‘llli

IBM ILOG Gantt for NET V4.0
Programming with
IBM ILOG Gantt for NET
Silverlight Controls

June 2009

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

Preface Programming with IBM ILOG Gantt for .NET Silverlight Controls............. 3
Getting Started with Silverlight Gantt Components. 5
Creating a Gantt Control 9
Connecting a GanttChart Controlto Data i 11
Using Predefined Data Sourcesina GanttChart. 11

Using Your Own Data or Creating your own Data Source for the GanttChart.......... 14

Creating Task Classes and Displaying themina GanttChart 14

Establishing Parent-Child Relationship 17

Displaying Constraints between Tasks in a GanttChart Control 20

Connecting a ScheduleChart Controlto Data. i 25
Using Predefined Data Sources in a ScheduleChart 26

Using Your Own Data or Creating your own Data Source for the ScheduleChart. 29

Using Predefined Data Models e e 35
The SimpleGanttModel Data Model i e 36

The ProjectSchedulingModel DataModel i 39

The ProjectSchedulingModel Class e 40

Activities in the ProjectSchedulingModel 41

How the Project Scheduling Model Computes the Schedule of a Project 43

Calendars in the Project Scheduling Model 47

Resource Leveling in the Project SchedulingModel 48

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 1

Specifying and Styling the Gantt Barsto Display. i, 51

Using Default Bar Representationst 54
Defining Start and End Timeforthe Bar e 54
Defining the Shape of the Bar. e 55
Displaying Additional Information on the Right and on the Leftof theBar............ 57
AlgNMENt Properties. . .. 57
Defining When a BarDefinition Appliesforanitem 59
Connection of Constraint linksina GanttChart 59
Interactions onthe Bar 59
Defining a Tooltip forthe Bar 60
Example of Bar Definitions 61
Working with Tables in the Gantt Controls i 65
Configuring ColUMNS ..o e 66
Using Predefined Columns and Creating a Template Column 67
Styling ColUMNSo e 69
Grouping, Sorting and Filtering Data. e 71
Controlling the Displayed Time Interval e 75
Storing and Displaying Working and Nonworking Times 77
User Interaction on a Gantt Bart e 81
Editing Process - Moving and ResizingaBar. i 82
Using Bar Editing EVeNnts 82
Snapping Time when Moving or ResizingaBar............ 83
Working with Editing TOOItIDot e 83
Styling User Interaction Elements 85
Internationalization e 87

2 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Programming with
IBM ILOG Gantt for .NET Silverlight
Controls

The Silverlight controls of IBM® ILOG® Gantt for .NET are a set of Silverlight

components that bring Gantt chart displays and scheduling a gorithms to the Microsoft
Silverlight platform.

In This Section
Getting Sarted with Slverlight Gantt Components
Introduces the Silverlight Gantt components.
Creating a Gantt Control
Explains how to create a Gantt control.
Connecting a GanttChart Control to Data
Describes how to connect a GanttChart to data.
Connecting a ScheduleChart Control to Data
Describes how to connect a ScheduleChart to data.
Using Predefined Data Models
Describes how to use predefined data models.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 3

Foecifying and Syling the Gantt Barsto Display

Describes how to style the Gantt bars.
Working with Tables in the Gantt Controls

Describes how to handle tables with the Gantt controls.
Grouping, Sorting and Filtering Data

Describes how to group, sort and filter data.
Controlling the Displayed Time Interval

Describes how to control the displayed timeinterval.
Soring and Displaying Working and Nonworking Times

Describes how to handle working and nonworking times.
User Interaction on a Gantt Bar

Describes the various user interactions on a Gantt bar.
Inter nationalization

Describes the resource files and tools available with IBM ILOG Gantt for .NET to
localize the library for aparticular culture.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Getting Started with Silverlight Gantt
Components

The Silverlight support in IBM® ILOG® Gantt for NET consists of alibrary of classes
used to display and edit scheduling data as a Gantt chart deployed in a Silverlight
application.

It supports the two essential ways of displaying schedules: activity oriented and resource
oriented. It can be used in alarge variety of applications and industries: transportation
scheduling and planning, logistics, supply chain management, production scheduling and
planning, workforce planning, resource booking, project management, and many more.

The GanttChart control shows one task in each row. The hierarchy table on the left displays
task information. The Gantt sheet on the right shows how the tasks are positioned on the
time scale as well as constraints between tasks.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 5

IBM

e |Qtr4, 2003|Qtr 1, 2004 ‘Qtr2,2004 |Qtr3, 2004
AL/ [io] oec | son | Feb | Mar | Aer [way | dun | u | Auws | e
» @L] 4Conceptual 163 days L v b

a 4 Planning and Control | 155 days L y

Name Duration

Business plan iden 4 days Project sponsor
Define project obj¢ 4 days st sponsor
Identify industry s 4 days ject sponsor,Project engineer
Develop preliminal | 4 days Project engineer

a Initial planning cor | 0 days TV -
Develop appropria | 4 days % Pesiectsn
Develop managem | 4 days B Project spe

a 4 Site Assessment 74 days y

* .
Identify potential ¢ 9 days Prajest-speRssrAroject engineer

Define infrastructu 14 days P

)

Define utility need | 9 days

Pesfect angineer,Discipline anairjeer
Identify project sit | 4 days :)—n sject engineer, Discipline engineer
Assess requlatory | 9 days eettngineer, Discipline enginear
Identify parmitting 2 days %—(m]ef:t enginesar

b .
Recommend site | 9 days [Project sponsor,Project snginegr -
« 3 K »

(o)

The ScheduleChart control shows one resource in each row. The table on the left displays
resource information on the resource. The schedul e sheet on the right shows the resource
reservations. Each row in the schedule sheet contains 0, 1, or more bars to represent the
activities for which the matching resource has been reserved.

Nomme yme Mo tnits |Qtr |Qtr 3, 2009 |Qtr 4, 2009
une | July [August [september | October [november
Designer Work 1
Project engi Work 1 (o [y e— S— —] e I o e R e [| S—
Discipline er Werk 1 Dl —])¢)¢)] [0 — e— |
Cost engine Work 1 —
b Drafter Work T o«)¢ C) @
Scheduler Work 1
Project spor Work 1 (] @@
4 vl 5

Although the GanttChart control ismainly used to display tasks and the ScheduleChart to
display the tasks assigned to aresource, both Gantt controls can be used with any type of
data that has some time-based information. The main difference between the two controlsis
that the GanttChart control displays a unique information for each row (usually atask).
The ScheduleChart control displays several timeitemsin the sheet for each row in thetable
(usually aresource per row and all tasks assigned to this resource displayed in the sheet on
theright).

In addition to the GanttChart and ScheduleChart controls, the library also contains some
predefined data model s that you can easily connect to the controls. The SimpleGanttM odel
isasimple data model that defines activities (or tasks), resources and reservations
(assignments of resources to tasks). The ProjectSchedulingModel is a data model that also

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

defines the same type of information, but it uses thisinformation to maintain the schedul e of
the project plan (computation of critical path(s) and resource leveling). Those data models
are optional and require a separate assembly. You may create your own data model or even
use asimplelist of objectsto be displayed in a Gantt control.

The GanttChart and ScheduleChart controls are located in the assembly named
ILOG.Controls.Gantt.dll and in a namespace that has the same name. The predefined data
models are located in the assembly named | L OG.Controls.Gantt.Data.dll.

Both the GanttChart and ScheduleChart inherit from the same base class HierarchyChart
that concentrates properties and methods common to both representations.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 7

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Creating a Gantt Control

In order to create a GanttChart or ScheduleChart control, you need to add the reference to
the assembly | L OG.Controls.Gantt.dll in your Silverlight project. In addition to
ILOG.Controls.Gantt.dll, you can use the ILOG.Controls.Gantt.Data.dll assembly that
contains the predefined data model s such as the SimpleGanttM odel class or the
ProjectSchedulingModel class that are described in Using Predefined Data Models.

Inyour XAML file, you will have to define a new namespace to refer to the assembly:

xmlns:iloggantt="clr-
namespace: ILOG.Controls.Gantt ;assembly=ILOG.Controls.Gantt"

When you have defined the namespace, you can declare a GanttChart component in your
XAML file:

<iloggantt:GanttChart x:Name="gantt"/>

Or a ScheduleChart component:

<iloggantt:ScheduleChart x:Name="gantt"/>

At this point you have the following graphical result:

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 9

February 2009

Wa W7

4 [L] [

The control is not yet connected to data. To connect the GanttChart to data, see Connecting a
GanttChart Control to Data. Also, the controls do not define any columns or any definitions
for the bars. To see how to define columns see Working with Tables in the Gantt Controls.

To see how to draw Gantt barsin a Gantt component see Specifying and Syling the Gantt
Barsto Display.

10 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Connecting a GanttChart Control to Data

A GanttChart control can display any kind of time-related items including instances of your
own classes. Some predefined data sources are available so that you do not necessarily need
to create your own data source.

You will learn how to use predefined data sources, how to create anew data source that can
be used in a GanttChart control, and how to connect the data sources to a GanttChart.

In This Section:
Using Predefined Data Sources in a GanttChart
Explains how to use predefined data sources to display datain a GanttChart control.
Using Your Own Data or Creating your own Data Source for the GanttChart
Explains how to create a data source and connect it to a GanttChart control.

Using Predefined Data Sources in a GanttChart

To display datain a GanttChart control, you may use one of the following predefined data
SOurces:
[SimpleGanttModel

[—ProjectSchedulingM odel

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 11

These data models can be easily connected to a GanttChart so that the GanttChart
displaysthe list of activities in the model and the constraints between activities. For more
details on the two data models, see Using Predefined Data Models.

To simply connect a GanttChart to a SimpleGanttM odel use the following code:

GanttChart chart = new GanttChart () ;
SimpleGanttModel model = new SimpleGanttModel () ;
chart.InitializeFrom(model) ;

The InitializeFrom method is an extension method for the GanttChart class. This method
does the following initializations:

[Creation of some predefined columnsin the table: A column for Name, Duration, Start
Time, End Time and Resources property.

[Creation of predefined bar definitions: A bar definition for normal activity, for activity
completion, for summaries and for milestones.

[Connection of the data model to the control for displaying the activities and the
constraints between activities.

Hereis an extract of C# code that creates and populates a SimpleGanttM odel with four
activities and one constraint and displays the model in a GanttChart.

In XAML you simply add a GanttChart to the page:

<iloggantt:GanttChart x:Name="gantt"/>

And in the code-behind:
SimpleGanttModel model = new SimpleGanttModel () ;

SimpleActivity activityl
= new SimpleActivity() { Name = "A1",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours (8)};

SimpleActivity activity2
= new SimpleActivity() { Name = "A2",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours (24),
Parent = activityl};
SimpleActivity activity3
= new SimpleActivity() { Name = "A3",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours (36),
Parent = activityl};
SimpleActivity activity4
= new SimpleActivity() { Name = "A4",
StartTime = DateTime.Now.AddHours (45),
IsMilestone = true };

model .Activities.Add (activityl) ;
model .Activities.Add (activity2) ;

12 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

model .Activities.Add (activity3) ;
model .Activities.Add (activity4) ;

SimpleConstraint constraint
= new SimpleConstraint () { FromActivity = activity3,
ToActivity = activity4 };

model .Constraints.Add (constraint) ;

gantt.InitializeFrom(model) ;

This gives the following result:

February 20058
Name Duration Start Fini
'u"| WUt wsg
4 A1 4.5 days 2/16/2009 ¢ 2/1g p—
AZ 3 days 2/16/2009 ¢ 2/17)
A3 4.5 days 2/16/2009 ¢ 2/1¢ :Jl
A4 0 days 2/18/2009 [2/18 & February 18
4 3 a4 3

IBM

The InitializeFrom extension method is very convenient for initializing the GanttChart
component, but you can also create a GanttChart component and define yourself the
columns. For more details on how to do this, see Working with Tablesin the Gantt Controls.
To define yourself the shape of the bars see Specifying and Syling the Gantt Barsto Display.
Finally, to connect a SimpleGanttM odel to display the activities you need to set the
ItemsSource property of the GanttChart to the activities of the model and the
ConstraintsSource property to the constraints of the model. To do this, use the following
code extract:

chart.ItemsSource = model.Activities;
chart.ConstraintsSource = model.Constraints;

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 13

chart.ConstraintTypeBinding = new Binding("Type") ;
chart.ConstraintOriginPropertyName = "FromActivity";
chart.ConstraintDestinationPropertyName = "ToActivity";
chart.ParentBinding = new Binding("Parent") ;

For more details on how to connect a GanttChart control to data, see Using Your Own Data
or Creating your own Data Source for the GanttChart.

Using Your Own Data or Creating your own Data Source for the GanttChart

14

IBM

A GanttChart control can display any kind of time related items including instances of your
own classes. In this section you will see how to implement your data source and connect it to
aGanttChart control.

In This Section
Creating Task Classes and Displaying themin a GanttChart
Explains how to create task ckasses and display them in a GanttChart.
Establishing Parent-Child Relationship
Explains how to establish parent-child relationship.
Displaying Constraints between Tasks in a GanttChart Control
Describes how to display constraints between tasksin a GanttChart control.

Creating Task Classes and Displaying them in a GanttChart

The GanttChart control takes as primary data source any kind of enumeration. For example,
it can be a collection, an array, or the result of aLinQ query. The itemsin this collection
must define astart and end date since the primary goal of the GanttChart isto represent and
edit thetime interval of each item. Theitemsto display inthe GanttChart are then specified
through the ItemsSource property.

The minimum implementation for an item to display in aGanttChart could be:

public class MyTask

{
public DateTime Start { get; set; }
public DateTime End { get; set; }

}

The Start and End property could be named differently. The important point isthat there are
two properties of type bateTime. Instances of MmyTask can then be placed in a collection
and displayed in aGanttChart:

In XAML

<iloggantt:GanttChart x:Name="gantt"/>

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

In the code behind:

List<MyTask> list = new List<MyTask>();
list.Add (new MyTask () { Start = DateTime.Now,

End = DateTime.Now.AddDays (1) });
list.Add (new MyTask () { Start = DateTime.Now,

End = DateTime.Now.AddDays (2) });
gantt.ItemsSource = list;

Note that even though the Gantt control is connected to data, by default a GanttChart has
no column defined and no representation for bars. Therefore the code above will not display
anything. Before improving the data source, you will modify the XAML so that the datacan
be displayed.

