
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG Gantt for .NET V4.0

Programming with

IBM ILOG Gantt for .NET

Silverlight Controls

June 2009

Contents

Programming with IBM ILOG Gantt for .NET
Silverlight Controls

Preface Programming with IBM ILOG Gantt for .NET Silverlight Controls 3

Getting Started with Silverlight Gantt Components . 5

Creating a Gantt Control . 9

Connecting a GanttChart Control to Data . 11

Using Predefined Data Sources in a GanttChart. .11

Using Your Own Data or Creating your own Data Source for the GanttChart14

Creating Task Classes and Displaying them in a GanttChart .14

Establishing Parent-Child Relationship .17

Displaying Constraints between Tasks in a GanttChart Control .20

Connecting a ScheduleChart Control to Data . 25

Using Predefined Data Sources in a ScheduleChart .26

Using Your Own Data or Creating your own Data Source for the ScheduleChart.29

Using Predefined Data Models . 35

The SimpleGanttModel Data Model .36

The ProjectSchedulingModel Data Model .39

The ProjectSchedulingModel Class .40

Activities in the ProjectSchedulingModel .41

How the Project Scheduling Model Computes the Schedule of a Project43

Calendars in the Project Scheduling Model .47

Resource Leveling in the Project Scheduling Model .48
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 1

Specifying and Styling the Gantt Bars to Display. 51

Using Default Bar Representations .54

Defining Start and End Time for the Bar .54

Defining the Shape of the Bar. .55

Displaying Additional Information on the Right and on the Left of the Bar57

Alignment Properties. .57

Defining When a BarDefinition Applies for an Item .59

Connection of Constraint links in a GanttChart .59

Interactions on the Bar .59

Defining a Tooltip for the Bar .60

Example of Bar Definitions .61

Working with Tables in the Gantt Controls . 65

Configuring Columns .66

Using Predefined Columns and Creating a Template Column .67

 Styling Columns .69

Grouping, Sorting and Filtering Data . 71

Controlling the Displayed Time Interval . 75

Storing and Displaying Working and Nonworking Times . 77

User Interaction on a Gantt Bar . 81

Editing Process - Moving and Resizing a Bar .82

Using Bar Editing Events .82

Snapping Time when Moving or Resizing a Bar .83

Working with Editing Tooltip .83

Styling User Interaction Elements .85

Internationalization . 87
2 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Programming with
IBM ILOG Gantt for .NET Silverlight

Controls

The Silverlight controls of IBM® ILOG® Gantt for .NET are a set of Silverlight
components that bring Gantt chart displays and scheduling algorithms to the Microsoft
Silverlight platform.

In This Section

Getting Started with Silverlight Gantt Components

Introduces the Silverlight Gantt components.

Creating a Gantt Control

Explains how to create a Gantt control.

Connecting a GanttChart Control to Data

Describes how to connect a GanttChart to data.

Connecting a ScheduleChart Control to Data

Describes how to connect a ScheduleChart to data.

Using Predefined Data Models

Describes how to use predefined data models.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 3

Specifying and Styling the Gantt Bars to Display

Describes how to style the Gantt bars.

Working with Tables in the Gantt Controls

Describes how to handle tables with the Gantt controls.

Grouping, Sorting and Filtering Data

Describes how to group, sort and filter data.

Controlling the Displayed Time Interval

Describes how to control the displayed time interval.

Storing and Displaying Working and Nonworking Times

Describes how to handle working and nonworking times.

User Interaction on a Gantt Bar

Describes the various user interactions on a Gantt bar.

Internationalization

Describes the resource files and tools available with IBM ILOG Gantt for .NET to
localize the library for a particular culture.
4 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Getting Started with Silverlight Gantt
Components

The Silverlight support in IBM® ILOG® Gantt for .NET consists of a library of classes
used to display and edit scheduling data as a Gantt chart deployed in a Silverlight
application.

It supports the two essential ways of displaying schedules: activity oriented and resource
oriented. It can be used in a large variety of applications and industries: transportation
scheduling and planning, logistics, supply chain management, production scheduling and
planning, workforce planning, resource booking, project management, and many more.

The GanttChart control shows one task in each row. The hierarchy table on the left displays
task information. The Gantt sheet on the right shows how the tasks are positioned on the
time scale as well as constraints between tasks.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 5

The ScheduleChart control shows one resource in each row. The table on the left displays
resource information on the resource. The schedule sheet on the right shows the resource
reservations. Each row in the schedule sheet contains 0, 1, or more bars to represent the
activities for which the matching resource has been reserved.

Although the GanttChart control is mainly used to display tasks and the ScheduleChart to
display the tasks assigned to a resource, both Gantt controls can be used with any type of
data that has some time-based information. The main difference between the two controls is
that the GanttChart control displays a unique information for each row (usually a task).
The ScheduleChart control displays several time items in the sheet for each row in the table
(usually a resource per row and all tasks assigned to this resource displayed in the sheet on
the right).

In addition to the GanttChart and ScheduleChart controls, the library also contains some
predefined data models that you can easily connect to the controls. The SimpleGanttModel
is a simple data model that defines activities (or tasks), resources and reservations
(assignments of resources to tasks). The ProjectSchedulingModel is a data model that also
6 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

defines the same type of information, but it uses this information to maintain the schedule of
the project plan (computation of critical path(s) and resource leveling). Those data models
are optional and require a separate assembly. You may create your own data model or even
use a simple list of objects to be displayed in a Gantt control.

The GanttChart and ScheduleChart controls are located in the assembly named
ILOG.Controls.Gantt.dll and in a namespace that has the same name. The predefined data
models are located in the assembly named ILOG.Controls.Gantt.Data.dll.

Both the GanttChart and ScheduleChart inherit from the same base class HierarchyChart
that concentrates properties and methods common to both representations.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 7

8 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Creating a Gantt Control

In order to create a GanttChart or ScheduleChart control, you need to add the reference to
the assembly ILOG.Controls.Gantt.dll in your Silverlight project. In addition to
ILOG.Controls.Gantt.dll, you can use the ILOG.Controls.Gantt.Data.dll assembly that
contains the predefined data models such as the SimpleGanttModel class or the
ProjectSchedulingModel class that are described in Using Predefined Data Models.

In your XAML file, you will have to define a new namespace to refer to the assembly:

xmlns:iloggantt="clr-
namespace:ILOG.Controls.Gantt;assembly=ILOG.Controls.Gantt"

When you have defined the namespace, you can declare a GanttChart component in your
XAML file:

<iloggantt:GanttChart x:Name="gantt"/>

Or a ScheduleChart component:

<iloggantt:ScheduleChart x:Name="gantt"/>

At this point you have the following graphical result:
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 9

The control is not yet connected to data. To connect the GanttChart to data, see Connecting a
GanttChart Control to Data. Also, the controls do not define any columns or any definitions
for the bars. To see how to define columns see Working with Tables in the Gantt Controls.

To see how to draw Gantt bars in a Gantt component see Specifying and Styling the Gantt
Bars to Display.
10 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Connecting a GanttChart Control to Data

A GanttChart control can display any kind of time-related items including instances of your
own classes. Some predefined data sources are available so that you do not necessarily need
to create your own data source.

You will learn how to use predefined data sources, how to create a new data source that can
be used in a GanttChart control, and how to connect the data sources to a GanttChart.

In This Section:

Using Predefined Data Sources in a GanttChart

Explains how to use predefined data sources to display data in a GanttChart control.

Using Your Own Data or Creating your own Data Source for the GanttChart

Explains how to create a data source and connect it to a GanttChart control.

Using Predefined Data Sources in a GanttChart

To display data in a GanttChart control, you may use one of the following predefined data
sources:

◆ SimpleGanttModel

◆ ProjectSchedulingModel
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 11

These data models can be easily connected to a GanttChart so that the GanttChart
displays the list of activities in the model and the constraints between activities. For more
details on the two data models, see Using Predefined Data Models.

To simply connect a GanttChart to a SimpleGanttModel use the following code:

GanttChart chart = new GanttChart();
SimpleGanttModel model = new SimpleGanttModel();
chart.InitializeFrom(model);

The InitializeFrom method is an extension method for the GanttChart class. This method
does the following initializations:

◆ Creation of some predefined columns in the table: A column for Name, Duration, Start
Time, End Time and Resources property.

◆ Creation of predefined bar definitions: A bar definition for normal activity, for activity
completion, for summaries and for milestones.

◆ Connection of the data model to the control for displaying the activities and the
constraints between activities.

Here is an extract of C# code that creates and populates a SimpleGanttModel with four
activities and one constraint and displays the model in a GanttChart.

In XAML you simply add a GanttChart to the page:

<iloggantt:GanttChart x:Name="gantt"/>

And in the code-behind:

SimpleGanttModel model = new SimpleGanttModel();

SimpleActivity activity1
 = new SimpleActivity() { Name = "A1",
 StartTime = DateTime.Now,
 Duration = TimeSpan.FromHours(8)};

SimpleActivity activity2
 = new SimpleActivity() { Name = "A2",
 StartTime = DateTime.Now,
 Duration = TimeSpan.FromHours(24),
 Parent = activity1};
SimpleActivity activity3
 = new SimpleActivity() { Name = "A3",
 StartTime = DateTime.Now,
 Duration = TimeSpan.FromHours(36),
 Parent = activity1};
SimpleActivity activity4
 = new SimpleActivity() { Name = "A4",
 StartTime = DateTime.Now.AddHours(45),
 IsMilestone = true };

model.Activities.Add(activity1);
model.Activities.Add(activity2);
12 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

model.Activities.Add(activity3);
model.Activities.Add(activity4);

SimpleConstraint constraint
 = new SimpleConstraint() { FromActivity = activity3,
 ToActivity = activity4 };

model.Constraints.Add(constraint);

gantt.InitializeFrom(model);

This gives the following result:

The InitializeFrom extension method is very convenient for initializing the GanttChart
component, but you can also create a GanttChart component and define yourself the
columns. For more details on how to do this, see Working with Tables in the Gantt Controls.
To define yourself the shape of the bars see Specifying and Styling the Gantt Bars to Display.
Finally, to connect a SimpleGanttModel to display the activities you need to set the
ItemsSource property of the GanttChart to the activities of the model and the
ConstraintsSource property to the constraints of the model. To do this, use the following
code extract:

chart.ItemsSource = model.Activities;
chart.ConstraintsSource = model.Constraints;
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 13

chart.ConstraintTypeBinding = new Binding("Type");
chart.ConstraintOriginPropertyName = "FromActivity";
chart.ConstraintDestinationPropertyName = "ToActivity";
chart.ParentBinding = new Binding("Parent");

For more details on how to connect a GanttChart control to data, see Using Your Own Data
or Creating your own Data Source for the GanttChart.

Using Your Own Data or Creating your own Data Source for the GanttChart

A GanttChart control can display any kind of time related items including instances of your
own classes. In this section you will see how to implement your data source and connect it to
a GanttChart control.

In This Section

Creating Task Classes and Displaying them in a GanttChart

Explains how to create task ckasses and display them in a GanttChart.

Establishing Parent-Child Relationship

Explains how to establish parent-child relationship.

Displaying Constraints between Tasks in a GanttChart Control

Describes how to display constraints between tasks in a GanttChart control.

Creating Task Classes and Displaying them in a GanttChart

The GanttChart control takes as primary data source any kind of enumeration. For example,
it can be a collection, an array, or the result of a LinQ query. The items in this collection
must define a start and end date since the primary goal of the GanttChart is to represent and
edit the time interval of each item. The items to display in the GanttChart are then specified
through the ItemsSource property.

The minimum implementation for an item to display in a GanttChart could be:

public class MyTask
{
 public DateTime Start { get; set; }
 public DateTime End { get; set; }
}

The Start and End property could be named differently. The important point is that there are
two properties of type DateTime. Instances of MyTask can then be placed in a collection
and displayed in a GanttChart:

In XAML

<iloggantt:GanttChart x:Name="gantt"/>
14 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

In the code behind:

List<MyTask> list = new List<MyTask>();
list.Add(new MyTask() { Start = DateTime.Now,
 End = DateTime.Now.AddDays(1)});
list.Add(new MyTask() { Start = DateTime.Now,
 End = DateTime.Now.AddDays(2) });
gantt.ItemsSource = list;

Note that even though the Gantt control is connected to data, by default a GanttChart has
no column defined and no representation for bars. Therefore the code above will not display
anything. Before improving the data source, you will modify the XAML so that the data can
be displayed.

To start displaying the items you need to add columns to the table part of the Gantt and
define a BarDefinition object that specifies the shape of bars on the time line.

In the following XAML definition two columns are added: one is bound to the Start
property, the other one is bound to the End property. In this XAML you also add a
BarDefinition object which indicates that a bar should be displayed from the Start to the
End property.

