
IBM ILOG JViews Graph Layout for
Eclipse V8.6

Getting started

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> jviews-graphlayout-eclipse86/
license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Getting started with JViews Graph Layout for Eclipse...5
Prerequisites..7

Graphers...8

Layout source..9

Starting out with layout sources..10

Calling the layout (GEF)..13

Calling the layout (GMF)...15

Working with label layout...17

Working with subgraphs...21

Working with link crossings...25

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

G E T T I N G S T A R T E D4

Getting started with JViews Graph Layout
for Eclipse

Describes how to get started with graph layouts in Eclipse™ Graphical Editing Framework
(GEF) and Eclipse Graphical Modeling Framework (GMF) and with label layout.

In this section

Prerequisites
Describes what you need to start work with JViews Graph Layout for Eclipse.

Graphers
Describes the main interface required to use the layout algorithms available in JViews Graph
Layout for Eclipse.

Layout source
Describes the interface that allows you to use higher level services, such as GEF commands,
to perform layouts or manipulate graphical property sheets.

Starting out with layout sources
Shows you how to start working with JViews Graph Layout for Eclipse by using one of the
provided layout sources.

Calling the layout (GEF)
Describes how to perform layout by using a GEF command.

Calling the layout (GMF)
Describes how to use predefined layout providers for GMF applications.

© Copyright IBM Corp. 1987, 2009 5

Working with label layout
Describes label layout with the use of GMF-based code examples.

Working with subgraphs
Describes how to add layout capabilities to GEF subgraphs and GMF compartments.

Working with link crossings
Describes how to manage the detection and display of link crossings.

G E T T I N G S T A R T E D6

Prerequisites

Before you start to work with JViews Graph Layout for Eclipse you need a working GEF or
GMF application. The layout algorithms work on a GEF diagram structure and take edit
parts as input. If you are not familiar with GEF, see http://eclipsewiki.editme.com/
GefDescription for an introduction to this framework.

When your application is ready to host layout capabilities, you will need to make your plug-in
project dependent on the JViews Graph Layout for Eclipse plug-ins. If you use GEF, you will
need to make your plug-in project dependent on the ilog.views.eclipse.graphlayout
plug-in. If you work with GMF, you will need to make your plug-in project dependent on the
ilog.views.eclipse.graphlayout.gmf plug-in, which is part of the GMF feature.

Creating these dependencies means that you have in your classpath the API of the layout
algorithms as well as the JViews Graph Layout for Eclipse integration facilities. You can now
use this API to interface the layouts with your application.

G E T T I N G S T A R T E D 7

http://eclipsewiki.editme.com/GefDescription
http://eclipsewiki.editme.com/GefDescription

Graphers

The grapher is the edit part of the container of the nodes.

The edit part of the container of your nodes must implement the IGrapherEditPart interface
so that the layout algorithms can be run on it. This interface must be implemented by the
edit part of your diagram or by the edit parts of subgraphs or both if you want diagrams or
graphs to be laid out with a graph layout algorithm. To differentiate between them, the
method isTopLevel must be implemented. It must return true if you implement
IGrapherEditPart in the frame of the diagram.

G E T T I N G S T A R T E D8

Layout source

A higher level abstraction than the grapher; the layout source allows you to make diagrams
or subgraphs that show the layouts that are currently set.

The interface ILayoutSource can be implemented by IGrapherEditPart.

This interface allows you to use higher level services, such as the predefined GEF commands
provided in JViews Graph Layout for Eclipse, to perform layouts or manipulate graphical
property sheets.

JViews Graph Layout for Eclipse provides default implementations of layout sources for your
convenience. (Implementing layout sources can become quite complex.) Some of the default
layout sources are designed for use with GEF; others are designed for use with GMF. Adopting
a default implementation of a layout source means that most of the code you need to interface
your GEF or GMF application with the layouts is already written for you.

