4|lli

|IBM ILOG Views
Foundation V5.3

User’s M anual

June 2009

© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Copyright notice
© Copyright International Business M achines Cor poration 1987, 20009.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.
Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux isaregistered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Javaand all Java-based trademarks and |ogos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

Preface

Chapter 1

Table of Contents

About This Manual 19
What You Need to KNOW e 19
Manual Organization.t e 19
N ON. . e 21
Typographic CONVENLIONSttt e e e e 21
Naming ConNVENTIONSottt e e e e 21
ANOte ON EXAMPIES 22
Further Reading 22
Introducing IBM ILOG Views Foundation., 25
Application Programming Interface (API) 25
LiDranies . . . 25
Class HierarChy o e e e 26
USiNG IBM ILOG VieWS. . ..ttt e e e e e e e e e 27
WINAOWS and VIBWS. . ..ottt 28
What IS @ ViEW? . . . o e 28
Looking at @ View WINAOW. oot 29
Containers: Controlling the View e 32
Introducing Graphic ObjeCtS.ot 33

IBM ILOG VIEwWS V5.3 — DOCUMENTATION OVERVIEW 3

Chapter 2

Displaying Graphic ObJECESot 34

INTEIACIONSo 34
Drawing Attributes and Palettes. 35
(7] (o 35
Line Style and Width 36
PatterNS . . 36
oMt 37
BasiC Drawing TYPeS . . oottt e 37
LiNES. 37
REGIONS . . 38
SIS . . vttt 38
Graphic ObjJeCtS .. .o 39
llvGraphic: The Graphic Objects Class e 40
Member FUNCHONSo 40
CallbaCKS . . . o 44
The lvSimpleGraphic Classot e e 46
Member FUNCHIONSo e e e 46
Graphic AttribUteS 46
Predefined Graphic Objects 47
IV AT C o 47
IVFIIEAAIC .« o e 47
VB DS . . oot 47
IVFIIEAEINIDSE . . .o a7
IV CON. L 48
IVZOOmMabIEICON. 48
IVTIanSParentICONttt e e e e e e e 48
llvZoomableTransparentIConot e 49
VLDl . . 49
IVFIlledLabelo e 49
IVListLabel. . .. e 49
llvZoomableLabel. e 49

IBM ILOG VIEwWS V5.3 — DOCUMENTATION OVERVIEW

IVLINE. o o e 49

IVAITOWLINE . . o e 50
IVRENEfLING . . . 50
VM AT . o 50
llvZoomableMarker e 50
VPOl POINES. . . o 50
IVPOlYSEleCtioNo 51
IVPOIYIINE . . .o 51
IVAITOWPOIYIING e 51
VPOl G0N, .« 51
IVOULINEPOIYGON oo e e 51
IVRECtANGIE . . . o o e 52
lIVFilledRectangle. e 52
IIVRoundRectangle. e 52
lIvFilledRoundRectangle i e 53
llvShadowRectangle e 53
llvShadowLabel 53
IVGHARECtANGIE.o e 53
lIVReliefRectangle e e 54
IVReliefLabel 54
IVRElefDIamond 54
VS PIINE . .o 54
IVCI0SEdSPING . ..o 55
IVFIledSPliNe. . . .o 55
Composite Graphic ObjJeCtSt 55
Filling Polygons: IlvGraphicPath e 55
Grouping Objects: IvGraphicSet e e 56
Referencing Objects: IlvGraphicHandle i 57
Other Base ClasSeso ottt e 58
IVGAUGE. . o ottt e 58
IVSCalE. . . e 58

IBM ILOG VIEwWS V5.3 — DOCUMENTATION OVERVIEW 5

Chapter 3

IVGadgetot e 59

IVGroupGraphiC.o 59
Y =T o)G 59
Creating a New Graphic Object Class i e 59
The Example: ShadowEIlpSe e 59
Basic Steps to Subtype a Graphic Object 60
Redefining llvGraphic Member FUNCtions i e 61
Creatingthe Header File e e e 61
Implementing the Object FUNCLIONS e 62
Updating the Palettes. 66
Saving and Loading the Object Description.t e 66
GraphiC RESOUICES. . . .ot e e 69
llvResource: The Resource Object Base Class 70
Predefined Graphic RESOUICES i e 70
NamMeEd RESOUICES ottt e e e e 71
Resource Creation and Destruction: lock and unLock. oo, 71
llvColor: The Color Classo e e 73
Color MOdEIS e 73
Using the IIVCOoIOr Class.ot e 74
Converting between Color Models. e e 76
Computing Shadow COIOrSo e 76
llvLineStyle: The Line Style Classt e e e 76
NeW LiNe Styleso 76
llvPattern and llvColorPattern: The Pattern Classes, 77
MONOChrome Patterns e 77
Colored Patlernso 78
IVFONt: The FONt Classot e 78
NEW FONES . .o 79
FONt NaMES 79
IVCUrsor: The CUrsor Classot e e e e 80
Other Drawing Parameterst e 80

IBM ILOG VIEwWS V5.3 — DOCUMENTATION OVERVIEW

Chapter 4

Chapter 5

Line Width ..o 80

Fill Sty . oo 81
Fill RUIE 81
ArC MOAE . . 82
Draw MO . . .o 83
Alpha Value e 83
Anti-Aliasing Mode 84
llvPalette: Drawing Using a Group of RESOUICESt 85
Locking and Unlocking RESOUICES. it i e e e e e e e 85
CliPPING ANBa . . et 85
Creating a Non-shared Palette. e 86
Creating a Shared Palette e 86
Naming Palettes.o 87
llvQuantizer: The Image Color QuantizationClass, 88
Graphic FOrmats. 89
Graphic Formats SUppoOrtedot e 89
BitmM DS . . o 90
llvBitmap: The Bitmap Image Classo e 91
Bitmap-Related Member FUNCLIONS 91
Bitmap FOIMaLso 91
Loading Bitmaps: Streamersottt e 92
Loading Transparent Bitmapsottt e e 93
llvBitmapData: The Portable Bitmap Data ManagementClass 93
The llvBitmapData Classo e e 94
The llvindexedBitmapData Class 94
The IIVRGBBItmapData Classot teeee 95
The IIVBWBItmapData ClIasso v ittt e e e e e e e 96
Image Processing Filters 97
llvBitmapFilter: The Image Processing Class ..., 97
The llvBlendFilter Class e 98

IBM ILOG VIEwWS V5.3 — DOCUMENTATION OVERVIEW 7

Chapter 6

The llvColorMatrixXFilter Class oo e e e e 99

The llvComponentTransferFilter Class e 100
The llvComposeFilter Classo e e 101
The llvConvolutionFilter Class 102
The llvDisplaceFilter Class e 103
The lIVFIoodFilter Classot e 103
The llvGaussianBIUrFilter Classot 103
The llvimageFilter Class e e e 104
The livLightingFilter Class i e e e e 104
The llvLIightSource Class e 106
The llvMergeFilter Classo 107
The llvMorphologyFilter Class oo e 107
The IIVOffsetFilter Class e 107
The IIVTIleRilter Class e 107
The llvTurbulenceFilter Classt e 107
The IIVFIterFIow Classo 108
Using lIlvFilteredGraphic to Apply Filter Flows to Graphic Objects 109
The Display System e e 111
llvDisplay: The Display System Classo e 112
Connecting to the Display Server. e 113
Opening a Connection and Checkingthe Display 113
Closing a Connection and Ending a Session.t i i 114
Display SyStem RESOUICESttt 114
The getResource Method. 115
How Display System Resources are Stored 115
Default Display SysStem RESOUICES ottt e e 116
Environment Variables and Resource Names.t 116
Display System Resources on WindowS ottt e e e 117
HOME . 118
The Display Path 118
Setting the Display Path. 119

IBM ILOG VIEwWS V5.3 — DOCUMENTATION OVERVIEW

Chapter 7

Chapter 8

Chapter 9

The Path RESOUICE e e e 119

The ILVPATH Environment Variable 119
Querying or Modifying the Display Path. 119
Example: Add a Directory tothe Display Path. i 120
VWS L 121
View Hierarchies: TwWo Perspectives e 121
Window-Oriented View Hierarchy 122
Class-Oriented View HierarChy e e e e e 123
lIvAbstractView: The Base Classottt e 124
llvView: The Drawing Class.ot e e e e e e 124
IVVIEW SUDCIASSES . . o 125
The IIVEIASHCVIEW Class oot e e e 125
The llvDrawingView Classot e 125
The [IVCoNtaiNer Class. oottt e e 126
The llVSCrollView Class.ot e e 126
Drawing Portso 127
llvPort: The Drawing Port Class e e e e e e 127
Derived Classes Of IIVPOrt. 128
The IvSYsStemPOrt Classot 129
The IVPSDEVICE Classo e 129
CONtaINEIS . . . 131
llvContainer: The Graphic Placeholder Class.o, 131
General-Purpose Member FUNCHIONS.ot e e 132
Applying Functions to ObjJectso i 132
Tagged ObJeCtSo 132
ODJECE PrOPEItIES oot 132
Displaying CoNntainers 133
Drawing Member FUNCHIONS e e e e 133
Geometric Transformationsttt e 134
Managing Double Buffering e 135

IBM ILOG VIEwWS V5.3 — DOCUMENTATION OVERVIEW 9

Chapter 10

Chapter 11

10

Reading Objects from Disk 135

Managing Events: ACCeleratorst e 135
Member FUNCHONSo e 136
Implementing Accelerators: llvContainerAccelerator. 136
Predefined Container ACCelerators 137
Managing Events: Object Interactors. e 137
Using Object INteractors.ot e 138
Predefined Object INteractors it e e e 140
Example: Linking an Interactor and an Accelerator. i 141
Creating Objects with Complex Behavior i, 145
Example: Creating a Slider 145
Associating a Behavior with Your Device. 146
Building and Extending your DeVICE i 147
Dynamic Modules 149
llvModule: The Dynamic Module Class i e i 150
Dynamic Module Code SKeleton 150
Building a Dynamic Module 151
Loading a Dynamic Module 153
IMPlICIt MOOE . . . o 153
EXPliCIt MOOE . . . o 154
An Example: DYNamiC ACCESS . . v vttt ittt e e e e e 154
Writing the Sample Module Definition File i 155
Implementing the New Classt e 155
Loading and Registration of the Example i 157
RegiStration MaCrOSt e 157
Adding the Sample Classto a DynamicModule 158
EVeNtS . . 161
lIvEvent: The Event Handler Classt 161
Recording and Playing Back Event Sequences: llIvEventPlayer 161
Functions Handling Event Recording.t e 162

IBM ILOG VIEwWS V5.3 — DOCUMENTATION OVERVIEW

Chapter 12

Chapter 13

Chapter 14

The IVTIMeEr Class e e e e e e e 162

External Input Sources (UNIX ONIY)o e 163
1Al ProCeaUIES . . .ot e 163
Low-level Event Handlingo e 164
Main Loop Definition: An Example. 164
llvNamedProperty: The Persistent PropertiesClass. 167
Associating Named Properties with Objects 167
Extension of Named Properties 168
Example: Creating a Named Propertyt 169
Printing in IBM ILOG VIEWS e 175
The llvPrintableDocument Classt e 176
1T 21 (0] £ 176
EXamplE . . . 176
The llvPrintable Class 176
The llvPrintableLayout Class it e e e e e e e 178
The lIVPIINter Class oo e e 179
The lIVPrintUNIt Classo e e 179
The llvPaperFormat Classt e e 180
DIal0gS . ot 181
IBM ILOG Script Programming e 185
IBM ILOG Script for IBM ILOG VIEWSo 186
Making IBM ILOG Views Applications Scriptable 186
Includingthe Header File i e e 187
Linking with IBM ILOG Script for IBM ILOG Views Libraries 187
Binding IBM ILOG Views Objects e 187
Getting the Global IBM ILOG Script Contextot e 187
Binding IBM ILOG Views ODbjJeCtS 188
Loading IBM ILOG Script Modules ... 189
ININE OIS . o oot 190
Default IBM ILOG ScCript Files o e e 190

IBM ILOG VIEWS V5.3 — DOCUMENTATION OVERVIEW 11

Chapter 15

12

Independent IBM ILOG Script Files e 190

IBM ILOG Script Static FUNCLIONS oo e e e 190
Using IBM ILOG Script Callbacks i e 191
Writing a Callback 191
Setting an IBM ILOG Script Callback 191
Handling Panel EVents 192
The OnLoad FUNCHION e e 192
The ONShOW Property e 192
The onHIde Propertyo 193
The onClOSE PrOPertyot e e e 193
Creating IBM ILOG Views Objects at Run Time 193
Common Properties of IBM ILOG Views Objects, 194
ClaSSNAME o 194
NBIMIE & . oottt et e e e 194
NEID . 194
Using Resources in IBM ILOG Script for IBMILOG Views 195
Using Resource Names with IBM ILOG Script for IBM ILOG Views 195
Using Bitmaps with IBM ILOG Script for IBM ILOG VieWS i 196
Using Fonts with IBM ILOG Scriptfor IBMILOG ViewS, 196
Guidelines for Developing Scriptable Applications 196
ReESOUICE NAMES . .. o 197
Internationalization. e 201
What 1S 118N . 202
Checklist for Localized ENVIFONMENTSot 202
Creating a Program to Run in a Localized Environment 203
Locale ReqUITEMENTS.ttt e 204
Checking Your System’s Locale Requirements.ttt 205
Locale Name FOIMat oot e 206
Current Default Localeo 207
Changing the Current Default Locale. e 208
X Library Support (UNIX ONly)o e e 209

IBM ILOG VIEwWS V5.3 — DOCUMENTATION OVERVIEW

Appendix A

Appendix B

IBM ILOG Views Locale SUPPOITottt e e 209

IBM ILOG Views Locale Names.ottt e 210
Determining IBM ILOG Views Supportforthe Locale 211
Required FONES. 212
Localized Message Database Files in IBMILOG Views 214
The llvMessageDatabase Class 215
Language of the Message Database Files. 216
Location of the Message Database Files. 216
Determining Parameters of the Message Database Files 219
Loading the Message Database i 220
Adbm File Format 222
How to Dynamically Change Your Display Language v, 225
Using IBM ILOG Views with Far Eastern Languages, 226
Data Input ReqUIremMeNtS. e e 227
Input Method (IM).o e e 227
Far Eastern Input Method Servers Tested with IBM ILOG Views 228
How to Control the Language Used for Data Input 228
Limitations of Internationalization Featuresttt 228
Troubleshooting. 229
Reference: Encoding LiStings e e 230
Reference: Supported Locales on Different Platforms 236
Packaging IBM ILOG Views Applications. 257
Launching ilv2data 258
Theilv2data Panel 258
Launching ilv2data with a Batch Command i, 259
Adding a Resource Fileto a UNIX Library 260
Adding a Resource FiletoaWindows DLL........... 261
Using IBM ILOG Views on Microsoft Windows 263
Creating a New IBM ILOG Views Application on Microsoft Windows. 263
Incorporating Windows Code into an IBM ILOG Views Application................. 264

IBM ILOG VIEwWS V5.3 — DOCUMENTATION OVERVIEW 13

Integrating IBM ILOG Views Code into a Windows Application 266

Exiting an Application Running on Microsoft Windows 266
WiIiNdows-SPeCIfic DEVICESttt e 267
PrINtING .o 267
Selecting @ Printer e 267
Using GDI+ Features with IBMILOG VIEWS. it 268
WHat IS G . . oo 268
GDI+ and IBM ILOG VIBWS oottt et et e e e et e e e e 268
Controlling GDI+ Features at RUN TIME.ttt e e 269
LiMItatioNSo 270
Using Multiple Display Monitors with IBMILOG Views 270
Appendix C Using IBM ILOG Views on X Window Systems 273
Libraries . .. 273
Using the Xlib Version, lIoXviews e 274
Using the Motif Version, libmviews e e 274
Adding New Sources of INpUt.ot e 275
ONC-RPC INtegration. e e e 275
Integrating IBM ILOG Views with a Motif Application Using libmviews 275
Initializing Your Application 275
Standard IBM ILOG Views Initialization Procedure, 276
Motif Application Initialization Procedure 276
Retrieving Connection Information. i e 276
Using an EXisting Widget.o e 276
Running the Main Loopot e e 277
Sample Program Using Motif and IBM ILOG VIEWS.ottt 277
Integrating IBM ILOG Views with an X Application Using libxviews. 279
INtEgration SIEPS . . . ot e 279
Complete Templateo e 280
Complete Example with Motif. 280

14 IBM ILOG VIEWS V5.3 — DOCUMENTATION OVERVIEW

Appendix D

Appendix E

Appendix F

Portability Limitations 283
Non-Supported or Limited Features. e 283
The Main EVENt LOOPot e e e 285
Error Messages. 287
The IIVEITOr Classot e e e e 287
Fatal ErrOrS .o 288
A NINGS ..t 291
IBM ILOG Script 2.0 Language Referenceo 295
YN AX . o 296
IBM ILOG Script Program SYNtaXo e 296
Compound STAatEMENESo e 296
COMMENES . . o 297
ldentifier SYNtaX e 297
EX IS SIONS . it 298
IBM ILOG SCript EXPreSSioNS oottt e 298
LIt ralS . . o 299
Variable Reference 300
PrOPEItY ACCESS . . .t 301
ASSIGNMENT OPEIatOrS . . o ittt it et et e e e e e 302
Function Call 303
Special KeYWOIdS. . . . oo e 304
Special OPEratoOrSot 304
Other OPEratOrS oottt e e e e e e 306
SE A EM NS . . .o 307
Conditional Statemento 308
10T o1 309
Variable Declaration 311
Function Definition 314
Default Value 315
NUMID OIS L e 315

IBM ILOG VIEWS V5.3 — DOCUMENTATION OVERVIEW 15

16

Number Literal SyntaX e 316

Special NUMDEISo 316
Automatic Conversion to a NUMDbBEr 317
Number Methods 318
NUMENC FUNCHIONSo 318
NUMENC CONSIANES oot e e e e e e e 319
NUMETIC OPEIALOISt ittt et e e e e e e e e e e e e 320
SUINgS . et e e e 322
String Literal Syntax 322
Automatic Conversion to @ StHNGo v vt 323
StHiNg Properties e 324
StriNg Methodso 324
SHING FUNCHONS . .. e e 327
SHING OPEIAlOrS . .ottt 328
BOO0IEaANS . .. 330
Boolean Literal SyntaX. 330
Automatic Conversionto a Boolean. 331
Boolean methods o 331
Logical Operatorsttt 331
ALY S o ot 332
IBM ILOG SCIPE AITaYS « .« v vttt et et e et e e et e e e e e e e e 333
Array CONSITUCIONot e e e e e e e e e e 333
ArTay PropertiesS . .. 334
Array Methodso 335
O LIS it 336
IBM ILOG Script ObjJeCtS oo e 336
Defining Methods e e 337
The this KeYyWOord e 337
ODbJeCt CONSIIUCIOr . . . ot e e e e e e e 337
User-defined CONSIIUCIOrS ottt e e e e e e e e 338
BUilt-in Methodso 338

IBM ILOG VIEwWS V5.3 — DOCUMENTATION OVERVIEW

IBM ILOG Script Date Valuesot e 339
Date CONSIIUCION oottt 339
Date Methods 341
Date FUNCHIONSot e e e 342
Date OPeratorsttt 342
The null Value 342
The IBM ILOG Script null Value. e e 342
Methods of NUIL.o 343
The undefined Value 343
The IBM ILOG Scriptundefined Value. e 343
Methods of undefined. 343
FUNCHIONS . 344
IBM ILOG Script FUNCLIONS e e e e 344
Function Methods.o 344
MiSCEellaNEOUS.o 345
... 347

IBM ILOG VIEWS V5.3 — DOCUMENTATION OVERVIEW 17

18

IBM

ILOG VIEws V5.3

DOCUMENTATION OVERVIEW

About This Manual

This User’s Manual explains how to use the C++ APl and grammar that are detailed in the
IBM ILOG Views Foundation Reference Manual.

What You Need to Know

This manual assumes that you are familiar with the PC or UNIX environment in which you
are going to use IBM® ILOG® Views, including its particular windowing system. Since
IBM ILOG Viewsis written for C++ devel opers, the documentation also assumes that you
can write C++ code and that you are familiar with your C++ devel opment environment so as
to manipulate files and directories, use atext editor, and compile and run C++ programs.

Manual Organization

This manual provides conceptual and hands-on information for developing applications that
incorporate IBM® ILOG® Views Foundation. It describes the fundamental s that underlie
IBM® ILOG® Views graphic objects and shows how to create and use graphic objects.

This manual contains the following chapters:

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 19

20

IBM

4

4

Chapter 1, Introducing IBM ILOG Views Foundation provides an overview of
IBM ILOG Views Foundation.

Chapter 2, Graphic Objects describes the concept of agraphic object and explains the
use of the many classes derived from the T1vGraphic class.

Chapter 3, Graphic Resources describes the resource and pal ette classes that define the
appearance of graphic objects and text.

Chapter 4, Graphic Formats describes the vectorial and bitmap formats available with
IBM ILOG Views.

Chapter 5, Image Processing Filters shows the subclasses of 11vBitmapFilter that
alow you to process your bitmap images in various ways, such as combining two images
with aselection of filters.

Chapter 6, The Display System providesinformation on 11vDisplay,
IBM ILOG Views' basic class for connection to the display system.

Chapter 8, Drawing Ports describes the 11vpPort base class.

Chapter 7, Views explains the concept of aview or visual display areaas used in
IBM ILOG Views.

Chapter 9, Containers explains how to use containersto provide efficient display and
behavior of graphic objectsin applications.

Chapter 10, Dynamic Modules contains information about creating and loading a
dynamic library or DLL.

Chapter 11, Events contains information on the classes that implement event loops.

Chapter 12, IlvNamedProperty: The Persistent Properties Class explains how to
associate application-dependent datawith IBM ILOG Views objects.

Chapter 13, Printing in IBM ILOG Views explains how to use the IBM ILOG Views
printing framework to define printer, document, and paper formats and other printing
controls.

Chapter 14, IBM ILOG Script Programming explains how to use IBM ILOG Script, the
IBM ILOG Views high-level scripting language.

Chapter 15, Internationalization explains how to develop localized language versions of
IBM ILOG Views applications.

The appendixes provide auxiliary and reference information as follows:

4

4

Appendix A, Packaging IBM ILOG Views Applications describesthe i 1v2data tool for
packaging your applications with IBM ILOG Views.

Appendix B, Using IBM ILOG Views on Microsoft Windows discusses requirements and
givetipsoninterfacing IBM ILOG Views with Microsoft Windows.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

¢ Appendix C, Using IBM ILOG Views on X Window Systems discusses requirements and
givetipsoninterfacing IBM ILOG Views with the X Window system.

& Appendix D, Portability Limitations discusses the system-dependent aspects of
IBM ILOG Views Foundation that may limit portability across multiple platforms.

& Appendix E, Error Messages lists the error messages that ILOG Views Foundation may
generate and discusses possible causes and workarounds.

& Appendix F, IBM ILOG Script 2.0 Language Reference is areference for the syntax of
IBM ILOG Script.

Notation

IBM

Typographic Conventions
The following typographic conventions apply throughout this manual:
& Code extracts and file names are writtenina "code" typeface.

& Entriesto be made by the user, such asin dialog boxes, are writtenina "code"
typeface.

& Command variables to be supplied by the user are written in italics.

& Somewordsin italics, when seen for the first time, may be found in the glossary.

Naming Conventions
Throughout the documentation, the following naming conventions apply to the API.

¢ The names of types, classes, functions, and macros defined in the ILOG Views
Foundation library begin with 11v, for example 11vGraphic.

4 The names of types and macros not specific to IBM ILOG Views begin with 11, for
example T1Boolean.

& The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized.

class I1vDrawingView;

¢ Thenames of virtua and regular methods begin with alowercase letter; the names of
static methods start with an uppercase letter. For example:

virtual IlvClassInfo* getClassinfo() const;

static IlvClassInfo* ClassInfo* () const;

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL 21

A Note on Examples

The documentation offers examples and explanations of how to use IBM ILOG Views
effectively. Moreover, some examples are extracted from the source code delivered with
IBM ILOG Views, whichisin the samples directory, just below the directory where
IBM ILOG Viewsisinstalled.

Further Reading

22

IBM

The following books furnish information on the C++ programming language:
& Lippman, Stanley B. C++ Primer, 3rd ed. Reading, MA: Addison-Wesley, 1998.

& Stroustrup, Bjarne. The C++ Programming Language, 3rd ed. Reading, MA: Addison-
Wesley, 1997.

& Stroustrup, Bjarne. The Design and Evolution of C++. Reading, MA: Addison-Wesley,
1994.

& |SO/IEC 14882:1998 Programming Languages - C++ and
I SO/IEC 14882-1998 Information Technology - Programming Languages - C++

The ISO/ANSI C++ Standard. Available in online and printed forms from the American
National Standards Institute (http: / /www.ansi . org).

The following books provide good advice on several graphics-related issues.

& Foley, James D., Andries van Dam, Steven K. Feiner, and John F. Hughes, Computer
Graphics: Principles and Practice, 2nd ed. Reading, MA: Addison-Wesley, 1996.

& Graphics Gems.
Vol. I: Glassner, Andrew S. (ed.), 1990. Reissue 1993.
Vol. II: Arvo, James (ed.), 1991. Reissue 1994.
Vol. 111: Kirk, David (ed.), 1992, 1994.
Vol. 1V: Heckbert, Paul S. (ed.), 1994
Vol. V: Paeth, Alan W. (ed.), 1995.
Boston: Academic Press.

& Murray, James D. and William van Ryper. Encyclopedia of Graphics File Formats, 2nd
ed. Sebastopol, CA: O’ Reilly and Associates, 1996.

& Nye, Adrian.
Vol. 1 Xlib Programming Manual, 3rd ed., 1992.
Vol. 2 Xlib Reference Manual, 3rd ed., 1992
O'Reilly & Associates.

& O’ Rourke, Joseph. Computational Geometry in C, 2nd ed. Cambridge University Press,
1998.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

& Rogers, David F. and J. Alan Adams. Mathematical Elements for Computer Graphics.
McGraw-Hill Publishing Co., 1990.

& Young, Douglas A. The X Window System: Programming and Applications with Xt, OSF/
Motif, 2nd ed. Prentice Hall, 1994.

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 23

24 IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

Introducing IBM ILOG Views Foundation

IBM® ILOG® Views Foundation isthe base IBM ILOG Views package, providing the core
features for devel opers creating graphical user interfaces (GUIs) and interactive two-
dimensional graphicsfor applications running in UNIX and PC environments.

We include here:

& The Application Programming Interface (API) introducing the set of C++ libraries for
designing your graphic interface.

& Using IBM ILOG Views which provides an orientation to the basic concepts of views and
graphic objects.

Application Programming Interface (API)

IBM

IBM® ILOG® Viewsis organized as a set of C++ class libraries accompanied by several
auxiliary editing tools to help you design your interfaces.

Libraries

The IBM ILOG Views libraries provide the APl needed to implement the programmable
portions of your applications. As atrue object-oriented C++ library, IBM ILOG Views
emphasizes code reuse through inheritance. Each derived class specializesits base class,

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL 25

26

IBM

adding to or modifying inherited structure and behavior. This meansthat if a particular class
does not have afeature you are looking for, you should also check its base classto seeif the
feature isinherited. When deriving your own classes, you can use the existing class features
and write only the new code you need, thus reducing development and maintenance costs.

TheIBM ILOG Views APl iswritten in C++, a superset of C, from which you can call your
C routinesif necessary. Because C++ is flexible and resource efficient, it has become the
most widely used and preferred object-oriented language.

The object-oriented capahilities provided by C++ allow code reuse and thus saves coding
time. With aclass hierarchy, alibrary of C++ classesis more flexible, extensible, and
dependable than a procedure-oriented library.

Object-oriented programming suits graphics-oriented applications particul arly well, because
graphic objects often have similar operations performed on them. For example, abuttonisa
specialized type of rectangle, and can thusinherit all the features of a rectangle without
recoding. This hierarchical nature providesfor easier, timesaving development and

mai ntenance procedures.

Object-oriented code allows you to extend or specialize IBM ILOG Views objects for your
own application (or library) without knowing the details of the IBM ILOG Views
implementation. Similarly, your customers can specialize your objects without knowing
details of your implementation. In addition, you can create your own library for your
applications on top of the IBM ILOG Views library by creating subclasses.

Class Hierarchy

The organization of IBM ILOG Views class hierarchy makesit easy for you to find what you
need. For example, using the classes in the diagram below, you can easily create
sophisticated interfaces with minimum coding.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Using IBM ILOG Views

lIvTransparentlicon |
livicon

INZoomablel ..|—|d7n. bleTransp

IvFilledLabel |

llvLabel

IVZoonmld.abdl

IhrArrowl.inel
llvLine

livReliefLine
llvMarker

livArrowPolyline |
IvPolyline |é livPalygon |- IvOutinePolygon |

livPolyPoints.

livReliefPolyline |~ IvReliePolygon |

livSpline |~ IvClosedSpline '~ INFiledSpiine |

livDrawSelection |— livLineHandie |

INGraphic — IvSimpleGraphic [~ IvElipse — INFiledElipse |

IvStringList |~ IvScrolledStringList

IvText |

livButton — IvArrowBLtton

IvMessagelLabel
INFrame
lvGadget [~ IIvOptionMenu
\ IvScrolBar
lIvComboBox— llvScrolledComboBox
IIvTextField |é livDateField |
\ llvNumberField |
llvShadowRectangle — llvShadowLabel |
lIvFilledRectangle livReliefDiamond |
IvRectangle IIvReliefRectangle |(
IvReliefLael |
livRoundRectangle

Figure1l.1 Partial ClassHierarchy of IBM ILOG Views Graphic Objects

Using IBM ILOG Views
You use IBM® ILOG® Views Foundation to create graphical user interfaces (GUIs) and

interactive two-dimensional graphics for applications running in UNIX and PC
environments.

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 27

Here are introductions to some basic terms and concepts related to IBM ILOG Views. Later
chapters cover in detail the classes for implementing them in the API.

& Windows and Views defines views, windows, and related terminol ogy.

& Containers. Controlling the View discusses the role of containersin your use of
IBM ILOG Views. It also discusses the difference between a container and a manager.

¢ Introducing Graphic Objects provides an orientation to displaying and transforming
graphic objectsin IBM ILOG Views.

& Drawing Attributes and Pal ettes discusses the rich variety of colors, fonts, and other
IBM ILOG Views resources that affect the appearance of graphic objects.

& Basic Drawing Types relates the drawing attributes to lines, regions, and strings. the
fundamental types of drawingsin IBM ILOG Views.

Windows and Views

InIBM® ILOG® Views, aview is an object to which basic services can be added, and
which is associated with the window of the underlying display system, such as X Window ™
in UNIX. Drawing frequently takes placein the view, which displays an image of the objects
or asubset of them. Thisimage can be geometrically transformed by moving, zooming, or
rotating without affecting the objects themselves.

What is a View?

Your initial efforts when you write an IBM® ILOG® Views program will be focused on
creating and combining views where people can display and possibly interact with your
program.

A view isavisua place holder—arectangular area on your screen—where elements of your
IBM ILOG Views application are displayed.

28 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM

Figure1l.2 AView

0y

ey o N e e o w]

i

Each view is distinguished by its:

& |ocation (x,y coordinates that you define),

& size (height and width that you define),

& vishbility (aview might be present but not visible).

Windows and Views

You create visible elements of your IBM ILOG Views application by combining views and

their contents.

Looking at a View Window

Hereisasimplified drawing of an IBM® ILOG® Views window:

MyWindow

x|

Rectangle

Ellipse

=

Figure1.3 AnIBM ILOG Views Window

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL 29

Thiswindow contains buttons enabling you to draw rectangles and ellipses, and an arrow
button to select an existing object and either move or resize it. It has a set of scroll bars for
moving different parts of alarger working view into the display area.

Thiswindow is composed of four different IBM ILOG Views views:
& Top-Level View: Top Window

¢ Scroll View

¢ Tools View

& \Wbrking View

Top-Level View: Top Window

The purpose of the top window is generally to hold various kinds of lower-level views. You
rarely draw directly into atop window, but most often into one of the lower-level views that
it holds.

Figure1.4 Top Window
Views of this kind are the only views that:

& Include atitle bar.

& Can be associated with a system menu that allows the user of your programsto intervene
concerning such things as resizing or iconifying your window.

You can associate as many lower-level views as you need with the top window. The top
window holds not only the title of the window but also its current size. None of the views
held within the top window can extend beyond the rectangular perimeter of the top window.
A corollary of this situation is that atop window can never be held within any other kind of
lower-level view.

Scroll View

The scroll view is alower-level view.The sole purpose of the scroll view isto contain apair
of scroll bars, alowing you to scroll the lower-level drawing view that is contained within
the scroll view.

30 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM

Windows and Views

- | -

Figurel5 Scroll View

Note: Thistype of window is provided with the Gadgets package of IBM ILOG Views.
There is a native implementation in the Foundation package, for Microsoft Windows and
Motif ports only.

Tools View

Thetoolsview is alower-level view that contains drawing and selection command buttons.
Thiskind of view can store and display graphic objects aswell as coordinate actions that the
user can perform on these objects.

Y
Rectangle |
Ellipse |

Figure1.5 ToolsView
Working View

The working view isthe lowest-level view. The working view islarger than the part that you
see at any particular moment. In the following figure, the white rectangle in the middle of the
large gray rectangle represents what you see. For example, there's an ellipse in the top-right-
hand corner of the view that is not currently visible. To seeit, the user has to use the scroll
barsin the higher-level scroll view.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL 31

Figure1.6 Working View

You can control the working area of change by clipping. While a clipping region is active,
only changes to that region are displayed.

~g— Clipping Region

Figure1.7 Clipped Area

Containers: Controlling the View

Containers coordinate the storage and display of graphic objects.

T
/

|
!

¥

-
=y

Figure 1.8 A Container

32 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Introducing Graphic Objects

Fundamentally, a container is a view, with predefined callbacks to handle the automatic
refresh of the graphic objects it stores, as well as the system events and user events that
occur in that view.

Each graphic object stored in a container is unique and can only be displayed by that

container. In short, a container:
& isessentialy another kind of view where you can collect any number of graphic objects.
& automatically manages all drawing operations within the view.

€ can associate interactorsto its objects to give them particular behaviors.

& |etsyou access objects by their names.

& can use atransformer to move, zoom, and rotate when drawing objects.

L 4

associates single actions with events received by the view.

Containers versus Managers
IBM ILOG Views groups objects in one of two basic types of storage data structures:

& Containers
& Managers
A view is associated with a set of graphic objects stored in a container or manager.

A container stores a certain number of graphic objects, and it is associated with aview,
which displays the objects stored in the container. Each object can be associated with a
specific behavior, and accel erators—which are keyboard events that immediately call a
predefined function—can be attached to the container itself. Containers are part of the
functionality of the Foundation package.

A manager is another type of data structure that provides layers, multiple-view, fast redraw,
persistency, and editing functionality. For details on managers see the Managers
documentation.

Note: For efficient drawing of numerous objects, multiple views, and layers, you should
use the managers instead of containers.

Introducing Graphic Objects

IBM

Using atwo-dimensional vector graphic engine, IBM® ILOG® Views provides drawing
ports (memory, screen, and dumpfile) aswell as alarge set of drawing primitives to create
basic geometric forms. You can draw basic geometric shapes such as arcs, curves,
rectangles, labels, and so on. You can draw on the screen, in memory, or generate dump files

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 33

34

IBM

such as PostScript. You can create black-and-white and color images. The graphic engine
builds on these primitives to define graphic objects.

Displaying Graphic Objects

A graphic object isan image that users can view on their screen. When you display agraphic
object, you associate the coordinates of the graphic object with the coordinate system of a
particular container.

Figure1.9 Geometric Properties of Graphic Objects

Geometric properties define the shape and placement of your graphic object. Every graphic
object hasan x value, ay value, and dimensions (that is, width and height). Thex and y
values indicate the upper-left corner of the graphic object bounding box, which isthe
smallest rectangle that entirely contains the area covered by this object.

You define the exact shapes of graphic objectsin your IBM ILOG Views-based programs
and then make them concrete using various drawing member functions. Other member
functions provide you with information about your graphic objects, and let you carry out
geometric tests concerning the shapes that you are using. For example, you can check
whether a point with given coordinates lies inside a certain shape.

Interactors

IBM ILOG Views makes a clear separation between graphic objects and behaviors, thus
alowing you to apply a particular behavior to an object.

InIBM ILOG Views, a predefined behavior is called an “interactor.” Aninteractor can be
applied to any graphic object to give it a particular behavior, thus defining its functionality.

For example, by applying a“button” interactor to an object, that object, which before only
had a visual aspect, now takes on the behavior of a button—that is, when you click it, it
blinks.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Drawing Attributes and Palettes

Button Interactor

|
Y

— iIbject now blinkswhen clicked.

Figure1.10 Object/Interactor Concept

The benefits of separating objects from behavior is that you can apply a certain type of
behavior to any type of graphic object. For example, you can apply button behavior to a
bitmap (such as an icon) with only asingle line of code.

Furthermore, it is quite easy to extend behavior by subclassing the interactor classes
provided with IBM ILOG Views.

Drawing Attributes and Palettes

IBM

With IBM® ILOG® Views you have at your disposal alarge selection of fill and line
patterns, colors, and font attributes to apply to graphic objects and text.

Because these resources are grouped in palettes and are shared among any number of
objects, you can easily make global changes while minimizing memory consumption.

Color

In asimple drawing situation, such as the creation of arectangle, the actual drawing is
carried out with what is referred to as the foreground color, and the area “ behind” the
drawing is referred to as the background color.

¢ Foreground Color Theforeground color isused for drawing dots, arcs, lines, polylines,
and so on. It isalso used to display character strings and to fill areas such as polygons
and arcs.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL 35

& Background Color The background color is used as a second color when filling with
patterns and drawing character strings.

Line Style and Width

Besides ordinary lines, referred to as “solid,” you can draw straight lines and curves
composed of dots or dashes. Thisistheline style. Line width refersto the thickness of the
linesin adrawing.

The line style and width define the exact visible aspect of all line drawings as well as line-
type drawings including polyline and spline.

Patterns

A pattern refers to the design used to fill surfaces. InIBM ILOG Views, there are two types
of pattern, distinguished by the number of colors that can be applied.

Monochrome Pattern

The word “pattern” designates a monochrome (or two-color) design. IBM ILOG Views
offers sixteen ready-to-use patterns.

Hereis an example of a pattern:

Foreground coloy ——s—p
3

Background coloy ————pp

Figure1.11 A Pattern

This particular pattern could be obtained by using amask composed of a16x 16 array of hits,
asyou see here;

36 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Basic Drawing Types

olojojojojojolojojojojojojajold
olofof1]tfelafa]af1]1[1]1]e]e]o
olofol1|t]e]a]a][] [1]1]e]e]e
ol el][] 1]]1]1]e
al1[1]1][] 1] 1]]1]1]e
ol fefoalojif1j1fifr]e
Qlifijijijejofafajojojififji|i]a
Ol rjojolajojojojrjfryrjr|o
Olifrpifrjofajojofajafififrj1]a
Ol rjojolojojojojrfrjrjr|o
al1|1f1 1] ofolalolaf1]1]1]1]0
al1[1]1 a1]1]]e
al1|1{1 el {11 [1]1]1]1]e
olofol1 1|11 1]1[1]1[1]1]e]e]a
glojofrjrirfr|af1rf1jrprjejelo
Glojojofojojajafjo(ojofajojejo]d

Figure1.12 A Pattern Mask

Inside a pattern mask, we speak of the 1 bits as the foreground, and the 0 bits asthe
background. In other words, the pattern resource invokes the color resource.

Color Pattern

Whereas an ordinary pattern is two-dimensional, a color pattern incorporates athird
dimension, depth, to deal with color.

Instead of having simply a1 or a0 at each location in the array, you insert a number that
indicates the color to be used at that point in the color pattern. The default value for the color
pattern is zero (0) indicating that no color pattern isto be used.

Font

Fonts are used with character strings, that is, when drawing text.

Basic Drawing Types

IBM

Basically, there are three kinds of drawingsin IBM® ILOG® Views: lines, regions, and
strings, with the attributes applied depending on the individual drawing needs and
capabilities.

Lines

This category includes straight lines, curves and open-ended sets of connected straight lines
or curves. Attributes are applied to lines as follows:

& Color Straight lines or curves are drawn with the current foreground color.

& Line Style The current line style (such as solid, dots or dashes) determines how the
straight lines or curves are drawn.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL 37

& LineWidth Anunsigned integer indicates the current line width.

& Pattern Using monochrome (two-color), lines are drawn with the current pattern, but
thisis noticeable only with thick lines.

& Color Pattern Using color, lines are drawn with the current color pattern. Here again,
this effect is noticeable only for thick lines.

Regions

This term designates closed sets of connected lines or curves. Attributes are applied to
regions as follows:

& Color Theclosed curve around aregion retainsits original color; that is, the current
foreground color.

& Pattern Regions are filled with the current fill pattern or fill mask pattern.
¢ Color Pattern Regions are filled with the current color pattern.

¢ Fill Style Thisvaue determinesif patterns are to be handled as masks, monochrome
patterns or color patterns.

¢ Fill Rule Determinesthefill strategy for self-intersecting polygons. For details see Fill
Rule on page 81.

& ArcMode Determines how an arcis closed for filling. For details see Arc Mode on
page 82.

Strings

Attributes are applied to strings as follows:

& Color Theactua characters are printed with the foreground color.
& Font Thefont in which the string is printed.

38 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

I BM

Graphic Objects

IBM® ILOG® Views provides a hierarchy of classesthat let you create various high-level
graphic objects. The starting points for these objects are the classes 11vGraphic and
IlvSimpleGraphic.

& |lvGraphic: The Graphic Objects Classis the foundation classfor IBM ILOG Views
graphic objects.

& ThellvSmpleGraphic Classis afundamental class that inheritsfrom 11vGraphic. It
alows you to assign graphic resources and apply transformations to your graphic
objects.

& Predefined Graphic Objects illustrates the numerous graphic objects provided by
IBM ILOG Viewsfor producing standard geometric forms such as arcs, rectangles, and
so forth.

& Composite Graphic Objects allow you to optimize object usage by grouping for various
purposes.

& Other Base Classes describe the additional graphic classes used primarily with other
IBM ILOG Views packages.

& Creating a New Graphic Object Classiillustrates in detail how to create a new,
customized graphic object in IBM ILOG Views.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 39

llvGraphic: The Graphic Objects Class

40

I BM

IBM® ILOG® Views graphic objects inherit attributes from the abstract base class
IlvGraphic. Thisclassalowsan IBM ILOG Views graphic object to draw itself at agiven
destination port, and, if desired, with atransformation of its coordinates determined by an
associated object of the 11vTransformer class.

IlvGraphic has member functionsthat allow you to set and change geometric dimensions.
A handful of member functions are given to set and get user properties that can be associated
with an object for application-specific purposes. The I1vGraphic class does not actually
implement these member functions. They are declared as virtual member functions, and are
defined to do various operations in the classes that inherit 11vGraphic attributes. Though
the member functions to manipul ate geometric shapes and graphic attributes are present,
they do nothing.

Member Functions
IlvGraphic member functions can be presented in severa groups:

& Geometric properties These member functions handle location, size, and drawing
properties, which include the T1vGraphic: : draw method used to draw the graphic
object. Thevirtual T1vGraphic: : draw method should be defined conjointly with the
method I1vGraphic: : boundingBox, Which defines the smallest rectangle that
entirely contains all the area covered by the graphic object.

& Graphic properties Use these member functions to change the visible aspect of the
objects, that is, their color or pattern. You do so by means of member functions that
indicate graphic properties of graphic objects and modify the palette bound to these
graphic objects. The following example shows how to set the background of any graphic
object:

IlvButton* mybutton = new IlvButton (display,
IlvPoint (20,20),
"Quit");

IlvColor* color = display->getColor ("gold") ;

if (color) mybutton->setBackground(color) ;

& Named properties Named properties handle the persistence of properties associated
with graphic objects (see Chapter 12).

& User properties 11vGraphic objects can be associated with a set of source code user
properties. User properties are a set of key-value pairs, where the key isan
refcppfoundation:I1Symbol object and the value may be any kind of information
value. User properties are not persistent.

These member functions provide you with a simple way to connect your graphic objects
with information that comes from your application. You can keep track of the graphic

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IlvGraphic: The Graphic Objects Class

part of your application by storing the pointers to objects you create, and connect the
graphic side to the application by means of user properties, for example:
IlInt index = 10;

I1lSymbol* key = IlGetSymbol (“objectIndex”) ;
mybutton->addProperty (key, (IlAny)index) ;

Some member functions provide tag management. Tags are markers that you can apply
to graphic objects to identify them. You can then use various IBM ILOG Viewsfunctions
to manipulate only the tagged objects.

& Gadget properties Gadget properties handle the sensitivity of objects to events, the
callbacks to be called when the object is activated, the client data stored with objects, and
the object interactor associated with the object class. For details on using callbacks, see
the section Callbacks.

& Focuschain properties The focus indicates the object on the screen that is receiving
any keyboard events. The focus chain isthe order of the objects on the screen that receive
the focus. The focus moves to the next object in the focus chain when, typically, the Tab
key is pressed, or to the previous object when shift-Tab is pressed.

& Classinformation Subtypes of the class 11vGraphic can handleinformation at the
classlevel. Thismeansthat al instances of a given class can share the same information.
For example, I1vGraphic: : className alows you to get the class name and
IlvGraphic::isSubtypeOf returns I11True if thetarget 11vGraphic objectisa
subclass of the given class argument. This example shows how to use class information
member functions:

IlvButton* button = new IlvButton(display,

IlvPoint (10,10),

“sample”) ;
// Get the IlvClassInfo object associated with the button class.
IlvClassInfo* classInfo = button->getClassInfol();

// Get the name of the IlvGraphic class and print it: “IlvButton”
const char* name = classInfo->getClassName () ;
I1lvPrint (name) ;

// Get the name of the super class and print it: “IlvMessageLabel”
name = classInfo->getSuperClass()->getClassName() ;
I1lvPrint (name) ;

IlBoolean isSubtype =

classInfo->isSubtypeOf (IlvSimpleGraphic: :ClassInfo()) ;
name = isSubtype ? “It’s a subtype” : “error”;
IlvPrint (name) ;

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 41

& Classproperties Static member functions and their non-static equivalents let you
handle properties at the classlevel, that is, these properties are defined for every instance
of the class. In some methods, the T11Boolean parameter allows you to operate
iteratively on each superclass of the object until amatch is found. Here are the member
functions that deal with class properties:

void AddProperty(const IlSymbol* key, IlAny value);
void RemoveProperty (const IlSymbol* key) ;
void ReplaceProperty (const IlSymbol* key, IlAny value);
void GetProperty(const IlSymbol* key,
I1Boolean checkSuperClass = IlFalse);

const IlvClassInfo* HasProperty (const IlSymbol* key,

I1Boolean checkSuperClass = IlFalse);
void addClassProperty(const IlSymbol* key, IlAny value);
I1Boolean removeClassProperty (const IlSymbol* key) ;
I1Boolean replaceClassProperty(const IlSymbol* key,

I1lAny value);
I1Any getClassProperty(const IlSymbol* key,

I1Boolean checkSupCl = IlFalse) const;
const IlvClassInfo* hasClassProperty(const IlSymbol* key,
I1Boolean checkSupCl = IlFalse) const;

Hereis an example that shows how to use class properties:

L et us imagine a map where graphic instances are shown with toggle-like sensitive
behavior (IBM ILOG Views provides specific objects called interactors that allow you to
associate a behavior with graphic objects). Sometimes we may want these elementsto be
insensitive. Instead of scanning the object list to set the sensitivity to T1False, weusea
class-level property in thisway:

Let myclass beasubclass of 11vGraphic; and let myInteractor, asubclass of
IlvToggleInteractor, bean interactor attached tomyCclass.

// Add the class-level property

myClass* obj = new myClass (display) ;

obj->addClassProperty (I1GetSymbol (“sensitive”),
(IlAny) IlTrue) ;

In the applicative code, the application tests whether sensitivity must be inverted. There
is another way to add a property to a class object, using a static member function, since
both statements are equivalent:

if (anyValue == IlTrue)

{

myClass: :AddProperty (I1GetSymbol (“sensitive”),
(IlAny)IlFalse);

42 IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

IlvGraphic: The Graphic Objects Class

In the implementation file of themyInteractor class, we redefine the parent class
method I1vInteractor: :handleEvent t0 add our specific behavior, that isfreezing
the sensitivity when a certain condition is present:

IlBoolean

myInteractor: :handleEvent (I1vGraphic* object,
IlvEvent& event,
IlvContainer* cont,
IlvTransformer* transf)

// gets the sensitivity state

IlSymbol* symbol = IlGetSymbol (“sensitive”);

if (object->hasClassProperty (symbol))

{

if (!object->getClassProperty (symbol))
return IlFalse;

}

return IlvViewToggleInteractor::handleEvent (object,
event,
cont,
transf) ;

}

¢ Input/Output properties These member functions let you read and write your object
descriptions from and to special kinds of streams, known as I1vInputFile and
I1voutputFile, Which handle the reading and writing of objects from C++ streams.

IBM ILOG Views offers a basic implementation of these classes, which were designed
50 that you can easily add your specific information. Therefore, when you need to save
and load application-dependent data, you should create your own subtypes of these two
classes.

e Writing Graphic Objects

The 11voutputFile classwritesthe complete description of a series of objectsin an
output stream. You can use this classin the following way:

// Open a file output stream
fstream outstream(“image.ilv”, ios::out | ios::trunc);

// Initialize the number of objects and their array of pointers
const IlvUInt n = 10;
IlvGraphic* outObjects[n];
for (IlvUInt i=0; i<n; 1i++)
outObjects[i] = new IlvRectangle(display,
IlvRect (0, 0, 200, 100));

// Create the IlvOutputFile
IlvOutputFile outfile(outstream) ;

// Write the objects and get in outTotalCount the number
// of objects actually stored

I1lvUInt outTotalCount = 0;
outfile.saveObjects(n, outObjects, outTotalCount) ;

e Reading Graphic Objects

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 43

44

IBM

The I1vInputFile classisthe main class for reading objects from a stream. The
following code shows how to read T11vGraphic objects from aninput stream:

// Open a file input stream
fstream instream(“image.ilv”, ios::in);

// Create the IlvInputFile
IlvInputFile infile(instream) ;

// Get the number of created objects and their array of pointers

I1UInt InTotalCount = 0;

IlvGraphic* const* inObjects = infile.readObjects (display,
InTotalCount) ;

Callbacks

When an object is designated by the user to perform an action, the user may need to call a
specific function, a callback, that the user has defined. These functions are usually called by
the handleEvent method of the object.

There are two ways you can set a specific callback to be called when an action is triggered:
& Register the callback as a pointer to a user-defined function.
Thisfunction must be an 11vGraphicCallback type.

Thetype I1vGraphicCallback isdefined inthefile<ilviews/graphic.h>:

#include <ilviews/graphic.h>
typedef void (* IlvGraphicCallback) (IlvGraphic* obj, IlAny arg);

Thefirst argument (ob3j) isthe graphic object that called the callback and the second
argument (arg) isthe user data. The user data could be defined when setting the
callback to a particular gadget. If no datais defined, the parameter is the graphic object’s
client datathat you can set with the T1vGraphic: :setClientbata method.

¢ Register acallback namethat isin turn associated with a function to be called by the
graphic object container. The association between a callback function and its name must
be unique for a particular container.

Registering Callbacks

The methods used to register a callback in a container are:

#include <ilviews/contain.h>

void registerCallback (const char* callbackName,
IlvGraphicCallback callback) ;

void unregisterCallback (const char* callbackName) ;
IlvGraphicCallback getCallback (const I1lSymbol* callbackName) const;

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IlvGraphic: The Graphic Objects Class

Callback Types

An object can define several callback types. Each callback type corresponds to a specific
action. For example, you can find, in every gadget, a“Focus In” callback type that refersto
the callbacks to be invoked when the gadget receives the keyboard focus.

Each callback type storesalist of callbacksto be invoked when the related event occurs. The
class 11vGraphic contains generic methods that allow you to add or remove a callback for
a specific callback type:

#include <ilviews/graphic.h>

void addCallback(const I1lSymbol* callbackType,
IlvGraphicCallback callback);
void addCallback(const IlSymbol* callbackType,
const IlSymbol* callbackName) ;
void addCallback(const I1lSymbol* callbackType,
IlvGraphicCallback callback,
I1lAny data) ;
void addCallback(const IlSymbol* callbackType,
const IlSymbol* callbackName,
I1lAny data);
void removeCallback (const IlSymbol* callbackType,
IlvGraphicCallback callback);
void removeCallback (const IlSymbol* callbackType,
const IlSymbol* callbackName) ;

The argument data that you can pass when adding a callback is sent to the callback. It
corresponds to the argument named arg in the T1vGraphicCallback definition.

The Main Callback

The Main callback type can be used to perform the main action of an object that is
designated to perform several actions. For example, it could be used when a button object is
activated, or when you double-click on an item in astring list.

Some useful methods help you set the Main callback of an object:
#include <ilviews/graphic.h>

IlvGraphicCallback getCallback() const;

I1Symbol* getCallbackName () const;

void setCallback (IlvGraphicCallback callback) ;

void addCallback (IlvGraphicCallback callback) ;

void setCallback (IlvGraphicCallback callback, IlAny data);
void addCallback (IlvGraphicCallback callback, IlAny data);
void setCallback(const IlSymbol* callbackName) ;

void setCallback (const IlSymbol* callbackName, IlAny data);
void setCallbackName (const IlSymbol* callbackName) ;

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 45

The llvSimpleGraphic Class

46

IBM

IlvSimpleGraphic isafundamental classinherited from I11vGraphic.
IlvSimpleGraphic implementsal functionality of the 11vGraphic class and adds to
eachinstance an 11vPalette resource used to draw the object. Thisclassletsyou carry out
operations that access and change graphic properties such as colors, fonts, and patterns that
are gathered in an T1vPalette instance associated with the graphic object. It also allows
you to apply geometric transformations to objects.

IlvSimpleGraphic objects contain their own 11vpPalette Object. This meansthat a
graphical object is simultaneously a geometric shape and a set of attributes to display this
shape. Thus, from this class you can create new objects needed for your application. Some
member functions will be needed, some not. The IBM® ILOG® Views object library
contains a large number of such objects, and offers a wide range of solutions for aimost al
kinds of problems.

Member Functions

The I1vSimpleGraphic classincludes member functionsthat alow you to access palette
attributes. Every 11vSimpleGraphic object hasan I11vPalette oObject, which can be
shared among objects. Therefore, when you ask an T1vsimpleGraphic oObject to change a
graphic property such asits foreground, the following operations are performed:

1. TheIlvDisplay: :getPalette functionisusedto search for anew I1vpalette for
the new foreground.

2. The member function T1vResource: : 1ock iscaled for the new palette to increment
its reference count.

3. The graphic object’s old paletteis called.
4. The member function T1vResource: :unLock iscaled for the old palette.

5. The new palette is registered as the current palette of the object.

These operations guarantee the sharing of the T11vpalette. Usersare encouraged to use the
same mechanism inthe case of T1vpPalette objects. Thisiswhy member functionsthat can
mani pulate resources by changing the graphic attributes, such as

IlvGraphic: :setForeground, are defined as virtual functions.

Graphic Attributes

The I1vSimpleGraphic constructor needsthe 11vpalette object from whichitisto
obtain resources. Thepalette parameter can be set to a specific value or left unspecified,
by which it takes the value 0. When the palette is set to 0, the default palette of the display
object is used. This palette is the one returned by the member function

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Predefined Graphic Objects

IlvDisplay::defaultPalette. Thepalette parameter islocked when the objectis
created and unlocked when it is deleted.

Predefined Graphic Objects

This section presents basic classes, all subclasses of T1vsimpleGraphic, that provide you
with predefined graphic objects.

llvArc

An I1varc object appears as an outlined arc of an ellipse.

llvFilledArc

AnIlvFilledarc object appearsasafilled arc.

IlvEllipse
AnT1vEllipse object appearsasan outlined elipse.

llvFilledEllipse

AnTlvFilledEllipse oObject appearsasafilled elipse.

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 47

llvicon

An T1vIcon object appearsas animage.

Vie

llvZoomablelcon

An IlvzoomableIcon oObjectisakind of 11vIcon object that can be zoomed in or
reshaped.

S |

llvTransparenticon

An T1lvTransparentIcon Object appears asan image that can have transparent areas.

Vie B

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

IBM

Predefined Graphic Objects

llvZoomableTransparenticon

An T1lvZoomableTransparentIcon objectisaversion of the T1vzoomableIcon object
that leaves the background of the image (the 0 bits) unchanged.

llvLabel

An I1lvLabel object appears asasingle line of text. It cannot be zoomed in nor reshaped.

This object is an IlvLabel instance

llvFilledLabel

AnIlvFilledLabel Object appearsasasingleline of text, drawn on afilled rectangle that
exactly fits the bounding box of the text.

This is an IlvFilledLabel instance

llvListLabel

AnIlvListLabel oObject appearsasavertical list of strings, so that it looks like a series of
IlvLabels.

First element in an IlvListLabel
Second element
Third and final element

llvZoomableLabel

An T1lvZoomableLabel Object actsjust like aregular T1viabel object, but any
transformation can be applied to it, including zooming.

llvLine

An I1vLine object appears as a straight line between two given points.

[

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL 49

llvArrowLine

An IlvArrowLine Object appears as a straight line between two given points, with asmall
arrow head drawn on the line trajectory.

—._.___________._.—-—-b

llvReliefLine

AnIlvReliefLine object appearsasaline with athree-dimensional look. How the
IlvReliefLine looks depends on the thickness of theline.

llvMarker

An T1vMarker object isdrawn as a specific graphic symbol at a given location.

[22] +
°7 o

llvZoomableMarker

An IlvzoomableMarker oObject isaversion of the I1vMarker object that can be zoomed
asfollows:

& For zooming out, the current size is reduced to fit the transformed bounding box.

& For zooming in, the current size stays fixed to that specified by the
IlvMarker: :setSize method.

IlvPolyPoints

IlvPolyPoints isan abstract class from which is derived every class having shapes
composed of severa point coordinates.

50 IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

IBM

Predefined Graphic Objects

llvPolySelection

The 11vPolySelection classisused tofill squareson all the points of an object of type
IlvPolyPoints.

e NN

llvPolyline

An IlvPolyline oObject appears as connected segments.

\/\/

llvArrowPolyline

An IlvArrowPolyline object appears asa polyline and adds one or more arrowsto the
various lines.

N

llvPolygon

An T1vPolygon object appears as afilled polygon.

A

IlvOutlinePolygon

An I1voutlinePolygon object appears as an outlined and filled polygon.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 51

g

llvRectangle

An I1vRectangle object appears as an outlined rectangle.

Note: Rectangles can be rotated only at 90, 180, 270 and 360 degrees. If you need to
rotate a rectangle at other angles, use a polygon instead.

llvFilledRectangle

AnTlvFilledRectangle oObject appears asasolid rectangle.

IlvRoundRectangle

An T1vRoundRectangle object appears as an outlined, round-cornered rectangle.

52 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Predefined Graphic Objects

llvFilledRoundRectangle

AnTlvFilledRoundRectangle oObject appearsas afilled, round-cornered rectangle.

IlvShadowRectangle

An I1vShadowRectangle Object appears as ashadowed 11vFilledRectangle Object.

llvShadowLabel

An T1vsShadowLabel oObject appears asan I11vshadowRectangle containing atext string
that is clipped by the containing rectangle.

IlvShadowLabel

IlvGridRectangle

An I1vGridRectangle object appears asarectangular grid.

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 53

54

llvReliefRectangle

AnTlvReliefRectangle object appearsasafilled rectanglein relief.

llvReliefLabel

AnIlvReliefLabel oObject appears asarelief rectangle that holds asingle line of text.

IlvReliefLabel

llvReliefDiamond

An I1lvReliefDiamond object appearsasafilled diamondin relief.

N

IlvSpline

An I1vspline object appears as an outline Bézier spline.

—

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

Composite Graphic Objects

llvClosedSpline

An TlvClosedspline object appearsasaclosed Bézier spline.

CT—>

llvFilledSpline

AnIlvFilledspline object appearsasafilled Bézier spline.

w9

Composite Graphic Objects

IBM

Composite graphic object classes and subclasses provide member functions that allow you
to reference instances of T1vGraphic subtyped objects. You can use these references for:

& Controlling polygon fill. See Filling Polygons: 11vGraphicPath on page 55.
& Grouping objects. See Grouping Objects: IIvGraphicSet on page 56.

& Modifying properties of one object without duplicating or modifying the object itself.
See Referencing Objects:. 1lvGraphicHandle on page 57.

For example, in an electronic schema displaying a thousand transistors, you would
consume much less memory by creating one transistor image and a thousand handle
objectsto reference it than by creating a thousand separate images.

Filling Polygons: llvGraphicPath

An T1vGraphicPath object isacollection of polypoint objects, that is, each object consists
of aseries of points. The polypoint objects are drawn differently depending on the value of
the draw rule attribute of the object:

& TlvStrokeoOnly: Polylines.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 55

56

IBM

& TIlvFillonly: Filled polygons.
& IlvsStrokeAndFill: Both of the above, that is, filled polygons with an outline.