<iloggantt:GanttChart x:Name="gantt">

 <!-- Specifies Columns -->
 <iloggantt:GanttChart.Columns>
 <iloggantt:TreeTableDateTimeColumn
 Header="Start"
 Binding="{Binding Start}" />
 <iloggantt:TreeTableDateTimeColumn
 Header="End"
 Binding="{Binding End}" />
 </iloggantt:GanttChart.Columns>

 <!-- Specifies bars to display -->
 <iloggantt:GanttChart.BarDefinitions>
 <iloggantt:BarDefinition
 StartBinding="{Binding Start}"
 FinishBinding="{Binding End}">
 <iloggantt:BarDefinition.BarTemplate>
 <DataTemplate>
 <Rectangle Height="13" Fill="LightBlue" />
 </DataTemplate>
 </iloggantt:BarDefinition.BarTemplate>
 </iloggantt:BarDefinition>
 </iloggantt:GanttChart.BarDefinitions>

</iloggantt:GanttChart>

With this specification, you will get the following result:
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 15

For each element in the ItemsSource, a row is created in the GanttChart and a bar appears
displayed from the Start time to the End time.

For more information on columns, see Working with Tables in the Gantt Controls.

For more information on the BarDefinition class, see Specifying and Styling the Gantt Bars
to Display.

Let's come back to the definition of the data source. The source of data has been defined as a
List of MyTask. With such a definition, the GanttChart control is not able to react when
an item is added or removed from the list. To see the items that are added or removed from
the list, the collection specified in the ItemsSource must implement the
INotifyCollectionChanged interface. Silverlight proposes the generic class
ObservableCollection<T> as a default implementation of INotifyCollectionChanged. You
can rewrite the code as follows:

ObservableCollection<MyTask> list = new ObservableCollection<MyTask>();
list.Add(new MyTask() { Start = DateTime.Now,
 End = DateTime.Now.AddDays(1) });
list.Add(new MyTask() { Start = DateTime.Now,
 End = DateTime.Now.AddDays(2) });
gantt.ItemsSource = list;

When tasks are added or removed from the list, the GanttChart control will reflect the
changes.

Similarly, if the Start and End properties of MyTask change and the changes are reflected
in the GanttChart, you must implement the interface INotifyPropertyChanged. The code
for MyTask would then become the following:

public class MyTask : INotifyPropertyChanged
{

16 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

 private DateTime _start, _end;

 public DateTime Start
 {
 get {
 return _start;
 }
 set {
 if (_start != value) {
 _start = value;
 OnPropertyChanged("Start");
 }
 }
 }

 public DateTime End
 {
 get {
 return _end;
 }

 set {
 if (_end != value) {
 _end = value;
 OnPropertyChanged("End");
 }
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }

}

Now that Start and End properties are notifying their changes, the GanttChart control can
react to these changes and modify the display accordingly. It is also possible to edit the
Start and End properties in the table and move the bars.

Establishing Parent-Child Relationship

Instead of a flat list of tasks, the GanttChart can display a tree of tasks to handle the case of a
parent task that is defined by a set of sub-tasks. This can be done by specifying a parent-
child relationship in the GanttChart through the ParentBinding property of the
GanttChart.

In this example, the ParentTask property is added to define the relation from a task to its
parent. The Name property is also added and will be displayed in the Gantt.

public class MyTask : INotifyPropertyChanged
{

I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 17

 private DateTime _start, _end;
 private string _name;
 private MyTask _parent;

 public string Name
 {
 get {
 return _name;
 }
 set {
 if (_name!= value) {
 _ name = value;
 OnPropertyChanged("Name");
 }
 }
 }

 public MyTask ParentTask
 {
 get {
 return _parent;
 }
 set {
 if (_parent != value) {
 _parent = value;
 OnPropertyChanged("ParentTask");
 }
 }
 }

 public DateTime Start
 {
 get {
 return _start;
 }
 set {
 if (_start != value) {
 _start = value;
 OnPropertyChanged("Start");
 }
 }
 }

 public DateTime End
 {
 get {
 return _end;
 }

 set {
 if (_end != value) {
 _end = value;
 OnPropertyChanged("End");
 }
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
18 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

 private void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }

}

Modify the XAML definition to specify the parent-child relationship through the
ParentBinding property and add a new column that displays the name of tasks. This new
column has the IsTreeColumn property set to true. This transforms the column in a tree that
enables the expanding and collapsing of elements in the table.

<iloggantt:GanttChart x:Name="gantt" ParentBinding="{Binding ParentTask}">
 <iloggantt:GanttChart.Columns>
 <iloggantt:TreeTableTextColumn IsTreeColumn="True"
 Header="Name"
 Binding="{Binding Name}" />
 <iloggantt:TreeTableDateTimeColumn Header="Start"
 Binding="{Binding Start}" />
 <iloggantt:TreeTableDateTimeColumn Header="End"
 Binding="{Binding End}" />

 </iloggantt:GanttChart.Columns>

 <iloggantt:GanttChart.BarDefinitions>
 <iloggantt:BarDefinition StartBinding="{Binding Start}"
 FinishBinding="{Binding End}">
 <iloggantt:BarDefinition.BarTemplate>
 <DataTemplate>
 <Rectangle Height="13" Fill="LightBlue" />
 </DataTemplate>
 </iloggantt:BarDefinition.BarTemplate>
 </iloggantt:BarDefinition>
 </iloggantt:GanttChart.BarDefinitions>
</iloggantt:GanttChart>

Change the code-behind to use the new ParentTask property:

ObservableCollection<MyTask> list = new ObservableCollection<MyTask>();
MyTask task1 = new MyTask() { Name = "Task 1",
 Start = DateTime.Now,
 End = DateTime.Now.AddDays(1) };
MyTask task2 = new MyTask() { Name = "Task 2",
 Start = DateTime.Now,
 End = DateTime.Now.AddDays(2) };
MyTask task3 = new MyTask() { Name = "Task 3",
 ParentTask = task2,
 Start = DateTime.Now,
 End = DateTime.Now.AddDays(1) };

list.Add(task1);
list.Add(task2);
list.Add(task3);
gantt.ItemsSource = list;
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 19

This code will give the following result:

The task named Task2 has now an arrow button that enables the expanding or collapsing of
its children.

Note that the bar of the parent task is represented in the same manner as the child tasks. This
is due to the fact that you have a single BarDefinition defined in the GanttChart. To learn
how to specify different representations for various kinds of bars see Specifying and Styling
the Gantt Bars to Display.

Displaying Constraints between Tasks in a GanttChart Control

The GanttChart control can also display links between tasks. Usually, these links are used to
display predecessor constraints between tasks. The following table shows the types of
constraint defined by the ConstraintType enumeration.
20 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

To display constraint links in the GanttChart you must specify the list of constraints in the
ConstraintsSource property of the GanttChart. This property should contain a collection of
objects that represent the constraint links between objects. A link will be created for each
element in the ConstraintsSource collection. In addition to the ConstraintsSource
property, you must specify the properties ConstraintOriginPropertyName and
ConstraintDestinationPropertyName. Through these properties, the GanttChart finds the
origin and destination tasks for the links. These properties usually refer to members of the
constraint objects in the constraint source. Finally a binding must be specified to tell the
GanttChart what is the type of the constraint link. The ConstraintTypeBinding property of
the GanttChart provides a binding from a constraint object in the ConstraintsSource to a
ConstraintType.

Just like the ItemsSource property, if the collection specified in the ConstraintsSource
property implements INotifyCollectionChanged, the GanttChart is able to reflect changes
in the collection when constraints are added or removed. The constraint also should

Constraint Type Example Description

EndToStart The activity B cannot start until the
activity A is finished.

StartToStart The activity B cannot start until the
activity A is started.

StartToEnd The activity B cannot finish until the
activity A starts.

EndToEnd The activity B cannot finish until the
activity A finishes.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 21

implement INotifyPropertyChanged if you want the GanttChart to react to changes of the
constraint properties.

Create a constraint object named MyConstraint, with a property named Origin for the
origin of the constraint, Destination for the destination of the constraint link and Type for
the type of the constraint.

public class MyConstraint : INotifyPropertyChanged
{
 private MyTask _origin, _destination;
 private ConstraintType _type;

 public MyTask Origin
 {
 get {
 return _origin;
 }

 set {
 if (_origin != value) {
 _origin = value;
 OnPropertyChanged("Origin");
 }
 }
 }

 public MyTask Destination
 {
 get {
 return _destination;
 }

 set {
 if (_destination != value)
 {
 _destination = value;
 OnPropertyChanged("Destination");
 }
 }
 }

 public ConstraintType Type
 {
 get {
 return _type;
 }

 set {
 if (_type != value) {
 _type = value;
 OnPropertyChanged("Type");
 }
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
22 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

 private void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
}

You can now modify the XAML definition of the GanttChart:

<iloggantt:GanttChart x:Name="gantt"
 ParentBinding="{Binding ParentTask}"
 ConstraintOriginPropertyName="Origin"
 ConstraintDestinationPropertyName="Destination"
 ConstraintTypeBinding="{Binding Type}" >
 <iloggantt:GanttChart.Columns>
 <iloggantt:TreeTableTextColumn IsTreeColumn="True"
 Header="Name"
 Binding="{Binding Name}" />
 <iloggantt:TreeTableDateTimeColumn Header="Start"
 Binding="{Binding Start}" />
 <iloggantt:TreeTableDateTimeColumn Header="End"
 Binding="{Binding End}" />

 </iloggantt:GanttChart.Columns>

 <iloggantt:GanttChart.BarDefinitions>
 <iloggantt:BarDefinition StartBinding="{Binding Start}"
 FinishBinding="{Binding End}">
 <iloggantt:BarDefinition.BarTemplate>
 <DataTemplate>
 <Rectangle Height="13" Fill="LightBlue" />
 </DataTemplate>
 </iloggantt:BarDefinition.BarTemplate>
 </iloggantt:BarDefinition>
 </iloggantt:GanttChart.BarDefinitions>
</iloggantt:GanttChart>

In the code-behind, create a constraint and specify the constraint source:

ObservableCollection<MyTask> list = new ObservableCollection<MyTask>();
MyTask task1 = new MyTask() { Name = "Task 1",
 Start = DateTime.Now,
 End = DateTime.Now.AddDays(1) };
MyTask task2 = new MyTask() { Name = "Task 2",
 Start = DateTime.Now,
 End = DateTime.Now.AddDays(2) };
MyTask task3 = new MyTask() { Name = "Task 3",
 ParentTask = task2,
 Start = DateTime.Now,
 End = DateTime.Now.AddDays(1) };

list.Add(task1);
list.Add(task2);
list.Add(task3);
gantt.ItemsSource = list;

ObservableCollection<MyConstraint> constraints =
 new ObservableCollection<MyConstraint>();
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 23

MyConstraint constraint = new MyConstraint() {
 Origin = task1,
 Destination = task2,
 Type = ConstraintType.EndToStart };

constraints.Add(constraint);

gantt.ConstraintsSource = constraints;

This gives the following graphical result:

Note that the GanttChart control does not do any validation or scheduling logic on your
data. For example, it will not enforce that a task with a predecessor constraint of type End-
to-Start starts after the end of its predecessor. Also, there is no specific logic for the duration
of a parent task relatively to its child tasks. Such logic should be added to the data
themselves. Alternatively, you can use the predefined data sources like SimpleGanttModel
or ProjectSchedulingModel.
24 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Connecting a ScheduleChart Control to
Data

A ScheduleChart control can display any kind of time related items including instances of
your own classes. Some predefined data sources are available so that you do not need to
create your own data source.

You will learn how to use predefined data sources, how to create a new data source that can
be used in a ScheduleChart control and how to connect the data sources to a
ScheduleChart.

In This Section

Using Predefined Data Sources in a ScheduleChart

Explains how to use predefined data sources to display data in a ScheduleChart
control.

Using Your Own Data or Creating your own Data Source for the ScheduleChart

Explains how to create a data source and connect it to a ScheduleChart control.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 25

Using Predefined Data Sources in a ScheduleChart

To display data in a ScheduleChart control, you may use one of the predefined data sources,
the SimpleGanttModel class or the ProjectSchedulingModel classes. These two data models
are described in more details in Using Predefined Data Models.

These data models can be easily connected to a ScheduleChart so that the ScheduleChart
displays the resources in the model and the activities assigned to each resource (also know as
reservations).

To connect a ScheduleChart to a SimpleGanttModel use the following code:

ScheduleChart chart = new ScheduleChart();
SimpleGanttModel model = new SimpleGanttModel();
chart.InitializeFrom(model);

The InitializeFrom method is an extension method for the ScheduleChart class and does the
following initializations:

◆ Creation of some predefined columns in the table: A column for Name.

◆ Creation of predefined bar definitions: A bar definition for normal activity, for activity
completion, for summaries and for milestones.

◆ Connection of the data model to the control for displaying the resources in the table and
the activities assigned to each resource.

Here is an extract of C# code that creates and populates a SimpleGanttModel with four
activities and one constraint and displays the model in a ScheduleChart.

In XAML you simply add a ScheduleChart to the page:

<iloggantt: ScheduleChart x:Name="gantt"/>

And in the code-behind:

SimpleGanttModel model = new SimpleGanttModel();

// create the resources

SimpleResource resource1 = new SimpleResource()
{
 Name = "r1",
};

SimpleResource resource2 = new SimpleResource()
{
 Name = "r2",

};

SimpleResource resource3 = new SimpleResource()
{

26 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

 Name = "r3",
};

SimpleResource resource4 = new SimpleResource()
{
 Name = "r4",
};

model.Resources.Add(resource1);
model.Resources.Add(resource2);
model.Resources.Add(resource3);
model.Resources.Add(resource4);

// create the activities. and assign them to resources.

