‘llli

IBM ILOG Diagram for .NET V2.0
Programming with IBM ILOG Diagram
for .NET and Windows Presentation

Foundation

June 2009

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

Preface Programming with IBM ILOG Diagram for .NET and Windows Presentation Foun-
dation 3

OV IV W . . o ettt e e e e e 7

Creating a Graph Display from a Data Source Using the Diagram Control 9

A First Example Using the Diagram Control i, 10

Specifying the Data Sources of aDiagram 14

Defining Links Using Implicit Relations 15

Defining Links Using Explicit Relations 17

Making the Diagram Reflect the Changes in my Data Source. 18

Populating a Diagram Using the Nodes and Links Collections. 19

Styling Nodes and Linksin aDiagram.ttt 19

Styling Nodes and Links Using Basic Style Features, 20

Styling Nodes with Data Templates and Data Template Selectors 22

Changing the Control Template ofthe Node Class 26

Creating a Style of Links that DependsontheData i, 29

Selection in @aDiagram. e 30

ZoOM N @ Diagram. e 31

Specifying Graph Layout AlgorithmsinaDiagram 31

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 1

Creating a Graph by Specifying Nodes and Links i 33

Creating Nodes and LinKsS. e e 34
Example of Nodes and LinksinaCanvast 35
Example of Nodes and Links in a Graph with TreeLayout. 36
Controlling the Connection Points of Links i .. 39
Specifying the Link Shape 41
Color, Thickness and Other Appearance Propertiesofalink 43
Customizing the Arrows of aLink 43
Specifying Graph Layout.o 45
N EX .o e 1

2 IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

Programming with
IBM ILOG Diagram for .NET and Windows
Presentation Foundation

IBM® ILOG® Diagram for .NET offers the ability to integrate graph displaysinside your
Window Presentation Foundation (WPF) application. IBM ILOG Diagram for .NET brings
a dedicated set of WPF elements that ease the creation of graph representations. With these
classes you may create your graph directly from a data source, by specifying the node and
links that compose your graphin XAML (the XML language of WPF) or directly by code.
Thanks to the power of WPF, it is possible to create very appealing graph representations
through the styling and templating features of WPF combined with the power of the Graph
Layout library of IBM ILOG Diagram for .NET.

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 3

W WPF Org Chart Sample

| 1 () G Organization Chart Sample

= Friedrich Azarettn A
= Harmann Bacchus
Ricando Baeckley
Alanzo C. Basddey
= Marion Daignan
= Pierre Brenkle ‘
= Mariannge Basch
Anne Caretta
Jocob Boute
Robert Cassard
Amalia Barcelo
Martin Bander
= Francis Avils
Witta Bonche
= Bartholomew Dutrey
= Basie Bronpard
Michs| Caha E
Blicia Christmann
Patrick Brill
Phila Carining
=-llnnl£-lrrrh Amault w

Kaima: Izsbedia Bohm
Ernasil; ibohm@mycompany.com
Phone: (415) 5550108

Location: San Francisco

Help

Lisa the mouse to select alements in the diagram
or in the tree view. Uss the mouse wheal to

scroll the graph, Use Control-Whes! to zoom the
graph in ef eut. — S i

|
| %

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

Blend 7 December Preview

Wisibility 4

» Layoutl
» Common Properties
» Transioprm
¥ Miscellaneows
AlowDrop
n

CortethMernii

dilogiGraph|
1

®xmln

ttp://schemas.microsoft . com/winfx/ 20686/ xaml/presentation™
smlne:x="http://schemss .microsoft. com/winfx/2006/ xaml"”

umlns:ilog="clr-namespace: I1LOG.WpFfDiagrammer.Controls; assembly=-1L0G. WpfDiagramm)

Background="#37a37e">
«ilog:Graph.Resourcess
cLinearGradientBrush x:Key="nodeback cint="@,8" EndPoint="8,1">
<GradientStop Color="8FFEGEZAF" Offset="0"/>
<GradientStop Color="SFFATAITE" Offset="17/>
</LinearGradientBrush>
<5olidColorBrush x:Key="coler4” Color="s#7T0463887/>
4Style TargetType="{x pe ilog:Node}™»
<Setter Property="Background” Value="{DynawicResource nodebach

"
<Setter Property="HorlzontalContentalignment™ =

Center™/>

¥ Graph Layout

& Crmrnl mret (Trwsl surs

Note that specific WPF classes requireto use .NET 3.0 or .NET 3.5 and they are located in

the DLL named | L OG.Controls.Diagram. The namespace for those classesis
ILOG.Controls.Diagram.

In This Section
Overview
Provides a short overview of the main WPF controls and classes.
Creating a Graph Display from a Data Source Using the Diagram Control
Describes how to create a graph representation in WPF by using the Diagram class.
Creating a Graph by Specifying Nodes and Links

Explains how to create a graph through instances of the Node and Link classes and
use them directly inside any WPF container.

Soecifying Graph Layout
Briefly describes how to use the Graph Layout classes.

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 5

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

Overview

IBM® ILOG® Diagram for .NET defines a set of predefined WPF controls, elements and
classes dedicated for displaying and interacting with graphsin the WPF platform. Hereisan
overview of the main classes and controls:

[_The Diagram control

The Diagram control allows you to present the information as a graph display while
leveraging the most powerful and flexible WPF features available. The Diagram control
can be populated in two ways: by using a data source or by adding nodes and links by
codeto create agraph. The control comes with a new variety of WPF data sources for
your graph data. These include the XmlDataProvider and ObjectDataProvider, aswell
asmore traditional data sources such as DataSet, Array, and Collection objects. The
Diagram control provides visual designerswith many advanced styling and layout
capabilities and support for scrolling and zooming. The graph created from the data
source can be automatically arranged by alarge variety of graph layout algorithms that
you can specify and tune both in XAML or by code. The Diagram control allows you to
customize nodes and links in many different ways, through the styling and templating
featuresit enables the creation of very aesthetic user interfaces by using the Windows
Presentation Foundation.

[_The Graph control

The Graph control isused to display graph representations. The Diagram control usesa
Graph internally to display the graph. Unlike the Diagram class, the Graph control is
not bound to a data source. Instead, you can specify the graph data by adding nodes and

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 7

links (instances of the Node and Link classes) as the children of the Graph control.
Elementsin a Graph can be positioned through the Graph.L eft and Graph.Top attached
properties, but node and links can optionally be arranged automatically by a variety of
graph layout algorithms. The Graph control does not support zooming or scrolling, so if
you want to create a graph that supports zooming and scrolling, you should use a
Diagram instead of aGraph. One use case of the Graph control isto create sub-graphs,
that is, nodes that contain another graph.

[The Node and Link classes

The Node and Link classes are used to compose a graph. The Diagram control
generates instances of the Node and L ink classes from its data source. You can also add
nodes and links manually using the collections contained in the Nodes and Links
properties of the Diagram. When you need to style a graph displayed by a Diagram, you
define a specific style for the Node and Link classes. You can use the Node and Link
elementsin various places. When Node and Link instances are inside a Graph control,
the Graph control is responsible for arranging the graph through graph layout
algorithms, like aWPF Grid control arrangesits children asagrid. Node and Links can
also be used in any WPF containers. For example, you may use the Node and Link
elementsinside a WPF Canvas. Inside a Canvas or any WPF container the links will
stay connected to the nodes when the nodes change location or size. Note that the Node
classisasubclass of the WPF ContentControl class and therefore you can place any
WPF element inside a Node. For example, it is possible to place a Graph control inside
aNode to create the notion of a subgraph.

[_The Graph Layout classes

Graph Layout classes are also present in the ILOG.Control s.Diagram namespace so that
you can specify both by code or in XAML how your graph should be arranged. The
classes are providing the same algorithms as the classes provided for the Windows
Forms and ASPNET classes of IBM |LOG Diagram for .NET but are implemented as
WPF dependency objects. See Using Graph Layout Algorithmsto learn about the various
options available for Graph Layout algorithms, such as Tree Layout or Hierarchical
Layout algorithms. Note that some of the advanced functionalities of the Graph Layout
library are not reported in WPF.