To start displaying the items you need to add columns to the table part of the Gantt and
define a BarDefinition object that specifies the shape of bars on the time line.

In the following XAML definition two columns are added: one is bound to the start
property, the other one is bound to the End property. In this XAML you also add a

Bar Definition object which indicates that a bar should be displayed from the start to the
End property.

<iloggantt:GanttChart x:Name="gantt"s>

<!-- Specifies Columns -->
<iloggantt:GanttChart.Columns>
<iloggantt:TreeTableDateTimeColumn
Header="Start"
Binding="{Binding Start}" />
<iloggantt:TreeTableDateTimeColumn
Header="End"
Binding="{Binding End}" />
</iloggantt:GanttChart.Columns>

<!-- Specifies bars to display -->
<iloggantt:GanttChart .BarDefinitions>
<iloggantt:BarDefinition
StartBinding="{Binding Start}"
FinishBinding="{Binding End}">
<iloggantt:BarDefinition.BarTemplate>
<DataTemplate>
<Rectangle Height="13" Fill="LightBlue" />
</DataTemplate>
</iloggantt:BarDefinition.BarTemplates>
</iloggantt:BarDefinition>
</iloggantt:GanttChart.BarDefinitions>

</iloggantt:GanttChart>

With this specification, you will get the following result:

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 15

February 2009
Start End
We W7 wsa
P 2/2/2009 2/3/2009
2/2/2009 2/4/2009
4 [>

For each element in the ItemsSour ce, arow is created in the GanttChart and a bar appears
displayed from the Start time to the End time.

For more information on columns, see Working with Tables in the Gantt Controls.

For more information on the Bar Definition class, see Specifying and Syling the Gantt Bars
to Display.

Let's come back to the definition of the data source. The source of data has been defined asa
List of MyTask. With such a definition, the GanttChart control is not able to react when
an item is added or removed from the list. To see the items that are added or removed from
thelist, the collection specified in the [temsSour ce must implement the
INotifyCollectionChanged interface. Silverlight proposes the generic class
ObservableCollection<T > as adefault implementation of I NotifyCollectionChanged. You
can rewrite the code as follows:
ObservableCollection<MyTask> list = new ObservableCollection<MyTask> () ;
list.Add (new MyTask() { Start = DateTime.Now,

End = DateTime.Now.AddDays (1) });
list.Add (new MyTask() { Start = DateTime.Now,

End = DateTime.Now.AddDays (2) });
gantt.ItemsSource = list;

When tasks are added or removed from the list, the GanttChart control will reflect the
changes.

Similarly, if the start and End properties of MyTask change and the changes are reflected
in the GanttChart, you must implement the interface | NotifyPropertyChanged. The code
for MyTask would then become the following:

public class MyTask : INotifyPropertyChanged

{

16 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

private DateTime _start, _end;

public DateTime Start

{

get {
return _start;
}
set {
if (_start != value) {

_start = value;
OnPropertyChanged ("Start") ;
}
}
}

public DateTime End

{
get {
return _end;

}

set {
if (_end !'= value) ({
_end = value;
OnPropertyChanged ("End") ;

}
}
}

public event PropertyChangedEventHandler PropertyChanged;

private void OnPropertyChanged (string propertyName)

{
if (PropertyChanged != null)
PropertyChanged (this, new PropertyChangedEventArgs (propertyName)) ;

}

Now that start and End properties are notifying their changes, the GanttChart control can
react to these changes and modify the display accordingly. It isalso possible to edit the
Start and End propertiesin the table and move the bars.

Establishing Parent-Child Relationship

Instead of aflat list of tasks, the GanttChart can display atree of tasksto handle the case of a
parent task that is defined by a set of sub-tasks. This can be done by specifying a parent-
child relationship in the GanttChart through the ParentBinding property of the
GanttChart.

In this example, the parentTask property is added to define the relation from atask to its
parent. The Name property is also added and will be displayed in the Gantt.

public class MyTask : INotifyPropertyChanged

{

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 17

18

I BM

ILOG GANTT FOR

private DateTime _start, _end;
private string _name;
private MyTask _parent;

public string Name
get {
return _name;
}

set {
if (_name!= value) ({
_ name = value;
OnPropertyChanged ("Name") ;
}
}
}

public MyTask ParentTask
{
get {
return _parent;

set {
if (_parent != value) {
_parent = value;
OnPropertyChanged ("ParentTask") ;
}
1
1

public DateTime Start

{

get {
return _start;
}
set {
if (_start != value) {

_start = value;
OnPropertyChanged ("Start") ;
}
}
}

public DateTime End
{
get {
return _end;
}

set {
if (_end !'= value) ({
_end = value;
OnPropertyChanged ("End") ;
}
}
}

public event PropertyChangedEventHandler PropertyChanged;

.NET 4.0 — SILVERLIGHT CONTROLS

private void OnPropertyChanged (string propertyName)
{
if (PropertyChanged != null)
PropertyChanged (this, new PropertyChangedEventArgs (propertyName)) ;

}

Modify the XAML definition to specify the parent-child rel ationship through the
ParentBinding property and add a new column that displays the name of tasks. This new
column hasthe IsTreeColumn property set to t rue. Thistransformsthe columnin atreethat
enables the expanding and collapsing of elementsin the table.

<iloggantt:GanttChart x:Name="gantt" ParentBinding="{Binding ParentTask}">
<iloggantt:GanttChart.Columns>
<iloggantt:TreeTableTextColumn IsTreeColumn="True"
Header="Name"
Binding="{Binding Name}" />
<iloggantt:TreeTableDateTimeColumn Header="Start"
Binding="{Binding Start}" />
<iloggantt:TreeTableDateTimeColumn Header="End"
Binding="{Binding End}" />

</iloggantt:GanttChart.Columns>

<iloggantt:GanttChart.BarDefinitions>
<iloggantt:BarDefinition StartBinding="{Binding Start}"
FinishBinding="{Binding End}">
<iloggantt:BarDefinition.BarTemplate>
<DataTemplate>
<Rectangle Height="13" Fill="LightBlue" />
</DataTemplate>
</iloggantt:BarDefinition.BarTemplates>
</iloggantt:BarDefinition>
</iloggantt:GanttChart.BarDefinitions>
</iloggantt :GanttChart>

Change the code-behind to use the new parentTask property:

ObservableCollection<MyTask> list = new ObservableCollection<MyTasks> () ;
MyTask taskl = new MyTask() { Name = "Task 1"

Start = DateTime.Now,

End = DateTime.Now.AddDays (1) };
MyTask task2 = new MyTask() { Name = "Task 2",

Start = DateTime.Now,

End = DateTime.Now.AddDays (2) };
MyTask task3 = new MyTask() { Name = "Task 3",

ParentTask = task2,

Start = DateTime.Now,

End = DateTime.Now.AddDays (1) };

list.Add (taskl) ;
list.Add (task2) ;
list.Add (task3) ;
gantt.ItemsSource = list;

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 19

20

IBM

This code will give the following result:

Start

February 2009
End

4

We W7 Wa
¥ Task 1 2/3/2009 10 2/4/21
4 Task 2 2/3/2009 10 2/5/21
Task 3 | 2/3/2009 1(| 2/4/21

3 4 3

The task named Task2 has now an arrow button that enables the expanding or collapsing of

its children.

Note that the bar of the parent task is represented in the same manner as the child tasks. This
isdue to the fact that you have a single Bar Definition defined in the GanttChart. To learn
how to specify different representations for various kinds of bars see Specifying and Syling
the Gantt Barsto Display.

Displaying Constraints between Tasks in a GanttChart Control

The GanttChart control can also display links between tasks. Usually, these links are used to
display predecessor constraints between tasks. The following table shows the types of
constraint defined by the ConstraintType enumeration.

ILOG GANTT FOR

.NET 4.0 — SILVERLIGHT CONTROLS

IBM

Constraint Type Example Description

EndToStart The activity B cannot start until the
activity A is finished.
StartToStart The activity B cannot start until the

activity A is started.

StartToEnd

The activity B cannot finish until the
activity A starts.

—
=

EndToEnd The activity B cannot finish until the

activity A finishes.

To display constraint links in the GanttChart you must specify thelist of constraintsin the
ConstraintsSource property of the GanttChart. This property should contain a collection of
objects that represent the constraint links between objects. A link will be created for each
element in the Constr aintsSour ce collection. In addition to the ConstraintsSour ce
property, you must specify the properties ConstraintOriginPropertyName and
ConstraintDestinationPropertyName. Through these properties, the GanttChart finds the
origin and destination tasks for the links. These properties usually refer to members of the
constraint objectsin the constraint source. Finally a binding must be specified to tell the
GanttChart what isthe type of the constraint link. The ConstraintTypeBinding property of
the GanttChart provides a binding from a constraint object in the ConstraintsSourceto a
ConstraintType.

Just like the ItemsSource property, if the collection specified in the ConstraintsSour ce
property implements | NotifyCollectionChanged, the GanttChart is able to reflect changes
in the collection when constraints are added or removed. The constraint also should

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 21

implement | NotifyPropertyChanged if you want the GanttChart to react to changes of the
constraint properties.

Create a constraint object named MyConstraint, with a property named origin for the
origin of the constraint, Dest inat ion for the destination of the constraint link and Type for
the type of the congtraint.

public class MyConstraint : INotifyPropertyChanged
private MyTask _origin, _destination;
private ConstraintType _type;

public MyTask Origin
{
get {
return _origin;

}

set {
if (_origin != value) ({
_origin = value;
OnPropertyChanged ("Origin") ;
}
}
}

public MyTask Destination
{
get {
return _destination;

}

set {
if (_destination != value)
{
_destination = value;
OnPropertyChanged ("Destination") ;
}
1
!

public ConstraintType Type
{
get {
return _type;

}

set {
if (_type != value) ({
_type = value;
OnPropertyChanged ("Type") ;
}
}
}

public event PropertyChangedEventHandler PropertyChanged;

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

private void OnPropertyChanged (string propertyName)

if (PropertyChanged != null)
PropertyChanged (this, new PropertyChangedEventArgs (propertyName)) ;
}

}
You can now modify the XAML definition of the GanttChart:

<iloggantt:GanttChart x:Name="gantt"
ParentBinding="{Binding ParentTask}"
ConstraintOriginPropertyName="Origin"
ConstraintDestinationPropertyName="Destination"
ConstraintTypeBinding="{Binding Type}" >
<iloggantt:GanttChart.Columns>
<iloggantt:TreeTableTextColumn IsTreeColumn="True"
Header="Name"
Binding="{Binding Name}" />
<iloggantt:TreeTableDateTimeColumn Header="Start"
Binding="{Binding Start}" />
<iloggantt:TreeTableDateTimeColumn Header="End"
Binding="{Binding End}" />

</iloggantt:GanttChart.Columns>

<iloggantt:GanttChart.BarDefinitions>
<iloggantt:BarDefinition StartBinding="{Binding Start}"
FinishBinding="{Binding End}">
<iloggantt:BarDefinition.BarTemplate>
<DataTemplate>
<Rectangle Height="13" Fill="LightBlue" />
</DataTemplate>
</iloggantt:BarDefinition.BarTemplates>
</iloggantt:BarDefinition>
</iloggantt:GanttChart.BarDefinitions>
</iloggantt :GanttChart>

In the code-behind, create a constraint and specify the constraint source:

ObservableCollection<MyTask> list = new ObservableCollection<MyTasks> () ;
MyTask taskl = new MyTask() { Name = "Task 1"

Start = DateTime.Now,

End = DateTime.Now.AddDays (1) };
MyTask task2 = new MyTask() { Name = "Task 2",

Start = DateTime.Now,

End = DateTime.Now.AddDays (2) };
MyTask task3 = new MyTask() { Name = "Task 3",

ParentTask = task2,

Start = DateTime.Now,

End = DateTime.Now.AddDays (1) };

list.Add (taskl) ;
list.Add (task2) ;
list.Add (task3) ;
gantt.ItemsSource = list;

ObservableCollection<MyConstraint> constraints =
new ObservableCollection<MyConstraints() ;

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

MyConstraint constraint = new MyConstraint () {
Origin = taskl,
Destination = task2,
Type = ConstraintType.EndToStart },-
constraints.Add (constraint) ;

gantt.ConstraintsSource = constraints;

This gives the following graphical result:

February 2009
We W7 Wsa

» Task 1 2/3/2009 10 24/
4Task 2 2/3/2009 1 2/5/21 I;

Task 3 2/3/2009 1 2/4/21

Name Start End

3

4 3 4

Note that the GanttChart control does not do any validation or scheduling logic on your
data. For example, it will not enforce that atask with a predecessor constraint of type End-
to-Start starts after the end of its predecessor. Also, there is no specific logic for the duration
of aparent task relatively to its child tasks. Such logic should be added to the data
themselves. Alternatively, you can use the predefined data sources like SimpleGanttM odel

or ProjectSchedulingModel.

24 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Connecting a ScheduleChart Control to
Data

A ScheduleChart control can display any kind of time related items including instances of
your own classes. Some predefined data sources are available so that you do not need to
create your own data source.

You will learn how to use predefined data sources, how to create anew data source that can
be used in a ScheduleChart control and how to connect the data sourcesto a
ScheduleChart.

In This Section

Using Predefined Data Sources in a ScheduleChart

Explains how to use predefined data sources to display datain a ScheduleChart
control.

Using Your Own Data or Creating your own Data Source for the ScheduleChart
Explains how to create a data source and connect it to a ScheduleChart control.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 25

Using Predefined Data Sources in a ScheduleChart

26

IBM

To display datain a ScheduleChart control, you may use one of the predefined data sources,
the SimpleGanttModel class or the ProjectSchedulingM odel classes. These two data models
are described in more details in Using Predefined Data Models.