SimpleActivity activity1
 = new SimpleActivity()
 {
 Name = "A1",
 StartTime = DateTime.Now,
 Duration = TimeSpan.FromHours(8)
 };

SimpleActivity activity2
 = new SimpleActivity()
 {
 Name = "A2",
 StartTime = DateTime.Now,
 Duration = TimeSpan.FromHours(24),
 };
SimpleActivity activity3
 = new SimpleActivity()
 {
 Name = "A3",
 StartTime = DateTime.Now,
 Duration = TimeSpan.FromHours(36),

 };
SimpleActivity activity4
 = new SimpleActivity()
 {
 Name = "A4",
 StartTime = DateTime.Now.AddHours(45),
 Duration = TimeSpan.FromHours(48),
 };

model.Activities.Add(activity1);
model.Activities.Add(activity2);
model.Activities.Add(activity3);
model.Activities.Add(activity4);

SimpleReservation reservation1 = new SimpleReservation()
 {
 Resource = resource1,
 Activity = activity1
 };
SimpleReservation reservation2 = new SimpleReservation()
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 27

 {
 Resource = resource2,
 Activity = activity2
 };
SimpleReservation reservation3 = new SimpleReservation()
 {
 Resource = resource3,
 Activity = activity3
 };
SimpleReservation reservation4 = new SimpleReservation()
 {
 Resource = resource4,
 Activity = activity4
 };
SimpleReservation reservation5 = new SimpleReservation()
 {
 Resource = resource1,
 Activity = activity4
 };
SimpleReservation reservation6 = new SimpleReservation()
 {
 Resource = resource4,
 Activity = activity1
 };
model.Reservations.Add(reservation1);
model.Reservations.Add(reservation2);
model.Reservations.Add(reservation3);
model.Reservations.Add(reservation4);
model.Reservations.Add(reservation5);
model.Reservations.Add(reservation6);

scheduleChart.InitializeFrom(model);

This gives the following result:
28 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

The InitializeFrom extension method is very convenient for initializing the ScheduleChart
component, but you can also create a ScheduleChart component and define yourself the
columns. For more details refer to Working with Tables in the Gantt Controls. To define
yourself the shape of the bars see Specifying and Styling the Gantt Bars to Display. Finally,
to connect a SimpleGanttModel to display the resources you need to set the ItemsSource
property of the ScheduleChart to the resources of the model and the ConstraintsSource
property to the constraints of the model. To do this, use the following code:

chart.ItemsSource = model.Resources;
chart.TimeItemsBinding = new Binding("Reservations");

For more details on how to connect a ScheduleChart control to data, see Using Your Own
Data or Creating your own Data Source for the ScheduleChart.

Using Your Own Data or Creating your own Data Source for the ScheduleChart

In this section you will see how to implement a data source so that it can be connected to a
ScheduleChart control.

Creating Resource Classes and Displaying them in the ScheduleChart

The ScheduleChart control takes as primary data source any kind of enumeration. For
example, it can be a collection, an array or the result of a LinQ query. The items in this
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 29

collection will be represented as a row in the ScheduleChart, for each item (that is, for each
row) the ScheduleChart control can display several items over the time. For example, the
main collection can be a list of persons and for each person, you may display the various
tasks assigned to this person. Another example could be a list of TV channel and for each
channel the various programs along the time. Here is a minimal implementation showing
persons and tasks assigned to persons. The class MyPerson and MyTask may look like this:

public class MyTask
{
 public DateTime Start { get; set; }
 public DateTime End { get; set; }
}

public class MyPerson
{
 List<MyTask> _tasks = new List<MyTask>();
 public string Name { get; set; }
 public List<MyTask> Tasks { get { return _tasks; } }
}

The Start and End property of the class MyTask could be named differently. The important
point is that there are two properties of type DateTime so that the task can be displayed
along the time line. You can now create several persons with several tasks assigned.

In XAML

<iloggantt:ScheduleChart x:Name="scheduleChart"/>

In the code behind:

List<MyPerson> persons = new List<MyPerson>();
MyPerson person1 = new MyPerson() { Name = "person 1" };
person1.Tasks.Add(new MyTask() { Start = DateTime.Now,
 End = DateTime.Now.AddDays(2) });
person1.Tasks.Add(new MyTask() { Start = DateTime.Now.AddDays(3),
 End = DateTime.Now.AddDays(5) });

MyPerson person2 = new MyPerson() { Name = "person 2" };
person2.Tasks.Add(new MyTask() { Start = DateTime.Now.AddDays(1),
 End = DateTime.Now.AddDays(2) });
person2.Tasks.Add(new MyTask() { Start = DateTime.Now.AddDays(4),
 End = DateTime.Now.AddDays(7) });

MyPerson person3 = new MyPerson() { Name = "person 3" };
person3.Tasks.Add(new MyTask() { Start = DateTime.Now,
 End = DateTime.Now.AddDays(2) });
person3.Tasks.Add(new MyTask() { Start = DateTime.Now.AddDays(3),
 End = DateTime.Now.AddDays(4) });

persons.Add(person1);
persons.Add(person2);
persons.Add(person3);

scheduleChart.ItemsSource = persons;
scheduleChart.TimeItemsBinding = new Binding("Tasks");
30 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Note that even though the ScheduleChart control is connected to data, by default it has no
column defined and no representation for bars. So the code above will not display anything.
Before improving the data source, you will modify the XAML so that the data can be
displayed.

To start displaying the items you need to add columns to the table part of the Gantt and
define a BarDefinition object that specifies the shape of bars on the time line.

In the following XAML definition one column is added and is bound to the Name property.
In this XAML you also add a BarDefinition object which indicates that a bar should be
displayed from the Start to the End property of a task.

<iloggantt:ScheduleChart x:Name="scheduleChart">

 <!-- Specifies Columns for the Gantt table-->
 <iloggantt:ScheduleChart.Columns>
 <iloggantt:TreeTableTextColumn Header="Name" Binding="{Binding Name}"/>
 </ iloggantt:ScheduleChart.Columns>

 <!-- bar definitions-->
 <iloggantt:ScheduleChart.BarDefinitions>
 <iloggantt:BarDefinition
 StartBinding="{Binding Start}"
 FinishBinding="{Binding End}">
 <iloggantt:BarDefinition.BarTemplate>
 <DataTemplate>
 <Rectangle Height="13" Fill="LightBlue" />
 </DataTemplate>
 </iloggantt:BarDefinition.BarTemplate>
 </iloggantt:BarDefinition>
 </iloggantt:ScheduleChart.BarDefinitions>
</iloggantt:ScheduleChart>

With this specification, you will get the following result:
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 31

For each person in the ItemsSource, a row is created in the ScheduleChart. For each
person the tasks (specified by the Tasks properties) are drawn along the time line.

For more information on columns, see Working with Gantt chart columns. For more
information on the BarDefinition class, see Specifying and Styling the Gantt Bars to
Display.

Let's come back to the definition of the data source. The source of data has been defined as a
List of MyPerson. With such a definition, the ScheduleChart control is not able to react
when a person is added or removed from the list. To see the items that are added or removed
from the list, the collection specified in the ItemsSource must implement the
INotifyCollectionChanged interface. Silverlight proposes the generic class
ObservableCollection<T> as a default implementation of INotifyCollectionChanged.

Similarly the Name and Tasks properties of MyPerson may change and in order to see the
changes in the ScheduleChart, the class MyPerson should implement
INotifyPropertyChanged, and the collection of tasks should implement
INotifyCollectionChanged.

Similarly if the Start and End properties of MyTask change and the changes are reflected
in the ScheduleChart, you must implement the interface INotifyPropertyChanged. The
code for MyTask and MyPerson become

public class MyTask : INotifyPropertyChanged
{
 private DateTime _start, _end;

 public DateTime Start
 {
 get {
32 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

 return _start;
 }
 set {
 if (_start != value) {
 _start = value;
 OnPropertyChanged("Start");
 }
 }
 }

 public DateTime End
 {
 get {
 return _end;
 }

 set {
 if (_end != value) {
 _end = value;
 OnPropertyChanged("End");
 }
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }

}

public class MyPerson : INotifyPropertyChanged
{
 private ObservableCollection<MyTask> _tasks
 = new ObservableCollection<MyTask>();
 private string _name;

 public string Name
 {
 get
 {
 return _name;
 }
 set
 {
 if (_name != value)
 {
 _name = value;
 OnPropertyChanged("Name");
 }
 }
 }

 public ICollection<MyTask> Tasks { get { return _tasks; } }
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 33

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
}

Now that the properties Name, Start and End are notifying their changes, the
ScheduleChart control can react to these changes and modify the display accordingly. It is
now also possible to move the bars with the mouse pointer.
34 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Using Predefined Data Models

Although the GanttChart and ScheduleChart controls can be connected to any kind of data,
IBM® ILOG® Gantt for .NET provides two predefined data model that can be easily
connected to the Silverlight Gantt controls:

The SimpleGanttModel contains definitions for the activities (or tasks) in the project, for the
resources that will be used to perform the activities, for constraints between tasks and for
reservations (an assignment of a resource to an activity).

The ProjectSchedulingModel defines the same type of information as the
SimpleGanttModel but adds project scheduling algorithms that will automatically maintain
the schedule of the project by computing the critical path and performing resource leveling
to remove resource overallocations. The two data models are located in the
ILOG.Controls.Gantt.Data.dll assembly.

In This Section

The SimpleGanttModel Data Model

Explains how to use the SimpleGanttModel class to manipulate scheduling data.

The ProjectSchedulingModel Data Model

Describes how to use the ProjectSchedulingModel to create Silverlight applications
with project scheduling capabilities.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 35

The SimpleGanttModel Data Model

IBM® ILOG® Gantt for .NET provides a ready-to-use implementation of the Gantt data
model through the SimpleGanttModel class. This Gantt data model can be used to
manipulate standard scheduling data directly or can be extended to meet specific
requirements. It can be easily connected to the Silverlight Gantt controls.

The SimpleGanttModel class

The SimpleGanttModel gathers the Gantt model entities in a single object. Its main role is
to maintain consistency in the model and to ease initialization of the Silverlight Gantt
controls.

The in-memory data model implementation is defined by the following classes:

All these classes are located in the ILOG.Controls.Gantt.Data namespace, in the
ILOG.Controls.Gantt.Data.dll assembly.

Activities in the SimpleGanttModel

Activities in the SimpleGanttModel are defined by the SimpleActivity class. A
SimpleGanttModel handles a flat collection of SimpleActivity objects. This collection can
be accessed through the SimpleGanttModel.Activities property. To add or remove activities,
use the standard collection methods as shown below:

SimpleGanttModel model = new SimpleGanttModel();
SimpleActivity activity = new SimpleActivity() {

Name = "Task 1",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours(8)
};

model.Activities.Add(activity);

Class Description

SimpleGanttModel Gathers the activities, resources, constraints, and
reservations in the same class.

SimpleActivity A basic activity implementation.

SimpleResource A basic resource implementation.

SimpleConstraint A basic constraint implementation.

SimpleReservation A basic reservation implementation.
36 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

To change the time interval of a SimpleActivity, use the StartTime, EndTime, and Duration
properties.

An activity with child activities is called summary activity. A summary activity is created by
setting the Parent property of the children activities to this activity. Note that it is not
possible to modify the time interval or summary activities, because it is automatically
computed from their children.

The following code shows how to create a summary activity, that is, an activity whose time
interval is defined by its children:

SimpleGanttModel model = new SimpleGanttModel();
SimpleActivity summary = new SimpleActivity() { Name = "Summary" };
SimpleActivity child1 = new SimpleActivity() {

Name = "Sub Task 1",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours(8),
Parent = summary
};

SimpleActivity child2 = new SimpleActivity() {
Name = "Sub Task 2",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours(8),
Parent = summary
};

model.Activities.Add(summary);
model.Activities.Add(child1);
model.Activities.Add(child2);

The children need to be explicitly added to the activity collection.

Note that setting up an activity hierarchy by setting the SimpleActivity.Parent property
does not mean that the Silverlight Gantt controls will automatically reflect this hierarchy. To
see how to configure the Silverlight Gantt controls to display a hierarchical view, see
Grouping, Sorting and Filtering Data.

When you remove the activities from the model, the associated reservations and constraints
are also removed.

Resources in the SimpleGanttModel

Resources in the SimpleGanttModel are defined by the SimpleResource class. A
SimpleGanttModel handles a flat collection of SimpleResource objects. This collection
can be accessed through the SimpleGanttModel.Resources property. To add or remove
resources, use the standard collection methods as shown below:

SimpleGanttModel model = new SimpleGanttModel();
SimpleResource resource = new SimpleResource() { Name = "Resource 1" };
model.Resources.Add(resource);
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 37

To create a hierarchy between resources, use the SimpleResource.Parent property. By
default, this property is set to null, which means the resource has no parent. The following
code shows how to create a hierarchy of resources:

SimpleGanttModel model = new SimpleGanttModel();
SimpleResource parent = new SimpleResource() { Name = "Parent Resource" };
SimpleResource child1 = new SimpleResource() {

Name = "Sub Resource 1",
Parent = parent
};

SimpleResource child2 = new SimpleResource() {
Name = "Sub Resource 2",
Parent = parent
};

model.Resources.Add(parent);
model.Resources.Add(child1);
model.Resources.Add(child2);

The children need to be explicitly added to the resource collection.