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

Creating a Graph Display from a Data
Source Using the Diagram Control

An easy way to create a graph representation in WPF is to use the Diagram class. The
Diagram classis a WPF control that can automatically create a graph composed of nodes
and links from any source of data. If you are familiar with WPF then you must have aready
used a WPF ListBox bound to a data source. A WPF ListBox bound to a data source will
automatically befilled with items that are instances of ListBoxItem. Then, it is possible to
provide adatatemplate to specify how aListBoxItem isrendered depending on the data. For
the Diagram class, the concept is very similar: once the diagram is bound to a data source,
the Diagram control is automatically filled with Node objects that represent the nodes of the
graph. For each item in the data source a Node instance is created to represent the item. Of
coursg, it is also necessary to specify the relations between items in the data source so that
links between the nodes (instance of the Link class) can be created and rendered. The
relations between items will also be expressed using the WPF binding system.

In This Section

A First Example Using the Diagram Control
Provides an example that shows how to use the Diagram control.

Foecifying the Data Sources of a Diagram
Explains how to specify the data sources of a diagram.

Making the Diagram Reflect the Changes in my Data Source

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 9

Explains how to make the diagram reflect the changes in a data source.
Populating a Diagram Using the Nodes and Links Collections

Explains how to populate a diagram using nodes and links collections.
Syling Nodes and Linksin a Diagram

Describes how to customize the representation of the nodes and links to your
particular needs.

Selectionin a Diagram
Explains how to select nodes in adiagram.
Zoomin a Diagram
Explains how to zoom in and out the graph displayed.
Foecifying Graph Layout Algorithmsin a Diagram
Describes the graph layout algorithms in a diagram.

A First Example Using the Diagram Control

This basic example uses an XML data source. In this example, you will render a graph from
data stored in XML inthe data.xml file. Let's assume that the XML data represents the
organization of acompany as a hierarchy of employees. The XML looks like this:

<employee name="employee 1">
<employee name="employee 2" />
<employee name="employee 3">
<employee name="employee 5"/>
<employee name="employee 6"/>
</employees>
<employee name="employee 7"/>
</employees>

Employee 1 manages employees 2, 3 and 7; employee 3 manages employees 5 and 6.
The following extract of XAML shows a Diagram object bound to this XML data source.

<Window x:Class="Sample"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:ilog="http://www.ibm.com/diagrammer.net/2008"
Title="WPF Diagram Example" Height="300" Width="300">
<Window.Resources>
<XmlDataProvider x:Key="xmldata" Source="data.xml"/>
</Window.Resources>
<Grid>
<ilog:Diagram
NodesSource="{Binding Source={StaticResource xmldata},
XPath=//employee}"
SuccessorsBinding="{Binding XPath=employee}"

10 IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

DisplayMemberBinding="{Binding XPath=@name}"/>
</Grid>
</Window>

As shown in this code extract, the first thing to do is to declare the XML namespace for the
WPF controls of IBM® ILOG® Diagram for .NET. The following line declaresanew XML
namespace named i 1og that will be used later with the IBM ILOG Diagram for .NET WPF
classes:

xmlns:ilog="http://www.ibm.com/diagrammer.net/2008"

The following lines declare an xm1DataProvider (Stored into the resources of the
Window) that reads the data.xm1 file.

<Window.Resources>
<XmlDataProvider x:Key="xmldata" Source="data.xml"/>
</Window.Resources>

The last part of the code extract declares the Diagram control:

<ilog:Diagram
NodesSource="{Binding Source={StaticResource xmldata}, XPath=//employee}"
SuccessorsBinding="{Binding XPath=employee}"
DisplayMemberBinding="{Binding XPath=@name}"/>

The NodesSource property should be a collection of items that will be represented as nodes
in your graph. Here, the NodesSour ce property refers to the xm1DataProvider through a
WPF binding declaration with an xpath specified as'//employee'. ThexpPath
specification indicates that the nodes in the graph will be all the XML elements with the tag
name ' employee’ inthe document whatever the level of the element in the XML
document is.

The SuccessorsBinding property is used to indicate the relations (the links) between the
nodes. There are several ways to indicate the rel ations between the nodes; the

Successor sBinding property represents a binding from one item in the data source to the
collection of itemsthat are successors of thisitem. Here, the Successor sBinding specifiesa
binding with an XPath of 'employee’. Thistellsthe diagram that the successors of an
employee should be the children XML elements with tag name 'employee’. For more
information on how to specify the relations between nodes, see Specifying the Data Sources
of a Diagram.

The DisplayMemberBinding specifies what you want to display inside anode. Here, it
specifies that you want to display the 'name' attribute of the XML element. The

DisplayM ember Binding specifies a smple representation in the nodes of the graph. For a
more complex representation you would use styling and templating as described in Syling
Nodes and Linksin a Diagram.

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 11

This XAML declaration will give the following result:

employes 2
/ employes 5
..-'-F”"Ff
employes 1 employes 3
\ employes &
employes 7

By default, the Diagram control will automatically arrange the resulting graph with a
Hierarchical Layout algorithm. To change the layout a gorithm use the GraphL ayout
properties and choose between the various algorithms such as TreelL ayout,
HierarchicalLayout, ForceDirectedLayout and more. Each algorithm has many options that
allow you to tailor the placement of nodes and the shape and connection points of the links.

By dightly modifying the Successor sBinding property you can get different graphs. Here
are some examples:

The following binding specifies that each employee has for successors the employee named
'employee 3"

SuccessorsBinding="{Binding XPath=//employee [@name\=\"'employee 3\']}"

12 IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

With this binding, you can get the following graph:

employes 2

employes 5

BN

employes & employes 3 -:i:]

employss 7

employes 1

You have noted the 'self link' from ‘employee 3’ toitsdlf.

Thefollowing Successor sBinding specifies that each employee has for successorsthelist of
all employees:

SuccessorsBinding="{Binding XPath=//employee}"

With this binding, you can get a much more complex graph:

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 13

employes 6 [F=—__|

To learn all the possibilities about data binding to graph data, see Specifying the Data
Sources of a Diagram.

Specifying the Data Sources of a Diagram

14

Within a Diagram control, the data source that represents all the nodes of the graph can be
specified through the NodesSource property of the Diagram class. This property is of type
| Enumerable so anything that can be enumerated can be used as the source of data, in
particular the data source provider classes that are part of WPF: ObjectDataProvider and
XML DataProvider that will allow you to do things like sorting or filtering but also simple
arrays or collections of objects.

The NodesSour ce property is not sufficient to represent graph data, it is also necessary to
specify the relations between the items in the data source.You can do this by using bindings
that define implicit relationships between nodes, or using a second data source,
LinksSource, which contains explicit relationshi ps between nodes. Note that these two ways
of defining links are not exclusive; you can use both in the same diagram.

In This Section
Defining Links Using Implicit Relations
Describes the properties that allow you to specify the relations between the items.
Defining Links Using Explicit Relations
Explains how to specify explicit relations between nodes.

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

Defining Links Using Implicit Relations

The Diagram class contains three properties that allow you to specify the relations between
the items. You only need to use one of these three properties and choose the one that best
corresponds to the way your data source is organized. The three binding properties are
SuccessorsBinding, PredecessorsBinding and ParentBinding.

The Successor sBinding property alows you to specify a WPF binding from an item in the
data source to its "successors'. The source of this binding is oneitem in the data source and
theresult must be the list of the successors of thisitem. Each successor should also be part of
the data source that you have specified through the NodesSour ce property. Through this
binding specification you notify the Diagram that there is arelation between an item in the
data source and other items (successors) in the data source. By knowing these relations, the
Diagram can render directed links from an item to its successors. For each relation a Link
instance is created.

The Predecessor sBinding is similar to the Successor sBinding. The source of the binding is
also an item in the data source and the result must be alist of items (also in the data source)
that represents the predecessors of the item. By knowing these relations, the Diagram will
generate adirected link from each predecessor to its successor. Again, aLink instance will
be created for each relation.

The ParentBinding is similar to the Predecessor sBinding. The source of the binding isan
item in the data source but the result is another item of the data source that represents the
parent of the item. Only one single link will be created from the parent to the child.
Therefore, the ParentBinding is equivalent to a Predecessor sBinding with asingle
predecessor. The ParentBinding is used to simplify the binding when each item has only a
single parent item.

For example, suppose that you need to represent an organization chart. The data source will
be alist of employees represented by the Employee class.