These data models can be easily connected to a ScheduleChart so that the ScheduleChart
displaysthe resourcesin the model and the activities assigned to each resource (al so know as
reservations).

To connect a ScheduleChart to a SimpleGanttM odel use the following code:
ScheduleChart chart = new ScheduleChart () ;

SimpleGanttModel model = new SimpleGanttModel () ;
chart.InitializeFrom(model) ;

The InitializeFrom method is an extension method for the ScheduleChart class and doesthe
following initiaizations:

[Creation of some predefined columnsin the table: A column for Name.

[Creation of predefined bar definitions: A bar definition for normal activity, for activity
completion, for summaries and for milestones.

[_Connection of the data model to the control for displaying the resources in the table and
the activities assigned to each resource.

Hereis an extract of C# code that creates and populates a SimpleGanttM odel with four
activities and one constraint and displays the model in a ScheduleChart.

In XAML you simply add a ScheduleChart to the page:
<iloggantt: ScheduleChart x:Name="gantt"/>
And in the code-behind:

SimpleGanttModel model = new SimpleGanttModel () ;

// create the resources

SimpleResource resourcel = new SimpleResource ()

{
}i

SimpleResource resource2 = new SimpleResource ()

{

Name = "r1",

Name = "r2",

}i

SimpleResource resource3 = new SimpleResource ()

{

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Name = "r3",

}i

SimpleResource resource4 = new SimpleResource ()

{
}i

model .Resources.Add
model .Resources.Add
model .Resources.Add
model .Resources.Add

Name = "r4",

7

resourcel) ;
resource2) ;
)
)

7

resource3
resource4d

7

// create the activities. and assign them to resources.

SimpleActivity activityl
= new SimpleActivity ()

Name = "Al",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours (8)

}i

SimpleActivity activity2
= new SimpleActivity ()

Name = "A2",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours (24),
}i
SimpleActivity activity3
= new SimpleActivity ()

Name = "A3",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours (36),

SimpleActivity activity4
= new SimpleActivity ()

Name = "A4",
StartTime = DateTime.Now.AddHours (45),
Duration = TimeSpan.FromHours (48),

i

model .Activities.Add
model .Activities.Add
model .Activities.Add
model .Activities.Add

activityl) ;
activity2) ;
) .
)

7

activity3
activity4

7

SimpleReservation reservationl = new SimpleReservation ()

{

Resource = resourcel,
Activity = activityl

}i

SimpleReservation reservation2 = new SimpleReservation/()

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

27

28

IBM

ILOG GANTT FOR

Resource = resource2,
Activity = activity?2

}i

SimpleReservation reservation3 = new SimpleReservation ()

{

Resource = resource3’,
Activity = activity3

}i

SimpleReservation reservation4 = new SimpleReservation()

{

Resource = resource4,
Activity = activity4

}i

SimpleReservation reservation5 = new SimpleReservation ()

{

Resource = resourcel,
Activity = activity4

}i

SimpleReservation reservationé = new SimpleReservation()

{
Resource = resource4,
Activity = activityl
i

model .Reservations.Add (reservationl)
model .Reservations.Add (reservation2) ;
model .Reservations.Add (reservation3) ;

()

()

()

7

7

model .Reservations.Add (reservation4
model .Reservations.Add (reservation5
model .Reservations.Add (reservationé

7

7

scheduleChart.InitializeFrom(model) ;

This gives the following result:

.NET 4.0 —

SILVERLIGHT CONTROLS

avril 2009
Name
Wig | N1E

b 0)

r2]

r3)

r4 0)

4 (I r

The I nitializeFrom extension method is very convenient for initializing the ScheduleChart
component, but you can also create a ScheduleChart component and define yourself the
columns. For more details refer to Working with Tables in the Gantt Controls. To define
yourself the shape of the bars see Specifying and Syling the Gantt Barsto Display. Finally,
to connect a SimpleGanttM odel to display the resources you need to set the ItemsSource
property of the ScheduleChart to the resources of the model and the ConstraintsSource
property to the constraints of the model. To do this, use the following code:

chart.ItemsSource = model.Resources;
chart.TimeItemsBinding = new Binding("Reservations") ;

For more details on how to connect a ScheduleChart control to data, see Using Your Own
Data or Creating your own Data Source for the ScheduleChart.

Using Your Own Data or Creating your own Data Source for the ScheduleChart

In this section you will see how to implement a data source so that it can be connected to a
ScheduleChart control.

Creating Resource Classes and Displaying them in the ScheduleChart

The ScheduleChart control takes as primary data source any kind of enumeration. For
example, it can be acollection, an array or the result of aLinQ query. Theitemsin this

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 29

30

I BM

collection will be represented asarow in the ScheduleChart, for each item (that is, for each
row) the ScheduleChart control can display several items over the time. For example, the
main collection can be alist of persons and for each person, you may display the various
tasks assigned to this person. Another example could be alist of TV channel and for each
channel the various programs along the time. Here is aminimal implementation showing
persons and tasks assigned to persons. The class MyPerson and MyTask may look like this:

public class MyTask

{
public DateTime Start { get; set; }
public DateTime End { get; set; }

}

public class MyPerson
{
List<MyTask> _tasks = new List<MyTask>() ;
public string Name { get; set; }
public List<MyTask> Tasks { get { return tasks; } }

}

The start and End property of the classMyTask could be named differently. The important
point is that there are two properties of type bateTime so that the task can be displayed
along the time line. You can now create several persons with several tasks assigned.

In XAML

<iloggantt:ScheduleChart x:Name="scheduleChart"/>

In the code behind:

List<MyPerson> persons = new List<MyPersons> () ;
MyPerson personl = new MyPerson () { Name = "person 1" };
personl.Tasks.Add (new MyTask () { Start = DateTime.Now,
End = DateTime.Now.AddDays (2) });
personl.Tasks.Add (new MyTask () { Start = DateTime.Now.AddDays (3),
End = DateTime.Now.AddDays (5) });

MyPerson person2 = new MyPerson () { Name = "person 2" };

person2.Tasks.Add (new MyTask () { Start = DateTime.Now.AddDays (1),
End = DateTime.Now.AddDays (2) });

person2.Tasks.Add (new MyTask () { Start = DateTime.Now.AddDays (4)
End = DateTime.Now.AddDays (7) }

MyPerson person3 = new MyPerson() { Name = "person 3" };
person3.Tasks.Add (new MyTask () { Start = DateTime.Now,
End = DateTime.Now.AddDays (2) });
person3.Tasks.Add (new MyTask () { Start = DateTime.Now.AddDays (3),
End = DateTime.Now.AddDays (4) });

persons.Add (personl) ;
persons.Add (person2) ;
persons.Add (person3) ;

scheduleChart.ItemsSource = persons;
scheduleChart.TimeItemsBinding = new Binding("Tasks");

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Note that even though the ScheduleChart control is connected to data, by default it has no
column defined and no representation for bars. So the code above will not display anything.
Before improving the data source, you will modify the XAML so that the data can be

displayed.

To start displaying the items you need to add columns to the table part of the Gantt and
define a BarDefinition object that specifies the shape of bars on the time line.

In the following XAML definition one column is added and is bound to the Name property.
Inthis XAML you also add a Bar Definition object which indicates that a bar should be
displayed from the start to the End property of atask.

<iloggantt:ScheduleChart x:Name="scheduleChart"s>

<!-- Specifies Columns for the Gantt table-->
<iloggantt:ScheduleChart.Columns>

<iloggantt:TreeTableTextColumn Header="Name" Binding="{Binding Name}"/>
</ iloggantt:ScheduleChart.Columns>

<!-- bar definitions-->
<iloggantt:ScheduleChart.BarDefinitions>
<iloggantt:BarDefinition
StartBinding="{Binding Start}"
FinishBinding="{Binding End}">
<iloggantt:BarDefinition.BarTemplates>
<DataTemplate>
<Rectangle Height="13" Fill="LightBlue" />
</DataTemplate>
</iloggantt:BarDefinition.BarTemplate>
</iloggantt:BarDefinitions>
</iloggantt:ScheduleChart.BarDefinitions>
</iloggantt :ScheduleChart>

With this specification, you will get the following resullt:

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 31

avril 2009
MName
Wi4 W15 Wis
F person 1
person 2
person 3
4 P 3

For each person in the ItemsSour ce, arow is created in the ScheduleChart. For each
person the tasks (specified by the Tasks properties) are drawn along the time line.

For more information on columns, see Working with Gantt chart columns. For more
information on the Bar Definition class, see Specifying and Syling the Gantt Barsto

Display.

Let's come back to the definition of the data source. The source of data has been defined asa
List of MyPerson. With such a definition, the ScheduleChart control isnot able to react
when a person isadded or removed from the list. To see theitems that are added or removed
from the list, the collection specified in the | temsSour ce must implement the
INotifyCollectionChanged interface. Silverlight proposes the generic class
ObservableCollection<T> as a default implementation of I NotifyCollectionChanged.

Similarly the Name and Tasks properties of MyPerson may change and in order to see the
changesin the ScheduleChart, the class MyPerson should implement

I NotifyPropertyChanged, and the collection of tasks should implement
INotifyCollectionChanged.

Similarly if the start and End properties of MyTask change and the changes are reflected
in the ScheduleChart, you must implement the interface | NotifyPropertyChanged. The
code for MmyTask and MyPerson become

public class MyTask : INotifyPropertyChanged

{

private DateTime _start, _end;

public DateTime Start

{

get {

32 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

return _start;

set {
if (_start != value) ({
_start = value;
OnPropertyChanged ("Start") ;
}
}
}

public DateTime End

{
get {
return _end;

}

set {
if (_end != value) ({
_end = value;
OnPropertyChanged ("End") ;
}
}
}

public event PropertyChangedEventHandler PropertyChanged;
private void OnPropertyChanged (string propertyName)

if (PropertyChanged != null)
PropertyChanged (this, new PropertyChangedEventArgs (propertyName)) ;

}

public class MyPerson : INotifyPropertyChanged

{

private ObservableCollection<MyTask> _tasks
= new ObservableCollection<MyTask> () ;
private string _name;

public string Name

{

get

{

return _name;

set

{

if (_name != value)

_name = value;
OnPropertyChanged ("Name") ;
}
}
}

public ICollection<MyTask> Tasks { get { return tasks; } }

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

public event PropertyChangedEventHandler PropertyChanged;
private void OnPropertyChanged (string propertyName)

if (PropertyChanged != null)
PropertyChanged (this, new PropertyChangedEventArgs (propertyName)) ;
}

}

Now that the properties Name, Start and End are notifying their changes, the
ScheduleChart control can react to these changes and modify the display accordingly. It is
now also possible to move the bars with the mouse pointer.

34 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Using Predefined Data Models

Although the GanttChart and ScheduleChart controls can be connected to any kind of data,
IBM® ILOG® Gantt for NET provides two predefined data model that can be easily
connected to the Silverlight Gantt controls;

The SimpleGanttModel contains definitions for the activities (or tasks) in the project, for the
resources that will be used to perform the activities, for constraints between tasks and for
reservations (an assignment of aresource to an activity).

The ProjectSchedulingModel defines the same type of information as the

SimpleGanttM odel but adds project scheduling algorithms that will automatically maintain
the schedule of the project by computing the critical path and performing resource leveling
to remove resource overallocations. The two data models are located in the
ILOG.Controls.Gantt.Data.dll assembly.

In This Section
The SmpleGanttModel Data Model
Explains how to use the SimpleGanttModel class to manipulate scheduling data.
The ProjectSchedulingModel Data Model

Describes how to use the ProjectSchedulingModel to create Silverlight applications
with project scheduling capabilities.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 35

The SimpleGanttModel Data Model

IBM® ILOG® Gantt for .NET provides a ready-to-use implementation of the Gantt data
model through the SimpleGanttModel class. This Gantt data model can be used to

mani pulate standard scheduling data directly or can be extended to meet specific
reguirements. It can be easily connected to the Silverlight Gantt controls.

The SimpleGanttModel class

The SimpleGanttM odel gathers the Gantt model entitiesin a single object. Itsmain roleis
to maintain consistency in the model and to ease initialization of the Silverlight Gantt
controls.

The in-memory data model implementation is defined by the following classes:

Class Description

SimpleGanttModel Gathers the activities, resources, constraints, and
reservations in the same class.

SimpleActivity A basic activity implementation.

SimpleResource A basic resource implementation.

SimpleConstraint A basic constraint implementation.

SimpleReservation A basic reservation implementation.

All these classes are located in the ILOG.Controls.Gantt.Data namespace, in the
ILOG.Controls.Gantt.Data.dll assembly.

Activities in the SimpleGanttModel

Activitiesin the SimpleGanttM odel are defined by the SimpleActivity class. A
SimpleGanttM odel handles aflat collection of SimpleActivity objects. This collection can
be accessed through the SimpleGanttM odel .Activities property. To add or remove activities,
use the standard collection methods as shown below:

SimpleGanttModel model = new SimpleGanttModel () ;
SimpleActivity activity = new SimpleActivity()
Name = "Task 1",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours (8)
i

model .Activities.Add (activity) ;

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

To change the time interval of a SimpleActivity, use the StartTime, EndTime, and Duration
properties.

An activity with child activitiesis called summary activity. A summary activity is created by
setting the Parent property of the children activities to this activity. Note that it is not
possible to modify the time interval or summary activities, because it is automatically
computed from their children.

The following code shows how to create a summary activity, that is, an activity whose time
interval is defined by its children:

SimpleGanttModel model new SimpleGanttModel () ;
SimpleActivity summary new SimpleActivity() { Name = "Summary" };
SimpleActivity childl = new SimpleActivity() ({
Name = "Sub Task 1",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours (8),
Parent = summary
}i
SimpleActivity child2 = new SimpleActivity() ({
Name = "Sub Task 2",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours (8),
Parent = summary
Vi
model .Activities.Add (summary) ;
model .Activities.Add (childl) ;
model .Activities.Add (child2) ;

The children need to be explicitly added to the activity collection.