Note that setting up a resource hierarchy by setting the SimpleResource.Parent property
does not mean that the Silverlight Gantt controls will automatically reflect this hierarchy. To
see how to configure the Silverlight Gantt controls to display a hierarchical view, see
Grouping Data.

When you remove the resources from the model, the associated reservations are also
removed.

Constraints in the SimpleGanttModel

Constraints in the SimpleGanttModel are defined by the SimpleConstraint class. A
SimpleGanttModel handles a collection of SimpleConstraint objects. This collection can
be accessed through the SimpleGanttModel.Constraints property. To add or remove
constraints, use the standard collection methods as shown below:

SimpleGanttModel model = new SimpleGanttModel();
SimpleActivity activity1 = new SimpleActivity() {

Name = "Task 1",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours(8)
};

model.Activities.Add(activity1);
SimpleActivity activity2 = new SimpleActivity() {

Name = "Task 2",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours(8)
};

model.Activities.Add(activity2);
SimpleConstraint constraint = new SimpleConstraint() {

FromActivity = activity1,
ToActivity = activity2
};

model.Constraints.Add(constraint);
38 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Reservations in the SimpleGanttModel

Reservations in the SimpleGanttModel are defined by the SimpleReservation class. A
SimpleGanttModel handles a collection of SimpleReservation objects. This collection can
be accessed through the SimpleGanttModel.Reservations property. To add or remove
reservations, use the standard collection methods as shown below:

SimpleGanttModel model = new SimpleGanttModel();
SimpleActivity activity = new SimpleActivity() {

Name = "Task",
StartTime = DateTime.Now,
Duration = TimeSpan.FromHours(8)
};

model.Activities.Add(activity);
SimpleResource resource = new SimpleResource() { Name = "Resource" };
model.Resources.Add(resource);
SimpleReservation reservation = new SimpleReservation() {

Activity = activity,
Resource = resource
};

Model.Reservations.Add(reservation);

The ProjectSchedulingModel Data Model

IBM® ILOG® Gantt for .NET allows you to create Silverlight applications that require
project scheduling capabilities through a specific Gantt Data Model class: the
ProjectSchedulingModel.

The ProjectSchedulingModel stores information about your project and uses this
information to calculate and maintain the schedule of your project. The
ProjectSchedulingModel computes the schedule immediately. As soon as you have entered
information about your project, you can learn about the scheduled start date of activities and
the project target date.

In the <installdir>\Samples\Applications\SilverlightProjectEditor
directory, you will find a fully-featured application sample that shows how to use the
ProjectSchedulingModel in a real project scheduling application.

In This Section

The ProjectSchedulingModel Class

Describes the ProjectSchedulingModel class.

Activities in the ProjectSchedulingModel

Describes the SchedulingActivity class.

How the Project Scheduling Model Computes the Schedule of a Project
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 39

Describes how the ProjectSchedulingModel class calculates and creates the schedule
of a project.

Calendars in the Project Scheduling Model

Explains how to use calendars to define working and nonworking periods.

Resource Leveling in the Project Scheduling Model

Explains the resource leveling process in the Project Scheduling Model.

The ProjectSchedulingModel Class

The ProjectSchedulingModel class contains algorithms for scheduling projects, leveling
resources, and computing the critical paths. This option is particularly interesting for
developing rapidly project management solutions that can be deployed over the Web.

The ProjectSchedulingModel class is a Gantt data model class similar to the
SimpleGanttModel that adds project scheduling capabilities. Just like the
SimpleGanttModel, the ProjectSchedulingModel defines the scheduling information that
can be edited and displayed by the Silverlight controls of the IBM ILOG Gantt for .NET
library.

For adding, removing and accessing activities, resources, constraints and reservations, the
ProjectSchedulingModel operates as the SimpleGanttModel, but for each modification of
the model, the ProjectSchedulingModel re-computes a working schedule of the project.
For example, when you change the duration of an activity in the model, the model re-
computes a schedule and this may have an impact on the start time of all the successors
activities and on the project scheduled end date.

The following types are involved in the Project Scheduling Data model:

When creating a ProjectSchedulingModel you must specify a starting date for the project
by using the StartDate property. The project is scheduled from the start date, so activities

Type Description

ProjectSchedulingModel The project scheduling data model that uses the classes
listed in this table.

SchedulingActivity Represents an activity or a task that must be completed in
the project.

SchedulingResource Represents a resource that can be allocated to an activity to
make its completion possible.

SchedulingConstraint Represents an activity-to-activity scheduling constraint.

SchedulingReservation Represents the allocation of a resource to an activity.
40 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

that do not have predecessors or other scheduling constraints will be scheduled at the project
start date. The project end date will be automatically computed and is available through the
EndDate property.

By default, the ProjectSchedulingModel schedules activities by using the working times on
the project calendar (see WorkCalendar class). The project calendar can be specified using
the Calendar property. When creating a ProjectSchedulingModel, the model has a standard
calendar that defines Saturday and Sunday as nonworking days and working times from
8AM to 12AM and from 1PM to 5PM. Specific calendars can also be defined for resources
and activities. For more details see Calendars in the Project Scheduling Model.

The following C# code fragment creates a ProjectSchedulingModel and adds one activity.
Finally, the scheduled start time of the activity and the project target date are displayed.

ProjectSchedulingModel project = new ProjectSchedulingModel();
project.StartDate = new DateTime(2005, 1, 1);
SchedulingActivity activity = new SchedulingActivity();
activity.Duration = TimeSpan.FromHours(8);
project.Activities.Add(activity);

This C# code schedules the activity to start on: 1/3/2005 8:00:00 AM
(activity.StartTime) and the project end date (project.EndDate) will be 1/3/2005
5:00:00 PM.

The activity has been scheduled to start on January 3, 2005 at 8 AM, even though the project
start date is January 1, this is because January 1, 2005 is Saturday.

Activities in the ProjectSchedulingModel

Activities in the ProjectSchedulingModel are defined by the SchedulingActivity class. Since
the ProjectSchedulingModel automatically computes the schedule of the activity you
should not specify a start date for activities. For an activity, it is only mandatory to specify a
duration. The schedule of activities will be computed by the model.

The Duration property of the activity represents the amount of work needed to complete the
activity. For example, if you are using the default standard calendar, a duration of 8 hours
represents in fact one day of elapsed duration since in the default calendar each working day
has 8 hour of work (The default calendar has working times from 8 AM to 12PM and from
1PM to 5PM).

The following C# code creates a ProjectSchedulingModel with a start date of January 5,
2005 and adds an activity with a duration of 8 hours.

ProjectSchedulingModel model = new ProjectSchedulingModel();
model.StartDate = new DateTime(2005,1,5);
SchedulingActivity activity = new SchedulingActivity();
activity.Duration = TimeSpan.FromHours(8);
model.Activities.Add(activity);
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 41

Once the activity is added to the model, the following properties of the SchedulingActivity
class are computed by the ProjectSchedulingModel:

You should not specify the StartTime or EndTime properties of a SchedulingActivity.
Those properties are automatically computed. If you set the value of the StartTime property,
a constraint of type "Start No Earlier Than" will be set on the activity. If you specify the
EndTime property, a constraint of type "Finish No Earlier Than" will be set on the activity.

To learn more about constraints and other properties of SchedulingActivity that allow you
to control the schedule of an activity and how the schedule of the project is computed, see
How the Project Scheduling Model Computes the Schedule of a Project.

When the automatic resource leveling is turned on, the following properties of the
SchedulingActivity are computed:

Property Name Property Type Description

StartTime DateTime The scheduled start time of the activity.

EndTime DateTime The scheduled end time of the activity.

EarlyStart DateTime The earliest date the activity can start based
on the predecessor and successors of the
activity and other scheduling constraints.

EarlyFinish DateTime The earliest date the activity can finish based
on the predecessors and successors of the
activity and other scheduling constraints.

LateStart DateTime The latest date the activity can start based
on the predecessors and successors of the
activity and other scheduling constraints.

LateFinish DateTime The latest date the activity can finish based
on the predecessors and successors of the
activity and other scheduling constraints.

TotalSlack TimeSpan The amount of time the activity can be
delayed without delaying the project's end
date.

FreeSlack TimeSpan The amount of time the activity can be
delayed without delaying any successor
activity.

IsCritical Boolean Indicates whether the activity is critical or
not.
42 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

To learn more about resource leveling, see Resource Leveling in the Project Scheduling
Model.

You can also specify that an activity has already started by defining and actual start time
(SchedulingActivity.ActualStartTime property) and the percentage of completion
(SchedulingActivity.WorkComplete property). This information is taken into account by the
model when scheduling the activity. Activities that have already started are always
scheduled at their actual start time and will not be delayed by the resource leveling
algorithm.

How the Project Scheduling Model Computes the Schedule of a Project

As you build a project plan, the ProjectSchedulingModel class calculates and creates a
working schedule based on information you provide about the activities to be done and the
people assigned to those activities.

The ProjectSchedulingModel schedules the project from the information you specify about
the project itself: the individual activities (class SchedulingActivity) required to complete
the project and, if necessary, the resources (class SchedulingResource) needed to complete
those activities. If anything about your project changes after you create your schedule, you
can update the activities or resources and the ProjectSchedulingModel adjusts the schedule
for you.

For each activity, you enter duration, dependencies between activities (class
SchedulingConstraint), and activity constraints (type ActivityConstraintType), then the
ProjectSchedulingModel calculates the start and end date for each activity. You can enter
resources in your project and then assign them to activities to indicate which resource is
responsible for completing each activity (class SchedulingReservation). If you enter
resources, task schedules are further refined according to resource availability and working
times entered on calendars (class WorkCalendar). Other elements, such as lead time and lag
time on dependencies can affect the scheduling. Understanding the effects of these elements
can help you maintain and adjust the project schedule.

Property Name Property Type Description

PreleveledStart DateTime Represents the start time of the activity before
the resource leveling was computed.

PreleveledEnd DateTime Represents the end time of the activity before
the resource leveling was computed.

LevelingDelay TimeSpan The amount of time the activity is delayed from
its early start date (EarlyStart) in order to
remove resource overallocations.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 43

Controlling When the Project Schedule is Recomputed

Since every modification of the model leads to a re-computation of the schedule of the
project, it is important to control when the schedule is re-computed in order to avoid
unnecessary re-computations.

For example, if you want to change the duration of several activities, you do not want the
model to re-compute the schedule several times.

The ProjectSchedulingModel provides the BeginScheduleSession and
EndScheduleSession methods that allow you to group several modifications so that only one
single schedule will be computed. Here is the typical C# code that you would write:

try {
 model.BeginScheduleSession();

 // change several things in the model
} finally {
 model.EndScheduleSession();
}

The ProjectSchedulingModel class also provides the BeginSchedule and EndSchedule
events that are fired when the scheduling starts and finishes.

How Project Start Date Affects the Schedule

The ProjectSchedulingModel schedules your project according to the project start date.
The start date of the project can be specified by the StartDate property of the
ProjectSchedulingModel. When an activity is added to the model, it is initially scheduled
at the project start date. Later on, if you add predecessors to the activity or if you set other
constraints on the activity, the schedule start time of the activity will be computed
accordingly. The project end date is computed like the latest end date of all activities in the
model and can be retrieved using the EndDate property of the ProjectSchedulingModel
class.

You may change the project start date at any time and the ProjectSchedulingModel will re-
compute a new schedule based on this new start date.

How Constraint Links Affect the Schedule

When a new activity is inserted in the ProjectSchedulingModel, the activity has no
predecessor constraint and will be scheduled to start at the project start date.

Later on, predecessor constraints can be added between activities using the
SchedulingConstraint class that defines precedence constraints between activities.

See Displaying Constraints between Tasks in a GanttChart Control for details on the
different types of precedence constraints defined by the ConstraintType enumeration.
44 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Lead and Lag Time

The SchedulingConstraint class also allows you to specify a lead or a lag time for the
constraint.

A lag time is a delay between the end of an activity and the start of its successor. A lead time
is an overlap between the two activities, so that the successor starts before the end of the
predecessor.

To specify a lag or lead time in the SchedulingConstraint use the Lag and LagFormat
property. The lead and lag time can be expressed in various formats: it can be defined as a
work duration or an elapsed duration. The duration may be directly specified or defined as a
percentage of the duration of the predecessor activity. For example, to create an EndToStart
constraint between activity A and B with a lag expressed as 50% of the elapsed duration of
A (assuming that the variable a and b are instances of the SchedulingActivity class), you
would do:

SchedulingConstraint c = new SchedulingConstraint()
 {FromActivity = a,
 ToActivity = b,
 Type = ConstraintType.EndToStart};
c.Lag = 50;
c.LagFormat = LagFormat.EllapsedPercentage;
model.Constraints.Add(c);

To express a lead time, you would give a negative value to the Lag property.

