the border of the bounding box of the nodes, symmetrically with respect
to the middle of each side. Sometimes it may be necessary to place the connection points on
arectangle smaller or larger than the bounding box, eventually in a nonsymmetric way. For
instance, this can happen when labels are displayed below or above nodes. This can be
achieved by specifying alink connection box provider. Thisisan interface which alowsyou
to specify, for each node, a node box different from the bounding box that is used to connect
the links to the node.

To set alink connection box provider, use the property LinkConnectionBoxProvider.

You implement the link connection box provider by defining a class that implements the
interface ILinkConnectionBoxProvider. This interface defines the following method:

Rectangle2D GetBox (
IGraphModel graphModel,
Object node

)

Function GetBox (_
graphModel As IGraphModel, _
node As Object _

) As Rectangle2D

This method allows you to return the effective rectangle on which the connection points of
the links are placed.

A second method defined on the interface allows the connection points to be "shifted"
tangentially, in a different way for each side of each node:
float GetTangentialOffset (

IGraphModel graphModel,
Object node,

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

Direction nodeSide

)

Function GetTangentialOffset (_
graphModel As IGraphModel, _
node As Object, _
nodeSide As Direction _

) As Single

The following illustration shows an effect of link connection box provider:

tabe! Labe
rearer] _ [Label]
C Multi
Ineg
| Line
Label
Labe
without link connection box final result with link connection box
ri-lﬁlllllllli :------"‘"“""‘"‘l‘l‘
' ' : '
L] "
"
: y '
L]
L] W —
.I -- = ‘-I -- -
with connection box, with connection box,
ne tangential offset with positive tangential offsets

For instance, to define alink connection box provider that returns alink connection
rectangle that is smaller than the bounding box for al nodes that match a given criteria, and
shifts up the connection points on the left and right side of al the nodes, implement the
interface as follows:

public class MyProvider : ILinkConnectionBoxProvider
{
public Rectangle2D GetBox (IGraphModel graphModel, Object node)
{
Rectangle2D rect = graphModel.BoundingBox (node) ;
if (node.Name == "Obj1l") ({
// need a rect that is 4 units smaller
rr.Inflate (-4, -4);
}

return rect;

}

public float GetTangentialOffset (IGraphModel graphModel,
Object node, NodeSide side)
{

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 29

switch (nodeSide)
case NodeSide.Left:
case NodeSide.Right:
return -10; // shift up with 10 for both left and right side
case NodeSide.Top:
case NodeSide.Bottom:
default:
return 0; // no shift for top and bottom side
}

}
}

Public Class MyFilter
Implements INodeSideFilter

Public Function GetBox(ByVal graphModel As IGraphModel,
ByVal node As Object) _
As Rectangle2D
Dim rect As Rectangle2D = graphModel.BoundingBox (node)
' For some nodes, we need a rect that is 4 units smaller

If node.Name = "Objl" Then
rr.Inflate(-4, -4)
End If

Return rect
End Function

Public Function GetTangentialOffset (ByVal graphModel As IGraphModel, _
ByVal node As Object, _
ByVal side As NodeSide) As Single
Dim rect As Rectangle2D = graphModel.BoundingBox (node)
Select side
Case NodeSide.Left, NodeSide.Right
Return -10
Case NodeSide.Top, NodeSide.Bottom, Else
Return 0
End Select
End Function
End Class

Some layout algorithms allow you to use the link connection box interface and the link clip
interface in acombined way. It is specific to each layout algorithm how the interfaces will be
used and which connection points are the final result.

To indicate whether a subclass of GraphL ayout supports the link connection box provider,
use the method SupportsLinkConnectionBox.

The default implementation returns false. You can write a subclass to override this method
in order to return tr ue to indicate that this mechanism is supported.

Percentage of Completion Calculation

Some layout algorithms can provide an estimation of how much of the layout has been
completed. This estimation is made available as a percentage value that is stored in the graph
layout report. When the algorithm starts, the percentage value is set to 0. The layout

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

algorithm calls from time to time the property IncreasePercentageComplete to increase the
percentage value by steps until it reaches 100.

To see an exampl e of how to read the percentage value during the running of alayout, see
Graph Layout Event Handlers.

To indicate whether a subclass of GraphL ayout supports this mechanism, use the method
SupportsPercentageCompl ete.

The default implementation returnsfalse. A subclass can override this method to returntrue
to indicate that this mechanism is supported.

Preserve Fixed Links

At times, you may want some links of the graph to be "pinned” (that is, to stay in their
current shape when the layout is performed). You need away to indicate the links that the
layout algorithm cannot reshape. This makes sense especially when using a semi-automatic
layout (the method where the end user fine-tunes the layout by hand after the layout is
completed) or when using an incremental layout (the method where the graph and/or the
shape of the linksis modified after the layout has been performed, and then the layout is
performed again).

To specify that alink isfixed:

public virtual void SetFixed (
Object nodeOrLink,
bool value

)

Public Overridable Sub SetFixed (_
nodeOrLink As Object, _
value As Boolean _

)

If the value parameter is set to true, it means that the link is fixed. To obtain the current
setting for alink:

public virtual bool GetFixed (
Object nodeOrLink

)

Public Overridable Function GetFixed (_
nodeOrLink As Object _

) As Boolean

The default valueis false. To remove the fixed attribute from all linksin the graph, use the
method UnfixAllLinks.

The fixed attributes on linkswill be taken into consideration only if you also set the property
PreserveFixedLinksto true.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 31

To indicate whether a subclass of GraphL ayout supports this mechanism, use the method
SupportsPreserveFixedLinks.

The default implementation returns false. A subclass can override this method in order to
return tr ue to indicate that this mechanism is supported.

Preserve Fixed Nodes

At times, you may want some nodes of the graph to be "pinned” (that is, to stay in their
current position when the layout is performed). You need away to indicate the nodes that the
layout algorithm cannot move. This makes sense especially when using a semi-automatic
layout (the method where the end user fine-tunes the layout by hand after the layout is
completed) or when using an incremental layout (the method where the graph and/or the
position of the nodesis modified after the layout has been performed, and then the layout is
performed again).

To specify that anodeis fixed:

public virtual void SetFixed (
Object nodeOrLink,
bool value

)

Public Overridable Sub SetFixed (_
nodeOrLink As Object, _
value As Boolean _

)

If the value parameter is set to true, it means that the node is fixed. To obtain the current
setting for anode:
public virtual bool GetFixed (

Object nodeOrLink

)

Public Overridable Function GetFixed (_
nodeOrLink As Object _

) As Boolean

The default value is false. To remove the fixed attribute from all nodes in the graph, use the
method UnfixAllINodes.

The fixed attributes on nodes will be taken into consideration only if you also set the
property PreserveFixedNodesto true.

To indicate whether a subclass of GraphL ayout supports this mechanism, use the method
SupportsPreserverixedNodes.

The default implementation returns false. A subclass can override this method in order to
return tr ue to indicate that this mechanism is supported.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Random Generator Seed Value

Some layout al gorithms use random numbers (or randomly chosen parameters) for which
they accept a user-defined seed value. For example, the Random Layout uses the random
generator to compute the coordinates of the nodes.

Subclasses of GraphL ayout that are designed to support this mechanism allow the user to
choose one of three ways of initializing the random generator:

[With adefault value that is aways the same.
[With a user-defined seed value that can be changed when re-performing the layout.

[With an arbitrary seed value, which is different each time. In this case, the random
generator isinitialized based on the system time.

The user chooses the initialization option depending on what happens when the layout
algorithm is performed again on the same graph. If the same seed value is used, the same
layout is produced, which may be the desired result. In other situations, the user may want to
produce different layoutsin order to select the best one. This can be achieved by performing
the layout several times using different seed values.

To specify the seed value, use the property SeedVal ueForRandomGenerator. The default
seed valueisO.

The user-defined seed valueis used only if the property UseSeedVal ueForRandomGenerator
issettotrue.

To indicate whether a subclass of GraphL ayout supports this parameter, use the method
SupportsRandomGenerator.

The default implementation returns false. A subclass can override this method in order to
return true to indicate that this parameter is supported.

Stop Immediately

Several layout algorithms can stop computation when an external event occurs, for instance
when the user hitsa"Stop" button. To stop the layout, you can call the method
Stoplmmediately.

This method istypically called in a multithreaded application from a separate thread that is
not the layout thread. The method returnstrueif the stop was initiated and false if the
algorithm cannot stop. The method returns immediately, but the layout thread usually needs
some additional time after initiating the stop to clean up data structures.

The consequences of stopping alayout process depend on the specific layout algorithm.
Some layout algorithms have an iterative nature. Stopping the iteration processresultsin a
dlight loss of quality in the drawing, but the layout can still be considered valid. Other layout
agorithms have a sequential nature. Interrupting the sequence of the layout steps may not

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 33

34

IBM

result inavalid layout. Usually, these algorithms return to the situation before the start of the
layout process.

To indicate whether a subclass of GraphL ayout supports this mechanism, use the method
SupportsStoplmmediately.

The default implementation returns false. You can write a subclass to override this method
in order to return tr ue to indicate that this mechanism is supported.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Graph Layout Algorithms

This section introduces the graph layout algorithms of IBM® ILOG® Diagram for .NET.
In This Section
Determining the Appropriate Layout Algorithm
Helps you determine the ready-to-use layout algorithms appropriate for your needs.
Typical Ways for Choosing the Layout
Explains how to choose the appropriate algorithm.
Generic Features and Parameters Support
Lists the generic features and parameters of the graph layout.
Layout Characteristics
Describes the layout characteristics of the graph layout.
Hierarchical Layout
Describes the Hierarchical Layout agorithm.
Tree Layout
Describes the Tree Layout algorithm.
Force-Directed Layout
Describes the Force-Directed Layout agorithm.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 35

Link Layout

Describes the Link Layout algorithm.
Grid Layout

Describes the Grid Layout algorithm.

Random Layout
Describes the Random Layout agorithm.

Determining the Appropriate Layout Algorithm

36

IBM

When using the graph layout package, you need to determine which of the ready-to-use
layout algorithms is appropriate for your particular needs. Some layout algorithms can
handle awide range of graphs. Others are designed for particular classes of graphs and will
give poor results or will reject graphs that do not belong to these classes. For example, a
Tree Layout algorithm is designed for tree graphs, but not cyclic graphs. Therefore, it is
important to lay out a graph using the appropriate layout algorithm.

Table 1, Layout Algorithms and Common Types of Graphs can help you determine which of
the layout algorithms is best suited for a particular type of graph.

[—Acrossthe top of the table are various classifications of different types of graphs.
[_The layout algorithms appear on the |eft side of the table.

[Table cells containing illustrations indicate when alayout algorithm is applicable for a
particular type of graph.

By identifying the general characteristics of the graph you want to lay out, you can see from
the table whether alayout algorithm is suited for that particular type of graph.

For example, if you know that the structure of the graph is atree, you can look at the
Domain-Independent Graphs/Trees column to see which layout algorithms are appropriate.
The Force-Directed Layout, Tree Layout, and Hierarchical Layout could all be used. Usethe
illustrations in the table cells to help you further narrow your choice.

You can use the Recursive Layout to control the layout of nested graphs (containing
subgraphs and intergraph links). Thisisin particular useful if different layout styles should
be applied to different subgraphs. The other layout algorithms such as Force-Directed
Layout, Tree Layout, and Hierarchical Layout treat only flat graphs (unless otherwise
noted), that is, a specific layout instance is only able to lay out the nodes and links of the
attached graph, but not the nodes and links of its subgraphs. The Recursive Layout alows
you to specify which flat layout is used for which subgraph, and it traverses the entire nested
graph recursively when applying the layout. As result, the entire nested graph islaid out.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

You can use the Multiple Layout to combine several different layouts into one instance. In
this case, they become sublayouts of the Multiple Layout instance. Thisisuseful in
particular for nested graphs when used in combination with the Recursive Layout. The
Multiple Layout ensures that the normal layout, the routing of the intergraph links, and the
layout of labels are applied in the correct order to a nested graph.

The following table shows Layout Algorithms and Common Types of Graphs.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 37

Table1l Layout Algorithmsand Common Types of Graphs

Force-Directed N/A
Layout e - g'ﬁ'u'ﬂ
o L
L- -.-.’ _- i I H
¥, ;] Ly
"y B / ;rl‘;
By o in ;J";J'"ﬂ"ﬂ""ﬂ
B "'.' 1"' g o

w?
iri ¥

Preferable to

avoid heavily
interconnected
graphs (large
number of
cycles)
Tree Layout N/A N/A
o
A
.
sgad g
"'*-Crﬂ

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Table1l Layout Algorithmsand Common Types of Graphs

Hierarchical
Layout

Link Layout N/A N/A N/A

Grid Layout N/A N/A N/A

[SY SN
[SH Y™
[y
E=ple
=il
=l

Note that the
algorithm does
not take into
account the links
between the
nodes.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 39

Table1l Layout Algorithmsand Common Types of Graphs

Domain-Independent Graphs

Layout Combination of
Trees Cyclic Graphs |Cycles and Any Graph
Trees
Recursive N/A N/A N/A Nested graphs.
Layout
Multiple Layout | N/A N/A N/A Combination of

multiple different
layoutalgorithms
on the same
graph (in
particular for
nested graphs).

Typical Ways for Choosing the Layout

40

IBM

This section provides a few methodological hints for designing applications using graph
layout. In simple cases, an application will use one fixed graph layout algorithm for each
view - if your application falls in this case, you probably don't need to read this section. In
more complex applications, the user should be able to choose among different layouts, or the
application itself should determine the layout. This section gives some hints on how this can
be done and suggests the corresponding procedures in the following subsections.

The choice of the appropriate algorithm for agraph can be done either by the end user at run
time or by the programmer when he develops the application. This process can be
semiautomatic, when the user isinvolved, or automatic when the application does
everything with no user intervention. This section explains the difference between these two
modes and gives you the corresponding procedures in the following subsections:

[Choosing a Layout Algorithm

[_Choosing the Layout Algorithm Dynamically

[Hard-coding a Layout at Programming Time

[Hard-coding a Layout at Run Time

ILOG DIAGRAM FOR

.NET 2.0 — GRAPH LAYOUT

Choosing a Layout Algorithm

Asaprogrammer of applications, you can choose Semiautomatic Layout to involve the end
user in the choice of the layout, or Automatic Layout, in which case the application does
everything with no end user action.

Semiautomatic Layout

For applications using a semiautomatic layout, the choice of the layout algorithm is done by
the end user. The application can provide a menu or some other way to select the layout
algorithm.

In some cases, this may be an iterative process. The user may try different layout algorithms
with different values for the parameters and/or may apply manual refinementsto find the
best layout. The application may possibly provide some help using textual explanations or
by automatically checking the graph to find out to which classit belongs. For example, to
detect whether the graph that has been attached to alayout instance isatree, the
GraphLayoutUtil class provides the method IsTree(GraphLayout layout, Object startNode).

See a'so Attaching/Detaching a Graph.
Automatic Layout
If an automatic layout is needed, the choice of the layout algorithm can be:

[—ahosen dynamically at run time by means of heuristics or rulesto determine the
appropriate layout algorithm depending on the structure and/or size of the graph;

[hard-coded if the developer knows what types of graphs will be used and can determine
the appropriate layout algorithm.

Choosing the Layout Algorithm Dynamically

If nothing is known about the graphs that the application will need to lay out, the developer
can write aroutine that automatically chooses the layout algorithm at run time. The
following simple rules could be applied:

1. If the nodes of the graph cannot be moved (they are geo-positioned), use the Link
Layout.

2. If thegraphisatree, usethe Tree Layout.

3. Otherwise, use one of the layout algorithms that are the less restricted to a given graph
category, especially the Force-Directed Layout. (The preferred length of the links could
also be computed with respect to the size of the nodes.)

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 41

4.

If the graph istoo large, apply a“divide-and-conquer” strategy. Cut the graph into
several subgraphs and apply the layout separately to each subgraph. If the graph is
disconnected, you can use the built-in support provided by the layout library to perform
this task automatically. (See Layout of Connected Components.)

If the graph is nested, use the Recursive Layout algorithm that controls which subgraph
islaid out by which (flat) sublayout. Use step 1-4) above to determine the sublayouts for
the subgraphs.

Hard-coding a Layout at Programming Time

A special case occurs when the application will deal with only asmall set of graphs that are
known at the time the application is built. In this case, the layout can be performed at
programming time. A possible step-by-step procedure may be the following:

1.
2.

3
4.
5
6

Create each graph manually with the Diagram Editor or by code.
Try different layout algorithms and choose the best for each graph.

. Apply manual refinements to the layout if needed.

Store the result of the layout by saving the graphsin . Tvn files.

. Provide these files with the application.
. When the application is used, these fileswill simply be loaded. (There will be no need to

perform the layout again since it is already done.)

Hard-coding a Layout at Run Time

If the choice of the layout algorithm is hard-coded, but the layout must be performed at run
time because the graphs are not known at programming time, one possible step-by-step
procedure for the choice of the appropriate layout agorithm may be the following:

1.

2.

42 IBM

Look at sample graphs for your domain.

Try to determine some generalities about the properties of the structure and the size of
the graph (Is the graph cyclic? Isthe graph atree? I's the graph a combination of the two?
What is the number of nodes and links in the graph?)

Pick one of the corresponding layout algorithms from Table 1, Layout Algorithms and
Common Types of Graphs.

Try out the algorithm on one or more samples.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Generic Features and Parameters Support

The graph layout generic features and parameters described in Layout Parameters and

Features in the GraphLayout Base Class allow you to customize the behavior of the layout
algorithms to meet specific needs and to perform useful operations such as saving the layout

parametersin afile.

The following table indicates the generic features and parameters that are supported by each
layout algorithm. These parameters are defined in the base class for al layout algorithms,

GraphLayout
&
5 x i
S 2 | = |5
(o8
£ s | E|8 |3
. o o o =] () T
Layout Algorithm £) O Qo = 3] O c =
= 0 (o = =) = o o T 3
= X S | = E @ o c o | O35
= =} o + 014 o c 5] = IS
o 3 > 13} = o = ET =
o 52| 5| 0 | O S |e= | E
2 kS kS = o x~ x S T =%
= | x| x| %5 | & || =|5 |88 8
< [y [y -1 0 — — — o xw]
Force-Directed Layout Yes - Yes Yes Yes | Yes | Yes - - Yes
Link Layout Yes | Yes | Yes Yes - Yes | Yes | Yes - Yes
Hierarchical Layout Yes | Yes | Yes Yes - Yes | Yes | Yes - Yes
Link Layout Yes | Yes - - - - Yes - - Yes
Random Layout Yes - Yes - Yes - - Yes Yes Yes
Grid Layout Yes - Yes - Yes - - - - Yes
Recursive Layout Yes - - - - - - Yes - Yes
Multiple Layout Yes - - Yes - - - Yes - Yes
IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 43

Layout Characteristics

It is often useful to know how certain settings will affect the resulting layout of the graph
after the layout algorithm has been applied. The following table provides additional
information about the behavior of the layout algorithms.

Layout Algorithm

Do the initial positions of the
nodes affect the layout?

How do | get a different layout of the same graph
when | perform the layout a second time?

Force-Directed Layout |Yes

You can completely change the layout by changing
the initial positions of the nodes. To change only the
dimensions of the graph, use the preferred length
of the links or size of the layout region. See
Preferred Length.

Link Layout

Yes (if incremental mode is
switched on)

In incremental mode, you can change the layout by
changing the initial positions of the nodes.
Furthermore, you can change the layout by selecting
a different Root Node. To change only the
dimensions of the graph, use the various offset
parameters.

Hierarchical Layout

Yes (if incremental mode is
switched on)

In incremental mode, you can change the layout by
changing the initial positions of the nodes.
Furthermore, you can use specified node level
indices to change the level structure. See Level
Index Parameter.

You can use specified node position indices to
change the node order within the levels. See Position
Index Parameter.

You can change the layout by changing the link
priorities. See Link Priority Parameter.

To change only the dimensions of the graph, use the
various offset parameters.

Link Layout

Yes

Link Layout routes the links depending on the node
positions. It does not move the nodes. You can
change the link style option and the dimensional
parameters, such as the link offset and final
segment length. You can also specify the rules for
computing the connection points of the links.

Random Layout

No

This is the default behavior when using the default
parameter settings (the random generator is
initialized differently each time).

44 IBM

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Lavout Algorithm Do the initial positions of the |How do | get a different layout of the same graph
y 9 nodes affect the layout? when | perform the layout a second time?

Grid Layout Yes (if incremental mode is You can change various dimensional parameters,
switched on) layout mode, and so on.

Recursive Layout Depends on the behavior of the | Depends on the behavior of the sublayouts applied to
sublayouts applied to the the subgraphs. You can change the parameters of
subgraphs. the sublayouts individually.

Multiple Layout Depends on the behavior of the | Depends on the behavior of the sublayouts of the
sublayout that is applied first. Multiple Layout instance. You can change the

parameters of the sublayouts individually.

Hierarchical Layout

This section describes the Hierarchical Layout algorithm (class Hierarchical Layout).
In This Section
Samples
Provides some sample drawings produced by the algorithm.
What Types of Graphs?
Explains the type of graph on which you can use the algorithm.

Application Domains
Explains the application domains for the algorithm.

Features

Lists the features of the algorithm.
Limitations

Explains the limitations of the algorithm.

Brief Description of the Algorithm
Provides a short description of the Hierarchical Layout algorithm.

Code Sample
Provides a sample of code that shows how to use the algorithm.

Generic Features and Parameters
Explains what generic features of the graph layout library are supported and how.

Soecific Parameters

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 45

46

IBM

Presents the parameters of the Hierarchical Layout algorithm.
Incremental Mode

Explains the incremental mode of the Hierarchical Layout algorithm.
Layout Constraints

Explains the constraints system in the Hierarchical Layout algorithm.
For Experts. More Indices

Presents additional expert information.

Samples
Here are some sampl e drawings produced with the Hierarchical Layout.

The following illustration shows a sample layout with self-loops, multiple links, and cycles.

The following illustration shows a flowchart with orthogona link style.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

The following illustration shows a sample layout with ports and orthogonal link style.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 47

48

i

[
-

ol

What Types of Graphs?

Any type of graph:

[Preferably graphs with directed links (The algorithm takes the link direction into
account.)

[Connected graphs and disconnected graphs
[Planar graphs and nonplanar graphs

Application Domains

Application domains of the Hierarchical Layout include:

[Hlectrical engineering (logic diagrams, circuit block diagrams)

[Industrial engineering (industrial process diagrams, schematic design diagrams)

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

[Business processing (workflow diagrams, process flow diagrams, PERT charts)

—Joftware management/software (re-)engineering (UML diagrams, flowcharts, data
inspector diagrams, call graphs)

[Database and knowledge engineering (database query graphs)
[_CASE tools (designs diagrams)

Features
[Organizes nodes without overlapsin horizontal or vertical levels.

[Arranges the graph such that the majority of links are short and flow uniformly in the
same direction (from left to right, from top to bottom, and so on).

[Reduces the number of link crossings. Most of the time, produces drawings with no
crossings or only a small number of crossings.

[Often produces balanced drawings that emphasize the symmetries in the graph.

[—Supports self-links (that is, links with the same origin and destination node), multiple
links between the same pair of nodes, and cycles.

[_Efficient, scalable algorithm. Produces a nice layout for most sparse and medium-dense
graphs relatively quickly, even if the number of nodesis very large.

[Provides several alignment and offset options.

[—Supports port specifications where links attach the nodes. Allows you to specify which
side of anode (top, bottom, left, right) alink can be connected to or to specify which
relative port position should be used for the connection.

[—Supports layout constraints. Allows you to specify relative positional constraints, for
instance, that a node is above another node or |eft of another node.

[Incremental and nonincremental mode. In incremental mode, the previous position of
nodes are taken into account. Positions the nodes without changing the relative order of
the nodes so that the layout is stable on incremental changes of the graph.

[_The computation time depends on the number of nodes, the number of levels, and the
number of linksthat cross several levels. Most of the time, the links are placed between
adjacent levels, which keeps the computation time small.

Limitations

[_The algorithm tries to minimize the number of link crossings (which is generally an NP-
complete problem). It is mathematically impossible to solve this problem quickly for any
graph size. Therefore, the algorithm uses avery fast heuristic that obtains a good layout,
but not always with the theoretical minimum number of link crossings.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 49

[_The algorithm tries to place the nodes such that all links point uniformly in the same
direction. It isimpossible to place cycles of linksin this way. For this reason, it
sometimes produces a graph where a small number of links are reversed to point into the
opposite direction. The agorithm tries to minimize the number of reversed links (which,
again, is an NP-complete problem). Therefore, the algorithm uses avery fast heuristic
resulting in agood layout, but not always with the theoretical minimum number of
reversed links.

[_The computation time required to obtain an appropriate drawing depends most
significantly on the number of bends in the links. Since the algorithm places one bend
whenever alink crosses alevel, the number of bends can grow relatively quickly if the
layout requires many long links that span several levels. Therefore, the layout process
may become very time-consuming for dense graphs (the number of linksisrelatively
high compared to the number of nodes) or for graphs that require alarge number of node
levels.

Brief Description of the Algorithm
This algorithm worksin four steps.

Step 1: Leveling

The nodes are partitioned into groups. Each group of nodesformsalevel. The objectiveisto
group the nodes in such away that the links always point from alevel with smaller index to
alevel with larger index.

Step 2: Crossing Reduction

The nodes are sorted within each level. The algorithm tries to keep the number of link
crossings small when, for each level, the nodes are placed in this order on aline. This
ordering results in the relative position index of each node within its level.

Step 3: Node Positioning

From the level indices and position indices, balanced coordinates for the nodes are
calculated. For instance, for alayout where the link flow isfrom top to bottom, the nodes are
placed along horizontal lines such that all nodes belonging to the same level have
(approximately) the same y-coordinate. The nodes of alevel with asmaller index have a
smaller y-coordinate than the nodes of alevel with ahigher index. Within alevel, the nodes
with asmaller position index have a smaller x-coordinate than the nodes with a higher
position index.

Step 4: Link Routing

The shapes of the links are calculated such that the links bypass the nodes at the level lines.
In many cases, this requires that a bend point be created whenever alink needsto crossa
level line. In atop-to-bottom layout, these bend points have the same y-coordinate as the
level line they cross. (Note that these bend points also obtain a position index).

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

The following illustration shows how the Hierarchical Layout algorithm uses the level and
positions indices to draw the graph.

position 0 position 1

_level 0

_ lewel 1

position 2

_ lewel 2

position 0

position O

The steps of the layout algorithm can be affected in several ways. For instance, you can
specify the level index that the al gorithm should choose for anode in Step 1 or the relative
node position within the level in Step 2. You can also specify the justification of the nodes
within alevel and the style of the links shapes.

Code Sample

The following example shows how to perform aHierarchical Layout on agraph by using the
HierarchicalLayout class:

using System;

using ILOG.Diagrammer;

using ILOG.Diagrammer.Graphic;
using ILOG.Diagrammer.GraphLayout;

Group group = new Group () ;

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 51

// Fill the group with nodes here

HierarchicallLayout layout = new HierarchicalLayout () ;
group.GraphLayout = layout;

group . PerformGraphLayout () ;

Imports System

Imports ILOG.Diagrammer

Imports ILOG.Diagrammer.Graphic

Imports ILOG.Diagrammer.GraphLayout

Dim group As Group = New Group

' Fill the group with nodes here

Dim layout As Hierarchicallayout = New Hierarchicallayout

group.GraphLayout = layout

group . PerformGraphLayout ()

Generic Features and Parameters

The HierarchicalLayout class supports the following generic features defined in the
GraphLayout class (see Layout Parameters and Features in the GraphLayout Base Class):

—Allowed Time

[Dayout of Connected Components
—1ink Clipping

[Llink Connection Box

[—Percentage of Completion Calculation
[Preserve Fixed Links

[Preserve Fixed Nodes

—Hop Immediately

The following sections describe the particular way in which these parameters are used by
this subclass.

Allowed Time

The layout algorithm stopsiif the allowed time setting has elapsed. For a description of this
layout parameter in the GraphLayout class, see Allowed Time. If the layout stops early
because the allowed time has el apsed, the nodes and links are not moved from their positions
before the layout call and the result code in the layout report is

GraphL ayoutReportCode.SoppedAndlnvalid.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

Layout of Connected Components

The layout algorithm can use the generic mechanism to layout connected components. For
more information about this mechanism, see Layout of Connected Components. When using
this mechanism, each component islaid out in its own individual level structure. Nodes of
thefirst level of one component may be placed at a different position than nodes of the first
level of another component.

The generic mechanism to layout connected components is, however, switched off by
default. In this case, the layout algorithm can still handle disconnected graphs. It merges all
components into aglobal level structure.

Link Clipping

Thelayout algorithm can use alink clip provider to clip the connection points of alink. (See
Link Clipping)

Thisisuseful if the nodes have a nonrectangular shape such asatriangle, rhombus, or circle.
If no link clip provider is used, the links are normally connected to the bounding boxes of
the nodes, not to the border of the node shapes. See Using the Link Clipping for details of the
link clipping mechanism.

Link Connection Box

The layout algorithm can use alink connection box provider (see Link Connection Box) in
combination with the link clip provider. If no link clip provider is used, the link connection
box provider has no effect. For details see Using a Link Connection Box Provider.

Percentage of Completion Calculation

The layout algorithm calculates the estimated percentage of completion. This value can be
obtained from the layout report during the run of the layout. (For a detailed description of
this features, see Percentage of Completion Calculation and Graph Layout Event Handlers.)

Preserve Fixed Links

The layout algorithm does not reshape the linksthat are specified asfixed. In fact, fixed links
are completely ignored. For more information on link parameters in the GraphLayout class,
see Preserve Fixed Links and Link Syle.

Preserve Fixed Nodes

The layout algorithm does not move the nodes that are specified as fixed. (For more
information on node parameters in the GraphLayout class, see Preserve Fixed Nodes.
Moreover, the layout algorithm ignores fixed nodes completely and also does not route the
links that are incident to the fixed nodes. This can result in unwanted overlapping nodes and
link crossings. However, this feature is useful for individual, disconnected components that
can be laid out independently.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 53

Stop Immediately

The layout algorithm stops after cleanup if the method Stoplmmediately is called. If the
layout stops early because the allowed time has elapsed, the nodes and links are not moved
from their positions before the layout call and the result code in the layout report is
GraphL ayoutReportCode.SoppedAndlnvalid.

Specific Parameters

The following parameters are specific to the HierarchicalLayout class.

Flow Direction

The flow direction parameter specifies the direction in which the mgjority of the links should
point. If the flow direction is to the top or to the bottom, the node levels are oriented
horizontally and the links mostly vertically. If the flow direction is to the left or to the right,
the node levels are oriented vertically and the links mostly horizontally.

If the flow direction is to the bottom, the nodes of the level with index 0 are placed at the top
border of the drawing. The nodes with level index 0 are usually the root nodes of the
drawing (that is, the nodes without incoming links). If the flow direction is to the top, the
nodeswith level index O are placed at the bottom border of the drawing. If the flow direction
isto the right, the nodes are placed at the | eft border of the drawing.

b
i g

o
mfs A=

Flow to Bottom Flow to TOp Flow to Left

=\
"

To specify the flow direction towards the bottom use the FlowDirection property.

The valid values for the flow direction are defined by the LayoutFlowDirection
enumeration:

[layoutFlowDirection.Right (the default)

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

D ayoutFlowDirection.L eft
L ayoutFlowDirection.Bottom
[l ayoutFlowDirection.Top

Level Justification

If the layout uses horizonta levels, the nodes of the same level are placed approximately at
the same y-coordinate. The nodes can be justified, depending on whether the top border, or
the bottom border, or the center of all nodes of the same level should have the same y-

coordinate.

If the layout uses vertical levels, the nodes of the same level are placed approximately at the
same x-coordinate. In this case, the nodes can be justified to be aligned at the left border, at
theright border, or at the center of the nodes that belong to the same level.

To specify the level justification towards the top use the L evel Justification property.

If the flow direction isto the top or to the bottom, the valid values for the level justification
are defined by the Hierarchical LayoutL evel Justification enumeration:

[HierarchicalL ayoutL evelJustification.Top
[HierarchicalL ayoutL evelJustification.Bottom
[HierarchicalL ayoutL evelJustification.Center (the default)

A R AL Y

Top Justification Center Justification Bottom Justification

If the flow direction isto the left or to the right, the valid values for the level justification
are

[HierarchicalL ayoutL evelJustification.L eft
[HierarchicalL ayoutL evel Justification.Right
[HierarchicalL ayoutL evelJustification.Center (the default)

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 55

56

/
/
/

/NN
/AN
SN

Left Justification Center Justfication Right Justification

Link Style

The layout algorithm positions the nodes and routes the links. To avoid overlapping nodes
and links, it creates bend points for the shapes of links. The link style parameter controlsthe
position and number of bend points. The link style can be set globally, in which case all links
have the same kind of shape, or locally on each link such that different link shapes occur in
the same drawing.

Polyline Links Orthogonal Links Straight-line Links

Global Link Style
To set the link style use the LinkStyle property.

The valid values for the link style are defined by the HierarchicalLayoutLinkStyle
enumeration:

[HierarchicalLayoutLinkStyle.Polyline

All links get a polyline shape. A polyline shape consists of a sequence of line segments
that are connected at bend points. The line segments can be turned into any direction.
Thisisthe default value.

[HierarchicalLayoutLinkSyle.Orthogonal

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

All links get an orthogonal shape. An orthogonal shape consists of orthogonal line
segments that are connected at bend points. An orthogonal shape is a polyline shape
where the segments can be turned only in directions of 0, 90, 180 or 270 degrees.

[HierarchicalLayoutLinkStyle SraightLine

All links get a straight-line shape. All intermediate bend points (if any) are removed.
This often causes overlapping nodes and links.

[HierarchicalLayoutLinkStyle NoReshape

None of the links is reshaped in any manner. Note, however, that unlike fixed links, the
links are not ignored completely. They are still used to calculate the leveling.
[HierarchicalLayoutLinkStyle Mixed
Each link can have adifferent link style. The style of each individual link can be set such
that different link shapes can occur in the same graph.
Individual Link Style

All links have the same style of shape unlessthelink styleis
HierarchicalL ayoutLinkStyle.Mixed. Only when the global link styleis
HierarchicalL ayoutLinkStyle.Mixed can each link have an individual link style.