Note that setting up an activity hierarchy by setting the SimpleActivity.Parent property
does not mean that the Silverlight Gantt controls will automatically reflect this hierarchy. To
see how to configure the Silverlight Gantt controls to display a hierarchical view, see
Grouping, Sorting and Filtering Data.

When you remove the activities from the model, the associated reservations and constraints
are al'so removed.

Resources in the SimpleGanttModel

Resources in the SimpleGanttM odel are defined by the SimpleResource class. A
SimpleGanttM odel handles aflat collection of SimpleResour ce abjects. This collection
can be accessed through the SimpleGanttM odel.Resources property. To add or remove
resources, use the standard collection methods as shown below:

SimpleGanttModel model = new SimpleGanttModel () ;
SimpleResource resource = new SimpleResource() { Name = "Resource 1" };
model .Resources.Add (resource) ;

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 37

38

IBM

To create a hierarchy between resources, use the SimpleResource.Parent property. By
default, this property is set to null, which means the resource has no parent. The following
code shows how to create a hierarchy of resources:

SimpleGanttModel model = new SimpleGanttModel () ;

SimpleResource parent = new SimpleResource() { Name = "Parent Resource" };
SimpleResource childl = new SimpleResource() ({
Name = "Sub Resource 1",

Parent = parent
Vi
SimpleResource child2 = new SimpleResource() {
Name = "Sub Resource 2",
Parent = parent

}i
model .Resources.Add (parent) ;
model .Resources.Add (childl) ;
model .Resources.Add (child2) ;

The children need to be explicitly added to the resource collection.

Note that setting up aresource hierarchy by setting the SimpleResour ce.Parent property
does not mean that the Silverlight Gantt controls will automatically reflect this hierarchy. To
see how to configure the Silverlight Gantt controls to display a hierarchical view, see
Grouping Data.

When you remove the resources from the model, the associated reservations are also
removed.

Constraints in the SimpleGanttModel

Constraints in the SimpleGanttM odel are defined by the SimpleConstraint class. A
SimpleGanttM odel handles a collection of SimpleConstraint objects. This collection can
be accessed through the SimpleGanttM odel .Constraints property. To add or remove
constraints, use the standard collection methods as shown below:

SimpleGanttModel model = new SimpleGanttModel () ;

SimpleActivity activityl = new SimpleActivity () {
Name = "Task 1",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours (8)
i

model .Activities.Add (activityl) ;

SimpleActivity activity2 = new SimpleActivity () {
Name = "Task 2",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours (8)
i

model .Activities.Add (activity2) ;

SimpleConstraint constraint = new SimpleConstraint ()
FromActivity = activityl,
ToActivity = activity2
i

model .Constraints.Add (constraint) ;

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Reservations in the SimpleGanttModel

Reservations in the SimpleGanttM odel are defined by the SimpleReservation class. A
SimpleGanttM odel handles a collection of SimpleReservation objects. Thiscollection can
be accessed through the SimpleGanttM odel .Reservations property. To add or remove
reservations, use the standard collection methods as shown below:

SimpleGanttModel model = new SimpleGanttModel () ;
SimpleActivity activity = new SimpleActivity() {
Name = "Task",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours (8)
}i

model .Activities.Add (activity) ;

SimpleResource resource = new SimpleResource() { Name = "Resource" };
model .Resources.Add (resource) ;
SimpleReservation reservation = new SimpleReservation() {
Activity = activity,
= resource

Resource

Model .Reservations.Add (reservation) ;

The ProjectSchedulingModel Data Model

IBM® ILOG® Gantt for .NET allows you to create Silverlight applications that require
project scheduling capabilities through a specific Gantt Data Model class: the
ProjectSchedulingModel.

The ProjectSchedulingM odel stores information about your project and uses this
information to cal culate and maintain the schedule of your project. The
ProjectSchedulingM odel computes the schedule immediately. As soon as you have entered
information about your project, you can learn about the scheduled start date of activities and
the project target date.

Inthe <installdir>\Samples\Applications\SilverlightProjectEditor
directory, you will find afully-featured application sample that shows how to use the
ProjectSchedulingM odel in areal project scheduling application.

In This Section
The ProjectSchedulingModel Class
Describes the Proj ect SchedulingM odel class.

Activities in the ProjectSchedulingModel
Describes the SchedulingActivity class.

How the Project Scheduling Model Computes the Schedule of a Project

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 39

Describes how the ProjectSchedulingModel class calculates and creates the schedule
of aproject.

Calendars in the Project Scheduling Model

Explains how to use calendars to define working and nonworking periods.
Resource Leveling in the Project Scheduling Model

Explains the resource leveling process in the Project Scheduling Model.

The ProjectSchedulingModel Class

The ProjectSchedulingModel class contains a gorithms for scheduling projects, leveling
resources, and computing the critical paths. This option is particularly interesting for
developing rapidly project management solutions that can be deployed over the Web.

The ProjectSchedulingM odel classis a Gantt data model class similar to the
SimpleGanttModel that adds project scheduling capabilities. Just like the

SimpleGanttM odel, the ProjectSchedulingM odel defines the scheduling information that
can be edited and displayed by the Silverlight controls of the IBM ILOG Gantt for .NET
library.

For adding, removing and accessing activities, resources, constraints and reservations, the
ProjectSchedulingM odel operates as the SimpleGanttM odel, but for each modification of
the model, the ProjectSchedulingM odel re-computes a working schedul e of the project.
For example, when you change the duration of an activity in the model, the model re-
computes a schedul e and this may have an impact on the start time of al the successors
activities and on the project scheduled end date.

The following types are involved in the Project Scheduling Data mode!:

Type Description

ProjectSchedulingModel The project scheduling data model that uses the classes
listed in this table.

SchedulingActivity Represents an activity or a task that must be completed in
the project.
SchedulingResource Represents a resource that can be allocated to an activity to

make its completion possible.

SchedulingConstraint Represents an activity-to-activity scheduling constraint.

SchedulingReservation Represents the allocation of a resource to an activity.

When creating a Proj ectSchedulingM odel you must specify a starting date for the project
by using the StartDate property. The project is scheduled from the start date, so activities

40 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

IBM

that do not have predecessors or other scheduling constraints will be scheduled at the project
start date. The project end date will be automatically computed and is available through the
EndDate property.

By default, the Proj ectSchedulingM odel schedules activities by using the working timeson
the project calendar (see WorkCalendar class). The project calendar can be specified using
the Calendar property. When creating a Proj ect SchedulingM odel, the model has a standard
calendar that defines Saturday and Sunday as nonworking days and working times from
8AM to 12AM and from 1PM to 5PM. Specific calendars can also be defined for resources
and activities. For more details see Calendars in the Project Scheduling Model.

The following C# code fragment creates a ProjectSchedulingM odel and adds one activity.
Finally, the scheduled start time of the activity and the project target date are displayed.

ProjectSchedulingModel project = new ProjectSchedulingModel () ;
project.StartDate = new DateTime (2005, 1, 1);
SchedulingActivity activity = new SchedulingActivity () ;
activity.Duration = TimeSpan.FromHours (8) ;
project.Activities.Add (activity) ;

This C# code schedules the activity to start on: 1/3/2005 8:00:00 AM
(activity.startTime) and the project end date (project . EndDate) will be 1/3/2005
5:00:00 PM.

The activity has been scheduled to start on January 3, 2005 at 8 AM, even though the project
start date is January 1, thisis because January 1, 2005 is Saturday.

Activities in the ProjectSchedulingModel

Activitiesin the ProjectSchedulingModel are defined by the SchedulingActivity class. Since
the ProjectSchedulingM odel automatically computes the schedule of the activity you
should not specify a start date for activities. For an activity, it is only mandatory to specify a
duration. The schedule of activities will be computed by the model.

The Duration property of the activity represents the amount of work needed to complete the
activity. For example, if you are using the default standard calendar, a duration of 8 hours
representsin fact one day of elapsed duration since in the default calendar each working day
has 8 hour of work (The default calendar has working times from 8 AM to 12PM and from
1PM to 5PM).

The following C# code creates a ProjectSchedulingM odel with a start date of January 5,
2005 and adds an activity with a duration of 8 hours.

ProjectSchedulingModel model = new ProjectSchedulingModel () ;
model .StartDate = new DateTime (2005,1,5) ;

SchedulingActivity activity = new SchedulingActivity () ;
activity.Duration = TimeSpan.FromHours (8) ;

model .Activities.Add (activity) ;

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 41

Once the activity is added to the model, the following properties of the SchedulingActivity
class are computed by the ProjectSchedulingM odél:

Property Name Property Type Description

StartTime DateTime The scheduled start time of the activity.
EndTime DateTime The scheduled end time of the activity.
EarlyStart DateTime The earliest date the activity can start based

on the predecessor and successors of the
activity and other scheduling constraints.

EarlyFinish DateTime The earliest date the activity can finish based
on the predecessors and successors of the
activity and other scheduling constraints.

LateStart DateTime The latest date the activity can start based
on the predecessors and successors of the
activity and other scheduling constraints.

LateFinish DateTime The latest date the activity can finish based
on the predecessors and successors of the
activity and other scheduling constraints.

TotalSlack TimeSpan The amount of time the activity can be
delayed without delaying the project's end
date.

FreeSlack TimeSpan The amount of time the activity can be
delayed without delaying any successor
activity.

IsCritical Boolean Indicates whether the activity is critical or
not.

You should not specify the SartTime or EndTime properties of a SchedulingActivity.
Those properties are automatically computed. If you set the value of the StartTime property,
aconstraint of type"Start No Earlier Than" will be set on the activity. If you specify the
EndTime property, a constraint of type "Finish No Earlier Than" will be set on the activity.

To learn more about constraints and other properties of SchedulingActivity that allow you
to control the schedule of an activity and how the schedule of the project is computed, see
How the Project Scheduling Model Computes the Schedule of a Project.

When the automatic resource leveling is turned on, the following properties of the
SchedulingActivity are computed:

42 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Property Name Property Type Description

PreleveledStart DateTime Represents the start time of the activity before
the resource leveling was computed.

PreleveledEnd DateTime Represents the end time of the activity before
the resource leveling was computed.

LevelingDelay TimeSpan The amount of time the activity is delayed from
its early start date (EarlyStart) in order to
remove resource overallocations.

To learn more about resource leveling, see Resource Leveling in the Project Scheduling
Model.

You can also specify that an activity has already started by defining and actual start time
(SchedulingActivity.Actual Start Time property) and the percentage of completion
(SchedulingActivity.WorkCompl ete property). Thisinformation is taken into account by the
model when scheduling the activity. Activitiesthat have already started are aways
scheduled at their actual start time and will not be delayed by the resource leveling
algorithm.

How the Project Scheduling Model Computes the Schedule of a Project

Asyou build aproject plan, the ProjectSchedulingModel class calculates and creates a
working schedule based on information you provide about the activities to be done and the
people assigned to those activities.

The ProjectSchedulingM odel schedul esthe project from theinformation you specify about
the project itself: the individual activities (class SchedulingActivity) required to complete
the project and, if necessary, the resources (class SchedulingResource) needed to complete
those activities. If anything about your project changes after you create your schedule, you
can update the activities or resources and the Proj ectSchedulingM odel adjusts the schedule
for you.

For each activity, you enter duration, dependencies between activities (class
SchedulingConstraint), and activity constraints (type ActivityConstraintType), then the
ProjectSchedulingM odel calculates the start and end date for each activity. You can enter
resources in your project and then assign them to activities to indicate which resource is
responsible for completing each activity (class SchedulingReservation). If you enter
resources, task schedules are further refined according to resource availability and working
times entered on calendars (class WorkCalendar). Other elements, such aslead time and lag
time on dependencies can affect the scheduling. Understanding the effects of these elements
can help you maintain and adjust the project schedule.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 43

Controlling When the Project Schedule is Recomputed

Since every modification of the model leads to a re-computation of the schedule of the
project, it isimportant to control when the schedule is re-computed in order to avoid
unnecessary re-computations.

For example, if you want to change the duration of severa activities, you do not want the
model to re-compute the schedule several times.

The ProjectSchedulingM odel provides the BeginScheduleSession and
EndSchedul eSession methods that allow you to group several modifications so that only one
single schedule will be computed. Here is the typical C# code that you would write:

try {
model .BeginScheduleSession() ;

// change several things in the model
} finally {

model .EndScheduleSession() ;
}

The ProjectSchedulingM odel class aso provides the BeginSchedule and EndSchedule
events that are fired when the scheduling starts and finishes.

How Project Start Date Affects the Schedule

The ProjectSchedulingM odel schedules your project according to the project start date.
The start date of the project can be specified by the StartDate property of the
ProjectSchedulingM odel. When an activity is added to the model, it isinitially scheduled
at the project start date. Later on, if you add predecessors to the activity or if you set other
constraints on the activity, the schedule start time of the activity will be computed
accordingly. The project end date is computed like the latest end date of all activitiesin the
model and can be retrieved using the EndDate property of the ProjectSchedulingM odel
class.

You may change the project start date at any time and the Project SchedulingM odel will re-
compute a new schedule based on this new start date.
How Constraint Links Affect the Schedule

When anew activity isinserted in the Project SchedulingM odel, the activity has no
predecessor constraint and will be scheduled to start at the project start date.

Later on, predecessor constraints can be added between activities using the
SchedulingConstraint class that defines precedence constraints between activities.

See Displaying Constraints between Tasks in a GanttChart Control for details on the
different types of precedence constraints defined by the ConstraintType enumeration.

44 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Lead and Lag Time

The SchedulingConstraint class also alows you to specify alead or alag time for the
congtraint.

A lag timeisadelay between the end of an activity and the start of its successor. A lead time
is an overlap between the two activities, so that the successor starts before the end of the
predecessor.