How Constraints on Activities Affect the Schedule

The schedule start date of an activity is mainly controlled by the dependencies between
activities, as explained in How Constraint Links Affect the Schedule.

However, the scheduled start date of an activity can also be controlled using constraints on
activity. Constraints on activities are set and retrieved through the Constraint property of the
SchedulingActivity class. The different types of constraints that can be specified on an
activity are defined by the ActivityConstraintType enumeration. By default, when creating
an activity, the constraint on the activity is set to AsSoonAsPossible. This means that the
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 45

activity will be scheduled as soon as possible. For example, if the activity has several end-to-
start predecessors, the task will be scheduled as soon as the predecessors are finished.

For the AsSoonAsPossible and AsLateAsPossible constraints, it is not necessary to specify
a constraint date. For the other types of constraints, a constraint date must be specified in the
ConstraintDate property of the SchedulingActivity class.

Here are the different types of constraints and how they affect the schedule of an activity:

Constraint type Description

AsSoonAsPossible The ProjectSchedulingModel schedules the activity to start
as soon as it can. This is the default constraint type. No
specific date constraint is added to the activity. Activities with
this constraint that have no predecessors will be scheduled at
the project start date.

AsLateAsPossible The ProjectSchedulingModel schedules the task to start as
late as it can, based on the constraints on predecessors. No
specific date constraint is added to the activity.

FinishNoLaterThan The ProjectSchedulingModel schedules the task to finish no
later than the date specified by the ConstraintDate property of
the activity. The activity can be scheduled to finish before or at
the specified date. With such a constraint, the activity may be
scheduled to start before the date allowed by predecessor
constraints and thus violate the constraint imposed by
predecessors.

StartNoLaterThan The ProjectSchedulingModel schedules the task to start no
later than the date specified by the ConstraintDate property of
the activity. The activity can be scheduled to start before or at
the specified date. With such a constraint, the activity may be
scheduled to start before the date allowed by predecessor
constraints and thus violate the constraint imposed by
predecessors.

StartNoEarlierThan The ProjectSchedulingModel schedules the task to start no
earlier than the date specified by the ConstraintDate property
of the activity. The activity can be scheduled to start after or at
the specified date. Such a constraint will be automatically set
on the activity, when you modify the StartTime property of the
activity.
46 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Calendars in the Project Scheduling Model

The ProjectSchedulingModel uses calendars to define the working and nonworking periods
of the project such as holidays and weekends. Calendars are defined by the WorkCalendar
class.

The ProjectSchedulingModel defines different types of calendars:

◆ project calendar

Defines the default working and nonworking times for the project and can be set using
the Calendar property of the ProjectSchedulingModel. If no calendar is defined for
resources working on an activity or for the activity itself, an activity will be scheduled
within the working times defined by the project calendar.

◆ resource calendar

Defines specific working and nonworking periods for a resource and can be retrieved
using the Calendar property of the SchedulingResource class. The work assigned to the
resource will be scheduled within the working time of the resource calendar. Note that
the resource calendar only applies to work resource and not to material resource (see the
SchedulingResource.Type property).

◆ activity calendar

Defines a specific calendar for an activity. This calendar can be retrieved using the
Calendar property of the SchedulingActivity class. When a calendar is assigned to an
activity, the activity will be scheduled within the working times of this calendar without
taking into consideration the calendar of resources that may be assigned to the activity.

FinishNoEarlierThan The ProjectSchedulingModel schedules the task to finish no
earlier than the date specified by the ConstraintDate property
of the activity. The activity can be scheduled to finish after or at
the specified date. Such a constraint will be automatically set
on the activity, when you modify the EndTime property of the
activity.

StartOn The ProjectSchedulingModel schedules the task to start at
the date specified by the ConstraintDate property of the
activity without taking into account other scheduling
constraints.

FinishOn The ProjectSchedulingModel schedules the task to end at
the date specified by the ConstraintDate property of the
activity without taking into account other scheduling
constraints.

Constraint type Description
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 47

When creating a ProjectSchedulingModel, the model has a standard calendar that defines
Saturday and Sunday as nonworking days and working times from 8AM to 12AM and from
1PM to 5 PM. The ProjectSchedulingModel holds a list of base calendars in its
BaseCalendars property. This collection contains the base calendars that can be used for the
project calendar or for activity calendars. The resource calendars must be a subcalendar of
one of the calendars in the base calendars collection.

To learn more about Calendars see Storing and Displaying Working and Nonworking Times.

Resource Leveling in the Project Scheduling Model

The resource leveling is the process of removing overallocation of resources. A resource is
overallocated when too much work is assigned to it.

The ProjectSchedulingModel can remove overallocations automatically by delaying
activities so that resources have enough time to work on the activity. While delaying, the
ProjectSchedulingModel ensures that all the scheduling constraints are still valid. The
resource leveling process may delay the project end date.

Overallocations of resource can be removed automatically by the resource leveling
algorithm of the ProjectSchedulingModel and can also be executed manually by specifying
delays for each activity. To turn on or off the automatic resource leveling of the model use
the AutomaticResourceLeveling property of the ProjectSchedulingModel class.

When the resource leveling is automatic, the ProjectSchedulingModel uses a heuristic to
determine which activity should be delayed first. This heuristic examines the following
properties of the activity:

◆ late start

◆ total slack

◆ duration

◆ priority

◆ ID

The delays computed automatically are stored in the LevelingDelay property of the
SchedulingActivity class.

The automatic resource leveling can be started using no leveling delays or can use the
current values stored in the LevelingDelay property of each activity. This is controlled by
the ClearDelaysBeforeLeveling property of the ProjectSchedulingModel class. When the
ClearDelaysBeforeLeveling property is set to true, all the delays will be reset to zero
before the resource leveling starts.

The resource leveling process may be time consuming, that is why the leveling algorithm
fires events about the progress of the algorithm, so that some feedback can be given to a
48 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

final user. This is done through the LevelingProgress event of the ProjectSchedulingModel
class.

In some cases the resource leveling algorithm may not be able to find a solution that
removes all the resource overallocation. For example, if two activities are causing an
overallocation for a resource and have a "StartOn" constraint, they cannot be delayed and the
overallocation cannot be removed. In this case, the LevelingProgress event gives
information on which resource is problematic, at which date, and decides wether the
algorithm can continue or needs to be stopped.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 49

50 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Specifying and Styling the Gantt Bars to
Display

The GanttChart and ScheduleChart controls display time bars to represent a task along a
time scale. By default, a GanttChart or a ScheduleChart control has no default
representation for time bars so you have to specify the appearance of bars to fit your needs
and your data model.

The following illustrations show some representations of time bars in a GanttChart.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 51

52 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

The representation of time bars on the screen is controlled by a collection of 'bar definitions'
that can be accessed by the BarDefinitions property of the GanttSheet class.

The GanttChart and ScheduleChart classes also have a BarDefinitions property that refers
to the BarDefinitions property of the internal GanttSheet class used by these controls.

When the GanttSheet class needs to render an item in the data source, it looks inside its
collection of bar definition to find all the definitions that are relevant to this item. Matching
definitions are then used to render the item. Applying several bar definitions to render a
single item can be used to give several pieces of information about the item. For example, a
first bar can be used to display a rectangle that shows the duration of an activity; a second
style can superimpose a rectangle that shows the percentage completion of this activity.

The order of the bar definitions in the collection is significant. Since the GanttSheet can use
several bars to render a single activity, the bar definitions that appear first in the collection
are rendered before, thus underneath, the bar definitions that appear later in the collection.

The collection of bar definitions holds a collection of instances of the BarDefinition class.
The BarDefinition class defines the way the bar will be rendered on the screen, as well as
the kind of item to which this definition applies.

In This Section

Using Default Bar Representations

Explains how to use default bar representations.

Defining Start and End Time for the Bar
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 53

Explains how to define Start and End time for the bar.

Defining the Shape of the Bar

Explains how to define the shape of the bar.

Displaying Additional Information on the Right and on the Left of the Bar

Explains how to display additional information on the bar.

Alignment Properties

Explains how to control the alignment of the bar.

Defining When a BarDefinition Applies for an Item

Explains how to define when a bar definition applies for an item.

Connection of Constraint links in a GanttChart

Explains how to draw constraint links between tasks.

Interactions on the Bar

Describes the various interactions on the bar.

Defining a Tooltip for the Bar

Explains how to define a tooltip for the bar.

Example of Bar Definitions

Provides an example of bar definition.

Using Default Bar Representations

If you are using the predefined data model (SimpleGanttModel or ProjectSchedulingModel)
to store your data, you can use the InitializeFrom method (an extension method for the
GanttChart class). This method connects the data source and creates a default set of
BarDefinition instances for the Gantt control as well as a default set of columns for the table.

GanttChart chart = new GanttChart();
ProjectSchedulingModel model = new ProjectSchedulingModel();
chart.InitializeFrom(model);

Defining Start and End Time for the Bar

The BarDefinition class defines many visual attributes used to render an item on the screen.
The first thing to specify is the time interval that will be displayed. This interval is defined
by two properties: StartBinding and FinishBinding. These two properties are Silverlight
Binding instances that describe the path to find the start time and the end time of the bar
54 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

from the item in the data source. These two bindings should represent dates and thus refer to
properties that are of type DateTime.

For example, if the items to display in a GanttChart (items in the ItemsSource collection)
are of type SimpleActivity (a base implementation of an activity provided in the namespace
ILOG.Controls.Gantt.Data), you can use the StartTime and EndTime properties that
represent the start and end time of the activity in the bindings. In XAML you would specify:

<iloggantt:BarDefinition
 StartBinding="{Binding StartTime}"
 FinishBinding="{Binding EndTime}" .../>

You can also display the portion of the activity that is completed by using the StartTime and
CompletedThrough properties defined by the SimpleActivity class:

<iloggantt:BarDefinition
 StartBinding="{Binding StartTime}"
 FinishBinding="{Binding CompletedThrough }" .../>

Defining the Shape of the Bar

In order to give a shape to the bar, you need to specify a data template that defines the
graphical representation of the bar. This data template is specified through the BarTemplate
property of the BarDefinition class. For normal tasks, you would probably specify a data
template that is mainly a rectangle. By default, the bar and thus the data template that you
specify will be displayed from the start date to the end date that you have specified through
the StartBinding and FinishBinding properties.

Here is XAML example of a data template that is simply drawing a blue rectangle with a
black border:

<iloggantt:BarDefinition ...>
 <iloggantt:BarDefinition.BarTemplate>
 <DataTemplate>
 <Rectangle Height="13" Fill="Blue"
 Stroke="Black" StrokeThickness="1"/>
 </DataTemplate>
 </iloggantt:BarDefinition.BarTemplate>
</iloggantt:BarDefinition>

As expected, this will display a blue bar as shown in the following picture:

You have noticed that the Height is specified for the rectangle but not the Width. The width
of the bar is computed by default by the start and end time of the bar.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 55

Since the shape of the bar is given through a DataTemplate, you can use the full power of
Silverlight bindings. The bar that is created has for data context the item in the data source
that this bar displays, so you might have the color of the bar bound to some property of the
item. For example, the bar can be filled in red if an activity is critical.

Milestones are another type of information that you might want to display. They are often
represented by a diamond shape. In case of a milestone or any other information represented
by a single date, the shape does not need to be displayed from start date to end date, as those
might be the same. In this case use the HorizontalAlignment property of the BarDefinition,
by default the value HorizontalBarAlignment.Stretch that corresponds to the alignment
from start date to end date. Set this value to HorizontalBarAlignment.Start or
HorizontalBarAlignment.End. This places the bar centered on the start or end date.

Here is a BarDefinition that draws a black diamond centered on the start date of the item.

<iloggantt:BarDefinition HorizontalAlignment="Start" ...>
 <iloggantt:BarDefinition.BarTemplate>
 <DataTemplate>
 <Path Width="12" Data="M6 0 L0 6 L 6 12 L 12 6z" Fill="Black"/>
 </DataTemplate>
 </iloggantt:BarDefinition.BarTemplate>
</iloggantt:BarDefinition>

This will give the following result:

This time you have specified a width to the Path representing the diamond. The width is no
longer computed from start and end date, the size of the bar is defined by the data template.

The following example shows how to place some symbols at the beginning or at the end of a
bar. It shows how to use the BarMargin property of the BarDefinition class.

<iloggantt:BarDefinition
 HorizontalAlignment="Stretch"
 BarMargin="-6.5,0,-6.5,0"
 ...>
 <iloggantt:BarDefinition.BarTemplate>
 <DataTemplate>
 <Grid>
 <Rectangle VerticalAlignment="Top" Height="7" Fill="Black"/>
 <Path Height="13" HorizontalAlignment="Left" Fill="Black"
 Data="M0 0L0 6.5L6.5 13L13 6.5L13 0z"/>
 <Path Height="13" HorizontalAlignment="Right" Fill="Black"
 Data="M0 0L0 6.5L6.5 13L13 6.5L13 0z"/>
 </Grid>
 </DataTemplate>
 </iloggantt:BarDefinition.BarTemplate>
</iloggantt:BarDefinition>
56 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

This bar definition defines a thin black bar and two down pentagons on each side of the bar.
This gives the following graphical result:

The HorizontalAlignment is set to Stretch so the bar it displayed from the start time to
the end time.