The following default implementations are provided:

ilog.views.eclipse.graphlayout.source.LayoutSource
The default ILayoutSource for a GEF application, LayoutSource. It provides getter and
setter methods for choosing the layout you want to perform on the grapher. It manages
internally the container layout required to perform several kinds of layouts in parallel
in a standard or recursive manner.

ilog.views.eclipse.graphlayout.source.gmf.GMFLayoutSource
The default ILayoutSource for a GMF application, GMFLayoutSource. It extends the
basic LayoutSource to interface better with a GMF application.

ilog.views.eclipse.graphlayout.edit.source.PersistentEMFLayoutSource
Persistent layout sources such as PersistentEMFLayoutSource interpret the layout
configuration stored in your model. It allows you to have a layout that can be configured
at run time in a context that has persistent settings. This layout is designed so that you
can easily get layout settings from your Eclipse™ Modeling Framework (EMF) model
with some configuration. See Managing persistence .

ilog.views.eclipse.graphlayout.gmf.edit.source.PersistentGMFLayoutSource
Like PersistentEMFLayoutSource, PersistentGMFLayoutSource retrieves layout
configurations from your model. In this case, it retrieves them from the GMF notation
model.

G E T T I N G S T A R T E D 9

Starting out with layout sources

You are recommended to use LayoutSource or, if you are working with GMF,
GMFLayoutSource when you start working with JViews Graph Layout for Eclipse. This will
simplify the work you need to do. You can add persistence capabilities later if necessary.

To create a grapher that makes use of these implementations, you must use the Adapter
pattern, which is in widespread use in Eclipse™ .

The following code example shows you how to instantiate and use a layout source from your
grapher in a GEF application.

import ilog.views.eclipse.graphlayout.IGrapherEditPart;
import ilog.views.eclipse.graphlayout.source.ILayoutSource;
import ilog.views.eclipse.graphlayout.source.LayoutSource;
import
ilog.views.eclipse.graphlayout.runtime.hierarchical.IlvHierarchicalLayout;

import org.eclipse.gef.editparts.AbstractGraphicalEditPart;

public class MyDiagramEditPart extends AbstractGraphicalEditPart implements
IGrapherEditPart {

// reference on the layout source implementation
private LayoutSource myLayoutSource;

@Override
public void activate() {
// Choice to instantiate the layout source when the edit part
// is activated.
// Caution: the layout source creation
// must be done before the edit part is initialized.
myLayoutSource = new LayoutSource(this);
// Sets a hierarchical layout for example
IlvHierarchicalLayout layout = new IlvHierarchicalLayout();
layout.setGlobalLinkStyle(IlvHierarchicalLayout.ORTHOGONAL_STYLE);
layout.setFlowDirection(ilog.views.IlvDirection.Right);
myLayoutSource.setGraphLayout(layout);
super.activate();

}

@Override
public void deactivate() {
super.deactivate();
// cleanup
myLayoutSource.dispose();
myLayoutSource = null;

}

@Override
public Object getAdapter(Class adapter) {
if (adapter.equals(ILayoutSource.class)) {
return myLayoutSource;

}

G E T T I N G S T A R T E D10

return super.getAdapter(adapter);
}

public boolean isTopLevel() {
return true;

}

}

The path is the same for a GMF layout source.

The code example shows how to set a graph layout, but you could also set link and label
layouts.

To set a link layout use:

♦ An IlvHierarchicalLayout, which must have the same flow direction as your intended
IlvHierarchicalLayout graph layout.

♦ An IlvShortLinkLayout.

♦ An IlvLongLinkLayout

Additional steps are required to use a label layout. See Working with label layout.

The diagram layout source must be initialized once the view is populated. To do this, in your
editor or in your view, you need to retrieve the diagram layout source and call the initialize
() method.