The palette defined by the 11vsimpleGraphic superclassisused to draw the outline of the
polygons. I1vGraphicPath defines asecond palette (backgroundpralette) to fill them.

While the resources (graphic attributes such as color) used to draw the polypoints for both
the I1vGraphicPath and I1vPolygon functions are the same, the waysin which the
shapes affect each other are different. Each polypoint has an influence on the rendering of
the other polypoints (not applicablein 11vstrokeonly mode). For example, depending on
the position of its points, a polypoint may appear either as an ordinary polygon or as ahole
in another polygon:

IlvPolygons IlvGraphicPath

I1lvGraphicPath aso allows user-specific actions when the polypoints are drawn. Thisis
done by attaching a data structure to the T1vGraphicPath.

Note that the bounding box of T1vGraphicPath does not take into consideration the
bounding box of the graphic object displayed along the path. The T1vGraphic isonly
known to the stepping data structure. However, the 11vGraphicPath provides a member
function which alows you to extend the bounding box of the graphic path by the given
value:

void setBBoxExtent (I1UInt extent);
Usually you would do the following:

grpath->setPathDrawingData (new IlvPathDrawingData (step, obj)):;
grpath->setBBoxExtent (bboxExtension) ;

where bboxExtension iscomputed from the geometry of obj and the way it will be
displayed (whether rotations are involved or not).

The diagonal of the object’s bounding box is a reasonable value for bboxExtension.

Grouping Objects: llvGraphicSet

An T1vGraphicSet object organizes a set of T1vGraphic objects.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Composite Graphic Objects

It implements all geometric and graphic member functions by means of callsto the member
functions of the objectsthat it contains (for example, the draw method of T1vGraphicset
callsthe draw methods of the objects contained in the graphic set).

Referencing Objects: llvGraphicHandle

An I1vGraphicHandle object isused to reference an 11vGraphic object. The
IlvGraphicHandle object is called the handle object (or simply handle), and the
IlvGraphic object iscalled the referenced object.

Referencing Objects

This relationship enables you to use the handle object to indirectly access the referenced
object. Also, the same referenced object can be shared among several handles. Through

handle objects, you can thus reproduce a complex graphic object many times by simply

creating new handles that all reference the same original object. Since handles consume
much less memory than creating new images, using handle objectsis very economical.

Owning Objects

You can decide to make a handle object the owner of the unique referenced object with
which it is associated. If you do this, you should no longer access the referenced object
directly, but only through its handle.

When ahandle ownsits referenced object, a del ete operation on the handle removes both the
handle and the referenced object. On the other hand, when there is no ownership relationship
between the handle and its referenced object, a delete operation removes only the handle,
leaving the other graphic object intact.

llvTransformedGraphic

You can use the specialized graphic handle subclass, T1vTransformedGraphic, to display
the same object severa times with different geometric transformations applied to it.

The 11vTransformedGraphic classisderived from the basi ¢ handle class,
IlvGraphicHandle. An object of the I1vTransformedGraphic typeisakind of handle
that is associated with a certain referenced object of the T11vGraphic class. An
IlvTransformedGraphic instance is drawn by applying agraphic transformation to its
referenced object.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 57

Object geometry is disturbed by various transformations because of rounding errors. To
avoid this, the object can be associated with T1vTransformedGraphic.

IlvFixedSizeGraphic

You can use the specialized graphic handle subclass, T1vFixedSizeGraphic, to adways
display an object at the same size. For example, suppose there is amap displayed with an
I1vButton object used for quitting the map viewer. When the map is zoomed and
unzoomed, the button, of course, should stay the same size. To accomplish this, you can
reference the button with the specialized 11vGraphicHandle object
IlvFixedSizeGraphic.

The 11vFixedSizeGraphic classisderived, like I1vTransformedGraphic, from the
IlvGraphicHandle class. An I1vFixedSizeGraphic object isakind of handle, which
is associated with a certain referenced object of the 11vGraphic class. An
IlvFixedSizeGraphic instanceis drawn by applying a graphic transformation to its
referenced object so that the referenced object can never changeitsvisible size.

Whatever the transformation applied, the object keeps the same dimensions and a constant
offset relative to areference point. These values are internally computed by the
IBM ILOG Viewslibraries or are specified by the user.

IlvGraphicinstance

You can use the specialized graphic handle subclass, T1vGraphicInstance, tO
encapsulate an object with a graphic resource modification.

The I1vGraphicInstance references another graphic object so that it can be drawn with
another palette attribute. You can use an optional I1vTransformer to apply ageometric
transformation to this object.

Other Base Classes

58

IBM

Some subclasses of T1vsimpleGraphic form base classes for more complex graphic
objects.

llvGauge

Gauges are graphic objects that provide a representation of a certain value contained
between aminimum and amaximum value. I1vGauge isthe main abstract class from which
al gauge objects derive.

llvScale

TI1lvScale isan abstract class from which are derived all instances of scale object classes. It
manages the basic required information concerning scales.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Creating a New Graphic Object Class

llvGadget

The 11vGadget classisthe base class for al the IBM ILOG Views Gadgets package
classes. It implements all the basic functionalities of gadgets by providing the necessary
parameters to create a graphic object with a palette allowing shadowing management.

For details on gadgets, see the Gadgets documentation.

IlvGroupGraphic

I1vGroupGraphic iSagraphic object class used to display and manipulate a set of graphic
objects asagroup. Thisclassis used in the IBM ILOG Views Prototypes package.

For details, see the Prototypes documentation.

llvMapxx

Some I1vMapxx classes are subclasses of 11vsimpleGraphic, providing various graphic
services for the IBM ILOG Views Maps package, such as scales (T1vMapScale,
IlvMapDefaultScaleBar,andIlvMapDefaultNeedle).

For details on all mapping classes, see the Maps documentation.

Creating a New Graphic Object Class

I BM

Hereis an example of how you can subtype graphic objects, creating new graphic object
classes.

The Example: ShadowEllipse

In this example anew graphic object, shadowE11lipse, will be created, which inheritsfrom
IlvSimpleGraphic:

The shadowE1lipse objectisanormal 11vE1lipse object with a drop shadow
underneath.

This example shows how you can design such an object from scratch by implementing a
subtype of the T1vsimpleGraphic class, whichisthe procedure most commonly used. We

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL 59

will show how to implement member functions that deal with geometric properties and
drawing, how to manipulate the object’s palette, and how to make this object persistent.

Stepping through the Example

The exampleis developed in:

® & 6 6 o o

Basic Steps to Subtype a Graphic Object
Redefining 1IvGraphic Member Functions
Creating the Header File

Implementing the Object Functions
Updating the Palettes

Saving and Loading the Object Description

Basic Steps to Subtype a Graphic Object

To create derived classes of the 11vGraphic class, you:

1.

Create a header file that declares the new class and the necessary overloaded member
functions. Not every member function needs to be overloaded.

Addthe DeclareTypeInfo () ; statement in the class definition.

This creates the necessary fields and member function declarations for input/output
operations and class hierarchy information.

Addthe DeclareIoConstructors (ShadowEllipse) ; Statement inthe class
declaration, which declares two additional constructors:

The following constructor initializes anew shadowE1l1ipse graphic object, whichisa
copy of source:

ShadowEllipse (const ShadowEllipse& source) ;

The following constructor initializes anew shadowE11ipse graphic object from the
parametersread in the inputfile:

ShadowEllipse (IlvInputFile& inputfile,
IlvPalette* palette = 0);

Create an implementation file (usually class . cpp) to implement the member functions
that you need. Outside the body of afunction, add a call to the two following macros:

IlvRegisterClass, Which updates the class hierarchy information.

IlvPredefinedIOMembers, Which is used to define the member functions copy and
read.

60 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Creating a New Graphic Object Class

Redefining llvGraphic Member Functions

The following member functions of T11vGraphic must always be redefined (these are the
member functions that make 11vGraphic an abstract class):

virtual void draw(IlvPort* dst,
const IlvTransformer* t
const IlvRegion* clip =
virtual void boundingBox (I1lvRect& bbox,
const IlvTransformer* t = 0) const;
virtual void applyTransform(const IlvTransformer* t);
virtual void write(IlvOutputFile&) const;

= 0,
0) const;

The other member functions—such as 11vGraphic: :move, IlvGraphic: :resize,
IlvGraphic::rotate, and I1vGraphic: : contains—have adefault implementation
fromthe 11vGraphic class. Thatis, I1vGraphic: : resize isimplemented by meansof a
call to your applyTransform function, and so on.

If the new class has a parent that defines some of these member functions, you can simply
inherit the functions from this parent.

Creating the Header File

For this example, you create a header file that declares the new class and the necessary
overloaded member functions.

The header file shadellp.h contains the following lines:
#define DefaultShadowThickness 4

class ShadowEllipse
: public IlvSimpleGraphic {

public:
ShadowEllipse (IlvDisplay* display,
const IlvRect& rect,
I1UShort thickness = DefaultShadowThickness,
IlvPalette* palette = 0)
: IlvSimpleGraphic (display, palette),
_rect(rect), _thickness (thickness)
{
_invertedbPalette = 0;
computeInvertedPalette() ;
}
~ShadowEllipse() ;

virtual void draw(IlvPort*, const IlvTransformer* t = 0,
const IlvRegion* clip = 0) const;

virtual IlBoolean contains(const IlvPointé& p,

const IlvPointé& tp,

const IlvTransformer* t) const;
virtual void boundingBox (IlvRect& rect,

const IlvTransformer* t = 0) const;

virtual void applyTransform(const IlvTransformer* t);
I1UShort getThickness () const

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 61

{ return _thickness; }
void setThickness (I1UShort thickness)
{ _thickness = thickness; }

virtual void setBackground(IlvColor* c);
virtual void setForeground(IlvColor* c);
virtual void setMode (IlvDrawMode m) ;
virtual void setPalette(IlvPalette* p);

DeclareTypeInfo();

DeclareIOConstructors (ShadowEllipse) ;
protected:

IlvRect _rect;

I1UShort _thickness;

IlvPalette* _invertedPalette;

void computeInvertedPalette() ;
}i

This object, like afew othersin the standard IBM ILOG Views library, makes use of two
different 11vPalette Objects. Thisisacommon practice when you want your object to be
very efficient in terms of drawing time, since you do not need to create dummy palette
objects when drawing the ellipse itself and its shadow.

The shadowE11lipse class defines the member functions draw, contains, and
boundingBox. It aso defines the necessary pal ette-management related member functions
to update both the standard pal ette object (the one stored in the T1vSimpleGraphic class)
and thenew one, _invertedPalette.

No input/output member functions are declared in this synopsis. In fact, they are declared by
the DeclareTypeInfo macro that declares them as externa. These member functions are
read, write, and copy. They have no default implementation, and you must provide a
version of these for each of your subclasses of the 11vGraphic class. Thereis asecond
version of this macro, caled beclareTypeInfoRo, that does not declare the member
function write, if you know this object type will never be saved.

Implementing the Object Functions

For this example, you created a header file that declares the new class and the necessary
overloaded member functions.

This section explains the code for the functions implemented in the file shadel1p. cpp.

62 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM

Creating a New Graphic Object Class

computelnvertedPalette Member Function

void
ShadowEllipse: :computeInvertedPalette ()
{
IlvPalette* newPalette = getDisplay()->getInvertedPalette (getPalette());
newPalette->lock() ;
if (_invertedPalette)
_invertedPalette->unLock () ;
_invertedPalette = newPalette;

}

The member function computeInvertedpPalette computesthe inverted palette from the
one we get by means of the call to the member function getpalette. We create this
inverted palette, unlock the previous one (if there was one), and lock the new one.

Thisfunction is called whenever the original palette is modified (by overloading the
appropriate member functions), and when the object is originally created.

Creating this second pal ette may seem strange. In the member function draw, the second
palette is used only when calling two 11vDisplay drawing member functions. Another
method could have been to call the member function T1vpalette: : invert beforewe call
these member functions and then bring the palette to its origina state by another call to
IlvPalette::invert. Developing with IBM ILOG Views showsthat thisis not an
efficient way of manipulating objects. Pal ette management is one of the very efficient tasks
performed by IBM ILOG Views and you should not hesitate to use pal ette management
when needed.

Destructor

ShadowEllipse: :~ShadowEllipse ()
{
_invertedPalette->unLock() ;

}

In the destructor, we need to release the inverted palette to the display, so it can be deleted if
not used by any other object.

draw Member Function

The member function draw fills the two ellipses, then draws the topmost ellipse border. The
global bounding rectangle (_rect) actualy covers both ellipses.

Now we can show the member function draw. It demonstrates that drawing an object is
merely acall to some of the primitive member functions of the 11vbisplay class:

void
ShadowEllipse: :draw(IlvPort* dst, const IlvTransformer* t,
const IlvRegion* clip) const
{
// Transform the bounding rectangle
IlvRect rect = _rect;
if (t)
t->apply (rect) ;

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 63

// Store both the display and palette
IlvPalette* palette = getPalette();

// Find a correct value for thickness

I1UShort thickness = _thickness;
if ((rect.w() <= thickness) || (rect.h() <= thickness))
thickness = IlMin(rect.w(), rect.h());

// Compute actual shadow rectangle
rect.grow(-thickness, -thickness);
IlvRect shadowRect = rect;

shadowRect.translate (thickness, thickness);

#1f defined(USE_2_PALETTES)
// Set the clipping region for both palettes
if (clip) |
palette->setClip(clip);
_invertedPalette->setClip(clip) ;

}
// Fill shadow Ellipse
dst->fillArc(palette, shadowRect, 0., 360.);

// Fill inverted Ellipse
dst->fillArc(_invertedPalette, rect, 0., 360.);

// Draw ellipse
dst->drawArc (palette, rect, 0., 360.);
if (clip) {
palette->setClip() ;
_invertedPalette->setClip() ;

}
#else /* !USE_2_PALETTES */
// Set the clipping region for both palettes
if (clip)
palette->setClip(clip);

// Fill shadow ellipse
dst->fillArc (palette, shadowRect, 0., 360.);

// Compute inverted palette and fill inverted ellipse

palette->invert () ;

dst->fillArc (palette, rect, 0., 360.);

palette->invert () ;
// Draw elliptic border

dst->drawArc (palette, rect, 0., 360.);

// Set the clipping region for both palettes
if (clip)
palette->setClip();
#endif /* !USE_2_PALETTES */
}

We do not need the transformer t to perform our drawing work, because we want the
thickness to be the same whatever the transformation is.

64 IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

I BM

Creating a New Graphic Object Class

The c1ip parameter can be used when complex drawing isto take place (which is not the
case here). You must reset the clipping region of all affected pal ettes to an empty region

before you return from this function.

boundingBox Member Function

The member function boundingBox simply transforms the global bounding rectangle.

void
ShadowEllipse: :boundingBox (I1lvRect& rect,
const IlvTransformer* t) const
{
rect =
if (t)
t->apply(rect) ;

_rect;

l Note: The bounding box must contain the complete drawing to avoid erasing errors.

contains Member Function

The member function contains returns T1True if the point isinside one of the two

ellipses. All the coordinates are given in terms of the view’s coordinate system.

static IlBoolean
IsPointInEllipse (const IlvPoint& p, const IlvRect& bbox)
{
if (!bbox.contains (p))
return IlFalse;
I1UInt rx = bbox.w() / 2,
ry = bbox.h() / 2;

I1UInt dx = (p.x() - bbox.centerx()) * (p.x() - bbox.centerx())
dy = (p.y() - bbox.centery()) * (p.y() - bbox.centery()
rrx = rx*rx,
rry = ry*ry;
return (rrx * dy + rry * dx <= rrx * rry) ? IlTrue : IlFalse;
}
I1Boolean

ShadowEllipse: :contains (const IlvPoint&, const IlvPoint& tp,
const IlvTransformer* t) const

{

IlvRect rect = _rect;

if (t)
t->apply (rect) ;

if ((rect.w() <= _thickness) || (rect.h() <= _thickness))
return IsPointInEllipse(tp, rect);

else {
rect.grow(-_thickness, -_thickness);

IlvRect shadowRect = rect;

shadowRect.translate(_thickness, _thickness);

return (IlBoolean) (IsPointInEllipse(tp, rect) ||
IsPointInEllipse(tp, shadowRect)) ;

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

).

65

66

IBM

You can seethat contains calsthe static function IsPointInEl1lipse which tests
whether the point parameter isinside the ellipse defined by the rectangle parameter.

applyTransform Member Function

The applyTransform member function applies the transformer to the rectangle of the
graphic.

void ShadowEllipse: :applyTransform(const IlvTransformer* t)
{
if (t)
t->apply (_rect) ;

Updating the Palettes

To make sure that both palettes are updated when modifications are applied to the original
one, we need to overload the following member functions.

void
ShadowEllipse: :setBackground (IlvColor* color)
{
IlvSimpleGraphic: :setBackground (color) ;
computeInvertedPalette() ;

/) S e oo
void
ShadowEllipse: :setForeground (IlvColor* color)
{
IlvSimpleGraphic: :setForeground (color) ;
computeInvertedPalette() ;

/] S e oo
void
ShadowEllipse: :setMode (I1lvDrawMode mode)
{
getPalette()->setMode (mode) ;
_invertedPalette->setMode (mode) ;

/] S oo
void
ShadowEllipse: :setPalette(IlvPalette* palette)
{
IlvSimpleGraphic: :setPalette (palette) ;
computeInvertedPalette() ;

Saving and Loading the Object Description

Now come the input/output member functions that we have declared in the class synopsis
using the beclareTypeInfo Macro.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Creating a New Graphic Object Class

copy and read Member Functions
Another macro can be used to define the member functions copy and read:

IlvPredefinedIOMembers (I1lvShadowEllipse) ;

This macro must be used in the implementation file, outside any function definition block,
just like I1vRegisterClass.

Itisequivaent to:

I1lvGraphic*
ShadowEllipse: :read(IlvInputFile& input, IlvPalette* palette)
{
return new ShadowEllipse(input, palette);
}
IlvGraphic*
ShadowEllipse: :copy() const
{
return new ShadowEllipse(*this) ;

}

The static member function read calls the class reading constructor and returns the new
instance. The macro peclareIoConstructors declaresthe reading and copying
congtructors in the header file. The definition of these constructors must be written in this
way in the implementation file:

ShadowEllipse: :ShadowEllipse (IlvInputFile& f,
IlvPalette* pal)
: IlvSimpleGraphic (f, pal),
_rect(),
_thickness (0)
{
int thickness;
f.getStream() >> _rect >> thickness;
_thickness = (IlvDim)thickness;
_invertedPalette = 0;
computeInvertedPalette() ;

}

The above constructor calls the superclass reading constructor, which reads the
superclass-specific information from the stream object. Then the subclass can read its own
information.

The member function copy creates a copy of the T1vshadowE11ipse class, calling the
class copy constructor:

ShadowEllipse: :ShadowEllipse (const ShadowEllipse& source)
: IlvSimpleGraphic (source),
_rect(source._rect),
_thickness (source._thickness)
{
_invertedPalette = source._invertedPalette;
_invertedPalette->lock() ;

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 67

write Member Function

The member function write writes the dimensions of the rectangle and the thickness of the
shadow to the given ostream output stream:

void
ShadowEllipse: :write(IlvOutputFile& f) const
{
f.getStream() << _rect << IlvSpc() << (int)_thickness;

}

Thiswrite method is specia because the 11vsimpleGraphic superclass has no
information to write. It is better to call the superclass write method to be consistent with
the read method, if the superclass has information to write. Here is an example of ausual
write method:

void
IlvRoundRectangle: :write (IlvOutputFile& os) const
{

IlvRectangle: :write(os) ;

os.getStream() << IlvSpc() << _radius;

}

IlvRegisterClass Macro

IlvRegisterClass (ShadowEllipse, IlvSimpleGraphic) ;

Outside of the body of any function, we have to register the class T11vshadowEllipse asa
subclass of the class 11vsimpleGraphic.

68 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Graphic Resources

The classes that implement graphic resources are T11vResource and its subclasses. There
are five basic kinds of graphic drawing resources (subclasses of T1vResource) in

IBM® ILOG® Views:. color, line style, pattern, color pattern, and font, each supported by
its corresponding class. Another subclass of T1vResource, the I1vPalette class,
manages a group of resources. Additionally, T1vouantizer isthe abstract base class of al
color conversion classes.

IlvResource: The Resource Object Base Class

IlvColor: The Color Class

llvLineStyle: The Line Style Class

IlvPattern and IlvColor Pattern: The Pattern Classes

[lvFont: The Font Class

[lvCursor: The Cursor Class

Other Drawing Parameters describes additional settings that you control viathe palette.

IlvPalette: Drawing Using a Group of Resources

® & 6 6 6 6 0 o o

IlvQuantizer: The Image Color Quantization Class

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 69

llvResource: The Resource Object Base Class

All of the drawing member functions of the T1vPort classtake a parameter of the
IlvPalette type, whichisasubclass of 11vResource.

llvResource

I

[lvPalette

Figure3.0

llvFont

llvColorPattern

llvColor

IlvResour ce Hierarchy

I

llvCursor

[lvPattern

llvLineStyle

Resources are described further in the topics:

& Predefined Graphic Resources

¢ Named Resources

& Resource Creation and Destruction: lock and unLock

Predefined Graphic Resources

The following list summarizes the 11vDisplay member functions that produce the
predefined graphic resources:

IlvColor*
IlvColor*
IlvFont*
IlvLineStyle*
IlvPattern*
IlvCursor™

2

70 IBM ILOG VIEWS FOUNDATION V5.3

The foreground color default value in a palette is the color returned by

defaultBackground ()
defaultForeground ()

defaultFont () const;
defaultLineStyle() const;
defaultPattern() const;

defaultCursor ()

const;

IlvDisplay: :defaultForeground.

The background color default value in a palette is the color returned by

IlvDisplay: :defaultBackground.

The default font value in apaletteisthe font returned by T1vbisplay: :defaultFont.

const;
const;

The default line style value in a palette is the line style returned by
IlvDisplay::defaultLineStyle.

— USER’'S MANUAL

I BM

IlvResource: The Resource Object Base Class

& Thedefault fill pattern value in a palette is the pattern returned by
IlvDisplay::defaultPattern.

& Thedefault cursor value in a palette is the pattern returned by
IlvDisplay: :defaultCursor.

The graphic resource classes are subclasses of T1vResource. For details on these
subclasses see:

IlvColor: The Color Class

llvLineStyle: The Line Style Class

IlvPattern and IlvColor Pattern: The Pattern Classes
[lvFont: The Font Class

* & & o

& |lvCursor: The Cursor Class

InIBM ILOG Views, the drawing resources are assembl ed into an object of the
IlvPalette class, aso asubclass of T1vResource. For more details on palettes see:

& |lvPalette: Drawing Using a Group of Resources

Named Resources
You can assign specific names to resources by using the T11vResource member functions:

void setName (const char* name) ;
const char* getName() const;

Note: T1vFont and I1vColor make private use of their name field, so these classes
restrict the use of I1vResource: : setName. I1vFont disablesthe use of
IlvResource: : setName, and I1vColor only allows the renaming of mutable colors.
Non-mutable colors either have a predefined name or get a default name based on their
RGB values.

Resource Creation and Destruction: lock and unLock

Because the creation of graphic resourcesis generally memory intensive on most graphic
systems, IBM® ILOG® Views implements a caching mechanism to minimize graphic
resource allocation.

Resource objects are maintained by the 11vbisplay instances of your application. They
should normally not be created and destroyed using the operatorsnew and delete. Instead,
IBM ILOG Views provides the following member functions:

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 71

72

IBM

& IlvDisplay methodsgetxxx, where xxx standsfor aresource class name without the
11v prefix (for instance, I1vDisplay: :getColor, IlvDisplay: :getFont, and SO
on).

& Methods I1vResource: :1lock and I1vResource: :unLock respectively increment
and decrement the internal reference count of the resource. When this count reaches
zero, the resource is del eted.

Locking and Unlocking Procedures
Graphic resources should be used in the following manner:

1. Reguest your T1vDisplay instance to allocate aresource for you. If this resource
aready existsin the system (for instance, the color you query for isalready inusein a
palette somewhere), no further alocation is done, and the existing resource is returned.

2. Inform IBM ILOG Viewsthat this resource must be kept safe by calling
IlvResource: : lock, then use that resource.

3. UseIlvResource: :unLock tolet IBM ILOG Views know that you have finished
using the resource.

Resource management is closely concerned with the ways in which you lock and unlock
your resources. Whenever you need a specific resource in one of your persistent objects, you
should use this mechanism to make sure that it will stay safe within your 11vbisplay
instance. If your application needs more than one instance of T1vDisplay, you haveto
create resources within each environment, since resources cannot be shared between the
different 11vDisplay contexts.

During thelifetime of aresource, the number of callsto T1vResource: : 1ock must exactly
match the number of callsto T1vResource: :unLock. If there are more callsto 1ock, the
resource remains allocated even if it is no longer in use, and therefore limits your
application’s requirements. If there are more calls to unlock, the application may crash
because of amemory error.

Rules for Locking and Unlocking
You should follow these rules for locking and unlocking graphic resources:
& Onceyou get aresource, lock it, useit, and unlock it when you are done.

& You should not unlock aresource that you have not locked yourself, unless you are sure
that your operation is correct.

& You should never use aresource after you have unlocked it, just like you should never
use a pointer after you have freed it; T1vResource: :unLock potentially means
delete.

& Therearetimeswhen you do not need to lock and unlock aresource. For instance, if you
get the foreground color of an object and passit to another object that will lock it. In such
cases, locking and unlocking the resource is not necessary, but it does no damage either.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IlvColor: The Color Class

llvColor: The Color Class

Color is described in the topics:

¢ Color Models

& Using thellvColor Class

& Converting between Color Models
L 2

Computing Shadow Colors

Color Models

The description of acolor, in IBM® ILOG® Views, is stored in an instance of 11vColor.

RGB

Colorscan behandledin IBM ILOG Views using the familiar RGB (red/green/blue) system.
In this system, a color is entirely defined through its three component values. red, green
and blue. These values are stored as unsigned 16-bit numbers. For example, black is
defined with its three components set to zero, and white has its three components set to
65535.

HSV
Alternatively, you can use the HSV (hue/saturation/value of luminaosity) model, shown here:

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 73

74

IBM

Total light

; ---"-._‘ H = e af eolor

B i
: 8. = samranon of color

H
14

arbifrary poini in the
HSV color cone

Vv

vl of luminosiny
Total ™.
darkness

Figure3.1 Hue, Saturation, and Value of Luminosity (HSV) Model

The preceding figure illustrates a mathematical model based upon three parameters: 1 (hue),
s (saturation) and v (value of luminosity). Following are their possible values:

¢ H Thehue parameter, 1, is an angle from 0 to 360°. For fixed values of the s and v
parameters (somewhere towards their upper limits), varying the angle 1 through a full
circle would take you through the entire spectrum of colors.

& S For agiven H parameter, varying the s value changes the vividness of the color. At the
vertical axis of the cone, where s is zero, there isatotal absence of any chromatic
intensity, which means that there is a shade of gray. On the outer surface of the cone,
where s hasthe value 1.0, the intensity is maximal, which means that colors are as vivid
aspossible.

& V Thethird parameter, v, determines the quantity of light in which the colors are bathed,
in other words, the brightness of the spectrum obtained by varying the angle 1 through a
full circle. The bottom point of the cone, where v is zero, represents the color black. As
we ascend, the spectrum of the hue circle becomes increasingly brighter. The top of the
vertical axis, where v has the value 1.0, represents the color white.

Using the llvColor Class

InIBM ILOG Views, the 11vColor classlets you manipulate both the RGB and the HSV
color models. You obtain a color by requesting your T11vDisplay object to get it for you.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

IlvColor: The Color Class

Colorsare generally stored in a color table—sometimes referred to asalookup table—that is
maintained internally by your 11vDisplay object. You can obtain the index of a color
object (along unsigned integer) by means of the member function T1vColor: :getIndex.
You can then use this number for remapping processes involving color bitmaps when you
want to map pixel valuesto color objects.

Color Name

Colors always have aname. IBM ILOG Views has a predefined set of color names. The
naming mechanism comes from the X Window col or-naming scheme. Each name in this set
is associated with a specific RGB triplet. If acolor is not specified by a predefined name but
by an RGB value, this color gets a default name of the following form: “#RRRRGGGGBBBB”,
where each of the red, green and blue values is represented by four hexadecimal digits.

Only mutable colors can be renamed, however. The name of a static color cannot be
modified. It either belongs to the set of predefined color names or is computed from the
RGB values defining the color.

New Colors

IlvColor does not have apublic constructor; you must get the colors from the display.
Several T1vDisplay: :getColor member functions enable you to obtain anew color,
specifying either RGB values, HSV values, or aname. You can also indicate if the color
must be mutable or not. If a problem arises making it impossible to create the desired color,
these member functions return 0.

The 11vDisplay class providestwo member functions returning internal resourcesthat are
often used as callback values for unspecified colors. These functions are:

IlvColor* defaultForeground() ;
IlvColor* defaultBackground() ;

Usually, these foreground and background colors are black and gray respectively. They can
easily be set to whatever colors you like by means of your display system resource
mechanism.

Mutable Colors

AnIBM ILOG Views color can be either static (impossible to modify after its creation) or
mutable. In the latter case, you can use modifier member functions that are set to
dynamically modify a color, even when there are drawings with this color on the screen.

M utable colors can be renamed using the method T1vResource: : setName. Unlike static
colors, mutable colors are not transparently shared. The method T11vbisplay: :getColor
always creates a new object if the parameter mutable is T1True. Mutable colors are more
costly, in terms of internal resource management.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 75

Converting between Color Models

Two global functions are available to convert color values from the RGB system to HSV, and
thereverse.

¢ TI1vRGBtoHSV

¢ I1vHSVtoRGB

Computing Shadow Colors

Usethe 11vComputeReliefColors global function to compute the colors that make a
shadow effect.

llvLineStyle: The Line Style Class

76

IBM

You can create your own line styles by requesting T1vLineSty1le resource objects from
your T1vDisplay object and specifying the way dashes are to be drawn.

A line styleisan array of unsigned characters returned by the member function
IlvLineStyle: :getDashes. Thelength of the array isreturned by the

IlvLineStyle: :getCount member function. Thisarray must not be modified or deleted
by the user.

Starting with the “pen down,” IBM® ILOG® Views draws the number of foreground-
colored pixelsthat isindicated by the first element of the T1vLinestyle: :getDashes
array. Then, the second element indicates the number of pixels to be skipped before the
drawing starts up again until the array is completely read. Then, the loop begins again. The
IlvLineStyle: :getOf fset member function returns the number of pixelsto be skipped
before the loop restarts.

New Line Styles

You can create your own line styles by requesting 11vLineSty1le resource objects from
your T1vDisplay oObject and specifying the way dashes are to be drawn.

Line styles can be named. To obtain anew line style, use the following member functions of
theclass11vDisplay:

IlvLineStyle* getLineStyle (I1UShort count,
const unsigned char* dashes,
IlUShort offset = 0);
IlvLineStyle* getLineStyle(const char* name) const;

Theclass T1vDisplay provides aset of predefined line styles that you can obtain using
their name:

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

llvPattern and llvColorPattern: The Pattern Classes

--------- dashdol
-------- = dashdoubledot
"""""""""""""""""""""""" altemate
= =T == == doubledol
—————— longdash

Figure3.2 LineSyles

IlvPattern and llvColorPattern: The Pattern Classes
A pattern can be of any size and either monochrome, defined with only one bit per pixel, or
colored. For details see:
& Monochrome Patterns

& Colored Patterns

Monochrome Patterns

Monochrome patterns are handled by the 11vPattern class. Two constructors are provided
that you can use depending on the data available:

IlvPattern(IlvDisplay* display,
IlvDim w,
IlvDim h,
unsigned char* data) ;

IlvPattern (IlvBitmap* bitmap) ;

The first constructor initializesanew 11vprattern object with apattern w pixelswide and h
pixels high, filled in by the data stored in the data array of bit values. The pixel values are
packed into 16-bit words from left to right in a most-significant-bits-first manner, and each
scan line, stored from top to bottom, must be padded to 16 bits.

The second constructor initializes anew I1vpPattern object from the given bitmap
monochrome image.

To obtain a previoudy defined pattern, use the member function
IlvDisplay: :getPattern.

Other patterns are predefined within IBM® ILOG® Views, which you can access by hame.

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 7

solid clear diagrl diaglr

darkd dark? dark2 darkid

lights lightz lightz lightt

I

gray horiz vert Cross

Figure 3.3 Predefined Pattern Resources

Colored Patterns

Patterns can also be colored and are represented by instances of the 11vColorpPattern
class.

llvFont: The Font Class

78

IBM

A text string is drawn with specific spacing values as in the following illustration:

Baselne *

Q“gn DGSQGI“

Figure3.4 Spacing Values

You can get the parameters of an T1vFont object by using the member functions
IlvFont: :getFamily, IlvFont: :getSize, IlvFont: :getStyle, and
IlvFont: :getFoundry.

The member functions I1vFont : :ascent, IlvFont: :descent, and I1vFont: :height
return the font metrics.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

IlvFont: The Font Class

You can aso get the metrics of a specific string by means of calls to the member functions
IlvFont: :stringWidth, I1lvFont: :stringHeight, and IlvFont: :sizes.

The member function I1vFont: : isFixed returns 11True if the font object has a fixed
width for all characters (which is not the case in the above figure).

You can also obtain the width of the narrowest and widest characters of thisfont by means of
the width values returned by the two member functions T1vFont: :maxWidth and
IlvFont: :minwidth. When both return the samevalue, T1vFont: : isFixed returns
IlTrue.

Additional details of the font class are given in:
4 New Fonts
& Font Names

New Fonts

IlvFont does not have a public constructor. New fonts must be obtained from the display
using one of the two member functions I1vbisplay: : getFont. You can specify afont
name or a set of font characteristics:

& Family
¢ Size
& Style
¢ Foundry

Font Names

All fonts have a name. When afont is not created using a valid font name but a set of
values— family, size, style and foundry—IBM ILOG Views computes from these values a
name of the form:

"$family-size-style-foundry"
where:
¢ family isthe string specified as the parameter family.
¢ sizeisthe ASCII representation of the parameter size.

& styleisacombination of theletterss, T and u, standing respectively for bold, italic and
underlined (upper and lower case do not matter). Thisfield can be empty, in which case
the normal styleis assumed.

& foundry iSan optiona string. It often identifies the company that designed the font.
Thisfield is seldom specified. When it isignored, the trailing ‘- can be omitted too.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL 79

Fonts cannot be renamed.

Following are examples of syntactically well-formed IBM ILOG Views font names (which
are not necessarily valid font namesin the sense that they may not exist on all platforms):

¢ "%helvetica-12-"

¢ "%time-12-BU"

€ "%courier-14-i-adobe"
2

"$terminal-11--bitstream"

llvCursor: The Cursor Class

The IBM® ILOG® Views cursor is an icon appearing on the screen that follows every
mouse movement. Cursorsare maintained in IBM ILOG Views by meansof the 11vCursor
class. Other cursors are predefined, which you can access by name.

default

N\ oo
<} sizing
g

+

Figure3.5 Predefined Cursors and their Names

Other Drawing Parameters

80

IBM

The following attributes affect drawing operations and are used in the T1vpPalette class:
Line Width, Fill Syle, Fill Rule, Arc Mode, Draw Mode, Alpha Value, and Anti-Aliasing
Mode.

These attributes are represented by C++ type definitions. Although they cannot be called
“resources,” asthey are not represented by subclasses of T1vResource, they operatein
conjunction with the graphic resources to define the drawing attributes of

IBM® ILOG® Views drawings.

Line Width

Thelinewidth is an unsigned short integer. Zero (0) isavalid value, producing aline whose
width is such that it can be drawn as thin and rapidly as possible.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Other Drawing Parameters

Fill Style

The most complex of the graphic resourcesis that of patterns, where there are the smple
masking patterns of the monochrome (two-color) domain and the rich pixel patterns of color.
This aspect isreferred to as thefill style.

Thefill style indicates the way in which patterns are used to fill shapes. There are three
possible cases represented in the I1vFillstyle enumeration type. A monochrome pattern
is used when thefill modeisIlvFillpattern OF I1vFillMaskPattern. ltsvalueisan
instance of 11vPattern, Whether created by the user or returned by specific member
functions of the T11vDisplay class. Color pattern refers to what is used to fill shapes when
thefill modeisI1vFillColorPattern.

llvFillPattern

With T1vFillpPattern ashapeisfilled by being copied with the chosen pattern. In an
IBM ILOG Views object, there is a pattern property, which refers to an object of the
IlvPattern class. Tofill ashape with agiven pattern:

& Each“0” pixel intherelevant 11vPattern object produces a colored pixel with the
current background color

& Each“1” pixel inthe T11vrPattern object produces a colored pixel with the current
foreground color.

Thisisthe default value of the fill-style property of an T1vralette Object.

llivFillMaskPattern

IlvFillMaskPatternisSimilartothe11vFillpPattern Style, except that “0” pixelsin
therelevant T1vpattern object have no effect upon the corresponding pixelsin the
destination port. That is, the drawing masks its destination.

llvFillColorPattern

Inthecaseof T1vFillColorPattern, the pattern used tofill ashapeisindicated, not by

the pattern property of the T1vralette object, but rather by its colored pattern property. It
is used when you wish to fill aregion with afull-color pattern; that is, an actual object of the
IlvColorPattern class. The pattern property plays no rolein the case of thisfilling mode.

Fill Rule

This attribute indicates how self-intersecting polygons arefilled, since there is an ambiguity
concerning what is meant by “fill” in the case of such surfaces.

Thefill rule indicates which points are to be considered asinside afilled polygon, depending
on the count of crossing segments that define the shape of the areato be filled. The
I1lvFillRule providestwo possihilities:

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL 81

& IlvEvenOddRule Accordingto thisrule, in the case of the complex polygon shown
below, the central area of the star is not considered to lie inside the polygon, and
therefore, is not filled. Thisisthe default value.

& TIlvWindingRule Accordingtothisrule, the central areaof the star isconsideredtolie
inside the polygon, and therefore, is filled.

A A\ /\

P

Original polygzon EvenOddRule WindingRule
before fill

Figure3.6 IlvFillRule

Arc Mode

The arc mode indicates the way to close arcsin order to fill them, that is, the way in which
filled arcs are to be drawn: either by radii that form awedge-shaped “pie” or by asimple
“chord” line segment. There are two possible cases that are handled by the T1varcMode
enumeration type.

& TIlvarcpie Thearcisclosed by addingtwo lines, from the center of the completecircle
to the start and end points of the arc. Thisis the default mode.

& TIlvArcChord Thearcisclosed by adding aline from the start point to the end point.

IlwircPie mode IlwhreChord mode

Figure3.7 Arc Modes

82 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM

Other Drawing Parameters

Draw Mode

The draw mode specifies the operation to be performed on pixels when they are sent to the
destination port. The operation is the one that affects the destination pixel value when the
source pixel valueisto be drawn at that place. The draw mode has several possible values,
which are handled by the T1vbrawMode enumeration type. Except for the T1vModeXor
value, used in temporary drawings, these types produce no significant graphic result when
drawing in color.

& TlvModeset Theresulting pixel isacopy of the source pixel.

¢ IlvModeOr Theresulting pixel istheresult of an or operation on the source and
destination pixels.

¢ IlvModeand Theresulting pixel isthe result of an AND operation on the source and
destination pixels.

& TlvModexor Theresulting pixel isthe result of an xor (exclusive or) operation on the
source and destination pixels. This mode can be used a second time to delete a drawing.

¢ IlvModeNot Theresulting pixel isthe result of the NOT operation on the destination
pixel. The source pixel valueis not used.

¢ IlvModeInvert Theresulting pixel istheresult of anoT operation on the source pixel.

¢ IlvModeNotOr Theresulting pixel istheresult of anoT OR operation upon the source
and destination pixels.

¢ IlvModeNotand Theresulting pixel isthe result of anoT AND operation upon the
source and destination pixels.

¢ IlvModeNotXor Theresulting pixel isthe result of an NOT XOR Operation upon the
source and destination pixels. When you draw the same object twice with
TI1vModeNotXor Set, the drawing disappears.

Alpha Value

The aphavalue indicates the amount of transparency the drawing will be given. A value of 0
means that the drawing will be completely transparent, that is, nothing will be drawn. A
value of T1vFullIntensity means that the drawing will be opaque.

Drawing involves the use of two objects:

& An1lvport object. Thisisthe port wherethe drawing will be done. See Chapter 8,
Drawing Ports for details.

& AnIlvpalette Object. Thisisaset of graphic resources that will be used to draw. See
IlvPalete for details.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 83

84

IBM

It is possible to control transparency at both levels: For example, you can set an apha value
ontheport (using T1vPort: : setAlpha) and also on the palette you are going to draw with
(T1vPalette: :setAlpha). Inthiscase, the resulting drawing will use the composition of
the two alpha values.

Note: Thisattribute is currently being supported only on Windows platforms using GDI+.
See the section Using GDI+ Features with IBM ILOG Views on page 268 for details.

Anti-Aliasing Mode

The anti-aliasing mode indicates whether smooth lines are drawn using anti-aliasing. The
possible values for this mode are:

& TIlvDefaultAntialiasingMode Theanti-aliasing modeisnot explicitly specified. It
will be inherited using a default value.

€ TIlvNoAntialiasingMode No anti-aliasingwill be used to draw.
€ TIlvUseAntialiasingMode Drawingswill be doneusing anti-aliasing.
The anti-aliasing mode can be specified at different levels:

& TIlvDisplay To setthedefault anti-aliasing mode of the display
(11vbisplay: :setAntialiasingMode).

& Tlvport TO settheanti-aliasing mode of awhole port
(I1lvPort: :setAntialiasingMode).

& Tlvpalette To settheanti-aliasing mode of apalette
(IlvPalette::setAntialiasingMode).

Thefollowing rules are applied to determineif the final drawing will use anti-aliasing or not:
& For the paette:

o If the anti-aliasing mode of the palette has been set (using the member function
IlvPalette::setAntialiasingMode) then thismodeis used.

e Otherwise, the palette hasthe 11vDefaultantialiasingMode, and the mode of the
port in which the drawing is done is used.

& For the port:

o If the anti-aliasing mode of the port has been set (using the member function
IlvPort: :setAntialiasingMode) then this modeis used.

e Otherwise, the port hasthe I11vDefaultantialiasingMode, and the mode of the
display is used.

& For the display, the default anti-aliasing mode is IT1vNoAntialiasingMode. This
setting can be changed by either:

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

llvPalette: Drawing Using a Group of Resources

e Using the member function 11vDisplay: :setAntialiasingMode.
e Setting theresource Antialiasing to true.

e Setting the environment variable T1vAntialiasing 0 true.

Note: Thisattribute is currently being supported only on Windows platforms using GDI+.
See the section Using GDI+ Featureswith IBM ILOG Views on page 268 for details.

llvPalette: Drawing Using a Group of Resources

IBM

InIBM® ILOG® Views, the drawing resources are assembled into an object of the
IlvPalette class. Theonly way to draw anything isto use an T1vpalette object. Most
predefined graphic objects handle one 11vpalette (but sometimes more) to draw
themselves.

Unlike other 11vResource subclasses, 11vPalette has public constructors. However, the
standard way of creating a paletteis still to get it from the T11vDisplay: :getPalette
methods. The public constructors must only be used to create palettes that cannot be shared.

An T1lvPralette can be shared or not. Named palettes are a subset of shared palettes.
For additional details, see the sections:

¢ Locking and Unlocking Resources

Clipping Area

Creating a Non-shared Palette

Creating a Shared Palette

Naming Palettes

* 6 o o

Locking and Unlocking Resources

AnIlvpralette locksall the resourcesit contains and unlocks them when they are no
longer used (palette destruction or replacement of aresource).

Clipping Area
The following methods are used to change the clipping area used to draw with the palette.

void setClip(const IlvRect* = 0) const;
void setClip(const IlvRegion*) const;

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL 85

86

IBM

If you use a drawing method, the drawing will appear only in the clipping area; other areas
will not be modified.

That iswhy you must clip the drawing when you write the draw method of an 11vGraphic
subclass. The draw method gives you aclipping region as a parameter. You must set thisclip
on all the palettes that you are using to do the drawing. Once you have finished drawing, you
must reset the clip of each palette to its previous clip, since the palettes are shared. This can
be done using the T1vPushClip class.

Hereisan example:

void MyGraphic::draw(IlvPort* dst,
const IlvTransformer* t,
const IlvRegion* clip) const

IlvPalette* myPalette = getPalette();
IlvPushClip (*myPalette, clip);
IlvPoint pl (10, 10), p2(50, 50);

// Do my drawings

dst->drawLine (myPalette, pl, p2);

Creating a Non-shared Palette

You can create a palette that cannot be shared by using the public constructors of
IlvPalette:

IlvPalette(IlvDisplay* display) ;

IlvPalette(IlvPalette* palette);

IlvPalette(IlvDisplay* display,
IlvColor* background,
IlvColor* foreground,
IlvFont* font,
IlvPattern* pattern) ;

Thefirst constructor creates a default palette, the second creates a copy of the palette given
asitsargument, and the third creates the pal ette with its characteristics passed as arguments.
Once you have a new palette, you can use its member functionsto set itsinternal resources
(doing so with shared palettes is not recommended).

You can use this technique on the rare occasions when you do not want the palette to be
shared at all or when you want to have total control on the way the palette is shared. You
then have the responsibility of deleting it explicitly when it is no longer needed. Note that a
palette built this way still uses shared resources (colors, fonts, and so on).

Creating a Shared Palette

Each r11vDisplay instance maintains alist of shared palettes. When you need a new
palette, you must ask the display to supply it. This class provides a method
IlvDisplay: :getPalette that letsyou specify the internal resources of the palette. The

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

llvPalette: Drawing Using a Group of Resources

other member function I1vDisplay: :getPalette (const char* name) isdiscussedin
the next section on named pal ettes.

If apalette matching your requirements already existsin thelist, this paletteis returned. If no
such paletteis found in the list of shared palettes, a new palette is created, added to the list
and returned. The member function I1vDisplay: : getPalette doesnot lock thereturned
palette. You can set some resource parameters of this function to Nur.L.. The display then
uses the corresponding default resources.

The use of shared palettesis very common and sufficient for most applications. However,
you must keep in mind that these palettes are indeed shared and that modifying one of them
isvery likely to have undesirable side effects. Most of the time, pal ettes are used to control
the way graphic objects (that is, subclasses of T1vGraphic) are drawn.

You should not try to modify a palette itself, but instead use the graphic object member
functions to modify its graphic properties. The graphic object then gets another pal ette for
the display and keeps the old pal ette unchanged, in caseit is used somewhere elsein the
application.

The following code shows the right and wrong ways of using pal ettes:

// To set the foreground color of IlvGraphic* graphic
IlvColor* color = graphic->getDisplay ()->getColor ("blue");

// The following line will affect all objects sharing the palette
graphic->getPalette () ->setForeground(color); // Wrong way

// The following line will give another palette to the graphic object
// and will not affect objects pointing to the previous palette
graphic->setForeground (color) ; // Right way

Naming Palettes

As with most other resources, palettes can be named using their T1vResource: : setName
member function. This function overwrites any existing name, so before naming a palette,
you should check if the palette already has a name.

You can use the member function I1vDisplay: :getPalette (const char* name) tO
retrieve a shared palette by its name.

The name of a palette is saved when graphic objects are written to an output stream. When
this dataisread as an input stream, the display first triesto find an existing palette with the
same name. If none is found, the display tries to load the palette the usual way (that is, it
looks for an existing pal ette matching the description, and if none exists, it creates a new
palette and namesiit).

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL 87

llvQuantizer: The Image Color Quantization Class

IlvQuantizer iSthe abstract base class of all color conversion classes. It isused to convert
true color images to indexed images of given numbers of colors. It defines basic
functionality common to al IBM® ILOG® Views quantizers such as dithering.

Subclasses must redefinethe T1vQuantizer: : computeColorMap method to return an
appropriate I1vColorMap.

It has two main subclass categories:

& Thefirst category uses afixed colormap.

& The second one computes a colormap from the input image.
Currently IBM ILOG Views has four predefined quantizers:

& TheIlvFixedQuantizer remapstrue color imagestoindexed onesaccording to auser
specified colormap.

& TheIlvQuickQuantizer specializesthe I11vFixedQuantizer with apredefined
colormap distributed in the color cube with 3 bits for the red component, 3 bits for the
green component and 2 bits for the blue component, leading to a 256 color map well
distributed in the color cube.

& TheIlvNetscapeQuantizer specidizesthe I11vFixedQuantizer with apredefined
colormap known as the Netscape colormap. This colormap has 216 entries. Images
generated with this colormap are guaranteed not to dither in the Netscape web browser.

& The IlvwuQuantizer computes acolormap from the input image using the Wu
agorithm. This algorithm generates very accurate colormaps even with alow number of
colors (see the quantize sample). It is, however, slower than the others.

Other methods for quantization not implemented in IBM ILOG Views are Neural Nets and
Octrees.

Sample code:

IlvWUQuantizer quantizer;
// bdata is an instance of an I1vRGBBitmapData
IlvIndexedBitmapData* idata = quantizer.quantizer (bdata, 64);

88 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Graphic Formats

IBM® ILOG® Viewsismainly atool for manipulating vectoria entities, that is, shapes
made of lines and curves that can easily be manipulated to change their visual aspect in
terms of geometric characteristics. But IBM ILOG Views aso has the capability of
manipulating raster or bitmap images.

& Graphic Formats Supported

& Bitmaps describes the characteristics of bitmap images

¢ |lvBitmap: The Bitmap Image Class

¢ |lvBitmapData: The Portable Bitmap Data Management Class

Graphic Formats Supported

IBM® ILOG® Views can work with the following vectorial and bitmap formats:
¢ Vectoria:

o DXF (input and output)

o DCW (input)

o WMF (Microsoft Windows only, output)

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 89

e PostScript (output)
& Bitmap (input and output):
e BMP - the standard Microsoft Windows bitmap format.
e JPG or JPEG - one of the most common formats used, especially for photos
e PNG
e SGI RGB - mainly used on the SGI Platform
e TIFF - Tagged Image Format File
e PPM - mainly used on UNIX platforms

e WBMP - used on WAP devices

For details on using bitmapsin IBM ILOG Views, see the section Bitmaps on page 90 and
the 11vBitmap class.

Bitmaps

90

IBM

IBM® ILOG® Views supports bitmap (also called raster) images. Bitmaps have the
following characteristics.

Color Bitmaps

If your display system has no true-color capabilities, each pixel value represents a color
index. To find the exact color that will be displayed for this pixel, the system lookup tableis
consulted. If your display system has true-color capabilities, each pixel of the bitmap stores
its complete color information.

Black-and-White Bitmaps

Images can a so be monochrome. In this case, thereisonly one bit per pixel. The drawing of
these one-bit-deep bitmaps takes place by setting the “1” pixelsto the foreground color of
the palette given to the 11vbisplay instance and the “0” pixels to the background color of
the palette. When displayed as atransparent bitmap, the“ 0” pixels leave the destination port
unchanged.

Transparent Bitmaps and Masks

A colored bitmap can be associated with amask. A mask is a monochrome bitmap that
indicates which of the pixelsin the actual source image will be displayed. The pixelsin the
bitmap that correspond to “0” bitsin the mask are not displayed, achieving the effect of a
transparent bitmap. A transparent bitmap is a color bitmap that has transparent parts.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

llvBitmap: The Bitmap Image Class

llvBitmap: The Bitmap Image Class

IBM

Raster or bitmap images are represented by instances of the 11vBi tmap class. For detailson
using I1vBitmap, See:

& Bitmap-Related Member Functions
& Bitmap Formats

& Loading Bitmaps: Streamers

& Loading Transparent Bitmaps

Bitmap-Related Member Functions
Special member functions dealing with bitmaps can be found in the 11vDisplay class.

Bitmaps are very often shared between different objects. For example, the same bitmap can
be used as afill pattern and an image on its own. Therefore, we need a management of
bitmap resources, which is accomplished by alocking/unlocking policy.

Bitmap management is closely concerned with the ways in which you lock or unlock your
bitmaps. Whenever you need a specific bitmap in one of your persistent objects, use the
following mechanism to make sure that it will stay safe within your 11vDisplay instance:

void lock() ;

This member function of the class 11vBi tmap ensuresthat your bitmap will never be
modified or destroyed before every object that needsiit tells IBM ILOG Views to do so.
Basically, this function increments a reference count initially set to 0.

void unLock() ;

This member function unlocks your bitmap; that is, it decrements the reference count of the
bitmap and deletes it when this count becomes 0. The creation/del etion mechanism of an
I1vBitmap object by the new and delete C++ operators must be reserved for bitmap
objects used in atemporary way and which are not shared.

Bitmap Formats

IBM ILOG Views alowsyou to create 11vBi tmap objects from files or streams containing
images in various formats. These formats are:

¢ BMP (all subtypes, RLE and RGB encoded, Indexed and True Color). Thisformat is
very common on Microsoft Windows platforms. Not compressed.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL 91

92

IBM

& Portable Network Graphics (PNG). Thisformat is becoming more common. It allows
transparent areas or colors, has indexed and high resolution true color subtypes.

Note: Thisformat is the patent-free replacement for GIF. Seehttp://
www . 1libpng.org/pub/png/.

& Joint Photographic Experts Group (JPEG) Thisformat iswidely used for photographic
images. Itis“lossy,” meaning that original informationis missing in aJPEG image. This
format allows important compression factors.

& Portable Pixmap (PPM, PGM, PBM) Thisformat is very common on UNIX platforms.
It is uncompressed and generates huge files.

& WAPBItmap (WBMP) Thisformat is used on WAP devices, such as mobile phones. It is
amonochrome format.

Loading Bitmaps: Streamers

Each of the bitmap formatsis associated with a streamer object (class
IlvBitmapStreamer).

Streamers can be registered at compile time or at run time. Registering a streamer at compile
time consists of including the header file for this format:

Table4.1 Header Filesfor Bitmap Formats

Bitmap Format Header File

JPEG ilviews/bitmaps/jpg.h
PNG ilviews/bitmaps/png.h
BMP ilviews/bitmaps/bmp.h
PPM ilviews/bitmaps/ppm.h
SGI RGB ilviews/bitmaps/rgb.h
TIFF ilviews/bitmaps/tiff.h
WBMP ilviews/bitmaps/wbmp.h

You then just use the following call to load an image into a bitmap:

IlvBitmap* IlvDisplay::readBitmap (const char* filename) ;

Image type is recognized using afile signature, and the correct streamer is called
automatically by T1vbisplay: : readBitmap.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

llvBitmapData: The Portable Bitmap Data Management Class

All the bitmap streamers are dynamic modules. It means that the reader or writer is
dynamically loaded when necessary. Thus, you need only to request IBM ILOG Viewsto
read or write an image, and it will do it for all known formats.

Streamers are modules and can be loaded at run time if an unknown (or unregistered) file
format is being loaded. The corresponding module (if any) will be loaded and the streamer
registered. This works only on platforms where modules are supported.

Additional formats are always registered and do not need modules:
¢ XPM
¢ XBM

Loading Transparent Bitmaps

An IlvTransparentIcon Object appears asabitmap. Pixelsin the source bitmap with a
zero value do not affect the destination port when the drawing is performed. Usually the
transparent region of the bitmap icon | ets the background pattern show through. This process
works only for monochrome bitmaps or colored bitmaps that have either a transparency
mask or atransparent color index.

IBM ILOG Viewsis able to load transparent bitmaps from the following file formats :
¢ XPM

The transparent areas match the areas defined as “none” in the bitmap description file. If
thisinformation is omitted, the bitmap is not loaded as a transparent icon.

¢ PNG

IBM ILOG Views uses transparency information form the PNG stream to create
transparent areas in the bitmap.

llvBitmapData:

IBM

The Portable Bitmap Data Management Class

IlvBitmapData and its associated classes provide portable bitmap data management. For
details see:

¢ ThellvBitmapData Class

& ThellvindexedBitmapData Class

¢ ThellvRGBBitmapData Class

¢ ThellvBWBitmapData Class

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 93

94

IBM

The llvBitmapData Class

Raster images in display systems such as X11 or Windows are generally represented using
very system-dependent representations. These representations are deeply dependent on the
display system configuration, forcing you to write display depth dependent code. The
IlvBitmapData Class allowsyou to describe raster images using a common portable API.
TI1vBitmapData iSthe base class of three subclasses that allow management of indexed
images, true color images with al pha channel, and black and white images commonly used
for masking and clipping. Bitmap data are managed like resources and can be locked/
unlocked. This classis generally not used directly. The T1vBitmapData class manages
memory, reference counting, and generic access to pixels of the image. It also provides
access to basic image processing methods such as stretching. IBM® ILOG® Views also
provides functionality for converting true color images to indexed images, a process known
as quantizing (see llvQuantizer: The Image Color Quantization Class on page 88). You also
have accessto the full SVG specification filters, allowing for very advanced image
processing features (see Chapter 5).

The llvindexedBitmapData Class

The I1vIndexedBitmapData classis dedicated to indexed color images, where raster data
is described as indexes to a color map (8-bit values, meaning that you can have only 256
colorsin an indexed bitmap data).

Creating an Indexed Bitmap Data of Dimensions 256 * 256 Pixels

Thefirst step isto create acolormap. We create a colormap with 256 entries. We then fill this
colormap with grayscale values. Each component is described using 8 bits for each
component.
IlvColorMap* cmap = new IlvColorMap (256) ;
for (I1UInt idx = 0; idx < 256; ++idx) {

// sets the red, green and blue components for a entry

cmap->setEntry (idx, idx, idx, idx);
}

We then create an indexed bitmap data of desired size:

IlvIndexedBitmapData* idata = new IlvIndexedBitmapData (256, 256, cmap) ;

We then fill the bitmap data with a gradient of indexes:
for (I1UInt h = 0; h < 256; ++h)

for (I1UInt w = 0; w < 256; ++w)
idata->setPixel(w, h, h);

To be able to display this bitmap data on the screen, you have to create an 11vBitmap from
it.

IlvBitmap* bitmap = new IlvBitmap (display, idata);

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

llvBitmapData: The Portable Bitmap Data Management Class

You can then use the 11vIcon classto create a graphic object from this.

The llvRGBBitmapData Class

The T11vRGBBi tmapData classis dedicated to true color images, where raster dataisa
direct representation of the colors of the pixels.

Creating a True Color Bitmap Data of Dimensions 256 * 256 Pixels and Filling
it With a Gradient

I1vRGBBitmapData* bdata = new I1vRGBBitmapData (256, 256);
for (I1UInt h = 0; h < 256; ++h)
for (I1lUInt w = 0; w < 256; ++w)
bdata->fastSetRGBPixel (w, h, w, h, w);

Aswith T1vIndexedBitmapData, you can then create an 11vBitmap and display it using
IBM ILOG Views standard methods.

When on an 8-bit color display, the IBM® ILOG® Viewslibrary automatically convertsthis
true color image to an indexed image using an algorithm yielding a very high quality image.

The internal representation for true color bitmap datais an array of width * height entries.
Each entry is a 4-byte quadruplet describing a pixel asfollows:

& First byteis the alpha component.

& Second byte is the red component.
& Third byte isthe green component.
& Fourth byte is the blue component.

The array can be described top-bottom or bottom-top, so you have a line access method
using I1vBitmapData: :getRowStartData.

You can use various methods to access raster data:
& TIlvBitmapData::getData returnsapointer to the raw raster data
€ T1vRGBBitmapData::getRGBPixel alowsyou to retrieve agiven pixel.

€ I1vRGBBitmapData::getRGBPixels alowsyou to retrieve the RGB representation
of agiven rectangle.

€ TI1vRGBBitmapData::fill alowsyou to fill arectangle with agiven color.

€ T1vRGBBitmapData: :copy alowsyou to copy arectangle of abitmap datato agiven
position in another bitmap data.

€ I1vRGBBitmapData: :blend alowsyou to smoothly blend a bitmap datainto another
using a blend factor.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL 95

96

IBM

€ T1vRGBBitmapData: :alphaCompose Usesthe aphachannel to compose two bitmap
data.

€ TI1vRGBBitmapData::tile alowsyou to tileabitmap datainto another.

€ I1vRGBBitmapData::stretch alowsyou to stretch aportion of abitmap datainto
another.

€ T1vRGBBitmapData::stretchSmooth alowsyou to stretch a portion of abitmap
datainto another using high quality resampling methods.

You can aso independently access the color and a pha values for a given pixel.

The llvBWBitmapData Class

This classis dedicated to black and white images, where only two values are possible for a
given pixel: on or off.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Image Processing Filters

This chapter presents the various image processing classes that IBM® ILOG® Views
provides.

These classes are all related to the SV G filters (for acomplete description of the features, see
http://www.w3.org/TR/2000/CR-SVG-20001102/filters.html).

llvBitmapFilter: The Image Processing Class

I BM

IlvBitmapFilter isthebase class of al image processing classesin
IBM® ILOG® Views. It defines the interface for image processing classes using asingle
method:

IlvBitmapFilter: :apply
This method accepts an array of I1vBitmapData and returns another 11vBitmapData.