The BarMargin adds additional fixed size on the left of the start date and on the right of the
end date. Each pentagon has a width of 13, therefore setting the BarMargin to -6.5,0,-6.5,0
(6.5 is half of 13) will ensure that the pentagons point to the start and end dates.

Displaying Additional Information on the Right and on the Left of the Bar

In addition to the bar itself, information can be displayed on the right and on the left of the
bar. This information is usually a property of the item that is displayed, for example the date
for a milestone.

The additional information is specified through data templates. The BarDefinition class
provides the properties RightTemplate and LeftTemplate to define the information to be
displayed.

Assume that Name is a property of the item displayed by the bar. You can define a
DataTemplate that displays the name, as follows:

<iloggantt:BarDefinition ...>
 <iloggantt:BarDefinition.RightTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Name}"/>
 </DataTemplate>
 </iloggantt:BarDefinition.RightTemplate>
<iloggantt:BarDefinition>

Note how the Silverlight binding can be used here to access properties of the displayed item,
just like in the BarTemplate property.

Alignment Properties

By default, inside a GanttChart all the bars are centered in the middle of the row where they
are drawn, but this behavior can also be changed through the VerticalAlignment property of
the BarDefinition. This allows you to align the bar on the top or at the bottom of the row.

The VerticalAlignment property applies to all elements that are displayed, that is, the bar
and the additional information on the right and on the left of the bar. For more details on how
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 57

to add information on the left and on the right of the bar, see Displaying Additional
Information on the Right and on the Left of the Bar. Other properties control the alignment
of each individual element.

◆ BarPresenterVerticalAlignment: controls the vertical alignment of the bar.

◆ LeftPresenterVerticalAlignment: controls the vertical alignment of the information on
the left of the bar.

◆ RightPresenterVerticalAlignment: controls the vertical alignment of the information on
the right of the bar.

You can also define a bar that follows the height of a row by setting the
BarPresenterVerticalAlignment to Stretch. In this case, you would need to add a margin
on the top and at the bottom of the bar to separate two bars in two consecutive rows. You can
do this by means of the BarMargin property of the BarDefinition class.

Here is an example:

<iloggantt:BarDefinition BarMargin="0,2,0,2"
 BarPresenterVerticalAlignment="Stretch" ...>
 <iloggantt:BarDefinition.BarTemplate>
 <DataTemplate>
 <Rectangle Fill="Blue" Stroke="Black" StrokeThickness="1"/>
 </DataTemplate>
 </iloggantt:BarDefinition.BarTemplate>
</iloggantt:BarDefinition>

This will give the following graphical result:

Note that in this case the height of the rectangle is not specified so that it can be stretched to
fit the row height.
58 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Defining When a BarDefinition Applies for an Item

You have seen that several BarDefinition can be used to display a single item in the data
source. Now you need to specify how the Gantt components will choose the BarDefinition
to be used for a particular item in the data source.

When the Gantt sheet needs to render an item on the screen, first it looks in its collection of
BarDefinition (BarDefinitions property) to collect all the bar definitions that are relevant. It
uses the Conditions property of the BarDefinition class to know which instances of the
BarDefinition class are relevant to the item that needs to be displayed.

The Conditions property represents a collection of the class Condition. Each Condition
should be true in order for the bar definition to be used by an item. In the following example
the items in the ItemsSource are of type SimpleActivity which defines a property named
IsMilestone.

<iloggantt:BarDefinition ...>
 <iloggantt:BarDefinition.Conditions>
 <iloggantt:Condition Property="IsMilestone" Value="true"/>
 </iloggantt:BarDefinition.Conditions>
</iloggantt:BarDefinition>

The evaluation of conditions is dynamic, as soon as a property defined in a condition
changes, the conditions are re-evaluated and items may be displayed using a different set of
bar definitions.

Connection of Constraint links in a GanttChart

Inside a GanttChart, the constraint links between tasks are drawn from a bar representing a
task to another bar. When a task is represented by several bars, the GanttChart needs to
choose the bar at which the link should be connected. For example, if you have a bar
representing the start and the end of a task and another bar representing the deadline date for
the task, you will have the links connected to the first bar and not to the second one. This
information is also defined through the BarDefinition and its
AllowConstraintLinkConnection property.

Interactions on the Bar

By default, each bar displayed in a Gantt component can be moved and resized using the
mouse pointer. To move the bar, change its start date (the date defined by the StartBinding
property); to resize the bar, change its end date (the date defined by the FinishBinding
property).
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 59

You can easily disable this behavior for each bar definition through the CanMoveBar and
CanResizeBar properties of the BarDefinition. For example, if a bar definition is used to
display a milestone you usually do not want to resize it so you would set the CanResizeBar
property to false.

Note that there are other ways to disable the editing of a bar. For example, you can set the
CanEditBars property of the GanttChart or ScheduleChart to false. This will completely
disable the editing of the bars. Additionally, the QueryGanttBarEditable event of the
HierarchyChart class (base class for GanttChart and ScheduleChart) can allow you to
code a more complex logic to decide if a bar can be edited or not.

By default, when you move a bar displayed between a start property and a finish
property, both the start and finish property change. The finish property is changed so
that the duration between start and finish stays the same. In some cases (and in
particular in the ProjectSchedulingModel), changing the start time will automatically change
the end time of the displayed item, because the logic is built in the implementation of the
displayed item (for example, changing the StartTime in a SchedulingActivity will
automatically change the EndTime property). In this case you do not want the Gantt control
to change the finish property, but only the start. To do so, you simply set the
BarMovingMode property to BarMovingMode.ChangeStartOnly.

A specific cursor is used when moving or resizing the bars. Since Silverlight 2 does not
enable the creation of a custom cursor, the cursors are replaced by Silverlight UI Elements
that you can specify through the MoveCursor and ResizeCursor property of the
BarDefinition.

For more information on the editing process of the bar see Editing Process - Moving and
Resizing a Bar.

Defining a Tooltip for the Bar

The BarDefinition class allows you to specify a tooltip that is displayed when moving or
resizing the bar through the EditingTooltip property. If you want to have a regular tooltip
that is displayed when the mouse hovers the bar, you can simply use a Silverlight Tooltip
inside the data template that defines the shape of the bar. The tooltip can also use Silverlight
binding to reflect some properties of the item displayed by the bar.

The following example shows how to specify a tooltip displaying the name, the start and end
time of a task using the Name, StartTime and EndTime properties of the task.

<iloggantt:BarDefinition
 StartBinding="{Binding StartTime}" FinishBinding="{Binding EndTime}">
...
 <iloggantt:BarDefinition.BarTemplate>
 <DataTemplate>
 <Rectangle Fill="Blue" Height="13">
 <ToolTipService.ToolTip>
60 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

 <Border>
 <Border.Resources>
 <iloggantt:DateTimeConverter x:Key="DateConverter"/>
 </Border.Resources>
 <StackPanel Orientation="Vertical">
 <TextBlock FontWeight="Bold"
 HorizontalAlignment="Center" Text="Task"/>
 <TextBlock Text="{Binding Name}"/>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="Start:"/>
 <TextBlock Text="{Binding Start,
 Converter={StaticResource DateConverter},
 ConverterParameter=d}"/>
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="Finish:"/>
 <TextBlock Text="{Binding Finish,
 Converter={StaticResource DateConverter},
 ConverterParameter=d}"/>
 </StackPanel>
 </StackPanel>
 </Border>
 </ToolTipService.ToolTip>
 </Rectangle>
 </DataTemplate>
 </iloggantt:BarDefinition.BarTemplate>
</iloggantt:BarDefinition>

This example also uses a utility converter class named DateTimeConverter that can format
dates using standard .NET date formats passed in the ConverterParameter of the converter.

Example of Bar Definitions

Here is a full example of bar definitions that applies to a GanttChart displaying instance of
the SimpleActivity class. This example defines four bar definitions: one for normal bars, one
for summary task, one for milestones and another one to display the task completion.

<ilog:GanttChart.BarDefinitions>

 <!-- Bar Definition for normal bars-->
 <ilog:BarDefinition StartBinding="{Binding StartTime}"
 FinishBinding="{Binding EndTime}"
 BarMovingMode="ChangeStartOnly">

 <ilog:BarDefinition.Conditions>
 <ilog:Condition Property="IsMilestone" Value="false" />
 <ilog:Condition Property="IsSummary" Value="false" />
 </ilog:BarDefinition.Conditions>

 <ilog:BarDefinition.RightTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Resources}" />
 </DataTemplate>
 </ilog:BarDefinition.RightTemplate>
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 61

 <ilog:BarDefinition.BarTemplate>
 <DataTemplate>
 <Rectangle
 StrokeThickness="1"
 Stroke="Blue"
 RadiusX="3"
 RadiusY="3"
 Height="13">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0"
 EndPoint="0,1">
 <GradientStop Color="#FFCED3E6" />
 <GradientStop Color="#FF88A0F2" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 </DataTemplate>
 </ilog:BarDefinition.BarTemplate>
 </ilog:BarDefinition>

 <!-- Bar Definition for task completion bars-->
 <ilog:BarDefinition CanMoveBar="False"
 StartBinding="{Binding StartTime}"
 FinishBinding="{Binding CompletedThrough}">

 <ilog:BarDefinition.Conditions>
 <ilog:Condition Property="IsMilestone" Value="false" />
 <ilog:Condition Property="IsSummary" Value="false" />
 </ilog:BarDefinition.Conditions>

 <ilog:BarDefinition.BarTemplate>
 <DataTemplate>
 <Rectangle
 StrokeThickness="0"
 Fill="Green"
 RadiusX="2"
 RadiusY="2"
 Height="6"/>
 </DataTemplate>
 </ilog:BarDefinition.BarTemplate>
 </ilog:BarDefinition>

 <!-- Bar Definition for summary tasks -->

 <ilog:BarDefinition BarMovingMode="ChangeStartOnly"
 StartBinding="{Binding StartTime}"
 FinishBinding="{Binding EndTime}"
 BarMarging="-6.5,0,-6.5,0">
 <ilog:BarDefinition.Conditions>
 <ilog:Condition Property="IsSummary" Value="true" />
 </ilog:BarDefinition.Conditions>

 <ilog:BarDefinition.BarTemplate>
 <DataTemplate>
 <Grid>
 <Rectangle VerticalAlignment="Top" Height="7" Fill="Black" />
 <Path Height="13" HorizontalAlignment="Left"
62 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

 Fill="Black" Data="M0 0L0 6.5L6.5 13L13 6.5L13 0z" />
 <Path Height="13" HorizontalAlignment="Right" Fill="Black"
 Data="M0 0L0 6.5L6.5 13L13 6.5L13 0z" />
 </Grid>
 </DataTemplate>
 </ilog:BarDefinition.BarTemplate>
 </ilog:BarDefinition>

 <!-- Bar Definition for milestones -->

 <ilog:BarDefinition BarMovingMode="ChangeStartOnly"
 CanResizeBar="False"
 HorizontalAlignment="Start"
 StartBinding="{Binding StartTime}"
 FinishBinding="{Binding StartTime}">

 <ilog:BarDefinition.Conditions>
 <ilog:Condition Property="IsMilestone" Value="true" />
 </ilog:BarDefinition.Conditions>

 <ilog:BarDefinition.RightTemplate>
 <DataTemplate>
 <TextBlock HorizontalAlignment="Left"
 Text="{Binding StartTime, Converter={StaticResource
DateConverter}, ConverterParameter=m}" />
 </DataTemplate>
 </ilog:BarDefinition.RightTemplate>

 <ilog:BarDefinition.BarTemplate>
 <DataTemplate >
 <Path Width="12" Data="M6 0 L0 6 L 6 12 L 12 6z" Fill="Black"/>
 </DataTemplate>
 </ilog:BarDefinition.BarTemplate>
 </ilog:BarDefinition>

</ilog:GanttChart.BarDefinitions>
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 63

64 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Working with Tables in the Gantt Controls

The left part of a GanttChart or a ScheduleChart displays a table, as shown in the following
picture:
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 65

A table is composed of rows and columns. Each row represents an object, and each column
displays a property of the object represented by a row. To describe a column use the
TreeTableColumn class.The columns of a GanttChart or ScheduleChart instance can be
accessed through the Columns property, which holds the collection of columns displayed by
the table.

The table used by a GanttChart or a ScheduleChart is an instance of the TreeTable class. It
can be retrieved using the Table property.

Most of the methods and properties used in this section are defined in the TreeTable class,
and also in the GanttChart or ScheduleChart through the HierarchyChart class, which is
their common base class.

In This Section

Configuring Columns

Explains how to configure columns.

Using Predefined Columns and Creating a Template Column

Explains how to use predefined columns and how to create a template column.

Styling Columns

Describes the properties used to style columns.

Configuring Columns

A table column can be configured to display any kind of data using any kind of
representation. It can also be used to edit or sort the data.

The following XAML code shows how to create three columns in a GanttChart that displays
a SimpleGanttModel.