The Employee class provides a property that represents the manager of this employee and a
property that represents the list of employees managed by this employee. We will obtain a
C# class with the following skeleton:

public class Employee {
public Employee Manager {get; set;}
public List<Employee> ResponsibleFor {get;}

}

If your data sourceisalist of all the employees of the company, you can specify the relation
in two different ways:

In XAML (assuming that al1Employees isaresource defined earlier in the XAML
representing a collection of al the employees):

<ilog:Diagram
NodesSource="{Binding Source={StaticResource allEmployees}}"

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 15

16

SuccessorsBinding="{Binding ResponsibleFor}"

/>

or

<ilog:Diagram
NodesSource="{Binding Source={StaticResource allEmployees}}"
ParentBinding="{Binding Manager}"

/>
In C#:

List<Employee> allEmployees = ..

Diagram diagram = new Diagram() ;

diagram.NodesSource = allEmployees;
diagram.SuccessorsBinding = new Binding ("ResponsibleFor") ;

or

List<Employee> allEmployees = ..

Diagram diagram = new Diagram() ;
diagram.NodesSource = allEmployees;
diagram.ParentBinding = new Binding("Manager") ;

Note: The resulting type of the binding specified in the SuccessorsBinding or
PredecessorsBinding properties must be | Enumerable which is the case in the example,
wherethe ResponsibleFor property is defined with the type List <Employees.

Through the Predecessor sBinding and Successor sBinding properties you can create any
type of graph. Thereis no constraint in the successors or predecessors of an item, except that
they must be part of the data source. For example, the sameitem may appear severd timesin
the successors or predecessors of an item. An item can be the successor of himself and this
will generate a'self link' (alink from the item to itself). You can easily create cyclic graphs
or agraph composed of several disconnected parts. Asyou are specifying only one relation
from an item to its parent item, the ParentBinding property is more suitable for defining a
simple hierarchy that can be displayed as atree.

Note that the example is rather simple and this is mainly because our Employee class
provides properties that are easy to bind to. It may happen that the relations between items
are more complex and require some computation. In this caseit is still possible to use a
binding and the Converter property of the binding. By specifying aconverter in the binding
you will be able to code more complex relations between items of the data source.

When using a converter in the binding, the value to convert isthe item in the data source
from which you want to find the successors or predecessors and the result should be the
collection (I Enumer able) of the successors or predecessors of thisitem. An example of this
technique can be found in Samples/ApplicationsWPFCritical Path.

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

Defining Links Using Explicit Relations

Instead of (or in addition to) defining implicit relations between nodes using the
Successor sBinding, Predecessor sBinding or ParentBinding properties, you can use the
LinksSour ce property to specify a collection of explicit relations between nodes.

Like the NodesSour ce property, the LinksSour ce property must contain an | Enumerable
object. Theitemsin the LinksSource are enumerated, and each item will be represented by
aLink inthe Diagram.

To tell the Diagram which nodes alink will be connected to, you need to specify two more
bindings through the StartBinding and EndBinding properties. These properties specify the
itemsin the NodesSour ce that represent the start and end of the link.

For example, look at the XML data source example in A First Example Using the Diagram
Control. Sometimes, you need to define "dotted-line" relationships between employees (for
example, an employee may have a direct manager and another supervisor). Such relations
can be represented by additional elements of tag dottedline inthe XML datafile:

<employee name="employee 1">
<employee name="employee 2"/>
<employee name="employee 3">
<employee name="employee 5"/>
<employee name="employee 6"/>
</employees>
<employee name="employee 7"/>
<dottedline dotted="true" from="employee 1" to="employee 5"/>
</employee>

To display the new dotted-line links, you must modify the XAML as follows:

<ilog:Diagram
NodesSource="{Binding Source={StaticResource xmldata},
XPath=//employee}"
LinksSource="{Binding Source={StaticResource xmldata},
XPath=//dottedline}"
SuccessorsBinding="{Binding XPath=employee}"
StartBinding="{Binding XPath=@from}"
EndBinding="{Binding XPath=@to}"
NodeNameBinding="{Binding XPath=@name}"
DisplayMemberBinding="{Binding XPath='@name'}">
</ilog:Diagram>

We added three declarations: SartBinding and EndBinding specify the names of the start
and end nodes, while NodeNameBinding specifies that the names correspond to the name
attribute of each node.

The resulting graph looks like this:

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 17

You also added the following style to make the new link appear as a dotted line:

<Window.Resources>

<Style TargetType="ilog:Link">
<Style.Triggers>
<DataTrigger Binding="{Binding XPath='@dotted'}" Value="true"s>
<Setter Property="StrokeDashArray" Value="4,4" />
</DataTriggers>
</Style.Triggers>
</Style>
</Window.Resources>

Instead of specifying node names asin this example, the SartBinding and EndBinding
properties can also specify the start or end nodes directly (that is, the bindings can specify
properties whose value are the data items that correspond to the start/end nodes). In that
case, it is not necessary to specify the NodeNameBinding.

Making the Diagram Reflect the Changes in my Data Source

18

You can create a graph over any collection of items that implements | Enumer able.
However, to set up dynamic bindings so that insertions or deletionsin the collection of nodes
or in the predecessors or successors collection update the graph automatically, the
collections must implement the | NotifyCollectionChanged interface. This interface
exposes the CollectionChanged event that is raised whenever the underlying collection
changes.

WPF provides the ObservableCollection< T> class, which isabuilt-in implementation of a
data collection that exposes the I NotifyCollectionChanged interface.

When using the ParentBinding property, the modification of the property that represents the
parent must be notified to the Diagram. This must be done by implementing the
INotifyPropertyChanged interface of the NET platform.

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

If we need dynamic binding in the above exampl e, we would implement the Employee class
asfollow:
public class Employee : INotifyPropertyChange {

public Employee Manager {get; set;}
public ObservableCollection<Employee> ResponsibleFor {get;}

}

A full example using dynamic binding can be found in
QuickSart/WPFGraphDynamicBinding. This example shows aso how to use the
ListCollectionView class of the WPF platform to enable filtering in the graph.

Populating a Diagram Using the Nodes and Links Collections

Instead of using the NodesSour ce and/or LinksSour ce properties, you can add nodes and
linksdirectly to a Diagram using the Nodesand L inks properties. Theinitial values of these
properties are empty collections. You can add either Node or Link objects that will be added
directly to the underlying Graph, or you can add data items that will be translated to Node
or Link objects, using the same process and properties as explained in Specifying the Data
Sources of a Diagram.

Note that, even if you specified a data source using the NodesSour ce and/or L inksSour ce
properties, you can also use the Nodes and Links properties to add more nodes or links to
the Diagram, provided that the specified data source(s) are collections and are not
read-only.

Styling Nodes and Links in a Diagram

The Diagram component generates instances of the Node class to represent the itemsin the
data source and instances of the Link classto represent the rel ations between items. By using
the WPF styling and templating features, it is possible to tailor the representation of the
nodes and links to your particular needs. This section introduces the various ways to style
the nodes and the links. For more information on WPF styling and templating features see
the WPF documentation.

In This Section

Syling Nodes and Links Using Basic Syle Features
Explains how to use basic features to style nodes and links.

Syling Nodes with Data Templ ates and Data Template Selectors
Explains how to use data templates to style nodes.

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 19

20

Changing the Control Template of the Node Class

Describes how to change the Control template of the Node class.
Creating a Syle of Links that Depends on the Data

Explains how to create a style of links that depends on the data.

Styling Nodes and Links Using Basic Style Features

In a Diagram control, you style the nodes of your diagram by using the styling and
templating features of WPF. In this section, you will find some techniques that can be
applied to the nodes of a diagram.