The i 1vbmpf1t library from the IBM ILOG Views foundation package defines many
subclasses of T1vBitmapFilter; most of them are implementations of the W3Cs SVG
filters specification. In the following sections, you will find alist of the image processing
classes and their features.

& ThellvBlendFilter Class
& ThellvColorMatrixFilter Class

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL 97

98

IBM

The IlvComponent Transfer Filter Class
The IlvComposeFilter Class
The IlvConvolutionFilter Class
The IlvDisplaceFilter Class

The IlvFloodFilter Class

The llvGaussianBlurFilter Class
The llvimageFilter Class

The llvLightingFilter Class

The IlvLightSource Class

The llvMergeFilter Class

The IlvMorphologyFilter Class
The IIvOffsetFilter Class
ThellvTileFilter Class

The IlvTurbulenceFilter Class

The llvFilterFlow Class

L R R SR R R R IR ZEE JER R IR IR R SR R 2

Using llvFilteredGraphic to Apply Filter Flows to Graphic Objects

The llvBlendFilter Class

The 11vBlendFilter classlets you blend two images A and B using various modes.
The blend modes define the following formulas:

Normal BlendMode: cr = (1 - ga) * cb + ca

Multiply Blend Mode: cr = (1 - gqa) * cb + (1 - gb) * ca + ca * cb
ScreenBlend Mode: cr = cb + ca - ca * cb

DarkenBlend Mode: cr = Min((1 - ga) * cb + ca, (1 - gb) * ca + cb)

* 6 6 o o

Lighten Blend Mode: cr = Max((1 - ga) * cb + ca, (1 - gb) * ca + cb)

where:

cr Result color (RGB) - premultiplied
ga Opacity value at a given pixel for image A
ab Opacity value at a given pixel for image B

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IlvBitmapFilter: The Image Processing Class

ca Color (RGB) at a given pixel for image A (premultiplied)
cb Color (RGB) at a given pixel for image B (premultiplied)

For al blend modes, the resulting opacity gr is computed as follows:

gr =1 - (1 - gqa) * (1 - gb)

The llvColorMatrixFilter Class

The I1vColorMatrixFilter classletsyou apply amatrix transformation on the RGBA
components of an input image.

The matrix is given as 5*4 row major order coefficients.

R"		200 a0l a02 a03 a0d4		R
¢		al0 all al2 al3 al4		G
B'	=	a20 a2l a22 a23 a24	*	B
A	a30 a31 a32 a33 a34		a	
1	o o o o 1		1	

This class has three subclasses with specific coefficients.

The llvSaturationFilter Class
IlvSaturationFilter computes the transformation matrix from the formula:

'	[0.213+0.787s 0.715-0.715s 0.072-0.072s 0 0		R
¢	[0.213-0.213s 0.715+0.285s 0.072-0.072s 0 0		G
B	=]0.213-0.213s 0.715-0.715s 0.072+0.928s 0 0	*	B
a		0 0 01 0	
1		0 0 o0 1]	1]

where s is the saturation factor.

The llvHueRotateFilter Class
I1lvHueRotateFilter computes the transformation matrix from the formula

'		a00 a01 a02 0 0		R
¢		a10 all a12 0 0		G
B'	=	a20 a21 a22 0 0	*	B
a	lo o o 1 0		a]	
1		o 0 0 o 1		1]

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 99

where theterms a00, a01, and so on, are calculated as follows:

| a0l a0l a02 | [+0.213 +0.715 +0.072]
| al0 all al2 | = [+0.213 +0.715 +0.072] +
| a20 a21 a22 | [+0.213 +0.715 +0.072]

[+0.787 -0.715 -0.072]
cos (hueRotate value) * [-0.212 +0.285 -0.072] +

[-0.213 -0.715 +0.928]

[-0.213 -0.715 +0.928]
sin (hueRotate value) * [+0.143 +0.140 -0.283]
[-0.787 +0.715 +0.072]
where value isthe angle of rotation for the hue.
Thus, the upper-left term of the hue matrix turns out to be;
.213 + cos (hueRotate value)*.787 - sin(hueRotate value)*.213

The llvLuminanceToAlphaFilter Class
IlvLuminanceToAlphaFilter computes the transformation matrix from the formula

| R | | 0 0 00 0] |R|
[' | | 0 0 00 0] |o|
| B | = | 0 0 00 0] *|B|
| & | | 0.2125 0.7154 0.0721 0 0 | | a |
[1 | | 0 0 000 1] |1]

Thisfilter converts color images to grayscale images.

The llvComponentTransferFilter Class

The I1vComponentTransferFilter classletsyou perform component-wise remapping
on images as follows:

R' = feFuncR(R)
G' = feFuncG(G)
B' = feFuncB(B)
A' = feFuncA(A)

100 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM

IlvBitmapFilter: The Image Processing Class

feFuncR, feFuncG, feFuncB, and feFunca define the transfer functions for each
component.

It allows operations such as brightness adjustment, contrast adjustment, color balance, or
thresholding.

Five predefined transfer functions are defined:
& identity:c' = C

& table: thefunction is defined by linear interpolation into alookup table by attribute
values, which provides alist of n+1 values (that is, v0 to vn) in order to identify n
interpolation ranges. Interpolations use the following formula:

k/N <= C < (k+1)/N => C' = vk + (C - k/N)*N * (vk+1 - vk)

& discrete: the function is defined by the step function defined by attribute values, which
providesalist of n values (that is, v0 to vn-1) in order to identify a step function
consisting of n steps. The step function is defined by the following formula:

k/N <= C < (k+1)/N => C' = vk
¢ linear: the function is defined by the following linear equation:
C' = slope * C + intercept
where slope and intercept are user specified.
¢ gamma: the function is defined by the following exponential function:
C' = amplitude * pow(C, exponent) + offset
where amplitude, exponent, and of fset are user specified.

Transfer functions are classes on their own and can be redefined (see
IlvTransferFunction, IlvIidentityTransfer, IlvLinearTransfer,
IlvTableTransfer, IlvDiscreteTransfer, and IlVGammaTransfer).

The llvComposeFilter Class

The I1vComposeFilter class letsyou perform the combination of the two input images
pixel-wise in image space using one of the Porter-Duff compositing operations. over, in,
atop, out, xor. Additionally, a component-wise arithmetic operation (with the result
clamped between [0..1]) can be applied. You have a choice of these six operators for the
compositing, shown in Table 5.1 on page 102.

The resulting color is given by the formula:

Cresult = Fa * Ca + Fb * Cb

where:

¢ Fa and Fb depend on the operator as shown in Table 5.1 on page 102.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 101

& Ca isthe color from the first image, and cb is the color from the second image.

& Inthetable, aa isthe alphavaue from the first image and ab is the aphavalue from the

second image.

Table5.1 Compositing Operators

Operator Operation

over Fa =1, Fb = 1 - Aa

in Fa = Ab, Fb = 0

out Fa =1 - Ab, Fb = 0

atop Fa = Ab, Fb = 1 - Aa

XOor 1 - Ab, Fb = a - Aa

arithmetic Cresult = k1 * Ca * Cb + k2 * Ca + k3 * Ca * Cb + k4

The llvConvolutionFilter Class

The I1vConvolutionFilter classletsyou apply amatrix convolution filter effect. A
convolution combines pixels in the input image with neighboring pixels to produce a
resulting image. A wide variety of imaging operations can be achieved through
convolutions, including blurring, edge detection, sharpening, embossing and beveling.

A matrix convolution is based on an n-by-m matrix (the convolution kernel) which describes
how a given pixel value in the input image is combined with its neighboring pixel valuesto
produce a resulting pixel value. Each result pixel is determined by applying the kernel
matrix to the corresponding source pixel and its neighboring pixels.

Toillustrate, suppose you have an input image which is 5 pixels by 5 pixels, whose color

values are as follows:

0 20 40 235

100 120 140 235

200 220 240 235

225 225 255 255

225 225 255 255

235

235

235

255

255

and you define a 3-by-3 convolution kernel asfollows:

123

456

102 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

I BM

IlvBitmapFilter: The Image Processing Class

789

Let usfocus on the pixel at the second row and second column of the image (the source pixel
valueis 120). Then the resulting pixel value will be:

(1* 0 + 2* 20 + 3* 40 +
4*100 + 5*120 + 6*140 +

7*200 + 8%220 + 9%240) / (1+2+3+4+5+6+7+8+9)

You can specify adivisor (anumber by which the result of the matrix convolution is divided)
and a bias (a number by which the result of the matrix convolution is added).

Thekernel is described by the T1vBitmapbDatakernel class.

The llvDisplaceFilter Class

The I11vDisplaceFilter classletsyou displace pixels from animage using pixel values
of another image.

Thisisthe transformation to be performed:

P'(x,y) <- P(x + scale * ((XC(x,y) - .5), y + scale * (YC(x,y) -
.5))

where:
¢ P(x,y) istheinputimage.
¢ P (x,y) isthedestination.

& XxC(x,y) andyc (x,y) arethe component values of the displacement map. They can be
chosen from any of the color components of the image map (an example is that the Red
component displacesin X while the Alpha component displacesin Y.

& scaleisauser-specified scaling value.

The llvFloodFilter Class

The I11vFloodFilter classletsyou fill an image with a given color.

The llvGaussianBlurFilter Class

TheIlvGaussianBlurFilter classletsyou apply aGaussian blur effect to animage. The
Gaussian blur kernel is an approximation of the normalized convolution:

H(x) = exp(-x"2/ (2*s72)) / sgrt(2* pi*s”2)

where s is a user-specified deviation.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 103

104

IBM

Thisfilter usesthe T1vConvolutionFilter internaly.

The llvimageFilter Class

The 11vImageFilter classletsyou load an image from a string describing the image
name.

The llvLightingFilter Class

The 11vLightingFilter classletsyou light an image using the alpha channel as abump
map. Severa types of lights can be specified (see later).

This classis an abstract class and has two usable subclasses.

The llvDiffuseLightingFilter Class

For the 11vDiffuseLightingFilter class, the resulting image is an RGBA opaque
image based on the light color with alpha= 1.0 everywhere. Thelighting cal culation follows
the standard diffuse component of the Phong lighting model. The resulting image depends
on the light color, light position, and surface geometry of the input bump map.

The light map produced by thisfilter primitive can be combined with a texture image using
the multiply term of the arithmetic 11vComposeFilter compositing method. Multiple
light sources can be simulated by adding several of these light maps together before
applying it to the texture image.

The resulting RGBA image is computed as follows:
Dr = kd * N.L * Lr
Dg = kd * N.LL * Lg

Db = kd * N.L * Lb

Da = 1.0

where:

kd Diffuse lighting constant

N Surface normal unit vector, a function of x and y (see below)

L Unit vector pointing from surface to light, a function of x and y in
the point and spot light cases

Lr, Lg, Lb RGB components of light, a function of x and y in the spot light

case

N isafunction of x and y and depends on the surface gradient as follows:
The surface described by the input alphaimage ain (x,y) is:

Z (x,y) = surfaceScale * Ain (X,Vy)

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

IlvBitmapFilter: The Image Processing Class

Surface normal is calculated using the Sobel gradient 3x3 filter:

Nx (x,y)= - surfaceScale * 1/4*((I(x+1l,y-1) + 2*I(x+1,y) + I(x+1,y+1))
- (I(x-1,y-1) + 2*I(x-1,y) + I(x-1,y+1)))

Ny (x,y)= - surfaceScale * 1/4*((I(x-1,y+1l) + 2*I(x,y+1) + I(x+1,y+1))
- (I(x-1,y-1) + 2*I(x,y-1) + I(x+1l,y-1)))

Nz (x,y) = 1.0
N = (Nx, Ny, Nz) / Norm((Nx,Ny,Nz))

See 11vLightSource for afurther description of L., the unit vector from the image sample
to thelight.

The llvSpecularLightingFilter Class

For 11vsSpecularLightingFilter, theresulting imageisan RGBA image based on the
light color. The lighting calculation follows the standard specular component of the Phong
lighting model. The resulting image depends on the light color, light position, and surface
geometry of the input bump map. The result of the lighting calculation is added. The filter
primitive assumes that the viewer is at infinity in the z direction (that is, the unit vector in the
eyedirection is (0,0,1) everywhere).

Thisfilter primitive produces an image that contains the specular reflection part of the
lighting calculation. Such a map is intended to be combined with atexture using the add
term of the arithmetic T1vComposeFilter method. Multiple light sources can be simulated
by adding several of these light maps before applying it to the texture image.

The resulting RGBA image is computed as follows:

Sr = ks * pow(N.H, specularExponent) * Lr
Sg = ks * pow(N.H, specularExponent) * Lg
Sb = ks * pow(N.H, specularExponent) * Lb
Sa = max(Sr, Sg, Sb)

where:

ks Specular lighting constant

N Surface normal unit vector, a function of x and y (see below)

H "Halfway" unit vector between eye unit vector and light unit vector
Lr, Lg, Lb RGB components of light

See11vDiffuseLightingFilter for definitionsof Nand (Lr, Lg, Lb).
The definition of = reflects our assumption of the constant eye vectore = (0,0,1):
H= (L + E) / Norm(L+E)

where 1. isthe light unit vector.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 105

The llvLightSource Class

The 11vLightSource classlets you model lights. It has three usable subclasses

The llvDistantLight Class

IlvDistantLight modelsan infinite light source using an azimuth and an elevation:
Lx = cos (azimuth) *cos (elevation)

Ly = sin(azimuth) *cos (elevation)

Lz = sin(elevation)

The llvPointLight Class

IlvPointLight modelsan positiona light using three coordinates Lightx, Lighty, and
Lightz.

The llvSpotLight Class

I1lvSpotLight modelsapositional spot light using three coordinates1.i ghtx, Lighty, and
Lightz.

Lx = Lightx - x

Ly Lighty - vy

Lz = Lightz - Z(x,vy)

L = (Lx, Ly, Lz) / Norm(Lx, Ly, Lz)
where:
Lightx, The input light position
Lighty, and
Lightz
Lr, Lg, Lb The light color vector, is a function of position in the spot light case
only:
Lr = Lightr*pow((-L.S), specularExponent)
Lg = Lightg*pow((-L.S), specularExponent)
Lb = Lightb*pow((-L.S), specularExponent)

Given s as the unit vector pointing from the light to the point (pointsaAtX, pointsAty,
pointsAtz) inthe x-y plane:

Sx = pointsAtX - Lightx
Sy = pointsAtY - Lighty
Sz = pointsAtZ - Lightz

S = (Sx, Sy, Sz) / Norm(Sx, Sy, Sz)

106 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM

IlvBitmapFilter: The Image Processing Class

The llvMergeFilter Class

The 11vMergeFilter classlets you composite input image layers on top of each other
using the over operator.

Many effects produce a number of intermediate layersin order to create the final output
image. Thisfilter allows usto collapse them into a single image. Although this could be
done by using n-1 T1vComposeFilter filters, it is more convenient to have this common
operation available in this form, and offers the implementation some additional flexibility.

The llvMorphologyFilter Class

The I1vMorphologyFilter classletsyou perform "fattening” or "thinning" of artwork. It
is particularly useful for fattening or thinning an alpha channel.

The dilation (or erosion) kernel is arectangle with awidth of 2*x-radius+1 and aheight
of 2*y-radius+1 where radius isauser-specified value. In dilation, the output pixel is
theindividual component-wise maximum of the corresponding R,G,B,A valuesin the input
image kernel rectangle. In erosion, the output pixel isthe individual component-wise
minimum of the corresponding R,G, B, A values in the input image kernel rectangle.

The llvOffsetFilter Class

The 11voffsetFilter classletsyou offset an image by given x and y values. Thisis
important for effects such as drop shadows.

The llvTileFilter Class
TheIlvTileFilter classletsyou create atarget image with arepeated, tiled pattern.

The llvTurbulenceFilter Class
The IlvTurbulenceFilter letsyou create animage using the Perlin turbulence function.
It allows the synthesis of artificial textures such as clouds or marble.

Note: For a detailed description the of the Perlin turbulence function, see " Texturing and
Modeling", Ebert et al, AP Professional, 1994.

The resulting image will have maximal size in the image space.
It is possible to create bandwidth-limited noise by synthesizing only one octave.

You can choose whether fractal noise or turbulenceis created and the number of repetitions
(octaves) of the noise generation functions to use.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 107

108

IBM

The llvFilterFlow Class

The 11vFilterFlow classletsyou chain I1vBitmapFilter instances using names as
inputs and outputs. An example of such aflow isthe creation of a drop shadow effect. You
use the alpha channel of an image as the input for a Gaussian blur; you then offset the
blurred image and merge this with the source image.

H) = "= D

Original source graphic Result of filter effect

The 11vFilterFlow classcan be created programmatically but it is much more convenient
to use the XML representation of filter flows, in asimilar way to the definition of filtersin
SVG.

An example of such aflow is given by the following XML file (see $ ILVHOME /data/
filters for many predefined XML filter flows):

<?xml version="1.0"?>
<filters>
<filter id="DropShadow2" x="-10" y="-10" width="125" height="125">
<desc>Applies a drop shadow effect</desc>
<feGaussianBlur in="SourceAlpha" stdDeviation="3"/>
<feOffset dx="2" dy="2" result="offsetBlur"/>
<feComposite in="SourceGraphic" in2="offsetBlur" operator="over"/>
</filter>
</filters>

Hereis aline-by-line description:

<?xml version="1.0"?>

The definition of IBM ILOG Viewsfilters follows XML conventions.

<filters>

Opening element for filters (the file can contain any number of filters)
<filter id="DropShadow2" x="-10" y="-10" width="125" height="125">
Opening element for afilter name bropShadow?2.

Some filters extend the source image by some pixelsin all dimensions, so we must specify
the additional extension of thefilter.

Thisfilter grows the source image by 10 pixels at the left and top and extends the width and
height by 25 pixels.

<desc>Applies a drop shadow effect</desc>

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

IlvBitmapFilter: The Image Processing Class

This tag contains a description of the filter.

<feGaussianBlur in="SourceAlpha" stdDeviation="3"/>

The first atomic filter to usein thisflow isan I1vGaussianBlurFilter with adeviation
of 3in both directions.

Two predefined names are defined by the filter flow:

& SourceAlpha: contains only the Alphavalues of the input image.

€ SourceGraphic: contans the input image.

Here we only need to apply the blur on the alpha component of the image.
<feOffset dx="2" dy="2" result="offsetBlur"/>

The second atomic filter isan T1voffsetFilter with displacement 2.

When not specified, the input from afilter is the output of the previousfilter, so it does not
need to be specified. The result will be an image stored with the name of fsetBlur.

<feComposite in="SourceGraphic" in2="offsetBlur" operator="over"/>

Thethird and last atomic filter isan T1vComposeFilter that will compose the offset
blurred image with the input image using the over operator.

</filter>

Closes the filter flow description.
</filters>
Closes the filters enumeration.

Suchan 11vFilterFlow can be created by using the following lines. We suppose that the
file containing the filter flow is stored on the disk under the name standard.xml:

I1IUrlStream input ("standard.xml") ;
IlvFilterFlow* flow = new IlvFilterFlow (input, "DropShadow2") ;

Using llvFilteredGraphic to Apply Filter Flows to Graphic Objects

The IBM® ILOG® Views foundation package provides asimple way to apply filter flowsto
graphic objects: the T1vFilteredGraphic class.

This class encapsulates a graphic object and internally computes an 11vBitmapData from
the draw method of the object. It then applies a given filter flow to this 11vBitmapData
and draws the result on the screen. It is then very easy to add image processing effects to
vectorial objects.

Sample code:

IlvZoomableLabel* embosssource = new IlvZoomableLabel (display,

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 109

110

IBM

IlvPoint (100, 100),
"Views") ;

embosssource->setForeground (display->getColor ((IlvIntensity) (5 * 255),
(IlvIntensity) (5 * 255)
(IlvIntensity) (56 * 255)));
embosssource->setFont (display->getFont ("$Helvetica-75-")) ;
IlvFilteredGraphic* emboss = new IlvFilteredGraphic (display,
embosssource,
"standard.xml#DropShadow",
I1True) ;

Many predefined filter flows are provided in the IBM ILOG Views distribution in the
$ILVHOME/data/filters directory. You can use them interactively with the
IBM ILOG Views Studio application.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

The Display System

The 11vDisplay classisafundamental classinthe I BM® ILOG® Viewslibrary. It
handles every aspect of the connection with the display system. The topics are:

4

* & & o

IlvDisplay: The Display System Class
Connecting to the Display Server
Display System Resources

Home

The Display Path

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 111

llvDisplay: The Display System Class

To develop agraphic application using IBM® ILOG® Views, you use aset of T1vDisplay

member functions or IBM ILOG Views primitives:

Graphic application developer

IBM ILOG Views primitives

Drawing commands

Graphic resources

X Window
with Motif

Microsoft
Windows

Other
display
systems

Figure 6.0 IlvDisplay Drawing Member Functions: The Primitives
The class T1vDisplay enables you to communicate transparently with adisplay system

such as X Window or Microsoft Windows.

Two basic tasks are drawing commands and graphic resource handling:

¢ Drawing Commands Drawing commands handle the basic geometric classes for such
entities as points, rectangles, regions (list of rectangles), curves, and strings.

There are more than twenty drawing member functions of thiskind (seethe T1vrort
class for details). Drawing operations produce their results inside a region—either in
memory or on the screen—that is defined as an instance of the T1vPort class.

112 IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

Connecting to the Display Server

& Graphic Resources Some 11vDisplay drawing member functions deal with graphic
resources, such as colors, line styles, patterns, and fonts. These resources are objects that
inherit the features of aclasscaled 11vResource. They are created by means of various
I1vDisplay member functions. Specific resources are grouped together into objects of
the 11vPalette classfor drawing purposes.

Connecting to the Display Server
Toinitiaize an IBM® ILOG® Views session, you have to create an instance of the
I1lvDisplay class. Thisinvolves:
4 Opening a Connection and Checking the Display

¢ Closing a Connection and Ending a Session

Opening a Connection and Checking the Display

The member function T1vDisplay: : isBad returns a Boolean value that tells you whether
the 11vDisplay object has been successfully created, as shown in the following code. The
reasons for a display failure vary from one display system to another.

IlvDisplay* display = new IlvDisplay (“AppName”,
“DisplayName”,
argc,
argv) ;

if (display->isBad()) {

delete display;
IlvFatalError (“Could not create display”);

I1lvExit(-1);
}
const char* dirName = “./localDirectory/subDirectory”;
const char* fileName = “foo.txt”;

display->prependToPath (dirName) ;
// Now, 1f a file such as

// “./localDirectory/subDirectory/foo.txt"”
// or
// “.\localDirectory\subDirectory\foo.txt”

// exists, we should be able to find it.
const char* filePath = display->findInPath(fileName) ;
if (filePath)
IlvPrint (“File %s found at %s”, fileName, filePath);
else
IlviWwarning (“File %s not found”, fileName) ;

For more information about IBM ILOG Views error messages, see Appendix E, Error
Messages.

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 113

Closing a Connection and Ending a Session

To close a connection to the display server, just destroy the 11vDisplay object. The
destructor, T11vDisplay: : ~IlvDisplay, immediately frees all graphic resources used by

the display.

If the T1vDisplay was created on the basis of an existing link to adisplay system, delete
does not destroy thislink. Except in the rare cases of multidisplay applications, destroying
the 11vDisplay meansthe end of the session, since you cannot do much without a display.

You must call T1vExit to end the session properly. It frees memory allocated by
IBM ILOG Views. Thisisespecially important with Microsoft Windows, where this
memory is not automatically freed by the system.

delete display;
I1vExit (0) ;

Display System Resources

114

IBM

A display system resource is an association of two strings: aname and avalue. Display
system resources are very convenient for building customizable applications.

Note: “ Display system” resources are not to be confused with “ graphic” resources,
which are described in Chapter 3, Graphic Resources.

The resource name-value pair can be specified as follows in specific sections of aresource
file (the .xdefaults fileon UNIX or the . In1 file on PCs, for example):
[MyApplication]

view.background=green
label.txt=This is my contents

The value associated with the resource name can be modified by the end user at run time.

Note: Resource fileshave an [I1ogViews] section that is common to all
IBM ILOG Views applications.

More details on display system resources are in the topics:
& The getResource Method

How Display System Resources are Stored

Default Display System Resources

Environment Variables and Resource Names

* & & o

Display System Resources on Windows

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Display System Resources

The getResource Method

The application usesthe 11vDisplay: : getResource method to retrieve aresource value
from the display system.

const char* res = display->getResource ("resourceName", default) ;

The method T1vDisplay: : getResource returns avalue string associated with the
application name of the current IBM ILOG Views session, which is specified in the
IlvDisplay constructor, and the string representing the resource name. If no resource
matches the given string, then this member function returns the default value provided in the
optional default string parameter. The only type returned by

IlvDisplay: :getResource iSconst char*. Itisup tothe application programmer to
convert the string to another data type. The place in memory where the result of an
IlvDisplay: :getResource cal isstored gets reused each time you call the function.
Thus, the previous result is overwritten. If you want to save your result, you must recopy it
right away.

How Display System Resources are Stored

The way resources are stored within your display system configuration filesis system-
dependent.

& With Microsoft Windows, you must add the following line to the views. INT file or the
application-dependent . 171 file. (The views. N1 file can be found in the Windows
directory.)

[AppName]
myDialogTitle=Load file

4 Onthe X Window system, you must pass the following line to the resource manager:

AppName*myDialogTitle: Load file

You can use the xrdb program or includeit into afile read by X clients (the
.xdefaults fileor thefile specified by your XENVIRONMENT Variable).

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 115

Default Display System Resources

When an instance of the T1vDisplay classis created, the default display system resources
areinitialized using the system resources mechanism:

Table6.1 IlvDisplay Default Resources

llvDisplay Method fﬁ;ﬂim Rl Default Value
IlvDisplay: :defaultForeground foreground black
IlvDisplay: :defaultBackground |background gray
IlvDisplay: :defaultFont font system-dependent
IlvDisplay: :defaultNormalFont |normalfont system-dependent
IlvDisplay: :defaultBoldFont boldfont system-dependent
IlvDisplay::defaultItalicFont |italicfont system-dependent
IlvDisplay: :defaultLargeFont largefont system-dependent

Environment Variables and Resource Names

Default UNIX and PC environment variables have precedence over the resource name
specified in resource files (namely . xdefault, and . InNT). The following table gives alist
of environment variables with their associated resource names.

Table 6.2 Environment Variables and Resource Names

Environment

Variable Name

Resource Name

ILVHOME

home.
For details see the section Home.

ILVLANG

lang.
For more information, see the section The
llivMessageDatabase Class.

ILVDB

messageDB.
For more information, see the section The
IlvMessageDatabase Class.

ILVLOOK

look.

The look resource takes either one of the
following values: moti f, windows, Or win95.
For more information, refer to the Gadgets
documentation.

IBM

ILOG VIEwWS FOUNDATION V5.3

USER'S MANUAL

IBM

Display System Resources

Display System Resources on Windows

On the Microsoft Windows environment, you can define Windows-specific resourcesin
addition to the standard resources. These resources are listed below:

& [TTY] If thisresourceis set to TRUE, a message window is created to which all IBM
ILOG messages are sent. The default value is FALSE.

¢ [TTYw], [TTYh],
[TTYx], [TTYy] Theseresources specify the size and position of the message window,
provided that TTY is set to TRUE. The default values are TTYw=200, TTYh=100,
TTYx=screen_width-TTYw, TTYy=screen_height-TTYh.

& [UseRightButton] Ifthisresourceissetto TRUE and your mouse hastwo buttons, the
I1vEvent generated by the IBM ILOG Viewslibrary holdsthe T1vRightButton
value. Otherwise, it containsthe 11vMiddleButton value. The default value is FALSE.

For more information, see the member functions
IlvDisplay: :isRightButtonvValueUsed and
IlvDisplay: :useRightButtonvValue .

& [Solidcolors] If thisresourceis setto TRUE, the VGA system paletteis used. The
default value is FALSE if the number of colors available on the system is greater than 16;
otherwise the default value is TRUE. This avoids dithered images on low-color graphical
systems.

¢ [warnings] If thisresourceis set to TRUE, the warning messages are displayed. The
default valueis FALSE.

The member function I1vbisplay: : getResource searches for resource definitionsin
several files, which are listed below in a decreasing order of priority:

. EXECDIR\APP.INI
. EXECDIR\PROG.INTI
. EXECDIR\VIEWS.INI

1
2
3
4. WINDIR\APP.INI
5. WINDIR\PROG.INI
6

. WINDIR\VIEWS.INT
EXECDIR isthe directory containing the executable program, and wINDIR isthe directory
where Microsoft Windowsisinstalled. app represents the name of the your application; this
string is the one you provide to the 11vDisplay constructor. PROG is the base name of the
executable file, its complete name being PROG . EXE.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 117

Home

Most IBM® ILOG® Views applications might need to load predefined data files. For data
filesto be transparently loaded, libraries need away to locate these data files on the disk.
Thisis done by getting the value of the T.vHOME environment variable. If thisvariableis
undefined, IBM ILOG Viewstriesto retrieve the value of the display system resource home.
Generaly, this value is set to the directory where IBM ILOG Views was installed (the one
containing the subdirectories include, 1ib, data, and so on).

Note: Theold T11vHome display system resource is maintained for compatibility reasons
but is deprecated.

There are two global functions that force the setting of home:
€ TIlvGetDefaultHome
€ IlvSetDefaultHome

Use these functions if you want to provide a reasonable default value for a specific
application without asking the user to set the environment variable T.vHOME or the resource
home.

The value of home isused to compute the default value of the display path, described in the
next section.

The Display Path

118

I BM

The accessto filesis greatly simplified by the display path mechanism. If the path name
provided in acal to the functions that open and read filesis relative, the function searches
for the file name in the directories specified in the display path.

The member functions of 11vDisplay can be used to check and manipulate the display
path, as well as to check whether afile name existsin any of the directories specified in the

display path.

For details on the display path mechanism, see:

& Setting the Display Path

The Path Resource

The ILVPATH Environment Variable
Querying or Modifying the Display Path
Example: Add a Directory to the Display Path

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

I BM

The Display Path

Setting the Display Path

The display path is astring that contains multiple directory path names, separated by the
regular system path separator (‘ :* under UNIX, and * ;* for DOS).

Initially (when the T1vDisplay instanceis created), the display path is set to the
concatenation of three distinct elements as follows (using UNIX notation for path):
<.:user path:system path:>

& Thefirst section contains only the current directory (noted ‘ .").

& The second section, user path, iscomposed of the contents of the display resource
path followed by the contents of the environment variable TL.vPATH.

& Thethird section, system path, contains subdirectories of I1vHome.
In short, the T1vpath initial valueis (assuming ILVHOME is defined):

.:<path resource>:S$SILVPATH:$ILVHOME/data:$ILVHOME/data/icon:$SILVHOME
data/images

The Path Resource
4 On X Window, the path resource will be, for example:
AppName*path: /usr/local/views/ilv

& On Microsoft Windows, the path resource can be in the vIEws . INT or application-
dependent file . INT:

[AppName]
path=C:\USER\DATA\ILV

The ILVPATH Environment Variable
The TLVPATH environment variable can be set by the user before the application islaunched.
& With UNIX, this setting can be defined by thelines:

$ ILVPATH=/usr/home/user/ilvimages:/usr/home/user/ilvpanels
S export ILVPATH

¢ |naMicrosoft Windows command prompt window, this setting could be:

C:\> SET ILVPATH=C:\USER\DATA\ILV;C:\USER\DATA\IMAGES

Querying or Modifying the Display Path

The class 11vDisplay provides member functions to manipulate the display path. These
areIlvDisplay: :getPath, I1lvDisplay: :setPath, I1lvDisplay: :appendToPath
and I1vDisplay: :prependToPath.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 119

120

IBM

These methods allow the user to get, set, and modify the user path (that is, the second
section of the display path). The structure of the display path remains the same, that is:
<.:user path:system path.>

The method 11vDisplay: : findInPath iS used to:
& Check whether afileisin the display path.
& Get its absolute path name.

Example: Add a Directory to the Display Path

The following example shows how to add a directory to the display path and check whether
afileisin the display path.

IlvDisplay* display = new IlvDisplay (“AppName”,
“DisplayName”,
argc,
argv) ;

if (display->isBad()) {

delete display;
IlvFatalError (“Could not create display”);

I1vExit (-1);
}
const char* dirName = “./localDirectory/subDirectory”;
const char* fileName = “foo.txt”;

display->prependToPath (dirName) ;
// Now, if a file such as

// “./localDirectory/subDirectory/foo.txt”
// or
// “.\localDirectory\subDirectory\foo.txt”

// exists, we should be able to find it.
const char* filePath = display->findInPath(fileName) ;
if (filePath)
IlvPrint (“*File %s found at %s”, fileName, filePath);
else
IlviWWarning (“File %s not found”, fileName) ;

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Views

Chapter 8, Drawing Ports explained the drawing port concept managed by the T1vport
class. The views hierarchy deals with another T1vpPort subclass, 11vabstractview and
its derived subclasses. 11vview isamajor subclass, representing the actual place on the
screen where drawing occurs.

& \iew Hierarchies: Two Perspectives discusses ways you can look at the components that
make up aview. The approaches are a:

e Window-Oriented View Hierarchy
e Class-Oriented View Hierarchy
IlvAbstractView: The Base Class
IIvWiew: The Drawing Class

Ilview Subclasses

The llv&rollView Class

* & & o

View Hierarchies: Two Perspectives

There are two ways of looking at how views are constructed:

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 121

122

IBM

& Window-oriented. From the viewpoint of somebody sitting in front of a screen and using
IBM ILOG Views, different kinds of views are assembled into various windows having
different appearances. In fact they are created one after the other.

& Class-oriented. From a C++ viewpoint, the 11vview and related classes enable you to
create the different kinds of views that together create windows.

Window-Oriented View Hierarchy

Hereis a schematic representation of the window-oriented view hierarchy, with the
corresponding classes also shown.

TOP

The top-level view is the top-level view livView (Top view)
PARENT of the tools view

[]

scroll
view

IlvScrollView (Scroll view)

The tools view is the

CHILD of the top-level view tools
view

IlvContainer (Tools view)

working
view IlvView (Working view)

Figure7.1 View Hierarchy

Parent-Child Relationships

Theterms“parent” and “child” designate the rel ationship between pairs of views, taking into
account which one contains the other. In the figure, the top-level view isthe parent of both
the tools and the scroll views, and the latter is the parent of the working view. Inversely, the
scroll view is achild of the top-level view, and so on.

C++ classes and subclasses al so represent parent-child relationships. Note that there is no
one-to-one correspondence between the window-oriented versus class-oriented view
hierarchies. The C++ class hierarchy is adifferent way of looking at how aview is
constructed. For the compl ete class-oriented diagram, see the Class-Oriented View
Hierarchy on page 123.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

View Hierarchies: Two Perspectives

Class-Oriented View Hierarchy

In the Window-Oriented View Hierarchy on page 122 we looked briefly at four different
kinds of views, which are instances of the following classes (or subclasses):

& Tlvview for thetop-level view (the top window) and the working view.
€ IlvContainer for thetoolsview.
& IlvScrollview for thescroll view.

The following diagram shows these and other classes that derive from I11vabstractview.

IlvAbstractView

|
| |

IIvView IlvScrollView

lIvElasticView IlvDrawingView

IlivContainer

Figure7.2 ThellvAbstractView Base Class

These views classes give rise to actual windows or views that are displayed on your screen.
When you instantiate one of the derived subclasses of 11vabstractview, the object you
obtain isreferred to asaview. A window on the screenis, in fact, an associated set of one or
several views.

For More Details See

¢ IlvAbstractView: The Base Class
& |IWiew: The Drawing Class

¢ ThellvscrollView Class
L 2

IIVWiew Subclasses for more detailson I1vElasticView, I1lvDrawingView, and
IlvContainer.

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 123

llvAbstractView: The Base Class

IlvAbstractView iSan abstract class (of which instances can only be made from subtyped
classes). This class has functions for handling basic properties of awindow, such as size,
visibility, color, and so on. The T1vabstractview Object encapsulates the real interface
object of your display system (that is, a system view, sometimes referred to as awidget).
Thisinterface object is platform-dependent and may be accessed by the following function:

IlvSystemView getSystemView() const;

where I1vsystemview iSthe basic type of the display system widget.

llvView: The Drawing Class

The class 11vview isone of the descendants of T11vabstractview (and thusof 11vport)
in the Class-Oriented View Hierarchy on page 123.

The 11vview subclassisamajor class, since it represents the actua place on the screen
where drawing occurs. An instance of 11vview can aso contain zones that are sensitive to
mouse clicks.

The 11vview class and its subclasses provide objects that are used to draw things on the
screen. They may be top-level windows or children of a previously created parent view.

Two constructors are specifically used to create a new top-window in your display instance:

IlvView(IlvDisplay* display,
const char* name,
const char* title,

const IlvRect& size,

124

IBM

I1lBoolean visible = IlTrue);
IlvView(IlvDisplay* display,

const char* name,

const char* title,

const IlvRect& size,

I1UInt properties,
I1Boolean visible = IlTrue,
IlvSystemView transientFor = 0);

The second constructor allows you to specify the top-window aspect that deals with borders,
banners, and handles. You can provide avalid system view value to the transientFor
parameter. If you do, your new 11vview object will be transient for that system view. This
has the interesting effect that when the system view isiconified, your view isimplicitly
iconified aswell.

Some member functions of the T11vview class are specific and meaningful only if the view
is atop-window.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IlvWiew Subclasses

The other constructors are:

IlvView(IlvAbstractView* parent,
const IlvRect& size,
I1Boolean visible = IlTrue);

IlvView (IlvDisplay* display,
IlvSystemView parent,
const IlvRect& size,
I1lBoolean visible = IlTrue);

Theparent parameter iseither an I1vabstractview OF an existing I1lvSystemview.

The last constructor of I11vview isused tolet IBM® ILOG® Viewstake control over an
existing I11vsystemview such as one created by another application.

IlvView(IlvDisplay* display,
IlvSystemView existingWindow) ;

You will use this constructor when you want to extend a native application (written with the
Microsoft Windows SDK or MFC or, on UNIX, X Window or Motif code) with
IBM ILOG Views graphic capabilities.

You will probably create your T1vDisplay from an existing connection (see Connecting to
the Display Server). Because the windows hierarchy is likely to have been set up already,
your T1vview objects will have to take control of existing windows.

llvView Subclasses

IBM

The subclasses of 11vview, completing that portion of the Class-Oriented View Hierarchy,
areasfollows:

The llvElasticView Class

The I1vElasticVview class offers the same capabilities as 11vview except that, when
instances of this class are resized, they resize their children in an elastic manner. Thisisa
specia 11vview classavailable for aview containing other views for which you want
automatic resizing.

The llvDrawingView Class

Another subclass of I11vview iS I1lvDrawingView. The I1vDrawingView class has
predefined member functions for handling incoming events such as expose and resize
events.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 125

The llvContainer Class

The 11vContainer classisthefirst classin the Class-Oriented View Hierarchy that
coordinates the storage and display of graphic objects. Numerous specialized subclasses are
described in Containers.

The llvScrollView Class

126

IBM

A special type of view in the Class-Oriented View Hierarchy is managed by an instance of
the I11vscrollview class. To operate properly, this class needs awidget toolkit linked with
your application.

Note: T1vscrollview hasan implementation on Microsoft Windows and on top of
Motif only (the ports that have native controls). If you have the IBM ILOG Views Gadgets
package, the class T1vScrolledview provides similar services.

An Tlvscrollview must contain asingle child view, which is usually bigger thanits
parent. The T1vscrollview takes care of all automatic scrolling operations. It does so by
means of scroll bars, located on the right and bottom of the scrolling view. You can
manipulate the scroll bars to display new areas of the subview.

You can handle anon-IBM® ILOG® Views window object within an 11vsScrollview
object. This can be any of your system windows, such as one created by another application.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Drawing Ports

A drawing port, defined by the T1vport class, is an area where the user will be drawing. It
may be to any output device such as the screen or a printer. Details are discussed in the
topics:

& |lvPort: The Drawing Port Class
¢ Derived Classes of IlvPort

& ThellvSystemPort Class

¢ ThellvPSDevice Class

llvPort: The Drawing Port Class

The class 11vport defines adrawing port. The 11vpPort class has the necessary member
functions to draw any shape to a specific dump device such as a printer. These member
functions are:

& Thevirtual member function T1vPort: : initDevice, caled by the init function,
initializes the dump device and writesits result to the file £ilename.

& Thevirtual member function T1vrort: : isBad returns 11True if the dumping device
isnot valid. This return value indicates an initialization problem.

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 127

& Thevirtual member function T11vPort: : end closes the dump device and does all the
necessary cleaning.

& Thevirtual member function T11vport: : send lets you send any character string to an
output device so you can send information to the device.

& Thevirtual member function T11vPort : :newPage produces an output page and
prepares the dump devicefor anew page. It returns 11ralse if therewasan error. Inthis
case, you should stop producing output data.

& Thevirtual member function I1vPort: : setTransformer letsyou apply an additional
transformer—that is, any geometric transformation— to the coordinates with which you
“feed” the drawing functions.

Derived Classes of llvPort

128

IBM

Theillustration below shows some of the predefined classes that derive from T1vPort:

llvPort

|
| |

[IvPSDevice [lvSystemPort

|
I |

[IvBitmap [IvAbstractView

Figure8.1 ThellvPort Base Class
The class T1vPort defines adrawing port in one of two ways, either:

¢ Physically as ascreen or bitmap, via The IlvSystemPort Class.
¢ |nadedicated zone as afile or aprinter.

The other two subclasses are:

& T1vBitmap, providing bitmap support as described in Bitmaps.

& Thesubclass T1vabstractview isthe base classfor views. This subject is treated at
length in Chapter 7, Views. See especially llvAbstractView: The Base Class.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

The llvSystemPort Class

The llvSystemPort Class

Theclass 11vsystemPort defines arectangular areain which the user can draw. It can be
either areal place or avirtual place. Inthefirst case, the user draws directly into aregion of
the screen of the workstation. In the second case, the user draws into a bitmap in memory.
The classes I11vBitmap and I1lvAbstractvView are derived from I1vSystemPort to
accommodate these two possibilities. The T1vBitmap classis described later in this chapter.
The I1vabstractview class and its subclasses are described in the next chapter.

The llvPSDevice Class

IBM

To redirect the drawing operations to a dumping device, such as a printer or a plotter,
IBM® ILOG® Views calls the member functions of the subclass that implement all the
drawing operations. These member functions have to be overloaded to define the drawing
operations needed in the various implementations of dump devices.

So that you can immediately “ print what you see,” IBM ILOG Views provides you with a
predefined class, T1vPsDevice.

The 11vPsDevice classlets you print any region of aview to atext file that can be
immediately printed on a PostScript printer. Furthermore, all the drawing member functions
are implemented to create the PostScript code corresponding to the expected result.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 129

130 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Containers

A container is an instance of the T11vContainer class, which isaspecia kind of view that
can store and display graphic objects. The subject is covered in depth in the following
sections:

& |lvContainer: The Graphic Placeholder Class
Displaying Containers

L 2

& Managing Events. Accelerators

& Managing Events. Object Interactors
L 2

Creating Objects with Complex Behavior

llvContainer: The Graphic Placeholder Class
IlvContainer isthe graphic placeholder class. Its member functions for handling objects
within containers are described in:
& General-Purpose Member Functions
¢ Applying Functions to Objects
& Tagged Objects

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 131

132

IBM

& Object Properties

General-Purpose Member Functions

Some member functions of the I1vContainer class, for example

IlvContainer: :addObject and I1lvContainer: : removeObject, enable you to store
and remove objects within containers. (See the IBM ILOG Views Reference Manual for
more details.) The I1vContainer object stores graphic objectsin alist.

Applying Functions to Objects

Additional member functions are used to apply user-defined functions to the container
objects. These are:

& TlvContainer::applyToObjects Apply auser-defined function to each objectina
IlvContainer.

& TIlvContainer::applyToObject Apply auser-defined function to the specified
graphic object only.

Tagged Objects

The I1vContainer class provides member functions to manage graphic objects that have
been tagged by the user. A tag isakind of marker represented by an object of the 11 symbo1l
class and which can be associated with several graphic objects:

€ IlvContainer::applyToTaggedObjects iSsimilar to the method
IlvContainer: :applyToObjects but isused with tagged objects.

€ IlvContainer::getTaggedObjects returnsan array of pointersto objects storedin
the container which are tagged with the specified tag.

€ IlvContainer::removeTaggedObjects removesfrom the container all the objects
tagged with the specified tag.

lISymbol Class

IBM ILOG Views sometimes needs string constants to manipulate specific entities, such as
tags. To do this, there is a generic manner of handling unique strings within a given
application. The strings are called symbols, and are managed by the 11 symbo1 class.

The I1Getsymbol global function lets you create new symbols or access symbols already
created.

Object Properties

Several member functions of the T1vCcontainer classlet you manage container object
properties, such asthe functions T1vContainer: : getObject,

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Displaying Containers

IlvContainer: :setObjectName, and I1vContainer: :setVisible. For example, it

ispossible to:

& Access agraphic object according to different criteria: its name or itsindex identifier,
since the container stores objectsin alist.

& Interchange two objects with respect to their order in the container list
(I1vContainer: : swap method).

& Request an object’s state of visibility or to change the state. (Visibility refers to whether
the object is visible on the screen or not.)

& Ask by means of the static method T11vContainer: :GetContainer wWhere agraphic

object is stored, that is, in which container. You cannot store an object in more than one
container.

Note: Snce the member function I1vContainer: :GetContainer isstatic, it is not
necessary to apply it to an existing instance of T1vContainer. You can usethis method
from anywhere, with the notation: T1vContainer: :GetContainer (myobject);

Displaying Containers

IBM

The member functions for displaying containers are described in:

4

*
*
*

Drawing Member Functions
Geometric Transformations
Managing Doubl e Buffering
Reading Objects from Disk

Drawing Member Functions

Although the member functions T1vContainer: :draw and I1vContainer: : reDraw are
inherited from the parent 11vbrawingview class, they interact in a specific way with
containers. Following isalist of these specific member functions:

€ IlvContainer::draw isusedtodraw al 11vGraphic objectsstoredinthe
IlvContainer object. When you add an object to a container, calling this method is
sufficient. Two virtual member functions allow the user to draw at any destination port
with any transformer, and with aclipping region specified.

€ IlvContainer::reDraw |f you need to refresh your working area(for example, when
an object is trandlated), use this method, which erases the specified clipping region
before calling the T1vContainer: : draw method.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 133

€ IlvContainer::reDrawObj When applied to agraphic object, redraws the object’s
bounding box.

€ IlvContainer::bufferedbDraw Performsatemporary drawing in ahidden pixmap,
then displays the pixmap on the screen at once. It is different from double buffering in
that the operation islocalized to arectangle, aregion, or an object, and lasts only aslong
as the drawing operation.

One function drawsthe areaincluded in the specified 11vRect object and another draws
the areaincluded in the specified T1vRegion object. Both of them draw in the
coordinate system of the container. The third form draws the specified 11vGraphic
object in the coordinate system of the object.

Geometric Transformations

Several member functions deal with geometric transformations applied to the container
view, that is, they handle the T1vTransformer object associated with the view.

® TIlvContainer::getTransformer Returnsthe transformer associated with the
container view. If 0 isreturned, this container has no transformer, that is, there isidentity
between the object and its display.

€ TIlvContainer::setTransformer Setsthe specified transformer parameter.

€ TlvContainer::addTransformer Setsup thecurrent transformer withthe onegiven
as a parameter, and sets the resulting transformer as the new current one.

€ TIlvContainer::translateViewand IlvContainer::zoomview Setsupthe
current transformer with, respectively, a translation transformer and a zooming
transformer.

€ TlvContainer::fitToContents Resizesthecontainer view so that its bounding box
exactly fits around all the objects that have the visibility attribute set to T1True. The top-
left coordinates of the view remain at the same location. This method is typically used
when the container reads a set of T1vGraphic objectsfrom afile, without knowing their
positions beforehand:

IlvRect size(0, 0, 300, 300);

IlvContainer* cont = new IlvContainer (display, “Cont”, “My Window”,
size, IlTrue, IlFalse);

cont->readFile (“myfile.ilv"”) ;

cont->fitToContents() ;

134 IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

Managing Events: Accelerators

€ IlvContainer::fitTransformerToContents Computesanew transformer sothat
al objects that have the visibility attribute set to T1True can be seenin the view. The
container view size does not change. A call to T1vDbrawingView: : reDraw iSissued if
the I1Boolean argument is set to T11True. Thismethod is typically used when the user
wants to have aglobal look at a map after zooming it several times:

static void
ShowAllMap (IlvContainer* container)
{
container->fitTransformerToContents (I1True) ;

}

Managing Double Buffering

The double buffering mode enabl es animated displays or displays with numerous objectsto
appear without flickering. This mode is handled by the following member functions:

€ IlvContainer::setDoubleBuffering Indicates whether or not the container
should use double buffering.

€ TlvContainer::isDoubleBuffering Informsasto whether double bufferingisor
ishot in use.

Reading Objects from Disk

Two member functions exist for reading objects from disk:

€ IlvContainer::readFile Readsfrom afile whose nameis specified asa parameter.
& IlvContainer::read Readsfrom theinput stream specified as a parameter.

Both these member functions return the result of their reading: 11True if successful,
IlFalse if anerror occurred.

Note: Containers do not have any write member functions to save their contents as do
managers. For details on managers, see the Managers documentation.

Managing Events: Accelerators

IBM

An accelerator manages a single user event that occursin the container to which the
accelerator is attached. An accelerator is the direct connection from this single user event to
afunction call. You can declare a given function to be called if an appropriate event occurs.
If the appropriate event occurs, the accelerator triggers a visible response from the container
towhich it is attached.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 135

136

IBM

You can also install an instance of the I1vcontainerAccelerator classin an accelerator
list. Thisinstance contains the description of the event to be watched for, and a member
function of this classis called when this event occurs.

For more details, see:
& Member Functions
& Implementing Accelerators: |lvContainer Accel erator

& Predefined Container Accelerators

Member Functions
Several member functions deal with accelerators:

€ TlvContainer::addAccelerator Installsanew accelerator inthe container. Inthe
example below, the function qui t istriggered when one event matches the keyboard
event “release Q key.”
static void
Quit (IlvContainer* cont, IlvEvent&, IlAny)

{
IlvDisplay* d = cont->getDisplay() ;

delete d;
I1vExit (0);
}IlvRect size(0, 0, 300, 300);
IlvContainer* cont = new IlvContainer (display, "Cont", "My Window",

size, IlTrue, IlFalse);
cont->addAccelerator (Quit, IlvKeyUp, ‘Q’, 0);

€ IlvContainer::removeAccelerator Removesthe association between the event
description given in the argument and the action previously set by
IlvContainer: :addAccelerator.

® TlvContainer::getAccelerator Queriesacontainer for aparticular accelerator
action and user argument.

Implementing Accelerators: llvContainerAccelerator

If you need to add parameters to a callback function, you can implement accelerators by
means of class subtyping, through the T1vContaineraccelerator class.

The member functions dealing with this class are the following:

€ TIlvContainer::addAccelerator Installsan I1vContainerAccelerator Object
in the container. The previous example can thus be written in the following way:

IlvContainerAccelerator* acc =

new IlvContainerAccelerator (Quit, IlvKeyUp, ‘Q’, 0);
cont->addAccelerator (acc) ;

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Managing Events: Object Interactors

€ IlvContainer::removeAccelerator Removesthe given accelerator argument
from the container list. The accelerator is not deleted.

€ IlvContainer::getAccelerator Returnsapointer tothe
IlvContainerAccelerator instance that matches the given event argument, or o if
no matching accelerator exists.

Predefined Container Accelerators

IBM ILOG Views provides a number of predefined acceleratorsto allow your programsto
easily manipulate the visible aspect of the objects that are stored in a container:

Table 9.1 Predefined Container Accelerators

Event Type Key or Button Action

I1lvKeyDown i Sets the transformer to identity.
I1lvKeyDown <Right> Moves the view to the left.
I1vKeyDown <Left> Moves the view to the right.
I1lvKeyDown <Down> Moves the view to the top

(decreasing x)

I1lvKeyDown <Up> Moves the view to the bottom.
(increasing x)

I1lvKeyDown z Zooms into the view.

I1lvKeyDown] Zooms out from the view.

I1lvKeyDown R Rotates the view 90 degrees
counterclockwise.

I1lvKeyDown f Computes a new transformer so that

every object can be seen.

Managing Events: Object Interactors

IBM

An object interactor filters user events for the graphic object to which it is attached. If an
appropriate series of events occurs, the object interactor triggers a visible response from that
graphic object. Thisresponseis called the object behavior.

IBM® ILOG® Views provides a comprehensive set of predefined object interactors. If you
find yourself needing a very specific functionality not already predefined in

IBM ILOG Views, you can subtype one of the interactor classes and replace its member
function handleEvent with the functionality you need.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 137

I.q,lltl."h.l

Figure9.1 Attaching an Interactor to an Object
TheclassT1vinteractor letsyou associate a behavior with an object.

Note: These object interactors are not intended for creating editors. The
IBM ILOG Views Manager interactors that are associated with the whole view instead of
individual objects are used to create interactive editors.

For more details on object interactors, see:
& Using Object Interactors
& Predefined Object Interactors

¢ Example: Linking an Interactor and an Accelerator

Using Object Interactors
The member functions that deal with object interactors are the following:

€ IlvGraphic::getInteractor Returnsthe IlviInteractor instance associated
with the T1vGraphic object given as an argument.

€ TlvGraphic::setInteractor Associatesthe T1vInteractor object given asan
argument with the given T11vGraphic object.

138 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Managing Events: Object Interactors

In the following example, a predefined IBM ILOG Views interactor is associated with an
IlvLabel graphic. It isaninstance of the 11vMoveInteractor class which letsthe user
move an object by pressing the left mouse button when pointing to this object.

IlvRect size(0, 0, 300, 300);
IlvContainer* cont = new IlvContainer (display, "Cont", "My Window",
size, IlTrue, IlFalse);
IlvLabel* label = new IlvLabel (display, IlvPoint (100,100),
"Hello world!");
cont->addObject (label) ;
label->setInteractor (IlvInteractor: :Get ("Move")) ;

The static member function T1vInteractor: : Get returnsthe unique instance of the
object interactor whose nameis“Move.” You usually do not create an interactor by calling
its constructor directly, but by using this static member function. Thisis because most object
interactors can be shared by numerous graphic objects at the same time.

Registering a New llvinteractor Subclass

If you subtypethe 11vInteractor class, you haveto register your subclassin order to use
the static member function I1vinteractor: :Get. Below isthat part of the header file
wherethe T1vinteractor classinMyInteractor classis subtyped:

class MyInteractor
: public IlvInteractor {
public:
IlBoolean handleEvent (I1lvGraphic* obj,
IlvEvent& event,
IlvTransformer* t);

DeclareInteractorTypeInfo (MyInteractor) ;

}i

Note that we have added the line that calls the macro beclareInteractorTypeInfo that
allowsfor class persistence, as well as registration. This macro forces you to define a
constructor that expects areference to an T1vInputFile, acopy constructor that expects a
referenceto aMyInteractor, and awrite member function that is needed to save the
interactor instance. Of course the constructor and the write must match, just asin the case of
theclass I11vGraphic.

In the situation where your interactor has no extrainformation to save, you would have used
the macro beclareInteractorTypeInfoRO that does not force you to defineawrite
member function.

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 139

In the example there is not any extrainformation to save, but for the completeness of the
example, we pretend to have a dummy integer value to save and read:

MyInteractor: :MyInteractor (IlvInputFile& file)
: IlvInteractor (file)

{
IlInt i;
file.getStream() >> i; // Read a (dummy) integer value

}

IlvInteractor*
MyInteractor: :write(IlvOutputFile& file)

{
file.getStream() << (IlInt)O0;

}

If you had used DeclareInteractorTypeInfoRo, the constructor would have been
empty, and write would not have been defined.

In the source file, outside the body of any other function, you must write the two following
instructions:

€ IlvPredefinedInteractorIOMembers (MyInteractor)

IlvPredefinedInteractorIOMembers iSamacro that generatesthe proxy function
for you that will call your constructor from input file and define the copy member
function.

€ IlvRegisterInteractorClass (MyInteractor, IlvInteractor);

I1lvRegisterInteractorClass iSamacro that registersthe classMyInteractor as
anew available interactor class. The second parameter must be the name of the parent
class.

Predefined Object Interactors
Several classes help you program predefined object interactors:

& IlvButtonInteractor Thisclasscan be attached to any graphic object to make it
behave like a standard interface button.

€ TIlvRepeatButtonInteractor Thisclassisasubtype of the class
IlvButtonInteractor. It handles an automatic repeat action of the button, asif the
user were pressing and releasing the mouse button at a given speed.

€ TIlvToggleInteractor Thisclassisasubtype of theclass I11vButtonInteractor.
This subclass inverts the object (callsits member function invert) to which this
interactor is associated when the user presses then rel eases the mouse button over it.

& IlvMovelInteractor Letstheuser move an object by clicking onit and dragging the
pointing device to another place.

140 IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

IBM

Managing Events: Object Interactors

& TIlvReshapeInteractor Letsthe user reshape an object by creating arectangle with
the right mouse button. The rectangle becomes the object’s new bounding box.

& IlvMoveReshapeInteractor Combinesthetwo interactors I1vMoveInteractor
and I1vReshapeInteractor.

& IlvDragDropInteractor Providesaway todragand drop an object from acontainer
to another view. It lets you click an object and move a copy of the object around, even
outside the container itself.

Example: Linking an Interactor and an Accelerator

In the following example, we create the window below and the two enclosed drawings:

Container

N

Figure9.2 Container with Two Objects

In other words, we create a container as atop window, then we add two objectsto the
container: agray ellipse and an arc. However, before actually placing these objectsin the
container, we create a reshaping interactor, enabling us to use the mouse to change the shape
of agraphic object. We actually use this single interactor in two places:

& |Immediately after adding the ellipse to the container, we associate the reshaping
interactor with this object.

& |Immediately after adding the arc to the container, we associate the same reshaping
interactor with it.

We can now click either of the two graphic objects, and the reshaping interactor lets us
change the shape of the selected object by dragging the mouse.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 141

142

I BM

Furthermore, after creating the two objects and the unique interactor, we create an
accelerator for the container, so we can get printed information about an object by double-
clicking it with the left mouse button:

& If wedouble-click the ellipse, we get the following message:
Object is an IlvFilledEllipse

¢ If wedouble-click the arc, we get the following message:
Object is an IlvArc

We write a three-argument function called printType, which has the predefined type
IlvContainerAction, to produce these messages. The name of thisfunction isgiven to
the container as the first argument of the call to the member function

IlvContainer: :addAccelerator.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Managing Events: Object Interactors

Following is the entire demonstration program. To keep the example short, we do not
provide any way to exit from the program:

#include <ilviews/contain/contain.h>
#include <ilviews/graphics/ellipse.h>
#include <ilviews/graphics/arc.h>
#include <ilviews/graphics/inter.h>

static void PrintType (IlvContainer*, IlvEvent&, IlAny) ;

int
main (int argc, char* argv(])
{

wn
v

IlvDisplay* display = new IlvDisplay("Demo", argc, argv);
if (!display || display->isBad()) {
IlvFatalError ("Couldn't open display");

delete display;

I1lvExit (-1);
}
IlvContainer* container =
new IlvContainer (display, "Demo", "Demo",

IlvRect (0, 0, 200, 200)
IlTrue, IlFalse);
IlvInteractor* reshape = IlvInteractor::Get ("Reshape");
IlvGraphic* object =
new IlvFilledEllipse(display, IlvRect (150, 50, 40, 20));

container->addObject (object) ;
object->setInteractor (reshape) ;
container->addObject (object =
new IlvArc(display, IlvRect (10, 150, 40, 40), 0., 60.));
object->setInteractor (reshape) ;
container->addAccelerator (PrintType,

IlvDoubleClick,
IlvLeftButton) ;
container->show() ;
IlvMainLoop () ;
return 0;

}

static void
PrintType (IlvContainer* view, IlvEvent& event, I1lAny)

{
IlvGraphic* object =
view->contains (IlvPoint (event.x (), event.y()));
if (object)
IlvPrint ("Object is an ‘%s’\n" , object->className()) ;

Analyzing the Example
This section explains the code used for the above example.

static void PrintType(IlvContainer*, IlvEvent&, IlAny) ;

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 143

144

IBM

The user-defined printType function is called by an accelerator, which is launched when
the user double-clicks a graphic object with the left mouse button. The signature of the
PrintType function correspondsto thetypethat iscalled T1vContaineraction.

IlvContainer* container = new IlvContainer (display, "Demo", "Demo",
IlvRect (0, 0, 200, 20), IlTrue, IlFalse);

A container is created as the top-level view.

IlvInteractor* reshape = IlvInteractor::Get ("Reshape");

A reshaping interactor islocated. Thiswas registered automatically when you included
<ilviews/graphics/inter.h>.