<ilog:GanttChart>
 ...
 <ilog:GanttChart.Columns>

 <ilog:TreeTableTextColumn
 IsTreeColumn="true"
 Width="150"
 Header="Name"
 Binding="{Binding Name}" />

 <ilog:TreeTableTimeSpanColumn
 Header="Duration"
 Width="75"
 Binding="{Binding Duration}" />

 <ilog:TreeTableDateTimeColumn
 Header="Start"
 Binding="{Binding StartTime}"
66 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

 SortDirection="Ascending" />

 </ilog:GanttChart.Columns>
...
</ilog:GanttChart>

◆ The first column is created through the TreeTableTextColumn class and displays the
activity name. This column has the IsTreeColumn property set to true to reflect the
hierarchy of activities. The data binding is set on the Name property of the row data
which is, in this example, a SimpleActivity instance.

◆ The second column is created through TreeTableTimeSpanColumn class and displays the
activity duration. The duration of a SimpleActivity is represented by a TimeSpan
structure. The TreeTableTimeSpanColumn class uses a predefined value converter to
convert TimeSpan instances to strings. Note that you can also provide your own value
converter when specifying the data binding.

◆ The third column is created by means of the TreeTableDateTimeColumn class and
displays the activity start time. The start time of a SimpleActivity is represented by a
DateTime structure. The TreeTableDateTimeColumn class uses a predefined value
converter to convert DateTime instances to strings and a DatePicker control to edit
dates. Note that you can also provide your own value converter when specifying the data
binding.

Using Predefined Columns and Creating a Template Column

There are several predefined columns that can be used to display data. These predefined
table columns can be divided into two families:

◆ Table columns with a predefined visual representation

For example, the TreeTableTextColumn displays a TextBlock. Data binding is used to
connect data to the graphic element displayed by the column. The base class for these
columns is the TreeTableBoundColumn class. Use the Binding property to specify the
data binding. These columns are useful in many scenarios, where basic data needs to be
displayed.

◆ Table columns with a custom visual representation

If you want to display a visual representation in a table column that cannot be achieved
with the table columns described above, you can provide your own cell template. The
base class for these columns is the TreeTableTemplateColumn class. Use the
TreeTableTemplateColumn.CellTemplate to specify the data template. Use a
TreeTableTemplateColumn when you need a custom data representation.

The following table lists the existing table columns type:
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 67

The TreeTableBoundColumn class allows you to bind data on the row data context through
the TreeTableBoundColumn.Binding property. The following XAML code shows how to
create a TreeTableTextColumn (a subclass of TreeTableBoundColumn) column that
displays the Name property of an activity:

<ilog:GanttChart>
 ...
 <ilog:GanttChart.Columns>

 <ilog:TreeTableTextColumn
 IsTreeColumn="true"
 Width="150"
 Header="Name"
 Binding="{Binding Name}" />

 </ilog:GanttChart.Columns>
...

</ilog:GanttChart>

See TreeTableBoundColumn for details.

The TreeTableComboBoxColumn class displays a text that can be edited using a
ComboBox. If the object being edited is an enumeration or a Boolean value, the combo box
will be automatically populated with the appropriate values. Otherwise, the ComboBox
items can be set using the TreeTableComboBoxColumn.ItemsSource property.

Class Description Representation Editor

TreeTableTextColumn A table column that
displays text.

TextBlock TextBox

TreeTableDateTimeColumn A table column that
displays DateTime
values.

TextBlock DatePicker

TreeTableTimeSpanColumn A table column that
displays TimeSpan
values.

TextBlock TextBox

TreeTableCheckBoxColumn A table column that
displays Boolean
values.

CheckBox None

TreeTableComboBoxColumn A table column that
displays text values.

TextBlock ComboBox

TreeTableTemplateColumn A table column that
displays a custom cell
template.

Custom Template Custom
Template
68 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

The TreeTableTemplateColumn class can be used to display data using a custom cell
template, making it possible to display anything in a table cell. The custom cell template can
be set by using the TreeTableTemplateColumn.CellTemplate property. A cell editing
template can also be provided to enable the editing of the column. The following XAML
code shows a TreeTableTemplateColumn displaying a collection of images laid out in a
horizontal StackPanel:

<ilog:GanttChart>
 ...
 <ilog:GanttChart.Columns>

...
 <ilog:TreeTableTemplateColumn

Width="50"
HorizontalAlignment="Center">

 <ilog:TreeTableTemplateColumn.Header>
 <Image Source="Images/info.png"

Stretch="None" VerticalAlignment="Center" />
</ilog:TreeTableTemplateColumn.Header>

<ilog:TreeTableTemplateColumn.CellTemplate>
 <DataTemplate>
 <StackPanel Height="20" Orientation="Horizontal">

<Image
 Stretch="None"
 Source="Images/image1.png" />
 <Image
 Stretch="None"
 Source="Images/image1.png" />
 </StackPanel>
 </DataTemplate>

</ilog:TreeTableTemplateColumn.CellTemplate>

</ilog:TreeTableTemplateColumn>
...

</ilog:GanttChart.Columns>
 ...
</ilog:GanttChart>

 Styling Columns

Table columns can be styled using the following properties:

Property Description

Header The object displayed in the table column header.

HeaderStyle The style applied to the table column header.

Width The width of the column.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 69

All those properties are located in the TreeTableColumn class. In addition, each specific
table column offers additional properties.

HorizontalAlignment The horizontal alignment of data in a cell.

VerticalAlignment The vertical alignment of data in a cell.

DisplayIndex The display index of the column in the table.

SortDirection The direction in which the column will be sorted.

IsTreeColumn Specifies whether the table column should display the
hierarchy of the table data source, if any.

Property Description
70 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Grouping, Sorting and Filtering Data

Grouping Data

Rows in a table can be grouped together, either to reflect a hierarchy in the data, or to create
a specific categorized view. Grouping is automatically re-evaluated each time the data
changes, provided that data implements the INotifyPropertyChanged interface.

To group rows in a table you can adopt one of the following alternatives:

1. use the Group property,

2. use the ParentBinding property,

3. use the GroupDescriptions collection.

If you need to group your data to reflect a hierarchy in the data source, you should only use
option 1 or 2. For example, if the data source is a collection of SimpleActivity objects, and if
you want to display the hierarchy of activities, you can set the ParentBinding property to
tell the GanttChart to group rows using the Parent property of a SimpleActivity.

<ilog:GanttChart
...
ParentBinding = "{Binding Parent}">
...

</ilog:GanttChart>
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 71

If you want to categorize your data according to specific criteria, fill the
GroupDescriptions collection using the appropriate GroupDescription instances. The
following XAML code shows how to categorize SimpleActivity objects. The first category
level will split activities using the IsMilestone property, and the second category level will
split activities using the IsSummary property:

<ilog:GanttChart>
...
<ilog:GanttChart.GroupDescriptions>

<ilog:GroupDescription PropertyName="IsMilestone"/>
<ilog:GroupDescription PropertyName="IsSummary"/>

</ilog:GanttChart.GroupDescriptions>
...

</ilog:GanttChart>

Sorting Data

Rows in a table can be sorted. Sorting can be automatic or manual. The sorting is automatic
when the sort order is recomputed each time the data changes, provided that data
implements the INotifyPropertyChanged interface. The sorting is manual when a specific
action from the user is required.

To use the automatic sorting, you can adopt one of the following alternatives:

1. use the Sort property, if it already set,

2. if there are sorted columns (TreeTableColumn.SortDirection) in the table, sort the table
according to these columns,

3. use the HierarchyChart.SortDescriptions collection.

To apply the manual sorting, you can either sort at the column level by calling the
TreeTableColumn.Sort method, or use the HierarchyChart.SortRows method.

As there is no predefined binding in the TreeTableTemplateColumn class, the sorting is
achieved by providing a property name through the TreeTableTemplateColumn.SortProperty
property.

The automatic sorting can be set interactively by clicking in a column header. When the
column is not sorted, the first click sorts the column in ascending order, the second in
descending order, and the third click restores the data source order. To disable this
functionality at the table level, set the TreeTable.CanSortColumns property to false. To

Note: Not all columns support the sorting feature. To know if a column supports it, use the
TreeTableColumn.SupportsSorting property.
72 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

disable this functionality at the table column level, set the TreeTableColumn.CanSort
property to false.

The following XAML code shows how to sort a GanttChart according to the activity
StartTime property using the HierarchyChart.SortDescriptions collection:

<ilog:GanttChart>
...
<ilog:GanttChart.SortDescriptions>

<ilog:SortDescription PropertyName="StartTime"
Direction="Ascending"/>

</ilog:GanttChart.SortDescriptions>
...

</ilog:GanttChart>

Filtering Data

Rows in a table can be filtered. Filtering is applied at the row level, meaning that each row
can be visible or not depending on the filter set on the table. To set a filter, use the
HierarchyChart.Filter property. Filtering is automatically re-evaluated each time the data
changes, provided that data implements the INotifyPropertyChanged interface. The
following C# code shows how to set a filter on a GanttChart that contains SimpleActivity
objects to displays only activities whose name begins with 'A':

GanttChart chart = new GanttChart();
List<SimpleActivity> tasks = new List<SimpleActivity>()
{

new SimpleActivity() { Name = "Activity 1" },
new SimpleActivity() { Name = "Activity 2"),
new SimpleActivity() { Name = "Task 3") }

};
chart.ItemsSource = tasks;
chart.Filter = task => (task as SimpleActivity).Name.StartsWith("A");
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 73

74 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Controlling the Displayed Time Interval

In GanttChart or ScheduleChart controls, the displayed time range is specified by the
following properties:

◆ FirstVisibleTime

This property specifies the displayed date and time on the left of the chart.

◆ ZoomFactor

This property specifies the time zoom level.

By default the ZoomFactor is 1. This means that one hour of time is represented by one
pixel. If you want to have a week represented by 100 pixels on the screen, set the
ZoomFactor to 100 pixels divided by the number of hours in 7 days = 100d / 7*24.

The SetTimeInverval method of the GanttChart and ScheduleChart is convenient to
specify the start and end displayed date. This method simply changes the FirstVisibleTime
and ZoomFactor properties.

Note that the zoom factor is bounded between two values specified by the MinZoomFactor
and MaxZoomFactor properties.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 75

76 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Storing and Displaying Working and
Nonworking Times

The WorkCalendar class allows you to store working and nonworking periods and times.
This class is also used to display working and non working periods in a Gantt chart.

Using a WorkCalendar to Store Working and Nonworking Periods

IBM® ILOG® Gantt for .NET defines two types of WorkCalendar: a base calendar or a
subcalendar that inherits from a base calendar. A subcalendar inherits its specification from
its base calendar and can modify the working and nonworking times specified by the base
calendar. For example, a base calendar can be used to store the general working times on a
project and a subcalendar can be used to specify the working times and vacations of a
specific resource of the project.

To create a base calendar named MyCalendar, use the following C# code:

WorkCalendar myBaseCalendar = new WorkCalendar("MyCalendar", null);

To create a subcalendar of this calendar proceed as follow:

WorkCalendar mySubCalendar = new WorkCalendar("MySubCalendar", myBaseCalendar);
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 77

By default a WorkCalendar defines Saturday and Sunday as nonworking days, for the other
days the working times are from 8 AM to 12 AM and from 1 PM to 5 PM defining 8
working hours per day.

The WorkCalendar class provides methods that allow you to modify these settings for a
day of the week.

To set all Fridays as nonworking days do the following:

mySubCalendar.SetNonWorking(DayOfWeek.Friday);

To change the working times of all Mondays to be 7 AM - 1 PM and 3 PM - 8 PM do the
following:

WorkingTime[] times = new WorkingTime[2];
times[0] = new WorkingTime(TimeSpan.FromHours(7), TimeSpan.FromHours(13));
times[1] = new WorkingTime(TimeSpan.FromHours(15), TimeSpan.FromHours(20));
mySubCalendar.SetWorkingTimes(DayOfWeek.Monday, times);

You can also specify exceptional periods:

To specify a nonworking period from 01/01/2005 to 01/07/2005 do the following:

mySubCalendar.SetNonWorking(new DateTime(2005,1,1), new DateTime(2005, 1,7));

To specify special working hours from 7 AM to 9 AM for the period 06/01/2005 to 06/06/
2005 you would do:

WorkingTime[] times = new WorkingTime[1];
times[0] = new WorkingTime(TimeSpan.FromHours(7), TimeSpan.FromHours(9));
mySubCalendar.SetWorkingTimes(new DateTime(2005,6,1), new DateTime(2005, 6,6),
times);

Navigating a WorkCalendar

A WorkCalendar object not only allows you to store the working and nonworking times,
but it also allows you to navigate in the working and nonworking times and perform several
computation on working periods.

For example, you can get the next or previous working time from a date. In the following C#
code the next and previous working time is computed from January 1 2005.

WorkCalendar calendar = new WorkCalendar("MyCalendar", null);
DateTime date = new DateTime(2005,1,1);
DateTime next = calendar.NextWorkingTime(date);
DateTime previous = calendar.PreviousWorkingTime(date);
Console.WriteLine("Next working time is " + next);
Console.WriteLine("Previous working time is " + previous);

This code gives you Monday January, 3, 2005 at 8 AM as the next working time and Friday
December, 31 2004 at 5 PM as the previous working time.
78 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Similarly, the WorkCalendar defines methods to navigate to next nonworking times
(NextNonWorkingTime).