Imagine that you want to display the same XML file that represents a hierarchy of employee:

<employee name="employee 1">
<employee name="employee 2" />
<employee name="employee 3">
<employee name="employee 5"/>
<employee name="employee 6"/>
</employee>
<employee name="employee 7"/>
</employees>

The Diagram control is defined with following markup:

<ilog:Diagram
NodesSource="{Binding Source={StaticResource xmldata}, XPath=//employee}"
SuccessorsBinding="{Binding XPath=employee}"
DisplayMemberBinding="{Binding XPath=@name}"/>

Without any styling the diagram appears like this:

employes 2
/ employes 5
ﬂﬁﬁ#f}
employees 1 employes 3
\ employee &
employes 7
IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

Thefirst thing to do isto define a WPF Style that will apply to al the nodes. Hereisastyle
definition that specifies some properties of the Node class:

<Window.Resources>

<!-A style that affects all nodes-->

<Style TargetType="ilog:Node">
<Setter Property="Padding" Value="10"/>
<Setter Property="FontFamily" Value="Georgia"/>
<Setter Property="FontSize" Value="14"/>
<Setter Property="FontWeight" Value="bold"/>
<Setter Property="Background" Value="Silver"/>
<Setter Property="Foreground" Value="White"/>
<Setter Property="BorderBrush" Value="Gray"/>
<Setter Property="BorderThickness" Value="4"/>
<Setter Property="CornerRadius" Value="4"/>

</Style>

</Window.Resourcess>

With this style in place the diagram now appears like this:

/
B
\

You can aso define astyle for the Link class to change the appearance of all links: the
following example defines a specific thickness, a color and an end arrow for all links.

<Style TargetType="ilog:Link">
<Setter Property="StrokeThickness" Value="4"/>
<Setter Property="Stroke" Value="Silver"/>
<Setter Property="EndArrow">
<Setter.Value>
<ilog:LinkArrow Shape='curved' Fill="gray"/>
</Setter.Value>
</Setters>

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 21

22

</Style>

The diagram now looks like this:

Note that some properties of the Link class that control the connection points and bend
points of the links may not be taken into account when the graph is automatically arranged
by the graph layout algorithm specified in a Diagram. Some graph layout a gorithm will
completely define the shape and connection points of the links and in this case the properties
such as Points, StartAnchorPosition, EndAnchorPosition, StartAnchorOffset,
EndAnchorOffset, and ShapeType of the Link class will not be taken into account. To
change the shape of links or the way they are connected, you will have to change the
properties on the Graph Layout instance used to layout the graph. For more information on
this, see Specifying Graph Layout Algorithmsin a Diagram.

Styling Nodes with Data Templates and Data Template Selectors

In a Diagram control, you can decide what to display in a Node by specifying a WPF
DataTemplate for the nodes generated by the Diagram. The Diagram control defines the
NodeTemplate property (of type DataTemplate) that lets you define the appearance of the
nodes and the bindings between the properties of the node and the item in the data source.

Each XML element in the data source has a name attribute that you may want to display in
the nodes. The following data templ ate displays the namein a WPF TextBlock element with
asmall elipse on the left using the WPF Ellipse element.
<DataTemplate x:Key="nodeTemplate">

<StackPanel Orientation="Horizontal"s>

<Ellipse Fill="red" Width="10" Height="10"/>
<TextBlock Margin="5,0,0,0" Text="{Binding XPath=@name}"/>

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

</StackPanel>
</DataTemplate>

While specifying a data template for nodes, you can bind to the data that this node
represents. The data context of the node is the item in the data source that this node
represents, in this case an XML element.

The full markup file would be as follows:

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:ilog="http://www.ibm.com/diagrammer.net/2008"
Title="WPF Diagram Example" Height="333" Width="455">
<Window.Resources>
<XmlDataProvider x:Key="xmldata" Source="data.xml"/>
<Style TargetType="ilog:Node">
<Setter Property="Padding" Value="10"/>
<Setter Property="FontFamily" Value="Georgia"/>
<Setter Property="FontSize" Value="14"/>
<Setter Property="FontWeight" Value="bold"/>
<Setter Property="Background" Value="Silver"/>
<Setter Property="Foreground" Value="White"/>
<Setter Property="BorderBrush" Value="Gray"/>
<Setter Property="BorderThickness" Value="4"/>
<Setter Property="CornerRadius" Value="4"/>
</Style>

<Style TargetType="ilog:Link">
<Setter Property="StrokeThickness" Value="4"/>
<Setter Property="Stroke" Value="Silver"/>
<Setter Property="EndArrow">
<Setter.Value>
<ilog:LinkArrow Shape='curved' Fill="gray"/>
</Setter.Value>
</Setters>
</Style>

<DataTemplate x:Key="nodeTemplate">
<StackPanel Orientation="Horizontal"s>
<Ellipse Fill="red" Width="10" Height="10"/>
<TextBlock Margin="5,0,0,0" Text="{Binding XPath=@name}"/>
</StackPanel>
</DataTemplate>
</Window.Resources>
<Grid>
<ilog:Diagram
NodeTemplate="{StaticResource nodeTemplate}"
SuccessorsBinding="{Binding XPath=employee}"
NodesSource="{Binding Source={StaticResource xmldata},
XPath="'//employee'}"/>
</Grid>
</Window>

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

23

24

And the resulting graph looks like this:

b4
e
»
@ }|.
b
e
p 9
L

Note that the DataTemplate class also allows you to specify triggers that are used to set
values in the template depending on some conditions. In the markup below, the data
template has been modified so that an employee with name equal t0 'employee 1'hasa
blue ellipse instead of ared one.

<DataTemplate x:Key="nodeTemplate">
<StackPanel Orientation="Horizontal"x>
<Ellipse x:Name="ellipse" Fill="red" Width="10" Height="10"/>
<TextBlock Margin="5,0,0,0" Text="{Binding XPath=@name}"/>
</StackPanel>
<DataTemplate.Triggers>
<DataTrigger Binding="{Binding XPath=@name}" Value="employee 1">
<Setter Property="Fill" TargetName="ellipse" Value="blue"/>
</DataTriggers>
</DataTemplate.Triggerss>
</DataTemplate>

You may also decide to have different data templates depending on some logic that you want
to code. In this case, create a subclass of the DataTemplateSelector class and override the
SelectTemplate method.
For example, define a different template for managers and non-managers:
<Window.Resources>
:DataTemplate x:Key="managerNodeTemplate">
<StackPanel>

<Label
HorizontalAlignment='center'

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

FontSize='10"
FontStyle="Italic"
Content="Manager"/>
<TextBlock Text="{Binding XPath=ename}"/>
</StackPanel>
</DataTemplate>

<DataTemplate x:Key="nodeTemplate">
<StackPanel Orientation="Horizontal"s>
<Ellipse Fill="red" Width="10" Height="10"/>
<TextBlock Margin="5,0,0,0" Text="{Binding XPath=@name}"/>
</StackPanels>
</DataTemplate>

</Window.Resources>

In the following example, the Select Template method provides logic to return the
appropriate template wether the XML employee element has subemployee elements or not.
The template to return is found in the resources of the enveloping Window element.

public class EmployeeDataTemplateSelector : DataTemplateSelector

{
public override DataTemplate SelectTemplate (object item, DependencyObject
container)
XmlElement element = item as XmlElement;
if (item != null)
{

Window window = Application.Current.MainWindow;

if (element.GetElementsByTagName ("employee") .Count != 0)
return
window.FindResource ("managerNodeTemplate") as DataTemplate;
else
return

window.FindResource ("nodeTemplate") as DataTemplate

}

return null;

}

Then, you can declare the data template selector as aresource:
<Window.Resources>
<local: EmployeeDataTemplateSelector x:Key="employeeDataTemplateSelector"/>

</Window.Resources>

To use the template selector resource, assign it to the NodeTemplateSel ector property of the
Diagram class. The Diagram calls the SelectTemplate method of the
EmployeeDataTemplateSelector for each of the itemsin the underlying collection. The
call passesthe data object asthe item parameter. The DataTemplate returned by the method
isapplied to that data object.

<ilog:Diagram
NodeTemplateSelector="{StaticResource employeeDataTemplateSelector}"

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 25

SuccessorsBinding="{Binding XPath=employee}"
NodesSource="{Binding Source={StaticResource xmldata} ,
XPath="'//employee'}"/>

With the template selector in place the graph looks like this:

v
L
»
Manager - Monager
.
L
A
]

Through the NodeTempl ate property, you can combine all the WPF elements to create any
kind of representation for the nodes.