The following code example shows how to handle this in a GEF view.

import ilog.views.eclipse.graphlayout.source.ILayoutSource;

import org.eclipse.gef.EditPart;
import org.eclipse.gef.GraphicalViewer;
import ort.eclipse.ui.part.viewPart;

import org.eclipse.swt.widgets.Composite;

public class MyView extends ViewPart {

...

public void createPartControl(Composite parent) {

GraphicalViewer viewer = new ScrollingGraphicalViewer();

...
viewer.setContent(myModel);
EditPart diagramEditPart = (EditPart)viewer.getContents();
ILayoutSource layoutSource = (ILayoutSource)diagramEditPart.getAdapter
(ILayoutSource.class);
layoutSource.initialize();

}

}

G E T T I N G S T A R T E D 11

The following code example shows how to handle this in a GMF editor.

import ilog.views.eclipse.graphlayout.source.ILayoutSource;

import org.eclipse.gmf.runtime.diagram.ui.resources.editor.parts.
DiagramDocumentEditor;

import org.eclipse.swt.widgets.Composite;

public class MyEditor extends DiagramDocumentEditor {

...

@Override
public void initializeGraphicalViewerContents(Composite parent) {
super.initializeGraphicalViewerContents(parent);
ILayoutSource layoutSource =
(ILayoutSource)getDiagramGraphicalViewer().getContents().
getAdapter(ILayoutSource.class);

layoutSource.initialize();
}

}

G E T T I N G S T A R T E D12

Calling the layout (GEF)

If you work with GMF, you should still find this section of interest. What is described is done
by the GMF layout provider and can be implemented by a custom GMF layout provider.

A GEF command PerformLayoutCommand is provided to perform the layout(s) set on a layout
source. A GMF-specific version, GMFPerformLayoutCommand is provided, which takes into
account the animation preferences set in the preference store by GMF.

You can create a JFace action (or a GEF org.eclipse.gef.ui.actions.
WorkbenchPartAction facility) to execute this command. The following code example shows
you how.

import ilog.views.eclipse.graphlayout.IGrapherEditPart;
import ilog.views.eclipse.graphlayout.commands.PerformLayoutCommand;
import org.eclipse.gef.GraphicalViewer;

...
public void run() {
// get the GEF viewer
GraphicalViewer viewer = getViewer();
// get the diagram edit part
// the edit part must expose a ILayoutSource interface
IGrapherEditPart editPart = (IGrapherEditPart)viewer.getContent();
// instantiate the command
PerformLayoutCommand cmd = new PerformLayoutCommand(editPart);
// execute it
viewer.getEditDomain().getCommandStack().execute(cmd);

}

You can also instantiate the PerformLayoutCommand with a layout type argument.

This argument allows you to choose what type of layout you want to perform:

♦ A graph layout GRAPH_LAYOUT

♦ A link layout LINK_LAYOUT

♦ A label layout LABEL_LAYOUT

♦ All these layouts simultaneously ALL_LAYOUTS

As a result, you should see that the layout runs and obtain something like the following
representation.

G E T T I N G S T A R T E D 13

G E T T I N G S T A R T E D14

Calling the layout (GMF)

If you are working with GMF you can use a specialized predefined layout provider. The
IBM® ILOG® JViews layout will be performed automatically when you try to arrange your
diagram in accordance with the GMF Arrange All command.

There is very little support in the layout algorithms of JViews Graph Layout for Eclipse
for partially laying out graphs. The integration of GMF Arrange Selection relies on

Note:

some configuration tricks and is provided because the layout obtained can be good
enough in some cases, but be aware that it can also give bad results.

To customize the layout provider, you need to add a new extension by using the GMF org.
eclipse.gmf.runtime.diagram.ui.layoutProviders extension point. Set
DefaultGMFLayoutProvider as the layout provider class, with a High priority as shown in
the following code example.

<extension point="org.eclipse.gmf.runtime.diagram.ui.layoutProviders">
<?gmfgen generated="false"?>
<layoutProvider

class="ilog.views.eclipse.graphlayout.gmf.providers.DefaultGMFLayoutProvider">

<Priority name="High">
</Priority>

</layoutProvider>
</extension>

The default Arrange behavior is replaced by the execution of the JViews Graph Layout for
Eclipse layout.