You may also compute the amount of work between two dates:

DateTime fromDate = new DateTime(2005,1,5);
DateTime toDate = new DateTime(2005,1,12);
TimeSpan work = calendar.WorkBetween(fromDate, toDate);

This fragment of C# code returns a duration of 40 hours. In the period from 05 to 12 January
2005, there are 5 working days of 8 hours, resulting in 40 hours of work.

Finally, the WorkCalendar object provides methods to add or remove a work duration from
a date to compute another date. An example is in the following C# code:

TimeSpan work = TimeSpan.FromDays(88);
DateTime date = new DateTime(2004,1,1,8,0,0);
Console.WriteLine(date);
date = calendar.Add(date work);
Console.WriteLine(date);
date = calendar.Remove(date, work);
Console.WriteLine(date);

This C# code fragment will print:

1/1/2004 8:00:00 AM
1/4/2005 5:00:00 PM
1/1/2004 8:00:00 AM

Displaying Working and Nonworking Times in Gantt Controls

The nonworking periods defined by an instance of the WorkCalendar class can be
displayed in the Gantt controls by means of a grid. By default the GanttChart control
contains a grid that displays the non working time and the default calendar displayed is a
standard calendar.

In the following figure, behind the Gantt bars you can see the nonworking period displayed
in gray:
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 79

You may change the WorkCalendar displayed in the background of a GanttChart or
ScheduleChart through its GridCalendar property. The grid is always up-to-date with the
calendar that it displays. When the calendar changes, the grid is automatically refreshed.

The following C# code fragment shows how to change the calendar displayed by the grid of
a GanttChart control.

WorkCalendar myCalendar = new WorkCalendar();
GanttChart gantt = new GanttChart();
Gantt.GridCalendar = myCalendar;

The non working area can be styled through the NonWorkingAreaStyle property of the
control. Non working areas are implemented as Silverlight Rectangle objects. To change the
color of those rectangles you must change the Fill property of the rectangle through the
NonWorkingAreaStyle, as follows:

<iloggantt:GanttChart ...>
 <iloggantt:GanttChart.NonWorkingAreaStyle>
 <Style TargetType="Rectangle">
 <Setter Property="Fill" Value="yellow" />
 </Style>
 </iloggantt:GanttChart.NonWorkingAreaStyle>
</iloggantt:GanttChart>
80 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

User Interaction on a Gantt Bar

The GanttChart and ScheduleChart controls offer many possibilities to control the editing of
the bars in the Gantt. While editing a bar, the user can change the behavior but also the style
of elements that are used. This section explains the various elements involved in editing a
bar of a Gantt control.

In This Section

Editing Process - Moving and Resizing a Bar

Describes how bars can be moved an resized on a Gantt control.

Using Bar Editing Events

Describes how to use bar editing events.

Snapping Time when Moving or Resizing a Bar

Describes the snapping time mechanism.

Working with Editing Tooltip

Explains how to work with editing tooltip.

Styling User Interaction Elements

Describes how to customize user interaction elements throw styling.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 81

Editing Process - Moving and Resizing a Bar

By default, on a Gantt control each bar can be moved and resized. To move a bar drag it, to
resize it click on the right side of the bar and drag it. It is possible to disable the editing of
bars by setting the CanEditBars property of the GanttChart or ScheduleChart control to
false, in this case all bars become non editable. The editing of a bar is controlled on a finer
level by each BarDefinition instance that defines how the bar is displayed but also how the
interaction on the bar works. Each bar in the Gantt controls are associated to a
BarDefinition instance. For more details on how to specify the bar definitions see
Specifying and Styling the Gantt Bars to Display.

The action of moving or resizing a bar does not really move or resize a bar: in fact, when you
release the mouse pointer, the dates of the underlying data objects that are displayed by the
bar are changed. When the dates change in the data object, the Gantt control is notified and
the bars are drawn at their new location. The editing of the bar will then work only if the
underlying edited object notifies the changes of the dates, therefore the underlying object
should implement the INotifyPropertyChanged interface.

The bar is displayed from and to the dates that are specified by the StartBinding and
FinishBinding of the BarDefinition class. These are two Silverlight bindings to date
properties of the edited object. By default, when a bar is moved, the Gantt control gives a
new value to the properties specified in the StartBinding and FinishBinding. When a bar is
resized, only the property in the FinishBinding is modified.

While moving a bar, it is possible to change only the start date instead of changing both the
start and end date. This may be useful when changing the start date in the data automatically
changes the end date. To do so, you can set the BarMovingMode property of the
BarDefinition to ChangeStartOnly.

By means of the BarDefinition class you can also completely disable the editing by setting
the CanMoveBar and CanResizeBar to false.

Using Bar Editing Events

Every time a bar is moved or resized, an event is sent to the GanttChart or ScheduleChart
controls to allow you to cancel or modify the way the edited item is going to be modified.
This event is specified through the BeforeEditBar event.

In the following C# code, the BeforeEditBar event is used to ensure that the bar is not
moved before January 1st 2009.

gantt.BeforeEditBar += delegate(object source, BeforeEditBarEventArgs e)
{
 if (e.Action == BarInteractionMode.Move &&
 e.NewValue < new DateTime(2009, 1, 1))
 e.Cancel = true;
82 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

};

Snapping Time when Moving or Resizing a Bar

When moving or resizing a bar, a new date is computed for the start or end of the bar and the
new date will be affected to the edited item (task/activity/reservation). The conversion from
mouse inputs to dates could lead to non-rounded dates, that is why the date is snapped by
default to the nearest hour. This mechanism can be changed in various ways.

First you can change the SnapUnit property of the HierarchyChart. This property is of type
TimeUnit, an enumeration that defines the main unit of times from milliseconds to century.
If you want to code the way the snapping is done, use the SnapTimeOnEditingBar event of
the HierarchyChart and set the SnapUnit property to TimeUnit.None so that no snapping
is done before the event is sent. The following code example makes sure that when a bar is
moved, the bar will only be moved in hours from 8AM to 5PM.

gantt.SnapTimeOnEditingBar += delegate(object source, SnapTimeEventArgs e)
{
 if (e.Mode == BarInteractionMode.Move)
 {
 if (e.DateTime.TimeOfDay < TimeSpan.FromHours(8))
 e.DateTime = e.DateTime.Date.AddHours(8);
 else if (e.DateTime.TimeOfDay > TimeSpan.FromHours(17))
 e.DateTime = e.DateTime.Date.AddHours(17);
 }
};

Working with Editing Tooltip

When a bar is edited because you move or resize it, a tooltip appears to show the future new
starting and ending dates of the bar. This tooltip is called the Editing Tooltip. The following
image shows the default editing tooltip.

This tooltip can be disabled by setting the ShowEditingToolTips property to false on the
ScheduleChart or GanttChart class. The tooltip can also be disabled on each individual bar
by setting the ShowEditingToolTip property of the BarDefinition class that defines the bar.
The Editing tooltip can also be modified at the level of the BarDefinition class.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 83

To modify the editing tooltip, you may specify a new tooltip by setting the EditingToolTip
property of the BarDefinition class. This property can be set with any user interface
elements. The resulting tooltip will be displayed with a data context that is an instance of the
EditingBarData class. This EditingBarData class defines three properties that you can use
when redefining a new tooltip shape: the Item, Start and Finish properties. The Item is the
object that is edited (the item in the ItemsSource of the Gantt control), the Start and Finish
properties are the dates. The following example of XAML redefines a new Editing tooltip
and uses bindings to display the start date, the end date and the name of the edited item:

<ilog:BarDefinition
 ...

 <ilog:BarDefinition.EditingToolTip>
 <Border Background="Black">
 <StackPanel Margin="10" Orientation="Vertical">
 <StackPanel Orientation="Horizontal">
 <TextBlock Foreground="White" Text="Editing:" />
 <TextBlock Foreground="White"
 Text="{Binding Item.Name}" />
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Foreground="White"
 Text="Start:" />
 <TextBlock Foreground="White"
 Text="{Binding Start}" />
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <TextBlock Foreground="White"
 Text="End:" />
 <TextBlock Foreground="White"
 Text="{Binding Finish}" />
 </StackPanel>
 </StackPanel>
 </Border>
 </ilog:BarDefinition.EditingToolTip>

</ilog:BarDefinition>

This gives the following graphical result:
84 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Styling User Interaction Elements

While moving or resizing a bar a dashed rectangle appears to display the new time interval
of the bar. This rectangle can be customized throw styling. To change the default dashed
rectangle, use the EditedBarLocationIndicatorStyle property of the GanttChart or
ScheduleChart classes.

The following XAML example specifies a transparent red rectangle instead of a dashed
rectangle:

<iloggantt:ScheduleChart >
 <iloggantt:ScheduleChart.EditedBarLocationIndicatorStyle>
 <Style TargetType="Control">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Control">
 <Rectangle Fill="Red" Opacity=".5"/>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </ iloggantt:ScheduleChart.EditedBarLocationIndicatorStyle>
</iloggantt:ScheduleChart>

You can do the same to change the style of the line that is drawn when the user creates a
constraint with the mouse pointer in the GanttChart control. The style of this line can be
changed using the ConstraintCreationIndicatorStyle property.

Here is a XAML example:

<iloggantt:GanttChart >
 <iloggantt:GanttChart.ConstraintCreationIndicatorStyle>
 <Style TargetType="Line">
 <Setter Property="Stroke" Value="Black" />
 <Setter Property="StrokeThickness" Value="1" />
 <Setter Property="StrokeDashArray" Value="1 1" />
 </Style>
 </iloggantt:GanttChart.ConstraintCreationIndicatorStyle >
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 85

86 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

Internationalization

IBM® ILOG® Gantt for .NET is internationalized. All messages, resources and dialog
boxes of IBM ILOG Gantt for .NET are localized for English and French languages. If you
need to localize for another language, IBM ILOG Gantt for .NET provides the resource files
and tools that allow you to localize the library for a particular culture. The library uses the
culture information that you have specified in the Control Panel to display dates and
numbers. In order to create a localized version of IBM ILOG Gantt for .NET you must
create assemblies (dlls) that contain the culture-dependant resources of the library. Those
assemblies are called satellite assemblies. IBM ILOG Gantt for .NET provides the tools that
will help you create satellite assemblies for a particular culture.

In This Section

Creating a Localization Project

Explains how to use the localization tool.

Translating the Resource Files

Describes the different types of resource files and explains how to translate them.

Creating the Satellite Assemblies

Explains how to create the satellite assemblies.
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 87

88 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

I N D E X
Index

E

Editing Tooltip 83

R

resource leveling 48

S

satellite assemblies 87
summary activity 37
I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S 1

2 I B M I L O G G A N T T F O R . N E T 4 . 0 — S I L V E R L I G H T C O N T R O L S

	Programming with IBM ILOG Gantt for .NET Silverlight Controls
	Getting Started with Silverlight Gantt Components
	Creating a Gantt Control
	Connecting a GanttChart Control to Data
	Using Predefined Data Sources in a GanttChart
	Using Your Own Data or Creating your own Data Source for the GanttChart
	Creating Task Classes and Displaying them in a GanttChart
	Establishing Parent-Child Relationship
	Displaying Constraints between Tasks in a GanttChart Control

	Connecting a ScheduleChart Control to Data
	Using Predefined Data Sources in a ScheduleChart
	Using Your Own Data or Creating your own Data Source for the ScheduleChart

	Using Predefined Data Models
	The SimpleGanttModel Data Model
	The ProjectSchedulingModel Data Model
	The ProjectSchedulingModel Class
	Activities in the ProjectSchedulingModel
	How the Project Scheduling Model Computes the Schedule of a Project
	Calendars in the Project Scheduling Model
	Resource Leveling in the Project Scheduling Model

	Specifying and Styling the Gantt Bars to Display
	Using Default Bar Representations
	Defining Start and End Time for the Bar
	Defining the Shape of the Bar
	Displaying Additional Information on the Right and on the Left of the Bar
	Alignment Properties
	Defining When a BarDefinition Applies for an Item
	Connection of Constraint links in a GanttChart
	Interactions on the Bar
	Defining a Tooltip for the Bar
	Example of Bar Definitions

	Working with Tables in the Gantt Controls
	Configuring Columns
	Using Predefined Columns and Creating a Template Column
	Styling Columns

	Grouping, Sorting and Filtering Data
	Grouping Data
	Sorting Data
	Filtering Data

	Controlling the Displayed Time Interval
	Storing and Displaying Working and Nonworking Times
	Using a WorkCalendar to Store Working and Nonworking Periods
	Navigating a WorkCalendar
	Displaying Working and Nonworking Times in Gantt Controls

	User Interaction on a Gantt Bar
	Editing Process - Moving and Resizing a Bar
	Using Bar Editing Events
	Snapping Time when Moving or Resizing a Bar
	Working with Editing Tooltip
	Styling User Interaction Elements

	Internationalization
	Index
	E
	R
	S