IlvGraphic* object = new IlvFilledEllipse(display, IlvRect (150,50, 40,20));
container->addObject (object) ;

A filled ellipseis created and added to the container.

object->setInteractor (reshape) ;

The reshaping interactor is associated with the filled ellipse.

container->addObject (object =
new IlvArc(display, IlvRect (10, 150, 40, 40), 0., 60.));

An arc is added to the container.

object->setInteractor (reshape) ;

The reshaping interactor is associated with the arc.

container->addAccelerator (PrintType, IlvDoubleClick, IlvLeftButton);

An accelerator is added to the container. This accelerator applies the user-defined function
named PrintType Whenever the user double-clicks an object with the left mouse button.

static void
PrintType (IlvContainer* view, IlvEvent& ev, IlAny)
{
IlvGraphic* object = view->contains (IlvPoint(ev.x(), ev.y()));
if (object)
IlvPrint ("Object is a '%$s’\n", object->className()) ;

}

Thisisthe actual implementation of the user-defined printType function. We access the
object located under the mouse pointer by calling the member function

IlvContainer: :contains. We usethefunction I1vPrint to ensure the portability of
this example.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Creating Objects with Complex Behavior

Creating Objects with Complex Behavior

IBM

The behavior handled by a container and its interactors is usually more sophisticated than
just a series of simple actions.

Creating such an object is developed in the topics:
& Example: Creating a Sider

& Associating a Behavior with Your Device

& Building and Extending your Device

Note: Remember that you can also use the Prototypes package of IBM ILOG Views to
create your own specialized objects.

Example: Creating a Slider

L et us suppose that you have written a C++ program to drive a multimedia system and you
are going to use IBM ILOG Views to create the graphical user interface for your software.
You would like to incorporate the following kind of device into your GUI:

Audio volume

Figure9.3 Creating a Visual Device: the Sider

You want your user to be able to change the width of the black bar by placing the cursor
anywhere on the bar and dragging the mouse either to the left or to theright. And, as soon as
the width of the bar is changed, afunction in your C++ software changes the volume of the
audio system accordingly. There are two different aspects to the behavior of the slider:

¢ Visible Elements From a purely graphic point of view, the appearance of the deviceis
modified when the user intervenes with the mouse. The black rectangle becomes either
narrower or wider, depending on the direction in which the cursor is dragged.

There is thus a modification of the shape of a geometric form. In thisexample, itisa
black rectangle that changes its width, but you could imagine many other kinds of
meters, gauges, and dials that could have this same basic behavior. For example, you
might have an elliptically-shaped object that becomes either thinner or fatter depending
on the direction in which the cursor is dragged.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 145

146

IBM

& Functional Elements Thereal purpose of the slider, of course, isto bring about changes
in adomain that is quite remote from the on-screen graphics environment; namely, the
audio domain. Thisisthe operational behavior of the dlider.

To handle the operational behavior of the dider, we can imagine afunction called
Slidervalue that returns the current value of the slider, and another function,
SliderChange, that returns the positive or negative value by which the setting of the
dlider has just been changed. With these two values, you could establish links to the
audio sections of your software, so that the volume is changed accordingly.

Associating a Behavior with Your Device

In the context of IBM ILOG Views, we can create a special object—a behavioral object or
interactor —that encapsulates the particular behavior described in the section Example:
Creating a Sider. In other words, it is an instance of the basic class 11vinteractor. Once
you have abehavioral object, you can associate it with various concrete things—awindow, a
view, ablack rectangle, and a few numbers—in order to build an actual dlider on the screen.

In the case of the dider, we would probably begin by using T11vInteractor to derivea
class called 11vGaugeInteractor with member functions such as s1idervalue and
sliderChange for the operational behavior that we described above.

The member function handleEvent oOf thisI1vGaugeInteractor classwould bewritten
in such away that it changes the size of the rectangle (or whatever other shapeis used) that
indicates the current value of the dider.

Since the application domain in which we want to use our slider is rather special, we would
probably then derive a subclass of T1vGaugeInteractor, caled audioslider, with
special-purpose member functionsfor setting the values of audio parametersin amultimedia
system. So, we would then have the following class hierarchy:

llvinteractor I

llvGaugelnteractor I

[IvAudioSlider I

Figure9.4 IlvAudioSider Hierarchy

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Creating Objects with Complex Behavior

Building and Extending your Device

The example that follows illustrates a typical manner in which an open-ended product such
as|BM ILOG Views can be extended:

1. Connect your application to a display server.

2. Create an empty top window where elements of your application can be organized and
displayed.

Audio volume

The following code creates a container, which isthe top window located in (0, 0), with
asize of 100 unitswide and 35 units high.

IlvRect viewsize(0, 0, 100, 35);
IlvContainer* topview = new IlvContainer (display, "Audio volume",
"Audio volume", viewsize);

The container coordinates the storage and the display of your graphic objects.

Since you intend to draw certain objects inside this window, and then cause one of these
objects to behave in a specific manner by associating an interactor with it, you are
obliged to make use of a container.

3. Place graphic objects in the container.

The following code places two independent objects inside the container:

container->addObject (scale) ;
container->addObject (bar) ;

gcale obieot - [¥] 1 2 3 4 5 [7 | 9 10

4. Create functional behavior.

Inthisfina step, you give the bar the kind of audio-volume dider behavior that is
normally associated with an audio slider. Recall that this behavior was encapsulated in a
classcalled audioslider. So, the behavior of the audio-volume slider can be given by
means of the following lines:

IlvInteractor* inter = new AudioSlider();
bar->setInteractor (inter) ;

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 147

where the class Audioslider isdefined as:

class Audioslider
IlvGaugeInteractor {
public:
VAR
virtual void doIt(IlvGauge* gauge)
{
setVolume (gauge->getValue()) ;
}
}i

148 IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

10

Dynamic Modules

A dynamic module is composed of a set of object files that are contained in a shared library
(also caled adynamic link library or DLL). IBM® ILOG® Viewsis ableto load
dynamically, on the fly and at run time, a dynamic module that | ets you define new classes,
and therefore provide more functionality to a running program.

Typically, dynamic modules are used when files are read. For example, if adatafile contains
areferenceto an 11vGraphic subclassthat the application reading the file does not expect,
IBM ILOG Views generates an error message and stops reading the file immediately. With
dynamic modules, IBM ILOG Views can load the code that defines this class and make it
available in a dynamic way.

For details on using dynamic modules, see:
¢ |lvModule: The Dynamic Module Class
& Building a Dynamic Module
& Loading a Dynamic Module

¢ An Example: Dynamic Access

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 149

llvModule: The Dynamic Module Class

150

IBM

Every dynamic module is an instance of a subclass of the T11vModule base class, defined in
the header file <ilviews/base/modules.h>.

Every dynamic module must define one and only one subclass. The constructor of this class
iscaled when IBM® ILOG® Views loads the module, making it possible to perform all the
static initializations that the module requests (graphic classes registration, for example).

Once you have declared (in a public header file) and defined your module class, you have to
enable IBM ILOG Viewstoload it. To do so, add a call, outside the body of any function, to
the macro ILVINITIALIZEMODULE, providing the class name of the module that you have
defined asits only parameter.

Dynamic Module Code Skeleton
The skeleton of an IBM ILOG Views dynamic module is the following:
#include <ilviews/base/modules.h>

// Pre-initialization code goes here
// This is, typically, the declaration of global variables or
// static data members.

class MyModule
: public IlvModule {
public:
MyModule (void*)
{

// Initialization code goes here
}
}i

ILVINITIALIZEMODULE (MyModule) ;

The parameter that is provided to the constructor of the module class makes it possible for
you to send application-dependent datato your module initialization. Thisisrequired if your
module needs external datato initiaize properly. We will clarify this point later in this
chapter (see the section Explicit Mode).

Note: Most of the time, the compl ete initialization of a module hasto be split into two
parts: the declaration of variables, outside the code of any function, and their
initialization, which may require function calls, that must appear in the module
constructor.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Building a Dynamic Module

Building a Dynamic Module

Dynamic modules are system-dependent. This section explains how to compile and install a
dynamic module properly, or in other words how to create a shared library that will load
correctly, depending on the system you are using.

UNIX Systems
If you are working on UNIX, use the following generic syntax:

<CCC> -c -0 -ISILVHOME/include moduleSrc.cpp
<MAKESHLIB> -0 module.<SHEXT> moduleSrc.o [other object files...]

The table below lists the various options available for the different ports of
IBM® ILOG® Views. Note that you aways have to specify the extension of the modulefile
name.

Table 10.1 Compiling Options of Dynamic Modules for UNIX Systems

Port Name

CCC MAKESHLIB SHEXT

alpha_5.1_6.5

CXX -X CXX /usr/lib/cmplrs/cc/1ld so

-shared
hp32_11_3.73 aCC +DAportable -mt - AA -z +Z |aCC -b -n -mt -AA sl
-Wl, +s
hp64_11_3.73 aCC +DAportable -mt - AA -z +D |aCC -b -n -mt -AA sl
A2.0wW +DA2.0wW
x86_slesl0.0_4.1 g++ -fPIC g++ -shared so

x86_RHEL4.0_3.4
x86-64_RHEL4.0_3.4

rs6000_5.1_6.0 x1C -grtti=all x1C -gmkshrobj=1024 so
power32_aix5.2_7.0
ultrasparc32_8_6.2 CC -KPIC CC -G -h SO
ultrasparc32_10_11
ultrasparc64_8_6.2 CC -KPIC -mt -xtarget=ultra -x |CC -xtarget=ultra so

ultrasparc64_10_11

arch=v9

-xarch=v9 -G -h

IBM

If youarea

& Linuxor Solarisuser Make surethat the L.D_1.TBRARY_PATH Variable contains a path
to the modules to be loaded. On Linux, the executable must be linked with the library
libdl.so.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 151

152

IBM

Windows Systems
On Microsoft Windows, adynamic moduleisinfact aDLL.

This functionality isonly availablein theformat d11_mda. Thisis dueto the fact that

IBM ILOG Views stores the registered classesin aglobal variable that would be re-created
locally by every module if we tried to link the “client” (that is, the application that 1oads the
module) statically.

All you need to do to build your module is add the flag /prLvDLL When compiling your
object files. For an optimized code, the complete set of compiler flags for the module files
should be the following:.

Table 10.2 Compiling Options of Dynamic Modules for Windows Systems

Port Name Compiler Flags

x86_.net2003_7.1 CL /Gs /Ot /Ox /02 /c /DWIN32 /MD /W3 /G3 /DILVDLL
/I<ILVHOME>/include moduleSrc.cpp

x86_.net2005_8.0 CL /Gs /01 /c /DWIN32 /MD /W3 /DILVDLL
and /I<ILVHOME>/include moduleSrc.cpp

x86_.net2008_9.0

x64_.net2008_9.0 CL /Gs /01 /c /DWIN64 /MD /W3 /DILVDLL
/I<ILVHOME>/include moduleSrc.cpp

Use the following lines to link your module:

LINK /SUBSYSTEM:WINDOWS /DLL <ILVHOME>/lib/[PLATFORM]/dll_md/<lib>.1lib\
<systemLibs> -0OUT:<moduleName>.dll moduleSrc.obj [objectfiles...]

where [PLATFORM] can take one of the following values x86_ .net2003_7.1,
x86_.net2005_8.0,x86_.net2008_9.0,x64_.net2008_9.0.

Notethat for x64_.net2008_9. 0, you must also add the following linker option:

/MACHINE:X64

As mentioned, the application that you want to be module-enabled must be linked with the
IBM ILOG Views DLLsaswell. Of course, as always when using DLLs, you have to make
sure that your system path contains the access path to the directory where you want to store
your modules.

Versioning Note

IBM ILOG Views dynamic modules have no versioning mechanism. You must make sure
that the installed dynamic modules are binary-compatible with the application that loads
them. This means that a modul e that was built with IBM ILOG Views version X.Y will run
with al the X.Y.Z versions, but will have to be recompiled if loaded by an application that
was developed with IBM ILOG Views X.W.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Loading a Dynamic Module

Loading a Dynamic Module

IBM

Basically, a dynamic module can be loaded in two different ways, either implicitly or
explicitly.

& Implicit Mode: The implicit mode is transparent for the end user, which means that new
classes are loaded by the application when they are referred to by their name.

& Explicit Mode: In explicit mode, you specify precisely which module isto be loaded and
where it can be found.

Implicit Mode

Inimplicit mode, IBM® ILOG® Views |loads new classes when they appear in adatafile
and when a class name is not registered in the loading application.

For this mode to work properly, you must create a modul e definition file. For

IBM ILOG Views to know automatically which classes are defined and which dynamic
module they are in, you must create a module definition file (with the. imd extension) and
placeit in the same directory as your shared library. This file must have the same name as
the module, except that its extension must be imd, instead of so, s1, or d11. Creating this
filealowsIBM ILOG Views to know which classes are defined without having to open and
read al the dynamic modulesit finds.

L et us suppose that you have created the module myModule.d11 on Microsoft Windows.
You have to create afile called myModule. imd in the same directory asmyModule.d11 to
enable IBM ILOG Viewsto call the classes defined in this file automaticaly.

The contents of thisfileis ASCII text that will be read by IBM ILOG Views at start-up to
identify which classes are defined and in which module they are located. The file must
aways begin with the following lines:

<?xml version="1.0"?>
<module>

and end with the closing tag:
</module>

Within the <module> block, you must have any number of groups of the form:

<class name = "NewClass" rootClass = "RootClass"/>

whereRrRootClass isthe name of the topmost classin the class hierarchy (11vGraphic, for
example), and NewC1lass isthe name of the class you created. If you have defined more than
one classin your module, just add other <c1ass> tags.

If the classes that are defined in your module derive from more than one root base class, you
can add as many new blocks as there are root base classes.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 153

When an IBM ILOG Views application starts, the module path is read to search for possible
modules (files that have the proper extension). If both a module and an associated imd file
are found, the description file is read and the information it containsis stored for future
implicit class loading.

Explicit Mode

You can use the explicit module [oading mode when your application knows which modules
to load and where they can be found.

L et us suppose that you have created a module called myModule.d11 on Microsoft
Windowsinc:\ilog\vViews\Modules. If thisdirectory isin your PATH variable, you can
directly load your module (and therefore perform all the appropriateinitialization) by calling
the static member function Load:

I1lvModule* myModule = IlvModule::Load("myModule", myParameter) ;

IBM® ILOG® Viewswill attempt to open this module for you, sending the parameter
myParameter t0 the module constructor, which you can use to send specific information to
specific modules. When loading amodule in implicit mode, this parameter is always set to 0.

Thefirst parameter lets you specify aname for amodule. It is sometimes easier to
manipulate module names instead of pointersto r1vModule.

If the loading fails, Load returns 0.
The dynamic library is unloaded when the module instance that is returned is destroyed.

An Example: Dynamic Access

154

IBM

The purpose of this example is to make a graphic class dynamically accessible from a
running application.

L et us suppose that we have aclass CrossedRectangle, deriving from
IlvFilledRectangle, that is displayed as an outlined rectangle with acrossinit. The
exampleis developed in:

& Wkiting the Sample Module Definition File
Implementing the New Class
Loading and Registration of the Example

Registration Macros

* & & o

Adding the Sample Class to a Dynamic Module

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

An Example: Dynamic Access

Writing the Sample Module Definition File

First, you have to make sure that IBM ILOG Views properly loads the code of this class
when adatafile refers to its name, thus allowing the corresponding module to be implicitly
loaded.

To that end, we have to write a modul e definition file, which in our example will be very
simple since we only have one class.

Here is the content of an appropriate module definition file for this module. Since we have
only one class, whose root base class is T1vGraphi c, the definition fileis as follows:

<?xml version = "1.0"?>

<module name="correct" version="1.0">

<class name = "CrossedRectangle" rootClass = "IlvGraphic"/>
</module>

We could have added many other classes to this module definition file, even classes that do
not inherit from T1vGraphic. You can add classes to the same module in an incremental

way.

Implementing the New Class

Once the modul e definition file is written, we have to do some more work to implement this
new class. The specifications are quite simple:

& Create afilled rectangle that displays acrossinside aframe.
& Make sure that this new classis persistent.
& Add this class to adynamic module.

Although you are probably already familiar with the first two steps, we provide the
corresponding code below. The last point represents the most difficult part. We must need to
know how we are going to proceed to register our class properly. Unfortunately, the macro
I1lvRegisterClass doesnot work in adynamic loading context, or at least notin a
portable way. IBM ILOG Views provides afew macros very close to the ones that you are
already familiar with for solving this problem. We will discuss them after you see the code
for the crossedrectangle class, which is given below.

#include <ilviews/graphics/rectangl.h>

class CrossedRectangle
: public IlvFilledRectangle {
public:
MyRectangle (IlvDisplay* display,
const IlvRect& size, IlvPalette* pal=0)
: IlvFilledRectangle (display, drawrect, palette)
{}
virtual void draw(IlvPort* dst, const IlvTransformer* t = 0,
const IlvRegion* clip = 0) const;
DeclareTypeInfoRO() ;

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 155

156

I BM

DeclareIOConstructors (MyRectangle) ;
}i

// Copy constructor

CrossedRectangle: :CrossedRectangle (const CrossedRectangle& source)
: IlvFilledRectangle (source)

{}

// Read constructor

CrossedRectangle: :CrossedRectangle (IlvInputFile& is,
IlvPalette* pal)

: IlvFilledRectangle(is, pal)

{}

void
CrossedRectangle: :draw(IlvPort* dst, const IlvTransformer* t,
const IlvRegion* clip) const
{
if (clip)
_palette->setClip(clip) ;
IlvRect r = _drawrect;
if (t)
t->apply(r) ;
dst->drawRectangle (_palette, r);
dst->drawLine (_palette, r.upperLeft(), r.lowerRight()
dst->drawLine (_palette, r.upperRight(), r.lowerLeft()
if (clip)
_palette->setClip();

)

)
)i
}

IlvPredefinedIOMembers (CrossedRectangle)

The draw method is straightforward.

You can see that, as required, this class contains a copy constructor and persistence-related
methods. (It has no write method since we do not have any information to save, and so we
used the beclareTypeInfoR0O Macro in the class declaration).

We have aready addressed two of the three points for implementing the new class.

The usual way to register this class with the IBM ILOG Views persistence mechanism
would be to use the well-known statement:

IlvRegisterClass (CrossedRectangle, IlvFilledRectangle) ;

which appears outside the body of any function.

If an application links with that code, it will be able to manipulate, save, and read instances
of the class crossedRectangle. Remember, however, that you want to make the
CrossedRectangle class known to existing applications that were not aware of it when
they were developed so that they can read data files generated by applications in which this
classisdefined. To do so, you have to plug this classinto a dynamic module, and you cannot
use the preceding macro for this purpose.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

An Example: Dynamic Access

Loading and Registration of the Example

It isimportant to understand what happens when a module isloaded and what registration
actually does:

¢ When amoduleisloaded, its constructor is called.

¢ Registration is both the declaration of class-level variablesthat store class-level attributes
and function calls that actually update these variables.

With the dynamic modules feature, IBM ILOG Views provides an alternate form of the
I1lvRegisterXxXxClass macros, which are used in many places (in 11vGraphic and
TI1vNamedProperty subclasses, for example). This set of macros separates the declaration
part of the registration from its definition.

The name of the macro used for the declar ative part of the registration is similar to
I1lvRegisterXXxClass, except that T1vRegister isreplaced by T1vPreRegister. The
second parameter of T1vRegisterxxxClass isdropped. This macro call must appear
outside the body of any function (it declares only class-level variables).

The name of the macro used for the definition part of the registration is similar to
I1vRegisterXXxClass, except that T1vRegister isreplaced by T1vPostRegister.
The second parameter of T1vRegisterxxxClass remains. Thus, macro calls must appear
inside the body of afunction that must be called to actually perform the proper registration
(it does call code to register new classes).

In our example, to register the graphic class, we have to use both the macros
IlvPreRegisterClass (outsidethe body of any function) and T1vPostRegisterClass
(inside the body of afunction).

Registration Macros

Below isalist of the macros that you must use for registering most of the IBM ILOG Views
classesthat are persistent (c indicates the class name that is being registered, and s indicates
its parent class name):

Table 10.3 Registration Macrosin Dynamic Modules

Class Name Static Registration Macros Registration Macros in Dynamic Modules

IlvGraphic IlvRegisterClass(c, s); IlvPreRegisterClass (c);
IlvPostRegisterClass(c, s);

IlvNamedProper |IlvRegisterPropertyClass(c, s); |IlvPreRegisterPropertyClass(c);

ty IlvPostRegisterPropertyClass(c, s);

IlvView IlvRegisterViewClass(c, s); IlvPreRegisterViewClass (c) ;

IlvPostRegisterViewClass (c, s);

IBM

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 157

Table 10.3 Registration Macros in Dynamic Modules (Continued)

Class Name Static Registration Macros Registration Macros in Dynamic Modules
IlvGadgetItem IlvRegisterGadgetItemClass (c, IlvPreRegisterGadgetItemClass (c) ;
s) ; IlvPostRegisterGadgetItemClass (c,
s);
For details on gadgets, refer to the Gadgets
documentation.
IlvNotebookPag | IlvRegisterNotebookPageClass (c, |IlvPreRegisterNotebookPageClass(c);
e s); IlvPostRegisterNotebookPageClass (c,
s);
IlvSmartSet IlvRegisterSmartSetClass(c, s); |IlvPreRegisterSmartSetClass(c);
IlvPostRegisterSmartSetClass(c, s);
I1vGroup I1lvRegisterGroupClass(c, s); IlvPreRegisterGroupClass (c) ;
IlvPostRegisterGroupClass(c, s);
I1vGroupNode I1lvRegisterGroupNodeClass (c, IlvPreRegisterGroupNodeClass (c) ;
s) ; IlvPostRegisterGroupNodeClass (c,
s);
IlvUserAccesso |IlvRegisterUserAccessorClass(c, |IlvPreRegisterUserAccessorClass(c);

r

s);

IlvPostRegisterUserAccessorClass (c,
s);

158

IBM

Because we are dealing with a subclass of 11vGraphic, the I1vPreRegisterClass and
IlvPostRegisterClass macros are all we need to complete the source code of our

module.

Adding the Sample Class to a Dynamic Module

Hereisthe code that we have to add to the definition of the CrossedRectangle classto
make the final source code compilable asan IBM ILOG Views dynamic module;

#include <ilviews/modules.h>

IlvPreRegisterClass (CrossedRectangle) ;

class MyModule
: public IlvModule
{
public:
MyModule (void*)
{

IlvPostRegisterClass (CrossedRectangle,

}
}i

ILVINITIALIZEMODULE (MyModule) ;

ILOG VIEwWS FOUNDATION V5.3

IlvFilledRectangle) ;

USER'S MANUAL

IBM

An Example: Dynamic Access

Note that you can add thiscodetoa#if defined()/#else/#endif precompiler block,
with the regular

IlvRegisterClass (CrossedRectangle, IlvFilledRectangle) ;

inthe #else part of i£. You will then be able to compile your code as aregular static object
file or asa dynamic module;

#if defined (MAKE_A_ MODULE)
#include <ilviews/modules.h>

IlvPreRegisterClass (CrossedRectangle) ;

class MyModule
: public IlvModule
{
public:
MyModule (void*)
{
IlvPostRegisterClass (CrossedRectangle, IlvFilledRectangle);
}
}i

ILVINITIALIZEMODULE (MyModule) ;

#else /* DONT_MAKE_A_ MODULE */

IlvRegisterClass (CrossedRectangle, IlvFilledRectangle) ;
#endif /* DONT_MAKE_A_ MODULE */

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 159

160 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

11

Events

This chapter contains information about events and event loops. You will see how to
manipul ate timers, how to add external sources of data, and how to customize the event loop.
Refer to the sections:

¢ |lvEvent: The Event Handler Class
The llvTimer Class

External Input Sources (UNIX only)
Idle Procedures

Low-level Event Handling

llvEvent: The Event Handler Class

Mouse and keyboard events are handled by the T1vEvent class.

Recording and Playing Back Event Sequences: llvEventPlayer

Using 11vEventPlayer, IBM® ILOG® Views can record sequences of events that occur
inthe viewsthat it controls. These event sequences can be saved or read from a datafile, and
played back at any speed.

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 161

Functions Handling Event Recording

A set of global functions exists that let you start recording events and playing an event
sequence back:

€ IlvCurrentEventPlayer

€ IlvRecordingEvents

The llvTimer Class

162

IBM

IBM® ILOG® Views has an internal mechanism for implementing timers. The internal
mechanism is hidden and system-dependent. It is based on the T1vTimer class.

The purpose of atimer isto call afunction repeatedly, once every given time period. If you
want one of your functionsto be called in thisway, create an 11vTimer instance and call its
member function T1vTimer: : run. The timer object calls its member function

IlvTimer: :doIt each time this period expires. Timers are based on the timeout
mechanisms of the display system.

The timer automatically repeats the call to T1vTimer: :doIt after every period if not
specified to run only once. Before calling I1vTimer: : doIt, the event loop disablesthe
timer. After returning from T11vTimer: : doTt, if itisnot arun-oncetimer and if it is till
disabled (it can be enabled by acall to T1vTimer: : run from within the timer’'s callback),
the timer is enabled again. This mechanism shows that atimer is not active during its own
callback, even if the callback contains alocal event loop. Thisisonly true when the timer is
triggered by the event loop, not when the application explicitly callsthe T11vTimer: :doTt
method. The application is responsible for deleting the timersit has created.

Note: If the function called by the timer takes too much time to execute compared to the
periodicity of the timer, the periodicity may not be respected.
The 11vTimer class can be used in two different cases:

& Thefirst case supposes that you have a user-defined function which must match the
IlvTimerProc type:

typedef void (* IlvTimerProc) (IlvTimer* timer,I1Any userarg) ;

In this case, you simply instantiate an 11vTimer object, specifying this function and an
argument it can use.

& The second case uses a derived subclass of T11vTimer with overloading of the member
function 11vTimer: :doTt.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

External Input Sources (UNIX only)

External Input Sources (UNIX only)

On UNIX platforms, IBM® ILOG® Views allows the application to add new sources of
input using file descriptors. These aternate input sources can be registered and unregistered
with the I1vEventLoop methods I1vEventLoop: :addInput,

IlvEventLoop: :addOutput, Il1vEventLoop: : removeInput, and

IlvEventLoop: : removeOutput. FOr backward compatibility, the old functions
IlvRegisterInput, IlvRegisteroOutput, IlvUnRegisterInput and
IlvUnRegisterOutput are still supported; they are equivalent to:

IlvEventLoop: :getEventLoop () ->[add|remove] [Input |Output] ()

IBM ILOG Views does not read any data from these input sources but rather monitors them
and notifies the application when the file descriptor has received input or is ready for
writing. When this happens, IBM ILOG Views calls the application callback routine
associated with the given source of input; this callback routine is then responsible for
reading (or writing) datafrom (or to) the file descriptor. It is also the responsibility of the
application to open the file descriptors before adding them as new input sourcesin

IBM ILOG Views and to close them after removing them.

Hereis an example of ashort IBM ILOG Views program reading from the standard input
and copying it one word per line to the standard output.

#include <strstream.h>
#include <string.h>
#include <ilviews/view.h>

static void MyInputCallback(int, IlAny) {
char buffer[1048];
cin >> buffer;
cout << buffer << endl;
if (!strcasecmp (buffer, "quit"))
exit (0);
}

int main(int, char*[]) {
IlvEventLoop: :getEventLoop () ->addInput (0 /*stdin*/,
MyInputCallback, 0, 0);
IlvMainLoop () ;

Idle Procedures

I BM

Anidle procedureis afunction provided by the application and called by the event loop at
times when the application would otherwise be idle, waiting for events. | dle procedures must
perform short computations; if an idle procedure istoo long, it can affect the interactive
response of the application.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 163

Idle procedures are useful to perform tasks that do not need to be done before other tasks can
continue. Their immediate completion should not be crucial to the application. For instance,
idle procedures can be used to create hidden dial og boxes before they are requested by user
actions.

When an idle procedure returns I1True, it is automatically removed and will not be called
again. If itreturns 11rFalse, it iscaled each time the application isidle, until it returns
I1True oOr it isexplicitly removed by the application.

To register and unregister idle procedures, the application uses the 11vEventLoop methods
IlvEventLoop: :addIdleProc and IlvEventLoop: : removeIdleProc. Thereturned
value of T1vEventLoop: :addIdleProc isan ID that can be used for explicitly removing
an idle procedure by calling I11vEventLoop: : removeIdleProc. Generdly, idle
procedures do not need to be removed; they return T1True instead.

Low-level Event Handling

164

I BM

The most common way for an application to handle eventsisto call T11vMainLoop after the
application isinitialized. 11vMainLoop issimply an infinite loop that gets the next
incoming event and dispatches it to the appropriate component. However, some applications
may need to define their own event loop. To do this, IBM® ILOG® Views provides the
following functions or methods:

& TlvDisplay methodsfor defining event loops are:
e IlvDisplay::hasEvents
e IlvDisplay::readAndDispatchEvents
e IlvDisplay::waitAndDispatchEvents
¢ TlvEventLoop Methodsfor defining event loops are:
e IlvEventLoop: :pendingInput
e IlvEventLoop::processInput
e IlvEventLoop: :nextEvent

e IlvEventLoop: :dispatchEvent

Main Loop Definition: An Example
Hereisalist of constructions that are equivalent to T1vMainLoop:

while (1)
display->waitAndDispatchEvents () ;

while (1)

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Low-level Event Handling

I1lvEventLoop: :getEventLoop () ->processInput (I1lvInputaAll) ;

Windows platforms only:

MSG msg;
while (IlvEventLoop::getEventLoop ()->nextEvent (&msg))
I1lvEventLoop: :getEventLoop () ->dispatchEvent (&msg) ;

MSG msg; // obsolete version
while (IlvNextEvent (&msg))
IlvDispatchEvent (&msg) ;

UNIX platformsonly:

XEvent xev;
while (1) {
I1lvEventLoop: :getEventLoop () ->nextEvent (&xev) ;
I1lvEventLoop: :getEventLoop () ->dispatchEvent (&xev) ;
}

XEvent xev; // obsolete version
while (1) {
IlvNextEvent (&xev) ;
IlvDispatchEvent (&xev) ;
}

UNIX platformsusing only 1ibmviews (asopposed to 1ibxviews):
XtAppMainLoop (I1lvApplicationContext ()) ;

XEvent xev;

while (1) {

XtAppNextEvent (IlvApplicationContext (), &xev);
XtDispatchEvent (&xev) ;

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 165

166 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

12

llvNamedProperty: The Persistent
Properties Class

The class 11vNamedProperty iSused to associate application-dependent information with
IBM® ILOG® Views objects. Thisinformation, called a named property, isstored in a
subclass of T11vNamedProperty that you define. Unlike a user property, a named property
is copied with your object and made persistent so that its content is preserved when datafiles
are saved or read.

Using and extending named properties are described in the following sections:
& Associating Named Properties with Objects
& Extension of Named Properties

Associating Named Properties with Objects

IBM

Aswith user properties, you associate a named property with a graphic object using an
I1Symbol. An I1symbol isattached to one and only one subclass of T1vNamedProperty
to ensure that the type of the retrieved property is correct.

To handle named properties, you can use the following three member functions of the class
IlvGraphic:

IlvNamedProperty* getNamedProperty (const IlSymbol*) const;

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 167

IlvNamedProperty* setNamedProperty (IlvNamedProperty*) ;
IlvNamedProperty* removeNamedProperty (I1Symbol*) ;

You can seethat an T11symbol isall you need to indicate which named property you are
dealing with.

A Predefined Named Property: the Tooltip

An example of a predefined named property is the tooltip, a small text window that pops up
when the pointing device enters a panel control element (such as a gadget) and staysfor a
moment. The class T1vToolTip is defined in the header file <ilviews/graphics/
tooltip.h>.

To set atooltip for a graphic object, retrieve it, and then remove it, write the following:
obj->setNamedProperty (new I1lvToolTip ("Text"));
IlvToolTip* toolTip = IlvToolTip::GetToolTip (obj);

delete obj->removeNamedProperty (toolTip->getSymbol ()) ;

Named properties may be transferred from object to object. To remove a named property
from the list of named properties without deleting it, use the

I1lvGraphic: : removeNamedProperty member function. To delete anamed property and
thus clear the memory it occupies, you must call delete explicitly.

Because a subclass of T1vNamedpProperty and the symbol (that is, the pointer to
T1symbol) that refersto it are tightly coupled, most of the time this symbol is a static data
member of the property class. Note, however, that thisis not mandatory. Using a static data
member of the property class makesit possible for you to retrieve a named property from an
object using asymbol that you may not know, but which is directly accessible from the class.

In the above example, you can see that the symbol used by the tooltip property never
appears. To retrieve the named property, we simply get the property symbol using the
member function I1vNamedProperty: :getSymbol.

Note that named properties are copied and saved with the object, and they are deleted when
you delete the object. Named properties behave like additional data members of existing
classes, with the possibility of defining a powerful API to access the data at the level of the
named property class.

Extension of Named Properties

Creating your own named property classis a straightforward, three-step procedure:
1. Create asubclass of I1vNamedProperty.

2. Choose the symbol that will be used to access this property.

168 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM

Extension of Named Properties

We remind you that in IBM ILOG Views all symbols whose names begin with the
characters”_i1v" arereserved for internal use.

3. Define how this class will be persistent and register this class with IBM ILOG Views.

Using avery simple example—the storage of two values—the following section explains
how to create a named property that you can associate with graphic objects. You can,
however, build named properties with member functions to handle more elaborate data
members, or have named properties that store pointers to existing classes. Using named
properties, you can link application data with ahigh level of complexity to light graphic
objects, with minimum coding and without altering the API of your application classes.

Example: Creating a Named Property

To illustrate, we are going to create a named property that holds both an integer and a
character string and make it easily accessible and persistent.

The general development tasks are:

Declaring the Named Property: Header File

Defining the Symbol for Accessing the Named Property
Defining the Constructor for the Named Property

Defining the setSring Member Function

Defining the Persistence and Copy Constructors

Defining the write Member Function

Providing an Entry Point to the Read and Copy Constructors
Registering the Class

Using the New Named Property

® & 6 6 6 6 0 o o

Declaring the Named Property: Header File

The named property that we are going to create must be a subclass of 11vNamedProperty:.
The named property stores an integer and a string. Its complete header fileis given below:

#include <ilviews/base/graphic.h>

class MyProperty
: public IlvNamedProperty
{
public:
MyProperty (int integer,
char* string) ;
virtual ~MyProperty () ;

int getInteger () const { return _integer; }
void setInteger (int integer) { _integer = integer; }

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 169

170

IBM

const char* getString() const { return _string; }
void setString (const char* string);

static IlSymbol* GetSymbol () ;

DeclarePropertyInfo() ;
DeclarePropertyIOConstructors (MyProperty) ;

private:

int _integer;

char* _string;

static IlSymbol* _Symbol;
}i

In addition to the two data members _integer and _string (and their accessors), we will
focus on the _symbo1 static data member and on the two macro calls that appear in the
declaration part of the class, namely DeclarePropertyInfo and
DeclarePropertyIOConstructors.

Note that the destructor of the classis virtual like the one of the base class
I1lvNamedProperty.

Defining the Symbol for Accessing the Named Property

First we are going to define the property symbol that will be used to access the class. A
simple way to define this symbol isto make it a static data member of your property class,
_Symbol, and provide it with a public accessor, Get symbo1. By doing this, any application
will be ableto retrieve an instance of MyProperty without having to know which symbol is
used to associate it with an object.

Therefore, the public and static accessor Get Symbol is defined to return the appropriate
I1symbol and create it if necessary.

In the code below, an extract of the implementation file, we define both the accessor to the
property symbol and the static data member, which weinitializeto 0. Note that the symbol is
created thefirst timeit isqueried in MyProperty: : Get Symbol.
I1Symbol*
MyProperty: :GetSymbol ()
{

if (!_Symbol)

_Symbol = IlGetSymbol ("MyPropertySymbol") ;

return _Symbol;

}

I1Symbol* MyProperty::_Symbol = 0;

Defining the Constructor for the Named Property

Let’s now examine the constructor and the destructor. All we need to do is call the
constructor of the parent class, T1vNamedProperty, and initialize our data members:

MyProperty: :MyProperty (int integer,
char* string)

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Extension of Named Properties

: IlvNamedProperty (GetSymbol()),
_integer (integer),
_string(0)

{

setString(string) ;

}

MyProperty: : ~MyProperty ()
{
if (_string)
delete [] _string;
}

The first time a property of the MyProperty typeis created, the static member function
GetSymbol iscalled to set the static data member _symbo1l to avalid value.

The string parameter is copied by the set string member function that will check
whether the data member _string isvalid. Thisiswhy we initialize this data member to 0
in theinitializers of the constructor. This parameter is destroyed in the destructor, if it was
valid.

Defining the setString Member Function
Below isthe definition of the setstring member function that copies and stores the string:

void
MyProperty: :setString(const char* string)
{
if (_string)
delete [] _string;
_string = string
? strcpy (new char [strlen(string)+1], string)
: 05
}

This codeis quite simple. If avalid string—a non-null string— was stored, it is destroyed. If
the parameter is valid—non-null—a copy of this string is made and stored. If the parameter
isnot valid, the data member is simply reset to 0.

At this stage, our class can store and retrieve both an integer and a character-string value.

Defining the Persistence and Copy Constructors

For our named property to be complete, we have to add the class-level information and
persistence-related member functions. The easiest way to do thisisto use the following two
macros in the body of the class declaration:

& DeclarePropertyInfo declaresthe classinformation data membersfor the
MyProperty class. These members are used to retrieve information, such as the class
name and its hierarchy. It also declares the member functions that are required to
implement persistence for this class.

€ DeclarePropertyIOConstructors declaresthe constructors required for
persistence and copy.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 171

172

IBM

These macros make it very easy to add copy and persistence functionality to your class.

Once the macros have been declared, all we have to do to add copy and persistence features
to our classisto define a copy constructor and a constructor that take an T1vInputFile
reference as its parameter:

MyProperty: :MyProperty (const MyProperty& source)
: IlvNamedProperty (GetSymbol ()),
_integer (source._integer),
_string(0)
{
setString(source._string) ;
}

MyProperty: :MyProperty (IlvInputFile& i, IlSymbol* s)
: IlvNamedProperty (GetSymbol ()),
_integer(0),
_string(0)
{
// 's' should be equal to GetSymbol ()
i.getStream() >> _integer >> IlvQuotedString() ;
setString (IlvQuotedString () .Buffer);
}

The first constructor initializes a new instance of MmyProperty with a copy of its source
parameter.

The second constructor reads the provided input stream to initialize itsinstance with what is
read.

Defining the write Member Function

Now that we are able to read anew instance of the class, we can save it. To do so, we have to
define awrite member function, which isimplicitly declared by the macro
DeclarePropertyInfo.

void

MyProperty: :write(IlvOutputFile& o) const

{

o.getStream() << _integer << IlvSpc() << IlvQuotedString(_string);
}

The saving order must be the same as the reading order.

Note that you may define a named property that does not have any additional information to
save. In this case, you would use the DeclarePropertyInfoRO macro instead of
DeclarePropertyInfo inthe class declaration and drop the write member function that
would be useless.

Providing an Entry Point to the Read and Copy Constructors

To provide IBM ILOG Views with an entry point to the read and copy constructors, you
must add another macro to the implementation file, outside the body of any function, as
follows:

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Extension of Named Properties

IlvPredefinedPropertyIOMembers (MyProperty)

Calling this macro actually creates aread static member function that invokes the read
constructor. It also defines a copy member function that calls the copy constructor.
Registering the Class

The final step to have our named property up and running in our application is to register the
MyProperty classwith IBM ILOG Views as follows:

IlvRegisterPropertyClass (MyProperty, IlvNamedProperty) ;

Cadling the macro T1vRegisterPropertyClass registersthe class MyProperty with the
IBM ILOG Views persistence mechanism.

Using the New Named Property

You can now use this new named property as an extension of any graphic object with which
it would be associated:

IlvGraphic* myObject = ...;
myObject->setNamedProperty (new MyProperty (12, "Some text"));

MyProperty* property =
(MyProperty*) (myObject->getNamedProperty (MyProperty: :GetSymbol ()) ;
if (property && (property->getInteger () == someValue))
doSomething () ;

You have extended your graphic object’s API in a persistent manner, without subclassing the
base class.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 173

174 IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

IBM

13

Printing in IBM ILOG Views

IBM® ILOG® Views provides aframework for printing. This framework consists of the
following classes:

& ThellvPrintableDocument Class describes a document, that is, alist of printable objects
associated with page layouts.

& ThellvPrintable Class describes a printable object, various subclasses deal with printing
containers, manager views, text, and so forth.

& ThellvPrintableLayout Class describes the page layout of the document using
predefined areas such as background, foreground, header, and footer. Predefined layouts
alow printing on one or multiple pages, or identity layouts.

& ThellvPrinter Class describes the printer and its physical characteristics such as paper
format, margins, color or grayscale capabilities, and page orientation.

& ThellvPrintUnit Class describes a printing unit and allows conversion of various units
such as Pica, Centimeter, Inches, and Points.

& The llvPaperFormat Class describes physical paper formats such as A4, Letter, and so
forth.

& The Dialogs section describes the user interface dialogs provided by IBM ILOG Views
for choosing printer and printer characteristics. A print preview dialogisalso availablein
the Gadgets package.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 175

The llvPrintableDocument Class

The I1vPrintableDocument class managesalist of printable objects. It uses iterators to
sequence through the printable objects. It provides a default layout, but each printable can
specify its own layout.

Multiple copies of the document can be printed using two modes:
& Thewhole document is printed n times.

& Each pageis printed n times, then the next page is printed.

Iterators

Iterators are instances of theinner class I1vPrintableDocument: : Iterator. The most
used are returned by the following 11vPrintableDocument methods:

€ IlvPrintableDocument::begin() const;

& IlvPrintableDocument::end() const; iteratorsarethen used like any other
variable.

Example

IlvPrintableDocument document;

// add some printables to the document
document . append (new IlvPrintableContainer (container) ;

// the iterate through the printables
IlvPrintableDocument: :Iterator begin = document.begin() ;
IlvPrintableDocument: :Iterator end = document.end() ;

for (IlvPrintableDocument::Iterator iter = document.begin() ;
iter != end;
++iter) {
// do something with the printable.
IlvPrintable* printable = iter.getPrintable() ;

The llvPrintable Class

176

IlvPrintable iSan abstract classthat provides a base for describing objects that can be
printed. Itsisassociated with a printable job that contains the printing parametersfor a given
job.

A printable can be described by subclassing the following methods:

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

The llvPrintable Class

€ public virtual IlvRect getBBox (IlvPrintableJob const& job) const =
0;

® protected virtual IlBoolean internalPrint (IlvPrintableJob const&
job) const = 0;

A few subclasses of 11vPrintable are available:

€ IlvPrintableContainer encapsulatesan instance of I1vContainer.

// declares a printable using the given region of a container.

// if the rectangle is null then the whole container is printed.

IlvPrintableContainer* printcont = new IlvPrintableContainer (container,
&rect) ;

& TlvPrintableText alowsprinting of text. An alignment parameter can be specified.

// declares a printable using a simple text.
IlvPrintableText* printtext = new IlvPrintableText
(display->defaultPalette(),
"This is a text",
IlvCenter) ;

® TlvPrintableFormattedText alows printing of text with various predefined
attributes. Each Conversion specificationisintroduced by the character ¢. Thefollowing
attributes are defined:

%D The index of the page will be printed.

%P The total number of pages will be printed.

N The document name will be printed.

%y The year will be printed.

M The month will be printed numerically.

%d The day of the month will be printed.

%h The hour of the day (0-24) will be printed.

$H The hour will be printed.

m The minute will be printed.

%s The second will be printed.

$AM The AM/PM indicator will be printed in upper case.
%am The am/pm indicator will be printed in lower case.

You may still print $p codes by replacing them with $\p.

// declares a printable formated text
IlvPrintableFormattedText* printftext = new
IlvPrintableFormattedText (display->defaultPalette(),
"$N : (Page %p/%P - %$d/%$M/%y - Sh:%m:s)");

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 177

€ IlvPrintableGraphic encapsulates aninstance of 11vGraphic. Any I1vGraphic
object can be printed.
// declares a printable graphic
IlvGraphic* ellipse = new IlvFilledEllipse (display,

IlvRect (0, 0, 100, 50));
IlvPrintableGraphic* printgraphic = new IlvPrintableGraphic(ellipse);

® TIlvPrintableFrame encapsulatesasimple rectangle.

// declares a printable frame
IlvPrintableFrame* printframe = new IlvPrintableFrame
(display->defaultPalette()) ;

€ IlvPrintableManager, IlvPrintableMgrView, and
IlvPrintableManagerLayer (available only with the manager package) allow a
whole manager, a manager view, or amanager layer, respectively, to be printed.

® TlvPrintableComposite alowsyou to define a printable as a composition of
printables.

The llvPrintableLayout Class

178

IBM

IlvPrintableLayout iSan abstract classthat isthe base classfor describing page layouts.
It defines a usable area by specifying left, right, top, bottom, and gutter margins.

It defines five subareas within the usable area and associates them with printables:
¢ Themain areathat will be used to print the main printable.

You can choose to stretch the printable to the usable area or to keep the printabl e aspect
ratio.

The header areathat will be used to print a header printable.
The footer areathat will be used to print afooter printable.
The background area that will be printed behind the main area

* 6 o o

The foreground area that will be printed in front of the main area.
The dimensions of the header and footer areas can be specified.
Predefined layouts are:

TlvPrintableLayoutOnePage laysout the printable on one page. Thislayout usesa
single page to render the printable.

& TlvPrintableLayoutMultiplePages laysout the printable on an array of pages.
The dimension of the pages matrix is user specified.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

The llvPrinter Class

Thislayout definesavirtual page that spans through the multiple pages. The header area
is defined at the top of the virtual page, the footer area at the bottom of the virtual page.

& IlvPrintableLayoutIdentity alowsthe printed document to be the same size as
the printable.

Thislayout inherits from I1vPrintableLayoutMultiplePages and uses whatever
number of pages are necessary.

& IlvPrintableLayoutFixedSize alowsyou to choose the printed document size.

Thislayout inherits from I1vPrintableLayoutMultiplePages and uses whatever
number of pages are necessary.

The IllvPrinter Class

The 11vPrinter class describes a physical printer with characteristics such as paper size,
paper orientation, and physical margins. It encapsulates an instance of T1vPort.

Thisisan abstract class and it has two predefined subclasses:
& T1lvPSPrinter that alowsyou to print to a PostScript file.

// creating a PostScript printer

I1lvPSPrinter* psprinter = new IlvPSPrinter (display) ;
psprinter->setPaperFormat (*I1lvPaperFormat: :Get ("A3")) ;
psprinter->setOrientation (IlvPrinter: :Landscape) ;
psprinter->setDocumentName ("viewsprint.ps") ;

& TIlviWiindowsPrinter that allows printing to a printer connected to a Windows
computer (this classis only available on Windows).

Some characteristics are dependent on the printer and cannot be set, such as paper size or
margins.

// creating a Windows printer
IlvWindowsPrinter* wprinter = new IlvWindowsPrinter (display) ;

The llvPrintUnit Class

IBM

The I1vPrintUnit class alowsyou to describe a dimensional unit. Units of various types
can be converted.

Four commonly used units have been defined:
& IlvPrintPointUnit representsunitsin centimeters. Thisisthe reference unit.

€ I1vPrintCMUnit representsunitsin centimeters.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 179

€ IlvPrintInchUnit representsunitsininches.
€ IlvPrintPicaUnit representsunitsin centimeters.
This classis mainly useful whenusing T1vPSPrinter.

Converting units:

I1vPrintCMUnit oneMeter (100.0) ;
IlvPrintInchUnit oneMeterInInches (oneMeter) ;
IlvDim result = oneMeterInInches.getUnits() ;

The llvPaperFormat Class
The 11vPaperFormat class describes paper formats. Paper formats can be registered and
queried by name.
A number of commonly used paper formats have been preregistered. Dimensions must be
given in PostScript points.

Note: On the Windows platform, when using T1vWindowsPrinter, the printer driver is
responsible for the paper sizes, so this classisused only with T1vPSPrinter.

Retrieving a paper format:

IlvPaperFormat* letterformat = IlvPaperFormat::Get ("Letter");

Creating a new paper format:

IlvPrintCMUnit width(100.0);
IlvPrintCMUnit height (100.0) ;
IlvPaperFormat: :Register ("MyFormat", width.getPoints(), height.getPoints());

Predefined paper formats are shown in Table 13.1:
Table 13.1 Predefined Paper Formats

Name Width (in points) Height (in points)
A0 2380 3368

Al 1684 2380

A2 1190 1684

A3 842 1190

Ad 595 842

A5 421 595

180 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Table 13.1 Predefined Paper Formats (Continued)

Dialogs

Name Width (in points) Height (in points)
A6 297 421
B4 709 1003
B5 516 729
C5 459 649
Quarto 610 780
Folio 612 936
Statement 396 612
Monarch 279 540
Executive 540 720
Ledger 1224 792
Tabloid 792 1224
Legal 612 1008
Letter 612 792

Dialogs

IBM

The Gadgets package comes with predefined dialogs for previewing the print job or
selecting the PostScript printer capabilities.

The IlvPostScriptPrinterDialog class allowsyou to select various PostScript printer

capabilities such as:
Output Filename
Orientation
Color Mode
Paper Format
Collate Mode

Number of copies

® 6 6 6 6 o o

Margins

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL 181

Usage example: (see Figure 13.1).

IlvPostScriptPrinterDialog psdialog(display) ;
psdialog.get () ;
IlvPrinter: :Orientation orientation = psdialog.getOrientation();
IlBoolean collate = psdialog.isCollateOn() ;

PostScript printer properties rz|
File:

| 2|
Paper

[Bas v
| ss x| sz | [pont v| [margns.. |

(%) Portrait () Landscape
Colar
I | () Grayscale I I () Calor
Page range Copies
® al Number 1 e
() Selection l:l Iﬂ
Print Cancel

Figure13.1 PSPrinter Example

The 11vPrinterPreviewDialog class alowsyou to preview aprinting job (see
Figure 13.2). It supports various modes such as:

& One page preview
& Two page preview
& Tiled preview

A custom zooming factor can be specified.

182 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Dialogs

s ILOG Views printing preview

Mode: Zoom factar:
~
E:\views5.3\data\images\elefante.ilv wl
4 A ¥
Page:
n

Figure 13.2 Print Preview Example

IBM ILOG VIEWS FOUNDATION V5.3 — USER’S MANUAL 183

184 IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

14

IBM ILOG Script Programming

This chapter is a programming guide to IBM ILOG Script for IBM® ILOG® Views. It
coversthe following topics:

Anintroduction to IBM ILOG Script for IBM ILOG Views
Making IBM ILOG Views Applications Scriptable

Binding IBM ILOG Views Objects

Loading IBM ILOG Script Modules

Using IBM ILOG Script Callbacks

Handling Panel Events

Creating IBM ILOG Views Objects at Run Time

Common Properties of IBM ILOG Views Objects

Using Resourcesin IBM ILOG Script for IBM ILOG Views

® 6 6 6 6 6 O 0 0 o

The topic concludes with Guidelines for Developing Scriptable Applications and
reference tables providing Resource Names that you can use in your scripting.

Details on the syntax of IBM ILOG Script are in Appendix F, IBM ILOG cript 2.0
Language Reference.

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 185

IBM ILOG Script for IBM ILOG Views

IBM ILOG Script for IBM® ILOG® Viewsis an object-oriented scripting language for
devel oping high-performance graphic applications.

IBM ILOG Script for IBM ILOG Viewsis an enhanced version of IBM ILOG Script, an
IBM ILOG implementation of the JavaScript™ scripting language that |ets you access most
of the IBM ILOG Views powerful graphic objects.

For full details of the IBM ILOG scripting features, refer to the following documentation:

& Thischapter explains how to program IBM ILOG Views graphic objects with
IBM ILOG Script.

Note: It includes material regarding programming of optional panels and gadgets. For
complete information on these options, refer to the appropriate IBM ILOG Views
documentation packages.

& ThelBM ILOG Script Manual shows you how to use IBM ILOG Script for
IBM ILOG Viewsfrom ivfstudio, which includes the extension of IBM ILOG Views
Studio that lets you write IBM ILOG Views applicationsin IBM ILOG Script.

& ThelLOG Views Foundation Reference Manual provides all the information you need
concerning the IBM ILOG Views objects supported by IBM ILOG Script for
IBM ILOG Views.

Making IBM ILOG Views Applications Scriptable

Touse|IBM ILOG Script in an IBM ILOG Views application, you have to make this
application scriptable. The interpreter of IBM ILOG Script for IBM ILOG Viewsis
implemented as C++ libraries. Therefore, if you want to use an IBM ILOG Views
application with IBM ILOG Script for IBM ILOG Views, you have to:

& Include the appropriate header file in the source files of your application, as described in
Including the Header File.

& Link your application using the supplied IBM ILOG Script for IBM ILOG Views
libraries, as described in Linking with IBM ILOG Script for IBM ILOG Views Libraries.

Note: You can also generate IBM ILOG Views scriptabl e applications from the extension of
IBM ILOG Views Studio that lets you write IBM ILOG Views applicationsin

IBM ILOG Script. For more information, refer to the IBM ILOG Views Studio User’s
Manual.

186 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Binding IBM ILOG Views Objects

Including the Header File
Include the following header file in the main source file of your application:

#include <ilviews/jvscript/script.h>

You need to include this file only once. You do not have to include it in each one of the
source files of your application.

Linking with IBM ILOG Script for IBM ILOG Views Libraries

In addition to the IBM ILOG Views libraries, you must link your application with the
following IBM ILOG Script for IBM ILOG Views libraries:

On Microsoft Windows
¢ ilvjs.lib

¢ iljs.lib

® iljsgide.lib

On UNIX

¢ libilvjs

¢ libiljs

¢ libiljsgide

Binding IBM ILOG Views Objects

IBM

To use IBM® ILOG® Views objects, such as gadgets and panels, in IBM ILOG Script, you
must make these objects accessible using a binding procedure. To bind an object:

& Firstget an IBM ILOG Script context. Thisis described in Getting the Global
IBM ILOG Script Context.

& Invoke the bind method, discussed in Binding IBM ILOG Views Objects.

A bound abject becomes accessible from IBM ILOG Script.

Getting the Global IBM ILOG Script Context

AnIBM ILOG Script context is a gateway between IBM® ILOG® Views and the scripting
language that should be created before binding any IBM ILOG Views objects. If, as
explained in the previous section, you have included the script . h header filein thefiles of
your application and linked that application with the appropriate libraries, the global context
will be created automatically.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 187

188

IBM

To activate this context, invoke the following function:

IlvScriptLanguage* jvscript = IlvScriptLanguage: :Get ("JvScript");
IlvScriptContext* theContext = jvscript->getGlobalContext () ;

This function returns a pointer to the global IBM ILOG Script context.

Binding IBM ILOG Views Objects
To bind an IBM® ILOG® Views object, call the following function:

IlvScriptContext: :bind(IlvValueInterface* object,
const char* name) ;

This function takes a pointer to the object to be bound asitsfirst parameter and the character
string to which the object is bound as its second parameter. IBM ILOG Script programmers
can use this name to access the associated object. The pointer is of the type
IlvvalueInterface, Whichisasuperclassfor most of the IBM ILOG Views classes.

Thus, you can bind an 11vapplication object with the following code:

IlvScriptLanguage* jvscript = IlvScriptLanguage: :Get ("JvScript) ;
IlvScriptContext* theContext = jvscript->getGlobalContext () ;
theContext->bind (theApp, "Application");

// theApp is the pointer to an IlvApplication

The above code bindsthe T1vapplication object to IBM ILOG Script through the
Application symbol. Consequently, you can access the properties attached to
Application from IBM ILOG Script:

var name = Application.name;

Accessing IBM ILOG Views Objects in IBM ILOG Script

You might want to bind all the IBM ILOG Views objectsin your application. To do so, the
best solution isto bind only the root object. Thisis because you can access, either directly or
indirectly, almost any other IBM ILOG Views object starting from that object.

Inan IBM ILOG Views application generated from ivfstudio, for example, you can
access the pointers to the panels through the pointer to the application by calling the
IlvApplication: :getPanel method. Similarly, you can then access the gadgetsin the
panels by invoking the T1vContainer: : getObject method. Thisisthe reason why, in
such applications, the only object that should be bound isan T11vapplication object.

The Application Object

In applications generated with ivfstudio, the I1vapplication object isbound with the
Application Symbol. You can access any other IBM ILOG Views object starting from the
Application object.

L et us suppose that your application contains one panel named myPanel. Hereis how you
can accessitin IBM ILOG Script:

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Loading IBM ILOG Script Modules

var panel = Application.getPanel ("myPanel") ;

To changeitstitle, you can type:

panel.title = "New title";

If the panel in your application contains one button called myButton, you can access it
using the following code:

var button = panel.getObject ("myButton") ;

To change the button label, type:

button.label = "A new label";

Accessing Panels and Gadgets

Below are easier ways to access an application’s panels and gadgets.

To access the panel named myPanel in IBM ILOG Script, you can type:
var panel = Application.myPanel;

To changeitstitle:

Application.myPanel.title = "A new title";

To access gadgets in the panel:

var button = panel.myButton;

Note that only panels and gadgets that have regular names can be accessed that way. If a
panel or gadget name includes specia characters, such as &, +, -, =, Space, and so on, you
will not be able to access them using the procedures described above. Be careful not to use
these characters in the name of panels and gadgets.

Loading IBM ILOG Script Modules

IBM

Three different types of scripts can be loaded into a scriptable IBM® ILOG® Views
application:

¢ Inline Scripts
& Default IBM ILOG Script Files
¢ Independent IBM ILOG Script Files

Static functions that may be defined in these scripts have alimited function, as discussed in
IBM ILOG Script Static Functions.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 189

190

IBM

Inline Scripts

Scripts that you create from ivEstudio while designing graphic panels are called inline
scripts. These scriptsare saved in . i1v filesby ivEstudio. Inline scripts are loaded
together with the . i1v filesin which they are stored when these files are loaded into an
IBM ILOG Views scriptable application. See Making IBM ILOG Views Applications
Scriptable.

Default IBM ILOG Script Files

When an . i1v file, such aspanel . i1lv, that does not contain inline scriptsis being loaded
into an IBM ILOG Views scriptable application, IBM ILOG Views looks into the directory
where the fileislocated for an IBM ILOG Script file with the same name that hasthe . 5s
extension and automatically loads it. The panel. js fileis called the default

IBM ILOG Script file of panel.ilv.

Independent IBM ILOG Script Files

You can load independent IBM 1LOG Script modulesinto an IBM ILOG Views scriptable
application using the I1vScriptContext: : loadScript method:

IlvScriptContext: :loadScript ("c:\\myscripts\\myscript.js");

Using this method, you can load IBM ILOG Script files that are shared by several
applications.

IBM ILOG Script Static Functions

Inline and default scripts are associated with an . i 1v file. The names of static functions
defined in such scripts have alimited scope:

& Thename scope of an IBM ILOG Script static function is limited to the module where it
isdefined. It isnot visible from other IBM ILOG Script modules.

& |t canonly be used as a callback for the gadgets in the associated . i 1v file and for the
gadgets in the subpanels of the gadget container defined by the associated . i 1v file, if
any.

Hereis an example of a static function:

static function OnClick (graphic)

{

graphic.foreground = "red";

}

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Using IBM ILOG Script Callbacks

Using IBM ILOG Script Callbacks

IBM

IBM® ILOG® Views gadgets are able to recognize specific mouse or keyboard events that
apply to them and invoke the associated predefined IBM ILOG Script callback functions.

To handle gadget events using callbacks, you must:
& Write the callback functions: see Writing a Callback
& Set the callback: see Setting an IBM ILOG Script Callback

Writing a Callback
InIBM ILOG Script for IBM ILOG Views, callbacks have the following signature:

function CallBack (gadget, value)

Hereis an example of a callback:

function OnButtonClick (button, value)
{
button. foreground = "red";
writeln("The additional value is: " + value);

}

The second argument passed to the callback is an optional value that you can specify when
you set acallback in ivfstudio. The contents of the callback function can therefore be the
following:

function OnGadgetClick (gadget)
{

gadget. foreground = "red";

}

Setting an IBM ILOG Script Callback
There are two ways to set a callback to a gadget:

& You can set calbacksin IBM ILOG Views Studio, while designing panels. Thisisthe
easiest way.

& You can set calbacks withthe T1vGraphic: : setCallback method. Using this
method, you can set a callback to a gadget or modify it at run time. Here is an example:

myGadget .setCallback ("Generic", "myCallback", "JvScript");

The first argument is the callback type that identifies the event to handle. The second
argument is the callback function you defined. The third argument is aways Jvscript.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 191

Handling Panel Events

192

IBM

You can use IBM ILOG Script functions to be informed whenever the panels of your
application are created, displayed, hidden, or deleted. To handle these events you use:

¢ The OnLoad Function
& The onShow Property
& The onHide Property

& The onClose Property

The OnLoad Function

When an T1vContainer object is created, it looksfor an IBM ILOG Script function
OonLoad and invokesit, passing the container asits argument. If there are several onLoad
functions, the container will look in the following modulesin order and call the first onL.oad
function encountered:

1. Theinline script module

2. Thedefault IBM ILOG Script module

3. Other IBM ILOG Script modules

The IBM ILOG Script function onL.oad should have the following signature:
function OnLoad (theContainer)

// Initialization code

}

The onLoad function is generally used to perform initialization once the panelsin the
application have been created.

