4|ll

IBM ILOG JViews Graph Layout for
Eclipse V8.6

Using graph layout algorithms

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

Copyright notice
© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information™ at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further copyright information see <installdir> jviews-graphlayout-eclipse86/
license/notices.txt.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Conventions and Bibliography ... 8
INtroducing graph 1aYOUL..........cooiiiiiiieecre e e e e e e e e e e eeeeneeees 11
The concept Of graph [AYOUL.............uuiiiiiiii e 12
The graph layout algorithms. ... 14
Structure of the graph 1aYOUL APL......... e e 18
Using the graph [aYOUL AP e e e e e e e e e e annees 20
Releasing resources used during the layout of a grapher..........ccccooocviiiiiiiice e, 24
Layout algorithmsS. e e e e e e e e e e e e eaenanne 25
Overview of graph layout iNfOrmation..............ocuiiii e 27
Determining the appropriate layout algorithm............cc.ueiiiiiiiii e, 28
Typical ways t0 ChOOSE @ lAYOUL..........euiiiiiii e e e e e e e e e e 31
ChoosiNg @ 1ayout @lgOFENIM.......co i et et e e e e et e e e e e sttt e e e e e e anneeeeee e e annaeeeas 32
Choosing the layout algorithm dynamiCally...........cccuuiiiieiiiiiiiie e e e e e eraaeeas 33
Hard-coding @ layOut @t FUN tIME........ooi ittt e ettt e e e e sttt e e e e e e tbe e e e e e e anbeeeeeeeanenneaaeaan 34
Generic parameters and fEALUIES.iiiiei i it e e e e e e e 35
Support by algorithms of generic features and Parameters...........ccceiivieiiiieiiiee e 36
Base class parameters and fEALUIES...........uuiiiiiiiiiiee e e e e et e e e s e e e e e e s b a e e e e e aatreeeeeaan 39
LAYOUL CRAraCIEIISTICS. . .ciiiiiiiii ittt st e e st e e e e 52
Topological MeSh LayOUL (TML).......uuiiiiiiiiiiaaeee ittt e e e e e e e e e beeeeeeaaaaeeeas 55

© Copyright IBM Corp. 1987, 2009 3

4

General iNformation 0N The TML......ccccciiiiiiiiieeeeeeee e bbb e e e e e e e e eeeeeeeeeeeesesesasassssrsrsrsrneens 56

Features and liMitatioNs Of the TIML..........uiiiiii et e et e e e e e e e e e e e aneaeeeaeean 58
R I LAY =1 o o124 PSR PPPPRPOt 59
Generic features and parameters Of the TIML.......c.uviiiiiiiiii e e 61
Specific parameters Of tE TIML........oiiiiii ittt e e et esneenree e
Refining @ graph [AYOUL (TIVIL) ...ttt ettt ettt e e e e ettt e e e e st e e e e e enbee e e e e e anseeeeaeeanneeneaaaaan
Using a link clipping interface with the TML .
Force-directed or Uniform Length Edges Layout (ULEL).........ccccceiiiiiiieiniiiiceeeieee e 75
General information 0N the ULEL..........ccciiiiiiiiie ittt nnee e 76
Features and limitationNs Of the ULEL...........oooi et e e e e e neae e e e 81
The ULEL algorithm...... .ottt e e e e e e e ettt e e e e e s at e e e e e e satbareeaeeasasbaeeeeesanees 82
Generic features and parameters Of the ULEL..........oocviiiiiiiiiiiiee et 83
Specific parameters 0f the ULEL...........ooii it s s e e e st e e e e e s snaaee s 85
For experts: additional features Of the ULEL............ooo et 88
Using a link clipping interface With the ULEL............coooiiiiiiiei et a e 91
== 1Y (o] U G (I) TSR 93
General iNfOrmMation ON the TL.......cuiiiiiie ittt et e st et e s e e nbe e saneennee e 94
Features and lIMitatioNS OF the TL.......cooi it e e e ettt e e e e et e e e e e annaeeeaeean 97
L ST I = 1o o111 10 PO PSSRSO PEPROt 99
Generic features and parameters of the TL @lgorithm..........ccooiiiiiiii e 101
Specific parameters (for all tree [ayout MOAES)..........ciiiiiiiiiiie i 103
Layout modes of the TL @lgOrithm.........oo it e e e et e e e e e e anraeeeaeean 107

L TR E= 1Yo U1 43T o [TSP PRPRPPP

Y =T Yo 10 03T To (= PR

Radial layout mode......................

Tip-over layout modes

RECUISIVE MOUE...... ettt e et e e e ettt e e e e s s st bt e e e s antbeeeaeesansbeeeeesaseaeeas
For experts: additional tips fOr the TL.........eeii et e e e e e e aebeeee e
HierarChiCal LayOULt (HL).......uuiiiiee oot e e e e e e s e s e e e e e e e e e s s s eansananneeeees
General iNformation 0N the HL...........eiiii et e e e e e e e e e et e e e e e eneeeeas
Features and limitations Of the HL..........coiiiiiiiii e e s
LI (ST 1= 1o To] 11 10 TR UUPPIRRN
Generic features and parameters of the HL
Specific parameters Of the HL........o.uei et e e e e e e e e e e e e e e e e enneeeas
Incremental MOAE WIth HL........oouiiiiiiiiii et e e e e e e e st e e e e s e sbb e e e e s e saeeeeeeessnsbaeeeenan
Layout CONSEIAINTS FOI HL.......eiiiiiiiiii ettt ettt e e e st e e e e e bb e e e e e e sanbbeeeeeeanbbeeeaeean
Adding and removing constraints in Java fOr HL...........ccooiiiiiiii s
Level rang@ CONSIIAINTS (HL)....ccoiiiuiiiiieiiiie ittt e ettt e e e ettt e e e e e e naee e e e e e e sanbbeeeeeaanebeeeaeean
Level INAEX PArAMELET (HL).....oouiii ittt e st e et e e snr e e e st e e e st e e e nees
Same 1€Vel CONSIIAINTS (HL)......eiiiiiiiiiiie ettt e sttt e e e e et b e e e e e e e atbe e e e e e snbeeeas
Group spread constraints (HL)
Relative level constraints (HL)................
POSItion INAEX PArAMELET (HL)......ee ittt e et nn e e e e e e e en e e nnes

USING GRAPH LAYOUT ALGORITHMS

Relative position CONSIFAINTS (HL).......iiiiiiieiiiie ettt st e st e e st e e sbe e e e stb e e e snteeeenees
Side-by-Side CONSIIAINTS (HL)....oi.reieiiiiiiiee et e e e s e s e e e e e e atneeeae
EXTremity CONSIIAINTS (HL)....uuiiiiiiiiiiii ettt e e e e e e et e e e e e et e e e e e e e bt e e e e e e santreeeeesantaaeeaanan
SWIM AN CONSTFAINTS (HL).....eeeiieee et e et e e e e ettt e e e e e sbe et e e e e e nneeeeeeeaansbneeaeeanneneas
(00 a1 1 - Va1 A oL o] 411 L=T S (1) T TSP
For experts: constraint validation (HL)
For experts: more indices (HL)...............

RECUISIVE TAYOUL. ...ttt ettt e e e e ettt e e e e s nte et e e e e et bee e e e e e nmeeeeeeeeanntseeaaeaansaneaaaan
[T 2 =Y/ T U | A (I SRR
General iINformation 0N The L. e e e e e e e e e e e e e e e e es s s e e s eaansnrnrnrnns
Features and limitationNs Of the LL..........cccuiiiiiiiiiiiee et e e e et e e e e st e e e e e s etaaeeee s
THE LL AIGOMTNIMIS. ..ttt ettt en e e s s e e et e e s e e e b e e s b e e nnne e e s nnee s
Generic features and parameters Of the LL........coooiuiiiiiiiiiiee e
Specific parameters for DOth LL MOUES...........oiiiiiiiiiie ettt e et a e et e e e e s nneeeas
Spacing parameters in Short iNK MOE.............ooiiiiiii e e
Spacing parameters in 10Ng INK MOGE............ooiiiii et e e
For experts: additional features of LL

For experts: special options of the Short LL
For experts: special options Of the LONG LL........cuuiiieiiiiiice e iaaee e
RANAOM TAYOUL (RL)...eeiiiiiiiiiee ettt e e e e e et e e s s e e e e e
LRI T Uy 1] o = T PR UPP TP
Features and limitations Of the RL..........uuiiiiiiiiiiiiiic e e e e e e e e e e e e e e s e s e s e nrnrrrees
LI IR I 1o To 111 10 o P PSR PRPSPPRPRN
Generic features and parameters of the RL
Specific parameters of the RL

BUS TAYOUL (BL)...ceiiiitiitieiitttie ettt e e e ekt e e e e b et e e e e anbb e e e e e anbr e e e e e annneas
] I Y= 14 o] = PP SRR
FEALUIES Of T Bl ..o e e e e e e e e e e e e e e e e e bbb e e e e et e eeeetaaaaaaaaaaaaeassesasasasannnsnsnsnrnrnns
LI LCI ST I 1o To 11 10 o PO PSR PUPOPPSPRN:
Generic features and parameters of the BL
SPECIfic PAramMELErS Of The BL......iii i e et e e e e et e e e e e s ratbe e e e e s snrreeas
CIrCUIAT TAYOUT (CL).ciiiiiiiiiieiiiteeie ettt e e et e e s aabneeee s
General information 0N the CL........cuuiiiiiiii e e s e e e e e e ar e e e e e et be e e e e s sasrneas
Features and limitations of the CL
LI IO I 1o To] 1 10 TSR PUPOPPRPRN
Generic features and parameters of the CL
SPECIfic PArAMELEIS OF thE CL...iiii it e s e e e e e e e e e e e ratbe e e e e s snrreeas
LT gTo I F= 1Y 01U | A (€1 T O PSP PPPPPT PP
General iNformation 0N the GL........ccciiiiiiii e e et e eaaeaaeaeaeeesasasassnnnnsnennnrnns
FEATUIES OF The GL.. oot e et e e e e e ettt e e e e e e ee e et eaaeaaaeaaeaeeesesesasaansnnsnsssnnrrens
LIS S = 1o To] 11 10 1 TSP OUPPRPTTPPPPPPN
Generic features and parameters of the GL

USING GRAPH LAYOUT ALGORITHMS 5

SPECIfiC PArAMELErS OF thE GL...i.iiiiiiiiiiiii ettt e et e e s bt e e srbeeeabeeeeae 317

[N [S1S] (=T B = 1Y/ LU | = 7SO PPPURRR 325

Concepts fOr NESTEA TAYOULS.oouiiiiiiiiieiie e 326

Layout of nested graphs in COE..........ooooiiiiiiiii e 327

The classes that sSupport NESIEA GraphS.......cooveii it 328
Order of |ayOutS IN FECUISIVE TAYOULS........coiuiiiiiiei ittt e e e e e e et e e e s ebee s 329
Simple recursion: applying the same layout to all subgraphers..........ccove i 330
Advanced recursion: mixing different layouts in @ nested graph..........ccoceeiiieiiiii e 334

RECUISIVE TAYOUL.......iiiiiie ittt et e e e et e e e s s bt ae e e e e annbeas

OVEIVIEW OF FECUISIVE TAYOUL.ceii ittt ettt ettt e e e s et bt e e e e e abee e e e e e e nbbe e e e e s snbeeeas
FBALUIES ...ttt ekttt a e e ekt e ekt eea et e ek e e e R Rt e e a e e e e b e e e aabn e e n e e e et b e e e
Generic features and parameters

=T £ST AV F= Y0 10 1l 4 o To L=

Overview Of reCUrsive [aYOUL MOAES.........oo it e ettt e e e e e e e e e e e e beee e e s snneeeas
REfEIrENCE [AYOUL MOUE. ... ittt et e st e st e e et e e snbe e e e sbb e e e anbeeesnees
TaLC=Tq gt 1o £o)V]To [T gl 4 T o [TSRS
Yo L=Tot) 1= To I o1 £0)Y/ T [=T gy s o Yo [T SRR SPRSP
ACCESSING All SUDIAYOULS.....coeiiiiiei ettt e e e ettt e e e s e bbbt e e e e s annbbeeee e e annbeeeeaeaannes
Yo LoTot) ol o F- T = 0 =] (=] T SR PSPRSP
Listener layout
For experts: more on layout providers
LU LT o] [T F= Yo 1 | S PP PP TR
GeNEral INFOIMALION. .. oottt ettt et e e e h bt e e sttt e e bb e e e anbe e e ebte e e sbbeeeabneeean
AU ...ttt et ettt et e e e e e e e e e e e e e e e e e e a b h b h bbb e b et e e et et e e et e e e aeeaeeaeaeaeaeaaaannnen
Generic features and PArAMELEIS.uiiii ettt e e e e e e et e e e e et e e e e e eessbtreaeeeasatbaeeeessnnsrees
Sy L=t ol o FoT =10 =] (=] T ST SPTP
Attaching graph and 1abeling MOTEIS.ooiiiiiiii e
Accessing sublayouts
Combining multiple and rECUISIVE TAYOUL............coiuiiiiiiie ittt e et eae
The reference 1aDeliNg MOTEL..........ooo it e e e e snbr e e e e e e e

Automatic label PlaCcement...........coooiiiiiiiiec e

6

Using the label [ayOUt APL....... e e e e e e e e e e e enneees
OVEIVIEBW. ...ttt et

The label layout base class and its subclasses
Instantiating and attaching a subclass of [lvLabelLayout..............cccoviiiiiiiiiiiiiiiee e
PErfOrmMING 8 TAYOUL.........eiiiiie ettt et et s e e s st e e e e et e sn e e e et e e e e e e e nnes
Performing a recursive layout on nested SUDGraphs...........coooiiiiiiiiii i
LI LCI o o T Fo Y TU 1 =T oo SO TR PSRRI
LayOut @VENES ANA [ISTENEIS.....cii ittt e et e e e s et e e e e e s bbb e e e e e s satreeeeesnntbaaeaeean
Layout parameters and features in llvLabelLayout....

USING GRAPH LAYOUT ALGORITHMS

Releasing resources used during the layout of labels............cccooiiiiie, 387

ANNEAlING 18DEI TAYOUL........ooi it 389
GeNEral INFOIMALION. ..ottt e et e st e s bn e e e et et e s nne e e nnneeeanneenan 391
FRATUIES ...t e 392
[T 71 = o] o F= R UPUPRRT 393
LI ST 1o o 11 o o PSR RRPPPPPRN 394
Generic features and PAIAMELETS.cii ittt e e e e e e e et e e e e e e asteeeeaeaaanaeeeeaeeaansbeeeaeeaanneneas 395
[Lo T 0 TS g o] (o = T PP 397
[eo] g1 F=T o1 o (2o g o (o SRR 398
POIYIINE 18I AESCIIPION. ...ttt ettt e e st e et e e e et e e e nnes 403
SPECIfiC GIODAI PAFAMELETS.ottt e e ettt e e e e e bt e e e e e e e nb e e e e e s anbaeeas 407
For experts: implementing your own label deSCrIPLOrS........coccuviiiiiieiiiie it 411
USING adVaNCEd fEATUIES........oiiiiiiiiiiiiee ettt 415
Overview Of advanCed FEALUIES..........c.uii i 416
(OIS TaTe Jr=We | €=V o] T F- 1Y/ 1 U A =1 o o oR SRR 417
[Yo 0 =T oo 3 = T SRR 418
Creating @ JAYOUL FEPOIT.ottt ettt e bt e e ea bt e sttt e e nbb e e e anbe e e ebte e e sbbeeeantbeenan 419
ACCESSING @ JAYOUL FEPOIT. ..ttt ee ettt ettt ettt e e e e e bbbt e e e e s tbb et e e e e anbbeeeaeeaannbbeeaeeeannbneeaaeaannns 420
Information Stored iN @ laYOUL FEPOI........ooiiiiiiiii et e e s 421
USING BVENT LISTENEIS. ...ttt e e e e e e e e e s e aae bt e e e e e aaaaeeeaeannnnnnes 423
Laying out connected components of a disconnected graph.........ccccccceeieeiiiiiiiiiiiiiiennen. 425
Defining your own type Of [aYOUL............uuiiiiiiiii e 427
A sample custom layout algOrithm....... ... e e e e e e e 428
Implementing the [ayout MENOM.cuuiiiie e e e e e e e e e e stbaaeae s 430
FAQs about using the layout algorithms............coooiiiiiii e 432
10 1= PP UUUPPPUPPUPPPRRTT 435

USING GRAPH LAYOUT ALGORITHMS 7

Conventions and Bibliography

8

Conventions

Layout parameter names in the GraphLayout, LinkLayout, and LabelLayout sections always
start with a lowercase letter. Layout parameter names in the node or link rules always start
with an uppercase letter.

In Java means that you write Java™ code.

Accessors and Modifiers

Very often, you can set and retrieve a property of a class by using a pair of modifier/accessor
methods, such as:

setFlowDirection (int direction) ;
int getFlowDirection();
setIncrementalMode (boolean mode) ;
boolean isIncrementalMode () ;

This document uses the standard Java naming scheme for the modifiers and accessors, that
is, the set and get/is methods. However, when explaining the Java API, it often mentions
only the set method. Please refer to the For a detailed list of all the get/is methods, see the
Java API Reference Documentation at index.

Books

Several books dedicated to graph layout have been published:

Di Battista, Giuseppe, Peter Eades, Roberto Tammassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs, Prentice Hall, 1999. See:

http://www.cs.brown.edu/people/rt/gdbook.html
or
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0133016153.

Kaufmann, Wagner (Eds.): Drawing Graphs, Lecture Notes in Computer Science Vol. 2025,
Springer 2001. See:

http://link.springer.de/link/service/series/0558/tocs/t2025.htm.
Graph layout is closely related to graph theory, for which extensive literature exists. See:

Clark, John and Derek Allan Holton. A First Look at Graph Theory. World Scientific Publishing
Company, 1991.

For a mathematics-oriented introduction to graph theory, see:
Diestel, Reinhard, Graph Theory, 2nd ed., Springer-Verlag, 2000.
A more algorithmic approach may be found in:

Gibbons, Alan. Algorithmic Graph Theory. Cambridge University Press, 1985.

© Copyright IBM Corp. 1987, 2009

http://www.cs.brown.edu/people/rt/gdbook.html
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0133016153
http://link.springer.de/link/service/series/0558/tocs/t2025.htm

Gondran, Michel and Michel Minoux. Graphes et algorithmes, 3rd ed., Eyrolles, Paris, 1995
(in French).

Bibliography

A comprehensive bibliographic database of papers in computational geometry (including
graph layout) can be found at:

The Geometry Literature Database
http://compgeom.cs.uiuc.edu/~jeffe/compgeom/biblios.html.
The recommended bibliographic survey paper is the following:

Di Battista, Giuseppe, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. “Algorithms
for Drawing Graphs: an Annotated Bibliography.” Computational Geometry: Theory and
Applications 4 (1994): 235-282 (also available at

http://www.cs.brown.edu/people/rt/gd-biblio.html.

Journals

The following are electronic journals:

Journal of Graph Algorithms and Applications
http://jgaa.info/

Algorithmica
http://link.springer-ny.com/link/service/journals/00453/
Computational Geometry: Theory and Applications
http://www.elsevier.com/locate/comgeo

Journal of Visual Languages and Computing
http://www.elsevier.com/locate/jvic

The following journals occasionally publish papers on graph layout:
Information Processing Letters
http://www.elsevier.com/locate/ipl

Computer-aided Design
http://www.elsevier.com/locate/cad

IEEE Transactions on Software Engineering
http://www.computer.org/tse/

Many papers are presented at conferences in Combinatorics and Computer Science.

Conferences

An annual Symposium on Graph Drawing has been held since 1992. The proceedings are
published by Springer-Verlag in the Lecture Notes in Computer Science series.

USING GRAPH LAYOUT ALGORITHMS 9

http://compgeom.cs.uiuc.edu/~jeffe/compgeom/biblios.html
http://www.cs.brown.edu/people/rt/gd-biblio.html
http://jgaa.info/
http://link.springer-ny.com/link/service/journals/00453/
http://www.elsevier.com/locate/comgeo
http://www.elsevier.com/locate/jvlc
http://www.elsevier.com/locate/ipl
http://www.elsevier.com/locate/cad
http://www.computer.org/tse/

The 2008 Symposium on Graph Drawing was held in Heraklion, Crete, Greece:
http://gd2008.org/
The 2009 Symposium will be held in Chicago, USA.

10 USING GRAPH LAYOUT ALGORITHMS

http://gd2008.org/

Introducing graph layout

Describes the IBM® ILOG® JViews graph layout package and its features.
In this section

The concept of graph layout
Provides some background information about graph layout in general, not specifically related
to IBM® ILOG® graph layout algorithms.

The graph layout algorithms
Lists the graph layout algorithms available with an example diagram of each.

Structure of the graph layout API
Describes the packages in the graph layout API.

Using the graph layout API
Describes how to apply a graph layout class to a grapher.

Releasing resources used during the layout of a grapher
Describes how to release resources that were created during the layout process.

© Copyright IBM Corp. 1987, 2009 11

The concept of graph layout

12

USI NG

Simply speaking, a graph is a data structure that represents a set of entities, called nodes,
connected by a set of links. A node can also be referred to as a vertex. A link can also be
referred to as an edge or a connection. In practical applications, graphs are frequently used
to model a very wide range of things: computer networks, software program structures,
project management diagrams, and so on. Graphs are powerful models because they permit
applications to benefit from the results of graph theory research. For instance, efficient
methods are available for finding the shortest path between two nodes, the minimum cost
path, and so on.

Layout of a graph

Graph layout is used in graphical user interfaces of applications that need to display graph
models. To lay out a graph means to draw the graph so that an appropriate, readable
representation is produced. Essentially, this involves determining the location of the nodes
and the shape of the links. For some applications, the location of the nodes may already be
known (for example, based on the geographical positions of the nodes). However, for other
applications, the location is not known (a pure “logical” graph) or the known location, if
used, would produce an unreadable drawing of the graph. In these cases, the location of
the nodes must be computed.

What is meant by an “appropriate” drawing of a graph? In practical applications, it is often
necessary for the graph drawing to observe certain quality criteria. These criteria may vary
depending on the application field or on a given standard of representation. It is often difficult
to tell what a good layout consists of. Each end user may have different, subjective criteria
for qualifying a layout as “good”. However, one common goal exists behind all the criteria
and standards: the drawing must be easy to understand and provide easy navigation through
the complex structure of the graph.

What is a good layout?

To deal with the various needs of different applications, many classes of graph layout
algorithms have been developed. A layout algorithm addresses one or more quality criteria,
depending on the type of graph and the features of the algorithm, when laying out a graph.

The most common criteria are:
Minimizing the number of link crossings

Minimizing the total area of the drawing

¢

¢

4 Minimizing the number of bends (in orthogonal drawings)

4 Maximizing the smallest angle formed by consecutive incident links
¢

Maximizing the display of symmetries

How can a layout algorithm meet each of these quality criteria and standards of
representation? If you look at each individual criteria, some can be met quite easily, at least
for some classes of graphs. For other classes, it may be quite difficult to produce a drawing
that meets the criteria. For example, minimizing the number of link crossings is relatively
simple for trees (that is, graphs without cycles). However, for general graphs, minimizing
the number of link crossings is a mathematical NP-complete problem (that is, with all known

GRAPH LAYOUT ALGORITHMS

algorithms, the time required to perform the layout grows very fast with the size of the
graph).

Moreover, if you want to meet several criteria at the same time, an optimal solution may
not exist with respect to each individual criteria because many of the criteria are mutually
contradictory. Time-consuming trade-offs may be necessary. In addition, it is not a trivial
task to assign weights to each criteria. Multicriteria optimization is, in most cases, too
complex to implement and much too time-consuming. For these reasons, layout algorithms
are often based on heuristics and may provide less than optimal solutions with respect to
one or more of the criteria. Fortunately, in practical terms, the layout algorithms will still
often provide reasonably readable drawings.

Methods for using layout algorithms

Layout algorithms can be employed in a variety of ways in the various applications in which
they are used. The most common ways of using an algorithm are the following:

¢ Automatic layout

The layout algorithm does everything without any user intervention, except for perhaps
the choice of the layout algorithm to be used. Sometimes, a set or rules can be coded to
choose automatically (and dynamically) the most appropriate layout algorithm for the
particular type of graph being laid out.

4 Semiautomatic layout

The end user is free to improve the result of the automatic layout procedure by hand. In
some cases, the end user can move and “pin” nodes at desired locations and perform the
layout again. In other cases, a part of the graph is automatically set as “read-only” and
the end user can modify the rest of the layout.

4 Static layout

The layout algorithm is completely redone (“from scratch”) each time the graph is changed.

4 Incremental layout

When the layout algorithm is performed a second time on a modified graph, it tries to
preserve the stability of the layout as much as possible. The layout is not performed again
from scratch. The layout algorithm also tries to save CPU time by using the previous
layout as an initial solution. Some layout algorithms and layout styles are incremental by
nature. For others, incremental layout may be impossible.

USING GRAPH LAYOUT ALGORITHMS 13

The graph layout algorithms

The graph layout package provides numerous ready-to-use layout algorithms. They are
shown below with sample illustrations. In addition, you can develop new layout algorithms
using the generic layout framework.

14 USING GRAPH LAYOUT ALGORITHMS

Topological
Mesh Layout
(TML)

Force-directed
or Uniform 1?
Length Edges
Layout (ULEL) L .(l
1
T - |
-

na
Circular layout
[
L) '-"fr‘- -
(Ring/Star) ' |' -
\ /
| |
-
L]
il
.,F-J'
L] o ‘._
L)
Hierarchical
Layout (HL)
USI NG GRAPH LAYOUT

ALGORITHMS

15

16 USING GRAPH LAYOUT ALGORITHMS

s I
I
I I I
A I
L L L.LL.L.

Grid layout
G

‘AN IR AR TR
BN (H |
| DN | e | 0| |
0| o |mew

USING GRAPH LAYOUT ALGORITHMS 17

Structure of the graph layout API

18

USI NG

The IBM® ILOG® JViews graph layout API is composed of:

¢
¢
¢

The generic graph layout package
The layout algorithm packages

The label layout package

The generic graph layout package

ilog.views.graphlayout: A high-level, generic framework for the graph layout services
provided by IBM® ILOG® JViews.

The layout algorithm packages

¢

G

ilog.views.graphlayout.bus: A layout algorithm designed to display bus network
topologies (that is, a set of nodes connected to a bus node).

ilog.views.graphlayout.circular: A layout algorithm that displays graphs representing
interconnected ring and/or star network topologies.

ilog.views.graphlayout.grid: Alayout algorithm that arranges the disconnected nodes
of a graph in rows, in columns, or in the cells of a grid.

ilog.views.graphlayout.hierarchical: A layout algorithm that arranges nodes in
horizontal or vertical levels such that the links flow in a uniform direction.

ilog.views.graphlayout.link: A layout algorithm that reshapes the links of a graph
without moving the nodes.

® ilog.views.graphlayout.link.longlink: For long orthogonal links.
® ilog.views.graphlayout.link.shortlink: For short links.

ilog.views.graphlayout.multiple: A facility that combines multiple layout algorithms
and treat them as one algorithm object.

ilog.views.graphlayout.random: A layout algorithm that moves the nodes of the graph
at randomly computed positions inside an user-defined region.

ilog.views.graphlayout.recursive: A layout algorithm that can be used to control the
layout of nested graphs (containing subgraphs and intergraph links).

ilog.views.graphlayout.topologicalmesh: A layout algorithm that can be used to lay
out cyclic graphs.

ilog.views.graphlayout.tree: A layout algorithm that arranges the nodes of a tree
horizontally or vertically, starting from the root of the tree. A radial layout mode allows
you to arrange the nodes of a tree on concentric circles around the root of the tree.

RAPH LAYOUT ALGORITHMS

¢ ilog.views.graphlayout.uniformlengthedges: A layout algorithm that can be used to
lay out any type of graph and allows you to specify the length of the links.

The label layout package

ilog.views.graphlayout.labellayout: A layout algorithm for automatic placement of
labels.

4 ilog.views.graphlayout.labellayout.annealing: For close label positioning.

4 ilog.views.graphlayout.labellayout.random: For random placement.

USING GRAPH LAYOUT ALGORITHMS 19

Using the graph layout API

20

U

S

N G

In an application that works directly on graphers (IGrapherEditPart) without using the
ILayoutSource facility, operations such as attaching or detaching a graph layout instance
must be performed explicitly.

The base class: llvGraphLayout

The 11vGraphLayout class is the base class for all layout algorithms. This class is an abstract
class and cannot be used directly. You must use one of its subclasses:
IlvHierarchicallayout, IlvTreelayout, IlvUniformLengthEdgesLayout,
IlvTopologicalMeshLayout, IlvLinkLayout, I1vRandomLayout, I1vBusLayout,
IlvCircularLayout, IlvGridLayout. You can also create your own subclasses to implement
other layout algorithms. See Defining your own type of layout.

Despite the fact that only subclasses of I1vGraphLayout are directly used to obtain the
layouts, it is still necessary to learn about this class because it contains methods that are
inherited (or overridden) by the subclasses. And, of course, you will need to understand it
if you subclass it yourself.

GRAPH LAYOUT ALGORITHMS

v Grap hilay out
<> phLayoutReport
2 0.2
7a) N
IvBusl ayout
| livMultiplel ayout IivMultiplelayoutReport
1 K oo -
IvCircula rlayout
[IlvRecursivel ayout livRecursivel ayoutReport
— Koo —
IvGridLayout

(- IvRecursiveMultiplel ayout

IvHierarchicalLayout

[IivTopologicalMeshLayout livTopologicalMeshLayoutReport
1 Koo———> -
IvRandomlL ayout
— IvUniformLengthE dgesL ayout IivUniformLengthE dgesLayoutReport
— Koo —
1lvS pringE mbedderlayout
[IlvLinkL ayout

=1 11

IvS hortLinkLay out

IvLongLinkLayout IvLongLinkLayoutReport

K>—= —

The Class IlvGraphLayout and its subclasses and relationships to layout reports

Instantiating a subclass of llvGraphLayout

The class I1vGraphLayout is an abstract class. It has no constructors. You will instantiate
a subclass as shown in the following example:

IlvLinkLayout layout = new IlvLinkLayout();

Attaching/detaching a grapher

You must attach the grapher before performing the layout. The attachment is done through
a GraphModel, which is a graph abstraction manipulated by the layout algorithms to lay out
graphs. The following method, defined on the class I1vGraphLayout, allows you to specify
the grapher you want to lay out:

USING GRAPH LAYOUT ALGORITHMS 21

22

U

S

N G

void attach (IlvGraphModel graphModel)
For example:

import ilog.views.eclipse.graphlayout.GraphModel;

GraphModel graphModel = new GraphModel (myGrapherEditPart);
layout.attach (graphModel) ;

The attach method does nothing if the specified grapher is already attached. If a different
grapher is attached, this method first detaches this old grapher, then attaches the new one.
The attached graph model can be obtained by:

IlvGraphModel graphModel = layout.getGraphModel () ;

After layout, when you no longer need the layout instance, you should call the method

void detach ()

If the detach method is not called, some objects may not be garbage-collected. It also removes
layout parameters of nodes and links.

Note: A layout instance should stay attached as long as its layout parameters are relevant
for the grapher. Only when the layout parameters, and therefore the entire layout
instance, become irrelevant for this grapher should it be detached.

Performing a layout

The performLayout method starts the layout algorithm using the currently attached grapher
and the current settings for the layout parameters. The method returns a report object that
contains information about the behavior of the layout algorithm.

IlvGraphLayoutReport performLayout ()

IlvGraphLayoutReport performLayout (boolean force, boolean redraw)

The first version of the method simply calls the second one with a false value for the first
argument and a true value for the second argument. If the argument force is false, the
layout algorithm first verifies whether it is necessary to perform the layout. It checks internal
flags to see whether the grapher or any of the parameters have been changed since the last
time the layout was successfully performed. A “change” can be any of the following:

4 Nodes or links have been added or removed.

4 Nodes or links have been moved or reshaped.

GRAPH LAYOUT ALGORITHMS

¢ The value of a layout parameter has been modified.

Users often do not want the layout to be computed again if no changes occurred. If there
were no changes, the method performLayout returns without performing the layout. Note
that if the argument force is passed as true, the verification is no longer performed.

The argument redraw is ignored by IBM® ILOG® JViews JViews Graph Layout for Eclipse.

The protected abstract method layout (boolean redraw) is then called. This means that
the control is passed to the subclasses that are implementing this method. The implementation
computes the layout and moves the nodes to new positions and/or reshapes the links.

The performLayout method returns an instance of I11vGraphLayoutReport (or of a subclass)
that contains information about the behavior of the layout algorithm. It tells you whether
the algorithm performed normally, or whether a particular, predefined case occurred. (For
a more detailed description of the layout report, see Using a graph layout report.)

Note that the layout report that is returned can be an instance of a subclass of
IlvGraphLayoutReport depending on the particular subclass of 11vGraphLayout you are
using. For example, it will be an instance of I1vTopologicalMeshLayoutReport if you are
using the class T1vTopologicalMeshLayout. Subclasses of I11vGraphLayoutReport are used
to store layout algorithm-dependent information.

You must call the method performLayout inside a try block because it can throw an
exception. The exception can be of the type I11vGraphLayoutException or
IlvInappropriateGraphException. The first indicates internal problems in the layout
algorithm or an unexpected situation. The second exception indicates that a particular
grapher cannot be laid out with the layout algorithm. For example, the Topological Mesh
Layout cannot be used on a tree). See Layout exceptions for details and solutions.

Further information
You can find more information about the class T11vGraphLayout in the following sections:

¢ Base class parameters and features contains the methods that are related to the
customization of the layout algorithms.

¢ Using event listeners tells you about the layout event listener mechanism.

¢ Defining your own type of layout tells you how to implement new subclasses.

For details on I1vGraphLayout and other graph layout classes, see the Java™ API Reference
Documentation.

USING GRAPH LAYOUT ALGORITHMS 23

Releasing resources used during the layout of a grapher

24

USI NG

Various objects need to be created during the layout process. Most commonly, these are:
4 Layout instances (subclasses of I1vGraphLayout)
4 Other adapters (GraphModel)

4 Layout providers.

For recursive layout, you may also instantiate layout providers (subclasses of
IlvDefaultLayoutProvider). See also Recursive layout.

4 Property objects

Some of the layout parameters are internally stored as property objects attached to the
grapher object or to its nodes and links.

Rules for releasing resources

If you program graph layout directly in Java, you must respect some rules to ensure that all

these allocated objects are correctly released:

1. When a layout instance instantiated by your code is no longer useful, call the method

detach () on it to ensure that no grapher or graph model is still attached to it. Note that

you can freely reuse a layout instance once the previously attached model has been
detached.

2. Layout parameters that are specific to a node or a link are cleaned when calling

IlvGraphLayout.detach (). This cleaning is done only for nodes and links that are still
in the grapher when the detach () method is called. If per-node or per-link parameters

have been specified and the node or the link needs to be removed before the detach ()
method can be called, you can call the methods cleanNode or cleanLink of the class
IlvGraphLayout to perform the cleaning for the node or the link. However, you only

need to do so if the removed node or link is reused by your code after removal. Otherwise,
if your code does not keep any reference to it, the node or link will be garbage collected

anyway, together with the property objects eventually stored by the layout.

3. When a graph model instantiated by your code is no longer useful, call the method

dispose () on it to ensure that the resources it has used are released. Note that a graph

model must not be used once it has been disposed.

4. When a layout provider (an instance of I1vDefaultLayoutProvider) instantiated by
your code is no longer useful, call the method detachLayouts (model, true) on it,

passing as arguments the graph models that have been used for performing a recursive

layout with this provider.

GRAPH LAYOUT ALGORITHMS

Layout algorithms

Describes the IBM® ILOG® JViews Graph Layout algorithms.

In this section

Overview of graph layout information
Describes the information given for each graph layout algorithm.

Determining the appropriate layout algorithm
Explains how to determine which graph layout is appropriate.

Typical ways to choose a layout
Explains possible ways to choose a graph layout algorithm.

Generic parameters and features
Describes the support for generic features and parameters provided by each layout algorithm.

Layout characteristics
Describes the effect of settings on each layout algorithm.

Topological Mesh Layout (TML)
Gives information on the Topological Mesh Layout (TML) algorithm (class
IlvTopologicalMeshLayout from the package ilog.views.graphlayout.topologicalmesh).

Force-directed or Uniform Length Edges Layout (ULEL)

Describes the Force-directed layout or Uniform Length Edges Layout algorithm (class
IlvUniformLengthEdgesLayout from the package ilog.views.graphlayout.
uniformlengthedges).

© Copyright IBM Corp. 1987, 2009 25

26

USI NG

Tree Layout (TL)
Describes the Tree Layout algorithm (class I1vTreeLayout from the package ilog.views.
graphlayout.tree).

Hierarchical Layout (HL)
Describes the Hierarchical Layout algorithm (class I1vHierarchicalLayout from the package
ilog.views.graphlayout.hierarchical).

Link layout (LL)
Describes the Link Layout algorithm (class I1vLinkLayout from the package ilog.views.
graphlayout.link).

Random layout (RL)
Describes the Random Layout algorithm (class I1vRandomLayout from the package ilog.
views.graphlayout.random).

Bus layout (BL)
Describes the Bus Layout algorithm (class 11vBusLayout from the package ilog.views.
graphlayout.bus).

Circular layout (CL)
Describes the Circular Layout algorithm (class I1vCircularLayout from the package ilog.
views.graphlayout.circular).

Grid layout (GL)

Describes the Grid Layout algorithm (class I1vGridLayout from the package ilog.views.
graphlayout.grid).

GRAPH LAYOUT ALGORITHMS

Overview of graph layout information

For each layout, the information given includes:
Code samples

Which types of graphs the layout may be used for
The application domains, features, and limitations
A brief description of the algorithm

The specification

* & & & oo o

The generic features and parameters, as well as the specific parameters of the algorithm

USING GRAPH LAYOUT ALGORITHMS 27

Determining the appropriate layout algorithm

28

USI NG

When using the graph layout package, you need to determine which of the ready-to-use
layout algorithms is appropriate for your particular needs. Some layout algorithms can
handle a wide range of graphs. Others are designed for particular classes of graphs and will
give poor results or will reject graphs that do not belong to these classes. For example, a
Tree Layout algorithm is designed for tree graphs, but not cyclic graphs. Therefore, it is
important to lay out a graph using the appropriate layout algorithm.

The following tables can help you determine which of the layout algorithms is best suited
for a particular type of graph.

4 Across the top of the table are various classifications of different types of graphs.
4 The layout algorithms appear on the left side of the tables.

4 Table cells containing illustrations indicate when a layout algorithm is applicable for a
particular type of graph.

By identifying the general characteristics of the graph you want to lay out, you can see from
the tables whether a layout algorithm is suited for that particular type of graph.

For example, if you know that the structure of the graph is a tree, you can look at the
Domain-Independent Graphs/Trees column to see which layout algorithms are appropriate.
The Uniform Length Edges Layout, Tree Layout, and Hierarchical Layout could all be used.
Use the illustrations in the table cells to help you further narrow your choice.

You can use the Recursive layout to control the layout of nested graphs (containing subgraphs
and intergraph links). This is in particular useful if different layout styles should be applied
to different subgraphs. The Recursive Layout allows you to specify which layout is used for
which subgraph, and it traverses the entire nested graph recursively when applying the
layout. As a result, the entire nested graph is laid out.

You can use the Multiple layout to combine several different layouts into one instance. In
this case, they become sublayouts of the Multiple Layout instance.

This is useful in particular for nested graphs when used in combination with the Recursive
Layout. The Multiple Layout ensures that the normal layout, the routing of the intergraph
links, and the layout of labels are applied in the correct order to a nested graph.

GRAPH LAYOUT ALGORITHMS

Layout algorithms and common types of graphs

Layout Domain-Independent Graphs
Trees Cyclic Graphs | Any Graph
Topological - .
Mesh Layout LA A
;A= -\\\\
Gy "
\\\L;J .f?
LN 72
Requires (semi)manual refinements
Uniform s .t - -
=] [] Lo
Length Edges L L -. |.- ; Nt
Layout = -. " a by ") _-
| =l ™ I
L] o ‘.-'.
-
Preferable to avoid
heavily
interconnected
graphs (large
number of links)
Tree Layout -
Hierarchical - W
Layout AN e ilE
A /0 SN Fplal
| | — ik A
__F 7
A
| s LR
USI NG GRAPH LAYOUT ALGORITHMS 29

30

USI NG

Layout Domain-Independent Graphs
Trees Cyclic Graphs | Any Graph
Link Layout - |
_—
lf-r—‘ 7
TS
.]
ot Sl
Grid Layout ooy
5 I S I Y [|
4gd444d4
dada0a4d
Note that the algorithm does not take into
account the links between the nodes.
Recursive Nested graphs.
Layout
Multiple Combination of multiple different layout
Layout algorithms on the same graph (in particular
for nested graphs).

Telecom-Oriented Representations

Layout Telecom-Oriented Representations

Bus Layout

For bus topologies

Circular Layout

For interconnected ring/star topologies

GRAPH LAYOUT ALGORITHMS

Typical ways to choose a layout

Explains possible ways to choose a graph layout algorithm.

In this section

Choosing a layout algorithm
Explains the difference between automatic and semiautomatic layout selection.

Choosing the layout algorithm dynamically
Explains how to choose a layout algorithm automatically at run time.

Hard-coding a layout at run time
Explains how to choose a layout at run time.

USING GRAPH LAYOUT ALGORITHMS 31

Choosing a layout algorithm

32

USI NG

The choice of the appropriate algorithm for a graph can be done either by the end user at
run time or by the programmer when he develops the application. This process can be
semiautomatic, when the user is involved, or automatic, when the application does everything
with no user intervention.

As a programmer of applications, you can choose Semiautomatic layout to involve the end
user in the choice of the layout, or Automatic layout, in which case the application does
everything with no end user action.

Semiautomatic layout

For applications using a semiautomatic layout, the choice of the layout algorithm is done
by the end user. The application can provide a menu or some other way to select the layout
algorithm.

In some cases, this may be an iterative process. The user may try different layout algorithms
with different values for the parameters and/or may apply manual refinements to find the
best layout. The application may possibly provide some help using textual explanations or
by automatically checking the graph to find out to which class it belongs. For example, to
detect whether the graph that has been attached to a layout instance is a tree, the
IlvGraphLayoutUtil class provides the method:

static boolean IsTree (IlvGraphLayout layout, Object startNode)

For details on this method, see IsTree (ilog.views.graphlayout.IlvGraphLayout, java.
lang.Object). See also Attaching/detaching a grapher.

Automatic layout
If an automatic layout is needed, the choice of the layout algorithm can be:

4 Chosen dynamically at run time by means of heuristics or rules to determine the
appropriate layout algorithm depending on the structure and/or size of the graph

4 Hard-coded if the developer knows what types of graphs will be used and can determine
the appropriate layout algorithm.

GRAPH LAYOUT ALGORITHMS

Choosing the layout algorithm dynamically

If nothing is known about the graphs that the application will need to lay out, the developer
can write a routine that automatically chooses the layout algorithm at run time. The following
simple rules could be applied:

1.

If the nodes of the graph cannot be moved (they are geo-positioned), use the Link
Layout.

If the graph is a tree, use the Tree Layout.

Otherwise, use one of the layout algorithms that are the less restricted to a given
graph category, especially the Uniform Length Edges Layout. (The preferred length
of the links could also be computed with respect to the size of the nodes.)

. If the graph is too large, apply a “divide-and-conquer” strategy. Cut the graph into

several subgraphs and apply the layout separately to each subgraph. If the graph is
disconnected, you can use the built-in support provided by the layout library to perform
this task automatically. (See Layout of connected components.)

. Ifthe graph is nested, use the Recursive Layout algorithm that controls which subgraph

is laid out by which (flat) sublayout. Use steps 1 to 4 to determine the sublayouts for
the subgraphs. The Hierarchical Layout and the Tree Layout also have special modes
for nested graphs, see Recursive mode and Recursive layout.

USING GRAPH LAYOUT ALGORITHMS 33

Hard-coding a layout at run time

If the choice of the layout algorithm is hard-coded, but the layout must be performed at run
time because the graphs are not known at programming time, one possible step-by-step
procedure for the choice of the appropriate layout algorithm may be the following:

1. Look at sample graphs for your domain.

2. Try to determine some generalities about the properties of the structure and the size
of the graph (Is the graph cyclic? Is the graph a tree? Is the graph a combination of
the two? What is the number of nodes and links in the graph?)

3. Pick an appropriate layout algorithm.

4. Try out the algorithm on one or more samples.

See also

Determining the appropriate layout algorithm

3 USING GRAPH LAYOUT ALGORITHMS

Generic parameters and features

Describes the support for generic features and parameters provided by each layout algorithm.

In this section

Support by algorithms of generic features and parameters
Describes the support for generic features and parameters provided by each layout algorithm.

Base class parameters and features
Describes the generic features and parameters for customizing graph layout algorithms.

USING GRAPH LAYOUT ALGORITHMS 35

Support by algorithms of generic features and parameters

The following table indicates the generic features and parameters that are supported by
each layout algorithm. These parameters are defined in the base class for all layout
algorithms, I1vGraphLayout

36 USING GRAPH LAYOUT ALGORITHMS

Generic parameters supported b

y layout algorithms

Layout
Algorithm
Parameters

TML

ULEL

TL

HL

LL

RL

BL

CL

GL

Recursive
Layout

Multiple
Layout

Allowed
Time

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Fixed Links

Yes

Yes

Yes

Fixed
Nodes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Layout of
Connected
Components

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Layout
Region

Yes

Yes

Yes

Yes

Yes

Yes

Link
Clipping

Yes

Yes

Yes

Yes

Yes

Yes

Link
Connection
Box

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Memory
Savings

Percentage
Complete

Yes

Yes

Yes

Yes

Yes

Yes

Random
Generator
Seed Value

Yes

Stop
Immediately

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Key

TML Topological Mesh Layout

ULEL Uniform Length Edges Layout

TL Tree Layout

HL Hierarchical Layout

LL Link Layout

RL Random Layout

BL Bus Layout

USI NG

GRAPH

LAYOUT

ALGORITHMS

37

CL Circular Layout
GL Grid Layout

383 USING GRAPH LAYOUT ALGORITHMS

Base class parameters and features

The I11vGraphLayout class defines a number of generic features and parameters. These
features and parameters can be used to customize the layout algorithms.

Although the I1vGraphLayout class defines the generic parameters, it does not control how
they are used by its subclasses. Each layout algorithm (that is, each subclass of
IlvGraphLayout) supports a subset of the generic features and determines the way in which
it uses the generic parameters. When you create your own layout algorithm by subclassing
IlvGraphlLayout, you decide whether you want to use the features and the way in which
you are going to use them.

The 11vGraphLayout class defines the following generic features:
Allowed time

Automatic layout

Layout of connected components
Layout region

Link clipping

Link connection box

Memory savings

Percentage of completion calculation
Preserve fixed links

Preserve fixed nodes

Random generator seed value

Stop immediately

® & & & O & O o O o o o o

Use default parameters

Support by algorithms of generic features and parameters provides a summary of the generic
parameters supported by each layout algorithm. If you are using one of the subclasses
provided with IBM® ILOG® JViews, check the documentation for that subclass to know
whether it supports a given parameter and whether it interprets the parameter in a particular
way.

Allowed time

Several layout algorithms can be designed to stop computation when a user-defined time
specification is exceeded. This may be done for different reasons: as a security measure to
avoid a long computation time on very large graphs or as an upper limit for algorithms that
iteratively improve a current solution and have no other criteria to stop the computation.

Example of specifying allowed time
To specify that the layout is allowed to run for 60 seconds:

USING GRAPH LAYOUT ALGORITHMS 39

40

USI NG

In Java™
Call:

layout.setAllowedTime (60000)

The time is in milliseconds. The default value is 32000 (32 seconds).

If you subclass 11vGraphLayout, use the following method to know whether the specified
time was exceeded:

boolean isLayoutTimeElapsed ()

To indicate whether a subclass of T1vGraphLayout supports this mechanism, use the method:

boolean supportsAllowedTime ()

The default implementation returns false. A subclass can override this method to return
true to indicate that this mechanism is supported.

Automatic layout

For some layout algorithms, it may be suitable to have the layout automatically performed
again after each change of the graph, that is, when a node or link moves, is added, or is
removed. Automatic layout is most useful for link layouts, in a situation where the shape of
the links must remain optimal after each editing action of the end-user. It also works well
with other layout algorithms that offer an incremental behavior, that is, for which a small
change of the graph usually produces only a small change of the layout. Automatic layout
is generally not suitable for non-incremental layout algorithms.

Example of automatic layout
To enable automatic layout:

In Java
Call:

layout.setAutoLayout (true) ;

For more information about automatic layout, see the method performaAutoLayout () in the
Java API Reference Documentation.

Layout of connected components

The base class T1vGraphLayout provides generic support for the layout of a disconnected
graph (composed of connected components). For details, see Laying out connected
components of a disconnected graph.

Example of layout
To enable the placement of disconnected graphs:

In Java
Call:

GRAPH LAYOUT ALGORITHMS

setLayoutOfConnectedComponentsEnabled (true) ;

Note: Some of the layout classes (I1vHierarchicallLayout, I1vCircularLayout)
have a built-in algorithm for placing connected components. This algorithm is enabled
by default and fits the most common situations. For these layout classes, the generic
mechanism provided by the base class T1vGraphLayout is disabled by default.

When enabled, a default instance of the class I1vGridLayout is used internally to place the
disconnected graphs. If necessary, you can customize this layout.

Example of customizing layout
To customize this layout:

In Java
Call:

IlvGridLayout gridLayout = new IlvGridLayout();
gridLayout.setLayoutMode (I1lvGridLayout.TILE TO ROWS) ;
gridLayout.setTopMargin (20) ;

layout.setLayoutOfConnectedComponents (gridLayout) ;

Example for experts

The various capabilities of the class 11vGridLayout cover most of the likely needs for the
placement of disconnected graphs. However, if necessary, you can write your own subclass
of I1vGraphLayout to place disconnected graphs and specify it instead of I11vGridLayout:

In Java
Call:

MyGridLayout myGridLayout = new MyGridLayout () ;
// settings for myGridLayout, if necessary

layout.setLayoutOfConnectedComponents (myGridLayout) ;

To indicate whether a subclass of 11vGraphLayout supports this mechanism, use the method:

boolean supportsLayoutOfConnectedComponents ()

The default implementation returns false. You can write a subclass to override this behavior.

Layout region

Some layout algorithms can control the size of the graph drawing and can take into account
a user-defined layout region.

USING GRAPH LAYOUT ALGORITHMS 41

42

USI NG

Example of specifying layout region
To specify a region of 100 by 100:

In Java

layout.setLayoutRegion (new IlvRect (0,0,100,100));

To access the layout region, use the method:

IlvRect getSpeclLayoutRegion ()

This method returns a copy of the rectangle that defines the specified layout region.

The layout algorithms call a different method:

IlvRect getCalcLayoutRegion ()

This method first tries to use the layout region specification by calling the method
getSpecLayoutRegion (). If this method returns a non-null rectangle, this rectangle is
returned. Otherwise, the method tries to estimate an appropriate layout region according
to the number and size of the nodes in the attached graph. If no graph is attached, or the
attached graph is empty, it returns a default rectangle (0, 0, 1000, 1000).

To indicate whether a subclass of 11vGraphLayout supports the layout region mechanism,
use the method:

boolean supportsLayoutRegion ()

The default implementation returns false. A subclass can override this method in order to
return true to indicate that this mechanism is supported.

Note: The implementation of the method 1ayout (boolean) is solely responsible for whether
the layout region is taken into account when calculating the layout, and in which manner.
For details, refer to the documentation of the layout algorithms.

Link clipping

Some layout algorithms try to calculate the specific connection points of links at the border
of nodes while other layout algorithms do not calculate any connection points.

If a layout algorithm calculates specific connection points, then it places the connection
points of links by default at the border of the bounding box of the nodes. If the node has a
nonrectangular shape such as a triangle, rhombus, or circle, you may want to place the
connection points exactly on the border of the shape. This can be achieved by code by
specifying a link clip interface. The link clip interface allows you to correct the calculated
connection point so that it lies on the border of the shape. Some examples are shown in the
following figure.

GRAPH LAYOUT ALGORITHMS

without clipping with clipping
Effect of link clipping interface

Example of link clipping
To specify the link clip interface:

In Java
Use the method:

setLinkClipInterface(ilog.views.graphlayout.IlvLinkClipInterface)

You modify the position of the connection points of the links by implementing a class that
implements the I1vLinkClipInterface. This interface defines the following method:

public IlvPoint getConnectionPoint
(IlvGraphModel graphModel,
Object node,
IlvRect currentNodeBox,
Object link,
IlvPoint proposedConnectionPoint,
IlvPoint auxControlPoint,
boolean origin)

This method getConnectionPoint (ilog.views.graphlayout.IlvGraphModel, java.lang.
Object, ilog.views.IlvRect, java.lang.Object, ilog.views.IlvPoint, ilog.views.
IlvPoint, boolean) allows you to return the corrected connection point when the layout
algorithm tries to connect to the proposed connection point. The auxControlPoint parameter
is the auxiliary control point of the link segment that ends at the proposed connection point.
The flag origin indicates whether the connection point is the start point or the end point
of the link.

One strategy is to calculate the intersection between the ray starting at auxControlPoint
and going through proposedConnectionPoint and the shape of the node. If there is any
intersection, we return the one closer to auxControlPoint. If there is no intersection, clipping
is not possible and we return the proposed connection point.

The following sample shows how to set a link clip interface that clips the connection points
at the border of an ellipse or circle node:

layout.setLinkClipInterface (new IlvLinkClipInterface() {
public IlvPoint getConnectionPoint
(IlvGraphModel graphModel,
Object node,

USING GRAPH LAYOUT ALGORITHMS 43

44

U

S

N

G

IlvRect nodeBox,
Object link,
IlvPoint proposedConnectionPoint,
IlvPoint auxControlPoint,
boolean origin)

// get the intersections between the line through connect and control
// point and the ellipse at currentNodeBox.
IlvPoint[] intersectionPoints = new IlvPoint[2];
int numIntersections = IlvClippingUtil.LinelIntersectsEllipse (
proposedConnectionPoint, auxControlPoint,
nodeBox, intersectionPoints);
// choose the result from the intersections
return IlvClippingUtil.BestClipPointOnRay (proposedConnectionPoint,
auxControlPoint,
intersectionPoints,
numIntersections) ;

Link connection box

If a layout algorithm calculates specific connection points, it places the connection points
of links by default at the border of the bounding box of the nodes, symmetrically with respect
to the middle of each side. Sometimes it may be necessary to place the connection points
on a rectangle smaller or larger than the bounding box, eventually in a nonsymmetric way.
For instance, this can happen when labels are displayed below or above nodes (see Effect
of Link Connection Box Interface). This can be achieved by specifying a link connection box
interface. The link connection box interface allows you to specify, for each node, a node box
different from the bounding box that is used to connect the links to the node.

Example of link connection box interface
In Java
To set a link connection box interface in Java, call:

void setLinkConnectionBoxInterface (IlvLinkConnectionBoxInterface interface)

You implement the link connection box interface by defining a class that implements the
IlvLinkConnectionBoxInterface. This interface defines the following method:

public IlvRect getBox (IlvGraphModel graphModel, Object node) ;

This method allows you to return the effective rectangle on which the connection points of
the links are placed.

A second method defined on the interface allows the connection points to be “shifted”
tangentially, in a different way for each side of each node:

GRAPH LAYOUT ALGORITHMS

public float getTangentialOffset (IlvGraphModel graphModel,
Object node, int nodeSide);

|h.—|
[T
T Multi
Ineg
Line
Label
Labe

without link connection box final result with link connection box
SEssssssssss :------"“""“""‘l‘l‘
H ' H —>
L] "
L] "
"
: T !
L]
: ' —
.I -- = ‘-I -- -
with connection box, with connection box,
ne tangential offset with positive tangential offsets

Effect of Link Connection Box Interface

For instance, to set a link connection box interface that returns a link connection rectangle
that is smaller than the bounding box for all nodes of type I1vShadowRectangle and shifts
up the connection points on the left and right side of all the nodes, call:

layout.setLinkConnectionBoxInterface (new IlvLinkConnectionBoxInterface() {
public IlvRect getBox (IlvGraphModel graphModel, Object node) {
IlvRect rect = graphModel.boundingBox (node) ;
if (node instanceof IlvShadowRectangle) {
// need a rect that is 4 pixels smaller
rect.resize (rect.width-4.f, rect.height-4.f);
}
return rect;
}
public float getTangentialOffset (IlvGraphModel graphModel,
Object node, int nodeSide) {
switch (nodeSide) {
case IlvDirection.Left:
case IlvDirection.Right:
return -10; // shift up with 10 for both left and right side
}
return 0; // no shift for top and bottom side

USING GRAPH LAYOUT ALGORITHMS 45

46

USI NG

Some layout algorithms allow you to use the link connection box interface and the link clip
interface in a combined way. It is specific to each layout algorithm how the interfaces will
be used and which connection points are the final result.

To indicate whether a subclass of T11vGraphLayout supports the link connection box interface,
use the method:

boolean supportsLinkConnectionBox ()

The default implementation returns false. You can write a subclass to override this method
in order to return true to indicate that this mechanism is supported.

Memory savings

The computation of a layout on a large graph may require a large amount of memory. Some
layout algorithms optionally use two ways to store data: one which gives the priority to speed
(this is the default case), the other which consumes less memory and is usually slower. The
amount of memory savings depends, of course, on the implementation of the subclass of
IlvGraphLayout. No matter which option you choose for memory savings, the resulting
layout should be the same.

Example of memory savings
To enable memory savings:

In Java
Use the method:

void setMemorySavings (boolean option)

Memory savings is disabled by default.

To indicate whether a subclass of T1vGraphLayout supports this mechanism, use the method:

boolean supportsMemorySavings ()

The default implementation returns false. You can write a subclass to override this method
in order to return true to indicate that this mechanism is supported.

Percentage of completion calculation

Some layout algorithms can provide an estimation of how much of the layout has been
completed. This estimation is made available as a percentage value that is stored in the
graph layout report. When the algorithm starts, the percentage value is set to 0. The layout

algorithm calls the following method from time to time to increase the percentage value by
steps until it reaches 100:

void increasePercentageComplete (int newPercentage) ;

The percentage value can be accessed from the layout report using the following:

GRAPH LAYOUT ALGORITHMS

int percentage = layoutReport.getPercentageComplete () ;

To see an example of how to read the percentage value during the running of a layout, see
Graph layout event listeners.

To indicate whether a subclass of 11vGraphLayout supports this mechanism, use the method:

boolean supportsPercentageComplete ()

The default implementation returns false. A subclass can override this method to return
true to indicate that this mechanism is supported.

Preserve fixed links

At times, you may want some links of the graph to be “pinned” (that is, to stay in their current
shape when the layout is performed). You need a way to indicate the links that the layout
algorithm cannot reshape. This makes sense especially when using a semi-automatic layout
(the method where the end user fine-tunes the layout by hand after the layout is completed)
or when using an incremental layout (the method where the graph and/or the shape of the
links is modified after the layout has been performed, and then the layout is performed
again).

Example of fixing links
To specify that a link is fixed:

In Java
Use the method:

void setFixed(Object link, boolean fixed)

If the fixed parameter is set to true, it means that the link is fixed. To obtain the current
setting for a link:

boolean isFixed (Object link)

The default value is false.

To remove the fixed attribute from all links in the grapher, use the method:

void unfixAllLinks ()

The fixed attributes on links will be taken into consideration only if you additionally call the
following statement:

layout.setPreserveFixedLinks (true);

To indicate whether a subclass of 11vGraphLayout supports this mechanism, use the method:

USING GRAPH LAYOUT ALGORITHMS 47

48

USI NG

boolean supportsPreserveFixedLinks ()

The default implementation returns false. A subclass can override this method in order to
return true to indicate that this mechanism is supported.

Preserve fixed nodes

At times, you may want some nodes of the graph to be “pinned” (that is, to stay in their
current position when the layout is performed). You need a way to indicate the nodes that
the layout algorithm cannot move. This makes sense especially when using a semi-automatic
layout (the method where the end user fine-tunes the layout by hand after the layout is
completed) or when using an incremental layout (the method where the graph and/or the
position of the nodes is modified after the layout has been performed, and then the layout
is performed again).

Example of fixing nodes
To specify that a node is fixed:

In Java
Use the method:

void setFixed(Object node, boolean fixed)

If the fixed parameter is set to true, it means that the node is fixed. To obtain the current
setting for a node:

boolean isFixed (Object node)

The default value is false.

To remove the fixed attribute from all nodes in the grapher, use the method:

void unfixAllNodes ()

The fixed attributes on nodes will be taken into consideration only if you also call:

layout.setPreserveFixedNodes (true) ;

To indicate whether a subclass of T1vGraphLayout supports this mechanism, use the method:

boolean supportsPreserveFixedNodes ()

The default implementation returns false. A subclass can override this method in order to
return true to indicate that this mechanism is supported.

Random generator seed value

Some layout algorithms use random numbers (or randomly chosen parameters) for which
they accept a user-defined seed value. For example, the Random Layout uses the random

GRAPH LAYOUT ALGORITHMS

generator to compute the coordinates of the nodes. The Uniform Length Edges Layout uses
the random generator to compute some internal variables.

Subclasses of T1vGraphLayout that are designed to support this mechanism allow the user
to choose one of three ways of initializing the random generator:

4 With a default value that is always the same.
4 With a user-defined seed value that can be changed when re-performing the layout.

4 With an arbitrary seed value, which is different each time. In this case, the random
generator is initialized based on the system time.

The user chooses the initialization option depending on what happens when the layout
algorithm is performed again on the same graph. If the same seed value is used, the same
layout is produced, which may be the desired result. In other situations, the user may want
to produce different layouts in order to select the best one. This can be achieved by
performing the layout several times using different seed values.

Example of random generator seed value

In Java

This example shows how this parameter can be used in Java in combination with the java.
util.Random class in your implementation of the method I1vGraphLayout.layout ():

Random random = (isUseSeedValueForRandomGenerator()) °?
new Random(getSeedValueForRandomGenerator ())
new Random() ;

To specify the seed value in Java, use the method:

void setSeedValueForRandomGenerator (long seed)

The default seed value is 0.

The user-defined seed value is used only if you call additionally

layout.setUseSeedValueForRandomGenerator (true) ;

To indicate whether a subclass of T1vGraphLayout supports this parameter, use the method:

boolean supportsRandomGenerator ()

The default implementation returns false. A subclass can override this method in order to
return true to indicate that this parameter is supported.

To specify the seed value, use the method:

void setSeedValueForRandomGenerator (long seed)

The default seed value is 0.

The user-defined seed value is used only if you call additionally

USING GRAPH LAYOUT ALGORITHMS 49

50

USI NG

layout.setUseSeedValueForRandomGenerator (true) ;

To indicate whether a subclass of 11vGraphLayout supports this parameter, use the method:

boolean supportsRandomGenerator ()

The default implementation returns false. A subclass can override this method in order to
return true to indicate that this parameter is supported.