ﬂP%:}<fﬁ<>hk

e
IR N
J<J_, D

To specify the style of an individual link, use the methods SetLinkStyle (object link,
HierarchicalLayoutLinkStyle style) and GetLinkStyle (object link).

In this case, the link argument must be a graphic link (subclass of Link).

The valid values for the link style of local links are the same as for the global link style:
[HierarchicalLayoutLinkStyle.Polyline
[HierarchicalLayoutLinkSyle.Orthogonal

[HierarchicalLayoutLinkStyle StraightLine

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 57

[HierarchicalLayoutLinkStyle NoReshape

Connector Style

The layout algorithm positions the connection points of links (the anchors) at the nodes
automatically. The connector style parameter specifies how these connection points are
calculated.

~

/-

Certered Clipped Evenly Spaced Evenly Spaced
Connector Pins Connector Pins Connector Pins Connector Pins with
Orthogonal Links

=
._,,..-'7

To specify the connector style, use the ConnectorStyle property.

The valid values for style are defined by the Hierarchical LayoutConnectorStyle
enumeration:

[HierarchicalL ayoutConnector Syle.Centered

The connection points of the links are placed in the center of the border where the links
are attached. This option iswell-suited for polyline links and straight-linelinks. It isless
well-suited for orthogonal links, because orthogonal links can look ambiguousin this
style.

[HierarchicalL ayoutConnector Style.Clipped

Each link pointing to the center of the nodeis clipped at the node border. The connector
pins are placed at the points on the border where the links are clipped. This optionis
particularly well-suited for polyline links without port specifications. It should not be
used if aport side for any link is specified.

[HierarchicalL ayoutConnector Style.EvenlySpaced

The connector pins are evenly distributed along the node border. This style guarantees
that the connection points of the links do not overlap. Thisisthe best style for orthogonal
links and works well for other link styles.

[HierarchicalL ayoutConnector Style Automatic

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

The connector style is selected automatically depending on the link style. If any of the
links has an orthogonal style or if any of the links has a port side specification, the
algorithm chooses evenly spaced connectors. If al the links are straight, it chooses
centered connectors. Otherwise, it chooses clipped connectors.

Connection Point Mode

Normally, the layout algorithm is free to choose the termination points of each link.
However, the user can specify that the current termination point of alink should be used.

The layout algorithm provides two connection point modes. You can set the connection
point mode globally, in which case al connection points have the same mode, or locally on
each link, in which case different connection point modes occur in the same drawing.

Global Connection Point Mode
To set the connection point mode for all links, use the OriginPointMode and
DestinationPointM ode properties.

The valid values for mode are defined by the ConnectionPointM ode enumeration:
[_ConnectionPointM ode.Free (the default)

The layout is free to choose the appropriate position of the connection point on the
origin/destination node.

[ConnectionPointM ode.Fixed

The layout must keep the current position of the connection point on the origin/
destination node.

[TonnectionPointM ode.M ixed
Each link can have a different connection point mode.

Individual Connection Point Mode

All links have the same connection point mode unless the global connection point modeis
ConnectionPointM ode.M ixed. Only when the global connection point mode is set to
ConnectionPointM ode.M ixed can each link have an individual connection point mode.

To set the connection point mode of an individual link, use the methods
SetOriginPointMode, GetOriginPointMode, SetDestinationPointMode and
GetDestinationPointM ode.

The valid values for mode are:
[_ConnectionPointM ode.Free (the default)
[ConnectionPointM ode.Fixed

Using a Link Connection Box Provider

By default, the connector style determines how the connection points of the links are
distributed on the border of the bounding box of the nodes, symmetrically with respect to the

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 59

middle of each side. Sometimes it may be necessary to place the connection pointson a
rectangle smaller or larger than the bounding box. For instance, this can happen when labels
are displayed below or above nodes.

You can modify the position of the connection points of the links by providing a class that
implements the ILinkConnectionBoxProvider interface. An example for the implementation
of alink connection box provider isin Link Connection Box. To set alink connection box
provider use the LinkConnectionBoxProvider property.

The link connection box provider specifies for each node alink connection box and a
tangential shift offsets. The Hierarchical Layout uses the link connection box but does not
use the tangential offsets.

The following illustration shows the effects of customizing the connection box. Ontheleftis
the result without any connection box provider. The picture on the right shows the effect if
the connection box provider returns the dashed rectangle for the blue node.

norm al connection box specified

Using the Link Clipping

By default, the Hierarchical Layout placesthe connection points of links at the border of the
bounding box of the nodes. If the node has a nonrectangular shape such as atriangle,
rhombus, or circle, you may want the connection pointsto be placed exactly on the border of
the shape. This can be achieved by using the link clipping feature. The link clipping corrects
the calculated connection point so that it lies on the border of the shape. An exampleis
shown the following illustration:

An exampleis shown the following illustration:

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

with clipping

To enable the link clipping, use the property LinkClipping. The default valueistrue.

Note: Additionally to the link clip provider, the ShapeAnchor can be used. This special link
anchor updates the clipped connection points automatically during interactive node
movements.

The connector style, the link connection box provider, and the link clip provider work
together in the following way: by respecting the connector style, the proposed connection
points are calcul ated on the rectangle obtained from the link connection box provider (or on
the bounding box of the node, if no link connection box provider was specified). Then, the
proposed connection point is passed to the link clip provider and the returned connection
points are used to connect the link to the node.

An example of the combined effect is shown in the following illustration:

Clipping at the neds bounding box Clipping at a specified connection box

If thelinks are clipped at the red node (left picture), they appear unsymmetrical with respect
to the node shape, because the relevant part of the node (here: the triangle) is not in the
center of the bounding box of the node, but the proposed connection points are calculated

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 61

with respect to the bounding box. This can be corrected by using alink connection box
provider to explicitly specify asmaller connection box for the relevant part of the node (right
picture) such that the proposed connection points are placed symmetrically at the triangle of
the node.

For Experts: Thick Links

If the connector style is Hierar chicalL ayoutConnector Style.EvenlySpaced, the links can
be evenly spaced with respect to the link center or with respect to the link border. The
differenceisonly visiblewhen linksthat connect to the same node have different widths. For
instance, when the link width indicates the cost or capacity of aflow in the application,
many different link widths may occur.

The following illustration shows the effect of using different link widths. In the drawing on
the | eft, the center of the links are evenly distributed at the left node. Each link has the same
space available at the node side. Therefore, the thick links appear closer to each other than
do the thinner links and the offsets between the link borders are different. In the drawing on
theright, the thick links have more space available than do the thinner links. The offset
between the link border (at the segments that connect to the left node) is constant because
the link width is considered in the calculation of the connection points.

LinkWidthUsed = false LinkWidthUsed = true

To enable the connector calculation to respect the link width set the LinkWidthUsed
property to true.

Thelink width setting is disabled by default. The link width has no effect if the connector
styles HierarchicalLayoutConnector Syle.Centered or
HierarchicalL ayoutConnector Syle.Clipped are used.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Port Sides Parameter

The Hierarchical Layout algorithm produces alayout where the mgjority of thelinksflow in
the same direction. If the flow direction is towards the bottom, usually the incoming links
are connected to the top side of the node and the outgoing links are connected to the bottom
side of the node. It is also possible to specify on which side alink connects to the node.

To simplify the explanations of the port sides, we use the compass directions north, south,
east, and west. The specified link flow direction is always towards south and the first level is
towards north. If the flow direction is towards bottom, north is at the top, south at the
bottom, east on the right, and west on the left side of the drawing. If the flow direction is
towards right, north is on the | eft, south on the right, east at the top, and west at the bottom.

The following illustration shows a drawing where the links connect to the larger middle
node at the specified port sides. A compass icon shows the compass directions in these
drawings.

5
@ \ 7 1Ir v @ South
East We

INcmh
Marth

St

—

-
[+
= =
o =
T West East E
5 5 _A
= South 2 F 3

V o | | |

irecti Flowr Directian
@5 Flow Directio ey @\1 -

L i
lEasT Wes{
E Warth South Mt -
o | gc:uth —
West Eas
s i

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 63

To specify at which side the link connectsto its source node, you can use the method
SetFromPortSide(Object link, Hierarchical LayoutSide side). In asimilar way, to specify at
which side the link connects to its destination node, you can use the method
SetToPortSide(Object link, HierarchicalLayoutSide side).

The valid values for side are defined by the Hierarchical LayoutSide enumeration:
[HierarchicalL ayoutSide.Unspecified (the default)
[HierarchicalLayoutSide.North

[HierarchicalL ayoutSide.South

[HierarchicalL ayoutSide.East

[HierarchicalL ayoutSide.West

To retrieve the current choice for alink, use the methods GetFromPortSide(Object link) and
GetToPortSide(Object link).

The port sides east and west work particularly well with the orthogonal link style. Polyline
links with these port sides sometimes have unnecessary bends. Furthermore, if port sidesare
specified, the connector style Hierar chicalL ayoutConnector Syle.Clipped should not be
used.

Port Index Parameter

Instead of asking the layout algorithm to decide at which point alink connects to the node
border, you can specify where the links connect to the node. You cannot specify the exact
location, but you can specify the relative location compared to the connection points of the
other links. Thisis done by using aport index. Theillustration below shows asample layout
with ports at many nodes.

Linksthat have the same port index connect at the same point of the node. The ports are
evenly distributed at the node sides, in asimilar way as with the connector style

Hier ar chicalL ayoutConnector Syle.EvenlySpaced. The ports are ordered according to
their indices. On the north and south side of anode, the port indicesincrease toward the east.
On the east and west sides of a node, the port indices increase toward the south. By using
port indicesin thisway, it is easier to rotate a graph by simply changing the flow direction
without needing to update all the port specifications.

The following illustration shows how the port indices depend on the flow direction.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

dd d , y
- ;||| -
2 b0 2 —3 S
2 —3 3 p— 2—.
& 440344 "_11234 —
v [1] — | [
5 _|

I T B B R B

Flow Direction

Port numbers are normally used in combination with port sides. Therefore, you must specify
how many ports are available on each side of anode. To specify the number of ports, usethe
method SetNumberOf Ports(Object node, Hierarchical LayoutSide side, int numberOfPorts).

For example, to use 4 ports on each side of a specific node, use the calls:

layout .SetNumberOfPorts
layout .SetNumberOfPorts
layout .SetNumberOfPorts
layout .SetNumberOfPorts

node, HierarchicallayoutSide.East, 4);

node, HierarchicallLayoutSide.West, 4);
node, HierarchicallayoutSide.North, 4);
node, HierarchicallLayoutSide.South, 4)

i

The node sideis specified again by Hierarchical L ayoutSide values. To retrieve the number
of ports available at the node, use the method GetNumberOfPorts(Object node,
HierarchicalLayoutSide side).

After the number of ports per side is specified, you can choose which port each link connects
to. To choose the port side and the port index for alink:

To specify the connection at the source node, use the methods SetFromPortSide(Object link,
HierarchicalLayoutSide portSide) and SetFromPortlndex(Object link, int portindex).

To specify the connection at the destination node, use the methods SetToPortSide(Object
link, Hierarchical LayoutSide portSide) and SetToPortIndex(Object link, int portlndex).

To obtain the current port index of alink, use the methods GetFromPortlndex(Object link)
and GetToPortIndex(Object link).

Using the port side and port index specifications are additional constraints for the layout
algorithm. The more constraints are specified, the more difficult it isto calculate a layout.
Therefore, if too many links have a specified port index, this resulting layout may have more
link crossings and be less balanced.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 65

Fork Link Shapes

If several links start at the same position and are orthogonally routed, it is sometimes
preferred that the links share the first two link segments. The shape of alink bundle of this
kind looks like afork. To enable the fork shape mode for outgoing links, set the FromFork
property to true.

To enable the fork shape mode for incoming links set the ToFork property to true.

These statements have an effect only if the links are routed orthogonally. The fork appears
only at those linksthat start or end exactly at the same point. Setting the FromFork property
totrue by itself does not force the links to start at the same point. To force links to start or
end at the same point, use the center connector style (see Connector Syle) or specify the
same port for the links (see Port Index Parameter).

prefemedioxAxislength

o E e om

From Fork Shape

B N N =

v

|

There are two spacing properties for the fork shape:
[MinForkSegmentL ength

Specifies the minimal length of the segment that is directly adjacent to the node.
[PreferredForkAxisLength

Specifiesthe preferred length of the fork axis per branch (the second segment adjacent to
the node). If the fork has five branches, the entire axis has the preferred length five times
the specified parameter. The preferred fork axis length is only a hint for the layout

algorithm. If enough space is available, the algorithm will enlarge the fork axisto avoid

:Iln inforkSegment] cngth

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

unnecessary link bends. If thereis not enough space, the algorithm may as well calculate
afork axisthat is smaller than the preferred one.

Fork link shapes may sometimes|ook ambiguous, in particular when alink starts at the same
point where another link ends, because in this case it isimpossible to recognize whether the
arrowhead belongs to one or the other link.

Link Priority Parameter

The layout algorithm tries to place the nodes such that all links are short, point in the flow
direction, and do not cross each other. However, thisis not always possible. Often, links
cannot have the same length. If the graph has cycles, some links must be reversed against the
flow direction. If the graph is a nonplanar graph, some links have to cross each other.

The link priority parameter controls which links should be selected if long, reversed, or
crossing links are necessary. Links with alow priority are more likely to be selected than
links with a high priority. This does not mean that low-priority links are always longer,
reversed, or crossed, because the graph may have a structure such that no long, reversed or
crossing links are necessary.

To set the link priority, use the methods SetLinkPriority(Object link, float priority) and
GetLinkPriority(Object link).

The default value of the link priority is1.0. Negative link priorities are not allowed.

For an example of using the link priority, consider acycle A->B->C->D->E->A. Itis
impossible to lay out this graph without reversing any link. Therefore, the layout algorithm
selects one link to be reversed. To control which link is selected, you can give onelink a
lower priority than the others. Thislink will be reversed. In the following illustration, the
bottom layout shows the use of the link priority. The link C->D was given the priority 0.5,
while all the other links have the priority 1.0. Therefore C-D isreversed. The top layout in
thisillustration shows what happens when all links have the same priority. Link E->A is
reversed.

.—’-.—Ph All links have the

._'._'._'—'h‘ Link G -=Dhasa
[oweer priority than
// the other links.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 67

The use of link prioritiesisimportant in combination with ports. Links with "from" ports on
the south side and "to" ports on the north side are preferably laid out opposite to the flow
direction. Such afeedback link may cause parts of the drawing to tip over. The next
illustration shows an example. Thered link is afeedback link with port specifications. To
obtain the correct result as shown in the drawing on the right side of thisillustration, you
would set the priority of the feedback link to avery low value.

l— Link D -=B has a lower
P pricrity than the other links.

All links hawe the
same priority.

Spacing Parameters

The spacing of the layout is controlled by three kinds of spacing parameters: the minimal
offset between nodes, the minimal offset between parallel segments of links and the minimal
offset between a node border and a bend point of alink or alink segment that is parallel to
this border. The offset between parallel segments of linksis at the same time the offset
between bend points of links. All three kinds of parameters occur in both directions:
horizontally and vertically.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Horizontal Link
DOffset

Horizontal Horizontal

Node Mode-Link
Offzet Oiffset

Vertical
MNode
Dffzat

Horizontal
Node-Link
Offset

To set the spacing parameters for the horizontal direction, use the properties:
[—Horizontal NodeOffset

[—Horizontal LinkOff set

[—Horizontal NodeLinkOff set

To set the spacing parameters for the vertical direction, use the properties:
[Wertical NodeOffset

[WerticalLinkOffset

[Wertical NodeL inkOffset

For alayout with horizontal levels (the flow direction is to the top or to the bottom), the
horizontal node offset isthe minimal distance between nodes of the same level. The vertical
node offset is the minimal distance between nodes of different levels, that is, the minimal
distance between the levels. For non-orthogonal link styles, the horizontal link offset is
basically the minimal distance between bend points of links. The horizontal node-link offset
isthe minimal distance between the node border and the bend point of alink. For horizontal
levels, the vertical link offset and the vertical node-link offset play arole only if the link
shapes are orthogonal .

Similarly, for alayout with vertical levels (the flow direction isto the |eft or to the right), the
vertical node offset controls node distances within the levels. The horizontal node offset is
the minimal distance between the levels. In this case, the vertical link offset and the vertical

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 69

70

node-link offset always play arole, while the horizontal link offset and the horizontal node-
link offset affect the layout only with orthogonal links.

For orthogonal links, the horizontal link offset isthe minimal distance between paralld,
vertical link segments. The vertical link offset is the minimal distance between parallel,
horizontal link segments. However, the layout algorithm cannot always satisfy these offset
requirements. If anodeis very small but has many incident links, it may beimpossible to
place the links orthogonally with the specified minimal link distance on the node border. In
this case, the algorithm places some link segments closer than the specified link offset.

Link Offset
Violation
Caused by a
Too-Small"
Mode

L I

Harizontal
Mode-Link
Offset

Link Oifset

Vertioal¢ Horizontal

y

Incremental Mode

In some circumstances you may need to use a sequence of layouts on the same graph. For
example:

[You work with graphs that have become out-of-date and you need to extend the graph. If
you perform alayout on the extended graph, you probably want to identify the parts that
were already laid out in the original graph. The layout should not change very much
when compared with the layout of the original graph.

[Thefirst layout results in a drawing with minor deficiencies. You want to solve these
deficiencies manually and perform a second layout to clean up the drawing. The second
layout probably should not greatly change the parts of the graph that were already
acceptable after the first layout.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

The Hierarchical Layout normally works non incrementally. It performs alayout from
scratch and moves all nodes to new positions and reroutes all links. The previous positions
of nodes have no influence on the result of the layout. Hence, even asmall change can cause
alarge effect on the next layout.

But the Hierarchical Layout also supports incremental sequences of layout that "do not
change very much." It can place the nodes close to their previous positions, so that you can
more easily identify the parts that had already been laid out in the original graph.
Incremental mode takes the previous positions of the nodes into account. In this mode the
algorithm preserves the relative order of the levels and the nodes within the levelsin the
subsequent layout. It does not preserve the absol ute positions of the nodes, but it tries to
detect the structure of the previous layout by examining the node coordinates. For instance,
if two nodes are in the same level, then they stay in the same level after an incremental
layout. If anodeisin ahigher level than another node, it staysin the higher level.

The following illustration shows the difference between an incremental and nonincremental
layout.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 71

incremental
lagrout ‘ X
° |

Incremental mode is disabled by default. To enable incremental mode, set the

Incremental M ode property to true.

Phases of the Incremental Mode

The layout algorithm analyzes the drawing in incremental mode in the following way:

1. First, it determines from the node coordinates which nodes must belong to the same
level. For instance, if the flow direction istowards the bottom, it tries to detect horizontal
reference lines at those vertical positions where many nodes are placed along aline. The

specified vertical node offset helpsto detect these lines because the horizontal reference
lines should be approximately the vertical node offset apart.

2. All nodes that touch the same reference line are assigned to the same level.

72 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

3. It determines the order of the nodes within each level by analyzing where the node
touches the reference line. For instance, if the flow direction is towards the bottom, it
determines from the x coordinate of the nodes how they are ordered within the levels.

4. If long links span severa levels, the algorithm can preserve the shape of along link. It
determines the point where alink crosses the level reference line. It creates a bend point
for thelong link inside the level. It tries to preserve the order of the bend pointsin each
level. For instance, if in aflow direction towards the bottom, along link bypasses
another node on the right side, then the incremental layout triesto find a similar shape of
the link that bypasses the node on the right side, asillustrated in the following
illustration.

5. Finally, the layout triesto calcul ate the absolute positions of the nodes that respect the
levels and the ordering within the levels. It tries to balance the node positions. However,
it also tries to place each node close to its previous position. Both criteria often compete
with each other, because to get a perfect balance, nodes must sometimes move far from
their original position. The Hierarchical Layout contains a parametrized heuristic to
satisfy both criteria.

The following illustration shows incremental layout phases.

f| o] v
- I R Y
[
Expert Parameters of the Incremental Mode

Each phase of the incremental mode can be parameterized. These layout parameters have an
effect only if incremental mode is switched on.

Minimizing Long Link Crossings

Asdiscussed in Phases of the Incremental Mode, the incremental layout tries to preserve the
shape of long links that cross several levels. Thisimplies that link crossings between long
links are not resolved. If crossings of long links are not desired, it may be better to reroute
long links from scratch. The following illustration has four hierarchy trees, with the origina

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 73

layout at the upper left. The bottom right shows the result if long links are rerouted, and the
top right shows the result if the shape of long links are preserved.

The following illustration shows crossing reduction during incremental layouts.

normal
incremental

layo::t F | . | ' |
o NN
%gff%*@j J ﬂ

i
=4
incremental layout Fe% “p%g
with crossing reduction Cz}'
_ R
2|
(o2 D
G

To reroute long links from scratch, you must enable the crossing reduction mechanism for

long links, to do so, set the LongLinkCrossingReductionDuringlncremental property to
true.

The crossing reduction of long links determines only the shape of the links. It does not
influence the order of the other nodes within the levels.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

Minimizing All Link Crossings

Optionally, you can apply acrossing reduction to all nodes within each level. In this case,
the incremental layout determines from the node coordinates which nodes belong to the
samelevel, but it may reorder the nodes within the levels completely to avoid link crossings.
It also reorders the long links in this case. Theillustration (bottom left) in Minimizing Long
Link Crossings shows the result. Notice that the order of the nodes"F," "G" and "H" have
changed to resolve the link crossings.

To enable the crossing reduction for al nodes set the CrossingReductionDuringlncremental
property to true.

Setting Absolute Level Positioning

Asdiscussed in Phases of the Incremental Mode, the incremental layout tries to place the
nodes in absolute positions that are close to the previous positions. It tries to avoid nodes
moving alarge distance, because even if the relative order of the nodes within the levels
does not change, large movement distances can be confusing for users. It is much easier to
keep amental map of the diagram if the nodes remain close to the previous positions.

Theillustration below shows node repositioning with and without taking the previous
positions into account. The incremental layout of the original graph at the top left resultsin
the graph at the top right, which is easier to recognize as the same graph than the graph at the
bottom.

The absolute level positioning feature is enabled by default, but it can be disabled. To do so
set the Incremental Absol utel evel Positioning property to false.

With this statement, the layout does not try to place the nodes close to the previous positions.
It places the nodes such that the layout is balanced. However, to create a perfect balance, the
layout may need to move afew nodes so far apart that you can no longer recognize the
diagram after the layout from the node positions that were shown in the previous layout (see
the bottom of the following illustration).

The following illustration shows the absolute positioning during incremental layouts.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 75

76

|]

with 2
respecting

c| o
previous
positions
* A
N A El
o\ win
ﬂ rlesogétm revions
pecting p u]
posgitions
A

& 4—

o e—
El
|
| —

Setting Absolute Level Position Range and Tendency

If absolute level positioning is enabled, it competes with the aesthetic criteriato create a
balanced layout. Due to the fact that nodes must stay close to their previous positions, the
diagram after incremental layout may be somewhat unbalanced and unsymmetrical. The
Hierarchical Layout algorithm uses a heuristic that you can influence by two parameters, the
absolute level position range and tendency.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

The absolute level positioning feature is enabled by default, but it can be disabled. To do so
use the Incremental Absol utel evel PositionRange property.

layout.IncrementalAbsolutelevelPositionRange = 100;

This statement specifies that within the range of 100 coordinate units from the old position
of the node, the balance isthe only criteriafor the placement. This means that a node whose
optimal position is less than 100 coordinate units away from its previous position is placed
exactly at its optimal position. Nodes whose optimal position is farther away are placed at a
position that is a compromise between previous position and optimal position. Thisis
illustrated in the following illustration (on the right side).

To set the absolute level position tendency, use the
Incremental Absol utelevel PositionTendency property.

layout.IncrementalAbsoluteLevelPositionTendency = 70;

This statement specifies that positions of nodes whose optimal positions are far away from
their previous position are 70% influenced by their previous position and 30% influenced by
their optimal positions. Imagine a rubber band that tries to pull a node to its previous
position, and another rubber band that tries to pull the same node to its optimally balanced
position. The level position tendency 70 means that one rubber band pulls with 70% of the
force towards the previous position, and the other rubber band pulls with 30% towards the
optimal position. Increasing the tendency means that the node stays closer to its old position,
decreasing it means that the node moves closer to its optimal position. If you set the
tendency to 0%, this has the same effect as disabling the incremental absolute level
positioning.

The following illustration shows the absolute positioning during incremental layouts.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 77

" Do B
oeition Ell J"'_" i

Il::)veznde,nf;jy' 0 :
- L
FusitiorRange e

. FositionTendenor positicrRangs
position
tendency 50

ﬂ n
T i —

M—
]
sttt -
FozitionRange Fostion Tendenoy

FositionRanae

Marking Nodes for Incremental Layout

Incremental layout normally treats all nodes and links of the drawing in the same way.
However, you may have added nodes and links to the drawing programmatically, and the
new nodes and links do not have meaningful coordinates yet. Perhaps you have placed them
all at theorigin (0, 0), or at random coordinates. In this case, you need an incremental layout
that takes the coordinates of all nodes into account that were previously laid out, while it
ignores the coordinates of all new nodes. The incremental mode of the Hierarchical Layout
allows you to specify which nodes cannot be laid out incrementally by calling the method
MarkForlncremental (nodeOrLink).

If you call this statement, the node or link is marked such that its coordinates are ignored
during the next incremental layout. The positions of marked nodes and links are cal cul ated
from scratch. The mark isvalid only until the next layout and is automatically cleared
afterwards.

Layout Constraints

The Hierarchical Layout algorithm supports relative position constraints on nodes. Such a
congtraint is arule on how a particular node (or a group of nodes) must be placed with
respect to the other nodes. The constraints influence the relative positions. For example, you
can force node A to be on the left side of node B, so the position of A is expressed relative to
the position of B. It istheoretically possible to specify contradicting constraints: if you

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

specify that node A must be on the left side of B and B must be on the left side of A, then
these constraints are not solvable at the same time. If A is on the left side of B, then B must
be on theright side of A. The Hierarchical Layout algorithm tries to detect and resolve
congtraint conflicts automatically. It ignores those constraints that are infeasible. Since the
automatic constraint resolution is time consuming, it is recommended to specify
nonconflicting constraints when possible.

Constraints should be used only if the incremental mode is switched off. In fact, the
incremental mode isimplemented by means of additional constraints that are added
internally. Hence, if you use constraints during the incremental mode, it isvery likely that
the system detects so many constraint conflicts that you get unexpected results.

Constraints should be used carefully. The more constraints are specified, the more difficult it
isto calculate alayout. Therefore, this resulting layout may have morelink crossings and be
less balanced than a graph with no constraints.

Each type of constraint is represented by a subclass of HierarchicalConstraint. The
following constraint types are available:

HierarchicalLevelRangeConstraint Forces a node into a range of certain levels.
HierarchicalSameLevelConstraint Forces two nodes to the same level.
HierarchicalRelativeLevelConstraint Forces a node to a lower/higher level than

another node.

HierarchicalGroupSpreadConstraint Forces a group of nodes on levels that are no
more than a specified spread value apart.

HierarchicalRelativePositionConstraint Forces a node to a lower/higher position than
another node of the same level.

HierarchicalSideBySideConstraint Forces two nodes of the same level to be placed
side by side.
HierarchicalExtremityConstraint Forces a node to the first or last level, or to the

first or last position within a level.

HierarchicalSwimLaneConstraint Forces a group of nodes into the same
rectangular swimlane area.

The uses of these classes are explained in the following topics:
[Adding and Removing Constraints

[Mode Groups

[llevel Range Constraints

[—llevel Index Parameter

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 79

[3ame Level Constraints

[Group Spread Constraint

[Relative Level Constraint

[Position Index Parameter

[Relative Position Constraints
[Jide-By-Sde Constraints

[Extremity Constraints

—Bwvim Lane Constraint

[Congtraint Priorities

[Hor Experts: Constraint Validation

Adding and Removing Constraints

To add a constraint in the Hierarchical Layout, allocate a new constraint object and add it in
the constraint collection of the HierarchicalLayout instance:

Layout .Constaints.Add (constraint)

You can add as many constraints as you want. The constraints will be respected during the
subsequent calls of layout until you remove them.

To remove a specific constraint, use the method L ayout.Constr aints.Remove(constraint).
To remove al existing constraints, use the method L ayout.Constraints.Clear ().

Node Groups

Some constraints affect single nodes. Other constraints affect groups of nodes. The class
HierarchicalNodeGroup is a convenient way to specify agroup of nodes. You can create a
group of nodesin the following way:

HierarchicalNodeGroup group = new HierarchicalNodeGroup () ;
while (...) {
group .Add (node) ;

Dim group As HierarchicalNodeGroup = New HierarchicalNodeGroup
While ..

group .Add (node)

End While

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

A node group isacollection. You can ask for the size and elements of the group, remove
elements from the group, or check whether anode already bel ongs to the group. You can
also convert alist of nodesinto a group:

group.Add(node) Adds a node to the group.
group.Remove(node) Removes a node from the group.
group.Contains(node) Checks whether a node is in the group.
group.Count Returns the number of nodes in the group.
group.GetEnumerator() Returns the nodes of the group as an
Enumerator.
group = new Creates a new group that contains the nodes
HierarchicalNodeGroup(arrayList) stored in the array list.

Level Range Constraints

In Step 1 of the layout algorithm (the leveling phase), the nodes are partitioned into levels.
These levels are indexed starting from 0. For instance, when the flow direction is to the
bottom, the nodes of the level index 0 are placed at the topmost horizontal level line and the
nodeswith larger level index are placed at a position lower than the nodes with smaller level
index. The layout algorithm calculates these level indices automatically.

You can choose how the levels are partitioned by specifying the range of the level index for
some nodes. The nodes are placed in the levels whose index is in the specified range. You
have to specify the minimal and maximal index of the level.

For example:

layout.Constraints.Add (new HierarchicallLevelRangeConstraint (node, 5, 7));

Notice that in this case, node contains the graphic node (subclass of GraphicObject). If you
want to place the node exactly at level 5, call:

layout.Constraints.Add (new HierarchicallevelRangeConstraint (node, 5, 5));

Alternatively, you can call
layout .SetSpecNodeLevelIndex (node, 5)
which has exactly the same meaning.

If you want to force the node to level 5 and above, set -1 as the maximal level:

layout .Constraints.Add (
new HierarchicallLevelRangeConstraint (node, 5, -1));

If you want to force the nodeto level 5 and below (that is, level O, ..., 5), set -1 asthe
minimal level:

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 81

82

IBM

layout.Constraints.Add (
new HierarchicalLevelRangeConstraint (node, -1, 5));

In this particular case, you could also use zero (0) as the minimal level because the level
indices start at 0.

You can apply the constraint to agroup of several nodes at once. This has the same effect as
specifying the constraint for each single node of the group, but it is more memory efficient
and convenient. For instance, if you want to force the group of three nodes to the levels
between 5 and 7:

Create a HierarchicalNodeGroup object (see Node Groups) of the three nodes and add it to
the congtraint in the following way:

layout.Constraints.Add (new HierarchicallLevelRangeConstraint (nodeGroup, 5, 7)) ;

Level Index Parameter

Thelevel index isaspecia case of alevel range constraint (see Level Range Constraints). It
forcesthe nodeto one particular level. For your convenience, you can specify the level index
of anode directly by means of the method SetSpecNodel evellndex(Object node, int index).

You pass a single node as the first argument (not a node group). The default index valueis -
1. If the default value is used, or if anodeis set to anegative level index, the level index is
considered to be unspecified. In this case the layout algorithm automatically calculates an
appropriate level index during the leveling phase of the algorithm.

To obtain the specified level index for a node, use the method
GetSpecNodel evel Index(Object node).

However, this method returns the value that was set by SetSpecNodel evellndex. If the
level index was specified by allocating a corresponding level range constraint that has the
same meaning, GetSpecNodeL evell ndex still returns -1.

Warning: Using arbitrarily large level indicesis not recommended. For instance, if you set
the level index of a node to 100000, the layout algorithm creates 100,000 levels even if the
graph has far fewer nodes. This causes the layout algorithm to become unnecessarily slow.

Same Level Constraints

If you want to force several nodes to the same level with fixed index, you can set the level
index parameter of these nodes accordingly (see Level Index Parameter) or use alevel range
constraint (see Level Range Constraints). However, if you want to force several nodesto the
same level without forcing them to a specific level index, you cannot use these mechanisms.
You must use a same level constraint. To do so, call:

layout .Constraints.Add (new HierarchicalSameLevelConstraint (nodel, node2)) ;

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

This forces nodel and node2 to be placed into the same level, but it does not constrain them
to any particular level.

The following illustration shows the placement of nodes on the same level.

[|‘"| T HIFHR

Group Spread Constraint

An alternative way to force a group of nodes to the same level is by specifying a group
spread constraint with aspread size of zero (0). In general, the group spread constraint forces
agroup of nodesto k+1 subsequent levels. The number k isthe spread size. It does not select
the lowest or highest level index of the group, but only requires that the nodes be placed no
more than k levels apart. Hence, if k=0, all nodes of the group are placed at the same level.

The following example illustrates the general group spread constraint on nodes with ID
"nodeA’, "nodeB" and "nodeC":

To use the group spread constraint on graphic nodes (subclasses of GraphicObject), call:

HierarchicalNodeGroup nodeGroup = new HierarchicalNodeGroup () ;
nodeGroup .Add (noded) ;

nodeGroup .Add (nodeB) ;

nodeGroup .Add (nodeC) ;

layout.Constraints.Add (new HierarchicalGroupSpreadConstraint (nodeGroup, 2));
Dim nodeGroup As HierarchicalNodeGroup = New HierarchicalNodeGroup
nodeGroup .Add (nodeA)

nodeGroup .Add (nodeB)

nodeGroup .Add (nodeC)

layout.Constraints.Add (New HierarchicalGroupSpreadConstraint (nodeGroup, 2))

The constraint is satisfied if the highest level index for nodeA, nodeB, and nodeC isno more
than two levels apart from the smallest level index of the nodes. For instance, the constraint
issatisfied if the level indicesfor nodeA, nodeB, and nodeC are 1, 2, 3; or if they are 7, 8, 9;
or if they are 16, 14, 15. The constraint is also satisfied if al three nodes are placed at level
5, or if two of the nodes are placed at level 15 and the third node at level 13. The constraint
isnot satisfied if the level indices for nodeA, nodeB, and nodeC are 3, 5, 6, because in this
case the highest index (6) is more than two levels away from the lowest index (3).