The onShow Property

IlvContainer hasan onShow property to which you can passan IBM ILOG Script
function. The specified function is called when the container is displayed on the screen. For
example:

function OnShow (theContainer)
{
writeln("Hi, " + theContainer.name + " is displayed.");

}

function OnLoad(theContainer)
{
theContainer.onShow = OnShow;

}

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Creating IBM ILOG Views Objects at Run Time

In this example, the onshow function is used to handle the onshow event applied to
theContainer.

The onHide Property

The onHide property issimilar to the onshow property except that the specified function is
called when the container is hidden. For example:

function WhenPanelHides (theContainer)
{
writeln("Hi, I am " + theContainer.name + ", see you later.");

}

function OnLoad(theContainer)

{

theContainer.onHide = WhenPanelHides;

}

The onClose Property

TheonClose property issimilar to the onshow property except that the specified functionis
called when the container is being closed. For example:

function OnClose (theContainer)
{
writeln("Hi, " + theContainer.name + " has terrible news ...");

}

function OnLoad(theContainer)

{

theContainer.onClose = OnClose;

}

Creating IBM ILOG Views Objects at Run Time

IBM

In1BM ILOG Script for IBM® ILOG® Views, you can use the new operator to create
IBM ILOG Views objects at run time just as you would create other IBM ILOG Script
native objects, such as strings, numbers, and so on.

You can create the following types of objects at run time:
¢ IlvPoint

€ IlvRect

€ IlvGadgetContainer

To create a gadget, such asan T1vButton, we recommend that you use IBM ILOG Views
Studio.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 193

llvPoint and llvRect

Certain IBM ILOG Views object methods take an T1vPoint Or an T1vRect astheir
arguments. These can be created at run time as shown below:

var myPoint = new IlvPoint (20, 20);
myPanel .move (myPoint) ;

IlvGadgetContainer
You can create new panels at run time. Here is an example:

var size = new IlvRect (20, 20, 400, 300);

var myNewPanel = new IlvGadgetContainer ("Panel", "My panel", size);
myNewPanel .readFile("panel.ilv") ;

myNewPanel.readDraw () ;

Application.addPanel (myNewPanel) ;

We recommend that you add the new panel to application after it has been created.

For more information, see “Accessorsfor class 11vGadgetContainer” in the Gadgets
Accessor Reference Manual.

Common Properties of IBM ILOG Views Objects

194

IBM

The following properties useful in scripting are common to al IBM® ILOG® Views
objects:

& className
¢ name
¢ help

className

className isaread-only string that indicates the type of the object. Object types are
documented in the ILOG Views Foundation Reference Manual.

name

name iSastring that identifies the object. A panel should have a unique name within the
application. A gadget should have a unique name within its container.

help

help isaread-only string that gives the object description. This property is very useful
when debugging a scriptable IBM ILOG Views application.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Using Resources in IBM ILOG Script for IBM ILOG Views

For example, inthe IBM ILOG Views Studio script debugger, type Application.help to
get alist of the supported properties and methods:

> Application.help
= ViewsObject :
Method getPanel;
Method addPanel;
Method removePanel;
Method setState;
Method quit;

Object rootState;
String name;

String className;

To get more information on the method T1vapplication: :getPanel, just type
Application.getPanel.help:

> Application.getPanel.help
= Object getPanel (String name)

You can aso obtain information onthe T1vapplication: : getPanel method by typing
Application.getPanel:

> Application.getPanel
= [Views method: Object getPanel (String name)]

Using Resources in IBM ILOG Script for IBM ILOG Views

I BM

Resourcesin IBM ILOG Script for IBM® ILOG® Views, such as colors, bitmaps, and
fonts, are identified by aname or a string. The following sections show you how to use them:

& Using Resource Names with IBM ILOG Script for IBM ILOG Views
& Using Bitmaps with IBM ILOG Script for IBM ILOG Views
& Using Fontswith IBM ILOG cript for IBM ILOG Views

Using Resource Names with IBM ILOG Script for IBM ILOG Views

To modify the resource associated with agiven IBM ILOG Views object (whether acolor, a
pattern, aline or fill style, an arc mode, and so on) use its name. Here are afew examples:

myButton. foreground = "red";
myButton.pattern = "solid";
myLabel.alignment = "right";

Resource names are listed in Resource Names.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 195

Using Bitmaps with IBM ILOG Script for IBM ILOG Views

Bitmaps are identified by their names. To modify an IBM® ILOG® Views hitmap, use its
name as shown in the exampl e below:

myButton.bitmap = "ilog.ic";
myPanel .backgroundBitmap = "subdir/mybmp.gif";

The specified bitmaps must be stored in the directories defined in TL.veaTH. If the bitmaps
arelocated in another directory, indicate the complete access path:

myButton.bitmap = "/mybmps/myicon.gif";

Using Fonts with IBM ILOG Script for IBM ILOG Views

InIBM ILOG Script for IBM® ILOG® Views, fonts are usually identified by character
strings with the following format:

%fontName-fontSize-fontFlags

fontName isthe name of the font family, such as Courier, Helveticaor Times. fontsize is
an integer that indicatesthe font size. fontFlags isaseriesof characters that indicates the
font style: B for Bold, | for Italic and U for Underlined. Leave thisfield empty if you want
the font to appear plain.

For example, to change the font of an 11vLabel, type the following:

myLabel.font = "%times-16-I";

Guidelines for

196

I BM

Developing Scriptable Applications

To create anew scriptable IBM® ILOG® Views application or make an existing application
scriptable, follow these guidelines:

1. Usean object of the class T1vapplication, or of aderived class, as your application’s
root object. Once your T1vaApplication object iscreated, bind it using the name
Application.

2. Add all the panelsto the T1vapplication object so that they can be accessed from the
Application objectinIBM ILOG Script for IBM ILOG Views.

3. After creating T1vDisplay, initidize the IBM ILOG Script for IBM ILOG Views
auxiliary library using the following code:

IlvJvScriptLanguage: : InitAuxiliaryLib (appli->getDisplay());

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Resource Names

Initialization is required when you want to use the I1vCommonDialog Object or create
IlvPoint, IlvRect, OF I1vGadgetContainer objectsin IBM ILOG Script for
IBM ILOG Views.

Resource Names

In this section you will find tables listing the names of resourcesin IBM ILOG Script for
IBM® ILOG® Views.

Table 14.1 Color Names

Color Name RGB Definition
aliceblue 240, 248, 255
antiquewhite 250, 235, 215
aquamarine 127, 255, 212
azure 240, 255, 255
beige 245, 245, 220
bisque 255, 228, 196
black 0, 0, 0
blanchedalmond 255, 235, 205
blue 0, 0, 255
blueviolet 138, 43, 226
brownl 65, 42, 42
burlywood 222, 184, 135
cadetblue 95, 158, 160
chartreuse 127, 255, 0
chocolate 210, 105, 30
coral 255, 127, 80
cornflowerblue 100, 149, 237
cornsilk 255, 248, 220
cyan 0, 255, 255
darkgoldenrod 184, 134, 11
darkgreen 0, 100, O
darkkhaki 189, 183, 107
darkolivegreen 85, 107, 47
darkorange 255, 140, 0
darkorchid 153, 50, 204
darksalmon 233, 150, 122
darkseagreen 143, 188, 143
darkslateblue 72, 61, 139
darkslategray 47, 79, 79
darkslategrey 47, 79, 79
darkturquoise 0, 206, 209
darkviolet 148, 0, 211
deeppink 255, 20, 147
deepskyblue 0, 191, 255
dimgray 105, 105, 105
dimgrey 105, 105, 105
dodgerblue 30, 144, 255
firebrick 178, 34, 34
floralwhite 255, 250, 240
forestgreen 34, 139, 34
gainsboro 220, 220, 220

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 197

198

I BM

ghostwhite
gold

goldenrod

gray

green
greenyellow
grey

honeydew
hotpink
indianred
ivory

khaki

lavender
lavenderblush
lawngreen
lemonchiffon
lightblue
lightcoral
lightcyan
lightgoldenrod
lightgoldenrod
lightgray
lightgrey
lightpink
lightsalmon
lightseagreen
lightskyblue
lightslateblue
lightslategray
lightslategrey
lightsteelblue
lightyellow
limegreen
linen

magenta

maroon

mediumagquamarine

mediumblue
mediumorchid
mediumpurple
mediumseagreen

mediumslateblue
mediumspringgreen
mediumturquoise
mediumvioletred

midnightblue
mintcream
mistyrose
moccasin
navajowhite
navy
navyblue
oldlace
olivedrab
orange
orangered
orchid
palegoldenrod

ILOG VIEwWS FOUNDATION V5.3

248, 248,
255, 215,
218, 165,
192, 192,
0, 255, 0
173, 255,
192, 192,
240, 255,
255, 105,
205, 92,
255, 255,
240, 230,
230, 230,
255, 240,
124, 252,
255, 250,
173, 216,
240, 128,
224, 255,
238, 221,
250, 250,
211, 211,
211, 211,
255, 182,
255, 160,
32, 178,

135, 206,
132, 112,
119, 136,
119, 136,
176, 196,
255, 255,
50, 205,

250, 240,
255, 0,

176, 48,
102, 205,
0, 0, 205
186, 85,

147, 112,
60, 179,

123, 104,
0, 250, 1
72, 209,

199, 21,
25, 25, 1
245, 255,
255, 228,
255, 228,
255, 222,
0, 0, 128
0, 0, 128
253, 245,
107, 142,
255, 165,
255, 69,
218, 112,
238, 232,

255

0
32

192

47
192
240
180

92
240
140
250
245
0
205
230
128
255
130
210
211
211
193
122

170
250
255
153
153
222
224
50
230

255

96
170

211
219
113
238
54
204
133
12
250
225
181
173

230
35

214
170

USER'S MANUAL

Resource Names

palegreen 152, 251, 152
paleturquoise 175, 238, 238
paleviolet 219, 112, 147
papayawhip 255, 239, 213
peachpuff 255, 218, 185
peru 205, 133, 63
pink 255, 192, 203
plum 221, 160, 221
powderblue 176, 224, 230
purple 160, 32, 240
red 255, 0, O
rosybrown 188, 143, 143
royalblue 65, 105, 225
saddlebrown 139, 69, 19
salmon 250, 128, 114
sandybrown 244, 164, 96
seagreen 46, 139, 87
seashell 255, 245, 238
sienna 160, 82, 45
skyblue 135, 206, 235
slateblue 106, 90, 205
slategray 112, 128, 144
slategrey 112, 128, 144
snow 255, 250, 250
springgreen 0, 255, 127
steelblue 70, 130, 180
tan 210, 180, 140
thistle 216, 191, 216
tomato 255, 99, 71
turquoise 64, 224, 208
violet 238, 130, 238
violetred 208, 32, 144
wheat 245, 222, 179
white 255, 255, 255
whitesmoke 245, 245, 245
vellow 255, 255, 0
yellowgreen 154, 205, 50

Table 14.2 Directions

left

right

top
bottom
topLeft
bottomLeft
topRight
bottomRight
center
horizontal
vertical

Table 14.3 Arc Modes

ArcPie
ArcChord

Table14.4 Fill Rules

IBM ILOG VIEWS FOUNDATION V5.3 — USER’S MANUAL 199

200

IBM

EvenOddRule
WindingRule

Table 145 Fill Syles

FillPattern
FillColorPattern
FillMaskPattern

Table 14.6 Patterns

solid
clear
diaglr
diagrl
darkl
dark2
dark3
dark4
lightl
light2
1light3
light4
gray
horiz
vert
cross

Table 14.7 Line Styles

solid

dot

dash

dashdot
dashdoubledot
alternate
doubledot
longdash

ILOG VIEwWS FOUNDATION V5.3

USER'S MANUAL

15

Internationalization

IBM® ILOG® Views alows users to develop international versions of software. You will
find information on:

*
*

What isi18n?isabrief introduction to internationalization.

Checklist for Localized Environments lists the requirements for success in creating and
running your programs. Further topics detail requirements for locales, fonts, and
localized message database files. A Troubleshooting checklist gives some problem-
solving techniquesif localized messages do not appear on your system during the
development phase.

Using IBM ILOG Viewswith Far Eastern Languages describes specia considerationsfor
multibyte character languages.

Data Input Requirements
Limitations of Inter nationalization Features

Thereis a Reference: Encoding Listings of the encodings supported by
IBM ILOG Views and extensive tables in Reference: Supported Locales on Different
Platforms

Note: Thischapter explains how to use|IBM ILOG Views internationalization features. To
learn how to write internationalized software, you should refer to general books on the
subject.

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 201

What is i18n?

Internationalization (or the common abbreviation “i18n”) is a software design methodol ogy

that lets users interact with a software application using their native language.

Internationalized software handles data so that the rules of the users' |anguage are respected.

Users expect their software to meet the following requirements:
& Allow input, processing, and display of charactersin the language they use.

& Allow them to interact with the system using their own language. Prompts and error
messages must be displayed in this language.

& Format and process data according to the user’s local rules and environment.

Locale

Support of i18n by IBM ILOG Viewsis based on the POSIX locale model. A localeisa
collection of data and/or methods that allow internationalized C library and system-

dependent library functions to comply with the users' language, local customs, and data
encoding. The locale determines the characters and fonts used to display the language. It

a so determines how programs display and sort dates, times, currency, and numbers.

Checklist for Localized Environments

202

IBM

Before you begin to use your program in the local language, there are certain things you
must do to ensure that your program will run in the desired language.

4 You must create the program to run in the localized environment. See Creating a
Programto Runin a Localized Environment.

& Your system must support the local e (the language you want to use). See Locale
Requirements.

¢ |IBM® ILOG® Views must support the language you want to use. See IBM ILOG Views
Locale Support.

& Thefonts needed to display the language must beinstalled on your system. See Required
Fonts.

& Thefiles containing messages and other system text (the . dbm files) must be trandated

into the local language and available in the proper subdirectories. See Localized Message
Database Filesin IBM ILOG Views.

When al of these requirements are in place, you can then run your localized software.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Creating a Program to Run in a Localized Environment

Creating a Program to Run in a Localized Environment

IBM

When creating a program that you intend to use in an internationalized environment, you

code as you normally would for any other program. You must make sure, however, that you
cal the 11vsetLocale global function at the beginning of your program. This call should
appear before creating aninstance of T1vbisplay. TherlvsetLocale cal isnecessary for

IBM® ILOG® Viewsto set up the underlying information it needs to run correctly in the
default locale environment.

Note: If you do not have a call to T1vsetLocale inyour program, the localized
messages will not appear on the screen and multibyte support will not be enabled. Your

program will behave asif you are running in the C locale, thus displaying only English
messages.

The following example shows a simple program that is ready for an internationalized
environment, meaning that the program can run in different languages. Notice the
IlvSetLocale () cal at the beginning of the program.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 203

/) = e = e CHt+ =*-

// IlogViews userman source file
// File: doc/fondation/userman/src/internationalization/setLocale.cpp
/] e

// Copyright (C) 1990-2000 by ILOG.
// All Rights Reserved.
/] e

#include <ilviews/gadgets/gadcont.h>
#include <ilviews/gadgets/textfd.h>
#include <stdio.h>

static void
Quit (IlvView*, IlAny)
{
I1vExit (0);
}

int main (int argc, char* argvl[])

{
if (!IlvSetLocale()) {

printf (“Falling back to the C locale.\n”);
}

IlvDisplay* display = new IlvDisplay(“Test”, 0, argc, argv);

IlvRect rect(20,20,250,80);

IlvGadgetContainer* cont = new IlvGadgetContainer (display, “Container”,
“Container”, rect);

cont->setDestroyCallback (Quit, 0);

IlvRect rectl(10,10,220,50);

IlvTextField* tf = new IlvTextField(display, “This is a text field.”,
rectl);

cont->addObject (tf) ;

IlvMainLoop () ;

return 0;

Locale Requirements
The locale is the language you want your system to support. See the following topics for
local e requirements:
& Checking Your System's Locale Requirements
¢ Locale Name Format
¢ Current Default Locale
& Changing the Current Default Locale

204 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

I BM

Locale Requirements

Checking Your System’s Locale Requirements
To determine if your system meets the local e requirements:

& Ask your system administrator whether or not your operating system supports the locale
you need. If your operating system does not support the locale, you cannot run your
localized program.

& Depending on the system you are using, you can also do the following to find out if your
system supports the locale:

¢ OnUNIX Systems
e XLibrary Support (UNIX only)

e On Microsoft Windows Systems

Note: Locale names are system-dependent. For each example of a system-dependent
name, we will mention only the French and Japanese settings for the HP-UX (10.x or 11),
Solaris (2.6 or 2.7), and Windows platforms.

On UNIX Systems
Run the following utility program to get alist of the locales supported by your system:

$ locale -a

Hereis an example of what you will get on an HP-UX system if only French (as spokenin
France) and Japanese are supported:

fr FR.1s088591
fr_FR.iso885915@euro
fr_FR.roman8

fr FR.utf8
ja_JP.SJIS
ja_JP.eucdP
ja_JP.kana8
ja_JP.utf8

Hereisan example of what you will get on a Solaris system, if only French and Japanese are
supported:

fr

fr.IS08859-15
fr.UTF-8

fr_FR

fr FR.IS08859-1
fr_ FR.IS08859-15
fr.IS08859-15@euro
fr FR.UTF-8

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 205

206

IBM

fr FR.UTF-8@Qeuro
ja

ja_JP.eucdP
ja_JP.PCK
ja_JP.UTF-8
japanese

On Microsoft Windows Systems
Look at the Regional Settings in the Control Panel:

1. Onthe Windows desktop click Start - Settings - Control Panel.

2. Double-click the Regional Settingsicon to access the Regional Settings Properties dialog
box.

3. Inthe Regional Settings notebook page, you will see alist of supported locales.

Locale Name Format

Asyou can see, locale names are system-dependent. Most systems, however, tend to follow
the XPG (X/Open Portability Guide) naming convention, where alocale name has the
following format:

language_territory.encoding

language iSthe language name; territory isthe territory name (alanguage can be
spoken in different areas or countries: French, for example, is spoken in France, Canada,
Belgium, Switzerland, and other countries); and encoding isacode set or an encoding
method by which characters are coded.

On UNIX Systems

The following examples show the format of alocale name as displayed on different UNIX
systems. The locale isfor French as spoken in France with the Latinl encoding.

Solaris 8 fr Of fr_FR.iso08859-1
HP-UX 11 fr FR.is088591

Red Hat Entreprise Linux 4.0 fr_FR.is088591

Suze 10.0 fr_FR

AIX 5.1 fr FR Or fr_FR.IS08859-1

On Microsoft Windows Systems

The following example shows the format of alocale on a Windows system. The localeisfor
French as spoken in France with Windows Code Page 1252.

Windows XP French France.1252

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Locale Requirements

Current Default Locale

Your system will have a default locale. Normally, your default locale should be set to the
language you want to use. To find out the current default locale on your system, you can run
one of the following programs:

On UNIX Systems

/) mmmm e - - *— CH++ —*-
// IlogViews userman source file
// File: doc/fondation/userman/src/internationalization/checkUnixLocale.cpp

// Copyright (C) 1990-2008 by ILOG.
// All Rights Reserved.

#include <locale.h>

#include <stdio.h>

#include <langinfo.h>

#if defined(linux) && !defined(CODESET)
#define CODESET _NL_CTYPE_CODESET_NAME
#endif /* linux */

int main()
{
char* loc = setlocale(LC_ALL, “V“);
if (loc) {
printf (“default locale: %s\n”,loc);
printf (“encoding %s\n”, nl_langinfo (CODESET)) ;
} else
printf (“System does not support this locale\n”);
return 0;

If your system is set to the French language, hereis an example of what you will get on
HP-UX:

default locale: fr FR.is088591 fr FR.iso088591 fr_FR.iso88591
fr_FR.iso088591 fr_ FR.i1s088591 fr_FR.iso88591

On Solaris, you will get:

default locale: fr

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 207

208

I BM

On Microsoft Windows Systems

/) mmmm e - - *— CH+ —*-
// IlogViews userman source file
// File: doc/foundation/userman/src/internationalization/checkWindowsLocale.cpp

// Copyright (C) 1990-2008 by ILOG.
// All Rights Reserved.
/] S m e oo

#include <locale.h>
#include <stdio.h>
#include <windows.h>

int main(int argc, char* argvl[])

{
printf (“default locale: %s\n”, setlocale(LC_ALL, ““));

printf (“encoding %d\n”, GetACP());
return 0;

On Windows XB, if your regional setting has been set to French (Standard), you will get:

default locale: French_France.1252
encoding 1252

Changing the Current Default Locale

For your localized messages to appear on the screen, you may need to change the current
default locale.

On UNIX Systems

You can use one of the following environment variables: LANG or LC_ALL. See your system
documentation to find out the appropriate |ocal e names.

For example, if you want to use Japanese with the EUC encoding:
On HP-UX, type:

S LANG=ja_JP.eucJdP

On Solaris, type:

$ LANG=ja or LANG=japanese

On Microsoft Windows Systems
Change the language using the Regional Settings of the Control Panel.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM ILOG Views Locale Support

X Library Support (UNIX only)

Your X Window system needs to support the desired language. You can run the following
program to find out if the appropriate X libraries are available on your system:

/) mmm e - - *— CH++ —*-
// IlogViews userman source file
// File: doc/fondation/userman/src/internationalization/checkXLocale.cpp

// Copyright (C) 1990-2008 by ILOG.
// All Rights Reserved.
/] S e oo

#include <X11/X1lib.h>
#include <X11/Xlocale.h>
#include <stdlib.h>
#include <stdio.h>

int
main (int argc, char* argv(])
{
char* loc = setlocale(LC_CTYPE, ““);

if (loc == NULL) {
fprintf (stderr, “System does not support this locale.\n”);
exit (1) ;
}
if (!XSupportsLocale()) {
fprintf (stderr, “X does not support locale %s.\n”, loc);
exit (1) ;
if (XSetLocaleModifiers(™“) == NULL) {
fprintf (stderr, “Warning: cannot set locale modifiers for %s.\n”, loc);
} else
fprintf (stderr, “Locale %s is supported by Xlib.\n”, loc);
exit(0);

For example, on an HP system where Arabic is not supported, setting LANG to
ar_DZ.arahic8, gives the following output:

X does not support locale ar_DZ.arabic8.

IBM ILOG Views Locale Support

IBM

Although locale names are system-dependent, and each system has its own way of
identifying the locale information, IBM® ILOG® Views supports a system-independent
scheme for localization.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 209

210

IBM

IBM ILOG Views Locale Names

For IBM ILOG Views to use locale-dependent information in a system-independent way,
IBM ILOG Views defines the concept of an IBM ILOG Views locale, whose name is
system-independent. This locale has the following format:

11_TT.encoding

where:
11 isatwo-letter, lowercase abbreviation of the language name.
TT is atwo-letter, uppercase abbreviation of the territory name.

encoding isastring that identifies the code set or encoding method used.

For example, inthe IBM ILOG Viewslocale name fr_FR.IS0-8859-1, the fr represents
the language name, French; the Fr represents the territory name, France; 1s0-8859-1
represents the encoding method used for the language, which is SO 8859-1.

The following examples show several IBM ILOG Views locale names on UNIX platforms:
¢ fr_FR.ISO-8859-1

¢ de DE.TIS0-8859-1

® ja_JP.EUC-JP

€ Jja JP.Shift_JIS

The following examples show several IBM ILOG Views locale names on Windows
platforms:

€ fr FR.windows-1252
€ de DE.windows-1252
€ ja_JpP.Shift JIS

Language Name Specification

Inthe IBM ILOG Viewslocal e, the language names are specified using the abbreviations
from the 1SO 639 Code for the Representation of Names of Languages. Here are several
examples:

en (English)
& fr (French)

2

& de (German, from “Deutsch”)
& ja (Japanese)
The 1SO 639 standard can be consulted on the following Web sites:

http://www.loc.gov/standards/iso639-2/ascii_8bits.html

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

I BM

IBM ILOG Views Locale Support

or ftp://std.dkuug.dk/i118n/iso-639-2.txt
More generally, 1SO codes can be consulted on the following Web site;
http://userpage.chemie. fu-berlin.de/diverse/doc/ISO_639.html

Territory Name Specification

Inthe IBM ILOG Viewslocale, the territory names are specified using the abbreviations
from the |SO 3166 Codes for the Representation of Names of Countries.

The 1SO 3166 standard can be consulted on the following Web site:

http://www.iso.org/iso/country_codes/iso_3166_code_lists/
english_country_names_and_code_elements.htm

Here are several examples:
Us (United States)

NL (the Netherlands)
FR (France)

DE (Germany, from “Deutschland”)

* & 6 o o

JP (Japan)

Encoding Specification

Inthe IBM ILOG Viewslocal e, the encoding identifies the code set or encoding method
used for the language. Examples of encoding methods are;

& 150-8859-1 (1SO 8859/1)
& shift_JgIs (Shift Japanese Industrial Standard)

Any character encoding registered by IANA could be used. Currently only character sets
listed in Reference: Encoding Listings are supported by IBM ILOG Views, which tends to
use the preferred MIME notation.

For more information, you can consult the following Web site:

http://www.lana.org/assignments/character-sets

Determining IBM ILOG Views Support for the Locale

To determineif IBM ILOG Views supports the desired locale, you can run the following
program:

l Note: This example uses private code that you should not use in a real application.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 211

/) = - = e CHt+ =*-
// IlogViews userman source file
// File: doc/fondation/userman/src/internationalization/checkViewsLocale.cpp

// Copyright (C) 1990-2008 by ILOG.
// All Rights Reserved.
/] e

#include <ilviews/ilv.h>
#include <ilviews/base/locale.h>

int main(int argc, char* argvl[])
{
if (!IlvSetLocale()) {
exit (1) ;
}
char* stdLocale = IlLocale::GetStdLocaleName (setlocale (LC_CTYPE, NULL)) ;
if (stdLocale)
IlvPrint (“*Standard Views locale name: %$s\n”, stdLocale);
else
IlvPrint (“Views does not support this locale.\n”);

return O;

For example, on an HP-UX system with your LaNG set to fr_FR.iso88591 or on a Solaris
system with your L.aNG set to fr, you get the following result:

Standard Views locale name: fr_FR.ISO-8859-1

On aWindows system set to Japanese, you get:

Standard Views locale name: ja_JP.Shift_JIS

Required Fonts

212

IBM

Your system must support the fonts required by your locale.

On UNIX Systems

Make sure that the X resources are set to the fonts used by IBM ILOG Views applications.
To do this, edit your . xdefaults file, which islocated in your home directory. If thisfile
does not exist, you can create it. You should add the following statements to the resource
file:

IlogViews*font: a-valid-font-set-name-for-your-locale

IlogViews*normalfont: a-valid-font-set-name-for-your-locale
IlogViews*italicfont: a-valid-font-set-name-for-your-locale

IlogViews*boldfont: a-valid-font-set-name-for-your-locale
IlogViews*largefont: a-valid-font-set-name-for-your-locale

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Required Fonts

IlogViews*monospacefont: a-valid-font-set-name-for-your-locale
IlogViews*ButtonFont: a-valid-font-set-name-for-your-locale
IlogViews*MenuFont: a-valid-font-set-name-for-your-locale

Thevaue of a-valid-font-set-name-for-your-locale dependson your language
and environment. Fonts are not the same on every system.

If you are running under the Common Desktop Environment (CDE) and have started your
desktop in your language, you can use the “-dt” aliases for the fonts, as shown in the
following example:

IlogViews.font: -dt-interface user-medium-r-normal-m*-—*—*—*_*_%_*_*x_*
IlogViews.normalfont: -dt-interface user-medium-r-normal-g*-*-*—*_*_*_*_*_x*
IlogViews.boldfont: -dt-interface user-bold-r-normal-m*—*-*—*_*_*_*_*_%
IlogViews.italicfont: -dt-interface user-medium-i-normal-m*-*—*—*_*_*_*_%_x*
Kk _k _k _*

IlogViews.largefont: -dt-interface user-medium-r-normal-x1*—*-*_*_*_*_ Kok %
IlogViews.monospacefont: -dt-interface user-medium-r-normal-m*—*—*—*_*_*_*_*_%
IlogViews.MenuFont: -dt-interface user-bold-r-normal-m*-*-*_*_*_*_*_%_x
IlogViews.ButtonFont: -dt-interface user-bold-r-normal-m*—*—*-—*_*_*_*_s*_x

If you do not usethe “-dt-" aliases for the fonts, you need to add your own font statementsin
the .Xdefaults file.

The following are examples of the font statements used on an HP-UX system Japanese:

IlogViews.ButtonFont: -hp-gothic-bold-r-normal--14-101-100-100-c-*-*-%*,
-misc-fixed-bold-r-normal--14-130-75-75-c-70-1s08859-1
IlogViews.MenuFont: -hp-gothic-bold-r-normal--14-101-100-100-c-*-*-%*,
-misc-fixed-bold-r-normal--14-130-75-75-c-70-1s08859-1
IlogViews.boldfont: -hp-gothic-bold-r-normal--14-101-100-100-c-*-*-*,
-misc-fixed-bold-r-normal--14-130-75-75-c-70-1s08859-1
IlogViews.font: -misc-fixed-medium-r-normal--14-*-75-75-c-*-*-%*,
-misc-fixed-medium-r-normal--15-140-75-75-c-90-1s08859-1
IlogViews.italicfont: -misc-fixed-medium-r-normal--14-*-75-75-c-*-*-*,
-adobe-helvetica-bold-o-normal--14-140-75-75-p-82-1s08859-1
IlogViews.largefont: -hp-fixed-medium-r-normal--24-230-75-75-c-*-*-*,
-sony-fixed-medium-r-normal--24-170-100-100-c-120-1s08859-1
IlogViews.monospacefont: -misc-fixed-medium-r-normal--14-*-75-75-c-*-*-%,
-misc-fixed-medium-r-normal--15-140-75-75-c-90-1s08859-1
IlogViews.normalfont: -misc-fixed-medium-r-normal--14-*-75-75-c-*-*-%*,
-misc-fixed-medium-r-normal--15-140-75-75-c-90-1s08859-1

The following are examples of font statements used on a Solaris system for Japanese:

IlogViews.ButtonFont: -sun-gothic-bold-r-normal--14-120-75-75-c-*-*-*,
-*-helvetica-bold-r-normal--14-*-*-*-*_-*-1508859-1
IlogViews.MenuFont: -sun-gothic-bold-r-normal--14-120-75-75-c-*-*-*,
-*-helvetica-bold-r-normal--14-*-*-*-*_-*-1508859-1
IlogViews.boldfont: -sun-gothic-bold-r-normal--14-120-75-75-c-*-*-*,
-*-helvetica-bold-r-normal--14-*-*-*-*_-*-1508859-1
IlogViews.font: -sun-gothic-medium-r-normal--14-*-75-75-c-*-*-%*,
-*-helvetica-medium-r-normal--14-*-*-*-*_*_-jg508859-1
IlogViews.italicfont: -sun-gothic-medium-r-normal--14-*-75-75-c-*-*-*,
-*-helvetica-medium-o-normal--14-*-*-*-*_*_-jg508859-1
IlogViews.largefont: -sun-gothic-medium-r-normal--22-200-75-75-c-*-*-%*,
-*-helvetica-medium-r-normal--24-*-*-*-*_*_-jg508859-1
IlogViews.monospacefont: -sun-gothic-medium-r-normal--14-*-75-75-c-*-*-%,

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 213

-*-helvetica-medium-r-normal--14-*-*-*-*_*_-jg508859-1
IlogViews.normalfont: -sun-gothic-medium-r-normal--14-*-75-75-c-*-*-*,
-*-helvetica-medium-r-normal--14-*-*-*-*_*_-jg508859-1

On Microsoft Windows Systems

In many cases, the default font settings will be adequate. If you need to change the fonts
used by your applications, edit the views. ini file (for all applications) to contain some or
all of the following statements:

[TlogViews]
font=a-valid-font-for-your-language

normal font=a-valid-font-for-your-language
italicfont=a-valid-font-for-your-language
boldfont=a-valid-font-for-your-language
largefont=a-valid-font-for-your-language
monospacefont: a-valid-font-for-your-locale
buttonFont=a-valid-font-name-for-your-locale
menuFont=a-valid-font-name-for-your-locale

Thevauea-valid-font-for-your-language depends on the language and
environment you are using. You can use Microsoft Word or any text editor to find a suitable
font name that will display text in your language. The entry inthe . ini file should have the
following form:

$--<style>

For example, $helvetica-12-B for the font Helvetica Bold 12 points. If the font should
appear plain, leave out the style parameter and type $helvetica-12- to display textin
Helvetica 12.

The following example shows the fonts for Japanese on a Windows system:

font =g SERER-12-

norma | font =%k S BARR-12-
buttonfont=%M S P 2w 2-12-
boldfort =% S 2w 2-12-B
italicfort=gmM s Jiw 27-12-1
largefont =g SBAEA-16-
monospacef ont =% SBAER-12-
menuUFort =5 S P s w 47 -12-
too|BarFont =% SBAER-12-

Localized Message Database Files in IBM ILOG Views

214

IBM

IBM® ILOG® Views uses message database files (. dbm files) for the message text, menu
item text, and other text that appears in the user interface. These files are described in detail
in the following topics:

¢ The llvMessageDatabase Class describes the class mechanism for localization.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Localized Message Database Files in IBM ILOG Views

& For localization, the message database files must be translated into the local language as
described in Language of the Message Database Files.

& Thefilesmust aso be located in the proper directory so that IBM ILOG Views can find
the files when it needs to load the message database. For details see Location of the
Message Database Files.

& Determining Parameters of the Message Database Files provides a short program to find
the locale, language and location of the message database files.

& Loading the Message Database discusses automatic loading of the default language and
gives various methods of overriding the default language to load another language.

& The.dom File Format describes the format of the message database files and how to
handle old (pre-3.0) formatted files.

& You can change the language on the fly with setCurrentLanguage asdescribed in
How to Dynamically Change Your Display Language.

The llvMessageDatabase Class

IBM ILOG Views provides a simple mechanism to help you manipulate multilingual
applications. This mechanism is called the messages mechanism and is based on the
IlvMessageDatabase class.

It uses a database that stores different trandlations of the same message. Depending on the
current language, the appropriate message is accessed. Each instance of the T1vDisplay
class creates its own message database. It reads the database description from the file name
provided in the environment variable TL.VDB, Of views .dbm if thisvariableis not set. This
fileis searched for in the display path. You can access this database by calling the member
function I1vbisplay: :getDatabase.

Each string that you plan to show in different languages can be stored in the database with its
different possible trandlations; that is, you associate a message identifier with different
message strings, depending on the language you target. The language is specified in a
symbol object (11symbol class). Following is some sample code;

IlvMessageDatabase database;

I1Symbol* en_US = IlGetSymbol ("en_US);

IlSymbol* fr_ FR = IlGetSymbol ("fr_FR");

database.putMessage ("&cancel", en_US, "Cancel");
database.putMessage ("&cancel", fr_FR, "Annuler");

The IBM ILOG Views environment variable TL.vLANG lets you override your current
language (for example, English, French, or Japanese). For more information see Localized
Message Database Filesin IBM ILOG Views.

Note: Although IBM ILOG Views does hot support multilingual applications, you can use
multiple languages in the same application if they use compatible encodings.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 215

216

I BM

Language of the Message Database Files

IBM® ILOG® Viewsisreleased with the message database filesin English and French. The
filesfor each supported language are found in a separate directory to facilitate the use of
multiple languages using different encoding methods. If you require alanguage other than
English or French, you must translate the . dom files into the desired language. Make sure
your filesarein the correct . dbm format. (See the section .dbm File Format for more
information.)

Location of the Message Database Files

L ocalized message databases are |ocated in a subdirectory under the 1ocale directory. This
subdirectory is named after the corresponding language and the encoding method used. The
subdirectory name has the following format:

<11_TT.encoding>

For example, on a UNIX system, the French message database files are found in the
subdirectory fr_Fr.I50-8859-1 under the locale directory. See the section

IBM ILOG Views Locale Names for more information on the IBM ILOG Viewslocae
naming conventions from which the subdirectory name is derived.

On UNIX Systems

French message database files can be found in the following directories:
<$ILVHOME>/bin/data/locale/fr_FR.IS0-8859-1/editpnl.dbm
<$ILVHOME>/bin/data/locale/fr FR.IS0-8859-1/ilv2data.dbm
<$ILVHOME>/bin/data/locale/fr FR.IS0-8859-1/ilvedit.dbm
<$ILVHOME>/data/ivprotos/locale/fr FR.IS0O-8859-1/protos.dbm
<$ILVHOME>/data/iljscript/locale/fr FR.IS0-8859-1/gide.dbm
<$ILVHOME>/data/iljscript/locale/fr _FR.IS0-8859-1/messages.js

<$ILVHOME>/data/ilviews/locale/fr_FR.IS0-8859-1/views.dbm

® 6 6 6 0 6 0 o

<$ILVHOME>/studio/data/ivprotos/locale/fr_FR.IS0O-8859-1 /
prstudio.dbm

.

<$ILVHOME>/studio/data/ivstudio/locale/fr_ FR.ISO-8859-1/
jsstudio.dbm

€ <S$SILVHOME>/studio/data/ivstudio/locale/fr FR.ISO-8859-1/
studio.dbm

€ <S$SILVHOME>/studio/data/ivstudio/locale/fr_ FR.ISO-8859-1/
vrstudio.dbm

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

I BM

Localized Message Database Files in IBM ILOG Views

On Microsoft Windows Systems

French message database files can be found in the following directories:

*
L 4

.

<$ILVHOME>/bin/data/locale/fr_FR.windows-1252/editpnl.dbm
<$ILVHOME>/bin/data/locale/fr FR.windows-1252/ilv2data.dbm
<$ILVHOME>/bin/data/locale/fr_FR.windows-1252/ilvedit.dbm
<$ILVHOME>/data/ivprotos/locale/fr_FR.windows-1252/protos.dbm
<$ILVHOME>/data/iljscript/locale/fr_FR.windows-1252/gide.dbm
<$ILVHOME>/data/iljscript/locale/fr_FR.windows-1252/messages.js
<$ILVHOME>/data/ilviews/locale/fr_FR.windows-1252/views.dbm

<$ILVHOME>/studio/data/ivprotos/locale/fr_FR.windows-1252 /
prstudio.dbm

<$ILVHOME>/studio/data/ivstudio/locale/fr_ FR.windows-1252/
jsstudio.dbm

<$ILVHOME>/studio/data/ivstudio/locale/fr_FR.windows-1252/
studio.dbm

<$ILVHOME>/studio/data/ivstudio/locale/fr_ FR.windows-1252/
vrstudio.dbm

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 217

218

IBM

You can run the following program to help you find the location of your message database
files.

/) = = e CHt+ =*-
// IlogViews userman source file
// File: doc/fondation/userman/src/internationalization/checkLocalizedPath.cpp

// Copyright (C) 1990-2008 by ILOG.
// All Rights Reserved.
/] e

#include <ilviews/ilv.h>
#include <ilog/pathname.h>
#include <stdlib.h>

int main(int argc, char* argvl[])
{

if (!IlvSetLocale()) {
exit(1l);

}

IlPathName pname(“"“) ;

pname.localize() ;

IlvPrint (“\nLooking under directories: .../%s\n\n”,
pname.getString () .getValue()) ;

return 0;

Note: TheC locale (that is, the IBM ILOG Views locale en_us), which is considered the
standard, is an exception to the above mentioned rule. IBM ILOG Views . dbm files are
located in the directory of the library that uses them. For example, views . dbm can be
found in the directory:

<$ILVHOME>/data/ilviews/views .dbm.. You do not need to create the en_Us.US-
ascrtt directory. IBM ILOG Views will automatically fall back to the regular data
directory.

For example, on an HP-UX system with your LANG set to fr_FR.iso88591 or on a Solaris
system with your LANG set to fr, you get the following result:

Looking under directories: .../locale/fr FR.IS0-8859-1/

On aWindows system set to Japanese, you get:

Looking under directories: .../locale\ja_JP.Shift_JIS\

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Localized Message Database Files in IBM ILOG Views

Determining Parameters of the Message Database Files

You can run the following program to determine the current IBM® ILOG® Views display
language and the path names where IBM ILOG Views looks for the message database files.

You need to set the verboseFindInPath environment variableto true for the path names
to be printed out, and you can play with the TL.vPATH environment variable to see the effect.
/) mmm e - - *— CH++ —*-
/7 IlogViews userman source file

// File: doc/fondation/userman/src/internationalization/checkLocalizedDbm.cpp

// Copyright (C) 1990-2008 by ILOG.
// All Rights Reserved.

#include <ilviews/ilv.h>
#include <ilviews/base/message.h>
#include <ilog/pathlist.h>
int main(int argc, char* argvl[])
{

if (!IlvSetLocale()) {

exit (1) ;
}
IlvDisplay* display = new IlvDisplay (“CheckLocalizedDbm”, 0, argc, argv);

IlvPrint (“Current Views display language: %s\n”,
display->getCurrentLanguage () ->name ()) ;

const char* path = display->getPath();

IlPathList plist(path? path : “./”");
IlvPrint (“Current path: %s\n”, plist.getString() .getValue());

display->getDatabase () ->read (“my-file.dbm”, display);

return 0;

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 219

For example, if you run this program on an HP-UX system where LANG=fr_FR.is088591
or on a Solaris system where LaNG=fr, you will get the following results:

IlvPathList::findInPath file ilviews/locale/fr_FR.IS0O-8859-1/views.dbm not in ./.
IlvPathList::findInPath found: <$ILVHOME>/data/ilviews/locale/fr FR.ISO-8859-1/views.dbm.

Current Views display language: fr_FR

Current path:

./

IlvPathList::findInPath file locale/fr_FR.ISO-8859-1/my-file.dbm not in ./.
IlvPathList::findInPath file locale/fr_FR.IS0-8859-1/my-file.dbm not in <$ILVHOME>/data/.
IlvPathList::findInPath file locale/fr_FR.ISO-8859-1/my-file.dbm not in <$ILVHOME>/data/icon/.
IlvPathList::findInPath file locale/fr_FR.IS0-8859-1/my-file.dbm not in <$ILVHOME>/data/images/

IlvDisplay::findInPath Couldn’t find ’locale/fr_FR.IS0O-8859-1/my-file.dbm’
IlvPathList::findInPath file my-file.dbm not in ./.
IlvPathList::findInPath file my-file.dbm not in <$ILVHOME>/data/.
IlvPathList::findInPath file my-file.dbm not in <$ILVHOME>/data/icon/.
IlvPathList::findInPath file my-file.dbm not in <$ILVHOME>/data/images/.
IlvDisplay::findInPath Couldn’t find 'my-file.dbm’

220 IBM

Loading the Message Database

IBM® ILOG® Views automatically loads the correct message database, which islocated in
the locale/<11_TT.encoding> directory.

For example, if you work in an 1SO 8859-1 French environment, the following call:
display->getDatabase()->read("/my-directory-path/my-file.dbm") ;
will automatically look for afile in the following directory on UNIX systems:
/my-directory-path/locale/fr_FR.IS0-8859-1/my-file.dbm

and in the following directory on Microsoft Windows systems:

/my-directory-path/locale/fr_ FR.windows-1252/my-file.dbm

Note: In versions of IBM ILOG Views before 3.0, users had to set the TL.vL.ANG
environment variable to the language they wanted to use.

Overriding the Default Behavior

If you want to override the default behavior and have IBM ILOG Views use another display
language, you can use the TL.VLANG environment variable. On a X PG4-compliant UNIX
system, you can also use the Lc_MESSAGES environment variable. IBM ILOG Views will
look for the message database filesin the following order:

On UNI X Systems

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

I BM

Localized Message Database Files in IBM ILOG Views

1. ILVLANG

2. LC_MESSAGES

3. LC_CTYPE category of your running locale
On Windows Systems

1. ILVLANG

2. LC_CTYPE category of your running locale

Note: If you want to change your IBM ILOG Viewsdisplay language by overriding it with
LC_MESSAGES Of ILVLANG environment variables, you need to be sure your program
runsin the same or a stronger encoding (that is, a superset of the encoding) than the one
you plan to use for your messages. Thisis because the . dom files are read based on the
IBM ILOG Miews locale encoding your program runsin. For example, if you run a
program in Japanese or French, you can always read English messages, the oppositeis
not true.

Overriding the Default Behavior Using the LANG Resource
On UNIX Systems

You can set the TL.vLANG environment variable to use alanguage other than the defaullt.
TLVLANG appliesto IBM ILOG Views applications only and is system-independent.

For example, if your current IBM ILOG Viewslocaleis French and you want to see Spanish
messages, you could use TLVLANG=es_ES onh any UNIX system. Your settings would then
be asfollows:

Current Views locale running: fr FR.ISO-8859-1

Current Views display language: es_ES
Looking under directories: .../locale/es_ES.IS0-8859-1/

In this case, only the messages in your IBM ILOG Views applications will be displayed in
Spanish. The system messages are not affected.

On Microsoft Windows Systems

You can set the 1ang variablein your views . ini fileto use alanguage other than the
default. For example, if your current IBM ILOG Viewslocaeis French and you want to see
Spanish messages, you could use 1ang=es_ES. Your settings would then be as follows:
Current Views locale running: fr_ FR.windows-1252

Current Views display language: es_ES
Looking under directories: .../locale/es_ES.windows-1252/

Overriding the Default Behavior using LC_MESSAGES (UNIX only)

You can set the LC_MESSAGES environment variable to use alanguage other than the
default. You should note that if you use the LC_MESSAGES environment variable this will
override all system messages as well.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 221

For example, if your current IBM ILOG Views locaeis French and you want to see Italian
messages, you could use LC_MESSAGES=it_IT.iso088591 onan HP-UX system or
LC_MESSAGES=it on a Solaris system. Your settings would then be as follows:

Current Views locale running: fr FR.IS0O-8859-1
Current Views display language: it_IT
Looking under directories: .../locale/it_IT.IS0-8859-1/

In this case, not only will your IBM ILOG Views messages appear in Italian, but al your
system messages will bein Italian aswell.

.dbm File Format

In the . abm format, each supported language is stored in a separate database in order to deal
with multiple languages using different encoding methods.

A . dbm file has the following format:

// IlvMessageDatabase ...

// Language: <11_TT>

// Encoding: <encoding>

“&message” “message translation...”

Thefirst lineis an information line containing information about T1vMessageDatabase,
with the IBM® ILOG® Views version and the creation date.

The language is represented using the 11_TT naming convention of IBM ILOG Views
where 11 isthe two-letter abbreviation for the language name and TT is the two-|etter
abbreviation for the territory name.

The encoding method must be one of the methods supported by IBM ILOG Views. See the
section Reference: Encoding Listings for alist of supported encoding methods.

The following example shows part of a message database file for French:

// IlvMessageDatabase

// Language: fr_ FR

// Encoding: ISO-8859-1

"&AlignmentLabelPicture" "Alignement texte / image"
"&Appearance" "Apparence"

"&April" "avril"

222 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Localized Message Database Files in IBM ILOG Views

If you are trandating your . dbm filesto your local language, make sure your filesarein this
. dbm format.

Note: It is recommended that you do the following for localized database message files
for American English. Do not create an en_us.us-aAscIT subdirectoryinthe 1ocale
directory for your files. Put your files directly in your data directory; for example,
views.dbm |located in <$ILVHOME>/data/ilviews/. Set the contents of thefiles as
shown in the following example, even if the encoding that you are running for American
Englishisnot US ASCII. You can do this because US-ASCII is the weakest encoding and
can be read by any other encoding that IBM ILOG Views supports.

// IlvMessageDatabase

// Language: en_US

// Encoding: US-ASCII

"&AlignmentLabelPicture" "Alignment text / picture"
"&Appearance" "Appearance"

"&April" "April"

.dbm File Format in Versions Before 3.0

InIBM ILOG Viewsversion 3.0, the . dom file format was enhanced to support different
languages that use different and incompatible encoding methods. In the. dbm file format of
versions before 3.0, a message database contains the translation of each message to each of
the supported languages. In other words, all supported language trandations are found in the
same database. Although filesin the old . dbm format can till be read using

IBM ILOG Views 3.0 and later, new files are generated in the new format.

If you have databasefilesinthe old . dbm format, it isagood ideato split your databases into
several files, one for each supported language. Not only will this make maintenance easier,
but it will also avoid encoding incompatibilities.

To split your database files with the old format, use the following program:
SILVHOME/bin/src/splitdbm.cpp

This program finds the various languages in your . dbm file and suggests a new language
name for each one of them (we recommend that you use the IBM ILOG Views naming

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 223

224

IBM

convention 11_TT), an encoding method (the sel ected encoding method must be compatible
with the current one), and a name for the file with the new format.

Note: You should run the sp1itdbm program using the strongest encoding. The
strongest encoding is the one that encompasses the others. For example, if you want to
split a file that contains English (US-ASCII) and Japanese (Shift_JIS), you should run
splitdbm using a Japanese locale. Shift_JIS contains US ASCII, but the oppositeis not
true. Therefore, Shift_JISis the strongest encoding and should be used for running the
program.

Note: It isrecommended that you do the following when you are splitting a file containing
American English messages. When the sp1itdbm program prompts you for information,
choose the US-ASCII encoding and store the localized file in your data directory, not
under a 1ocale subdirectory.

Example
This example shows how to split a database messagefile.

Thefollowing file called your data_dir/testall.dbm containsthe message text for
three languages, American English, French, and Italian:

// IlvMessageDatabase 3 Web Jun 3 11:50:35 1998
"&Hello" 3

"en_US" "Hello"

"fr_FR" "Bonjour"

"it_IT" "Buongidérno"

"&Goodbye" 3

"en_US" "Goodbye"

"fr_FR" "Au revoir"

"it_IT" "Ciao"

To split thisfile into three files, onefile for each language, you should run the sp1itdbm
program in the French or Italian locale. When you run the program, you will be prompted
for the information the program needs to compl eteits run. When the run finishes, you should
have three files, each file containing the message text for a single language. On a UNIX
system, the resulting files would be:

your_data_dir/test.dbm

locale/fr_FR.IS0O-8859-1/test.dbm
locale/it_IT.IS0-8859-1/test.dbm

The contents of each file would be as follows:

// IlvMessageDatabase
// Language: en_US

// Encoding: US-ASCII
"&Goodbye" "Goodbye"
"&Hello" "Hello"

// IlvMessageDatabase

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

I BM

Localized Message Database Files in IBM ILOG Views

// Language: fr_FR

// Encoding: ISO-8859-1
"&Goodbye" "Au revoir"
"§Hello" "Bonjour"

// IlvMessageDatabase
// Language: it_IT

// Encoding: ISO-8859-1
"&Goodbye" "Ciao"
"§Hello" "Buongidrno"

Encoding Compatibility of .dbm Files

Notethat an IBM ILOG Views application will only load . dbm files that were written using
an encoding that is compatible with the system environment. Encodings are compatible if
they share the same character set. If you load . dbm files that still use the old format and that
do not contain encoding information, these files are supposed to be in the encoding of the
current locale. Otherwise, information might be improperly or incompletely loaded.

How to Dynamically Change Your Display Language

You can dynamically change your display language. You simply need to call

IlvDisplay: : setCurrentLanguage Onthedisplay. IBM ILOG Viewswill reload
automatically al the data filesthat you currently have loaded and display the new language.
In order to do this, you have to provide the localized versions of these files and they must be
available on your system.

Note: If you plan to switch languages, you need to start your application in the strongest
encoding. For example, if you plan to switch between French and English, start your
application in French. If however, you want your application to show English messages
when started, override your start-up display language by using the TT.vL.ANG environment
variable or the 1ang resource on Windows.

Let's say you have created an application where all the messages are defined in a file named

my_messages .dbm.

If display isyour display, just load thisfile at the beginning of your application through a
call to:

display->getDatabase () ->read("my_messages.dbm", display);

If you have started your program in a French locale, IBM ILOG Viewswill load the file
located in locale/fr_FR. I1S0-8859-1/my_messages .dbm.

Now, to change your display language, just call T1vDisplay: : setCurrentLanguage
with the new language you want. For example, if you want your display to bein Italian, call:

display->setCurrentLanguage (I1GetSymbol ("it_IT")) ;
IBM ILOG Viewswill automatically load the file located in:

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 225

locale/it_IT.IS0-8859-1/my_messages.dbm
It will also load all the other datafilesthat are already open.

To go back to French, call 11vDisplay: : setCurrentLanguage again asfollows:

display->setCurrentLanguage (I1GetSymbol ("fr_FR")) ;

I Note: This can only be done if the encodings are compatible.

The sample that you can find in samples/foundation/i18n/changelang iSan
illustration of this feature.

Using IBM ILOG Views with Far Eastern Languages

226

IBM

You should read this section if you want your system to support Far Eastern languages, such
as Japanese, Korean, or Chinese. Far Eastern languages are multibyte character languages
that present certain distinctive characteristics that should be taken into account when using
IBM® ILOG® Views.

Although the API remains unchanged, you should keep in mind that a char* value can
contain multibyte charactersin a Far Eastern locale.

For example, you can pass a multibyte string to:

void IlvListLabel: :setText (const char* text);
and get a multibyte string as the return value of the following:
const char* IlvListLabel::getText () const;

Thisistruefor all the gadget classes (that is, I1vText, I1lvTextField and its subclasses,
IlvMessageLabel, I1vStringList, and so on) and the manager view interactors, such
aS IlvManagerMakeStringInteractor OF I1lvManagerMakeTextInteractor.

To help programmers control input in text areas, thembcheck method has been added to the
I1lvTextField and I1vText gadgets. The APIs are defined as follows:

For I1vText:

virtual IlBoolean mbCheck(const char* text);

For T1vTextField:

virtual const char* mbCheck (const char* text);

I Note: Thembcheck method calls the check method when running in a monobyte locale.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Data Input Requirements

IlvPasswordTextField supports multibyte strings, and the mask is applied by drawable
characters. This means that you can create or perform a setLabel On an
IlvPasswordTextField using multibyte strings.

Internaly, IBM ILOG Views manipulates wide-char* values, but there are no documented
public APIs. If you want to use wide-char* values, you must convert back and forth to
char* values before calling any public API. Note that you can use the T1vWcChar type,
which is defined aswchar_t inthemacros.h file, for your own internationalized API.

Data Input Requirements

IBM

¢ |IBM® ILOG® Views provides Input Method support, described in Input Method (IM)
on page 227.

¢ Controlling input contextsis discussed in Far Eastern Input Method Servers Tested with
IBM ILOG Miews on page 228.

4 You can disallow localized input as shown in the examplein How to Control the
Language Used for Data Input on page 228.

Input Method (IM)

Some languages, such as Far Eastern languages, use alot of characters. The concept of Input
Method (IM) has been developed to allow entering these characters using the keyboard. An
Input Method is a procedure, a macro, or sometimes a separate process that converts
keystrokes to characters that are encoded in the code set of the current locale.

On UNIX systems, European Input Methods are directly supported in the X library.
However, Far Eastern languages require a separate process to be run.

For these languages, you must have an Input Method (also called a Front-End processor)
running on your system, and set your environment accordingly. On UNIX systems, for
example, this could mean setting the xMODIFIERS environment variable. Please check your
local system documentation to see what needs to be done.

Input through an Input Method server is supported in the following classes:

& TIlvText, IlvTextField and itssubclasses (except for 11vDateField,
IlvNumberField, and I1lvPasswordTextField).

& Any classthat usesan T1vTextField to enter text isaso ableto use an Input Method
server. Thisistrue, for example, for an 11vMatrix or the
IlvManagerMakeStringInteractor.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 227

Far Eastern Input Method Servers Tested with IBM ILOG Views

On aUNIX system, you can control the way you use your input contexts. The default isto
share one input context from the top level window. This meansthat all the input text areas of
thistop level window share the input context.

If you want to use different input contexts for each of your input text areas, you can set the
ILVICSHARED environment variableto “no”.

On HP-UX, the following IM servers have been tested successfully with IBM ILOG Views:
& For Japanese: xjim, atok8

& For Chinese: xtim, xsim

¢ For Korean: xkim

On Solaris, the following IM servers have been tested successfully with IBM ILOG Views:
¢ For Japanese: htt

¢ For Chinese: htt

¢ For Korean: htt

On Windows IBM ILOG Views directly connects to the default IME server.

How to Control the Language Used for Data Input

Any input field object, a subclass of T1vText Or T1vTextField, will automatically
connect to an Input Method (aslong as setLocale has been called) so that input can be
donein the current locale.

If an application wants to disallow this behavior (that is, it does not want localized input, but
only ASCII input), it must call the setNeedsInputContext method on the
SimpleGraphic object with the parameter value I1False.

virtual void setNeedsInputContext (I1Boolean val)

Example

The code samplein samples/foundation/i18n/controlinput createstwo text field
gadgets. Thefirst text field connects to an Input Method so that input can be done in the
current locale. The second text field does not connect to an Input Method, meaning that you
may only be able to type English charactersin it.

Limitations of Internationalization Features

228

IBM

The following limitations apply to the current internationalization support features:

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Troubleshooting

Saving or reading astring in an .i1v fileis carried out in the encoding of the current
locale. Trying to read afile which is not encoded in the current locale will fail.

No input through an Input Method server is supported for the password text field, since
the user doesn’t have to see what he is typing.

No input through an Input Method server is currently supported for the date field and the
number field. On Windows platforms, the user must disconnect from the FEp in order to
be able to enter text in these gadgets.

IlvAnnoText has no internationalization support.

Depending on the fonts or the language you use, the IBM ILOG Views Studio Main
Window may be too small. But as with any IBM ILOG Views Studio panel, the Main
Window size can be customized by setting the width in the studio.pnl file

panel "MainPanel" {
VA

width 900;

}

Multibyte variables are not supported in this version. For information on the variables
module of IBM ILOG Views, see the Manager documentation.

You can define any single-byte character with IBM ILOG Views for mnemonics. We
recommend, however, you install mnemonics on single-byte characters that have a
corresponding keyboard key. For example, we do not recommend using accentsin
European languages and Hankaku characters in Japanese.

On UNIX systems, only Input Methods implemented using a Back-End architecture are
supported. For example, if you are using the ht t import server on Solaris, you should set
the xTMP_TYPE environment variable to xTMP_syNC_BE_TYPE2 before running your
application.

Troubleshooting

If your localized messages do not appear on your screen, follow these steps:

1.

2.

Check that you called T1vsetLocale at the beginning of your program.

Check that your system supports the locale and the fonts to display it. On most UNIX
systems, you can run the 1ocale -a command. See the section Locale Requirements.

Do not set the ILVLANG environment variable.

On UNIX platforms, set LANG to aloca e supported by your system and by the
X Window system. For example, to set the LANG variable to French, type:

LANG=fr on Solaris

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 229

LANG=fr_FR.is088591 on HP_UX

5. Check that the localized .dbm file in asubdirectory named . . . /locale/
<11_TT.encoding>/your_file.dbm. Seethe section Location of the Message
Database Files.

6. Check that the contents of your . dbm file has the following new format. See the section
.dom File Format.
// IlvMessageDatabase ...
// Language: <11_TT>

// Encoding: <encoding>
"gmessage" "message translation..."

7. If youread a . dbm file with the old format from the IBM ILOG Views Studio editor
(. dpm fileswith the old format are files created with versions of IBM ILOG Views
before 3.0), and your file appears truncated, this means the encodings are not compatible.
In this case, split your . dbm file. See the section .dbm File Format in \ersions Before 3.0.

Reference: Encoding Listings

230

IBM

The following encodings are supported by IBM ILOG Views:
US-ASCII

1SO-8859-1 (Latinl)
|SO-8859-2 (Latin2)
|SO-8859-3 (Latin3)
|SO-8859-4 (Latin4)
1SO-8859-5 (LatinCyrillic)
1SO-8859-6 (LatinArabic)
1SO-8859-7 (L atinGreek)

| SO-8859-8 (L atinHebrew)
| SO-8859-9 (L atinb5)
|SO-8859-10 (L atin6)
1SO-8859-11 (LatinThai)
|SO-8859-13 (L atin7)
|SO-8859-14 (L ating)
S0-8859-15 (L atin9)

L IR R R K R EE JER R K R R IR 2R R 2

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Reference: Encoding Listings

EUC-JP
Shift_JIS
EUC-KR
GB2312

Bigh
Big5-HKSCS
EUC-TW
hp-roman8
IBM850
windows-1250
windows-1251
windows-1252
windows-1253
windows-1254
windows-1255
windows-1256
windows-1257
windows-1258

windows-874

L R R K 2R 2BR JEE R R JER R IR IR R R RN RN JEER JEER R 4

windows-949
UTF-8

2

ISO-8859-1

Latinl covers most West European languages, such as;
& Afrikaans (af)
& Albanian (sq)
& Basque (eu)
¢ Catdan(ca)
¢ Danish (da)
& Dutch (nl)

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 231

232

IBM

® 6 6 6 6 6 O O O O 0 0

2

English (en)
Faroese (fo)
Finnish (fi)
French (fr)
Gadlician (gl)
German (de)
Icelandic (is)
Irish (ga)
Italian (it)
Norwegian (no)
Portuguese (pt)
Scottish (gd)
Spanish (es)
Swedish (sv)

ISO-8859-2
Latin2 covers the languages of Central and Eastern Europe:

*
*
*
*
*
*

4

Croatian (hr),
Czech (cs),
Hungarian (hu),
Polish (pl),
Romanian (ro),
Slovak (sk),

Slovenian (dl)

ISO-8859-3

Latin3 is popular with authors of Esperanto (eo), Maltese (mt), and it covered Turkish before
the introduction of Latin5.