Changing the Control Template of the Node Class

The Node classis a subclass of the ContentControl class, thusaNodeisaWPF control and
has a Control Template that you can modify. By default, the control template of the node
represents a node by a WPF Border that encapsulates a ContentPresenter (remember that
the content presenter is there for representing the content of a ContentControl, in this case
the content of the node). One way to change the appearance of nodesisto change the control
template of the Node class. Here is the default control template:

<ControlTemplate TargetType="{x:Type local:Node}">
<Border
SnapsToDevicePixels="true" x:Name="Border"
Background="{TemplateBinding Background}"
BorderBrush="{TemplateBinding BorderBrush}"
BorderThickness="{TemplateBinding BorderThickness}"
CornerRadius="{TemplateBinding CornerRadius}"
Padding="{TemplateBinding Padding}">
<ContentPresenter

SnapsToDevicePixels="{TemplateBinding SnapsToDevicePixels}"
HorizontalAlignment="{TemplateBinding

26 IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

HorizontalContentAlignment}"

VerticalAlignment="{TemplateBinding VerticalContentAlignment}"/>
</Borders>

<ControlTemplate.Triggers>
<Trigger Property="IsSelected" Value="true">
<Setter Property="Background" TargetName="Border"
Value="{DynamicResource {x:Static
SystemColors.HighlightBrushKey}}"/>
<Setter Property="Foreground"
Value="{DynamicResource {x:Static
SystemColors.HighlightTextBrushKey}}"/>
</Triggers>
<MultiTriggers>
<MultiTrigger.Conditions>
<Condition Property="IsSelected" Value="true"/>
<Condition Property="local:Diagram.IsSelectionActive"
Value="false"/>
</MultiTrigger.Conditions>
<Setter Property="Background" TargetName="Border"
Value="{DynamicResource {x:Static
SystemColors.ControlBrushKey}}"/>
<Setter Property="Foreground"
Value="{DynamicResource {x:Static
SystemColors.ControlTextBrushKey}}"/>
</MultiTriggers>
<Trigger Property="IsEnabled" Value="false">
<Setter Property="Foreground"
Value="{DynamicResource {x:Static
SystemColors.GrayTextBrushKey}}"/>
</Triggers>
</ControlTemplate.Triggers>
</ControlTemplate>

Let's change the control template for a new one that adds a Path element representing an
employee on the | eft of the ContentPresenter.

The full markup file would be as follows:

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:ilog="http://www.ibm.com/diagrammer.net/2008"
xmlns:local="clr-namespace:Sample"
Title="WPF Diagram Example" Height="336" Width="475">
<Window.Resources>
<ControlTemplate x:Key="myControlTemplate" TargetType="ilog:Node">
<Border
SnapsToDevicePixels="true" x:Name="Border"
Background="{TemplateBinding Background}"
BorderBrush="{TemplateBinding BorderBrush}"
BorderThickness="{TemplateBinding BorderThickness}"
CornerRadius="{TemplateBinding CornerRadius}"
Padding="{TemplateBinding Padding}">
<StackPanel Orientation="Horizontal">
<Path x:Name="user" Fill="{TemplateBinding Foreground}"
Data="M9.93 0C7.82 0 6.12 1.70 6.12 3.80C6.12 4.62 6.38
5.38 6.82
6.01C3.14 6.88 -1.91 10.58 0.62 11.85Q09.79 16.35 19.24

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 27

28

11.85C21.83 10.67 16.54 7.01 13 6.07C13.46 5.44 13.74
4.66 13.74 3.80C13.74 1.70 12.03 0 9.93 0z"/>
<ContentPresenter />
</StackPanel >
</Borders>
<ControlTemplate.Triggers>
<Trigger Property="IsSelected" Value="true">

<Setter Property="Fill" TargetName="user" Value="blue"/>
</Trigger>
</ControlTemplate.Triggers>
</ControlTemplate>

<Style TargetType="ilog:Node">

<Setter Property="Template"
Value="{StaticResourcemyControlTemplate}"/>

<Setter Property="Padding" Value="10"/>
<Setter Property="FontFamily" Value="Georgia"/>
<Setter Property="FontSize" Value="14"/>
<Setter Property="FontWeight" Value="bold"/>
<Setter Property="Background" Value="Silver"/>
<Setter Property="Foreground" Value="White"/>
<Setter Property="BorderBrush" Value="Gray"/>
<Setter Property="BorderThickness" Value="4"/>
<Setter Property="CornerRadius" Value="4"/>

</Style>

<Style TargetType="ilog:Link">
<Setter Property="StrokeThickness" Value="4"/>
<Setter Property="Stroke" Value="Silver"/>
<Setter Property="EndArrow">
<Setter.Value>
<ilog:LinkArrow Shape='curved' Fill="gray"/>
</Setter.vValue>
</Setters>
</Style>
<XmlDataProvider x:Key="xmldata" Source="data.xml"/>
<DataTemplate x:Key="nodeTemplate">
<StackPanel Orientation="Horizontal"s
<TextBlock Margin="5,0,0,0" x:Name="text"
Text="{BindingXPath=@name}"/>
</StackPanel>
</DataTemplate>
</Window.Resources>
<Grids>
<ilog:Diagram
NodeTemplate="{DynamicResource nodeTemplate}"
SuccessorsBinding="{Binding XPath=employee}"
NodesSource="{Binding Source={StaticResource xmldata},
XPath='//employee'}" />
</Grid>
</Window>

The new Control Template for the Node is specified in the style defined for the Node class
through the Template property. A trigger in the template changes the Fill property of the
Path to blue when the node is selected (the | sSelected property of the Node istrue). This
control template gives the following result when employee 3 isselected.

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

' I
=
hl&
) I
F

Creating a Style of Links that Depends on the Data

In Syling Nodes with Data Templates and Data Template Selectors you have seen that the
NodeTemplate property can be used to create a representation for the nodes that depends on
the data. The data context of anode isthe item in the data source that this node represents,
that iswhy in a node data template you can bind to the properties of the item in the data
source. However, the situation is different for the links. A link represents the relation
between two nodes in the data source. For this reason, links created by the Diagram control
have a specific data context to enable specific bindings. This context is an instance of the
Diagram.LinkContext class. This class has two properties. Startlitem and Endltem. These
two properties give access to the two items in the data source that corresponds to the Link
instance.

The following example defines a style that will change the color of the link to red, when the
start item and end item in the data source are critical. This example assumesthat theitemsin
the data source are instances of a class that defines a Boolean property named "Critical".

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 29

<Style TargetType="ilog:Link">
<Setter Property="Stroke" Value="Silver"/>
<Style.Triggers>

<MultiDataTriggers>
<MultiDataTrigger.Conditions>
<Condition Binding="{Binding Path=StartItem.Critical}" Value="true" />
<Condition Binding="{Binding Path=EndItem.Critical}" Value="true" />
</MultiDataTrigger.Conditions>
<Setter Property="Stroke" Value="Red" />
</MultiDataTriggers>

</Style.Triggers>
</Style>

Selection in a Diagram

30

The Diagram control has a built-in selection system that allows you to select the nodesin a
graph. The node gets selected when you click it. The selection system is similar to the
system in the WPF ListBox: for example, you can use the SelectionM ode property to specify
asingle or multiple selection mode.

You can also select the links of the graph, provided that they were created from items
contained in the L inksSour ce data source or that they have been added to the Links
collection. In other terms, you cannot select alink that was created implicitly by the
Successor sBinding, Predecessor sBinding or ParentBinding properties, because in that
case there is no data item associated with the Link.

When the SelectionM ode property is Single, you can select only one single node and you
may get or set the item selected in the data source through the Selecteditem property. When
the SelectionM ode is Multiple or Extended, you may select several nodes and the
Selectedltems property reflectsthe itemsthat are selected in the data source. You may add or
remove an item from the selection by adding or removing itemsin the Selectedltems
collection.

When items get selected or deselected, the Diagram control fires events that you can listen
through the SelectionChanged event.

The Selectedl tem and Selected|tems property are dependency properties. For example, you
can use these properties with the WPF binding system to keep some parts of your interface
synchronized with the selection in the diagram.

Note that the Node and Link classes has a dependency property named IsSelected that is
truewhen the node or link is selected and fal se otherwise. This property isvery useful when
styling a node; you may have a WPF trigger on the style that changes the look of the node
based on the value of the | sSelected property. You can see an example of thistechniquein
Changing the Control Template of the Node Class.

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

Zoom in a Diagram

The Diagram control allows you to zoom in and out the graph displayed through the Zoom
property. A Zoom value of 100 represents the normal size of the diagram. You can control
the minimum and maximum zoom level through the MinZoom and MaxZoom properties.