Lag

-+ L

>
Lead

To specify alag or lead time in the SchedulingConstraint use the Lag and LagFormat
property. The lead and lag time can be expressed in various formats: it can be defined asa
work duration or an elapsed duration. The duration may be directly specified or defined asa
percentage of the duration of the predecessor activity. For example, to create an EndToSart
constraint between activity A and B with alag expressed as 50% of the elapsed duration of
A (assuming that the variable a and b are instances of the SchedulingActivity class), you
would do:

SchedulingConstraint ¢ = new SchedulingConstraint ()
{Fromactivity = a,
ToActivity = b,
Type = ConstraintType.EndToStart};

c.Lag = 50;

c.LagFormat = LagFormat.EllapsedPercentage;

model .Constraints.Add (c) ;

To express alead time, you would give a negative value to the L ag property.

How Constraints on Activities Affect the Schedule

The schedul e start date of an activity is mainly controlled by the dependencies between
activities, as explained in How Constraint Links Affect the Schedule.

However, the scheduled start date of an activity can also be controlled using constraints on
activity. Constraints on activities are set and retrieved through the Constraint property of the
SchedulingActivity class. The different types of constraints that can be specified on an
activity are defined by the ActivityConstraintType enumeration. By default, when creating
an activity, the constraint on the activity is set to AsSoonAsPossible. This means that the

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 45

activity will be scheduled as soon as possible. For example, if the activity has several end-to-
start predecessors, the task will be scheduled as soon as the predecessors are finished.

For the AsSoonAsPossible and AsL ateAsPossible constraints, it is not necessary to specify
acongtraint date. For the other types of constraints, a constraint date must be specified in the
ConstraintDate property of the SchedulingActivity class.

Here are the different types of constraints and how they affect the schedule of an activity:

Constraint type Description

AsSoonAsPossible The ProjectSchedulingModel schedules the activity to start
as soon as it can. This is the default constraint type. No
specific date constraint is added to the activity. Activities with
this constraint that have no predecessors will be scheduled at
the project start date.

AslLateAsPossible The ProjectSchedulingModel schedules the task to start as
late as it can, based on the constraints on predecessors. No
specific date constraint is added to the activity.

FinishNoLaterThan The ProjectSchedulingModel schedules the task to finish no
later than the date specified by the ConstraintDate property of
the activity. The activity can be scheduled to finish before or at
the specified date. With such a constraint, the activity may be
scheduled to start before the date allowed by predecessor
constraints and thus violate the constraint imposed by
predecessors.

StartNoLaterThan The ProjectSchedulingModel schedules the task to start no
later than the date specified by the ConstraintDate property of
the activity. The activity can be scheduled to start before or at
the specified date. With such a constraint, the activity may be
scheduled to start before the date allowed by predecessor
constraints and thus violate the constraint imposed by
predecessors.

StartNoEarlierThan The ProjectSchedulingModel schedules the task to start no
earlier than the date specified by the ConstraintDate property
of the activity. The activity can be scheduled to start after or at
the specified date. Such a constraint will be automatically set
on the activity, when you modify the StartTime property of the
activity.

46 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Constraint type Description

FinishNoEarlierThan The ProjectSchedulingModel schedules the task to finish no
earlier than the date specified by the ConstraintDate property
of the activity. The activity can be scheduled to finish after or at
the specified date. Such a constraint will be automatically set
on the activity, when you modify the EndTime property of the
activity.

StartOn The ProjectSchedulingModel schedules the task to start at
the date specified by the ConstraintDate property of the
activity without taking into account other scheduling
constraints.

FinishOn The ProjectSchedulingModel schedules the task to end at
the date specified by the ConstraintDate property of the
activity without taking into account other scheduling
constraints.

Calendars in the Project Scheduling Model

The ProjectSchedulingModel uses calendars to define the working and nonworking periods
of the project such as holidays and weekends. Calendars are defined by the WorkCalendar
class.

The ProjectSchedulingM odel defines different types of calendars:
[_project calendar

Defines the default working and nonworking times for the project and can be set using
the Calendar property of the ProjectSchedulingM odel. If no calendar is defined for
resources working on an activity or for the activity itself, an activity will be scheduled
within the working times defined by the project calendar.

[Tesource calendar

Defines specific working and nonworking periods for a resource and can be retrieved
using the Calendar property of the SchedulingResource class. The work assigned to the
resource will be scheduled within the working time of the resource calendar. Note that
the resource calendar only applies to work resource and not to material resource (see the
SchedulingResource. Type property).

[activity calendar

Defines a specific calendar for an activity. This calendar can be retrieved using the
Calendar property of the SchedulingActivity class. When a calendar is assigned to an
activity, the activity will be scheduled within the working times of this calendar without
taking into consideration the calendar of resources that may be assigned to the activity.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 47

When creating a Proj ect SchedulingM odel, the model has a standard calendar that defines
Saturday and Sunday as nonworking days and working times from 8AM to 12AM and from
1PM to 5 PM. The ProjectSchedulingM odel holds alist of base calendarsinits
BaseCalendars property. This collection contains the base calendars that can be used for the
project calendar or for activity calendars. The resource calendars must be a subcalendar of
one of the calendars in the base calendars collection.

To learn more about Calendars see Soring and Displaying Working and Nonworking Times.

Resource Leveling in the Project Scheduling Model

The resource leveling is the process of removing overallocation of resources. A resourceis
overallocated when too much work is assigned to it.

The ProjectSchedulingM odel can remove overall ocations automatically by delaying
activities so that resources have enough time to work on the activity. While delaying, the
Proj ectSchedulingM odel ensures that all the scheduling constraints are still valid. The
resource leveling process may delay the project end date.

Overallocations of resource can be removed automatically by the resource leveling
algorithm of the Pr oj ect SchedulingM odel and can also be executed manually by specifying
delays for each activity. To turn on or off the automatic resource leveling of the model use
the AutomaticResourcel eveling property of the ProjectSchedulingM odel class.

When the resource leveling is automatic, the Project SchedulingM odel uses a heuristic to
determine which activity should be delayed first. This heuristic examines the following
properties of the activity:

[Ihte start
[tbtal slack
[duration
[priority
1D

The delays computed automatically are stored in the LevelingDelay property of the
SchedulingActivity class.

The automatic resource leveling can be started using no leveling delays or can use the
current values stored in the L evelingDelay property of each activity. Thisis controlled by
the ClearDelaysBeforeleveling property of the ProjectSchedulingM odel class. When the
Clear DelaysBeforel eveling property is set to true, all the delays will be reset to zero
before the resource leveling starts.

The resource leveling process may be time consuming, that is why the leveling algorithm
fires events about the progress of the algorithm, so that some feedback can be given to a

48 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

final user. Thisisdone through the LevelingProgress event of the ProjectSchedulingM odel
class.

In some cases the resource leveling agorithm may not be able to find a solution that
removes all the resource overallocation. For example, if two activities are causing an
overallocation for aresource and have a" StartOn" constraint, they cannot be delayed and the
overallocation cannot be removed. In this case, the L evelingProgress event gives
information on which resourceis problematic, at which date, and decides wether the
algorithm can continue or needs to be stopped.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 49

50 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Specifying and Styling the Gantt Bars to
Display

The GanttChart and ScheduleChart controls display time bars to represent atask along a
time scale. By default, aGanttChart or a ScheduleChart control has no default
representation for time bars so you have to specify the appearance of barsto fit your needs
and your data model.

The following illustrations show some representations of time barsin a GanttChart.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 51

Project sponsor

ponsor,Project engineer
Project engineer

1= 17

E Project

%

b
Pretect-ergineer, Discipline engineer
“ -
b—PFajee‘ engineer,Discipline engines
-
retestpRgtReerSEepline engineer

Project sponsor

tponsar, Project engineer
Project engineer

By

i

[— Project sponsnr

: Projert sponsar, Project enginesr

rojert en

pinesr

Project eng

¥—_ Project

Project

neer,Discipline engineer
engineer,Discipline enginee

pline engineer

==
— -

ngineer, Dise

52 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

IBM

The representation of time bars on the screen is controlled by a collection of 'bar definitions
that can be accessed by the BarDefinitions property of the GanttSheet class.

The GanttChart and ScheduleChart classes also have a BarDefinitions property that refers
to the Bar Definitions property of the internal GanttSheet class used by these controls.

When the GanttSheet class needs to render an item in the data source, it looks insideits
collection of bar definition to find all the definitions that are relevant to thisitem. Matching
definitions are then used to render the item. Applying several bar definitionsto render a
single item can be used to give several pieces of information about the item. For example, a
first bar can be used to display arectangle that shows the duration of an activity; a second
style can superimpose a rectangle that shows the percentage completion of this activity.

The order of the bar definitionsin the collection issignificant. Since the GanttSheet can use
several barsto render a single activity, the bar definitions that appear first in the collection
are rendered before, thus underneath, the bar definitions that appear later in the collection.

The collection of bar definitions holds a collection of instances of the BarDefinition class.
The Bar Definition class defines the way the bar will be rendered on the screen, aswell as
the kind of item to which this definition applies.

In This Section
Using Default Bar Representations
Explains how to use default bar representations.
Defining Sart and End Time for the Bar

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 53

Explains how to define Start and End time for the bar.
Defining the Shape of the Bar
Explains how to define the shape of the bar.
Displaying Additional Information on the Right and on the Left of the Bar
Explains how to display additional information on the bar.
Alignment Properties
Explains how to control the alignment of the bar.
Defining When a Bar Definition Applies for an Item
Explains how to define when a bar definition applies for an item.
Connection of Constraint linksin a GanttChart
Explains how to draw constraint links between tasks.
Interactions on the Bar
Describes the various interactions on the bar.
Defining a Tooltip for the Bar
Explains how to define atooltip for the bar.
Example of Bar Definitions
Provides an example of bar definition.

Using Default Bar Representations

If you are using the predefined data model (SimpleGanttModel or ProjectSchedulingModel)
to store your data, you can use the InitializeFrom method (an extension method for the
GanttChart class). This method connects the data source and creates a default set of
BarDefinition instances for the Gantt control aswell as adefault set of columnsfor the table.
GanttChart chart = new GanttChart () ;

ProjectSchedulingModel model = new ProjectSchedulingModel () ;
chart.InitializeFrom(model) ;

Defining Start and End Time for the Bar

The BarDefinition class defines many visual attributes used to render an item on the screen.
The first thing to specify is the time interval that will be displayed. Thisinterval is defined
by two properties: StartBinding and FinishBinding. These two properties are Silverlight
Binding instances that describe the path to find the start time and the end time of the bar

54 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

from the item in the data source. These two bindings should represent dates and thus refer to
properties that are of type DateTime.

For example, if theitemsto display in a GanttChart (itemsin the ItemsSour ce collection)
are of type SimpleActivity (abase implementation of an activity provided in the namespace
ILOG.Controls.Gantt.Data), you can use the StartTime and EndTime properties that
represent the start and end time of the activity in the bindings. In XAML you would specify:

<iloggantt:BarDefinition
StartBinding="{Binding StartTime}"
FinishBinding="{Binding EndTime}" .../>

You can a'so display the portion of the activity that is completed by using the SartTime and
CompletedThrough properties defined by the SimpleActivity class:
<iloggantt:BarDefinition

StartBinding="{Binding StartTime}"
FinishBinding="{Binding CompletedThrough }" .../>

Defining the Shape of the Bar

In order to give a shape to the bar, you need to specify a data template that defines the
graphical representation of the bar. This data template is specified through the BarTemplate
property of the Bar Definition class. For normal tasks, you would probably specify a data
template that is mainly arectangle. By default, the bar and thus the data template that you
specify will be displayed from the start date to the end date that you have specified through
the StartBinding and FinishBinding properties.

Hereis XAML example of a datatemplate that is simply drawing a blue rectangle with a

black border:
<iloggantt:BarDefinition ...>
<iloggantt:BarDefinition.BarTemplate>
<DataTemplate>

<Rectangle Height="13" Fill="Blue"
Stroke="Black" StrokeThickness="1"/>
</DataTemplate>
</iloggantt:BarDefinition.BarTemplate>
</iloggantt:BarDefinitions>

As expected, thiswill display ablue bar as shown in the following picture:

You have noticed that the Height is specified for the rectangle but not the Width. The width
of the bar is computed by default by the start and end time of the bar.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 55

Since the shape of the bar is given through abataTemplate, you can use the full power of
Silverlight bindings. The bar that is created has for data context the item in the data source

that this bar displays, so you might have the color of the bar bound to some property of the

item. For example, the bar can be filled in red if an activity iscritical.

Milestones are another type of information that you might want to display. They are often
represented by a diamond shape. In case of amilestone or any other information represented
by a single date, the shape does not need to be displayed from start date to end date, as those
might be the same. In this case use the Horizontal Alignment property of the Bar Definition,
by default the value HorizontalBar Alignment.Sretch that corresponds to the alignment
from start date to end date. Set this value to Horizontal Bar Alignment.Sart or

HorizontalBar Alignment.End. This places the bar centered on the start or end date.

Hereis aBar Definition that draws a black diamond centered on the start date of the item.

<iloggantt:BarDefinition HorizontalAlignment="Start" ...>
<iloggantt:BarDefinition.BarTemplate>
<DataTemplate>
<Path Width="12" Data="Mé 0 LO 6 L 6 12 L 12 6z" Fill="Black"/>
</DataTemplate>

</iloggantt:BarDefinition.BarTemplate>
</iloggantt:BarDefinitions>

Thiswill give the following result:

*

This time you have specified a width to the Path representing the diamond. The width isno
longer computed from start and end date, the size of the bar is defined by the data template.

The following example shows how to place some symbols at the beginning or at the end of a
bar. It shows how to use the BarMargin property of the Bar Definition class.