ISO-8859-4

Latin4 introduced letters for Estonian, Baltic languages, Latvian and Lithuanian,
Greenlandic and Lappish. It is an incomplete precursor of LatinG.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Reference: Encoding Listings

ISO-8859-5

With these Cyrillic |etters you can type Bulgarian (bg), Byelorussian (be), Macedonian
(mk), Russian (ru), Serbian (sr) and Ukrainian (uk).

ISO-8859-6
Thisisthe Arabic (ar) alphabet.

I Note: Thisversion of IBM ILOG Views does not support bidirectional text.

ISO-8859-7
Thisis modern Greek (el).

ISO-8859-8
Thisis Hebrew (iw).

I Note: Thisversion of IBM ILOG Views does not support bidirectional text.

ISO-8859-9
Latin5 replaces the rarely needed Icelandic lettersin Latinl with the Turkish (tr) ones.

ISO-8859-10

Latin6 rearranged L atin4, added the last missing Inuit (Greenlandic Eskimo) and non-Skolt
Sami (Lappish) letters, and reintroduced the rarely Icelandic letters to cover the entire
Nordic area:

& Estonian (et)

¢ Lapp

¢ Latvian (Iv)

¢ Lithuanian (It)

Skolt Sami still needs afew more accents.

ISO-8859-11
To cover the Thai language. On UNIX systems, thisis similar to the tis620 encoding.

ISO-8859-13

To cover the Baltic Rim. Latin7 isgoing to cover the Baltic Rim and re-establish the L atvian
(Iv) support lost in Latin6 and may introduce the local quotation marks. It resembles
WinBdltic, that is, windows-1257.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 233

234

IBM

ISO-8859-14

To cover Cdltic. Latin8 adds the last Gaelic and Welsh (cy) lettersto Latinl to cover al
Cedltic languages.

ISO-8859-15

Similar to Latinl with euro and oe ligature. The new Latin9 nicknamed Latin0 aims to
update Latinl by replacing the less needed symbols ™, with forgotten French and Finnish
letters and placing the U+20AC Euro sign in the cell =A4 of the former international
currency sign =.

EUC-JP
Extended UNIX Code for Japanese.

Standardized by OSF, UNIX International, and UNIX Systems Laboratories Pacific. Uses
SO 2022 rules to select:

& code set 0: JS Roman (asingle 7-bit byte set)
¢ code set 1: JS X0208-1990 (a double 8-bit byte set) restricted to AO-FF in both bytes

& code set 2: Half Width Katakana (a single 7-bit byte set) requiring SS2 as the character
prefix

& code set 3: JS X0212-1990 (a double 7-bit byte set) restricted to AO-FF in both bytes
requiring SS3 as the character prefix

Shift_JIS

A Microsoft code that extends csHalfWidthK atakana to include kanji by adding a second
byte when the value of the first byteisin the ranges 81-9F or EO-EF.

EUC-KR (KS C 5861-1992)
Extended UNIX Code for Korean.

GB2312

Multibyte encoding standardized by the People's Republic of China.
Big5

Multibyte encoding standardized by Taiwan

Big5-HKSCS

Hong-Kong Supplementary Character Set

EUC-TW (cns11643)
Extended UNIX Code for Traditional Chinese

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Reference: Encoding Listings

hp-roman8
HP specific

IBM850
IBM specific

windows-1250
Windows 3.1 Eastern European languages.

windows-1251
Windows 3.1 Cyrillic

windows-1252
Windows 3.1 US (ANSI)

windows-1253
Windows 3.1 Greek

windows-1254
Windows 3.1 Turkish

windows-1255
Hebrew

I Note: Thisversion of IBM ILOG Views does not support bidirectional text.

windows-1256
Arabic

I Note: Thisversion of IBM ILOG Views does not support bidirectional text.

windows-1257
Baltic

windows-1258
Vietnamese

windows-874
Thai

windows-949
Korean (Wansung)

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 235

UTF-8
Unicode UTF-8

Reference: Supported Locales on Different Platforms

236

IBM

The following tableslist, by platform, local es that have been successfully tested as Views

locales.

The first table lists the locales currently supported on Microsoft Windows platforms. If
support of alocaleislimited to particular platforms, thisislisted in the last colum. If this

column isblank then al platforms (2000 to Vista) are supported.

Table 15.1 Microsoft Windows Locale Support

Windows Locale Name ggg: Views Locale Name Limited to Windows
Afrikaans_South Africa 1252 af ZA.windows-1252
Albanian_Albania 1250 sq_AL.windows-1250
Arabic_Algeria 1256 ar_DZ.windows-1256
Arabic_Bahrain 1256 ar_BH.windows-1256
Arabic_Egypt 1256 ar_EG.windows-1256
Arabic_lraq 1256 ar_lQ.windows-1256
Arabic_Jordan 1256 ar_JO.windows-1256
Arabic_Kuwait 1256 ar_KwW.windows-1256
Arabic_Lebanon 1256 ar_LB.windows-1256
Arabic_Libya 1256 ar_LY.windows-1256
Arabic_Morocco 1256 ar_MA.windows-1256
Arabic_Oman 1256 ar_OM.windows-1256
Arabic_Qatar 1256 ar_QA.windows-1256
Arabic_Saudi Arabia 1256 ar_SA.windows-1256
Arabic_Syria 1256 ar_SY.windows-1256
Arabic_Tunisia 1256 ar_TN.windows-1256

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL

IBM

Reference: Supported Locales on Different Platforms

Table 15.1 Microsoft Windows Locale Support (Continued)

Windows Locale Name ICD:;;: Views Locale Name Limited to Windows

Arabic_U.AE. 1256 ar_AE.windows-1256

Arabic_Yemen 1256 ar_YE.windows-1256

Azeri (Cyrillic)_Azerbaijan | 1251 az_AZ.windows-1251

Azeri (Latin)_Azerbaijan 1254 az_AZ.windows-1254

Basque_Spain 1252 eu_ES.windows-1252

Belarusian_Belarus 1251 be_BY.windows-1251

Bulgarian_Bulgaria 1251 bg_BG.windows-1251

Catalan_Spain 1252 ca_ES.windows-1252

Chinese_Hong Kong 950 zh_HK.Big5 2000

Chinese_Hong Kong S.AR | 950 zh_HK.Big5-HKSCS XP (see Support of
HKSCS below)

Chinese_Macau 950 zh_MO.Big5 2000

Chinese_People’s Republic | 936 zh_CN.GB2312

of China

Chinese_Singapore 936 zh_SG.GB2312

Chinese_Taiwan 950 zh_TW.Big5

Croatian_Croatia 1250 hr_HR.windows-1250

Czech_Czech Republic 1250 cs_CZ.windows-1250

Danish_Denmark 1252 da_DK.windows-1252

Dutch_Belgium 1252 nl_BE.windows-1252

Dutch_Netherlands 1252 nl_NL.windows-1252

English_Australia 1252 en_AU.windows-1252

English_Belize 1252 en_BZ.windows-1252

English_Ireland 1252 en_IE.windows-1252

English_Jamaica 1252 en_JM.windows-1252

English_New Zealand 1252 en_NZ.windows-1252

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL

237

238

IBM

Table 15.1 Microsoft Windows Locale Support (Continued)

Windows Locale Name ICD:;;: Views Locale Name Limited to Windows
English_Republic of the 1252 en_PH.windows-1252
Philippines

English_South Africa 1252 en_ZA.windows-1252
English_Trinidad y Tobago | 1252 en_TT.windows-1252 2000
English_zZimbabwe 1252 en_ZW.windows-1252
English_United States 1252 en_US.windows-1252
English_United Kingdom 1252 en_GB.windows-1252
Estonian_Estonia 1257 et_EE.windows-1257
Faeroese_Faeroe Islands 1252 fo_FO.windows-1252 2000
Farsi_lran 1256 fa_IR.windows-1256
Finnish_Finland 1252 fi_Fl.windows-1252
French_Belgium 1252 fr_BE.windows-1252
French_Canada 1252 fr_CA.windows-1252
French_France 1252 fr_FR.windows-1252
French_Luxembourg 1252 fr_LU.windows-1252
French_Principality of 1252 fr_MC.windows-1252

Monaco

French_Switzerland 1252 fr_CH.windows-1252
German_Austria 1252 de_AT.windows-1252
German_Germany 1252 de_DE.windows-1252
German_Liechtenstein 1252 de_Ll.windows-1252
German_Luxembourg 1252 de_LU.windows-1252
German_Switzerland 1252 de_CH.windows-1252
Greek_Greece 1253 el_GR.windows-1253

Hebrew _lIsrael 1255 iw_IL.windows-1255
Hungarian_Hungary 1250 hu_HU.windows-1250

ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM

Reference: Supported Locales on Different Platforms

Table 15.1 Microsoft Windows Locale Support (Continued)

Windows Locale Name ICD:;;: Views Locale Name Limited to Windows
Icelandic_Iceland 1252 is_IS.windows-1252
Indonesian_Indonesia 1252 in_ID.windows-1252
Italian_Italy 1252 it_IT.windows-1252
Italian_Switzerland 1252 it CH.windows-1252
Kazakh_Kazakstan 1251 kk_KZ.windows-1251
Japanese_Japan 932 ja_JP.Shift_JIS

Korean_Korea 949 ko_KR.windows-949
Latvian_Latvia 1257 Iv_LV.windows-1257
Lithuanian_Lithuania 1257 bo_LT.windows-1257
Macedonian_Former 1251 mk_MK.windows-1251
Yugoslav Republic of

Macedonia

Malay Brunei Darussalam | 1252 ms_BN.windows-1252
Malay_Malaysia 1252 ms_MY.windows-1252
Norwegian 1252 no_NO.windows-1252
(Bokmal)_Norway

Norwegian 1252 no_NO.windows-1252
(Nynorsk)_Norway

Norwegian_Norway 1252 no_NO.windows-1252 2000
Polish_Poland 1250 pl_PL.windows-1250
Portuguese_Brazil 1252 pt_BR.windows-1252
Portuguese_Portugal 1252 pt_PT.windows-1252
Romanian_Romania 1250 ro_RO.windows-1250
Russian_Russia 1251 ru_RU.windows-1251

Serbian (Latin)_Serbia 1250 sh_YU.windows-1250 2000
Serbian (Cyrillic)_Serbia 1251 sr_YU.windows-1251 2000

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL

239

240

IBM

Table 15.1 Microsoft Windows Locale Support (Continued)

Windows Locale Name ICD:;;: Views Locale Name Limited to Windows
Slovak_Slovakia 1250 sk_SK.windows-1250
Slovenian_Slovenia 1250 sl_Sl.windows-1250
Spanish_Argentina 1252 es_AR.windows-1252
Spanish_Bolivia 1252 es_BO.windows-1252
Spanish_Chile 1252 es_CL.windows-1252
Spanish_Colombia 1252 es_CO.windows-1252
Spanish_Costa Rica 1252 es_CR.windows-1252
Spanish_Dominican 1252 es_DO.windows-1252

Republic

Spanish_Ecuador 1252 es_EC.windows-1252
Spanish_El Salvador 1252 es_SV.windows-1252
Spanish_Guatemala 1252 es_GT.windows-1252
Spanish_Mexico 1252 es_MX.windows-1252
Spanish_Honduras 1252 es_HN.windows-1252
Spanish_Nicaragua 1252 es_Nl.windows-1252
Spanish_Panama 1252 es_PA.windows-1252
Spanish_Paraguay 1252 es_PY.windows-1252
Spanish_Peru 1252 es_PE.windows-1252

Spanish - Modern 1252 es_ES.windows-1252 2000
Sort_Spain

Spanish_Puerto Rico 1252 es_PR.windows-1252

Spanish - Traditional 1252 es_ES.windows-1252 2000
Sort_Spain

Spanish_Spain 1252 es_ES.windows-1252
Spanish_Uruguay 1252 es_UY.windows-1252
Spanish_Venezuela 1252 es_VE.windows-1252

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Reference: Supported Locales on Different Platforms

Table 15.1 Microsoft Windows Locale Support (Continued)

Windows Locale Name gsg: Views Locale Name Limited to Windows
Swahili_Kenya 1252 sw_KE.windows-1252
Swedish_Finland 1252 sv_Fl.windows-1252
Swedish_Sweden 1252 sv_SE.windows-1252
Tatar_Tatarstan 1251 tt_TS.windows-1251 2000
Thai_Thailand 874 th_TH.windows-874
Turkish_Turkey 1254 tr_TR.windows-1254
Ukrainian_Ukraine 1251 uk_UA.windows-1251
Urdu_lslamic Republic 1256 ur_PK.windows-1256

of Pakistan

Uzbek_Republic 1251 uz_UZ.windows-1251 2000
of Uzbekistan

Support of HKSCS

You will need to install aspecific packagein order to support the Hong Kong Supplementary
Chararcter Set on Windows 2000 and Windows XP (seehttp: //www.microsoft.com/

hk/hkscs/).

Table 15.2 HP-UX 11 Locale Support

HP-UX Locale Name Encoding Views Locale Name
C roman8 en_US.US-ASCII
POSIX roman8 en_US.hp-roman8
C.is088591 is088591 en_US.ISO-8859-1
C.utf8 utf8 en_US.UTF-8
univ.utf8 utf8 en_US.UTF-8
ar_SA.is088596 15088596 ar_SA.ISO-8859-6
bg_BG.is088595 15088595 bg_BG.I1SO-8859-5
cs_CZ.is088592 15088592 cs_CZ.1SO-8859-2

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL

241

242

IBM

Table 15.2 HP-UX 11 Locale Support (Continued)

HP-UX Locale Name Encoding Views Locale Name
da_DK.is088591 15088591 da_DK.ISO-8859-1
da_DK.roman8 roman8 da_DK.hp-roman8
de_DE.is088591 is088591 de_DE.ISO-8859-1
de_DE.roman8 roman8 de_DE.hp-roman8
el_GR.is088597 is088597 el_GR.ISO-8859-7
en_GB.is088591 15088591 en_GB.ISO-8859-1
en_GB.roman8 roman8 en_GB.hp-roman8
en_US.is088591 15088591 en_US.1SO-8859-1
en_US.roman8 roman8 en_US.hp-roman8
es_ES.is088591 15088591 es_ES.ISO-8859-1
es_ES.roman8 roman8 es_ES.hp-roman8
fi_Fl.is088591 15088591 fi_F1.1SO-8859-1
fi_Fl.roman8 roman8 fi_Fl.hp-roman8
fr_CA.is088591 15088591 fr_CA.1SO-8859-1
fr_CA.roman8 roman8 fr_CA.hp-roman8
fr_FR.is088591 is088591 fr_FR.1SO-8859-1
fr_FR.roman8 roman8 fr_FR.hp-roman8
hr_HR.is088592 15088592 hr_HR.I1SO-8859-2
hu_HU.is088592 15088592 hu_HU.1SO-8859-2
is_IS.is088591 i5088591 is_IS.1ISO-8859-1
is_IS.roman8 roman8 is_IS.hp-roman8
it_IT.is088591 is088591 it_IT.1ISO-8859-1
it IT.roman8 roman8 it_IT.hp-roman8
iw_IL.is088598 5088598 iw_IL.ISO-8859-8
ja_JP.SJIS SIS ja_JP.Shift_JIS

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL

IBM

Reference: Supported Locales on Different Platforms

Table 15.2 HP-UX 11 Locale Support (Continued)

HP-UX Locale Name Encoding Views Locale Name
ja_JP.euclP euclP ja_JP.EUC-JP
ko_KR.eucKR euckR ko_KR.EUC-KR
nl_NL.iso88591 is088591 nl_NL.ISO-8859-1
nl_NL.roman8 roman8 nl_NL.hp-roman8
no_NO.is088591 is088591 no_NO.ISO-8859-1
no_NO.roman8 roman8 no_NO.hp-roman8
pl_PL.is088592 15088592 pl_PL.ISO-8859-2
pt_PT.is088591 15088591 pt_PT.ISO-8859-1
pt_PT.roman8 roman8 pt_PT.hp-roman8
ro_RO.is088592 15088592 ro_RO.ISO-8859-2
ru_RU.is088595 is088595 ru_RU.I1SO-8859-5
sk_SK.is088592 15088592 sk_SK.ISO-8859-2
sl_S1.is088592 5088592 sl_SI.1SO-8859-2
sv_SE.is088591 15088591 sv_SE.ISO-8859-1
sv_SE.roman8 roman8 sv_SE.hp-roman8
tr_TR.is088599 is088599 tr_TR.ISO-8859-9
zh_CN.hp15CN hp15CN zh CN.GB2312
zh_TW.big5 big5 zh_TW.Big5
zh_TW.eucTW eucTW zh_TW.EUC-TW

Table 15.3 Solaris Locale Support

Solaris Locale Name Encoding Views Locale Name
POSIX 646 en_US.US-ASCII
C 646 en_US.US-ASCII
iso_8859_1 1SO8859 en_US.US-ASCII

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL

243

244

IBM

Table 15.3 Solaris Locale Support (Continued)

Solaris Locale Name Encoding Views Locale Name
ar 1SO8859-6 ar_AA.1SO-8859-6
bg_BG 1SO8859-5 bg_BG.ISO-8859-5
cz 1SO8859-2 cs_CZ.1S0-8859-2
da 1SO8859-1 da_DK.ISO-8859-1
da.1S08859-15 1SO8859-15 da_DK.ISO-8859-15
da.1SO8859-15@euro 1SO8859-15 da_DK.ISO-8859-15
de 1SO8859-1 de_DE.I1SO-8859-1
de.1SO8859-15 1SO8859-15 de_DE.ISO-8859-15
de.1SO8859-15@euro 1SO8859-15 de_DE.I1SO-8859-15
de.UTF-8 UTF-8 de_DE.UTF-8
de.UTF-8@euro UTF-8 de_ DE.UTF-8

de AT 1SO8859-1 de_AT.ISO-8859-1
de_AT.ISO8859-15 1SO8859-15 de_AT.ISO-8859-15
de_AT.ISO8859-15@euro | 1S08859-15 de_AT.ISO-8859-15
de_CH 1SO8859-1 de_CH.ISO-8859-1
el 1SO8859-7 el_GR.ISO-8859-7

el.sun_eu_greek

sun_eu_greek

en_AU 1SO-8859-1 en_AU.ISO-8859-1
en_CA 1SO8859-1 en_CA.1SO-8859-1
en_GB 1SO8859-1 en_GB.I1SO-8859-1
en_GB.1SO8859-15 1SO8859-15 en_GB.I1SO-8859-15
en_GB.1SO8859-15@euro | 1ISO8859-15 en_GB.1SO-8859-15
en_IE 1SO8859-1 en_|E.ISO-8859-1
en_|E.ISO8859-15 1SO8859-15 en_|E.ISO-8859-15
en_|E.ISO8859-15@euro | 1SO8859-15 en_|E.ISO-8859-15

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL

Reference: Supported Locales on Different Platforms

Table 15.3 Solaris Locale Support (Continued)

Solaris Locale Name Encoding Views Locale Name
en_NZz 1SO8859-1 en_NZ.1SO-8859-1
en_US 1SO-8859-1 en_US.1SO-8859-1
en_US.UTF-8 UTF-8 en_US.UTF-8

es 1SO-8859-1 es_ES.1SO-8859-1
es.1S08859-15 1SO8859-15 es_ES.1SO-8859-15
es.1S08859-15@euro 1SO8859-15 es_ES.1SO-8859-15
es.UTF-8 UTF-8 es_ES.UTF-8
es.UTF-8@euro UTF-8 es_ES.UTF-8
es_AR 1SO8859-1 es_AR.1SO-8859-1
es_BO 1SO8859-1 es_BO.1SO-8859-1
es_CL 1SO8859-1 es_CL.1SO-8859-1
es_CO 1SO8859-1 es_CO0.ISO-8859-1
es_CR 1SO8859-1 es_CR.ISO-8859-1
es_EC 1SO8859-1 es_EC.1SO-8859-1
es_GT 1SO8859-1 es_GT.ISO-8859-1
es_MX 1SO8859-1 es_MX.1SO-8859-1
es_NI 1SO8859-1 es_NI.1SO-8859-1
es_PA 1SO8859-1 es_PA.1SO-8859-1
es_PE 1SO8859-1 es_PE.ISO-8859-1
es_PY 1SO8859-1 es_PY.ISO-8859-1
es_SV 1SO8859-1 es_SV.I1SO-8859-1
es_UY 1SO8859-1 es_UY.I1SO-8859-1
es_VE 1SO8859-1 es_VE.ISO-8859-1
et 1SO8859-1 et_EE.ISO-8859-1
fi 1SO8859-1 fi_F1.1SO-8859-1

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 245

246

IBM

Table 15.3 Solaris Locale Support (Continued)

Solaris Locale Name Encoding Views Locale Name
fi.1SO8859-15 1SO8859-15 fi_F1.1SO-8859-15
fi.1SO8859-15@euro 1SO8859-15 fi_F1.1SO-8859-15
fr 1SO8859-1 fr_FR.1ISO-8859-1
fr.1ISO8859-15 1SO8859-15 fr_FR.1ISO-8859-15
fr.1ISO8859-15@euro 1SO8859-15 fr_FR.1ISO-8859-15
frUTF-8 UTF-8 fr FRUTF-8
frUTF-8@euro UTF-8 fr_ FR.UTF-8

fr_BE 1SO8859-1 fr_BE.ISO-8859-1
fr_BE.ISO8859-15 1ISO8859-15 fr_BE.ISO-8859-15
fr_BE.ISO8859-15@euro 1SO8859-15 fr_BE.ISO-8859-15
fr_CA 1SO8859-1 fr_CA.ISO-8859-1
fr_CH 1SO8859-1 fr_CH.ISO-8859-1
hr_HR 1SO8859-2 hr_HR.1SO-8859-2
he 1SO8859-8 iw_IL.1ISO-8859-8
hu 1SO8859-2 hu_HU.1SO-8859-2
it 1SO8859-1 it_IT.1ISO-8859-1
it.1ISO8859-15 1SO8859-15 it_IT.1ISO-8859-15
it.1SO8859-15@euro 1SO8859-15 it_IT.ISO-8859-15
it UTF-8 UTF-8 it ITUTF-8

it UTF-8@euro UTF-8 it ITUTF-8

Iv 1SO8859-13 Iv_LV.ISO-8859-13
It 1SO8859-13 It_LT.1SO-8859-13
mk_MK 1SO8859-5 mk_MK.1SO-8859-5
nl 1SO8859-1 nl_NL.ISO-8859-1
nl.1ISO8859-15 1SO8859-15 nl_NL.ISO-8859-15

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL

Reference: Supported Locales on Different Platforms

Table 15.3 Solaris Locale Support (Continued)

Solaris Locale Name Encoding Views Locale Name
nl.1ISO8859-15@euro 1SO8859-15 nl_NL.ISO-8859-15
nl_BE 1SO8859-1 nl_BE.ISO-8859-1
nl_BE.ISO8859-15 1SO8859-15 nl_BE.ISO-8859-15
nl_BE.ISO8859-15@euro | 1SO8859-15 nl_BE.ISO-8859-15
no 1SO8859-1 no_NO.ISO-8859-1
no_NY 1SO8859-1 no_NY.1SO-8859-1
nr 1SO8859-2 nr_NA.1SO-8859-2
pl 1SO8859-2 pl_PL.ISO-8859-2
pt 1SO8859-1 pt_PT.ISO-8859-1
pt.1ISO8859-15 1SO8859-15 pt_PT.ISO-8859-15
pt.1ISO8859-15@euro 1SO8859-15 pt_PT.ISO-8859-15
pt_BR 1SO8859-1 pt_BR.ISO-8859-1
ro_RO 1SO8859-2 ro_RO.I1SO-8859-2
ru 1SO8859-5 ru_RU.I1SO-8859-5
sk_SK 1SO8859-2 sk_SK.ISO-8859-2
sl_SlI 1SO8859-2 sl_SI.1SO-8859-2
sq_AL 1SO8859-2 sg_AL.I1SO-8859-2
sr_SP 1SO8859-5 sr_SP.ISO-8859-5
sv 1SO-8859-1 sv_SE.ISO-8859-1
sv.1S08859-15 1SO8859-15 sv_SE.ISO-8859-15
sv.ISO8859-15@euro 1SO8859-15 sv_SE.ISO-8859-15
sV.UTF-8 UTF-8 sv_SE.UTF-8
sv.UTF-8@euro UTF-8 sv_SE.UTF-8
th_TH TIS620.2533 th_TH.ISO-8859-11

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 247

Table 15.3 Solaris Locale Support (Continued)

Solaris Locale Name Encoding Views Locale Name
th TIS620.2533 th_TH.ISO-8859-11
tr 1SO8859-9 tr_TR.ISO-8859-9

Table 15.4 AIX Locale Support

248

IBM

Aix Locale Name Encoding Views Locale Name
C 1SO8859-1 en_US.US-ASCII
POSIX 1SO8859-1 en_US.1SO-8859-1
ar_AA 1SO8859-6 ar_AA.1SO-8859-6
ar_AA.1S08859-6 1SO8859-6 ar_AA.1SO-8859-6
Ar_AA

Ar_AA.IBM-1046

bg_BG 1SO8859-5 bg_BG.1SO-8859-5
bg_BG.1SO8859-5 1SO8859-5 bg_BG.I1SO-8859-5
ca_ES 1SO8859-1 ca_ES.ISO-8859-1
ca_ES.1SO8859-1 1SO8859-1 ca_ES.ISO-8859-1
Ca_ES IBM-850 ca_ES.IBM850
Ca_ES.IBM-850 IBM-850 ca_ES.IBM850
cs_CZ 1SO8859-2 cs_CZ.1S0O-8859-2
cs_CZ.1508859-2 1SO8859-2 cs_CZ.1S0O-8859-2
da_DK 1SO8859-1 da_DK.ISO-8859-1
da_DK.ISO8859-1 1SO8859-1 da_DK.ISO-8859-1
Da DK IBM-850 da_DK.IBM850
Da_DK.IBM-850 IBM-850 da_DK.IBM850
de_CH 1SO8859-1 de_CH.1SO-8859-1
de_CH.ISO8859-1 1SO8859-1 de_CH.1SO-8859-1

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL

IBM

Reference: Supported Locales on Different Platforms

Table 15.4 AIX Locale Support (Continued)

Aix Locale Name Encoding Views Locale Name
De CH IBM-850 de_CH.IBM850
De_CH.IBM-850 IBM-850 de_CH.IBM850
de_DE 1SO8859-1 de_DE.ISO-8859-1
de_DE.I1SO8859-1 1SO8859-1 de_DE.ISO-8859-1
De DE IBM-850 de_DE.IBM850
De_DE.IBM-850 IBM-850 de_DE.IBM850
el_GR 1SO8859-7 el_GR.ISO-8859-7
el_GR.I1SO8859-7 1SO8859-7 el_GR.ISO-8859-7
en_GB 1SO8859-1 en_GB.I1SO-8859-1
en_GB.1SO8859-1 1SO8859-1 en_GB.I1SO-8859-1
En_GB IBM-850 en_GB.IBM850
En_GB.IBM-850 IBM-850 en_GB.IBM850
en_US 1SO8859-1 en_US.1SO-8859-1
en_US.1S08859-1 1SO8859-1 en_US.1SO-8859-1
En_US IBM-850 en_US.IBM850
En_US.IBM-850 IBM-850 en_US.IBM850
es_ES 1SO8859-1 es_ES.1SO-8859-1
es_ES.1S08859-1 1SO8859-1 es_ES.1SO-8859-1
Es_ES IBM-850 es_ES.IBM850
Es_ES.IBM-850 IBM-850 es_ES.IBM850

Et EE

Et EE.IBM-922

ET EE UTF-8 et EE.UTF-8
ET_EE.UTF-8 UTF-8 et EE.UTF-8

fi_FI 1SO8859-1 fi_F1.1SO-8859-1
ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

249

Table 15.4 AIX Locale Support (Continued)

Aix Locale Name Encoding Views Locale Name
fi_F1.1508859-1 1SO8859-1 fi_F1.1SO-8859-1
Fi_FI IBM-850 fi_FI1.1IBM850
Fi_FI1.IBM-850 IBM-850 fi_F1.IBM850
fr_BE 1SO8859-1 fr_BE.ISO-8859-1
fr_BE.ISO8859-1 1SO8859-1 fr_BE.ISO-8859-1
Fr_BE IBM-850 fr_BE.IBM850
Fr_BE.IBM-850 IBM-850 fr_BE.IBM850
fr_CA 1SO8859-1 fr_CA.1SO-8859-1
fr_CA.1S08859-1 1SO8859-1 fr_CA.1SO-8859-1
Fr CA IBM-850 fr_CA.IBM850
Fr_CA.IBM-850 IBM-850 fr_CA.IBM850
fr_CH S08859-1 fr_CH.ISO-8859-1
fr_CH.ISO8859-1 1SO8859-1 fr_CH.ISO-8859-1
Fr_ CH IBM-850 fr_CH.IBM850
Fr_CH.IBM-850 IBM-850 fr_CH.IBM850
fr_FR 1SO8859-1 fr_FR.ISO-8859-1
fr_FR.ISO8859-1 1SO8859-1 fr_FR.ISO-8859-1
Fr_FR IBM-850 fr_FR.IBM850
Fr_FR.IBM-850 IBM-850 fr_FR.IBM850
hr_HR 1SO8859-2 hr_HR.1SO-8859-2
hr_HR.1SO8859-2 1SO8859-2 hr_HR.1SO-8859-2
hu_HU 1SO8859-2 hu_HU.1SO-8859-2
hu_HU.1SO8859-2 1SO8859-2 hu_HU.1SO-8859-2
is_IS 1SO8859-1 is_IS.1SO-8859-1
is_IS.1SO8859-1 1SO8859-1 is_IS.1SO-8859-1

250 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Reference: Supported Locales on Different Platforms

Table 15.4 AIX Locale Support (Continued)

Aix Locale Name Encoding Views Locale Name
Is_IS IBM-850 is_IS.IBM850
Is_IS.IBM-850 IBM-850 is_IS.IBM850

it T 1SO8859-1 it_IT.1ISO-8859-1
it_IT.1ISO8859-1 1SO8859-1 it_IT.1ISO-8859-1
It 1T IBM-850 it_IT.IBM850
It_IT.IBM-850 IBM-850 it_IT.IBM850
iw_IL 1SO8859-8 iw_IL.1ISO-8859-8
iw_IL.1ISO8859-8 1SO8859-8 iw_IL.1ISO-8859-8
Iw_IL

Iw_IL.IBM-856

ja_JpP IBM-euclP |ja_JP.EUC-JP
ja_JP.IBM-eucJP IBM-euclP ja_JP.EUC-JP
Ja_JP IBM-932 ja_JP.Shift_JIS
Ja_JP.IBM-932 IBM-932 ja_JP.Shift_JIS
Jp_JP.pc932

Jp_P

ko_KR IBM-eucKR | ko_KR.EUC-KR
ko_KR.IBM-euckKR IBM-eucKR | ko_KR.EUC-KR
Lt LT

Lt LT.IBM-921

LT LT UTF-8 It LT.UTF-8
LT_LT.UTF-8 UTF-8 It LTUTF-8

Lv LV

Lv_LV.IBM-921

LV_LV UTF-8 Iv_LV.UTF-8

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 251

252

IBM

Table 15.4 AIX Locale Support (Continued)

Aix Locale Name Encoding Views Locale Name
LV_LV.UTF-8 UTF-8 Iv_LV.UTF-8
mk_MK 1SO8859-5 mk_MK.1SO-8859-5
mk_MK.1S08859-5 1SO8859-5 mk_MK.1SO-8859-5
nl_BE 1SO8859-1 nl_BE.ISO-8859-1
nl_BE.ISO8859-1 1SO8859-1 nl_BE.ISO-8859-1
NI_BE IBM-850 nl_BE.IBM850
NI_BE.IBM-850 IBM-850 nl_BE.IBM850
nl_NL 1SO8859-1 nl_NL.ISO-8859-1
nl_NL.ISO8859-1 1SO8859-1 nl_NL.ISO-8859-1
NI_NL IBM-850 nl_NL.IBM850
NI_NL.IBM-850 IBM-850 nl_NL.IBM850
no_NO 1SO8859-1 no_NO.ISO-8859-1
no_NO.ISO8859-1 1SO8859-1 no_NO.ISO-8859-1
No_NO IBM-850 no_NO.IBM850
No_NO.IBM-850 IBM-850 no_NO.IBM850
pl_PL 1SO8859-2 pl_PL.ISO-8859-2
pl_PL.ISO8859-2 1SO8859-2 pl_PL.ISO-8859-2
pt_BR 1SO8859-1 pt_BR.ISO-8859-1
pt_BR.ISO8859-1 1SO8859-1 pt_BR.ISO-8859-1
pt PT 1SO8859-1 pt_PT.ISO-8859-1
pt_PT.ISO8859-1 1SO8859-1 pt_PT.ISO-8859-1
Pt_PT IBM-850 pt_PT.IBM850
Pt_PT.IBM-850 IBM-850 pt_PT.IBM850
ro_RO 1SO8859-2 ro_RO.I1SO-8859-2
ro_RO.1SO8859-2 1SO8859-2 ro_RO.1SO-8859-2

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL

IBM

Reference: Supported Locales on Different Platforms

Table 15.4 AIX Locale Support (Continued)

Aix Locale Name Encoding Views Locale Name
ru_RU 1SO8859-5 ru_RU.1SO-8859-5
ru_RU.1SO8859-5 1SO8859-5 ru_RU.1SO-8859-5
sh_SP 1SO8859-2 sh_SP.ISO-8859-2
sh_SP.ISO8859-2 1SO8859-2 sh_SP.ISO-8859-2
sk_SK 1SO8859-2 sk_SK.ISO-8859-2
sk_SK.ISO8859-2 1SO8859-2 sk_SK.ISO-8859-2
sl_SI 1SO8859-2 sl_SI.1SO-8859-2
sl_SI.1S08859-2 1SO8859-2 sl_SI.1SO-8859-2
sq_AL 1SO8859-1 sg_AL.I1SO-8859-1
sg_AL.1SO8859-1 1SO8859-1 sg_AL.ISO-8859-1
sr_SP 1SO8859-5 sr_SP.ISO-8859-5
sr_SP.ISO8859-5 1SO8859-5 sr_SP.ISO-8859-5
sv_SE 1SO8859-1 sv_SE.ISO-8859-1
sv_SE.ISO8859-1 1SO8859-1 sv_SE.ISO-8859-1
Sv_SE IBM-850 sv_SE.IBMS850
Sv_SE.IBM-850 IBM-850 sv_SE.IBM850
tr_TR 1SO8859-9 tr_TR.ISO-8859-9
tr_TR.1SO8859-9 1SO8859-9 tr_TR.ISO-8859-9
zh_CN IBM-eucCN | zh_CN.GB2312
zh_CN.IBM-eucCN IBM-eucCN | zh_CN.GB2312
ZH_CN UTF-8 zh CN.UTF-8
ZH_CN.UTF-8 UTF-8 zh_CN.UTF-8

zh TW IBM-eucTW | zh_TW.EUC-TW
zh_TW.IBM-eucTW IBM-eucTW | zh_TW.EUC-TW

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL

253

254

IBM

Table 15.4 AIX Locale Support (Continued)

Aix Locale Name Encoding Views Locale Name
Zh TW big5 zh_TW.Big5
Zh_TW.big5 big5 zh_TW.Big5

Table 15.5 OSF Locale Support

Osf Locale Name Encoding Views Locale Name
C ISO8859-1 | en_US.US-ASCII
POSIX ISO8859-1 | en_US.ISO-8859-1
da_DK.ISO8859-1 ISO8859-1 | da_DK.ISO-8859-1
de_CH.ISO8859-1 ISO8859-1 | de_CH.ISO-8859-1
de_DE.ISO8859-1 ISO8859-1 | de_DE.ISO-8859-1
el_GR.I1SO8859-7 I1SO8859-7 | el_GR.ISO-8859-7
en_GB.1SO8859-1 ISO8859-1 | en_GB.ISO-8859-1
en_US.1S08859-1 ISO8859-1 | en_US.ISO-8859-1
en_US.cp850 cp850 en_US.IBM850
es_ES.1S08859-1 ISO8859-1 |es_ES.ISO-8859-1
fi_F1.1508859-1 I1SO8859-1 | fi_FI.I1SO-8859-1
fr_BE.1SO8859-1 1SO8859-1 | fr_BE.ISO-8859-1
fr_CA.1508859-1 1SO8859-1 | fr_CA.I1SO-8859-1
fr_CH.ISO8859-1 I1SO8859-1 | fr_CH.ISO-8859-1
fr_FR.ISO8859-1 1SO8859-1 | fr_FR.ISO-8859-1
is_IS.1S08859-1 ISO8859-1 | is_IS.1ISO-8859-1
it_IT.1SO8859-1 1SO8859-1 | it_IT.ISO-8859-1
nl_BE.1SO8859-1 1SO8859-1 | nl_BE.ISO-8859-1
nl_NL.ISO8859-1 ISO8859-1 | nl_NL.ISO-8859-1
ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Reference: Supported Locales on Different Platforms

Table 15.5 OSF Locale Support (Continued)

Osf Locale Name Encoding Views Locale Name
no_NO.ISO8859-1 ISO8859-1 | no_NO.ISO-8859-1
pt_PT.ISO8859-1 I1SO8859-1 | pt_PT.ISO-8859-1
sv_SE.I1SO8859-1 ISO8859-1 |sv_SE.ISO-8859-1
tr_TR.1SO8859-9 I1SO8859-9 | tr_TR.ISO-8859-9

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 255

256 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM

Packaging IBM ILOG Views Applications

This section explains how to use i 1v2data, atool provided with IBM® ILOG® Viewsto
safely package application data files together with your IBM ILOG Views application in the
same executable.

What is ilv2data?

The i1v2data executablefile allows you to put all the application resources, such as . i1v
and .dbm filesand bitmaps (. gif, .bmp, .pbm, and soon), inafilegenerated by i1v2data
that you will then add to an application project (on PCs) or compile and link with your

IBM ILOG Views application (on UNIX).

Thisfileis adata resource file on Microsoft Windows (. rc) that can be compiled with the
Microsoft Resource Compler (Rc. ExXE). On UNIX platforms, thisfileisaregular C++
source file that contains only the definition of static data. This file can be compiled with
your regular C++ compiler. We call thisfile aresourcefilein the rest of this section.

A resource file stores a set of data blocks that can be retrieved at run time using the name
with which they were associated when building the resource file.

In This Section

¢ Launching ilv2data

¢ Theilv2data Panel

4 Launching ilv2data with a Batch Command

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 257

A. Packaging IBM ILOG Views Applications

& Adding a Resource Fileto a UNIX Library

& Adding a Resource File to a Windows DLL

Launching ilv2data

Tolaunch i1v2data:

1.
2.

Go to the directory <ILVHOME> /bin/<system>.

Compile the executable, if it isnot already there (note that i 1v2data uses the Gadgets
package).

Launch the executable by typing i1v2data.

The following panel appears:

M |Iv2Data panel g@@

File

List of data blocks

Platform
() Unix
(+) Windows

The ilv2data Panel

The i1v2data panel is composed of the following elements:

& A Filemenu that is used to handle resource files. A resource file is the file where you

will put all the resources you want to package together with your application. Once
completed and validated, thisfile will be saved asa . rc fileor asa . cpp file depending
on the platform you have selected (Microsoft Windows or UNIX). The File menu hasthe
following menu items:

o New—~Creates a new resourcefile.

258 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Launching ilv2data with a Batch Command

e Open—Opens aresourcefile.

e Save—Savesthe datain the resource file and generatesa . rc or a . cpp file
(depending on the selected platform).

& Three buttons:
¢ New—Adds adatablock to thelist.
o Delete—Removes adata block from thelist.

o Edit—Modifies the values associated with the selected item in the list.
When you click New or Edit, the following dialog box is displayed:

(X
Data block file A
Data block name
Aoy

The Data block file entry field is where you type the physical name of the resource file you
want to add to thelist. It you want to use afile browser to locate thefile, click theicon to the
right of the entry field to display afile chooser.

The Datablock name field is set by default to the logical name that the program usesto read
the data block. Initially, this name is the same as the one you entered in the Data block file
entry field.

The Apply button validates the data, and the Cancel button cancels the procedure.

Note: If you add a Views (or extension Views like Data Access) datafilelike a . dom file,
you must not forget the path of the file from ¢ TL.vHOME /data. For example, il you want to
add the dataccess . dbm file, the Data black name must be dataccess/dataccess.dbm
because the full filename of dataccess.dbm IS $ILVHOME /data/dataccess/
dataccess.dbm.

Launching ilv2data with a Batch Command

IBM

You can launch i1v2data viaacommand line in which you can specify a number of
optionsto perform various basic operations.

The available options, along with their description, are given below:

ilv2data [-a keyl[=valll [-c] [-d key] [-h] [-1 dir] [-1]

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 259

A. Packaging IBM ILOG Views Applications

[-m key[=valll [-u|w] [-v 0|1] file

4

-a key[=val] : Add option

Adds the data block name key to thelist of resources. val specifiesthefile to be
inserted. The default valueis key.

-c : Check option

Checksthe consistency of file.

-d key : Delete option

Deletes the data block key from the list of resources.
-h : Help option

Displays the usage of the command.

-i dir:Include option

Adds the directory dir to thelist of paths where data block files are searched for.
-1: List option

Listsall data blocks availablein file.

-m key[=val] : Modify option

Refreshes the data block key with thefileval.

-u|w : Regenerate option

Regenerates thefile file in UNIX mode (-u) or in Windows mode (-w). To find afile
in the display path, use the name of the data block. Usethisfileif it exists, otherwise use

the old definition of the data block contained in file.
-v 0|1 : Verbose option

Prints comments during execution if the option is set to 1. Errors and warnings are
displayed even when the option is set to 0.

This command returns 0 if execution succeeds and 1 if it fails.

Adding a Resource File to a UNIX Library

260

I BM

To add aresourcefileto a UNIX library, add the following two linesto amodule in the
library that you know will be called by your final application (such as, the library
initialization module):

extern I1UInt IL_MODINIT (<name>Resources) () ;
static I1UInt forceRes = IL_MODINIT (<name>Resources) () ;

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Adding a Resource File to a Windows DLL

ilv2data generates afile name with the following format: <name> . cpp.

Adding a Resource File to a Windows DLL

You must add the following lines to any dil module:

#include <windows.h>
#include <ilviews/macros.h>

extern "C" {
void _declspec(dllimport) IlvAddHandleToResPath(long, int);
void _declspec(dllimport) IlvRemoveHandleFromResPath (long) ;
}

BOOL WINAPI
Dl11EntryPoint (HINSTANCE instance, DWORD reason, LPVOID)
{
switch (reason) {
case DLL_PROCESS_ATTACH:
IlvAddHandleToResPath ((long) instance, -1);
return 1;
case DLL_PROCESS_DETACH:
I1lvRemoveHandleFromResPath ((long) instance) ;
return 0;
}
return 0;
}
BOOL WINAPT
D11Main (HINSTANCE hinstance, DWORD reason, LPVOID reserved)
{
return D11EntryPoint (hinstance, reason, reserved);

}

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 261

A. Packaging IBM ILOG Views Applications

262 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Using IBM ILOG Views on Microsoft
Windows

This section isaimed at programmers who develop their applications on Microsoft Windows
or want to merge IBM® ILOG® Views and Windows code. It gives information on:

Creating a New IBM ILOG Views Application on Microsoft Windows
Incorporating Windows Code into an IBM ILOG Views Application
Integrating IBM ILOG Views Code into a Windows Application
Exiting an Application Running on Microsoft Windows
Windows-specific Devices

Using GDI+ Featureswith IBM ILOG Views

® 6 6 6 o o o

Using Multiple Display Monitors with IBM ILOG Views

Creating a New IBM ILOG Views Application on Microsoft Windows
To create anew IBM® ILOG® Views application that does not contain any Windows code,

all you have to do is create the main function and instantiate the T11vbisplay class by
providing the application name to its constructor:

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 263

B. Using IBM ILOG Views on Microsoft Windows

int
main(int argc, char* argv[])
{
IlvDisplay* display = new IlvDisplay("IlogViews", "", argc, argv);

}

Note that ‘main’ is not the regular entry point of an application running on Microsoft
Windows (it should be ‘“WinMain'). Because of the source code portability that

IBM ILOG Views provides, and for easier command line parameter parsing, we choose to
use the regular C++ ‘main’ entry point. Theimpact of this choice is discussed further in this
topic.

The application name is used for resource scanning (see Display System Resources). The
second argument is not used on Microsoft Windows, and therefore it is replaced by an empty
string. (It isused on X Window where it correspondsto an X display.) The last two
parameters are also not used on Microsoft Windows.

Then you can build your view structure and objects and call the global function
IlvMainLoop.

int

main(int argc, char* argv[])

{
IlvDisplay* display = new IlvDisplay("IlogViews", "", argc, argv);

IlvMainLoop () ;
return 0;

}

Here, since amain function is provided instead of the winMain entry point that Microsoft
Windows expects to start an application, you have to link your object files with the
TLVMAIN.OBJ file. Thisfile, supplied with IBM ILOG Views, defines a default winMain
function that does all the necessary initialization operations and calls themain function.

Note: To avoid conflicts with other definitions of themain function, which might be

provided by some compilers, a preprocessor macro redefines the main function as
IlvMain. Thismacroisdeclared in the header file<ilviews/ilv.h>.

For examples, ook at themake or project filesin the BIN directory.

Incorporating Windows Code into an IBM ILOG Views Application

264

IBM

You can easily incorporate into your IBM® ILOG® Views application Windows menus and
panels that were created with one of the numerous interface generators that Microsoft
Windows supports. Examples can be found in the subdirectory foundation\windows,

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Incorporating Windows Code into an IBM ILOG Views Application

whichislocated under <ILVHOME>\ samples. Refer also to the Views Foundation Tutorials
in the online documentation.

The following example displays a panel that was created by any interface builder, and linked
with your application with the resource compiler.

#define VIEW_ID 1010 // The ID of a sub-window in the panel
int PASCAL ILVEXPORTED
DialogProc (HWND dlg, UINT msg, WPARAM wParam, LPARAM lParam)
{
switch (msg) {
case WM_INITDIALOG:
// Create some IlogViews object in the dialog.
InitIlogViews ((IlvDisplay*)lParam, GetDlgItem(dlg, VIEW_ID)) ;
return 1;
case WM_COMMAND:

if (wParam == QUIT ID) {
EndDialog(dlg, 1); // Close the dialog
ReleaseIlogViews () ; // Delete IlogViews objects
PostQuitMessage (0) ; // Exit the event loop

return 1;
}
}

return 0;

int
main(int argc, char* argv(])
{
// Connect to the windowing system.
IlvDisplay* display = new IlvDisplay("IlogViews", "", argc, argv);
if (display->isBad()) {
IlvFatalError ("Couldn’t connect to display system");
delete display;
return 1;
}
// Create the dialog box.
if (DialogBoxParam(display->getInstance(), "MY_PANEL", O,
(FARPROC)DialogProc, (long)display) == -1)
IlvFatalError ("Couldn’t create dialog");
delete display;
return 1;

}

void

InitIlogViews (IlvDisplay* display, HWND wnd)

{
// For example: a container that uses the ‘wnd’ window.
container = new IlvContainer (display, wnd) ;

}void
ReleaseIlogViews ()
{

delete container;

}

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 265

B. Using IBM ILOG Views on Microsoft Windows

Inthe InitIlogVviews member function, anew I1vContainer object holding an existing
Windows panel, wnd, is created. In your user interface generator, you must specify that
IlogViewsWndClass isthe WindowsClass to be used for that window.

In thisexample, since amain function is provided instead of the winMain entry point that
Microsoft Windows expects to start an application, you have to link your object files with
the 1LvMAIN. OBJ file. Thisfile, supplied with IBM ILOG Views, defines a default
winMain function that does all the necessary initialization operations and callsthemain
function.

Integrating IBM ILOG Views Code into a Windows Application

To integrate IBM® ILOG® Views code into an existing application running on Microsoft
Windows, al you haveto do is use the second constructor of the T1vDisplay class, which
takes an instance of your application asits argument:

int PASCAL

WinMain (HANDLE appInstance, HANDLE, LPSTR, int)
{

IlvDisplay* display = new IlvDisplay ((IlAny)appInstance,
"ApplicationName") ;

}

Note, however, that deleting the 11vDisplay object does not post aQuIiT message. Thisis
donein order not to exit the event loop, as you might want to do some more work after the
IBM ILOG Views session is closed.

Here, because you provide awinMain entry point to your application, you do not have to
link your executable file using the ILVvMAIN. OBJ file.

Exiting an Application Running on Microsoft Windows

266

IBM

Releasing the memory and the system resources before exiting an application is agood
practice on al operating systems. On early versions of Microsoft Windows (3.1, 95), it was
critical; the system had a very limited number of GDI resources (colors, fonts, and so on)
and they were not automatically released. Later versions (NT 4, 2000, XP) have improved
this behaviour. However, it is still highly recommanded to provide a clean way to quit an
application, freeing the memory and rel easing system resources before exiting. A convenient
way to do so isto write afunction that frees the application data, deletesthe 11vDisplay
and call T1lvExit (0). Thisfunction may then be used as an accelerator, a button
callback, atop window destroy callback, or the like.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Windows-specific Devices

Note: All display instances must be deleted, as well as all managers. Remember that
containers and managers del ete the obj ects they store when they are destroyed. For
information on managers, see the IBM ILOG Views Managers documentation.

Note: IBM ILOG Views uses internal memory that is allocated dynamically. This memory
is freed only when the application exits.

Windows-specific Devices

In order to manage Windows devices (such as the printer or the metafile generation),
IBM® ILOG® Views provides two classes. T1viWindowsVirtualDevice and
IlvWindowsDevice.

Printing

You can usethe T1viwindowsDevice dump deviceto print your IBM ILOG Views output to
any printer controlled by Microsoft Windows.

Selecting a Printer
You can select a printer by calling the following global function:

const char*
IlvGetWindowsPrinter (Ilboolean dialog = IlTrue);

This function returns a string that describes which printer is about to be used. That string is
internally managed and must not be modified nor deleted.

When called with an 11True value for the dialog parameter, adialog box is displayed that
lets the user specify which printer to use and what size and orientation parameters should be
applied. If thisfunction is called with an T1False parameter, a string that describes the
current default printer is returned. If thereisan error, or if the user clicks the Cancel button,
NULL isreturned.

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 267

B. Using IBM ILOG Views on Microsoft Windows

Using GDI+ Features with IBM ILOG Views

268

IBM

What is GDI+

GDI+ isaway of drawing on Microsoft Windows platforms. It comes with interesting
features such as transparency and anti-aliasing. For more information about GDI+, take a
look at the Microsoft internet site.

Using Dynamic Link Libraries

When using the dynamic IBM ILOG Viewslibraries (d11_mda), using GDI+ isvery simple:
Microsoft providesaDLL (gdiplus.d11) that must be accessible by the IBM ILOG Views
application. ThisDLL is shipped in the same directory as the dynamic IBM ILOG Views
libraries (d11_mda). To download the latest gdiplus.d11l redistributable, goto http: //
www.microsoft.com/msdownload/platformsdk/sdkupdate/psdkredist.htm.

Using Static Libraries

When using the static IBM ILOG Views libraries (stat_mda, stat_mta), you need to
install the Microsoft Platform SDK, because you must link your application with the
gdiplus.1lib library. To get this SDK, gotohttp: //www.microsoft.com/
msdownload/platformsdk/sdkupdate.

Youmust alsoincludethe<ilviews/windows/ilvgdiplus.h> filewhen compiling, and
link your application with the i1vgdiplus. 1ib library. Thislibrary can be found in the
directory TLVHOME/1ib/ [platform] / [subplatform], where ILVHOME iSthe root
directory inwhich IBM ILOG Viewswasinstalled, and where subplatform iSstat_mda
or stat_mta,and whereplatform is one of the following:

e x86_.net2003_7.1
e x86_.net2005_8.0
e x86_.net2008_9.0

GDI+ and IBM ILOG Views

When GDI+ isinstalled, IBM ILOG Views provides its benefits by proposing a dedicated
APl tothe T1vralette and I1vPort classes. The following methods have been added to
handle transparency and anti-aliasing:

€ IlvPalette::setAlpha
€ IlvPalette::getAlpha

€ IlvPort::setAlpha

€ IlvPort::getAlpha

® IlvPalette::setAntialiasingMode

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Using GDI+ Features with IBM ILOG Views

® IlvPalette::getAntialiasingMode
€ IlvPort::setAntialiasingMode
€ IlvPort::getAntialiasingMode

See a so the sections Alpha Value on page 83 and Anti-Aliasing Mode on page 84.

Controlling GDI+ Features at Run Time

It is possible to specify through resources whether you want GDI+ to be used or not. The
following table summarizes the different resources, their possible values, and the effect of
each value:

Table B.1 GDI+ Resources

Resource (.ini file) Environment Variable Value

UseGdiPlus ILVUSEGDIPLUS needed: GDI+ is used only
when it is needed, for example,
when transparency or anti-
aliasing is required. This is the
default.

true: GDI+ is used each time it
is possible.

false: GDI+ is never used.

Antialiasing ILVANTIALIASING false: The anti-aliasing mode
of the display is set to
I1lvNoAntialiasingMode
This is the default.

true: The anti-aliasing mode of
the display is set to
IlvUseAntialiasingMode.

For example, the following views . ini file enables anti-aliasing for the entire application.
AstheUseGdiPlus resourceis not specified, the default is used, that is, GDI+ will be used
only when needed.

[IlogViews]

Antialiasing=true

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 269

B. Using IBM ILOG Views on Microsoft Windows

Limitations

The following table summarizes the limitations and unsupported features of the use of GDI+
through IBM ILOG Views:

TableB.2 GDI+ Limitationswith IBM ILOG Views

Fonts GDI+ supports only True Type Fonts. When
using a font that is not a True Type Font,
GDI+ will not be used. Furthermore, when
drawing strings with a transformer, to draw
a vertical string for example, the result may
not exactly match the rendering done with
GDI. This is because the rendering engines
used in GDI+ and GDI are not exactly the
same.

Brushes The Windows HATCHED patterns are not
exactly mapped to the GDI+ HatchStyle.
Thus, switching to GDI+ may change the
drawing of the pattern slightly.

Printing GDI+ is not used by IBM ILOG Views when
drawing on a printer.

Arcs Flat arcs are badly drawn by GDI+. Thus,
GDI+ will not be used to draw flat arcs.

Draw Mode GDI+ does not support other modes than
IlvModeSet. For example, when using
I1lvModeXor, GDI+ will not be used.

Windows XP Look and Feel Transparency and anti-aliasing are not
available with gadgets drawn using
Windows XP.

Using Multiple Display Monitors with IBM ILOG Views

Multiple display monitors provides a set of features that allow an application to make use of
multiple display devices at the same time. Several monitors can be seen as one big monitor,
making it possible to move windows from one screen to the other one.

IBM® ILOG® Views has taken into account this feature, and the following APl has been
added to retrieve the coordinates of amonitor: I11vbisplay: : screenBBox. This method
alows an application to retrieve the monitor coordinates in which a specific rectangle is
located. For example, it can be used to center a window inside a single monitor. See the
Reference Manual for more details.

270 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM

Using Multiple Display Monitors with IBM ILOG Views

The impact of this feature on existing applications is restricted to the management of top
windows. Each time atop window is displayed, its position must be computed carefully. To
avoid problems, top windows should be relative to other top windows and not to the screen.
For example, most applications have amain panel and several dialogs, all being top
windows. It is better to specify the dialog location relative to the main panel position (using
theI1vview: :moveToview method) than to center the dialogsinto the whole screen (using
the I1vview: : ensureInScreen method).

Note: The method T1vview: : ensureInScreen placesa view inside a monitor. It
considers the monitor in which the view islocated as the working monitor. For example, if a
view islocated in monitor 2, calling T1vview: : ensureInScreen 0Onthe view will leave
the view in monitor 2.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 271

B. Using IBM ILOG Views on Microsoft Windows

272 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Using IBM ILOG Views on X Window
Systems

This appendix providesinformation about using IBM® ILOG® Views on X Window
systemsin the UNIX environment.

& Libraries describes the two versions of IBM ILOG Views, based on Xlib or Matif.
The capability of Adding New Sources of Input

Performing ONC-RPC Integration

Integrating IBM ILOG Views with a Motif Application Using libmviews

* 6 o o

Integrating IBM ILOG Views with an X Application Using libxviews

Libraries

IBM® ILOG® Views libraries are delivered in two versions:
& libxviews, Whichisbased on Xlib.
& libmviews, Whichis based on Motif.

When developing an IBM ILOG Views application, you can create at link time either a pure
Xlib application or an application that will be easier to integrate with Motif. Depending on

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 273

C. Using IBM ILOG Views on X Window Systems

274

IBM

what kind of application you want to obtain, you will link your files either with 1ibxviews
for apure Xlib application or with 1ibmviews for a Motif-based application. Your source
code isindependent of the library you choose to link with.

For details on using these libraries, see:
& Using the Xlib Version, libxviews
& Using the Motif Version, libmviews

Using the Xlib Version, libxviews

Creating the 11vDisplay Object establishes aregular connection with the display system.
From the X Window point of view, the T1vsystemview type provided to T1vDisplay iS
equivalent to the window type. The event loop management isbased on acall to select on
the file descriptor corresponding to the connection to the display system. You link with the
libxviews and 1ibx11 libraries.

Restrictions

Inearly IBM ILOG Views releases, when gadgets were not yet available, some basic
portable GUI components, mainly standard dial ogs, were implemented using Motif on
UNIX and Microsoft SDK on Windows. These features, though replaced by more recent
equivalent componentsin IBM ILOG Views, have been kept for backward compatibility.
They areimplemented in 1ibmviews but not in 1ibxviews, which is not based on Motif.
These are:

& Standard system dialogs: IlvPromptDialog, IlvInformationDialog,
IlvQuestionDialog, IlvFileSelector and IlvPromptStringsDialog.

These classes are declared in the header file i 1views/dialogs . h. The Gadgetslibrary
libilvgadgt provides portable versions (in pure IBM ILOG Views code) of similar
dialogs. Seethe ilviews/stdialog.h header file.

& TheIlvscrollview, based on Motif XmScrolledwindow.

Theclasses I11vScrolledview and I1vScrolledGadget offer similar services.

Using the Motif Version, libmviews

Creating the T11vDisplay object initializesthe Xt library and creates atop shell widget. The
values returned by the member functions T1vabstractview: : getSystemview OF
IlvAbstractView: :getShellSystemvView are actua Motif widgets. The event loop
management is strictly equivalent to acall to xtappMainLoop. You must have Motif
installed on your platform and you must link with the 1ibmviews library and with the
1libXm, 1ibxt and 1ibx11 libraries.

These differences are discussed in detail in the rest of this appendix, and examples on how to
use one or the other mode are provided in the distribution.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Adding New Sources of Input

Important restriction:

The use of 1ibmviews isdeprecated in shared library format. Since version 4.0, all shared
libraries provided by IBM ILOG Views are built using 1ibxviews and are incompatible
with 1ibmviews.

libmviews can only be used with the static version of other IBM ILOG Views libraries

Adding New Sources of Input

IBM® ILOG® Views alows the application to add file descriptors as new sources of input.
See the member functions I1vEventLoop: :addInput and I1vEventLoop: :addOutput
for details.

ONC-RPC Integration

You can use the BSD sockets or the ONC-RPC with IBM® ILOG® Views once you have
access to the xt appaddInput functions.

For more information about ONC-RPC, you can take alook at the Sun Network
documentation or the equivalent on your system.

Integrating IBM ILOG Views with a Motif Application Using libmviews

IBM

IBM® ILOG® Viewswas designed to be easily integrated with existing Motif applications.
Thelibrary 1ibmviews provides away to connect an 11vview with an existing Motif
widget and the mechanism required to respond to user action.

In the following sections, you will find information on:
& |nitializing Your Application

Retrieving Connection Information

Using an Existing W dget

Running the Main Loop

Sample Program Using Motif and IBM ILOG Views

* 6 o o

Initializing Your Application

When integrating IBM ILOG Views code with a Motif-based application, you can create an
IBM ILOG Views session in two different ways: you can use either the standard

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 275

C. Using IBM ILOG Views on X Window Systems

276

IBM

IBM ILOG Viewsi initialization procedure or use the initialization block of the Motif
application and call the second constructor of the T1vDisplay class, as shown below:

Standard IBM ILOG Views Initialization Procedure

IlvDisplay* display = new IlvDisplay("Program", "", argc, argv);

Here, IBM ILOG Views establishes the connection with the display system.

Motif Application Initialization Procedure

Widget top = XtInitialize("", "Program", NULL, NULL, (Cardinal*)é&argc, argv);
if (!'top) {
IlvFatalError ("Couldn’t open display");
exit (1) ;
}
IlvDisplay* display = new IlvDisplay (XtDisplay(top), "X");

Here, standard Xt function callsinitiaize the connection. You have to specify the
application name in the constructor of 11vDisplay to be ableto find display resources
from this string.

Retrieving Connection Information

You can access the topmost shell created by IBM ILOG Views by calling the member
function topshell of the 11vbisplay class. The returned value must be converted to a
wWidget.