Stop immediately

Several layout algorithms can stop computation when an external event occurs, for instance
when the user hits a “Stop” button. In Java, to stop the layout, you can call:

boolean stopImmediately () ;

This method is typically called in a multithreaded application from a separate thread that
is not the layout thread. The method returns true if the stop was initiated and false if the
algorithm cannot stop. The method returns immediately, but the layout thread usually needs
some additional time after initiating the stop to clean up data structures.

The consequences of stopping a layout process depend on the specific layout algorithm.
Some layout algorithms have an iterative nature. Stopping the iteration process results in
a slight loss of quality in the drawing, but the layout can still be considered valid. Other
layout algorithms have a sequential nature. Interrupting the sequence of the layout steps
may not result in a valid layout. Usually, these algorithms return to the situation before the
start of the layout process.

To indicate whether a subclass of T1vGraphLayout supports this mechanism, use the method:

boolean supportsStopImmediately ()

The default implementation returns false. You can write a subclass to override this method
in order to return true to indicate that this mechanism is supported.

Use default parameters

All the generic parameters have a default value. After modifying parameters, you may want
the layout algorithm to use the default values. Then, you may want to return to your
customized values. IBM® ILOG® JViews keeps the previous settings when selecting the

default values mode. In Java, you can switch between the default values mode and the mode
for your own settings using the method:

void setUseDefaultParameters (boolean option)

To obtain the current value:

GRAPH LAYOUT ALGORITHMS

boolean isUseDefaultParameters ()

The default value is false. This means that any setting you make will be taken into
consideration and the parameters that have not been specified will have their default values.

USING GRAPH LAYOUT ALGORITHMS 51

Layout characteristics

52

USI NG

It is often useful to know how certain settings will affect the resulting layout of the graph
after the layout algorithm has been applied. The following table provides additional
information about the behavior of the layout algorithms.

Layout characteristics of layout algorithms

Layout
algorithm

Do the initial
positions of the
nodes affect the
layout?

How do | get a different layout of the same graph
when | perform the layout a second time?

Uniform Length
Edges Layout
(ULEL)

Topological Mesh | No You can completely change the layout by using the starting

Layout (TML) node, outer cycle, and fixed nodes parameters. To change
only the dimensions of the graph, use the layout region
parameter. See Outer cycle (TML) and Using fixed nodes
(TML).

Force-directed or | Yes In incremental mode, you can completely change the layout

by changing the initial positions of the nodes. To change
only the dimensions of the graph, use the preferred length
of the links or size of the layout region. See Preferred length
(ULEL).

Tree Layout (TL)

Yes (if incremental
mode is switched on)

In incremental mode, you can change the layout by changing
the initial positions of the nodes. Furthermore, you can
change the layout by selecting a different Root node (TL).
To change only the dimensions of the graph, use the various
offset parameters.

(HL)

Hierarchical Layout

Yes (if incremental
mode is switched on)

In incremental mode, you can change the layout by changing
the initial positions of the nodes. Furthermore, you can use
specified node level indices to change the level structure.
See Level index parameter (HL).

You can use specified node position indices to change the
node order within the levels. See Position index parameter
(HL).

You can change the layout by changing the link priorities.
See Link priority parameter (HL).

To change only the dimensions of the graph, use the various
offset parameters.

Link layout (LL)

Yes

Link Layout routes the links depending on the node
positions. It does not move the nodes. You can change the
link style option and the dimensional parameters, such as

GRAPH

LAYOUT

ALGORITHMS

Layout
algorithm

Do the initial
positions of the
nodes affect the
layout?

How do | get a different layout of the same graph
when | perform the layout a second time?

the link offset and final segment length. You can also specify
the rules for computing the connection points of the links.

Random layout No This is the default behavior when using the default

(RL) parameter settings (the random generator is initialized
differently each time).

Bus layout (BL) No, except in You change the dimensions of the graph by using the

incremental mode

various dimensional parameters.

Circular layout (CL)

No

You can completely change the layout by using clustering
settings and the root clusters parameter. You can change
the dimensions of the graph by using the dimensional
parameters.

Grid layout (GL)

Yes (if incremental
mode is switched on)

You can change various dimensional parameters, layout
mode, and so on.

Recursive layout

Depends on the
behavior of the
sublayouts applied to
the subgraphs.

Depends on the behavior of the sublayouts applied to the
subgraphs. You can change the parameters of the
sublayouts individually.

Multiple layout

Depends on the
behavior of the
sublayout that is
applied first.

Depends on the behavior of the sublayouts of the Multiple
Layout instance. You can change the parameters of the
sublayouts individually.

USI NG

GRAPH

LAYOUT ALGORITHMS 53

54 USING GRAPH LAYOUT ALGORITHMS

Topological Mesh Layout (TML)

Gives information on the Topological Mesh Layout (TML) algorithm (class
IlvTopologicalMeshLayout from the package ilog.views.graphlayout.topologicalmesh).

In this section

General information on the TML
Provides samples of the layout and explains where it is likely to be used.

Features and limitations of the TML
Lists the features and limitations of the layout.

The TML algorithm
Gives an explanation of the concepts underlying TML, a brief description of the algorithm
and a sample.

Generic features and parameters of the TML
Describes the generic parameters supported by TML and explains the particular way in
which these parameters are used by this subclass.

Specific parameters of the TML
Describes the specific parameters supported by TML and gives samples of their use.

Refining a graph layout (TML)
Describes how to refine the layout by fixing some nodes and avoiding overlapping nodes.

Using a link clipping interface with the TML
Describes the use of a link clipping interface.

USING GRAPH LAYOUT ALGORITHMS 55

General information on the TML

TML samples

The following sample drawings were produced with TML.

= \p

Small cyclic graph drawing produced with TML

56 USING GRAPH LAYOUT ALGORITHMS

/l\
Tl‘
e,

AN
gﬂr B 1 |
ALNS g

Large cyclic graph drawing produced with TML

A

What types of graphs suit the TML?

4 Cyclic (2-connected graph) graphs. (Preferably without cut-nodes or cut-edges; otherwise,
manual adjustments are necessary.)

4 Cyclic (2-connected) graphs plus only a few branches. (You may need to make manual
adjustments for the branches.)

4 Both planar graphs and nonplanar graphs.

Application domains for the TML
Application domains of the Topological Mesh Layout include:

4 Database and knowledge engineering (semantic networks, qualitative reasoning and
other artificial intelligence diagrams)

USING GRAPH LAYOUT ALGORITHMS 57

Features and limitations of the TML

58

USI NG

Features

¢

Most of the time, produces planar drawings of planar graphs, and drawings with a small
number of link crossings for nonplanar graphs.

Produces a nice layout for most small- and medium-size graphs relatively quickly. (The
maximum cyclomatic number of the graph is about 30-50, but the number of nodes and
links can be a lot higher.)

Most of the time, produces symmetrical drawings of symmetrical graphs.

The computation time for one iteration depends on the cyclomatic number of the graph,
which is smaller than the number of nodes or links.

The user can obtain several layouts of the same graph easily and quickly by simply
changing a parameter (especially the starting node and the outer cycle) or by applying
manual refinements to the layout. The best layout can then be selected from the resulting
layouts.

Limitations

¢

The algorithm tries to minimize the number of link crossings (which is generally an
NP-complete problem). It is mathematically impossible to quickly solve this problem for
any graph size. Therefore, the algorithm uses heuristics that cannot always obtain a layout
with the theoretical minimum number of link crossings.

The computation time required to obtain an appropriate drawing grows relatively quickly
with the cyclomatic number and the layout process may become very time-consuming for
large graphs. Again, this is because the minimization of the number of link crossings is
mathematically NP-complete in the general case.

The algorithm cannot automatically produce appropriate drawings of some types of
graphs:

® For graphs containing branches and graphs containing cut-nodes or cut-edges, manual
adjustments are necessary. (See Refining a graph layout (TML).)

® For disconnected graphs, the connected component layout feature should be used.
(See Layout of connected components)

The layout algorithm often produces a drawing with no overlapping nodes. Nevertheless,
overlapping nodes cannot always be avoided. When overlapping occurs, you can try to
increase the size of the layout region parameter or to change the outer cycle (see the
method setExteriorCyclelId (int)). You can also use manual adjustments to correct the
problem.

GRAPH LAYOUT ALGORITHMS

The TML algorithm

TML is a heuristical approach for the layout of cyclic graph, either planar graphs or nonplanar
graphs. TML is very simple to use. However, to use all the functionality of TML, you should
understand its basic concepts.

When laying out a general graph, producing a drawing with a minimum number of link
crossings is a mathematically NP-complete problem. The search space (and time) grows
exponentially with the graph size. Traditionally, most of the existing layout algorithms use
node coordinates from the beginning, searching for a coordinate set to minimize the cost
function, which is mainly the number of link crossings. These coordinates can be constrained
on a grid, but the number of combinations to explore is still enormous.

In contrast, TML uses a two-step approach that drastically reduces the number of
combinations to explore. The first step of TML deals only with the pure topology (that is,
the connectivity) of the graph without taking into consideration the node coordinates. This
first step is called topological optimization. It chooses one of the cycles of the graph to
be used in the second step.

In the second step, called node placement, the result of the first step is used to compute
the coordinates of the nodes using a deterministic, high-speed barycenter algorithm. Of
course, the problem still remains NP-complete and large graphs cannot be processed. In
practice, however, you will often get better results for “mesh” graphs with TML than with
many other algorithms.

Step 1: Topological optimization

Input
The topology of the graph (its connectivity or the neighborhood relationships between
nodes).

Output
A set of possible outer cycles, ordered decreasingly by their lengths. The length of a
cycle is the number of nodes in the cycle.

Explanation
This step determines what cycles of the graph, if used as an outer cycle for drawing the
graph during nodes placement, will allow a drawing with a minimum number of link
crossings. An optimization algorithm tries to minimize a heuristic cost function that
estimates the number of link crossings for each solution, based on pure topology (graph
connectivity)

Step 2: Node placement
Input
The output of topological optimization and the graph.

Output
A set of coordinates for the nodes. The coordinates are assigned to the nodes to obtain
the graph drawing.

Explanation
This step is a variant of the “barycentric” layout algorithm. It takes a cycle from the
output of topological optimization and draws it as a regular polygon. Then, it iteratively
moves each node (except those on the regular polygon) at the “barycenter” of its
neighbors (the nodes to which it is connected). This procedure always converges, and
the final result is a graph drawing where the number of link crossings is dependent only
on the choice of the outer cycle.

USING GRAPH LAYOUT ALGORITHMS 59

Example of TML

In Java
Below is a code sample using the I1vTopologicalMeshLayout class. This code sample shows
how to perform a Topological Mesh Layout:

import ilog.views.*;
import ilog.views.eclipse.graphlayout.GraphModel;
import ilog.views.eclipse.graphlayout.runtime.*;

import ilog.views.eclipse.graphlayout.runtime.topologicalmesh.*;

IlvTopologicalMeshLayout layout = new IlvTopologicalMeshLayout () ;
GraphModel graphModel = new GraphModel (myGrapherEditPart) ;
layout.attach (graphModel) ;
try {
IlvTopologicalMeshLayoutReport layoutReport =
(IlvTopologicalMeshLayoutReport) layout.performLayout () ;

int code = layoutReport.getCode () ;

System.out.println ("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) ({
System.err.println (e.getMessage()) ;

}
layout.detach() ;
graphModel.dispose () ;

It is possible to enable the link layout additionally, and in this case, the link layout determines
the shape of the links.

Important: All explanations in the subsequent sections regarding the shape of the links in
Topological Mesh Layout are valid only if the link layout is disabled.

USING GRAPH LAYOUT ALGORITHMS

Generic features and parameters of the TML

Overview (TML)

TML supports the following generic parameters defined in the 11vGraphLayout class (see
Base class parameters and features):

¢ Allowed time (TML)

Layout of connected components (TML)
Layout region (TML)

Link clipping (TML)

Link connection box (TML)

Memory savings (TML)

Preserve fixed links (TML)

* & & 6 o o o

Preserve fixed nodes (TML)

¢ Stop immediately (TML)

Note that all the methods allowing the modification of these parameters are overridden in
this subclass. This class keeps track of the changes for parameters that may affect the result
of Topological Optimization separately from the parameters that may affect only the nodes
placement step. In this way, the Topological Optimization step is not repeated. The previous
results are used if no parameters were modified since the last time the layout was successfully
performed on the same graph using the same layout instance.

Allowed time (TML)

The Topological Optimization step of TML stops if the allowed time setting has elapsed. In
the same manner, the Nodes Placement step of TML stops if the allowed time is exceeded.
(See Allowed time.)

You can specify separate time settings for each step. Each step is stopped if its specified
time limit is exceeded. To learn how to do this, see Optimization iterations and allowed time
(TML) and Node placement iterations and allowed time (TML).

Layout of connected components (TML)

The layout algorithm can use the generic mechanism to lay out connected components. (For
more information about this mechanism, see Layout of connected components.)

If the generic connected component layout mechanism is disabled, the algorithm lays out
only the connected component that contains the starting node.

USING GRAPH LAYOUT ALGORITHMS 61

62

USI NG

Layout region (TML)

The Nodes Placement step of TML first draws the outer cycle computed in the Topological
Optimization step as a regular polygon. It uses the layout region setting (either your own
or the default setting) to choose the size and the position of the polygon. The remaining
nodes are moved inside this polygon. (See Layout region.)

If you are using the default settings, an estimation of the appropriate layout region according
to the number and size of the nodes is used.

If TML produces a layout with overlapping nodes, one possible way to correct the problem
is to increase the size of the layout region. (For details, see Using the layout region parameter
(TML).)

Link clipping (TML)

The layout algorithm can use a link clip interface to clip the end points of a link. (See Link
clipping.)

This is useful if the nodes have a nonrectangular shape such as a triangle, rhombus, or
circle. If no link clip interface is used, the links are normally connected to the bounding
boxes of the nodes, not to the border of the node shapes. See Using a link clipping interface
with the TML for details of the link clipping mechanism in TML.

Link connection box (TML)

The layout algorithm can use a link connection box interface (see Link connection box) in
combination with the link clip interface. If no link clip interface is used, the link connection
box interface has no effect. For details see Using a link clipping interface with the TML.

Memory savings (TML)

As with all classes supporting this parameter, a certain amount of memory savings can be
obtained by selecting this option. Note that using this option does not change the resulting
layout. It just slows down the computation. (See Memory savings.)

Preserve fixed links (TML)

TML does not reshape the links that are specified as fixed. (See Preserve fixed links. See
also Link style (TML).)

Preserve fixed nodes (TML)

TML does not move the nodes that are specified as fixed. Moreover, the algorithm takes
into account the fixed nodes when computing the position of the nonfixed nodes. (See
Preserve fixed nodes.)

If TML produces a layout with overlapping nodes, you can use the fixed nodes mechanism
to correct the problem. (For details, see Using fixed nodes (TML).)

GRAPH LAYOUT ALGORITHMS

Stop immediately (TML)

The layout algorithm stops after cleanup if the method 11vTopologicalMeshLayout is called.
(For a description of this method in the 11vGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the result code in the layout report
is I1vGraphLayoutReport.STOPPED AND INVALID.

See also

Support by algorithms of generic features and parameters

USING GRAPH LAYOUT ALGORITHMS 63

Specific parameters of the TML

64

USI NG

The following parameters are specific to the 11vTopologicalMeshLayout class.

Link style (TML)

When the layout algorithm moves the nodes, straight-line links will automatically “follow”
the new positions of their end nodes. If the grapher contains other types of links the shape
of the link may not be appropriate because the intermediate points of the link will not be
moved. In this case, you can ask the layout algorithm to automatically remove all the
intermediate points of the links (if any).

To specify that the layout algorithm automatically remove all the intermediate points of the
links (if any):

In Java™
Use the method:

void setLinkStyle (int style)

The valid values for style are:

L4 IlvTopologicalMeshLayout.NO RESHAPE STYLE
None of the links is reshaped in any manner.

L4 IlvTopologicalMeshLayout.STRAIGHT LINE STYLE

All the intermediate points of the links (except for links specified as fixed) are removed.
This is the default value.

Optimization iterations and allowed time (TML)

The iterative computation performed in the Topological Optimization step is stopped if the
number of iterations exceeds the allowed number of iterations for optimization or the time
exceeds the allowed time for optimization (or, of course, if the general layout time has
elapsed; see Allowed time (TML)).

To specify the parameters:
In Java

Use the methods:

void setAllowedOptimizationTime (long time)
void setAllowedNumberOfOptimizationIterations (int iter)

The time is in milliseconds. The default value is 28000 (28 seconds).

Node placement iterations and allowed time (TML)

The iterative computation performed in the Nodes Placement step is stopped if the number
of iterations exceeds the allowed number of iterations or the time exceeds the allowed time

GRAPH LAYOUT ALGORITHMS

for node placement (or, of course, if the general layout time has elapsed; see Allowed time
(TML)).

To specify these parameters:

In Java
Use the methods:

void setAllowedNodesPlacementTime (long time)

void setAllowedNumberOfNodesPlacementIterations (int iter)

The time is in milliseconds. The default value is 28000 (28 seconds).

Node placement algorithm (TML)
Two barycentric algorithms are implemented for the Nodes Placement step of TML.
To specify the algorithm:

In Java
Use the method:

void setNodesPlacementAlgorithm(int option)

The valid values for option are:

L4 IlvTopologicalMeshLayout.SLOW_GOOD

This option provides more uniformity of the nodes distribution inside the outer cycle, but
is slightly slower.

L4 IlvTopologicalMeshLayout.QUICK BAD
This option provides less uniformity of the nodes distribution, but is slightly quicker.

In most cases, both algorithms are fairly quick. We recommend that you use the sLow_GoobD
version, which is the default value. Compare the layouts of the same graph in Node placement
algorithm: sLow_GooD and Node placement algorithm: QUICK BAD to get an idea of the
difference between these algorithms.

USING GRAPH LAYOUT ALGORITHMS 65

i
\

Node placement algorithm: SLOwW_GOOD

66 USING GRAPH LAYOUT ALGORITHMS

4

Node placement algorithm: QUICK BAD

Outer cycle (TML)

The Topological Optimization step of TML computes a set of cycles that can be used as the
outer cycle in the Nodes Placement step . By default, the longest cycle is actually used (that
is, the cycle containing the largest number of nodes). However, you may find it useful to try
a different outer cycle. To do so in Java, use the method:

void setExteriorCycleId(int cycleId)

The valid values for cycleId range from zero to the number of cycles computed by the
Topological Optimization step minus one. This number is returned by the method:

int getNumberOfPossibleExteriorCycles ()

If the number is not in this range, the value zero is used.

You can use these methods only after having performed the layout successfully. Otherwise,
no outer cycle is defined.

When the layout is performed again with a new outer cycle, only the Nodes Placement step
of TML is performed, and not the time-consuming the Topological Optimization step. This
is true if the topology of the graph has not been changed (that is, no nodes or links were
added or removed), and no parameters that affect the Topological Optimization step have
been changed.

USING GRAPH LAYOUT ALGORITHMS 67

68

USI NG

Layout using 1st outer cycle, Layout using 2nd outer cycle, Layout using 3rd outer cycle,
and Layout using 4th outer cycle show various layouts produced for the same graph when
the cycleld parameter is changed:

2 > 1
3
3
11
: s |
10
il
EII > 0
=

Layout using 1st outer cycle

Bk :

Layout using 2nd outer cycle

GRAPH LAYOUT ALGORITHMS

Layout using 4th outer cycle

USING GRAPH LAYOUT ALGORITHMS 69

Refining a graph layout (TML)

70

USI NG

After performing the layout on a graph, you may want to improve the quality of the layout
by making some manual refinements. The subsequent sections describe several ways to
refine your layouts. When the layout is performed again after the refinements have been
applied, only the Nodes placement step of TML is redone. The results of the Topological
Optimization are reused. This is an important benefit of TML because the algorithm can
recompute a layout using new parameters very quickly, without performing the
time-consuming Topological Optimization step again.

Using fixed nodes (TML)

One reason for applying manual refinements is to avoid overlapping nodes. To do this, you
can use the fixed nodes mechanism. (See Preserve fixed nodes.)

Take a look at the original layout shown in The original TML layout . Several overlapping
nodes exist in the original layout because the nodes are concentrated in a small region and
do not use the available space inside the outer cycle.

14 I~‘- 15
The original TML layout

To correct the problem, you can perform the following steps:

1. Move nodes 0, 9, and 10 to a place in the free space inside the outer cycle by hand as
shown in The TML layout with some nodes moved .

GRAPH LAYOUT ALGORITHMS

The TML layout with some nodes moved
. Specify nodes 0, 9, and 10 as fixed using the setFixed(java.lang.0Object, boolean)
method.

. Use the setPreserveFixedNodes (boolean) method to specify that the fixed nodes will
not be moved when the layout is performed.

. Perform the layout again. Only Step 2 will be performed.

The fixed nodes “attract” the other nodes, which are distributed in the larger area inside
the outer cycle as shown in The final TML layout with some fixed nodes.

The final TML layout with some fixed nodes

USING GRAPH LAYOUT ALGORITHMS 71

72

USI NG

Using the outer cycle parameter (TML)

By default, the Nodes Placement step of TML produces a layout using the longest outer
cycle computed in the Topological Optimization step. (The length of a cycle is the number
of nodes that compose the cycle.) Sometimes, a better layout can be obtained using a different
choice of the outer cycle. This process of changing the outer cycle parameter and performing
the layout again (see Outer cycle (TML)a) is a manual refinement procedure that can also
be used to avoid overlapping nodes.

Note that performing the layout with a new outer cycle requires very little CPU time.

Using the layout region parameter (TML)

Often, overlapping nodes can be avoided by simply increasing the size of the layout region
(see Layout region (TML)). Layout with small layout region and overlapping nodes shows a
graph drawing where several nodes overlap because the layout region is too small for the
graph. Layout with larger layout region and no overlapping nodes shows the same graph
after increasing the size of the layout region. As you can see, now there are no overlapping
nodes.

Layout with small layout region and overlapping nodes

17
4 5
10
11 14
2 l
5
m E
7

1

2

Layout with larger layout region and no overlapping nodes

GRAPH LAYOUT ALGORITHMS

Using a link clipping interface with the TML

By default, TML does not place the connection points of links. The default behavior is to
connect to a point at the border of the bounding box of the nodes. If the node has a
nonrectangular shape such as a triangle, rhombus, or circle, you may want the connection
points to be placed exactly on the border of the shape. This can be achieved by specifying
a link clip interface. The link clip interface allows you to correct the calculated connection
point so that it lies on the border of the shape. The following figure shows an example.

without clipping with clipping
Effect of Link Clipping Interface
You can modify the position of the connection points of the links by providing a class that

implements the I1vLinkClipInterface. An example for the implementation of a link clip
interface is in Link clipping. To set a link clip interface.

To set a link clip interface:

In Java™
Use the method:

void setlLinkClipInterface (IlvLinkClipInterface interface)

If a node has an irregular shape, the clipped links sometimes should not point towards the
center of the node bounding box, but to a virtual center inside the node. You can achieve
this by additionally providing a class that implements the I1vLinkConnectionBoxInterface.
An example for the implementation of a link connection box interface is in Link connection
box. To set a link connection box interface:

To set a link connection box interface:

In Java
Use the method:

USING GRAPH LAYOUT ALGORITHMS 73

74

USI NG

void setLinkConnectionBoxInterface (IlvLinkConnectionBoxInterface interface)

The link connection box interface is used only when link clipping is enabled by setting a link
clip interface. If no link clip interface is specified, the link connection box interface has no
effect.

The following figure shows an example of the combined effect.

Clipping at the nodebounding box Clipping at a specified connection box

Combined effect of link clipping interface and link connection box

If the links are clipped at the green irregular star node (see previous figure, left), they do
not point towards the center of the star, but towards the center of the bounding box of the
node. This can be corrected by specifying a link connection box interface that returns a
smaller node box than the bounding box (see previous figure, right). Alternatively, the
problem could be corrected by specifying a link connection box interface that returns the
bounding box as the node box but with additional tangential offsets that shift the virtual
center of the node.

GRAPH LAYOUT ALGORITHMS

Force-directed or Uniform Length Edges
Layout (ULEL)

Describes the Force-directed layout or Uniform Length Edges Layout algorithm (class
IlvUniformLengthEdgesLayout from the package ilog.views.graphlayout.
uniformlengthedges).

In this section

General information on the ULEL
Provides samples of the layout and explains where it is likely to be used.

Features and limitations of the ULEL
Lists the features and limitations of the layout.

The ULEL algorithm
Gives an explanation of the ULEL algorithm and a sample.

Generic features and parameters of the ULEL
Lists the generic features and parameters of the Uniform Length Edges layout (ULEL).

Specific parameters of the ULEL
Describes the specific parameters supported by ULEL and gives samples of their use.

For experts: additional features of the ULEL
Describes the parameters available to expert users.

Using a link clipping interface with the ULEL

Describes the use of a link clipping interface with the Uniform Length Edges Layout (ULEL).

USING GRAPH LAYOUT ALGORITHMS

General information on the ULEL

ULEL samples
The following sample drawings are produced with the Uniform Length Edges Layout (ULEL).

Small cyclic graph drawing produced with the Uniform Length Edges Layout

76 USING GRAPH LAYOUT ALGORITHMS

Medium graph drawing (combination of cycles and trees) produced with the
Uniform Length Edges Layout

USING GRAPH LAYOUT ALGORITHMS 77

Large graph drawing (combination of cycles and trees) produced with the Uniform
Length Edges Layout

78 USING GRAPH LAYOUT ALGORITHMS

Large graph drawing (Sierpinski Triangle) produced with the Uniform Length
Edges Layout using the fast multilevel layout mode

What types of graphs suit the ULEL?
Any type of graph:
4 connected graphs and disconnected graphs

4 planar graphs and nonplanar graphs

Application domains for the ULEL
Application domains for the Uniform Length Edges Layout include:

4 Telecoms and networking (WAN diagrams)

USING GRAPH LAYOUT ALGORITHMS 79

4 Software management/software (re-)engineering (call graphs)
4 CASE tools (dependency diagrams)

4 Database and knowledge engineering (semantic networks, database query graphs,
qualitative reasoning and other artificial intelligence diagrams, and so on)

4 World Wide Web (Web hyperlink neighborhood)

80 USING GRAPH LAYOUT ALGORITHMS

Features and limitations of the ULEL

Features

Often provides a drawing without any or with only a few link crossings and with approximately
equal length links for small- and medium-size graphs having a small number of cycles. The
maximum number of nodes for which you can use the algorithm depends on the connectivity
of the graph and is difficult to predict.

On demand, the algorithm can take into account the size (width and height) of the nodes.
Otherwise, they are more efficiently considered as points.

It is possible to specify the length for each link individually.

The algorithm provides three optional layout modes: incremental, non-incremental and fast
multilevel. The non-incremental and fast multilevel modes are in general faster and are
recommended for large graphs. For details, see Layout mode .

Limitations

4 The algorithm is not appropriate for all graphs. In particular, it will produce bad results
on some highly connected cyclic graphs for which a planar drawing with equal-length
links may simply not exist.

4 The computation time required to obtain an appropriate drawing grows relatively quickly
with the size of the graph (that is, the number of nodes and links) and the layout process
may become time-consuming for large graphs.

4 Overlapping nodes cannot always be avoided. Nevertheless, the layout algorithm often
produces a drawing with no overlapping nodes.

USING GRAPH LAYOUT ALGORITHMS 81

The ULEL algorithm

82

U

S

N

G

This layout algorithm iteratively searches for a configuration of the graph where the length
of the links is close to a user-defined or a default value.

Example of ULEL algorithm

In Java

The following code sample uses the 11vUniformLengthEdgesLayout class. This code sample
shows how to perform a Uniform Length Edges Layout:

import ilog.views.*;

import ilog.views.eclipse.graphlayout.GraphModel;

import ilog.views.eclipse.graphlayout.runtime.*;

import ilog.views.eclipse.graphlayout.runtime.uniformlengthedges.*;

IlvUniformLengthEdgesLayout layout = new IlvUniformLengthEdgesLayout () ;
GraphModel graphModel = new GraphModel (myGrapherEditPart);
layout.attach (graphModel) ;
try {
IlvUniformLengthEdgesLayoutReport layoutReport =
layout.performLayout () ;

int code = layoutReport.getCode () ;

System.out.println("Layout completed (" +
layoutReport.codeToString (code) + ")");

}
catch (IlvGraphLayoutException e) {
System.err.println(e.getMessage()) ;

}
layout.detach() ;
graphModel.dispose () ;

Important: All explanations in the subsequent sections regarding the shape of the links in
Uniform Length Edges Layout are valid only if the link layout is disabled.

GRAPH LAYOUT ALGORITHMS

Generic features and parameters of the ULEL

Overview (ULEL)

The I1vUniformLengthEdgesLayout class supports the following generic parameters defined
in the T1vGraphLayout class (see Base class parameters and features):

¢ Allowed time (ULEL)

Layout of connected components (ULEL)
Layout region (ULEL)

Link clipping (ULEL)

Link connection box (ULEL)

Preserve fixed links (ULEL)

* & & & oo o

Preserve fixed nodes (ULEL)

¢ Stop immediately (ULEL)

The following subsections describe the particular way in which these parameters are used
by this subclass.

Allowed time (ULEL)

The layout algorithm stops if the allowed time setting has elapsed. (See Allowed time.)

Layout of connected components (ULEL)

The layout algorithm can utilize the generic mechanism to lay out connected components.
(For more information about this mechanism, see Layout of connected components.)

Layout region (ULEL)

The layout algorithm can use the layout region setting (either your own or the default setting)
to control the size and the position of the graph drawing.

Note that by default the Uniform Length Edges Layout algorithm does not use the layout
region. (For details see also Force fit to layout region (ULEL).)

If you are using the default settings, an estimation of the appropriate layout region according
to the number and size of the nodes is used.

Link clipping (ULEL)

The layout algorithm can use a link clip interface to clip the end points of a link. (See Link
clipping.)

USING GRAPH LAYOUT ALGORITHMS 83

84

USI NG

This is useful if the nodes have a nonrectangular shape such as a triangle, rhombus, or
circle. If no link clip interface is used, the links are normally connected to the bounding
boxes of the nodes, not to the border of the node shapes. See Using a link clipping interface
with the ULEL for details of the link clipping mechanism.

Link connection box (ULEL)

The layout algorithm can use a link connection box interface (see Link connection box.) In
combination with the link clip interface. If no link clip interface is used, the link connection
box interface has no effect. For details see Using a link clipping interface with the ULEL.

Preserve fixed links (ULEL)

The layout algorithm does not reshape the links that are specified as fixed. (See Preserve
fixed links and Link style (ULEL).)

Preserve fixed nodes (ULEL)

The layout algorithm does not move the nodes that are specified as fixed. Moreover, the
algorithm takes into account the fixed nodes when computing the position of the nonfixed
nodes. (See Preserve fixed nodes.)

Stop immediately (ULEL)

The layout algorithm stops after cleanup if the method stopImmediately () is called. (For
a description of this method in the 11vGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the result code in the layout report
is T1vGraphLayoutReport.STOPPED AND INVALID.

GRAPH LAYOUT ALGORITHMS

Specific parameters of the ULEL

The following parameters are specific to the 11vUniformLengthEdgesLayout class.

Link style (ULEL)

When the layout algorithm moves the nodes, straight-line links will automatically “follow”
the new positions of their end nodes. If the grapher contains other types of links, the shape
of the link may not be appropriate because the intermediate points of the link will not be
moved. In this case, you can ask the layout algorithm to automatically remove all the
intermediate points of the links (if any).

To specify that the ULEL algorithm automatically removes all the intermediate points of the
links (if any):

In Java™
Use this method:

void setLinkStyle (int style)

The valid values for style are:

L4 IlvUniformLengthEdgesLayout.NO RESHAPE STYLE
None of the links is reshaped in any manner.

L4 IlvUniformLengthEdgesLayout.STRAIGHT LINE STYLE

All the intermediate points of the links (if any) are removed. This is the default value.

Number of iterations (ULEL)

The iterative computation of the layout algorithm is stopped if the time exceeds the allowed
time (see Allowed time) or if the number of iterations exceeds the allowed number of
iterations.

To specify the number of iterations:

In Java
Use the method:

void setAllowedNumberOfIterations (int iterations)

Preferred length (ULEL)

The main objective of this layout algorithm is to obtain a layout where all the links have a
given length. This is called the “preferred length.”

To specify the preferred length:

USING GRAPH LAYOUT ALGORITHMS 85

86

USI NG

Globally

4 InJava
Use the method:

void setPreferredLinksLength (float length)

The default value is 60.0.

Individually
It is also possible to specify a length for individual links. To do so:

4 InJava
Use the method:

void setPreferredlLength (Object link, float length)
To obtain the current value, use the method:

float getPreferredLength (Object link)

If a specific length is not specified for a link, the global settings are used.

Respect node sizes (ULEL)

By default, the layout algorithm ignores the size (width and height) of the nodes. For efficiency
reasons, the nodes are approximated with points placed in the center of the bounding box
of the nodes. When dealing with large nodes, the preferred length parameter can be increased
in such a way that the nodes do not overlap.

However, to improve the support for graphs with heterogeneous node sizes, the algorithm
provides a special mode in which the particular size of each node is taken into consideration.

To set this mode:

In Java
Use the method:

void setRespectNodeSizes (boolean respect)

The default value is false.

Force fit to layout region (ULEL)

For this layout algorithm, it is more difficult than for others to choose an appropriate size
for the layout region. If the specified layout region is too small for a given graph, the resulting
layout will not be the best. For this reason, by default, the Uniform Length Edges Layout
algorithm does not use the layout region parameter. It can use as much space as it needs
to lay out the grapher.

To specify whether the layout algorithm must use the layout region:

GRAPH LAYOUT ALGORITHMS

In Java
Use the method:

void setForceFitToLayoutRegion (boolean option)

The default value of the parameter is false.

Layout mode

To fit a variety of needs, the algorithm provides three optional modes:

¢

Incremental mode

The algorithm starts from the current position and iteratively tries to converge towards
the optimal layout. Thus, in some cases, this mode avoids a major reorganization of the
graph, which helps for preserving the "mental map" of the user as much as possible.
However, this is not guaranteed, and depends on how far is the initial position of the
nodes from the position that satisfies the criteria of the algorithm.

Non-incremental mode

The algorithm is free to reorganize the graph without trying to stay close to the initial
positions. Often, the non-incremental mode is faster than the incremental mode, sometimes
at the price of a lower quality.

Fast multilevel mode

The algorithm uses a multilevel graph decomposition strategy that leads to significant
speed gain. This mode is usually the fastest for medium and large graphs.

To set this mode:

In Java
Use the method:

void setLayoutMode (int mode)

The default value is I1vUniformLengthEdgesLayout.INCREMENTAL MODE.

USING GRAPH LAYOUT ALGORITHMS 87

For experts: additional features of the ULEL

88

USI NG

Expert users can also try and use the following parameters.

Maximum allowed move per iteration (ULEL)

At each iteration, the layout algorithm moves the nodes a relatively small amount. This
amount should not be too large; otherwise the algorithm may not converge. But it should
not be too small either, otherwise the number of necessary iterations increases and the
running time does also.

The maximum amount of movement at each iteration is controlled by a parameter.
To set this parameter:

In Java™
Use the method:

void setMaxAllowedMovePerIteration (float maxMove)

Typical values for this setting are 1 to 30, but it depends on the value of the
PreferredLinksLength parameter. For example, if the setting for the PreferredLinksLength
parameter is 1000, then a value of 100 for the MaxAllowedMovePerIteration parameter is
still meaningful.

Link length weight (ULEL)

The layout algorithm is based on the computation of attraction and repulsion forces for each
of the nodes and the iterative search of an equilibrium configuration. One of these forces is
related to the objective of obtaining a link length close to the specified preferred length.

The weight of this force, representing the total amount of forces, is controlled by a parameter.

To set this parameter:

In Java
Use the method:

void setlLinkLengthWeight (float weight)

The default value is 1. Increasing this parameter can help obtain link lengths closer to the
specified length, but increasing too much can increase the number of link crossings.

Additional node repulsion weight (ULEL)

An additional repulsion force can be computed between nodes that are not connected by a
link. The weight of this force, representing the total amount of forces, is controlled by a
parameter.

To set this parameter:

In Java
Use the methods:

GRAPH LAYOUT ALGORITHMS

void setAdditionalNodeRepulsionWeight (float weight)

The default value of this parameteris 0.2f. Increasing (or decreasing) the weight increases
(or decreases) the priority that is given to maintain the nodes at a distance larger than the
node distance threshold (see setNodeDistanceThreshold (float)). On the other side,

increasing the weight decreases the ability for the algorithm to reach convergence quickly.

The following two figures enable you to compare the same graph laid out with additional
repulsion disabled (Additional repulsion disabled, produced with the Uniform Length Edges
Layout) and then enabled (Additional repulsion enabled, produced with the Uniform Length
Edges Layout). You can see that the “star” configuration, where many nodes are connected
to the same central node, is better displayed when additional repulsion is enabled.

TN

L
o
:7 rﬂf.\ﬂsll

Additional repulsion disabled, produced with the Uniform Length Edges Layout

USING GRAPH LAYOUT ALGORITHMS 89

90

USI NG

Additional repulsion enabled, produced with the Uniform Length Edges Layout

Node distance threshold (ULEL)

The additional repulsion force between two nodes not connected by a link is computed only
when their distance is smaller than a predefined distance.

To set this distance:

In Java
Use the method:

void setNodeDistanceThreshold (float threshold)

Note that this additional force is computed only if the “additional node repulsion weight” is
set to a value larger than the default value 0.

It is recommended that this threshold be set to a value smaller than the preferred length of
the links.

GRAPH LAYOUT ALGORITHMS

Using a link clipping interface with the ULEL

By default, the Uniform Length Edges Layout does not place the connection points of links.
The default behavior is to connect to a point at the border of the bounding box of the nodes.
If the node has a nonrectangular shape such as a triangle, rhombus, or circle, you may want
the connection points to be placed exactly on the border of the shape. This can be achieved
by specifying a link clip interface. The link clip interface allows you to correct the calculated
connection point so that it lies on the border of the shape. The following figure shows an
example.

/

without clipping with clipping
Effect of link clipping interface
You can modify the position of the connection points of the links by providing a class that

implements the I1vLinkClipInterface. An example for the implementation of a link clip
interface is in Link clipping.

To set a link clip interface:

In Java™
Use the method

void setlLinkClipInterface(IlvLinkClipInterface interface)

If a node has an irregular shape, the clipped links sometimes should not point towards the
center of the node bounding box, but to a virtual center inside the node. You can achieve
this by additionally providing a class that implements the I1vLinkConnectionBoxInterface.
An example for the implementation of a link connection box interface is in Link connection
box.

To set a link connection box interface:

USING GRAPH LAYOUT ALGORITHMS 91

92

USI NG

In Java
Use the method:

void setLinkConnectionBoxInterface (IlvLinkConnectionBoxInterface interface)

The link connection box interface is used only when link clipping is enabled by setting a link
clip interface. If no link clip interface is specified, the link connection box interface has no
effect.

The following figure shows an example of the combined effect.

Clipping atthe nodebounding box Clipping at a specified connection box
Combined Effect of Link Clipping Interface and Link Connection Box

If the links are clipped at the green irregular star node (previous figure, left), they do not
point towards the center of the star, but towards the center of the bounding box of the node.
This can be corrected by specifying a link connection box interface that returns a smaller
node box than the bounding box (previous figure, right). Alternatively, the problem could
be corrected by specifying a link connection box interface that returns the bounding box as
the node box but with additional tangential offsets that shift the virtual center of the node.

GRAPH LAYOUT ALGORITHMS

Tree Layout (TL)

Describes the Tree Layout algorithm (class I1vTreeLayout from the package ilog.views.
graphlayout.tree).

In this section

General information on the TL
Provides samples of the layout and explains where it is likely to be used.

Features and limitations of the TL
Lists the features and limitations of the layout.

The TL algorithm
Gives an explanation of the Tree Layout (TL) algorithm and a sample.

Generic features and parameters of the TL algorithm
Describes the generic parameters supported by the Tree Layout (TL) and explains the
particular way in which these parameters are used by this subclass.

Specific parameters (for all tree layout modes)
Describes the specific parameters supported by the Tree Layout and gives samples of their
use.

Layout modes of the TL algorithm
Describes the characteristics and the layout parameters of each layout mode in the TL
algorithm.

For experts: additional tips for the TL
Describes some tips and tricks for expert users of the Tree Layout (TL).

USING GRAPH LAYOUT ALGORITHMS 93

General information on the TL

TL samples

The following sample drawings are produced with the Tree Layout.

Tree layout in free layout mode with center alignment and flow direction to the
right

94 USING GRAPH LAYOUT ALGORITHMS

e

F ST S
S

S S |
Tree layout with flow direction to the bottom, orthogonal link style, and tip-over
alignment at some leaf nodes

LEEE

o J/J _Iﬂj _TI{J_{J

Tree layout in radial layout mode with aspect ratio 1.5

What types of graphs suit the TL?

4 Primarily designed for pure trees. It can also be used for non-trees, that is, for cyclic
graphs. In this case, the algorithm computes and uses a spanning tree of the graph,
ignoring all links that do not belong to the spanning tree.

4 Directed and undirected trees. If the links are directed, the algorithm automatically
chooses the canonical root node. If the links are undirected, you can choose a root node.

4 connected graphs and disconnected graphs. If the graph is not connected, the layout

algorithm treats each connected component separately. Each component has exactly one
root node. In this case, a forest of trees is laid out.

USING GRAPH LAYOUT ALGORITHMS 95

Application domains for the TL

Application domains for the Tree Layout include:

4 Business processing (organizational charts)

4 Software management/software (re-)engineering (UML diagrams, call graphs)
4 Database and knowledge engineering (decision trees)

¢ The World Wide Web (Web site maps)

96 USING GRAPH LAYOUT ALGORITHMS

Features and limitations of the TL

Features

Takes into account the size of the nodes so that no overlapping occurs.

Optionally reshapes the links to give them an orthogonal form (alternating horizontal and
vertical line segments).

Various layout modes: free, levels, radial, or automatic tip-over.

® In the free layout mode, arranges the children of each node, starting recursively from
the root, so that the links flow uniformly in the same direction.

® In the level layout mode, partitions the nodes into levels, and arranges the levels
horizontally or vertically.

® Inradial layout mode, partitions the nodes into levels, and arranges the levels in circles
or ellipses around the root.

® In the tip-over mode, arranges the nodes in a similar way to the free layout mode, but
tries to tip children over automatically to fit the layout better to the given aspect ratio.

Provides several alignment and offset options.
Allows you to specify nodes that must be direct neighbors.

Provides incremental and nonincremental modes. Incremental mode takes the previous
position of nodes into account and positions the nodes without changing the relative order
of the nodes in the tree so that the layout is stable on incremental changes of the graph.

Very efficient, scalable algorithm. Produces a nice layout quickly even if the number of
nodes is huge.

Limitations

¢

If the orthogonal setting is not specified as the link style (see Link style), some links may
in rare cases overlap nodes depending on the size of the nodes, the alignment parameters,
and the offset parameters.

The layout algorithm first determines a spanning tree of the graph. If the graph is not a
pure tree, some links will not be included as part of the spanning tree. These links are
ignored. For this reason, they may cross other links or overlap nodes in the final layout.

For stability in incremental mode, the algorithm tries to preserve the relative order of
the children of each node. It uses a heuristic to calculate the relative order from the
previous positions of the nodes. The heuristic may fail if children overlap their old positions
or are not aligned horizontally or vertically.

Despite preserving the relative order of the children, in rare cases the layout is not
perfectly stable in incremental radial layouts. Subsequent layouts may rotate the nodes
around the root, although the relative circular order of the nodes within their circular
levels is still preserved.

USING GRAPH LAYOUT ALGORITHMS 97

¢ The tip-over layout modes will perform several trial layouts with different tip-over
alignment options according to various heuristics. From these trial layouts, the algorithm
picks the layout that best fits the given aspect ratio. This may not be the optimal layout
for the aspect ratio, but it is the best layout among the trials. Calculating the absolute
best-fitting layout is not computationally feasible (it is generally an NP-complete problem).

98 USING GRAPH LAYOUT ALGORITHMS

The TL algorithm

The core algorithm for the free, level, and radial layout modes works in just two steps and
is very fast. The variations of the tip-over layout mode perform the second step several times
and pick the layout result that best fits the given aspect ratio (the ratio between width and
height of the drawing area). For this reason, the tip-over layout modes are slower.

Step 1: Calculating the spanning tree
If the graph is disconnected, the layout algorithm chooses a root node for each connected
component. Starting from the root node, it traverses the graph to choose the links of
the spanning tree. If the graph is a pure tree, all links are chosen. If the graph has cycles,
some links will not be included as part of the spanning tree. These links are called
non-tree links, while the links of the spanning tree are called tree links. The non-tree
links are ignored in step 2 of the algorithm.

In Tree layout in free layout mode with center alignment and flow direction to the right,
Tree layout with flow direction to the bottom, orthogonal link style, and tip-over alignment
at some leaf nodes, and Tree layout in radial layout mode with aspect ratio 1.5,the root
is the node that has no parent node. In the spanning tree, each node except the root has
a parent node. All nodes that have the same parent are called children with respect to
the parent and siblings with respect to themselves. Nodes without children are called
leaves. Each child at a node starts a subtree (also called a branch of the tree). A Spanning
tree show an example of a spanning tree.

root

non-tree link

children of paren J
(siblings) T

e -
non-tree link branch

A Spanning tree

Step 2: Calculating node positions and link shapes
The layout algorithm arranges the nodes according to the layout mode and the offset
and alignment options. In the free mode and level mode, the nodes are arranged
horizontally or vertically so that all tree links flow roughly in the same direction. In the
radial layout modes, the nodes are arranged in circles or ellipses around the root so that
all tree links flow radially away from the root. Finally, the link shapes are calculated
according to the link style and alignment options.

USING GRAPH LAYOUT ALGORITHMS 99

Example of TL

The following code sample uses the 11vTreeLayout class. This code sample shows how to
perform a Tree Layout:

import ilog.views.*;
import ilog.views.eclipse.graphlayout.GraphModel;
import ilog.views.eclipse.graphlayout.runtime.*;

import ilog.views.eclipse.graphlayout.runtime.tree.*;

IlvTreelayout layout = new IlvTreelayout () ;
GraphModel graphModel = new GraphModel (myGrapherEditPart) ;
layout.attach (graphModel) ;

/* Specify the root node, orientation and alignment */
layout.setRoot (rootNode) ;

layout.setFlowDirection (IlvDirection.Right) ;
layout.setGlobalAlignment (I1lvTreeLayout.CENTER) ;

try {
IlvGraphLayoutReport layoutReport = layout.performLayout () ;

int code = layoutReport.getCode () ;

System.out.println ("Layout completed (" +
layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) ({
System.err.println (e.getMessage()) ;

}
layout.detach() ;
graphModel.dispose() :

Important: All explanations in the subsequent sections regarding the shape of the links in
Tree Layout are valid only if the link layout is disabled.

100 USING GRAPH LAYOUT ALGORITHMS

Generic features and parameters of the TL algorithm

Overview (TL)

The I1vTreeLayout class supports the following generic features defined in the
IlvGraphLayout class (see also Base class parameters and features):

¢ Allowed time (TL)

Layout of connected components (TL)
Link clipping (TL)

Link connection box (TL)

Percentage of completion calculation (TL)

Preserve fixed links (TL)

* & & & oo o

Preserve fixed nodes (TL)

¢ Stop immediately (TL)

The following subsections describe the particular way in which these features are used by
the subclass 11vTreeLayout.

Allowed time (TL)

The layout algorithm stops if the allowed time setting has elapsed. (For a description of this
layout parameter in the T11vGraphLayout class, see Allowed time.) If the layout stops early
because the allowed time has elapsed, the nodes and links are not moved from their positions
before the layout call and the result code in the layout report is I1vGraphLayoutReport.
STOPPED AND INVALID.

Layout of connected components (TL)

The layout algorithm can utilize the generic mechanism to layout connected components.
(For more information about this mechanism, see Layout of connected components). It has,
however, a specialized internal mechanism to layout connected components and, therefore,
the generic mechanism is switched off by default.

The generic connected component layout mechanism has the disadvantage that it moves
connected components completely. Fixed nodes within a component do not preserve their
old position, and the resulting layout may be unstable on incremental changes, depending
on which layout instance is used for the component layout.

If the generic connected component layout mechanism is disabled, the algorithm uses its
own specialized internal mechanism instead of the generic mechanism to lay out each
component as a separate tree. This is usually faster and more stable on incremental changes
than the generic mechanism. Furthermore, it enables the user to set the position of the
layout.

USING GRAPH LAYOUT ALGORITHMS 101

102 US I NG

Link clipping (TL)

The layout algorithm can use a link clip interface to clip the end points of a link. (See Link
clipping.)

This is useful if the nodes have a nonrectangular shape such as a triangle, rhombus, or
circle. If no link clip interface is used, the links are normally connected to the bounding
boxes of the nodes, not to the border of the node shapes. See Using a link clipping interface
for details of the link clipping mechanism.

Link connection box (TL)

The layout algorithm can use a link connection box interface (see Link connection box) in
combination with the link clip interface. If no link clip interface is used, the link connection
box interface has no effect. For details see Using a link connection box interface.

Percentage of completion calculation (TL)

The layout algorithm calculates the estimated percentage of completion. This value can be
obtained from the layout report during the run of layout. (For a detailed description of this
feature, see Percentage of completion calculation and Graph layout event listeners.)

Preserve fixed links (TL)

The layout algorithm does not reshape the links that are specified as fixed. (For more
information on link parameters in the 11vGraphLayout class, see Preserve fixed links and
Link style (TML).)

Preserve fixed nodes (TL)

The layout algorithm does not move the nodes that are specified as fixed. (For more
information on node parameters in the I1vGraphLayout class, see Preserve fixed nodes.)
Moreover, the layout algorithm ignores fixed nodes completely and also does not route the
links that are incident to the fixed nodes. This can result in unwanted overlapping nodes
and link crossings. However, this feature is useful for individual, disconnected components
that can be laid out independently.

Stop immediately (TL)

The layout algorithm stops after cleanup if the method stopImmediately () is called. (For
a description of this method in the T11vGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the nodes and links are not moved
from their positions before the layout call, and the result code in the layout report is
IlvGraphLayoutReport.STOPPED AND INVALID.

GRAPH LAYOUT ALGORITHMS

Specific parameters (for all tree layout modes)

The following parameters are specific to the 11vTreeLayout class. They apply to all layout
modes.

Root node (TL)

The final layout is influenced mainly by the choice of the root node.

The root node is placed in a prominent position. For instance, in a top-down drawing with
free layout mode, it is placed at the top of the tree. With the radial layout mode, it is placed
at the center of the tree.

The spanning tree is calculated starting from the root node. If the graph is disconnected,
the layout algorithm needs one root node for each connected component.

The layout algorithm automatically selects a root node when needed. It uses a heuristic that
calculates preferences for all nodes to become a root. It chooses the node with the highest
preference. The heuristic gives nodes without incoming links the highest preference and
leaf nodes without outgoing links the lowest preference. Hence, in a directed tree, the
canonical root is always chosen automatically.

It is possible to influence the choice of the root node.
To set a node explicitly as the root:

In Java
Use the method:

void setRoot (Object node) ;

This gives the node the maximal preference to become the root during layout. If only one
node is specified this way, the algorithm selects this node. If several nodes of the same
connected component are specified this way, the layout algorithm chooses one of them as
the root.

For experts: additional options for root nodes (TL)

The layout algorithm manages a list of the root nodes that have been specified by the setRoot
method. To obtain the nodes in this list in Java, use the method:

Enumeration getSpecRoots() ;

After layout, you can also retrieve the list of root nodes that were actually used by the
algorithm. This list is not necessarily the same as the list of specified roots. For instance, it
contains the chosen root nodes if none were specified or if too many were specified. To
obtain the root nodes that were used by the algorithm in Java, use the method:

Enumeration getCalcRoots() ;

USING GRAPH LAYOUT ALGORITHMS 103

104 USI NG

This example shows how to iterate over the calculated root nodes and print the root node
preferences:

Enumeration e = layout.getCalcRoots();
while (e.hasMoreElements()) {
node = e.nextElement ();
System.out.println ("Preference:" + layout.getRootPreference (node));

}

To directly manipulate the root node preference value of an individual node:

In Java
Use the method:

setRootPreference (Object node, int preference);

In this case, the layout uses the specified value instead of the heuristically calculated
preference for the node. The normal preference value should be between 0 and 10000.
Specifying a root node explicitly corresponds to setting the preference value to 10000. If
you want to prohibit a node from becoming the root, specify a preference value of zero (0).

A negative preference value indicates that the layout algorithm should recalculate the root
node preference using the heuristic. If a root was specified by the setRoot method but this
node should no longer be the root in subsequent layouts, use the following call to clear the
root node setting:

layout.setRootPreference (node, -1);

This call also removes the node from the list of specified roots.

Position parameters (TL)
To set the position of the top left corner of the layout to (10, 10):

In Java
In Java, use the method:

layout.setPosition (new IlvPoint (10, 10), false);

If the graph consists of only a single tree, it is often more convenient to set the position of
the root node instead. To do this:

In Java
Use the same method and pass true instead of false:

layout.setPosition (point, true);

If no position is specified, the layout keeps the root node at its previous position.

GRAPH LAYOUT ALGORITHMS

Using compass directions for positional layout parameters (TL)

The compass directions north, south, east, and west are used to simplify the explanations
of the layout parameters. The center of the root node of a tree is considered the north pole.

In the nonradial layout modes, the link flow direction always corresponds to south. If the
root node is placed at the top of the drawing, north is at the top, south at the bottom, east
to the right, and west to the left. If the root node is placed at the left border of the drawing,
north is to the left, south to the right, east at the top, and west at the bottom.

In the radial layout modes, the root node is placed in the center of the drawing. The meaning
of north and south depends on the position relative to the root: the north side of the node
is the side closer to the root and the south side is the side further away from the root. The
east direction is counterclockwise around the root and the west direction is clockwise around
the root. This is similar to a cartographic map of a real globe that shows the area of the
north pole as if you were looking down at the top of the globe.

Compass directions are used to provide uniform naming conventions for certain layout
options. They occur in the alignment options, the level alignment option, and the east-west
neighboring feature, which are explained later. In Flow directions and Radial layout mode,
the compass icons show the compass directions in these drawings.

Layout modes (TL)

The tree layout algorithm has several layout modes. The following example shows how to
specify the layout mode.

In Java
Use the method:

void setLayoutMode (int mode) ;

The available layout modes are the following:
¢ IlvTreeLayout.FREE (the default)

4 IlvTreelayout.LEVEL

¢ IlvTreelLayout.RADIAL

¢ IlvTreeLayout.ALTERNATING RADIAL
4 IlvTreelayout.TIP OVER

¢ IlvTreeLayout.TIP_ROOTS_ OVER

¢ IlvTreeLayout.TIP_LEAVES OVER

¢

IlvTreeLayout.TIP ROOTS AND LEAVES OVER

USING GRAPH LAYOUT ALGORITHMS 105

106 USING GRAPH LAYOUT ALGORITHMS

Layout modes of the TL algorithm

Describes the characteristics and the layout parameters of each layout mode in the TL
algorithm.

In this section

Free layout mode
Describes how the free layout mode organizes nodes and describes the parameters of this
mode.

Level layout mode
Describes how the level layout mode organizes nodes and describes the parameters of this
mode.

Radial layout mode
Describes how the radial layout mode organizes nodes and describes the parameters of this
mode.

Tip-over layout modes
Describes the need for tip-over layout modes and how they operate.

Recursive mode
Describes how the recursive mode organizes nodes and describes the parameters of this
mode.

USING GRAPH LAYOUT ALGORITHMS 107

108 USING GRAPH LAYOUT ALGORITHMS

Free layout mode

Describes how the free layout mode organizes nodes and describes the parameters of this
mode.

In this section

Overview
Describes how the free layout mode organizes nodes.

Flow direction
Describes the flow direction parameter of the free layout mode.

Alignment parameter
Describes the alignment parameter of the free layout mode.

Link style
Describes the link style parameter of the free layout mode.

Connector style
Describes the connector style parameter of the free layout mode and how to use it in
conjunction with two interfaces.

Using a link connection box interface
Describes how to use the link connection box interface in the free layout mode.

Using a link clipping interface
Describes how to use the link clipping interface in the free layout mode.

Spacing parameters
Describes how to use the spacing parameter of the free layout mode.

USING GRAPH LAYOUT ALGORITHMS 109

Overview

110 U SI N G

The free layout mode arranges the children of each node starting recursively from the root
so that the links flow roughly in the same direction. For instance, if the link flow direction
is top-down, the root node is placed at the top of the drawing. Siblings (nodes that have the
same parent) are justified at their top borders, but nodes of different tree branches (nodes
with different parents) are not justified.

To set the free layout mode:

In Java™
Call:

layout.setLayoutMode (IlvTreelLayout.FREE) ;

GRAPH LAYOUT ALGORITHMS

Flow direction

The flow direction parameter specifies the direction of the tree links. The compass icons
show the compass directions in these layouts.

&
a0

Bottomn Top

:> N@S 4|<_
K

D

|
PR e N

Left Right
Flow directions

If the flow direction is to the bottom, the root node is placed topmost. Each parent node is
placed above its children, which are normally arranged horizontally. (This tip-over alignment
is an exception.)

If the flow direction is to the right, the root node is placed leftmost. Each parent node is
placed to the left of its children, which are normally arranged vertically.

To specify the flow direction:

In Java
In Java™ , use the method:

void setFlowDirection (int direction);

The valid values for the flow direction are:

4 IlvDirection.Right (the default)

USING GRAPH LAYOUT ALGORITHMS 111

4 IlvDirection.Left
4 IlvDirection.Bottom

4 IlvDirection.Top

112 USING GRAPH LAYOUT ALGORITHMS

Alignment parameter

The alignment option controls how a parent is placed relative to its children. The alignment
can be set globally, in which case all nodes are aligned in the same way, or locally on each
node, with the result that different alignments occur in the same drawing.

g
mhhh s bhh
S

Center Border Alignment East Alignment

Alignment Options

Global alignment
To set the global alignment:

In Java
In Java™ , use the method:

void setGlobalAlignment (int alignment) ;

The valid values for the global alignment are:

4 IlvTreelayout.CENTER (the default)

The parent is centered over its children, taking the center of the children into account.

L4 IlvTreeLayout.BORDER CENTER

The parent is centered over its children, taking the border of the children into account.
If the size of the first and the last child varies, the border center alignment places the
parent closer to the larger child than to the default center alignment.

L4 IlvTreeLayout.EAST

The parent is aligned with the border of its easternmost child. For instance, if the flow
direction is to the bottom, east is the direction to the right. If the flow direction is to the
top, east is the direction to the left. See Using compass directions for positional layout
parameters (TL) for details.

USING GRAPH LAYOUT ALGORITHMS 113

114 U S I NG

¢ IlvTreelLayout.WEST

The parent is aligned with the border of its westernmost child. For instance, if the flow
direction is to the bottom, west is the direction to the left. If the flow direction is to the
right, west is the direction to the bottom. See Using compass directions for positional
layout parameters (TL) for details.

4 IlvTreeLayout.TIP OVER

The children are arranged sequentially instead of in parallel, and the parent node is
placed with an offset to the children. For details see Tip-over alignment.

¢ IlvTreeLayout.TIP OVER BOTH SIDES

The children are arranged sequentially instead of in parallel. Whereas the alignment
TIP_OVER arranges all children at the same side of the parent, this alignment arranges
the children at both sides of the parent. For details see Tip-over alignment.

4 IlvTreelLayout.MIXED

Each parent node can have a different alignment. The alignment of each individual node
can be set with the result that different alignments can occur in the same graph.

Alignment of individual nodes

All nodes have the same alignment unless the global alignment is set to MIxED. Only when
the global alignment is set to MIXED can each node have an individual alignment style.

¥ ¥
] * ¥ ¥ ¥ ¥ ¥ ¥ ¥

Different Alignments Mixed in the Same Drawing

To specify the alignment of an individual node:
In Java
Use the methods:

void setAlignment (Object node, int alignment);

GRAPH LAYOUT ALGORITHMS

int getAlignment (Object node) ;

The valid values for alignment are:
IlvTreeLayout.CENTER (the default)

IlvTreeLayout.BORDER CENTER

IlvTreeLayout.WEST

¢

¢

4 IlvTreelLayout.EAST
¢

4 IlvTreelLayout.TIP OVER
¢

IlvTreeLayout.TIP OVER BOTH SIDES

Tip-over alignment
Normally, the children of a node are placed in a parallel arrangement with siblings as direct

neighbors of each other. Tip-over alignment means a sequential arrangement of the children
instead.

Mormal Ali pnment

Tip-Over Alignment

Normal alignment and tip-over alignment

Tip-over alignment is useful when the tree has many leaves. With normal alignment, a tree
with many leaves would result in the layout being very wide. If the global alignment style
is set to tip-over, the drawing is very tall rather than wide. To balance the width and height
of the drawing, you can set the global alignment to mixed, for example, in Java:

layout.setGlobalAlignment (I1lvTreeLayout.MIXED) ;

Also, you can set the individual alignment to tip-over for some parents with a high number
of children as follows:

USING GRAPH LAYOUT ALGORITHMS 115

layout.setAlignment (parent, IlvTreeLayout.TIP OVER);

Tip-over alignment can be specified explicitly for some or all of the nodes. Furthermore, the
Tree Layout offers layout modes that automatically determine when to tip over, yielding a
drawing that fits into a given aspect ratio. These layout modes are described in Tip-over
layout modes.

Besides the normal tip-over alignment, there is also a variant that distributes the subtrees
on both sides of the center line that starts at the parent. You can specify this variant at a
parent node with a high number of children by the following code:

layout.setAlignment (parent, IlvTreeLayout.TIP OVER BOTH_SIDES) ;

The following figure illustrates the difference between normal tip-over alignment and tip-over
at both sides. Tip-over alignment works very well with the orthogonal link style (see Link

style).
2 5

-

k4

'Jr**J M . fi
HH—e b T]
— ri”
m
-
-

Bl B B N N N Ee-n
bl Ly e |
My BN N B N

¥
|
|
|
|
|

~

v
|
|

Maormal Tip-Ower Tip-Crver Both Sides
at Red Modes at Hed Modes

Tip-over alignment

116 USING GRAPH LAYOUT ALGORITHMS

Link style

The links can be straight or have a specific shape with intermediate points. You can specify
that the links be reshaped into an “orthogonal” form. You can set the link style globally, in
which case all links have the same kind of shape, or locally on each link, in which case
different link shapes occur in the same drawing.

Global link style
To specify the global link style:

In Java
Use the method:

void setGloballLinkStyle (int style);

The valid values for style are:
¢ IlvTreeLayout.NO RESHAPE STYLE

None of the links is reshaped in any manner.
¢ IlvTreeLayout.STRAIGHT LINE STYLE

All the intermediate points of the links (if any) are removed. This is the default value. See
Tree layout in free layout mode with center alignment and flow direction to the right and
Tree layout in radial layout mode with aspect ratio 1.5 as examples.