Exercise caution with the Snap To Grid function. Once layouts are executed, this GMF
function can automatically snap the figures to the current grid. In turn, this can lead to small

G E T T I N G S T A R T E D 15

position deltas that could result in bad visual effects, such as connections that are not
orthogonal. You can disable an active Snap To Grid function through the GMF property
sheet.

The Snap To Grid function can be disabled by default in the Preference pages of the editor,
so that future diagrams do not use the feature.

G E T T I N G S T A R T E D16

Working with label layout

Additional code is required to work with label layout. Layout can be applied to the following
kinds of labels:

♦ Labels attached to nodes

♦ Labels attached to connections

Currently in GMF only labels attached to connections are supported. GMF constrains the
way that node labels can be positioned around nodes.

Two label layouts are provided:

♦ The class IlvAnnealingLabelLayout

♦ The class IlvRandomLabelLayout

G E T T I N G S T A R T E D 17

The way labels can be designed in GEF is somewhat arbitrary, so the code examples in this
topic are based on the design used byGMF. You can easily adapt the code for a GEF
application.

Obstacle edit parts
You must implement the IObstacleEditPart interface to indicate an obstacle in label layout.
An obstacle typically consists of node or connection edit parts.

This interface requires you to indicate the labels that the obstacle contains.

The following code example shows the GMF connection implementation of
IObstacleEditPart. In GMF the edit part of the label is a child of the connection edit part.

import ilog.views.eclipse.graphlayout.labellayout.ILabelEditPart;
import ilog.views.eclipse.graphlayout.labellayout.IObstacleEditPart;

import org.eclipse.gmf.runtime.diagram.ui.editparts.ConnectionNodeEditPart;

public class MyConnectionEditPart extends ConnectionNodeEditPart
implements IObstacleEditPart {

...

G E T T I N G S T A R T E D18

public Collection<ILabelEditPart> getLabels() {
return Collections.singleton((ILabelEditPart)getChildren().get(0));

}

}

If the obstacle has no label, this method can return null.

Label edit parts
The edit parts that control the labels of your diagram must implement the ILabelEditPart
interface to be recognized as labels. The interface requires you to indicate the related
obstacle, that is, the associated node or connection. It also requires you to implement a
factory method to create an instance of a label descriptor.

Label descriptors
Annealing label layout IlvAnnealingLabelLayout requires label descriptors to be able to
arrange labels around nodes and connections in a preferred position.

There are two kinds of label descriptors:

♦ IlvAnnealingPointLabelDescriptor for node labels

♦ IlvAnnealingPolylineLabelDescriptor

for connection labels

The following code example shows the connection label implementation of ILabelEditPart
in the context of GMF, where label edit parts are child objects of connection edit parts.

import ilog.views.eclipse.graphlayout.labellayout.ILabelEditPart;
import ilog.views.eclipse.graphlayout.labellayout.IObstacleEditPart;
import ilog.views.eclipse.graphlayout.runtime.labellayout.annealing.
IlvAnnealingLabelDescriptor;
import ilog.views.eclipse.graphlayout.runtime.labellayout.annealing.
IlvAnnealingPolylineLabelDescriptor;

import org.eclipse.gmf.runtime.diagram.ui.editparts.LabelEditPart;

public class MyConnectionLabelEditPart extends LabelEditPart implements
ILabelEditPart {

...

public IObstacleEditPart getRelatedObstacle() {
return (IObstacleEditPart) getParent();

}

public IlvAnnealingLabelDescriptor createLabelDescriptor() {
// we create a polyline label descriptor because the label concerns a
// connection
IlvAnnealingPolylineLabelDescriptor descriptor = new
IlvAnnealingPolylineLabelDescriptor(

G E T T I N G S T A R T E D 19

this, getRelatedObstacle(),
IlvAnnealingPolylineLabelDescriptor.CENTER,
ilog.views.IlvDirection.Left, 0,
IlvAnnealingPolylineLabelDescriptor.LOCAL);

// we recommend that you set the auto correct flag, mainly if you use
// property sheets. It automatically fixes min and max values
// for a certain property regarding a preferred value
descriptor.setAutoCorrect(true);
descriptor.setPreferredDistFromPath(10.f);
descriptor.setMaxDistFromPath(50.f);
return descriptor;

}

}

You can now set an annealing label layout IlvAnnealingLabelLayout on the layout source.
The command to perform layout calls the label layout automatically.