The Xt application context is returned by the function 11vapplicationContext. The
returned value must be converted to an Xt AppContext.

To get al theinformation about a connection to an X Window application, you must use the
following functions:

XtAppContext appContext = (XtAppContext)IlvApplicationContext () ;
Widget topLevel = (Widget)display->topShell () ;

Before using the 11vapplicationContext function, add the following to the application
code:

extern XtAppContext IlvApplicationContext () ;

To usethe xtappContext oObject, refer to the Xt documentation.

Using an Existing Widget

Most of the classesthat inherit from the 11vview class define a constructor that specifies an
existing widget to be used, instead of your having to create one. Here is how to create an
I1vview Object from awidget:

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Integrating IBM ILOG Views with a Motif Application Using libmviews

IlvDisplay* display = ... // display initialization

// Create a DrawingArea widget

Widget drawingArea =

XtVaCreateManagedWidget ("ilvview",

xmDrawingAreaWidgetClass, parent,
XmNwidth, 100,
XmNheight, 100,
0);

// Realize this widget

XtRealizeWidget (drawingArea) ;

// Create a IlvView object from this widget.

IlvView* aView = new IlvView(display, drawingArea) ;

The only restriction is that the widget you use must already be realized (in the Xt
terminology, that is, the widget must have a window) before you call the constructor of
IlvView.

Running the Main Loop

In 1ibmviews, the function 11vMainLoop does exactly the samejob as xtAppMainLoop.
You can use the one you want, but T1vMainLoop is provided to make the code portable
between different platforms.

We recommend that you clearly separate IBM ILOG Views code from Motif code if you
plan to port your applications to other platforms.

Sample Program Using Motif and IBM ILOG Views

The following sample program is afull example of how to integrate IBM ILOG Views code
into a Motif application (samples/foundation/x1lib/src/ilvmotif.cpp):

/) mmmmm e - *— CH+ —*-
// IBM ILOG Views samples source file
// File: samples/foundation/xlib/src/ilvmotif.cpp

// Using the grapher in a Motif widget

F A e e
#include <ilviews/contain/contain.h>

#include <ilviews/graphics/all.h>

#include <stdio.h>

#include <stdlib.h>

/] T o
// Integration Part with Motif

F e et b
#include <X11/Intrinsic.h>

#include <X11/StringDefs.h>

#include <X11/X1lib.h>

#include <X11/Shell.h>

#include <Xm/Xm.h>

#include <Xm/DrawingA.h>

#include <Xm/PushB.h>

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 277

C. Using IBM ILOG Views on X Window Systems

/] mm T o
static void
Quit (Widget, XtPointer display, XtPointer)
{
delete (IlvDisplay*)display;
exit (0);
}

#define INPUT MASK (unsigned long) (ButtonPressMask | ButtonReleaseMask |\
KeyPressMask | KeyReleaseMask |\
ButtonMotionMask | EnterWindowMask |\
LeaveWindowMask | PointerMotionMask | \
ExposureMask | StructureNotifyMask)

extern "C" void IlvDispatchEvent (XEvent* xevent) ;

static void
ManageInput (Widget, XtPointer, XEvent* xevent, Boolean*)

{
IlvDispatchEvent (xevent) ;
}
F e St
IlvDisplay*
IlvGetDisplay (Display* xdisplay)
{
static IlvDisplay* ilv_display = 0;
if (!ilv_display)
ilv_display = new IlvDisplay(xdisplay, "IlvMotif");
return ilv_display;
}
/] mm T -
IlvContainer*
CreateContainer (Widget widget)
{
IlvContainer* ¢ = new IlvContainer (IlvGetDisplay (XtDisplay (widget)),
(IlvSystemView) XtWindow (widget)) ;
XtAddEventHandler (widget, INPUT _MASK, False,
ManageInput, (XtPointer)c);
return c;
}
/] S e e -
int
main(int argc, char* argv[])
{

Widget toplevel = XtInitialize("", "IlvMotif", NULL, O,
&argc, argv) ;
if (!toplevel)
exit (1) ;
Widget drawArea = XtVaCreateManagedWidget ("ilvview",
xmDrawingAreaWidgetClass,
(Widget) toplevel,
XtNwidth, 400,
XtNheight, 400,
(Ilany) 0);
Widget pushb = XtVaCreateManagedWidget ("Quit",

278 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Integrating IBM ILOG Views with an X Application Using libxviews

xmPushButtonWidgetClass,
drawArea,
(IlAny) 0);
XtRealizeWidget (toplevel) ;
IlvContainer* container = CreateContainer (drawArea) ;
XtAddCallback (pushb, XmNactivateCallback, Quit, container->getDisplay());
container->readFile ("demo2d.ilv") ;
XtMainLoop () ;
return 0;

Integrating IBM ILOG Views with an X Application Using libxviews

The Xlib version has the capability of integrating any Xlib-based application as soon asit is
provided a pointer to a pisplay object, awindow to draw to, and away to receive events
fromit.

In the following sections, you will find information on:
¢ Integration Steps

¢ Complete Template

¢ Complete Example with Motif

Integration Steps

To use IBM ILOG Views with any Xlib-based toolkit, you have to:

1. Create an 11vDisplay instance using an existing X Display.
Usethe 11vDisplay constructor:

IlvDisplay::IlvDisplay (IlAny exitingXDisplay, const char* name) ;

For example:

Display* xdisplay;
// ... initialize this Display*: xdisplay = XOpenDisplay(...);
IlvDisplay* ilvdisplay = new IlvDisplay((IlAny)xdisplay, "Views");

2. Create some Ilvview Or IlvContainer instances using an existing X Window:

Use the T11vview constructor:

IlvView: :I1vView(IlvDisplay* display,
IlvSystemView existingXWindow)

For example:

IlvDisplay* display;

// initialize this 'display’

Window xWindow;
// initialize this X window

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 279

C. Using IBM ILOG Views on X Window Systems

IlvView* view = new IlvView(display, (IlvSystemView)xWindow) ;

or

IlvContainer* container = new IlvContainer (display,
(IlvSystemView) xWindow) ;

3. Managethe eventsin these 11vview Views:

Once you receive an X event, you must call

I1lvEventLoop: :getEventLoop () ->dispatchEvent (&xevent) ;

Complete Template

The main procedure looks like this:

main ()
{
// Initialize your toolkit
Display* xdisplay;
xdisplay = // XOpenDisplay...;
// Initialize an IlvDisplay
IlvDisplay* ilvdisplay = new IlvDisplay((IlAny)xdisplay, "Views");
// Create an X window:
Window xwindow;
xwindow = // ...;
// Create an IlvContainer
IlvContainer* container = new IlvContainer (display, (IlvSystemView)xwindow) ;
container->addObject (new IlvLabel(...));
// Now call the toolkit main event loop

Complete Example with Motif

Motif is chosen only as an example of an X-based toolkit. A better way to integrate

IBM ILOG Views with Motif isto use the standard IBM ILOG Views library 1ibmviews
that already does the integration for you. The following exampleisjust meant to illustrate
what would need to be doneif 1ibmviews wasnot available (samples/x1ib/
ilvmotif.cc):

/] mm e -
// Integration of IlogViews, pure XLib version into a Motif

// application

/] mm e o
#include <ilviews/contain.h>

#include <ilviews/label.h>

#include <X11/Intrinsic.h>
#include <Xm/Xm.h>

#include <Xm/DrawingA.h>
#include <X11/StringDefs.h>

// Define the default input mask for the window
#define INPUT_MASK (unsigned long) (ButtonPressMask |\

280 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Integrating IBM ILOG Views with an X Application Using libxviews

ButtonReleaseMask |
KeyPressMask |
KeyReleaseMask |
ButtonMotionMask |
EnterWindowMask |
LeaveWindowMask |
PointerMotionMask |
ExposureMask |
StructureNotifyMask)

P g

e
// This will be called by Xt when events of any of the

// types specified in INPUT MASK occur.

// To do this, we call upon the XtAddEventHandler function call
// (see main()).

/) mm e o

static void
ManageInput (Widget, XtPointer view, XEvent* xevent, Boolean*)

{
IlvEventLoop: :getEventLoop () ->dispatchEvent (xevent) ;
}
/] mm e -
void
main(int argc,char** argv)
{

// Initialize X Window:
Widget toplevel = XtInitialize("", "IlvXlib", NULL, NULL,
// XtInitialize has a new specific signature in X11r5
#if defined(XlibSpecificationRelease) && (XlibSpecificationRelease >= 5)
&argc,
#else
(Cardinal*) &argc,
#endif
argv) ;
// If the top shell couldn’t be created, exit
if (!toplevel)
exit (1) ;

// Create a Motif widget to draw to

Widget drawArea = XtVaCreateManagedWidget ("ilvview",
xmDrawingAreaWidgetClass,
(Widget) toplevel,
XtNwidth, 400,
XtNheight, 400,
0);

XtRealizeWidget (toplevel) ;

// Create an IlvDisplay instance from the existing Display
IlvDisplay* display = new IlvDisplay (XtDisplay (drawArea), "Views");

// Create a container associated with the drawing area:
IlvContainer* container =
new IlvContainer (display, (IlvSystemView)XtWindow(drawArea)) ;

// Create a graphic object in the container

container->addObject (new IlvLabel (display,
IlvPoint (30, 30),

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 281

C. Using IBM ILOG Views on X Window Systems

282

IBM

"an IlvLabel instance"));

// Let IlogViews know about the events
XtAddEventHandler (drawArea, INPUT_MASK, IlFalse, ManageInput, NULL) ;

// Wait for events to occur
XtMainLoop () ;
}

The directory samples/x1ib/ contains more examples applying to various toolkits:
ilvmotif . cpp iSanother integration with Motif, similar to thisone, i1volit.cpp
illustrates an integration with OpenWindow and i 1vxview. cpp anintegration with XView.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Portability Limitations

This section provides you with alist of IBM® ILOG® Views features whose portability
might be limited because they are system-dependent. In the following sections, these
features are grouped into:

& Non-Supported or Limited Features: Those that are partially or not supported on certain

systems.

& The Main Event Loop: Features whose result varies depending on the system on which
they are used, in particular the main event loop.

Non-Supported or Limited Features

IBM

The table below givesyou alist of IBM® ILOG® Views features that are either partially or
not supported on certain systems.

TableD.1 Non-supported or Limited Features

BitPlanes

Not Supported on Microsoft Windows.

Modal mode

Not supported on Windows NT.

Pattern size

Microsoft Windows patterns are limited in size. You can create larger
patterns, but only the upper-left corner will define the final pattern.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 283

D. Portability Limitations

284

IBM

TableD.1 Non-supported or Limited Features (Continued)

Transparent
patterns

On Microsoft Windows, transparent patterns are available only for
Microsoft Windows predefined HATCHED brushes. This means that
user-defined patterns and some IBM ILOG Views predefined
patterns cannot be transparent. The list of the IBM ILOG Views
patterns built on a predefined Microsoft Windows HATCHED pattern
is:dialoglr, dialogrl, horiz, vert, cross. This limitation is
not applicable when using GDI+, which supports all kind of
transparent brushes.

Line style

The following pattern styles are not valid when drawing lines on
Microsoft Win9x: dashdot, doubledot, and longdash; these all
resultin the dash style. Setting the line width to a value greater than
1 causes the line pattern to disappear.

Cursor size

On Microsoft Windows, the size of the cursor is fixed and depends
on the driver. When bitmaps with bad sizes are given to the
IlvCursor constructor, an error message is sent. IBM ILOG Views
provides the method I1vCursor: : isBad for testing the success
of the creation of a cursor.

Mouse buttons

Certain types of mouse have only two buttons. In this case, the
events linked to the right button are set as I1vMiddleButton. This
results from the fact that, historically, the first interactors used the
IlvMiddleButton and almost never the I1vRightButton. You
can modify this behavior using the UseRightButton application
resource.

Windows icon

On Windows 95 and Windows NT4, the icon associated with each of
the views is the same for all the views of an application.

Transparency Anti-
aliasing

Available on Windows with GDI+ only. See Appendix B.

Polygons

On Windows 95, the maximal number of points of a polygon is
16381.

However, in some cases, a polygon can be composed of more
points (convex polygons for example).

Mutable colors

Mutable colors may only be used with the pseudo color model. The
pseudo color model is an arbitrary mapping of pixel to color that
depends on the screen depth and is stored in a color map (UNIX
Systems) or a palette (PCs). Mutable colors do not work on direct
color or on true color models.

Window opacity

Not supported on UNIX platforms.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

The Main Event Loop

TableD.1 Non-supported or Limited Features (Continued)

Zoomable labels

On UNIX, I1vZoomableLabel objects are bitmaps that can be
zoomed, rotated, and so on. On Microsoft Windows, bitmaps cannot
be used because Microsoft Windows is not able to rotate bitmaps,
and therefore T1vZoomableLabel objects are implemented using
True Type fonts.

The limitation is due to the fact that True Type fonts are not true
vectorial fonts since they work in a step by step way. Moreover, the
Microsoft Windows system is not able to give the real size of a font
(see Microsoft Win32 Programmer’s Reference, Volume 1, page
688: “In Windows, the size of a font is an imprecise value”).

Note: The same limitation appears for the \ectorial fonts contribution
givenin the <ILVHOME>/tools/vectfont directory. Vectorial fonts
are implemented using Her shey fonts on UNIX platforms, and True Type or
Hershey fonts on Microsoft Windows platforms.

Strings in XOR
mode

This works on X Window. Since Microsoft Windows cannot draw
strings in the Xor mode, IBM ILOG Views draws an Xor dotted
rectangle that has the same size as the text. To display a real string,
display an Xor label using the methods I1vPort: :drawString or
IlvPort: :drawIString.

The Main Event Loop

Themain IBM® ILOG® Views event |oop, defined by the global function T11vMainLoop,
does not work in the same way on X Window and on Microsoft Windows systems. While X
Window servers operate in asynchronous mode, Microsoft Windows works in synchronous
mode. Also, timer management varies depending on the system used.

4 Synchronousvs. asynchronous mode: On X Window, arequest sent to the server is
not immediately processed even if the function returns. It is processed only after it
returns to the main loop. For example, arequest for displaying aview is performed only
when the X Window server sends back a map notify event and this event is processed by
the IBM ILOG Views API.

¢ Timers management: On Microsoft Windows, atimer notification is a Windows event
that can be processed in the event loop. On X Window, atimer notification isnot an event
and therefore the main loop is not aware of it, whether it is active or not.

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 285

D. Portability Limitations

286 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Error Messages

This section discusses IBM® ILOG® Views error message generation, based on The
IlvError Class. It contains alist of the messagesthat IBM ILOG Views may generate when
running your applications. You will find the message text, the explanation of why the error
message may have been produced, and a possible workaround.

Thelists are a phabetical reference lists and describe:
& Fatal Errors
& \\arnings

If you have not overloaded the default error handler, the fatal error messages are prefixed by
two number-sign characters (#), and warnings are prefaced by two dashes (-).

Note: These are consolidated lists, so some of the error messages are for
IBM ILOG Views packages that you may not have.

The llvError Class

IBM® ILOG® Views provides an error message mechanism based on the 11vError class.
Thereisadefault 11vError instance that is automaticaly installed for every
IBM ILOG Views application.

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 287

E. Error Messages

This class implements warnings and fatal errors by simply printing out the message
parameter. You can create subtypes of this classto perform more complex actions, and make
IBM ILOG Views use them.

Two global functions get and set the current error handler:

extern "C" IlvError* IlvGetErrorHandler();
extern "C" void IlvSetErrorHandler (IlvError* errorHandler) ;

To make IBM ILOG Views call the error handler, send each error message through one of
these global functions:

extern "C" void IlvWarning (const char* format, ...);
extern "C" void IlvFatalError (const char* format, ...);

The parameter format hasthe same format as the regular C function printf. The above
two global functions expect their parametersin the sasmeway asprint £ does.

Fatal Errors

xxx was called with no arguments

In an arithmetic expression execution, the indicated predefined function should be called
with at least one parameter.

Bad image description header
Unrecognizable bitmap header in an XPM file.
Bad image colors description
Unrecognizable color descriptor in an XPM file.

Cannot open xxx for writing

This indicated filename could not be opened for writing. The UNIX version gives more
information.

couldn’t open dump file

Could not open dump file for writing.

couldn’t open xXxx

The indicated filename cannot be opened for reading or writing.
File xxx has a bad format.

Theindicated filenameis not an IBM ILOG Views datafile.
File IlogViews versions do not match

You aretrying to read an IBM ILOG Views data file that was produced with alater version
than the library you are running.

288 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM

Fatal Errors

Format not implemented.

This BMP format is not implemented.

IlvBitmap::read: couldn’t open file xxx
IlvDisplay::readBitmap: couldn’t open file xxx

The indicated filename could not be opened for reading.
IlvBitmap::read: bad format xxx

Could not read file as a predefined format (XBM, XPM or PBM PO or P4).
IlvBitmap::read: unknown color index xxx

This indicates abad color alocation.

IlvBitmap::save: couldn’t open file xxx

Could not open file for writing.

IlvBitmap: :saveAscii: Too many colors for ascii format
...(continued)

Too many colors were alocated to read this bitmap with al the required colors.
IBM ILOG Viewswill try to find the closest existing colors to represent the image as
accurately as possible.

IlvContainer::readFile: couldn’t open file xxx (check ILVPATH)
Specified file could not be loaded. Check your TvPATH environment variable.

IlvContainer::read: wrong format

The file contents could not be |oaded.
IlvDisplay::readAsciiBitmap: wrong type xxx
InT1lvDbisplay: :readAsciiBitmap thisisnot arecognized file type.

IlvDisplay: :readBitmap: unknown format xxx

The indicated file does not contain a known bitmap format.
IlvEventPlayer::load: couldn’t open Xxx

Could not open event file for reading.
IlvEventPlayer::save: couldn’t open Xxx

Could not open event file for writing.

IlvGetViewInteractor: xxx not registered

The indicated view interactor class nameis not registered. You may need to add a call to the
macro I'lvLoadViewInteractor.

IlvGifFile() - xxx

A GIF error message. Self explanatory.

IlvInputFile::readNext: unknown class: xxx

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 289

E. Error Messages

290

IBM

Theindicated classisunknown by your binary. Try to include the header file where this class
appearsin one of your modules sourcefile.

IlvInputFile::readObject: bad format for: xxx

Not avalid IBM ILOG Views header.

IlvInputFile: :readObjectBlock: no object

An object block could not be successfully read.

IlvManagerViewInteractor: no such view

You tried to set aview interactor to aview that is not connected to the manager.

IlvReadAttribute: unknown attribute class xxx

Theindicated attribute class nhame does not match a known class. You may need to register
this attribute class.

IlvReadPBMBitmap: bad format

The header of the PBM fileiswrong.

IlvReadPBMBitmap: unknown bitmap format

Wrong PBM format. Known formats are P1 to P6.

IlvPSDevice: :drawTransparentBitmap: cannot use image mask
Trying to dump atransparent bitmap that actually is a colored image.
IlvPSDevice: :setCurrentPalette: file not opened

The dump fileis not opened, but the dump process has started!
IlvVariable::setFormula: error in xxx

There has been an error when trying to read the formula.

IlvVariableContainer: :connect: unknown attribute class xxx
IlvVariableManager: :connect: unknown attribute class xxx

Need to register this attribute’s type. This error message is deprecated.

Not an IlogViews data file
Theindicated fileisnot an IBM ILOG Views datafile.

Not a valid IlogViews message database file
IlvMessageDatabase: : read could not convert thisfile contents into a database format.

Not a XPM format

Not avalid XPM format. IBM ILOG Views can read XPM 2 and C-coded formats.
PolyPoints with zero points

Trying to create an empty polypoints object.

ReadAsciiColorBitmap: couldn’t open xxx

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Warnings

Could not open file for reading.

ReadMonochromeX1llBitmap: couldn’t read bitmap. Data=xxx
Only occurs on Microsoft Windows versions. Could not read XBM bitmap file.
Unknown bitmap format: xxx

In I1vBitmap: : read: unknown bitmap format.

Unknown event type: xxx

Reading an event file: could not find a match with aknow event type.
Unknown requested type xxx in isSubtypeOf

The parameter to T1vGraphic: : isSubtypeOf isSnot aknown class.
Unknown proposed type xxx in isSubtypeOf

The class name of the object that called i ssubtypeof isinvalid.

Warnings

IBM

(<<IlvPattern*): Pattern has no name. Using ‘noname’
(<<IlvColorPattern*): Pattern has no name. Using ‘noname’

When saving a pattern or acolored pattern, the pattern’s bitmap has no name. You may need
to set the bitmap name before saving it, otherwise it will not be correctly loaded.

CreateBitmapCell: bitmap xxx not found using default

When creating a bitmap cell, the bitmap name was not found internally. You may need to
pre-read the indicated bitmap file.

Found object xxx without IlvPalette

When saving an object, the pal ette has been replaced. Thisindicates that you modified your
object when saving it.

Icon bitmap has no name. Using ‘noname’

When saving a transparent icon, the bitmap has no internal name and will not be loaded
properly.

IlvButton::read: could not find bitmap xxx. Using default

When creating a bitmap button, the bitmap name was not found internally. You may need to
pre-read the indicated bitmap file.

IlvDisplay: :copyStretchedBitmap: can’t stretch from pixmap to
bitmap

Trying to stretch a color bitmap into a monochrome destination device.

IlvGadgetContainer::read: couldn’t allocate background color

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 291

E. Error Messages

292

IBM

The container background color that was saved in the data file cannot be allocated. Release
some colors to the system.

IlvGrapher::duplicate: object selection not removed

An error has occured when removing the selection on an object.
IlvGrapher::duplicate: object not found

Trying to duplicate objects that are not stored in the grapher.
IlvIcon::read: could not find bitmap xxx. Using default

When creating an icon, the bitmap name was not found internally. You may need to pre-read
the indicated bitmap file.

IlvIcon::write: no name. Using ‘noname’...

When saving the icon’s bitmap, the bitmap has no name. You may need to set the bitmap
name before saving it, otherwise it will not be correctly loaded.

IlvManager::align: invalid value for align : xxx
Invalid direction parameter for 11vManager: :align.

IlvManager: :cleanObj: no properties

Trying to clean an object that is not stored in a manager. You may have removed this object
twice, or deleted the object before the manager has removed it.

IlvManager: :duplicate: object not found
Trying to duplicate an object that is not in this manager.
IlvManager: :reshapeObject: no properties
Trying to reshape an object that is not in this manager.
IlvManager::translateObject: no properties
Trying to trandlate an object that is not in this manager.
IlvManager::zoomView: invalid transformer
The requested zoom operation would result in a non-reversible transformer.
IlvReadPBMBitmap: bad values

The image description iswrong.

IlvSetLanguage: locale not supported by Xlib

The X11 library to which you linked your application does not support your current locale.
You may need to relink with a shared version of libX11 that supports your locale.

IlvTransformer::inverse(IlvPoint&): bad transformer xxx
IlvTransformer::inverse(IlvFloatPoint&): bad transformer xxx

IlvTransformer::inverse(IlvRect&): bad transformer xxx

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Warnings

The transformer cannot perform the inverse call, because it is not reversible. The indicated
valueis the address of the transformer, provided for debugging purposes. Check the
transformer values.

IlvTransparentIcon::read: couldn’t find bitmap xxx. Using default

When reading a transparent icon, the name does not match an internally known bitmap. You
may need to pre-load the corresponding bitmap.

IlvZoomableIcon: :read: couldn’t find bitmap xxx. Using default
The bitmap name of the zoomable icon does not match a know bitmap.

Object not removed xxx

In I1vIndexedSet: : removeObject, the object is not stored in thisindexed set.
Quadtree::add: xxx [bbox] Already in quadtree

An object is stored twice in a manager. The object type and its bounding box are provided.
Quadtree: :remove: object xxx [bbox] not in quadtree

An object is removed from the manager but it was not stored init.

ReadBitmap: Bitmap xxx not found! Using default
ReadColorPattern: Pattern xxx not found!

ReadPattern: Pattern xxx not found! Using ‘solid’

When reading a bitmap, may be used in a pattern. The bitmap name was not found
internally. You may need to pre-read the indicated bitmap file.

ReadLineStyle: LineStyle xxx not found! Using ‘solid’
When reading aline style, could not find the indicated line style identifier.

Too many colors. We’ll keep xxx

Color dlocation request failed. IBM ILOG Viewstries to find the closest existing color to
compl ete the bitmap.

WriteBitmap: Bitmap has no name using ‘noname’

When saving a bitmap, the bitmap has no name. You may need to set the bitmap name before
saving it, otherwise it will not be correctly loaded.

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 293

E. Error Messages

294 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM ILOG Script 2.0 Language Reference

This reference covers the syntax of IBM ILOG Script. IBM ILOG Script isan ILOG
implementation of the JavaScri ptTM scripting language from Netscape Communications
Corporation.

Language Structure
& Syntax

& Expressions

¢ Satements

Built-In Values and Functions
Numbers

Srings

Booleans

Arrays

Objects

Dates

The null Value

The undefined Value

® 6 6 6 6 o 0 o

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 295

F. IBM ILOG Script 2.0 Language Reference

& Functions

& Miscellaneous

Syntax

296

IBM

Thetopics are:

¢ |BM ILOG Script Program Syntax
¢ Compound Satements
¢ Comments

& |dentifier Syntax

IBM ILOG Script Program Syntax

AnIBM ILOG Script program is made of a sequence of statements. Statements may include
conditional statements, loops, function definitions, local variable declarations, and so forth.
An expression can aso be used any time a statement is expected, in which caseitsvalueis
ignored and only its side effect is taken into account. Expressions may include assignments,
function calls, property access, etc.

Multiple statements or expressions may occur on asingle lineif they are separated by a
semicolon (;). For example, the two following programs are equivalent:

Program1.:
writeln("Hello, world")

x = x+1
if (x > 10) writeln("Too big")

Program2:

writeln("Hello, World"); X = X+1; If (X > 10) Writeln("Too Big")

Compound Statements

A compound statement is a sequence of statements and expressions enclosed in curly
brackets ({}). It can be used to perform multiple tasks any time a single statement is
expected. For example, in the following conditional statement, the three statements and
expressionsin curly brackets are executed when the condition a> b istrue:

if (a > b) {

var ¢ = a
a=>b
b =c
}

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

Syntax

Thelast statement or expression before a closing curly bracket does not need to be followed
by asemicolon, even if it is on the same line. For example, the following program is
syntactically correct and is equivalent to the previous one:

if (a > b) { var ¢ = a; a = b; b =c }

Comments
IBM ILOG Script supports two different styles of comments:

& Single linecomments. A single line comment starts with // and stops at the end of the

line. Example:
x = x+1 // Increment x,
v = y-1 // then decrement y.

& Multipleline comments. A multiple line comment startswith a /* and stopswith a * /; it
can span multiple lines. Nested multiple line comments are not allowed. Example:

/* The following statement

increments x. */

x = x+1

/* The following statement

decrements y. */

y =y /* A comment can be inserted here */ -1

Identifier Syntax

Identifiersare used in IBM ILOG Script to name variables and functions. An identifier starts
with either aletter or an underscore, and is followed by a sequence of |etters, digits, and
underscores.

Here are some examples of identifiers:

car

x12

main_window

_foo
IBM ILOG Script is case sensitive, thus the uppercase letters A-Z are distinct from the
lowercase letters a-z. For example, the identifiers car and Car are distinct.

The names in the table below are reserved and cannot be used as identifiers. Some of these
names are keywords used in IBM ILOG Script; others are reserved for future use.

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 297

F. IBM ILOG Script 2.0 Language Reference

The names in the table below are reserved and cannot be used as identifiers. Some of these
names are keywords used in IBM ILOG Script; others are reserved for future use.

abstract else int switch
boolean extends interface synchronized
break false long this
byte final native throw
case finally new throws
catch float null transient
char for package true
class function private try
const goto protected typeof
continue if public var
default implements return void
delete import short while
do in static with
double instanceof super
Expressions

Thetopics are:

& |IBM ILOG Script Expressions

& Literals

& \ariable Reference

& Property Access

& Assignment Operators

¢ Function Call

& Special Keywords

& Special Operators

& Other Operators

298 IBM

IBM ILOG Script Expressions

Expressions are acombination of literals, variables, special keywords, and operators.

close to the C/C++ syntax.

I Note: For C/C++ programmers: The syntax of IBM ILOG Script expressionsis very

The precedence of operators determines the order in which they are applied when evaluating
an expression. Operator precedence can be overridden by using parentheses.

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL

IBM

Expressions

The following table lists the IBM ILOG Script operators and gives their precedence, from

lowest to highest:

TableF.1 IBM ILOG Script Operator Precedence

Category Operators

Sequence ,

Assignment = 4= -= *= /= %= <<= >>= >>>=

&= = =

Conditional ?:

Logical-or | |

Logical-and &&

Bitwise-or

Bitwise-xor ~

Bitwise-and &

Equality == 1=

Relational < <= > >=

Bitwise shift << >> >>>

Addition, substraction + -

Multiply, divide * / %

Negation, increment, typeof | ! ~ - ++ - typeof
Call ()

New new

Property []

Literals

Literals can represent:

¢ Numbers, for example: 12 14.5 1.7e-100

¢ Srings, for example: "Ford" "Hello world\n"

¢ Booleans, either true or false.

¢ Thenull Value: null.
ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 299

F. IBM ILOG Script 2.0 Language Reference

300

IBM

See Number Literal Syntax on page 316 and String Literal Syntax on page 322 for further
details about number and string literal syntax.

Variable Reference

Variable reference syntax is shown in the following table.
TableF.2 IBM ILOG Script Variable Syntax

Syntax Effect

variable Returns the value of variable. See Identifier Syntax on
page 297 for the syntax of variables.

If variable doesn't exist, an error is signalled. This is not the
same as referencing an existing variable whose value is the
undefined value—which is legal and returns the undefined
value.

When used in the body of a with statement, a variable
reference is first looked up as a property of the current
default value.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Expressions

Property Access

There are two syntaxes for accessing a value property:
Table F.3 IBM ILOG Script Property Access Syntax

Syntax

Effect

value . name

Returns the value of the name property of value, or the
undefined value if this property is not defined. See Identifier
Syntax on page 297 for the syntax of name.
Examples:

str.length

getCar () .name
Because name must be a valid identifier, this form cannot be
used to access properties which don't have a valid identifier
syntax. For example, the numeric properties of an array
cannot be accessed this way:

myArray.1l0 // Illegal syntax
For these properties, use the second syntax.

value [name]

Same as the previous syntax, except that this time name is
an evaluated expression which yields the property name.
Examples:

str["length"] // Same as str.length

getCar () [getPropertyName ()]

myArray[10]

myArray [i+1]

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 301

F. IBM ILOG Script 2.0 Language Reference

302

IBM

Assignment Operators

The = operator can be used to assign a new value to a variable or a property:
TableF.4 IBM ILOG Script Assignment Operator Syntax

Syntax

Effect

variable = expression

Assigns the value of expression to variable. If variable does
not exist, it is created as a global variable.
Examples:
x = y+1
The whole expression returns the value of expression.

value. name = expression
value [name] = expression

Assigns the value of expression to the given property.
If value doesn't have such a property, then if it is either an
array or an object, the property is created; otherwise, an
error is signalled.
Examples:

car.name = "Ford"

myArray[i] = myArray[i]+1
The whole expression returns the value of expression.

In addition, the following shorthand operators are a so defined:

Table F.5 Shorthand Operators

Syntax Shorthand For

++X X=X+1

X++ Same as ++X, but returns the initial value of X instead of its
new value.

—-X X=X-1

X-- Same as --X, but returns the initial value of X instead of its
new value.

X+=Y X=X+Y

X-=Y X=X-Y

X*=Y X=X*Y

X/=Y X=X/Y

%=Y X=X%Y
X<<=Y X=X<<Y
X>>=Y X=X>>Y

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL

Expressions

Table F.5 Shorthand Operators (Continued)

Syntax Shorthand For
X>>>=Y X=X>>>Y
X&=Y X=X&Y
X~=Y X=X"Y
X|=Y X=X|Y
Function Call

The syntax for calling afunction is:
TableF.6 IBM ILOG Script Function Call Syntax

Syntax

Effect

function(argli, ..., argn)

Calls function with the given arguments, and returns the
result of the call.
Examples:

parseInt (field)

writeln("Hello ", name)
doAction ()
str.substring(start, start+length)

Function is typically either a variable reference or a property
access, but it can be any arbitrary expression; the
expression must yield a function value, or an error is
signalled.
Examples:
// Calls the function in callbacks[i]
callbacks[i] (arg)

// Error: a string is not a function
Hfoou ()

IBM ILOG VIEWS FOUNDATION V5.3 — USER’S MANUAL 303

F. IBM ILOG Script 2.0 Language Reference

Special Keywords

Specia keywords that can be used are:
Table F.7 I1BM ILOG Script Special Keywords

Syntax Effect

this When referenced in a method, returns the current calling
object; when referenced in a constructor, returns the object
currently being initialized. Otherwise, returns the global
object. See Objects on page 336 for examples.

arguments Returns an array containing the arguments of the current

function. When used outside of a function, an error is
signalled.
For example, the following function returns the sum of all its
arguments:
function sum() {
var res = 0
for (var i=0; i<arguments.length; i++)
res = res+arguments[i]
return res

}
The call sum(1, 3, 5) returns9.

Special Operators

The special operators are:

Table F.8 IBM ILOG Script Special Operator Syntax

Syntax

Effect

new constructor (argl, ...,
argn)

Calls the constructor with the given arguments, and returns
the created value.
Examples:

new Array ()

new MyCar ("Ford", 1975)
Constructoris typically a variable reference, but it can be any
arbitrary expression.
Example:

new ctors[i] (arg) // Invokes constructor
ctors[i]

304 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Expressions

Table F.8 IBM ILOG Script Special Operator Syntax (Continued)

Syntax

Effect

typeof value

Returns a string representing the type of value, as follows:

Type of value Result of typeof value
array "object"”

boolean "boolean”

date "date"

function "function”

null "object"

number "number"

object "object"

string "string"

undefined "undefined”

delete variable

Delete the global variable variable. This doesn't mean that
the value in variable is deleted, but that variable is removed
from the global environment.
Example:

myVar = "Hello, world" // Create the
global variable myVar

delete myVar

writeln (myVar) // Signals an error
because myVar is undefined
If variable is a local variable, an error is signalled; if variable
is not a known variable, nothing happens.
The whole expression returns the true value.
Note for C/C++ programmers: This operator has a radically
different meaning than in C++, where it is used to delete
objects, not variables and properties.

IBM ILOG VIEWS FOUNDATION V5.3 — USER’S MANUAL 305

F. IBM ILOG Script 2.0 Language Reference

Table F.8 IBM ILOG Script Special Operator Syntax (Continued)

Syntax

Effect

delete value.name
delete value[name]

Remove the property name from the object value.

If value doesn't contain the name property, this expression
does nothing. If the property does exist but cannot be
deleted, an error is signalled. If value is not an object, an
error is signalled.

The whole expression returns the true value.

expressionl , expression2

Evaluates sequentially expressionl and expression2, and
returns the value of expression2. The value of expressionlis
ignored.
The most common use for this operator is inside for loops,
where it can be used to evaluate several expressions where
a single expression is expected:
for (var i=0, j=0; 1<10; i++, j+=2) {
writeln(j, " is twice as big as ", 1);

Other Operators

Other operators are described in the section dedicated to the datatype they operate on. They

are:

Table F.9 Other IBM ILOG cript Operators

Syntax Effect

-X Arithmetic operators.

X+Y These operators perform the usual arithmetic operations. In
X-Y addition, the + operator can be used to concatenate strings.
X*Y See Numeric Operators on page 320 and String Operators
XY on page 328.

XsY

X==Y Equality operators.

X1=Y These operators can be used to compare numbers and

strings; see Numeric Operators on page 320 and String
Operators on page 328.
For other types of values, such as dates, arrays, objects, and
so forth, the == operator is true if, and only if, X and Y are
the exact same value. For example:
new Array(10) == new Array(1l0) —> false
var a = new Array(10); a == a —> true

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Statements

Table F.9 Other IBM ILOG Script Operators (Continued)

Syntax Effect

X>Y Relational operators.

X>=Y These operators can be used to compare numbers and
X<Y strings. See Numeric Operators on page 320 and String
X<=Y Operators on page 328.

~ X Bitwise operators.

X&Y See Numeric Operators on page 320.

X|Yy

X~Y

X<<Y

X>>Y

X>>>Y

' X Logical operators.

XY See Logical Operators on page 331.

X&&Y

condition? X : Y

Statements

Thetopics are:

2

* 6 o o

Conditional Statement (if)

Loops (while, for, for..in, break, continue)
Variable Declaration (var)

Function Definition (function, return)
Default Value (with)

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 307

F. IBM ILOG Script 2.0 Language Reference

308

IBM

Conditional Statement

The conditional (if) statement has the following syntax:
Table F.10 I1BM ILOG cript Conditional Satement Syntax

Syntax Effect
if (expression) Evaluate expression; if it is true, execute statementl;
statement1 otherwise, if statementZ2 is provided, execute statement2.
[else statement2] If expression yields a non-boolean value, this value is
converted to a boolean.
Examples:
if (a == b) writeln("They are equal")

else writeln("They are not equal")

if (s.indexOf("a") < 0) {

write("The string ", s)

writeln(" doesn't contains the letter
an)

}

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Statements

Loops

The loop statements have the following syntax:
TableF.11 IBM ILOG Script Loop Statement Syntax

Syntax

Effect

while (expression)
statement

Execute statement repeatedly as long as expression is true.
The test takes place before each execution of statement.
If expression yields a non-boolean value, this value is
converted to a boolean.
Examples:

while (a*a < b) a = a+1l
while (s.length) {
r = s.charAt(0)+r
s = s.substring (1)

}

for ([initialize];

[condition] ;

[update])

statement

where condition and update
are expressions, and initialize
is either an expression or has
the form:
var variable = expression

Evaluate initialize once, if present. Its value is ignored. If it
has the form:

var variable = expression
then variable is declared as a local variable and initialized as
in the var statement.
Then, execute statement repeatedly as long as condition is
true. If condition is omitted, it is taken to be true, which
results in an infinite loop. If condition yields a non-boolean
value, this value is converted to a boolean.
If present, update is evaluated at each pass through the
loop, after statement and before condition. Its value is

ignored.
Example:
for (var 1=0; i < a.length; i++) {
sum = sum+ali]
prod = prod*al[i]

}

ILOG VIEwWS FOUNDATION V5.3

USER'S MANUAL 309

F. IBM ILOG Script 2.0 Language Reference

TableF.11 IBM ILOG Script Loop Statement Syntax (Continued)

Syntax Effect

for ([var] variable in Iterate over the properties of the value of expression: For
expression) each property, variable is set to a string representing this
statement property, and statement is executed once.

If the var keyword is present, variable is declared as a local
variable, as with the var statement.
For example, the following function takes an arbitrary value
and displays all its properties and their values:
function printProperties(v) {
for (var p in v)
writeln(p, " -> ", vipl)

}
Properties listed by the for..in statement include method
properties, which are merely regular properties whose value
is a function value. For example, the call
printProperties ("foo") would display:

length -> 3

toString -> [primitive method toString]

substring -> [primitive method substring]

charAt -> [primitive method charAt]

etc.

The only properties which are not listed by for..in loops are

the numeric properties of arrays.

break Exit the current while, for or for..in loop, and continue the
execution at the statement immediately following the loop.
This statement cannot be used outside of a loop.

Example:
while (i < a.length) {
if (a[i] == "foo") {
foundFoo = true
break
}
i = i+l

}

// Execution continues here

continue Stop the current iteration of the current while, for or for..in
loop, and continue the execution of the loop with the next
iteration. This statement cannot be used outside of a loop.
Example:
for (var i=0; 1 < a.length; i++) {
if (a[i] < 0) continue
writeln("A positive number: ", al[il)

}

310 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM

Statements

Variable Declaration

The variable declaration has the following syntax:
TableF.12 I1BM ILOG Script Variable Declaration Syntax

Syntax

Effect

var decll, ..., decin
where each decli has the
form

variable [= expression]

Declare each variable as a local variable. If an expression is
provided, it is evaluated and its value is assigned to the
variable as its initial value. Otherwise, the variable is set to
the undefined value.
Examples:

var X

var name = "Joe"

var average = (a+b)/2, sum,
message="Hello"

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 311

F. IBM ILOG Script 2.0 Language Reference

Table F.12 I1BM ILOG Script Variable Declaration Syntax (Continued)

Syntax

Effect

var inside a function
definition

When var is used inside of a function definition, the
declared variables are local to the function, and they hide
any global variables with the same name; actually, they have
the same status as function arguments.
For example, in the following program, the variables sum and
res are local to the average function, as well as the
arguments a and b; when average is called, the global
variables with the same names, if any, are temporarily
hidden until the function is exited:
function average(a, b) {

var sum = a+b

var res = sum/2

return res

}
Variables declared with var at any place in a function body

have a scope which is the entire function body. This is
different from local variable scope in C or C++.
For example, in the following function, the variable res
declared in the first branch of the i £ statement is used in the
other branch and in the return statement:
function max(x, y) {
if (x > vy) {

var res = X
} else {
res =y

}

return res

312 IBM

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL

Statements

Table F.12 I1BM ILOG Script Variable Declaration Syntax (Continued)

Syntax

Effect

var outside a function
definition

When var is used outside of a function definition, that is, at
the same level as function definitions, the declared variables
are local to the current program unit. A program unit is a
group of statements which are considered a whole; the exact
definition of a program unit depends on the application in
which IBM ILOG Script is embedded. Typically, a script file
loaded by the application is treated as a program unit. In this
case, variables declared with var at the file top level are local
to this file, and they hide any global variables with the same
names.
For example, suppose that a file contains the following
program:

var count = 0

function NextNumber () {
count = count+1l
return count

}
When this file is loaded, the function NextNumber becomes
visible to the whole application, while count remains local to
the loaded program unit and is visible only inside it.
It is an error to declare the same local variable twice in the
same scope. For example, the following program is incorrect
because res is declared twice:
function max(x, y) {
if (x> vy) {
var res = X
} else {
var res =y // Error

}

return res

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 313

F. IBM ILOG Script 2.0 Language Reference

314

IBM

Function Definition

A function definition has the following syntax:
Table F.13 I1BM ILOG Script Function Definition

Syntax

Effect

[static]
function name(vl, ..., vn)
{ statements }

Defines a function name with the given parameters and
body. A function definition can only take place at the top
level; function definitions cannot be nested.
When the function is called, the variables v1, ..., vn are set
to the corresponding argument values. Then, the statements
are executed. If a return statement is reached, the function
returns the specified value; otherwise, after the statements
are executed, the function returns the undefined value.
The number of actual arguments does not need to match the
number of parameters: If there are less arguments than
parameters, the remaining parameters are set to the
undefined value; if there are more arguments than
parameters, the exceeding arguments are ignored.
Independently of the parameter mechanism, the function
arguments can be retrieved using the arguments keyword.
Defining a function name is operationally the same as
assigning a specific function value to the variable name; thus
a function definition is equivalent to:

var name = some function value
The function value can be retrieved from the variable and
manipulated like any other type of value. For example, the
following program defines a function add and assigns its
value to the variable sum, which makes add and sum
synonyms for the same function:

function add(a, b) {

return a+b

}

sum = add
Without the static keyword, the defined function is global
and can be accessed from the whole application. With the
static keyword, the function is local to the current program
unit, exactly like if name was declared with the var keyword:
var name = some function value

return [expression]

Returns the value of expression from the current function. If
expression is omitted, returns the undefined value. The
return statement can only be used in the body of a
function.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Numbers

Default Value

A default value is used with the following syntax:
TableF.14 1BM ILOG Script Default Value

Syntax Effect
with (expression) Evaluate expression, then execute statement with the value
statement of expression temporarily installed as the default value.

When evaluating a reference to an identifier name in
statement, this identifier is first looked up as a property of
the default value; if the default value does not have such a
property, name is treated as a regular variable.
For example, the following program displays "The length is
3", because the identifier Length is taken as the length
property of the string "abc".

with ("abc") {

writeln("The length is ", length)

}
With statements can be nested; in this case, reference to

identifiers are looked up in the successive default values,
from the innermost to the outermost with statement.

Numbers

IBM

Thetopics are:

Number Literal Syntax

Special Numbers

Automatic Conversion to a Number
Number Methods

Numeric Functions

Numeric Constants

® 6 6 6 6 o o

Numeric Operators

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 315

F. IBM ILOG Script 2.0 Language Reference

316

IBM

Number Literal Syntax
Numbers can be expressed in decimal (base 10), hexadecimal (base 16), or octal (base 8.)

Note: For C/C++ programmers. Numbers have the same syntax as C and C++ integers
and doubles. They are internally represented as 64-bit double precision floating-point
numbers.

A decimal number consists of a sequence of digits, followed by an optional fraction,
followed by an optiona exponent. The fraction consists of adecimal point (.) followed by a
sequence of digits; the exponent consists of an e or & followed by an optional + or - sign and
a sequence of digits. A decimal number must have at |east one digit.

Here are some examples of decimal number literals:
15
3.14
4e100
.25

5.25e-10

A hexadecimal number consists of 0x or 0x prefix, followed by a sequence of hexadecimal
digits, which include digits (0-9) and the letters a- £ or A-F. For example:

0x3ff

0x0

An octal number consists of a 0 followed by a sequence of octal digits, which include the
digits 0-7. For example:

0123
0777

Special Numbers

There are three special numbers: NaN (Not-A-Number), Infinity (positive infinity), and
-Infinity (negative infinity.)

The special number NaN is used to indicate errors in number manipulations. For example,
the square root function Math . sqrt applied to a negative number returns NaN. There is no
representation of NaN as a number literal, but the global variable NaN containsits val ue.

The NaN value is contagious, and a numeric operation involving NaN always returns NaN.
A comparison operation involving NaN always returns false—even the NaN == NaN
comparison.

Examples:

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Numbers

Math.sqgrt (-1) —> NaN
Math.sqgrt (NaN) —> NaN
NaN + 3 —> NaN

NaN == NaN —> false
NaN <= 3 —> false

NaN >= 3 —> false

The special numbers Infinity and -Infinity are used to indicate infinite values and overflows
in arithmetic operations. The global variable Infinity contains the positive infinity. The
negative infinity can be computed using the negation operator (-Infinity).

Examples:
1/0 —> Infinity
-1/0 —> -Infinity
1/Infinity —>0

Infinity == Infinity —>true

Automatic Conversion to a Number

When a function or a method which expects a number as one of its argumentsis passed a
non-numeric value, it tries to convert this value to a number using the following rules:

& A dtringis parsed as anumber literal. If the string does not represent a valid number
literal, the conversion yields NaN.

The boolean true yields the number 1;
The boolean false yields the number O;

The null value yields the number O;

* & & o

A date yields the corresponding number of milliseconds since 00:00:00 UTC, January 1,
1970.

For example, if themath. sqrt function is passed a string, this string is converted to the
number it represents:

Math.sqgrt("25") —>5

Similarly, operators which take numeric operands attempt to convert any non-numeric
operands to a number:

n3no ok g _>12

For operators which can take both strings and numbers, such as +, the conversion to a string
takes precedence over the conversion to a number (see Automatic Conversion to a Sring on

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 317

F. IBM ILOG Script 2.0 Language Reference

page 323.) In other words, if at |east one of the operandsis a string, the other operand is
converted to a string; if none of the operands is a string, the operands are both converted to
numbers. For example:

"3" + true —> "3true"

3 + true —>4

For comparison operators, such as == and >=, the conversion to a number takes precedence
over the conversion to astring. In other words, if at least one of the operandsis a number, the
other operand is converted to a number. If both operands are strings, the comparison is made
on strings. For example:

"o > "o _>fa|%

"10" > 2 —>true

Number Methods

The only number method is:
Table F.15 IBM ILOG Script Number Method

Syntax Effect
number. toString() Returns a string representing the number as a literal.
Example:
(14.3e2) .toString () —> "1430"

Numeric Functions

The following numeric functions are defined:

Note: For C/C++ programmers. Most of these functions are wrap-ups for standard math
library functions.

Table F.16 I1BM ILOG Script Numeric Functions

Syntax Effect

Math.abs(x) Returns the absolute value of x.

Math.max(X, y) Math.max (X, y) returns the larger of x and y, and

Math.min(X, v) Math.min (X, y) returns the lowest of the two.

Math.random() Returns a pseudo-random number between 0, inclusive, and
1, exclusive.

318 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Numbers

Table F.16 I1BM ILOG Script Numeric Functions (Continued)

Syntax

Effect

Math.ceil(x)
Math.floor (Xx)
Math.round (X)

Math.ceil (x) returns the least integral value greater or
equal to x. Math. floor (X) returns the greatest integral
value less or equal to x. Math.round (x) returns the
nearest integral value of x.

Math.sqgrt (X)

Returns the square root of x.

Math.sin(x)
Math.cos (X)
Math.tan (X)
Math.asin (X)
Math.acos (X)
Math.atan (X)
Math.atan2 (v, X)

Math.sin (x), Math.cos (x) and Math. tan (x) return
trigonometric functions of radian arguments.

Math.asin (x) returns the arc sine of xin the range -P1/2 to
PI/2.

Math.acos (X) returns the arc cosine of x in the range 0 to
PI.

Math.atan (x) returns the arc tangent of x in the range -PI/
2 to PI/2.

Math.atan2 (y, x) converts rectangular coordinates (X,
y) to polar (r, @) by computing a as an arc tangent of y/xin
the range -PI to PI.

Math.exp (X)
Math.log (X)
Math.pow (X, V)

Math.exp (X) computes the exponential function ex.
Math.log (x) computes the natural logarithm of x.
Math.pow (X, y) computes x raised to the power y.

Numeric Constants

The following numeric constants are defined:
Table F.17 1BM ILOG Script Numeric Constants

Syntax Value
NaN Contains the NaN value.
Infinity Contains the Infinity value.

Number .NaN

Same as NaN.

Number .MAX_VALUE

The maximum representable number, approximately
1.79E+308.

Number .MIN_VALUE

The smallest representable positive number, approximately
2.22E-308.

Math.E

Euler's constant and the base of natural logarithms,
approximately 2.718.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 319

F. IBM ILOG Script 2.0 Language Reference

Table F.17 I1BM ILOG Script Numeric Constants (Continued)

Syntax Value

Math.LN10 The natural logarithm of 10, approximately 2.302.

Math.LN2 The natural logarithm of two, approximately 0.693.

Math.LOG2E The base 2 logarithm of e, approximately 1.442.

Math.LOG10E The base 10 logarithm of e, approximately 0.434.

Math.PI The ratio of the circumference of a circle to its diameter,
approximately 3.142.

Math.SQRT1_2 The square root of one-half, approximately 0.707.

Math.SQRT2 The square root of two, approximately 1.414.

Numeric Operators

The following numeric operators are available:
l Note: For C/C++ programmers: These operators arethe same asin C and C++.

Table F.18 IBM ILOG Script Numeric Operators

Syntax Effect
X+y The usual arithmetic operations.
Examples:
X-y 3+ 4.2 >17.2
100 - 120 —>-20
x*y 4 * 7.1 —>284
6 /5 —>12
X/y
- X Negation.
Examples:
- 142 —>-142
X%y Returns the floating-point remainder of dividing x by y.
Examples:
12 5 >2
12.5 $ 5 —>25

320 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Numbers

Table F.18 IBM ILOG Script Numeric Operators (Continued)

Syntax

Effect

X==y

Xl=y

The operator == returns true if x and y are equal, and false
otherwise. The operator ! = is the converse of ==.
Examples:

12 == 12 —>true

12 == 12.1 —> false

12 1= 12.1 —> true

X<y

X<=y

X>y

The operator < returns frue if x is smaller than y, and false
otherwise. The operator <= returns true if x is smaller or
equal to y; and false otherwise; and so on.
Examples:

-1 < 0 —> true

1 < 1 —> false

1 <= 1 —> true

The bitwise operations AND, OR, and XOR. X and y must be
integers in the range of -2**32+1 to 2**32-1 (-2147483647 to
2147483647.)
Examples:

14 & 9 —>8(1110 & 1001 —> 1000)

14 | 9 —>15(1110]1001 —>1111)

14 ~ 9 —>7(111071001 —> 111)

Bitwise NOT. X must be an integer in the range of -2**32+1
to 2**32-1 (-2147483647 to 2147483647.)
Examples:

~ 14 —>1(~1110 —>0001)

x<<y

X>>Yy

X>>>Y

Binary shift operations. X and y must be integers in the
range of -2**32+1 to 2**32-1 (-2147483647 to 2147483647.)
The operator << shifts to the left, >> shifts to the right
(maintaining the sign bit), and >>> shifts to the right, shifting
in zeros from the left.
Examples:

9 << 2 —>36(1001 << 2 —>100100)

9 >> 2 —>2(1001>>2 —>10)

-9 >> 2 —>-2(1..11001 >>2 —>1..11110)

-9 >>> 2 —>1073741821 (1..11001 >>>2 —>
01..11110)

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 321

F. IBM ILOG Script 2.0 Language Reference

Strings

322

IBM

Sring Literal Syntax

Automatic Conversion to a String
Sring Properties

Sring Methods

Sring Functions

® & 6 6 o o

Sring Operators

String Literal Syntax

A string literal is zero or more characters enclosed in double (") or single (') quotes.

Note: For C/C++ programmers: Except for the use of single quotes, string literals have the
same syntax asin C and C++.

Here are examples of string literals:
"My name is Hal"
'My name is Hal'
'"Hi there", he said'
"3.14"
"Hello, world\n"

In these examples, the first and the second strings are identical .

The backslash character (\) can be used to introduce an escape sequence, which stands for a
character which cannot be directly expressed in a string literal. Escape sequences allowed in
strings are:

Table F.19 IBM ILOG Script Escape Sequences

Escape Sequence Stands for

\n Newline

\t Tab

A\ Backslash character (\)
\" Double quote (")

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Table F.19 IBM ILOG Script Escape Sequences (Continued)

Strings

Escape Sequence Stands for

\' Single quote ()

\b Backspace

\f Form feed

\r Carriage return

\xhh The character whose ASCII code is hh, where hhis a
sequence of two hexadecimal digits.

\ 000 The character whose ASCII code is 0ooo, where 0oo is a
sequence of one, two, or three octal digits.

Here are examples of string literals using escape sequences:

Table F.20 I1BM ILOG Script Escape Sequence Examples

String Literal

Stands for

"Read \"The Black Bean\""

Read "The Black Bean"

'"\'Hello\', he said’

'Hello', he said

"c:\\temp" c:\temp

"First line\nSecond line\nThird line" First line
Second line
Third line

"\xA9 1995-1997" © 1995-1997

When a string is converted to a number, an attempt is made to parse it as a number literal. If
the string does not represent a valid number literal, the conversion yields NaN.

Automatic Conversion to a String

When a function or a method which expects a string as one of its arguments is passed a non-
string value, this value is automatically converted to astring. For example, if the string
method indexOf is passed anumber asits first argument, this number istreated likeits string

representation:;

"The 10 commandments".indexOf (10) —>4

Similarly, operators which take string operands automatically convert non-string operandsto

strings:

"The " + 10 + " commandments" —> "The 10 commandments’

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL 323

F. IBM ILOG Script 2.0 Language Reference

The conversion to astring uses the tostring method of the given value. All built-in values
have a tostring method.

String Properties

Strings have the following properties:
Table F.21 IBM ILOG Script String Properties

Syntax Value
string.length Number of characters in string. This is a read-only property.
Examples
"abc".length —> 3
"n length—>0

String Methods

Charactersin a string are indexed from left to right. The index of the first character in a
string string is 0, and the index of the last character is string.length-1.

Strings have the following methods:
Table F.22 IBM ILOG Script String Methods

Syntax Effect
string . substring Returns the substring of string starting at the index start and
(start [, end 1) ending at the index end-1. If end is omitted, the tail of string
is returned.
Examples:

"0123456" .substring (0, 3) —>"012"
"0123456" .substring (2, 4) —>"23"
"0123456" .substring (2) —> "23456"

string . charAt (index) Returns a one-character string containing the character at
the specified index of string. If index is out of range, an
empty string is returned.
Examples:

"abcdef".charAt (0) —>"a"

"abcdef" .charat (3) —>"d"

"abcdef".charAt (100) —>""

324 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM

Strings

Table F.22 IBM ILOG Script String Methods (Continued)

Syntax

Effect

string . charCodeAt (index)

Returns the ASCII code of the character at the specified
index of string. If index is out of range, return NaN.
Examples:
"abcdef".charCodeAt (0) —> 97
"abcdef".charCodeAt (3) —> 100
"abcdef".charCodeAt (100) —> NaN

string . indexOf (substring
[,index])

Returns the index in string of the first occurrence of
substring. String is searched starting at index. If index is
omitted, string is searched from the beginning. This method
returns -1 if substring is not found.

Examples:
"abcdabed" . indexOf ("bec") —> 1
"abcdabed" . indexOf ("bec", 1) —>1
"abcdabed" . indexOf ("bec", 2) —>5
"abcdabed" . indexOf ("bec", 10) —>-1
"abcdabed" . indexOf ("foo") —> -1
"abcdabed" . indexOf ("BC") —> -1

string.lastIndexOf
(substring [, index])

Returns the index in string of the last occurrence of
substring. String is searched backwards, starting at index. If
index is omitted, string is searched from the end. This
method returns -1 if substring is not found.

Examples:
"abcdabed" . lastIndexOf ("bc") —>5
"abcdabed" .lastIndexOf ("bc", 5) —>5
"abcdabed" .lastIndexOf ("bec", 4) —>1
"abcdabed" . lastIndexOf ("bec", 0) —>-1
"abcdabed" .lastIndexOf ("foo") —> -1
"abcdabed" .lastIndexOf ("BC") —>-1

string. toLowerCase ()

Returns string converted to lowercase.
Examples:
"Hello, World".toLowerCase () —> "hello, world"

string . toUpperCase ()

Returns string converted to uppercase.
Examples:
"Hello, World".toUpperCase() —>
"HELLO, WORLD"

ILOG VIEwWS FOUNDATION V5.3 —

USER'S MANUAL 325

F. IBM ILOG Script 2.0 Language Reference

Table F.22 IBM ILOG Script String Methods (Continued)

Syntax Effect

string. split (Separator) Returns an array of strings containing the substrings of
string which are separated by separator. See also the array
method join.
Examples:
"first name,last name,age".split(",") —>an

array a such that a.length is 3, a[0] is "first name", a[1] is
"last name", and a[2] is "age".
If string does not contain separator, an array with one
element containing the whole string is returned.
Examples:

"hello".split (", ") —> an array asuch that a.length
is 1 and a[0] is "hello",

string. toString() Returns the string itself.

326 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Strings

String Functions

The following functions operate on strings:
Table F.23 IBM ILOG Script String Functions

Syntax Effect
String. fromCharCode Returns a single character string containing the character
(code) with the given ASCII code.

Examples:

String.fromCharCode (65) —> "A"
String.fromCharCode (0xA9) —> "©"

parselnt (string Parses string as an integer written in the given base, and
[, base]) IBM returns its value. If the string does not represent a valid
integer, NaN is returned.
Leading white space characters are ignored. If parseInt
encounters a character that is not a digit in the specified
base, it ignores it and all succeeding characters and returns
the integer value parsed up to that point.
If base is omitted, it is taken to be 10, unless string starts
with 0x or 0X, in which case it is parsed in base 16, or with
0, in which case it is parsed in base 8.
Examples:

parseInt ("123") —>-123

parseInt ("-123") —>-123

parseInt ("123.45") —> 123

parseInt ("1001010010110", 2) —> 4758

parseInt ("a9", 16) —> 169

parseInt ("0xa9") —> 169

parseInt ("010") —>8

parseInt ("123 poodles") —> 123

parseInt ("a lot of poodles") —> NaN

parseFloat (String) Parses string as a floating-point number and return its value.
If the string does not represent a valid number, NaN is
returned.
Leading white space characters are ignored. The string is
parsed up to the first unrecognized character. If no number is
recognized, the function returns NaN.
Examples:
parseFloat ("-3.14e-15") —> -3.14e-15
parseFloat ("-3.14e-15 poodles") —> -3.14e-15
parseFloat("a fraction of a poodle") —>NaN

IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL 327

F. IBM ILOG Script 2.0 Language Reference

328

IBM

String Operators
The following operators can be used to manipulate strings:
TableF.24 1BM ILOG Script String Operators

Syntax Effect

stringl + string2 Returns a string containing the concatenation of stringl and
string2.
Examples:

"Hello," + " world" —> "Hello, world"
When the operator + is used to add a string to a non-string
value, the non-string value is first converted to a string.
Examples:

"Your age is " + 23 —>"Your age is 23"

23 + " is your age" —>"23is your age"

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Strings

Table F.24 I1BM ILOG Script String Operators (Continued)

Syntax

Effect

stringl == string2

stringl '= string2

The operator == returns the boolean true if string1 and
string2 are identical, and false otherwise. Two strings are
identical if they have the same length and contain the same
sequence of characters. The operator ! = is the converse of

Examples:

"a string" == "a string" —> true
"a string" == "another string" —> false
"a string" == "A STRING" —> false
"a string" != "a string" —> false
"a string" != "another string" —> frue

When the operators == and ! = are used to compare a string
with a number, the string is first converted to a number and
the two numbers are compared numerically.