¢ IlvTreeLayout.ORTHOGONAL STYLE

The links are reshaped in an orthogonal form (alternating horizontal and vertical
segments). See Tree layout with flow direction to the bottom, orthogonal link style, and
tip-over alignment at some leaf nodes andTip-over alignment as examples.

¢ IlvTreeLayout.MIXED STYLE

Each link can have a different link style. The style of each individual link can be set to
have different link shapes occurring on the same graph.

Individual link style

All links have the same style of shape unless the global link style is MIXED STYLE. Only when
the global link style is set to MIXED STYLE can each link have an individual link style.

USING GRAPH LAYOUT ALGORITHMS 117

Different Link Styles Mixed in the Same Drawing

To specify the style of an individual link:

In Java
Use the methods:

setLinkStyle (java.lang.Object, int)
getLinkStyle

The valid values for style are:

¢ IlvTreelayout.STRAIGHT LINE STYLE (the default)
¢ IlvTreelayout.NO RESHAPE STYLE

L4 IlvTreeLayout.ORTHOGONAL STYLE

118 USING GRAPH LAYOUT ALGORITHMS

Connector style

The layout algorithm automatically positions the end points of links (the connector pins) at
the nodes. The connector style parameter specifies how these end points are calculated for
the outgoing links at the parent node.

By default, the connector style determines how the connection points of the links are
distributed on the border of the bounding box of the nodes, symmetrically with respect to
the middle of each side.

e

Centerecl Evenly Spaced Clipped
Connecter Pins Connecter Pins Connector Pins

e

Centered Ewenly Spaced
Connecter Ping Connector Pins
Connector styles

To specify the connector style:

In Java™
Use the method:

void setConnectorStyle (int style);

The valid values for style are:

¢ IlvTreelLayout.CENTERED PINS

The end points of the links are placed in the center of the border where the links are
attached.

¢ IlvTreeLayout.CLIPPED PINS

USING GRAPH LAYOUT ALGORITHMS 119

120 U SI N G

Each link pointing to the center of the node is clipped at the node border. The connector
pins are placed at the points on the border where the links are clipped. This style affects
straight links. It behaves like centered connector pins for orthogonal links.

¢ IlvTreeLayout.EVENLY SPACED PINS

The connector pins are evenly distributed along the node border. This style works for
straight and orthogonal links.

¢ IlvTreeLayout.AUTOMATIC PINS

The connector style is selected automatically depending on the link style and the layout
mode. In the nonradial modes, the algorithm always chooses centered pins. In the radial
layout modes, it chooses clipped pins.

The connector style, the link connection box interface, and the link clip interface work
together in the following way: by respecting the connector style, the proposed connection
points are calculated on the rectangle obtained from the link connection box interface (or
on the bounding box of the node, if no link connection box interface was specified). Then,
the proposed connection point is passed to the link clip interface and the returned connection
points are used to connect the link to the node.

The following figure shows an example of the combined effect.

——

Clipping at the node bounding box Clipping at a specified connection box

Combined effect of link clipping interface and link connection box

If the links are clipped at the red node in the previous figure (left), they appear unsymmetrical
with respect to the node shape, because the relevant part of the node (here: the upper
rhombus) is not in the center of the bounding box of the node, but the proposed connection
points are calculated with respect to the bounding box. This can be corrected by using a
link connection box interface to explicitly specify a smaller connection box for the relevant
part of the node (previous figure, right) such that the proposed connection points are placed
symmetrically at the upper rhombus of the node.

GRAPH LAYOUT ALGORITHMS

Using a link connection box interface

Sometimes it may be necessary to place the connection points on a rectangle smaller or
larger than the bounding box, possibly in a nonsymmetric way. For instance, this can happen
when labels are displayed below or above nodes.

You can modify the position of the connection points of the links by providing a class that
implements the I1vLinkConnectionBoxInterface. An example for the implementation of a
link connection box interface is in Link connection box. To set a link connection box interface
in Java™ , call:

void setLinkConnectionBoxInterface (IlvLinkConnectionBoxInterface interface)

The link connection box interface provides each node with a link connection box and a
tangential shift offset that defines how much the connection points are “shifted” tangentially
depending on which side the links connect.

The following figure illustrates the effects of customizing the connection box when the
connector style is evenly spaced.

= IS Ry
ll_]j[_l 1_'11_1

B E

narm al dashed connection box connection box specified,
specified, no tangential tangential offset at bottom
offzet and left side

Effect of connection box interface

On the left is the result without any connection box interface. The middle picture shows the
effect if the connection box interface returns the dashed rectangle for the blue node but the
tangential offset at all sides of the node is 0. Notice that the outgoing links are spaced
according to the dashed rectangle, which appears too wide for the blue node in this situation.
The picture on the right shows the effect of the connection box interface if, in addition, a
positive tangential offset was specified for the bottom side and a negative offset was specified
for the left side of the blue node.

USING GRAPH LAYOUT ALGORITHMS 121

Using a link clipping interface

122 US I NG

By default, the Tree Layout places the connection points of links at the border of the bounding
box of the nodes.

If the node has a nonrectangular shape such as a triangle, rhombus, or circle, you may want
the connection points to be placed exactly on the border of the shape. This can be achieved
by specifying a link clip interface. The link clip interface allows you to correct the calculated
connection point so that it lies on the border of the shape. The following figure shows an
example.

____________ /

R
1
]
]
'
1
]
]
i
'
]
i
¥

without clipping with clipping
Effect of link clipping interface

You can modify the position of the connection points of the links by providing a class that
implements the I1vLinkClipInterface. An example for the implementation of a link clip
interface is in Link clipping. To set a link clip interface in Java™ , call:

void setLinkClipInterface (IlvLinkClipInterface interface)

GRAPH LAYOUT ALGORITHMS

Spacing parameters

The spacing of the layout is controlled mainly by three spacing parameters: the distance
between a parent and its children, the minimum distance between siblings, and the minimum
distance between nodes of different branches. For instance, if the flow direction is to the
top or bottom, the offset between parent and children is vertical, while the sibling offset
and the branch offset are horizontal.

For tip-over alignment, an additional spacing parameter is provided: the minimum distance
between branches starting at a node with tip-over alignment. This offset is always orthogonal
to the normal branch offset. If the flow direction is to the top or bottom, the tip-over branch
offset is vertical.

Parent Child

Offset#

Parent Child

Branch Offset

Sibling Offset Sibling Offset

Sikling Offzet

Tip Cwver
Branch Offset

Tip Cwver
Branch Offset

Spacing parameters

To specify the spacing parameters:

In Java
In Java™ , use the methods:

USING GRAPH LAYOUT ALGORITHMS 123

124 U S I N G

void setParentChildOffset (float offset);

void setSiblingOffset (float offset);

void setBranchOffset (float offset);

void setTipOverBranchOffset (float offset);

For experts: additional spacing parameters

The spacing parameters normally specify the minimal offsets between the node borders.
Hence, the layout algorithm places the nodes such that they do not overlap. You can also
specify that the layout should ignore the node sizes.

In Java
In Java, call:

layout.setRespectNodeSizes (false);

In this case, the spacing parameters are interpreted as the minimum distances between the
node centers, and the node sides are not taken into account during the layout. However, if
the specified offset parameters are now smaller than the node size, the nodes and links will
overlap. This often happens with orthogonal links in particular. It makes sense to use this
option only if all nodes have approximately the same size, all links are straight, and the
spacing parameters are larger than the largest node.

If the link style is orthogonal, the shape of the links from the parent to its children looks like
a fork (see Different Alignments Mixed in the Same Drawing). The position of the bend points
in this shape can be influenced by the orthogonal fork percentage, a value between 0 and
100. This is a percentage of the parent child offset. If the orthogonal fork percentage is 0,
the link shape forks directly at the parent node. If the percentage is 100, the link shape forks
at the child node. A good choice is between 25 and 75. This percentage can be set.

In Java
Use the method:

void setOrthForkPercentage (float percentage);

If the link style is not orthogonal, links may overlap neighboring nodes. This happens only
in a very few cases, for instance, when a link starts at a very small node that is neighbored
by a very large node. This deficiency can be fixed by increasing the branch offset. However,
this influences the layout globally, affecting nodes without that deficiency. To avoid a global
change, you can change the overlap percentage instead, which is a value between 0 and
100. This value is used by an internal heuristic of the layout algorithm that considers a node
to be smaller by this percentage. The default percentage is 30. This usually results in better
usage of the space. However, if very small nodes are neighbored to very large nodes, it is
recommended to decrease the overlap percentage or to set it to 0 to switch this heuristic
off to avoid links overlapping nodes.

GRAPH LAYOUT ALGORITHMS

To set the overlap percentage: :

In Java
Use the method:

void setOverlapPercentage (float percentage);

Note: Itis recommended that you always set the orthogonal fork percentage to a value larger
than the value of the overlap percentage.

Ovetlap Percentage = B0 % Ovetlap Percentage = 0%

Effect of using the overlap percentage

USING GRAPH LAYOUT ALGORITHMS 125

126 USING GRAPH LAYOUT ALGORITHMS

Level layout mode

Describes how the level layout mode organizes nodes and describes the parameters of this
mode.

In this section

Overview
Describes how the level layout mode organizes nodes.

General parameters
Describes the layout parameters of the level layout mode.

Level alignment
Describes the level alignment parameters of the level layout mode.

USING GRAPH LAYOUT ALGORITHMS 127

Overview

128 US I NG

The level layout mode partitions the node into levels and arranges the levels horizontally or
vertically. The root is placed at level 0, its children at level 1, the children of those children
at level 2, and so on. In contrast to the free layout mode, in level layout mode the nodes of
the same level are justified with each other even if they are not siblings (that is, they do not
have the same parent).

To set the level layout mode:

In Java
In Java™ , call:

layout.setLayoutMode (I1lvTreelLayout.LEVEL) ;

The following figure shows the same graph in free layout mode and in level layout mode.

Free Layout Mode

Level Layout Mode

Free layout mode and level layout mode

GRAPH LAYOUT ALGORITHMS

General parameters

Most layout parameters that work for the free layout mode work as well for the level layout
mode. You can set the flow direction, the spacing offsets, the global or individual link style,
and the global or individual alignment. See Free layout mode for details.

The differences from the free layout mode are:

4 The tip-over alignment does not work in level layout mode.

4 The parent-child offset parameter controls the spacing between the levels. In level layout
mode, it is the minimum distance between parent and its children, while in free layout

mode, it is the exact distance between parent and its children.

4 The overlap percentage has no effect in level layout mode.

USING GRAPH LAYOUT ALGORITHMS 129

Level alignment

130 USI NG

In level layout mode with flow direction to the top or bottom, the nodes are organized in
horizontal levels such that the nodes of the same level are placed approximately at the same
y-coordinate. The nodes can be justified, depending on whether the top border, the bottom
border, or the center of all nodes of the same level should have the same y-coordinate.

In flow direction to the left or right, the nodes are organized in vertical levels approximately
at the same x-coordinate. The nodes of the same level can be justified at the left border, at
the right border, or at the center.

To distinguish the level alignment independently from the flow direction, the directions
north and south are used (see Using compass directions for positional layout parameters
(TL)). The north border of a node is the border that is closer to the level where its parent is
placed, and the south border of a node is the border that is closer to the level where its
children are placed. If the flow direction is to the bottom, the level alignment north means
that the nodes are justified at the top border, and south means that the nodes are justified
at the bottom border. If the flow direction is to the top, north and south are inverted: north
means the bottom border and south means the top border. If the flow direction is to the
right, then north means the left border and south means the right border.

PJ

il R
g=g=g _|J_|J Ol=af=

North-Justified South-Justified Center-Justified

Level Alignment

To specify the level alignment:

In Java
In Java™ , use the method:

void setLevelAlignment (int alignment) ;

The valid values for alignment are:
4 IlvTreeLayout.CENTER (the default)
4 IlvTreeLayout.NORTH

4 IlvTreeLayout.SOUTH

GRAPH LAYOUT ALGORITHMS

Radial layout mode

Describes how the radial layout mode organizes nodes and describes the parameters of this
mode.

In this section

Overview
Describes how the radial layout mode organizes nodes.

General parameters
Describes the layout parameters of the radial layout mode.

Alternating radial mode
Describes how the alternating radial mode organizes nodes and describes the parameters
of this mode.

USING GRAPH LAYOUT ALGORITHMS 131

Overview

The radial layout mode partitions the node into levels and arranges the levels in circles
around the root node. Radial layout mode shows an example of the radial layout mode. The
compass icons show the compass directions in this drawing.

3 “Tv f &
\éé L

-
. S SRS

LR
@ TR

Radial layout mode

To set the radial layout mode:

In Java
In Java™ , call:

layout.setLayoutMode (IlvTreeLayout .RADIAL) ;

132 USING GRAPH LAYOUT ALGORITHMS

General parameters

Most layout parameters that work for the free and level layout mode work as well for the
radial layout mode. You can set the spacing offsets, the level alignment, the global or
individual link style, and the global or individual alignment. See Free layout mode and Level
layout mode for details.

The radial layout mode differs from the other layout modes as follows:

¢

¢
¢
¢

The tip-over alignment does not work in radial layout mode.

The orthogonal link style does not work in radial layout mode.

The clipped connector style is always used.

The parent-child offset parameter controls the minimal distance between the circular
levels. However, it is sometimes necessary to increase the offset between circular levels
to obtain enough space on the circle to place all nodes of a level.

The level alignment north indicates alignment at the inner border of the circular level
(that is, towards the root), and the level alignment south indicates alignment at the outer
border of the circular level (that is, away from the root).

The level alignments north and south sometimes result in overlapping nodes.

The overlap percentage has no effect in radial layout mode.

USING GRAPH LAYOUT ALGORITHMS 133

134 USING GRAPH LAYOUT ALGORITHMS

Alternating radial mode

Describes how the alternating radial mode organizes nodes and describes the parameters
of this mode.

In this section

Overview
Describes how the alternating radial mode organizes nodes.

Aspect ratio
Describes the aspect ratio parameter of the alternating radial mode.

Spacing parameters
Describes the spacing parameters of the radial modes.

Tips and tricks
Describes some tips and tricks for expert users.

USING GRAPH LAYOUT ALGORITHMS 135

Overview

If levels of the graph contain many nodes, it is sometimes necessary to increase the radius
of the circular level to provide enough space on the circumference of the circle for all the
nodes. This may result in a considerable distance from the previous level. To avoid this,
there is an alternating radial mode. The alternating radial mode places the nodes of a level
alternating between two circles instead of one circle, resulting in better use of the space of
the layout.

The alternating radial mode uses two circles only when necessary. For many small and light
trees, there will be no difference from the normal radial mode. Only for large graphs with
a large number of children will the alternating radial mode have an effect.

To set the alternating radial layout mode:

In Java
In Java™ , call:

layout.setLayoutMode (IlvTreeLayout .ALTERNATING RADIAL) ;

}g%f L x &/ LK.
«// W /WJ“”

"_{‘LJ

Radial layout mode (right) and alternating radial layout mode (left)

136 USING GRAPH LAYOUT ALGORITHMS

Aspect ratio

If the drawing area is not a square, arranging the levels as circles is not always the best
choice. You can specify the aspect ratio of the drawing area to better fit the layout to the
drawing area. In this case, the algorithm uses ellipses instead of circles. See Tree layout in
radial layout mode with aspect ratio 1.5 for an example.

To specify the aspect ratio:

In Java
In Java™ , call:

void setAspectRatio (IlvRect rect);

If no rectangle is specified, you can calculate the aspect ratio from the width and height of
the drawing area as aspectRatio = width/height and use the method:

void setAspectRatio(float aspectRatio);

USING GRAPH LAYOUT ALGORITHMS 137

Spacing parameters

138 U s |

N G

The spacing parameters of the radial layout modes are controlled by the same methods as
used for the free and level layout modes:

void setParentChildOffset (float offset);

void setSiblingOffset (float offset);

void setBranchOffset (float offset);

Note that the sibling and branch offsets are minimum distances tangential to the circles or
ellipses, while the parent-child offset is a minimum distance radial to the circles or ellipses.

The following figure shows the spacing parameters in radial layout mode.

Sikling Offset
H

Branch OffV
Siblingi?ffset

Sibling Offzet
B %

winch Offast

Parent Child
Offset

Spacing parameters in radial layout mode

GRAPH LAYOUT ALGORITHMS

Tips and tricks

Adding an invisible root to the layout

If the graph contains several trees that are disconnected from each other, the layout places
them individually next to each other. Each connected component has its own radial structure
with circular layers. However, sometimes it is appropriate to fit all connected components
into a single circular layer structure. Conceptually, this is done by adding an invisible root
at the center and connecting all disconnected trees to this root. Layout of connected
components without and with an invisible root shows the effect of using an invisible root.
This works only if the generic mechanism to lay out connected components is switched off.

To add an invisible root to the layout:

In
Call:

layout.setLayoutOfConnectedComponentsEnabled (false) ;
layout.setInvisibleRootUsed (true) ;

4 e AP -

J

- _<J
A —'/ ﬁ
o 7 AN
™)

Generic Layout of Connected Compoenents
Layout Usmg an IrrV|5|bIe Root

Layout of connected components without and with an invisible root

Even spacing for the first circle

The radial mode is designed to optimize the space such that the circles have a small radius
and the overall space for the entire layout is small. To achieve this, the layout algorithm
may create larger gaps on the inner circles for better space usage of the outer circles. This
may produce unevenly spaced circles, most notably for the first circle where all nodes have
the same parent node.

To avoid this effect, you can force the nodes to be evenly spaced on the entire first circle.
Depending on the structure of the graph, this may cause the overall layout to waste more
space on the other circles but may produce a more pleasing graph.

USING GRAPH LAYOUT ALGORITHMS 139

140 U SI N G

To enable even spacing:

In Java
In Java™ , call:

layout.setFirstCircleEvenlySpacing (true);

Unevenly zspaced first (red) circle Evenly spaced first (red) circle

Evenly and Unevenly Spaced First Circle

For experts: forcing all levels to alternating

When the layout mode ALTERNATING RADIAL is used, the layout checks whether the alternating
node arrangement of a level saves space. If that does not save space, it uses the normal
radial arrangement. Hence, for many sparse graphs, radial and alternating radial mode yield
the same result because the alternating arrangement does not save space for any level. It
is possible to disable the space check, that is, to perform an alternating arrangement for all
levels even if this results in waste of space.

In Java
Call:

layout.setAllLevelsAlternating (true) ;

For experts: setting a maximum children angle

If a node has a lot of children, they may extend over a major portion of the circle and,
therefore, are placed nearly 360 degrees around the node. This can result in links overlapping
some nodes. The deficiency can be fixed by increasing the offset between parent and children.
However, this affects the layout globally which means that nodes without the deficiency are
also affected.To avoid a global change such as this, you can limit the maximum angle between
the two rays from the parent (if it is not the root) to its two outermost children. This increases
the offset between parent and children only where necessary.

GRAPH LAYOUT ALGORITHMS

In Maximum Children Angle, you can see in the layout on the left that many of the links
overlap other nodes. In the layout on the right, you can see how this problem was solved by
setting a maximum children angle between two rays from a parent to the two outermost
children.

Meaimum Children Angle = 80 degrees

Maximum Children Angle

To set an angle in degrees:

In Java
Use the method:

void setMaxChildrenAngle (int angle);

Recommended values are between 30 and 180. Setting the value to 0 means the angle is
unrestricted. The calculation of the angle is not very precise above 180 degrees or if the
aspect ratio is not 1.0.

USING GRAPH LAYOUT ALGORITHMS 141

Tip-over layout modes

142 U S I NG

Drawing in radial layout mode and free layout mode can be adjusted according to the aspect
ratio of the drawing area. To balance the height and depth of the drawing, free layout mode
can also use tip-over alignment.

Tip-over alignment can be specified explicitly for individual nodes; the Tree Layout algorithm
also has layout modes that automatically use tip-over alignment when needed. These are
the tip-over layout modes.

The tip-over layout modes work as follows: Several trial layouts are performed in free layout
mode. For each trial, tip-over alignment is set for certain individual nodes, while the specified
alignment of all other nodes is preserved. The algorithm picks the trial layout that best fits
the specified aspect ratio of the drawing area.

The aspect ratio can be set (see Aspect ratio in the Radial Layout Mode):

void setAspectRatio (IlvRect rect);

void setAspectRatio(float aspectRatio);

The tip-over modes are slightly more time-consuming than the other layout modes. For very
large trees, it is recommended that you set the allowed layout time to a high value (for
instance, 60 seconds) when using the tip-over modes.

To set this mode:

In Java
Call:

layout.setAllowedTime (60000) ;

By using this call, you avoid running short of time for sufficient iterations of the layout
algorithm. Because it would be too time-consuming to check all possibilities of tip-over
alignment use, there are heuristics that check only certain trials according to the following
different strategies, illustrated in the following figure.

GRAPH LAYOUT ALGORITHMS

RN

Tip Leaves Ower

Tip-over strategies

¢ Tip leaves over

¢ Tip roots over

¢ Tip roots and leaves over

¢ Tip over fast

Tip Roots Cwer

Tip Roots and Leaves Over

Tip leaves over

To use this tip-over strategy, set the layout mode as follows:

In Java

layout.setLayoutMode (IlvTreeLayout.TIP LEAVES OVER) ;

The heuristic first tries the layout without any additional tip-over options. Then it tries to

tip over the leaves, then the leaves and their parents, then additionally the parents of these
parents, and so on. As a result, the nodes closest to the root use normal alignment and the
nodes closest to the leaves use tip-over alignment.

Tip roots over

To use this tip-over strategy, set the layout mode as follows:

USI NG

GRAPH

LAYOUT

ALGORITHMS 143

144 v s |

N G

In Java

layout.setLayoutMode (IlvTreeLayout.TIP ROOTS OVER) ;

The heuristic first tries the layout without any additional tip-over options. Then it tries to
tip over the root node, then the root and its children, then additionally the children of these
children, and so on. As a result, the nodes closer to the leaves use normal alignment and
the nodes closer to the root use tip-over alignment.

Tip roots and leaves over
To use this tip-over strategy, set the layout mode as follows:

In Java

layout.setLayoutMode (IlvTreeLayout.TIP_ROOTS_ AND LEAVES OVER) ;

The heuristic first tries the layout without any additional tip-over options. Then it tries to
tip over the root node and the leaves simultaneously; then the root and its children, and the
leaves and its parent; then additionally the children of these children and the parents of
these parents, and so on. As result, the nodes in the middle of the tree use normal alignment
and the nodes closest to the root or leaves use the tip-over alignment.

This is the slowest strategy because it includes all trials of the strategy “tip leaves over” as
well as all tries of the strategy “tip roots over.”

Tip over fast

The fast tip-over provides a compromise among all other strategies. The heuristic tries a
small selection of the other strategies, not all possibilities. Therefore, it is the fastest strategy
for large graphs.

To use this strategy, set the layout mode as follows:

In Java

layout.setLayoutMode (I1lvTreeLayout.TIP OVER) ;

It is possible that all four strategies yield the same result because the strategies are not
disjoint; that is, certain trials are performed in all four strategies. In addition, the tip-over
modes do not necessarily produce the optimal layout that gives the best possible fit to the
aspect ratio. The reason is that some unusual configurations of tip-over alignment are never
tried because doing so would cause the running time to be too high.

GRAPH LAYOUT ALGORITHMS

Recursive mode

JViews Diagrammer supports nested graphs, that is, it can render graphs containing nodes
that are graphs. A graph that is a node in another graph is called a subgraph. Links that
connect nodes of different subgraphs are called intergraph links. In Leaf recursive tree, all
red links are intergraph links and all black links are normal links. This is explained in detail
in Nested layouts.

The tree layout can treat a nested graph in specific situation at once and route the intergraph
links as well as the normal links that belong to the tree. It can handle a leaf-recursive tree
at once. A leaf recursive tree has the following properties:

4 itisatree
¢ only leaf nodes of the tree can contain nested graphs

4 the root node of the tree nested in a leaf node is connected by a link to the parent node
of the leaf

AR R

Leaf recursive tree

N

T

/!\
T TLEL

Non leaf recursive tree

This graph is not a leaf recursive tree: the subgraphs are not nested in the leafs of the tree.
The graph cannot be handled by the tree layout in recursive mode, but it can be handled by

USING GRAPH LAYOUT ALGORITHMS 145

the hierarchical layout in recursive mode. If the graph is a leaf recursive tree and the layout
mode is not the radial layout mode, the tree layout can handle the nested graph at once.

To enable the recursive mode:

In Java
In Java™ , use the method:

void setRecursiveleaflayoutMode (boolean enable) ;

and call performLayout with the third parameter set to true as follows:

layout.performLayout (force, redraw, true);

146 USI NG GRAPH LAYOUT ALGORITHMS

For experts: additional tips for the TL

Specifying east-west neighbors

You can specify that two unrelated nodes must be direct neighbors in a direction
perpendicular to the flow direction. In the level and radial layout modes, the nodes are
placed in the same level next to each other. In the free layout and tip-over modes, the nodes
are placed aligned at the north border. Such nodes are called east-west neighbors because
one node is placed as the direct neighbor on the east side of the other node. The other node
becomes the direct neighbor on the west side of the first node. (See also Using compass
directions for positional layout parameters (TL)).

Technically, the nodes are treated as parent and child, even if there may be no link between
them. Therefore, one of the two nodes can have a real parent, but the other node should not
because its virtual parent is its east-west neighbor.

The east-west neighbor feature can be used, for example, for annotating nodes in a typed
syntax tree occurring in compiler construction. Annotated Syntax Tree of Statement a[25]
= b[24] + 0.5; shows an example of such a tree.

Stat dark gray: the syntax tree
light gray the type annotations

Assign .
west neighbor east neighbor

ArrayAccess I—floatl

Uar(a)l—ﬁrray? El_itl F\rrayﬁccessl—floatl 0.5|—float|
Size:30| floatl Uar(h)l—nrrayl ﬁl—ltl

Size:30| ﬂl

Annotated Syntax Tree of Statement a[25] = b[24] + 0.5;

To specify that two nodes are east-west neighbors, use the method:

void setEastWestNeighboring (Object eastNode, Object westNode) ;

You can also use the following method, which is identical except for the reversed parameter
order:

USING GRAPH LAYOUT ALGORITHMS 147

148 U S I N G

void setWestEastNeighboring (Object westNode, Object eastNode) ;

If the flow direction is to the bottom, the latter method may be easier to remember because,
in this case, west is to the left of east in the layout, which is similar to the text flow of the
parameters.

To obtain the node that is the east or west neighbor of a node, use the calls:

Object getEastNeighbor (Object node) ;

Object getWestNeighbor (Object node) ;

Note that each node can have at most one east neighbor and one west neighbor because
they are direct neighbors. If more than one direct neighbor is specified, it is partially ignored.
Cyclic specifications can cause conflict as well. For instance, if node B is the east neighbor
of node A and node C is the east neighbor of B, then node A cannot be the east neighbor of
C. (Strictly speaking, such cycles could be technically possible in some situations in the
radial layout mode, but nonetheless they are not allowed in any layout mode.)

If B is the east neighbor of A, then A is automatically the west neighbor of B. On the other
hand, the east neighbor of A can itself have another east neighbor. This allows the creation
of chains of east-west neighbors, which is a common way to visualize lists of trees. Two
examples are shown in Chains of east-west neighbors to visualize lists of trees.

nelghb neighb. m%% st woad II f_’.['_'f_‘f_’f
__§ JL'[H ANAAA
ANVAAA
‘BT REEEREREEDR
Chains of east-west neighbors to visualize lists of trees

Retrieving link categories

The Tree Layout algorithm works on a spanning tree, as mentioned in a The TL algorithm.
If the graph to be laid out is not a pure tree, the algorithm ignores some links. To treat such
links in a special way, you can obtain a list of nontree links.

Because there are parents and children in the spanning tree, the following link categories
must be distinguished:

4 A forward tree link is a link from a parent to its child.

4 A backward tree link is a link from a child to its parent. If the link is drawn as a directed
arrow, the arrow will point in the opposite direction to the flow direction.

4 A nontree link is a link between two unrelated nodes; neither one is a child of the other.

GRAPH LAYOUT ALGORITHMS

non-tree
link

=0 B B

link
Link categories

The layout algorithm uses these link categories internally but does not store them
permanently to save time and ensure memory efficiency. If you want to treat some link
categories in a special way (for example, to call the Link Layout on the nontree links), you
must specify before the layout that you want to access the link categories after the layout.
To do this, use the method setCategorizinglLinks (boolean) in the following way:

layout.setCategorizingLinks (true) ;

// now perform a layout

layout.performLayout () ;

// now you can access the link categories

After the layout, the link categories can be obtained by the methods:
getCalcForwardTreeLinks ()

getCalcBackwardTreelLinks ()

getCalcNonTreeLinks ()

The link category data gets filled each time the layout is called, unless you set the method
setCategorizingLinks (boolean) back to false.

Sequences of layouts with incremental changes

You can work with trees that have become out-of-date, for example, those that need to be
extended with more children. If you perform a layout after an extension, you probably want
to identify the parts that had already been laid out in the original graph. The Tree Layout
algorithm supports these incremental changes in incremental mode because it takes the
previous positions of the nodes into account. It preserves the relative order of the children
in the subsequent layout.

In nonincremental mode, the Tree Layout algorithm calculates the order of the children
from the node order given by the attached graph model (or grapher). In this case, the layout
is independent from the positions of the nodes before layout. It does not preserve the relative
order of the children in subsequent layouts.

The incremental mode is enabled by default.

USING GRAPH LAYOUT ALGORITHMS 149

150 U SI NG

To disable the incremental mode:

In Java
Call:

layout.setIncrementalMode (false);

Interactive editing

The fact that the relative order of the layout is preserved is particularly useful during
interactive editing. It allows you to correct the layout easily. For instance, if the first layout
places a node A left to its sibling node B but you need to reverse the order, you can simply
move node A to the right of node B and start a new layout to clean up the drawing. In the
second layout, A remains to the right of B, and the subtree of A will “follow” node A.

Paot Poot Root

€ B 0 51 T RS R 1
After First Layout Move A to the Right of B After Second Layout

Interactive Editing to Achieve a Specific Order of Children

Specifying the order of children

Some applications require a specific relative order of the children in the tree. This means
that, for instance, when the flow direction is to the bottom, which child must be placed to
the left of another child. Even if the graph has never been laid out, you can use the

coordinates to specify a certain order of the children at a node. You can use the following:

4 First, make sure that the incremental mode is enabled.

4 In free and level layout modes with flow direction to the bottom or top, determine the
maximal width w of all nodes. Simply move the child that should be in the leftmost position
to the coordinate (0, 0), and the child that should get the ith relative position (in order
from left to right) to the coordinate ((w+1)*1i, 0).

¢ If the flow direction is to the left or to the right, determine the maximal height = of all
nodes. Move the child that should be in the topmost position to the coordinate (0, 0) and
the child that should get the ith relative position (in the order from top to bottom) to
coordinate (0, (H+1)*i).

4 In the radial layout modes, determine the maximal diagonal b = w2 + H of all nodes. If
the position of the parent is (x, y) before the layout, move the child that should be the

GRAPH LAYOUT ALGORITHMS

first in the circular order to the coordinate (x, y+D) and the child that should get the ith
relative position in the circular order to coordinate (x+D*i, y+D).

If you want to specify a relative order for all nodes in radial layout mode, you must do
this for the parents before you do it for the children. In this case, moving the children
can be performed easily during a depth-first traversal from the root to the leaves.

The layout that is performed after moving the children arranges the children with the relative
order.

USING GRAPH LAYOUT ALGORITHMS 151

152 USING GRAPH LAYOUT ALGORITHMS

Hierarchical Layout (HL)

Describes the Hierarchical Layout algorithm (class I1vHierarchicalLayout from the package
ilog.views.graphlayout.hierarchical).

In this section

General information on the HL
Provides samples of the layout and explains where it is likely to be used.

Features and limitations of the HL
Lists the features and limitations of the Hierarchical Layout (HL).

The HL algorithm
Gives an explanation of the Hierarchical Layout (HL) algorithm and a sample.

Generic features and parameters of the HL
Lists the generic features and parameters of the Hierarchical Layout (HL).

Specific parameters of the HL
Describes the specific parameters supported by HL (the I1vHierarchicalLayout class)
and gives samples of their use.

Incremental mode with HL
Describes how to apply hierarchical layouts sequentially to the same graph.

Layout constraints for HL
Describes the constraints on the relative positions of nodes available with the Hierarchical
Layout (HL).

USING GRAPH LAYOUT ALGORITHMS 153

154 U S I NG

Adding and removing constraints in Java for HL
Describes how to specify constraints in Java™ .

Level range constraints (HL)
Explains how modes are partitioned into levels and how to set constraints at a specific level.

Level index parameter (HL)
Describes how to force a node to a particular level with the level index parameter constraint.

Same level constraints (HL)
Describes how to force several nodes to be at the same level.

Group spread constraints (HL)
Describes how to force a group of nodes to the same level.

Relative level constraints (HL)
Describes how to force a node into a higher level than another node.

Position index parameter (HL)
Describes how to use the position index parameter.

Relative position constraints (HL)
Describes how to use relative position constraints.

Side-by-side constraints (HL)
Describes how to use side-by-side constraints.

Extremity constraints (HL)
Describes how to use extremity constraints.

Swim lane constraints (HL)
Describes how to use swim lane constraints.

Constraint priorities (HL)
Discusses constraint priorities.

For experts: constraint validation (HL)
Discusses how validation is done during layout and how to force it if necessary.

For experts: more indices (HL)
Describes how to specify level and position indices or retrieve calculated indices.

Recursive layout
Explains the recursive mode supported by the hierarchical layout.

GRAPH LAYOUT ALGORITHMS

General information on the HL

HL samples

Here are some sample drawings produced with the Hierarchical Layout:

P
-

Sample layout with self-loops, multiple links, and cycles

USING GRAPH LAYOUT ALGORITHMS 155

1
2
%)
B0 £
=
=
—
S
£

4 bt

F

b a

Sample layout with ports and orthogonal link style

0 B) =

Il

L

Sample layout of nested graph in recursive layout mode

What types of graphs suit the HL?

Any type of graph:

¢ Preferably graphs with directed links. A directed link has a direction from source node
to target node and is usually drawn with an arrow. The algorithm takes the link directions

into account..

4 connected graphs and disconnected graphs

USING GRAPH

LAYOUT ALGORITHMS 157

158 U S I NG

4 planar graphs and nonplanar graphs

4 nested graphs with intergraph links

Application domains for the HL

Application domains for the Hierarchical Layout include:

4 Electrical engineering (logic diagrams, circuit block diagrams)

4 Industrial engineering (industrial process diagrams, schematic design diagrams)
4 Business processing (workflow diagrams, process flow diagrams, PERT charts)
¢

Software management/software (re-)engineering (UML diagrams, flowcharts, data
inspector diagrams, call graphs)

4 Database and knowledge engineering (database query graphs)

4 CASE tools (designs diagrams)

GRAPH LAYOUT ALGORITHMS

Features and limitations of the HL

Features

4 Organizes nodes without overlaps in horizontal or vertical levels.

¢ Arranges the graph such that the majority of links are short and flow uniformly in the
same direction (from left to right, from top to bottom, and so on).

4 Reduces the number of link crossings. Most of the time, produces drawings with no
crossings or only a small number of crossings.

4 Often produces balanced drawings that emphasize the symmetries in the graph.

4 Supports self-links (that is, links with the same origin and destination node), multiple
links between the same pair of nodes, and cycles.

4 Efficient, scalable algorithm. Produces a nice layout for most sparse and medium-dense
graphs relatively quickly, even if the number of nodes is very large.

4 Provides several alignment and offset options.

4 Supports port specifications where links attach the nodes. Allows you to specify which
side of a node (top, bottom, left, right) a link can be connected to or to specify which
relative port position should be used for the connection.

4 Supports layout constraints. Allows you to specify relative positional constraints, for
instance, that a node is above another node or left of another node.

4 Incremental and nonincremental mode. In incremental mode, the previous position of
nodes are taken into account. Positions the nodes without changing the relative order of
the nodes so that the layout is stable on incremental changes of the graph.

4 Can handle flat and nested graphs. In recursive layout mode, it routes the intergraph
links of nested graphs and places the labels of nodes and links in subgraphs.

¢ The computation time depends on the number of nodes, the number of levels, and the
number of links that cross several levels. Most of the time, the links are placed between
adjacent levels, which keeps the computation time small.

Limitations

4 The algorithm tries to minimize the number of link crossings (which is generally an
NP-complete problem). It is mathematically impossible to solve this problem quickly for
any graph size. Therefore, the algorithm uses a very fast heuristic that obtains a good
layout, but not always with the theoretical minimum number of link crossings.

4 The algorithm tries to place the nodes such that all links point uniformly in the same
direction. It is impossible to place cycles of links in this way. For this reason, it sometimes
produces a graph where a small number of links are reversed to point into the opposite
direction. The algorithm tries to minimize the number of reversed links (which, again, is
an NP-complete problem). Therefore, the algorithm uses a very fast heuristic resulting
in a good layout, but not always with the theoretical minimum number of reversed links.

USING GRAPH LAYOUT ALGORITHMS 159

4 The computation time required to obtain an appropriate drawing depends most
significantly on the number of bends in the links. Since the algorithm places one bend
whenever a link crosses a level, the number of bends can grow relatively quickly if the
layout requires many long links that span several levels. Therefore, the layout process
may become very time-consuming for dense graphs (the number of links is relatively high
compared to the number of nodes) or for graphs that require a large number of node
levels.

160 USING GRAPH LAYOUT ALGORITHMS

The HL algorithm

A brief description of the HL algorithm

This algorithm works in four steps:

Step 1: Leveling
The nodes are partitioned into groups. Each group of nodes forms a level. The objective
is to group the nodes in such a way that the links always point from a level with smaller
index to a level with larger index.

Step 2: Crossing reduction
The nodes are sorted within each level. The algorithm tries to keep the number of link
crossings small when, for each level, the nodes are placed in this order on a line (see
Level and position indices). This ordering results in the relative position index of each
node within its level.

Step 3: Node positioning
From the level indices and position indices, balanced coordinates for the nodes are
calculated. For instance, for a layout where the link flow is from top to bottom, the nodes
are placed along horizontal lines such that all nodes belonging to the same level have
(approximately) the same y-coordinate. The nodes of a level with a smaller index have
a smaller y-coordinate than the nodes of a level with a higher index. Within a level, the
nodes with a smaller position index have a smaller x-coordinate than the nodes with a
higher position index.

Step 4: Link routing
The shapes of the links are calculated such that the links bypass the nodes at the level
lines. In many cases, this requires that a bend point be created whenever a link needs
to cross a level line. In a top-to-bottom layout, these bend points have the same
y-coordinate as the level line they cross. (Note that these bend points also obtain a
position index).

Level and position indices shows how the Hierarchical Layout algorithm uses the level and
position indices to draw the graph.

USING GRAPH LAYOUT ALGORITHMS 161

position O position 1

_____ _ level 0
_ _ _ leweln
position 0 position 3
_ _ _ _ _level 2
position 0 position 2
level 3

position 0

Level and position indices

You can set parameters for the steps of the layout algorithm in several ways. For instance,
you can specify the level index that the algorithm should choose for a node in Step 1 or the
relative node position within the level in Step 2. You can also specify the justification of the
nodes within a level and the style of the link shapes.

Example of HL

In Java
Below is a code sample that uses the T1vHierarchicallayout class. This code sample shows
how to perform a Hierarchical Layout:

import ilog.views.*;

import ilog.views.eclipse.graphlayout.GraphModel;

import ilog.views.eclipse.graphlayout.runtime.*;

import ilog.views.eclipse.graphlayout.runtime.hierarchical.*;

162 USING GRAPH LAYOUT ALGORITHMS

IlvHierarchicallayout layout = new IlvHierarchicallayout () ;
GraphModel graphModel = new GraphModel (myGrapherEditPart) ;
layout.attach (graphModel) ;
try {

IlvGraphlLayoutReport layoutReport = layout.performLayout () ;

int code = layoutReport.getCode () ;

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");
}
catch (IlvGraphLayoutException e) {
System.err.println(e.getMessage()) ;
}
layout.detach() ;
graphModel .dispose () ;

USING GRAPH LAYOUT ALGORITHMS 163

Generic features and parameters of the HL

164 U S I N G

Overview of generic features

The I1vHierarchicallLayout class supports the following generic features defined in the
IlvGraphLayout class (see Base class parameters and features):

¢ Allowed time (HL)

Layout of connected components (HL)
Link clipping (HL)

Link connection box (HL)

Percentage of completion calculation (HL)

Preserve fixed links (HL)

* & & & oo o

Preserve fixed nodes (HL)

4 Stop immediately (HL)

The following paragraphs describe the particular way in which these parameters are used
by this subclass.

Allowed time (HL)

The layout algorithm stops if the allowed time setting has elapsed. (For a description of this
layout parameter in the T11vGraphLayout class, see Allowed time.) If the layout stops early
because the allowed time has elapsed, the nodes and links are not moved from their positions
before the layout call and the result code in the layout report is T1vGraphLayoutReport.
STOPPED AND INVALID.

Layout of connected components (HL)

The layout algorithm can utilize the generic mechanism to layout connected components.
(For more information about this mechanism, see Layout of connected components.) When
using this mechanism, each component is laid out in its own individual level structure. Nodes
of the first level of one component may be placed at a different position than nodes of the
first level of another component.

The generic mechanism to layout connected components is, however, switched off by default.
In this case, the layout algorithm can still handle disconnected graphs. It merges all
components into a global level structure.

Link clipping (HL)

The layout algorithm can use a link clip interface to clip the end points of a link. (See Link
clipping.)

GRAPH LAYOUT ALGORITHMS

This is useful if the nodes have a nonrectangular shape such as a triangle, rhombus, or
circle. If no link clip interface is used, the links are normally connected to the bounding
boxes of the nodes, not to the border of the node shapes. See Using a link clipping interface
(HL) for details of the link clipping mechanism.

Link connection box (HL)

The layout algorithm can use a link connection box interface (see Link connection box) in
combination with the link clip interface. If no link clip interface is used, the link connection
box interface has no effect. For details see Using a link connection box interface (HL).

Percentage of completion calculation (HL)

The layout algorithm calculates the estimated percentage of completion. This value can be
obtained from the layout report during the run of the layout. (For a detailed description of
this features, see Percentage of completion calculation and Graph layout event listeners.)

Preserve fixed links (HL)

The layout algorithm does not reshape the links that are specified as fixed. In fact, fixed
links are completely ignored. (For more information on link parameters in the I1vGraphLayout
class, see Preserve fixed links and Link style.)

Preserve fixed nodes (HL)

The layout algorithm does not move the nodes that are specified as fixed. (For more
information on node parameters in the I1vGraphLayout class, see Preserve fixed nodes.)
Moreover, the layout algorithm ignores fixed nodes completely and also does not route the
links that are incident to the fixed nodes. This can result in unwanted overlapping nodes
and link crossings. However, this feature is useful for individual, disconnected components
that can be laid out independently.

Stop immediately (HL)

The layout algorithm stops after cleanup if the method stopImmediately () is called. (For
a description of this method in the T11vGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the nodes and links are not moved
from their positions before the layout call and the result code in the layout report is
IlvGraphLayoutReport.STOPPED AND INVALID.

USING GRAPH LAYOUT ALGORITHMS 165

Specific parameters of the HL

166 U S I N G

Flow direction (HL)

The flow direction parameter specifies the direction in which the majority of the links should
point. If the flow direction is to the top or to the bottom, the node levels are oriented
horizontally and the links mostly vertically. If the flow direction is to the left or to the right,
the node levels are oriented vertically and the links mostly horizontally.

If the flow direction is to the bottom, the nodes of the level with index 0 are placed at the
top border of the drawing. The nodes with level index 0 are usually the root nodes of the
drawing (that is, the nodes without incoming links). If the flow direction is to the top, the
nodes with level index 0 are placed at the bottom border of the drawing. If the flow direction
is to the right, the nodes are placed at the left border of the drawing.

_Iw

Iy
‘i Flow to Right

r{

(*
]

ol
_ls-

Flow to Left

¥

Flow to Bottomn Flow to Top
Flow directions

To specify the flow direction towards the bottom:

In Java
In Java, use the method:

void setFlowDirection (int direction)

The valid values for the flow direction are:
4 IlvDirection.Right (the default)

4 IlvDirection.Left

4 IlvDirection.Bottom

4 IlvDirection.Top

GRAPH LAYOUT ALGORITHMS

Leveling strategy (HL)

The layout algorithm partitions the nodes into levels (see A brief description of the HL
algorithm). The leveling strategy specifies how the levels are calculated. Besides the leveling
strategy, layout constraints (see Layout constraints for HL), level indices (see For experts:
more indices (HL)) as well as the incremental mode (see Incremental mode with HL) also
affect the way the levels are calculated. If the incremental mode is disabled, the leveling
strategy determines the levels of all nodes that are not subject to layout constraints and
level index specifications.

_lJ

ke ke A8 K
SR J)

-

Optimal or Semi-Cptimal Highear Lovels Lower Levels Spread Cut

Leveling strategies

To specify the leveling strategy:

In Java
In Java™ , use the method:

void setlLevelingStrategy (int strategy)

The valid values for the leveling strategy are:

¢ IlvHierarchicalLayout.SEMI_OPTIMAL (the default)

This produces often the same result as the optimal strategy, but it is quicker. The layout
algorithm uses a heuristic to minimize the sum of level distances for all edges. It pulls
root nodes to the highest-numbered possible level and leaf nodes to the lowest-numbered
possible level.

4 IlvHierarchicallLayout.OPTIMAL

This uses an algorithm that minimizes the sum of level distances for all edges. The optimal
strategy is slower than the other strategies, but often produces the best result.

¢ IlvHierarchicallayout.HIGHER LEVELS

Nodes have a tendency to use the possible level with the highest level number. All leaf
nodes will be at the higest-numbered level. All root nodes are pulled to high-numbered
levels as much as possible.

¢ IlvHierarchicallayout.LOWER LEVELS

USING GRAPH LAYOUT ALGORITHMS 167

168 U S I N G

Nodes have a tendency to use the possible level with the lowest level number. All root
nodes will be at level 0. All leaf nodes are pulled to low-numbered levels as much as
possible.

L4 IlvHierarchicalLayout.SPREAD OUT

This is a combination of the lower-level and higher-level strategies. All root nodes will be
at level 0. All leaf nodes will be at the higest-numbered level. All inner nodes are at
balanced positions.

Level justification (HL)

If the layout uses horizontal levels, the nodes of the same level are placed approximately at
the same y-coordinate. The nodes can be justified, depending on whether the top border,
or the bottom border, or the center of all nodes of the same level should have the same
y-coordinate.

If the layout uses vertical levels, the nodes of the same level are placed approximately at
the same x-coordinate. In this case, the nodes can be justified to be aligned at the left border,
at the right border, or at the center of the nodes that belong to the same level.

To specify the level justification towards the top:

In Java
Use the method:

void setLevelJustification(int justification)

If the flow direction is to the top or to the bottom, the valid values for the level justification
are:

4 IlvDirection.Top
4 IlvDirection.Bottom

4 IlvDirection.Center (the default)

AT AT A AT

Top Justification Certer Justification Bottomn Justification

Level justification for horizontal levels

If the flow direction is to the left or to the right, the valid values for the level justification
are:

4 IlvDirection.Left
4 IlvDirection.Right

4 IlvDirection.Center (the default)

GRAPH LAYOUT ALGORITHMS

[
/

/NN
AN
AN

Left Justification Center Justification Right Justification
Level justification for vertical levels

Link style (HL)

The layout algorithm positions the nodes and routes the links. To avoid overlapping nodes
and links, it creates bend points for the shapes of links. The link style parameter controls
the position and number of bend points. The link style can be set globally, in which case all
links have the same kind of shape, or locally on each link such that different link shapes
occur in the same drawing.

Polyline Links Orthogonal Links Straight-line Links
Link styles

Link style and link shapes

Link styles work only when you use links that can be reshaped. Subclasses of
IlvPolylineLinkImage or of I1vSplineLinkImage, (€.g., I1vGenerallink) can be reshaped.
Furthermore, link styles work only if free link connectors are installed. Free link connectors
are subclasses of T1vFreeLinkConnector. If you use a diagram component, the free link
connectors are automatically installed when needed unless specified differently. If you call
layout on an IlvGrapher directly in Java, the layout algorithm may raise an
IlvInappropriateLinkException if links are neither a subclass of T1vPolylineLinkImage
nor of I1vSplineLinkImage, or if connectors are not a subclass of I1vFreeLinkConnector.
In this case, you can use the methods EnsureAppropriateLinkTypes,
EnsureAppropriateLinkConnectors Or EnsureAppropriateLinks defined in the class
IlvGraphLayoutUtil to replace inappropriate links or link connectors automatically, either
before layout or when the I1vInappropriatelLinkException is caught. For details on these

USING GRAPH LAYOUT ALGORITHMS 169

170 U SI N G

methods, see the Java API Reference Manual.For details on the graph model, see Using the
Graph Model.

Global link style
To set the global link style:

In Java
Use the method:

void setGloballinkStyle (int style)

The valid values for the link style are:

¢ IlvHierarchicalLayout.POLYLINE STYLE

All links get a polyline shape. A polyline shape consists of a sequence of line segments
that are connected at bend points. The line segments can be turned into any direction.
This is the default value.

¢ IlvHierarchicalLayout.ORTHOGONAL STYLE

All links get an orthogonal shape. An orthogonal shape consists of orthogonal line segments
that are connected at bend points. An orthogonal shape is a polyline shape where the
segments can be turned only in directions of 0, 90, 180 or 270 degrees.

¢ IlvHierarchicalLayout.STRAIGHT LINE STYLE

All links get a straight-line shape. All intermediate bend points (if any) are removed. This
often causes overlapping nodes and links.

¢ IlvHierarchicalLayout.NO RESHAPE STYLE

None of the links is reshaped in any manner. Note, however, that unlike fixed links, the
links are not ignored completely. They are still used to calculate the leveling.

¢ IlvHierarchicallLayout.MIXED STYLE

Each link can have a different link style. The style of each individual link can be set such
that different link shapes can occur in the same graph.

Individual link style

All links have the same style of shape unless the global link style is MIXED STYLE. Only when
the global link style is MIXED STYLE can each link have an individual link style.

GRAPH LAYOUT ALGORITHMS

ﬁb{;}<fb<;ﬁk

e A
i N
J<J_’ S

Different Link Styles Mixed in the Same Drawing

To specify the style of an individual link:

In Java
Use the methods:

void setLinkStyle (Object link, int style)

int getLinkStyle (Object link)

The valid values for the link style of local links are the same as for the global link style:
¢ IlvHierarchicallLayout.POLYLINE STYLE

¢ IlvHierarchicallLayout.ORTHOGONAL STYLE

¢ IlvHierarchicalLayout.STRAIGHT LINE STYLE

¢ IlvHierarchicallayout.NO RESHAPE STYLE

Connector style (HL)

The layout algorithm positions the end points of links (the connector pins) at the nodes
automatically. The connector style parameter specifies how these end points are calculated.

USING GRAPH LAYOUT ALGORITHMS 171

172 U S I NG

3

/-

=
/-7

Centered Clipped Evenly Spaced Evenly Spaced
Connector Pins Connector Pins Connector Pins Connector Pins with

Orthogonal Links

Connector styles

To specify the connector style:

In Java
Use the method:

void setConnectorStyle (int style)

The valid values for style are:

¢

IlvHierarchicalLayout.CENTERED PINS

The end points of the links are placed in the center of the border where the links are
attached. This option is well-suited for polyline links and straight-line links. It is less
well-suited for orthogonal links, because orthogonal links can look ambiguous in this
style.

IlvHierarchicalLayout.CLIPPED PINS

Each link pointing to the center of the node is clipped at the node border. The connector
pins are placed at the points on the border where the links are clipped. This option is
particularly well-suited for polyline links without port specifications. It should not be used
if a port side for any link is specified.

IlvHierarchicalLayout.EVENLY SPACED PINS

The connector pins are evenly distributed along the node border. This style guarantees
that the end points of the links do not overlap. This is the best style for orthogonal links
and works well for other link styles.

IlvHierarchicalLayout.AUTOMATIC PINS

The connector style is selected automatically depending on the link style. If any of the
links has an orthogonal style or if any of the links has a port side specification, the
algorithm chooses evenly spaced connectors. If all the links are straight, it chooses
centered connectors. Otherwise, it chooses clipped connectors.

GRAPH LAYOUT ALGORITHMS

End point mode (HL)

Normally, the layout algorithm is free to choose the termination points of each link. However,
the user can specify that the current fixed termination pin of a link should be used.

The layout algorithm provides two end point modes. You can set the end point mode globally,
in which case all end points have the same mode, or locally on each link, in which case
different end point modes occur in the same drawing.

Global end point mode

To set the global end point mode:

In Java
Use the methods:

void setGlobalOriginPointMode (int mode) ;

void setGlobalDestinationPointMode (int mode) ;

The valid values for mode are:

4 IlvLinkLayout.FREE MODE (the default)

The layout is free to choose the appropriate position of the connection point on the
origin/destination node.

4 IlvLinkLayout.FIXED MODE

The layout must keep the current position of the connection point on the origin/destination
node.

4 IlvLinkLayout.MIXED MODE
Each link can have a different end point mode.
Individual end point mode

All links have the same end point mode unless the global end point mode is T1vLinkLayout.
MIXED MODE. Only when the global end point mode is set to MIXED MODE can each link have
an individual end point mode.

To set the end point mode of an individual link:
In Java
Use the methods:

void setOriginPointMode (Object link, int mode) ;

int getOriginPointMode (Object 1link);

USING GRAPH LAYOUT ALGORITHMS 173

174 U S I N G

void setDestinationPointMode (Object link, int mode);

int getDestinationPointMode (Object 1link);

The valid values for mode are:
4 IlvLinkLayout.FREE MODE (the default)

4 IlvLinkLayout.FIXED MODE

Using a link connection box interface (HL)

By default, the connector style determines how the connection points of the links are
distributed on the border of the bounding box of the nodes, symmetrically with respect to
the middle of each side. Sometimes it may be necessary to place the connection points on
a rectangle smaller or larger than the bounding box. For instance, this can happen when
labels are displayed below or above nodes.

You can modify the position of the connection points of the links by providing a class that
implements the T1vLinkConnectionBoxInterface. An example for the implementation of a
link connection box interface is in Link connection box. To set a link connection box interface
in Java, use the method:

setLinkConnectionBoxInterface

The link connection box interface provides each node with a link connection box and
tangential shift offsets. The Hierarchical Layout uses the link connection box but does not
use the tangential offsets.

The following figure illustrates the effects of customizing the connection box. On the left is
the result without any connection box interface. The picture on the right shows the effect
if the connection box interface returns the dashed rectangle for the corresponding node.

s 5

nermal cannection box specified

Effect of connection box interface

Using a link clipping interface (HL)

By default, the Hierarchical Layout places the connection points of links at the border of
the bounding box of the nodes. If the node has a nonrectangular shape such as a triangle,
rhombus, or circle, you may want the connection points to be placed exactly on the border
of the shape. This can be achieved by specifying a link clip interface. The link clip interface

GRAPH LAYOUT ALGORITHMS

allows you to correct the calculated connection point so that it lies on the border of the
shape. The following figure shows an example.

with clipping
Effect of link clipping interface

You can modify the position of the connection points of the links by providing a class that
implements the I1vLinkClipInterface. An example for the implementation of a link clip
interface is in Link clipping. To set a link clip interface in Java, use the method:

void setlLinkClipInterface (IlvLinkClipInterface interface)

The connector style, the link connection box interface, and the link clip interface work
together in the following way: by respecting the connector style, the proposed connection
points are calculated on the rectangle obtained from the link connection box interface (or
on the bounding box of the node, if no link connection box interface was specified). Then,
the proposed connection point is passed to the link clip interface and the returned connection
points are used to connect the link to the node.

The following figure shows an example of the combined effect.

Clipping at the node bounding box Clipping at a specified connection box

Combined effect of link clipping interface and link connection box

If the links are clipped at the red node in previous figure (left), they appear unsymmetrical
with respect to the node shape, because the relevant part of the node (here: the triangle)
is not in the center of the bounding box of the node, but the proposed connection points are
calculated with respect to the bounding box. This can be corrected by using a link connection
box interface to explicitly specify a smaller connection box for the relevant part of the node
(previous figure, right) such that the proposed connection points are placed symmetrically
at the triangle of the node.

USING GRAPH LAYOUT ALGORITHMS 175

176 U S I N G

For experts: thick links (HL)

If evenly spaced pins are used as connector style, the links can be evenly spaced with respect
to the link center or with respect to the link border. The difference is only visible when links
that connect to the same node have different widths. For instance, when the link width
indicates the cost or capacity of a flow in the application, many different link width may
occur.

Using the link width shows the effect of using different link widths. In the drawing on the
left, the center of the links are evenly distributed at the left node. Each link has the same
space available at the node side. Therefore, the thick links appear closer to each other than
do the thinner links and the offsets between the link borders are different. In the drawing
on the right, the thick links have more space available than do the thinner links. The offset
between the link border (at the segments that connect to the left node) is constant because
the link width is considered in the calculation of the connection points.

LinkWidthUsed = false LinkWidthUsed = true

Using the link width

To enable the connector calculation to respect the link width:

In Java
Call:

layout.setLinkWidthUsed (true) ;

The link width setting is disabled by default. The link width has no effect if the connector
styles CENTERED PINS or CLIPPED PINS are used.

Port sides parameter (HL)

The Hierarchical Layout algorithm produces a layout where the majority of the links flow
are in the same direction. If the flow direction is towards the bottom, usually the incoming
links are connected to the top side of the node and the outgoing links are connected to the
bottom side of the node. It is also possible to specify on which side a link connects to the
node.

GRAPH LAYOUT ALGORITHMS

To simplify the explanations of the port sides, we use the compass directions north, south,
east, and west. The specified link flow direction is always towards south and the first level
is towards north. If the flow direction is towards bottom, north is at the top, south at the
bottom, east on the right, and west on the left side of the drawing. If the flow direction is
towards right, north is on the left, south on the right, east at the top, and west at the bottom.

Link connections to port sides shows a drawing where the links connect to the larger middle
node at the specified port sides. A compass icon shows the compass directions in these
drawings.

b, w, § .

N
J East West

INonh ‘
TNor‘[h
-

West East |
South
| | |I

N@S Flow Dirgction @\1 - Flow Direction

Lou2ad1] s

Flow Direction

—_l
-

- 1
Marth South -
=g —-° F—J J—i y=h
qum Eastd
> i

Link connections to port sides

You can set at which side the link connects to its source node.
To set at which side the link connects to its source node:

In Java
Use the method:

void setFromPortSide (Object link, int side);

In a similar way, you can set at which side the link connects to its destination node.
To set at which side the link connects to its destination node:

In Java
Use the method:

USING GRAPH LAYOUT ALGORITHMS 177

178 U S I N G

void setToPortSide (Object link, int side);

The valid values for side are:
IlvHierarchicalLayout.UNSPECIFIED (the default)

IlvHierarchicalLayout.NORTH

¢
¢
4 IlvHierarchicalLayout.SOUTH
4 IlvHierarchicalLayout.EAST
¢

IlvHierarchicallayout.WEST

To retrieve the current choice for a link, use the methods:

int getFromPortSide (Object link);

int getToPortSide (Object 1link);

The port sides east and west work particularly well with the orthogonal link style. Polyline
links with these port sides sometimes have unnecessary bends. Furthermore, if port sides
are specified, the connector style CLIPPED PINS should not be used.

Port index parameter (HL)

You can specify where the links connect to the node. You cannot specify the exact location,
but you can specify the relative location compared to the connection points of the other
links. This is done by using a port index. Sample layout with ports and orthogonal link style
shows a sample layout with ports at many nodes.

Links that have the same port index connect at the same point of the node. The ports are
evenly distributed at the node sides, in a similar way as with the connector style

EVENLY SPACED PINS.The ports are ordered according to their indices. On the north and
south side of a node, the port indices increase toward the east. On the east and west sides
of a node, the port indices increase toward the south. By using port indices in this way, it
is easier to rotate a graph by simply changing the flow direction without needing to update
all the port specifications.

Port Index Numbering Conventions in Relation to Flow Direction show how the port indices
depend on the flow direction.

GRAPH LAYOUT ALGORITHMS

A ”1 s . | | .
T =
|
23 !

g | =11 — —1234,
2 1
R — g —3 83—
2 — — | I—
8 | t1224% S ET T I
r _|
HE HHHH o

Flow Direction

Port Index Numbering Conventions in Relation to Flow Direction

Port numbers are normally used in combination with port sides. Therefore, you must specify
how many ports are available on each side of a node.

To specify the number of ports:

In Java
Use the method:

void setNumberOfPorts (Object node, int side, int numberOfPorts);

For example, to use 4 ports on each side of a specific node, use the calls:

layout.setNumberOfPorts 9
layout.setNumberOfPorts
layout.setNumberOfPorts

layout.setNumberOfPorts

node, IlvHierarchicallayout.EAST, 4)
node, IlvHierarchicallayout.WEST, 4)
node, IlvHierarchicallayout.NORTH, 4
node, IlvHierarchicallayout.SOUTH, 4

)i
)-

’

The node side is specified again by EAST, WEST, NORTH, and SOUTH. To retrieve the retrieve
the number of ports available at the node, use the method:

int getNumberOfPorts (Object node, int side);

After the number of ports per side is specified, you can choose which port each link connects
to.

To choose the port side and the port index for a link:

In Java
To specify the connection at the source node, use the methods:

void setFromPortSide (Object link, int portSide);

void setFromPortIndex (Object link, int portIndex) ;

To specify the connection at the destination node, use the methods:

USING GRAPH LAYOUT ALGORITHMS 179

180 U s |

N G

void setToPortSide (Object link, int portSide);

void setToPortIndex (Object link, int portIndex);

To obtain the current port index of a link, use the methods:

int getFromPortIndex (Object 1link);

int getToPortIndex (Object 1link);

Using the port side and port index specifications are additional constraints for the layout
algorithm. The more constraints are specified, the more difficult it is to calculate a layout.
Therefore, if too many links have a specified port index, this resulting layout may have more
link crossings and be less balanced.

Fork link shapes (HL)

If several links start at the same position and are orthogonally routed, it is sometimes
preferred that the links share the first two link segments. The shape of a link bundle of this
kind looks like a fork. To enable the fork shape mode for outgoing links, call:

layout.setFromFork (true) ;

To enable the fork shape mode for incoming links:

In Java
Call:

layout.setToFork (true) ;

These statements have an effect only if the links are routed orthogonally. The fork appears
only at those links that start or end exactly at the same point. Specifying setFromFork (true)
by itself does not force the links to start at the same point. To force links to start or end at
the same point, use the center connector style (see Connector style (HL)) or specify the
same port for the links (see Port index parameter (HL)).

GRAPH LAYOUT ALGORITHMS

prefemedboxAxislength

!