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 83

84

IBM

Relative Level Constraint

You can force anode into a higher level than another node. If the flow direction istowards
the bottom, level 0 istopmost in the drawing. In thislayout you can specify by relative level
constraints that a node be above or below another node. If the flow direction is towards the
right, level Oisleftmost in the drawing. Here you can specify by relative level constraints
that a node be left or right of another node.

For example:

layout .Constraints.Add (
new HierarchicalRelativeLevelConstraint (nodeA, nodeB, priority));

This forces nodeA to be placed at alevel with asmaller index than nodeB. Since relative
level constraints compete with each other, you must specify the priority of the constraint. In
fact, links also impose constrai nts on the system, and the link priority has the same impact as
the constraint priority. A link with priority 10 forcesits (usually) source node (unless ports
are specified) into alower level than itstarget node. To force the source node into a higher
level than the target node, you need to create a constraint with ahigher priority than the link.
For instance, to ensure that the constraints are satisfied even if there are many links, you can
use link priorities between 0 and 10 and constraint priorities between 1000 and 10,000.

You can also create arelative level constraint between groups of nodes.

layout .Constraints.Add (
new HierarchicalRelativeLevelConstraint (nodeGroupl, nodeGroup2, priority));

Position Index Parameter

In Step 2 of the layout algorithm (the crossing reduction phase), the nodes are ordered within
the levels. All nodes that belong to the same level get a position index starting from 0. For
instance, when the flow direction isto the bottom, the node with the position index 0 is
placed in the leftmost position within its level. The nodes with alarger position index are
placed farther to the right than the nodes with asmaller position index in the samelevel. The
nodes of different levels are independent. The node of the first level with the position index
0 isto theleft of the node of the first level with the position index 1, but not necessarily to
theleft of anode of another level with position index 0. Note that long links crossing alevel
also obtain a position index. The layout algorithm cal cul ates these position indices
automatically.

You can affect how the nodes are positioned within each level by specifying the position
index of some nodes. The nodes are placed at the specified position within their level.

To specify the position index of anode, use the method SetSpecNodePositionl ndex(Object
node, int index).

The default valueis -1. If the default value is used, if anodeis set to a negative position
index, or if anodeis set to a position index that is larger than the number of nodes of its
level, the layout automatically calculates an appropriate position index during the crossing
reduction step.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

To obtain the current position index of anode, use the method
GetSpecNodePositionl ndex(Object node).

Relative Position Constraints

Working with absolute node position indices is inconvenient in certain situations. For
instance, if two nodes belong to the same level, you may want to force one node to a position
with alower index than the other node without fixing the absolute positions of the nodes.
You can achieve this by using arelative position constraint.

layout.Constraints.Add (
new HierarchicalRelativePositionConstraint (nodeA, nodeB, priority));

This forces nodeA to alower position than nodeB. If the flow direction is towards the
bottom, the nodes are in horizontal levels; hence the constraint means that nodeA is placed
at the left side of nodeB. If the flow direction is towards the right, the nodes are in vertical
levels; hence the constraint means that nodeA is placed below nodeB.

The relative position constraint has an effect only if both nodes actually belong to the same
level. To achieve this, you can, for instance, use asamelevel constraint in addition. Thereis
no way to influence the relative position of nodes that belong to different levels.

Similar to the relative level constraint, the relative position constraint can be applied to node
groups. These constraints also have priorities that indicate which constraints dominate if a
constraint conflict occurs. The higher the priority, the more likely the constraint is satisfied
when resolving constraint conflicts.

Side-By-Side Constraints

The relative position constraint forces a specific order upon the nodes of alevel, but it does
not specify which nodes are directly neighbored. For instance, arelative position constraint
may force nodeA to be placed somewhere at alower position than nodeB, but there may be
many nodes between nodeA and nodeB.

To force nodes to be directly neighbored, use the side-by-side constraint.

You can create a side-by-side constraint on a group of type HierarchicalNodeGroup (Node
Groups):

layout.Constraints.Add (

new HierarchicalSideBySideConstraint (nodeGroup, priority));

If the node group consists of just two nodes, it forces the two nodes to be placed side by side.
However, it does not specify which node is at the lower node position and which nodeis at
the higher node position. If the group consists of more than two nodes, it forces the nodes to
be placed at consecutive positions such that al nodes are clustered together. A node that
does not belong to the group cannot be placed between the nodes of the group.

For instance, assume that the group contains the three nodes A, B, C. The constraint is
satisfied if the position indices of A, B, and Care 3, 4,5 0or 9, 7, 8. However, if node D is

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 85

placed between A and B (say, D has position 4, A has position 3, and C has position 5), then
the constraint is not satisfied because D does not belong to the same group.

The side-by-side constraint has an effect only if the nodes actually belong to the same level.
To achieve this, you can, for instance, use a same level constraint in addition.

Side-by-side constraints have priorities that decide how to resolve constraint conflicts. The
higher the priority, the more likely the constraint is satisfied.

You can use side-by-side constraints to create nested clusters. For example:

HierarchicalNodeGroup groupl = new HierarchicalNodeGroup () ;
groupl.Add (noded) ;
groupl.Add (nodeB) ;
groupl.Add (nodeC) ;
groupl.Add (nodeD) ;
layout .Constraints.Add (
new HierarchicalSideBySideConstraint (groupl, 10.0f));
HierarchicalNodeGroup group2 = new HierarchicalNodeGroup () ;
group?2 .Add (nodeB) ;
group2 .Add (nodeC) ;
layout.Constraints.Add (
new HierarchicalSideBySideConstraint (group2, 10.0f));
Dim groupl As HierarchicalNodeGroup = New HierarchicalNodeGroup
groupl .Add (nodeA)
groupl .Add (nodeB)
groupl.Add (nodeC)
groupl .Add (nodeD)
layout .Constraints.Add (New HierarchicalSideBySideConstraint (groupl, 10F))
Dim group2 As HierarchicalNodeGroup = New HierarchicalNodeGroup
group2 .Add (nodeB)
group?2 .Add (nodeC)
layout .Constraints.Add (New HierarchicalSideBySideConstraint (group2, 10F))

The first constraint specifies that nodeA, nodeB, nodeC, and nodeD must be clustered. The
second constraint specifiesthat nodeB and nodeC are clustered inside the larger cluster. This
means that no other node can be placed between the four nodes and, furthermore, neither
nodeA nor nodeD can be placed between nodeB and nodeC. The following illustration
sketches four solutions that satisfy both constraints.

SR e

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Extremity Constraints
To force anodeto the first level, you can specify:

layout .SetSpecNodeLevelIndex (node, 0) ;

However, you cannot specify alevel index for the last level because it is unknown at the
beginning of layout how many levelswill be created. It is unwise to specify:

layout .SetSpecNodeLevelIndex (node, int.MaxValue) ;

because thiswill create many empty levels between the levels actually used and the last one.
Even though these empty levels are removed in postprocessing steps, this influences the
speed and quality of the layout. (In fact, the algorithm will run out of memory if you set the
specified level index unreasonably high.)

By using constraints you can achieve the same effect more efficiently. To force anode to the
first level use:

layout.Constraints.Add (
new HierarchicalExtremityConstraint (node, HierarchicalLayoutSide.North)) ;

To force anode to the last level, use:

layout.Constraints.Add (
new HierarchicalExtremityConstraint (node, HierarchicalLayoutSide.South)) ;

With compass directions as a convenient reference (see Port Sdes Parameter), thefirst level
indicates the north pole and the last level indicates the south pole. You can also specify
extremity constraints for the east and west sides:

layout .Constraints.Add (

new HierarchicalExtremityConstraint (nodel, HierarchicallayoutSide.East)) ;
layout.Constraints.Add (

new HierarchicalExtremityConstraint (node2, HierarchicallLayoutSide.West)) ;

The west extremity constraint forces the node to the lowest position index within its level,
and the east extremity constraint forces the node to the highest position index within its
level. The position indices specify the relative position within the level. For instance, a node
with west extremity constraint will be the leftmost node withinitslevel, if the flow direction
is towards the bottom. However, this does not affect other levels; there may be anodein
another level that is still placed farther to the | eft.

The following illustration shows some extremity constraints.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 87

narth extremity

[level O

| | level 1
C
o
-
ot
*
= level 2
west g east
extremity = extremity
of level 2 v of level 2

_________________ F__ P--Jﬂi3

south extremity

Swim Lane Constraint
Swim lanes are rectangular areas orthogonal to the levels.

If thelink flow direction is towards the bottom or top, the levels are horizontal rows and the
swim lanes are vertical columns.

If the flow direction istowards the left or right, the levels are vertical columns and the swim
lanes are horizontal rows.

Swim lanes can be used if the nodes are partitioned into groups, to indicate which nodes
belong to a certain group. The nodes of the same swim lane are placed so that it is possible to
draw a surrounding rectangle around them. Swim lanes allow you to organize the graph in a
table-like manner. For instance, you may have aworkflow diagram where nodes represent
actions; then the swim lanes could represent the departments that perform these actions.
Each node can belong to only one swim lane.

To associate a group of hodes with the same swim lane, call:

layout.Constraints.Add (
new HierarchicalSwimLaneConstraint (new HierarchicalNodeGroup (nodelist))) ;

All nodes of the node list will be placed in the same swim lane rectangle. If a graph has
many swim lane rectangles, the relative order of these swim lanesis determined
automatically. The size of the swim lane rectangle depends on the nodes that belong to the
swim lane. However, you can specify the relative order, relative size, and the margins of the
swim lane as well by using the constructor:

public HierarchicalSwimLaneConstraint (HierarchicalNodeGroup group,

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

float relativeSize,
int positionIndex,
float minMargin)

|L I The red backgronnd rectangle
_‘I indicates where the swim lone

; 1 is.

The relative size indicates how large this swim lane is compared to the other swim lanes.
Assume that the flow direction is towards the bottom. In this case, the relative size indicates
the width of the swim lane. All swim lanes with the same relative size will have the same
width. A swim lane with arelative size that istwice the val ue of another swim lane will have
twice the width of the other swim lane. The actual number of this parameter does not matter,
only how large the value is compared to the other swim lanes. If you do not want to restrict
the size of the swim lane, set the valueto 0. In this case, the width of the swim lane will be
independent of the other swim lanes.

The minimal margin is the margin of the swim lane in absolute coordinates. If the flow
direction is towards the bottom, then it is the minimal horizontal distance between the
leftmost or rightmost node of the swim lane and the swim lane border.

The position index indicates the order of the swim lanes. Just as nodes have position indices,
the swim lanes are placed sequentially at relative positions numbered from 0 to n. In atop-
down layout, the swim lane with position 0 is the leftmost swim lane, and the swim lanes
with higher position indices are placed farther to the right. If the swim lanes have the
position index -1, the layout algorithm determines the appropriate position automatically.

A swim lane constraint is aways evaluated, even if the incremental mode is enabled. The
constraint has a higher priority than the relative position constraint and the side-by-side
constraint. You can specify side-by-side constraints for a group of nodes that belong to the

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 89

90

IBM

same swim lane, but side-by-side constraints of nodes of different swim lanes are ignored.
You can specify relative position constraints between nodes of the same swim lane. You can
also specify relative position constraints between one entire swim lane group and another
swim lane group, which effectively orders the swim lanes. But relative position constraints
areignored if they would require breaking the swim lanes apart. The swim lane constraint
dominates the specified position indices and the extremity constraints, that is, if aswim lane

constraint is used, you cannot specify position indices or east/west extremity constraints for
any node.

Tip: The automatic conflict resolution can handle conflicting constraints. However, to

speed up the layout, it is recommended that you specify constraintsin such a way that there
are no conflicts.

Constraint Priorities

A set of constraints may cause conflicts. This means that not all of the constraints can be
satisfied at the same time. For instance, it isimpossible to force two nodes into the same
level by aHierarchical Samel evel Constraint while at the same time forcing one of the nodes
to a higher level than the other node by a HierarchicalRelativel evel Constraint. In this case,
one of the two constraints must be ignored during layout.

In general, constraint conflicts are resolved by ignoring the constraints with the lowest

priority while the constraints with the highest priority get satisfied. The following rules
explain the constraint prioritiesin detail.

[_The constraints that influence into which level anode is placed are applied before the
constraints that influence the position of the node within alevel.

[_The Hierarchica ExtremityConstraint is translated into a sequence of constraints with
high priority. For instance, the extremity constraint with the south side is translated into
several same level constraints and several relative level constraints.

[_The Hierarchical SamelL evel Constraint and the Hierarchical GroupSpreadConstraint

have the highest priority. They are never in conflict with each other. They dominate all
other constraints, even the specified level index.

[_The HierarchicalLevel RangeConstraint (and the direct level index specification) has the
second highest priority. If two nodes are forced to the same level but have digoint
specified level ranges, then the level range isignored. In the following example:
layout.Constraints.Add (new HierarchicalSameLevelConstraint (nodel, node2)) ;

layout .SetSpecNodeLevelIndex (nodel, 5);
layout .SetSpecNodeLevelIndex (node2, 10);

both nodel and node2 will be placed at level 5. The conflicting specification
layout.SetSpecNodel evelIndex(node2, 10) isignored.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

[TheHierarchicalRelativel evelConstraint is dominated by the same level constraint,
by the level range constraint, and by the direct specification of level indices. If several
relative level constraints conflict each other, the one with the highest specified priority
dominates. However, note that al links are implicitly considered relative level
constraints as well. If links with high priority force anode to acertain level, then a
relative level constraint with lower priority will be ignored.

[_The Hierarchical SwimLaneConstraint is always evaluated, even if the incremental mode
is enabled. The constraint has a higher priority than the relative position constraint and
the side-by-side constraint. You can specify side-by-side constraints for agroup of nodes
that belong to the same swim lane, but side-by-side constraints of nodes of different
swim lanes are ignored. You can specify relative position constraints between nodes of
the same swim lane. You can al so specify relative position constraints between one entire
swim lane group and another swim lane group, which effectively orders the swim lanes.
But relative position constraints are ignored if they would require breaking the swim
lanes apart. The swim lane constraint dominates the specified position indices and the
extremity constraints, that is, if a swim lane constraint is used, you cannot specify
position indices or east/west extremity constraints for any node.

[_The mHierarchical SideBySideConstraint is evaluated only if the corresponding nodes
belong to the same level. Typically you will use a same level constraint to force the
nodes to the same level, and then a side-by-side constraint to force the nodes to a certain
ordering. The side-by-side constraints dominate the relative position constraints. If
several side-by-side constraints are conflicting, the one with the highest specified
priority dominates the other constraints.

[_The HierarchicalRelativePositionConstraint is also evaluated only if the corresponding
nodes belong to the same level. It is dominated by the side-by-side constraint; however,
conflicts with side-by-side constraints are rare. If several relative position constraints are
conflicting, the one with the highest specified priority dominates the other constraints.

For Experts: Constraint Validation

Constraints may become invalid. For instance, if you add a constraint that node A must be to
the | eft side of node B, but you remove A from the graph, then this constraint becomes
invalid. It smply does not make sense any more, even though it does not conflict with any
other constraint. The layout instance automatically removesinvalid constraints from time to
time because they are a waste of memory. The validation check is done during layout.
Forcing avalidation check is normally not needed but if you want to performit, call:

layout.ValidateConstraints() ;

Thisremovesall invalid constraints from the Hierarchical Layout and cleans up the memory.
The constraint validation does not check which constraints have conflicts. The main effect
of the validation is that the constraint system uses less memory afterwards.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 91

Note: A constraint isvalid if it is meaningful. Two valid constraints are conflicting if the
system cannot satisfy them both at the same time. Invalid constraints cannot be conflicting
because they are meaningless. Hence, constraint validation and constraint resolution are
different phases. Constraint validation performs a quick local test. It removesinvalid
constraints from the layout instance completely. It does not affect conflicting constraints.
Constraint resolution checks whether a set of valid constraints are in conflict with each
other. Thus, constraint resolution is a complex process on a network of multiple related
constraints. Constraint resolution decides which constraints can be solved and which
cannot. But the constraint resolution does not remove conflicting constraints from the
layout instance, it just delivers a solution that may ignore some constraints.

For Experts: More Indices

The Hierarchical Layout allows you to specify the level index and the position index of a
node.

You specify the level and position index of a graphic node in the following way:

layout .SetSpecNodeLevelIndex (node, 5);
layout .SetSpecNodePositionIndex (node, 33);

How these indices are used depends on the graph topology and the additional constraints.
For example, the specified level index can bein conflict with some

HierarchicalL evelRangeConstraint or Hierarchical Samel evel Constraint. In this case, the
constraint priorities determine how the conflict is resolved (see Constraint Priorities). If the
incremental mode is switched on, the specified node level and position index are ignored,
since the incremental mode tries to preserve old node positions. It is aso possible to obtain
the indices of nodes that were calculated during layout.

Calculated Level Index

The layout algorithm allows you to access the level index that was cal culated for anode by a
previous layout. To do this, use the method GetCalcNodel evel Index(Object node).

If the node was never laid out, this method returns-1. Otherwise, it returnsthe previous level
index of the node.

The method can be used to specify the level index for the next layout in the following way:

int index = layout.GetCalcNodeLevelIndex (node) ;
layout .SetSpecNodeLevelIndex (node, index) ;

When thisis done, it ensures that the node is placed at the same level asin the previous
layout.

If the graph is detached from the layout algorithm, the calculated level index of anodeis set
back to -1.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Note: You should be aware of the difference between the methods GetCal cNodel evel | ndex
and GetSpecNodeLevelIndex. The first one returns the level index calculated by the
previous layout. The second one returns the specified level index, even if there was no
previous layout. For instance, consider two nodes A and B. Node A has no specified level
index and node B has a specified level index 5. Before the first layout, the method
GetCalcNodelL evell ndex returns -1 for both nodes because the levels have not been
calculated yet. However, GetSpecNodel evell ndex returns -1 for A and 5 for B. After the
first layout, node A may be placed at level 4. Now, GetCalcNodel evell ndex returns 4 for
node A and 5 for node B and GetSpecNodel evell ndex still returns -1 for A and 5 for B.

Calculated Position Index

The layout algorithm allows you to access the position index within alevel that was
calculated for anode by a previous layout. To do this, use the method
GetCal cNodePositionlndex(Object node).

If the node was never laid out, this method returns - 1. Otherwise, it returns the previous
position index of the node withinitslevel.

To ensure that the node is placed at the same level at the same relative position asin the
previous layout, use the following line of code:

layout .SetSpecNodeLevelIndex (node, layout .GetCalcNodeLevelIndex (node)) ;

This example code works only if the generic connected component layout is disabled and the
port sides East or West are not used in the layout.

If the graph is detached from the layout algorithm, the calculated position index of anodeis
set back to -1.

Note: You should be aware of the difference between the methods

GetCalcNodePositionl ndex and GetSpecNodePositionlndex. Thefirst one returns the
position index cal culated by the previous layout and -1 if there was no previous layout. The
second one returns the specified position index even if there was no previous layout. This
behavior is similar to the behavior of the specified and calculated level index (see
Calculated Level Index)

Tree Layout

IBM

In this section, use the following topics to learn about the Tree Layout a gorithm (class
TreeLayout).

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 93

In This Section
Samples
Provides some sample drawings produced by the algorithm.
What Types of Graphs?
Explains the type of graph on which you can use the algorithm.
Application Domains
Explains the application domains for the algorithm.
Features
Lists the features of the algorithm.
Limitations
Explains the limitations of the algorithm.
Brief Description of the Algorithm
Provides a short description of the tree layout a gorithm.
Code Sample
Provides a sample of code that shows how to use the algorithm.
Generic Features and Parameters
Explains what generic features of the graph layout library are supported and how.
Soecific Parameters (All Tree Layout Modes)
Presents the parameters of the tree layout algorithm.
Free Layout Mode
Explains the free layout mode.
Level Layout Mode
Explainsthe level layout mode.
Radial Layout Mode
Explainsthe radia layout mode.
Tip-Over Layout Modes
Explains the tip-over layout modes.
For Experts. Additional Tips and Tricks
Provide additional information for layout experts

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Samples
Here are some sampl e drawings produced with the Tree Layout.

The following illustration shows a tree layout in Free Layout mode with the center
alignment and flow direction to the right.

KKJ
_
_|
_ |
_

The following illustration shows atree layout with the flow direction to the bottom,
orthogonal link style, and tip-over alignment at some leaf nodes.

_I_I

Lk

- L

oo B Lo BN

LEEE

Il

The following illustration shows atree layout in Radial Layout Mode with aspect ratio 1.5.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 95

96

IBM

What Types of Graphs?

[Primarily designed for pure trees, the tree layout can also be used for non-trees, that is,
for cyclic graphs. In this case, the algorithm computes and uses a spanning tree of the
graph, ignoring all links that do not belong to the spanning tree.

[Directed and undirected trees. If the links are directed, the algorithm automatically
chooses the canonical root node. If the links are undirected, you can choose a root node.

[Connected and disconnected graphs. If the graph is not connected, the layout algorithm
treats each connected component separately. Each component has exactly one root node.
In this case, aforest of treesislaid out.

Application Domains

Application domains of the Tree Layout include:

[_Business processing (organizational charts)

[—Joftware management/software (re-)engineering (UML diagrams, call graphs)
[Database and knowledge engineering (decision trees)

[_The World Wide Web (Web site maps)

Features
[Takes into account the size of the nodes so that no overlapping occurs.

[Optionally, reshapes the links to give them an orthogonal form (alternating horizontal
and vertical line segments).

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

[Various layout modes: free, levels, radial, or automatic tip-over.

- Inthefreelayout mode, arranges the children of each node, starting recursively from
theroot, so that the links flow uniformly in the same direction.

- Inthelevel layout mode, partitions the nodesinto levels, and arranges the levels
horizontally or vertically.

. Inradial layout mode, partitions the nodesinto levels, and arranges the levelsin
circles or lipses around the root.

. Inthetip-over modes, arrangesthe nodesin asimilar way to the free layout mode, but
triesto tip over children automatically to better fit the layout to the given aspect ratio.

[Provides severa alignment and offset options.
—Allows you to specify nodes that must be directly neighbored.

[—Provides incremental and nonincremental modes. |ncremental mode takes the previous
position of nodes into account and positions the nodes without changing the relative
order of the nodes in the tree so that the layout is stable on incremental changes of the
graph.

[Very efficient, scalable algorithm. Produces a nice layout quickly even if the number of
nodesis huge.

Limitations

[_IF the orthogonal setting is not specified asthe link style (see Link Syle), some links may
in rare cases overlap nodes depending on the size of the nodes, the alignment parameters,
and the offset parameters.

[_The layout algorithm first determines a spanning tree of the graph. If the graph is not a
pure tree, some links will not be included as part of the spanning tree. These links are
ignored. For this reason, they may cross other links or overlap nodes in the final layout.

[_For stability inincremental mode, the algorithm tries to preserve the relative order of the
children of each node. It uses a heuristic to calculate the relative order from the previous
positions of the nodes. The heuristic may fail if children overlap their old positions or are
not aligned horizontally or vertically.

[Despite preserving the relative order of the children, in rare cases the layout is not
perfectly stable in incremental radial layouts. Subsequent layouts may rotate the nodes
around the root, although the relative circular order of the nodes within their circular
levelsis still preserved.

[Thetip-over layout modes will perform several trial layouts with different tip-over
alignment options according to various heuristics. From thesetrial layouts, the algorithm
picks the layout that best fits the given aspect ratio. This may not be the optimal layout

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 97

98

IBM

for the aspect ratio, but it is the best layout among the trials. Calculating the absolute
best-fitting layout is not computationally feasible (it is generally an NP-complete
problem).

Brief Description of the Algorithm

The core agorithm for the free, level, and radial layout modes worksin just two stepsand is
very fast.

The variations of the tip-over layout mode perform the second step several times and pick
the layout result that best fits the given aspect ratio (the ratio between width and height of
the drawing area). For this reason, the tip-over layout modes are slower.

Step 1: Calculating the Spanning Tree

If the graph is disconnected, the layout algorithm chooses a root node for each connected
component. Starting from the root node, it traverses the graph to choose the links of the
spanning tree. If the graph is apure tree, al links are chosen. If the graph has cycles, some
links will not be included as part of the spanning tree. These links are called non-tree links,
while the links of the spanning tree are called tree links. The non-tree links areignored in
step 2 of the agorithm.

In the spanning tree, each node except the root has a parent node. All nodes that have the
same parent are called children with respect to the parent and siblings with respect to
themselves. Nodes without children are called leaves. Each child at a node starts a subtree
(also caled abranch of thetree).

The following illustration shows a spanning tree.

root

non-tree link

children of paren

{siblings) ’,—'/
______ S L
non-tree link -branch - —
ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Step 2: Calculating Node Positions and Link Shapes

The layout algorithm arranges the nodes according to the layout mode and the offset and
alignment options. In the free mode and level mode, the nodes are arranged horizontally or
vertically so that all tree links flow roughly in the same direction. In theradia layout modes,
the nodes are arranged in circles or ellipses around the root so that all treelinks flow radially
away from the root. Finally, the link shapes are calculated according to the link style and
alignment options.

Code Sample

Below isacode sample that uses the TreeLayout class. This code sample shows how to
perform a Tree Layout on a Group object directly.

using System;

using ILOG.Diagrammer;

using ILOG.Diagrammer.Graphic;
using ILOG.Diagrammer.GraphLayout;

Group group = new Group () ;

// Fill the group with nodes and links here
// Suppose we have added rootNode as an object in the group

TreelLayout layout = new TreeLayout () ;

group.GraphLayout = layout;

group . PerformGraphLayout () ;

Imports System

Imports ILOG.Diagrammer

Imports ILOG.Diagrammer.Graphic
Imports ILOG.Diagrammer.GraphLayout

Dim group As Group = New Group

' Fill the group with nodes and links here
' Suppose we have added rootNode as an object in the group

Dim layout As Treelayout = New TreelLayout

group.GraphLayout = layout
group . PerformGraphLayout ()

Generic Features and Parameters

The TreeL ayout class supports the following generic features defined in the GraphL ayout
class. (See aso Layout Parameters and Featuresin the GraphLayout Base Class):

—Allowed Time

[Dayout of Connected Components

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 99

—1ink Clipping

[Llink Connection Box

[—Percentage of Completion Calculation
[Preserve Fixed Links

[Preserve Fixed Nodes

—Hop Immediately

The following subsections describe the particular way in which these features are used by
the subclass TreelL ayout.

Allowed Time

The layout algorithm stopsiif the allowed time setting has elapsed. (For a description of this
layout parameter in the GraphL ayout class, see Allowed Time.)

If the layout stops early because the allowed time has elapsed, the nodes and links are not
moved from their positions before the layout call and the result code in the layout report is
GraphL ayoutReportCode.SoppedAndlnvalid.

Layout of Connected Components

The layout algorithm can utilize the generic mechanism to layout connected components.
(For more information about this mechanism, see Layout of Connected Components). It has,
however, a specialized internal mechanism to layout connected components and, therefore,
the generic mechanism is switched off by default.

The generic connected component layout mechanism has the disadvantage that it moves
connected components completely. Fixed nodes within a component do not preserve their
old position, and the resulting layout may be unstable on incremental changes, depending on
which layout instance is used for the component layout.

If the generic connected component layout mechanism is disabled, the algorithm usesiits
own specialized internal mechanism instead of the generic mechanism to lay out each
component as a separate tree. Thisis usually faster and more stable on incremental changes
than the generic mechanism. Furthermore, it enables the user to set the position of the
layout.

Link Clipping
The layout algorithm can use alink clip interface to clip the connection points of alink. (See
Link Clipping)

Thisisuseful if the nodes have a nonrectangular shape such asatriangle, rhombus, or circle.
If nolink clip interface is used, the links are normally connected to the bounding boxes of
the nodes, not to the border of the node shapes. See Using the Link Clipping for details of the
link clipping mechanism.

100 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Link Connection Box

The layout algorithm can use alink connection box provider (see Link Connection Box) in
combination with the link clip interface. If no link clip interface is used, the link connection
box provider has no effect. For details see Using a Link Connection Box I nterface.

Percentage of Completion Calculation

The layout algorithm calculates the estimated percentage of completion. This value can be
obtained from the layout report during the run of layout. (For a detailed description of this
feature, see Percentage of Completion Calculation and Graph Layout Event Handlers.)

Preserve Fixed Links

The layout algorithm does not reshape the links that are specified as fixed. For more
information on link parameters in the GraphL ayout class, see Preserve Fixed Links and Link
Syle.

Preserve Fixed Nodes

The layout algorithm does not move the nodes that are specified as fixed. (For more
information on node parameters in the GraphL ayout class, see Preserve Fixed Nodes.)
Moreover, the layout algorithm ignores fixed nodes completely and also does not route the
links that are incident to the fixed nodes. This can result in unwanted overlapping nodes and
link crossings. However, this feature is useful for individual, disconnected components that
can be laid out independently.

Stop Immediately

The layout algorithm stops after cleanup if the method Stoplmmediately is called. (For a
description of this method in the GraphL ayout class, see Sop Immediately.) If the layout
stops early because the allowed time has el apsed, the nodes and links are not moved from
their positions before the layout call, and the result code in the layout report is

GraphL ayoutReport.StoppedAndinvalid.

Specific Parameters (All Tree Layout Modes)

The following parameters are specific to the TreeLayout class. They apply to al layout
modes.

Root Node
Thefinal layout isinfluenced mainly by the choice of the root node.

Theroot node is placed in a prominent position. For instance, in a top-down drawing with
free layout mode, it is placed at the top of the tree. With theradial layout mode, it is placed
at the center of thetree.

The spanning tree is cal culated starting from the root node. If the graph is disconnected, the
layout algorithm needs one root node for each connected component.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 101

The layout algorithm automatically selects a root node when needed. It uses a heuristic that
calculates preferences for all nodes to become aroot. It chooses the node with the highest
preference. The heuristic gives nodes without incoming links the highest preference and | eaf
nodes without outgoing links the lowest preference. Hence, in a directed tree, the canonical
root is always chosen automatically.

It is possible to influence the choice of the root node. To set a node explicitly asthe root use
the method:

void SetRoot (object node)

In this case, the node argument must be a graphic node (subclass of GraphicObject).

This gives the node the maximal preference to become the root during layout. If only one
node is specified this way, the algorithm selects this node. If several nodes of the same
connected component are specified this way, the layout algorithm chooses one of them as
the root.

For Experts: Additional Options for Root Nodes

The layout algorithm manages a list of the root nodes that have been specified by the
SetRoot method. To obtain the nodes in this list, use the method:

ICollection GetSpecRoots() ;

After layout, you can also retrieve the list of root nodes that were actually used by the
algorithm. Thislist is not necessarily the same asthe list of specified roots. For instance, it
contains the chosen root nodes if none were specified or if too many were specified. To
obtain the root nodes that were used by the algorithm, use the method:

ICollection GetCalcRoots ()

This example shows how to iterate over the calculated root nodes and print the root node
preferences:

foreach (Object node in layout.GetCalcRoots()) {
Console.WriteLine ("Preference:" + layout.GetRootPreference (node)) ;

}

For Each node As Object In layout.GetCalcRoots
Console.WriteLine ("Preference:" + layout.GetRootPreference (node))
Next

To directly manipulate the root hode preference value of an individual node use the method:

SetRootPreference (Object node, int preference) ;

In this case, the layout uses the specified value instead of the heuristically calculated
preference for the node. The normal preference value should be between o and 10000.
Specifying aroot node explicitly corresponds to setting the preference valueto 10000. If
you want to prohibit a node from becoming the root, specify a preference value of zero (o).

102 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

A negative preference value indicates that the layout algorithm should recalcul ate the root
node preference using the heuristic. If aroot was specified by the SetRoot method but this
node should no longer be the root in subsequent layouts, use the following call to clear the
root node setting:

layout .SetRootPreference (node, -1);
This call also removes the node from the list of specified roots.

Position Parameters
To set the position of the top left corner of the layout to (10, 10) use the method:
layout .SetPosition(new Point2D(10, 10), false);

If the graph consists of only asingletree, it is often more convenient to set the position of
the root node instead. To do this, use the same method and pass true instead of false:

layout .SetPosition (point, true);
If no position is specified, the layout keeps the root node at its previous position.

Using Compass Directions for Positional Layout Parameters

To simplify the explanations of the layout parameters, we use the compass directions north,
south, east, and west. The center of the root node of atree is considered the north pole.

In the nonradial layout modes, the link flow direction always corresponds to south. If the
root node is placed at the top of the drawing, north is at the top, south at the bottom, east to
the right, and west to the left. If the root node is placed at the left border of the drawing,
north isto the left, south to the right, east at the top, and west at the bottom.

Intheradial layout modes, the root nodeis placed in the center of the drawing. The meaning
of north and south depends on the position relative to the root: the north side of the node is
the side closer to the root and the south side is the side further away from the root. The east
direction is counterclockwise around the root and the west direction is clockwise around the
root. Thisissimilar to a cartographic map of area globe that shows the area of the north
pole asif you were looking down at the top of the globe.

Compass directions are used to provide uniform naming conventions for certain layout
options. They occur in the alignment options, the level alignment option, and the east-west
neighboring feature, which are explained later.

Layout Modes

The tree layout algorithm has several layout modes. To specify the layout mode use the
LayoutMode property.

The available layout modes are defined by the TreelayoutM ode enumeration.
[Treel ayoutM ode.Free (the default)
[Treel ayoutM ode.L evel

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 103

104

IBM

[Treel ayoutM ode.Radial

[Treel ayoutM ode.Alter natingRadial
[Treel ayoutM ode. TipOver

[Treel ayoutM ode. TipRootsOver

TreeL ayoutM ode. TipL eavesOver

[Treel ayoutM ode. TipRootsAndL eavesOver

The following sections describe the characteristics and the layout parameters of each layout
mode.