The Diagram class has the following built-in commands that alow you to easily control the
zoom level:

[IhcreaseZoomCommand: to zoom in,

[DecreaseZoomCommand: to zoom oult,

[—ZoomTo100PercentCommand: to set the zoom to 100,

[ZoomToFitCommand: to zoom so that the graph fitsin the diagram control.

The graph itself is displayed inside a WPF scroll viewer. Asyou zoom in, scroll bars appear
to allow you to scroll in the graph. The Horizonta ScrollBarVisibility and
Vertical ScrolIBarVisibility allows you to control the visibility of the scroll bars.

Finally, the Horizontal DiagramAlignment and Vertical DiagramAlignment properties allow
you to control the alignment of the graph inside the scroll viewer.

Specifying Graph Layout Algorithms in a Diagram

Inside a Diagram control, the nodes and links that are generated from the data source are
automatically arranged by a Graph Layout algorithm that places the nodes and the links. You
can specify the algorithm through the GraphL ayout property of the Diagram class. By
default, a Hierarchical Layout instance is specified in this property, but a set of algorithms
are present to cover various types of graph data.

The following example specifies a TreeL ayout algorithm on a Diagram object:

<ilog:Diagram ..>
<ilog:Diagram.GraphLayout >
<ilog:TreelLayout FlowDirection="Bottom" LinkStyle="Orthogonal"/>
</ilog:Diagram.GraphLayout>
</ilog:Diagram>

Note that most of the Graph Layout algorithms have per-node and per-link properties, they
are implemented as attached properties that you can specify on the Node or Link instance.
For example, in the Treel ayout algorithm you can specify an attached property named
Alignment for each Node instance. This property defines the alignment of a node with
respect to its children. In a Diagram object you may use these attached properties when
defining a style for the Link class or a style, a control template or a datatemplate for a
Node.

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 31

32

The following code extract provides an example of style for nodes. All the nodes have the
Alignment property set to East except the nodeswith the Critical property to true, that will
have the Alignment set to Center. (It is assumed that itemsin the data source have a
Boolean property named Critical).

<Style TargetType="{x:Type ilog:Node}">
<Setter Property="ilog:TreeLayout.Alignment" Value="East"/>
<Style.Triggers>
<!-- All nodes are aligned with East mode except the root that is Centered"
<DataTrigger Binding="{Binding Path=Critical}" Value="true" >
<Setter Property="ilog:Treelayout.Alignment" Value="Center"/>
</DataTriggers>
</Style.Triggerss>
</Style>

-->

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

Creating a Graph by Specifying Nodes and
Links

The Diagram control (as explained in Creating a Graph Display from a Data Source Using
the Diagram Control) creates a graph from a data source and generates nodes and links
instances of the Node and Link classes to render the data inside the data source. However, it
isalso possibleto create a graph by creating instances of the Node and Link classes and use
them directly inside any WPF container.

There are various ways to create a graph using the Node and Link classes.

You can use Node and Link instancesin any WPF container, for example a Canvas. In this
case you create Node instances connected by Link instances and you add them as children
of the Canvas. Then, you are responsible for placing the nodesin the Canvas and specifying
the link shape. The Canvas does not do an automatic layout of your graph, but you may
execute a Graph Layout algorithm as needed.

You may also use Node and Link instances inside a Graph control. This control isvery
similar to aWPF Canvas and allows you to specify the position of nodes through the
Graph.Left and Graph.Top attached properties, as when you specify the positionsin a
Canvas using the Canvas.L eft, Canvas.Top, Canvas.Bottom and Canvas.Right
properties. The differenceisthat the Graph control has a property named GraphL ayout and
aproperty named LinkLayout. You may use these properties to specify a Graph Layout
agorithm to layout the graph automatically, for example you may specify a Treel ayout
instance in the GraphL ayout properties and the nodes and links will be automatically

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 33

arranged as a tree when you add/remove nodes and links or as the desired size of node
changes.

Finally, athird possibility isto create Node and Link instances and add them to the Nodes
and Links properties of a Diagram. Thistechnique is similar to the previous one (adding
nodes and links in a Graph control), but the advantage is that the Diagram control offers
zooming and scrolling.

In This Section
Creating Nodes and Links
Explains how to create nodes and links.
Example of Nodes and Links in a Canvas
Provides examples of nodes and linksin a Canvas.
Example of Nodes and Links in a Graph with TreeLayout
rovides examples of nodes and links in a graph with TreeLayout.
Controlling the Connection Points of Links
Explains how the link is connected to the start and end nodes.
Soecifying the Link Shape
Explains how to control the shape of the link.
Color, Thickness and Other Appearance Properties of a Link
Describes how to control appearance properties of alink.

Customizing the Arrows of a Link
Describes how to customize the arrows of alink.

Creating Nodes and Links

34

Using the Node and Link classes you can create a graph representation. The Node classis a
WPF 'content control’. This means that you may add any kind of content inside a node, thus
you may combine any WPF elements to create any kind of representation inside a node.

The following example shows how to create a node represented by an ellipse:

<ilog:Node BorderThickness="0" Padding="0">
<Ellipse Width="50" Height="50" Fill="red"/>
</ilog:Node>

You connect two nodes by an instance of the Link class. The Link class defines two
properties, Start and End, that specify where the link should visually start and end.
Alternatively, you can use the StartName and EndName property of the Link classto specify

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

the start and end node. Then, you will use the SartName and EndName properties to
define the names of the start and end nodes respectively.

Note that it is not necessary to have the link, the start and the end nodes inside the same
container. For example, two nodes can be placed inside two different Canvas and thelink in
another one. The only restriction is that the start and end nodes should have a common
ancestor with the link.

The links that are starting at a node can be retrieved through the FromLinks property of the
Node class, while the links that are ending at a node can be retrieved through the ToLinks

property.

Example of Nodes and Links in a Canvas

Hereisasmall markup declaration for four nodes and four linksin a Canvas:

<Canvas>

<ilog:
<ilog:
<ilog:
<ilog:
<ilog:
<ilog:
<ilog:
<ilog:

</Canvas>

Node
Node
Node
Node
Link
Link
Link
Link

Canvas.Top="0"
Canvas.Top="50"
Canvas.Top="50"
Canvas.Top="100"
StartName="node2"
StartName="nodel"
StartName="node3"
StartName="node4"

Canvas.Left="100" x:Name="nodel">Node
Canvas.Left="0" x:Name="node2" >Node
Canvas.Left="200" x:Name="node3">Node
Canvas.Left="100" x:Name="node4">Node
EndName="nodel"></ilog:Link>
EndName="node3"></ilog:Link>
EndName="node4"></ilog:Link>
EndName="node2"></ilog:Link>

This piece of markup will produce the following graph:

The same graph can be created in C# using the following code:

public void CreateNodeAndLinks (Canvas canvas)

{

Node nodel
nodel.Content = "node 1";
Canvas.SetTop (nodel, 0);
Canvas.SetLeft (nodel, 100);

new Node () ;

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

1</ilog:Node>
2</1ilog:Node>
3</ilog:Node>
4</ilog:Node>

35

Node node2 = new Node() ;
node2.Content = "node 2";
Canvas.SetTop (node2, 50) ;
Canvas.SetLeft (node2, 0);

Node node3 = new Node() ;
node3.Content = "node 3";
Canvas.SetTop (nodel, 50);
Canvas.SetLeft (nodel, 200);

Node node4 = new Node () ;
node4.Content = "node 4";
Canvas.SetTop (nodel, 100) ;
Canvas.SetLeft (nodel, 100) ;

canvas.Children.Add (nodel) ;
canvas.Children.Add (nodel) ;
canvas.Children.Add (nodel)
canvas.Children.Add (nodel) ;
canvas.Children.Add (new Link (node2, nodel)) ;

(

(

(

())
canvas.Children.Add (new Link (nodel, node3)) ;

())

())

7

7

canvas.Children.Add (new Link (node3, node4

w
w
w
canvas.Children.Add (new ;

7

Link (node4, node2

Example of Nodes and Links in a Graph with TreeLayout

36

The following example shows how to use a Graph control in XAML and how to specify the
nodes and links as children of the Graph:

<ilog:Graph
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:ilog="http://www.ibm.com/diagrammer.net/2008"
Background="#a7a37e">