Ininl-’nrkh‘cgnu:nllJ:nglh

| l| l| l|

From Fork Shape

To Fork Shape
Fork Link Shapes

There are two spacing parameters for the fork shape:

In Java

void setMinForkSegmentLength (float length)

It sets the minimal length of the segment that is directly adjacent to the node.

void setPreferredForkAxisLength (float length)

This method sets the preferred length of the fork axis per branch (the second segment
adjacent to the node). If the fork has five branches, the entire axis has the preferred length
five times the specified parameter. The preferred fork axis length is only a hint for the layout
algorithm. If enough space is available, the algorithm will enlarge the fork axis to avoid
unnecessary link bends. If there is not enough space, the algorithm may as well calculate a
fork axis that is smaller than the preferred one.

Fork link shapes may sometimes look ambiguous, in particular when a link starts at the
same point where another link ends, because in this case it is impossible to recognize whether
the arrowhead belongs to one or the other link.

Link priority parameter (HL)

The layout algorithm tries to place the nodes such that all links are short, point in the flow
direction, and do not cross each other. However, this is not always possible. Often, links
cannot have the same length. If the graph has cycles, some links must be reversed against
the flow direction. If the graph is a nonplanar graph, some links have to cross each other.

The link priority parameter controls which links should be selected if long, reversed, or
crossing links are necessary. Links with a low priority are more likely to be selected than
links with a high priority. This does not mean that low-priority links are always longer,

USING GRAPH LAYOUT ALGORITHMS 181

182 US I NG

reversed, or crossed, because the graph may have a structure such that no long, reversed
or crossing links are necessary.

To set the link priority:

In Java
Use the methods.

void setLinkPriority(Object link, float priority)

float getLinkPriority(Object link)

The default value of the link priority is 1.0. Negative link priorities are not allowed.

For an example of using the link priority, consider a cycle A->B->C->D->E->A. It is impossible
to lay out this graph without reversing any link. Therefore, the layout algorithm selects one
link to be reversed. To control which link is selected, you can give one link a lower priority
than the others. This link will be reversed. In Working with link priorities, the bottom layout
shows the use of the link priority. The link C->D was given the priority 0.5, while all the
other links have the priority 1.0. Therefore C-D is reversed. The top layout in Working with
link priorities shows what happens when all links have the same priority. Link E->A is

reversed.
.—’..—Pk‘ All links have the

same priority.

Hhh LinkC =0 hasa
lower priority than
the other links.

The use of link priorities is important in combination with ports. Links with “from” ports on
the south side and “to” ports on the north side are preferably laid out opposite to the flow
direction. Such a feedback link may cause parts of the drawing to tip over. Using Link
Priorities and Ports shows an example. The red link is a feedback link with port specifications.
To obtain the correct result as shown in the right side of the following figure, you would set
the priority of the feedback link to a very low value.

Working with link priorities

GRAPH LAYOUT ALGORITHMS

o=l o e

Link D -=B has a lower
prionty than the other links.

All links have the
same priority.
Using Link Priorities and Ports

Spacing parameters (HL)

The spacing of the layout is controlled by three kinds of spacing parameters: the minimal
offset between nodes, the minimal offset between parallel segments of links and the minimal
offset between a node border and a bend point of a link or a link segment that is parallel to
this border. The offset between parallel segments of links is at the same time the offset
between bend points of links. All three kind of parameters occur in both directions:
horizontally and vertically.

Horizontal Link
Offset

Harizontal Haorizontal

Mode Mode-Link
Offset Offzat

Vertical
Mode
Offzet

Horizontal
MNode-Link
Offzet

Spacing parameters

USING GRAPH LAYOUT ALGORITHMS 183

184 U s |

N G

To set the spacing parameters:

In Java
4 For the horizontal direction, use the methods:

void setHorizontalNodeOffset (float offset)

void setHorizontalLinkOffset (float offset)

void setHorizontalNodeLinkOffset (float offset)
4 For the vertical direction, use the methods:

void setVerticalNodeOffset (float offset)

void setVerticallLinkOffset (float offset)

void setVerticalNodeLinkOffset (float offset)

For a layout with horizontal levels (the flow direction is to the top or to the bottom), the
horizontal node offset is the minimal distance between nodes of the same level. The vertical
node offset is the minimal distance between nodes of different levels, that is, the minimal
distance between the levels. For non-orthogonal link styles, the horizontal link offset is
basically the minimal distance between bend points of links. The horizontal node-link offset
is the minimal distance between the node border and the bend point of a link. For horizontal
levels, the vertical link offset and the vertical node-link offset play a role only if the link
shapes are orthogonal.

Similarly, for a layout with vertical levels (the flow direction is to the left or to the right),
the vertical node offset controls node distances within the levels. The horizontal node offset
is the minimal distance between the levels. In this case, the vertical link offset and the
vertical node-link offset always play a role, while the horizontal link offset and the horizontal
node-link offset affect the layout only with orthogonal links.

For orthogonal links, the horizontal link offset is the minimal distance between parallel,
vertical link segments. The vertical link offset is the minimal distance between parallel,
horizontal link segments. However, the layout algorithm cannot always satisfy these offset
requirements. If a node is very small but has many incident links, it may be impossible to
place the links orthogonally with the specified minimal link distance on the node border. In
this case, the algorithm places some link segments closer than the specified link offset.

GRAPH LAYOUT ALGORITHMS

Haorizontal
Mode-Link
Offset

Link Offset
WYiolation
Cauzedbya
"Too-Small
Mode

Wertical
Link Offset

Haorizontal

Link,
Otfzet

\

Spacing parameters for orthogonal links

USING GRAPH LAYOUT

ALGORITHMS 185

Incremental mode with HL

186 U S I N G

In some circumstances you may need to use a sequence of layouts on the same graph. For
example:

4 You work with graphs that have become out-of-date and you need to extend the graph.
If you perform a layout on the extended graph, you probably want to identify the parts
that were already laid out in the original graph. The layout should not change very much
when compared with the layout of the original graph.

4 The first layout results in a drawing with minor deficiencies. You want to solve these
deficiencies manually and perform a second layout to clean up the drawing. The second
layout probably should not greatly change the parts of the graph that were already
acceptable after the first layout.

The Hierarchical Layout normally works nonincrementally. It performs a layout from scratch
and moves all nodes to new positions and reroutes all links. The previous positions of nodes
have no influence on the result of the layout. Hence, even a small change can cause a large
effect on the next layout.

But the Hierarchical Layout also supports incremental sequences of layout that “do not
change very much.” It can place the nodes close to their previous positions, so that you can
more easily identify the parts that had already been laid out in the original graph. Incremental
mode takes the previous positions of the nodes into account. In this mode the algorithm
preserves the relative order of the levels and the nodes within the levels in the subsequent
layout. It does not preserve the absolute positions of the nodes, but it tries to detect the
structure of the previous layout by examining the node coordinates. For instance, if two
nodes are in the same level, then they stay in the same level after an incremental layout. If
a node is in a higher level than another node, it stays in the higher level.

The following figure illustrates the difference between an incremental and nonincremental
layout.

GRAPH LAYOUT ALGORITHMS

incrermental
layout

G
]
A
/ W
B E | Cl
F J H|

Incremental and Nonincremental Layouts

Incremental mode is disabled by default.
To enable incremental mode:

In Java™

layout.setIncrementalMode (true) ;

Phases of the incremental mode

The layout algorithm analyzes the drawing in incremental mode in the following way:

1. First, it determines from the node coordinates which nodes must belong to the same
level. For instance, if the flow direction is towards the bottom, it tries to detect horizontal
reference lines at those vertical positions where many nodes are placed along a line.

USING GRAPH LAYOUT ALGORITHMS 187

188 U S I NG

The specified vertical node offset helps to detect these lines because the horizontal
reference lines should be approximately the vertical node offset apart. See the following
figure.

2. All nodes that touch the same reference line are assigned to the same level.

3. It determines the order of the nodes within each level by analyzing where the node
touches the reference line. For instance, if the flow direction is towards the bottom, it
determines from the x coordinate of the nodes how they are ordered within the levels.

4. If long links span several levels, the algorithm can preserve the shape of a long link. It
determines the point where a link crosses the level reference line. It creates a bend
point for the long link inside the level. It tries to preserve the order of the bend points
in each level. For instance, if in a flow direction towards the bottom, a long link bypasses
another node on the right side, then the incremental layout tries to find a similar shape
of the link that bypasses the node on the right side, as illustrated in the following figure.

5. Finally, the layout tries to calculate the absolute positions of the nodes that respect the
levels and the ordering within the levels. It tries to balance the node positions. However,
it also tries to place each node close to its previous position. Both criteria often compete
with each other, because to get a perfect balance, nodes must sometimes move far from
their original position. The Hierarchical Layout contains a parametrized heuristic to
satisfy both criteria.

The following figure shows the result of the incremental phases.

Jﬂ

Incremental layout phases

Expert parameters of the incremental mode

Each phase of the incremental mode can be parameterized. These layout parameters have
an effect only if incremental mode is switched on.

Minimizing long link crossings

The incremental layout tries to preserve the shape of long links that cross several levels.
This implies that link crossings between long links are not resolved. If crossings of long links

GRAPH LAYOUT ALGORITHMS

are not desired, it may be better to reroute long links from scratch. The following figure
shows four hierarchy trees, with the original layout at the upper left. The bottom right shows
the result if long links are rerouted, and the top right shows the result if the shape of long
links is preserved.

norrnal
incrermental

lay o:t F

e
é__;;’? %ﬂé\ 7
4
incremental layout 3“@ QZ? }%f
with crogsing reduction &,

Crossing Reduction During Incremental Layouts

To reroute long links from scratch, you must enable the crossing reduction mechanism for
long links:

In Java

layout.setLongLinkCrossingReductionDuringIncremental (true) ;

The crossing reduction of long links determines only the shape of the links. It does not
influence the order of the other nodes within the levels.

USING GRAPH LAYOUT ALGORITHMS 189

190 U s 1

N G

Minimizing all link crossings

Optionally, you can apply a crossing reduction to all nodes within each level. In this case,
the incremental layout determines from the node coordinates which nodes belong to the
same level, but it may reorder the nodes within the levels completely to avoid link crossings.
It also reorders the long links in this case. The previous figure, bottom left shows the result.
Notice that the order of the nodes “E,” “G,” and “H” have changed to resolve the link
crossings.

To enable the crossing reduction for all nodes:

In Java

layout.setCrossingReductionDuringIncremental (true) ;

Setting absolute level positioning

The incremental layout tries to place the nodes in absolute positions that are close to the
previous positions. It tries to avoid nodes moving a large distance, because even if the
relative order of the nodes within the levels does not change, large movement distances can
be confusing for users. It is much easier to keep a mental map of the diagram if the nodes
remain close to the previous positions.

The following figure illustrates node repositioning with and without taking the previous
positions into account. The incremental layout of the original graph at the top left results
in the graph at the top right, which is easier to recognize as the same graph than the graph
at the bottom.

The absolute level positioning feature is enabled by default, but it can be disabled.
To disable the absolute level positioning feature:

In Java
Call

layout.setIncrementalAbsolutelLevelPositioning(false);

With this statement, the layout does not try to place the nodes close to the previous positions.
It places the nodes such that the layout is balanced. However, to create a perfect balance,
the layout may need to move a few nodes so far apart that you can no longer recognize the
diagram after the layout from the node positions that were shown in the previous layout
(see the following figure, bottom).

GRAPH LAYOUT ALGORITHMS

s

B

]

with
tezpecting

o ol
previous
positions

l

AL

@q—.q—l_

=]

ﬂ ﬂ withont
respecting previous
positions
&,

Absolute Positioning During Incremental Layouts

Setting absolute level position range and tendency
If absolute level positioning is enabled, it competes with the aesthetic criteria to create a

balanced layout. Due to the fact that nodes must stay close to their previous positions, the
diagram after incremental layout may be somewhat unbalanced and unsymmetrical. The

USING GRAPH LAYOUT ALGORITHMS 191

192 U s |

N G

Hierarchical Layout algorithm uses a heuristic that you can influence by two parameters,
the absolute level position range and tendency.

The absolute level positioning feature is enabled by default, but it can be disabled.
To disable the absolute level positioning feature:

In Java
Call:

layout.setIncrementalAbsoluteLevelPositionRange (100) ;

This statement specifies that within the range of 100 coordinate units from the old position
of the node, the balance is the only criteria for the placement. This means that a node whose
optimal position is less than 100 coordinate units away from its previous position is placed
exactly at its optimal position. Nodes whose optimal position is farther away are placed at
a position that is a compromise between previous position and optimal position. This is
illustrated in figure below, right.

To set the absolute level position tendency:

In Java
Call:

layout.setIncrementalAbsolutelLevelPositionTendency (70) ;

This statement specifies that positions of nodes whose optimal positions are far away from
their previous position are 70% influenced by their previous position and 30% influenced
by their optimal positions. Imagine a rubber band that tries to pull a node to its previous
position, and another rubber band that tries to pull the same node to its optimally balanced
position. The level position tendency 70 means that one rubber band pulls with 70% of the
force towards the previous position, and the other rubber band pulls with 30% towards the
optimal position. Increasing the tendency means that the node stays closer to its old position,
decreasing it means that the node moves closer to its optimal position. If you set the tendency
to 0%, this has the same effect as disabling the incremental absolute level positioning (see
the following figure).

GRAPH LAYOUT ALGORITHMS

position tendency 20 l \\‘

osition
E)endenoy 0

PusitiorRange Laeah

L PositionTendensy pogitiarrangs
pOSIthH
tendency 50

R
S

Absolute Positioning During Incremental Layouts

e =
FosisionRange FositionTendency
FositionRange

Marking nodes for incremental layout

Incremental layout normally treats all nodes and links of the drawing in the same way.
However, you may have added nodes and links to the drawing programmatically, and the
new nodes and links do not have meaningful coordinates yet. Perhaps you have placed them
all at the origin (0,0), or at random coordinates. In this case, you need an incremental layout
that takes the coordinates of all nodes into account that were previously laid out, while it
ignores the coordinates of all new nodes. The incremental mode of the Hierarchical Layout
allows you to specify in Java which nodes cannot be laid out incrementally by calling the
method:

layout.markForIncremental (nodeOrLink) ;

If you call this statement, the node or link is marked such that its coordinates are ignored
during the next incremental layout. The positions of marked nodes and links are calculated
from scratch. The mark is valid only until the next layout and is automatically cleared
afterwards.

USING GRAPH LAYOUT ALGORITHMS 193

Layout constraints for HL

194 U s |

N G

The Hierarchical Layout algorithm supports relative position constraints on nodes. Such a
constraint is a rule on how a particular node (or a group of nodes) must be placed with
respect to the other nodes. The constraints influence the relative positions. For example,
you can force node A to be on the left side of node B, so the position of A is expressed relative
to the position of B. It is theoretically possible to specify contradicting constraints: if you
specify that node 2 must be on the left side of B and B must be on the left side of 2, then
these constraints are not solvable at the same time. If A is on the left side of B, then B must
be on the right side of . The Hierarchical Layout algorithm tries to detect and resolve
constraint conflicts automatically. It ignores those constraints that are infeasible. Since the
automatic constraint resolution is time consuming, it is recommended to specify nonconflicting
constraints when possible.

Constraints should be used only if the incremental mode is switched off. In fact, the
incremental mode is implemented by means of additional constraints that are added internally.
Hence, if you use constraints during the incremental mode, it is very likely that the system
detects so many constraint conflicts that you get unexpected results.

Constraints should be used carefully. The more constraints are specified, the more difficult
it is to calculate a layout. Therefore, this resulting layout may have more link crossings and
be less balanced than a graph with no constraints.

Each type of constraint is represented by a subclass of I1vHierarchicalConstraint. The
following constraint types are available:

IlvLevelRangeConstraint Forces a node into a range of certain levels
IlvSameLlevelConstraint Forces two nodes to the same level.
TIlvRelativelLevelConstraint Forces a node to a lower/higher level than another node.
IlvGroupSpreadConstraint Forces a group of nodes on levels that are no more than a

specified spread value apart.

IlvRelativePositionConstraint Forces a node to a lower/higher position than another node
of the same level.

IlvSideBySideConstraint Forces two nodes of the same level to be placed side by side.

IlvExtremityConstraint Forces a node to the first or last level, or to the first or last
position within a level.

IlvSwimLaneConstraint Forces a group of nodes into the same rectangular swim lane
area.

GRAPH LAYOUT ALGORITHMS

Adding and removing constraints in Java for HL

You can add constraints to the Hierarchical Layout by allocating a new constraint object
and calling this method on the I1vHierarchicalLayout instance:

void addConstraint (IlvHierarchicalConstraint constraint);

You can add as many constraints as you want. The constraints will be respected during the
subsequent layout calls until you remove them. To remove the most recent constraint, call:

void removeConstraint () ;

To remove a specific constraint, call:

void removeConstraint (IlvHierarchicalConstraint constraint);

To remove all existing constraints, call:

void removeAllConstraints();

You can retrieve the constraints that were added to a Hierarchical Layout with the method:

Enumeration getConstraints ()

Node groups

Some constraints affect single nodes. Other constraints affect groups of nodes. The class
IlvNodeGroup is a convenient way to specify a group of nodes in Java. You can create a
group of nodes in the following way:

group = new IlvNodeGroup() ;
while (...) {
group.add (node) ;

A node group has a similar functionality to a vector. You can ask for the size and elements
of the group, remove elements from the group, or check whether a node already belongs to
the group. You can also convert a vector of nodes into a group:

USING GRAPH LAYOUT ALGORITHMS 195

group.add (node) Adds a node to the group.

group.remove (node) Removes a node from the group.
group.contains (node) Checks whether a node is in the group.
group.size () Returns the number of nodes in the group.
group.elements () Returns the nodes of the group as an Enumeration.

group = new IlvNodeGroup (vector) Creates a new group that contains the nodes stored in the
input vector.

196 USING GRAPH LAYOUT ALGORITHMS

Level range constraints (HL)

In Step 1 of the layout algorithm (the leveling phase), the nodes are partitioned into levels.
These levels are indexed starting from 0. For instance, when the flow direction is to the
bottom, the nodes of the level index 0 are placed at the topmost horizontal level line and
the nodes with larger level index are placed at a position lower than the nodes with smaller
level index (see Level and position indices). The layout algorithm calculates these level
indices automatically.

You can choose how the levels are partitioned by specifying the range of the level index for
some nodes. The nodes are placed in the levels whose index is in the specified range. You
have to specify the minimum and maximum index of the level.

To specify the minimum and maximum index of the level:

In Java
Call:

layout.addConstraint (new IlvLevelRangeConstraint (node, 5, 7));

If you want to place the node exactly at level 5, call:

layout.addConstraint (new IlvLevelRangeConstraint (node, 5, 5));

Alternatively, you can call:

layout.setSpecNodelLevelIndex (node, 5);

which has exactly the same meaning.
If you want to force the node to level 5 and above, set UNSPECIFIED as the maximal level.

In Java
Call:

layout.addConstraint (
new IlvLevelRangeConstraint (node, 5, IlvHierarchicallayout.UNSPECIFIED)) ;

If you want to force the node to level 5 and below (that is, level O, ..., 5), set UNSPECIFIED
as the minimal level; for example, in Java:

layout.addConstraint (
new IlvLevelRangeConstraint (node, IlvHierarchicalLayout.UNSPECIFIED, 5));

In this particular case, you could also use zero (0) as the minimal level because the level
indices start at 0.

You can apply the constraint to a group of several nodes at once. This has the same effect
as specifying the constraint for each single node of the group, but it is more memory efficient
and convenient. For instance, if you want to force the group of three nodes to the levels
between 5 and 7:

USING GRAPH LAYOUT ALGORITHMS 197

To specify these parameters:

In Java

Create a I1vNodeGroup object (see Node groups) of the three nodes and add it to the
constraint in the following way:

layout.addConstraint (new IlvLevelRangeConstraint (nodeGroup, 5, 7));

198 USING GRAPH LAYOUT ALGORITHMS

Level index parameter (HL)

The level index is a special case of a level range constraint (see Level range constraints
(HL)). It forces the node to one particular level. For your convenience, you can specify the
level index of a node directly by the method:

void setSpecNodeLevelIndex (Object node, int index)

You pass a single node as the first argument (not a node group). The default index value is
-1. If the default value is used, or if a node is set to a negative level index, the level index
is considered to be unspecified. In this case the layout algorithm automatically calculates
an appropriate level index during the leveling phase of the algorithm.

To obtain the specified level index for a node, use the method:

int getSpecNodelevelIndex (Object node)

However, this method returns the value that was set by setSpecNodeLevelIndex. If the level
index was specified by allocating a corresponding level range constraint that has the same
meaning, getSpecNodeLevelIndex still returns -1.

Warning: Using arbitrarily large level indices is not recommended. For instance, if you set
the level index of a node to 100000, the layout algorithm creates 100,000 levels
even if the graph has far fewer nodes. This causes the layout algorithm to become
unnecessarily slow.

USING GRAPH LAYOUT ALGORITHMS 199

Same level constraints (HL)

200 USI NG

If you want to force several nodes to the same level with fixed index, you can set the level

index parameter of these nodes accordingly (see Level index parameter (HL)) or use a level
range constraint (see Level range constraints (HL)). However, if you want to force several

nodes to the same level without forcing them to a specific level index, you cannot use these
mechanisms. You must use a same level constraint.

To set the same level constraint:

In Java™
Call:

layout.addConstraint (new IlvSameLevelConstraint (nodel, node2));

This forces nodel and node?2 to be placed into the same level, but it does not constrain them
to any particular level.

The following figure illustrates the placement of nodes on the same level.

By ||‘"| THIFHR,

All Nodes Fixed at Same Level

GRAPH LAYOUT ALGORITHMS

Group spread constraints (HL)

An alternative way to force a group of nodes to the same level is by specifying a group spread
constraint with a spread size of zero (0). In general, the group spread constraint forces a
group of nodes to k+1 subsequent levels. The number k is the spread size. It does not select
the lowest or highest level index of the group, but only requires that the nodes be placed
no more than k levels apart. Hence, if k=0, all nodes of the group are placed at the same
level.

To illustrate the general group spread constraint on nodes with ID “nodeA’, “nodeB” and
“nodeC”:

In Java
To use the group spread constraint call:

IlvNodeGroup nodeGroup = new IlvNodeGroup();

nodeGroup.add (nodeA) ;

nodeGroup.add (nodeB) ;

nodeGroup.add (nodeC) ;

layout.addConstraint (new IlvGroupSpreadConstraint (nodeGroup, 2));

The constraint is satisfied if the highest level index for nodea, nodeB, and nodeC is no more
than two levels apart from the smallest level index of the nodes. For instance, the constraint
is satisfied if the level indices for nodea, nodeB, and nodecC are 1, 2, 3; or if they are 7, 8, 9;
or if they are 16, 14, 15. The constraint is also satisfied if all three nodes are placed at level
5, or if two of the nodes are placed at level 15 and the third node at level 13. The constraint
is not satisfied if the level indices for noder, nodeB, and nodecC are 3, 5, 6, because in this
case the highest index (6) is more than two levels away from the lowest index (3).

USING GRAPH LAYOUT ALGORITHMS 201

Relative level constraints (HL)

202 USI NG

If the flow direction is towards the bottom, level 0 is topmost in the drawing. In this layout
you can specify by relative level constraints that a node be above or below another node. If
the flow direction is towards the right, level 0 is leftmost in the drawing. Here you can
specify by relative level constraints that a node be left or right of another node.

In Java
In Java™ , call:

layout.addConstraint (
new IlvRelativelevelConstraint (nodeA, nodeB, priority));

This forces nodea to be placed at a level with a smaller index than nodeB. Since relative level
constraints compete with each other, you must specify the priority of the constraint. In fact,
links also impose constraints on the system, and the link priority has the same impact as
the constraint priority. A link with priority 10 forces its (usually) source node (unless ports
are specified) into a lower level than its target node. To force the source node into a higher
level than the target node, you need to create a constraint with a higher priority than the
link. For instance, to ensure that the constraints are satisfied even if there are many links,
you can use link priorities between 0 and 10 and constraint priorities between 1000 and
10,000.

You can also create a relative level constraint between groups of nodes.

In Java
Call:

layout.addConstraint (
new IlvRelativelevelConstraint (nodeGroupl, nodeGroup2, priority)):;

GRAPH LAYOUT ALGORITHMS

Position index parameter (HL)

In Step 2 of the layout algorithm (the crossing reduction phase), the nodes are ordered
within the levels. All nodes that belong to the same level get a position index starting from
0. For instance, when the flow direction is to the bottom, the node with the position index
0 is placed in the leftmost position within its level. The nodes with a larger position index
are placed farther to the right than the nodes with a smaller position index in the same level.
The nodes of different levels are independent. The node of the first level with the position
index 0 is to the left of the node of the first level with the position index 1, but not necessarily
to the left of a node of another level with position index 0. Note that long links crossing a
level also obtain a position index (see Level and position indices). The layout algorithm
calculates these position indices automatically.

You can affect how the nodes are positioned within each level by specifying the position
index of some nodes. The nodes are placed at the specified position within their level.

To specify the position index of a node in Java™ , use the method:

void setSpecNodePositionIndex (Object node, int index)

The default value is -1. If the default value is used, if a node is set to a negative position
index, or if a node is set to a position index that is larger than the number of nodes of its
level, the layout automatically calculates an appropriate position index during the crossing
reduction step.

To obtain the current position index of a node, use the method:

int getSpecNodePositionIndex (Object node)

USING GRAPH LAYOUT ALGORITHMS 203

Relative position constraints (HL)

204 U s |

N G

Working with absolute node position indices is inconvenient in certain situations. For example,
if two nodes belong to the same level, you may want to force one node to a position with a
lower index than the other node without fixing the absolute positions of the nodes. You can
achieve this by using a relative position constraint.

The relative position constraint forces a specific order upon the nodes of a level, but it does
not specify which nodes are directly neighbored. For instance, a relative position constraint
may force nodea to be placed somewhere at a lower position than nodeB, but there may be
many nodes between nodea and nodeB.

In Java™
Call:

layout.addConstraint (
new IlvRelativePositionConstraint (nodeA, nodeB, priority));

This forces nodea to a lower position than nodeg. If the flow direction is towards the bottom,
the nodes are in horizontal levels; hence the constraint means that nodea is placed at the
left side of nodeB. If the flow direction is towards the right, the nodes are in vertical levels;
hence the constraint means that nodea is placed below nodeB.

The relative position constraint has an effect only if both nodes actually belong to the same
level. To achieve this, you can, for instance, use a same level constraint in addition. There
is no way to influence the relative position of nodes that belong to different levels.

Similar to the relative level constraint, the relative position constraint can be applied to
node groups. These constraints also have priorities that indicate which constraints dominate
if a constraint conflict occurs. The higher the priority, the more likely the constraint is
satisfied when resolving constraint conflicts.

GRAPH LAYOUT ALGORITHMS

Side-by-side constraints (HL)

To force nodes to be directly neighbored, use the side-by-side constraint.

In Java™
You can create a side-by-side constraint on a group of type 11vNodeGroup (see Node groups):

layout.addConstraint (
new IlvSideBySideConstraint (nodeGroup, priority));

If the node group consists of just two nodes, it forces the two nodes to be placed side by
side. However, it does not specify which node is at the lower node position and which node
is at the higher node position. If the group consists of more than two nodes, it forces the
nodes to be placed at consecutive positions such that all nodes are clustered together. A
node that does not belong to the group cannot be placed between the nodes of the group.

For example, assume that the group contains the three nodes 2, B, c. The constraint is
satisfied if the position indices of a, B, and c are 3, 4, 5 or 9, 7, 8. However, if node D is
placed between A and B (say, D has position 4, A has position 3, and ¢ has position 5), then
the constraint is not satisfied because D does not belong to the same group.

The side-by-side constraint has an effect only if the nodes actually belong to the same level.
To achieve this, you can, for instance, use a same level constraint in addition.

Side-by-side constraints have priorities that decide how to resolve constraint conflicts. The
higher the priority, the more likely the constraint is satisfied.

You can use side-by-side constraints to create nested clusters. For example, in Java:

IlvNodeGroup groupl = new IlvNodeGroup() ;
groupl.add (noded) ;
groupl.add (nodeB) ;
groupl.add (nodeC) ;
groupl.add (nodeD) ;
layout.addConstraint (
new IlvSideBySideConstraint (groupl, 10.0f));
IlvNodeGroup group2 = new IlvNodeGroup () ;
group?2.add (nodeB) ;
group?2.add (nodeC) ;
layout.addConstraint (
new IlvSideBySideConstraint (group2, 10.0f));

The first constraint specifies that nodea, nodeB, nodeC, and nodeD must be clustered. The
second constraint specifies that nodeB and nodeC are clustered inside the larger cluster.
This means that no other node can be placed between the four nodes and, furthermore,
neither nodea nor nodeD can be placed between nodeB and nodec. The following figure shows
four solutions that satisfy both constraints.

USING GRAPH LAYOUT ALGORITHMS 205

[nodef-\l nodeEl nodec! nodeDD [nodeDl nodeCl nodeB! nodeAD
[nodeﬂl nodecl nodeDl nodeAD [nodehl nodeDl nodeCl nodeBD

Sketch of Solutions for Side-By-Side Constraints

206 USING GRAPH LAYOUT ALGORITHMS

Extremity constraints (HL)

To force a node to the first level, you can specify:

layout.setSpecNodelLevelIndex (node, 0);

However, you cannot specify a level index for the last level because it is unknown at the
beginning of layout how many levels will be created. It is unwise to specify:

layout.setSpecNodeLevelIndex (node, java.lang.Integer.MAX VALUE);

because this will create many empty levels between the levels actually used and the last
one. Even though these empty levels are removed in postprocessing steps, this influences
the speed and quality of the layout. (In fact, the algorithm will run out of memory if you set
the specified level index unreasonably high.)

By using constraints you can achieve the same effect more efficiently.
To force a node to the first level:

In Java
In Java™ , call:

layout.addConstraint (
new IlvExtremityConstraint (node, IlvHierarchicalLayout.NORTH)) ;

To force a node to the last level:

In Java
Call:

layout.addConstraint (
new IlvExtremityConstraint (node, IlvHierarchicalLayout.SOUTH)) ;

With compass directions as a convenient reference (see Port sides parameter (HL)), the first
level indicates the north pole and the last level indicates the south pole. You can also specify
extremity constraints for the east and west sides:

layout.addConstraint (

new IlvExtremityConstraint (nodel, IlvHierarchicalLayout.EAST)) ;
layout.addConstraint (

new IlvExtremityConstraint (node2, IlvHierarchicalLayout.WEST)) ;

The west extremity constraint forces the node to the lowest position index within its level,
and the east extremity constraint forces the node to the highest position index within its
level. The position indices specify the relative position within the level. For instance, a node
with west extremity constraint will be the leftmost node within its level, if the flow direction
is towards the bottom. However, this does not affect other levels; there may be a node in
another level that is still placed farther to the left.

The following figure illustrates some extremity constraints.

USING GRAPH LAYOUT ALGORITHMS 207

narth extremity
level O

|- |- | level 1
=
o
=
ot
fid
= level 2
west C,E gast
extremity = extremity
of level 2 of level 2
A
|_ |_ level 3

sguth extremity

Sketch of Extremity Constraints

208 USING GRAPH LAYOUT ALGORITHMS

Swim lane constraints (HL)

Swim lanes are rectangular areas orthogonal to the levels.

4 If the link flow direction is towards the bottom or top, the levels are horizontal rows and
the swim lanes are vertical columns.

¢ If the flow direction is towards the left or right, the levels are vertical columns and the
swim lanes are horizontal rows.

Swim lanes can be used if the nodes are partitioned into groups, to indicate which nodes
belong to a certain group. The nodes of the same swim lane are placed so that it is possible
to draw a surrounding rectangle around them. Swim lanes allow you to organize the graph
in a table-like manner. For instance, you may have a workflow diagram where nodes represent
actions; then the swim lanes could represent the departments that perform these actions.
Each node can belong to only one swim lane.

To associate a group of nodes with the same swim lane:

In Java
In Java™ , call:

layout.addConstraint (new IlvSwimLaneConstraint (new IlvNodeGroup (nodeVector))

7

All nodes of the node vector will be placed in the same swim lane rectangle. If a graph has
many swim lane rectangles, the relative order of these swim lanes is determined
automatically. The size of the swim lane rectangle depends on the nodes that belong to the
swim lane. However, you can specify the relative order, relative size, and the margins of
the swim lane as well by using the constructor:

public IlvSwimLaneConstraint (I1lvNodeGroup group,
float relativeSize,
int positionIndex,
float minMargin)

USING GRAPH LAYOUT ALGORITHMS 209

210 U s |

N G

|-|_

|

I The ved background rectangle
indicates where the swim lane

s,

L

i

—

O

Swim Lanes

The relative size indicates how large this swim lane is compared to the other swim lanes.
Assume that the flow direction is towards the bottom. In this case, the relative size indicates
the width of the swim lane. All swim lanes with the same relative size will have the same
width. A swim lane with a relative size that is twice the value of another swim lane will have
twice the width of the other swim lane. The actual number of this parameter does not matter,
only how large the value is compared to the other swim lanes. If you do not want to restrict
the size of the swim lane, set the value to 0. In this case, the width of the swim lane will be
independent of the other swim lanes.

The minimal margin is the margin of the swim lane in absolute coordinates. If the flow
direction is towards the bottom, then it is the minimal horizontal distance between the
leftmost or rightmost node of the swim lane and the swim lane border.

The position index indicates the order of the swim lanes. Just as nodes have position indices,
the swim lanes are placed sequentially at relative positions numbered from 0 to n. In a
top-down layout, the swim lane with position 0 is the leftmost swim lane, and the swim lanes
with higher position indices are placed farther to the right. If the swim lanes have the position
index -1, the layout algorithm determines the appropriate position automatically.

A swim lane constraint is always evaluated, even if the incremental mode is enabled. The
constraint has a higher priority than the relative position constraint and the side-by-side
constraint. You can specify side-by-side constraints for a group of nodes that belong to the
same swim lane, but side-by-side constraints of nodes of different swim lanes are ignored.
You can specify relative position constraints between nodes of the same swim lane. You can
also specify relative position constraints between one entire swim lane group and another
swim lane group, which effectively orders the swim lanes. But relative position constraints
are ignored if they would require breaking the swim lanes apart. The swim lane constraint
dominates the specified position indices and the extremity constraints, that is, if a swim lane
constraint is used, you cannot specify position indices or east/west extremity constraints
for any node.

GRAPH LAYOUT ALGORITHMS

Tip: The automatic conflict resolution can handle conflicting constraints. However, to speed
up the layout, it is recommended that you specify constraints in such a way that there
are no conflicts.

USING GRAPH LAYOUT ALGORITHMS 211

Constraint priorities (HL)

212 U s |

N G

A set of constraints may cause conflicts. This means that not all of the constraints can be
satisfied at the same time. For instance, it is impossible to force two nodes into the same
level by an I11vSsameLevelConstraint while at the same time forcing one of the nodes to a
higher level than the other node by an I1vRelativeLevelConstraint. In this case, one of
the two constraints must be ignored during layout.

In general, constraint conflicts are resolved by ignoring the constraints with the lowest
priority while the constraints with the highest priority get satisfied. The following rules
explain the constraint priorities in detail.

¢

The constraints that influence into which level a node is placed are applied before the
constraints that influence the position of the node within a level.

The I1vExtremityConstraint is translated into a sequence of constraints with high
priority. For instance, the extremity constraint with the south side is translated into
several same level constraints and several relative level constraints.

The I1vSameLevelConstraint and the I1vGroupSpreadConstraint have the highest
priority. They are never in conflict with each other. They dominate all other constraints,
even the specified level index.

The T1vLevelRangeConstraint (and the direct level index specification) has the second
highest priority. If two nodes are forced to the same level but have disjoint specified level
ranges, then the level range is ignored. In the following example:

layout.addConstraint (new IlvSameLevelConstraint (nodel, node2));
layout.setSpecNodeLevelIndex (nodel, 5);
layout.setSpecNodelLevelIndex (node2, 10);

both nodel and node2 will be placed at level 5. The conflicting specification:
layout.setSpecNodeLevellndex(node2, 10) is ignored.

The 11vRelativeLevelConstraint is dominated by the same level constraint, by the level
range constraint, and by the direct specification of level indices. If several relative level
constraints conflict each other, the one with the highest specified priority dominates.
However, note that all links are implicitly considered relative level constraints as well.
If links with high priority force a node to a certain level, then a relative level constraint
with lower priority will be ignored.

The 11vSwimLaneConstraint is always evaluated, even if the incremental mode is enabled.
The constraint has a higher priority than the relative position constraint and the
side-by-side constraint. You can specify side-by-side constraints for a group of nodes that
belong to the same swim lane, but side-by-side constraints of nodes of different swim
lanes are ignored. You can specify relative position constraints between nodes of the
same swim lane. You can also specify relative position constraints between one entire
swim lane group and another swim lane group, which effectively orders the swim lanes.
But relative position constraints are ignored if they would require breaking the swim
lanes apart. The swim lane constraint dominates the specified position indices and the
extremity constraints, that is, if a swim lane constraint is used, you cannot specify position
indices or east/west extremity constraints for any node.

GRAPH LAYOUT ALGORITHMS

¢ The T1vSideBySideConstraint is evaluated only if the corresponding nodes belong to
the same level. Typically you will use a same level constraint to force the nodes to the
same level, and then a side-by-side constraint to force the nodes to a certain ordering.
The side-by-side constraints dominate the relative position constraints. If several
side-by-side constraints are conflicting, the one with the highest specified priority
dominates the other constraints.

4 The T1vRelativePositionConstraint is also evaluated only if the corresponding nodes
belong to the same level. It is dominated by the side-by-side constraint; however, conflicts
with side-by-side constraints are rare. If several relative position constraints are conflicting,
the one with the highest specified priority dominates the other constraints.

USING GRAPH LAYOUT ALGORITHMS 213

For experts: constraint validation (HL)

214 U S I NG

Constraints that you specify in Java™ may become invalid. For instance, if you add a
constraint that node A must be to the left side of node B, but you remove 2 from the graph,
then this constraint becomes invalid. It simply does not make sense any more, even though
it does not conflict with any other constraint. The layout instance automatically removes
invalid constraints from time to time because they are a waste of memory. The validation
check is done during layout. Forcing a validation check is normally not necessary but if you
want to do this, call:

layout.validateConstraints();

This removes all invalid constraints from the Hierarchical Layout and cleans up the memory.
The constraint validation does not check which constraints have conflicts. The main effect
of the validation is that the constraint system uses less memory afterwards.

Note: A constraint is valid if it is meaningful. Two valid constraints are conflicting if the system
cannot satisfy them both at the same time. Invalid constraints cannot be conflicting
because they are meaningless.

Hence, constraint validation and constraint resolution are different phases. Constraint
validation performs a quick local test. It removes invalid constraints from the layout
instance completely. It does not affect conflicting constraints.

Constraint resolution checks whether a set of valid constraints are in conflict with each
other. Thus, constraint resolution is a complex process on a network of multiple related
constraints. Constraint resolution decides which constraints can be solved and which
cannot. But the constraint resolution does not remove conflicting constraints from the
layout instance, it just delivers a solution that may ignore some constraints.

GRAPH LAYOUT ALGORITHMS

For experts: more indices (HL)

The Hierarchical Layout allows you to specify the level index and the position index of a
node.

In Java™
You specify the level and position index of a graphic node in the following way:

layout.setSpecNodelLevelIndex (node, 5);
layout.setSpecNodePositionIndex (node, 33);

How these indices are used depends on the graph topology and the additional constraints.
For example, the specified level index can be in conflict with some I1vLevelRangeConstraint
or IlvSameLevelConstraint. In this case, the constraint priorities determine how the conflict
is resolved (see Constraint priorities (HL)). If the incremental mode is switched on, the
specified node level and position index are ignored, since the incremental mode tries to
preserve old node positions. It is also possible to obtain the indices of nodes that were
calculated during layout.

Calculated level index

The layout algorithm allows you to access the level index that was calculated for a node by
a previous layout. To do this, use the method:

int getCalcNodelevelIndex (Object node)

If the node was never laid out, this method returns -1. Otherwise, it returns the previous
level index of the node.

In an application that specifies layout parameters entirely programmatically, the method
can be used to specify the level index for the next layout in the following way:

int index = layout.getCalcNodeLevelIndex (node) ;
layout.setSpecNodeLevelIndex (node, index) ;

When this is done, it ensures that the node is placed at the same level as in the previous
layout.

If the graph is detached from the layout algorithm, the calculated level index of a node is
set back to -1.

Note: You should be aware of the difference between the methods
getCalcNodeLevelIndex (java.lang.Object) and getSpecNodeLevel Index
(java.lang.Object).The first one returns the level index calculated by the previous
layout. The second one returns the specified level index, even if there was no previous
layout.

USING GRAPH LAYOUT ALGORITHMS 215

216 U S I NG

For instance, consider two nodes A and B. Node A has no specified level index and
node B has a specified level index 5. Before the first layout, the method
getCalcNodeLevelIndex returns -1 for both nodes because the levels have not
been calculated yet. However, get SpecNodeLevel Index returns -1 for A and 5 for
B. After the first layout, node A may be placed at level 4. Now,
getCalcNodeLevelIndex returns 4 for node A and 5 for node B and
getSpecNodeLevel Index still returns -1 for A and 5 for B.

Calculated position index

The layout algorithm allows you to access the position index within a level that was calculated
for a node by a previous layout. To do this, use the method:

getCalcNodePositionIndex (java.lang.Object)

If the node was never laid out, this method returns -1. Otherwise, it returns the previous
position index of the node within its level.

To ensure that the node is placed at the same level at the same relative position as in the
previous layout, use in an application that specifies layout parameters entirely
programmatically the following:

layout.setSpecNodeLevelIndex (node,
layout.getCalcNodeLevelIndex (node)) ;

This example code works only if the generic connected component layout is disabled and
the port sides EAST or WEST are not used in the layout.

If the graph is detached from the layout algorithm, the calculated position index of a node
is set back to -1.

Note: You should be aware of the difference between the methods
getCalcNodePositionIndex and setSpecNodePositionIndex.The first one
returns the position index calculated by the previous layout and -1 if there was no
previous layout. The second one returns the specified position index even if there was
no previous layout. This behavior is similar to the behavior of the specified and
calculated level index (see Calculated level index).

GRAPH LAYOUT ALGORITHMS

Recursive layout

JViews Diagrammer supports nested graphs, that is, it can render graphs containing nodes
that are graphs. A graph that is a node in another graph is called a subgraph. Links that
connect nodes of different subgraphs are called intergraph links. In Recursive hierarchical
layout on nested graph with polyline link style, all red links are intergraph links and all black
links are normal links. This is explained in detail in Nested layouts.

The hierarchical layout can treat a nested graph at once, placing all nested nodes and routing
all links including the intergraph links. It can even place the labels in the nested graph.

To enable the recursive mode:

In Java™
Use this method:

void setRecursivelayoutMode (boolean enable) ;

and call performLayout with the third parameter set to true in the following way:

layout.performLayout (force, redraw, true);

Label layout

If the recursive layout mode is enabled, the hierarchical layout can also place the node and
link labels. This is useful, because placing labels after a recursive layout may change the
bounds of subgraphs again, and hence would require the hierarchical layout to rerun.
Therefore, an annealing label layout is integrated into the hierarchical layout which is
executed during the recursive layout mode. In order to set label descriptors, you can access
this label layout by using the following code:

public IlvAnnealingLabellayout getLabellayout ()

If the labels are contained in a subgraph, use the following code:

// node and label are directly contained in subgraph

IlvHierarchicallayout sublayout =

(IlvHierarchicallayout) topLevellayout.getRecursivelLayout () .getLayout

(subgraph) ;

IlvAnnealinglabellLayout labellayout = sublayout.getLabellLayout () ;

lvAnnealingPointLabelDescriptor d =

new IlvAnnealingPointLabelDescriptor (label, node,
IlvAnnealingPointLabelDescriptor .RECTANGULAR,
IlvDirection.Bottom) ;
labellayout.setLabelDescriptor (label, d);

When the recursive layout mode is used, the label layout is automatically used. It is
recommended to keep it enabled if nodes or links in subgraphs have labels. In can be disabled
if there are no labels.

To disable the label layout:

USING GRAPH LAYOUT ALGORITHMS 217

In Java

layout.setLabellayoutEnabledDuringRecursivelLayoutMode (false) ;

For more details on how to use the I1vAnnealingLabelLayout see Annealing label layout.
For more details on how to use the I11vRecursiveLayout see Recursive layout.

218 USING GRAPH LAYOUT ALGORITHMS

Link layout (LL)

Describes the Link Layout algorithm (class I1vLinkLayout from the package ilog.views.
graphlayout.link).

In this section

General information on the LL
Provides samples of Link Layout and explains where it is likely to be used.

Features and limitations of the LL
Lists the features and limitations of the layout.

The LL algorithms
Describes how the algorithm for each mode operates.

Generic features and parameters of the LL
Describes the generic features and parameters of the layout.

Specific parameters for both LL modes
Describes the parameters that are specific to the I1vLinkLayout class.

Spacing parameters in short link mode
Describes how to use the spacing parameters in short link mode.

Spacing parameters in long link mode
Describes how to use the spacing parameters in long link mode.

For experts: additional features of LL
Describes the features available in both Link Layout modes.

USING GRAPH LAYOUT ALGORITHMS 219

For experts: special options of the Short LL
Describes the options of the Short Link Layout for expert use.

For experts: special options of the Long LL
Describes the options of the Long Link Layout for expert use.

220 USING GRAPH LAYOUT ALGORITHMS

General information on the LL

LL samples

These sample drawings were produced with the Link Layout algorithm:

|

Link layout in short link mode with orthogonal links

USING GRAPH LAYOUT ALGORITHMS 221

The same graph in short link mode with direct links

Link layout in long link mode with orthogonal links

222 USING GRAPH LAYOUT ALGORITHMS

What types of graphs suit the LL?

Any type of graph where nodes are fixed and links need to be routed:
4 connected graphs and disconnected graphs

4 planar graphs and nonplanar graphs.

4 nested graphs with intergraph links

Application domains for the LL
Application domains of the Link Layout include:
Electrical engineering (circuit block diagrams)

Industrial engineering (schematic design diagrams, equipment/resource control charts)

Software management/software (re-)engineering (data inspector diagrams)

¢

¢

4 Business processing (entity relation diagrams)

¢

4 Database and knowledge engineering (sociology, genealogy)
¢

CASE tools (design diagrams)

USING GRAPH LAYOUT ALGORITHMS 223

Features and limitations of the LL

224 U S I N G

Features of both modes (LL)

¢

Reshapes the links of a graph in either an orthogonal or a direct style, without moving
the nodes. Orthogonal and direct style links can be combined in the same layout.

Allows you to specify which side of the node (top, bottom, left, or right) a link can be
connected to, or to preserve the existing connection points of the links.

Supports self-links (that is, links with the same origin and destination node).

Supports multiple links (that is, more than one link between the same origin and
destination nodes).

Allows you to specify pinned (fixed) links that the layout algorithm cannot reshape.

Supports intergraph links of nested graphs. An intergraph link is a link whose end nodes
belong to different subgraphs of a nested graph.

Supports an incremental mode: If new links are added to a drawing, the next layout takes
the shapes of the old links into account.

Two layout modes: short links with a limited number of bends or long links with unlimited
number of bends.

Features of short link mode (LL)

¢
¢

Links are placed freely in the space.

Link-to-link and link-to-node crossings are reduced, if this is possible with link shapes
that have a maximum of 4 bends.

Links of different width are supported.

Link bundles between the same pair of nodes are supported. Optionally, the algorithm
can ensure that multiple links are bundled together by giving them parallel shapes.

Automatically arranges the final segments of the links (the segments near the origin or
destination node) to obtain a bundle of parallel links.

Provides two optional shapes for the self-links.

Very fast algorithm with low memory footprint.

Features of long link mode (LL)

¢
¢
¢

Links are placed on a grid.
Link-to-node crossings of orthogonal links are avoided, even if this introduces many bends.

Orthogonal link segments do not overlap.

GRAPH LAYOUT ALGORITHMS

4

¢

Does not bundle the final segments. Instead, it distributes the links on the border of each
end node according to which border has more free space.

Fast algorithm: speed and memory footprint depend on the grid spacing.

Limitations

¢

When routing intergraph links, the incremental mode cannot be used. Due to the
complexity of intergraph link routing, more crossings and overlappings may occur than
when routing normal links.

In short link mode, crossings and overlapping of links with other links and nodes cannot
always be avoided because the algorithm uses link shapes with a limited number of bends.
This happens in particular when there are many obstacles between the end points of a
link.

In long link mode, link crossings cannot always be avoided. Segment overlappings of
orthogonal links are always avoided unless there is no free space remaining on the border
of the end nodes. Any overlapping of nodes and links is always avoided unless one end
nodes is inside an enclave. An enclave is an area that is surrounded by other nodes such
that the area cannot be reached from the other end node. (See A Node inside an enclave.)

In long link mode, segment overlapping or overlapping between nodes and links cannot
always be avoided if the direct link style is used.

The long link mode is slower and uses more memory if the grid spacing is very small.

USING GRAPH LAYOUT ALGORITHMS 225

The LL algorithms

226 U S I NG

The Link Layout algorithm utilizes two sublayout classes:
4 IlvShortLinkLayout in short link mode.

4 IlvLongLinkLayout in long link mode.

They implement different strategies to find the link shapes.

Short Link Layout algorithm

The Short Link Layout algorithm is based on a combinatorial optimization that chooses the
“optimal” shape of the links to minimize a cost function. This cost function is proportional
to the number of link-to-link and link-to-node crossings.

For efficiency reasons, the basic shape of each link is chosen from a set of predefined shapes.
These shapes are different for each link style option. For the orthogonal link style, the links
are reshaped to a polygonal line of up to five alternating horizontal and vertical segments
(see Link layout in short link mode with orthogonal links). For the direct link style, the links
are reshaped to a polygonal line composed of three segments: a straight-line segment that
starts and ends with small horizontal or vertical segments (see The same graph in short link
mode with direct links).

The shape of a link also depends on the relative position of the origin and destination nodes.
For instance, when two nodes are very close or they overlap, the shape of the link is chosen
to provide the best visibility of the link.

The exact shape of a link is computed taking into account additional constraints. The layout
algorithm tries to do the following:

4 Minimize the number of crossings between the links incident to a given side of a node.

4 Space the final segments of the links incident to a given side of a node equally on the
node border.

Long Link Layout algorithm

The Long Link Layout algorithm first treats each link individually. For each link, it first
calculates the connection points at the end nodes that are on the grid and orders them
according to a penalty value. Connection points on used grid points have a very high penalty
and, therefore, are very unlikely to be used.

For the orthogonal links (see Link layout in long link mode with orthogonal links), the Long
Link Layout algorithm then uses a grid traversal to search a route over free grid points from
the start connection point to the end connection point. Therefore, in contrast to the short
link mode, orthogonal links can have any shape with a large number of bends if this is
necessary to bypass obstacle nodes to avoid overlappings. For the direct links (see The same
graph in short link mode with direct links), it shortens the search by using a direct segment
between the connection points.

After all links are placed, a crossing reduction phase examines pairs of links and eliminates
link crossings by exchanging parts of the routes between both links.

GRAPH LAYOUT ALGORITHMS

The Long Link Layout algorithm relies on the fact that links fit to the grid spacing and parts
of the routes between different links can be exchanged. Therefore, the Long Link Layout
algorithm does not take the link width into account because it would be too difficult to find
the parts of two links that can be exchanged. It is recommended to set the grid spacing
larger than the largest link width.

Example of Link Layout

In Java
Below is a code sample using the 11vLinkLayout class. This code sample shows how to
perform a Link Layout:

import ilog.views.*;

import ilog.views.eclipse.graphlayout.runtime.*;
import ilog.views.eclipse.graphlayout.GraphModel;
import ilog.views.eclipse.graphlayout.runtime.link.*;

IlvLinkLayout layout = new IlvLinkLayout () ;
GraphModel graphModel = new GraphModel (myGrapherEditPart) ;
layout.attach (graphModel) ;

/* Specify the layout mode */
layout.setLayoutMode (IlvLinkLayout.SHORT LINKS) ;

try {
IlvGraphLayoutReport layoutReport = layout.performLayout () ;

int code = layoutReport.getCode () ;

System.out.println ("Layout completed (" +
layoutReport.codeToString(code) + ")");
}
catch (IlvGraphLayoutException e) ({
System.err.println (e.getMessage()) ;
}
layout.detach() ;
graphModel.dispose() ;

USING GRAPH LAYOUT ALGORITHMS 227

Generic features and parameters of the LL

228 U S I NG

The I1vLinkLayout class supports the following generic parameters as defined in the class
IlvGraphLayout (see Base class parameters and features):

¢ Allowed time (LL)
¢ Automatic layout (LL)
¢ Preserve fixed links (LL)

¢ Stop immediately (LL)

The following comments describe the particular way in which these parameters are used
by this subclass.

Allowed time (LL)

The layout algorithm stops if the allowed time setting has elapsed. (For a description of this
layout parameter in the 11vGraphLayout class, see Allowed time.) If the layout stops early
because the allowed time has elapsed, some links may not be routed in the best possible

way. The result code in the layout report is I1vGraphLayoutReport.STOPPED AND INVALID.

Automatic layout (LL)

The Link Layout routes the links so that they bypass the nodes and cross each other as few
times as possible. It does not position any nodes. However, if the user moves, adds, or resizes
nodes, or adds or removes links, the Link Layout drawing usually becomes invalid; that is,
the links no longer look orthogonal, overlap the moved nodes, or cross other links.

Using the automatic layout feature of the 11vGraphLayout class, the layout is reperformed
whenever a change of the graph occurs. (For a description of this layout parameter in the
IlvGraphLayout class, see Automatic layout.)

Preserve fixed links (LL)

The layout algorithm does not reshape the links that are specified as fixed. (See Preserve
fixed links.) The fixed links are taken into account when computing the optimal layout of
the nonfixed links.

Stop immediately (LL)

The layout algorithm stops if the method 11vLinkLayout is called. (For a description of this
method in the T1vGraphLayout class, see Stop immediately.) If the layout stops early, some
links may not be routed in the best possible way. The result code in the layout report is
IlvGraphLayoutReport.STOPPED AND INVALID.

GRAPH LAYOUT ALGORITHMS

Specific parameters for both LL modes

Layout mode (LL)

The Link Layout algorithm has two layout modes.
To select a layout mode:

In Java™
Use the method:

void setLayoutMode (int mode) ;

The valid values for mode are:
4 IlvLinkLayout.SHORT LINKS (the default)

4 IlvLinkLayout.LONG LINKS

Short and Long Link Modes with Orthogonal Links shows a small sample graph in short and
long link mode. The short link mode bundles the links very well. However, due to the bundling,
some red links appear to be unconnected to the green nodes. Furthermore, the algorithm
cannot find a route for the long red links without overlapping some nodes or without
overlapping the green link. The long link mode works on a grid. It is specialized for long
links and avoids overlapping any nodes or link segments. It can connect to the green nodes
by choosing connection points on different sides of the end nodes. This advantage, however,
is paid for by a less regular structure that does not bundle the links and a larger number of
link crossings.

Short Link Layout Mode Long Link Layout Mode

Short and Long Link Modes with Orthogonal Links

USING GRAPH LAYOUT ALGORITHMS 229

230 USI NG

Choosing the appropriate layout mode (LL)

The short link mode should be used if any of the following conditions apply:

¢ The majority of links is short and it is not fatal if long links overlap obstacles.
4 The link routes must be placed freely and cannot be restricted to a grid.

4 It is important to limit the number of bends.

The long link mode should be used if any of the following conditions apply:

4 Many links are long and it is important that long links do not overlap obstacles.
¢ There is a preferred routing because the nodes are already placed on the grid.
¢ It is important to have a guaranteed minimal distance between link segments.

4 An increasing number of bends is acceptable if it avoids any overlappings.

Labyrinth routing with the long link mode shows how the long link mode can be used to find
an orthogonal route without overlappings in a labyrinth of node obstacles.

Labyrinth routing with the long link mode

Link style (LL)
The layout algorithm provides two link styles. You can set the link style globally, in which

case all links have the same kind of shape, or locally on each link, in which case different
link shapes occur in the same drawing.

GRAPH LAYOUT ALGORITHMS

Global link style

Example of setting global link style (Link Layout algorithm)
To set the global link style:

In Java
Use the method:

void setGloballinkStyle (int style);

The valid values for style are:

4 IlvLinkLayout.ORTHOGONAL STYLE (the default)

The links are reshaped in an orthogonal form (alternating horizontal and vertical
segments). See Link layout in short link mode with orthogonal links and Link layout in
long link mode with orthogonal links as examples.

L4 IlvLinkLayout.DIRECT STYLE

The links are reshaped to a polygonal line composed of three segments: a straight-line
segment that starts and ends with a small horizontal or vertical segment. See The same
graph in short link mode with direct links as an example.

L4 IlvLinkLayout .MIXED STYLE

Each link can have a different link style. The style of each individual link can be set to
have different link shapes occurring on the same graph.

Individual link style

All links have the same style of shape unless the global link style is 11vLinkLayout.
MIXED STYLE. Only when the global link style is set to MIXED STYLE can each link have an
individual link style.

T |

_

Ot

Different link styles mixed in the same drawing (short link mode)

USING GRAPH LAYOUT ALGORITHMS 231

Different link styles mixed in the same drawing (long link mode)

Example of specifying individual link style (Link Layout algorithm)
To set and retrieve the style of an individual link:

In Java
Use the methods:

void setLinkStyle (Object link, int style);

int getLinkStyle (Object 1link);

The valid values for style are:
4 IlvLinkLayout.ORTHOGONAL STYLE (the default)
4 IlvLinkLayout.DIRECT STYLE

4 IlvLinkLayout.NO RESHAPE STYLE (that is, the link is not reshape in any manner)

232 USING GRAPH LAYOUT ALGORITHMS

End points mode (LL)

Normally, the layout algorithm is free to choose the termination points of each link. However,
the user can specify that the current fixed termination pin of a link should be used.

The layout algorithm provides two end point modes. You can set the end point mode globally,
in which case all end points have the same mode, or locally on each link, in which case
different end point modes occur in the same drawing.

Global end point mode

Example of specifying global end point mode (Link Layout algorithm)
To set the global end point mode:

In Java

void setGlobalOriginPointMode (int mode) ;

void setGlobalDestinationPointMode (int mode) ;

The valid values for mode are:

4 IlvLinkLayout.FREE MODE (the default)

The layout is free to choose the appropriate position of the connection point on the
origin/destination node.

4 IlvLinkLayout.FIXED MODE

The layout must keep the current position of the connection point on the origin/destination
node.

4 IlvLinkLayout.MIXED MODE

Each link can have a different end point mode.

Individual end point mode

All links have the same end point mode unless the global end point mode is T1vLinkLayout.
MIXED MODE. Only when the global end point mode is set to MIXED MODE can each link have
an individual end point mode.

Example of specifying individual end point mode (Link Layout algorithm)
To set the mode of an individual link:

In Java
Use the methods:

void setOriginPointMode (Object link, int mode) ;

int getOriginPointMode (Object 1link);

USING GRAPH LAYOUT ALGORITHMS 233

234 U s |

N G

void setDestinationPointMode (Object link, int mode);

int getDestinationPointMode (Object 1link);

The valid values for mode are:
4 IlvLinkLayout.FREE MODE (the default)

4 IlvLinkLayout.FIXED MODE

Incremental mode (LL)

The Link Layout algorithm normally routes all links from scratch. If the graph changes
incrementally because you add or remove links or nodes, the subsequent layout may differ
considerably from the previous layout. To avoid this effect and to help the user to retain a
mental map of the graph, the algorithm has an incremental mode.

Example of enabling incremental mode (Link Layout algorithm)
To enable the incremental mode:

In Java
Call:

layout.setIncrementalMode (true) ;

In incremental mode, the layout tries to minimize the changes to the layout. A link is only
rerouted if it is new, if a link bend moved, if its layout parameters have changed, or if a node
was moved such that it overlaps the link.

In short link mode, if the next layout is incremental, the links preserve the connection side
and the general shape calculated by a previous layout, except if one of their end nodes has
been moved or resized.

In the long link mode, a new route is searched for the links that are no longer on the grid
or that overlap with nodes. The shape and the connection side of the rerouted links can
change completely. However, links that are already on the grid and do not overlap nodes
or other links are not rerouted in incremental mode. It is also possible to specify which link
must be rerouted by the next incremental layout even though the layout has not changed.

Example of specifying which link must be rerouted by the next incremental layout (Link Layout
algorithm)
To select an individual link to be used for incremental rerouting:

In Java
Use the method:

void markForIncremental (Object 1link);

GRAPH LAYOUT ALGORITHMS

Intergraph link routing (LL)

A nested graph is a graph with nodes that are subgraphs. In a nested graph, normal links
and intergraph links can occur. Normally, both end nodes of a link belong to the same
subgraph. Intergraph links are those links whose end nodes belong to different subgraphs.
Intergraph links belong to the lowest common grapher in the nesting structure that contains
both end nodes. The following figure shows a nested graph with blue normal links and red
intergraph links.

F 3
I
i | [-b

Nested Graph With Normal Links (blue) and Intergraph Links (red)

By default, the Link Layout routes both the normal links and the intergraph links.

Example of routing only normal links (Link Layout algorithm)
In order to route only normal links, disable intergraph link routing:

In Java™
Call:

layout.setInterGraphLinksMode (false) ;

Example of routing intergraph and/or normal links (Link Layout algorithm)

If the intergraph links mode is enabled, you can select whether only the intergraph links
are routed, or whether the intergraph links and the normal links are routed at the same
time.

In Java
If you call:

layout.setCombinedInterGraphLinksMode (false) ;

the next layout routes the intergraph links but does not reshape any normal links. If you
call:

layout.setCombinedInterGraphLinksMode (true) ;

the next layout routes both the normal links and the intergraph links.

USING GRAPH LAYOUT ALGORITHMS 235

236 U s |

N G

When the intergraph links mode is enabled, the layout cannot route the links incrementally
(see Incremental mode (LL)).

Notice that the layout routes only those links that belong to the attached graph. In a nested
graph, each subgraph is attached to a different layout instance. Therefore, when starting a
normal (nonrecursive) layout for the top-level graph (see Nested Graph With Normal Links
(blue) and Intergraph Links (red)) not all links are routed that are shown in this figure, but
only those links that belong to the top-level graph.

The following figure shows two situations: the yellow subgraph indicates the subgraph where
the nonrecursive layout is currently applied, and color of the links indicate which links are
currently routed. Depending on the intergraph links mode, the red and/or blue links are
routed, but the grey links are not reshaped.