Free Layout Mode

The free layout mode arranges the children of each node starting recursively from the root so
that the links flow roughly in the same direction. For instance, if the link flow direction is
top-down, the root node is placed at the top of the drawing. Siblings (nodes that have the
same parent) are justified at their top borders, but nodes of different tree branches (nodes
with different parents) are not justified. To set the free layout mode use

layout .LayoutMode = TreeLayoutMode.Free;

Flow Direction

The flow direction parameter specifies the direction of the tree links. The compassicons
show the compass directions in these layouts.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Laft Right

If the flow direction is to the bottom, the root node is placed topmost. Each parent nodeis
placed above its children, which are normally arranged horizontally. (This tip-over
alignment is an exception.)

If the flow direction is to the right, the root node is placed leftmost. Each parent nodeis
placed to the left of its children, which are normally arranged vertically.

To specify the flow direction use the FlowDirection property. The valid values for the flow
direction are defined by the LayoutFlowDirection enumeration:

[layoutFlowDirection.Right (the default)
[l1ayoutFlowDirection.L eft
[l1ayoutFlowDirection.Bottom

[N ayoutFlowDirection.Top

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 105

106

Alignment Parameter

The alignment option controls how a parent is placed relative to its children. The alignment
can be set globally, in which case al nodes are aligned in the same way, or locally on each
node, with the result that different alignments occur in the same drawing.

N

e N e
_IJi L t —H
ETT 1 £

Center Border Alignment East Alignment

Global Alignment Parameters

To set the global alignment use the Alignment property. The valid values for the alignment
are;

[Treel ayoutAlignment.Center (the default)

The parent is centered over its children, taking the center of the children into account.
[Treel ayoutAlignment.Border Center

The parent is centered over its children, taking the border of the children into account. If
the size of thefirst and the last child varies, the border center alignment places the parent
closer to the larger child than to the default center alignment.

[Treel ayoutAlignment.East

The parent is aligned with the border of its easternmost child. For instance, if the flow
direction isto the bottom, east is the direction to the right. If the flow direction isto the

top, east isthe direction to the left. See Using Compass Directions for Positional Layout
Parametersfor details.

[Treel ayoutAlignment.West

The parent is aligned with the border of its westernmost child. For instance, if the flow
direction is to the bottom, west is the direction to the left. If the flow direction isto the
right, west is the direction to the bottom. See Using Compass Directions for Positional
Layout Parameters for details.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

[TreeLayoutAlignment. TipOver

The children are arranged sequentially instead of in parallel, and the parent nodeis
placed with an offset to the children. For details see Tip-over Alignment.

[TreeLayoutAlignment.TipOver BothSides

The children are arranged sequentially instead of in parallel. Whereas the alignment
TipOver arranges al children at the same side of the parent, this alignment arranges the
children at both sides of the parent. For details see Tip-over Alignment.

[Treel ayoutAlignment.Mixed

Each parent node can have a different alignment. The alignment of each individual node
can be set with the result that different alignments can occur in the same graph.

Alignment of Individual Nodes

All nodes have the same alignment unless the global alignment is set to
TreeLayoutAlignment.Mixed. Only when the global alignment is set to

TreeL ayoutAlignment.Mixed on the TreeL ayout, can each node have an individual
aignment style.

The following illustration shows different alignments mixed in the same drawing.

_IJ$ i
i =

NN
TTITTTT

To specify the alignment of an individual node use the methods:

void SetAlignment (Object node, TreeLayoutAlignment alignment)
TreeLayoutAlignment GetAlignment (Object node)

The valid values for alignment are:

[Treel ayoutAlignment.Center (the default)
[Treel ayoutAlignment.Border Center
[Treel ayoutAlignment.East

[Treel ayoutAlignment.West

[TreelL ayoutAlignment.TipOver

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 107

TreeLayoutAlignment.TipOver BothSides

Tip-over Alignment

Normally, the children of a node are placed in a parallel arrangement with siblings directly
neighbored to each other. Tip-over alignment means a sequential arrangement of the
children instead.

The following illustration shows normal and tip-over alignment.

[

Normal Alignment

Tip-Over Alignment

Tip-over aignment is useful when the tree has many leaves. With normal alignment, atree
with many leaves would result in the layout being very wide. If the global alignment styleis
set to tip-over, the drawing is very tall rather than wide. To balance the width and height of
the drawing, you can set the global alignment to mixed, for example:

layout .Alignment = TreeLayoutAlignment.Mixed;

Also, you can set the individual alignment to tip-over for some parents with a high number
of children asfollows:

layout.SetAlignment (parent, TreeLayoutAlignment.TipOver) ;

Tip-over aignment can be specified explicitly for some or al of the nodes. Furthermore, the
Tree Layout offers layout modes that automatically determine when to tip over, yielding a
drawing that fitsinto a given aspect ratio. These layout modes are described in Tip-Over
Layout Modes.

Besides the normal tip-over alignment, there is also a variant that distributes the subtrees on
both sides of the center line that starts at the parent. You can specify this variant at a parent
node with a high number of children by the following code:

108 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

layout.SetAlignment (parent, TreelLayoutAlignment.TipOverBothSides) ;

The difference between normal tip-over alignment and tip-over at both sidesis shown in the
illustration below. Tip-over alignment works very well with the orthogonal link style (see
Link Syle).

.]

v
e [p g3 f%
e
e
A

B e 0B R RER RO
N _éjﬁ*b Bl
»g B H N o Nn
L _I

Maormal Tip-Cwer Tip-Cwver Both Sides
at Hed Nodes at Hed Modes

Link Style

The links can be straight or have a specific shape with intermediate points. You can specify
that the links be reshaped into an orthogonal form. You can set the link style globally, in
which case al links have the same kind of shape, or locally on each link, in which case
different link shapes occur in the same drawing.

Global Link Style
To specify the global link style use the LinkStyle property:

TreeLayoutLinkStyle LinkStyle
The valid values for style are defined by the TreelL ayoutLinkStyle enumeration:
[TreeLayoutLinkStyle. NoReshape

None of the linksis reshaped in any manner.
[TreelLayoutLinkSyle.StraightLine

All the intermediate points of the links (if any) are removed. Thisis the default value.
[Treel ayoutLinkStyle.Orthogonal

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 109

The links are reshaped in an orthogonal form (alternating horizontal and vertical
segments). See Tip-over Alignment as an example.

[TreeLayoutLinkStyleMixed

Each link can have a different link style. The style of each individual link can be set to
have different link shapes occurring on the same graph.

Individual Link Style

All links have the same style of shape unless the LinkStyle property to
TreeLayoutLinkStyleMixed. Only when the link styleis set to
TreeLayoutLinkStyleMixed can each link have an individua link style.

The following illustration shows different link stylesin the same drawing:

Jafs

To specify the style of an individual link use the methods:

void SetLinkStyle (Object link, TreeLayoutLinkStyle style)
TreeLayoutLinkStyle GetLinkStyle (Object 1link)

Connector Style

Thelayout algorithm automatically positions the connection points of links at the nodes. The
connector style parameter specifies how these connection points are calcul ated for the
outgoing links at the parent node.

The following illustration shows various connector styles:

110 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Cantarad

Ewvenly Spacad Clipped
Centarad Evenly Spaced

To specify the connector style use the ConnectorStyle property.
The valid values for style are defined by the Treel ayoutConnectorStyle enumeration.
[Treel ayoutConnector Syle.Centered

The connection points of the links are placed in the center of the border where the links
are attached.

[Treel ayoutConnector Syle.Clipped

Each link pointing to the center of the nodeis clipped at the node border. The connection
points are placed at the points on the border wherethe links are clipped. This style affects
straight links. It behaves like centered connector pins for orthogonal links.

[TreelL ayoutConnector Syle.EvenlySpaced

The connection points are evenly distributed along the node border. This style works for
straight and orthogonal links.

[Treel ayoutConnector Syle Automatic

The connector style is selected automatically depending on the link style and the layout

mode. In the nonradial modes, the algorithm always chooses centered. In the radial
layout modes, it chooses clipped.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 111

Using a Link Connection Box Interface

By default, the connector style determines how the connection points of the links are
distributed on the border of the bounding box of the nodes, symmetrically with respect to the
middle of each side. Sometimes it may be necessary to place the connection pointson a
rectangle smaller or larger than the bounding box, eventually in a nonsymmetric way. For
instance, this can happen when labels are displayed below or above nodes.

You can modify the position of the connection points of the links by providing a class that
implements the ILinkConnectionBoxProvider. An example for the implementation of alink
connection box provider isin Link Connection Box. To set alink connection box provider
use the LinkConnectionBoxProvider property.

The link connection box provider provides each node with alink connection box and a
tangential shift offset that defines how much the connection points are "shifted" tangentially
depending on which side the links connect.

The following illustration shows the effects of customizing the connection box when the
connector styleis evenly spaced.

|

l l]"J"[;) 11'
. B _I

norm al dazhed connection box connection box specified,
specified, no tangential tangential offset at bottom
offzet and left side

On the left is the result without any connection box provider. The middle picture shows the
effect if the connection box provider returns the dashed rectangle for the blue node but the
tangential offset at all sides of the node is 0. Note that the outgoing links are spaced
according to the dashed rectangle, which appears too wide for the blue node in this situation.
The picture on the right shows the effect of the connection box provider if, in addition, a
positive tangential offset was specified for the bottom side and a negative offset was
specified for the left side of the blue node.

Using the Link Clipping

By default, the Tree Layout places the connection points of links at the border of the
bounding box of the nodes. If the node has a nonrectangular shape such as atriangle,
rhombus, or circle, you may want the connection pointsto be placed exactly on the border of
the shape. This can be achieved by using the link clipping feature. The link clipping corrects

112 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

the calculated connection point so that it lies on the border of the shape. An exampleis
shown in the following illustration:

X B

without clipping with clipping

To enable the link clipping, use the property LinkClipping. The default valueistrue.

Note: Additionally to the link clip provider, the ShapeAnchor can be used. This special link
anchor updates the clipped connection points automatically during interactive node
movements.

The connector style, the link connection box provider, and the link clipping work together in
the following way: by respecting the connector style, the proposed connection points are
calculated on the rectangle obtained from the link connection box provider (or on the
bounding box of the node, if no link connection box provider was specified). Then, the
proposed connection point is corrected by thelink clipping and the clipped points are used to
connect the link to the node.

An example of the combined effect is shown in the following illustration.

|

e

¥

Clippingat the node bounding box Clipping at azpecified connection box

If thelinks are clipped at the red node (left picture), they appear unsymmetrical with respect
to the node shape, because the relevant part of the node (here: the upper rhombus) is not in

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 113

114

IBM

the center of the bounding box of the node, but the proposed connection points are
calculated with respect to the bounding box. This can be corrected by using alink
connection box provider to explicitly specify a smaller connection box for the relevant part
of the node (right picture) such that the proposed connection points are placed symmetrically
at the upper rhombus of the node.

Spacing Parameters

The spacing of the layout is controlled mainly by three spacing parameters: the distance
between a parent and its children, the minimal distance between siblings, and the minimal
distance between nodes of different branches. For instance, if the flow direction isto the top
or bottom, the offset between parent and children is vertical, while the sibling offset and the
branch offset are horizontal.

For tip-over alignment, an additional spacing parameter is provided: the minimal distance
between branches starting at a node with tip-over alignment. This offset is always
orthogonal to the normal branch offset. If the flow direction is to the top or bottom, the tip-
over branch offset is vertical.

The following illustration shows the various spacing parameters:

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Parent Child
Offset#

Parert Child

Sibling Offzet Sikbling Offset Branch Offset Sibling Offset

Tipy Ower
Branch Offzet

Tip Crver
Branch Offzet

To specify the spacing parameters use the following properties:

IBM

[float ParentChildOffset
[float SiblingOffset

[float BranchOffset

[float TipOverBranchOffset

For Experts: Additional Spacing Parameters

The spacing parameters normally specify the minimal offsets between the node borders.
Hence, the layout algorithm places the nodes such that they do not overlap. You can also
specify that the layout should ignore the node sizes. To do so, set the RespectNodeSizes

property to false.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 115

116

IBM

In this case, the spacing parameters are interpreted as the minimum distances between the
node centers, and the node sides are not taken into account during the layout. However, if the
specified offset parameters are now smaller than the node size, the nodes and links will
overlap. This often happens with orthogonal links in particular. It makes senseto use this
option only if al nodes have approximately the same size, all links are straight, and the
spacing parameters are larger than the largest node.

If thelink styleis orthogonal, the shape of the links from the parent to its children looks like
afork. The position of the bend pointsin this shape can be influenced by the orthogonal fork
percentage, a value between 0 and 100. Thisis a percentage of the parent child offset. If the
orthogonal fork percentage is 0, the link shape forks directly at the parent node. If the
percentageis 100, the link shape forks at the child node. A good choice is between 25 and
75. This percentage can be specified with the OrthForkPercentage property.

If the link style is not orthogonal, links may overlap neighboring nodes. This happens only
inavery few cases, for instance, when alink starts at avery small node that is neighbored by
avery large node. This deficiency can be fixed by increasing the branch offset. However,
thisinfluences the layout globally, affecting nodes without that deficiency. To avoid aglobal
change, you can change the overlap percentage instead, which is a value between 0 and 100.
Thisvalueisused by aninternal heuristic of the layout algorithm that considers anodeto be
smaller by this percentage. The default percentage is 30. This usually results in better usage
of the space. However, if very small nodes are neighbored to very large nodes, it is
recommended to decrease the overlap percentage or to set it to 0 to switch this heuristic off
to avoid links overlapping nodes. The overlap percentage can be set through the
OverlapPercentage property.

Note: It is recommended that you always set the orthogonal fork percentage to a value
larger than the value of the overlap percentage.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Overlap Percentage = B0 9% Overlap Percentage = 0%

IBM

Level Layout Mode

Thelevel layout mode partitions the node into levels and arranges the levels horizontally or
vertically. Theroot is placed at level 0, its children at level 1, the children of those children
at level 2, and so on. In contrast to the free layout mode, in level layout mode the nodes of
the same level arejustified with each other even if they are not siblings (that is, they do not
have the same parent). To set the level layout mode set the LayoutM ode property to
TreeLayoutM ode.L evel.

The following illustration shows the same graph in free layout mode and in level layout
mode;

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 117

118

IBM

A N\
S AN
JJ_I JJ_I —'//\K

o 2

Leval Layout Mode

General Parameters

Most layout parameters that work for the free layout mode work as well for the level layout
mode. You can set the flow direction, the spacing offsets, the global or individual link style,
and the global or individual alignment. See Free Layout Mode for details.

The differences from the free layout mode are:
[_The tip-over alignment does not work in level layout mode.

The parent-child offset parameter controls the spacing between the levels. In level layout
mode, it isthe minimal distance between parent and its children, while in free layout
mode, it is the exact distance between parent and its children.

[_The overlap percentage has no effect in level layout mode.

Level Alignment

In level layout mode with flow direction to the top or bottom, the nodes are organized in
horizontal levels such that the nodes of the same level are placed approximately at the same
y-coordinate. The nodes can be justified, depending on whether the top border, the bottom
border, or the center of all nodes of the same level should have the same y-coordinate.

In flow direction to the left or right, the nodes are organized in vertical levels approximately
at the same x-coordinate. The nodes of the same level can be justified at the |eft border, at
theright border, or at the center.

To distinguish the level alignment independently from the flow direction, we use the
directions north and south (see Using Compass Directions for Positional Layout

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Parameters). The north border of anode isthe border that is closer to the level where its
parent is placed, and the south border of anodeis the border that is closer to the level where
its children are placed. If the flow direction isto the bottom, the level alignment north means
that the nodes are justified at the top border, and south means that the nodes are justified at
the bottom border. If the flow direction is to the top, it is converse: north means the bottom
border and south means the top border. If the flow direction is to the right, then north means
the left border and south means the right border.

N

= J adw d H
OEE= 0 Hefs 0 O sufed
Morth-Justified South-Justified Center-Justified
To specify the level alignment use the Level Alignment property.
The valid values for alignment are defined by the TreelL ayoutL evel Alignment enumeration:
[TreelL ayoutL evel Alignment.Center (the default)

[Treel ayoutL evel Alignment.North
[Treel ayoutL evel Alignment.South

Radial Layout Mode

Theradial layout mode partitions the node into levels and arranges the levelsin circles
around the root node. The following illustration shows an example of theradial layout mode.
The compass icons show the compass directions in this drawing.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 119

120

IBM

LR T
@ TR

To set the radial layout mode set the LayoutM ode property to Treel ayoutM ode.Radial.

General Parameters

Most layout parameters that work for the free and level layout mode work as well for the
radial layout mode. You can set the spacing offsets, the level alignment, the global or
individual link style, and the global or individual alignment. See Free Layout Mode and
Level Layout Mode for details.

The radial layout mode differs from the other layout modes as follows:
[_Thetip-over alignment does not work in radial layout mode.
[The orthogonal link style does not work in radial layout mode.
[_The clipped connector style is always used.

[_The parent-child offset parameter controls the minimal distance between the circular
levels. However, it is sometimes necessary to increase the offset between circular levels
to obtain enough space on the circle to place all nodes of alevel.

[Thelevel alignment north indicates alignment at the inner border of the circular level
(that is, towards the root), and the level alignment south indicates alignment at the outer
border of the circular level (that is, away from the root).

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

[Thelevel aignments north and south sometimes result in overlapping nodes.

[_The overlap percentage has no effect in radial layout mode.

Alternating Radial Mode

If levels of the graph contain many nodes, it is sometimes necessary to increase the radius of
the circular level to provide enough space on the circumference of the circle for al the
nodes. This may result in a considerable distance from the previous level. To avoid this,
there is an aternating radial mode. The alternating radial mode places the nodes of alevel
alternating between two circlesinstead of one circle, resulting better usage of the space of
the layout.

The alternating radial mode uses two circles only when necessary. For many small and light
trees, there will be no difference from the normal radial mode. Only for large graphs with a
large number of children will the alternating radial mode have an effect.

To set the aternating radial layout mode set the L ayoutM ode property to
Treel ayoutM ode.Alter natingRadial.

The following illustration shows the radial (Ieft) and alternating radial (right) mode on the
same graph

“\T/ AJ\% .
J\T// \{J /mi ‘\““

r J{+J

Aspect Ratio

If the drawing areais not a square, arranging the levels as circles is not always the best
choice. You can specify the aspect ratio of the drawing areato better fit the layout to the
drawing area. In this case, the algorithm uses ellipses instead of circles.

When specifying the aspect ratio, there are several possibilities. If the drawing areaisaview
(asubclass of IDiagramView), you can use the method:

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 121

void SetAspectRatio (IDiagramView view) ;

If the drawing areais given only as arectangle, use the following:

void SetAspectRatio (Rectangle2D rect) ;

If neither aview nor arectangle is specified, you can calcul ate the aspect ratio from the
width and height of the drawing area as aspectRatio = width/height and use the AspectRatio

property:
Spacing Parameters

The spacing parameters of the radial layout mode are controlled by the same properties as
used for the free and level layout modes. ParentChildOffset, SiblingOffset and
BranchOffset.

Note: The sibling and branch offsets are minimal distances tangential to the circles or
ellipses, while the parent-child offset isa minimal distanceradial to the circles or ellipses.

The following illustration shows the spacing parametersin radia layout mode.

Sikling Offzet

Branch Offy
Sibling&ffset

Sikling Offset
e Y

‘ﬁinch Offast

Parent Child
Offzet

For Experts: Adding an Invisible Root to the Layout

If the graph contains several trees that are disconnected from each other, the layout places
them individually next to each other. Each connected component hasits own radial structure
with circular layers. However, sometimesiit is appropriate to fit all connected components
into asingle circular layer structure. Conceptually, thisis done by adding an invisible root at
the center and connecting all disconnected treesto thisroot. This works only if the generic
mechanism to lay out connected componentsis switched off. To add an invisible root to the
layout use the following properties:

layout .LayoutOfConnectedComponentsEnabled=false;
layout.InvisibleRootUsed=true;

122 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

The following illustration shows the result of using an invisible root:

Hﬁz o

]
___.-'"'___“———_h

o —'(j \ / _|/
ff FaliaiaN ﬁ

Generic Layout of Connected Componerts
Layout Usmg an Irrw5|ble Root

For Experts: Even Spacing for the First Circle

Theradial mode is designed to optimize the space such that the circles have a small radius
and the overall spacefor the entire layout is small. To achievethis, the layout algorithm may
create larger gaps on the inner circles for better space usage of the outer circles. This may
produce unevenly spaced circles, most notably for the first circle where al nodes have the
same parent node.

To avoid this effect, you can force the nodes to be evenly spaced on the entirefirst circle.
Depending on the structure of the graph, this may cause the overall layout to waste more
space on the other circles but may produce a more pleasing graph. To enable even spacing
set the FirstCircleEvenlySpacing property to true.

The following illustration shows the same graph with evenly and non-evenly spaced first
circle.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 123

124

IBM

< ;//é

!

J

IUnevenly zpaced firat {red) cinzle Evenly zpaced firat {red) cincle

For Experts: Forcing All Levels To Alternating

When the layout mode Treel ayoutM ode.Alter natingRadial is used, the layout checks
whether the alternating node arrangement of alevel saves space. If it doesn't save space, it
uses the normal radial arrangement. Hence, for many sparse graphs, radial and alternating
radial mode yield the same result because the alternating arrangement does not save space
for any level. It is possible to disable the space check, that is, to perform an alternating
arrangement for all levels even if thisresultsin waste of space. To do so, set the
AllLevelsAlternating property to true.

For Experts: Setting a Maximal Children Angle

If anode hasalot of children, they may extend over amajor portion of the circle and,
therefore, are placed nearly 360 degrees around the node. This can result in links
overlapping some nodes. The deficiency can be fixed by increasing the offset between
parent and children. However, this affects the layout globally which means that nodes
without the deficiency are also affected. To avoid aglobal change such asthis, you can limit
the maximal angle between the two rays from the parent (if it is not the root) to its two
outermost children. Thisincreases the offset between parent and children only where
necessary.

In the following illustration, you can see in the layout on the left that many of the links
overlap other nodes. In the layout on the right, you can see how this problem was solved by
setting amaximal children angle between two rays from a parent to the two outermost
children.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

Maximal Children Angle = 30 degrees

To set an anglein degrees use the MaxChildrenAngle property.

Recommended values are between 30 and 180. Setting the value to 0 meansthe angle is
unrestricted. The calculation of the angleis not very precise above 180 degrees or if the
aspect ratiois not 1.0.

Tip-Over Layout Modes

Asinradia layout mode, drawing in free layout mode can be adjusted to the aspect ratio of
the drawing area. Free layout mode can also use tip-over alignment to balance the drawing
between the height and depth.

While tip-over alignment can be specified explicitly for individual nodes, the Tree Layout
algorithm also has layout modes that automatically use tip-over alignment when needed.
These are the tip-over layout modes.

Thetip-over layout modes work asfollows: Several tria layouts are performed in free layout
mode. For each trial, certain tip-over alignments are set for individual nodes, while the
specified alignment of all other nodes is preserved. The algorithm picks the trial layout that
best fits the specified aspect ratio of the drawing area.

The aspect ratio can be specified by one of the methods or property (see Aspect Ratio in the
Radial Layout Mode):

void SetAspectRatio (IDiagramView view)
void SetAspectRatio (Rectangle2D rect)
float AspectRatio

The tip-over modes are slightly more time-consuming than the other layout modes. For very
large trees, it is recommended that you set the allowed layout time to a high value (for
instance, 60 seconds) when using the tip-over modes. To set this mode:

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 125

layout .AllowedTime=60000;

By using this cal, you avoid running short of time for sufficient iterations of the layout
algorithm. Because it would be too time-consuming to check all possibilities of tip-over
alignment use, there are heuristics that check only certain trials according to the following
different strategies, illustrated in Tip-Over Strategies:

[Tip Leaves Over

[Tip Roots Over

[Tip Roots and Leaves Over
[Tip Over Fast

The following illustration shows the result of various tip-over strategies:

4 4 i
TR i] Lo -
la [4 Lo s
H A E.l —.I =
= = =] T = T
- g | La
IEJ IE.I E.l = =
r 1 I R T —
4 1 IEJ 4 IE.. AEEN] qEeEN
4 | rl M
F.l F.l 4 TH U TTu Taw EJEJEJ
4 1 4 |m — T S
4 4 EI' - 'TENTT L |
_-F'I ::F) 'S Y P PR T‘*‘M
! E' TEITEE N F‘l F‘l F‘l
- S
L ddddg4444 E
, A A
Tip Leaves Ower ‘TERRRL CE T T
—t o d Fd
L HEE
4 -4 -4
— —t—
gOudaw ‘—.——'v'—.—.—!l“l‘
Tip Roots Over »
EJ
¥
—

Tip Roots and Leaves Owver

Tip Leaves Over
To use thistip-over strategy, set the layout mode as follows:

layout .LayoutMode = TreeLayoutMode.TipLeavesOver;

The heuristic first tries the layout without any additional tip-over options. Thenit triesto tip
over the leaves, then the leaves and their parents, then additionally the parents of these

126 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

parents, and so on. As aresult, the nodes closest to the root use normal alignment and the
nodes closest to the leaves use tip-over alignment.

Tip Roots Over

To use thistip-over strategy, set the layout mode as follows:

layout.LayoutMode = TreeLayoutMode.TipRootsOver;

The heuristic first tries the layout without any additional tip-over options. Thenit triesto tip
over the root node, then the root and its children, then additionally the children of these
children, and so on. As aresult, the nodes closer to the leaves use normal alignment and the
nodes closer to the root use tip-over alignment.

Tip Roots and Leaves Over

To use thistip-over strategy, set the layout mode as follows:

layout .LayoutMode = TreeLayoutMode.TipRootsAndLeavesOver;

The heuristic first tries the layout without any additional tip-over options. Then it triesto tip
over the root node and the leaves simultaneously; then the root and its children, and the
leaves and its parent; then additionally the children of these children and the parents of these

parents, and so on. Asresult, the nodes in the middle of the tree use normal alignment and
the nodes closest to the root or leaves use the tip-over alignment.

Thisisthe slowest strategy becauseit includes all trials of the strategy "tip leaves over” as
well as all tries of the strategy "tip roots over."

Tip Over Fast

The fast tip-over provides a compromise among all other strategies. The heuristic triesa
small selection of the other strategies, not al possibilities. Therefore, it isthe fastest strategy
for large graphs.

To use this strategy, set the layout mode as follows:

layout .LayoutMode = TreeLayoutMode.TipOver;

Itispossible that al four strategies yield the same result because the strategies are not
digoint; that is, certain trials are performed in al four strategies. In addition, the tip-over
modes do not necessarily produce the optimal layout that gives the best possible fit to the
aspect ratio. The reason is that some unusual configurations of tip-over alignment are never
tried because doing so would cause the running time to be too high.

For Experts: Additional Tips and Tricks

In this section, you are going to find the following topics:
[Fpecifying East-West Neighbors

[Retrieving Link Categories

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 127

—Fequences of Layouts with Incremental Changes
[Interactive Editing
[Fpecifying the Order of Children

Specifying East-West Neighbors

You can specify that two unrelated nodes must be directly neighbored in adirection
perpendicular to the flow direction. In the level and radial layout modes, both nodes are
placed in the same level next to each other. In the free layout and tip-over modes, both nodes
are placed aligned at the north border. Such nodes are called east-west neighbors because
one node is placed as the direct neighbor on the east side of the other node. The other node
becomes the direct neighbor on the west side of the first node. (See also Using Compass
Directions for Positional Layout Parameters).

Technically, both nodes are treated as parent and child, even if there may be no link in
between. Therefore, one of the two nodes can have areal parent, but the other node should
not because its virtual parent is its east-west neighbor.

The east-west neighbor feature can be used, for example, for annotating nodes in a typed
syntax tree occurring in compiler construction.

The following illustration shows an example of such atree.

Stat dark gray.: the syntaxtree
light gray: the type annotations

fssign _
west neighbor ~ ©ast neighbor

Arrayfccess — float + — float

H

Mar(a) — Array El—int Arrayfccess — float 0.5|—float
Size:30| float Uar(h)l—ﬂrray ﬁl—int

Size:30) float

128 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

To specify that two nodes are east-west neighbors, use the method:

void SetEastWestNeighboring(object eastNode, object westNode) ;

You can aso use the following method, which isidentical except for the reversed parameter
order:

void SetWestEastNeighboring(Object westNode, Object eastNode) ;

If the flow direction is to the bottom, the latter method may be easier to remember because,

in this case, west isto the left of east in the layout, which is similar to the text flow of the
parameters.

To obtain the node that is the east or west neighbor of anode, use the calls:

object GetEastNeighbor (object node) ;
object GetWestNeighbor (object node) ;

Note that each node can have maximally one east neighbor and one west neighbor because
they are directly neighbored. If more than one direct neighbor is specified, it is partialy
ignored. Cyclic specifications can cause conflict as well. For instance, if node B is the east
neighbor of node A and node C is the east neighbor of B, then node A cannot be the east
neighbor of C. (Strictly spesaking, such cycles could be technically possible in some
situationsin the radial layout mode, but nonethel ess they are not allowed in any layout
mode.)

If B isthe east neighbor of A, then A isautomatically the west neighbor of B. On the other
hand, the east neighbor of A can itself have another east neighbor. This allows creating
chains of east-west neighbors, which isacommon way to visualize lists of trees.

Two examples are shown in the following illustration.

neighb. neight. peight. neighb o] rl

BRas BT
=IILEL A

o oE e e =]

Retrieving Link Categories

The Tree Layout algorithm works on a spanning tree, as mentioned in aBrief Description of
the Algorithm. If the graph to be laid out is not a pure tree, the algorithm ignores some links.
To perform special treatment of such links, you can obtain alist of non-tree links.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 129

Because there are parents and children in the spanning tree, we distinguish the following
link categories:

A forward tree link isalink from a parent to its child.

A backward treelink isalink from achild to its parent. If thelink is drawn as a directed
arrow, the arrow will point in the opposite direction to the flow direction.

A non-treelink isalink between two unrelated nodes; neither one is a child of the other.
The following illustration shows link categories.

non-tree
link

=l B B

link

The layout algorithm uses these link categories internally but does not store them
permanently for the sake of conserving time and memory efficiency. If you want to perform
special treatment on some link categories (for example, to call the Link Layout on the non-
tree links), you must specify before the layout that you want to access the link categories
after the layout. To do this, set the CategorizingLinks property to true.

After the layout is performed, the link categories can be obtained by the methods:

ICollection GetCalcForwardTreeLinks() ;
ICollection GetCalcBackwardTreeLinks () ;
ICollection GetCalcNonTreeLinks () ;

Thelink category data gets filled each time the layout is called, unless you set the property
CategorizingLinks back to false.

Sequences of Layouts with Incremental Changes

You can work with trees that have become out-of-date, for example, those that need to be
extended with more children. If you perform alayout after an extension, you probably want
to identify the parts that had already been laid out in the original graph. The Tree Layout
algorithm supports these incremental changes in incremental mode because it takes the
previous positions of the nodes into account. It preserves the relative order of the childrenin
the subsequent layout.

130 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

I'n nonincremental mode, the Tree Layout algorithm cal cul ates the order of the children from
the node order given by the attached graph model. In this case, the layout is independent
from the positions of the nodes before layout. It does not preserve the relative order of the
children in subsequent layouts.

Theincremental mode is enabled by default. To disable the incremental mode set the
Incremental M ode property to false.

Interactive Editing

The fact that the relative order of the layout is preserved is particularly useful during
interactive editing. It allows you to correct the layout easily. For instance, if the first layout
places anode A left to its sibling node B but you need to reverse the order, you can ssimply
move node A to the right of node B and start a new layout to clean up the drawing. In the
second layout, A remains to theright of B, and the subtree of A will follow node A.

1 B 1 Y B e S I e

After First Layout Move A to the Right of B After Second Layout

Specifying the Order of Children

Some applications require a specific relative order of the children in the tree. This means
that, for instance, when the flow direction isto the bottom, which child must be placed to the
left of another child. Even if the graph has never been laid out, you can use the coordinates
to specify a certain order of the children at a node. You can use the following:

[First, make sure that the incremental mode is enabled.

[In free and level layout modes with flow direction to the bottom or top, determine the
maximal width W of all nodes. Simply move the child that should be in the leftmost
position to the coordinate (0, 0), and the child that should get theith relative position (in
order from left to right) to the coordinate (W+1)*i, 0).

[_If the flow direction is to the left or to the right, determine the maximal height H of all
nodes. Move the child that should be in the topmost position to the coordinate (0, 0) and
the child that should get the ith relative position (in the order from top to bottom) to
coordinate (0, (H+1)*i).

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 131

[In the radial layout modes, determine the maximal diagonal D = W2 + H of al nodes. If
the position of the parent is (X, y) before the layout, move the child that should be the
first in the circular order to the coordinate (X, y+D) and the child that should get the ith
relative position in the circular order to coordinate (x+D*i, y+D).

_If you want to specify arelative order for al nodesin radial layout mode, you must do
thisfor the parents before you do it for the children. In this case, moving the children can
be performed easily during a depth-first traversal from the root to the leaves.

Thelayout that is performed after moving the children arranges the children with the relative
order.

Force-Directed Layout
Use the following topicsto learn about the Force-Directed Layout algorithm (class
ForceDirectedLayout).
In This Section
Samples
Provides some sample drawings produced by the algorithm.
What Types of Graphs?
Explains the type of graph on which you can use the algorithm.
Application Domains
Explains the application domains for the algorithm.
Features
Lists the features of the algorithm.
Limitations
Explains the limitations of the algorithm.
Brief Description of the Algorithm
Provides a short description of the Force-Directed Layout algorithm.
Code Sample
Provides a sample of code that shows how to use the algorithm.
Generic Features and Parameters
Explains what generic features of the graph layout library are supported and how.
Soecific Parameters
Presents the parameters of the Force-Directed Layout algorithm.

132 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

For Experts. Additional Features

Provides additional information for layout experts.
Using the Link Clipping

Explains how to use the link clipping provider.

Samples
Here are sample drawings produced with the Force-Directed Layout.

The following illustration shows small cyclic graph drawing produced with the Force-
Directed Layout.