<iloggantt:BarDefinition
HorizontalAlignment="Stretch"
BarMargin="-6.5,0,-6.5,0"
.. >
<iloggantt:BarDefinition.BarTemplate>
<DataTemplate>
<Grid>
<Rectangle VerticalAlignment="Top" Height="7" Fill="Black"/>
<Path Height="13" HorizontalAlignment="Left" Fill="Black"
Data="MO 0LO 6.5L6.5 13L13 6.5L13 0z"/>
<Path Height="13" HorizontalAlignment="Right" Fill="Black"
Data="MO 0LO 6.5L6.5 13L13 6.5L13 0z"/>
</Grid>
</DataTemplate>
</iloggantt:BarDefinition.BarTemplate>
</iloggantt:BarDefinition>

56 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

This bar definition defines a thin black bar and two down pentagons on each side of the bar.
This gives the following graphical result:

—

The Horizontal Alignment is set to stretch so the bar it displayed from the start timeto
the end time.

The BarMar gin adds additional fixed size on the |eft of the start date and on the right of the
end date. Each pentagon has awidth of 13, therefore setting the BarMargin to -6.5,0,-6.5,0
(6.5ishalf of 13) will ensure that the pentagons point to the start and end dates.

Displaying Additional Information on the Right and on the Left of the Bar

In addition to the bar itself, information can be displayed on the right and on the left of the
bar. Thisinformation isusually a property of theitem that is displayed, for example the date
for amilestone.

The additional information is specified through data templates. The Bar Definition class
provides the properties RightTemplate and L eftTemplate to define the information to be

displayed.

Assume that Name is aproperty of theitem displayed by the bar. You can define a
DataTemplate that displaysthe name, asfollows:

<iloggantt:BarDefinition ...>
<iloggantt:BarDefinition.RightTemplate>
<DataTemplate>
<TextBlock Text="{Binding Name}"/>
</DataTemplate>
</iloggantt:BarDefinition.RightTemplate>
<iloggantt:BarDefinitions>

Note how the Silverlight binding can be used here to access properties of the displayed item,
just like in the Bar Template property.

Alignment Properties

By default, inside a GanttChart al the bars are centered in the middle of the row where they
are drawn, but this behavior can also be changed through the Vertical Alignment property of
the BarDefinition. This allows you to align the bar on the top or at the bottom of the row.

The Vertical Alignment property appliesto all elementsthat are displayed, that is, the bar
and the additional information on the right and on the left of the bar. For more details on how

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 57

to add information on the left and on the right of the bar, see Displaying Additional
Information on the Right and on the Left of the Bar. Other properties control the alignment
of each individual element.

[BarPresenterVertical Alignment: controls the vertical alignment of the bar.

[eftPresenterVertical Alignment: controls the vertical alignment of the information on
the left of the bar.

[RightPresenterVertical Alignment: controls the vertical alignment of the information on
the right of the bar.

You can also define a bar that follows the height of arow by setting the

Bar Presenter Vertical Alignment to Sretch. In this case, you would need to add a margin
on the top and at the bottom of the bar to separate two barsin two consecutive rows. You can
do this by means of the BarMargin property of the Bar Definition class.

Hereisan example:

<iloggantt:BarDefinition BarMargin="0,2,0,2"

BarPresenterVerticalAlignment="Stretch" ...>
<iloggantt:BarDefinition.BarTemplate>
<DataTemplate>
<Rectangle Fill="Blue" Stroke="Black" StrokeThickness="1"/>
</DataTemplate>

</iloggantt:BarDefinition.BarTemplate>
</iloggantt:BarDefinition>

Thiswill give the following graphical result:

Note that in this case the height of the rectangle is not specified so that it can be stretched to
fit the row height.

58 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Defining When a BarDefinition Applies for an Item

You have seen that several BarDefinition can be used to display a singleitem in the data
source. Now you need to specify how the Gantt components will choose the Bar Definition
to be used for a particular item in the data source.

When the Gantt sheet needs to render an item on the screen, first it looks in its collection of
Bar Definition (BarDefinitions property) to collect al the bar definitionsthat are relevant. It
uses the Conditions property of the Bar Definition class to know which instances of the
Bar Definition class are relevant to the item that needs to be displayed.

The Conditions property represents a collection of the class Condition. Each Condition
should betruein order for the bar definition to be used by an item. In the following example
theitemsin the ItemsSour ce are of type SimpleActivity which defines a property named

IsMilestone.

<iloggantt:BarDefinition ...>
<iloggantt:BarDefinition.Conditions>
<iloggantt:Condition Property="IsMilestone" Value="true"/>
</iloggantt:BarDefinition.Conditions>
</iloggantt:BarDefinitions>

The evaluation of conditionsis dynamic, as soon as a property defined in a condition
changes, the conditions are re-evaluated and items may be displayed using a different set of
bar definitions.

Connection of Constraint links in a GanttChart

Inside a GanttChart, the constraint links between tasks are drawn from a bar representing a
task to another bar. When atask is represented by several bars, the GanttChart needsto
choose the bar at which the link should be connected. For example, if you have a bar
representing the start and the end of atask and another bar representing the deadline date for
the task, you will have the links connected to the first bar and not to the second one. This
information is also defined through the Bar Definition and its
AllowConstraintLinkConnection property.

Interactions on the Bar

IBM

By default, each bar displayed in a Gantt component can be moved and resized using the
mouse pointer. To move the bar, change its start date (the date defined by the StartBinding
property); to resize the bar, change its end date (the date defined by the FinishBinding

property).

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 59

You can easily disable this behavior for each bar definition through the CanMoveBar and
CanResizeBar properties of the Bar Definition. For example, if abar definition isused to
display amilestone you usually do not want to resize it so you would set the CanResizeBar
property to false.

Note that there are other ways to disable the editing of abar. For example, you can set the
CanEditBars property of the GanttChart or ScheduleChart to false. Thiswill completely
disable the editing of the bars. Additionally, the QueryGanttBarEditable event of the
HierarchyChart class (base class for GanttChart and ScheduleChart) can allow you to
code a more complex logic to decide if abar can be edited or not.

By default, when you move a bar displayed between astart property andafinish
property, both the start and £inish property change. The finish property is changed so
that the duration between start and £inish staysthe same. In some cases (and in
particular in the ProjectSchedulingModel), changing the start time will automatically change
the end time of the displayed item, because the logic is built in the implementation of the
displayed item (for example, changing the StartTime in a SchedulingActivity will
automatically change the EndTime property). In this case you do not want the Gantt control
to change the £inish property, but only the start. To do so, you simply set the
BarMovingMode property to Bar M ovingM ode.ChangeStartOnly.

A specific cursor is used when moving or resizing the bars. Since Silverlight 2 does not
enable the creation of a custom cursor, the cursors are replaced by Silverlight Ul Elements
that you can specify through the MoveCursor and ResizeCursor property of the

Bar Definition.

For more information on the editing process of the bar see Editing Process - Moving and
Resizing a Bar.

Defining a Tooltip for the Bar

60

I BM

The BarDefinition class allows you to specify atooltip that is displayed when moving or
resizing the bar through the EditingTooltip property. If you want to have aregular tooltip
that is displayed when the mouse hovers the bar, you can simply use a Silverlight Tooltip
inside the datatemplate that defines the shape of the bar. The tooltip can also use Silverlight
binding to reflect some properties of the item displayed by the bar.

The following example shows how to specify atooltip displaying the name, the start and end
time of atask using the Name, StartTime and EndTime properties of the task.

<iloggantt:BarDefinition
StartBinding="{Binding StartTime}" FinishBinding="{Binding EndTime}">

<iloggantt:BarDefinition.BarTemplate>
<DataTemplate>
<Rectangle Fill="Blue" Height="13">
<ToolTipService.ToolTip>

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

<Border>
<Border.Resources>
<iloggantt:DateTimeConverter x:Key="DateConverter"/>
</Border .Resources>
<StackPanel Orientation="Vertical"s>
<TextBlock FontWeight="Bold"
HorizontalAlignment="Center" Text="Task"/>
<TextBlock Text="{Binding Name}"/>
<StackPanel Orientation="Horizontal"s>
<TextBlock Text="Start:"/>
<TextBlock Text="{Binding Start,
Converter={StaticResource DateConverter},
ConverterParameter:d}"/>
</StackPanel>
<StackPanel Orientation="Horizontal"s>
<TextBlock Text="Finish:"/>
<TextBlock Text="{Binding Finish,
Converter={StaticResource DateConverter},
ConverterParameter:d}"/>
</StackPanel>
</StackPanel>
</Border>
</ToolTipService.ToolTip>
</Rectangle>
</DataTemplate>
</iloggantt:BarDefinition.BarTemplate>
</iloggantt:BarDefinition>

This example also uses a utility converter class named DateTimeConverter that can format
dates using standard .NET date formats passed in the Converter Parameter of the converter.

Example of Bar Definitions

Hereisafull example of bar definitions that appliesto a GanttChart displaying instance of
the SimpleActivity class. This example definesfour bar definitions: one for normal bars, one
for summary task, one for milestones and another one to display the task completion.

<ilog:GanttChart .BarDefinitions>

<!-- Bar Definition for normal bars-->

<ilog:BarDefinition StartBinding="{Binding StartTime}"
FinishBinding="{Binding EndTime}"
BarMovingMode="ChangeStartOnly">

<ilog:BarDefinition.Conditions>
<ilog:Condition Property="IsMilestone" Value="false" />
<ilog:Condition Property="IsSummary" Value="false" />
</ilog:BarDefinition.Conditions>

<ilog:BarDefinition.RightTemplate>
<DataTemplate>
<TextBlock Text="{Binding Resources}" />
</DataTemplate>
</ilog:BarDefinition.RightTemplates>

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 61

<ilog:BarDefinition.BarTemplate>
<DataTemplate>
<Rectangle
StrokeThickness="1"
Stroke="Blue"
RadiusX="3"
Radiusy="3"
Height="13">
<Rectangle.Fill>
<LinearGradientBrush StartPoint="0,0"
EndPoint="0,1">
<GradientStop Color="#FFCED3E6" />
<GradientStop Color="#FF88AQF2" Offset="1" />
</LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>
</DataTemplate>
</ilog:BarDefinition.BarTemplate>
</ilog:BarDefinition>

<!-- Bar Definition for task completion bars-->
<ilog:BarDefinition CanMoveBar="False"
StartBinding="{Binding StartTime}"
FinishBinding="{Binding CompletedThrough}">

<ilog:BarDefinition.Conditions>
<ilog:Condition Property="IsMilestone" Value="false" />
<ilog:Condition Property="IsSummary" Value="false" />
</ilog:BarDefinition.Conditions>

<ilog:BarDefinition.BarTemplate>
<DataTemplate>
<Rectangle
StrokeThickness="0"
Fill="Green"

Radiusx="2"

Radiusy="2"

Height="6"/>
</DataTemplate>

</ilog:BarDefinition.BarTemplate>
</ilog:BarDefinition>

<!-- Bar Definition for summary tasks -->

<ilog:BarDefinition BarMovingMode="ChangeStartOnly"
StartBinding="{Binding StartTime}"
FinishBinding="{Binding EndTime}"
BarMarging="-6.5,0,-6.5,0">
<ilog:BarDefinition.Conditions>
<ilog:Condition Property="IsSummary" Value="true" />
</ilog:BarDefinition.Conditions>

<ilog:BarDefinition.BarTemplate>
<DataTemplate>
<Grid>
<Rectangle VerticalAlignment="Top" Height="7" Fill="Black" />
<Path Height="13" HorizontalAlignment="Left"

62 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Fill="Black" Data="MO OLO 6.5L6.5 13L13 6.5L13 0z" />
<Path Height="13" HorizontalAlignment="Right" Fill="Black"
Data="MO 0LO 6.5L6.5 13L13 6.5L13 0z" />
</Grids>
</DataTemplate>
</ilog:BarDefinition.BarTemplate>
</ilog:BarDefinitions>

<!-- Bar Definition for milestones -->

<ilog:BarDefinition BarMovingMode="ChangeStartOnly"
CanResizeBar="False"
HorizontalAlignment="Start"
StartBinding="{Binding StartTime}"
FinishBinding="{Binding StartTime}">

<ilog:BarDefinition.Conditions>
<ilog:Condition Property="IsMilestone" Value="true" />
</ilog:BarDefinition.Conditions>

<ilog:BarDefinition.RightTemplate>
<DataTemplate>
<TextBlock HorizontalAlignment="Left"
Text="{Binding StartTime, Converter={StaticResource
DateConverter}, ConverterParameter=m}" />
</DataTemplate>
</ilog:BarDefinition.RightTemplates>

<ilog:BarDefinition.BarTemplate>
<DataTemplate >
<Path Width="12" Data="Mé 0 L0 6 L 6 12 L 12 6z" Fill="Black"/>
</DataTemplate>
</ilog:BarDefinition.BarTemplate>
</ilog:BarDefinition>

</ilog:GanttChart .BarDefinitions>

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

64 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Working with Tables in the Gantt Controls

The left part of a GanttChart or a ScheduleChart displays a table, as shown in the following

picture:
Y Qtr 4, 2003 | Qtr 1, 2004 Qtr 2, 2004 Qtr 3, 2004
| J Name Duration
lo | Dec Jan | Feb | Mar Apr | May | Jun Jul | Aug | Sep
.| .aConceptual 163 days L _ v -
e 4 Planning and Control 155 days L _ .

Business plan iden 4 days Project sponsor

Define project obje 4 days teqt sponsor

Identify industry = 4 days pject sponsor,Project engineer

Develop preliminal 4 days Ect engineer
e Initial planning cor 0 days e

Develop appropria | 4 days % Prajectsp

Develop managem 4 days ‘b- Project spc
(2] 4 Site Assessment 74 days .

Identify potential = 9 days Prajest -Hroject engineer

Define infrastructu 14 days Prefieci-ergiReer

Define utility need 9 days :b Preject engineer,Discipline engineer

Identify project sit 4 days :D—P« oject engineer,Discipline engineer

Assess regulatory | 9 days :b Prpieet-engineer, Discipline engineer

Identify permitting 2 days %—Kroject engineer

Recommend site 9 days ‘bl Project sponsor,Project enginefr i

vl 4 3

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 65

A table is composed of rows and columns. Each row represents an object, and each column
displays a property of the object represented by arow. To describe a column use the
TreeTableColumn class. The columns of a GanttChart or ScheduleChart instance can be
accessed through the Columns property, which holds the collection of columns displayed by
thetable.