BN Uy BEE | Dy
LB LI L

Y

Routed Link in a Nested Graph when Layout is Performed for the Yellow Subgraph

To route all links of a nested graph, you need to apply the Link Layout recursively. Details
of the recursive layout mechanism are explained in Recursive layout. For instance:

layout.setInterGraphLinksMode (true) ;
layout.performLayout (force, redraw, true);

routes the intergraph links recursively in all subgraphs. If you use a layout provider (a class
that implements the interface IlvLayoutProvider), you need to set the intergraph links
mode for all subgraphs explicitly:

IlvLayoutProvider layoutProvider = ...
// first, set the intergraph mode for all layouts
Enumeration e = graphModel.getLayouts (layoutProvider, true);
while (e.hasMoreElements()) {

IlvGraphLayout layout = (IlvGraphLayout) e.nextElement () ;

if (layout instanceof IlvLinkLayout)

((IlvLinkLayout) layout) .setInterGraphLinksMode (true) ;

}
// then perform layout recursively using the provider
graphModel.performlLayout (layoutProvider, force, redraw, true);

If you want to recursively perform the intergraph link routing in combination with a layout
that places the nodes or that arranges labels, we recommend that you use an instance of
the class T1vMultipleLayout to encapsulate the Link Layout and the other layouts, and
then perform the Multiple Layout recursively all at once. For details, see Recursive layout.

GRAPH LAYOUT ALGORITHMS

Spacing parameters in short link mode

Since the short link mode places the links freely in the space, only two parameters are
necessary to control the spacing: the minimal distance between links and the minimal length

of the final segment.

Spacing Parameters for the Short Link Mode shows the spacing parameters used in the
short link mode.

Z MinFinalSegmentLength

!
™

Z MinF|nal SegmentLength

LinkGifset

—ll-l—

LinkOtf

[15]
=

Spacing Parameters for the Short Link Mode

Link offset

The layout algorithm computes the final connecting segments of the links (that is, the
segments near the origin and destination nodes) to obtain parallel lines spaced at a
user-defined distance. In short link mode, the algorithm takes into account the width of the

links when computing the offset.

USING GRAPH LAYOUT ALGORITHMS 237

238 USING

Example of specifying link offset (Link Layout algorithm)
To specify the offset:

In Java™
Use the method:

void setLinkOffset (float offset)

The offset is measured from the border of one link to the nearest border of the other link.
Therefore, if the specified offset is zero, the border of a link touches the border of its neighbor
link.

Minimum final segment length

You can specify a minimum value for the length of the final connecting segments of the links
(that is, the segments near the origin and destination nodes).

Example of specifying minimum final segment length (Link Layout algorithm)
In Java
Use the method:

void setMinFinalSegmentLength (float length)

Connector style

The layout algorithm positions the end points of links (the connector pins) at the nodes
automatically. The connector style parameter specifies how these end points are calculated.

: P E
1 ——— i
Altomatic Fixed Offset Evenly Spaced
Connector Connectar Connector
Style Style Style
Connector styles

The layout algorithm provides two connector styles. You can set the connector style globally,
in which case all the nodes (hence, all the links) have the same kind of connector style, or
locally on each node (that is, for all the links connected to the node), in which case different
connector styles occur in the same drawing.

Global connector style

Example of specifying the global connector style (Link Layout algorithm)
To specify the global connector style:

In Java
Use the following method:

GRAPH LAYOUT ALGORITHMS

void setGlobalConnectorStyle (int style);

The valid values for style are:

¢

IlvShortLinkLayout.FIXED OFFSET PINS

The connection pins are spaced along the node border at a distance equal to the link
offset parameter. See Spacing Parameters for the Short Link Mode as an example.

IlvShortLinkLayout.EVENLY SPACED PINS

The connector pins are evenly spaced along the node border, preserving a margin which
is determined by the evenlySpacedPinsMarginRatio parameter (see the accessor
getEvenlySpacedPinsMarginRatio ()). See Spacing Parameters for the Short Link Mode
as an example.

IlvShortLinkLayout.AUTOMATIC PINS (the default)

Uses the connector style FIXED OFFSET_PINS except if this pushes a connection point
outside the border the link is attached to, in which case it uses the connector style
EVENLY SPACED PINS. See Spacing Parameters for the Short Link Mode as an example.

IlvShortLinkLayout.MIXED STYLE

Each node can have a different connector style. The style of each individual node can be
set to have different connector styles occurring on the same graph.

Individual connector style

All nodes have the same connector style unless the global connector style is
IlvShortLinkLayout.MIXED STYLE. Only when the global connector style is set to
MIXED STYLE can each node have an individual connector style.

Example of specifying individual node connector style (Link Layout algorithm)
To specify the connector style of an individual node:

In Java
Use the following methods:

void setConnectorStyle (Object node, int style);

int getConnectorStyle (Object node);

The valid values for style are:

¢
¢
¢

IlvShortLinkLayout.FIXED OFFSET PINS
IlvShortLinkLayout.EVENLY SPACED PINS

IlvShortLinkLayout.AUTOMATIC PINS (the default).

The default value is 10.

USING GRAPH LAYOUT ALGORITHMS 239

Spacing parameters in long link mode

The long link mode places the links on a grid. Four parameters control the grid offsets and
five parameters control the spacing of links in relation to other objects. Spacing parameters
for the long link mode shows the spacing parameters used in the long link mode.

hotizontal grid offset

| -

=4

i uifiug| wawbes
— T
| Il
B
HE
|
|
|
|
|
I
18510 pUb [ea)eA

o
%u‘\f
=
3
55 .
[=2]
i R
==
o =
==
=
T =
Q=
T 53
=
=3
=
=)
=
=
E
[=)
o
a
i =
horizontal &

minimum distance

Spacing parameters for the long link mode

240 USING GRAPH LAYOUT ALGORITHMS

Grid offset parameters

The grid offset parameters control the spacing between grid lines. Links are routed such
that the center of the orthogonal link segments are on the grid lines. The grid offsets should
be set to a value larger than the largest link width value to avoid links that visually overlap.

Example of specifying grid offset parameters (Link Layout algorithm)
To set the horizontal and vertical grid offset:

In Java
In Java™ , use the methods:

void setHorizontalGridOffset (float offset);

void setVerticalGridOffset (float offset);

The grid offset is the critical parameter for the long link mode. If the grid offset is too large,
there may be no grid lines between nodes even though some free space exists between the
nodes. In this case, the link routings cannot use the free space. However, if the grid offset
is too small, the algorithm needs a long time to traverse the grid.

Grid base parameters

Sometimes it is necessary to shift the whole grid by a small amount because the nodes are
not aligned on the grid. For instance, to have grid lines at positions 3, 13, 23, 33, and so on,
you can set the grid offset to 10 and the grid base to 3.

Example of specifying grid base parameters (Link Layout algorithm)
To adjust the grid base:

In Java
Use the methods:

void setHorizontalGridBase (float coordinate) ;

void setVerticalGridBase (float coordinate) ;

Minimum distance parameters

The minimum distance controls how closely a link can be placed to the border of a node that
needs to be bypassed. If the node border is not aligned to the grid, the minimum distance
specifies the next grid line close to the border that can be used. For instance, if a node
covers the x-coordinates 25 to 65 on a grid with offset 10 and base 0, the next grid lines
used to bypass the node would normally be at 20 and 70. If you specify a minimum distance
of 8, these grid lines are too close to the node and then the grid lines at 10 and 80 would
be used.

Example of specifying minimum distance parameters (Link Layout algorithm)
To set the minimum distance:

USING GRAPH LAYOUT ALGORITHMS 241

242 U s |

N G

In Java
Use the methods:

void setHorizontalMinOffset (float offset);

void setVerticalMinOffset (float offset);

Minimum node corner offset parameter

The minimum corner offset is the minimum distance between a node corner and a link that
connects to the node. This parameter is used to avoid having a link that connects exactly to
the corner or outside the border of the node (see Minimal corner offset).

Example of specifying minimum node corner offset parameter (Link Layout algorithm)
To set the minimum corner offset:

In Java
Use the method:

void setMinNodeCornerOffset (float offset);

minimum minimum
corner offset corner offset

1111

Minimal corner offset

Minimum final segment length

As with the short link mode, the long link mode respects the minimum value for the length
of the final connecting segments of the links.

Example of specifying minimum final segment length (Link Layout algorithm)
To set the minimal length of the final segment:

In Java
Use the method:

void setMinFinalSegmentLength (float length)

GRAPH LAYOUT ALGORITHMS

For experts: additional features of LL

Using a node-side filter

Some applications require that links are not connected to specific sides of certain nodes.
The Link Layout algorithm allows you to restrict to which node side a link can connect by
using a node-side filter. A node-side filter is any class that implements the interface
IlvNodeSideFilter. This interface defines the following method.:.

public boolean accept (IlvGraphModel graphModel,
Object link,
boolean origin,
Object node,
int side);

This method allows you to let the input 1ink to connect its origin or destination to the input
side of the input node.

As an example, assume that the application requires that for end nodes of type
MyNodeEditPartl, links can connect their origin only at the top and bottom side.

For end nodes of type MyNodeEditPart2, links can connect their destination only at the left
and right side. You can obtain this result with the following node-side filter:

class MyFilter implements IlvNodeSideFilter
{
public boolean accept (IlvGraphModel graphModel,
Object link,
boolean origin,
Object node,
int side)

if (node instanceof MyNodeEditPartl && origin)

return(side == IlvDirection.Top || side == IlvDirection.Bottom);
if (node instanceof MyNodeEditPart2 && !origin)
return(side == IlvDirection.Left || side == IlvDirection.Right);

return true;

Example of setting node-side filter (Link Layout algorithm)
To set this node-side filter:

In Java
In Java™ , call:

layout.setNodeSideFilter (new MyFilter());

To remove the node-side filter, call:

USING GRAPH LAYOUT ALGORITHMS 243

244 U s |

N G

layout.setNodeSideFilter (null) ;

Using a node box interface

Some applications require that effective area of a node is not exactly its bounding box. For
instance, if the node has a shadow, the shadow is included in the bounding box. However,
the shadow may not be considered as an obstacle for the links. In this case, the effective
bounding box of a node is smaller.

Example of using a node box interface (Link Layout algorithm)

In Java

You can modify the effective bounding box of a node by implementing a class that implements
the I1vNodeBoxInterface.

This interface defines the following method:

public IlvRect getBox (IlvGraphModel graphModel, Object node) ;

This method allows you to return the effective bounding box. For instance, to set a node box
interface that returns a smaller bounding box for all nodes of type MyNodeEditPart, call:

layout.setNodeBoxInterface (new IlvNodeBoxInterface() {
public IlvRect getBox (IlvGraphModel graphModel, Object node) {
IlvRect rect = graphModel.boundingBox (node) ;
if (node instanceof MyNodeEditPart) {
// for example, the size of the bounding box is reduced by 4
units
rect.resize (rect.width-4.f, rect.height-4.f);
}

return rect;

Using a link connection box interface

By default, the connection points of the links are distributed on the border of the bounding
box of the nodes. Sometimes, it may be necessary to place the connection points on a
rectangle that is smaller or larger than the bounding box. For instance, this can happen
when labels are displayed below or above nodes.

Example of using a link connection box interface to modify position of connection points (Link
Layout algorithm)

In Java

You can modify the position of the connection points of the links by implementing a class
that implements the I1vLinkConnectionBoxInterface. This is a subinterface of
IlvNodeBoxInterface (see Using a node box interface). It defines again the method:

public IlvRect getBox (IlvGraphModel graphModel, Object node);

GRAPH LAYOUT ALGORITHMS

This method allows you to return the effective rectangle on which the connection points of
the links are placed.

Additionally, the interface I1vLinkConnectionBoxInterface defines a second method:

public float getTangentialOffset (IlvGraphModel graphModel, Object node, int
nodeSide) ;

This method is used only in the short link mode. For details, see Using a link connection box
interface. When using the Link Layout in long link mode, just implement the method by
returning the value 0.

USING GRAPH LAYOUT ALGORITHMS 245

For experts: special options of the Short LL

246 U S I N G

The Link Layout algorithm utilizes the class I11vShortLinkLayout as a subalgorithm.
IlvShortLinkLayout is a subclass of I1vGraphLayout and can be used a stand-alone as
well. To access the instance of I11vshortLinkLayout that is used by the Link Layout algorithm,
call:

IlvShortLinkLayout getShortLinkLayout () ;

Using this accessor, you can control many special features of the Short Link Layout that are
not made available by the 11vLinkLayout class because these features are for experts only.

Self-link style

Self-links are links whose origin and destination is the same node. The Short Link Layout
provides two optional shapes for self-links.

nn
n |
n —
| &7 [
Two-bend Self-link Style Three-bend Self-link Style

Self-link Style Options

Example of setting the style of the self-links (Link Layout algorithm)
To set the style of the self-links:

In Java™
Call layout.getShortLinkLayout () . setGlobalSelfLinkStyle (int)

The valid values for style are:
¢ IlvShortLinkLayout.TWO BENDS ORTHOGONAL STYLE

4 IlvshortLinkLayout.THREE BENDS ORTHOGONAL STYLE

Number of optimization iterations

The link shape optimization is stopped if the time exceeds the allowed time (see Allowed
time (LL)) or if the number of iterations exceeds the allowed number of iterations.

GRAPH LAYOUT ALGORITHMS

Example of specifying the number of optimization iterations (Link Layout algorithm)
To set the allowed number of iterations to 3:

In Java
Call:

layout.getShortLinkLayout () .setAllowedNumberOfIterations (3) ;

Note: You may want to disable the link shape optimization by setting the number of iterations
to zero to increase the speed of the layout process.

Evenly spaced pins margin ratio

The margin ratio allows you to customize the way connection points are computed when the
connector style (see Connector style) is EVENLY SPACED PINS, and when the AUTOMATIC STYLE
places the connection points using the EVENLY SPACED PINS style. This option has no effect
if the connector style FIXED OFFSET PINS is used.

In the “evenly spaced pins” connector style, the connection points of the links are evenly
spaced along the node border, preserving a margin to each extremity of the node border.
The size of this margin is controlled by the margin ratio and is computed by multiplying the
offset between the links by the ratio.

Example of specifying margin ratio (Link Layout algorithm)
To specify this option

In Java
Call 1ayout.getShortLinkLayout () . setEvenlySpacedPinsMarginRatio (float)

The input value must be a positive or zero value. The default value is 0.5. Evenly Spaced
Pins Margin Ratio shows examples of values with their meaning.

Evenly Spaced Pins Margin Ratio

Ratio value Meaning

0 No margin

0.5 (default value) | The margin is equal to half the offset between the links.

1 The margin is equal to the offset between the links.

2 The margin is equal to twice the offset between the links.

Link overlap nodes forbidden

This option allows you to ask the layout algorithm to avoid strictly to reshape links such that
they overlap some nodes. If overlaps are not forbidden, the algorithm tries to avoid overlaps
anyway, but may create overlaps, for instance for the link to cross other links.

USING GRAPH LAYOUT ALGORITHMS 247

248 U S I N G

for those links that would overlap nodes if overlaps were not strictly forbidden.

I Note: Forbidding overlaps may slow down the layout and may increase the number of bends

Example of specifying link overlap nodes forbidden (Link Layout algorithm)
To specify this option:

In Java
Call
layout.getShortLinkLayout () . setLinkOverlapNodesForbidden (boolean)

The default value of this option is false.

When overlaps are forbidden, the Short Link Layout algorithm uses the Long Link Layout
as an auxiliary algorithm for laying out only the links that would otherwise overlap nodes.

Example of specifying Long Link Layout when overlaps forbidden (Link Layout algorithm)
To retrieve the auxiliary instance of Long Link Layout:

In Java
Call this method on the I1vShortLinkLayout instance:

IlvLongLinkLayout getAuxiliaryLongLinkLayout ()

This method allows you to get this auxiliary layout instance and to customize its parameters
if needed. Notice that you should neither modify the origin and destination point mode, nor
disable the preservation of fixed links. Notice also that an T11vGraphModel instance is attached
to the I1vLongLinkLayout instance only if needed, therefore the method
getAuxiliaryLongLinkLayout () .getGraphModel () may return null.

Incremental link reshape mode

In incremental mode, it is possible to customize the rules used by the Short Link Layout to
determine which links should keep their current shape as much as possible, as computed
by the previous layout execution. The incremental link reshape mode allows you to customize
these rules separately for two categories of links. See the methods:

IlvShortLinkLayout.getLinkConnectionBoxInterface ()

and
IlvShortLinkLayout.getNodeBoxInterface ()

4 The “modified links”: the links that have either a different “link connection box” or are
connected to nodes which have a different bounding box as during the previous layout
execution.

4 The “unmodified links”: the links that have the same “link connection box” and are
connected to nodes which have the same bounding box as during the previous layout
execution.

GRAPH LAYOUT ALGORITHMS

The mode can be customized either for both or for only one of these categories of links.
The incremental link reshape mode has no effect if the incremental mode is disabled.

The layout algorithm provides two incremental link reshape modes. You can set the mode
globally, in which case all the links have the same mode, or locally on each link, in which
case different modes occur in the same drawing.

Global incremental link reshape mode

Example of specifying global incremental link reshape mode (Link Layout algorithm)
To specify the global incremental link reshape mode:

In Java
Use the following methods:

layout.getShortLinkLayout () . setGlobalIncrementalModifiedLinkReshapeMode
layout.getShortLinkLayout () . setGlobalIncrementalUnmodifiedLinkReshapeMode

The valid values for mode are:

¢ IlvShortLinkLayout.FIXED SHAPE TYPE MODE (the default)

The incremental layout preserves the shape type of the link. This means that both the
number of bends and the node sides to which the link is connected are preserved.

L4 IlvShortLinkLayout.FIXED NODE SIDES MODE

The incremental layout preserves the node sides to which the links are connected.

L4 IlvShortLinkLayout.FIXED CONNECTION POINTS MODE

The incremental layout preserves the connection points of the links.

L4 IlvShortLinkLayout.FIXED MODE

The links are not reshaped at all during incremental layout. Only newly added links are
rerouted.

L4 IlvShortLinkLayout.FREE MODE

The incremental layout is allowed to freely reshape the links. This is equivalent to a
non-incremental behavior for all the links, hence it is recommended to disable the
incremental mode instead of using FREE_MODE as global incremental reshape mode.

Of course, the settings that may have been done by “fixing” links (see Preserve fixed links
(LL)) or by customizing the origin or destination point mode (see End points mode (LL))
are still respected.

L IlehortLinkLayout.MIXED_MODE
Each link can have a different mode.
Individual incremental link reshape mode

All links have the same incremental link reshape mode unless the global incremental link
reshape mode is I1vShortLinkLayout.MIXED MODE. Only when the global mode is set to
MIXED MODE can each link have an individual mode.

USING GRAPH LAYOUT ALGORITHMS 249

Example of specifying individual incremental link reshape mode (Link Layout algorithm)
To specify the mode of an individual link:

In Java
Use the following methods on the T1vShortLinkLayout instance:

void setIncrementalModifiedLinkReshapeMode (Object link, int mode) ;
void setIncrementalUnmodifiedLinkReshapeMode (Object link, int mode) ;
int getIncrementalModifiedLinkReshapeMode (Object link);

int getIncrementalUnmodifiedLinkReshapeMode (Object 1link) ;

The valid values for mode are:

¢ IlvShortLinkLayout.FIXED SHAPE TYPE MODE (the default)
4 IlvShortLinkLayout.FIXED NODE_SIDES MODE

4 IlvShortLinkLayout.FIXED CONNECTION POINTS MODE

¢ IlvShortLinkLayout.FREE MODE
¢

IlvShortLinkLayout.FIXED MODE

Same shape for multiple links

You can force the layout algorithm to compute the same shape for all the links having common
origin and destination nodes. The links will have parallel shapes.

When this option is disabled, the layout is free to compute different shapes for links
connecting the same pair of nodes. Generally, different shapes are chosen to avoid some

overlaps.

Same-Shape Option Dizabled Same-Shape Optich Enabled

Self-link style options

250 USING GRAPH LAYOUT ALGORITHMS

Example of specifying same shape for multiple links (Link Layout algorithm)
To enable same shape for multiple links:

In Java
Use the method:

layout.getShortLinkLayout () .setSameShapeForMultiplelLinks (true) ;

The default value is false.

Link crossing penalty

The computation of the shape of the links is driven by the objective to minimize a cost
function, which is proportional to the number of link-to-link crossings and link-to-node
crossings. By default, these two types of crossings have equal weights of 1. You can increase
the weight of the link-to-node crossings.

Example of specifying link-to-node crossing penalty (Link Layout algorithm)
To increase the weight of the link-to-node crossings:

In Java
Use the method:

layout.getShortLinkLayout () .setLinkToNodeCrossingPenalty (5.f);

This increases the possibility of obtaining a layout with no link-to-node crossings (or with
only a few crossings), with the expense that there may be more link-to-link crossings.
Alternatively, you can increase the weight of the link-to-link crossings.

Example of specifying link-to-link crossing penalty (Link Layout algorithm)
To increase the weight of the link-to-link crossings,for instance, to a value of 3s:

In Java
Use the method:

layout.getShortLinkLayout () .setLinkToLinkCrossingPenalty (3.f);

This increases the possibility of obtaining a layout with no link-to-link crossings (or with
only a few crossings), with the expense that there may be more link-to-node crossings.

Bypass distance

If the origin and destination nodes are too close, there may not be enough space for routing
the link directly between the end nodes. Therefore, by default, if the end nodes are closer

than a threshold distance, the layout chooses link shapes that bypass the interval between
close nodes. (See End nodes and bypass distance.)

USING GRAPH LAYOUT ALGORITHMS 251

252 USING

alink lahel

-
i

Ia linklahbel I

End-nodes distance largerthan ths End-nodesdistance smaller than the
bypaze diztance bypazs diztance

End nodes and bypass distance

The bypass distance is the minimum distance between the origin and destination nodes for
which a link shape going directly from one node to another is allowed. The algorithm tries
to avoid link shapes that connect directly the sides of the end nodes that are closer than the
bypass value.

Example of specifying the bypass distance (Link Layout algorithm)
To set the bypass distance:

In Java
Call

void setBypassDistance (float dist)

The default value is a strictly negative value. If the bypass distance is strictly negative, the
value of the minimum final segment length (see Minimum final segment length) parameter
is used as the bypass distance. This allows the automatic adjustment of the bypass distance
according to the current value of the minimum final segment length. This behavior is suitable
in most cases. However, you can specify a non-negative value to override the default behavior.

Using a link connection box interface

By default, the connection points of the links are distributed on the border of the bounding
box of the nodes, symmetrically with respect to the middle of each side. Sometimes, it may
be necessary to place the connection points on a rectangle smaller or larger than the
bounding box, eventually in a nonsymmetric way. For instance, this can happen when labels
are displayed below or above nodes.

Example of using a link connection box interface to modify the position of the connection points
(Link Layout algorithm)

You can modify the position of the connection points of the links by implementing a class
that implements the I11vLinkConnectionBoxInterface.

In Java
This interface defines the following method:

public IlvRect getBox (IlvGraphModel graphModel, Object node);

This method allows you to return the effective rectangle on which the connection points of
the links are placed.

GRAPH LAYOUT ALGORITHMS

A second method defined on the interface allows the connection points to be “shifted”
tangentially, in a different way for each side of each node:

public float getTangentialOffset (IlvGraphModel graphModel, Object node, int
nodeSide) ;

For instance, to set a link connection box interface that returns a link connection rectangle
that is smaller than the bounding box for all nodes of type MyNodeEditPart and shifts up
the connection points on the left and right side of all the nodes, call:

layout.setLinkConnectionBoxInterface (new IlvLinkConnectionBoxInterface () {
public IlvRect getBox (IlvGraphModel graphModel, Object node) {
IlvRect rect = graphModel.boundingBox (node) ;
if (node instanceof MyNodeEditPart) {
// for example, the size of the bounding box is reduced by 4 units

rect.resize (rect.width-4.f, rect.height-4.f);
}
return rect;
}
public float getTangentialOffset (IlvGraphModel graphModel,
Object node, int nodeSide) {
switch (nodeSide) {
case IlvDirection.Left:
case IlvDirection.Right:
return -10; // shift up with 10 for both left and right side
case IlvDirection.Top:
case IlvDirection.Bottom:
default:
return 0; // no shift for top and bottom side

});

Self-link Style Options shows the effects of customizing the connection box. On the left is
the result using the default settings: the connection points are distributed on the bounding
box of the node (which includes the label) and are symmetric with the middle of each node
side (including the label). On the right, is the result after specifying a link connection box
interface. On the bottom side of the nodes, the links are now connected to the node (passing
over the label), while on the left and right side the nodes are now symmetric to the middle
of the node (without the label).

USING GRAPH LAYOUT ALGORITHMS 253

a label a label

HJL a.be.—_J

a label a label

Default Settings Customized Settings

Customization of the link connection box

254 USING GRAPH LAYOUT ALGORITHMS

For experts: special options of the Long LL

The Link Layout algorithm utilizes the class I11vLongLinkLayout as subalgorithm.
IlvLongLinkLayout is a subclass of I1vGraphLayout and can be used a stand-alone as well.
To access the instance of 11vLongLinkLayout that is used by the Link Layout algorithm, use
the method:

IlvLongLinkLayout getLongLinkLayout () ;

Using this accessor, you can control many special features of the Long Link Layout that are
not made available by the 11vLinkLayout class because these features are for experts only.

Specifying additional obstacles

The Long Link Layout algorithm considers nodes to be obstacles that cannot be overlapped
and links to be obstacles that can be crossed at an angle of 90 degree (approximately, if the
link style is direct), but that cannot be overlapped.

Link-Mode Cwerlapping Link Crossing Link Crrerlapping
Crossings and Overlappings
Example of specifying additional obstacles (Link Layout algorithm)

If an application requires additional obstacles that are not links or nodes, these can be
specified as follows:

In Java™
Call:

layout.getLongLinkLayout () . addRectObstacle (ilog.views.I1lvRect)
layout.getLongLinkLayout () . addLineObstacle (ilog.views.I1lvRect)
layout.getLongLinkLayout () . addLineObstacle

Rectangular obstacles behave like nodes: links cannot overlap the rectangles. Line obstacles
behave like link segments: other links can cross the line segments, but cannot overlap the
segments. These obstacle settings can be removed by the following:

layout.getLongLinkLayout () . removeAllRectObstacles ()
layout.getLongLinkLayout () .

removeAllLineObstacles ()

USING GRAPH LAYOUT ALGORITHMS 255

256 USI NG

Penalties for variable end points

If the termination points of the links are not fixed, the algorithm uses a heuristic to calculate
the termination points of each link. It examines all free grid points that are close to the
border of the start and end node and assigns a penalty to each grid point. If a node-side
filter is installed, the penalty depends on whether the node side is allowed or rejected.

A more precise way to affect how the termination points are chosen is the termination point
filter. This enables the user to specify the penalty for each grid point.

Example of specifying the termination point filter (Link Layout algorithm)

In Java

A termination point filter is a class that implements the interface 11vTerminationPointFilter
that defines the following method:

public int getPenalty (IlvGraphModel graphModel, Object link,
boolean origin, Object node, IlvPoint point,
int side, int proposedPenalty) ;

To select the origin or destination point of the input 1ink, the input point (a grid point on
the input side of the node) is examined. The proposedpenalty is calculated by the default
heuristic of the algorithm. You can return a changed penalty or you can return java.lang.
Integer .MAX VALUE to reject the grid point. If the grid point is rejected, it is not chosen as
termination point of the link.

The termination point filter can be set as follows:

Call on the IlvLongLinkLayout instance: setTerminationPointFilter

Manipulating the routing phases

As mentioned in Long Link Layout algorithm, the algorithm first treats each link individually
and then applies a crossing reduction phase to all links. To find a route for an individual
link, the algorithm first checks whether a routing (such as a straight line or with only one
bend) is possible. If this kind of routing is not possible, it uses a sophisticated, but more
time consuming, grid search algorithm with backtracking to find a route with many bends.

Example of manipulating the routing phases (Link Layout algorithm)
To switch off the phase that finds a straight-line or one-bend routing:

In Java
Call:

layout.getLongLinkLayout () . setStraightRouteEnabled (boolean)
The backtrack search for a route with many bends can be affected in the several ways.

A more convenient way is to specify the maximum time available to search for the route for
each link.

Example of specifying backtrack steps (Link Layout algorithm)
You can specify the maximum number of backtrack steps by using the following:

In Java
In Java, call:

GRAPH LAYOUT ALGORITHMS

layout.getLongLinkLayout () . setMaxBacktrack (int)
The default maximum backtrack number is 30000.

Example of specifying maximal time for route search (Link Layout algorithm)
To specify the maximum time available to search for the route for each link.

In Java
Call:

setAllowedTimePerLink (long)
The default allowed time per link is 2000 milliseconds (2 seconds).
Finally, you can specify how many steps should be done during the crossing reduction phase.

Example of specifying number of steps in crossin reduction phase (Link Layout algorithm)
To specify how many steps should be done during the crossing reduction phase:

In Java
Call

setNumberCrossingReductionIterations (int)

Example of disabling crossing reduction (Link Layout algorithm)
You can disable the crossing reduction completely by using the following:

In Java
Call

setCrossingReductionEnabled (boolean)

Fallback mechanism

The Long Link Layout algorithm may not be able to find a routing for a link, if one of the
end nodes is inside an enclave. In A Node inside an enclave, the red node is inside an enclave.
In this case, the backtrack search algorithm fails to find a routing without overlapping nodes.
The backtrack search algorithm may also fail if the situation is so complex that the search
exceeds the allowed time per link.

M
-

A Node inside an enclave

USING GRAPH LAYOUT ALGORITHMS 257

When the backtrack search algorithm fails to find a routing, a simple fallback mechanism
is applied that creates a routing with node overlappings.

Example of disabling fallback mechanism (Link Layout algorithm)
To disable the fallback mechanism:

In Java

layout.getLongLinkLayout () .setFallbackRouteEnabled(false) ;

If the fallback mechanism is disabled, these links are not routed at all and remain in the
same shape as before the layout. In Java code, you can retrieve the links that could not be
routed in the usual way without the fallback mechanism.

Example of retrieving links without the fallback mechanism (Link Layout algorithm)
To retrieve the links that, without the fallback mechanism, could not be routed in the usual
way :

In Java

Enumeration e = layout.getLongLinkLayout () .getCalcFallbackLinks () ;

For instance, you can iterate over these links and apply your own specific fallback mechanism
instead of the default fallback mechanism of the Long Link Layout algorithm.

258 USING GRAPH LAYOUT ALGORITHMS

Random layout (RL)

Describes the Random Layout algorithm (class I1vRandomLayout from the package ilog.
views.graphlayout.random).

In this section

RL sample
Gives some samples of the random layout and explains where it is used.

Features and limitations of the RL
Gives a list of features and limitations.

The RL algorithm
Describes the placement of the nodes and gives samples of the specifications.

Generic features and parameters of the RL
Describes the generic features and parameters of the layout.

Specific parameters of the RL
Describes the parameters that are specific to the I1vRandomLayout class:

USING GRAPH LAYOUT ALGORITHMS 259

RL sample

The following figure shows a sample drawing produced with the Random Layout (RL).

Graph drawing produced with the Random Layout

What types of graphs suit the RL?
Any type of graph:
4 connected graphs and disconnected graphs

4 planar graphs and nonplanar graphs

260 USING GRAPH LAYOUT ALGORITHMS

Features and limitations of the RL

Features

Random placement of the nodes of a grapher inside a given region.

Limitations

¢ The algorithm computes random coordinates for the upper-left corner of the graphic
objects representing the nodes. In some cases, this may not be appropriate.

4 To ensure that the nodes do not overlap the margins of the layout region, the algorithm
computes the coordinates randomly inside a region whose width and height are smaller
than the width and height of the layout region. The difference is the maximum width and
the maximum height of the nodes, respectively. In some cases, this may not be appropriate.

USING GRAPH LAYOUT ALGORITHMS 261

The RL algorithm

262 U s |

N

G

The Random Layout (RL) algorithm is not really a layout algorithm. It simply places the
nodes at randomly computed positions inside a user-defined region. Nevertheless, the
Random Layout algorithm may be useful when a random, initial placement is needed by
another layout algorithm or in cases where an aesthetic, readable drawing is not important.

Example of RL

In Java
Below is a code sample using the 11vRandomLayout class. This code sample shows how to
perform a Random Layout:

import ilog.views.*;

import ilog.views.eclipse.graphlayout.GraphModel;
import ilog.views.eclipse.graphlayout.runtime.*;

import ilog.views.eclipse.graphlayout.runtime.random.*;

IlvRandomLayout layout = new IlvRandomLayout () ;
GraphModel graphModel = new GraphModel (myGrapherEditPart);
layout.attach (graphModel) ;
try {
IlvGraphLayoutReport layoutReport = layout.performLayout () ;

int code = layoutReport.getCode () ;

System.out.println("Layout completed (" +
layoutReport.codeToString (code) + ")");
}
catch (IlvGraphLayoutException e) {
System.err.println(e.getMessage()) ;
}
layout.detach() ;
graphModel.dispose () ;

GRAPH LAYOUT ALGORITHMS

Generic features and parameters of the RL

The 11vRandomLayout class supports the following generic parameters defined in the
IlvGraphLayout class (see Base class parameters and features):

<

Layout region (RL)

¢ Percentage of completion calculation (RL)
¢ Preserve fixed links (RL)

¢ Preserve fixed nodes (RL)

4 Random generator seed value (RL)

¢ Stop immediately (RL)

The following sections describe the particular way in which these parameters are used by
this subclass.

Layout region (RL)

The layout algorithm uses the layout region setting (either your own or the default setting)
to control the size and the position of the graph drawing. (See Layout region.)

Percentage of completion calculation (RL)

The layout algorithm calculates the estimated percentage of completion. This value can be
obtained from the layout report during the run of the layout. (For a detailed description of
this features, see Percentage of completion calculation and Graph layout event listeners.)

Preserve fixed links (RL)

The layout algorithm does not reshape the links that are specified as fixed. (See Preserve
fixed links.)

Preserve fixed nodes (RL)

The layout algorithm does not move the nodes that are specified as fixed. (See Preserve
fixed nodes.)

Random generator seed value (RL)

The Random Layout uses a random number generator to compute the coordinates. You can
specify a particular value to be used as a seed value. (See Random generator seed value)
For the default behavior, the random generator is initialized using the current system clock.
Therefore, different layouts are obtained if you perform the layout repeatedly on the same
graph.

USING GRAPH LAYOUT ALGORITHMS 263

Stop immediately (RL)

The layout algorithm stops after cleanup if the method stopImmediately () is called. (For
a description of this method in the 11vGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the result code in the layout report
is I1vGraphLayoutReport.STOPPED AND INVALID.

264 USING GRAPH LAYOUT ALGORITHMS

Specific parameters of the RL

Link style (RL)

When the layout algorithm moves the nodes, straight-line links will automatically “follow”
the new positions of their end nodes. If the grapher contains other types of links, the shape
of the link may not be appropriate because the intermediate points of the link will not be
moved. In this case, you can ask the layout algorithm to automatically remove all the
intermediate points of the links (if any).

Example of removing intermediate link points (RL algorithm)
To specify that the layout algorithm to automatically removes all the intermediate points of
the links (if any):

In Java™
Use the method:

void setLinkStyle (int style)

The valid values for style are:

4 IlvRandomLayout.NO RESHAPE STYLE

None of the links is reshaped in any manner.

4 IlvRandomLayout.STRAIGHT LINE STYLE

All the intermediate points of the links (if any) are removed. This is the default value.

USING GRAPH LAYOUT ALGORITHMS 265

266 USING GRAPH LAYOUT ALGORITHMS

Bus layout (BL)

Describes the Bus Layout algorithm (class I11vBusLayout from the package ilog.views.
graphlayout.bus).

In this section

BL - sample
Gives a sample of the Bus Layout (BL) and explains where it is used.

Features of the BL
Lists the features of the layout.

The BL algorithm
Describes the Bus Layout algorithm and gives samples of the specification.

Generic features and parameters of the BL
Lists the generic features and paramters of the Bus Layout (BL).

Specific parameters of the BL
Lists the specific parameters of the Bus Layout (BL).

USING GRAPH LAYOUT ALGORITHMS 267

BL - sample

The following figure shows a sample drawing produced with the Bus Layout (BL).

Bus topology produced with the Bus Layout

What types of graphs suit the BL?

4 Bus network topologies (a set of nodes connected to a bus object)

Application domains for the BL
Application domains of the Bus Layout include:

4 Telecom and networking (LAN diagrams)

4 Electrical engineering (circuit block diagrams)

4 Industrial engineering (equipment/resource control charts)

268 USING GRAPH LAYOUT ALGORITHMS

Features of the BL

4 Displays bus topologies.
4 Takes into account the size of the nodes so that no overlapping occurs.
4 Provides several ordering, alignment, and flow direction options.

4 Allows easy customization of the dimensional parameters.

USING GRAPH LAYOUT ALGORITHMS 269

The BL algorithm

270 U s |

N

G

Bus topology is well known in network management and telecommunications fields. The
Bus Layout class can display these topologies nicely. It represents the “bus” as a “serpent”
polyline. The width of the “serpent” is user-defined (via the width of the layout region
parameter) and the height is computed so that enough space is available for all the nodes.

BL Sample

Bus Edit Part

An edit part must be dedicated to the bus. It must implement the interface
IlvPolyPointsInterface and behave as a node. The following code sample shows a possible
implementation of the bus:

public class BusEditPart extends AbstractGraphicalEditPart implements
PropertyChangelListener, NodeEditPart, IlvPolyPointsInterface {

private BusElement getBus() {
return (BusElement) getModel () ;
}

protected IFigure createFigure() {
Polyline bus = new Polyline();
return bus;

}

public boolean allowsPointInsertion() {
return true;

}

public boolean allowsPointMove (int index) {
return true;

}

public boolean allowsPointRemoval () {
return true;

}

public IlvRect boundingBox (IlvTransformer t) {
Rectangle bounds = getBus () .getPoints () .getBounds () ;
return new IlvRect (bounds.x, bounds.y, bounds.width, bounds.height);

}

public IlvPoint getPointAt (int index, IlvTransformer t) {
Point p = getBus () .getPoint (index) ;
return new IlvPoint(p.x, p.Vy);

}

public int getPointsCardinal () {
return getBus () .getPoints () .size();

GRAPH LAYOUT ALGORITHMS

public void insertPoint (int index, float x,
getBus () .insertPoint (index, x, vy);

}

public void movePoint (int index, float x, float
getBus () .movePoint (index, x, Vv);

public boolean pointsInBBox () {
return true;

public void removePoint (int index,
getBus () .removePoint (index) ;

float vy,

IlvTransformer t) {

y, IlvTransformer t) {

IlvTransformer t) {

public ConnectionAnchor getSourceConnectionAnchor (

ConnectionEditPart connection) {
BusAnchor anchor new BusAnchor (getFigure());
return anchor;

public ConnectionAnchor getTargetConnectionAnchor (

ConnectionEditPart connection) {
BusAnchor anchor new BusAnchor (getFigure()) ;
return anchor;

public ConnectionAnchor getSourceConnectionAnchor (Request request) {

if (request.getType ()
BusAnchor anchor

return anchor;

new BusAnchor (getFigure ()

}

return null;

== RequestConstants.REQ RECONNECT_SOURCE) {

)

public ConnectionAnchor getTargetConnectionAnchor (Request request) {

if (request.getType ()
BusAnchor anchor

return anchor;

new BusAnchor (getFigure ()

}

return null;

protected void refreshvVisuals() {
PointList points getBus () .getPoints () ;
if (points != null)
getFigure () .setPoints (points) ;

}
public Polyline getFigure() {
return (Polyline) super.getFigure();

SING GRAPH LAYOUT

RequestConstants.REQ RECONNECT_ TARGET) {

)

ALGORITHMS 271

protected void createEditPolicies () {
installEditPolicy (EditPolicy.NODE ROLE, new GraphicalNodeEditPolicy());

The edit part must return dedicated anchors of type BusaAnchor. The following code sample
shows an implementation of the associated model object “BusElement”:

public class BusElement {

PointList points = new PointList () ;

public void setPoints (PointList points) {
this.points = points;
// fire event to refresh the edit part

public PointList getPoints () {
return points;

public void insertPoint (int index, float x, float y) {
PointList points = getPoints();
PointList newPoints = points.getCopy () ;
newPoints.insertPoint (new PrecisionPoint (x, y), index);
setPoints (newPoints) ;

public void movePoint (int index, float x, float y) {
PointList points = getPoints();
PointList newPoints = points.getCopy () ;
newPoints.setPoint (new PrecisionPoint (x, y), index);
setPoints (newPoints) ;

public void removePoint (int index) {
PointList points = getPoints();
PointList newPoints = points.getCopy () ;
newPoints.removePoint (index) ;
setPoints (newPoints) ;

public Point getPoint (int index) {
return getPoints () .getPoint (index) ;

public Rectangle getConstraint () {
return getPoints () .getBounds () ;

272 USING GRAPH LAYOUT ALGORITHMS

Calling the layout
The following code sample uses the 11vBusLayout class. This code sample shows how to
perform a Bus Layout:

import ilog.views.*;

import ilog.views.eclipse.graphlayout.GraphModel;
import ilog.views.eclipse.graphlayout.runtime.*;
import ilog.views.eclipse.graphlayout.runtime.bus.*;

IlvBusLayout layout = new IlvBusLayout () ;
GraphModel graphModel = new GraphModel (myGrapherEditPart) ;
layout.attach (graphModel) ;
/* Specify the bus node */
layout.setBus (myBusEditPart) ;
try {
IlvGraphLayoutReport layoutReport = layout.performLayout () ;
int code = layoutReport.getCode () ;
System.out.println ("Layout completed (" + layoutReport.codeToString(code) +
"))
}
catch (IlvGraphLayoutException e) ({
System.err.println (e.getMessage());
}
layout.detach () ;
graphModel.dispose() ;

USING GRAPH LAYOUT ALGORITHMS 273

Generic features and parameters of the BL

274 U S I N G

The 11vBusLayout class supports the following generic parameters defined in the
IlvGraphLayout class (see Base class parameters and features):

¢ Allowed time (BL)
¢ Layout of connected components (BL)
¢ Layout region (BL)

¢ Link clipping (BL)

¢ Preserve fixed links (BL)

¢ Preserve fixed nodes (BL)

4 Stop immediately (BL)

The following sections describe the particular way in which these parameters are used by
this subclass.

Allowed time (BL)

The layout algorithm stops if the allowed time setting has elapsed. (For a description of this
layout parameter in the 11vGraphLayout class, see Allowed time.) The result code in the
layout report is I1vGraphLayoutReport.STOPPED AND INVALID.

Layout of connected components (BL)

The layout algorithm can utilize the generic mechanism to layout connected components.
(For more information about this mechanism, see Layout of connected components.)

Layout region (BL)

The layout algorithm uses the layout region setting (either your own or the default setting)
to control the size and the position of the graph drawing (See Layout region.)

The size of the layout is chosen with respect to the layout region (see Dimensional Parameters
for the Bus Layout Algorithm). The height of the layout region is not taken into account. The
height of the layout will be smaller or larger, depending on the number of nodes, the size
of the nodes, and the other specified parameters.

Link clipping (BL)
The layout algorithm can use a link clip interface to clip the end points of a link. (See Link
clipping.)

This is useful if the nodes have a nonrectangular shape such as a triangle, rhombus, or
circle. If no link clip interface is used, the links are normally connected to the bounding
boxes of the nodes, not to the border of the node shapes. See Using a link clipping interface
with the Bus Layout for details of the link clipping mechanism.

GRAPH LAYOUT ALGORITHMS

Preserve fixed links (BL)

The layout algorithm does not reshape the links that are specified as fixed. (See Preserve
fixed links.)

Preserve fixed nodes (BL)

The layout algorithm does not move the nodes that are specified as fixed. (See Preserve
fixed nodes.)

Stop immediately (BL)

The layout algorithm stops after cleanup if the method stopImmediately () is called. (For
a description of this method in the 11vGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the result code in the layout report
is I1vGraphLayoutReport.STOPPED AND INVALID.

USING GRAPH LAYOUT ALGORITHMS 275

Specific parameters of the BL

The following parameters are specific to the 11vBusLayout class.

Order parameter (BL)
The order parameter specifies how to arrange the nodes.

Example of specifying node ordering option (BL algorithm)
To specify the ordering option for the nodes:

In Java™
Use the method:

void setNodeComparator (Comparator comparator)

The valid values for comparator are:
4 IlvBusLayout.DESCENDING HEIGHT

The nodes are ordered in the descending order of their height.
4 IlvBusLayout.ASCENDING HEIGHT

The nodes are ordered in the ascending order of their height.
4 IlvBusLayout.DESCENDING WIDTH

The nodes are ordered in the descending order of their width.
L4 IlvBusLayout.ASCENDING WIDTH

The nodes are ordered in the ascending order of their width.
4 IlvBusLayout.DESCENDING AREA

The nodes are ordered in the descending order of their area.
L4 IlvBusLayout.ASCENDING AREA

The nodes are ordered in the ascending order of their area.
¢ IlvBusLayout.ASCENDING INDEX

The nodes are ordered in the ascending order of their index (see setIndex (java.lang.
Object, int)).

L4 IlvBusLayout.DESCENDING_ INDEX

The nodes are ordered in the descending order of their index (see setIndex (java.lang.
Object, int)).

4 null
The nodes are ordered in an arbitrary way.

4 Any other implementation of the Comparator interface.

276 USING GRAPH LAYOUT ALGORITHMS

The nodes are ordered according to this custom comparator.
The default is null.
The ordering of the nodes starts at the upper-left corner of the bus.

Note that in incremental mode (see setIncrementalMode (boolean)) or when nodes are
fixed (see setFixed (java.lang.Object, boolean)), the order is not guaranteed to obey
the comparator, because it competes with the other constraints.

More about the ASCENDING_INDEX and DESCENDING_INDEX
options (BL)

These options allow you to specify the order of the nodes according to a user-defined index
value specified for each node. If this option is chosen, the algorithm sorts the nodes in
ascending order according to their index values.

Example of specifying index options (BL algorithm)
The index is an integer value associated with a node. To specify the index:

In Java
Use the method:

void setIndex (Object node, int index)

The values of the indices cannot be negative. To obtain the current index of a node, use the
method:

int getIndex (Object node)

If no index is specified for the node, the value I1vBusLayout.NO_ INDEX is returned.
The following table shows the ordering options for the Bus Layout algorithm.

Examples of ordering options for the nodes for the Bus Layout algorithm
Ordering Layout

SR
IRTTRT

- | . | 13 17
| |

USING GRAPH LAYOUT ALGORITHMS 277

278 U s |

N G

Ordering Layout

B e
TETTT:
amiil bl fnk
LI,

Bus node (BL)

To represent bus topologies, the algorithm reshapes a special node, called the “bus node”,
and gives it a “serpent” form. This bus node must be an instance of the
IlvPolyPointsInterface class. Before performing the layout, the grapher must contain
this node.

(The number of points in the object you create is not important.) Then, you must specify the
node as “bus node” using the method:

void setBus (IlvPolyPointsInterface bus)

If none is specified, the Bus layout automatically tries to find an appropriate node that can
be used as bus object.

The bus object must implement the interface 11vPolyPointsInterface and it must allow
the insertion and removal of points (see the methods allowsPointInsertion () and
allowsPointRemoval () defined by the interface). The initial number of points is not
significant.

GRAPH LAYOUT ALGORITHMS

Link style (BL)

When the layout algorithm moves the nodes, straight-line links will automatically “follow”
the new positions of their end nodes. If the grapher contains other types of links, the shape
of the link may not be appropriate because the intermediate points of the link will not be
moved. In this case, you can specify that the layout algorithm automatically removes all the
intermediate points of the links (if any).

Example of specifying BL to automatically remove all intermediate points of the link (BL algorithm)
To specify that the layout algorithm automatically removes all the intermediate points of
the links (if any):

In Java
Use the method:

void setLinkStyle (int style)

The valid values for style are:
4 IlvBusLayout.NO RESHAPE STYLE

None of the links are reshaped in any manner.
4 IlvBusLayout.STRAIGHT LINE STYLE

All the intermediate points of the links (if any) are removed. This is the default value.

Flow direction (BL)

The flow direction options control the horizontal alignment of each row (bus level) with
respect to the left and right sides of the layout region. The rows can be either all left-aligned
on the left border of the layout region or can alternate between the left and right alignment.

i) o
b R

50 1 50 0
figg el

Bus layout with left-to-right flow direction

USING GRAPH LAYOUT ALGORITHMS 279

i) o
Hle iz

50 1 50 ot
Jya574

Bus layout with alternate flow direction

Example of setting the flow direction (BL algorithm)
To set the flow direction:

In Java
Use the method:

void setFlowDirection (int direction);

The valid values for direction are:

4 IlvBusLayout.LEFT TO RIGHT (the default)
All the rows (bus levels) are left-aligned.

4 IlvBusLayout.ALTERNATE

The even rows (bus levels) are left-aligned and the odd rows are right-aligned.

Maximum number of nodes per level (BL)

By default, the layout places as many nodes on each level as possible given the size of the
nodes and the dimensional parameters (layout region and margins). If needed, the layout
can additionally respect a specified maximum number of nodes per level (see Bus width
adjusting disabled and bounded number of nodes per level and Bus width adjusting enabled
and bounded number of nodes per level).

Example of setting the maximum number of nodes per level (BL algorithm)
To set the maximum number of nodes per level:

In Java
Use the method:

void setMaxNumberOfNodesPerLevel (int nNodes) ;

The default value is Integer.MAX VALUE. This means that the number of nodes placed in
each level is only bounded by the size of the nodes and the dimensional parameters. The
specified value must be at least 1.

280 USING GRAPH LAYOUT ALGORITHMS

Bus width adjusting (BL)

By default, the width of the bus object, that is the difference between the maximum and
minimum x-coordinates, depends on the width of the layout region and the other dimensional
parameters (see Dimensional Parameters for the Bus Layout Algorithm). Optionally, the
width of the bus object can be automatically adjusted to the total width of the nodes, plus
the offsets and the margins. This option can be particularly useful in conjunction with the
customization of the maximum number of nodes per level (see Maximum number of nodes
per level (BL)).

Bus width adjusting enabled and bounded number of nodes per level

USING GRAPH LAYOUT ALGORITHMS 281

Example of enabling/disabling the bus width adjustment (BL algorithm)
To enable or disable bus width adjusting:

In Java
Use the method:

void setBusWidthAdjustingEnabled (boolean enable) ;

The bus width adjusting is disabled by default.

Bus line extremity adjusting (BL)

If necessary, the bus line can be adjusted to stop where the nodes stop (plus the margins).
This can make a difference when there is only one horizontal bus line, or when the flow
direction is ALTERNATE.

Bus Layout with bus line extremity disabled

282 USING GRAPH LAYOUT ALGORITHMS

g mB
JJ TTLL

Bus Layout with bus line extremity enabled

Example of enabling/disabling the bus line extremity adjustment (BL algorithm)
To enable or disable the adjustment of the bus line extremity:

In Java
Use the method:

void setBusLineExtremityAdjustingEnabled (boolean enable);

The adjustment of the bus line extremity is disabled by default.

Alignment parameters (BL)

The alignment options control how a node is placed above its row (bus level). The alignment
can be set globally, in which case all nodes are aligned in the same way, or locally on each
node, with the result that different alignments occur in the same drawing.

Global alignment parameters

Example of setting global alignment (BL algorithm)
To set the global alignment:

In Java
Use the method:

void setGlobalVerticalAlignment (int alignment);

The valid values for alignment are:

4 IlvBusLayout.CENTER (the default)

The node is vertically centered over its row (bus level).

USING GRAPH LAYOUT ALGORITHMS 283

284 U S I NG

4 IlvBusLayout.TOP

The node is vertically aligned on the top of its row (bus level).

4 IlvBusLayout.BOTTOM

The node is vertically aligned on the bottom of its row (bus level).

4 IlvBusLayout.MIXED

Each node can have a different alignment. The alignment of each individual node can be
set with the result that different alignments can occur in the same graph.

k) ke
Hpllyilygsy
-
TIfFAIre
HTHTHTTTT
TTTTTrrTs

Bus Layout with top vertical alignment

ST)
5 P Y

Ay sl

Bus Layout with bottom vertical alignment

Alignment of individual nodes

All nodes have the same alignment unless the global alignment is set to I1vBusLayout.
MIXED. Only when the global alignment is set to MIXED can each node have an individual
alignment style.

Example of setting the alignment of an individual node (BL algorithm)
To set the alignment of an individual node:

GRAPH LAYOUT ALGORITHMS

In Java
Use the methods:

void setVerticalAlignment (Object node, int alignment);

int getVerticalAlignment (Object node) ;

The valid values for node alignment are:
4 TlvBusLayout.CENTER (the default)
4 IlvBusLayout.TOP

4 IlvBusLayout.BOTTOM

Node position (BL)

The nodes can be placed either above or below the corresponding bus line.

Bus Layout with nodes above the bus

USING GRAPH LAYOUT ALGORITHMS 285

286 U S I NG

Bus Layout with Nodes Below the Bus

Example of setting node position (BL algorithm)
To set the node position:

In Java
Use the method:

void setNodePosition (int position);

The valid values for node positions are:
4 IlvBusLayout.NODES ABOVE BUS (the default)

The nodes are placed above the corresponding bus line.
¢ IlvBusLayout.NODES_BELOW_BUS

The nodes are placed below the corresponding bus line.

Incremental mode (BL)

The Bus Layout algorithm normally places all the nodes from scratch. If the graph
incrementally changes because you add, remove, or resize nodes, the subsequent layout
may differ considerably from the previous layout. To avoid this effect and to help the user
to retain a mental map of the graph, the algorithm has an incremental mode. In incremental
mode, the layout tries to place the nodes at the same location or in the same order as in the

previous layout whenever it is possible

Example of enabling incremental mode (BL algorithm)
To enable the incremental mode:

GRAPH LAYOUT ALGORITHMS

In Java
Call:

layout.setIncrementalMode (true) ;

Note: To preserve stability, the incremental mode can keep some regions free. Therefore,
the total area of the layout can be larger than in nonincremental mode, and, in general,
the layout may not look as nice as in nonincremental mode.

Dimensional parameters (BL)

Dimensional Parameters for the Bus Layout Algorithm illustrates the dimensional parameters
used in the Bus Layout algorithm. These parameters are explained in the subsequent sections.

margin 3

B 10
a =] 1 B
¥

wertibal OffsetT oL eviel \

|

F 1

) 2 2 4 5 14 layout

marginCnBus L 12 | | _rl .rl _'_I _rl region
kA

vemtic al OffsetT oPreviousLevel

& frl 11| 1E|_3‘r| 13| l‘?_l marginCnBus
™ margin "L

honzental Offset margin

Dimensional Parameters for the Bus Layout Algorithm

Horizontal offset (BL)

This parameter represents the horizontal distance between two nodes.

Example of specifying the horizontal offset (BL algorithm)
To specify the horizontal offset:

In Java
Use the method:

USING GRAPH LAYOUT ALGORITHMS 287

288 USI NG

void setHorizontalOffset (float offset)

Vertical offset to level (BL)

This parameter represents the vertical distance between a row of nodes and the next
horizontal segment of the bus node.

Example of specifying vertical offset (BL algorithm)
To specify this parameter:

In Java
Use the method:

void setVerticalOffsetToLevel (float offset)

Vertical offset to previous level (BL)

Example of setting vertical offset to the previous level (BL algorithm)
To set the vertical offset to the previous level:

In Java
This parameter represents the vertical distance between a row of nodes and the previous
horizontal segment of the bus node. To specify this parameter, use the method:

void setVerticalOffsetToPreviousLevel (float offset)

Margin (BL)

This parameter represents the offset distance between the layout region and the bounding
rectangle of the layout.

Example of specifying the margin (BL algorithm)
To specify the margin:

In Java
Use the method:

void setMargin (float margin)

Margin on bus (BL)

On the odd horizontal levels (first, third, fifth, and so on) of the bus, starting from the top,
this parameter represents the offset distance between the left side of the first node on the
left and the left side of the bus object.

On the even horizontal levels (second, fourth, sixth, and so on) of the bus, starting from the
top, this parameter represents the offset distance between the right side of the last node
on the right and the right side of the bus object. (See Dimensional Parameters for the Bus
Layout Algorithm for an illustration of the margin-on-bus parameter.)

GRAPH LAYOUT ALGORITHMS

Example of specifying the margin on bus (BL algorithm)
To specify this parameter:

In Java
Use the method:

void setMarginOnBus (float margin)

Using a link clipping interface with the Bus Layout

By default, the Bus Layout does not place the connection points of links at the nodes. The
default behavior is to connect to a point at the border of the bounding box of the nodes.

If the node has a nonrectangular shape such as a triangle, rhombus, or circle, you may want
the connection points to be placed exactly on the border of the shape. This can be achieved
by specifying a link clip interface. The link clip interface allows you to correct the calculated
connection point so that it lies on the border of the shape. The following figure shows an
example.

without clipping with clipping
Effect of Link Clipping Interface

You can modify the position of the connection points of the links by providing a class that
implements the I1vLinkClipInterface. An example for the implementation of a link clip
interface is in Link clipping.

Example of setting a link clipping interface with the Bus Layout
To set a link clip interface:

In Java
Call:

void setLinkClipInterface (IlvLinkClipInterface interface)

USING GRAPH LAYOUT ALGORITHMS 289

290 USING GRAPH LAYOUT ALGORITHMS

Circular layout (CL)

Describes the Circular Layout algorithm (class I1vCircularLayout from the package ilog.
views.graphlayout.circular).

In this section

General information on the CL
Gives samples of the Circular Layout (CL) and explains where it is used.

Features and limitations of the CL
Lists the features and limitations of the Circular Layout (CL).

The CL algorithm
Describes the Circular Layout (CL) algorithm and gives samples.

Generic features and parameters of the CL
Describes the generic features and parameters of the layout.

Specific parameters of the CL
Describes the parameters specific to the I1vCircularLayout class:

USING GRAPH LAYOUT ALGORITHMS 291

General information on the CL

CL samples

The following figures show sample drawings produced with the Circular Layout.

*:rﬁ"{/‘[k

a |
ij’- ol ‘i‘ !l’:

Ring-and-star topology drawing produced with the Circular Layout

292 USING GRAPH LAYOUT ALGORITHMS

= - o
i
I
" " - ,
o
g
.-.. g

il

Large ring-and-star topology drawing produced with the Circular Layout

What types of graphs suit the CL?

4 Graphs representing interconnected ring and/or star network topologies

Application domains for the CL

Application domains for the Circular Layout include:

4 Telecom and networking (LAN diagrams)

4 Business processing (organization charts)

4 Database and knowledge engineering (sociology, genealogy)

4 The World Wide Web (Web hyperlink neighborhood)

USING GRAPH LAYOUT ALGORITHMS 293

Features and limitations of the CL

Features
4 Displays network topologies composed of interconnected rings and/or stars.

4 Provides two clustering modes (see Clustering mode (CL)). The first mode lays out clusters
as circles and places the clusters. This mode is designed for rings/stars that are
interconnected in a tree structure, but it can produce acceptable results even if the graph
contains cycles. The second mode lays out the clusters as circles of nodes, minimizing
the link crossings while keeping the clusters at their initial position.

4 Takes into account the size of the nodes so that no overlapping occurs. (See also The CL
algorithm).

Limitations

Link crossings cannot always be avoided.

294 USING GRAPH LAYOUT ALGORITHMS

The CL algorithm

Ring and star topologies are similar in several ways. Take a look at Ring topology and Star
topology to get an idea of their similarities.

Ring topology

'.;\F =l

/-
e
Star topology

Both topologies are composed of nodes drawn on a circle. For the Circular Layout algorithm,
the only difference between the ring and star topologies is that the star has a special node,
called the star center, that is drawn at the center of the circle. The user must specify the
node that is the star center. (See Star center (CL) for information on how to specify the
node.)

For each ring or star (generically called a cluster), the Circular Layout algorithm, in one of
its modes (see Clustering mode (CL)), allows you to specify the order of the nodes on the
circle (this is discussed in Cluster membership and order of the nodes on a cluster (CL)).
Otherwise, an arbitrary order is automatically chosen. In another mode, the order is computed
automatically such that the number of link crossings is small.

The network topology can be composed of more than one ring or star. These rings and stars
can be partially interconnected; that is, two or more clusters can have a common node as
shown in Rings interconnected by common nodes. They can also be interconnected by links
between nodes of two different clusters as shown in Rings interconnected by links.

USING GRAPH LAYOUT ALGORITHMS 295

296 U S I NG

Dl
, 4
J\ﬂ\ﬂ/d

Rings interconnected by common nodes

5555
s
=l 5_(3'\

Rings interconnected by links

The Circular Layout algorithm lays out the ring/star topologies in a way that preserves the
visual identity of each cluster and avoids overlapping nodes and clusters. (See the sample
drawings in CL samples.)

To understand how the layout is performed in the clustering mode BY CLUSTER IDSs, consider
a graph in which each node represents a ring or star cluster of a network topology. Add a
link between two nodes each time there is an interconnection between the corresponding
clusters. The Circular Layout algorithm is designed for the case where the graph obtained
in this manner is a tree (that is, a graph with no cycles). If cycles exist, the layout is performed
using a spanning tree of the graph.

Starting from a root cluster (either a ring or a star), the clusters that are connected to the
root cluster are drawn on a circle that is concentric to the root cluster. The radius of the
circle is computed to avoid overlapping clusters. Next, the algorithm lays out the clusters
connected to these last clusters on a larger circle, and so on. Each circle is called a level.

GRAPH LAYOUT ALGORITHMS

For networks that are not connected (that is, disconnected groups of clusters exist in the
graph), more than one spanning tree exists. Each spanning tree is laid out separately and
placed near the others. You can see this in the sample drawings in CL samples.

In the clustering mode BY SUBGRAPHS, each subgraph (cluster) keeps its initial position. The
subgraphs can be placed either by a different layout algorithm or interactively.

CL Example

In Java

Below is a code sample using the 11vCircularLayout class. This code sample shows how
to perform a Circular Layout:

import ilog.views.*;

import ilog.views.eclipse.graphlayout.runtime.*;

import ilog.views.eclipse.graphlayout.GraphModel;

import ilog.views.eclipse.graphlayout.runtime.circular.*;

IlvCircularLayout layout = new IlvCircularLayout () ;
GraphModel graphModel = new GraphModel (myGrapherEditPart);
layout.attach (graphModel) ;

// create identifier for cluster 0
IlvClusterNumber clusterId = new IlvClusterNumber (0) ;

// specify the cluster identifier for cluster 0

// Assume there are three nodes: nodel, node2, node3
// the ordering of the nodes: nodel -> node2 -> node3
layout.setClusterId(nodel, clusterId, 0); // index 0
layout.setClusterId(node2, clusterId, 1); // index 1
layout.setClusterId(node3, clusterId, 2); // index 2

// create identifier for cluster 1
clusterId = new IlvClusterNumber (1) ;

// specify the cluster identifier for cluster 1

// Assume there are three nodes: noded4, node5, node6

// the ordering of the nodes: noded4 -> node5 -> nodeb
layout.setClusterId(noded4, clusterId, 1); // index 1

layout.setClusterId(node5, clusterId, 2); // index 2

layout.setClusterId(node6, clusterId, 0); // index 0

try {
IlvGraphlLayoutReport layoutReport = layout.performLayout () ;

int code = layoutReport.getCode () ;

System.out.println("Layout completed (" +
layoutReport.codeToString (code) + ")");
}
catch (IlvGraphLayoutException e) {
System.err.println(e.getMessage()) ;

USING GRAPH LAYOUT ALGORITHMS 297

}
layout.detach();
graphModel .dispose () ;

298 USING GRAPH LAYOUT ALGORITHMS

Generic features and parameters of the CL

The I1vCircularLayout class supports the following parameters defined in the
IlvGraphLayout class (see Base class parameters and features):

¢ Layout of connected components (CL)
¢ Layout region (CL)

¢ Link clipping (CL)

¢ Link connection box (CL)

¢ Preserve fixed links (CL)

¢ Preserve fixed nodes (CL)

4 Stop immediately (CL)

The following comments describe the particular way in which these parameters are used
by this subclass.