The following illustration shows medium graph drawing (combination of cycles and trees)
produced with the Force-Directed Layout.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 133

134

The following illustration shows large graph drawing (combination of cycles and trees)
produced with the Force-Directed Layout.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

What Types of Graphs?

Any type of graph:

[Connected and disconnected graphs
[Planar and nonplanar graphs

Application Domains

Application domains of the Force-Directed Layout include:
[Telecom and networking (WAN diagrams)

[—Joftware management/software (re-)engineering (call graphs)
[CASE tools (dependency diagrams)

[Database and knowledge engineering (semantic networks, database query graphs,
qualitative reasoning and other artificial intelligence diagrams, and so on)

[World Wide Web (Web hyperlink neighborhood)

Features

[Often provides a drawing without any or with only afew link crossings and with
approximately equal length links for small- and medium-size graphs having a small
number of cycles. The maximum number of nodes for which you can use the algorithm
depends on the connectivity of the graph and is difficult to predict.

[®n demand, the algorithm can take into account the size (width and height) of the nodes.
Otherwise, they are more efficiently considered as points.

[Ix is possible to specify the length for each link individually.

[Because it takes into account the initial configuration (coordinates) of the nodes, the
agorithm allows an incremental layout methodol ogy. Sometimes the layout algorithm is
not able to find the optimal layout because it has been trapped by alocal minimum of the
cost function. In this case, the user can perform the layout once, then move by hand one
or more nodes to help the layout algorithm skip from the local minimum, and then
perform the layout again. However, the success of this procedure depends on the choice
of the nodes to be moved. In many cases, the choice is quite intuitive.

Limitations

[_Theagorithm is not appropriate for all graphs. In particular, it will produce bad results
on some highly connected cyclic graphs for which a planar drawing with equal-length
links may simply not exist.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 135

[_The computation time required to obtain an appropriate drawing growsrel atively quickly
with the size of the graph (that is, the number of nodes and links) and the layout process
may become time-consuming for large graphs.

[Overlapping nodes cannot always be avoided. Nevertheless, the layout algorithm often
produces a drawing with no overlapping nodes.

Brief Description of the Algorithm

This layout algorithm iteratively searches for a configuration of the graph where the length
of thelinksis close to a user-defined or a default value.

Code Sample

Below is a code sample using the ForceDirectedL ayout class. This code sample shows how
to perform a Force-Directed Layout on a Group:

using System;

using ILOG.Diagrammer;

using ILOG.Diagrammer.Graphic;
using ILOG.Diagrammer.GraphLayout;

Group group = new Group () ;

// Fill the group with nodes and links here
ForceDirectedLayout layout = new ForceDirectedLayout () ;
group.GraphLayout = layout;

group . PerformGraphLayout () ;

Imports System

Imports ILOG.Diagrammer

Imports ILOG.Diagrammer.Graphic

Imports ILOG.Diagrammer.GraphLayout

Dim group As Group = New Group

' Fill the group with nodes and links here

Dim layout As ForceDirectedLayout = New ForceDirectedLayout

group.GraphLayout = layout
group . PerformGraphLayout ()

Generic Features and Parameters

The ForceDirectedLayout class supports the following generic parameters defined in the
GraphLayout class (see Layout Parameters and Features in the GraphLayout Base Class):

—Allowed Time

136 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

[layout of Connected Components
[Nayout Region

—1ink Clipping

[Llink Connection Box

[Preserve Fixed Links

[Preserve Fixed Nodes

—Hop Immediately

The following comments describe the particular way in which these parameters are used by
this subclass.

Allowed Time

The layout algorithm stopsiif the allowed time setting has elapsed. (See Allowed Time)

Layout of Connected Components

The layout algorithm can utilize the generic mechanism to lay out connected components.
For more information about this mechanism, see Layout of Connected Components.

Layout Region

The layout algorithm can use the layout region setting (either your own or the default
Setting) to control the size and the position of the graph drawing. All three ways to specify
the layout region are available for this subclass. (See Layout Region)

Note that by default the Force-Directed Layout algorithm does not use the layout region.
(For details see also Force Fit to Layout Region.)

Remember that if you are using the default settings, the visible area of the diagram view (an
instance of IDiagramView) attached to the container is used as alayout region. If severa
diagram views are attached, the first attached view is used. If no diagram view is attached,
thelayout region is automatically estimated on the basis of the number and size of the nodes.

Link Clipping
Thelayout algorithm can use alink clip provider to clip the connection points of alink. (See
Link Clipping)

Thisisuseful if the nodes have a nonrectangular shape such asatriangle, rhombus, or circle.
If no link clip provider is used, the links are normally connected to the bounding boxes of
the nodes, not to the border of the node shapes. See Using the Link Clipping for details of the
link clipping mechanism.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 137

Link Connection Box

The layout algorithm can use alink connection box interface (see Link Connection Box) in
combination with the link clip interface. If no link clip interface is used, the link connection
box interface has no effect. For details see Using the Link Clipping.

Preserve Fixed Links

The layout algorithm does not reshape the links that are specified as fixed. (See Preserve
Fixed Links and Link Syle))

Preserve Fixed Nodes

The layout algorithm does not move the nodes that are specified as fixed. Moreover, the
algorithm takes into account the fixed nodes when computing the position of the nonfixed
nodes. (See Preserve Fixed Nodes.)

Stop Immediately

The layout algorithm stops after cleanup if the method Stoplmmediately is called. (For a
description of this method in the GraphL ayout class, see Sop Immediately.) If the layout
stops early because the allowed time has elapsed, the result code in the layout report is
GraphL ayoutReportCode.StoppedAndinvalid.

Specific Parameters
The following parameters are specific to the ForceDirectedL ayout class.

Link Style

When the layout a gorithm moves the nodes, straight-line linkswill automatically follow the
new positions of their end nodes. If the diagram contains other types of links (for example
orthogonal links), the shape of the link may not be appropriate because the intermediate
points of the link will not be moved. In this case, you can ask the layout algorithm to
automatically remove all the intermediate points of the links (if any).

To do this, you use the LinkStyle property.
Thevalid valuesfor style are:
[HorceDirectedL ayoutL ink Style.NoReshape
None of the links is reshaped in any manner.
[HorceDirectedLayoutLinkStyle.StraightLine
All the intermediate points of the links (if any) are removed. Thisis the default value.

138 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Number of Iterations
The iterative computation of the layout algorithm is stopped if the time exceeds the allowed

time (see Allowed Time) or if the number of iterations exceeds the allowed number of
iterations. To specify this number, use the AllowedNumberOflterations property.

Preferred Length

The main objective of thislayout algorithm isto obtain alayout where al the links have a
given length. Thisis called the preferred length.

To specify the preferred length for all the links, use the PreferredLinksLength property. The
default value is 60. To specify the length for a specific link, use the following methods:

void SetPreferredLength (object link, float length)
float GetPreferredLength(object link)

If a specific length is not specified for alink, the global settings are used.

Respect Node Sizes

By default, the layout algorithm respects the size (width and height) of the nodes to support
graphs with heterogeneous node sizes. For efficiency reasons, you can turn this option off so
that the nodes are approximated with points placed in the center of the bounding box of the
nodes. In this mode, when dealing with large nodes, the preferred length parameter can be
increased in such away that the nodes do not overlap.

To change this mode use the RespectNodeSizes property. The default valueistrue.

Force Fit to Layout Region

For thislayout algorithm, it is more difficult than for othersto choose an appropriate size for
the layout region. If the specified layout region istoo small for a given graph, the resulting

layout will not be the best. For this reason, by default, the Force-Directed Layout algorithm
does not use the layout region parameter. It can use as much space as it heedsto lay out the

graph.

To specify whether the layout algorithm must use the layout region use the
ForceFitToL ayoutRegion property. The default value of the property is false.

For Experts: Additional Features

Expert users can also try and use the following parameters.

Maximum Allowed Move Per lteration

At each iteration, the layout algorithm moves the nodes arelatively small amount. This
amount should not be too large; otherwise the algorithm may not converge. But it should not
be too small either, otherwise the number of necessary iterations increases and the running
time does also.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 139

The maximum amount of movement at each iteration is controlled by the
MaxAllowedM ovePerlteration property.

Typical values for this setting are 1 to 30, but it depends on the value of the
PreferredLinksLength property. For example, if the setting for the PreferredLinksL ength
property is 1000, then avalue of 100 for the M axAllowedM ovePer I teration property is
still meaningful.

Link Length Weight

The layout algorithm is based on the computation of attraction and repulsion forces for each
of the nodes and the iterative search of an equilibrium configuration. One of these forcesis
related to the objective of obtaining alink length close to the specified preferred length. The
weight of this force, representing the total amount of forces, is controlled by the
LinkLengthWeight property.

The default valueis 1. Increasing this parameter can help obtain link lengths closer to the
specified length, but increasing too much can increase the number of link crossings.

Additional Node Repulsion Weight

An additional repulsion force can be computed between nodes that are not connected by a
link. The weight of thisforce, representing the total amount of forces, is controlled by the
AdditionalNodeRepulsionWeight property.

The default value of this parameter is 0.2.

Setting thisweight to some small values, for instance 0.2 (that is one-fifth of the default link
length weight), can help avoid overlaps between nodes that are not connected by links.
However, increasing this value can slow down the convergence of the algorithm.

The following illustrations enable you to compare the same graph laid out with additional
repulsion disabled (value of 0) and then enabled. You can see that the star configuration,
where many nodes are connected to the same central node, is better displayed when
additional repulsion is enabled.

The following illustration shows additional repulsion disabled, produced with the Force-
Directed Layout.

140 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

The following illustration shows additional repulsion enabled, produced with the Force-
Directed Layout.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 141

Node Distance Threshold

The additional repulsion force between two nodes not connected by alink is computed only
when their distance is smaller than a predefined distance. To set this distance, use the
NodeDistanceThreshold property.

Note that this additional forceiscomputed only if the additional node repulsion weight is set
to avalue larger than the default value O.

It is recommended that this threshold be set to a value smaller than the preferred length of
thelinks.

Using the Link Clipping

By default, the Force-Directed Layout does not place the connection points of links. It relies
on the anchors of the nodes to determine the connection points. If no anchorsareinstalled at
the nodes, the default behavior is to connect to a point at the border of the bounding box of
the nodes. If the node has a nonrectangular shape such as a triangle, rhombus, or circle, you
may want the connection points to be placed exactly on the border of the shape. This can be
achieved by using the link clipping feature. The link clipping corrects the cal cul ated
connection point so that it lies on the border of the shape.

The following illustration shows the effect of the link clipping.

without clipping with clipping

To enable the link clipping, use the property LinkClipping. The default valueistrue.

142 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Note: Additionally to the link clip provider, the ShapeAnchor can be used. This special link
anchor updates the clipped connection points automatically during interactive node
movements.

If anode has anirregular shape, the clipped links sometimes should not point towards the
center of the node bounding box, but to avirtual center inside the node. You can achieve this
by additionally using the link connection box provider. For details, see Link Connection Box.

Thelink connection box provider is used only when link clipping is enabled. Otherwise, the
link connection box provider has no effect.

An example of the combined effect is shown in the following illustration.

5 X ' : X
Clipping at the nodebounding box Clipping at a specified connection box

If the links are clipped at the green irregular star node (l€eft picture), they do not point
towards the center of the star, but towards the center of the bounding box of the node. This
can be corrected by specifying alink connection box provider that returns a smaller node
box than the bounding box (right picture). Alternatively, the problem could be corrected by
specifying alink connection box provider that returns the bounding box as the node box but
with additional tangential offsets that shift the virtual center of the node.

Link Layout

IBM

Use the following topics to learn about the Link Layout algorithms (classes
ShortLinkLayout and LongLinkLayout).

In This Section
Samples
Provides some sample drawings produced by the algorithm.
What Types of Graphs?

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 143

Explains the type of graph on which you can use the algorithm.
Application Domains
Explains the application domains for the algorithm.
Features
Lists the features of the algorithm.
Limitations
Explains the limitations of the agorithm.
Brief Description of the Algorithm
Provides a short description of the Link Layout algorithm.
Code Sample
Provides a sample of code that shows how to use the algorithm.
Generic Features and Parameters
Explains what generic features of the graph layout library are supported and how.
Foecific Parameters for Both Short and Long Layout Layout
Presents the parameters of the Short and Long Link Layout agorithm.
Soacing Parametersin Short Link Layout
Describes the parameters necessary to control the spacing in the Short Link Layout.
Spacing Parametersin Long Link Layout
Describes the parameters necessary to control the spacing in the Long Link Layout.
For Experts. Additional Features
Provides additional information for layout experts.
For Experts. Special Options of the Short Link Layout
Provides special options for the Short Link Layout experts.
For Experts. Soecial Options of the Long Link Layout
Provides special options for the Long Link Layout experts.

144 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Samples
In this section you can find sample drawings produced with the Short Link Layout.

The following illustration shows a Short Link Layout with orthogonal links.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 145

146

The following illustration shows the same graph in Short Link Layout with direct links.

Y
/

[
=

The following illustration shows aLong Link Layout with orthogonal links.

T T

What Types of Graphs?

Any type of graph where nodes are fixed and links need to be routed:
[Connected and disconnected graphs

[—Planar and nonplanar graphs

[Mested graphs with intergraph links

Application Domains

Application domains of the Link Layout include:

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

[Electrical engineering (circuit block diagrams)

[Industrial engineering (schematic design diagrams, equipment/resource control charts)
[Business processing (entity relation diagrams)

—Joftware management/software (re-)engineering (data inspector diagrams)
[Database and knowledge engineering (sociol ogy, geneal ogy)

[CASE tools (design diagrams)

Features

[Reshapes the links of a graph in either an orthogonal or a direct style, without moving
the nodes. Orthogonal and direct style links can be combined in the same layout.

[—Allows you to specify which side of the node (top, bottom, left, or right) alink can be
connected to, or to preserve the existing connection points of the links.

[Supports self-links (that is, links with the same origin and destination node).

[—Supports multiple links (that is, more than one link between the same origin and
destination nodes).

[—Allows you to specify pinned (fixed) links that the layout algorithm cannot reshape.

[—Supports intergraph links of nested graphs. An intergraph link isalink whose end nodes
belong to different subgraphs of a nested graph.

[—Supports an incremental mode: If new links are added to a drawing, the next layout takes
the shapes of the old links into account.

[—Two link layout algorithms: Short Link Layout with alimited number of bends or Long
Link Layout with unlimited number of bends.

Short Link Layout
[ninksare placed freely in the space.

CLink-to-link and link-to-node crossings are reduced, if thisis possible with link shapes
that have a maximum of 4 bends.

CLinks of different width are supported.

Link bundles between the same pair of nodes are supported. Optionally, the algorithm
can ensure that multiple links are bundled together by giving them parallel shapes.

[Automatically arranges the final segments of the links (the segments near the origin or
destination node) to obtain a bundle of parallel links.

[Provides two optional shapes for the self-links.
[Wery fast algorithm with low memory footprint.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 147

Long Link Layout
[Linksare placed on agrid.

[Link-to-node crossings of orthogonal links are avoided, even if this introduces many
bends.

[Orthogonal link segments do not overlap.

[_Does not bundle the final segments. Instead, it distributes the links on the border of each
end node according to which border has more free space.

[Hast algorithm: speed and memory footprint depend on the grid spacing.

Limitations

[When routing intergraph links, the incremental mode cannot be used. Due to the
complexity of intergraph link routing, more crossings and overlappings may occur than
when routing normal links.

[In Short Link Layout, crossings and overlapping of links with other links and nodes
cannot always be avoided because the algorithm uses link shapes with alimited number
of bends. This happensin particular when there are many obstacles between the
connection points of alink.

[In Long Link Layout, link crossings cannot always be avoided. Segment overlappings of
orthogonal links are always avoided unlessthere is no free space remaining on the border
of the end nodes. Any overlapping of nodes and links is always avoided unless one end
nodesisinside an enclave. An enclaveis an areathat is surrounded by other nodes such
that the area cannot be reached from the other end node.

[In Long Link Layout, ssgment overlapping or overlapping between nodes and links
cannot always be avoided if the direct link styleis used.

[TheLong Link Layout is slower and uses more memory if the grid spacing is very small.

Brief Description of the Algorithm

The Link Layout algorithms use two layout classes:
—ShortLinkLayout

[ongLinkLayout

Both implement different strategies to find the link shapes.

Short Link Layout Algorithm

The Short Link Layout algorithm is based on a combinatorial optimization that chooses the
"optimal" shape of the linksto minimize a cost function. This cost function is proportional to
the number of link-to-link and link-to-node crossings.

148 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

For efficiency reasons, the basic shape of each link is chosen from a set of predefined
shapes. These shapes are different for each link style option. For the orthogonal link style,
the links are reshaped to a polygonal line of up to five alternating horizontal and vertica
segments. For the direct link style, the links are reshaped to a polygonal line composed of
three segments: a straight-line segment that starts and ends with small horizontal or vertical
segments.

The shape of alink also depends on the relative position of the origin and destination nodes.
For instance, when two nodes are very close or they overlap, the shape of the link is chosen
to provide the best visibility of the link.

The exact shape of alink is computed taking into account additional constraints. The layout
algorithm tries to do the following:

[Minimize the number of crossings between the links incident to a given side of a node.

[—Fpace the final segments of the links incident to a given side of a node equally on the
node border.

Long Link Layout Algorithm

The Long Link Layout algorithm first treats each link individually. For each link, it first
calculates the connection points at the end nodes that are on the grid and orders them
according to apenalty value. Connection points on used grid points have avery high penalty
and, therefore, are very unlikely to be used.

For the orthogonal links, the Long Link Layout algorithm then uses agrid traversal to search
aroute over free grid points from the start connection point to the end connection point.
Therefore, in contrast to the short link layout, orthogonal links can have any shape with a
large number of bendsiif thisis necessary to bypass obstacle nodes to avoid overlappings.
For the direct links, it shortens the search by using a direct segment between the connection
points.

After al links are placed, a crossing reduction phase examines pairs of links and eliminates
link crossings by exchanging parts of the routes between both links.

The Long Link Layout algorithm relies on the fact that linksfit to the grid spacing and parts
of the routes between different links can be exchanged. Therefore, the Long Link Layout
algorithm does not take the link width into account because it would be too difficult to find
the parts of two linksthat can be exchanged. It is recommended to set the grid spacing larger
than the largest link width.

Choosing the Appropriate Link Layout Algorithm
The short link layout should be used if any of the following conditions apply:

[_The majority of linksis short and it is not fatal if long links overlap obstacles.
[_Thelink routes must be placed freely and cannot be restricted to agrid.

[_Ix isimportant to limit the number of bends.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 149

The long link layout should be used if any of the following conditions apply:

[Many links are long and it isimportant that long links do not overlap obstacles.
[Thereisapreferred routing because the nodes are already placed on the grid.
It isimportant to have a guaranteed a minimal distance between link segments.
[—Anincreasing number of bendsis acceptable if it avoids any overlappings.

Theillustration below shows a small sample graph in short and long link layout. The short
link layout bundles the links very well. However, due to the bundling, some red links appear
to be unconnected to the green nodes. Furthermore, the algorithm cannot find aroute for the
long red links without overlapping some nodes or without overlapping the green link. The
long link layout works on agrid. It is specialized for long links and avoids overlapping any
nodes or link segments. It can connect to the green nodes by choosing connection points on
different sides of the end nodes. This advantage, however, is paid for by aless regular
structure that does not bundle the links and alarger number of link crossings.

e

Sy R

Short Link Layout Mode Long Link Layout Mode

The following illustration shows how the long link layout can be used to find an orthogonal
route without overlappingsin alabyrinth of node obstacles.

150 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Code Sample

The following example shows how to perform a Short Link Layout on a Group object by
using the ShortLinkLayout class:

using System;

using ILOG.Diagrammer;

using ILOG.Diagrammer.Graphic;
using ILOG.Diagrammer.GraphLayout;

Group group = new Group () ;

// Fill the group with nodes and links here
ShortLinkLayout layout = new ShortLinkLayout () ;
group.LinkLayout = layout;

group . PerformGraphLayout () ;

Imports System

Imports ILOG.Diagrammer

Imports ILOG.Diagrammer.Graphic

Imports ILOG.Diagrammer.GraphLayout

Dim group As Group = New Group

' Fill the group with nodes and links here
Dim layout As Treelayout = New Treelayout

group.LinkLayout = layout
group . PerformGraphLayout ()

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 151

Generic Features and Parameters

The ShortLinkLayout and LongLinkLayout classes support the following generic
parameters as defined in the class GraphL ayout (see Layout Parameters and Featuresin the
GraphLayout Base Class).

—Allowed Time
Automatic Layout

[Preserve Fixed Links
—Hop Immediately

The following comments describe the particular way in which these parameters are used by
these subclasses.

Allowed Time

The layout algorithm stopsiif the allowed time setting has elapsed. For a description of this
layout parameter in the GraphL ayout class, see Allowed Time. If the layout stops early
because the allowed time has elapsed, some links may not be routed in the best possible way.
Theresult codein the layout report is GraphL ayoutReportCode.SoppedAndlinvalid.

Automatic Layout

The link layout routes the links so that they bypass the nodes and cross each other as few
times as possible. It does not position any nodes. However, if the user moves, adds, or
resizes nodes, or adds or removes links, the layout usually becomesinvalid; that is, the links
no longer look orthogonal, overlap the moved nodes, or cross other links.

Using the automatic layout feature of the GraphL ayout class, the layout is performed again
whenever a change of the graph occurs. For a description of this layout parameter in the
GraphL ayout class, see Automatic Layout.

Preserve Fixed Links

The layout algorithm does not reshape the links that are specified as fixed. (See Preserve
Fixed Links) The fixed links are taken into account when computing the optimal layout of
the nonfixed links.

Stop Immediately

Thelayout algorithm stops if the method Stopl mmediately is called. If the layout stops early,
some links may not be routed in the best possible way. The result code in the layout report is
GraphL ayoutReportCode.SoppedAndlnvalid.

Specific Parameters for Both Short and Long Layout Layout

The following parameters are specific to both the ShortLinkLayout and LongLinkL ayout
classes.

152 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Link Style

The link layout algorithms provide two link styles. You can set the link style globally, in
which case al links have the same kind of shape, or locally on each link, in which case
different link shapes occur in the same drawing.

Global Link Style
To set the global link style, use the ShortLinkLayout.LinkStyle and
LongLinkLayout.LinkStyle properties.

The link styles are defined by the LinkLayoutLinkStyle enumeration:
LinkLayoutLinkSyle.Orthogonal (the default)

The links are reshaped in an orthogonal form (alternating horizontal and vertical
segments).

[LinkLayoutLinkStyle.Direct

The links are reshaped to a polygonal line composed of three segments: a straight-line
segment that starts and ends with a small horizontal or vertical segment.

[linkLayoutLinkStyleMixed

Each link can have a different link style. The style of each individual link can be set to
have different link shapes occurring on the same graph.

Individual Link Style

All links have the same style of shape unlessthe global link styleis
LinkLayoutLinkStyle.Mixed. Only when the global link styleis set to
LinkLayoutLinkStyle.Mixed can each link have an individual link style.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 153

Thefollowing illustration shows different link styles mixed in the same drawing (Short Link
Layout).

154 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

The following illustration shows different link styles mixed in the same drawing (Long Link
Layout).

LS.

%
/T
i

I_

7

J I

To set and retrieve the style of an individual link use the following methods
SetLinkStyle(Object link, LinkLayoutLinkStyle style) and GetLinkStyle(Object link).

Connection Points Mode

Normally, the layout algorithm is free to choose the termination points of each link.
However, if fixed, non-moveable anchors, the user can specify that the current fixed
termination anchor of alink should be used.

The layout algorithm provides two connection point modes. You can set the connection
point mode globally, in which case all connection points have the same mode, or locally on
each link, in which case different connection point modes occur in the same drawing.

Global Connection Point Mode
To set the global connection point mode, use the following properties:

[—S$hortLinkLayout.OriginPointM ode
[—S$hortLinkLayout.DestinationPointM ode
[TlongLinkLayout.OriginPointMode
[TlongLinkL ayout.DestinationPointM ode

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 155

The connection point modes are defined by the enumeration ConnectionPointM ode:
[ConnectionPointM ode.Free (the default)

Thelayout is free to choose the appropriate position of the connection point on the
origin/destination node.

[TonnectionPointM ode.Fixed

The layout must keep the current position of the connection point on the origin/
destination node.

[TonnectionPointM ode.M ixed

Each link can have a different connection point mode.

The connection points are automatically considered as fixed if they are connected to anchors
for which the property Anchor.CanMoveisfalse.

Individual Connection Point Mode

All links have the same connection point mode unless the global connection point modeis
ConnectionPointM ode.M ixed. Only when the global connection point mode is set to
ConnectionPointM ode.Mixed can each link have an individual connection point mode.

Use the following methods to set the mode of an individual link:
To set the mode of an individual link, use the following methods:

[—hortLinkL ayout.SetOriginPointM ode(Object link, ConnectionPointM ode mode)
[—hortLinkL ayout.GetOriginPointM ode(Object link)

[ongLinkL ayout.SetDestinationPointM ode(Object link, ConnectionPointM ode mode)
[ongLinkL ayout.GetDestinationPointM ode(Object link)

Incremental Mode

The link layout algorithms normally route all links from scratch. If the graph changes
incrementally because you add or remove links or nodes, the subsequent layout may differ
considerably from the previous layout. To avoid this effect and to help the user to retain a
mental map of the graph, the algorithm has an incremental mode.

To enable the incremental mode, use the properties ShortLinkLayout.IncrementalMode and
LongLinkLayout.Incremental M ode.

Inincremental mode, the layout tries to minimize the changes to the layout. A link is only
rerouted if it isnew, if alink bend moved, if itslayout parameters have changed, or if anode
was moved such that it overlaps the link.

In Short Link Layout, if the next layout isincremental, the links preserve the connection side
and the general shape calculated by a previous layout, except if one of their end nodes has
been moved or resized.

156 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

In Long Link Layout, a new route is searched for the links that are no longer on the grid or
that overlap with nodes. The shape and the connection side of the rerouted links can change
completely. However, links that are already on the grid and do not overlap nodes or other
links are not rerouted in incremental mode. It is aso possible to specify which link must be
rerouted by the next incremental layout even though the layout has not changed. To select an
individual link to be used for incremental rerouting, use the method

MarkForlncremental (Object link).

Intergraph Link Routing

A nested graph is agraph with nodes that are subgraphs. In a nested graph, normal links and
intergraph links can occur. Normally, both end nodes of alink belong to the same subgraph.
Intergraph links are those links whose end nodes belong to different subgraphs. Intergraph
links belong to the lowest common graph in the nesting structure that contains both end
nodes. The following illustration shows a nested graph with blue normal links and red
intergraph links.

vy

| —

By default, the link layouts route both the normal links and the intergraph links. In order to
route only normal links, disable intergraph link routing using the properties
ShortLinkLayout.InterGraphLinksMode and LongLinkLayout.InterGraphLinksM ode.

If the intergraph links mode is enabled, you can select whether only the intergraph links are
routed, or whether the intergraph links and the normal links are routed at the same time
using the properties ShortLinkL ayout.Combinedi nterGraphLinksMode and

L ongLinkLayout.CombinedlnterGraphLinksMode.

If this property is set to false, the next layout routes the intergraph links but does not reshape
any normal links. If the property is set to true, the next layout routes both the normal links
and the intergraph links.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 157

When the intergraph links mode is enabled, the layout cannot route the links incrementally
(see Incremental Mode).

Note that the layout routes only those links that belong to the attached graph. In a nested
graph, each subgraph is attached to a different layout instance. Therefore, when starting a
normal (nonrecursive) layout for the top-level graph of, not all links are routed that are
shown in that figure, but only those links that belong to the top-level graph.

The following illustration shows two situations: the yellow subgraph indicates the subgraph
where the nonrecursive layout is currently applied, and the color of the links indicates which
links are currently routed. Depending on the intergraph links mode, the red and/or blue links
arerouted, but the grey links are not reshaped.

)

Toroute al links of anested graph, you need to apply the Link Layout recursively. Details of
the recursive layout mechanism are explained in What is Recursive Layout?. For instance:

layout.InterGraphLinksMode = true;
layout.PerformLayout (force, redraw, true);

routes the intergraph links recursively in all subgraphs. If you use alayout provider (aclass
that implements the interface ILayoutProvider), you need to set the intergraph links mode
for all subgraphs explicitly:

ILayoutProvider layoutProvider = ...

// first, set the intergraph mode for all layouts
IEnumerator layouts =

GraphLayoutUtil.GetLayouts (graphModel, layoutProvider, true);

while (layouts.MoveNext ()) {
GraphLayout layout = (GraphLayout)layouts.Current;
if (layout is ShortLinkLayout)
((ShortLinkLayout) layout) . InterGraphLinksMode = true;
if (layout is LongLinkLayout)
((LongLinkLayout) layout) . InterGraphLinksMode = true;

// then perform layout recursively using the provider
GraphLayout . PerformLayout (graphModel, layoutProvider, force, true);

158 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

Dim layoutProvider As ILayoutProvider =
' first, set the intergraph mode for all layouts
Dim layouts As IEnumerator = _
GraphLayoutUtil.GetLayouts (graphModel, layoutProvider, True)
While layouts.MoveNext
Dim layout As GraphLayout = CType (layouts.Current, GraphLayout)
If TypeOf layout Is ShortLinkLayout Then
CType (layout, ShortLinkLayout) .InterGraphLinksMode = True
End If
If TypeOf layout Is LongLinkLayout Then
CType (layout, LongLinkLayout) .InterGraphLinksMode = True
End If
End While
' then perform layout recursively using the provider
GraphLayout . PerformLayout (graphModel, layoutProvider, force, True)

If you want to recursively perform the intergraph link routing in combination with alayout
that places the nodes or that arranges labels, we recommend that you use an instance of the
class (XREF) Multiple Layout to encapsulate the link layout and the other layouts, and then
perform the Multiple Layout recursively al at once. For details, see XREF Recursive
Layout.

Spacing Parameters in Short Link Layout

Since the Short Link Layout places the links freely in the space, only two parameters are
necessary to control the spacing: the minimal distance between links and the minimal length
of the final segment.

The following illustration shows the spacing parameters used in the Short Link Layout.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 159

Z MinFinalSegmentLength
—»

halSegmentLength

LinkGffget LinkOQffset

Link Offset

The layout algorithm computes the final connecting segments of the links (that is, the
segments near the origin and destination nodes) to obtain parallel lines spaced at a user-
defined distance. The Short Link Layout takes into account the width of the links when
computing the offset. To specify the offset, use the LinkOffset property.

The offset is measured from the border of one link to the nearest border of the other link.
Therefore, if the specified offset is zero, the border of alink touches the border of its
neighbor link.

Minimum Final Segment Length

You can specify aminimum value for the length of the final connecting segments of the
links (that is, the segments near the origin and destination nodes). To do so, use the property
MinFinal SegmentL ength.

Connector Style

The layout a gorithm positions the connection points of links (the connection points) at the
nodes automatically. The connector style parameter specifies how these connection points
are calculated.

160 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

.

==l o= u=f

Automatic Fixed Offset Evenly Spaced
Zonnectar Connectar Connectar
Style Style Style

The layout algorithm provides two connector styles. You can set the connector style
globally, in which case all the nodes (hence, all the links) have the same kind of connector
style, or locally on each node (that is, for all the links connected to the node), in which case
different connector styles occur in the same drawing.

Global Connector Style
To specify the global connector style, use the property ConnectorStyle.

The styles are defined by the ShortLinkL ayoutConnectorStyle enumeration:
—ShortLinkL ayoutConnector tyle.FixedOffset

The connection points are spaced along the node border at a distance equal to the link
offset parameter.

—ShortLinkL ayoutConnector Style.EvenlySpaced

The connector pins are evenly spaced along the node border, preserving a margin which
is determined by the EvenlySpacedConnectorMarginRatio property.

[—ShortLinkL ayoutConnector Style Automatic (the default)

Uses the connector style FixedOffset except if this pushes a connection point outside the
border the link is attached to, in which case it uses the connector style EvenlySpaced.

[$hortLinkL ayoutConnector Style. Mixed

Each node can have a different connector style. The style of each individual hode can be
et to have different connector styles occurring on the same graph.

Individual Connector Style

All nodes have the same connector style unless the global connector styleis

ShortLinkL ayoutConnector Style.Mixed. Only when the global connector styleis set to
Mixed can each node have an individual connector style. To specify the connector style of
an individual node, use the following methods SetConnector Style(Object node,
ShortLinkLayoutConnectorStyle style) and GetConnectorStyle(Object node).

The default valueis 10.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 161

Spacing Parameters in Long Link Layout

The Long Link Layout places the links on agrid. Four parameters control the grid offsets
and five parameters control the spacing of links in relation to other objects. The following
illustration shows the spacing parameters used in the Long Link Layout.

harizontal grid offset

e

o Iy

& 3
E :
13 vz
iy (9_
L T
i &
L g

19510 IBLJ0D
JEL) (LU =

[ELLILITLL =

=15
|

.

.

ibua) wewbss

BoUE)SID [ELUILIL (DI ISA

harizontal
minimal distance

Grid Offset Parameters

The grid offset parameters control the spacing between grid lines. Links are routed such that
the center of the orthogonal link segmentsis on the grid lines. The grid offsets should be set
to avalue larger than the largest link width value to avoid links that visually overlap.

To set the horizontal and vertical grid offset, use the properties Horizontal GridOffset and
Vertical GridOffset.

The grid offset isthe critical parameter for the Long Link Layout. If the grid offset istoo
large, there may be no grid lines between nodes even though some free space exists between

162 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

the nodes. In this case, the link routings cannot use the free space. However, if the grid offset
istoo small, the algorithm needs along time to traverse the grid.

Grid Base Parameters

Sometimesit is necessary to shift the whole grid by a small amount because the nodes are
not aligned on the grid. For instance, to have grid lines at positions 3, 13, 23, 33, and so on,
you can set the grid offset to 10 and the grid base to 3. To adjust the grid base, use the
properties Horizontal GridBase and Vertical GridBase.