G E T T I N G S T A R T E D20

Working with subgraphs

This topic shows you how to add layout capabilities to GEF subgraphs and GMF
compartments.

GEF subgraphs
The layout source can be instantiated so that layouts are performed recursively. Thus,
subgraphs are laid out before the parent graph, and so on. The default layout source
constructor takes the argument isRecursive. If you set this field to true, the layout source
will internally create an IlvRecursiveMultipleLayout and manage it. A layout source
configured like this can only be instantiated at the diagram level. You cannot have child
recursive layout sources.

This behavior does not prevent subgraphs from having their own subgraphs.Note:

The following code example shows how to instantiate a recursive layout source.

import ilog.views.eclipse.graphlayout.IGrapherEditPart;
import ilog.views.eclipse.graphlayout.source.ILayoutSource;
import ilog.views.eclipse.graphlayout.source.LayoutSource;
import ilog.views.eclipse.graphlayout.runtime.hierarchical.
IlvHierarchicalLayout;

import org.eclipse.gef.editparts.AbstractGraphicalEditPart;

public class MyDiagramEditPart extends AbstractGraphicalEditPart
implements IGrapherEditPart {

// reference on the layout source implementation
private LayoutSource myLayoutSource;

...

public boolean isTopLevel() {
return true;

}

@Override
public void activate() {
myLayoutSource = new LayoutSource(this, true, true);
// we set a hierarchical layout for example
IlvHierarchicalLayout layout = new IlvHierarchicalLayout();
layout.setGlobalLinkStyle(IlvHierarchicalLayout.ORTHOGONAL_STYLE);
layout.setFlowDirection(ilog.views.IlvDirection.Bottom);
myLayoutSource.setGraphLayout(layout);
super.activate();

}

G E T T I N G S T A R T E D 21

}

The layout source constructor arguments are:

♦ Undo and redo support, which allows you to undo or redo the execution of the layout.
This support is active by default.

♦ Recursive mode, which is inactive by default.

Nested graphs also need to implement layout sources. In this case, the layout sources cannot
be configured recursively. The following code example shows a subgraph implementation
of ILayoutSource.

import ilog.views.eclipse.graphlayout.IGrapherEditPart;
import ilog.views.eclipse.graphlayout.source.ILayoutSource;
import ilog.views.eclipse.graphlayout.source.LayoutSource;
import ilog.views.eclipse.graphlayout.runtime.hierarchical.
IlvHierarchicalLayout;

import org.eclipse.gef.editparts.AbstractGraphicalEditPart;
import org.eclipse.gef.NodeEditPart;

public class MyNestedGraphEditPart extends AbstractGraphicalEditPart
implements IGrapherEditPart, NodeEditPart {

// reference on the layout source implementation
private LayoutSource myLayoutSource;

...

@Override
public void activate() {
myLayoutSource = new LayoutSource(this);
// we set a hierarchical layout for example
IlvHierarchicalLayout layout = new IlvHierarchicalLayout();
layout.setGlobalLinkStyle(IlvHierarchicalLayout.ORTHOGONAL_STYLE);
layout.setFlowDirection(ilog.views.IlvDirection.Right);
myLayoutSource.setGraphLayout(layout);
super.activate();

}

@Override
public void deactivate() {
super.deactivate();
// cleanup
myLayoutSource.dispose();
myLayoutSource = null;

}

@Override
public Object getAdapter(Class adapter) {
if (adapter.equals(ILayoutSource.class)) {
return myLayoutSource;

}

G E T T I N G S T A R T E D22

return super.getAdapter(adapter);
}

public boolean isTopLevel() {
return false;

}

@Override
protected IFigure createFigure() {
return new Figure() {
@Override
protected boolean useLocalCoordinates() {
return true;

}
};

}

}

The subgraph figure must use local coordinates. In this code example isTopLevel returns
false.