Layout of connected components (CL)

The layout algorithm can utilize the generic mechanism to layout connected components.
(For more information about this mechanism, see Layout of connected components).

Layout region (CL)
This parameter has no effect if the clustering mode is BY SUBGRAPHS.

It is not possible to allow the user to control the size of the layout by specifying a bounding
box for the drawing. The layout algorithm chooses the size to have enough space to avoid
overlapping nodes and clusters.

The layout region setting (either your own or the default setting) is used only to choose the
position of the center of the drawing. This means that only the center of the layout region
is taken into consideration. (See Layout region.)

Link clipping (CL)

The layout algorithm can use a link clip interface to clip the end points of a link. (See Link
clipping.)

This is useful if the nodes have a nonrectangular shape such as a triangle, rhombus, or
circle. If no link clip interface is used, the links are normally connected to the bounding
boxes of the nodes, not to the border of the node shapes. See Using a link clipping interface
with the Circular Layout for details of the link clipping mechanism.

Link connection box (CL)

The layout algorithm can use a link connection box interface (see Link connection box) in
combination with the link clip interface. If no link clip interface is used, the link connection

USING GRAPH LAYOUT ALGORITHMS 299

300 USING

box interface has no effect. For details see Using a link clipping interface with the Circular
Layout.

Preserve fixed links (CL)

The layout algorithm does not reshape the links that are specified as fixed. (See Preserve
fixed links.)

Preserve fixed nodes (CL)

The layout algorithm does not move the nodes that are specified as fixed. (See Preserve
fixed nodes.)

Stop immediately (CL)

The layout algorithm stops after cleanup if the method stopImmediately () is called. (For
a description of this method in the 11vGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the result code in the layout report
is I1vGraphLayoutReport.STOPPED AND INVALID.

GRAPH LAYOUT ALGORITHMS

Specific parameters of the CL

Clustering mode (CL)

The Circular Layout algorithm has two clustering modes.

Example of selecting a clustering mode (CL algorithm)
To select a clustering mode:

In Java™
Use the method:

void setClusteringMode (int mode) ;

The valid values for mode are:

4 IlvCircularLayout.BY CLUSTER IDS (the default): Cluster identifiers need to be explicitly
provided for each node (see Cluster membership and order of the nodes on a cluster
(CL)). A tree-like algorithm places the clusters.

4 IlvCircularLayout.BY SUBGRAPHS: The algorithm handles a nested graph, including
intergraph links. It arranges the nodes of each subgraph on a circle, so that the number
of link crossings is small. It respects the intergraph links and rotates the cluster so that
the number of link crossings is small. It assumes that all nodes are nearly square and
that all nodes are in subgraphs, but the subgraph nesting is only 1. Nodes that are inside
subgraphs of subgraphs are not handled. Note that in this mode each subgraph keeps its
initial position. The subgraphs can be placed either by a different layout algorithm or
interactively.

Cluster membership and order of the nodes on a cluster (CL)
This section applies only if the clustering mode is set to BY CLUSTER IDS.

Before performing the layout, you must specify to which cluster each node of the graph
belongs.

Example of specifying node cluster (CL algorithm)
To specify to which cluster each node of the graph belongs:

In Java
To specify the cluster membership, use a cluster identifier; that is, an instance of a subclass
of the class 11vClusterId (which is abstract). Two subclasses are provided:

4 IlvClusterNumber, which uses integer numbers as cluster identifiers.

4 IlvClusterName, which uses string names as cluster identifiers.

You can combine these two types of identifiers as any other subclass of 11vClusterid. For
example, you can write:

// create identifier for first cluster (integer)
IlvClusterNumber clusterIdl = new IlvClusterNumber (1) ;

USING GRAPH LAYOUT ALGORITHMS 301

// create identifier for second cluster (string)
IlvClusterNumber clusterId2 = new IlvClusterName ("R&D network") ;

Then, if nodel to node3 belong to the first cluster, you can write:

layout.setClusterId(nodel, clusterIdl);
layout.setClusterId(node2, clusterIdl);
layout.setClusterId(node3, clusterIdl);

Assume layout is an instance of T1vCircularLayout.

If you want the nodes to be drawn in a special order (for example, nodel -> node?2 -> node3),
you should also specify an index (an integer value) for each node:

layout.setClusterId(nodel, clusterIdl, O0);
layout.setClusterId(node2, clusterIdl, 1);
layout.setClusterId(node3, clusterIdl, 2);

Two methods allow you to specify the cluster to which a node belongs:

void setClusterId(Object node, IlvClusterId clusterId)

void addClusterId(Object node, IlvClusterId clusterId)
If you call the first method, the node belongs only to the cluster whose identifieris cluster1d.
The second method allows you to specify that a node belongs to more than one cluster.

These methods have another version with an additional argument, an integer value
representing the index:

void setClusterId(Object node, IlvClusterId clusterId, int index)

void addClusterId(Object node, IlvClusterId clusterId, int index)
This value is used to order the nodes on the cluster. If you specify these indices, the algorithm
sorts the nodes in ascending order according to the index values.

Note that the values of the index cannot be negative. They do not need to be continuous;
only the order of the values is important.

To obtain the current index of a node on a given cluster, use the method:

int getIndex (Object node, IlvClusterId clusterId)

If no index is specified for the node, the method returns the value 11vCircularLayout.
NO_INDEX. It is a negative value.

To obtain an enumeration of the cluster identifiers for the clusters to which the node belongs,
use the method:

302 USING GRAPH LAYOUT ALGORITHMS

Enumeration getClusterIds (Object node)

The elements of the enumeration are instances of a subclass of T1vClusterId.

To efficiently obtain the number of clusters to which a node belongs, use the method:

int getClusterIdsCount (Object node)

To remove a node from a cluster with a given identifier, use the method:

void removeClusterId(Object node, IlvClusterId clusterId)

To remove a node from all the clusters to which it belongs, use the method:

void removeAllClusterIds (Object node)

Star center (CL)

Example of specifying star center (CL algorithm)
To specify whether a node is the center of a star:

In Java
Use the method:

void setStarCenter (Object node, boolean starCenter)
To know whether a node is the center of a star, use the method:

boolean isStarCenter (Object node)

By default, a node is not the center of a star.

This parameter has no effect if the clustering mode is BY SUBGRAPHS.

Root clusters (CL)

The algorithm arranges the clusters of each connected component of the graph of clusters
around a “root cluster”. By default, the algorithm can choose this cluster. Optionally, you
can specify one or more root clusters (one for each connected component).

Example of specifying root clusters (CL algorithm)
To specify one or more root clusters (one for each connected component):

In Java
Use the methods:

void setRootClusterId(IlvClusterId clusterId)

USING GRAPH LAYOUT ALGORITHMS 303

304 USING

To obtain an enumeration of the identifiers of the clusters that have been specified as root
clusters, use the method:

Enumeration getRootClusterIds ()

This parameter has no effect if the clustering mode is BY SUBGRAPHS.

Area minimization (CL)

For very large graphs, the radius of the concentric circles on which the clusters are placed
can become very large. Therefore, the Circular Layout provides an optional mode that
reduces the total area of the layout. To reduce the total area, the clusters are distributed
more equally on the circle.

Example of specifying area minimization mode (CL algorithm)
To enable or disable the area minimization mode:

In Java
Use the method:

void setAreaMinimizationEnabled (boolean option)

The default value is false (area minimization is disabled).

Deciding whether to enable the area minimization mode essentially depends on the size of
the network. We recommend the area minimization mode for very large networks.

To get an idea of the difference between these modes, compare the following layouts of the
same network:

GRAPH LAYOUT ALGORITHMS

Area minimization disabled (default)

Area minimization enabled

This parameter has no effect if the clustering mode is BY SUBGRAPHS.

USING GRAPH LAYOUT ALGORITHMS 305

306 USING

Dimensional parameters (CL)

Dimensional Parameters for the Circular Layout Algorithm illustrates the dimensional
parameters used in the Circular Layout algorithm. These parameters are explained in the
sections that follow.

EI offsat

diseonnected Graph O ffset

lé’gl/%gl
58 E|\54

disconnected GraphQffset
-

Dimensional Parameters for the Circular Layout Algorithm

Offset (CL)

The layout algorithm tries to preserve a minimum distance between nodes (see Dimensional
Parameters for the Circular Layout Algorithm).

Example of specifying the offset (CL algorithm)
To specify the offset:

In Java
Use the method:

void setOffset (float offset)

GRAPH LAYOUT ALGORITHMS

Level offset (CL)

If the clustering mode is BY SUBGRAPHS, the level offset parameter controls the minimal
offset between nodes that belong to the same cluster.

The following applies if the clustering mode is BY CLUSTER_IDs.

As explained in The CL algorithm, interconnected rings and/or clusters are drawn on
concentric circles around a root cluster. The radius of each concentric circle is computed
to avoid overlapping clusters. In some cases, you may want to increase this radius to obtain
a clearer drawing of the network. To meet this purpose, the radius is systematically increased
with a “level offset” value (see Dimensional Parameters for the Circular Layout Algorithm).

Example of specifying the level offset (CL algorithm)
To specify the level offset:

In Java
Use the method:

void setLevelOffset (float offset)

The default value is zero.

This parameter has no effect if the clustering mode is BY SUBGRAPHS.

Disconnected graph offset (CL)

As explained in The CL algorithm, each connected component of the network is laid out
separately and the drawing of each component is placed near the others (see Dimensional
Parameters for the Circular Layout Algorithm).

Example of specifying the offset between each connected component (CL algorithm)
To specify the offset between each connected component:

In Java
Use the method:

void setDisconnectedGraphOffset (float offset)

This parameter has no effect if the clustering mode is BY SUBGRAPHS.

Get the contents, the position, and the size of the clusters (CL)

At times, you might need to know the position and the size of the circle on which the nodes
for each cluster are drawn. This may be the case if you want to perform some reshaping
operations on the links. To do this, you can obtain a vector containing all the cluster identifiers
after the layout is performed.

Example of obtain a vector containing all the cluster identifiers (CL algorithm)
To obtain a vector containing all the cluster identifiers after the layout is performed:

In Java
Use the method:

USING GRAPH LAYOUT ALGORITHMS 307

308 USING

Vector getClusterIds()

The vector contains instances of a subclass of I11vClusterid. By browsing the elements of
this vector, you can get the necessary information for each cluster:

float getClusterRadius (int clusterIndex)

IlvPoint getClusterCenter (int clusterIndex)

Vector getClusterNodes (int clusterIndex)

The getClusterNodes method returns the nodes that make up the cluster. The argument
clusterIndex represents the position of the cluster in the vector returned by the method
getClusterIds ().

Do not use these methods if the clustering mode is BY SUBGRAPHS.

Link style (CL)

When the layout algorithm moves the nodes, straight-line links will automatically “follow”
the new positions of their end nodes. If the grapher contains other types of links, the shape
of the link may not be appropriate because the intermediate points of the link will not be
moved. In this case, you can ask the layout algorithm to automatically remove all the
intermediate points of the links (if any).

Example of specifying automatic removal of all intermediate points of the links (CL algorithm)
To specify that the layout algorithm automatically removes all the intermediate points of
the links (if any).:

In Java
Use the method:

void setLinkStyle (int style)

The valid values for style are:

¢ IlvCircularLayout.NO RESHAPE STYLE
None of the links is reshaped in any manner.

¢ IlvCircularLayout.STRAIGHT LINE STYLE

All the intermediate points of the links (if any) are removed. This is the default value.

Using a link clipping interface with the Circular Layout

By default, the Circular Layout does not place the connection points of links. The default
behavior is to connect to a point at the border of the bounding box of the nodes.

GRAPH LAYOUT ALGORITHMS

If the node has a nonrectangular shape such as a triangle, rhombus, or circle, you may want
the connection points to be placed exactly on the border of the shape. This can be achieved
by specifying a link clip interface. The link clip interface allows you to correct the calculated
connection point so that it lies on the border of the shape.

The following figure shows an example of link clipping.

without clipping with clipping

Effect of link clipping interface

You can modify the position of the connection points of the links by providing a class that
implements the I1vLinkClipInterface. An example for the implementation of a link clip
interface is in Link clipping.

Example of setting a link clip interface (CL algorithm)
To set a link clip interface:

In Java
Use the method:

void setlinkClipInterface (IlvLinkClipInterface interface)

Link connection box (CL)

If a node has an irregular shape, the clipped links sometimes should not point towards the
center of the node bounding box, but to a virtual center inside the node. You can achieve
this by additionally providing a class that implements the I1vLinkConnectionBoxInterface.
An example for the implementation of a link connection box interface is in Link connection
box. To set a link connection box interface in Java, call:

void setLinkConnectionBoxInterface (IlvLinkConnectionBoxInterface interface)

The link connection box interface is used only when link clipping is enabled by setting a link
clip interface. If no link clip interface is specified, the link connection box interface has no
effect.

The following figure shows an example of the combined effect.

USING GRAPH LAYOUT ALGORITHMS 309

310 US I NG

Clipping at the node bounding box Clipping at a specified connection box

Combined effect of link clipping interface and link connection box

If the links are clipped at the green irregular star node (previous figure, left), they do not
point towards the center of the star, but towards the center of the bounding box of the node.
This can be corrected by specifying a link connection box interface that returns a smaller
node box than the bounding box (previous figure, right). Alternatively, the problem could
be corrected by specifying a link connection box interface that returns the bounding box as
the node box but with additional tangential offsets that shift the virtual center of the node.

GRAPH LAYOUT ALGORITHMS

Grid layout (GL)

Describes the Grid Layout algorithm (class 11vGridLayout from the package ilog.views.
graphlayout.grid).

In this section

General information on the GL
Gives samples of the Grid Layout (GL) and explains where it is used.

Features of the GL
Lists the features of the Grid Layout (GL).

The GL algorithm
Describes the algorithm for the Grid Layout (GL) and gives samples of the specification.

Generic features and parameters of the GL
Describes the generic features and parameters of the Grid Layout (GL).

Specific parameters of the GL
Describes the parameters specific to the I1vGridLayout class.

USING GRAPH LAYOUT ALGORITHMS 311

General information on the GL

GL sample
The following sample drawings are produced with the Grid Layout (GL).

o | o | 0| N o
B E Ny -

o O = =
‘BN R IR

TILE TO GRID FIXED WIDTH mode with CENTER horizontal and vertical alignment

In TILE TO GRID FIXED WIDTHmode with CENTER horizontal and vertical alignment, the red
lines are drawn to help identify the grid cells; they are not drawn by the layout algorithm.

TILE TO ROWS mode with CENTER vertical alignment.

312 USING GRAPH LAYOUT ALGORITHMS

What types of graphs suit the GL?

Any graph. However, the links are never taken into consideration. This algorithm is designed
for placing nodes independently of their links, if they have any.

Application domains for the GL

Any domain where a collection of isolated nodes needs to be laid out.

USING GRAPH LAYOUT ALGORITHMS 313

Features of the GL

Arranges a collection of isolated nodes or connected components.

¢
4 Takes into account the size of the nodes so that no overlapping occurs.
4 Provides several alignment options and dimensional parameters.

¢

Provides full support for fixed nodes (overlapping of nonfixed nodes with fixed nodes is
avoided).

4 Provides an incremental mode which helps the retention of a mental map on incremental
changes made to a collection of nodes.

34 USING GRAPH LAYOUT ALGORITHMS

The GL algorithm

The Grid Layout (GL) has two main modes: grid and row/column.

4 In grid mode, the layout arranges the nodes of a graph in the cells of a grid (matrix). If
a node is too large to fit in one grid cell (with margins), it occupies multiple cells. The
size of the grid cells and the margins are parameters of the algorithm.

4 In row/column mode, the layout arranges the nodes of a graph either by rows or by
columns (according to the specified option). The width of the rows is controlled by the
width of the layout region parameter. The height of the columns is controlled by the
height of the layout region parameter. The horizontal and vertical margins between the
nodes are parameters of the algorithm.

GL Example

In Java

Below is a code sample using the 11vGridLayout class. This code sample shows how to
perform a Grid Layout:

import ilog.views.*;

import ilog.views.eclipse.graphlayout.runtime.*;
import ilog.views.eclipse.graphlayout.GraphModel;
import ilog.views.eclipse.graphlayout.runtime.grid.*;

IlvGridLayout layout = new IlvGridLayout () ;
GraphModel graphModel = new GraphModel (myGrapherEditPart) ;
layout.attach (graphModel) ;

try {
IlvGraphLayoutReport layoutReport = layout.performLayout () ;

int code = layoutReport.getCode () ;

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");
}
catch (IlvGraphLayoutException e) {
System.err.println(e.getMessage()) ;
}
layout.detach() ;
graphModel.dispose () ;

USING GRAPH LAYOUT ALGORITHMS 315

Generic features and parameters of the GL

316 USING

The 11vGridLayout class supports the following generic parameters defined in the
IlvGraphLayout class (see Base class parameters and features):

¢ Allowed time (GL)
¢ Layout region (BL)
¢ Preserve fixed nodes (BL)

¢ Stop immediately (BL)

The following comments describe the particular way in which these parameters are used
by this subclass.

Allowed time (GL)

The layout algorithm stops if the allowed time setting has elapsed. (For a description of this
layout parameter in the I11vGraphLayout class, see Allowed time.) The result code in the
layout report is I1vGraphLayoutReport.STOPPED AND INVALID.

Layout region (GL)

The layout algorithm uses the layout region setting (either your own or the default setting)
to control the size and the position of the graph drawing. (See Layout region.)

The layout region is considered differently depending on the layout mode. For details, see
Layout modes (GL).)

Preserve fixed nodes (GL)

The layout algorithm does not move the nodes that are specified as fixed. (See Preserve
fixed nodes.) Moreover, nonfixed nodes are placed in such a manner that overlaps with fixed
nodes are avoided.

Stop immediately (GL)

The layout algorithm stops after cleanup if the method stopImmediately () is called. (For
a description of this method in the I11vGraphLayout class, see Stop immediately.) If the
layout stops early because the allowed time has elapsed, the result code in the layout report
is I1vGraphLayoutReport. STOPPED AND INVALID.

GRAPH LAYOUT ALGORITHMS

Specific parameters of the GL

Order parameter (GL)

The order parameter specifies how to arrange the nodes.

Example of specifying node placement iterations and allowed time (GL algorithm)
To specify the ordering option for the nodes:

In Java™
Use the method:

void setNodeComparator (Comparator comparator)

The valid values for comparator are:

¢

AUTOMATIC_ORDERING

The algorithm is free to choose the order in such a way that it tries to reduce the total
area occupied by the layout.

NO_ORDERING

No ordering is performed.

DESCENDING_ HEIGHT

The nodes are ordered in the descending order of their height.

ASCENDING HEIGHT

The nodes are ordered in the ascending order of their height.

DESCENDING WIDTH

The nodes are ordered in the descending order of their width.

ASCENDING WIDTH

The nodes are ordered in the ascending order of their width.

DESCENDING_AREA

The nodes are ordered in the descending order of their area.

ASCENDING_AREA

The nodes are ordered in the ascending order of their area.

ASCENDING_INDEX

The nodes are ordered in the ascending order of their index (see setIndex (java.lang.
Object, int)).

DESCENDING_ INDEX

USING GRAPH LAYOUT ALGORITHMS 317

318 USI NG

The nodes are ordered in the descending order of their index (see setIndex (java.lang.
Object, int)).

4 null

The nodes are ordered in an arbitrary way.

4 Any other implementation of the java.util.Comparator interface.
The nodes are ordered according to this custom comparator.
The default is AUTOMATIC ORDERING.

Note that in incremental mode (see setIncrementalMode (boolean)) and with fixed nodes
(see setFixed(java.lang.Object, boolean)), the order of the nodes is not completely
preserved.

Note also that, if the layout mode is TILE TO GRID FIXED WIDTH Or

TILE _TO GRID FIXED HEIGHT, the order options are applied only for nodes whose size
(including margins) is smaller than the grid cell size (see setHorizontalGridOffset (float)
and setVerticalGridOffset (float)).

Layout modes (GL)
The Grid Layout algorithm has four layout modes.

Example of selecting a layout mode (GL algorithm)
To To select a layout mode:

In Java
Use the method:

void setLayoutMode (int mode) ;

The valid values for mode are:

¢ I1vGridLayout.TILE TO GRID FIXED WIDTH (the default).

The nodes are placed in the cells of a grid (matrix) that has a fixed maximum number of
columns. This number is equal to the width of the layout region parameter divided by the
horizontal grid offset.

4 IlvGridLayout.TILE TO GRID FIXED HEIGHT

The nodes are placed in the cells of a grid (matrix) that has a fixed maximum number of
rows. This number is equal to the height of the layout region parameter divided by the
vertical grid offset.

¢ I1vGridLayout.TILE TO_ ROWS

The nodes are placed in rows. The maximum width of the rows is equal to the width of
the layout region parameter. The height of the row is the maximum height of the nodes
contained in the row (plus margins).

4 IlvGridLayout.TILE TO COLUMNS

GRAPH LAYOUT ALGORITHMS

The nodes are placed in columns. The maximum height of the columns is equal to the
height of the layout region parameter. The width of the column is the maximum width of
the nodes contained in the column (plus margins).

Alignment parameters (GL)
Global alignment parameters

The alignment options control how a node is placed over its grid cell or over its row or
column (depending on the layout mode). The alignment can be set globally, in which case
all nodes are aligned in the same way, or locally on each node, with the result that different
alignments occur in the same drawing.

Example of setting global alignment (GL algorithm)
To set the global alignment:

In Java
Use the following methods:

void setGlobalHorizontalAlignment (int alignment) ;

void setGlobalVerticalAlignment (int alignment) ;

The valid values for the alignment parameter are:
4 TlvGridLayout.CENTER (the default)

The node is horizontally and/or vertically centered over its grid cell or row or column.
4 IlvGridLayout.TOP

The node is vertically aligned on the top of its cell(s) or row. Not used if the layout mode
is TILE TO_COLUMNS.

4 IlvGridLayout.BOTTOM

The node is vertically aligned on the bottom of its grid cell(s) or row. Not used if the
layout mode is TILE TO COLUMNS.

4 IlvGridLayout.LEFT

The node is horizontally aligned on the left of its grid cell(s) or column. Not used if the
layout mode is TILE TO_ROWS.

4 IlvGridLayout.RIGHT

The node is horizontally aligned on the right of its grid cell(s) or column. Not used if the
layout mode is TILE TO ROWS.

4 IlvGridLayout.MIXED

Each node can have a different alignment. The alignment of each individual node can be
set with the result that different alignments can occur in the same graph.

USING GRAPH LAYOUT ALGORITHMS 319

320 U s |

N G

Alignment of individual nodes

All nodes have the same alignment unless the global alignment is set to T1vGridLayout.
MIXED. Only when the global alignment is set to mixed can each node have an individual
alignment style.

Example of setting alignment of individual nodes (GL algorithm)
To set and retrieve the alignment of an individual node:

In Java
In Java

Use the following methods:

void setHorizontalAlignment (Object node, int alignment);
void setVerticalAlignment (Object node, int alignment) ;
int getHorizontalAlignment (Object node) ;

int getVerticalAlignment (Object node);

The valid values for the alignment parameter are:
4 IlvGridLayout.CENTER (the default)

4 IlvGridLayout.TOP

4 IlvGridLayout.BOTTOM
4 IlvGridLayout.LEFT

¢

IlvGridLayout .RIGHT

Maximum number of nodes per row or column (GL)

By default, in T1vGridLayout.TILE TO ROWS Or IlvGridLayout.TILE TO_ COLUMNS mode,
the layout places as many nodes on each row or column as possible given the size of the
nodes and the dimensional parameters (layout region and margins). If needed, the layout
can additionally respect a specified maximum number of nodes per row or column.

Example of specifying the maximum number of nodes per row or column (GL algorithm)
To set the maximum number of nodes per row or column:

In Java
Use the method:

void setMaxNumberOfNodesPerRowOrColumn (int nNodes) ;

The default value is Integer.MAX VALUE, that is, the number of nodes placed in each row
or column is bounded only by the size of the nodes and the dimensional parameters. The

GRAPH LAYOUT ALGORITHMS

specified value must be at least 1. The parameter has no effect if the layout mode is
IlvGridLayout.TILE TO GRID FIXED WIDTHOr IlvGridLayout.TILE TO GRID FIXED HEIGHT.

Incremental mode (GL)

The Grid Layout algorithm normally places all the nodes from scratch. If the graph
incrementally changes because you add, remove, or resize nodes, the subsequent layout
may differ considerably from the previous layout. To avoid this effect and to help the user
to retain a mental map of the graph, the algorithm has an incremental mode. In incremental
mode, the layout tries to place the nodes at the same location or in the same order as in the
previous layout whenever it is possible.

Example of enabling the incremental mode (GL algorithm)
To enable the incremental mode:

In Java
Call the method setIncrementalMode (boolean) as follows:

layout.setIncrementalMode (true) ;

Note: To preserve the stability, the incremental mode may keep some regions free. Therefore,
the total area of the layout may be larger than in nonincremental mode, and, in general,
the layout may not look as nice as in nonincremental mode.

Dimensional parameters (GL)

Dimensional parameters for the grid mode of the Grid Layout algorithm and Dimensional
parameters for the row/column mode of the Grid Layout algorithm illustrate the dimensional
parameters used in the Grid Layout algorithm. These parameters are explained in the sections
that follow.

USING GRAPH LAYOUT ALGORITHMS 321

== Left Margin == Right Margin
4—»‘ -

=

jma]

[ns}

A =

o

o

— =

g !
O
=
@
=

= =

: 2

= =

=

2

Y &

< A

)) Horizontal Grid Offset
Grid Lines — e

Dimensional parameters for the grid mode of the Grid Layout algorithm

322 USING GRAPH LAYOUT ALGORITHMS

Layout Hegion Width

=
) =)
First Row =
=
=
o
I=!
m
+
=
=
[na]
Second F{ow Z
p
L)
=
Third Row

Dimensional parameters for the row/column mode of the Grid Layout algorithm

Grid offset (GL)

The grid offset parameters control the spacing between grid lines. It is taken into account
only by the grid mode (layout modes TILE TO GRID FIXED WIDTH and
TILE TO GRID FIXED HEIGHT).

Example of setting grid offset (GL algorithm)
To set the horizontal and vertical grid offset:

In Java
Use the methods:

void setHorizontalGridOffset (float offset);

USING GRAPH LAYOUT ALGORITHMS 323

324 U s |

N G

void setVerticalGridOffset (float offset);

The grid offset is the critical parameter for the grid mode. If the grid offset is larger than

the size of the nodes (plus margins), an empty space is left around the node. If the grid offset
is smaller than the size of the nodes (plus margins), the node will need to be placed on more
than one grid cell. The best choice for the grid offsets depends on the application. It can be
computed according to either the maximum size of the nodes (plus margins) or the medium
size, and so on. Of course, if all the nodes have a similar size, the choice is straight-forward.

Margins (GL)
The margins control the space around each node that the layout algorithm keeps empty.

Example of specifying margins (GL algorithm)
To set the margins:

In Java
Use the methods:

void setTopMargin (float margin);
void setBottomMargin (float margin) ;
void setLeftMargin (float margin);

void setRightMargin(float margin);

The meaning of the margin parameters is not the same for the grid modes as for the
row/column modes.:

4 In grid modes, they represent the minimum distance between the node border and the
grid line (see Dimensional parameters for the grid mode of the Grid Layout algorithm.)

4 In row/column modes, they are used to control the vertical distance between the rows or
the horizontal distance between the columns and the horizontal or vertical minimal
distance between the nodes in the same row or column (see Dimensional parameters for
the row/column mode of the Grid Layout algorithm).

The default value for all the margin parameters is 5.

GRAPH LAYOUT ALGORITHMS

Nested layouts

Describes how to perform a layout on a nested graph and explains the utilities that are
available for nested graphs.

In this section

Concepts for nested layouts
Explains nested graphs and related concepts.

Layout of nested graphs in code
Describes how to perform a layout on nested graphs.

Recursive layout
Describes the Recursive Layout (class I1vRecursiveLayout from the package ilog.views.
graphlayout.recursive).

Recursive layout modes
Describes the modes available in this layout.

Multiple layout
Describes the Multiple Layout class (class 11vMultipleLayout from the package ilog.
views.graphlayout.multiple).

© Copyright IBM Corp. 1987, 2009 325

Concepts for nested layouts

IBM® ILOG®]JViews Graph Layout for Eclipse supports GEF nested graphs, that is, it can
render graphs containing nodes that are graphs.

Warning: The GMF compartments are partially supported by JViews Graph Layout for Eclipse;
recursive layouts and intergraph links are not yet supported. The Nested layouts
section is only interesting for GEF users.

The following figure shows an example of a nested graph.

L J

/ \

/\ /3

Example of a Nested Graph

A graph that is a node in another graph is called a subgraph. Links that connect nodes of
different subgraphs are called subgraph links. The red links in the figure are intergraph
links.

326 USING GRAPH LAYOUT ALGORITHMS

Layout of nested graphs in code

Describes how to perform a layout on nested graphs.

In this section

The classes that support nested graphs
Explains how layouts are performed on nested graphs.

Order of layouts in recursive layouts
Explains the order in which recursive layouts are applied on nested graphs.

Simple recursion: applying the same layout to all subgraphers
Describes how to obtain a nested graph with the same layout throughout.

Advanced recursion: mixing different layouts in a nested graph
Describes the case where you want to mix different layouts in one nested graph.

USING GRAPH LAYOUT ALGORITHMS 327

The classes that support nested graphs
The 1GrapherEditPart interface provided by IBM® ILOG® JViews Graph Layout for Eclipse
allows nested graphs to be laid out.

In an application that works directly on an instance of 1GrapherEditPart, a recursive layout
must be performed explicitly.

For more information, see Graphers.

The mechanism uses the auxiliary classes I1vRecursiveLayout and IlvMultipleLayout
internally. They are explained in detail in Recursive layout and Multiple layout.

328 USING GRAPH LAYOUT ALGORITHMS

Order of layouts in recursive layouts

Assume grapher 1 contains two subgraphers L1.1 and 11.2, and subgrapher 1.1 contains
two subgraphers L1.1.1 and L1.1.2, as shown in the following figure. The recursive layout
needs to be applied in reverse order, as follows:

1.

L1
L1.1 L1.2

LayoutonL1.1.1

. Layoutonr1.1.2
. Layoutonrl.1

2
3
4.
5

Layouton 1.2

. Layout on L1

g BE

L1.1.2

o H

Nested graph with recursive layouts

This means that the layout is applied to the graph once all the layouts of its subgraphs have
been applied first. In our example, all layouts of subgrapher L.1.1 are finished before the
layout of grapher L1 starts. This is the correct order for a recursive layout. This order ensures
that the layout of a subgraph does not invalidate the layout of its parent graphs.

USING GRAPH LAYOUT ALGORITHMS 329

Simple recursion: applying the same layout to all subgraphers

330 USI NG

You can apply the same layout where both the following conditions hold:
4 The same layout algorithm needs to be applied to the topmost graph and all its subgraphs.

4 The settings of the layout algorithm (that is, the layout parameters) need to be the same
for the topmost graph as for all the subgraphs.

The following figure shows an example where a Tree Layout is applied to the topmost graph
as well as to all its subgraphs. Moreover, the settings of the Tree Layout algorithm are the
same for all the graphs: the application does not need, for instance, one flow direction in
the topmost graph and a different one in the subgraphs.

Metwork 1.1
e

Example of a recursive layout of a nested graph

Obtaining such recursive layouts is very easy. The class I1vGraphLayout provides a special
version of the performLayout method:

performLayout (boolean force, boolean redraw, boolean traverse)

When the last boolean argument is set to true, the layout is applied not only to the graph
attached to the layout instance, but also, in a recursive way, to its subgraphs.

Internal mechanism
The internal mechanism is based on the principle that a given layout instance is used for

only one graph and is not reused for its subgraphs. Therefore, the Tree Layout instance is
automatically “cloned” using the copy () method of the class I11vGraphLayout.

GRAPH LAYOUT ALGORITHMS

Furthermore, the graph layout is applied to a graph model, and the same principle holds
for the graph models: a given graph model instance is used for only one graph and is not
reused for subgraphs.

The graph models for the subgraphs are created by calls to the getGraphModel (java.lang.
Object) method of the class 11vGraphLayout, which in turn creates the graph model using
the method createGraphModel (java.lang.Object) of the class I1vGraphModel

All these operations are done automatically, in a completely transparent way. All you have
to do is to call the method performLayout with the traverse argument set to true.

If needed, you can get the layout instances applied on the subgraphs by calling the following
method on I1vGraphLayout:

Enumeration getLayouts (boolean preOrder)

This method returns an enumeration of instances of 11vGraphLayout. If the preorder flag
is true, the layout of the parent graph occurs before the layout of its children in the
enumeration. If the preorder flag is false, the layout of the parent graph occurs after the
layout of its children. For example, in the graph of Nesting structure in a graph, the call
getLayouts (true) returns the layouts for the subgraphs in this order: L1, L1.1, L1.1.1,
L1.1.2,11.2. The call getLayouts (false) returns the layouts for the subgraphs in this order:
L1.1.1,01.1.2,L1.1,1.1.2, L1.

Java code sample

The following code sample illustrates how to apply a single layout algorithm to a nested
graph:

// Create the layout instance
IlvTreelLayout layout = new IlvTreeLayout();

// Attach the topmost grapher to the layout

// The grapher has child edit parts instance of IGrapherEditpart
GraphModel graphModel = new GraphModel (myTopLevelGrapherEditPart) ;
layout.attach (graphModel) ;

// Perform the recursive layout
try {
int code = layout.performlLayout (true, true, true);

System.out.println("Layout completed (code " +
code + ")");
}
catch (IlvGraphLayoutException e) {
System.err.println(e.getMessage()) ;

}
// Detach the grapher when layout no more needed

layout.detach();
graphModel .dispose () ;

USING GRAPH LAYOUT ALGORITHMS 331

332 U s |

Layout parameters

Section Internal mechanism explains that, when applying the same layout algorithm in a
recursive way, the layout instances for the subgraphs are obtained by “cloning” the layout
instance attached to the topmost graph.

The layout parameters of the “clone” are the same as the parameters of the topmost layout,
except for the parameters that are specific to a node or a link. Such parameters are not
copied when the layouts are cloned and need to be set separately for each layout instance.

For example, if you need to declare a node nodel contained in the subgraph
mySubgrapherEditPart of the topmost graph myTopLevelGrapherEditPart as fixed
(seePreserve fixed nodes), you can use the following code:

// Create the layout instance
IlvTreelayout layout = new IlvTreelayout();

// Attach the topmost grapher to the layout

// Contains the child edit part mySubgrapherEditPart instance of
IGrapherEditPart

layout.attach (new GraphModel (myTopLevelGrapherEditPart));

// Ask the layout algorithm to not move the nodes

// specified as fixed. This settings is automatically

// copied on the sublayouts. Do not specify this global

// settings directly on the sublayout, because it gets automatically
// the same settings as the topmost layout
layout.setPreserveFixedNodes (true) ;

// Search the layout instance used for mySubgrapherEditPart
IlvGraphLayout subLayout = null;

Enumeration layouts = layout.getLayouts (true);
while (layouts.hasMoreElements()) {
subLayout = (IlvGraphLayout) layouts.nextElement () ;
if (((GraphModel) subLayout.getGraphModel ()) .getContents () ==
mySubgrapherEditPart)
break;

}

// Specify nodel (contained in mySubgrapherEditPart) as fixed
sublLayout.setFixed (nodel, true);

// Now perform the recursive layout. The node nodel will be considered as fixed
// by the layout applied to mySubgrapherEditPart

Note: You should not try to change any global settings of the layouts applied to the subgraphs
(that is, settings that are not specific to a node or a link). These settings are copied

GRAPH LAYOUT ALGORITHMS

anyway from the layout instance of the topmost grapher, so your changes would be
erased just before the recursive layout runs.

USING GRAPH LAYOUT ALGORITHMS 333

Advanced recursion: mixing different layouts in a nested graph

334 USING

The need for mixing layouts arises when at least one of the following conditions is met:

4 The layout algorithm to be applied on subgraphs is not the same as the algorithm needed
for the topmost graph.

¢ Different layouts need to be applied to different subgraphs.

4 The same layout algorithm needs to be applied to different graphs but with different
settings.

In these cases of advanced recursion, where you want to apply different layouts to different
subgraphs, you need to specify which layout should be used for which subgraph. Furthermore
you need to start the layouts in the correct order. This is called recursive layout.

The class T1vRecursiveLayout is a subclass of I1vGraphLayout, but it is not a real layout
algorithm. It is rather a facility to apply other layout algorithms recursively on a nested
graph.

The class 11vRecursiveLayout can also be used to apply the same layout to all subgraphs.
In fact, when using the API explained in subsection Simple recursion: applying the same
layout to all subgraphers, an instance of I1vRecursiveLayout is used internally.

The class T11vRecursiveLayout can furthermore be used to apply multiple layouts to the
same nested graph. This is for instance necessary if for each subgraph, a node layout and
a separate link layout must be applied.

Further details and code samples of the class T1vRecursiveLayout are explained in the
following section Recursive layout.

To apply layout algorithms recursively:

1. Allocate and attach an instance of I1vRecursiveLayout. Since it is a subclass of
IlvGraphLayout, you use the same mechanism as for all other graph layout classes:

IlvRecursiveLayout recLayout = new IlvRecursiveLayout () ;
recLayout.attach (new GraphModel (myTopLevelGrapherEditPart)) ;

2. Specify which layout style should be used for each subgraph. You must allocate an
individual instance of 11vGraphLayout for each subgraph.

recLayout.setLayout (subgraphl, new IlvTreeLayout());
recLayout.setLayout (subgraph2, new IlvBusLayout());
recLayout.setLayout (subgraph3, new IlvGridLayout());

Set the layout parameters of these individual layouts of the subgraphs as needed.

4. Apply the recursive layout to the top-level grapher. This automatically applies the
sublayouts to the subgraphs as well. Since I1vRecursiveLayout is a subclass of
IlvGraphLayout, you use the same method as for all other graph layout classes

try {

GRAPH LAYOUT ALGORITHMS

reclLayout.performLayout () ;

}
catch (IlvGraphLayoutException e) {

System.err.println(e.getMessage()) ;

Detach the recursive layout from the top-level grapher when it is no longer needed.
This automatically detaches all sublayouts from all subgraphers.

recLayout.detach () ;

USING GRAPH LAYOUT ALGORITHMS 335

336 USING GRAPH LAYOUT ALGORITHMS

Recursive layout

Describes the Recursive Layout (class I1vRecursiveLayout from the package ilog.views.
graphlayout.recursive).

In this section

Overview of recursive layout
Describes classes associated with recursive layout with a diagram.

Features
Describes the features of the layout.

Generic features and parameters
Describes the generic features and parameters of the layout.

USING GRAPH LAYOUT ALGORITHMS 337

Overview of recursive layout

338 U s |

N G

The Recursive Layout class is not a layout algorithm but rather a facility to apply another
layout algorithm recursively on a nested graph. It traverses the nesting structure starting
from the graph that is attached to the Recursive Layout itself and recursively applies a layout

on all subgraphs. You can tailor which sublayout must be applied to which subgraph.

There are basically two scenarios:

4 The same layout style must be applied to all subgraphs.

4 An individual layout style must be applied to each subgraph.

specified provider

internal provider

=<interface=> in spec. prov. mode IvGraphLayout |~ =) livGraphLayoutReport
v ayoutProwvider 1
i ¥
1.7
: recursive layout sublayouts
| stored in each and currently running Layout
! graph layout reference layout
IvD efaultLayoutProvider for convenience
0.1
IivRecursiveLayout _
< livRecursiveLayoutReport
Ko—>
——-
IvRecursivelLayoutProvider

in reference layout mode
and intemal prov. mode

The class IlvRecursiveLayout which manages sublayouts for nested graphs

Java code sample: same layout style everywhere

This sample assumes that you want to apply a Tree Layout to a nested graph and that each
subgraph should be laid out with the same global layout parameters.

The Tree Layout algorithm handles only flat graphs, that is, if applied to an attached graph,
it lays out only the nodes and links of the attached graph, but not the nodes and links of the
subgraphs that are nested inside the attached graph. Hence the Tree Layout must be
encapsulated into a Recursive Layout.

The Recursive Layout traverses the entire nesting hierarchy of the attached graph, while
the encapsulated Tree Layout lays out each (flat) subgraph of the nesting hierarchy during
the traversal.

import ilog.views.*;

import
import
import
import

ilog.
ilog.
ilog.
ilog.

views
views
views
views

.eclipse
.eclipse
.eclipse
.eclipse

IlvRecursivelayout layout

GRAPH

LAYOUT

.graphlayout.
.graphlayout.
.graphlayout.
.graphlayout.

GraphModel;
runtime.*;
runtime.recursive.*;
runtime.tree.*;

= new IlvRecursivelayout (IlvTreelLayout());

ALGDO

RITHMS

GraphModel graphModel = new GraphModel (myTopLevelGrapherEditPart) ;
layout.attach (graphModel) ;
try {
IlvRecursivelayoutReport layoutReport =
(IlvRecursiveLayoutReport) layout.performLayout () ;

int code = layoutReport.getCode () ;

System.out.println("Layout completed (" +
layoutReport.codeToString(code) + ")");
}
catch (IlvGraphLayoutException e) {
System.err.println(e.getMessage()) ;

}

// detach the Recursive Layout when it is no longer needed
layout.detach() ;
graphModel.dispose () ;

This mode of the Recursive Layout is called reference layout mode. In this case, a Tree
Layout is performed recursively on the top-level graph and on each subgraph. All layouts
are performed with the same global layout parameters.

Note: The term “global layout parameter” applies to the parameters that do not depend on
a specific node or link. For example, Tree Layout has a global layout parameter set
by setGlobalLinkStyle, as well as a layout parameter set by setLinkStyle
(1ink, style) whichis local to a link.

You can change the global layout parameters by accessing the reference layout of the
Recursive Layout:

IlvTreelayout treelLayout = (IlvTreelayout)layout.getReferencelayout () ;
treelayout.setFlowDirection (IlvDirection.Left);

Technically, the reference layout instance is not applied to each subgraph because each
subgraph needs an individual layout instance. The reference layout instance is only applied
to the top-level graph. Furthermore, a clone of the reference instance is created for each
subgraph. This clone remains attached to the subgraph as long as the Recursive Layout is
attached to the top-level graph. Before layout is performed, the global layout parameters
are copied from the reference layout instance to each cloned layout instance.

Sometimes, you want to specify local layout parameters for individual nodes and links. In
this case, you need to access the cloned layout instance that is attached to the subgraph
that owns the node or link. For instance, to the link style of an individual link, use:

IlvTreelayout treelayout =
(IlvTreelLayout) layout.getLayout (GraphModel.getLowestCommonAncestor (link.

USING GRAPH LAYOUT ALGORITHMS 339

340 U s |

N

G

getSource (), link.getTarget()));
treelLayout.setLinkStyle (link, IlvTreeLayout.ORTHOGONAL STYLE) ;

You cannot use the reference layout mode in the following cases:

4 The layout algorithm to be applied on subgraphs is not the same as the algorithm needed
for the topmost graph (the reference layout).

4 The same layout algorithm, but using different global parameter settings, needs to be
applied on different subgraphs.

In these cases, you can use one of the other modes.

Java code sample: mixing different layout styles

The following example shows the second scenario: Each subgraph should be laid out by a
different layout style or with individual global layout parameters. In this case, you use the
internal provider mode of the Recursive Layout.

We assume that you have a graph with three subgraphs. The top-level graph and the first
subgraph should be processed with Tree Layout, the second subgraph with Bus Layout, and
the third subgraph with Grid Layout. You have to specify which layout should be used for
which subgraph, and then you can perform the layout.

import ilog.views.*;

import ilog.views.eclipse.graphlayout.runtime.*;

import ilog.views.eclipse.graphlayout.GraphModel;

import ilog.views.eclipse.graphlayout.runtime.recursive.*;
import ilog.views.eclipse.graphlayout.runtime.tree.*;
import ilog.views.eclipse.graphlayout.runtime.bus.*;
import ilog.views.eclipse.graphlayout.runtime.grid.*;

IlvRecursivelayout layout = new IlvRecursiveLayout();

GraphModel graphModel = new GraphModel (myTopLevelGrapherEditPart) ;
layout.attach (graphModel) ;

// specify the layout of the top level graph
layout.setLayout (null, new IlvTreeLayout())

// specify the layout of subgraphs
layout.setLayout (subgraphl, new IlvTreeLayout())
layout.setLayout (subgraph2, new IlvBusLayout());
layout.setLayout (subgraph3, new IlvGridLayout());

// perform layout
try {
IlvRecursivelayoutReport layoutReport =
(IlvRecursivelayoutReport) layout.performLayout () ;

int code = layoutReport.getCode () ;

System.out.println ("Layout completed (" +
layoutReport.codeToString(code) + ")");

GRAPH LAYOUT ALGORITHMS

}
catch (IlvGraphLayoutException e) {
System.err.println(e.getMessage()) ;

}

// detach the Recursive Layout when it is no longer needed
layout.detach() ;
graphModel.dispose () ;

In this scenario, there is no reference layout. All layout parameters of different subgraphs
are independent. You need to specify new, independent layout instances for each subgraph;
otherwise no layout will be performed for the corresponding subgraph. The layout instances
are attached to the subgraph as long as the Recursive Layout is attached to the top-level
graph. You can specify in this example different global layout parameters for the Tree Layout
of the top-level graph and the Tree Layout of subgraphl. You access the layout instance of
each individual subgraph to change global layout parameters for this subgraph as well as
parameters of nodes and links of the subgraph. For instance if nodel belongs to subgraphl
and node?2 belongs to subgraph2, you can set individual global and local layout parameters
in this way:

// access the layout of the top level graph

IlvTreelayout treelayoutl = (IlvTreelayout)layout.getLayout (null);
treelLayoutl.setFlowDirection (IlvDirection.Bottom) ;

// access the layouts of the subgraphs

IlvTreelayout treelayout2 = (IlvTreelayout)layout.getLayout (subgraphl);
treeLayout2.setFlowDirection(IlvDirection.Left);
treelLayout2.setAlignment (nodel, IlvTreeLayout.TIP OVER);

IlvBusLayout busLayout = (IlvBusLayout)layout.getLayout (subgraph2);
busLayout.setOrdering (IlvBusLayout.ORDER BY HEIGHT) ;

busLayout.setBus (node?2) ;

IlvGridLayout gridLayout = (IlvGridLayout) layout.getLayout (subgraph3) ;
gridLayout.setLayoutMode (I1lvGridLayout.TILE TO COLUMNS) ;

Java code sample: using a specified layout provider

The IBM® ILOG® JViews Graph Layout for Eclipse library provides a flexible mechanism
for the choice of the layout instance to be applied to each subgraph in a nested graph: the
layout provider. In the previous example, a layout provider was used internally. For simplicity,
the details of the mechanism are hidden, and you select the choice of layout by using the
method setLayout on the Recursive Layout instance. Therefore, this layout mode is called
internal provider mode.

However, you can also design your own layout provider and use it inside the Recursive
Layout. This is the specified provider mode of the Recursive Layout.

A layout provider is a class that implements the interface I1vLayoutProvider. The interface
has a unique method:

getGraphLayout (IlvGraphModel graphModel)

USING GRAPH LAYOUT ALGORITHMS 341

This method must return the layout instance to be used for the graph model passed as the
argument, or null if no layout is required for this graph. When performing the Recursive
Layout, these methods get the layout instance to be used for each graph from the specified
layout provider.

To implement the interface 11viayoutProvider, you must decide how the choice of the
layout instance is done. A possible implementation of the getGraphLayout method is the
following:

public IlvGraphLayout getGraphLayout (IlvGraphModel graphModel)
{
EditPart editPart = ((GraphModel)graphModel) .getContents/();

IlvGraphLayout layout = null;
// 1if the edit part is instance of MySubgrapherEditPartl, returns a Tree
Layout, otherwise returns a Hierarchical Layout

if (editPart instanceof MySubgrapherEditPartl)
layout = new IlvTreeLayout();

else
layout = new IlvHierarchicalLayout () ;

layout.attach (graphModel) ;

return layout;

Of course, this is only an example among many possible implementations. The implementation
may decide to store the newly allocated layout instance to avoid allocating a new one when
the method is again called for the same graph.

If you have implemented a layout provider, you can use it in the Recursive Layout in the
following way:

import ilog.views.*;

import ilog.views.eclipse.graphlayout.runtime.*;

import ilog.views.eclipse.graphlayout.GraphModel;

import ilog.views.eclipse.graphlayout.runtime.recursive.*;

IlvLayoutProvider layoutProvider =

IlvRecursivelayout layout = new IlvRecursiveLayout (layoutProvider);
GraphModel graphModel = new GraphModel (myTopLevelGrapherEditPart) ;
layout.attach (graphModel) ;

// Perform the layout
try {
IlvRecursivelLayoutReport layoutReport =
(IlvRecursivelayoutReport) layout.performLayout () ;

int code = layoutReport.getCode () ;

System.out.println ("Layout completed (" +

342 USING GRAPH LAYOUT ALGORITHMS

layoutReport.codeToString(code) + ")");

}
catch (IlvGraphLayoutException e) {
System.err.println(e.getMessage()) ;

}

// detach the Recursive Layout when it is no longer needed
layout.detach() ;
graphModel.dispose () ;

USING GRAPH LAYOUT ALGORITHMS 343

Features

4 This subclass of T1vGraphLayout is not a usual layout algorithm but rather a facility to
manage the layout of a nested grapher.

4 Three layout modes: reference layout mode, internal provider mode, and specified provider
mode.

4 Allows you to perform a layout algorithm recursively in a nested grapher.

4 Allows you to perform a recursive layout on a nested grapher while each subgrapher uses
an individual layout style.

4 Layout features, speed, and quality depend on the features, speed, and quality of the
sublayouts.

344 USING GRAPH LAYOUT ALGORITHMS

Generic features and parameters

Depending on the support of its sublayouts, Recursive Layout may support the following
generic parameters defined in the I1vGraphLayout class (see Generic parameters and
features):

¢ Allowed time
¢ Percentage completion calculation

¢ Stop immediately

The following paragraphs describe the particular way in which these parameters are used
by this subclass.

Allowed time

The Recursive Layout can stop the entire layout of a nested graph after a certain amount
of time. If the allowed time setting has elapsed, the Recursive Layout stops; that means it
stops the currently running layout of a subgraph and skips the subsequent layouts of
subgraphs that have not yet been started. If at the stop time point a sublayout is running
on a subgraph that does not support the “allowed time” feature, then this sublayout first
runs to completion before the Recursive Layout is stopped. If the Recursive Layout stops
early because the allowed time has elapsed, the result code in the layout report is
IlvGraphLayoutReport.STOPPED_AND INVALID.

Percentage completion calculation

The Recursive Layout calculates the percentage of completion. This value can be obtained
from the layout report during the run of the layout. The value is, however, a very rough
estimation. If the layouts on the subgraphs do not support the calculation of the percentage
completion, the Recursive Layout can report the percentage based only on the information
how many layouts of subgraphs are already finished. For instance, if the entire nesting
structure contains five nested graphs, the mechanism reports 20% after the layout of the
first subgraph has finished, 40% after the layout of the second subgraph has finished, and
so on. If the layouts of the subgraphs support the calculation of the percentage completion,
the Recursive Layout calculates a more detailed percentage. In most cases, the calculated
percentage is only a very rough estimation that does not always grow linearly over time.
(For a detailed description of this feature, see Percentage of completion calculation and
Listener layout)

Stop immediately

The Recursive Layout can be stopped at any time. It stops the currently running layout of
a subgraph after cleanup if the method stopImmediately () is called and skips the subsequent
layouts of subgraphs that have not yet been started. If at the stop time point a sublayout is
running on a subgraph that does not support the “stop immediately” feature, then this
sublayout first runs to completion before the Recursive Layout is stopped. For a description
of this method in the IlvGraphLayout class, see Stop immediately. If the layout stops before
completion, the result code in the layout report is I1vGraphLayoutReport.
STOPPED AND INVALID.

USING GRAPH LAYOUT ALGORITHMS 345

346 USING GRAPH LAYOUT ALGORITHMS

Recursive layout modes

Describes the modes available in this layout.

In this section

Overview of recursive layout modes
Describes the modes available in this layout.

Reference layout mode
Describes the reference layout mode for a nested graph.

Internal provider mode
Describes the internal provider mode for a nested graph.

Specified provider mode
Describes the specified provider mode for a nested graph.

Accessing all sublayouts
Describes how to access all sublayouts through recursive layout.

Specific parameters
Describes how to access all sublayouts through recursive layout.

Listener layout
Describes some specific details of the Recursive Layout related to layout listeners.

For experts: more on layout providers
Describes the way to use the default layout provider.

USING GRAPH LAYOUT ALGORITHMS 347

Overview of recursive layout modes

348 US I NG

The Recursive Layout has three different layout modes:
¢ Reference layout mode
¢ Internal provider mode

¢ Specified provider mode

The layout mode is determined by the constructor that you use. The way how to set global
layout parameters of the sublayouts that are applied to the subgraphs is slightly different
for each layout mode. You can query the current layout mode by using

int getLayoutMode ()

The possible return values are:

4 IlvRecursiveLayout.REFERENCE LAYOUT MODE: The same layout style with the same
global layout parameters is applied to all subgraphs of the nested graph.

¢ IlvRecursiveLayout.INTERNAL PROVIDER MODE: The layout is applied using an internal
recursive layout provider. The layout styles of individual subgraphs can be specified by
using the method setLayout.

¢ IlvRecursiveLlayout.SPECIFIED PROVIDER MODE: The layout is applied using an explicitely
specified layout provider.

This section is divided as follows:
¢ Accessing all sublayouts

¢ Convenience method for setting reference layout mode

GRAPH LAYOUT ALGORITHMS

Reference layout mode

Use this mode if you want to apply the same layout style with the same global layout
parameters to the entire nested graph. You first need to allocate the reference layout, that
is a new instance of any graph layout algorithm (except I1vRecursiveLayout) that should
be applied to all subgraphs of the nested graph. Then you allocate the Recursive Layout
using the constructor with the reference layout as argument

IlvRecursivelayout (IlvGraphlLayout referencelayout)

The reference layout is internally only used for the top-level graph of the nested graph.
Clones of the reference layout are used for the subgraphs. Hence, all subgraphs are laid out
with the same global layout parameters. To change the global layout parameters, you can
access the reference layout by

IlvGraphLayout getReferencelayout ()

Global layout parameters are those parameters that are independent from specific nodes
or links. Other layout parameters are local to specific nodes or links. For instance, in
IlvHierarchicallayout, the method setGlobalLinkStyle (style) is a global layout
parameter, while the method setLinkStyle (1ink, style) is a local layout parameter.

If you need to set layout parameters that are local to an individual node or link, you need
to access the particular clone of the reference layout that is responsible for the subgraph
that owns the node or link. After attaching the Recursive Layout to the top-level grapher or
graph model, you can retrieve the layout instance of a specific subgraph by

IlvGraphLayout getLayout (Object subgraph)

However, in reference layout mode, it makes no sense to modify any global layout parameter
on the returned instance. The global layout parameters are always taken from the reference
layout only. If you pass null as subgraph, you get the layout instance of the top-level graph.
This is actually the same layout instance as the reference layout.

The reference layout and its clones used during recursive layout remain attached to the
subgraphs (or the graph models of the subgraphs, respectively) as long as the Reference
Layout itself is attached. When detaching the Reference Layout, all layouts of subgraphs
are automatically detached as well.

USING GRAPH LAYOUT ALGORITHMS 349

Internal provider mode

350 USING

Use this mode if you want to perform graph layout on a nested graph, but either you need

individual global layout parameters for specific subgraphs, or you want to lay out different
subgraphs with different styles. In this case, there is no reference layout. You allocate the

Recursive Layout using the constructor with no arguments

IlvRecursiveLayout ()

Before you can perform a layout, you need to specify which layout is used for which subgraph.
First, you should attach the Recursive Layout to a graph. Then, to specify the layout of the
top-level graph, call:

recursivelayout.setLayout (null, sublayout);

To specify the layout of a specific subgraph, call

recursivelayout.setLayout (subgraph, sublayout) ;

It is important that you assign a different layout instance for each subgraph. You cannot
share the same layout instance among different subgraphs. We recommend, that you allocate
a new, fresh layout instance for each subgraph. If you pass null as sublayout, then no layout
is performed for this particular subgraph.

To set the layout for a subgraph and recursively for all its subgraphs, you can use

setLayout (Object subgraph, IlvGraphLayout layout, boolean traverse)
and pass the true argument for the traverse flag. This sets the layouts to a clone of the
input layout for each subgraph starting at the input subgraph.

Internally, the Recursive Layout uses a layout provider of type I1vRecursiveLayoutProvider.
You can access the current layout provider by

IlvLayoutProvider getLayoutProvider ()
However, in internal provider mode, it is mostly not necessary to manipulate the layout
provider directly.

Since there is no reference layout, global layout parameters are independent for each
subgraph. Global and local layout parameters can be set by accessing the particular layout
instance that is assigned to a specific subgraph. After attaching the Recursive Layout to the
top-level grapher or graph model, you can retrieve the layout instance of a specific subgraph
by

IlvGraphLayout getLayout (Object subgraph)

If you pass null as subgraph, you get the layout instance of the top-level graph.

GRAPH LAYOUT ALGORITHMS

The layout instances of the subgraphs used during recursive layout remain attached to the
subgraphs (or the graph models of the subgraphs, respectively) as long as the Reference
Layout itself is attached. When you detach the Reference Layout, all layouts of subgraphs
are automatically detached as well.

USING GRAPH LAYOUT ALGORITHMS 351

Specified provider mode

352 USING

The specified provider mode can be used if you want to perform graph layout on a nested
graph, but either you need individual global layout parameters for specific subgraphs, or

you want to lay out different subgraphs with different styles. It is your own responsibility

to manage the specified layout provider (unlike the case with the internal provider mode),
but this is probably only necessary in very advanced applications.

In specified provider mode, there is no reference layout. You allocate the Recursive Layout
using the constructor with your layout provider as argument

IlvRecursivelayout (IlvLayoutProvider specifiedProvider)

You can access the current layout provider by

IlvLayoutProvider getLayoutProvider ()

You should implement your layout provider in a way so that it delivers a different layout
instance for each subgraph. The delivered layout instance must be attached to the graph
model of the corresponding subgraph.

Since there is no reference layout, global layout parameters are independent for each
subgraph. It is recommended that the implementation of the layout provider takes care of
the setting of global and local layout parameters. Theoretically, you can use the method

IlvGraphLayout getLayout (Object subgraph)

which will return the layout instance that the specified layout provider delivers for the graph
model of the input subgraph. If you pass null as subgraph, you get the layout instance of
the top-level graph. However, the effect of this method depends on the implementation of
the layout provider that was passed to the constructor of Recursive Layout.

The layout instances of the subgraphs used during recursive layout should be attached by
the layout provider. They are usually not automatically detached when the Recursive Layout
is detached. Unless you use one of the predefined providers of class
IlvDefaultLayoutProvider or IlvRecursiveLayoutProvider, you should traverse all layouts
and detach them explicitly.

GRAPH LAYOUT ALGORITHMS

Accessing all sublayouts

When the Recursive Layout is attached, you can conveniently access all layouts that will be
used during layout. This works in all layout modes:

Enumeration getLayouts (boolean preOrder)

As explained in Internal mechanism, the getLayouts method returns an enumeration of
instances of I1vGraphLayout. If the preorder flag is true, the layout of the parent graph
occurs before the layout of its children in the enumeration. If the preorder flag is false,
the layout of the parent graph occurs after the layout of its children. For example, in the
graph in the following figure, the call getLayouts (true) returns the layouts for the subgraphs
in this order: L1, L.1.1, L1.1.1, L.1.1.2, L.1.2; the call getLayouts (false) returns the layouts
for the subgraphs in this order: L1.1.1, L1.1.2, L1.1, L1.2, L1.

L1
L1.1 L1.2

g BE

L1.1.2

o H

Nesting structure in a graph

Note: In specified provider mode, the enumeration returned by getLayouts contains the
instances that are delivered by the specified provider. If the specified provider returns
a different instance in each call of getGraphLayout (I1vGraphModel), then the
enumeration does not contain the instances that are later used during layout. Hence
it is recommended to use layout providers that store the layout instances internally
and return the same instance for the same graph model. The predefines
IlvDefaultLayoutProvider and I1vRecursiveLayoutProvider store the
layout instances internally.

USING GRAPH LAYOUT ALGORITHMS 353

354 U s |

N G

Convenience method for setting reference layout mode

The class I1vGraphLayout contains a convenience method. To perform a recursive layout
recursively, you can use:

int performLayout (boolean force, boolean redraw, boolean traverse)

If the traverse flag is true, it traverses the nested graph and performs the layout on each
subgraph. In fact, this is just a shortcut for the reference mode of Recursive Layout. The
statement

flatLayout.performLayout (force, redraw, true);

is equivalent to creating a Recursive Layout in reference mode that uses the flatLayout as
reference layout:

IlvRecursivelayout recursivelayout = new IlvRecursiveLayout (flatLayout) ;
recursivelayout.performLayout (force, redraw);

GRAPH LAYOUT ALGORITHMS

Specific parameters

Besides some expert parameters, Recursive Layout does not provide any specific layout
parameters. You can set specific layout parameters of the sublayouts individually by accessing
them via getLayout (Object):

IlvGraphLayout sublayout = recursivelayout.getLayout (subgraph) ;
sublayout.setParameter (parameter) ;

However, Recursive Layout has some convenient methods that automatically traverse the
nested graph recursively and set the corresponding parameter at each sublayout of a
subgraph that supports this parameter. This works well particularly in reference layout
mode. In internal or specified provider mode, it takes only the current nesting structure into
account. If you change the specific layout of a subgraph or the nesting structure (for example,
by adding a new subgraph) after using such a convenience method, the new layout of the
new subgraph usually has a different setting, so you may need to apply the convenience
method again.