Minimal Distance Parameters

The minimal distance controls how closely alink can be placed to the border of a node that
needs to be bypassed. If the node border is not aligned to the grid, the minimal distance
specifies the next grid line close to the border that can be used. For instance, if anode covers
the x-coordinates 25 to 65 on a grid with offset 10 and base 0, the next grid lines used to
bypass the node would normally be at 20 and 70. If we specify aminimal distance of 8, these
grid lines are too close to the node and then the grid lines at 10 and 80 would be used.

To set the minimal distance, use the properties Horizontal MinOffset and VerticalMinOffset.

Minimal Node Corner Offset Parameter

The minimal corner offset is the minimal distance between a node corner and alink that
connects to the node. This parameter is used to avoid having alink that connects exactly to
the corner or outside the border of the node.

To set the minimal corner offset, use the property MinNodeCornerOffset.

minimal minimal
corner offset corner offset

111

Minimum Final Segment Length

Aswith the Short Link Layout, the Long Link Layout respects the minimum value for the
length of the final connecting segments of the links. To set the minimal length of the final
segment, use the property MinFinal SegmentL ength.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 163

For Experts: Additional Features

The following features are available in both Short and Long Link Layouts.

Using a Node-Side Filter

Some applications require that links are not connected to specific sides of certain nodes. The
Link Layout algorithms allow you to restrict to which node side a link can connect by using
anode-sidefilter. A node-sidefilter is any class that implements the interface
INodeSideFilter. Thisinterface defines the following method:

bool Accept (IGraphModel graphModel, object link, bool origin,
object node, NodeSide side) ;

This method allows you to let the input link to connect its origin or destination to the input
side of the input node.

As an example, assume that the application requires that for end nodes having the name
"Obj1" links can connect their origin only at the top and bottom side, for end nodes having
the name "Obj2" links can connect their destination only at the left and right side, and links
can connect on all sides for the other nodes. You can obtain this result with the following
node-side filter:

public class MyFilter : INodeSideFilter
{
public bool Accept (IGraphModel graphModel,
Object link,
bool origin,
Object node,
NodeSide side)

{

if (node.Name.Equals ("Objl") && origin)

return (side == NodeSide.Top || side == NodeSide.Bottom) ;
if (node.Name.Equals ("Obj2") && !origin)
return (side == NodeSide.Left || side == NodeSide.Right) ;

return true;
\ }
Public Class MyFilter
Implements INodeSideFilter

Public Function Accept (ByVal graphModel As IGraphModel, ByVal link As Object,_
ByVal origin As Boolean, ByVal node As Object,
ByVal side As NodeSide) As Boolean

If node.Name = "Objl" AndAlso origin Then

Return (side = NodeSide.Top OrElse side = NodeSide.Bottom)
End If
If node.Name = "Obj2" AndAlso Not origin Then

Return (side = NodeSide.Left OrElse side = NodeSide.Right)
End If

Return True
End Function
End Class

164 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

To set this node-side filter, use the properties ShortLinkL ayout.NodeSideFilter and
LongLinkLayout.NodeSideFilter. To remove afilter, set the property to null.

Using a Node Box Interface

Some applications require that effective area of anode is not exactly its bounding box. For
instance, if the node has a shadow, the shadow is included in the bounding box. However,
the shadow may not be considered as an obstacle for the links. In this case, the effective
bounding box of a node is smaller than the bounding box returned by
GraphicObject.GetStyledBounds.

You can modify the effective bounding box of a node by implementing a class that
implements the interface INodeBoxProvider. This interface defines the following method:

Rectangle2D GetBox (IGraphModel graphModel, Object node) ;

This method allows you to return the effective bounding box. For instance, to obtain a node
box provider that returns a smaller bounding box for al nodes having the name "Obj1":

public Rectangle2D GetBox (IGraphModel graphModel, Object node)
{
Rectangle2D rect = graphModel.BoundingBox (node) ;
if (node.Name == "Obj1l") ({
// need a rect that is 4 units smaller
rr.Inflate (-4, -4);

}

return rect;
Public Function GetBox (ByVal graphModel As IGraphModel, ByVal node As Object)
As Rectangle2D
Dim rect As Rectangle2D = graphModel.BoundingBox (node)
' For some nodes, we need a rect that is 4 units smaller

If node.Name = "Objl" Then
rr.Inflate (-4, -4)
End If

Return rect
End Function

To set this provider, use the NodeBoxProvider property. To remove a provider, set the
property to null.

Using a Link Connection Box Interface

By default, the connection points of the links are distributed on the border of the bounding
box of the nodes. Sometimes, it may be necessary to place the connection points on a
rectanglethat is smaller or larger than the bounding box. For instance, this can happen when
labels are displayed below or above nodes.

You can modify the position of the connection points of the links by implementing a class
that implements the interface ILinkConnectionBoxProvider. Thisis a subinterface of
INodeBoxProvider. It defines again the method:

Rectangle2D GetBox (IGraphModel graphModel, object node) ;

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 165

This method allows you to return the effective rectangle on which the connection points of
the links are placed.

Additionally, the interface I Link ConnectionBoxProvider defines a second method:

float GetTangentialOffset (IGraphModel graphModel, object node, NodeSide
nodeSide) ;

This method is used only in the Short Link Layout. When using the Long Link Layout, just
implement the method by returning the value 0.

For Experts: Special Options of the Short Link Layout

This section describes the customization capabilities which are specific to the Short Link
Layout.

Self-link Style

Self-links are links whose origin and destination are the same node. The Short Link Layout
provides two optional shapes for self-links.

it

Two-bend SelfHink Style Three-bend SelHink Style

To set the style of the self-links, use the property SelfLinkStyle.

The values for style are defined by the ShortLinkLayoutSelfLinkStyle enumeration:
—ShortLinkL ayoutSelfLinkStyle. TwoBendsOrthogonal
[—$hortLinkLayoutSdfLinkStyle.ThreeBendsOrthogonal

Number of Optimization Iterations

The link shape optimization is stopped if the time exceeds the allowed time (see Allowed
Time) or if the number of iterations exceeds the allowed number of iterations. To set this
number, use the property AllowedNumberOfiterations. The default value is 3.

166 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Note: You may want to disable the link shape optimization by setting the number of
iterations to zero to increase the speed of the layout process.

Evenly Spaced Pins Margin Ratio

The margin ratio alows you to customize the way connection points are computed when the
connector style (see Connector yle) is ShortLinkL ayoutConnector Syle.EvenlySpaced,
and when the ShortL inkL ayoutConnector Syle. Automatic places the connection points
using the ShortLinkL ayoutConnector Style.EvenlySpaced style. This option has no effect
if the connector style ShortLinkL ayoutConnector Style.EvenlySpaced is used.

In the "evenly spaced" connector style, the connection points of the links are evenly spaced
along the node border, preserving amargin to each extremity of the node border. The size of
this margin is controlled by the margin ratio and is computed by multiplying the offset
between the links by theratio.

To specify this option, use the EvenlySpacedConnector M ar ginRatio property.

The specified value must be apositive or zero value. The default valueis 0.5. The following
table shows examples of values with their meaning.

Ratio value Meaning

0 No margin.

0.5 (default value) The margin is equal to half the offset between the
links.

1 The margin is equal to the offset between the links.

Link Overlap Nodes Forbidden

This option allows you to ask the layout algorithm to avoid strictly to reshape links such that
they overlap some nodes. If overlaps are not forbidden, the algorithm tries to avoid overlaps
anyway, but may create overlaps, for instance for the link to cross other links.

Note: Forbidding overlaps may slow down the layout and may increase the number of
bends for those links that would overlap nodes if overlaps were not strictly forbidden.

To specify this option, use the property LinkOverlapNodesForbidden.
The default value of this option isfalse.

When overlaps are forbidden, the Short Link Layout algorithm uses the Long Link Layout
as an auxiliary algorithm for laying out only the links that would otherwise overlap nodes.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 167

You can retrieve the auxiliary instance of Long Link Layout using the method
GetAuxiliaryLongLinkLayout.

This method allows you to get this auxiliary layout instance and to customize its parameters
if needed. Notice that you should neither modify the origin and destination point mode, nor
disable the preservation of fixed links. Note also that an | GraphModel instanceis attached to
the LongLinkLayout instance only if needed, therefore the method

GetAuxiliaryL ongLinkL ayout.GetGraphM odel may return null.

Incremental Link Reshape Mode

Inincremental mode, it is possible to customize the rules used by the Short Link Layout to
determine which links should keep their current shape as much as possible, as computed by
the previous layout execution. The incremental link reshape mode allows you to customize
these rules separately for two categories of links (for the concepts of "link connection box"
and "node box", see also the properties LinkConnectionBoxProvider and
NodeBoxProvider):

[Modified links: the links that have either a different "link connection box" or are
connected to nodes which have a different bounding box as during the previous layout
execution.

—Wnmodified links: the links that have the same "link connection box" and are connected
to nodes which have the same bounding box as during the previous layout execution.

The mode can be customized either for both or for only one of these categories of links.
The incremental link reshape mode has no effect if the incremental mode is disabled.

The layout algorithm provides two incremental link reshape modes. You can set the mode
globally, in which case all the links have the same mode, or locally on each link, in which
case different modes occur in the same drawing.

Global Incremental Link Reshape Mode

To specify the global incremental link reshape mode, use the properties
Incremental M odifiedLinkReshapeMode and |ncremental UnmodifiedLinkReshapeM ode.

The modes are defined by the enumeraiton ShortLinkL ayoutL inkReshapeM ode:
[—ShortLinkL ayoutLinkReshapeM ode.FixedShapeType (the default)

The incremental layout preserves the shape type of the link. This means that both the
number of bends and the node sides to which the link is connected are preserved.

[—ShortLinkL ayoutLinkReshapeM ode.FixedNodeSides
The incremental layout preserves the node sides to which the links are connected.
[—ShortLinkL ayoutLinkReshapeM ode.FixedConnectionPoints

The incremental layout preserves the connection points of the links.

168 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

[—$hortLinkLayoutLinkReshapeM ode.Fixed

Thelinks are not reshaped at al during incremental layout. Only newly added links are
rerouted.

[hortLinkLayoutLinkReshapeM ode.Free

Theincremental layout is allowed to freely reshape the links. Thisis equivalent to anon-
incremental behavior for al the links, hence it is recommended to disable the
incremental mode instead of using Free as global incremental reshape mode.

Of course, the settings that may have been done by "fixing" links (see Preserve Fixed
Links) or by customizing the origin or destination point mode (see Connection Point
Mode) are still respected.

[—$hortLinkLayoutLinkReshapeM ode.Mixed
Each link can have a different mode.

Individual Incremental Link Reshape Mode

All links have the same incremental link reshape mode unless the global incremental link
reshape modeis ShortLinkL ayoutLinkReshapeM ode.Mixed. Only when the global mode
isset to Mixed can each link have an individual mode. To specify the mode of an individual
link use the following methods:

[—Jetlncremental M odifiedL inkReshapeM ode (Object link,
ShortLinkLayoutLinkReshapeM ode mode)

[Getlncremental M odifiedL inkReshapeM ode(Object link)

[—3etlncremental UnmodifiedLinkReshapeM ode (Object link,
ShortLinkLayoutLinkReshapeM ode mode)

[Getlncremental UnmodifiedLinkReshapeM ode(Object link)

The valid values for mode are:

[—ShortLinkL ayoutLinkReshapeM ode.FixedShapeType (the default)
[—ShortLinkL ayoutLinkReshapeM ode.FixedNodeSides
[—ShortLinkL ayoutLinkReshapeM ode.FixedConnectionPoints
[—ShortLinkLayoutLinkReshapeM ode.Free

[—ShortLinkL ayoutLinkReshapeM ode.Fixed

Same Shape for Multiple Links

You can force the layout algorithm to compute the same shape for all the links having
common origin and destination nodes. The links will have parallel shapes.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 169

When this option is disabled, the layout is free to compute different shapes for links
connecting the same pair of nodes. Generaly, different shapes are chosen to avoid some
overlaps.

o

Same-Shape Option Dizabled Same-Shape Opticn Enabled

To enable this option, use the SameShapeForMultipleLinks. The default value isfalse.

Link Crossing Penalty

The computation of the shape of the linksis driven by the objective to minimize a cost
function, which is proportional to the number of link-to-link crossings and link-to-node
crossings. By default, these two types of crossings have equal weights of 1. You can increase
the weight of the link-to-node crossings. To do so, set the value 5 (for instance) for the
property LinkToNodeCrossingPenalty. This increases the possibility of obtaining alayout
with no link-to-node crossings (or with only afew crossings), with the expense that there
may be more link-to-link crossings.

Alternatively, you can increase the weight of the link-to-link crossings. To do so, set the
value 3 (for instance) for the property LinkToLinkCrossingPenalty. This increases the
possibility of obtaining alayout with no link-to-link crossings (or with only few crossings),
with the expense that there may be more link-to-node crossings.

Bypass Distance

If the origin and destination nodes are too close, there may not be enough space for routing
thelink directly between the end nodes. Therefore, by default, if the end nodes are closer
than athreshold distance, the layout chooses link shapes that bypass the interval between
close nodes.

170 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

alinklabel
Ia link label I I I

End-nodes distance largerthan the End-nodes distance amaller than the
bypaze distance bypaze distance

The bypass distance is the minimum distance between the origin and destination nodes for
which alink shape going directly from one node to ancther isallowed. The algorithm triesto
avoid link shapes that connect directly the sides of the end nodes that are closer than the
bypass value.

To set the bypass distance, use the property BypassDistance.

The default valueis a strictly negative value. If the bypass distance is strictly negative, the
value of the minimum final segment length (see Minimum Final Segment Length) parameter
is used as the bypass distance. This alows the automatic adjustment of the bypass distance
according to the current value of the minimum final segment length. This behavior is
suitable in most cases. However, you can specify a non-negative value to override the
default behavior.

Using a Link Connection Box Interface

By default, the connection points of the links are distributed on the border of the bounding
box of the nodes, symmetrically with respect to the middle of each side. Sometimes, it may
be necessary to place the connection points on arectangle smaller or larger than the
bounding box, eventually in a nonsymmetric way. For instance, this can happen when labels
are displayed below or above nodes.

You can modify the position of the connection points of the links by implementing a class
that implements the ILinkConnectionBoxProvider. This interface defines the following
method:

Rectangle2D GetBox (IGraphModel graphModel, Object node) ;

This method allows you to return the effective rectangle on which the connection points of
the links are placed.

A second method defined on the interface allows the connection points to be "shifted"
tangentialy, in adifferent way for each side of each node:

float GetTangentialOffset (IGraphModel graphModel, Object node, NodeSide side) ;

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 171

For instance, to set alink connection box interface that returns alink connection rectangle
that is smaller than the bounding box for all nodes that match a given criteria and shifts up
the connection points on the left and right side of al the nodes, implement the interface as
follows:

public class MyProvider : ILinkConnectionBoxProvider

{

public Rectangle2D GetBox (IGraphModel graphModel, Object node)
{
Rectangle2D rect = graphModel.BoundingBox (node) ;
if (node.Name == "Obj1") {
// need a rect that is 4 units smaller
rr.Inflate (-4, -4);

}

return rect;

}

public float GetTangentialOffset (IGraphModel graphModel,
Object node, NodeSide side) {
switch (nodeSide)

case NodeSide.Left:
case NodeSide.Right:

return -10; // shift up with 10 for both left and right side
case NodeSide.Top:
case NodeSide.Bottom:
default:

return 0; // no shift for top and bottom side

}
}

Public Class MyFilter
Implements INodeSideFilter

Public Function GetBox (ByVal graphModel As IGraphModel, ByVal node As Object)
As Rectangle2D
Dim rect As Rectangle2D = graphModel.BoundingBox (node)
' For some nodes, we need a rect that is 4 units smaller

If node.Name = "Objl" Then
rr.Inflate (-4, -4)
End If

Return rect
End Function

Public Function GetTangentialOffset (ByVal graphModel As IGraphModel, ByVal
node As Object, ByVal side As NodeSide) As Single
Dim rect As Rectangle2D = graphModel.BoundingBox (node)
Select side
Case NodeSide.Left, NodeSide.Right
Return -10
Case NodeSide.Top, NodeSide.Bottom, Else
Return 0
End Select
End Function
End Class

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

To set this provider, use the LinkConnectionBoxProvider property. To remove aprovider, set
the property to null.

The following illustration shows the effects of customizing the connection box. Ontheleftis
the result using the default settings: the connection points are distributed on the bounding
box of the node (which includes the label) and are symmetric with the middle of each node
side (including the label). On theright, is the result after specifying alink connection box
provider. On the bottom side of the nodes, the links are now connected to the node (passing
over the label), while on the left and right side the nodes are now symmetric to the middle of
the node (without the label).

alabel a label

Default Setiings Customized Settings

For Experts: Special Options of the Long Link Layout

This section describes the customi zation capabilities which are specific to the Long Link
Layout.
Specifying Additional Obstacles

The Long Link Layout algorithm considers nodes to be obstacles that cannot be overlapped
and links to be obstacles that can be crossed at an angle of 90 degree (approximately, if the
link styleisdirect), but that cannot be overlapped.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 173

Link-Mode Cwerlapping Link Crossing Link Cwverlapping

If an application requires additional obstacles that are not links or nodes, these can be
specified using the methods AddRectObstacl e(Rectangle2D) and
AddLineObstacle(Point2D, Point2D).

Rectangular obstacles behave like nodes: links cannot overlap the rectangles. Line obstacles
behave like link segments: other links can cross the line segments, but cannot overlap the
segments. These obstacl e settings can be removed by means of the methods
RemoveAllRectObstacles and RemoveAllLineObstacles.

Penalties for Variable Connection Points

If the termination points of the links are not fixed, the algorithm uses a heuristic to calculate
the termination points of each link. It examines all free grid points that are close to the
border of the start and end node and assigns a penalty to each grid point. If anode-side filter
isinstalled, the penalty depends on whether the node side is allowed or rejected.

A more precise way to affect how the termination points are chosen is the termination point
filter. This enables the user to specify the penalty for each grid point. A termination point
filter isaclass that implements the interface | LongLinkL ayout TerminationPointFilter that
defines the following method:

int GetPenalty (IGraphModel graphModel, object link, bool origin,
object node, Point2D point, int side, int proposedPenalty) ;

To select the origin or destination point of the input link, the input point (a grid point on the
input side of the node) is examined. The proposedpPenalty is calculated by the default
heuristic of the algorithm. You can return a changed penalty or you can return
Int32.MaxValue to reject the grid point. If the grid point is rejected, it is not chosen as
termination point of the link.

The termination point filter can be set using the property TerminationPointFilter.

Manipulating the Routing Phases

As mentioned in Long Link Layout Algorithm, the algorithm first treats each link
individually and then applies a crossing reduction phase to al links. To find a route for an
individual link, the algorithm first checks whether arouting (such as a straight line or with
only one bend) is possible. If thiskind of routing is not possible, it uses a sophisticated, but

174 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

more time consuming, grid search a gorithm with backtracking to find a route with many
bends.

To switch off the phase that finds a straight-line or one-bend routing, set the property
StraightRouteEnabled to false.

The backtrack search for a route with many bends can be affected in the several ways.

You can specify the maximal number of backtrack steps by using the property
MaxBacktrack. The default maximal backtrack number is 30000.

A more convenient way is to specify the maximal time available to search for the route for
each link, using the property AllowedTimePerLink.The default allowed time per link is
2000 milliseconds (2 seconds).

Finally, you can specify how many steps should be done during the crossing reduction
phase, using the property NumberCrossingReductionlterations.

You can disable the crossing reduction completely by setting this property to false.

Fallback Mechanism

The Long Link Layout algorithm may not be ableto find arouting for alink, if aconnection
nodeisinside an enclave. In the following illustration, the red node isinside an enclave. In
this case, the backtrack search algorithm fails to find a routing without overlapping nodes.
The backtrack search algorithm may also fail if the situation is so complex that the search
exceeds the allowed time per link.

When the backtrack search algorithm failsto find arouting, a simple fallback mechanism is
applied that creates arouting with node overlappings. To disable this fallback mechanism,
set the property FallbackRouteEnabled to false.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 175

If the fallback mechanism is disabled, these links are not routed at al and remain in the same
shape as before the layout.

You can retrieve the links that could not be routed in the usual way without the fallback
mechanism, using the method GetCalcFallbackLinks.

For instance, you can iterate over these links and apply your own specific fallback
mechanism instead of the default fallback mechanism of the Long Link Layout algorithm.

Grid Layout

176 IBM

This section describes the Grid Layout algorithm (class GridLayout).
In This Section
Sample
Provides some sample drawings produced by the algorithm.
What Types of Graphs?
Explains the type of graph on which you can use the algorithm.
Application Domains
Explains the application domains for the algorithm.
Features
Lists the features of the algorithm.
Brief Description of the Algorithm
Provides a short description of the grid layout algorithm.
Code Sample
Provides a sample of code that shows how to use the algorithm.
Generic Features and Parameters
Explains what generic features of the graph layout library are supported and how.

Soecific Parameters
Presents the parameters of the grid layout algorithm.

Sample
Here are sample drawings produced with the Grid Layout:

Thefollowing illustration showsaTileToGridFixedWidth mode with center horizontal and
vertical alignment. The red lines are drawn here to help identify the grid cells; they are not
drawn by the layout algorithm.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

IBM

|_|_|_|_
W e

The following illustration shows a TileToRows mode with center vertical alignment

What Types of Graphs?

Any graph. However, the links are never taken into consideration. This algorithmis
designed for placing nodes independently of their links, if they have any.

Application Domains

Any domain where a collection of isolated nodes needs to be laid out.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

177

178

IBM

Features

[Arranges a collection of isolated nodes or connected components.

[Takes into account the size of the nodes so that no overlapping occurs.
[—Provides several alignment options and dimensional parameters.

[Provides full support for fixed nodes (overlapping of nonfixed nodes with fixed nodesis
avoided).

[—Provides an incremental mode which hel ps the retention of a mental map on incremental
changes made to a collection of nodes.

Brief Description of the Algorithm
The Grid Layout has two main modes: grid and row/column.

[In grid mode, the layout arranges the nodes of a graph in the cells of agrid (matrix). If a
nodeistoo largeto fit in one grid cell (with margins), it occupies multiple cells. The size
of the grid cells and the margins are parameters of the algorithm.

[1n row/column mode, the layout arranges the nodes of a graph either by rows or by
columns (according to the specified option). The width of the rows s controlled by the
width of the layout region parameter. The height of the columnsis controlled by the
height of the layout region parameter. The horizontal and vertical margins between the
nodes are parameters of the algorithm.

Code Sample

The following example shows how to use the GridLayout class. This code sample shows
how to perform a Grid Layout on a graph.

using System;

using ILOG.Diagrammer;

using ILOG.Diagrammer.Graphic;
using ILOG.Diagrammer.GraphLayout;

Group group = new Group () ;
// Fill the group with nodes here
GridLayout layout = new GridLayout () ;

group.GraphLayout = layout;

group . PerformGraphLayout () ;

Imports System

Imports ILOG.Diagrammer

Imports ILOG.Diagrammer.Graphic
Imports ILOG.Diagrammer.GraphLayout

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Dim group As Group = New Group
' Fill the group with nodes here
Dim layout As GridLayout = New GridLayout

group.GraphLayout = layout
group . PerformGraphLayout ()

Generic Features and Parameters

The GridLayout class supports the following generic parameters defined in the GraphL ayout
class (see Layout Parameters and Features in the GraphLayout Base Class):

—Allowed Time
[llayout Region

[Preserve Fixed Nodes
[—Hop Immediately

The following comments describe the particular way in which these parameters are used by
this subclass.

Allowed Time

The layout agorithm stops if the allowed time setting has elapsed. (For a description of this
layout parameter in the GraphL ayout class, see Allowed Time.) The result code in the layout
report is GraphL ayoutReportCode.SoppedAndlnvalid.

Layout Region

The layout algorithm uses the layout region setting (either your own or the default setting) to
control the size and the position of the graph drawing. All three ways to specify the layout
region are available for this subclass. (See Layout Region.)

The layout region is considered differently depending on the layout mode. For details, see
Layout Modes.

Preserve Fixed Nodes

The layout algorithm does not move the nodes that are specified as fixed. (See Preserve
Fixed Nodes.) Moreover, nonfixed nodes are placed in such amanner that overlaps with
fixed nodes are avoided.

Stop Immediately

The layout algorithm stops after cleanup if the method Stoplmmediately is called. (For a
description of this method in the GraphLayout class, see Sop Immediately.) If the layout
stops early because the allowed time has € apsed, the result code in the layout report is
GraphL ayoutReportCode.StoppedAndinvalid.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 179

180

IBM

Specific Parameters
The following parameters are specific to the GridLayout class.

Order Parameter

The order parameter specifies how to arrange the nodes. To specify the ordering option for
the nodes, you specify al Comparer in the NodeComparator property.

The valid values for comparator are:
[GridLayout.AutomaticOrdering

The algorithm isfree to choose the order in such away that it triesto reduce the total area
occupied by the layout.

[GridLayout.NoOrdering

No ordering is performed.
[GridL ayout.DescendingHeight

The nodes are ordered in the descending order of their height.
[GridL ayout.AscendingHeight

The nodes are ordered in the ascending order of their height.
[GridL ayout.DescendingWidth

The nodes are ordered in the descending order of their width.
CGridL ayout.AscendingWidth

The nodes are ordered in the ascending order of their width.
CGridL ayout.DescendingArea

The nodes are ordered in the descending order of their area.
[GridLayout.AscendingArea

The nodes are ordered in the ascending order of their area.
[GridL ayout.Ascendingl ndex

The nodes are ordered in the ascending order of their index (see
GridLayout.Setlndex(object, int)).

[GridL ayout.Descendingl ndex

The nodes are ordered in the descending order of their index (see
GridLayout.Setlndex(object, int)).

null (Nothing in Visual Basic)

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

The nodes are ordered in an arbitrary way.
—Any other implementation of System.Collections.| Comparer interface.
The nodes are ordered according to this custom comparer.
The default is GridL ayout.AutomaticOrdering.

Note that in incremental mode (see IncrementalM ode property) and with fixed nodes (see
SetFixed(object, bool)), the order of the nodes is not completely preserved.

Note also that, if the layout mode is TileToGridFixedWidth or TileToGridFixedHeight,
the order options are applied only for nodes whose size (including margins) is smaller than
the grid cell size (see Horizontal GridOffset and Vertical GridOffset properties).

Layout Modes

The Grid Layout algorithm has four layout modes. To select alayout mode use the
LayoutMode property:

The valid values for mode are:
[GridLayoutMode.TileToGridFixedWidth (the default).

The nodes are placed in the cells of agrid (matrix) that has a fixed maximum number of
columns. This number is equal to the width of the layout region parameter divided by the
horizontal grid offset.

[GridLayoutMode.TileToGridFixedHeight

The nodes are placed in the cells of agrid (matrix) that has a fixed maximum number of
rows. This number is equal to the height of the layout region parameter divided by the
vertical grid offset.

[GridLayoutMode.TileToRows

The nodes are placed in rows. The maximum width of the rowsis equal to the width of
the layout region parameter. The height of the row is the maximum height of the nodes
contained in the row (plus margins).

[GridLayoutMode.TileToColumns

The nodes are placed in columns. The maximum height of the columnsis equal to the
height of the layout region parameter. The width of the column is the maximum width of
the nodes contained in the column (plus margins).

Alignment Parameters

The alignment options control how anode is placed over its grid cell or over itsrow or
column (depending on the layout mode). The alignment can be set globally for all nodes, in
which case all nodes are aligned in the same way, or locally on each node, with the result
that different alignments occur in the same drawing.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 181

Global Alignment Parameters
To set the horizontal alignment for all nodes use the Horizontal Alignment property:

The valid values for the horizontal alignment are defined by the
GridLayoutHorizontal Alignment enumeration:

[GridLayoutHorizontalAlignment.Center (the default)
The node is horizontally centered over itsgrid cell or row or column.
[GridLayoutHorizontal Alignment.L eft

The node is horizontally aligned on the left of its grid cell(s) or column. Not used if the
layout mode is GridL ayoutM ode.TileToRows.

[GridLayoutHorizontalAlignment.Right

The nodeis horizontally aligned on the right of its grid cell(s) or column. Not used if the
layout mode is GridL ayoutM ode.TileToRows.

[GridLayoutHorizontalAlignment.Mixed

Each node can have a different alignment. The alignment of each individual node can be
set with the result that different alignments can occur in the same graph.

To set the vertical alignment for all nodes usre the Vertical Alignment property: The valid
values for the vertical alignment are defined by the enumeration
GridLayoutVertical Alignment:

C_GridLayoutVerticalAlignment.Center (the default)
The nodeis vertically centered over itsgrid cell or row or column.
C_GridLayoutVerticalAlignment.Top

The nodeis vertically aligned on the top of its cell(s) or row. Not used if the layout mode
isGridLayoutMode.TileToColumns.

[GridLayoutVertical Alignment.Bottom

The nodeis vertically aligned on the bottom of its grid cell(s) or row. Not used if the
layout modeis GridL ayoutM ode.TileToColumns.

[GridLayoutVertical Alignment.Mixed

Each node can have a different alignment. The alignment of each individual node can be
set with the result that different alignments can occur in the same graph.

Alignment of Individual Nodes

All nodes have the same alignment unless the vertical or horizontal alignments are set to
Mixed. Only when the global alignment is set to mixed can each node have an individua
alignment style.

To set and retrieve the alignments of an individual node, use the following methods:

182 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

void SetHorizontalAlignment (object node, GridLayoutHorizontalAlignment
alignment) ;

void SetVerticalAlignment (object node, GridLayoutVerticalAlignment alignment) ;
GridLayoutHorizontalAlignment GetHorizontalAlignment (object node) ;
GridLayoutVerticalAlignment GetVerticalAlignment (object node) ;

Maximum Number of Nodes Per Row or Column

By default, in GridLayoutM ode.TileToRowsor GridL ayoutM ode.TileToColumns mode,
the layout places as many nodes on each row or column as possible given the size of the
nodes and the dimensional parameters (layout region and margins). If needed, the layout can
additionally respect a specified maximum number of nodes per row or column.

To set the maximum number of nodes per row or column use the
MaxNumber OfNodesPer RowOr Column property.

The default valueis In32.M axValue, that is, the number of nodes placed in each row or
column is bounded only by the size of the nodes and the dimensional parameters. The
specified value must be at least 1. The property has no effect if the layout mode is
GridLayoutMode.TileToGridFixedWidth or
GridLayoutMode.TileToGridFixedHeight.

Incremental Mode

The Grid Layout algorithm normally places all the nodes from scratch. If the graph
incrementally changes because you add, remove, or resize nodes, the subsequent layout may
differ considerably from the previous layout. To avoid this effect and to help the user to
retain a mental map of the graph, the algorithm has an incremental mode. In incremental
mode, the layout tries to place the nodes at the same location or in the same order asin the
previous layout whenever it is possible.

To enable the incremental mode set the Incremental M ode property to true.

To preserve the stability, the incremental mode may keep some regions free. Therefore, the
total area of the layout may be larger than in nonincremental mode, and, in general, the
layout may not look as nice as in nonincremental mode.

Dimensional Parameters

The following illustrations explains the dimensional parameters used in the Grid Layout
algorithm. These parameters are explained in the sections that follow.

The following illustration shows dimensional parameters for the grid mode of the Grid
Layout algorithm.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 183

== Left Margin == Hight Margin
4—ﬁ -

=

n

[us]

" =

O

L]

— =

% I

= M
-
=
a
=

= c

: 2

= =

=

o

Y &

- !

. . Horizontal Grid Offset
Grid Lines — e

The following illustration shows dimensional parameters for the row/column mode of the
Grid Layout agorithm.

184 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Layout Region Widih

Firgt How

Second F{ow

(Top Margin + Bottom Margin)

I
I
_ [T T) I
Third Fo | |
[o T N
I I
: (Left Margin + Right Margin) :
I I
| Layout Region ——— |
L — — — — == 4
Grid Offset

The grid offset parameters control the spacing between grid lines. It is taken into account
only by the grid mode (layout modes TileToGridFixedWidth and
TileToGridFixedHeight). To set the horizontal and vertical grid offset use the
Horizontal GridOffset and Vertical GridOffset properties.

The grid offset isthe critical parameter for the grid mode. If the grid offset islarger than the
size of the nodes (plus margins), an empty space isleft around the node. If the grid offset is
smaller than the size of the nodes (plus margins), the node will need to be placed on more
than one grid cell. The best choice for the grid offsets depends on the application. It can be
computed according to either the maximum size of the nodes (plus margins) or the medium
size, and so on. Of coursg, if all the nodes have asimilar size, the choiceis straight-forward.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 185

Margins

The margins control the space around each node that the layout algorithm keeps empty. To
set the margins use the TopMar gin, BottomMar gin, LeftMargin and RightMargin
properties.

The meaning of the margin parametersis not the same for the grid modes as for the row/
column modes:

[In grid modes, they represent the minimum distance between the node border and the
grid line

—1n row/column modes, they are used to control the vertical distance between the rows or
the horizontal distance between the columns and the horizontal or vertical minimal
distance between the nodes in the same row or column.

The default value for al the margin parametersis 5.

Random Layout

This section describes the Random Layout algorithm (class RandomL ayout).
In This Section
Sample
Provides some sample drawings produced by the algorithm.

What Types of Graphs?
Explains the type of graph on which you can use the algorithm.

Features
Lists the features of the algorithm.

Limitations
Explains the limitations of the algorithm.

Brief Description of the Algorithm
Provides a short description of the random layout algorithm.

Code Sample
Provides a sample of code that shows how to use the random layout algorithm.

Generic Features and Parameters
Explains what generic features of the graph layout library are supported and how.

Soecific Parameters
Presents the parameters of the random layout algorithm.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Sample

Here is a sample drawing produced with the Random Layout:

What Types of Graphs?

Any type of graph:

[Connected and disconnected graphs
[Planar and nonplanar graphs

Features

Random placement of the nodes of a graph inside a given region.

Limitations

[_The algorithm computes random coordinates for the upper-left corner of the graphic
objects representing the nodes. In some cases, this may not be appropriate.

[_To ensure that the nodes do not overlap the margins of the layout region, the algorithm
computes the coordinates randomly inside a region whose width and height are smaller
than the width and height of the layout region. The difference is the maximum width and
the maximum height of the nodes, respectively. In some cases, this may not be

appropriate.