Thetable used by aGanttChart or a ScheduleChart isan instance of the TreeTable class. It
can be retrieved using the Table property.

Most of the methods and properties used in this section are defined in the TreeTable class,
and also in the GanttChart or ScheduleChart through the HierarchyChart class, which is
their common base class.

In This Section
Configuring Columns
Explains how to configure columns.
Using Predefined Columns and Creating a Template Column
Explains how to use predefined columns and how to create a template column.
Syling Columns
Describes the properties used to style columns.

Configuring Columns

A table column can be configured to display any kind of data using any kind of
representation. It can also be used to edit or sort the data.

Thefollowing XAML code shows how to create three columnsin a GanttChart that displays
a SimpleGanttM odel .

<ilog:GanttChart>
<ilog:GanttChart.Columns>

<ilog:TreeTableTextColumn
IsTreeColumn="true"
Width="150"
Header="Name"
Binding="{Binding Name}" />

<ilog:TreeTableTimeSpanColumn
Header="Duration"
Width="75"
Binding="{Binding Duration}" />

<ilog:TreeTableDateTimeColumn

Header="Start"
Binding="{Binding StartTime}"

66 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

SortDirection="Ascending" />
</ilog:GanttChart.Columns>
</ilog:GanttChart>

[_Thefirst column is created through the TreeTableTextColumn class and displays the
activity name. This column has the IsTreeColumn property set to true to reflect the
hierarchy of activities. The data binding is set on the Name property of the row data
which is, in this example, a SimpleActivity instance.

[_The second column is created through TreeTableTimeSpanColumn class and displaysthe
activity duration. The duration of a SimpleActivity is represented by a TimeSpan
structure. The TreeTableTimeSpanColumn class uses a predefined value converter to
convert TimeSpan instances to strings. Note that you can also provide your own value
converter when specifying the data binding.

[Thethird column is created by means of the TreeTableDateTimeColumn class and
displaysthe activity start time. The start time of a SimpleActivity isrepresented by a
DateTime structure. The TreeTableDateTimeColumn class uses a predefined value
converter to convert DateTime instances to strings and a DatePicker control to edit
dates. Note that you can also provide your own value converter when specifying the data
binding.

Using Predefined Columns and Creating a Template Column

There are several predefined columns that can be used to display data. These predefined
table columns can be divided into two families:

[Table columns with a predefined visual representation

For example, the TreeTableTextColumn displays a TextBlock. Data binding is used to
connect data to the graphic element displayed by the column. The base class for these
columnsis the TreeTableBoundColumn class. Use the Binding property to specify the
data binding. These columns are useful in many scenarios, where basic data needsto be
displayed.

[_Table columns with a custom visual representation

If you want to display a visual representation in atable column that cannot be achieved
with the table columns described above, you can provide your own cell template. The
base class for these columns is the TreeTableTemplateColumn class. Use the
TreeTableTemplateColumn.Cell Template to specify the datatemplate. Use a
TreeTableTemplateColumn when you need a custom data representation.

The following table lists the existing table columns type:

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 67

68

IBM

template.

Class Description Representation | Editor

TreeTableTextColumn A table column that TextBlock TextBox
displays text.

TreeTableDateTimeColumn | A table column that TextBlock DatePicker
displays DateTime
values.

TreeTableTimeSpanColumn | A table column that TextBlock TextBox
displays TimeSpan
values.

TreeTableCheckBoxColumn | A table column that CheckBox None
displays Boolean
values.

TreeTableComboBoxColumn | A table column that TextBlock ComboBox
displays text values.

TreeTableTemplateColumn A table column that Custom Template | Custom
displays a custom cell Template

The TreeTableBoundColumn class allows you to bind data on the row data context through
the TreeTableBoundColumn.Binding property. The following XAML code shows how to
create a TreeTableTextColumn (asubclass of TreeTableBoundColumn) column that

displays the Name property of an activity:

<ilog:GanttCharts>

<ilog:GanttChart.Columns>

<ilog:TreeTableTextColumn
IsTreeColumn="true"
Width="150"
Header="Name"

Binding="{Binding Name}" />

</ilog:GanttChart.Columns>

</ilog:GanttChart>

See TreeTableBoundColumn for details.

The TreeTableComboBoxColumn class displays a text that can be edited using a
ComboBox. If the object being edited is an enumeration or a Boolean value, the combo box
will be automatically populated with the appropriate values. Otherwise, the ComboBox
items can be set using the TreeTableComboBoxColumn.ltemsSource property.

ILOG GANTT FOR

.NET 4.0 —

SILVERLIGHT CONTROLS

The TreeTableTemplateColumn class can be used to display data using a custom cell
template, making it possible to display anything in atable cell. The custom cell template can
be set by using the TreeTableTemplateColumn.Cell Template property. A cell editing
template can a so be provided to enable the editing of the column. The following XAML
code shows a TreeTableTemplateColumn displaying a collection of imageslaid out in a
horizontal StackPanel:

<ilog:GanttChart>
<ilog:GanttChart.Columns>

<ilog:TreeTableTemplateColumn
Width="50"
HorizontalAlignment="Center">

<ilog:TreeTableTemplateColumn.Header>
<Image Source="Images/info.png"
Stretch="None" VerticalAlignment="Center" />
</ilog:TreeTableTemplateColumn.Header>

<ilog:TreeTableTemplateColumn.CellTemplate>
<DataTemplate>
<StackPanel Height="20" Orientation="Horizontal"s
<Image
Stretch="None"
Source="Images/imagel.png" />
<Image
Stretch="None"
Source="Images/imagel.png" />
</StackPanel>
</DataTemplate>
</ilog:TreeTableTemplateColumn.CellTemplate>

</ilog:TreeTableTemplateColumn>
</ilog:GanttChart.Columns>

</ilog:GanttChart>

Styling Columns

Table columns can be styled using the following properties:

Property Description

Header The object displayed in the table column header.
HeaderStyle The style applied to the table column header.
Width The width of the column.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 69

Property Description

HorizontalAlignment The horizontal alignment of data in a cell.

VerticalAlignment The vertical alignment of data in a cell.

Displaylndex The display index of the column in the table.

SortDirection The direction in which the column will be sorted.

IsTreeColumn Specifies whether the table column should display the
hierarchy of the table data source, if any.

All those properties are located in the TreeTableColumn class. In addition, each specific
table column offers additional properties.

70 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Grouping, Sorting and Filtering Data

Grouping Data

I BM

Rows in atable can be grouped together, either to reflect a hierarchy in the data, or to create
a specific categorized view. Grouping is automatically re-evaluated each time the data
changes, provided that data implements the | NotifyPropertyChanged interface.

To group rows in atable you can adopt one of the following alternatives:
1. usethe Group property,
2. usethe ParentBinding property,

3. usethe GroupDescriptions collection.

If you need to group your datato reflect a hierarchy in the data source, you should only use
option 1 or 2. For example, if the data source isacollection of SimpleActivity objects, and if
you want to display the hierarchy of activities, you can set the ParentBinding property to
tell the GanttChart to group rows using the Parent property of a SimpleActivity.

<ilog:GanttChart
ParentBinding = "{Binding Parent}"s>

</ilog:GanttChart>

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 71

If you want to categorize your data according to specific criteria, fill the
GroupDescriptions collection using the appropriate GroupDescription instances. The
following XAML code shows how to categorize SimpleActivity objects. Thefirst category
level will split activities using the IsMilestone property, and the second category level will
split activities using the IsSummary property:
<ilog:GanttChart>
";ilog:GanttChart.GroupDescriptions>
<ilog:GroupDescription PropertyName="IsMilestone"/>
<ilog:GroupDescription PropertyName="IsSummary"/>

</ilog:GanttChart .GroupDescriptions>

</ilog:GanttChart>

Sorting Data

Rows in atable can be sorted. Sorting can be automatic or manual. The sorting is automatic
when the sort order is recomputed each time the data changes, provided that data
implements the I NotifyPropertyChanged interface. The sorting is manual when a specific
action from the user is required.

To use the automatic sorting, you can adopt one of the following alternatives:
1. usethe Sort property, if it already set,

2. if there are sorted columns (TreeTableColumn.SortDirection) in the table, sort the table
according to these columns,

3. usethe HierarchyChart.SortDescriptions collection.

To apply the manual sorting, you can either sort at the column level by calling the
TreeTableColumn.Sort method, or use the HierarchyChart.SortRows method.

Note: Not all columns support the sorting feature. To know if acolumn supportsit, use the
TreeTableColumn.SupportsSorting property.

Asthereis no predefined binding in the TreeTableTemplateColumn class, the sorting is
achieved by providing a property name through the TreeTableTemplateColumn.SortProperty

property.
The automatic sorting can be set interactively by clicking in a column header. When the
column is not sorted, the first click sorts the column in ascending order, the second in

descending order, and the third click restores the data source order. To disable this
functionality at the table level, set the TreeTable.CanSortColumns property to false. To

72 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

disable this functionality at the table column level, set the TreeTableColumn.CanSort
property to false.

The following XAML code shows how to sort a GanttChart according to the activity
SartTime property using the HierarchyChart.SortDescriptions collection:
<ilog:GanttChart>
;iiog:GanttChart.SortDescriptions>
<ilog:SortDescription PropertyName="StartTime"
Direction="Ascending"/>

</ilog:GanttChart.SortDescriptions>

</ilog:GanttChart>

Filtering Data

Rowsin atable can befiltered. Filtering is applied at the row level, meaning that each row
can be visible or not depending on the filter set on the table. To set afilter, use the
HierarchyChart.Filter property. Filtering is automatically re-evaluated each time the data
changes, provided that data implements the | NotifyPropertyChanged interface. The
following C# code shows how to set afilter on a GanttChart that contains SimpleActivity
objects to displays only activities whose name begins with 'A'":

GanttChart chart = new GanttChart () ;
List<SimpleActivity> tasks = new List<SimpleActivitys> ()
new SimpleActivity() { Name = "Activity 1" },
new SimpleActivity() { Name = "Activity 2"),
new SimpleActivity() { Name = "Task 3") }
}i
chart.ItemsSource = tasks;
chart.Filter = task => (task as SimpleActivity) .Name.StartsWith("A");

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 73

74 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Controlling the Displayed Time Interval

In GanttChart or ScheduleChart controls, the displayed time range is specified by the
following properties:

[HirstVisibleTime
This property specifies the displayed date and time on the left of the chart.
[—ZoomFactor

This property specifies the time zoom level.

By default the ZoomFactor is 1. This means that one hour of time is represented by one
pixel. If you want to have aweek represented by 100 pixels on the screen, set the
ZoomFactor to 100 pixels divided by the number of hoursin 7 days = 100d / 7* 24.

The SetTimelnverval method of the GanttChart and ScheduleChart is convenient to
specify the start and end displayed date. This method simply changes the FirstVisibleTime
and ZoomFactor properties.

Note that the zoom factor is bounded between two values specified by the MinZoomFactor
and MaxZoomFactor properties.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 75

76 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Storing and Displaying Working and
Nonworking Times

The WorkCalendar class allows you to store working and nonworking periods and times.
This classis also used to display working and non working periods in a Gantt chart.

Using a WorkCalendar to Store Working and Nonworking Periods

IBM® ILOG® Gantt for NET defines two types of WorkCalendar: abase calendar or a
subcalendar that inherits from a base calendar. A subcalendar inherits its specification from
its base calendar and can modify the working and nonworking times specified by the base
calendar. For example, a base calendar can be used to store the general working timeson a
project and a subcalendar can be used to specify the working times and vacations of a
specific resource of the project.

To create a base calendar named myCalendar, use the following C# code:

WorkCalendar myBaseCalendar = new WorkCalendar ("MyCalendar", null);

To create a subcalendar of this calendar proceed as follow:

WorkCalendar mySubCalendar = new WorkCalendar ("MySubCalendar", myBaseCalendar) ;

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 77

By default aWorkCalendar defines Saturday and Sunday as nonworking days, for the other
days the working times are from 8 AM to 12 AM and from 1 PM to 5 PM defining 8
working hours per day.

The WorkCalendar class provides methods that allow you to modify these settings for a
day of the week.

To set all Fridays as nonworking days do the following:

mySubCalendar.SetNonWorking (DayOfWeek.Friday) ;

To change the working times of all Mondaysto be7 AM - 1 PM and 3 PM - 8 PM do the
following:

WorkingTime [] times = new WorkingTime [2];

times[0] = new WorkingTime (TimeSpan.FromHours (7), TimeSpan.FromHours (13))

times[1] = new WorkingTime (TimeSpan.FromHours (15), TimeSpan.FromHours (20)) ;
mySubCalendar.SetWorkingTimes (DayOfWeek.Monday, times) ;

You can also specify exceptional periods:
To specify anonworking period from 01/01/2005 to 01/07/2005 do the following:

mySubCalendar.SetNonWorking (new DateTime (2005,1,1), new DateTime (2005, 1,7));

To specify specia working hoursfrom 7 AM to 9 AM for the period 06/01/2005 to 06/06/
2005 you would do:

WorkingTime [] times = new WorkingTime [1];

times [0] = new WorkingTime (TimeSpan.FromHours (7), TimeSpan.FromHours (9)) ;
mySubCalendar.SetWorkingTimes (new DateTime (2005,6,1), new DateTime (2005, 6,6),
times) ;

Navigating a WorkCalendar

78

IBM

A WorkCalendar object not only allows you to store the working and nonworking times,
but it also allows you to navigate in the working and nonworking times and perform several
computation on working periods.

For example, you can get the next or previous working time from adate. In the following C#
code the next and previous working time is computed from January 1 2005.