The following methods traverse the nested graph recursively and set the corresponding
parameter on all sublayouts (see Generic parameters and features and Using advanced
features for details):

4 void setUseDefaultParameters (boolean option)
4 void setMinBusyTime (long time)
void setInputCheckEnabled(boolean enable)

¢

4 void propagateLayoutOfConnectedComponentsEnabled (boolean enable)
4 void propagateLayoutOfConnectedComponents (IlvGraphLayout layout)
¢

void propagatelLinkConnectionBoxInterface (IlvLinkConnectionBoxInterface
linkConnectionBoxInterface)

¢ propagatelinkClipInterface (IlvLinkClipInterface linkClipInterface)

4 void setConnectionPointCheckEnabled (boolean enable)

There is a generic propagation mechanism for setting any parameter which is implemented
by reflection. For example, the following call traverses the nested graph recursively, checks
for each sublayout using introspection whether a method called setFlowDirection exists,
and passes the input value direction to this method. As a result, all sublayouts that have

a flow direction parameter will use the same flow direction, while the layout parameters of
those layouts that do not have a flow direction remain unchanged:

int code = recursivelayout.propagatelayoutParameter ("flowDirection",
null, direction);

The second argument of propagatelLayoutParameter can be used to select only specific
layout classes. The call

USING GRAPH LAYOUT ALGORITHMS 355

356 U s |

N G

int code = recursivelayout.propagatelayoutParameter ("flowDirection",
IlvHierarchicallayout.class, direction);

propagates the flow direction only to all those sublayouts that are instances of
IlvHierarchicallLayout. For example if a subgraph uses a Tree Layout, its flow direction
remains unchanged in this case, even though 11vTreeLayout has a method
setFlowDirection.

The return code of the propagation method indicates whether setting the parameter has
been successful. It is a bitwise-Or combination of the following bit masks:

¢ IlvRecursiveLayout.PROPAGATE PARAMETER SET - the parameter was successfully applied
at some layout instance of a subgraph.

¢ IlvRecursiveLayout.PROPAGATE PARAMETER AMBIGUOUS - the method to set the parameter
could not uniquely be determined at some layout instance, because there were many
methods with the same name, which creates an unresolvable ambiguity. In this case, an
arbitrary method is choosen among the ambiguous methods.

4 IlvRecursiveLayout.PROPAGATE CLASS MISMATCH - the parameter was not applied at
some layout instance of a subgraph because the layout instance did not match the specified
layout class. This can happen only when a non-null layout class is specified as the second
parameter of the method propagatelayoutParameter.

¢ IlvRecursiveLayout.PROPAGATE PARAMETER MISMATCH - the parameter was not applied
at some layout instance of a subgraph because no matching method with appropriate
argument types was found via reflection, or because the security manager of the Java
Virtual Machine did not allow reflection.

¢ IlvRecursiveLayout.PROPAGATE EXCEPTION - the method to set the parameter was
applied but threw an exception at some layout instance of a subgraph.

For further details about the propagation mechanism, see the class
IlvRecursiveLayoutIlvRecursiveLayout in the Java API Reference Manual.

GRAPH LAYOUT ALGORITHMS

Listener layout

Event listener layout is an advanced feature documented in Using event listeners. You need
to understand that general description and the concept of layout listeners before you read
this section.

The application can listen for layout events sent by the Recursive Layout or by each sublayout
individually. For example, a progress bar that displays the progress of the entire nested
layout should listen for the layout events fired by the Recursive Layout itself, while an
application that wants to detect when a specific sublayout of a subgraph is started or stopped
should listen for the layout events sent by that particular sublayout.

To install a layout event listener at the Recursive Layout, call usually:

recursivelayout.addGraphLayoutEventListener (listener) ;

To install a layout listener that receives the layout events of all sublayouts of the Recursive
Layout, you can call:

recursivelayout.addSubLayoutEventListener (listener);

Note that in this case, the listener is installed at the Recursive Layout instance (not at the
sublayout instances) but receives the events from the sublayouts (not from the Recursive
Layout). An internal mechanism makes sure that the events are forwarded to the listener.

Alternatively, you could traverse the nesting structure and install the same listener at all
subgraph layouts. However, this would have two disadvantages: it requires more memory
and you need to reinstall or update the listener whenever you change the layout of a subgraph
or the nesting structure by adding or removing subgraphs. When you use
addSubLayoutEventListener, updating the listener is not necessary in this case.

USING GRAPH LAYOUT ALGORITHMS 357

For experts: more on layout providers

358 USING

For information on use the Recursive Layout with a specified layout provider, see Specified
provider mode.

The library provides a default implementation of the interface 11viayoutProvider, named
IlvDefaultLayoutProvider. In many cases, it is simpler either to use this class as is, or to
subclass it, rather than directly implementing the interface.

The class T1vDefaultLayoutProvider allows you to set the layout instance to be used for
each graph (called the preferred layout) with the method:

setPreferredLayout (I1lvGraphModel graphModel, IlvGraphLayout layout, boolean
detachPrevious)

The layout instance specified as the preferred layout is stored in a property of the graph
model. The current preferred layout is returned by the method:

getPreferredLayout (I1lvGraphModel graphModel)

The method returns null if no layout has been specified for this graph.

When the method getGraphLayout is called on the default provider, the previously specified
preferred layout is returned, if any. Otherwise, a new layout instance is allocated by a call
to the method

createGraphLayout (I1lvGraphModel graphModel)

This newly created layout is recorded as the preferred layout of this graph, which is attached
to the layout instance.

When a preferred layout has been specified for a given graph, the default implementation
of the method createGraphLayout copies the layout instance that is the preferred layout of
the nearest parent graph. Therefore, if a preferred layout L is specified for a graph G and
no preferred layout is set for its subgraphs, then the graph G and all its subgraphs are laid
out using the same layout algorithm L (copies of it are used for the subgraphs).

Note: You must call the method detachLayouts when you no longer need the layout
provider instance; otherwise, the garbage collector may fail to remove some objects.

Java Code Sample:

The following Java™ code sample illustrates the use of the class I11vDefaultLayoutProvider.

GraphModel graphModel = new GraphModel (myTopLevelGrapherEditPart) ;

GRAPH LAYOUT ALGORITHMS

// Create the layout provider
IlvDefaultLayoutProvider provider = new IlvDefaultLayoutProvider () ;

// Specify the preferred layouts for each grapher

// (this automatically attaches the layouts)

provider.setPreferredlLayout (graphModel, new IlvTreeLayout());
provider.setPreferredlLayout (graphmodel.getGraphModel (mySubgrapherEditPart),
new IlvGridLayout());

// Create a recursive layout in specified provider mode
IlvRecursiveLayout layout = new IlvRecursivelayout (provider) ;

// Perform the layout
try {
IlvRecursivelayoutReport layoutReport =
(IlvRecursiveLayoutReport) layout.performLayout () ;

int code = layoutReport.getCode () ;

System.out.println("Layout completed (" +
layoutReport.codeToString (code) + ")");
}
catch (IlvGraphLayoutException e) {
System.err.println(e.getMessage()) ;

}

// detach the layouts when the provider is no longer needed
provider.detachLayouts (graphModel, true);

// dispose the topmost adapter when no longer needed
graphModel.dispose () ;

USING GRAPH LAYOUT ALGORITHMS 359

360 USING GRAPH LAYOUT ALGORITHMS

Multiple layout

Describes the Multiple Layout class (class T1vMultipleLayout from the package ilog.
views.graphlayout.multiple).

In this section

General information
Describes the multiple layout facility.

Features
Lists the features of multiple layout and shows the class diagram.

Generic features and parameters
Describes the generic features and parameters of multiple layout.

Specific parameters
Describes the specific parameters of multiple layout.

Attaching graph and labeling models
Describes how to attach graph and labeling models.

Accessing sublayouts
Describes how to access sublayouts of a multiple layout.

Combining multiple and recursive layout
Describes how to combine a multiple layout with a recursive layout.

The reference labeling model
Describes the reference labeling model for a recursive multiple layout.

USING GRAPH LAYOUT ALGORITHMS 361

General information

362 U s |

N G

What is multiple layout?

The Multiple Layout class is not a layout algorithm but rather a facility to compose multiple
layout algorithms and treat them as one algorithm object. This is necessary in particular
when dealing with the recursive layout of nested submanagers (see Recursive layout and
Layout of nested graphs in code) because performing the layouts recursively one after the
other has a different effect than combining the layouts into one algorithm object and applying
this object all at once. Multiple Layout should also be used to combine a normal layout with
a Link Layout that routes intergraph links. This is illustrated in the following sample.

Java code sample

You can, for instance, combine a Tree Layout, a Link Layout, and an Annealing Label Layout
into one object of type I1vGraphLayout in the following way:

import ilog.views.*;

import ilog.views.eclipse.graphlayout.runtime.*;

import ilog.views.eclipse.graphlayout.GraphModel;

import ilog.views.eclipse.graphlayout.runtime.multiple.*;

import ilog.views.eclipse.graphlayout.runtime.tree.*;

import ilog.views.eclipse.graphlayout.runtime.link.*;

import ilog.views.eclipse.graphlayout.runtime.labellayout.annealing.*;

IlvTreelayout treelayout = new IlvTreelayout () ;
IlvLinkLayout linkLayout = new IlvLinkLayout();
IlvAnnealinglabellayout labellayout = new IlvAnnealinglLabelLayout();
IlvMultipleLayout multiplelLayout =

new IlvMultiplelayout (treelayout, linkLayout, labellayout);

layout.attach (new GraphModel (myGrapherEditPart)) ;

/* Fill in code to set the layout parameters of treelayout,
* linkLayout and labellayout.
=/

linkLayout.setInterGraphLinksMode (true) ;

By constructing a Multiple Layout instance in this way, the Tree Layout, Link Layout, and
Label Layout become sublayouts of the Multiple Layout instance. Attaching the Multiple
Layout will automatically attach its sublayouts.

The Multiple Layout has two slots for graph layouts and one slot for the label layout. Not
all slots need to be used. You can pass null as the sublayout for unused slots. If you need
more slots, you can compose a Multiple Layout that contains another Multiple Layout as a
sublayout.

To perform the composed layout you use one of the following:

GRAPH LAYOUT ALGORITHMS

¢ Simple layout

4 Recursive layout

Simple layout

You can perform the composed layout on a flat grapher (one which contains no subgraphers)
in the following way:

try {
IlvMultipleLayoutReport layoutReport =
(IlvMultipleLayoutReport)multipleLayout.performLayout () ;

int code = layoutReport.getCode () ;

System.out.println ("Layout completed (" +
layoutReport.codeToString(code) + ")");
}
catch (IlvGraphLayoutException e) ({
System.err.println (e.getMessage()) ;

The statement with multipleLayout.performLayout () in this case has the same effect as
the sequence of the three statements:

treelLayout.performLayout () ;
linkLayout.performLayout () ;
labelLayout.performLayout () ;

Recursive layout

If you perform the Multiple Layout on a grapher that contains subgraphers, there is a
difference in the order of the layout (see Order of layouts in recursive layouts. You apply a
recursive layout on the grapher and its subgraphers in the following way:

IlvRecursivelLayout recursivelLayout = new IlvRecursiveLayout (multipleLayout) ;

try {
IlvGraphLayoutReport layoutReport = recursivelayout.performLayout () ;

}

catch (IlvGraphLayoutException e) {
System.err.println (e.getMessage());

or alternatively, in the following way (both ways are equivalent):

try {
int layoutCode =
(IlvMultipleLayoutReport)multipleLayout.performLayout (

USING GRAPH LAYOUT ALGORITHMS 363

true, true, true);

}
catch (IlvGraphLayoutException e) {
System.err.println(e.getMessage()) ;

}

Assume the attached grapher 2 contains a subgrapher B. The combined Multiple Layout
applies its sublayouts in reverse order, as follows:

1. Tree Layout on B
2. Link Layout on B
3. Label Layout on B
4. Tree Layout on A
5. Link Layout on A
6. Label Layout on A

This means that all layouts of subgrapher B have finished before the layout of grapher a
starts. This is the correct order for a recursive layout.

If you do not combine the three component layouts into a Multiple Layout, you can only
apply them sequentially:

treelLayout.performLayout (true, true, true);
linkLayout.performLayout (true, true, true);
labelLayout.performLayout (true, true, true);

The effect of these three statements is slightly different than the effect of the Multiple
Layout. The layouts are now applied in the following order:

1. Tree Layout on B
2. Tree Layout on A
3. Link Layout on B
4. Link Layout on A
5. Label Layout on B
6. Label Layout on A

This order is not usually suitable for the layout of nested graphers because the Tree Layout
of grapher a is started too early. The Label Layout on grapher B in Step 5 may change the
position of grapher B within grapher 2, invalidating the result of the Tree Layout in Step 2.
Hence, it is recommended that you combine multiple layout algorithms into one Multiple
Layout object and apply this object as a whole to a nested grapher.

364 USING GRAPH LAYOUT ALGORITHMS

Features

Allows the composing of two graph layout algorithms and one label layout algorithm into
one layout object.

Should be used to achieve the correct layout order when dealing with nested graphers.

4 Layout features, speed, and quality depend on the features, speed, and quality of the
sublayouts.

NvGraphl ayout IIvG raphLayoutReport
K>
0.2 0.2
first and second layou
first and second layout report
IviultipleLayout
IviultipleLayoutR eport
<>

u I abdinghodel
0.
0.1 0. 0.1

i abell ayout -~ Ivi abelLayoutR eport

The class IlvMultipleLayout can contain two sublayouts and one label layout

USING GRAPH LAYOUT ALGORITHMS 365

Generic features and parameters

366 USING

Depending on the support of its sublayouts, Multiple Layout may support the following
generic parameters and features defined in the 11vGraphLayout class (see Generic
parameters and features):

¢ Allowed time
¢ Layout of connected components
¢ Percentage completion calculation

¢ Stop immediately

The following paragraphs describe the particular way in which these parameters are used
by this subclass.

Allowed time

A Multiple Layout instance supports this feature if all of its sublayouts support the feature.
If the allowed time setting has elapsed, the Multiple Layout stops; that means it stops the
currently running sublayout and skips the subsequent sublayouts that have not yet been
started. If the layout stops early because the allowed time has elapsed, the result code in
the layout report is I1vGraphLayoutReport.STOPPED AND INVALID.

Layout of connected components

The Multiple Layout instance can use the generic mechanism to lay out connected components
if the sublayouts of type 11vGraphLayout support this feature. The sublayout of type
IlvLabellLayout does not need special handling of connected components. For more
information about this mechanism, see Layout of connected components.

Percentage completion calculation

The Multiple Layout calculates the percentage of completion. This value can be obtained
from the layout report during the run of the layout. The value is, however, a very rough
estimation. If the sublayouts do not support the calculation of the percentage completion,
the Multiple Layout can report the percentage based only on the information that the
sublayout has already finished. For instance, if there are three sublayouts, the mechanism
reports 33% after the first sublayout has finished, 66%after the second sublayout has finished,
and 100% after all three sublayouts have finished. If the sublayouts support the calculation
of the percentage completion, the Multiple Layout calculates a more detailed percentage.
For a detailed description of this feature, see Percentage of completion calculation and
Graph layout event listeners.

Stop immediately

The Multiple Layout instance supports this feature if all its sublayouts support this feature.
It stops the currently running sublayout after cleanup if the method stopImmediately () is
called and skips the subsequent sublayouts that have not yet been started. For a description
of this method in the IlvGraphLayout class, see Stop immediately. If the layout stops before

GRAPH LAYOUT ALGORITHMS

completion, the result code in the layout report is I1vGraphLayoutReport.
STOPPED_ AND INVALID.

USING GRAPH LAYOUT ALGORITHMS 367

Specific parameters

Multiple Layout does not provide any specific layout parameters. However, you can set the
generic and specific layout parameters of the sublayouts individually. For instance, you can
construct a Multiple Layout instance from two graph layouts. Even though the Multiple
Layout does not support setting fixed nodes on itself, you can fix nodes for the sublayouts
individually by applying setFixed to the sublayout instances if the sublayouts support this
feature:

IlvMultipleLayout multiplelLayout =
new IlvMultiplelayout (layoutl, layout2, null);
GraphModel graphModel = new GraphModel (myGrapherEditPart);
multiplelLayout.attach (graphModel) ;
if (layoutl.supportsPreserveFixedNodes()) {
layoutl.setFixed (nodel, true);

}
if (layout2.supportsPreserveFixedNodes ()) {
layout2.setFixed (node2, true);

}
try {
// perform a multiple layout: nodel is fixed while layoutl runs
// and node2 is fixed while layout2 runs
IlvMultipleLayoutReport layoutReport =
(IlvMultiplelLayoutReport)multiplelLayout.performLayout (
true, true, true);

}
catch (IlvGraphLayoutException e) {
System.err.println(e.getMessage()) ;

}
multiplelLayout.detach () ;
graphModel.dispose () ;

368 USING GRAPH LAYOUT ALGORITHMS

Attaching graph and labeling models

If a graph model is attached to the Multiple Layout instance, the same graph model is
automatically attached to the sublayouts of type 11vGraphModel.

Before you attach the graph model, if a sublayout of type I1vLabelLayout is defined, you
need to call the method setLabelingModel in the following way:

multipleLayout.setLabelingModel (new LabelingModel (myGrapherEditPart)) ;
multipleLayout.attach (new GraphModel (myGrapherEditPart)) ;

If the Multiple Layout instance is detached from the graph model, all sublayouts are
automatically detached as well.

USING GRAPH LAYOUT ALGORITHMS 369

Accessing sublayouts

370 US I NG

You can obtain the sublayouts of a Multiple Layout instance by the following methods:

4 getFirstGraphLayout ()

which returns the graph layout that is applied first.

4 getSecondGraphLayout ()
which returns the graph layout that is applied second.

4 getlLabelLayout ()
which returns the label layout that is applied last.

You can also change the sublayouts. Of course, you should not change the sublayouts while
the Multiple Layout instance is attached to a graph. You should detach the graph first.

To set the sublayouts, the following methods are available:

void setFirstGraphLayout (IlvGraphLayout layout)

void setSecondGraphLayout (IlvGraphLayout layout)

void setLabellayout (IlvLabellLayout layout)

GRAPH LAYOUT ALGORITHMS

Combining multiple and recursive layout

Often, the Multiple Layout is used inside a Recursive Layout. For convenience, IBM® ILOG®
JViews Graph Layout for Eclipse provides a layout algorithm that combines both mechanisms:
the Recursive Multiple Layout. This is a Recursive Layout (see Recursive layout) that uses
an instance of Multiple Layout for each subgraph.

To apply a Tree Layout, a Link Layout, and an Annealing Label Layout recursively on a
nested graph, you can use:

IlvRecursiveMultiplelLayout layout = new IlvRecursiveMultipleLayout (
new IlvTreelayout (),
new IlvLinkLayout (),
new IlvAnnealingLabelLayout());

This is in principle the same as a Recursive Layout that has a Multiple Layout as a reference
layout:

IlvRecursivelayout layout = new IlvRecursiveLayout (
new IlvMultipleLayout (
new IlvTreelayout (),
new IlvLinkLayout (),
new IlvAnnealingLabelLayout())):

The Recursive Multiple Layout has a first and second graph layout instance per subgraph,
and a label layout instance per subgraph. You access these instances by the following
methods:

4 IlvGraphLayout getFirstGraphLayout (Object subgraph)

which returns the graph layout that is applied first to the subgraph.
4 IlvGraphLayout getSecondGraphLayout (Object subgraph)

which returns the graph layout that is applied secondly to the subgraph.
4 IlvlLabellayout getLabellayout (Object subgraph)

which returns the label layout that is applied last to the subgraph.

If the subgraph parameter is null in these methods, the layout instances of the top-level
graph are returned.

USING GRAPH LAYOUT ALGORITHMS 371

The reference labeling model

372 USING

The Multiple Layout allows you to specify a particular labeling model by using the method
setLabelingModel, but when you encapsulate the Multiple Layout into a Recursive Layout,
this specification would need to be repeated for each layout instance of each subgraph. This
would be inconvenient. However, the Recursive Multiple Layout takes care of this mechanism
automatically.

The Recursive Multiple Layout generates all labeling models for all subgraph from a reference
labeling model. Before attaching the Recursive Multiple Layout instance, you need to set
the reference labeling model in the following way:

recursiveMultiplelayout.setReferencelabelingModel (new LabelingModel
(myGrapherEditPart)) ;
recursiveMultiplelayout.attach (new GraphModel (myGrapherEditPart));

The reference labeling model is used for the label layout of the top-level grapher. Clones of
the reference labeling model are used for the label layouts of the subgraphers.

A simple way to perform a label layout recursively is the following:

IlvRecursiveMultipleLayout layout = new IlvRecursiveMultiplelayout (labellLayout)

GraphModel graphModel = new GraphModel (myGrapherEditPart);
LabelingModel labelingModel = new LabelingModel (myGrapherEditPart) ;
layout.setReferencelabelingModel (labelingModel) ;
layout.attach (graphModel) ;
try {

IlvGraphLayoutReport layoutReport = layout.performLayout () ;

}

catch (IlvGraphLayoutException e) {
System.err.println(e.getMessage()) ;

}

layout.detach() ;

labelingModel.dispose () ;

graphModel.dispose () ;

If the Recursive Multiple Layout instance is detached from the top level graph model, all
sublayouts are automatically detached as well and all labeling models of subgraphs (including
the reference labeling model) are disposed of.

GRAPH LAYOUT ALGORITHMS

Automatic label placement

Describes the label placement algorithms.

In this section

Using the label layout API
Describes how to perform a label layout.

Releasing resources used during the layout of labels
Describes how to release resources that were created during the layout process.

Annealing label layout
Describes the Annealing Label Layout algorithm (class I1vAnnealingLabelLayout from the
package ilog.views.graphlayout.labellayout.annealing).

© Copyright IBM Corp. 1987, 2009 373

374 USING GRAPH LAYOUT ALGORITHMS

Using the label layout API

Describes how to perform a label layout.

In this section

Overview
Provides useful links for label layout.

The label layout base class and its subclasses
Describes the classes associated with Label Layout.

Instantiating and attaching a subclass of llvLabelLayout
Descibes how to subclass the Label Layout class.

Performing a layout
Descibes how to start a layout algorithm.

Performing a recursive layout on nested subgraphs
Describes how to start layout algorithms recursively on a nested grapher hierarchy.

The label layout report
Describes the report on label layout which is generated when you apply the layout.

Layout events and listeners
Describes the events provided by the label layout framework and how to listen for them.

Layout parameters and features in llvLabelLayout
Explains which generic parameters and features are defined by the label layout class.

USING GRAPH LAYOUT ALGORITHMS 375

Overview

Before reading this information, you should be familiar with Obstacle and Label edit parts.
For more information, see Working with label layout.

Note: Before reading this information, you should be familiar with the I1vGraphLayout
class (see Using the graph layout API). Many of the concepts for the labeling layout
mechanism are similar and not all details are repeated in this topic.

376 USING GRAPH LAYOUT ALGORITHMS

The label layout base class and its subclasses

The I1vLabelLayout class is the base class for all label layout algorithms. This class is an
abstract class and cannot be used directly.

Subclasses of llvLabelLayout
There are currently two subclasses:
4 IlvRandomLabelLayout which randomizes the label positions for demonstration purpose.

4 IlvAnnealingLabelLayout which carries out real label arrangement.
You can also create your own subclasses to implement other label layout algorithms.

Despite the fact that only subclasses of I1vLabellayout are directly used to obtain the
layouts, it is still necessary to learn about this class because it contains methods that are
inherited (or overridden) by its subclasses. And, of course, you will need to understand it if
you subclass it yourself.

I abedl ayout I abelLayoutReport

IivAnnealingL ab elLayout IvRandoml ab elLayout

The class IlvLabelLayout and its subclasses and relationship to layout reports

USING GRAPH LAYOUT ALGORITHMS 377

Instantiating and attaching a subclass of llvLabelLayout

The class IT1vLabelLayout is an abstract class. It has no constructors. You will instantiate
a subclass as shown in the following example:

IlvAnnealinglLabellayout layout = new IlvAnnealingLabellayout () ;

In order to place labels, a grapher needs to be attached to the layout instance. The attachment
is done through a LabelingModel, an abstraction manipulated by the label layout algorithms
to lay out labels. The following method, defined on the class T11vLabelLayout, allows you to
specify the grapher you want to lay out:

void attach(IlvLabelingModel labelingModel)

For example:

LabelingModel labelingModel = new LabelingModel (myGrapherEditPart)
layout.attach (labelingModel) ;

The attach method does nothing if the specified labeling model is already attached. If a
different labeling model is attached, this method first detaches this old labeling model, then
attaches the new one. The labeling model can be obtained by:

IlvLabelingModel labelingModel = layout.getLabelingModel () ;

After layout, when you no longer need the layout instance, you should call the method

void detach ()

If the detach method is not called, some objects may not be garbage-collected.

37 USING GRAPH LAYOUT ALGORITHMS

Performing a layout

The performLayout methods start the layout algorithm using the currently attached grapher
and the current settings for the layout parameters. The method returns a report object that
contains information about the behavior of the label layout algorithm.

IlvLabellLayoutReport performLayout ()
IlvLabellLayoutReport performLayout (boolean force, boolean redraw)

The first method simply calls the second one with the force argument set to false and the
redraw argument set totrue.

4 Because the force argument is set to false (by default), the layout algorithm first verifies
whether it is necessary to perform the layout. It checks internal flags to see whether the
manager or any of the parameters have changed since the last time the layout was
successfully performed. A “change” can be any of the following:

® Obstacles or labels were added or removed.
® Obstacles or labels were moved or reshaped.
® The value of a layout parameter was modified.

® Users often do not want the layout to be computed again if no changes occurred. If
there were no changes, the method performLayout returns without performing the
layout. If the argument force is passed as true, the verification is skipped, and layout
is performed even if no changes occurred.

¢ The redraw argument is ignored by IBM® ILOG®]JViews Graph Layout for Eclipse.

The protected abstract method layout (boolean redraw) is then called. This means that
control is passed to the subclasses that are implementing this method. The implementation
computes the layout and moves the labels to new positions.

USING GRAPH LAYOUT ALGORITHMS 379

Performing a recursive layout on nested subgraphs

380 U s |

N G

The examples and explanations above assume that you work with a flat grapher but you can
create a hierarchy of nested graphers (see the following figure).

You can apply a recursive graph layout to the nested grapher hierarchy by calling:

graphLayout.performLayout (true, true, true);

However, it usually makes no sense to apply a label layout alone to nested graphers. When
labels are placed in a subgrapher, this will likely change the bounds of the subgrapher;
hence the node positions in its parent grapher will no longer be up-to-date and a new graph
layout will be necessary.

It makes sense to apply a label layout in combination with another graph layout to nested
graphers.

1. First, the graph layout is applied to arrange the nodes and links nicely.

2. Then the label layout is applied to position the labels according to the node and link
positions.

3. When this is finished for all subgraphers, then it can be done for the parent grapher.

To perform a graph layout and a label layout together, you can use the Multiple Layout class.
This is a subclass of T1vGraphLayout that allows combining graph layouts with a label layout.
The following sample shows how to apply a Tree Layout and an Annealing Label Layout in
combination on a subgrapher.

IlvTreelayout treelLayout = new IlvTreelayout () ;

IlvAnnealingLabellayout labellayout = new IlvAnnealingLabelLayout () ;

IlvGraphLayout multipleLayout = new IlvMultipleLayout (treeLayout,
null,
labellLayout) ;

// Now set the parameters for tree layout and label layout

// Finally, perform a recursive layout that handles tree layout and label

// layout together

GraphModel graphModel = new GraphModel (myGrapherEditPart) ;

LabelingModel labelingModel = new LabelingModel (myGrapherEditPart) ;

multipleLayout.setLabelingModel (labelingModel) ;

multipleLayout.attach (graphModel) ;

try {

multipleLayout.performLayout (true, true, true);
} catch (IlvGraphLayoutException e) {

}
multipleLayout.detach() ;
labelingModel.dispose() ;
graphModel.dispose () ;

Thus, the label layout does not provide a separate mechanism for a recursive layout on
submanagers. By incorporating the label layout into a multiple graph layout, you can use
all the graph layout facilities that are available for nested graphs (see also Nested layouts).

GRAPH LAYOUT ALGORITHMS

Multiline Multiline
Label Label

v

Labell w

v Y

i

Nested subgraphers with labels

USING GRAPH LAYOUT ALGORITHMS 381

The label layout report

382 U s |

N G

The label layout report contains information about the particular behavior of a label layout
algorithm. After the layout is completed, this information is available for reading from the
label layout report. The information can also be obtained during layout by using a layout
listener, as described in Layout events and listeners.

The layout report is created automatically at the start of layout via the method
createlLayoutReport and is available as long as the grapher is attached to the layout instance.

To read a layout report, all you need to do is store the layout report instance returned by
the performLayout method and read the information, as shown in the following example:

IlvLabellayoutReport layoutReport = labellayout.performLayout () ;

if (layoutReport.getCode () == IlvLabelLayoutReport.LAYOUT DONE)
System.out.println ("Label layout done.");

else
System.out.println ("Label layout not done, code = " +

layoutReport.getCode()) ;

The class T1vLabelLayoutReport stores the following information, which is very similar to
the information stored in an I1vGraphLayoutReport (see Information stored in a layout
report for details):

Code

This field contains information about special, predefined cases that may have occurred
during the layout. The possible values are the following:

¢ IlvLabelLayoutReport.LAYOUT DONE
IlvLabelLayoutReport.STOPPED AND VALID
IlvLabelLayoutReport.STOPPED_AND INVALID

¢

¢

¢ IlvLabelLayoutReport.NOT_ NEEDED
¢ IlvLabelLayoutReport.NO_LABELS
¢

IlvLabelLayoutReport.EXCEPTION_ DURING_ LAYOUT

To read the code, use the method:

int getCode ()

Layout time

This field contains the total duration of the layout algorithm at the end of the layout. To read
the time (in milliseconds), use the method:

GRAPH LAYOUT ALGORITHMS

long getLayoutTime ()

Percentage of completion

This field contains an estimate of the percentage of the layout that has been completed. To
access the percentage, use the method:

int getPercentageComplete ()

USING GRAPH LAYOUT ALGORITHMS 383

Layout events and listeners

384 U s |

N

G

The label layout framework provides the same event mechanism as the graph layout
framework. Various events may occur.

Label layout events

The class GraphLayoutEvent corresponds to the class GraphLayoutEvent (see Graph layout
event listeners). You can install a listener for these events at the layout instance by using
the method:

labellayout.addLabellLayoutEventListener (listener);

The listener must implement the LabellayoutEventListener interface and receives events
while the layout is running. A typical example is to check how much of the layout has already
completed:

class MyLabellayoutListener
implements LabellayoutEventListener

public void layoutStepPerformed (LabellLayoutEvent event)
{
IlvLabellLayoutReport layoutReport = event.getLayoutReport () ;
System.out.println ("percentage of completion: " +
layoutReport.getPercentageComplete()) ;

Label layout parameter events

The class LabellayoutParameterEvent corresponds to the class GraphLayoutParameterEvent
(see Parameter event listeners). You can install a listener to these events at the layout
instance by

labellLayout.addLabellLayoutParameterEventListener (listener) ;

The listener must implement the LabellayoutParameterEventListener interface and
receives events when layout parameters change. It also receives a special event at the end
of a successful layout. For example:

class MyLabellayoutParameterListener
implements LabellLayoutParameterEventListener

public void parametersUpToDate (LabellayoutParameterEvent event)

{
if (!event.isParametersUpToDate ())
System.out.println("Any label layout parameter has changed.”);

GRAPH LAYOUT ALGORITHMS

USING GRAPH LAYOUT ALGORITHMS 385

Layout parameters and features in llvLabelLayout

386 USING

The class I1vLabelLayout defines a number of generic features and parameters. These are
a subset of the mechanism, methods, and parameters that are available for the 11vGraphModel
class. Therefore, they are only listed here; for detailed explanations, refer to the appropriate
subsection in Generic parameters and features which describes the corresponding features
for the T11vGraphLayout class.

Although the I1vLabelLayout class defines the generic parameters, it does not control how
they are used by its subclasses. Each label layout algorithm (that is, each subclass of
IlvLabelLayout) supports a subset of the generic features and determines the way in which
it uses the generic parameters. When you create your own label layout algorithm by
subclassing I1vLabelLayout, you decide whether to use the features and the way in which
you are going to use them.

The I1vLabelLayout class defines the following generic features:
¢ Allowed time

¢ Percentage of completion calculation

4 Random generator seed value

¢ Stop immediately

¢ Use default parameters
To specify that the label layout is allowed to run for 60 seconds:

In Java™
Call:

labelLayout.setAllowedTime (60000) ;

For more details of all generic features, see Generic parameters and features.

GRAPH LAYOUT ALGORITHMS

Releasing resources used during the layout of labels

Various objects need to be created during the layout process. Most commonly, these are:
4 Layout instances (subclasses of I1vLabelLayout)
4 Labeling models (subclasses of LabelingModel).

4 Property objects

Some of the layout parameters are internally stored as property objects attached to the
labeling model, to the manager, or to its labels and obstacles.

Methods for releasing resources

The class I1vLabelLayout provides four methods that help you release all these objects
once they are no longer needed. Obsolete objects can be garbage -collected and memory
leaks (in the Java™ sense) avoided:

void detach ()

The method cleanLabelingModel releases property objects that the layout instances stored
globally for the labeling model or for the grapher. The methods cleanLabel and
cleanObstacle release property objects stored for the label or obstacle passed as an
argument. These three methods are automatically called when the method detach is called.

Rules for releasing resources
The following rules must be respected:

1. When a layout object instantiated by your code is no longer useful, call the method
IlvLabelLayout.detach on it to ensure that no grapher or labeling model is still attached
to it. Note that you can freely reuse a layout instance once the previously attached model
has been detached.

2. Iflabels or obstacles need to be removed while a layout instance is attached, the cleaning
is done automatically.

3. When a labeling model instantiated by your code is no longer useful, call the method
dispose () onitto ensure that the resources it has used are released. Note that a labeling
model must not be used once it has been disposed of.

Summary
The following is a quick summary of what you need to do:

4 When you attach a labeling model, you need to call detach on the layout, dispose on the
labeling model.

USING GRAPH LAYOUT ALGORITHMS 387

388 USING GRAPH LAYOUT ALGORITHMS

Annealing label layout

Describes the Annealing Label Layout algorithm (class I1vAnnealingLabelLayout from the
package ilog.views.graphlayout.labellayout.annealing).

In this section

General information
Gives samples of the Annealing Label Layout.

Features
Lists the features of the Annealing Label Layout.

Limitations
Lists the limitations of the Annealing Label Layout.

The algorithm
Describes the simulated annealing algorithm used by the Annealing Label Layout.

Generic features and parameters
Lists the generic features and parameters supported by the Annealing Label Layout.

Label descriptors
Describes the use of label descriptors to specify placement.

Point label descriptor
Describes the point label descriptor used by the Annealing Label Layout to place labels.

Polyline label descriptor
Describes the polyline label descriptor used by the Annealing Label Layout to place labels.

USING GRAPH LAYOUT ALGORITHMS 389

Specific global parameters
Describes the global parameters used by the Annealing Label Layout.

For experts: implementing your own label descriptors
Describes how to create a label descriptor for the Annealing Label Layout.

300 USING GRAPH LAYOUT ALGORITHMS

General information

The following sample drawings are produced with the Annealing Label Layout.

Label Label
Label Label

Lah E\

Label

Lahel

Label placement at nodes with the Annealing Label Layout

Label Label
abe
J Label
Lahel A J
Lahel
Label
Label
F 3
"
Label Label
— e Label
abe
Label
Y v
Label Label
Lahkel _’-
Label
v r
.
L
Label Label

Label placement at links with the Annealing Label Layout

USING GRAPH LAYOUT ALGORITHMS 391

Features

392 USING

Places only labels. Does not move any obstacles around.
Quality-controlled, randomized iterative heuristic.

Can place labels at points, rectangles, ellipses, and polylines.
Can be used to place labels at any nodes and links.

Can place multiple labels at the same object.

* & & & oo o

Tries to avoid overlaps among labels, and between labels and obstacles, by using the
available free space.

4 Provides several anchor and preference options.
4 Easily extensible via subclassing of label descriptors.

4 Efficient, scalable algorithm. Produces nice label placements even with a large number
of labels.

GRAPH LAYOUT ALGORITHMS

Limitations

4 The Annealing Label Layout algorithm, as a randomized iterative heuristic, does not
guarantee that labels are placed without overlaps whenever possible. However, it produces
a high quality layout with a high probability of minimum overlap. The more iterations,
the higher the probability of high quality.

4 The algorithm is not able to create free space for labels by moving obstacles around. It
is recommended that you perform a graph layout algorithm with large spacing parameters
to create the necessary free space before placing the labels.

4 While the algorithm is able to place labels at straight and polyline graphics, it is not able
to place labels precisely at smooth curves such as spline graphics or spline links.

USING GRAPH LAYOUT ALGORITHMS 393

The algorithm

394 USING

The algorithm uses simulated annealing. This is a general, randomized optimization technique
that simulates a thermodynamic particle system. Each label is moved to a new random
position within the limits given by its label descriptor. The quality of the new position is
calculated and compared to the quality of the old position. If the quality has not improved,
the label is moved back to the old position. The amount of movement is controlled by a
conceptual temperature: when the system is hot, the labels can move long distances,
producing potentially large global quality improvements. When the system cools down, the
move distances become smaller and hence focus on local fine-tuning of the position.

Each label has its own label descriptor. The label descriptor describes the path on which
the label can move. If a label must be placed at a specific point, the
IlvAnnealingPointLabelDescriptor canbe used and describes an approximately elliptical
path around the point. If a label must be placed at a polyline, the
IlvAnnealingPolylineLabelDescriptor can be used and describes a boundary path at
both sides of the polyline.

GRAPH LAYOUT ALGORITHMS

Generic features and parameters

The I1vAnnealingLabelLayout class supports generic parameters defined in the
IlvLabellLayout class. The following sections describe the particular way in which these
parameters are used by the subclass I1vAnnealingLabelLayout.

¢ Allowed time

¢ Percentage of completion calculation
¢ Random generator seed value

¢ Stop immediately

¢ Use default parameters

Allowed time

The label layout algorithm stops if the allowed time setting has elapsed. This feature works
similarly to the same feature in I1vGraphLayout; see Allowed time. If the layout stops early
because the allowed time has elapsed, the result code in the layout report is:

4 IlvlLabellayoutReport.STOPPED AND VALID if the labels were moved to some better (but
not yet optimal) positions.

4 IlvLabellayoutReport.STOPPED AND INVALID if the time elapsed even before that.

Percentage of completion calculation

The label layout algorithm calculates the estimated percentage of completion. This value
can be obtained from the label layout report during the run of the layout. (For a detailed
description of this feature, see Percentage of completion calculation and Layout events and
listeners.)

Random generator seed value

The Annealing Label Layout is a randomized heuristic. It uses a random number generator
to control the movements. For the default behavior, the random generator is initialized using
the current system clock. Therefore, different layouts are obtained if you perform the layout
repeatedly on the same graph. You can specify the particular value to be used as a seed
value.

Example of specifying seed value
To specify the seed value 10:

In Java™
Call:

layout.setUseSeedValueForRandomGenerator (true) ;
layout.setSeedValueForRandomGenerator (10) ;

USING GRAPH LAYOUT ALGORITHMS 39

396 USING

Stop immediately

The label layout algorithm stops after cleanup if the method stopImmediately is called. This
method works for the T11vLabelLayout class similarly to the corresponding method in the
IlvGraphLayout class. For a description of this method in the T11vGraphLayout class, see
Stop immediately. If the layout stops early in this way, the result code in the layout report
is:

4 IlvlabellayoutReport.STOPPED AND VALID if the labels were moved to some better (but
not yet optimal) positions.

¢ IlvLabelLayoutReport.STOPPED AND INVALID if the layout stopped even before that.

Use default parameters

After modifying any label layout parameter, you may want the layout algorithm to use the
default values. You select the default values for all global parameters by:

layout.setUseDefaultParameters (true) ;

IBM® ILOG®]JViews Graph Layout for Eclipse keeps the previous settings when selecting
the default values mode. You can switch back to your own settings by:

layout.setUseDefaultParameters (false) ;

This setting affects only the global layout parameters. The label descriptors have no default
values, so parameters of the label descriptors do not change depending on this flag.

GRAPH LAYOUT ALGORITHMS

Label descriptors

To define where a label must be placed, you must specify a label descriptor for each label.
The algorithm places only those labels that have a label descriptor.

A label descriptor describes the locations that are allowed for the label.

Subclasses of label descriptors
There are two predefined subclasses of label descriptors:
¢ Point label descriptor

¢ Polyline label descriptor

Depending on the parameters passed during the construction, these subclasses allow you
to place a label:

4 Close to a given point.

4 Close to a specific rectangular or elliptic obstacle (such as a node).
4 Along an imaginary polyline.

4 Close to a polyline obstacle.

4 Close to a link.

You can also implement your own label descriptors by subclassing
IlvAnnealingLabelDescriptor. This is explained in the section For experts: implementing
your own label descriptors.

USING GRAPH LAYOUT ALGORITHMS 397

Point label descriptor

398 U s |

N G

The T1vAnnealingPointLabelDescriptor can be used to place a label at a specific obstacle
or point. This is known as the point labeling problem.

I Warning: This kind of label descriptors does not work with GMF yet.

Positioning at an obstacle

The following example shows how to position a label at a specific obstacle in your
ILabelEditPart implementation:

@Override
public IlvAnnealingLabelDescriptor createlLabelDescriptor() {

return new IlvAnnealingPointLabelDescriptor (this, relatedObstacleEditPart,
IlvAnnealingPointLabelDescriptor .ELLIPTIC, IlvDirection.Right);

}

This specification can be used if the label must be placed at a node that has an elliptical or
circular shape. The label is placed in the free area around the node so that the border of
the label just touches the border of the node (see the following figure). The preferred position
is the right side of the node, but this preferred position is used only if it does not create
overlaps. If the node is moved or reshaped, the next call of label layout will update the
position of the label automatically so that it follows the node.

Potential label positions around a node

The example uses the following constructor:

IlvAnnealingPointLabelDescriptor (Object label,
Object relatedObstacle,
int shape,
int preferredDirection)

This constructor takes the following parameters:

GRAPH LAYOUT ALGORITHMS

¢ The relatedObstacle parameter is the obstacle that gets the label. The label is placed
outside but close to this obstacle. The related obstacle is typically a node of a graph. The
shape of the related obstacle should be either an ellipse, a circle, or a rectangle.

4 The shape argument can take the following values:
® TlvAnnealingPointLabelDescriptor.ELLIPTIC for ellipses or circles,

® TlvAnnealingPointLabelDescriptor.RECTANGULAR for rectangles.

If the real shape of the related obstacle is neither of these, pass the shape that is the
best approximation. For instance, if the obstacle is an I1vRoundRectangle, it can be
considered as a rectangular shape and the RECTANGULAR option is then the best
approximation.

¢ The preferredDirection parameter is a suggestion of where the label layout algorithm
should preferably place the label. If the area at the preferred position is occupied, the
label will be placed elsewhere. Options for the preferred position are:
® TlvDirection.Left
® TlvDirection.Right

® TlvDirection.Top

® TlvDirection.Bottom

Positioning at a point

The following example shows how to position a label at a specific point in your
ILabelEditPart implementation:

@Override
public IlvAnnealingLabelDescriptor createlabelDescriptor() {
new IlvAnnealingPointLabelDescriptor (this, null, new IlvPoint (25, 75), 5f,
15f,
IlvDirection.Right) ;
}

Use this specification if the label must be placed close to specific coordinates, like (in this
example 25, 75) regardless of any obstacle. The label must be at least 5 coordinate units
and at most 15 coordinate units away from the point (see the following figure). The preferred
position is at the right side of the point.

USING GRAPH LAYOUT ALGORITHMS 399

400 US I NG

Potential label positions between 5 and 15 units away from a point

The example uses the following constructor:

IlvAnnealingPointLabelDescriptor (Object label,

Object relatedObstacle,

IlvPoint referencePoint,
float minDist,

float maxDist,

int preferredDirection)

This I1vAnnealingPointLabelDescriptor (java.lang.Object, java.lang.Object, ilog.
views.IlvPoint, float, float, int) constructor takes the following parameters:

¢

relatedObstacle and referencePoint: The label is placed close to the reference point. It
does not take the actual position of the related obstacle into account. If the related obstacle
is moved, the label does not follow the obstacle on the next call of layout, but stays at the
reference point.

If a related obstacle is given, the label is not pushed away from the related obstacle.
Rather, it is pushed away from all other obstacles to avoid overlaps. You can set the
relatedObstacle parameter to null if the label is independent of all obstacles.

The parameters minDist and maxDist are the minimal and maximal distances from the
reference point, measured from the border of the label. If you set the minimal and maximal
distance to 0, the label will just touch the reference point. To keep the circular area
around the reference point free, set the minimal distance accordingly. Most of the time
you probably want to keep the label close to the reference point; hence, set the minimal
and maximal distances to the same value.

The preferredDirection parameter indicates whether the label should be placed to the
left, right, top, or bottom of the reference point. This is a suggestion for the labeling
algorithm, as described for Positioning at an obstacle.

Positioning on multiple criteria

The most powerful constructor combines all the possibilities described in Positioning at an
obstacle and Positioning at a point:

GRAPH LAYOUT ALGORITHMS

IlvAnnealingPointLabelDescriptor (Object label,
Object relatedObstacle,
IlvPoint referencePoint,
int shape,
float halfWidth,
float halfHeight,
float maxDistFromPath,
float preferredDistFromPath,
int preferredDirection)

This I1vAnnealingPointLabelDescriptor (java.lang.Object, java.lang.Object, ilog.
views.IlvPoint, int, float, float, float, float, int) constructor takes the following
parameters:

4 relatedObstacle and referencePoint: If a related obstacle is given and the reference point
is null, the label is placed close to the related obstacle. If a reference point is not null,
the label is placed close to the reference point independently of the related obstacle
position.

4 shape : the shape of the free area around the point can be rectangular or elliptic.

4 halfWidth and halfHeight: The parameter halfWidth is the minimal distance of the
label to the reference point in the horizontal direction. The parameter hal fHeight is the
minimal distance of the label to the reference point in the vertical direction. If the
reference point is null, the parameters halfwidth and halfHeight are calculated from
the bounding box of the related obstacle.

4 The parameter maxDistFromPath specifies the maximal additional distance allowed for
the label (shown in Potential Label Positions With Rectangular Shape at a Point).

4 The parameter preferredDistFromPath specifies the preferred additional distance for
the label. Its value should be between 0 and maxDistFromPath.

¢ The preferredDirection parameter indicates whether the label should be placed to the
left, right, top, or bottom of the reference point or related obstacle. This is a suggestion
for the labeling algorithm, as described in Positioning at an obstacle.

Starting from an empty descriptor (point)

An alternative way to create a point label descriptor is to start from the empty descriptor:

descriptor = new IlvAnnealingPointLabelDescriptor();

Before using the empty descriptor, you must fill it with information on how the label should
be placed. As a minimum, you need to specify a related obstacle or a reference point. For
example:

descriptor.setRelatedObstacle (obstacle) ;
descriptor.setShape (IlvAnnealingPointLabelDescriptor .ELLIPTIC) ;
descriptor.setPreferredDirection(IlvDirection.Left);

USING GRAPH LAYOUT ALGORITHMS 401

maxDelta
Paint

halfwidth Label]
halfHeighn |_

[maxDeIta‘

Potential Label Positions With Rectangular Shape at a Point

402 USING GRAPH LAYOUT ALGORITHMS

Polyline label descriptor

If you want to place labels at straight lines, polylines, or links, you should use the class
IlvAnnealingPolylineLabelDescriptor. The allowed area for labels at a polyline is different
from the rectangular or elliptic area considered for placing labels at a reference point (see
Positioning at a point). A polyline has two sides where the label can be placed along a path.
This is known as the polyline labeling problem.

Note: The polyline label descriptor is not suitable for placing labels at splines or spline links.
Because splines have a complex geometric shape, the automatic placement of labels
at splines is currently not supported.

Simple positioning at a polyline obstacle

Use this specification if the label must be placed at a polyline obstacle. The polyline obstacle
is typically a link.

Here is an example of ILabelEditPart createlLabelDescriptor () implementation:

@Override
public IlvAnnealingLabelDescriptor createlLabelDescriptor() {
return new IlvAnnealingPolylinelLabelDescriptor (this,
relatedObstacleEditPart,
IlvAnnealingPolylinelLabelDescriptor.FREE, IlvDirection.Left, IlvDirection.
TopLeft,
IlvAnnealingPolylineLabelDescriptor.GLOBAL) ;
}

The label is placed anywhere at the left or top side of the polyline obstacle, with preference
given to the left side.

The example uses the following constructor:

IlvAnnealingPolylinelLabelDescriptor
(Object label,
Object relatedPolylineObstacle,
int anchor,
int preferredSide,
int allowedSide,
int sideAssociation)

The options for the anchor parameter are:

4 IlvAnnealingPolylineLabelDescriptor.CENTER: places the label near the center of the
link (that is, in the middle third of the link path).

4 IlvAnnealingPolylineLabelDescriptor.START: places the label near the source node
of the link (that is, in the first third of the link path).

USING GRAPH LAYOUT ALGORITHMS 403

404 U s |

N G

4 TlvAnnealingPolylineLabelDescriptor.END: places the label near the target node of
the link (that is, in the last third of the link path).

4 TlvAnnealingPolylineLabelDescriptor.FREE: places the label anywhere on the link.

The value of the preferredSide parameter is a suggestion of where the label layout algorithm
should preferably place the label. If the area at the preferred side is occupied, the label is
placed elsewhere.

In contrast, the allowedSide parameter is a strict constraint: it is always obeyed, even if
the entire area at the allowed side is occupied and the label must overlap the obstacles in
that area.

Side association

The orientation of the preferred and allowed sides depend on the sideAssociation parameter.
This parameter can take the following values (see the following figure):

4 IlvAnnealingPolylineLabelDescriptor.LOCAL

4 IlvAnnealingPolylineLabelDescriptor.GLOBAL

Lefr Top
BEottam

Right jLeft Right

Right
E " Left

Left

Left Top

Right Eottom : A J

Local Side Association Clobal Jide Associaton
Side Associations

Local side association

If the side association is local, each polyline has two sides: left and right. The sides can be
determined from the flow direction of the polyline from start point to end point. Consider
yourself standing on the polyline looking in the direction where the polyline continues
towards the end point, and then determine which is the left and which is the right side.
Hence, the meaning of left and right in local side association is relative to the polyline. The
options for the preferredSide and allowedSide parameters are in this case:

4 IlvDirection.Left

4 IlvDirection.Right

You can also specify the value O for the allowed side, which indicates that you do not want
to restrict the side: both sides are allowed.

GRAPH LAYOUT ALGORITHMS

Global side association

If the side association is global, the side specification is independent of the flow direction
of the polyline and more like a compass direction: north is top, south is bottom, west is left,
and east is right. Here more options are possible: in addition to the basic top, bottom, left,
right, all meaningful combinations of these are allowed. You specify the sides in the following
way:

4 IlvDirection.Left

4 IlvDirection.Right

4 IlvDirection.Top

4 IlvDirection.Bottom

You can also use combinations of these, such as:

4 TlvDirection.Left | IlvDirection.Right (left or right but not top or bottom).

4 IlvDirection.Left | IlvDirection.Top (whichisthe same asIlvDirection.TopLeft,
meaning the left or the top side).

You can specify the value 0 for the allowed side if all sides should be allowed.

Full positioning at a polyline obstacle

The most powerful T1vAnnealingPolylineLabelDescriptor constructor is the following:

IlvAnnealingPolylinelLabelDescriptor
(Object label,
Object relatedObstacle,
IlvPoint[] referencePoints,
float lineWidth,
float minPercentageFromStart,
float maxPercentageFromStart,
float prefPercentageFromStart,
float maxDistFromPath,
float preferredDistFromPath,
int preferredSide,
int allowedSide,
int sideAssociation,
float topOverlap,
float bottomOverlap,
float leftOverlap,
float rightOverlap)

It combines all previously mentioned possibilities. If the label should be placed at a polyline
obstacle, then pass this object as the related obstacle. If the label should be placed at an
imaginary polyline, then pass the polyline with the points parameter and the width of the
polyline with the 1inewidth parameter. Instead of an anchor, you can pass the area where
the label is placed by the minimal, maximal, and preferred percentage values relative to the
polyline length. The minimal and maximal percentages are strictly obeyed, while the preferred
percentage is only a recommendation for the layout.

USING GRAPH LAYOUT ALGORITHMS 405

406 U s |

N G

4 For instance, if you want to specify that the label can be placed anywhere but you prefer
the center of the polyline, specify 0 and 100 for the minimal and maximal percentages
and 50 for the preferred percentage. If there is not enough free space at the center, the
label will be placed elsewhere.

4 But if you want to specify that the label must be placed close to the center even if there
is not enough space, then specify, for instance, 40 and 60 for the minimal and maximal
percentages instead.

Starting from an empty descriptor (polyline)

An alternative way to create a polyline label descriptor is to start with the empty descriptor:

descriptor = new IlvAnnealingPolylinelLabelDescriptor ()

Before using the empty descriptor, you must fill it with information on how the label should
be placed. As a minimum, you need to specify a related obstacle or reference points and
line width. For instance:

descriptor.setRelatedObstacle (polyline);
descriptor.setMinPercentageFromStart (10f) ;
descriptor.setMaxPercentageFromStart (90f) ;
descriptor.setPreferredPercentageFromStart (50f) ;

GRAPH LAYOUT ALGORITHMS

Specific global parameters

The following global parameters are specific to the I1vAnnealinglLabelLayout class:
¢ Label offset

¢ Obstacle offset

¢ Label movement policy

¢ Automatic update

¢ Expert parameters

Label offset

The label offset controls the desired minimal distance between two neighbored labels (see
Label and Obstacle Offsets, left). To avoid labels being placed too close to each other, you
can increase the label offset. This conceptually pushes the labels farther apart. However,
depending on the available space, the minimal distance between labels cannot always be
maintained.

Example of specifying label offset
To set the label offset:

In Java™
Call:

layout.setLabelOffset (25f) ;

Obstacle offset

The obstacle offset controls the desired minimal distance between a label and an unrelated
obstacle. The obstacle offset is usually more important than the label offset because, if the
obstacle offset is too small, the label may be placed so close to an unrelated obstacle that
it incorrectly appears to be assigned to that obstacle (see Label and Obstacle Offsets, right:
does, for example, the green label belong to the upper yellow node or to the green node?).
Increasing the obstacle offset conceptually pushes the label away from the obstacle. However,
depending on the available space, the minimal distance between label and obstacle cannot
always be maintained.

The obstacle offset should not be set to an unreasonably large value (such as Float.
MAX VALUE) because this can cause computational problems.

Example of specifying node placement iterations and allowed time (GL algorithm)
To set the obstacle offset:

In Java
Call:

layout.setObstacleOffset (25f) ;

USING GRAPH LAYOUT ALGORITHMS 407

408 U S I NG

The specified obstacle offset works globally for all labels.

It is also possible to specify a smaller obstacle offset for specific label/obstacle pairs. You
need to install an obstacle offset interface that returns the obstacle offset for a given pair.

The effective offset is the lower of the values returned by the obstacle offset interface and
the globally specified offset respectively.

S Label% | Label |
hbelﬂﬁset

Label Ambiguous situation:
Label obstacle offset
Offsat Lla'bEI- too small -

Obstac e Off et Label

] |

Label and Obstacle Offsets

Label movement policy

The label movement policy is an easy way to define which labels should be moved by the
label layout algorithm.

Example of specifying label movement policy

In Java

The following code installs a label movement policy such that the layout moves only labels
with a height greater than 100:

layout.setLabelMovementPolicy (new IlvLabelMovementPolicy () {
public boolean allowMove (IlvLabelingModel labelingModel, Object label)
{
return (labelingModel.boundingBox (label) .height > 100);
}
});

Labels with smaller heights are not moved. However, they are also not completely ignored,
because the layout tries to position the movable labels so that they do not overlap the
immovable labels, and the label offset is respected between movable and immovable labels.

A more general useful example is a movement policy that prohibits moving labels that initially
do not overlap anything. This predefined movement policy is available through the class
IlvOverlappingLabelMovementPolicy. You can use this class in applications that have their
own label positioning mechanism and use the Annealing Label layout only as a postprocessing
step to improve the positions of overlapping labels. To install this policy, call:

GRAPH LAYOUT ALGORITHMS

layout.setLabelMovementPolicy (new IlvOverlappingLabelMovementPolicy());

Automatic update

After layout, the labels are placed close to the related obstacle according to the label
descriptor. For instance, a link label is placed close to its link. However, if you move the
link interactively, the label normally stays at the old position, which may be far away from
the link after the movement. The label loses the connection to the link, and a new layout is
necessary.

Because it is too time-consuming to redo the layout after each single interactive move, the
Annealing Layout algorithm has a feature that automatically updates the labels on geometric
changes, that is, the label follows the link when the link moves.

Example of specifying automatic update
To enable this feature:

In Java
Call:

layout.setAutoUpdate (true) ;

If automatic update is enabled, the algorithm does not perform a full layout of all labels
during each interactive change. It repositions only the label whose related obstacle has
moved in one step. Thus it may produce more overlaps than a full layout. The automatic
update mechanism is much faster, however, and hence better suitable for interactions.

Expert parameters
A few parameters are available for an advanced use of the Annealing Label Layout.
Simulated annealing

Simulated annealing is an iterative mechanism. In each iteration step, all labels are tested
for better positions. Usually, the algorithm is capable of detecting automatically when to
stop. The algorithm stops if:

4 The maximal number of iterations is reached.
4 After several iterations, no better position was found for any label.

4 After several iterations, the quality did not improve by a given percentage.
In a few cases, it may be necessary to limit the number of iterations, which can be done by
calling:

layout.setAllowedNumberOfIterations (100) ;

As a general hint, to obtain a reasonable layout, the allowed number of iterations should
not be considerably lower than the number of labels.

Simulated Annealing stops if, after several iterations, no better position was found for any
label. Because the search is randomized, this does not necessarily mean that the best position

USING GRAPH LAYOUT ALGORITHMS 409

410 U s |

N G

was already found; however, it indicates that finding the best position would require too
much layout time. The number of ineffective iterations before stopping can be changed by
calling:

layout.setMaxNumberOfFailIterations (maxNumber) ;

The default value is 20. If you set it to a higher value, the layout slows down but may find
better positions for the labels. If you set it to a lower value, the layout stops sooner, but the
label positions may be far from optimal.

In some cases, the algorithm improves the quality in each step, but the amount of
improvement gets smaller in each step. In this situation, the previous fail-iteration criteria
does not work well because there is an improvement in each step, but the amount of the
improvement is so negligibly small that we want to stop. Therefore, it is also possible to
require that the quality must improve in each step by a minimum percentage.

For example, to specify that the algorithm must improve over ten rounds by at least 2%,
call:

layout.setNumberIterationsForMinImprovement (10) ;
layout.setMinImprovementPercentageToContinue (2) ;

By default, the layout stops if the quality did not improve by 0.5% over five iterations. If you
set the required improvement percentage higher or the number of iterations lower, the
layout stops sooner, but the label positions may be far from optimal. If you set the required
percentage to 0%, this stop criterion is disabled and will no longer have any effect.

GRAPH LAYOUT ALGORITHMS

For experts: implementing your own label descriptors

The Annealing Label Layout is extensible. The point label descriptor and the polyline label
descriptor are designed to cover the majority of the cases. In rare situations, you may want
to implement your own label descriptor by subclassing the base class
IlvAnnealingLabelDescriptor. This section describes the necessary steps.

A label descriptor basically specifies the path where the top-left corner of a label can be
placed. For simplification, it considers the path rolled out such that the path has only one
dimension. If the path is known, the precise label position can be specified by just one value:
the path location. The Annealing Label Layout proposes different path locations during the
layout; however, it does not know what the path looks like. The task of the label descriptor
is to translate the path location into concrete (x, y) coordinates of the label.

As an example, we want to create a label descriptor that can place labels precisely at a
triangular obstacle. We could use the point label descriptor as an approximation, but it does
not place the labels precisely at a triangular shape.

In the following figure, the upper diagram shows the path around the triangle (the dashed
red and blue line). Below, you can see the same path rolled out in one dimension. The
Annealing Label Layout may ask the label descriptor to place the label at position 1 to 8.
For the Annealing Label Layout, these positions are just numbers between 0 and
maxPathLocation. The task of the label descriptor is to translate these numbers into the
correct positions as shown in the upper part of the figure.

3 5

-
-
-
-

-

o
™

lpat;ﬁ_ll.:;_(........;2(..........’3{.....?......:Ee.....’é.lllllgllllll'g.ﬁa
ocation pat]\}l
o] location

Path locations at a triangle label descriptor
The base class T1vAnnealingLabelDescriptor. has two protected data members:

4 actPathLocation is the current path location of the label.

4 maxPathLocation is the maximal value of the path location.

To create a new label descriptor, you need to implement a method that initializes the path
constructor at the beginning of layout. You should calculate the maximal path location
maxPathLocation and initialize the actPathLocation here. The method is called only once
during layout:

USING GRAPH LAYOUT ALGORITHMS 411

412 U s |

N

G

void initialize (IlvLabelingModel labelingModel)

In the previous figure, the maximal path location for an equilateral triangle is:

3 * sidelength + 2 * labelwidth + 2 * labelheight

At each iteration step, the layout calls the method setPosition and provides an actual value
for the path location. The method setPosition should store the value into actPathLocation
and translate the path location into appropriate (%, y) coordinates. Then it should call the
predefined method updatePosition (x, y) with these coordinates:

public void setPosition (double pathLocation, float distFromPath)
{
float x, vy;
// make sure the position is between 0 and max
while (pathLocation > maxPathLocation)
pathLocation -= maxPathLocation;
while (pathLocation < 0)
pathLocation += maxPathLocation;
// store the actual position
actPathLocation = pathLocation;
// translate the path location into (x, y)
if (pathLocation < labelwidth + sidelength) {
x = (float)pathLocation;
y = triangleBottom;
} else if (pathLocation < labelwidth + labelheight + sidelength) {
x = labelwidth + sidelength;
y = triangleBottom - (float)pathLocation + labelwidth + sidelength;
} else if ... (other cases)

// finally, update the internal data structures
updatePosition (x, vy);

The label may have a preferred position at the triangle. The Annealing Layout checks a
location close to the preferred position from time to time. You should implement the following
method to return the preferred path location:

double getPreferredPathLocation ()

Furthermore, you should implement a strategy on how to come close to the preferred location.
Towards the end of layout, the algorithm calls the method:

setTowardsPreferredPosition (pathLocation, dist, i, maxI)

to perform a sequence of steps that shift the label from the current position closer to the
preferred position.

with i from 1 to maxI. Implement the method so that at each step you calculate a path
location closer to the preferred location. When i is max1, it should be exactly at the preferred

GRAPH LAYOUT ALGORITHMS

location. You can call setPosition to move the label to the preferred (x, y) position. For
instance:

public void setTowardsPreferredPosition (
double pathLocation, float dist, int i, int maxI)
{
double offset = pathLocation - getPreferredPathLocation();
double newLocation = pathLocation - i * offset / maxI;
setPosition (newLocation, dist);

These methods take the distance parameter in addition to the path location. This is the
distance from the path. If the label must always be on the path, you can assume this distance
is 0. Set it to a different value only if your label descriptor allows the label to have a variable
offset from the path.

USING GRAPH LAYOUT ALGORITHMS 413

414 USING GRAPH LAYOUT ALGORITHMS

Using advanced features

Describes advanced features including how to define new types of layouts.