Brief Description of the Algorithm

The Random Layout algorithm is not really alayout algorithm. It smply places the nodes at
randomly computed positions inside a user-defined region. Nevertheless, the Random

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 187

188

IBM

Layout algorithm may be useful when arandom, initial placement is needed by another
layout algorithm or in cases where an aesthetic, readable drawing is not important.

Code Sample

The following example uses the RandomL ayout class and shows how to perform a Random
Layout on a graph.

using System;

using ILOG.Diagrammer;

using ILOG.Diagrammer.Graphic;
using ILOG.Diagrammer.GraphLayout;

Group group = new Group () ;

// Fill the group with nodes and links here
RandomLayout layout = new RandomLayout () ;
group.GraphLayout = layout;

group . PerformGraphLayout () ;

Imports System

Imports ILOG.Diagrammer

Imports ILOG.Diagrammer.Graphic

Imports ILOG.Diagrammer .GraphLayout

Dim group As Group = New Group

' Fill the group with nodes and links here

Dim layout As RandomLayout = New RandomLayout

group.GraphLayout = layout
group . PerformGraphLayout ()

Generic Features and Parameters

The RandomL ayout class supports the following generic parameters defined in the
GraphLayout class (see Layout Parameters and Features in the GraphLayout Base Class):

[Nayout Region

[—Percentage of Completion Calculation
[Preserve Fixed Links

[Preserve Fixed Nodes

[—Random Generator Seed Value
—Hop Immediately

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

The following comments describe the particular way in which these parameters are used by
this subclass.

Layout Region

The layout algorithm usesthe layout region setting (either your own or the default setting) to
control the size and the position of the graph drawing. All three ways to specify the layout
region are available for this subclass. (See Layout Region.)

Percentage of Completion Calculation

The layout algorithm calculates the estimated percentage of completion. This value can be
obtained from the layout report during the run of the layout. (For a detailed description of
this features, see Percentage of Completion Calculation and Graph Layout Event Handlers.)

Preserve Fixed Links

The layout algorithm does not reshape the links that are specified as fixed. (See Preserve
Fixed Links.)

Preserve Fixed Nodes

The layout algorithm does not move the nodes that are specified as fixed. (See Preserve
Fixed Nodes.)

Random Generator Seed Value

The Random Layout uses arandom number generator to compute the coordinates. You can
specify aparticular value to be used as a seed value. (See Random Generator Seed Value.)
For the default behavior, the random generator isinitialized using the current system clock.
Therefore, different layouts are obtained if you perform the layout repeatedly on the same

graph.
Stop Immediately

The layout algorithm stops after cleanup if the method Stoplmmediately is called. (For a
description of this method in the GraphL ayout class, see Sop Immediately.) If the layout
stops early because the allowed time has elapsed, the result code in the layout report is
GraphL ayoutReportCode.SoppedAndlnvalid.

Specific Parameters
The following parameters are specific to the RandomLayout class.

Link Style

When the layout algorithm moves the nodes, straight-line links will automatically follow the
new positions of their end nodes. If the graph contains other types of links (for example, a
Link object with ShapeType Orthogonal), the shape of the link may not be appropriate
because the intermediate points of the link will not be moved. In this case, you can ask the

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 189

layout algorithm to automatically remove al the intermediate points of the links (if any). To
do this, use the LinkStyle property:

Thevalid valuesfor style are:
[—RandomL ayoutL ink Style.NoReshape
None of the links is reshaped in any manner.
[RandomLayoutLinkStyle. StraightLine
All the intermediate points of the links (if any) are removed. Thisisthe default value.

190 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Performing Layout on Nested Graphs

This section explains how to define and perform graph layout algorithms on nested graphs.

What are Nested Graphs?

A nested graph (also called a subgraph) is a graph contained in another graph. The subgraph
is considered as a node of its parent graph (that is, it can have links connected to it), and it
also contains nodes and links.

In IBM® ILOG® Diagram for .NET, toplevel graphs are usually represented by Group
objects, and nested graphs are represented by Canvas objects contained in atoplevel Group
or in another Canvas.

Note: Group objects contained in a another Group or in a Canvas are not considered as

subgraphs by the graph layout algorithms. The children of a subgroup are laid out asiif
they were direct children of the parent of the group.

The following picture shows a Group containing a Canvas (named Canvasl) that contains
another Canvas (named Canvas2).

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 191

| Canvas1
Canvas?
J

Lo

What is Recursive Layout?
graph layout algorithms can be performed recursively on a graph that contains subgraphs.
Thisrecursive layout is performed as follows:

[_Thelayout is performed on each nested graph in depth first order, that is, on a subgraph
first, then on its parent graph.

[—After the layout has been performed on a subgraph, the size of the subgraph (that is, the
Canvas object) is adjusted to fit the size of its children.

[When the layout is performed on the parent graph, the subgraph is moved as awhole.

Performing the Same Layout on All Nested Graphs

If you want to perform the same graph layout algorithm on atoplevel graph and al its
subgraphs, do the following:

1. Set the GraphLayout and/or LinkLayout properties of the toplevel Group to the desired
graph layout.

2. Make sure the LayoutRecursively property istrue.
3. Cadll the PerformGraphLayout method of the toplevel group.

192 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

The following example shows how to perform aleft-to-right hierarchical layout on a graph

and its subgraphs.

Hierarchicallayout hl = new Hierarchicallayout () ;

hl.LinkStyle = HierarchicalLayoutLinkStyle.Orthogonal;

hl.Position = new Point2D (20, 100);
group.GraphLayout = hl;
group.LayoutRecursively = true;
group . PerformGraphLayout () ;

Dim hl As Hierarchicallayout = New HierarchicalLayout
hl.LinkStyle = HierarchicalLayoutLinkStyle.Orthogonal

hl.Position = New Point2D (20, 100)
group.GraphLayout = hl
group.LayoutRecursively = True
group . PerformGraphLayout ()

The following picture shows the resulting layout.

J

— Canvas!
Canvas?

5

i

Specifying a Different Layout on a Subgraph

If you want to perform a different layout on one of the subgraphs, you must set the
GraphLayout property of the subgraph to the layout algorithm for the subgraph.

The following example shows how to perform atop-to-bottom on the Canvasl subgraph

only.

Hierarchicallayout hl = new HierarchicallLayout () ;

hl.LinkStyle = HierarchicalLayoutLinkStyle.Orthogonal;

hl.Position = new Point2D (110, 5);
group.GraphLayout = hl;

Canvas canvasl = ((Diagraml)group) .Canvasl;

hl = new HierarchicalLayout () ;
hl.FlowDirection = LayoutFlowDirection.Bottom;

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

193

canvasl.GraphLayout = hl;

group.LayoutRecursively = true;

group . PerformGraphLayout () ;

Dim hl As HierarchicalLayout = New HierarchicalLayout
hl.LinkStyle = HierarchicallLayoutLinkStyle.Orthogonal
hl.Position = New Point2D (110, 5)

group.GraphLayout = hl

Dim canvasl As Canvas = CType(group, Diagraml) .Canvasl
hl = New HierarchicalLayout

hl.FlowDirection = LayoutFlowDirection.Bottom
canvasl.GraphLayout = hl

group.LayoutRecursively = True

group . PerformGraphLayout ()

The following picture shows the resulting layout. Note that the Canvas2 subgraph inherits
the top-to-bottom layout from its parent Canvasl.

>l

Canvas

O— =

Preventing the Layout on a Subgraph

194

IBM

It you want the layout not to be performed on a subgraph, you must set its
GraphLayoutActive property to false.

The following example shows how to prevent the layout from being performed on the
Canvas2 subgraph.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Hierarchicallayout hl = new HierarchicallLayout () ;
hl.LinkStyle = HierarchicalLayoutLinkStyle.Orthogonal;
hl.Position = new Point2D (20, 60) ;

group.GraphLayout = hl;

Canvas canvas2 = ((Diagraml)group) .Canvas2;
canvas2.GraphLayoutActive = false;
group.LayoutRecursively = true;

group . PerformGraphLayout () ;

Dim hl As Hierarchicallayout = New HierarchicallLayout
hl.LinkStyle = HierarchicalLayoutLinkStyle.Orthogonal
hl.Position = New Point2D (20, 60)

group.GraphLayout = hl

Dim canvas2 As Canvas = CType (group, Diagraml) .Canvas?2
canvas2.GraphLayoutActive = False
group.LayoutRecursively = True

group . PerformGraphLayout ()

The following picture shows the resulting layout. Note that the children of Canvas2 have
kept their initial relative positions.

Canvasl
[. Canvas2

12

Advanced API for Recursive Layout

IBM

The properties and methods of the GraphicContainer explained above let you perform and
customize recursive graph layouts in most cases.

For more advanced needs, you can also use the following classes of the

ILOG.Diagrammer.GraphL ayout namespace that provide more options to customize and
perform recursive layouts:

[Recursivel ayout
[MultipleLayout

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 195

[—RecursiveM ultiplelL ayout

196 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Using Advanced Features

This section describes advanced features of IBM® ILOG® Diagram for .NET graph layout
agorithms.

In This Section
Using a Graph Layout Report
Describes how to use a graph layout report.
Using Event Handlers
Describes the layout events and parameter events.
Using the Graph Model
Describes how to use a graph model.
Laying Out Third-Party Graphs
Explains how to lay out graphs that are not in IBM ILOG Diagram for .NET.

Laying Out Connected Components of a Disconnected Graph
Describes how to lay out connected components of a disconnected graph.

Using the Filtering Features to Lay Out a Part of a Graph
Explains how to usefiltering features.

Choosing the Layout Coordinate Space

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 197

Explains how to specify in which geometrical space the layout must be performed.
Releasing Resources Used During the Layout
Describes how to release resources that are used during the layout.
Defining Your Own Type of Layout
Explains how to define your own type of layout.
Related Documentation
Lists the books dedicated to graph layout that have been published.
Questions and Answer s about Using the Layout Algorithms
Provides some helpful suggestions for using the layout algorithms.

Using a Graph Layout Report

Graph layout reports are objects used to store information about the particular behavior of a
layout algorithm. After the layout is completed, thisinformation is available to be read from
the layout report.

Layout Report Classes

Each layout class instantiates a particular class of
ILOG.Diagrammer.GraphL ayoutReport each time the layout is performed. Layout
Report Classes shows the layout classes and their corresponding layout reports.

Layout Class Layout Report Class
HierarchicalLayout GraphLayoutReport
TreeLayout GraphLayoutReport
ForceDirectedLayout ForceDirectedLayoutReport
GridLayout GraphLayoutReport
RandomLayout GraphLayoutReport
ShortLinkLayout GraphLayoutReport
LongLinkLayout GraphLayoutReport
MultipleLayout MultipleLayoutReport
RecursiveLayout RecursiveLayoutReport
RecursiveMultipleLayout RecursivelLayoutReport

198 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Creating a Layout Report

All layout classes inherit the PerformLayout method from the GraphLayout class. This
method calls Createl. ayoutReport to obtain a new instance of the layout report. Thisinstance
is returned when Perfor mL ayout returns. The default implementation in the base layout
class creates an instance of GraphL ayoutReport. Some subclasses override this method to
return an appropriate subclass. Other classes do not need specific information to be stored in
the layout report and do not override Createl ayoutReport. In this case, the base class
GraphLayoutReport is used.

When using the layout classes provided with IBM ILOG Diagram for .NET, you do not
need to instantiate the layout report yourself. Thisis done automatically.

Accessing a Layout Report

If you do not use a diagram component, you usually call layout via the method
PerformL ayout which returns the layout report. The following example shows how to read
the information from the layout report in this case:

try {
GraphLayoutReport layoutReport = layout.PerformLayout () ;
if (layoutReport.getCode () ==
GraphLayoutReportCode . LayoutDone)
System.Console.Writeln ("Layout done.") ;
else
System.Console.Writeln ("Layout not done, code = " +
layoutReport.Code) ;
}
catch (GraphLayoutException ex) {
System.Console.Writeln(ex.ToString()) ;
}

Try
Dim layoutReport As GraphLayoutReport = layout.PerformLayout ()
If layoutReport.getCode = GraphLayoutReportCode.LayoutDone Then
System.Console.Writeln ("Layout done.")
Else
System.Console.Writeln ("Layout not done, code = " + layoutReport.Code)
End If
Catch ex As GraphLayoutException
System.Console.Writeln (ex.ToString)
End Try

Information Stored in a Layout Report

The base class GraphL ayoutReport stores the following information:
[CTode

[llayout Time

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 199

[Percentage of Completion
[—Additional Information

Code

The read-only property Code contains information about special, predefined cases that may
have occurred during the layout. The possible values of the GraphL ayoutReportCode are the
following:

[GraphL ayoutReportCode.L ayoutDone appearsif the layout was performed
successfully.

[GraphL ayoutReportCode.SoppedAndValid appearsif the layout was performed but
was stopped before completion, either because the layout time elapsed or because the
method Stopl mmediately was called. The positions of nodes and links are valid at the
stopping point because the layout algorithm uses an iterative mechanism.

[GraphL ayoutReportCode.SoppedAndlnvalid appearsif a (noniterative) layout was
performed but was stopped before compl etion, either because the layout time elapsed or
because the method Stopl mmediately was called. The positions of nodes and links are
not valid at the stopping point. Often, they have not yet been changed at all.

[GraphL ayoutReportCode.NotNeeded appearsif the layout was not performed because
no changes occurred in the graph and parameters since the last time the layout was
performed successfully.

[GraphL ayoutReportCode.EmptyGraph appearsif the graph is empty.

Layout Time

The read-only property LayoutTime contains the total duration (in milliseconds) of the
layout algorithm at the end of the layout.

Percentage of Completion

The read-only property PercentageComplete contains an estimation of the percentage of the
layout that has been completed. This can be used if the layout a gorithm supports the generic
percentage completion calculation feature. See Percentage of Completion Calculation. Itis
typically used inside layout event handlers that are described in the following section.

Additional Information

Additional information for particular layout algorithms is stored by the subclasses of
GraphLayoutReport. For details, see the APl Reference Manual for these classes:

[HorceDirectedL ayoutReport
[MultiplelLayoutReport
[—Recursivel ayoutReport

200 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Using Event Handlers
All layout classes support two kinds of events: layout events and parameter events. The API
therefore provides:
[Graph Layout Event Handlers
—Property Changed Event Handlers

Graph Layout Event Handlers

The layout event mechanism provides away to inform the end user of what is happening
during the layout. At times, alayout algorithm may take along time to execute, especialy
when dealing with large graphs. In addition, an algorithm may not converge in some cases.
No matter what the situation, the end user should be informed of the eventsthat occur during
the layout. This can be done by implementing a simple progress bar or by displaying
appropriate information, such as the percentage of completion after each iteration or step.

The layout event handling is done by attaching a GraphL ayoutStepPerformedEventHandler
to the LayoutStepPerformed event and implementing the expected behavior in the event
handler. In this way, you can, for example, read information about the current state of the
layout report (see Using a Graph Layout Report) after each iteration or step of the layout
agorithm;

void CreateLayout () {
Hierarchicallayout layout = new HierarchicalLayout () ;

layout .LayoutStepPerformed +=
new GraphLayoutStepPerformedEventHandler (OnLayoutStepPerformed) ;

}

void OnLayoutStepPerformed (object sender,
GraphLayoutStepPerformedEventArgs e)
{

GraphLayoutReport layoutReport = e.LayoutReport;
System.Console.Writeln("Percentage of completion: " +
layoutReport .PercentageComplete) ;

Sub CreateLayout ()
Dim layout As HierarchicallLayout = New HierarchicalLayout

AddHandler layout.LayoutStepPerformed, AddressOf OnLayoutStepPerformed
End Sub

Sub OnLayoutStepPerformed (ByVal sender As Object, _
ByVal e As GraphlayoutStepPerformedEventArgs)
Dim layoutReport As GraphlLayoutReport = e.LayoutReport
System.Console.Writeln("Percentage of completion: " + _
layoutReport . PercentageComplete)

End Sub

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 201

Property Changed Event Handlers

The layout parameter event mechanism provides away to inform the end user that any
layout property has changed. Thisisuseful, for instance, when the layout property values are
displayed in adialog box that needs to be updated to indicate property changes.

The property event handling is done by attaching a
GraphL ayoutPropertyChangedEventHandler to the PropertyChanged event and
implementing the expected behavior in the event handler.

When you implement the GraphL ayoutPropertyChangedEventHandler, you have access
to the GraphL ayoutPropertyChangedEventArgs. This contains a flag accessible by the
property ParametersUpToDate:

1t returnstrue if the event occurs at the end of arun of the layout when the layout is
considered up-to-date with respect to the layout properties.

1z returns false if the event occurs when any layout property has changed.

The GraphL ayoutPropertyChangedEventAr gs also gives access to the name of the
property that has changed: ParameterName and to the layout instance to which the changed
property belongs: GraphLayout. The following example shows how to implement and
register alayout property event handler.

void CreateLayout ()
HierarchicalLayout layout = new HierarchicalLayout () ;

layout .PropertyChanged += new
GraphLayoutPropertyChangedEventHandler (OnPropertyChanged) ;

void OnPropertyChanged (object sender,
GraphLayoutPropertyChangedEventArgs e)
{

System.Console.Writeln ("Property: " + e.ParameterName +
" changed on : " + e.GraphLayout) ;
System.Console.Writeln ("Parameters up to date: " + e.ParametersUpToDate) ;

}
Sub CreateLayout ()
Dim layout As Hierarchicallayout = New HierarchicallLayout

AddHandler layout.PropertyChanged, AddressOf OnPropertyChanged
End Sub

Sub OnPropertyChanged (ByVal sender As Object, _
ByVal e As GraphLayoutPropertyChangedEventArgs)
System.Console.Writeln("Property: " + e.ParameterName + _
" changed on: " + e.GraphLayout)
System.Console.Writeln("Properties up to date: " + e.ParametersUpToDate)

End Sub

202 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Using the Graph Model

Theinterface | GraphModel defines asuitable, generic API for graphsthat have to belaid out
with IBM® ILOG® Diagram for .NET graph layout algorithms.

All the layout algorithms provided in IBM ILOG Diagram for .NET are designed to lay out
agraph model. This allows applications to benefit from the graph layout algorithms whether
or not they usethe IBM ILOG Diagram for .NET graph. However, to make things very
simple for the common case of applications that use a GraphicContainer, it is not mandatory
to work directly with the graph model except for some advanced features such as filtering
(see Using the Filtering Features to Lay Out a Part of a Graph).

The Graph Model Concept

With a graph model, you can use already-built graphs, nodes, and links that have been
developed with or without IBM ILOG Diagram for .NET and apply the layout algorithms of
IBM ILOG Diagram for .NET. The graph model defines the basic, generic operations for
performing the layout. Instead of using a concrete graph class such as GraphicContainer
directly, thelayout algorithmsinteract with the graph viathe graph model. Thisisthe key for
achieving atruly generic graph layout framework.

A concrete implementation of the graph model must be written to adapt the graph model to
specific graph, node, and link objects. This playsthe role of an "adapter” or bridge between
the application objects and the graph model. This architecture makes it much easier to add
graph features to existing applications.

Note: If an application uses the IBM ILOG Diagram for .NETgraphic objects
(GraphicContainer, GraphicObject, and so on), the graph can be attached directly to the
layout instance without explicitly using a graph model. (See the method
Attach(GraphicContainer).) In this case, the appropriate adapter

(GraphicContainer Adapter) will be created internally. This adapter can beretrieved using
the method GetGraphModel, which will return an instance of GraphicContainer Adapter.

The IGraphModel Interface

The methods defined by 1 GraphM odel can be divided into several categories that provide
information on the structure of the graph, the geometry of the graph, modification of the
graph geometry, and notification of changesin the graph.

This section is divided as follows:
[Information on the Sructure of the Graph
[Information on the Geometry of the Graph

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 203

204

IBM

[Modification of the Geometry of the Graph

[Motification of Changes

[—Horing and Retrieving Data Objects (" Properties")
Information on the Structure of the Graph

The following properties and methods defined by 1GraphM odel allow the layout
algorithms to retrieve information on the structure of the graph:

[1ICollection Nodes

[IICollection Links

ool IsNode(Object obj)

[—hool IsLink(Object ohj)

[ICollection GetLinksFrom(Object node)
[ICollection GetLinksTo(Object node)

[Dbject GetFrom(Object link)

[Dbject GetTo(Object link)

The following properties and methods are provided for use with nested graphs (see also
Performing Layout on Nested Graphs):

[1IGraphModel Parent

[1GraphMode Root

[IGraphModel GetGraphM odel (Object subgraph)
[ICollection Subgraphs

—Bbool 1sSubgraph(Object obj)

[IICollection InterGraphLinks

[Bool IsinterGraphLink(Object obj)

Information on the Geometry of the Graph

The following methods defined by | GraphM odel allow the layout algorithmsto retrieve
information on the geometry of the graph:

[Rectangle2D BoundingBox(Object nodeOrLink)
[Point2D[] GetLinkPoints(Object link)
[float GetLinkWidth(Object link)

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

The BoundingBox method is called by alayout algorithm whenever it needs to get the
position and the dimensions of a node or alink. The other methods are used mainly by link
layout algorithms.

Modification of the Geometry of the Graph

The following methods defined by | GraphM odel alow alayout algorithm to modify the
geometry of the graph:

woid MoveNode(Object node, float X, float y)

[woid ReshapeLink(Object link, ReshapeLinkStyle style, Point2D fromPoint,
ReshapeLinkM ode fromPointMode, Point2D[] points, int startindex, int length, Point2D
toPoint, Reshapel.inkM ode toPointM ode)

Layout agorithms that compute new coordinates for the nodes use the M oveNode method.
Layout algorithms that compute new shapes for the links call the Reshapel ink method.

Notification of Changes

The following event defined by | GraphM odel alows alayout agorithm to be notified of
changesin the graph:

event GraphModelContentsChangedEventHandler ContentsChanged

A "change" in the graph can be a structure change (that is, a node or alink was added or
removed) or ageometry change (that is, anode or alink was moved or reshaped). The graph
model event mechanism provides a means to keep the layout algorithms informed of these
changes. When the layout algorithm is restarted on the same graph, it is able to detect
whether the graph has changed since the last time the layout was successfully performed. If
necessary, the layout can be performed again. If there is no change in the graph, the layout
algorithm can avoid unnecessary work by not performing the layout. To know whether the

previous layout is still valid or it must be redone, the layout algorithms call the following
method of the model:

bool IsLayoutNeeded (GraphLayout layout)

Note: The creation of the graph model event handler is done transparently by the
GraphLayout class. Therefore, there is usually no need to manipulate this handler directly.

Storing and Retrieving Data Objects ("Properties")

The following methods defined by | GraphM odel allow alayout algorithm to store data
objects for each node, link, or graph:

[woid SetProperty(Object nodeOrLink, String key, Object value)
[Object GetProperty(Object nodeOrLink, String key)

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 205

206

IBM

[woid SetProperty(String key, Object value)
[Object GetProperty(String key)

The layout algorithm may need to associate a set of properties with the nodes and links of
the graph or with the graph itself. Properties are a set of key-value pairs, where the key isa
Sring object and the value can be any kind of information value.

Note: Creating a property and associating it with a node, a link, or a graph is handled
transparently by the layout algorithm whenever it is necessary. Therefore, there is usually
no need to manipulate the properties directly. However, if needed, you can do thisin your
own subclass of GraphLayout.

The AbstractGraphModel class

The AbstractGraphModel class provides a concrete implementation of some of the
properties and methods defined by | GraphM odel. This class can be used as base class for a
concrete implementation of |GraphM odel. It encapsul ates some services that are common
to al graph models.

Using the Class GraphicContainerAdapter

The GraphicContainerAdapter classis a concrete subclass of AbstractGraphM odel that
allows a GraphicContainer to be laid out using the layout algorithms provided in

IBM ILOG Diagram for .NET. It provides an implementation for al the abstract methods. It
also provides an overridden implementation of some nonabstract methods of
AbstractGraphModel to improve efficiency by taking advantage of the characteristics of
the GraphicContainer.

If an application uses the GraphicContainer class, the graph can be attached directly to the
layout instance without explicitly using the adapter. See the method
Attach(GraphicContainer). In this case, a GraphicContainer Adapter is created internally
by the layout class. The adapter can be retrieved using the method GetGraphModel, which
will return an instance of GraphicContainer Adapter.

Notice that such an internally created adapter is not allowed to be attached to any other
layout instance, nor to be used in any way once the method Detach has been called on the
layout instance.

In case you need to be able to do any of the above operations, directly create the instance of
GraphicContainer Adapter and attach it using Attach(GraphM odél).

To know whether a given GraphM odel instance has been created using
Attach(GraphicContainer), you can use the method getOriginatingLayout. This method
returns a non-null object if the model has not been created using
Attach(GraphicContainer).

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Additionally, the GraphicContainer Adapter class provides away to filter the
GraphicContainer. By using the filtering mechanism, you specify a particular set of nodes
and links that have to be taken into account by the layout agorithm. (See Choosing the
Layout Coordinate Space.)

The GraphicContainer Adapter class allows you to specify the order of nodes, as
considered by its property Nodes. For this purpose, you can provide your own
implementation of System.Collections.| Comparer to define the order of the nodes. Then,
specify this comparer by using the property NodeComparer.

The GraphicContainer Adapter classalso allowsyou to specify the Transformer that hasto
be used for computing the geometry of the graph. (See Choosing the Layout Coordinate

Foace)

I Note: For details on how to write your own adapter, see Laying Out Third-Party Graphs.

Laying Out Third-Party Graphs

To understand this section better, seeUsing the Graph Model.

It is sometimes necessary to add graph layout features to an existing application. If the
application already uses the IBM® ILOG® Diagram for .NET graph (GraphicContainer) to
manipulate and display graphs, using the graph layout al gorithms provided in

IBM ILOG Diagram for .NET is a straightforward process. No adapter has to be written.

However, the case may arise where an application uses its own classes for nodes, links, and
graphs, and where, for some reason, you do not want to replace these classes with

IBM ILOG Diagram for .NET classes. To enable the graph layout algorithmsto work with
these graph objects, a custom adapter must be written.

The adapter must implement the interface |GraphModel. As a convenience, it can extend the
provided AbstractGraphModel and only implement its abstract methods. The nonabstract
methods of AbstractGraphM odel have a default implementation that is really functional.
However, they may not be optimal because they do not take advantage of the characteristics
of the underlying graph implementation. For better performance, the following nonabstract
methods can be overridden in the adapter class, to take advantage from a direct storage of
the property object in the nodes and links (assuming this feature is available):

void SetProperty(Object nodeOrLink, String key, Object val ue)
Object GetProperty(Object nodeOrLink, String key)

void SetProperty(String key, Object value)

Object GetProperty(String key)

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 207

The efficiency of the layout algorithm depends directly on the efficiency of the
implementation of the adapter class and the underlying graph data structure.

Laying Out Connected Components of a Disconnected Graph

IBM® ILOG® Diagram for .NET provides special support for the layout of a disconnected
graph. If agraph is composed of several connected components or contains isolated nodes
(nodes without any links), it can be desirable to apply the layout algorithm separately on
each connected component and then to position the connected components using a
specialized layout algorithm (usually, GridLayout). The following illustration shows an
example of agraph containing four connected components. Simply by enabling the layout of
the connected components on the regular layout instance (here, Hierarchical Layout), the
connected components are automatically identified and laid out individually. Finaly, the
four connected components are positioned using a highly customizable placement algorithm
(GridLayout).

ER N
ER N

To indicate whether a subclass of GraphLayout supports this feature, use the method
SupportsL ayoutOf ConnectedComponents.

The default implementation returns false. A subclass can override this method in order to
return trueto indicate that this feature is supported.

IBM ILOG Diagram for .NET allows you to enable the layout of the connected components
using the property LayoutOf ConnectedComponentsEnabled.

208 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

The default value is the value returned by the method
| sLayoutOf ConnectedComponentsEnabledByDefault.

The default implementation of this method in GraphL ayout returns false. For some of the
layout classes, it is appropriate that this feature is enabled by default. Therefore,
ForceDirectedL ayout overrides this method to return true.

If enabled on alayout classthat supportsthisfeature, the method PerformLayout of the class
GraphL ayout cuts the attached graph model into connected components and lays out each
connected component separately.

How does the layout of connected components feature work when this mechanismis
enabled in the layout classes that support this feature? Instead of directly calling the method
Layout to perform the layout on the entire graph, the method Perfor mL ayout first cuts the
graph into connected components. Then, each connected component is laid out separately by
acall of the method layout. To do this, the attached graph is temporarily changed into
internally generated graphs corresponding to each of the connected components of the
original graph. Finally, the layout instance defined by the property

L ayoutOf ConnectedComponentsis used to position the connected components. The default
isan instance of GridLayout. Itslayout region parameter is set by default to the rectangle
(0, 0, 800, 800). The property LayoutMode is set to GridL ayoutM ode.TileToRows.

Note: The Tree and Hierarchical layouts contain built-in support for disconnected graphs.
For the Tree and Hierarchical layouts, the result can be different from the result of the
generic mechanism (the layout of connected components feature) provided by the base
class GraphLayout. Depending your particular needs, you can use either the generic
mechanism or the built-in support.

Using the Filtering Features to Lay Out a Part of a Graph

To understand this section better, seeUsing the Graph Model.

Applications sometimes need to perform the layout agorithm on a subset of the nodes and
links of a graph. If the graph is not a GraphicContainer, the custom adapter should support
the filtering of a graph. (See Laying Out Connected Components of a Disconnected Graph.)
The properties that are related to the structure of the graph (Nodes, Links, InterGraphLinks,
and so on as shown in Information on the Sructure of the Graph) must behave just asif the
graph has changed in some way. They must take into account only the nodes and links that
belong to the part of the graph that must be laid out.

For applications that use GraphicContainer, the filtering feature is built into the
GraphicContainerAdapter. To do this, the GraphicContainer Adapter needsaway to know,
for each node or link, whether it must be taken into account during the layout. Thisisthe

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 209

role of the "filter" class, |GraphLayoutFilter. The | GraphL ayoutFilter hasonly one
method: Accept(GraphicContainerAdapter model, GraphicObject obyj).

To specify afilter, use the property Filter. If afilter is specified, the

GraphicContainer Adapter callsthe Accept method for each node or link whenever
necessary. If the method returnstrue, the GraphicContainer Adapter considersthe node or
thelink as part of the graph that needs to be laid out. Otherwise, it ignores the node or the
link.

Note: Alinkisfiltered out automatically as soon as one or both of its origin and
destination nodes are filtered out.

Asa convenience, you can aso use the method Setlgnored. This specification is obeyed by
the GraphicContainer Adapter if no filter is specified.

Choosing the Layout Coordinate Space

To understand this section better, see Using the Graph Model.

Graph layout algorithms have to deal with the geometry of the graph, that is, the position
and shape of the nodes and links. For a graph represented using a GraphicContainer, the
geometry is defined in the untransformed coordinate space of the container, while the
drawing in a DiagramView is done in the transformed coordinate space of the view. The
graph layout API alows you to specify in which geometrical space the layout must be
performed. This section is divided as follows:

[3Fpecifying the Coordinates Mode
[—Fpecifying the Reference Transformer
[Fpecifying the Reference View

Specifying the Coordinates Mode

By default, the GraphicContainerAdapter considers the geometry of the nodesand linksin a
coordinate space which is appropriate for most of the cases. In some situations, it can be
useful to specify a different coordinate space.

To specify the coordinate space, use the property CoordinatesMode. The values are the
following:

[CoordinatesM ode.GraphicContainer Coor dinates
The geometry of the graph is computed using the coordinate space of the graphic
container encapsulated by the adapter, without applying any transformation.

210 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

This mode should be used if you visualize the graph at zoom level 1, or you do not
visualizeit at all, or the graph contains only graphic objects for which the drawing sizeis
proportional with the zoom level. In al these cases there is no need to take the transform
into account during the layout.

Note that in this mode the dimensional parameters of the layout algorithms are
considered as being specified in graphic container coordinates. The reference transform
and the reference view are not used.

[CoordinatesM ode.ViewCoor dinates

The geometry of the graph is computed in the coordinate space of the diagram view.
More exactly, al the coordinates are transformed using the current reference transform.

This mode should be used if you want the dimensional parameters of the layout
algorithms to be considered as being specified in diagram view coordinates.

[CoordinatesM ode.l nver seViewCoor dinates

The geometry of the graph is computed using the coordinate space of the diagram view
and then applying the inverse transformation using the reference transform. Thismodeis
equivalent to the "graphic container coordinates" if the size of the drawing of the graphic
objectsis proportional with the zoom level. (A small difference may exist because of the
limited precision of the computations.)

On the contrary, if the size of the drawing of the graphic objectsis not proportional with
the zoom level (for example, links with a maximum line width), this mode gives
different results than the graphic container coordinates mode. These results are optimal if
the graph is visualized using the same transform as the one taken into account during the
layout.

Note that in this mode the dimensional parameters of the layout algorithms are
considered as being specified in graphic container coordinates.

The default mode is Coor dinatesM ode.l nver seViewCoor dinates.

The coordinates mode can al so be specified directly on the layout instances. For details, see
Coordinates Mode.

Specifying a Reference Transform
A reference transform can be specified explicitly using the property ReferenceTransform.

In most cases, it is hot necessary to specify areference transform because it is chosen
automatically according the following rules:

I areference transform is specified, the specified transform is used.

[_If areference view has been specified, the transform of the reference view is used.

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 211

_If the GraphicContainer encapsulated in the GraphicContainer Adapter has at least
one DiagramView, the transformer of the first view is returned.

The cases where you may need to specify areference transformer or areference view arethe
following:

[The size of the drawing of the graphic objectsis not proportional with the zoom level
(that is, the layout cannot be correctly computed independently of the transform used for
drawing the graph) and more than one diagram view is attached to the graphic container.

[_The size of the drawing of the graphic objectsis not proportional with the zoom and you
want to perform the layout without attaching a diagram view to the graphic container.
(Therefore, the default rule for choosing the current transform of the first diagram view
as the reference transform cannot be applied.)

If the size of the drawing of the graphic objectsis not proportional with the zoom level and
the graphic container is displayed simultaneously in several views, you can use the reference
view to indicate the view for which you want the drawing of the graph to be optimal.