GMF compartments
Compartments can be used for subgraphs in GMF. The GMF Diagram Editor sample is an
illustration of how this can be done. Note that compartments are partially supported by
JViews Graph Layout for Eclipse; recursive layouts and intergraph connections are not yet
supported.

A compartment edit part can be laid out independently. As with a GEF subgraph, your
compartment edit part must implement the ILayoutSource interface.

import ilog.views.eclipse.graphlayout.IGrapherEditPart;
import ilog.views.eclipse.graphlayout.source.ILayoutSource;
import ilog.views.eclipse.graphlayout.gmf.source.GMFLayoutSource;
import ilog.views.eclipse.graphlayout.runtime.IlvHierarchicalLayout;

import org.eclipse.gmf.runtime.diagram.ui.editparts.ShapeCompartmentEditPart;

public class MyShapeCompartmentEditPart extends ShapeCompartmentEditPart
implements IGrapherEditPart {

// reference on the layout source implementation
private GMFLayoutSource myLayoutSource;

...

@Override
public void activate() {
myLayoutSource = new GMFLayoutSource(this);
// we set a hierarchical layout for example
IlvHierarchicalLayout layout = new IlvHierarchicalLayout();
layout.setGlobalLinkStyle(IlvHierarchicalLayout.ORTHOGONAL_STYLE);

G E T T I N G S T A R T E D 23

layout.setFlowDirection(ilog.views.IlvDirection.Right);
myLayoutSource.setGraphLayout(layout);
super.activate();

}

@Override
public void deactivate() {
super.deactivate();
// cleanup
myLayoutSource.dispose();
myLayoutSource = null;

}

@Override
public Object getAdapter(Class adapter) {
if (adapter.equals(ILayoutSource.class)) {
return myLayoutSource;

}
return super.getAdapter(adapter);

}

public boolean isTopLevel() {
return false;

}

}

You need to instantiate a layout source at the diagram level. See Starting out with layout
sources. The layout source must be a GMFLayoutSource.

G E T T I N G S T A R T E D24

Working with link crossings

JViews Graph Layout for Eclipse provides options to detect and display link crossings in a
graph automatically. Link crossing detection is used when you need to show graphically the
points where two links cross. This feature is often used, for example, in electrical schematic
diagrams.

The following figure shows a graph in which link crossing detection is enabled.

Enabling and disabling link crossing detection
You will typically enable link crossing detection on the top-level GraphicalEditPart that
contains your diagram. By default, this will also enable link crossing detection on all nested
diagrams.

The edit part of the container of your nodes must implement the ICrossableContainer
interface so that the crossing detection algorithms can be run on it.

This interface must be implemented by one of the following, depending on where you want
to enable link crossing detection:

♦ The edit part of the whole diagram

♦ The edit parts of some or all nested diagrams

To differentiate between the whole diagram and nested diagrams, you must implement the
method getCrossableContainerParent(). This method must return null if you are
implementing the CrossableContainer object for the top-level diagram or the parent for a
nested diagram.

The CrossableContainer objectmust create a CrossingManager object. The CrossingManager
object computes the crossings for a set of polyline objects which must implement the
ICrossable interface.

The CrossableLink object is a polyline IFigure implementation that implements the
ICrossable interface.

The following code sample shows how to enable link crossing detection on a whole diagram.

G E T T I N G S T A R T E D 25

import ilog.views.eclipse.crossing.CrossingManager;
import ilog.views.eclipse.crossing.ICrossableContainer;
import ilog.views.eclipse.crossing.LinkCrossings;
import ilog.views.eclipse.crossing.LinkCrossingsEnableMode;
import ilog.views.eclipse.crossing.LinkCrossingsStyle;

public class DiagramEditPart extends AbstractGraphicalEditPart implements
PropertyChangeListener, IGrapherEditPart, ICrossableContainer {

private LinkCrossings linkCrossings = new LinkCrossings();
private CrossingManager crossingManager;

public DiagramEditPart() {
linkCrossings.setEnabled(LinkCrossingsEnableMode.Enabled);
linkCrossings.setCrossingsStyle(LinkCrossingsStyle.Tunnel);