In this section

Overview of advanced features
Explains the purpose of the advanced features.

Using a graph layout report
Describes what graph layout reports are and how to use them.

Using event listeners
Describes the listeners for different kinds of events.

Laying out connected components of a disconnected graph
Explains how to use graph layout when you have a disconnected graph.

Defining your own type of layout
Describes how to develop a custom graph layout algoithm if you need one.

FAQs about using the layout algorithms
Lists some FAQs about the use of the layout algorithms.

© Copyright IBM Corp. 1987, 2009 415

Overview of advanced features

These advanced features give you a powerful way to adapt or extend graph layouts.

416 USING GRAPH LAYOUT ALGORITHMS

Using a graph layout report

Describes what graph layout reports are and how to use them.

In this section

Layout report classes

Lists the layout classes and corresponding layout report classes.

Creating a layout report

Explains how to create a layout report.

Accessing a layout report

Explains how to access a layout report.

Information stored in a layout report
Lists the fields in a layout report.

USING GRAPH

LAYOUT

ALGORITHMS 417

Layout report classes

Graph layout reports are objects used to store information about the particular behavior of
a layout algorithm. After the layout is completed, this information is available to be read
from the layout report.

Each layout class instantiates a particular class of i1og.views.graphlayout.
IlvGraphLayoutReport each time the layout is performed. The following table shows the
layout classes and their corresponding layout reports.

Layout report classes

Layout Class Layout Report Class
IlvTopologicalMeshLayout IlvTopologicalMeshLayoutReport
IlvUniformLengthEdgesLayout |IlvUniformLengthEdgesLayoutReport
IlvTreelLayout IlvGraphLayoutReport
IlvHierarchicalLayout IlvGraphLayoutReport
IlvLinkLayout IlvGraphLayoutReport
IlvRandomLayout IlvGraphLayoutReport
IlvBusLayout IlvGraphLayoutReport
IlvCircularLayout IlvGraphLayoutReport
IlvGridLayout IlvGraphLayoutReport
IlvMultipleLayout IlvMultipleLayoutReport
IlvRecursivelayout IlvRecursivelLayoutReport

418 USING GRAPH LAYOUT ALGORITHMS

Creating a layout report

All layout classes inherit the performLayout method from the 11vGraphLayout class. This
method calls createLayoutReport to obtain a new instance of the layout report. This instance
is returned when performLayout returns. The default implementation in the base layout
class creates an instance of T1vGraphLayoutReport. Some subclasses override this method
to return an appropriate subclass. Other classes, such as I1vRandomLayout, do not need
specific information to be stored in the layout report and do not override
createlLayoutReport. In this case, the base class I1vGraphLayoutReport is used.

When using the layout classes with IBM® ILOG® JViews Graph Layout for Eclipse, you do
not need to instantiate the layout report yourself. This is done automatically.

USING GRAPH LAYOUT ALGORITHMS 419

Accessing a layout report

420 U s |

N

G

The method performLayout returns the layout report. The following example shows how to
read the information from the layout report in this case:

try {
IlvGraphLayoutReport layoutReport = layout.performLayout () ;
if (layoutReport.getCode() ==
IlvGraphLayoutReport.LAYOUT DONE)
System.out.println("Layout done.");
else
System.out.println("Layout not done, code = " +
layoutReport.getCode()) ;
}
catch (IlvGraphLayoutException e) {
System.err.println(e.getMessage()) ;

GRAPH LAYOUT ALGORITHMS

Information stored in a layout report

The base class I11vGraphLayoutReport stores the following information:
¢ Code

¢ Layout time

¢ Percentage of completion

¢ Additional information

Code

This field contains information about special, predefined cases that may have occurred
during the layout. The possible values are the following:

4 LAYOUT DONE appears if the layout was performed successfully.

4 STOPPED AND VALID appears if the layout was performed but was stopped before
completion, either because the layout time elapsed or because the method
stopImmediately was called. The positions of nodes and links are valid at the stopping
point because the layout algorithm uses an iterative mechanism.

4 STOPPED AND INVALID appears if a (noniterative) layout was performed but was stopped
before completion, either because the layout time elapsed or because the method
stopImmediately was called. The positions of nodes and links are not valid at the stopping
point. Often, they have not yet been changed at all.

4 NOT NEEDED appears if the layout was not performed because no changes occurred in the
grapher and parameters since the last time the layout was performed successfully.

4 EMPTY GRAPHER appears if the grapher is empty.

To read the code, use the method:

int getCode ()

Layout time

This field contains the total duration of the layout algorithm at the end of the layout. To read
the time (in milliseconds), use the method:

long getLayoutTime ()

Percentage of completion
This field contains an estimation of the percentage of the layout that has been completed.

This can be used if the layout algorithm supports the generic percentage completion
calculation feature. (See Percentage of completion calculation.) It is typically used inside

USING GRAPH LAYOUT ALGORITHMS 421

layout event listeners that are described in the following section. To access the percentage,
use the method:

int getPercentageComplete ()

Additional information

Additional information for particular layout algorithms is stored by the subclasses of
IlvGraphLayoutReport. For details, see the reference documentation of these classes:

4 IlvTopologicalMeshLayoutReport
4 IlvUniformLengthEdgesLayoutReport
4 IlvMultiplelLayoutReport

4 IlvRecursiveLayoutReport

422 USING GRAPH LAYOUT ALGORITHMS

Using event listeners

All layout classes support two kinds of events: layout events and parameter events. The
listening mechanism therefore provides:

¢ Graph layout event listeners

¢ Parameter event listeners

Graph layout event listeners

The layout event listening mechanism provides a way to inform the end user of what is
happening during the layout. At times, a layout algorithm may take a long time to execute,
especially when dealing with large graphs. In addition, an algorithm may not converge in
some cases. No matter what the situation, the end user should be informed of the events
that occur during the layout. This can be done by implementing a simple progress bar or by
displaying appropriate information, such as the percentage of completion after each iteration
or step.

The layout event listener is defined by the GraphLayoutEventListener interface. To receive
the layout events delivered during the layout, a class must implement the
GraphLayoutEventListener interface and must register itself using the
addGraphLayoutEventListener method of the I1vGraphLayout class

When you implement the GraphLayoutEventListener interface, you must implement the
layoutStepPerformed method. The layout algorithm will call this method on all the registered
layout event listeners, passing the layout report as an argument (see Using a graph layout
report). In this way, you can read information about the current state of the layout report.
(For example, you can read this information after each iteration or step of the layout
algorithm).

The following example shows how to implement a layout event listener:

class LayoutIterationListener
implements GraphLayoutEventListener

{
public void layoutStepPerformed (GraphLayoutEvent event)

{
IlvGraphLayoutReport layoutReport = event.getLayoutReport () ;
System.out.println ("percentage of completion: " +
layoutReport.getPercentageComplete()) ;

Then, register the listener on the layout instance as follows:

layout.addGraphLayoutEventListener (new LayoutIterationListener());

USING GRAPH LAYOUT ALGORITHMS 423

424 U s |

N G

Parameter event listeners

The layout parameter event listeners mechanism provides a way to inform the end user that
any layout parameter has changed. This is useful when the layout parameter values are
displayed in a dialog box that needs to be updated to indicate parameter changes.

The parameter event listener is defined by the GraphLayoutParameterEventListener
interface. To receive the layout parameter events, a class must implement the
GraphLayoutParameterEventListener interface and must register itself using the
addGraphLayoutParameterEventListener method of the I1vGraphLayout class.

When you implement the GraphLayoutParameterEventListener interface, you must
implement the parametersUpToDate method. The layout class will call this method on all
the registered layout parameter event listeners. The layout parameter event contains a flag
accessible by the isParametersUpToDate method:

4 It returns true if the event occurs at the end of a run of the layout when the layout is
considered up-to-date with respect to the layout parameters.

4 It returns false if the event occurs when any layout parameter has changed.

The following example shows how to implement a layout parameter event listener.

class LayoutParameterListener
implements GraphLayoutParameterEventListener
{
public void parametersUpToDate (GraphLayoutParameterEvent event)
{
if (!event.isParametersUpToDate ())
System.out.println ("Any layout parameter has changed.”);

Then, register the listener with the layout instance as follows:

layout.addGraphLayoutParameterEventListener (new LayoutParameterListener());

GRAPH LAYOUT ALGORITHMS

Laying out connected components of a disconnected graph

IBM® ILOG® JViews Graph Layout for Eclipse provides special support for the layout of a
disconnected graph.

If a graph is composed of several connected components or contains isolated nodes (nodes
without any links), it can be desirable to apply the layout algorithm separately on each
connected component and then to position the connected components using a specialized
layout algorithm (usually, 11vGridLayout). The following figure shows an example of a graph
containing four connected components. Simply by enabling the layout of the connected
components on the regular layout instance (here, I1vTopologicalMeshLayout), the connected
components are automatically identified and laid out individually. Finally, the four connected
components are positioned using a highly customizable placement algorithm (

AT
VAN

WA TA
E,E @@J

Automatic layout of connected components in a disconnected graph

To indicate whether a subclass of T1vGraphLayout supports this feature, use the method in
the class I1vGraphLayout:

boolean supportsLayoutOfConnectedComponents ()

The default implementation returns false. A subclass can override this method in order to
return true to indicate that this feature is supported.

IBM® ILOG®]JViews Graph Layout for Eclipse allows you to enable the layout of the
connected components using the method:

void setLayoutOfConnectedComponentsEnabled (boolean enable)

To obtain the current setting:

USING GRAPH LAYOUT ALGORITHMS 425

426 U s |

N G

boolean isLayoutOfConnectedComponentsEnabled ()

The default value is the value returned by the following method:

boolean isLayoutOfConnectedComponentsEnabledByDefault ()

The default implementation of this method in T11vGraphLayout returns false. For some of
the layout classes, it is appropriate that this feature is enabled by default. Therefore
IlvUniformLengthEdgesLayout overrides this method to return true.

If enabled on a layout class that supports this feature, the method performLayout of the
class T1vGraphLayout cuts the attached graph model into connected components and lays
out each connected component separately.

How does the layout of connected components feature work when this mechanism is enabled
in the layout classes that support this feature? Instead of directly calling the method 1ayout
(boolean) to perform the layout on the entire graph, the method performLayout (boolean,
boolean) first cuts the graph into connected components. Then, each connected component
is laid out separately by a call of the method layout. To do this, the attached graph is
temporarily changed into internally generated graphs corresponding to each of the connected
components of the original graph. Finally, the layout instance returned by the method:

IlvGraphLayout getLayoutOfConnectedComponents ()

is used to position the connected components. To specify the layout instance that places the
connected components, use the following method:

void setLayoutOfConnectedComponents (IlvGraphLayout layout)

If no layout instance is specified using this method, the method
getLayoutOfConnectedComponents returns an instance of 11vGridLayout. Its layout region
parameter is set by default to the rectangle (0, 0, 800, 800). Its “layout mode” parameter is
set to TILE_TO ROWS.

Note: The Tree, Hierarchical, and Circular layouts contain built-in support for disconnected
graphs. For the Tree and Hierarchical layouts, the result can be different from the result
of the generic mechanism (the layout of connected components feature) provided by
the base class I1vGraphLayout. Depending your particular needs, you can use
either the generic mechanism or the built-in support.

GRAPH LAYOUT ALGORITHMS

Defining your own type of layout

Describes how to develop a custom graph layout algoithm if you need one.

In this section

A sample custom layout algorithm
Describes the features of a custom layout algorithm and shows an example.

Implementing the layout method
Explains how to implement a layout method.

USING GRAPH LAYOUT ALGORITHMS 427

A sample custom layout algorithm

If the layout algorithms provided with IBM® ILOG®]JViews Graph Layout for Eclipse do
not meet your needs, you can develop your own layout algorithms by subclassing
IlvGraphLayout.

When a subclass of 11vGraphLayout is created, it automatically fits into the generic IBM®
ILOG®]JViews Graph Layout for Eclipse layout framework and benefits from its
infrastructure:

4 generic parameters: see Base class parameters and features

4 notification of progress: see Using event listeners

4 capability to apply the layout separately for the connected components of a disconnected
graph: see Laying out connected components of a disconnected graph

4 capability to lay out nested graphs (see Nested layouts), and so on.

Example

To illustrate the basic ideas for defining a new layout, the following simple example shows
a possible implementation of the simplest layout algorithm, the Random Layout. The new
layout class is called MyRandomLayout.

The following shows the skeleton of the class:

public class MyRandomLayout
extends IlvGraphLayout
{
public MyRandomLayout ()
{
}

public MyRandomLayout (MyRandomLayout source)
{

super.source (source) ;

}
public IlvGraphLayout copy ()
{
return new MyRandomLayout (this) ;

}

protected void layout (boolean redraw)

{

}

The constructor with no arguments is empty. The copy constructor and the copy method
are implemented; they are used when laying out a nested graph (see Nested layouts).

428 USING GRAPH LAYOUT ALGORITHMS

Then, the abstract method layout (boolean) of the base class is implemented as follows:

protected void layout (boolean redraw)
{
// obtain the graph model
GraphModel graphModel = (GraphModel)getGraphModel () ;

// obtain the layout report
IlvGraphLayoutReport layoutReport = getLayoutReport () ;

// obtain the layout region

IlvRect rect = getCalcLayoutRegion();
float xMin = rect.x;

float yMin = rect.y;

float xMax = rect.x + rect.width;
float yMax = rect.y + rect.height;

// initialize the random generator

Random random = (isUseSeedValueForRandomGenerator()) ?
new Random (getSeedValueForRandomGenerator ())
new Random() ;

// browse the objects in the grapher
Enumeration nodes = graphModel.getNodes () ;
while (nodes.hasMoreElements()) {

Object node = nodes.nextElement () ;

// skip fixed nodes
if (isPreserveFixedNodes () && isFixed (node)))
continue;

// compute coordinates
float x = xMin + (xMax - xMin) * random.nextFloat():;
float y = yMin + (yMax - yMin) * random.nextFloat();

// move the node to the computed position
graphModel .moveNode (node, x, y, redraw);

// notify listeners on layout events

calllLayoutStepPerformedIfNeeded() ;

// set the layout report code
layoutReport.setCode (IlvGraphLayoutReport.LAYOUT DONE) ;

Note that the 1ayout method is protected, which is the access type of the method in the
base class. This will not prevent a user outside the package containing the class from
performing the layout because it is started using the public method performLayout.

USING GRAPH LAYOUT ALGORITHMS 429

Implementing the layout method

430 U s |

N G

Depending on the characteristics of the layout algorithm, some of the steps required may
be different or unnecessary, or other steps may be needed.

Depending on the particular implementation of your layout algorithm, other methods of the
IlvGraphLayout class may need to be overridden. For instance, if your subclass supports
some of the generic parameters of the base class, you must override the supports
[ParameterName] method (see Base class parameters and features). For further information
about the class T1vGraphLayout, refer to the API reference documentation.

To implement the 1ayout method in the sample custom layout algorithm:

1.

Obtain the graph model (getGraphModel () on the layout instance).

GraphModel graphModel = (GraphModel)getGraphModel () ;

Obtain the instance of the layout report that is automatically created when the
performLayout method from the superclass is called (getLayoutReport () on the
layout instance). See Using a graph layout report.

IlvGraphLayoutReport layoutReport = getLayoutReport () ;

Obtain the layout region parameter to compute the area where the nodes will be
placed.

IlvRect rect = getCalcLayoutRegion() ;

Initialize the random generator.

Random random = (isUseSeedValueForRandomGenerator()) ?
new Random (getSeedValueForRandomGenerator ()
new Random() ;

(For information on the seed value parameter, see Random generator seed value.)

Get an enumeration of the nodes (getNodes () on the graph model instance).

Enumeration nodes = graphModel.getNodes () ;

Browse the nodes, skipping fixed nodes (isFixed (node) on the layout instance) if
asked by the user (isPreserveFixedNodes () on the layout instance).

while (nodes.hasMoreElements()) {
Object node = nodes.nextElement () ;

(For details on fixed nodes, see Preserve fixed nodes).

GRAPH LAYOUT ALGORITHMS

7. Move each node to the newly computed coordinates inside the layout region
(graphModel .moveNode).

graphModel .moveNode (node, x, y, redraw);

8. Notify the listeners on layout events that a new node was positioned
(callLayoutStepPerformedIfNeeded () on the layout instance). This allows the user
to implement, for example, a progress bar if a layout event listener was registered on
the layout instance.

callLayoutStepPerformedIfNeeded() ;

(For details on event listeners, see Using event listeners.)

9. Finally, set the code in the layout report.

layoutReport.setCode (IlvGraphLayoutReport.LAYOUT DONE) ;

Once you have implemented your own layout algorithm MyRandomLayout, you can use it
directly in Java™ .

USING GRAPH LAYOUT ALGORITHMS 431

FAQs about using the layout algorithms

432 U s |

N G

The following list of FAQs provides some helpful suggestions for using the layout algorithms.
You may find some answers to questions that come up when using the graph layout package.

FAQs about the layout algorithms

Question

Answer

| perform the layout and
nothing happens (no node is
moved). Why?

One possible reason may be: the layout algorithms provided in IBM®
ILOG® JViews Graph Layout for Eclipse are all designed to do nothing,
by default, if no change occurred in the graph since the last time the layout
was performed successfully on the same graph. A change means that a
node was moved, or a node or link was added, removed, or reshaped.

Note that you can force the layout to be performed again, even if no change
occurred, by calling the performLayout (boolean, boolean) method
with a true value for the force argument.

Another possible reason may be: an error or a special case occurred
during the layout. First, you should check whether the performLayout
() method has thrown an exception. If no exception was thrown, call the
getCode () method on the instance of the layout report returned by the
performLayout method. Check this value with respect to the
documentation of the appropriate layout report class. (For details, see
Using a graph layout report.)

With the Uniform Length
Edges algorithm, after having
performed the layout once, |
don't see any movement
even if | use the force layout
option. Why?

The reason is probably that the first time you performed the layout, the
algorithm reached the convergence. When the layout is performed again,
it detects that the convergence has been already reached and stops. If
you really want to continue working, for instance in order to “declutter” a
particular part of the graph, you may need to move one or several nodes
in order to change the initial configuration. (The algorithm is dependent
on the initial configuration.)

After performing the layout,
the graph is laid out far from
its initial position. Why?

Most of the layout algorithms use a layout region parameter to control the
size and position of the layout. (For details, see Layout region.) Depending
on the value of this parameter, the nodes may be moved far from their
initial positions.

To know whether a layout algorithm is designed to use a layout region
parameter, check the documentation to see if the layout class overrides
the supportsLayoutRegion () method of the base class in order to
return true.

Other algorithms have a different mechanism that allows you to specify
the desired location of the layout. It may happen that the default value of
the location parameter is such that the graph is laid out far from its initial
position.

When | use certain layout
algorithms on certain graphs,
there are overlapping nodes.
Why and what can | do?

One possible reason may be related to the different ways layout algorithms
deal with the size of the nodes:

-The Topological Mesh algorithm is not able to explicitly take into account
the size of the nodes.

GRAPH LAYO

UT ALGORITHMS

Question

Answer

- The Tree, Hierarchical, Bus, and Grid algorithms always avoid overlapping
nodes. (The Link algorithm does not move the nodes. It only reshapes
the links such that the crossings and overlaps are reduced. The size of
the nodes is taken into account.)

- The Uniform Length Edges algorithm (with the option “Respect Node
Sizes” enabled) and the Circular algorithm, in many cases, succeed in
avoiding overlapping nodes.

In any case, if the layout algorithm supports the layout region mechanism
(see Layout region), you should try to increase the size of the layout region.
For example, if your graph contains hundreds of nodes, it is not reasonable
to use a small layout region, such as 600x600. There will be not enough
space for all the nodes. You should try a larger layout region, for example
5000x5000.

The optimal size of the layout region depends, of course, not only on the
number of nodes, but also on their size. If the nodes are relatively large
with respect to the size of the layout region, it may be necessary to adjust
some of the parameters (for instance, the preferred link length for the
Uniform Length Edges Layout).

In some networks, there are
two (or more) subnetworks
that are not connected. How
will this affect the layout
algorithms?

This depends on the layout class you use:

- IlvTopologicalMeshLayout: It willwork on the connected component
of the graph that contains the starting node. (You can specify this node
as a parameter.) If the “starting node” is not specified, it is automatically
chosen in an arbitrary way. The nodes of the other “connected
components” will not be moved. You may want to perform the layout
separately on each connected component using different layout regions
and starting node settings. This is what you get automatically when you
enable the “layout of connected components” parameter. (See Layout of
connected components.)

- I1vUniformLengthEdges: This algorithm supports disconnected
graphs, but usually itis better to rely on the automatic “layout of connected
components” parameter. (See Layout of connected components.)

- I1vBusLayout: It will work on the “connected component” of the graph
that contains the “bus object.” (You must specify the bus object as a
parameter.) The other nodes that are not connected to the bus will not be
moved. You may need to perform the layout separately on each connected
component. This is what you get automatically when you enable the “layout
of connected components” parameter. (See Layout of connected
components.)

-IlvCircularLayout, IlvHierarchicallLayout, IlvTreeLayout:
They have built-in support for disconnected graphs. Alternatively, you can
use the automatic support from the base class. (See Layout of connected
components.)

USI NG

GRAPH LAYOUT ALGORITHMS 433

434 U s |

N

G

Question

Answer

- IlvLinkLayout, I1lvGridLayout, I1vRandomLayout: These
algorithms support both connected and disconnected graphs. Their
behavior is the same for both categories of graphs.

There are some attributes of
the network that we know
about (for instance, we know
what the core switch is and
what the center should be).
Are such attributes taken into
account by the layout
algorithm?

It depends on the layout algorithm.

- The Circular Layout is designed to allow you to specify information about
the physical topology of the network. You can specify which nodes belong
to the same cluster (ring or star), the order of the nodes on the cluster,
and which node is the center of a star cluster.

- In the Tree Layout, you can specify the root node.
- In the Bus Layout algorithm, you can specify the bus object.

- In the Hierarchical Layout algorithm, you can specify node position indices
and level indices, as well as relative positioning constraints.

If | use IBM® ILOG® JViews
Graph Layout for Eclipse on
different computers or with
different Java Virtual
Machines (JVM) or both, |
sometimes get different
layouts for the same graph
and with the same
parameters. Why?

There are two possible reasons:

1. Different computers and JVMs may be slower or faster. If the layout
algorithm you use stops the computation when the specified allowed time
has elapsed, a slower computer or JVM will cause the computation to stop
earlier. That may be the cause of different results. This may happen even
with the same computer and JVM if the charge of the computer is
increased. You may need to increase the allowed time specification when
running on a slower computer or JVM.

2. If you use a layout algorithm that uses the random generator and if you
use the default option for the seed value (that is, the system clock is used),
you get different results for each successive run of the layout on the same
graph. This allows you to obtain alternative results and to chose the one
you prefer. If you want to prevent different results for successive runs, you
can specify a constant seed value.

| use the Link Layout
algorithm to lay out the links
of a network of graphical
objects. When several links
connect to the same side of
a node, they overlap, while |
expect them to respect the
“link offset” (or the “grid size”)
parameter of the Link Layout.

Why?

Some dimensional parameters of the layout algorithms need to be chosen
with respect to the size of the nodes. This is the case of the “link offset”
and the “bypass distance” parameters for the Short Link Layout and the
grid size for the Long Link Layout. Indeed, their default values are not
appropriate when the nodes are very large. Compared to this size, the
default values of the parameters are so small that they appear to be zero.

The solution is to increase the values of the dimensional parameters,
taking into account the size of the nodes. If different nodes have different
sizes, either the medium or the largest size of the nodes can be used to
compute the parameters as a fraction of this size.

GRAPH

LAYOUT

ALGORITHMS

absolute level position range/tendency 191
accessing

all sublayouts 353
addGraphLayoutEventListener method

IlvGraphLayout class 423
advanced recursion 334
alignment options

Bus Layout 283

Grid Layout 319

Tree Layout (free mode) 113
allowed time parameter

Bus Layout 274

Grid Layout 316

Hierarchical Layout 164

in I1vGraphLayout 39

Link Layout 228

Multiple Layout 366

Recursive Layout 345

Topological Mesh Layout 61

Tree Layout 101

Uniform Length Edges Layout 83
angle layout criteria 12
Annealing Label Layout 389

allowed time parameter 395

automatic update 409

description 394

expert parameters 409

features 392

generic parameters 395

global parameters 407

label descriptors 397

implementing your own 411
subclasses 397

label movement policy 408

label offset parameter 407

limitations 393

© Copyright IBM Corp. 1987, 2009

Index

obstacle offset parameter 407
percentage of completion calculation
parameter 395
point label descriptor 398
polyline label descriptor 403
random generator seed value parameter 395
stop immediately parameter 396
use default parameters 396
area layout criteria 12
area minimization parameter, Circular Layout 304
aspect ratio parameter
Tree Layout (radial mode) 137
Tree Layout (tip-over mode) 142
attach method
IlvGraphLayout class 21
IlvLabelLayout class 378
attaching/detaching a grapher 21
automatic label placement 373
automatic layout
description 13, 32
Link Layout 228
automatic update
labels 409

bends layout criteria 12

Bus Layout
alignment options 283
applicable graph types 268
application domains 268
bus line extremity adjusting 282
bus node parameter 278
description 270
dimensional parameters 287
features 269
flow direction parameter 279
generic parameters 274
global alignment parameters 283

435

436 U S I N G

horizontal offset parameter 287
incremental mode parameter 286
individual node alignment parameter 284
link clipping parameter 274
link style parameter 279
margin on bus parameter 288
margin parameter 288
maximum nodes per level parameter 280
node position 285
order parameter 276, 317
sample drawing 268
specific parameters 276
vertical offset parameter 288
vertical offset to previous level parameter
288
width adjusting 281
bus line extremity adjusting
Bus Layout 282
bus node parameter, Bus Layout 278
bypass distance parameter, Link Layout (short link
mode) 251

calculated level index parameter, Hierarchical
Layout 215
calculated position index parameter, Hierarchical
Layout 216
Circular Layout
applicable graph types 293
application domains 293
area minimization parameter 304
cluster contents parameter 307
cluster membership parameters 301
cluster position parameter 307
cluster size parameter 307
clustering mode parameter 301
description 295
dimensional parameters 306
disconnected graph offset parameter 307
features 294
generic parameters 299
level offset parameter 307
limitations 294
link clipping parameter 299, 308
link connection box parameter 299, 309
link style parameter 308
offset parameter 306
order of nodes parameter 301
ring topology 295
root clusters parameter 303
sample drawings 292
specific parameters 301
star center parameter 303
star topology 295
cluster contents parameter, Circular Layout 307

GRAPH LAYOUT

cluster membership parameters, Circular Layout
301
cluster position parameter, Circular Layout 307
cluster size parameter, Circular Layout 307
clustering modes, Circular Layout 301
compass directions, Tree Layout 105
connected components parameter

Bus Layout 274

Circular Layout 299

Hierarchical Layout 164

Multiple Layout 366

Topological Mesh Layout 61

Tree Layout 101

Uniform Length Edges Layout 83
connector style parameter

Hierarchical Layout 171

Tree Layout 119
createGraphLayout method

IlvDefaultLayoutProvider class 358
createLayoutReport method

IlvGraphLayout class 419
CSS (Cascading Style Sheet)

none

for most advanced features 416

CSS samples

Random Layout 262

detach method
IlvLabelLayout class 21, 378
detachLayouts method
IlvDefaultLayoutProvider class 353
dimensional parameters
Bus Layout 287
Circular Layout 306
Grid Layout 321
disconnected graph
laying out connected components 425
offset parameter, Circular Layout 307

east-west neighbors, Tree Layout 147
end points mode parameter
Hierarchical Layout 173
Link Layout 233
evenly spaced pins margin ratio, Link Layout 247
events, label layout 384
extremity constraints, Hierarchical Layout 207

fallback mechanism, Link Layout (long link mode)
257
FAQ 432
fixed links parameter
Bus Layout 275
Circular Layout 300
Hierarchical Layout 165

ALGORITHMS

Link Layout 228

Random Layout 263

Topological Mesh Layout 62

Tree Layout 102

Uniform Length Edges Layout 84
fixed nodes parameter

Bus Layout 275

Circular Layout 300

Grid Layout 316

Hierarchical Layout 165

Random Layout 263

Topological Mesh Layout 62

Tree Layout 102

Uniform Length Edges Layout 84

using to refine a TML graph layout 70
flow direction parameter

Bus Layout 279

Hierarchical Layout 166

Tree Layout (free mode) 111
force fit to layout region, Uniform Length Edges
Layout 86
fork link shapes, Hierarchical Layout 180
free layout mode (Tree Layout)

alignment parameter 113

description 109

flow direction 111

global alignment 113

global link style parameter 117

individual link style 117

individual node alignment 114

link style 117

orthogonal fork percentage 124

respect node sizes 124

spacing parameters 123

spacing parameters for experts 124

tip-over alignment 115

getAlignment method
IlvTreelayout class 114
getBox method
TlvLinkConnectionBoxInterface class 252
getCalcBackwardTreeLinks method
IlvTreeLayout class 148
getCalcForwardTreeLinks method
IlvTreeLayout class 148
getCalcNodeLevelIndex method
IlvHierarchicalLayout class 215
getCalcNodePositionIndex method
IlvHierarchicalLayout class 216
getCalcNonTreeLinks method
IlvTreeLayout class 148
getCalcRoots method
IlvTreelayout class 103
getCode method

USING GRAPH

IlvGraphLayoutReport class 421
IlvLabelLayoutReport class 382
getDestinationPointMode method
IlvHierarchicalLayout class 173
IlvLinkLayout class 233
getEastNeighbor method
IlvTreeLayout class 147
getFirstGraphLayout method
IlvMultipleLayout class 370
getGraphLayout method
IlvGraphLayout class 341
getHorizontalAlignment method
IlvGridLayout class 320
getLabelLayout method
IlvMultipleLayout class 370
getLayoutOfConnectedComponents method
IlvGraphLayout class 425
getLayouts method
IlvGraphLayout class 330
getLayoutTime method
IlvGraphLayoutReport class 421
IlvLabelLayoutReport class 382
getLinkConnectionBoxInterface method
IlvShortLinkLayout class 248
getLinkStyle method
IlvHierarchicalLayout class 170
IlvLinkLayout class 239, 249
IlvTreeLayout class 117
getLongLinkLayout method
IlvLinkLayout class 255
getNodeBoxInterface method
IlvShortLinkLayout class 248
getNumberOfPossibleExteriorCycles method
IlvTopologicalMeshLayout class 67
getOriginPointMode method
TlvHierarchicalLayout class 173
IlvLinkLayout class 233
getPenalty method
IlvTerminationPointFilter class 256
getPercentageComplete method
IlvLabelLayoutReport class 383
getPreferredLayout method
IlvDefaultLayoutProvider class 358
getPreferredPathLocation method
IlvAnnealingLabelDescriptor class 411
getSecondGraphLayout method
IlvMultipleLayout class 370
getShortLinkLayout method
IlvLinkLayout class 246
getSpecNodeLevelIndex method
TIlvHierarchicalLayout class 199
getSpecNodePositionIndex method
TlvHierarchicalLayout class 203

LAYOUT ALGORITHMS 437

getSpecRoots method maximum nodes per row or column
IlvTreeLayout class 103 parameter 320
getTangentialOffset method sample drawing 312
IlvLinkConnectionBoxInterface class 252 specific parameters 317
getVerticalAlignment method grid offset parameter
IlvGridLayout class 320 Grid Layout 323
getWestNeighbor method Link Layout (long link mode) 241
IlvTreeLayout class 147 H
global alignment parameters Hierarchical Layout
Bus Layout 283 applicable graph types 157
Grid Layout 319 application domains 158
Tree Layout (free mode) 113 calculated level index parameter 215
global connector style parameter calculated position index parameter 216
Link Layout 238 connector style parameter 171
global end point mode parameter description 161
Hierarchical Layout 173 end points mode parameter 173
Link Layout 233 extremity constraints 207
global incremental link reshape mode 249 features 159
global link style parameter flow direction parameter 166
Hierarchical Layout 170 fork link shapes 180
Link Layout 231 generic parameters 164
Tree Layout (free mode) 117 global end point mode parameter 173
global side association for polyline label descriptors global link style parameter 170
405 individual end point mode parameter 173
graph layout individual link style parameter 170
class packages 18 layout constraints 194
features 14 level index parameter 199
questions and answers 432 level justification parameter 168
report 417 leveling strategy parameter 167
graph layout parameters limitations 159
allowed time 39 link clipping parameter 164, 174
description 39 link connection box parameter 165, 174
preserve fixed links 46 link priority parameter 181
use default parameters 50 link style parameter 169
grapher link width parameter 176
attaching/detaching 21 port index parameter 178
laying out connected components of a port sides parameter 176
disconnected graph 425 position index parameter 203
GraphLayoutEventListener interface 423 relative position constraints 194, 204
grid base parameter, Link Layout (long link mode sample drawings 155
241 side-by-side constraints 205
Grid Layout spacing parameters 183
alignment options 319 specific parameters 166
applicable graph types 313 swim lane constraint 209
application domains 313 horizontal offset parameter, Bus Layout 287
description 315 |
dimensional parameters 321
features 314 IlvAnnealingLabelDescriptor class
generic parameters 316 getPreferredPathLocation method 411
global alignment parameters 319 initialize method 411
grid offset parameter 323 setTowardsPreferredPosition method 411
incremental mode parameter 321 IlvAnnealingLabelLayout class 377, 395, 407
individual node alignment parameter 320 IlvAnnealingPointLabelDescriptor class
layout modes 318 constructor 398, 399, 400
margin parameter 324 IlvAnnealingPolylineLabelDescriptor class

438 USING GRAPH LAYOUT ALGORITHMS

constructor 403, 405
IlvBusLayout class
setBus method 278
setVerticalOffsetToPreviousLevel method
288
IlvDefaultLayoutProvider class 358
createGraphLayout method 358
detachLayouts method 353
getPreferredLayout method 358
setPreferredLayout method 358
IlvGraphLayout class
addGraphLayoutEventListener method 423
attach method 21
attaching/detaching a grapher 21
createLayoutReport method 419
getGraphLayout method 341
getLayoutOfConnectedComponents method
425
getLayouts method 330
instantiating a subclass 20
isLayoutOfConnectedComponentsEnabled
method 425
isTLayoutOfConnectedComponentsEnabledByDefault]
method 425
isUseDefaultParameters method 50
layout method 21, 378, 430
layout parameters and features 39
layoutStepPerformed method 423
performLayout method 22, 330, 419, 432
setLayoutOfConnectedComponents method
425
setLayoutOfConnectedComponentsEnabled|
method 425
setLinkClipInterface method 122,174,308
setLinkConnectionBoxInterface method
121,174,309
setUseDefaultParameters method 50
subclassing 427
supportsAllowedTime method 46, 50
supportsLayoutOfConnectedComponents
method 425
supportsLayoutRegion method 432
IlvGraphLayoutReport class
description 418
getCode method 421
getLayoutTime method 421
stored information 421
IlvGraphLayoutUtil class
IsTree static method 32
TlvGridLayout class
getHorizontalAlignment method 320
getVerticalAlignment method 320
setHorizontalAlignment method 320

setVerticalAlignment method 320

USI NG

GRAPH

IlvHierarchicalLayout class
getCalcNodeLevelIndex method 215
getCalcNodePositionIndex method 216
getDestinationPointMode method 173
getLinkStyle method 170
getOriginPointMode method 173
getSpecNodeLevelIndex method 199
getSpecNodePositionIndex method 203
setDestinationPointMode method 173
setGlobalDestinationPointMode method
173
setGlobalLinkStyle method 170
setGlobalOriginPointMode method 173
setLinkStyle method 170
setOriginPointMode method 173
setSpecNodeLevelIndex method 199
setSpecNodePositionIndex method 203

IlvLabelLayout class 377
attach method 378
detach method 21, 378
performLayout method 379

IlvLabelLayoutReport class
getCode method 382
getPercentageComplete method 383

IlvLinkConnectionBoxInterface class
getBox method 252
getTangentialOffset method 252

IlvLinkLayout class
getDestinationPointMode method 233
getLinkStyle method 239, 249
getLongLinkLayout method 255
getOriginPointMode method 233
getShortLinkLayout method 246
setDestinationPointMode method 233
setGlobalDestinationPointMode method
233
setGlobalLinkStyle method 231, 238, 249
setGlobalOriginPointMode method 233
setLinkStyle method 239, 249
setOriginPointMode method 233

IlvLongLinkLayout class
setTerminationPointFilter method 256

IlvMultipleLayout class
getFirstGraphLayout method 370
getLabelLayout method 370
getSecondGraphLayout method 370
setFirstGraphLayout method 370
setLabelLayout method 370
setSecondGraphLayout method 370

IlvMultipleLayoutReport class 422

IlvRandomLabelLayout class 377

IlvRecursiveLayoutReport class 422

IlvShortLinkLayout class

LAYOUT ALGORITHMS 439

440 U S I NG

getLinkConnectionBoxInterface method
248
getNodeBoxInterface method 248
IlvTerminationPointFilter class
getPenalty method 256
IlvTopologicalMeshLayout class
getNumberOfPossibleExteriorCycles
method 67
setExteriorCycleId method 67
TIlvTopologicalMeshLayoutReport class 422
IlvTreeLayout class
getAlignment method 114
getCalcBackwardTreeLinks method 148
getCalcForwardTreeLinks method 148
getCalcNonTreeLinks method 148
getCalcRoots method 103
getEastNeighbor method 147
getLinkStyle method 117
getSpecRoots method 103
getWestNeighbor method 147
setAlignment method 114, 115
setAspectRatio method 137
setBranchOffset method 123, 138
setConnectorStyle method 119
setEastWestNeighboring method 147
setFlowDirection method 111
setGlobalAlignment method 113,115
setGlobalLinkStyle method 117
setInvisibleRootUsed method 139
setLayoutMode method 105,110, 128, 132, 136
setLayoutOfConnectedComponentsEnabled|
method 139
setLevelAlignment method 130
setLinkStyle method 117
setOrthForkPercentage method 124
setOverlapPercentage method 124
setParentChildOffset method 123, 138
setPosition method 104
setRoot method 103
setRootPreference method 103
setSiblingOffset method 123, 138
setTipOverBranchOffset method 123
setWestEastNeighboring method 147
IlvUniformLengthEdgesLayoutReport class 422
incremental layout 13
incremental link reshape mode 248
global 249
individual 249
incremental mode parameter
Bus Layout 286
Grid Layout 321
Link Layout 234
individual connector style parameter

Link Layout 239, 249

GRAPH LAYOUT

individual end point mode parameter
Hierarchical Layout 173
Link Layout 233
individual incremental link reshape mode 249
individual link style parameter
Hierarchical Layout 170
Link Layout 231
Tree Layout (free mode) 117
individual node alignment parameter
Bus Layout 284
Grid Layout 320
Tree Layout (free mode) 114
initialize method
IlvAnnealingLabelDescriptor class 411
intergraph link routing 235
internal provider mode
Recursive Layout 340, 341, 350
isLayoutOfConnectedComponentsEnabled method
IlvGraphLayout class 425
isLayoutOfConnectedComponentsEnabledByDefault]
method
IlvGraphLayout class 425
IsTree static method
IlvGraphLayoutUtil class 32
isUseDefaultParameters method
IlvGraphLayout class 50

Java code samples

applying a single layout to a nested graph
331
defining a new type of layout 428
labels, positioning

at a point 399

at an obstacle 398

on multiple criteria 400
Multiple Layout 362
Recursive Layout

layout providers 358

label descriptors 397
implementing your own 411
Label Layout
annealing 389
base class 377
events and listeners 384
IlvlLabellayout parameters 386
instantiating and attaching a subclass 378
performing a layout 379
recursively on nested subgraphs 380
report 382
using in Java 375
labeling model
reference, in Recursive Multiple Layout 372
labels

ALGORITHMS

automatic placement 373
descriptors, subclasses 397
movement policy 408
point label descriptor 398
polyline label descriptor 403
positioning
at a point, Java code sample 399
at an obstacle, Java code sample 398
on multiple criteria, Java code sample
400
layout algorithms
choosing 28
questions and answers 432
setting the selection method 31
table of additional information 52
table of applicable graphs 28
table of generic parameters supported 36
layout constraints 194
in Java 195
layout criteria
angle 12
area 12
bends 12
link crossings 12
symmetries 12
layout method
TlvGraphLayout class 21, 378, 430
steps for implementing 430
layout methods, types of
automatic 13, 32
incremental 13
semi-automatic 13, 32
static 13
layout modes
Grid Layout 318
Link Layout 229
Recursive Layout 347
Tree Layout 105
layout providers
Recursive Layout 358
layout region parameter
Bus Layout 274
Circular Layout 299
Grid Layout 316
Random Layout 263
Topological Mesh Layout 62
Uniform Length Edges Layout 83
using to refine a TML graph layout 72
layouts
applying the same recursively 330
Bus Layout 267
Circular Layout 291
defining your own type 427
code sample 428
Force-directed layout 75

USI NG

GRAPH

Grid Layout 311
Hierarchical Layout 153
implementing the layout method 430
Link Layout 219
mixing different in nested graph 334
Multiple Layout 361
order of recursive layouts 329
performing 21
Random Layout 259
Recursive Layout 337
Topological Mesh Layout 55
Tree Layout 93
Uniform Length Edges Layout 75
layoutStepPerformed method
IlvGraphLayout class 423
level index parameter, Hierarchical Layout 199
level justification parameter, Hierarchical Layout
168
level layout mode (Tree Layout)
description 127
general parameters 129
level alignment parameter 130
level offset parameter, Circular Layout 307
leveling strategy parameter
Hierarchical Layout 167
limitations
Hierarchical Layout 159
Link Layout 225
Random Layout 261, 294
Topological Mesh Layout 58
Tree Layout 97
Uniform Length Edges Layout 81
link box connection interface
Link Layout (short link mode) 252
link categories, retrieving (Tree Layout) 148
link clipping parameter
Bus Layout 274
Circular Layout 299, 308
Hierarchical Layout 164, 174
Topological Mesh Layout 62, 73
Tree Layout 102, 122
Uniform Length Edges Layout 83, 91
link connection box interface
Link Layout 244
link connection box parameter
Circular Layout 299, 309
Hierarchical Layout 165, 174
Topological Mesh Layout 62
Tree Layout 102, 121
Uniform Length Edges Layout 84
link crossing penalty parameter, Link Layout (short
link mode) 251
link crossings layout criteria 12
Link Layout
applicable graph types 223

LAYOUT ALGORITHMS 441

application domains 223 variable end point parameters (long link
bypass distance parameter (short link mode mode) 256
251 Link Layout (short link mode) 238
choosing the appropriate layout mode 230 link offset parameter, Link Layout (short link mode)
connector style parameter 238 237
description 226 link overlap nodes forbidden parameter
end points mode parameter 233 Link Layout (short link mode) 247
evenly spaced pins margin ratio (short link link priority parameter, Hierarchical Layout 181
mode) 247 link routing parameters, Link Layout (long link
fallback mechanism (long link mode) 257 mode) 256
features 224 link style parameter
generic parameters 228 Bus Layout 279
global connector style parameter 238 Circular Layout 308
global end point mode parameter 233 Hierarchical Layout 169
global link style parameter 231 Link Layout 230
grid base parameter (long link mode) 241 Random Layout 265
grid offset parameter (long link mode) 241 Topological Mesh Layout 64
incremental link reshape mode 248 Tree Layout (free mode) 117
incremental mode parameter 234 Uniform Length Edges Layout 85
individual connector style parameter 239, 249 link width parameter, Hierarchical Layout 176
individual end point mode parameter 233 listener, layout event
individual link style parameter 231 code example 423
intergraph link routing 235 description 423
layout mode parameter 229 GraphLayoutEventListener interface 423
limitations 225 listeners, label layout 384
link box connection interface (short link local side association for polyline label descriptors
mode) 252 404
link connection box interface 244 long link mode (Link Layout)
link crossing penalty parameter (short link algorithm description 226
mode) 251 fallback mechanism 257
link offset parameter (short link mode) 237 features 224
link routing parameters (long link mode) 256 grid base parameter 241
link style parameter 230 grid offset parameter 241
long link layout algorithm 226 link routing parameters 256
minimal distance parameter (long link mode minimal distance parameter 241
241 minimal node corner offset parameter 242
minimal node corner offset parameter (long minimum final segment length parameter
link mode) 242 242
minimum final segment length parameter obstacle parameters 255
(long link mode) 242 spacing parameters 240
minimum final segment parameter 238 variable end point parameters 256
node-side filter feature 243 M
number of optimization iterations (short link .
mode) 246 margin on bus parameter, Bus Layout 288
obstacle parameters (long link mode) 255 margu}; paiametfl‘zgs
same shape for multiple links parameter Gu.s d La you t 324
(short link mode) 250 | brid Layou
sample drawing 221 maximum nodes per level parameter
self-link style parameter (short link mode) Bu§ Layout 280
246 Grid Lfiyout 320 .
. . memory savings parameter
shor{: link layout algorlthm.226 Topological Mesh Layout 62
spacing parameters (long link mode) 240 . : . .
. . minimal distance parameter, Link Layout (long link|
spacing parameters (short link mode) 237 mode) 241
specific parameters 229 minimal node corner offset parameter, Link Layout
(long link mode) 242

442 USING GRAPH LAYOUT ALGORITHMS

minimum final segment length parameter, Link
Layout (long link mode) 242
minimum final segment parameter, Link Layout
(short link mode) 238
Multiple Layout
accessing sublayouts 370
allowed time parameter 366
application domain 362
attaching graph and labeling models 369
combining multiple and recursive layout 371
connected components parameter 366
features 365
for experts 369, 371
generic parameters 366
Java code sample 362
percentage completion parameter 366
recursive layout 363
reference labeling model 372
simple layout 363
specific parameters 368
stop immediately parameter 366

nested subgraphs 380
node position

Bus Layout 285
node-side filter feature, Link Layout 243
nodes placement algorithm, Topological Mesh
Layout 65
nodes placement allowed time, Topological Mesh
Layout 64
nodes placement iterations parameter, Topological
Mesh Layout 64
number of iterations parameter, Uniform Length
Edges Layout 85
number of optimization iterations, Link Layout
(short link mode) 246

obstacle offset parameter 407
obstacle parameters, Link Layout (long link mode
255
obstacles (Label Layout)

positioning a label at 398, 399

positioning at polyline 403, 405

related obstacles 398, 399, 400

examples 398

offset parameter, Circular Layout 306
optimization allowed time parameter, Topological
Mesh Layout 64
optimization iterations parameter, Topological
Mesh Layout 64
order of nodes parameter, Circular Layout 301
order parameter, Bus Layout 276, 317
orthogonal fork percentage parameter, Tree Layout]
124

USI NG

P

GRAPH

outer cycle parameter, Topological Mesh Layout
description 67
using to refine a TML graph layout 72
overlap
Tree Layout 124

parameters
generic
Annealing Label Layout 395
Bus Layout 274
Circular Layout 299
Grid Layout 316
Hierarchical Layout 164
Link Layout 228
Multiple Layout 366
Random Layout 263
Recursive Layout 345
Topological Mesh Layout 61
Tree Layout 101
Uniform Length Edges Layout 83
specific
Bus Layout 276
Circular Layout 301
Grid Layout 317
Hierarchical Layout 166
Link Layout 229
Multiple Layout 368
Random Layout 265
Recursive Layout 355
Topological Mesh Layout 64
Tree Layout 103
Uniform Length Edges Layout 85
supported by layout algorithms (table) 36
percentage of completion parameter
Hierarchical Layout 165
Multiple Layout 366
Random Layout 263
Recursive Layout 345
Tree Layout 102
performLayout method
IlvGraphLayout class 22, 330, 419, 432
IlvLabelLayout class 379
point label descriptor 398
positioning
at a point 399
at an obstacle 398
on multiple criteria 400
starting from an empty descriptor 401
point labeling problem 398
polyline label descriptor
full positioning
at a polyline obstacle 405
simple positioning
at a polyline obstacle 403
starting from an empty descriptor 406

LAYOUT ALGORITHMS 443

444 U S| N G

port index parameter, Hierarchical Layout 178
port sides parameter, Hierarchical Layout 176
position index parameter, Hierarchical Layout 203
position parameter, Tree Layout 104
preferred length parameter, Uniform Length Edges
Layout 85
preserve fixed links parameter

Bus Layout 275

Circular Layout 300

Hierarchical Layout 165

in I1vGraphLayout 46

Link Layout 228

Random Layout 263

Topological Mesh Layout 62

Tree Layout 102

Uniform Length Edges Layout 84
preserve fixed nodes parameter

Bus Layout 275

Circular Layout 300

Grid Layout 316

Hierarchical Layout 165

Random Layout 263

Topological Mesh Layout 62

Tree Layout 102

Uniform Length Edges Layout 84

questions and answers 432

radial layout mode (Tree Layout)
adding an invisible root node 139
alternating radial mode 135
aspect ratio parameter 137
description 131
evenly spaced first circle 139
setting a maximal children angle 140
spacing parameters 138

random generator seed value parameter
Random Layout 263

Random Layout
applicable graph types 260
CSS sample 262
description 262
features 261
generic parameters 263
limitations 261
link style parameter 265
sample drawing 260
specific parameters 265

Recursive Layout
accessing all sublayouts 353
advanced recursion 334
allowed time parameter 345
applying the same layout 330
combining multiple and recursive layout 371

GRAPH LAYOUT

convenience mechanism of reference layout]
mode 353
definition 338
features 344
generic parameters 345
internal provider mode 340, 341, 350
Java code samples
different layout styles 340
layout providers for experts 358
same layout style 338
specified layout provider 341
layout modes 347
layout parameters 332
layout providers for experts 358
mixing different in nested graph 334
order of layouts 329
percentage of completion parameter 345
reference layout mode 338, 349
simple 330
specific parameters 355
specified provider mode 341, 352
stop immediately parameter 345
Recursive Multiple Layout 371
reference layout mode
convenience mechanism (Recursive Layout)
353
Recursive Layout 338, 349
refining a graph layout 70
using fixed nodes parameter 70
using layout region parameter 72
using outer cycle parameter 72
related obstacles (Label Layout) 398
relative position constraints, Hierarchical Layout
194, 204
reports
graph layout 417
Label Layout 382
respect node sizes parameter
Tree Layout 124
Uniform Length Edges Layout 86
ring topology, Circular Layout 295
root clusters parameter, Circular Layout 303
root node parameter, Tree Layout 103
additional options 103

same shape for multiple links parameter, Link
Layout (short link mode) 250
selflink style parameter, Link Layout (short link
mode) 246
semi-automatic layout 13, 32
setAlignment method

IlvTreeLayout class 114,115
setAspectRatio method

IlvTreelLayout class 137
setBranchOffset method

ALGORITHMS

IlvTreeLayout class 123,138
setBus method
IlvBusLayout class 278
setConnectorStyle method
IlvTreeLayout class 119
setDestinationPointMode method
TIlvHierarchicalLayout class 173
IlvLinkLayout class 233
setEastWestNeighboring method
IlvTreeLayout class 147
setExteriorCycleId method
IlvTopologicalMeshLayout class 67
setFirstGraphLayout method
IlvMultipleLayout class 370
setFlowDirection method
IlvTreeLayout class 111
setGlobalAlignment method
IlvTreeLayout class 113,115
setGlobalDestinationPointMode method
TlvHierarchicalLayout class 173
IlvLinkLayout class 233
setGlobalLinkStyle method
IlvHierarchicalLayout class 170
TlvLinkLayout class 231, 238, 249
IlvTreeLayout class 117
setGlobalOriginPointMode method
IlvHierarchicalLayout class 173
IlvLinkLayout class 233
setHorizontalAlignment method
IlvGridLayout class 320
setInvisibleRootUsed method
IlvTreeLayout class 139
setLabelLayout method
IlvMultipleLayout class 370
setLayoutMode method
IlvTreeLayout class 105, 110, 128, 132, 136
setLayoutOfConnectedComponents method
IlvGraphLayout class 425
setLayoutOfConnectedComponentsEnabled method
IlvGraphLayout class 425
IlvTreelLayout class 139
setLevelAlignment method
IlvTreeLayout class 130
setLinkClipInterface method
IlvGraphLayout class 122, 174, 308
setLinkConnectionBoxInterface method
IlvGraphLayout class 121, 174, 309
setLinkStyle method
TlvHierarchicalLayout class 170
IlvLinkLayout class 239, 249
IlvTreeLayout class 117
setOriginPointMode method
TlvHierarchicalLayout class 173

USI NG

GRAPH

IlvLinkLayout class 233
setOrthForkPercentage method

IlvTreeLayout class 124
setOverlapPercentage method

IlvTreeLayout class 124
setParentChildOffset method

IlvTreeLayout class 123, 138
setPosition method

IlvTreeLayout class 104
setPreferredLayout method

IlvDefaultLayoutProvider class 358
setRoot method

IlvTreeLayout class 103
setRootPreference method

IlvTreeLayout class 103
setSecondGraphLayout method

IlvMultipleLayout class 370
setSiblingOffset method

IlvTreeLayout class 123, 138
setSpecNodeLevelIndex method

IlvHierarchicalLayout class 199
setSpecNodePositionIndex method

IlvHierarchicalLayout class 203
setTerminationPointFilter method

IlvLongLinkLayout class 256
setting a maximal children angle, Tree Layout 140
setting even spacing for the first circle, Tree Layout|
139
setting invisible root node parameter, Tree Layout]
139
setTipOverBranchOffset method

IlvTreeLayout class 123
setTowardsPreferredPosition method

IlvAnnealingLabelDescriptor class 411
setUseDefaultParameters method

IlvGraphLayout class 50
setVerticalAlignment method

IlvGridLayout class 320
setVerticalOffsetToPreviousLevel method

IlvBusLayout class 288
setWestEastNeighboring method

IlvTreeLayout class 147
short link mode (Link Layout)

algorithm description 226

bypass distance parameter 251

connector style parameter 238

features 224

link box connection interface 252

link crossing penalty parameter 251

link offset parameter 237

minimum final segment parameter 238

number of optimization iterations 246

same shape for multiple links parameter 250

self-link style parameter 246

LAYOUT ALGORITHMS 445

446 U S I N G

spacing parameters 237
side association for polyline label descriptors 404
side-by-side constraints, Hierarchical Layout 205
simulated annealing 394
spacing parameters
Hierarchical Layout 183
Link Layout (long link mode) 240
orthogonal fork percentage (Tree Layout) 124
overlap percentage (Tree Layout) 124
Tree Layout (free mode) 123, 124
Tree Layout (radial mode) 138
specified provider mode
Recursive Layout 341, 352
star center parameter, Circular Layout 303
star topology, Circular Layout 295
static layout 13
stop immediately parameter
Bus Layout 275
Circular Layout 300
Grid Layout 316
Hierarchical Layout 165
Link Layout 228
Multiple Layout 366
Random Layout 264
Recursive Layout 345
Topological Mesh Layout 63
Tree Layout 102
Uniform Length Edges Layout 84
sublayouts
Recursive Layout 353
supportsAllowedTime method
IlvGraphLayout class 46, 50
supportsLayoutOfConnectedComponents method
IlvGraphLayout class 425
supportsLayoutRegion method
IlvGraphLayout class 432
swim lane constraint, Hierarchical Layout 209
symmetries layout criteria 12

time, stop computation algorithms 39
tip-over alignment, Tree Layout (free mode) 115
tip-over layout modes (Tree Layout)
aspect ratio parameter 142
description 142
tip leaves over 143
tip over fast 144
tip roots and leaves over 144
tip roots over 143
Topological Mesh Layout
applicable graph types 57
application domains 57
description of algorithm 59
features 58

generic parameters 61
limitations 58

GRAPH LAYOUT

link clipping parameter 62, 73
link connection box parameter 62
link style parameter 64
nodes placement algorithm 65
nodes placement allowed time parameter 64|
nodes placement iterations parameter 64
optimization allowed time parameter 64
optimization iterations parameter 64
outer cycle parameter 67
refining a layout 70
sample drawings 56
specific parameters 64
using fixed nodes parameter to refine 70
using layout region parameter to refine 72
using outer cycle parameter to refine 72
Tree Layout
adding an invisible root node (radial mode)
139
algorithm description 99
alternating radial mode 135
applicable graph types 95
application domains 96
aspect ratio parameter (tip-over mode) 142
aspect ration parameter 137
compass directions 105
connector style parameter 119
evenly spaced first circle (radial mode) 139
features 97
flow direction parameter 111
free layout mode 109
generic parameters 101
global link style parameter 117
individual link style parameter 117
interactive editing 150
layout modes 105
level alignment parameter 130
level layout mode 127
limitations 97
link clipping parameter 102, 122
link connection box parameter 102, 121
link style parameter 117
making incremental changes 149
orthogonal fork percentage 124
overlap percentage parameter 124
position parameter 104
radial layout mode 131
respect node sizes 124
retrieving link categories 148
retrieving list of root nodes used by algorithm|
103
retrieving list of specified root nodes 103
root node parameter 103
additional options 103
sample drawings 94

ALGORITHMS

U

setting a maximal children angle (radial
mode) 140

setting a root node 103

spacing parameters (free mode) 123
spacing parameters (radial mode) 138
specific parameters 103

specifying east-west neighbors 147
specifying root node preference 103
specifying the order of children 150
tip-over alignment (free mode) 115
tip-over layout modes 142

Uniform Length Edges Layout

additional node repulsion weight 88
applicable graph types 79

application domains 79

description 82

features 81

force fit to layout region parameter 86
generic parameters 83

limitations 81

link clipping parameter 83, 91

link connection box parameter 84

link length weight 88

link style parameter 85

maximum allowed move per iteration 88
node distance threshold 90

number of iterations parameter 85
preferred length parameter 85
respect node sizes parameter 86
sample drawings 76

specific parameters 85

use default parameters

in I1vGraphLayout 50

variable end point parameters, Link Layout (long
link mode) 256

vertical offset parameter, Bus Layout 288
vertical offset to previous level parameter, Bus
Layout 288

width adjusting

Bus Layout 281

USING GRAPH

LAYOUT

ALGORITHMS 447

	Table of contents
	Conventions and Bibliography
	Introducing graph layout
	The concept of graph layout
	The graph layout algorithms
	Structure of the graph layout API
	Using the graph layout API
	Releasing resources used during the layout of a grapher

	Layout algorithms
	Overview of graph layout information
	Determining the appropriate layout algorithm
	Typical ways to choose a layout
	Choosing a layout algorithm
	Choosing the layout algorithm dynamically
	Hard-coding a layout at run time

	Generic parameters and features
	Support by algorithms of generic features and parameters
	Base class parameters and features

	Layout characteristics
	Topological Mesh Layout (TML)
	General information on the TML
	Features and limitations of the TML
	The TML algorithm
	Generic features and parameters of the TML
	Specific parameters of the TML
	Refining a graph layout (TML)
	Using a link clipping interface with the TML

	Force-directed or Uniform Length Edges Layout (ULEL)
	General information on the ULEL
	Features and limitations of the ULEL
	The ULEL algorithm
	Generic features and parameters of the ULEL
	Specific parameters of the ULEL
	For experts: additional features of the ULEL
	Using a link clipping interface with the ULEL

	Tree Layout (TL)
	General information on the TL
	Features and limitations of the TL
	The TL algorithm
	Generic features and parameters of the TL algorithm
	Specific parameters (for all tree layout modes)
	Layout modes of the TL algorithm
	Free layout mode
	Overview
	Flow direction
	Alignment parameter
	Link style
	Connector style
	Using a link connection box interface
	Using a link clipping interface
	Spacing parameters

	Level layout mode
	Overview
	General parameters
	Level alignment

	Radial layout mode
	Overview
	General parameters
	Alternating radial mode
	Overview
	Aspect ratio
	Spacing parameters
	Tips and tricks

	Tip-over layout modes
	Recursive mode

	For experts: additional tips for the TL

	Hierarchical Layout (HL)
	General information on the HL
	Features and limitations of the HL
	The HL algorithm
	Generic features and parameters of the HL
	Specific parameters of the HL
	Incremental mode with HL
	Layout constraints for HL
	Adding and removing constraints in Java for HL
	Level range constraints (HL)
	Level index parameter (HL)
	Same level constraints (HL)
	Group spread constraints (HL)
	Relative level constraints (HL)
	Position index parameter (HL)
	Relative position constraints (HL)
	Side-by-side constraints (HL)
	Extremity constraints (HL)
	Swim lane constraints (HL)
	Constraint priorities (HL)
	For experts: constraint validation (HL)
	For experts: more indices (HL)
	Recursive layout

	Link layout (LL)
	General information on the LL
	Features and limitations of the LL
	The LL algorithms
	Generic features and parameters of the LL
	Specific parameters for both LL modes
	Spacing parameters in short link mode
	Spacing parameters in long link mode
	For experts: additional features of LL
	For experts: special options of the Short LL
	For experts: special options of the Long LL

	Random layout (RL)
	RL sample
	Features and limitations of the RL
	The RL algorithm
	Generic features and parameters of the RL
	Specific parameters of the RL

	Bus layout (BL)
	BL - sample
	Features of the BL
	The BL algorithm
	Generic features and parameters of the BL
	Specific parameters of the BL

	Circular layout (CL)
	General information on the CL
	Features and limitations of the CL
	The CL algorithm
	Generic features and parameters of the CL
	Specific parameters of the CL

	Grid layout (GL)
	General information on the GL
	Features of the GL
	The GL algorithm
	Generic features and parameters of the GL
	Specific parameters of the GL

	Nested layouts
	Concepts for nested layouts
	Layout of nested graphs in code
	The classes that support nested graphs
	Order of layouts in recursive layouts
	Simple recursion: applying the same layout to all subgraphers
	Advanced recursion: mixing different layouts in a nested graph

	Recursive layout
	Overview of recursive layout
	Features
	Generic features and parameters

	Recursive layout modes
	Overview of recursive layout modes
	Reference layout mode
	Internal provider mode
	Specified provider mode
	Accessing all sublayouts
	Specific parameters
	Listener layout
	For experts: more on layout providers

	Multiple layout
	General information
	Features
	Generic features and parameters
	Specific parameters
	Attaching graph and labeling models
	Accessing sublayouts
	Combining multiple and recursive layout
	The reference labeling model

	Automatic label placement
	Using the label layout API
	Overview
	The label layout base class and its subclasses
	Instantiating and attaching a subclass of IlvLabelLayout
	Performing a layout
	Performing a recursive layout on nested subgraphs
	The label layout report
	Layout events and listeners
	Layout parameters and features in IlvLabelLayout

	Releasing resources used during the layout of labels
	Annealing label layout
	General information
	Features
	Limitations
	The algorithm
	Generic features and parameters
	Label descriptors
	Point label descriptor
	Polyline label descriptor
	Specific global parameters
	For experts: implementing your own label descriptors

	Using advanced features
	Overview of advanced features
	Using a graph layout report
	Layout report classes
	Creating a layout report
	Accessing a layout report
	Information stored in a layout report

	Using event listeners
	Laying out connected components of a disconnected graph
	Defining your own type of layout
	A sample custom layout algorithm
	Implementing the layout method

	FAQs about using the layout algorithms

	Index