WorkCalendar calendar = new WorkCalendar ("MyCalendar", null);
DateTime date = new DateTime (2005,1,1);

DateTime next = calendar.NextWorkingTime (date) ;

DateTime previous = calendar.PreviousWorkingTime (date) ;
Console.WriteLine ("Next working time is " + next);
Console.WriteLine ("Previous working time is " + previous) ;

This code gives you Monday January, 3, 2005 at 8 AM as the next working time and Friday
December, 31 2004 at 5 PM as the previous working time.

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Similarly, the WorkCalendar defines methods to navigate to next nonworking times
(NextNonWorkingTime).

You may also compute the amount of work between two dates:

DateTime fromDate = new DateTime (2005,1,5);
DateTime toDate = new DateTime(2005,1,12);
TimeSpan work = calendar.WorkBetween (fromDate, toDate) ;

This fragment of C# code returns aduration of 40 hours. In the period from 05 to 12 January
2005, there are 5 working days of 8 hours, resulting in 40 hours of work.

Finally, the WorkCalendar object provides methods to add or remove awork duration from
adate to compute another date. An example isin the following C# code:

TimeSpan work TimeSpan.FromDays (88) ;
DateTime date new DateTime (2004,1,1,8,0,0);
Console.WriteLine (date) ;

date = calendar.Add(date work) ;
Console.WriteLine (date) ;

date = calendar.Remove (date, work) ;
Console.WriteLine (date) ;

This C# code fragment will print:

1/1/2004 8:00:00 AM
1/4/2005 5:00:00 PM
1/1/2004 8:00:00 AM

Displaying Working and Nonworking Times in Gantt Controls

The nonworking periods defined by an instance of the WorkCalendar class can be
displayed in the Gantt controls by means of a grid. By default the GanttChart control
contains a grid that displays the non working time and the default calendar displayed isa
standard calendar.

In the following figure, behind the Gantt bars you can see the nonworking period displayed

ingray:
B | January 2000

1| Man 03 | Tue 04 | Wed 05 | Thu 06 |
/2000 ¢ —
/2000 ¢ —
2000 5: F 1
f2000 8 ¢
{2000 ¢ f

fnnn e

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 79

80

IBM

You may change the WorkCalendar displayed in the background of a GanttChart or
ScheduleChart through its GridCalendar property. The grid is always up-to-date with the
calendar that it displays. When the calendar changes, the grid is automatically refreshed.

The following C# code fragment shows how to change the calendar displayed by the grid of
aGanttChart control.

WorkCalendar myCalendar = new WorkCalendar() ;
GanttChart gantt = new GanttChart();
Gantt.GridCalendar = myCalendar;

The non working area can be styled through the NonWorkingAreaStyle property of the
control. Non working areas are implemented as Silverlight Rectangle objects. To change the
color of those rectangles you must change the Fill property of the rectangle through the
NonWorkingAreaStyle, as follows:

<iloggantt:GanttChart ...>
<iloggantt:GanttChart .NonWorkingAreaStyle>
<Style TargetType="Rectangle">
<Setter Property="Fill" Value="vyellow" />
</Style>
</iloggantt:GanttChart.NonWorkingAreaStyle>
</iloggantt:GanttChart>

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

User Interaction on a Gantt Bar

The GanttChart and ScheduleChart control s offer many possibilitiesto control the editing of
the bars in the Gantt. While editing a bar, the user can change the behavior but also the style
of elements that are used. This section explains the various elements involved in editing a
bar of a Gantt control.

In This Section
Editing Process - Moving and Resizing a Bar
Describes how bars can be moved an resized on a Gantt control.
Using Bar Editing Events
Describes how to use bar editing events.
Snapping Time when Moving or Resizing a Bar
Describes the snapping time mechanism.
Working with Editing Tooltip
Explains how to work with editing tooltip.
Syling User Interaction Elements

Describes how to customize user interaction elements throw styling.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 81

Editing Process - Moving and Resizing a Bar

By default, on a Gantt control each bar can be moved and resized. To move a bar drag it, to
resizeit click on the right side of the bar and drag it. It is possible to disable the editing of
bars by setting the CanEditBars property of the GanttChart or ScheduleChart control to
false, in this case al bars become non editable. The editing of abar is controlled on afiner
level by each BarDefinition instance that defines how the bar is displayed but also how the
interaction on the bar works. Each bar in the Gantt controls are associated to a

Bar Definition instance. For more details on how to specify the bar definitions see
Foecifying and Syling the Gantt Barsto Display.

The action of moving or resizing abar does not really move or resize abar: in fact, when you
release the mouse pointer, the dates of the underlying data objects that are displayed by the
bar are changed. When the dates change in the data object, the Gantt control is notified and
the bars are drawn at their new location. The editing of the bar will then work only if the
underlying edited object notifies the changes of the dates, therefore the underlying object
should implement the | NotifyPropertyChanged interface.

The bar is displayed from and to the dates that are specified by the StartBinding and
FinishBinding of the Bar Definition class. These are two Silverlight bindingsto date
properties of the edited object. By default, when a bar is moved, the Gantt control gives a
new value to the properties specified in the SartBinding and FinishBinding. When abar is
resized, only the property in the FinishBinding is modified.

While moving abar, it is possible to change only the start date instead of changing both the
start and end date. This may be useful when changing the start date in the data automatically
changes the end date. To do so, you can set the BarMovingMode property of the

Bar Definition to ChangeStartOnly.

By means of the Bar Definition class you can aso completely disable the editing by setting
the CanMoveBar and CanResizeBar to false.

Using Bar Editing Events

Every time abar ismoved or resized, an event is sent to the GanttChart or ScheduleChart
controlsto alow you to cancel or modify the way the edited item is going to be modified.
This event is specified through the BeforeEditBar event.

In the following C# code, the BeforeEditBar event is used to ensure that the bar is not
moved before January 1st 20009.

gantt.BeforeEditBar += delegate (object source, BeforeEditBarEventArgs e)

{

if (e.Action == BarInteractionMode.Move &&
e.NewValue < new DateTime (2009, 1, 1))
e.Cancel = true;

82 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Snapping Time when Moving or Resizing a Bar

When moving or resizing a bar, anew date is computed for the start or end of the bar and the
new date will be affected to the edited item (task/activity/reservation). The conversion from
mouse inputs to dates could lead to non-rounded dates, that is why the date is snapped by
default to the nearest hour. This mechanism can be changed in various ways.

First you can change the SnapUnit property of the HierarchyChart. This property is of type
TimeUnit, an enumeration that defines the main unit of times from milliseconds to century.
If you want to code the way the snapping is done, use the SnapTimeOnEditingBar event of

the HierarchyChart and set the SnapUnit property to TimeUnit.None so that no snapping
is done before the event is sent. The following code example makes sure that when abar is
moved, the bar will only be moved in hours from 8AM to 5PM.

gantt.SnapTimeOnEditingBar += delegate (object source, SnapTimeEventArgs e)

{

if (e.Mode == BarInteractionMode.Move)
{
if (e.DateTime.TimeOfDay < TimeSpan.FromHours (8))
e.DateTime = e.DateTime.Date.AddHours (8) ;
else if (e.DateTime.TimeOfDay > TimeSpan.FromHours(17))
e.DateTime = e.DateTime.Date.AddHours (17) ;

Working with Editing Tooltip

When abar is edited because you move or resize it, atooltip appears to show the future new
starting and ending dates of the bar. Thistooltip is called the Editing Tooltip. The following
image shows the default editing tooltip.

i Task

Start: 2/17/2004 11:00:00 PM
‘Foteqt-5pe| Finish: 3/6/2004 §:00:00 AM

FE — L-—Praﬂeet—elﬂ

This tooltip can be disabled by setting the ShowEditingTool Tips property to false on the
ScheduleChart or GanttChart class. The tooltip can aso be disabled on each individual bar
by setting the ShowEditingTool Tip property of the BarDefinition class that defines the bar.
The Editing tooltip can also be modified at the level of the Bar Definition class.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 83

84

I BM

To modify the editing tooltip, you may specify a new tooltip by setting the EditingTool Tip
property of the Bar Definition class. This property can be set with any user interface
elements. Theresulting tooltip will be displayed with a data context that is an instance of the
EditingBarData class. This EditingBar Data class defines three properties that you can use
when redefining a new tooltip shape: the Item, Start and Finish properties. The Item isthe
object that is edited (the item in the ItemsSour ce of the Gantt control), the Sart and Finish
properties are the dates. The following example of XAML redefines a new Editing tooltip
and uses bindings to display the start date, the end date and the name of the edited item:

<ilog:BarDefinition

<ilog:BarDefinition.EditingToolTip>
<Border Background="Black">
<StackPanel Margin="10" Orientation="Vertical"s
<StackPanel Orientation="Horizontal"s
<TextBlock Foreground="White" Text="Editing:" />
<TextBlock Foreground="White"
Text="{Binding Item.Name}" />
</StackPanel>
<StackPanel Orientation="Horizontal">
<TextBlock Foreground="White"
Text="Start:" />
<TextBlock Foreground="White"
Text="{Binding Start}" />
</StackPanel>
<StackPanel Orientation="Horizontal">
<TextBlock Foreground="White"
Text="End:" />
<TextBlock Foreground="White"
Text="{Binding Finish}" />
</StackPanel>
</StackPanel>
</Border>
</ilog:BarDefinition.EditingToolTip>

</ilog:BarDefinitions>

This gives the following graphical result:

Editing:Identify industry standards for project objectives
Start:1/17/2000 8:00:00 AM

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Styling User Interaction Elements

IBM

While moving or resizing a bar a dashed rectangle appears to display the new time interval
of the bar. This rectangle can be customized throw styling. To change the default dashed
rectangle, use the EditedBarL ocationl ndicatorStyle property of the GanttChart or
ScheduleChart classes.

The following XAML example specifies a transparent red rectangle instead of a dashed
rectangle:

<iloggantt:ScheduleChart >
<iloggantt:ScheduleChart.EditedBarLocationIndicatorStyle>
<Style TargetType="Control"s>
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="Control"s>
<Rectangle Fill="Red" Opacity=".5"/>
</ControlTemplates>
</Setter.Value>
</Setters>
</Style>
</ iloggantt:ScheduleChart.EditedBarLocationIndicatorStyles>
</iloggantt:ScheduleChart>

You can do the same to change the style of the line that is drawn when the user creates a
constraint with the mouse pointer in the GanttChart control. The style of thisline can be
changed using the ConstraintCreationl ndicatorStyle property.

Hereisa XAML example:

<iloggantt:GanttChart >
<iloggantt:GanttChart.ConstraintCreationIndicatorStyles>
<Style TargetType="Line">
<Setter Property="Stroke" Value="Black" />

<Setter Property="StrokeThickness" Value="1" />
<Setter Property="StrokeDashArray" Value="1 1" />
</Style>

</iloggantt:GanttChart.ConstraintCreationIndicatorStyle >

ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 85

86 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Internationalization

IBM® ILOG® Gantt for .NET isinternationalized. All messages, resources and dialog
boxes of IBM ILOG Gantt for .NET are localized for English and French languages. If you
need to localize for another language, IBM ILOG Gantt for .NET provides the resourcefiles
and tools that allow you to localize the library for a particular culture. The library usesthe
culture information that you have specified in the Control Panel to display dates and
numbers. In order to create alocalized version of IBM ILOG Gantt for .NET you must
create assemblies (dlls) that contain the culture-dependant resources of the library. Those
assemblies are called satellite assemblies. IBM ILOG Gantt for .NET provides the tools that
will help you create satellite assemblies for a particular culture.

In This Section
Creating a Localization Project
Explains how to use the localization tool.

Translating the Resource Files
Describes the different types of resource files and explains how to translate them.

Creating the Satellite Assemblies
Explains how to create the satellite assemblies.

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 87

88 IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

Index

E
Editing Tooltip 83

R

resource leveling 48

S

satellite assemblies 87
summary activity 37

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS 1

IBM ILOG GANTT FOR .NET 4.0 — SILVERLIGHT CONTROLS

	Programming with IBM ILOG Gantt for .NET Silverlight Controls
	Getting Started with Silverlight Gantt Components
	Creating a Gantt Control
	Connecting a GanttChart Control to Data
	Using Predefined Data Sources in a GanttChart
	Using Your Own Data or Creating your own Data Source for the GanttChart
	Creating Task Classes and Displaying them in a GanttChart
	Establishing Parent-Child Relationship
	Displaying Constraints between Tasks in a GanttChart Control

	Connecting a ScheduleChart Control to Data
	Using Predefined Data Sources in a ScheduleChart
	Using Your Own Data or Creating your own Data Source for the ScheduleChart

	Using Predefined Data Models
	The SimpleGanttModel Data Model
	The ProjectSchedulingModel Data Model
	The ProjectSchedulingModel Class
	Activities in the ProjectSchedulingModel
	How the Project Scheduling Model Computes the Schedule of a Project
	Calendars in the Project Scheduling Model
	Resource Leveling in the Project Scheduling Model

	Specifying and Styling the Gantt Bars to Display
	Using Default Bar Representations
	Defining Start and End Time for the Bar
	Defining the Shape of the Bar
	Displaying Additional Information on the Right and on the Left of the Bar
	Alignment Properties
	Defining When a BarDefinition Applies for an Item
	Connection of Constraint links in a GanttChart
	Interactions on the Bar
	Defining a Tooltip for the Bar
	Example of Bar Definitions

	Working with Tables in the Gantt Controls
	Configuring Columns
	Using Predefined Columns and Creating a Template Column
	Styling Columns

	Grouping, Sorting and Filtering Data
	Grouping Data
	Sorting Data
	Filtering Data

	Controlling the Displayed Time Interval
	Storing and Displaying Working and Nonworking Times
	Using a WorkCalendar to Store Working and Nonworking Periods
	Navigating a WorkCalendar
	Displaying Working and Nonworking Times in Gantt Controls

	User Interaction on a Gantt Bar
	Editing Process - Moving and Resizing a Bar
	Using Bar Editing Events
	Snapping Time when Moving or Resizing a Bar
	Working with Editing Tooltip
	Styling User Interaction Elements

	Internationalization
	Index
	E
	R
	S