}

public void activate() {
crossingManager = new CrossingManager(linkCrossings, this);
super.activate();

}

public void deactivate() {
crossingManager.dispose();
super.deactivate();

}

public ICrossableContainer getCrossableContainerParent() {

}

public LinkCrossings getLinkCrossings() {
return linkCrossings;

}

The following code sample shows how to set up crossable links in order to have link crossing.

import ilog.views.eclipse.crossing.CrossableLink;

public class LinkElementEditPart extends AbstractConnectionEditPart {

protected IFigure createFigure() {
return new CrossableLink(this);

}
}

You can choose to enable or disable link crossing detection on specific nested diagrams by
setting the Enabled property of the LinkCrossings object to one of the values of the
LinkCrossingsEnableMode enumeration.

The possible values of the LinkCrossingsEnableMode enumeration are:

G E T T I N G S T A R T E D26

LikeParent
This value means that link crossing detection is inherited from the parent container,
that is, it is enabled if the LinkCrossings object of one of the ancestors of the container
has its Enabled property set to Enabled.

Enabled
This value means that link crossing detection is enabled for this container, regardless
of the settings on other containers.

Disabled
This value means that link crossing detection is disabled for this container, regardless
of the settings on other containers.

The default value for all graphic containers is LikeParent, so if you enable link crossing
detection for the top-level container, it is also by default enabled automatically for all nested
containers.

Changing the appearance of link crossings
You can choose the way link crossings are displayed in a graphic container by setting the
Style property of the LinkCrossings object of the container. The value of this property is
an enumeration of type LinkCrossingsStyle.

The possible values of the LinkCrossingsStyle enumeration are:

Tunnel
This value means that crossings are drawn as small arcs of circle (bottom left in the
figure)

Bridge
This value means that crossings are drawn as two short segments orthogonal to the link
path on either side of the crossing (top right in the figure).

Cut
This value means that the path of the link is cut at the crossing (top left in the figure).

None
This value means that no special crossings are drawn, that is, the links cross normally
(not shown).

Default
This value means that the crossing style is inherited from the parent container, if any.
If there is no parent container, the default crossing style is Tunnel.

The following figures shows the possible crossing types.

G E T T I N G S T A R T E D 27

You can also change the size of the link crossings by setting the Size property of the
LinkCrossings object. The default size is 10.

Instead of changing the appearance of crossings for all the links in a container, you can
change the appearance for an individual Link object using the CrossingStyle and
CrossingSize properties of the link. These override the values of the Style and Size
properties of the LinkCrossings object of the graphic container. However, this is not
generally recommended because diagrams look nicer if all link crossings have the same
appearance and size.

Changing the orientation of link crossings

When there are many link crossings in a diagram, the display will generally look better if
all the crossings have the same orientation. For example, if all the links are made up of
horizontal or vertical segments, placing all the crossings on horizontal segments is preferable
to having some crossings horizontal and some vertical.

The orientation of link crossings is controlled by the Orientation property of the
LinkCrossings object of the graphic container. The value of this property is an enumeration
of type LinkCrossingsOrientation.

The possible values of the LinkCrossingsOrientation enumeration are:

Horizontal
This value means that all crossings are placed on horizontal segments. If the segments
are not strictly horizontal or vertical, the closest orientation is used.

G E T T I N G S T A R T E D28

Vertical
This value means that all crossings are placed on vertical segments. If the segments are
not strictly horizontal or vertical, the closest orientation is used.

Any
This value means that crossings are placed on the first segment on which they are
detected, regardless of its orientation.

G E T T I N G S T A R T E D 29

	Table of contents
	Getting started with JViews Graph Layout for Eclipse
	Prerequisites
	Graphers
	Layout source
	Starting out with layout sources
	Calling the layout (GEF)
	Calling the layout (GMF)
	Working with label layout
	Working with subgraphs
	Working with link crossings