<ilog:Graph.Resources>
<LinearGradientBrush x:Key="nodeback" StartPoint="0,0" EndPoint="0,1">
<GradientStop Color="#FFE6E2AF" Offset="0"/>
<GradientStop Color="#FFA7A37E" Offset="1"/>
</LinearGradientBrush>

<SolidColorBrush x:Key="linkcolor" Color="#ff046380"/>

<!-- The style for nodes-->

<Style TargetType="{x:Type ilog:Node}">
<Setter Property="Background" Value="{DynamicResource nodeback}"/>
<Setter Property="HorizontalContentAlignment" Value="Center"/>
<Setter Property="VerticalContentAlignment" Value="Center"/>
<Setter Property="BorderBrush" Value="#002f2f"/>
<Setter Property="CornerRadius" Value="4"/>
<Setter Property="Padding" Value="0"/>

</Style>

<!-- The style for links-->

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

<Style TargetType="{x:Type ilog:Link}">
<Setter Property="EndArrow">
<Setter.Value>
<ilog:LinkArrow Shape="Sunken"/>
</Setter.Value>
</Setters>
<Setter Property="Radius" Value="5"/>
<Setter Property="Stroke" Value="{StaticResource linkcolor}"/>
<Setter Property="StrokeThickness" Value="2"/>
</Style>

</ilog:Graph.Resources>
<ilog:Graph.GraphLayout>

<ilog:TreelLayout ConnectorStyle="EvenlySpaced"/>
</ilog:Graph.GraphLayout >

<ilog:Node x:Name="node0O" Width="90" Height="40">NodeO</ilog:Node>

<ilog:Node x:Name="nodel" Width="60" Height="40">Nodel</ilog:Node>

<ilog:Node x:Name="node3" Width="62" Height="40">Node3</ilog:Node>

<ilog:Node x:Name="node2" Width="65" Height="40">Node2</ilog:Node>

<ilog:Node x:Name="node4" Width="50" Height="70">Node4</ilog:Node>

<ilog:Node x:Name="node5" Width="90" Height="55">Node5</ilog:Node>
X

<ilog:Node x:Name="node6">
<Expander IsExpanded="True" Header="Sub Graph" ExpandDirection="Down">
<Border Padding='20' Background='#a7a37e'>
<ilog:Graph Background="Transparent">
<ilog:Graph.GraphLayout>
<ilog:Hierarchicallayout/>
</ilog:Graph.GraphLayout>
<ilog:Link StartName="node9" EndName="node7"/>
<ilog:Link StartName="node4" EndName="node7"
ShapeType="0Orthogonal"
StartAnchorPosition="Right"
EndAnchorPosition="Top"/>
<ilog:Link StartName="node7" EndName="node8"/>
<ilog:Link StartName="node9" EndName="node8"/>
<ilog:Node x:Name="node8" Width="50" Height="30">Node8</ilog:Node>
<ilog:Node x:Name="node9" Width="50" Height="30">Node9</ilog:Node>
<ilog:Node x:Name="node7" Width="56" Height="30">Node7</ilog:Node>
</ilog:Graph>
</Border>
</Expander>
</ilog:Node>

<ilog:Link
<ilog:Link
<ilog:Link
<ilog:Link
<ilog:Link
<ilog:Link
</ilog:Graph

StartName="nodel"

StartName="node0"

StartName="node0"

StartName="node3"

StartName="node5"

StartName="nodel"
>

EndName="node2"/>
EndName="nodel" />
EndName="node5"/>
EndName="node4" />
EndName="node6" />
EndName="node3" />

This XAML example defines atop graph that contains the nodes from node 0 to node 6. The
top graph hasits GraphL ayout property set to a Treel ayout instance. The node number 6
contains a WPF expander that allows you to expand and collapse its content. This expander
contains another Graph instance that contains node 7 to node 9. This second graph has a
GraphL ayout property set to an instance of the Hierarchical layout.

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 37

Here is the resulting graph:

Note that the link between node 4 and node 7 is crossing graph boundaries. Thisisan
intergraph link (the start node is not in the same container than the link). Although this link
ischild of the subgraph, it is not taken into account by the hierarchical layout. However, as
thelink is part of the subgraph, the link will disappear when the subgraph collapses through
the expander.

Asyou expand and collapse the subgraph, the top graph automatically re-arranges its
content by applying the specified tree layout algorithms.

Example of Nodes and Links in a Diagram using the Nodes and Links
Collections

The following example shows how to add nodes and links by code to a Diagram using the
Nodes and Links properties.

public void CreateNodeAndLinks (Diagram diagram)

{

Node nodel = CreateNode ("Node 1") ;

Node node2 = CreateNode ("Node 2") ;

Node node3 = CreateNode ("Node 3") ;
= ()

Node node4 = CreateNode ("Node 4"
diagram.Nodes.Add (nodel) ;

diagram.Nodes.Add (node2) ;
diagram.Nodes.Add (node3) ;
(
(

diagram.Nodes.Add (node4) ;
diagram.Links.Add (CreateLink (nodel, node2)) ;

38 IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

diagram.Links.Add (CreateLink (nodel, node3));
diagram.Links.Add (CreateLink (node3, node4)) ;
diagram.Links.Add (CreateLink (node4, node2));

}

private Node CreateNode (string content)
{
Node node = new Node() ;
node.Content = content;
node.Background = new SolidColorBrush (Color.FromArgb (255, 240, 248,

255)) ;
node .BorderBrush = new SolidColorBrush (Colors.Gray) ;
node.CornerRadius = new CornerRadius (5) ;
node.Padding = new Thickness(5) ;
return node;
private Link CreateLink (Node start, Node end)
{
Link link = new Link(start, end);
link.Stroke = new SolidColorBrush (Color.FromArgb (255, 95, 158,
160)) ;

link.StrokeThickness = 2;
link.EndArrow = new LinkArrow/() ;
return link;

}
Here, the appearance of the nodes and links is customized by code.

Here isthe resulting graph:

|Nodel|__ |Node2|

_ﬁ'INodeq |N0de4 r_iig*

Controlling the Connection Points of Links
You can control how the link is connected to the start and end nodes by means of several
properties.

When aLink instance has a start and an end node specified by the Start and End properties
thelink will automatically connect to the start and end nodes. Some properties specify where
the link connects on the shape of the start and end nodes.

The StartAnchorPosition and EndAnchorPosition properties represent the positions where
thelink is attached on the start and end node. The possible values are defined by the

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 39

40

AnchorPosition enumeration. This enumeration defines 9 points on the bounding box of the
node;

[Top: thelink is connected to the top center of the node.

TopL eft: the link is connected to the top left corner of the node.
[TopRight: thelink is connected to the top right corner of the node.
[N eft: thelink is centered to the left border of the node.

[Right: the link is centered to the right border of the node.

[Bottom: the link is centered to the bottom of the node.

[BottomL eft: the link is connected to the bottom left corner of the node.
[BottomRight: thelink is connected to the bottom right of the node.
[Center: thelink is connected to the center of the node.

Two additional values are possible:

[Automatic: the link will choose the position between the 9 positions above the one
which best corresponds to its current points and opposite node.

[Clip: Thelink isgoing to the direction of the center of the node, but the connection point
is clipped on the border of the node bounding box.

When the position is specified it is still possible to move the connection point by an offset
from the position specified by the SartAnchor Position and EndAnchor Position
properties. To do that, use the StartAnchor Offset and EndAnchorOffset properties. These
offsets are defined as a Size object and are expressed as a percentage of the size of the node.
Therefore, an offset of (0.25 0) will move the connection point to the right by half of the
node size.

Hereisamarkup example:

<ilog:Link .. StartAnchorPosition="Center" StartAnchorOffset="0.25,0" />

Notes:

1. When alink is used inside a Graph or Diagram control and is automatically reshaped
by a Graph Layout algorithm, the connection point of the link is controlled by the Graph
Layout algorithm and not by the StartAnchorPosition and EndAnchorPosition
properties. In this case, changing the properties has no effect.

2. Alink may not be connected to a start node or to an end node. When a link is not
connected to a start node (that is, when the Start property is null), the starting point of
the link may be specified through the SartPoint property. The Link class also definesan
EndPoint property when the End property is null.

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

Specifying the Link Shape

The ShapeType property controls the shape of the link. The type of this property isthe
LinkShapeType enumeration, and these are the possible values:

[Hraight: the link is a straight line between the start point and the end point.