If you specified areference transform but want to reset this setting and go back to the default
behavior, set the value null for the ReferenceTransform property.

Specifying a Reference View

Optionally, a DiagramView can be specified as areference view for the
GraphicContainer Adapter. If areference view is specified, its current transform (at the
moment when the layout is started) is automatically used as the reference transform.
Usually, applications use the same diagram view that is used for the display of the
GraphicContainer asthe reference view (but this is not mandatory).

To specify the reference view, use the following property ReferenceView.

Releasing Resources Used During the Layout

212

IBM

Various objects need to be created during the layout process. Most commonly, these are:
[Layout instances (subclasses of GraphLayout).

[—Graphic container adapters (GraphicContainerAdapter).

[Other adapters (implementing | GraphModel).

[_Hor recursive layout, you may also instantiate layout providers (subclasses of
I LayoutProvider). See also What is Recursive Layout?.

Hinally, some of the layout parameters are internally stored as property objects attached
to the graph object or to its nodes and links.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

To ensure that al these allocated objects are correctly released, you must respect some rules:

1. When alayout instance instantiated by your code is no longer useful, call the method
Detach on it to ensure that no graph or graph model is still attached to it. Note that you
can freely reuse alayout instance once the previoudly attached model has been detached.

2. Layout parameters that are specific to anode or alink are cleaned when calling Detach.
This cleaning is done only for nodes and links that are still in the graph when the Detach
method is called. If per-node or per-link parameters have been specified and the node or
the link needs to be removed before the Detach method can be called, you can call the
methods CleanNode or CleanLink to perform the cleaning for the node or the link.
However, you only need to do so if the removed node or link is reused by your code after
removal. Otherwise, if your code does not keep any reference to it, the node or link will

be garbage collected anyway, together with the property objects eventually stored by the
layout.

3. When agraphic container adapter (or other graph models) instantiated by your code isno
longer useful, call the method Dispose to ensure that the resources it has used are
released. Note that an adapter (or graph model) must not be used once it has been
disposed.

When alayout provider (an instance of ILayoutProvider) instantiated by your code is no
longer useful, call the method DetachL ayouts(model, true), passing as arguments the graph
models that have been used for performing arecursive layout with this provider.

Defining Your Own Type of Layout
If the layout algorithms provided with IBM® ILOG® Diagram for .NET do not meet your
needs, you can develop your own layout algorithms by subclassing GraphL ayout.

When asubclass of GraphL ayout is created, it automatically fitsinto the generic
IBM ILOG Diagram for .NET layout framework and benefits from its infrastructure:

[_generic parameters: see Layout Parameters and Features in the GraphLayout Base
Class.

[notification of progress. see Using Event Handlers.

[—aapability to lay out any graph object using the generic graph model: see Using the
Graph Model.

[—aapability to apply the layout separately for the connected components of a disconnected
graph: see Laying Out Connected Components of a Disconnected Graph.

[—aapability to lay out nested graphs (see Performing Layout on Nested Graphs).

This section is divided as follows:

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 213

[Code Sample
—Heps for Implementing the Layout Method

Code Sample

Toillustrate the basic ideas for defining a new layout, the following simple example shows a
possible implementation of the simplest layout algorithm, the Random Layout. The new
layout classis called MyRandomLayout.

The following example shows the skeleton of the class:

public class MyRandomLayout : ILOG.Diagrammer.GraphLayout.GraphLayout

{
public MyRandomLayout ()
: base ()

{
}

public MyRandomLayout (MyRandomLayout source)
: base (source)

{
}

public override ILOG.Diagrammer.GraphLayout.GraphLayout Copy ()

{

return new MyRandomLayout (this) ;

}

protected override void Layout ()

{
}
1
Public Class MyRandomLayout

Inherits ILOG.Diagrammer.GraphLayout.GraphLayout

Public Sub New ()
MyBase .New
End Sub

Public Sub New(ByVal source As MyRandomLayout)
MyBase .New (source)
End Sub

Public Overloads Overrides Function Copy () As
ILOG.Diagrammer.GraphLayout .GraphLayout

Return New MyRandomLayout (Me)
End Function

Protected Overloads Overrides Sub Layout ()

End Sub
End Class

214 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

The constructor with no argumentsis empty. The copy constructor and the copy method are
implemented; they are used when laying out a nested graph (see Performing Layout on
Nested Graphs).

Then, the abstract method Layout of the base classisimplemented as follows:

protected override void Layout ()
{
// obtain the graph model
IGraphModel graphModel = GetGraphModel () ;
// obtain the layout report
GraphLayoutReport layoutReport = GetLayoutReport () ;
int stepsToGo = graphModel.Nodes.Count;
int stepsGone = 1;

GraphLayoutReportCode resultCode = GraphLayoutReportCode.LayoutDone;

// obtain the layout region

Rectangle2D layoutRegion = GetCalcLayoutRegion () ;
float xMin = layoutRegion.X;

float yMin = layoutRegion.Y;

float xMax = layoutRegion.X + layoutRegion.Width;
float yMax = layoutRegion.Y + layoutRegion.Height;

// initialize the random generator

System.Random random = ((UseSeedValueForRandomGenerator) °?
new System.Random((int) (SeedvValueForRandomGenerator))
new System.Random()) ;

// browse the nodes

ICollection nodes = graphModel.Nodes;

bool isPreserveFixedNodes = PreserveFixedNodes;
float x;

float y;

Rectangle2D bbox;

object node;

// browse the nodes
foreach (Object node in nodes) {
// skip fixed nodes
if (! (isPreserveFixedNodes && GetFixed (node)))

{
bbox = graphModel .BoundingBox (node) ;
// compute coordinates
X =
xMin + Math.Max (0, xMax - bbox.Width - xMin) *
(float) (random.NextDouble ()) ;
y':
yMin + Math.Max (0, yMax - bbox.Height - yMin) *
(float) (random.NextDouble ()) ;

// move the node to the computed position
graphModel .MoveNode (node, x, V) ;

IncreasePercentageComplete (stepsGone++ * 100 / stepsToGo) ;

// notify handlers on layout events
OnLayoutStepPerformedIfNeeded () ;

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 215

if (IsLayoutTimeElapsed() || IsStoppedImmediately())

resultCode = GraphLayoutReportCode.StoppedAndInvalid;
break;

}

IncreasePercentageComplete (100) ;
OnLayoutStepPerformed (false, false);

// set the layout report code
layoutReport.Code = resultCode;

}
\ 1
Protected Overloads Overrides Sub Layout ()
Dim graphModel As IGraphModel = GetGraphModel ()
Dim layoutReport As GraphLayoutReport = GetLayoutReport ()
Dim stepsToGo As Integer = graphModel.Nodes.Count
Dim stepsGone As Integer 1
Dim resultCode As GraphLayoutReportCode = GraphLayoutReportCode.LayoutDone
Dim layoutRegion As Rectangle2D = GetCalcLayoutRegion ()
Dim xMin As Single = layoutRegion.X
Dim yMin As Single = layoutRegion.Y
Dim xMax As Single = layoutRegion.X + layoutRegion.Width
Dim yMax As Single = layoutRegion.Y + layoutRegion.Height
Dim random As Random
If (UseSeedvValueForRandomGenerator) Then
random = New Random (SeedValueForRandomGenerator)
Else
random = New Random()
End If

Dim isPreserveFixedNodes As Boolean = PreserveFixedNodes
Dim x As Single

Dim y As Single

Dim bbox As Rectangle2D

For Each node As Object In graphModel.Nodes
If Not (isPreserveFixedNodes AndAlso GetFixed(node)) Then
bbox = graphModel .BoundingBox (node)
X = xMin + Math.Max (0, xMax - bbox.Width - xMin) * random.NextDouble
y = yMin + Math.Max (0, yMax - bbox.Height - yMin) * random.NextDouble
graphModel .MoveNode (node, x, V)
IncreasePercentageComplete (stepsGone * 100 / stepsToGo)
stepsGone += 1
OnLayoutStepPerformedIfNeeded ()
If IsLayoutTimeElapsed() OrElse IsStoppedImmediately() Then
resultCode = GraphLayoutReportCode.StoppedAndInvalid
Exit For
End If
End If
Next
IncreasePercentageComplete (100)
OnLayoutStepPerformed (False, False)
layoutReport.Code = resultCode
End Sub

216 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Steps for Implementing the Layout Method

In this example, the Layout method isimplemented using the following main steps:

1.

IBM

Obtain the graph model (GetGraphModel on the layout instance).
|GraphModel graphModel = GetGraphModel();

Obtain the instance of the layout report that is automatically created when the
PerformLayout method from the superclassis called (GetL ayoutReport on the layout
instance). See Using a Graph Layout Report.

GraphL ayoutReport layoutReport = GetL ayoutReport();
Obtain the layout region parameter to compute the area where the nodes will be placed.
Rectangle2D rect = GetCalcLayoutRegion();
Initialize the random generator.
System.Random random = (UseSeedValueForRandomGenerator) ?
new System.Random(SeedValueForRandomGenerator) :
new System.Random();
(For information on the seed value parameter, see Random Generator Seed Value.)
Get the collection of nodes using the property Nodes.
I Collection nodes = graphModel .Nodes,
(For details on fixed nodes, see Preserve Fixed Nodes).

Move each node to the newly computed coordinates inside the layout region
(MoveNode).

graphModel.MoveNode(node, X, Y);

Notify the handlers on layout events that a new node was positioned
(OnLayoutStepPerformedifNeeded on the layout instance). This allows the user to
implement, for example, a progress bar if alayout event handler was registered on the
layout instance.

OnLayoutStepPerformedI fNeeded();

For details on event handlers, see Using Event Handlers.

Finally, set the appropriate code in the layout report.

GraphL ayoutReportCode resultCode = GraphL ayoutReportCode.L ayoutDone;

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 217

if (IsLayoutTimeElapsed() || |sStoppedlmmediatel y())

{
resultCode = GraphL ayoutReportCode.StoppedAndinvalid;

break;
}

layoutReport.Code = resultCode;

Of course, depending on the characteristics of the layout algorithm, some of these steps may
be different or unnecessary, or other steps may be needed.

Depending on the particular implementation of your layout algorithm, other methods of the
GraphLayout class may need to be overridden. For instance, if your subclass supports some
of the generic parameters of the base class, you must override the Supports] ParameterName]
method (see Layout Parameters and Features in the GraphLayout Base Class). For further
information about the API of the class GraphL ayout, please refer to the APl Reference
Manual.

Related Documentation

Several books dedicated to graph layout have been published:

Di Battista, Giuseppe, Peter Eades, Roberto Tammassia, and loannis G. Tollis. Graph
Drawing: Algorithmsfor the Visualization of Graphs, Prentice Hall, 1999. See:

http://www.cs.brown.edu/peopl e/rt/gdbook.html
or
http://www.mypearsonstore.com/bookstore/product.asp?i sbn=0133016153

Kaufmann, Wagner (Eds.): Drawing Graphs, L ecture Notes in Computer Science Vol. 2025,
Springer 2001. See:

http://link.springer.de/link/service/series/0558/tocs/t2025.htm
Graph layout is closely related to graph theory, for which extensive literature exists. See:

Clark, John and Derek Allan Holton. A First Look at Graph Theory. World Scientific
Publishing Company, 1991.

For a mathematics-oriented introduction to graph theory, see:
Diestel, Reinhard, Graph Theory, 2nd ed., Springer-Verlag, 2000.

A more algorithmic approach may be found in:

218 IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Gibbons, Alan. Algorithmic Graph Theory. Cambridge University Press, 1985.

Gondran, Michel and Michel Minoux. Graphes et algorithmes, 3rd ed., Eyrolles, Paris, 1995
(in French).

Bibliographies

A comprehensive bibliographic database of papersin computational geometry (including
graph layout) can be found at:

The Geometry Literature Database
http://compgeom.cs.uiuc.edu/~jeffe/compgeom/biblios.html
The recommended bibliographic survey paper isthe following:

Di Battista, Giuseppe, Peter Eades, Roberto Tamassia, and loannis G. Tollis. "Algorithmsfor
Drawing Graphs: an Annotated Bibliography.” Computational Geometry: Theory and
Applications 4 (1994): 235-282 (also available at

http://www.cs.brown.edu/peopl e/rt/gd-biblio.html.

Journals

The following are electronic journals:

Journal of Graph Algorithms and Applications
http://jgaa.info/

Algorithmica
http://link.springer-ny.com/link/service/journal /00453/
Computational Geometry: Theory and Applications
http://www.el sevier.com/locate/comgeo

Journal of Visual Languages and Computing
http://www.el sevier.com/locate/jvic

The following journals occasionally publish papers on graph layout:
Information Processing L etters
http://www.elsevier.com/locate/ipl

Computer-aided Design

http://www.el sevier.com/l ocate/cad

| EEE Transactions on Software Engineering

IBM ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT 219

220

IBM

http://www.computer.org/tse/

Many papers are presented at conferencesin Combinatorics and Computer Science.

Conferences

An annua Symposium on Graph Drawing has been held since 1992. The proceedings are
published by Springer-Verlag in the Lecture Notes in Computer Science series. The 2008
Symposium on Graph Drawing was held in Heraklion, Crete, Greece:

http://gd2008.org/
The 2009 Symposium will be held in Chicago, USA.

ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

Questions and Answers about Using the Layout Algorithms

IBM

This section provides some helpful suggestions for using the layout algorithms. You may
find some answers to questions that come up when using the graph layout API.

Question

Answer

| perform the layout and
nothing happens (no node is
moved). Why?

One possible reason may be: the layout algorithms provided in
IBM® ILOG® Diagram for .NET are all designed to do
nothing, by default, if no change occurred in the graph since
the last time the layout was performed successfully on the
same graph. A change means that a node was moved, or a
node or link was added, removed, or reshaped.

Note that you can force the layout to be performed again, even
if no change occurred, by calling the PerformLayout(boolean
force) method with a true value for the force argument.

Another possible reason may be: an error or a special case
occurred during the layout. First, you should check whether the
PerformLayout method has thrown an exception. If no
exception was thrown, check the Code on the instance of the
layout report returned by the PerformLayout method. Check
this value with respect to the documentation of the appropriate
layout report class. (For details, see Using a Graph Layout
Report.)

With the
ForceDirectedLayout, after
having performed the layout
once, | don't see any
movement even if | use the
force layout option. Why?

The reason is probably that the first time you performed the
layout, the algorithm reached the convergence. When the
layout is performed again, it detects that the convergence has
been already reached and stops. If you really want to continue
working, for instance in order to "declutter” a particular part of
the graph, you may need to move one or several nodes in
order to change the initial configuration. (The algorithm is
dependent on the initial configuration.)

ILOG DIAGRAM FOR

.NET 2.0 — GRAPH LAYOUT 221

Atfter performing the layout,
the graph is laid out far from
its initial position. Why?

Some layout algorithms use a layout region parameter to
control the size and position of the layout. (For details, see
Layout Region.) Depending on the value of this parameter, the
nodes may be moved far from their initial positions.

To know whether a layout algorithm is designed to use a layout
region parameter, check the documentation to see if the layout
class overrides the SupportsLayoutRegion method of the base
class in order to return true.

Other algorithms have a different mechanism that allows you to
specify the desired location of the layout. It may happen that
the default value of the location parameter is such that the
graph is laid out far from its initial position.

When | use certain layout
algorithms on certain graphs,
there are overlapping nodes.
Why and what can | do?

One possible reason may be related to the different ways
layout algorithms deal with the size of the nodes:

- The Tree, Hierarchical, and Grid algorithms always avoid
overlapping nodes. (The link layout algorithms do not move the
nodes. They only reshape the links such that the crossings and
overlaps are reduced. The size of the nodes is taken into
account.)

- The Force-Directed Layout (with the option "Respect Node
Sizes" enabled) succeeds in avoiding overlapping nodes in
many cases, but not always.

In any case, if the layout algorithm supports the layout region
mechanism (see Layout Region), you should try to increase
the size of the layout region. For example, if your graph
contains hundreds of nodes, it is not reasonable to use a small
layout region, such as 600x600. There will be not enough
space for all the nodes. You should try a larger layout region,
for example 5000x5000.

The optimal size of the layout region depends, of course, not
only on the number of nodes, but also on their size. If the
nodes are relatively large with respect to the size of the layout
region, it may be necessary to adjust some of the parameters
(for instance, the preferred link length for the Force-Directed
Layout).

222 IBM ILOG DIAGRAM FOR

.NET 2.0 — GRAPH LAYOUT

IBM

In some networks, there are
two (or more) subnetworks
that are not connected. How
will this affect the layout
algorithms?

This depends on the layout class you use:

- HierarchicalLayout, TreeLayout: They have built-in support
for disconnected graphs. Alternatively, you can use the
automatic support from the base class. (See Layout of
Connected Components.)

- ShortLinkLayout, LongLinkLayout, GridLayout,
RandomLayout: These algorithms support both connected and
disconnected graphs. Their behavior is the same for both
categories of graphs.

- ForceDirectedLayout: This algorithm supports disconnected
graphs, but usually it is better to rely on the automatic "layout
of connected components" parameter. (See Layout of
Connected Components.)

There are some attributes of
the network that we know
about (for instance, we know
what the core switch is and
what the center should be).
Are such attributes taken into
account by the layout
algorithm?

It depends on the layout algorithm.

- In the Tree Layout, you can specify the root node.

- In the Hierarchical Layout algorithm, you can specify node
position indices and level indices, as well as relative
positioning constraints.

ILOG DIAGRAM FOR

.NET 2.0 GRAPH LAYOUT 223

224

IBM

If | use

IBM ILOG Diagram for .NET
on different computers. |
sometimes get different
layouts for the same graph
and with the same
parameters. Why?

There are two possible reasons:

1. Different computers may be slower or faster. If the layout
algorithm you use stops the computation when the specified
allowed time has elapsed, a slower computer will cause the
computation to stop earlier. That may be the cause of different
results. This may happen even with the same computer if the
charge of the computer is increased. You may need to increase
the allowed time specification when running on a slower
computer.

2. If you use a layout algorithm that uses the random generator
and if you use the default option for the seed value (that is, the
system clock is used), you get different results for each
successive run of the layout on the same graph. This allows
you to obtain alternative results and to choose the one you
prefer. If you want to prevent different results for successive
runs, you can specify a constant seed value.

| use the Link Layout
algorithms to lay out the links
(representing routes) of a
network of graphical objects
(towns) geo-positioned on a
cartographical map. When
several links connect to the
same side of a node, they
overlap, while | expect them
to respect the "link offset" (or
the "grid size") parameter of
the Link Layout.

Some dimensional parameters of the layout algorithms need to
be chosen with respect to the size of the nodes. This is the
case of the "link offset" and the "bypass distance" parameters
for the Short Link Layout and the grid size for the Long Link
Layout. Indeed, their default values are not appropriate when
the nodes are very large. Often, nodes placed on a map, for
instance a world map, have a very large size. Compared to this
size, the default values of the parameters are so small that
they appear to be zero.

The solution is to increase the values of the dimensional
parameters, taking into account the size of the nodes. If
different nodes have different sizes, either the medium or the

Why? largest size of the nodes can be used to compute the
parameters as a fraction of this size.
ILOG DIAGRAM FOR .NET 2.0 — GRAPH LAYOUT

A

absolute level position range/tendency 76
aignment options

Tree Layout (free mode) 106
alowed time parameter

Hierarchical Layout 52

Link Layout 152

Tree Layout 100

Uniform Length Edges Layout 137
aspect ratio parameter

Tree Layout (radial mode) 121

Tree Layout (tip-over mode) 125
automatic layout

description 41

Link Layout 152

B

bypass distance parameter, Link Layout (short link layout)
170

C

calculated level index parameter, Hierarchical Layout 92

calculated position index parameter, Hierarchical Layout 93

calculating link shapes, Tree Layout 99
calculating node positions, Tree Layout 99
calculating the spanning tree, Tree Layout 98
compass directions, Tree Layout 103

IBM ILOG DIAGRAM FOR

Index

connected components parameter
Hierarchical Layout 53
Tree Layout 100
Uniform Length Edges Layout 137
connector style parameter
Hierarchical Layout 58
TreeLayout 110
CSS samples
Tree Layout 99

E

east-west neighbors, Tree Layout 128
end points mode parameter
Hierarchical Layout 59
Link Layout 155
evenly spaced pins margin ratio, Link Layout 167
extremity constraints, Hierarchical Layout 87

F

fallback mechanism, Link Layout (long link layout) 175
fixed links parameter

Hierarchical Layout 53

Link Layout 152

Random Layout 189

TreeLayout 101

Uniform Length Edges Layout 138
fixed nodes parameter

Hierarchical Layout 53

.NET 2.0 — GRAPH LAYOUT

Random Layout 189

TreeLayout 101

Uniform Length Edges Layout 138
flow direction parameter

Hierarchical Layout 54

Tree Layout (free mode) 104
forcefit to layout region, Uniform Length Edges Layout 139
fork link shapes, Hierarchical Layout 66
free layout mode (Tree Layout)

alignment parameter 106

description 104

flow direction 104

global alignment 106

global link style parameter 109

individua link style 110

individual node alignment 107

link style 109

spacing parameters 114

spacing parameters for experts 115

tip-over alignment 108

G

global alignment parameters
Tree Layout (free mode) 106
global connector style parameter
Link Layout 161
global end point mode parameter
Hierarchical Layout 59
Link Layout 155
global incremental link reshape mode 168
global link style parameter
Link Layout 153
Tree Layout (free mode) 109
grid base parameter, Link Layout (long link layout) 163
grid offset parameter
Link Layout (long link layout) 162

H

Hierarchical Layout
applicable graph types 48
application domains 48
calculated level index parameter 92
calculated position index parameter 93

2 IBM ILOG DIAGRAM FOR

.NET 2.0 —

connector style parameter 58
crossing reduction step 50
description 50

end points mode parameter 59
extremity constraints 87

features 49

flow direction parameter 54

fork link shapes 66

generic parameters 52

global end point mode parameter 59
individual end point mode parameter 59
individual link style parameter 57
layout constraints 78

level index parameter 82

level justification parameter 55
leveling step 50

link clipping parameter 53, 60
link connection box parameter 53, 59
link priority parameter 67

link routing step 50

link style parameter 56

link width parameter 62

node positioning step 50

port index parameter 64

port sides parameter 63

position index parameter 84
relative position constraints 85
sample drawings 46

side-by-side constraints 85
spacing parameters 68

specific parameters 54

swim lane constraint 88

incremental link reshape mode 168
global 168
individual 169

incremental mode parameter
Link Layout 156

individual connector style parameter
Link Layout 161, 169

individual end point mode parameter
Hierarchical Layout 59
Link Layout 156

GRAPH LAYOUT

individual incremental link reshape mode 169
individua link style parameter
Hierarchical Layout 57
Link Layout 153
Tree Layout (free mode) 110
individual node alignment parameter
Tree Layout (free mode) 107
intergraph link routing 157

L

layout algorithms

choosing 36

setting the selection method 40

table of additional information 44

table of generic parameters supported 43
layout constraints 78
layout methods, types of

automatic 41

semi-automatic 41
layout modes

Tree Layout 103
layout region parameter

Random Layout 189

Uniform Length Edges Layout 137
level index parameter, Hierarchical Layout 82
level justification parameter, Hierarchical Layout 55
level layout mode (Tree Layout)

description 117

general parameters 118

level alignment parameter 118
limitations

Link Layout 148

Random Layout 187

Tree Layout 97

Uniform Length Edges Layout 135
link box connection interface

Link Layout (short link layout) 171
link categories, retrieving (Tree Layout) 129
link clipping parameter

Hierarchical Layout 53, 60

TreeLayout 100, 112

Uniform Length Edges Layout 137, 142
link connection box interface

Link Layout 165

IBM ILOG DIAGRAM FOR

link connection box parameter

Hierarchical Layout 53, 59

TreelLayout 101, 112

Uniform Length Edges Layout 138

Link Layout

applicable graph types 146

application domains 146

bypass distance parameter (short link layout) 170

connector style parameter 160

description 148

end points mode parameter 155

evenly spaced pins margin ratio (short link layout) 167

fallback mechanism (long link layout) 175

features 147

generic parameters 152

global connector style parameter 161

global end point mode parameter 155

global link style parameter 153

grid base parameter (long link layout) 163

grid offset parameter (long link layout) 162

incremental link reshape mode 168

incremental mode parameter 156

individual connector style parameter 161, 169

individual end point mode parameter 156

individua link style parameter 153

intergraph link routing 157

limitations 148

link box connection interface (short link layout) 171

link connection box interface 165

link offset parameter (short link layout) 160

link routing parameters (long link layout) 174

link style parameter 153

long link layout agorithm 149

minimal distance parameter (long link layout) 163

minimal node corner offset parameter (long link layout)
163

minimum final segment length parameter (long link
layout) 163

minimum final segment parameter 160

node box interface 165

node-sidefilter feature 164

number of optimization iterations (short link layout) 166

obstacle parameters (long link layout) 173

same shape for multiplelinks parameter (short link layout)
169

.NET 2.0 — GRAPH LAYOUT 3

sample drawing 145
sdlf-link style parameter (short link layout) 166
short link layout algorithm 148
variable end point parameters (long link layout) 174
Link Layout (short link layout) 160
link offset parameter, Link Layout (short link layout) 160
link overlap nodes forbidden parameter
Link Layout (short link layout) 167
link priority parameter, Hierarchical Layout 67
link routing parameters, Link Layout (long link layout) 174
link style parameter
Hierarchical Layout 56
Link Layout 153
Random Layout 189
Tree Layout (free mode) 109
Uniform Length Edges Layout 138
link width parameter, Hierarchical Layout 62
long link layout (Link Layout)
algorithm description 149
fallback mechanism 175
features 148
grid base parameter 163
grid offset parameter 162
link routing parameters 174
minimal distance parameter 163
minimal node corner offset parameter 163
minimum final segment length parameter 163
obstacle parameters 173
variable end point parameters 174

M

minimal distance parameter, Link Layout (long link layout)
163

minimal node corner offset parameter, Link Layout (long link
layout) 163

minimum final segment length parameter, Link Layout (long
link layout) 163

minimum final segment parameter, Link Layout (short link
layout) 160

N

node box interface, Link Layout 165
node-sidefilter feature, Link Layout 164

4 IBM ILOG DIAGRAM FOR

.NET 2.0 —

number of iterations parameter, Uniform Length Edges
Layout 139

number of optimization iterations, Link Layout (short link
layout) 166

O

obstacle parameters, Link Layout (long link layout) 173

P

parameters
generic
Hierarchical Layout 52
Link Layout 152
Random Layout 179, 188
Tree Layout 99
Uniform Length Edges Layout 136
specific
Hierarchica Layout 54
Random Layout 180, 189
TreeLayout 101
Uniform Length Edges Layout 138
supported by layout algorithms (table) 43
percentage of completion parameter
Hierarchical Layout 53
Random Layout 189
TreeLayout 101
port index parameter, Hierarchical Layout 64
port sides parameter, Hierarchical Layout 63
position index parameter, Hierarchical Layout 84
position parameter, Tree Layout 103
preferred length parameter, Uniform Length Edges Layout
139
preserve fixed links parameter
Hierarchical Layout 53
Link Layout 152
Random Layout 189
TreeLayout 101
Uniform Length Edges Layout 138
preserve fixed nodes parameter
Hierarchical Layout 53
Random Layout 189
TreeLayout 101
Uniform Length Edges Layout 138

GRAPH LAYOUT

R

radia layout mode (Tree Layout)
adding an invisible root node 122
alternating radial mode 121
aspect ratio parameter 121
description 119
evenly spaced first circle 123
setting amaximal children angle 124
spacing parameters 122
random generator seed val ue parameter
Random Layout 189
Random Layout
applicable graph types 177, 187
description 178, 187
features 178, 187
generic parameters 179, 188
limitations 187
link style parameter 189
sample drawing 176, 187
specific parameters 180, 189
relative position constraints, Hierarchical Layout 85
respect node sizes parameter
Uniform Length Edges Layout 139
root node parameter, Tree Layout 101
additional options 102

S

same shape for multiple links parameter, Link Layout (short
link layout) 169

self-link style parameter, Link Layout (short link layout) 166
semi-automatic layout 41
setting a maximal children angle, Tree Layout 124
setting even spacing for the first circle, Tree Layout 123
setting invisible root node parameter, Tree Layout 122
short link layoul (Link Layout)

self-link style parameter 166
short link layout (Link Layout)

algorithm description 148

bypass distance parameter 170

connector style parameter 160

features 147

link box connection interface 171

link offset parameter 160

IBM ILOG DIAGRAM FOR

.NET 2.0 —

minimum final segment parameter 160

number of optimization iterations 166

same shape for multiple links parameter 169
side-by-side constraints, Hierarchical Layout 85
spacing parameters

Hierarchical Layout 68

orthogonal fork percentage (Tree Layout) 115

Tree Layout (free mode) 114, 115

Tree Layout (radial mode) 122
stop immediately parameter

Hierarchical Layout 54

Link Layout 152

Random Layout 189

TreeLayout 101

Uniform Length Edges Layout 138
swim lane constraint, Hierarchical Layout 88

T

tip-over alignment, Tree Layout (free mode) 108
tip-over layout modes (Tree Layout)
aspect ratio parameter 125
description 125
tip leaves over 126
tip over fast 127
tip roots and leaves over 127
tip roots over 127
Tree Layout
adding an invisible root node (radial mode) 122
a gorithm description 98
aternating radial mode 121
application domain 96
aspect ratio parameter (tip-over mode) 125
aspect ration parameter 121
calculating link shapes 99
calculating node positions 99
calculating the spanning tree 98
compass directions 103
connector style parameter 110
CSS sample 99
evenly spaced first circle (radial mode) 123
features 96
flow direction parameter 104
free layout mode 104
generic parameters 99

GRAPH LAYOUT

global link style parameter 109
individua link style parameter 110
interactive editing 131
layout modes 103
level aignment parameter 118
level layout mode 117
limitations 97
link clipping parameter 100, 112
link connection box parameter 101, 112
link style parameter 109
making incremental changes 130
position parameter 103
radial layout mode 119
retrieving link categories 129
root node parameter 101

additional options 102
sample drawings 95
setting amaximal children angle (radial mode) 124
setting aroot node 101
spacing parameters (free mode) 114
spacing parameters (radial mode) 122
specific parameters 101
specifying east-west neighbors 128
specifying the order of children 131
tip-over alignment (free mode) 108
tip-over layout modes 125
what type of graphs 96

U

Uniform Length Edges Layout
additional node repulsion weight 140
applicable graph types 135
application domains 135
description 136
features 135
forcefit to layout region parameter 139
generic parameters 136
limitations 135
link clipping parameter 137, 142
link connection box parameter 138
link length weight 140
link style parameter 138
maximum allowed move per iteration 139
node distance threshold 142

6 IBM ILOG DIAGRAM FOR

number of iterations parameter 139
preferred length parameter 139
respect node sizes parameter 139
sample drawings 133

specific parameters 138

Vv

variable end point parameters, Link Layout (long link layout)
174

.NET 2.0 — GRAPH LAYOUT

	Using Graph Layout Algorithms
	Introducing Graph Layout
	What is IBM ILOG Diagram for .NET Graph Layout
	Graph Layout: A Brief Introduction
	The Graph Layout Algorithms
	Common Features

	Getting Started with Graph Layout Algorithms
	Creating and Configuring a Graph Layout Algorithm
	Attaching a Graph Layout Algorithm to a Graphic Container
	Executing a Graph Layout Algorithm

	Using the Base Class GraphLayout
	Using the API of the Base Class GraphLayout
	Layout Parameters and Features in the GraphLayout Base Class

	Graph Layout Algorithms
	Determining the Appropriate Layout Algorithm
	Typical Ways for Choosing the Layout
	Generic Features and Parameters Support
	Layout Characteristics
	Hierarchical Layout
	Samples
	What Types of Graphs?
	Application Domains
	Features
	Limitations
	Brief Description of the Algorithm
	Code Sample
	Generic Features and Parameters
	Specific Parameters
	Incremental Mode
	Layout Constraints
	For Experts: More Indices

	Tree Layout
	Samples
	What Types of Graphs?
	Application Domains
	Features
	Limitations
	Brief Description of the Algorithm
	Code Sample
	Generic Features and Parameters
	Specific Parameters (All Tree Layout Modes)
	Free Layout Mode
	Level Layout Mode
	Radial Layout Mode
	Tip-Over Layout Modes
	For Experts: Additional Tips and Tricks

	Force-Directed Layout
	Samples
	What Types of Graphs?
	Application Domains
	Features
	Limitations
	Brief Description of the Algorithm
	Code Sample
	Generic Features and Parameters
	Specific Parameters
	For Experts: Additional Features
	Using the Link Clipping

	Link Layout
	Samples
	What Types of Graphs?
	Application Domains
	Features
	Limitations
	Brief Description of the Algorithm
	Code Sample
	Generic Features and Parameters
	Specific Parameters for Both Short and Long Layout Layout
	Spacing Parameters in Short Link Layout
	Spacing Parameters in Long Link Layout
	For Experts: Additional Features
	For Experts: Special Options of the Short Link Layout
	For Experts: Special Options of the Long Link Layout

	Grid Layout
	Sample
	What Types of Graphs?
	Application Domains
	Features
	Brief Description of the Algorithm
	Code Sample
	Generic Features and Parameters
	Specific Parameters

	Random Layout
	Sample
	What Types of Graphs?
	Features
	Limitations
	Brief Description of the Algorithm
	Code Sample
	Generic Features and Parameters
	Specific Parameters

	Performing Layout on Nested Graphs
	What are Nested Graphs?
	What is Recursive Layout?
	Performing the Same Layout on All Nested Graphs
	Specifying a Different Layout on a Subgraph
	Preventing the Layout on a Subgraph
	Advanced API for Recursive Layout

	Using Advanced Features
	Using a Graph Layout Report
	Using Event Handlers
	Using the Graph Model
	Laying Out Third-Party Graphs
	Laying Out Connected Components of a Disconnected Graph
	Using the Filtering Features to Lay Out a Part of a Graph
	Choosing the Layout Coordinate Space
	Releasing Resources Used During the Layout
	Defining Your Own Type of Layout
	Related Documentation
	Questions and Answers about Using the Layout Algorithms

	Index
	A
	B
	C
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