Examples:
"12" == "+12" —> false
12 == "+12" —> true

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 329

F. IBM ILOG Script 2.0 Language Reference

Table F.24 I1BM ILOG Script String Operators (Continued)

Syntax

Effect

stringl < string2
stringl <= string2
stringl > string2

stringl >= string2

The operator < returns true if string1 strictly precedes string2
lexicographically, and false otherwise. The operator <=
returns true if string1 strictly precedes string2
lexicographically or is equal to it, and false otherwise; and so
on.
Examples:

"abc" < "xyz" —> frue

"a" < "abc" —> true

" Xyz " < "abc" —> false

"abc" < "abc" —> false

"abc" > "xyz" —> false

"a" > "abc" —> false

"xyz" > "abc" —> frue
Etc.
When one of these operators is used to compare a string
with a non-string value, the non-string value is first converted
to a string.
Examples:

"2" >= 123 —> true

123 < "2" —> false
When one of these operators is used to compare a string
with a number, the string is first converted to a number and
the two numbers are compared numerically.
Examples:

"10" > "2" —> false

10 > "2" —>true

Booleans

330

IBM

¢ Boolean Literal Syntax

& Automatic Conversion to a Boolean

¢ Boolean methods
¢ Logical Operators

Boolean Literal Syntax

There are two boolean literals: true, which represents the boolean value true, and false,
which represents the boolean value fal se.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Booleans

When converted to a number, true yields 1 and false yields 0.

Automatic Conversion to a Boolean

When afunction, method or statement which expects a boolean as one of its argumentsis
passed a non-boolean value, this value is automatically converted to a boolean as follows:

The number 0 yields false;

The empty string "" yields false;
The null value yields fal se;

The undefined value yields false;

Any other non-boolean values yield true.

*® 6 6 o o

For example:

if ("") writeln("True"); else writeln("False");
if (123) writeln("True"); else writeln("False");

displays "False", then "True".

Boolean methods

The only boolean method is:
Table F.25 IBM ILOG Script Boolean Method

Syntax Effect
boolean. tostring() Returns a string representing the boolean, either "true" or "false".
Example:

true.toString —> "true"
false.toString —> "fase"

Logical Operators

The following boolean operators are available:

I Note: For C/C++ programmers. These operators are the sameasin C and C++.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 331

F. IBM ILOG Script 2.0 Language Reference

Table F.26 I1BM ILOG Script Logical Operators

Syntax

Effect

! boolean

Logical negation.
Examples:
! true —> false
! false —> true

expl s& exp2

Returns true if both boolean expressions expl and exp2 are
true. Otherwise, returns false.
If expl is false, this expression immediately returns false
without evaluating exp2, so any side effects of exp2 are not
taken into account.
Examples:

true && true—> true

true && false —> false

false && Whatever —> false; whatever is not evaluated.

expl | | exp2

Returns true if either boolean expression expl or expZ2 is
true. Otherwise, returns false.
If expl is true, this expression immediately returns true
without evaluating exp2, so any side effects of exp2 are not
taken into account.
Examples:

false || true—>true
false || false—> false

|

true || whatever —> true; whatever is not evaluated.

condition ? expl : exp2

If condition is true, this expression returns expl; otherwise, it
returns exp2.
When condition is true, the expression expZ2 is not evaluated,
so any side effects it may contain are not taken into account.
Similarly, when condition is false, exp1 is not evaluated.
Examples:

true ? 3.14 : whatever —> 3.14

false ? whatever: "Hello" —>"Hello"

Arrays

332

IBM

Thetopics are:

& [IBM ILOG Script Arrays
& Array Constructor

& Array Properties

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Arrays

& Array Methods

IBM ILOG Script Arrays

Arrays provide away of manipulating ordered sets of values referenced through an index
starting from 0. Unlike arrays in other languages, IBM ILOG Script arrays do not have a
fixed size and are automatically expanded as new elements are added. For example, in the
following program, an array is created empty, and is then added new elements:

a = new Array() // Create an empty array

al0] = "first" // Set the element 0
all] = "second" // Set the element 1
al2] = "third" // Set the element 2

Arrays are internally represented as sparse objects, which means that an array where only
the element 0 and the element 10000 have been set occupies just enough memory to store
these two elements, not the 9999 which are between 0 and 10000.

Array Constructor

The array constructor has two distinct syntaxes:
Table F.27 IBM ILOG Script Array Constructor Syntax

Syntax Effect

new Array(length) Returns a new array of length length with its elements from O
to length-1 set to null.
If length is not a number, and its conversion to a number
yields NaN, the second syntax is used.
Examples:

new Array (12) —>an array awith length 12 and a[0] to
a[11] containing null.

new Array ("5") —>an array a with length 5 and a[0] to
a[4] containing null.

new Array ("foo") —> see second syntax.

new Array(elementl, ..., Returns a new array a of length n with a[0] containing
elementn) elementl, a[1] containing element2, and so on. If no
argument is given, that is n=0, an empty array is created. If
n=1 and elementl1 is a number or can be converted to a
number, the first syntax is used.
Examples:

new Array (327, "hello world") —>an array a of
length 2 with a[0] == 327 and a[1] == "hello world".

new Array () —> an array with length 0.

new Array("327") —> see first syntax.

IBM ILOG VIEWS FOUNDATION V5.3 — USER’S MANUAL 333

F. IBM ILOG Script 2.0 Language Reference

Array Properties

The array properties are:
Table F.28 I1BM ILOG Script Array Properties

Syntax Effect

arraylindex] If index can be converted to a number between 0 and 2e32-2
(see Automatic Conversion to a Number on page 317),

array[index] is the value of the index™ element of the array.

Otherwise, it is considered as a standard property access.|f

this element has never been set, null is returned.

Example: Suppose that the array a has been created with:
a = new Array("foo", 12, true)

Then:
a[0] —> "foo"
al[l] —>12
al2] —>true
al31 —>null

al[1000] —> null
When an element of an array is set beyond the current length
of the array, the array is automatically expanded:
al[l000] = "bar"
// the array is automatically expanded.
Unlike other properties, the numeric properties of an array are
not listed by the for..in statement.

array.length The length of array, which is the highest index of an element
set in array, plus one. It is always included in 0 and 2e31-1.
When a new element is set in the array, and its index is greater
or equal to the current array length, the 1ength property is
automatically increased.
Example: Suppose that the array a has been created with:

a = new Array("a", "b", "c")
Then:

a.length —>3

all00] = "bar";a.length —> 101
You can also change the length of an array by setting its length
property.

a = new Array(); al[4] = "foo"; al[9] = "bar";

a.length —>10

a.length=5

a.length —>5

a.length —>5

af[4] —> "foo"

al[9] —>null

334 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Arrays

Array Methods

Arrays have the following methods:
Table F.29 IBM ILOG Script Array Methods

Syntax

Effect

array.join([separator])

Returns a string which contains the elements of the array
converted to strings, concatenated together and separated
with separator. If separator is omitted, it is taken to be ",".
Elements which are not initialized are converted to the empty
string. See also the string method split.

Example: Suppose that the array a has been created with

a = new Array("foo", 12, true)

Then:
a.join("//") —> "fooll12//true"
a.join() —> "foo,12,true"

array.sort([function])

Sorts the array. The elements are sorted in place; no new array
is created.

If function is not provided, array is sorted lexicographically:
Elements are compared by converting them to strings and
using the <= operator. With this order, the number 20 would
come before the number 5, since "20" < "5" is true.

If function is supplied, the array is sorted according to the
return value of this function. This function must take two
arguments x and y and return:

& -lifxissmalerthany;
¢ Oifxisequa toy;
& 1if xisgreater thany.

Example: Suppose that the function compareLength is
defined as
function compareLength(x, y) {
if (x.length < y.length) return -1;
else if (x.length == y.length) return 0;
else return 1;
}
and that the array a has been created with:
a = new Array("giraffe", "rat",
"brontosaurus")
Then a.sort () will reorder its elements as follows:
"brontosaurus" "rat" "giraffe"
while a. sort (compareLength) will reorder them as follows:
"rat" "giraffe" "brontosaurus"

IBM ILOG VIEWS FOUNDATION V5.3 — USER’S MANUAL 335

F. IBM ILOG Script 2.0 Language Reference

Table F.29 IBM ILOG Script Array Methods (Continued)

Syntax Effect

array.reverse() Transposes the elements of the array: The first element
becomes the last, the second becomes the second to last, etc.
The elements are reversed in place; no new array is created.
Example: Suppose that the array a has been created with

a = new Array("foo", 12, "hello", true, false)
Then a.reverse() changes a so that:

al[0] —> false

alll —>true
al2] —>"hello"
al3] —>12
al4] —>"foo

array.tosString() Returns the string "[object Object]".

Objects

Thetopicsare:

¢ |BM ILOG <cript Objects

¢ Defining Methods

& Thethis Keyword

¢ Object Constructor

¢ User-defined Constructors

4 Built-in Methods

336

IBM

IBM ILOG Script Objects

Objects are values which do not contain any predefined properties or methods (except the
toString method), but where new ones can be added. A new, empty object can be created
using the Object constructor. For example, the following program creates a new object,
storesit in the variablemycar, and adds the properties "name" and "year" to it:

myCar = new Object() // o contains no properties
myCar .name "Ford"
myCar.year 1985

Now:

myCar.name —> "Ford"

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

IBM

Objects

myCar.year —> 1985

Defining Methods

Since amethod is really a property which contains afunction value, defining a method
simply consists in defining aregular function, then assigning it to a property.

For example, the following program adds a method "start" to themycar object defined in
IBM ILOG <cript Objects:

function start_engine() {
writeln("vroom vroom\n")

}

myCar.start = start_engine

Now, the expression mycar . start () will cal the function defined as start_engine.
Note that the only reason for using a different name for the function and for the method isto
avoid confusion; we could have written:
function start() {

writeln ("vroom vroom\n")

}

myCar.start = start

The this Keyword

Inside methods, the this keyword can be used to reference the calling object. For example,
the following program defines a method ge tName, which returns the value of the name
property of the calling object, and adds this method to myCar:

function get_name() {
return this.name

}

myCar.getName = get_name

Inside constructors, this references the object created by the constructor. When used in a
non-method context, this returns a reference on the global object. The global object
contains variables declared at toplevel, and built-in functions and constructors.

Object Constructor

Objects are created using the following constructor:
Table F.30 IBM ILOG Script Object Constructor

Syntax Effect

new Object() Returns a new object with no properties.

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 337

F. IBM ILOG Script 2.0 Language Reference

User-defined Constructors

In addition to the object constructor, any user-defined function can be used as an object
constructor, using the following syntax:

Table F.31 IBM ILOG Script User-defined Constructor

Syntax Effect

new function(argl, ..., argn) | Creates a new object, then calls function(argi, ..., argn) to
initialize it.

Inside the constructor, the keyword this can be used to make reference to the object being
initialized.
For example, the following program defines a constructor for cars:

function Car (name, year) {
this.name = name
this.year = year
this.start = start_engine

}
Now, calling

new Car("Ford", "1985")
creates a new object with the propertiesname and year, and a start method.

Built-in Methods

The only object built-in method is:
Table F.32 IBM ILOG Script Built-in Method

Syntax Effect
object. toString() Returns the string "[object Object]". This method can be
overridden by assigning the toString property of an
object.
Dates
Thetopics are:

¢ |BM ILOG <cript Date Values
& Date Constructor

338 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IBM

Dates

& Date Methods
& Date Functions

& Date Operators

IBM ILOG Script Date Values

Date values provide away of manipulating dates and times. Dates can be best understood as
internally represented by a number of milliseconds since 00:00:00 UTC, January 1, 1970.
This number can be negative, thus expressing a date before 1970.

Note: For C/C++ programmers: Unlike dates manipulated by the the standard C library,
date values are not limited to the range of 1970 to 2038, but span over approximately
285,616 years before and after 1970.

When converted to a number, adate yields the number of milliseconds since 00:00:00 UTC,
January 1, 1970.

Date Constructor

The date constructor has four distinct syntaxes:
Table F.33 IBM ILOG Script Date Constructor

Syntax Effect
new Date() Returns the date representing the current time.
new Date(milliseconds) Returns the date representing 00:00:00 UTC, January 1,

1970, plus milliseconds milliseconds. The argument can be
negative, thus expressing a date before 1970. If the
argument cannot be converted to a number, the third
constructor syntax is used.
Examples:

new Date(0) —> a date representing 00:00:00 UTC,
January 1, 1970.

new Date(1000*60*60*24*20) —> adate
representing twenty days after 00:00:00 UTC, January 1,
1970.

new Date(-1000*60*60*24*20) —> a date
representing twenty days before 00:00:00 UTC, January 1,
1970.

ILOG VIEWS FOUNDATION V5.3 — USER’S MANUAL 339

F. IBM ILOG Script 2.0 Language Reference

340

IBM

Table F.33 IBM ILOG Script Date Constructor (Continued)

Syntax

Effect

new Date(string)

Returns the date described by string, which must have the
form:

monthl daylyear hour.minute.second msecond
The date expressed in string is taken in local time.
Example:

new Date("12/25/1932 14:35:12 820") —>a

date representing December the 25th, 1932, at 2:35 PM plus
12 seconds and 820 milliseconds, local time.

new Date(year,
month,
[, date
[, hours
[, minutes
[, seconds
[, mseconds]I)

Returns a new date representing the given year, month,
date, etc., taken in local time. The arguments are:
« year: Any integer.

+ month: range 0-11 (O=January, 1=February, etc)
« day. range 1-31, defaults to 1.

+ hours: range 0-23, defaults to 0.

+ minutes: range 0-59, defaults to 0.

+ seconds: range 0-59, defaults to 0.

+ mseconds: range 0-999, defaults to 0.

Example:

new Date(1932, 11, 25, 14, 35, 12, 820) —>
a date representing December the 25th, 1932, at 2:35 PM
plus 12 seconds and 820 milliseconds, local time.

new Date (1932, 11, 25) —> adate representing
December the 25th, 1932, at 00:00, local time.

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Dates

Date Methods

Dates have the following methods:
Table F.34 IBM ILOG <cript Date Methods

Syntax Effect
date.getTime() Returns (or sets) the number of milliseconds since
date. setTime(milliseconds) |00:00:00 UTC, January 1, 1970.

Example: Suppose that the date d has been created with:
d = new Date(3427)

Then:
d.getTime () —> 3427

date.
date.

toLocaleString()
toUTCString()

Returns a string representing the date in local time
(respectively in UTC.)
Example: Suppose that the date d has been created with:
d = new Date("3/12/1997 12:45:00 0")
Then:
d.toLocaleString () —>"03/12/1997 12:45:00 000"
d.toUTCString () —>"03/12/1997 10:45:00 000",
assuming a local time zone offset of +2 hours with respect
to the Greenwich meridian.

date.getYear() Returns (or sets) the year of date.
date.setYear(year)

date.getMonth() Returns (or sets) the month of date.
date. setMonth(month)

date.getDate() Returns (or sets) the day of date.

date. setDate(day)

date.getHours() Returns (or sets) the hour of date.

date. setHours(day)

date.getMinutes() Returns (or sets) the minute of date.
date.setMinutes(day)

date.getSeconds() Returns (or sets) the second of date.
date. setSeconds(day)

date.getMilliseconds() Returns (or sets) the millisecond of date.
date.setMilliseconds(day)

date.toString() Returns the same value as date. toLocaleString ()

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 341

F. IBM ILOG Script 2.0 Language Reference

Date Functions

The following functions manipul ate dates:
Table F.35 IBM ILOG Script Date Functions

Syntax Effect

Date.UTC(string) Same as new Date(string), but string is taken in UTC and
the result is returned as a number rather than as a date
object.

Date.parse(string) Same as new Date(string), but the result is returned as a
number rather than as a date object.

Date Operators

There are no specific operators for dealing with dates, but, since numeric operators
automatically convert their arguments to numbers, these operators can be used to compute
the time elapsed between two dates, to compare dates, or to add a given amount of timeto a
date. For example:

datel - date2 —> the number of milliseconds elapsed between datel and date2.
datel < date2 —> trueif datel is before date?, false otherwise.
new Date (date+10000) —> adate representing 10000 milliseconds after date.

The following program displays the number of milliseconds spent for executing the
statement <do something>:

before = new Date()

<do something>

after = new Date()

writeln("Time for doing something: ", after-before, " milliseconds.")

The null Value

342

IBM

Thetopics are:
& ThelBM ILOG Script null Value
¢ Methods of null

The IBM ILOG Script null Value

The null valueis a special value used in some places to specify an absence of information.
For example, an array element which hasn't been set yet has a default null value. The null

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

The undefined Value

valueis not to be confused with the undefined val ue, which also specifies an absence of
information in some contexts.

The null value can be referenced in programs with the keyword nu11:
null —>thenull value

When converted to a number, null yields 0.

Methods of null

The only method of null is:
Table F.36 IBM ILOG Script Null Method

Syntax Effect

null. toString() Returns the string "null".

The undefined Value

IBM

Thetopicsare:
¢ ThelBM ILOG Script undefined Value
& Methods of undefined

The IBM ILOG Script undefined Value

The undefined value is a specia value used in some places to specify an absence of
information. For example, accessing a property of avalue which is not defined, or alocal
variable which has been declared but not initialized, yields the undefined value.

Thereis no way of referencing the undefined value in programs. Checking if avalueisthe
undefined value can be done using the typeo £ operator:

typeof (value) == "undefined" —> trueif valueis undefined, false otherwise.

Methods of undefined

The only method of undefined is:
Table F.37 IBM ILOG Script Undefined Method

Syntax Effect

undefined. toString() Returns the string "undefined".

ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 343

F. IBM ILOG Script 2.0 Language Reference

Functions

344 IBM

Thetopics are:
¢ |IBM ILOG Script Functions
& Function Methods

IBM ILOG Script Functions

InIBM ILOG Script, functions are regular values (also known as "first class' values) which
can be manipulated like any other type of value: They can be passed to functions, returned
by functions, stored into variables or into objects properties, etc.

For example, the function parseInt isactually afunction value which is stored in the
parselInt variable:

parseInt —> afunctionvaue
This function value can be, for example, assigned to another variable:

myFunction = parselnt
and then called through this variable:

myFunction("-25") —>-25

Function Methods

The only method of functionsis:
Table F.38 IBM ILOG Script Function Method

Syntax Effect

function. toString() Returns a string which contains some information about the
function.
Examples:

"foo".substring.toString () —> "[primitive
method substring]"

eval.toString() —>"[primitive function eval]

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

Miscellaneous

Miscellaneous

Miscellaneous functions are described in the following table.
Table F.39 Miscellaneous Functions

Syntax

Effect

stop()

Stops the execution of the program at the current statement
and, if the debugger is enabled, enters in debug mode.

write(argl, ..., argn)
writeln(argl, ..., argn)

Converts the arguments to strings and prints them to the
current debug output. The implementation of this depends
on the application in which IBM ILOG Script is embedded.
The function writeln prints a newline at the end of the
output, while write does not.

loadFile(string)

Loads the script file whose path is string. The path can be
either absolute or relative. If this path does not designate an
existing file, the file is looked up using a method which
depends on the application in which IBM ILOG Script is
embedded; typically, a file with the name string is searched
in a list of directories specified in the application setup.

eval(string)

Executes string as a program, and returns the value of the
last evaluated expression. The program in string can use all
the features of the language, except that it cannot define
functions; in other words, the function statement is not
allowed in string.
Examples:

eval ("2*3") —>6

eval ("var i=0; for (var j=0; 3j<100; j++)
i=i+j; i") —>4950

n=25; eval("Math.sgrt(n)") —>5
eval ("function foo(x) { return x+1 }") —>
error

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 345

F. IBM ILOG Script 2.0 Language Reference

346 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

A

accelerators
and containers 135, 136, 137
predefined in containers 137
addAccelerator member function
IlvContainer class 136
addCallback member function
IlvGraphic class45
addInput member function
IlvEventLoop class 163
addObject member function
IlvContainer class 132
addoutput member function
IlvEventLoop class 163
addTransformer member function
IlvContainer class 134
alphavalue 83
alphaCompose member function
I1vRGBBitmapData class96
anti-aliasing mode 84
application context (X Window) 276
applications
internationalized 201
making scriptable 186, 196
multilingua 215
packaging with IBM ILOG Views 257
apply member function
IlvBitmapFilter class97
applyToObject member function

Index

IlvContainer class132
applyToObjects member function
IlvContainer class132
applyToTaggedObjects member function
IlvContainer class132
arc mode graphic resource 82
arcs47
ascent member function
IlvFont class78

B

begin method
IlvPrintableDocument 176

bibliography 22

bitmap graphic formats 90
portable 93

blend member function
I1vRGBBitmapData class95

buf feredDraw member function
IlvContainer class 134

C

C++
book references 22
prerequisites 19
callbacks 44
Main 45
registering 44

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL 347

types 45
child 122
classes
creating 155
clipping 32, 85
color resources 35, 73
color conversion 88
color name 75
converting between color models 76
creating new colors 75
HSV color 73
mutable colors 75
quantizer 88
RGB color 73
shadow colors 76
static colors 75
connecting to display server 113
containers
displaying 133
drawing member functions 133
geometric transformations 134
object interactors 137
object properties 132
tagged objects 132
contains member function
IlvContainer class 144
cursor resources 85
cursors
predefined 80

D

dbm file format 222
DeclareInteractorTypeInfo macro 139
DeclarelInteractorTypeInfoRO macro 139, 140
DeclareIOConstructors macro 60, 67
DeclarePropertyInfo macro 171
DeclarePropertyInfoRO macro 172
DeclarePropertyIOConstructors macro 171
DeclareTypeInfo macro 60, 62, 66
DeclareTypeInfoRO macro 62, 156
defaultBackground member function

IlvDisplay class70, 71,75
defaultCursor member function

IlvDisplay class70, 71

defaul tFont member function
IlvDisplay class70
defaultForeground member function
IlvDisplay class70, 75
defaultLineStyle member function
IlvDisplay class70
defaultPalette member function
IlvDisplay class47
defaultPattern member function
IlvDisplay class70
descent member function
I1lvFont class78
dialogs
printing 181
diamonds 54
dispatchEvent virtua member function
IlvEventLoop class 164
display monitors
multiple 270
display path 118
display system 111
display system resources 114
home 116,118
IlvPath 119
lang 116
look 116
messageDB 116
on Windows 117
doIt member function
I1lvTimer class 162
double buffering 135
and containers 135
draw member function
IlvContainer class133
drawing 121
drawing ports 127
dynamic modules
adding classes 158
compiling options (UNIX) 151
compiling options (Windows) 152
definition 149
explicit mode 154
implicit mode 153
initialization 150
loading 153, 157

348 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

on UNIX 151

on Windows 152
registration 157
registration macros 157

E

ellipses 47
encoding methods 230
end member function
IlvDevice class128
end method
IlvPrintableDocument 176
ensureInScreen method
IlvViewclass271
environment variables
ILVDB 116
ILVHOME 116, 118
ILVLANG 116, 215, 220, 225
ILVLOOK 116
ILVPATH 119
error messages 287
fatal errors 288
warnings 291
event handlers 161
event loop
external input sources 163
idle procedures 163
low-level event handling 164
events 135
handling low-level 164
keyboard 161
mouse 161
playback 161
player 161
recording 161
examples
extracted 22
extending IBM ILOG Views 147

F

£111 member function
I1vRGBBitmapData class 95
fill rule graphic resource 81

fill style graphic resource 81

filters 97
SVG97

fitToContents member function
IlvContainer class134

fitTransformerToContents member function

IlvContainer class135
focus chain 41
font resources 37, 78
creating new fonts 79
names 79

G

gadgets
callbacks 44

gauges 58, 59

GDI+ features 268

geometric transformations
and containers 134

Get static member function
IlvInteractor class139

getAccelerator member function
IlvContainer class136, 137

getBBox method
IlvPrintable class177

getCallback member function
IlvGraphic class45

getCallbackName member function
IlvGraphic class45

getColor member function
IlvDisplay class 75

GetContainer member function
IlvContainer class133

getData member function
IlvBitmapData class95

getDatabase member function
IlvDisplay class215

getDisplay member function
IlvResource class72

getFamily member function
I1lvFont class78

getFont member function
IlvDisplay class79

getFoundry member function

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

349

IlvFont class78
getIndex member function
IlvColor class75
getInteractor member function
IlvGraphic class 138
getName member function
IlvResource class71
getNamedProperty member function
IlvNamedProperty class 167
getObject member function
IlvContainer class 132
getPalette member function
IlvDisplay class46, 85, 86, 87
getRGBPixel member function
I1vRGBBitmapData class 95
getRGBPixels member function
I1vRGBBitmapData class95
getSize member function
IlvFont class78
getStyle member function
IlvFont class78
getSymbol member function
IlvNamedProperty class 168
getSystemvView member function
IlvAbstractView class124
getTaggedObjects member function
IlvContainer class 132
getTransformer member function
IlvContainer class 134
getXxXxX member functions
IlvDisplay class72
global functions
I1lGetSymbol 132
IlvApplicationContext (X Window) 276
IlvComputeReliefColors 76
IlvCurrentEventPlayer 162
IlvFatalError 288
IlvGetDefaultHome 118
IlvGetErrorHandler 288
I1vHSVTORGB 76
IlvPrint 144
IlvRecordingEvents 162
I1vRGBTOHSV 76
IlvSetDefaul tHome 118
IlvSetErrorHandler 288

IlvWarning 288
graphic attributes 46
graphic formats 89

bitmap 90

portable bitmap 93

supported 89

vectorial 89
graphic objects

and containers 131

arcs47

classinformation 41

class properties 42

creating a new graphic object class 59

diamonds 54

ellipses 47

focus chain properties 41

gadget properties 41

gauges 58, 59

geometric properties 40

graphic properties 40

grids 53

grouping 55

handle 57

icons48

IlvGraphic class46

input/output 43

introduction 40

labels 49, 53

lines 49

markers 50

named properties 40

owning 57

polygons 51

predefined 47

reading 44

rectangles 52, 53

referenced 57

referencing 55

splines 54

user properties 40

writing 43
graphic resources 69

arc mode 82

color 35

color pattern 37

350 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

fill rule 81

fill style81

font 37

line style 36

line width 80

pattern 36
graphic transformations 57
grids 53
grouping

graphic objects 55, 57

H

handle object 57

handleEvent member function
IlvViewObjectInteractor class 146
interactor classes 137

hasEvent member function
IlvDisplay class 164

height member function
IlvFont class78

home display system resource 116

home system resource 118

HSV color 73

i18n 202

IBM ILOG Script for IBM ILOG Views
accessing objects 188
accessing panels and gadgets 189
application object 188
arc mode name resources 199
binding objects 187, 188
bitmaps 196
callbacks 191
color name resources 197
common properties of objects 194
creating runtime objects 193
default files 190
devel oping scriptabl e applications 196
direction name resources 199
fill rule name resources 199
fill style name resources 200
fonts 196

getting the global context 187
handling panel events 192
including the header file 187
independent files 190
inline scripts 190
line style name resources 200
linking to libraries 187
loading modules 189
making applications scriptable 186, 196
onClose property 193
onHide property 193
OnLoad function 192
onShow property 192
panel events 192
pattern name resources 200
programming guide 185
resource names 195, 197
resources 195
setting callbacks 191
static functions 190
using bitmaps 196
using callbacks 191
using fonts 196
using resource names 195
using resources 195
writing callbacks 191
IBM ILOG Script reference

-+* 1%

arithmetic operators 306
N && 2

logical operators 307

string delimiters 322

0
function call operator 303
operator precedence 298
sequence operator 306
-1
property access operators 301
I 1**/
comments 297

)

statement terminator 297
= 4= =*= [Z2 Y= <<= >>=>>>= § == |:

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

assignment operators 302
===
equality operators 306
>>=< <=
relational operators 307
\n \t WA" V" \b \f \r \xhh \ooo
string escape sequences 322
{}
compound statement delimiters 296
~& |N<<>>>>>
bitwise operators 307
abs function 318
acos function 319
arguments keyword 304
array constructor 333
arrays 332
constructor 333
methods 335
properties 334
asin function 319
assignment operators 302
atan function 319
atan2 function 319
booleans 330
operators 331
break statement 310
ceil function 319
charAt method 324
charCodeAt method 325
comments 297
compound statements 296
conditional statement 308
continue statement 310
conversion to a number 317
conversion to astring 323
cos function 319
Date constructor 339
date functions 342
dates 338
constructor 339
functions 342
methods 341
operators 342
default value 315
delete operator 305

E constant 319
eval function 345
expl function 319
expressions 298
floor function 319
for statement 309
for. .in statement 310
fromCharCode function 327
function statement 314
functions 344

call 303

definition 314

value 344
getDate method 341
getHours method 341
getMilliseconds method 341
getMinutes method 341
getMonth method 341
getSeconds method 341
getTime method 341
getYear method 341
identifier syntax 297
if statement 308
index0Of method 325
Infinity constant 317, 319
join method 335
lastIndexOf method 325
length property

arrays 334

strings 324
literals 299
LN10 constant 320
LN2 constant 320
loadFile function 345
log function 319
LOG10E constant 320
LOG2E constant 320
logical operators 331
loop statements 309
math functions 318
max function 318
MAX_VALUE constant 319
method definition for objects 337
min function 318
MIN_VALUE constant 319

352 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

NaN constant 316, 319
new operator 304, 337, 338
null value 342
numbers 315
constants 319
conversionto 317
functions 318
methods 318
operators 320
syntax 316
numeric functions 318
objects 336
constructor 337
user-defined constructor 338
user-defined method 337
operators 299
assignment operators 302
for booleans 331
for dates 342
for numbers 320
for strings 328
precedence 299
parse function 342
parseFloat function 327
PI constant 320
pow function 319
precedence of operators 298
program 296
properties
access 301
assignment 302
deleting 306
random function 318
return keyword 314
reverse method 336
round function 319
semicolon (;) 296
sequence operator (,) 306
setDate method 341
setHours method 341
setMilliseconds method 341
setMinutes method 341
setMonth method 341
setSeconds method 341
setTime method 341

setYear method 341
sin function 319
sort method 335
special numbers 316
split method 326
sqgrt function 319
SQRT1_2 constant 320
SQRT2 constant 320
statements 307
static keyword 314
stop function 345
strings 322
conversion to 323
functions 327
methods 324
operators 328
properties 324
syntax 322
substring method 324
syntax 296
tan function 319
this keyword 304, 337
toLocaleString method 341
toLowerCase method 325
toString method 324
array 336
boolean 331
date 341
function 344
null 343
number 318
object 338
string 326
undefined 343
toUpperCase method 325
toUTCString method 341
typeof operator 305
undefined value 343
UTC function 342
var statement 311
variables
assignment 302
declaration asloca 311
deleting 305
implicit declaration as global 302

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

353

reference 300
syntax 297
while statement 309
write function 345
writeln function 345
IBM ILOG Views
and C++ 89
class hierarchy 26
disk space 89
encoding methods for internationalization 230
graphic formats supported 89
libraries 25
making applications scriptable 186, 196
packaging with applications 257
using on Microsoft Windows 263
using on X Window systems 273
icons 48
idle procedures 163
I1GetSymbol global function 132
T1Symbol class 132, 167
messages 215
ilv2data tool
adding aresource fileto UNIX 260
adding aresource fileto Windows DLL 261
launching 258
launching with a batch command 259
panel 258
what is 257
IlvAbstractView class121, 124
getSystemview member function 124
IlvApplicationContext function 276
IlvApplicationContext global function (X Window)
276
IlvArc class47
I1lvArcChord symbol 82
IlvArcMode type 82
IlvArcPie symbol 82
IlvArrowLine class50
IlvArrowPolyline class51
IlvBitmap class77, 91
IlvBitmapData class93, 94
getData member function 95
IlvBitmapFilter class97
apply member function 97
IlvBlendFilter class98

354 IBM

ilvbmpflt library 97
IlvButtonInteractor class 140
I1vBWBitmapData class 96
IlvClosedSpline class55
IlvColorclass71, 73

getIndex member function 75

using 74
IlvColorMatrixFilter class99
IlvColorPattern class77
IlvComponentTransferFilter class 100
IlvComposeFilter class101
IlvComputeReliefColors globa function 76
IlvContainer class123, 131

addAccelerator member function 136

addObject member function 132

addTrans former member function 134

and views 126

applyToObject member function 132

applyToObjects member function 132

applyToTaggedObjects member function 132

buf feredDraw member function 134

contains member function 144

draw member function 133

fitToContents member function 134

fitTransformerToContents member function

135

getAccelerator member function 136, 137

GetContainer member function 133

getObject member function 132

getTaggedObjects member function 132

getTransformer member function 134

isDoubleBuf fering member function 135

read member function 135

readFile member function 135

reDraw member function 133

reDrawObj member function 134

removeAccelerator member function 136, 137

removeObject member function 132

removeTaggedObjects member function 132

setDoubleBuffering member function 135

setObjectName member function 133

setTransformer member function 134

setVisible member function 133

swap member function 133

translateView member function 134

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

zoomView member function 134
IlvContainerAccelerator class 136
IlvConvolutionFilter class102
IlvCurrentEventPlayer global function 162
IlvCursor class80
ILVDB environment variable 116
IlvDevice class

end member function 128

init member function 127

isBad member function 127

newPage member function 128

send member function 128

setTransformer member function 128
IlvDiffuseLightingFilter class 104
IlvDisplaceFilter class103
IlvDisplay class70, 111, 263, 274

appendToPath member function 119

defaultBackground member function 70, 71, 75

defaultCursor member function 70, 71

defaultFont member function 70

defaul tForeground member function 70, 75

defaultLineStyle member function 70

defaultPalette member function 47

defaultPattern member function 70

drawing commands 112

getColor member function 75

getDatabase member function 215

getFont member function 79

getPalette member function 46, 85, 86, 87

getPath member function 119

getXxxX member functions 72

graphic resources 113

hasEvent member function 164

lock member function 46, 91

message database 215

predefined line styles 77

predefined patterns 78

prependToPath member function 119

primitives 112

readAndDispatchEvents member function 164

screenBBox method 270

setPath member function 119

topShell member function (X Window) 276

unLock member function 46, 91

waitAndDispatchEvents member function 164

IBM

IlvDistantLight class 106
IlvDragDropInteractor class141
IlvDrawingView class 125
I1lvDrawMode enumeration type 83
IlvElasticView class 125
IlvEllipse class47
I1lvError class 287
I1vEvenOddRule symbol 82
IlvEvent class161
IlvEventLoop class
addInput member function 163
addoutput member function 163
dispatchEvent virtua member function 164
nextEvent virtual member function 164
pendingInput virtual member function 164
processInput virtual member function 164
removeInput member function 163
removeOutput member function 163
IlvEventPlayer class 161
IlvFatalError globa function 288
IlvFillColorPattern symbol 81
IlvFilledArc class47
IlvFilledEllipse class47
IlvFilledLabel class49
IlvFilledRectangle class52
IlvFilledRoundRectangle class53
IlvFilledSpline class55
IlvFillMaskPattern symbol 81
I1vFillOnly constant
IlvGraphicPath class56
IlvFillPattern symbol 81
IlvFillRule type81
I1vFillStyle enumeration type 81
IlvFilteredGraphic class109
IlvFilterFlow class108
IlvFixedQuantizer class 88
IlvFixedSizeGraphic class58
IlvFloodFilter class 103
IlvFont class71, 78
ascent member function 78
descent member function 78
getFamily member function 78
getFoundry member function 78
getSize member function 78
getStyle member function 78

ILOG VIEwWS FOUNDATION V5.3 — USER’S MANUAL

355

height member function 78
isFixed member function 79
maxWidth member function 79
minWidth member function 79
sizes member function 79
stringHeight member function 79
stringWidth member function 79
IlvGadget class59
IlvGauge class58
IlvGaugeInteractor class
handleEvent member function 146
IlvGaussianBlurFilter class103
IlvGetDefaultHome global function 118
IlvGetErrorHandler globa function 288
IlvGetWindowsPrinter global function 267
IlvGraphic class46, 56, 134, 138
addCallback member function 45
getCallback member function 45
getCallbackName member function 45
getInteractor member function 138
graphic object 46
member functions 40
redefining member functions 61
removeCallback member function 45
setCallback member function 45
setCallbackName member function 45
setInteractor member function 138
IlvGraphicCallback type44
IlvGraphicHandle class57
IlvGraphicInstance class58
IlvGraphicPath class55
IlvGraphicSet class56
IlvGridRectangle class53
I1vGroupGraphic class59
ILVHOME environment variable 116, 118
I1vHSVToRGB global function 76
IlvHueRotateFilter class99
IlvIcon class48
IlvImageFilter class104
IlvIndexedBitmapData class 94
ILVINITIALIZEMODULE macro 150
IlvInputFile class43, 44,139
IlvInteractor class138, 139
Get static member function 139
IlvLabel class49, 139

ILVLANG environment variable 116, 215, 220, 225
IlvLightingFilter class 104
IlvLightSource class 106
IlvLine class49
IlvLineStyle class76
IlvListLabel class49
ILVLOOK environment variable 116
IlvLuminanceToAlphaFilter class100
IlvMain function 264
I1lvMainLoop function 277
IlvMainLoop globa function 264
I1lvMapxx class 59
IlvMarker class50
IlvMergeFilter class 107
IlvMessageDatabase class215
I1lvModeAnd draw mode 83
I1lvModeInvert draw mode 83
I1vModeNot draw mode 83
I1vModeNotAnd draw mode 83
I1vModeNotOr draw mode 83
I1vModeNotXor draw mode 83
I1vModeOr draw mode 83
I1lvModeSet draw mode 83
I1lvModeXor draw mode 83
IlvModule class 149, 150
Load static member function 154
IlvMorphologyFilter class 107
IlvMoveInteractor class 139, 140
IlvMoveReshapeInteractor class 141
IlvNamedProperty class 167
getNamedProperty member function 167
getSymbol member function 168
removeNamedProperty member function 168
setNamedProperty member function 168
IlvNetscapeQuantizer class 88
IlvOffsetFilter class107
IlvOutlinePolygon class51
IlvOutputFile class43
IlvPalette class46, 62,70, 85,113
draw mode 83
locking and unlocking resources 85
setClip member function 85
IlvPaperFormat class 180
IlvPath display resource 119
ILVPATH environment variable 119

356 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IlvPattern class77
IlvPointLight class106
IlvPolygon class51l
IlvPolyline class51
IlvPolyPoints class50
IlvPolySelection class51
IlvPort class112,121, 127
IlvPostScriptPrinterDialog class 181
IlvPredefinedInteractorIOMembers macro 140
IlvPredefinedIOMembers macro 60, 67
IlvPredefinedPropertyIOMembers macro 173
I1lvPrint globa function 144
IlvPrintable class176

getBBox method 177

internalPrint method 177
IlvPrintableComposite class178
IlvPrintableContainer class177
IlvPrintableDocument

Iterator class 176

IlvPrintableDocument class176
begin method 176
end method 176

IlvPrintableFormattedText class177
IlvPrintableFrame class 178
IlvPrintableGraphic class178
IlvPrintableLayout class178
IlvPrintableLayoutFixedSize class179
IlvPrintableLayoutIdentity class179
IlvPrintableLayoutMultiplePages class178
IlvPrintableLayoutOnePage class178
IlvPrintableManager class 178
IlvPrintableManagerLayer class178
IlvPrintableMgrView class 178
IlvPrintableText class177
I1vPrintCMUnit class179
IlvPrinter class179
IlvPrinterPreviewDialog class 182
IlvPrintInchUnit class180
IlvPrintPicaUnit class180
IlvPrintPointUnit class179
I1vPrintUnit class179
I1lvPSDevice class129
IlvPSPrinter class179
IlvQuantizer class 88

IlvQuickQuantizer class 88
IlvRecordingEvents global function 162
I1lvRect class 134

IlvRectangle class52

IlvRegion class 134

IlvRegisterClass macro 60, 67,68, 155, 156
IlvRegisterInteractorClass macro 140

IlvRegisterPropertyClass macro 173
IlvReliefDiamond class54
IlvReliefLabel class54
IlvReliefLine class50
IlvReliefRectangle class54
IlvRepeatButtonInteractor class140
IlvReshapeInteractor class141
IlvResource class69, 70,113

getDisplay member function 72

getName member function 71

1lock member function 72

setName member function 71

unLock member function 72

unLock virtual member function 72
I1vRGBBitmapData class95

alphaCompose member function 96

blend member function 95

£111 member function 95

getRGBPixel member function 95

getRGBPixels member function 95

stretch member function 96

stretchSmooth member function 96

tile member function 96
I1vRGBToHSV global function 76
IlvRoundRectangle class 52
IlvSaturationFilter class99
IlvScale class58
IlvScrollview class123, 126
IlvSetDefaultHome globa function 118
IlvSetErrorHandler global function 288
IlvShadowLabel class53
IlvShadowRectangle class53
IlvSimpleGraphic class 46, 56

member functions 46
IlvSpecularLightingFilter class105
IlvSpline class54
IlvSpotLight class 106
IlvStrokeAndFill constant

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

357

IlvGraphicPath class56
I1vStrokeOnly constant

IlvGraphicPath class 55, 56
IlvSystemPort class129
IlvSystemView type 124
IlvTileFilter class107
IlvTimer class 162

doIt member function 162

run member function 162
IlvTimerProc type 162
IlvTogglelInteractor class 140
IlvToolTip class168
IlvTransformedGraphic class57
IlvTransformer class58
IlvTransparentIcon class48, 93
IlvTurbulenceFilter class107
Ilvviewclass121, 123, 124

ensureInScreen method 271

moveToView method 271
IlvWarning global function 288
I1lviindingRule symbol 82
IlviwindowsDevice 267
IlviWindowsPrinter class179
IlviWindowsVirtualDevice 267
IlviwuQuantizer class 88
IlvZoomableIcon class48
IlvZoomableLabel class49
IlvZoomableMarker class 50
IlvZoomableTransparentIcon class49
images

color quantization 88

processing 97

processing filters 97
init member function

IlvDevice class127
Input Method (IM) 227
input sources

aternate 163

externa 163

registering 163
interactors 33

and containers 137
internalPrint method

IlvPrintable class177
internationalization 201

application program requirements 203
considerations for Far Eastern languages 226
datainput requirements 227
encoding methods 230
IBM ILOG Viewslocale names 210
locale requirements 204
message databases 214
required fonts 212
restrictions 228
troubleshooting 229
X library support 209
isBad member function
IlvDevice class 127
isDoubleBuffering member function
IlvContainer class 135
isFixed member function
IlvFont class79

K
keyboard focus 45

L

labels 49, 53
lang display system resource 116
libmviews library 273
libraries 25
libxviews library 273
line style 36
line style resources 76
creating new line styles 76
line width 36
line width resources 80
lines 37, 49
Load static member function
IlvModule class 154
locale
definition 202
required fonts 212
locaes
AlX support 248
HP-UX 11.0 support 241
Microsoft Windows support 236
OSF support 254

358 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

Solaris 2.7 support 243
supported 236

Llock member function
IlvDisplay class46, 91
IlvResource class72

look display system resource 116

M

macros
DeclareInteractorTypeInfo 139
DeclareInteractorTypeInfoRO 139
DeclareIOConstructors 60, 67
DeclareTypeInfo 60, 62, 66
DeclareTypeInfoRO 62, 156
ILVINITIALIZEMODULE 150

IlvPredefinedInteractorIOMembers 140

IlvPredefinedIOMembers 60, 67
IlvPredefinedPropertyIOMembers 173
IlvRegisterClass 60, 67, 68, 155, 156
IlvRegisterInteractorClass 140
IlvRegisterPropertyClass 173
main function 264
manual
naming conventions 21
notation 21
organization 19
markers 50
maxWidth member function
IlvFont class79
message databases 214, 215
messageDB display system resource 116
minWidth member function
IlvFont class79
module definition file
definition 153
writing 155
Motif applications
integrating with IBM ILOG Views 275
moveToView method
IlvView class271
multilingual applications 215

N

named properties
associating with objects 167
creating 169
defining constructors 170, 171
defining the property symbol 170
defining the set String function 171
defining thewrite function 172
extending 168
header file 169
providing an entry point 172
registering the class 173
tooltips 168
using anew property 173
naming conventions 21
newPage member function
IlvDevice class 128
nextEvent vitual member function
IlvEventLoop class 164
notation 21

O

object interactors
and containers 137
predefined 140
registering 139
using 138
object-oriented programming 26

P

palettes 56, 85
clipping area 85
draw mode 83
locking and unlocking resources 85
naming 87
non-shared 86
shared 86
paper formats 180
parent 122

multiple display monitors 270 parent-child relationship 122
Path display system resource 119
pattern 36
IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

359

pattern resources 77
colored 78
monochrome 77
predefined 78
pendingInput virtua member function
IlvEventLoop class 164
persistent properties 167
polygons 51
polypoints 56
portability limitations 283
portable bitmaps 93
primitives 112
printing
dialogs 181
Windows 267
printing in IBM ILOG Views 175
processInput virtua member function
IlvEventLoop class 164
properties
persistent 167

Q

quantizer 88

R

read member function
IlvContainer class135

readAndDispatchEvents member function
IlvDisplay class 164

readFile member function
IlvContainer class135

reading objects
and containers 135

rectangles 52, 53

reDraw member function
IlvContainer class 133

reDrawObj member function
IlvContainer class 134

referenced object 57

referencing graphic objects 57

regions 38

registration macros 157

removeAccelerator member function

IlvContainer class136, 137
removeCallback member function

IlvGraphic class45
removeInput member function

IlvEventLoop class 163
removeNamedProperty member function

IlvNamedProperty class 168
removeObject member function

IlvContainer class 132
removeOutput member function

IlvEventLoop class 163
removeTaggedObjects member function

IlvContainer class 132
resource files

adding to UNIX library 260

adding to Windows DLL 261
resources 46, 69

and IlvPalette 113

applying 37

cursors 85

default 70

display system 114

fonts 78

IlvDisplay defaults 70

line style 76

locking and unlocking 72

naming 71

patterns 77

summary 70

using 72
RGB color 73
run member function

IlvTimer class162

S

screenBBox method

IlvDisplay class270
scripting

making applications scriptable 186, 196
scroll view 30, 123
selecting a printer 267
send member function

IlvDevice class 128
setCallback member function

360 IBM ILOG VIEWS FOUNDATION V5.3 — USER'S MANUAL

IlvGraphic class45

setCallbackName member function
IlvGraphic class45

setClip member function
IlvPalette class85

setDoubleBuffering member function
IlvContainer class 135

setInteractor member function
IlvGraphic class 138

setName member function
IlvResource class71

setNamedProperty member function
IlvNamedProperty class 168

setNeedsInputContext method 228

setObjectName member function
IlvContainer class 133

setTransformer member function
IlvContainer class 134
IlvDevice class128

setVisible member function
IlvContainer class 133

sizes member function
IlvFont class79

splines 54

streamers 92

stretch member function
I1vRGBBitmapData class 96

stretchSmooth member function
I1vRGBBitmapData class 96

stringHeight member function
IlvFont class79

strings 38

stringWidth member function
IlvFont class79

SVGfilters 97

swap member function
IlvContainer class 133

symbols 132

T

tagged objects 132

tile member function
I1vRGBBitmapData class 96

timers 162

toolsview 31, 123

tooltips
removing 168
setting 168

top shell (X Window) 276

top window 30, 123

top-level view 30

topShell member function (X Window)
IlvDisplay class276

translateView member function
IlvContainer class 134

transparent icons
IlvBitmap class93

types
I1lvArcMode 82
IlvDrawMode 83
I1vFillRule 81
IlvFillStyle 81
IlvGraphicCallback 44
IlvSystemView 124
IlvTimerProc 162

U

unLock member function
IlvDisplay class46, 91
IlvResource class72

unLock virtual member function
IlvResource class72

Vv

vectorial graphic formats 89

views 28
and containers 131
and I1lvContainer class 126
description 29
hierarchies 121
hierarchy summary 122
IlvAbstractView class124
IlvDrawingView class 125
IlvElasticView class 125
IlvScrollvView class 126
IlvView class 124
scroll view 30

IBM ILOG VIEWS FOUNDATION V5.3 — USER’'S MANUAL

361

toolsview 31
top window 30

window-oriented hierarchy 29

working view 31

\W

waitAndDispatchEvents member function
IlvDisplay class 164

Windows
creating an application 263

devices 267

display system resources 117
GDI+ 268
integrating code into an application 264, 266

printing 267

selecting a printer 267
working view 31, 123

X

X Window systems 273
Xlib 274
XtAppMainLoop function 277

Z

zoomView member function
IlvContainer class 134

362

IBM

ILOG VIEwWS FOUNDATION V5.3

USER'S MANUAL

	IBM ILOG Views Foundation V5.3 User’s Manual
	About This Manual
	Introducing IBM ILOG Views Foundation
	Application Programming Interface (API)
	Libraries
	Class Hierarchy

	Using IBM ILOG Views
	Windows and Views
	What is a View?
	Looking at a View Window

	Containers: Controlling the View
	Introducing Graphic Objects
	Displaying Graphic Objects
	Interactors

	Drawing Attributes and Palettes
	Color
	Line Style and Width
	Patterns
	Font

	Basic Drawing Types
	Lines
	Regions
	Strings

	Graphic Objects
	IlvGraphic: The Graphic Objects Class
	Member Functions
	Callbacks

	The IlvSimpleGraphic Class
	Member Functions
	Graphic Attributes

	Predefined Graphic Objects
	IlvArc
	IlvFilledArc
	IlvEllipse
	IlvFilledEllipse
	IlvIcon
	IlvZoomableIcon
	IlvTransparentIcon
	IlvZoomableTransparentIcon
	IlvLabel
	IlvFilledLabel
	IlvListLabel
	IlvZoomableLabel
	IlvLine
	IlvArrowLine
	IlvReliefLine
	IlvMarker
	IlvZoomableMarker
	IlvPolyPoints
	IlvPolySelection
	IlvPolyline
	IlvArrowPolyline
	IlvPolygon
	IlvOutlinePolygon
	IlvRectangle
	IlvFilledRectangle
	IlvRoundRectangle
	IlvFilledRoundRectangle
	IlvShadowRectangle
	IlvShadowLabel
	IlvGridRectangle
	IlvReliefRectangle
	IlvReliefLabel
	IlvReliefDiamond
	IlvSpline
	IlvClosedSpline
	IlvFilledSpline

	Composite Graphic Objects
	Filling Polygons: IlvGraphicPath
	Grouping Objects: IlvGraphicSet
	Referencing Objects: IlvGraphicHandle

	Other Base Classes
	IlvGauge
	IlvScale
	IlvGadget
	IlvGroupGraphic
	IlvMapxx

	Creating a New Graphic Object Class
	The Example: ShadowEllipse
	Basic Steps to Subtype a Graphic Object
	Redefining IlvGraphic Member Functions
	Creating the Header File
	Implementing the Object Functions
	Updating the Palettes
	Saving and Loading the Object Description

	Graphic Resources
	IlvResource: The Resource Object Base Class
	Predefined Graphic Resources
	Named Resources
	Resource Creation and Destruction: lock and unLock

	IlvColor: The Color Class
	Color Models
	Using the IlvColor Class
	Converting between Color Models
	Computing Shadow Colors

	IlvLineStyle: The Line Style Class
	New Line Styles

	IlvPattern and IlvColorPattern: The Pattern Classes
	Monochrome Patterns
	Colored Patterns

	IlvFont: The Font Class
	New Fonts
	Font Names

	IlvCursor: The Cursor Class
	Other Drawing Parameters
	Line Width
	Fill Style
	Fill Rule
	Arc Mode
	Draw Mode
	Alpha Value
	Anti-Aliasing Mode

	IlvPalette: Drawing Using a Group of Resources
	Locking and Unlocking Resources
	Clipping Area
	Creating a Non-shared Palette
	Creating a Shared Palette
	Naming Palettes

	IlvQuantizer: The Image Color Quantization Class

	Graphic Formats
	Graphic Formats Supported
	Bitmaps
	IlvBitmap: The Bitmap Image Class
	Bitmap-Related Member Functions
	Bitmap Formats
	Loading Bitmaps: Streamers
	Loading Transparent Bitmaps

	IlvBitmapData: The Portable Bitmap Data Management Class
	The IlvBitmapData Class
	The IlvIndexedBitmapData Class
	The IlvRGBBitmapData Class
	The IlvBWBitmapData Class

	Image Processing Filters
	IlvBitmapFilter: The Image Processing Class
	The IlvBlendFilter Class
	The IlvColorMatrixFilter Class
	The IlvComponentTransferFilter Class
	The IlvComposeFilter Class
	The IlvConvolutionFilter Class
	The IlvDisplaceFilter Class
	The IlvFloodFilter Class
	The IlvGaussianBlurFilter Class
	The IlvImageFilter Class
	The IlvLightingFilter Class
	The IlvLightSource Class
	The IlvMergeFilter Class
	The IlvMorphologyFilter Class
	The IlvOffsetFilter Class
	The IlvTileFilter Class
	The IlvTurbulenceFilter Class
	The IlvFilterFlow Class
	Using IlvFilteredGraphic to Apply Filter Flows to Graphic Objects

	The Display System
	IlvDisplay: The Display System Class
	Connecting to the Display Server
	Opening a Connection and Checking the Display
	Closing a Connection and Ending a Session

	Display System Resources
	The getResource Method
	How Display System Resources are Stored
	Default Display System Resources
	Environment Variables and Resource Names
	Display System Resources on Windows

	Home
	The Display Path
	Setting the Display Path
	The Path Resource
	The ILVPATH Environment Variable
	Querying or Modifying the Display Path
	Example: Add a Directory to the Display Path

	Views
	View Hierarchies: Two Perspectives
	Window-Oriented View Hierarchy
	Class-Oriented View Hierarchy

	IlvAbstractView: The Base Class
	IlvView: The Drawing Class
	IlvView Subclasses
	The IlvElasticView Class
	The IlvDrawingView Class
	The IlvContainer Class

	The IlvScrollView Class

	Drawing Ports
	IlvPort: The Drawing Port Class
	Derived Classes of IlvPort
	The IlvSystemPort Class
	The IlvPSDevice Class

	Containers
	IlvContainer: The Graphic Placeholder Class
	General-Purpose Member Functions
	Applying Functions to Objects
	Tagged Objects
	Object Properties

	Displaying Containers
	Drawing Member Functions
	Geometric Transformations
	Managing Double Buffering
	Reading Objects from Disk

	Managing Events: Accelerators
	Member Functions
	Implementing Accelerators: IlvContainerAccelerator
	Predefined Container Accelerators

	Managing Events: Object Interactors
	Using Object Interactors
	Predefined Object Interactors
	Example: Linking an Interactor and an Accelerator

	Creating Objects with Complex Behavior
	Example: Creating a Slider
	Associating a Behavior with Your Device
	Building and Extending your Device

	Dynamic Modules
	IlvModule: The Dynamic Module Class
	Dynamic Module Code Skeleton

	Building a Dynamic Module
	Loading a Dynamic Module
	Implicit Mode
	Explicit Mode

	An Example: Dynamic Access
	Writing the Sample Module Definition File
	Implementing the New Class
	Loading and Registration of the Example
	Registration Macros
	Adding the Sample Class to a Dynamic Module

	Events
	IlvEvent: The Event Handler Class
	Recording and Playing Back Event Sequences: IlvEventPlayer
	Functions Handling Event Recording

	The IlvTimer Class
	External Input Sources (UNIX only)
	Idle Procedures
	Low-level Event Handling
	Main Loop Definition: An Example

	IlvNamedProperty: The Persistent Properties Class
	Associating Named Properties with Objects
	Extension of Named Properties
	Example: Creating a Named Property

	Printing in IBM ILOG Views
	The IlvPrintableDocument Class
	Iterators
	Example

	The IlvPrintable Class
	The IlvPrintableLayout Class
	The IlvPrinter Class
	The IlvPrintUnit Class
	The IlvPaperFormat Class
	Dialogs

	IBM ILOG Script Programming
	IBM ILOG Script for IBM ILOG Views
	Making IBM ILOG Views Applications Scriptable
	Including the Header File
	Linking with IBM ILOG Script for IBM ILOG Views Libraries

	Binding IBM ILOG Views Objects
	Getting the Global IBM ILOG Script Context
	Binding IBM ILOG Views Objects

	Loading IBM ILOG Script Modules
	Inline Scripts
	Default IBM ILOG Script Files
	Independent IBM ILOG Script Files
	IBM ILOG Script Static Functions

	Using IBM ILOG Script Callbacks
	Writing a Callback
	Setting an IBM ILOG Script Callback

	Handling Panel Events
	The OnLoad Function
	The onShow Property
	The onHide Property
	The onClose Property

	Creating IBM ILOG Views Objects at Run Time
	Common Properties of IBM ILOG Views Objects
	className
	name
	help

	Using Resources in IBM ILOG Script for IBM ILOG Views
	Using Resource Names with IBM ILOG Script for IBM ILOG Views
	Using Bitmaps with IBM ILOG Script for IBM ILOG Views
	Using Fonts with IBM ILOG Script for IBM ILOG Views

	Guidelines for Developing Scriptable Applications
	Resource Names

	Internationalization
	What is i18n?
	Checklist for Localized Environments
	Creating a Program to Run in a Localized Environment
	Locale Requirements
	Checking Your System’s Locale Requirements
	Locale Name Format
	Current Default Locale
	Changing the Current Default Locale
	X Library Support (UNIX only)

	IBM ILOG Views Locale Support
	IBM ILOG Views Locale Names
	Determining IBM ILOG Views Support for the Locale

	Required Fonts
	Localized Message Database Files in IBM ILOG Views
	The IlvMessageDatabase Class
	Language of the Message Database Files
	Location of the Message Database Files
	Determining Parameters of the Message Database Files
	Loading the Message Database
	.dbm File Format
	How to Dynamically Change Your Display Language

	Using IBM ILOG Views with Far Eastern Languages
	Data Input Requirements
	Input Method (IM)
	Far Eastern Input Method Servers Tested with IBM ILOG Views
	How to Control the Language Used for Data Input

	Limitations of Internationalization Features
	Troubleshooting
	Reference: Encoding Listings
	Reference: Supported Locales on Different Platforms

	Appendix A Packaging IBM ILOG Views Applications
	Launching ilv2data
	The ilv2data Panel
	Launching ilv2data with a Batch Command
	Adding a Resource File to a UNIX Library
	Adding a Resource File to a Windows DLL

	Appendix B Using IBM ILOG Views on Microsoft Windows
	Creating a New IBM ILOG Views Application on Microsoft Windows
	Incorporating Windows Code into an IBM ILOG Views Application
	Integrating IBM ILOG Views Code into a Windows Application
	Exiting an Application Running on Microsoft Windows
	Windows-specific Devices
	Printing
	Selecting a Printer

	Using GDI+ Features with IBM ILOG Views
	What is GDI+
	GDI+ and IBM ILOG Views
	Controlling GDI+ Features at Run Time
	Limitations

	Using Multiple Display Monitors with IBM ILOG Views

	Appendix C Using IBM ILOG Views on X Window Systems
	Libraries
	Using the Xlib Version, libxviews
	Using the Motif Version, libmviews

	Adding New Sources of Input
	ONC-RPC Integration
	Integrating IBM ILOG Views with a Motif Application Using libmviews
	Initializing Your Application
	Standard IBM ILOG Views Initialization Procedure
	Motif Application Initialization Procedure
	Retrieving Connection Information
	Using an Existing Widget
	Running the Main Loop
	Sample Program Using Motif and IBM ILOG Views

	Integrating IBM ILOG Views with an X Application Using libxviews
	Integration Steps
	Complete Template
	Complete Example with Motif

	Appendix D Portability Limitations
	Non-Supported or Limited Features
	The Main Event Loop

	Appendix E Error Messages
	The IlvError Class
	Fatal Errors
	Warnings

	Appendix F IBM ILOG Script 2.0 Language Reference
	Syntax
	IBM ILOG Script Program Syntax
	Compound Statements
	Comments
	Identifier Syntax

	Expressions
	IBM ILOG Script Expressions
	Literals
	Variable Reference
	Property Access
	Assignment Operators
	Function Call
	Special Keywords
	Special Operators
	Other Operators

	Statements
	Conditional Statement
	Loops
	Variable Declaration
	Function Definition
	Default Value

	Numbers
	Number Literal Syntax
	Special Numbers
	Automatic Conversion to a Number
	Number Methods
	Numeric Functions
	Numeric Constants
	Numeric Operators

	Strings
	String Literal Syntax
	Automatic Conversion to a String
	String Properties
	String Methods
	String Functions
	String Operators

	Booleans
	Boolean Literal Syntax
	Automatic Conversion to a Boolean
	Boolean methods
	Logical Operators

	Arrays
	IBM ILOG Script Arrays
	Array Constructor
	Array Properties
	Array Methods

	Objects
	IBM ILOG Script Objects
	Defining Methods
	The this Keyword
	Object Constructor
	User-defined Constructors
	Built-in Methods

	Dates
	IBM ILOG Script Date Values
	Date Constructor
	Date Methods
	Date Functions
	Date Operators

	The null Value
	The IBM ILOG Script null Value
	Methods of null

	The undefined Value
	The IBM ILOG Script undefined Value
	Methods of undefined

	Functions
	IBM ILOG Script Functions
	Function Methods

	Miscellaneous

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