[Orthogonal: the link shape is computed automatically to a sequence of vertical or
horizontal segments. There can be 2 to 5 segments, depending on the connection points
and the bounds of the Node elements to which the link is connected.

The following illustration shows the possible shapes of an orthogonal link.

O
i

-

-l
—

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 41

Note: When ShapeType is Orthogonal and if the CanEditOrthogonal Shape property is
true, it is possible to modify the link shape using the Points property, while keeping the
link orthogonal .

[Oblique: the link shapeis a sequence of one horizontal/vertical segment, one 45-degrees
segment, and another vertical/horizontal segment.

[Hree: thelink shapeis determined by the Points property.

VAV B

Note: The ShapeType property may not be taken into account if the link is automatically
arranged by a Graph Layout algorithm, that is, when the link is child of a Graph control
that hasa GraphLayout or LinkLayout property not null, or when the Link is created from
a data source in a Diagram control. In these cases, shape and connection points of the
links may be fully controlled by the Graph Layout algorithm. Some Graph Layout
algorithms, such asthe GridLayout, do not change the shape of links and in this case the
ShapeType property will be respected.

The shape of the link can be further customized using the Radius property.

When the Radius property is set to a positive value, the bends of the link are replaced by

arcs of circle of the specified radius. The following illustration shows an example of an
orthogonal link with aradius of 10.

_

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

Color, Thickness and Other Appearance Properties of a Link

Inthe Link class you specify the brush used to render the link through the Stroke property.
The thickness is specified through the StrokeT hickness property.

Other properties such as StrokeDashArray, StrokeDashCap, StrokeDashOffset allows you to
create dashed links.

Of course, the Link class can benefits from all the WPF features such as styling and
animations: the following example shows a dashed link animated so that the dashes seem to
move on the link:

<ilog:Link StartName="node2" EndName="nodel">
<ilog:Link.Style>
<Style TargetType="{x:Type ilog:Link}">
<Style.Triggerss>
<EventTrigger RoutedEvent="FrameworkElement .Loaded">
<BeginStoryboards>
<Storyboard RepeatBehavior="Forever"s>
<DoubleAnimationFrom="0" To="8"Duration="0:0:0.5"

Storyboard.TargetProperty="(ilog:Link.StrokeDashOffset)"/>
</Storyboards>
</BeginStoryboards>
</EventTrigger>
</Style.Triggers>
<Setter Property="StrokeDashArray" Value="4"/>
<Setter Property="Stroke" Value="blue"/>
<Setter Property="StrokeThickness" Value="3"/>
</Style>
</ilog:Link.Style>
</ilog:Link>

Customizing the Arrows of a Link

By default, alink has no arrow at its end. You can customize the start or end arrows using
the StartArrow and EndArrow properties. The values of these properties are instances of the
LinkArrow class.

The LinkArrow class represents an arrow that can have various shapes that you define
through the Shape property. For example, to specify ared arrow at the end of the link that
represents a star, in markup you would write:
<ilog:Link ..>
<ilog:Link.EndArrow>
<ilog:LinkArrow Shape="Star" Size="20,20" Fill="red" Stroke="{x:Null}"/>

</ilog:Link.EndArrow>
</ilog:Link>

The following example shows the predefined arrow shapes:

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 43

44

Armow >

Opan >

— Gk —
Curved =

— Diamond ——»
Square]

Circle 9

St ——5

The size, color and stroke of the arrow can be changed using the Size, Fill, Stroke properties
of the LinkArrow class.

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

Specifying Graph Layout

Graph Layout classes are also present in the ILOG.Controls.Diagram namespace so that you
can specify both by code or in XAML how your graph should be arranged. The classes are

providing the same algorithms as the classes provided for the Windows Formsand ASPNET
classes of IBM® ILOG® Diagram for .NET but they are implemented as WPF dependency

objects.
The Graph Layout classes are the following:
[HierarchicalLayout

[TreelLayout

[ForceDirectedLayout

[GridLayout

[—S$hortLinkLayout

[TlongLinkLayout

[—RandomL ayout

For more details on each Graph Layout algorithm, see Using Graph Layout Algorithms.
Note that this section is more oriented on using Graph Layout algorithms in a Windows
Forms or ASPNET context, therefore the code samples will not apply to the WPF case. The
Graph Layout classes defined in the I L OG.Controls.Diagram namespace are different from
the classes in ILOG.Diagrammer.GraphL ayout namespace. Although the classes are not the

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF 45

same, you will find that most of the properties are the same, only some advanced properties
may not be present in the WPF versions.

How to Use the Graph Layout Classes

46

A Graph Layout instance can be directly specified through the GraphLayout property of the
Diagram class or through the GraphLayout and LinkLayout properties of the Graph class.
When used in this way, the graphs represented in the Diagram of the Graph instance are
automatically arranged by the Graph Layout algorithm.

The following example specifies a TreeL ayout algorithm on a Diagram object:

<ilog:Diagram ..>
<ilog:Diagram.GraphLayout >
<ilog:TreelLayout FlowDirection="Bottom" LinkStyle="Orthogonal"/>
</ilog:Diagram.GraphLayouts>
</ilog:Diagram>

The Diagram control always requires a Graph Layout to layout the graph resulting from a
data source. However, as you can specify the positions of nodesin a Graph control, you
may or may hot specify a Graph Layout in the GraphL ayout property. In the same way, you
may or may not specify alink layout in the LinkL ayout property. All combinations are
possible.

Itisalso possibleto layout a graph composed of hodes and linksthat are contained in aWPF
Canvas. Unlike the Graph control, the Canvas cannot automatically layout the graph as
nodes and links are added, removed or reshaped. To layout a graph in a Canvas you will
have to do it by code using the PerformLayout method. The following C# code shows how
to layout a Canvas by atree layout a gorithm:

void ApplyTreelayout (Canvas canvas) {
TreeLayout layout = new TreeLayout () ;
layout.Attach (canvas) ;
layout.PerformLayout () ;

}

In this case, the PerformL ayout method will change the position of nodes by changing the
Canvas.L eft and Canvas.Top properties on the nodes. It can a so change the points of links
(Points property), the shape of links (ShapeType property) and the connection properties of
links (StartAnchor Position/EndAnchor Position properties).

When using a Graph control, you may also choose to keep the GraphL ayout and
LinkLayout to null and apply alayout algorithm by using the same code used for the
Canvas.

void ApplyTreelLayout (Graph graph) {
TreeLayout layout = new TreeLayout () ;
layout.Attach (graph) ;
layout.PerformLayout () ;

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

IBM

ILOG DIAGRAM FOR

.NET 2.0

— WPF

47

48

IBM

ILOG DIAGRAM FOR

.NET 2.0

— WPF

S

self link 16
subgraph 8

\W

Window Presentation Foundation 3
WPF 3
WQPF classes
Graph Layout 8
Node and Link 8
WPF controls
Diagram 7
Graph 7

X
XAML 3

IBM ILOG DIAGRAM FOR

.NET 2.0 — WPF

Index

IBM ILOG DIAGRAM FOR .NET 2.0 — WPF

	Programming with IBM ILOG Diagram for .NET and Windows Presentation Foundation
	Overview
	Creating a Graph Display from a Data Source Using the Diagram Control
	A First Example Using the Diagram Control
	Specifying the Data Sources of a Diagram
	Defining Links Using Implicit Relations
	Defining Links Using Explicit Relations

	Making the Diagram Reflect the Changes in my Data Source
	Populating a Diagram Using the Nodes and Links Collections
	Styling Nodes and Links in a Diagram
	Styling Nodes and Links Using Basic Style Features
	Styling Nodes with Data Templates and Data Template Selectors
	Changing the Control Template of the Node Class
	Creating a Style of Links that Depends on the Data

	Selection in a Diagram
	Zoom in a Diagram
	Specifying Graph Layout Algorithms in a Diagram

	Creating a Graph by Specifying Nodes and Links
	Creating Nodes and Links
	Example of Nodes and Links in a Canvas
	Example of Nodes and Links in a Graph with TreeLayout
	Controlling the Connection Points of Links
	Specifying the Link Shape
	Color, Thickness and Other Appearance Properties of a Link
	Customizing the Arrows of a Link

	Specifying Graph Layout
	Index
	S
	W
	X

