
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG Views

Foundation V5.3

User’s Manual

June 2009

usrfoundation.book Page 1 Tuesday, July 28, 2009 10:34 AM

usrfoundation.book Page 2 Tuesday, July 28, 2009 10:34 AM

Copyright notice
© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

usrfoundation.book Page 2 Tuesday, July 28, 2009 10:34 AM

C O N T E N T S

usrfoundation.book Page 3 Tuesday, July 28, 2009 10:34 AM
Table of Contents

IBM ILOG Views Foundation V5.3

Preface About This Manual . 19

What You Need to Know .19

Manual Organization. .19

Notation. .21

Typographic Conventions .21

Naming Conventions .21

A Note on Examples .22

Further Reading .22

Chapter 1 Introducing IBM ILOG Views Foundation. 25

Application Programming Interface (API) .25

Libraries .25

Class Hierarchy .26

Using IBM ILOG Views. .27

Windows and Views. .28

What is a View? .28

Looking at a View Window. .29

Containers: Controlling the View .32

Introducing Graphic Objects. .33
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 3

usrfoundation.book Page 4 Tuesday, July 28, 2009 10:34 AM
Displaying Graphic Objects .34

Interactors .34

Drawing Attributes and Palettes. .35

Color. .35

Line Style and Width .36

Patterns .36

Font .37

Basic Drawing Types. .37

Lines. .37

Regions .38

Strings .38

Chapter 2 Graphic Objects . 39

IlvGraphic: The Graphic Objects Class .40

Member Functions .40

Callbacks .44

The IlvSimpleGraphic Class .46

Member Functions .46

Graphic Attributes .46

Predefined Graphic Objects .47

IlvArc .47

IlvFilledArc .47

IlvEllipse. .47

IlvFilledEllipse .47

IlvIcon. .48

IlvZoomableIcon. .48

IlvTransparentIcon .48

IlvZoomableTransparentIcon .49

IlvLabel. .49

IlvFilledLabel .49

IlvListLabel .49

IlvZoomableLabel. .49
4 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

usrfoundation.book Page 5 Tuesday, July 28, 2009 10:34 AM
IlvLine. .49

IlvArrowLine .50

IlvReliefLine .50

IlvMarker .50

IlvZoomableMarker .50

IlvPolyPoints. .50

IlvPolySelection .51

IlvPolyline .51

IlvArrowPolyline .51

IlvPolygon. .51

IlvOutlinePolygon .51

IlvRectangle .52

IlvFilledRectangle. .52

IlvRoundRectangle. .52

IlvFilledRoundRectangle .53

IlvShadowRectangle .53

IlvShadowLabel .53

IlvGridRectangle. .53

IlvReliefRectangle .54

IlvReliefLabel .54

IlvReliefDiamond .54

IlvSpline .54

IlvClosedSpline .55

IlvFilledSpline .55

Composite Graphic Objects .55

Filling Polygons: IlvGraphicPath .55

Grouping Objects: IlvGraphicSet .56

Referencing Objects: IlvGraphicHandle .57

Other Base Classes .58

IlvGauge. .58

IlvScale. .58
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 5

usrfoundation.book Page 6 Tuesday, July 28, 2009 10:34 AM
IlvGadget .59

IlvGroupGraphic .59

IlvMapxx. .59

Creating a New Graphic Object Class .59

The Example: ShadowEllipse .59

Basic Steps to Subtype a Graphic Object .60

Redefining IlvGraphic Member Functions .61

Creating the Header File .61

Implementing the Object Functions .62

Updating the Palettes. .66

Saving and Loading the Object Description. .66

Chapter 3 Graphic Resources. 69

IlvResource: The Resource Object Base Class .70

Predefined Graphic Resources .70

Named Resources .71

Resource Creation and Destruction: lock and unLock .71

IlvColor: The Color Class .73

Color Models .73

Using the IlvColor Class. .74

Converting between Color Models .76

Computing Shadow Colors .76

IlvLineStyle: The Line Style Class .76

New Line Styles .76

IlvPattern and IlvColorPattern: The Pattern Classes .77

Monochrome Patterns .77

Colored Patterns .78

IlvFont: The Font Class .78

New Fonts .79

Font Names .79

IlvCursor: The Cursor Class .80

Other Drawing Parameters .80
6 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

usrfoundation.book Page 7 Tuesday, July 28, 2009 10:34 AM
Line Width .80

Fill Style .81

Fill Rule .81

Arc Mode .82

Draw Mode .83

Alpha Value .83

Anti-Aliasing Mode .84

IlvPalette: Drawing Using a Group of Resources .85

Locking and Unlocking Resources. .85

Clipping Area .85

Creating a Non-shared Palette. .86

Creating a Shared Palette .86

Naming Palettes. .87

IlvQuantizer: The Image Color Quantization Class .88

Chapter 4 Graphic Formats. 89

Graphic Formats Supported .89

Bitmaps. .90

IlvBitmap: The Bitmap Image Class .91

Bitmap-Related Member Functions .91

Bitmap Formats .91

Loading Bitmaps: Streamers .92

Loading Transparent Bitmaps .93

IlvBitmapData: The Portable Bitmap Data Management Class .93

The IlvBitmapData Class .94

The IlvIndexedBitmapData Class .94

The IlvRGBBitmapData Class .95

The IlvBWBitmapData Class .96

Chapter 5 Image Processing Filters . 97

IlvBitmapFilter: The Image Processing Class .97

The IlvBlendFilter Class .98
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 7

usrfoundation.book Page 8 Tuesday, July 28, 2009 10:34 AM
The IlvColorMatrixFilter Class .99

The IlvComponentTransferFilter Class .100

The IlvComposeFilter Class .101

The IlvConvolutionFilter Class .102

The IlvDisplaceFilter Class .103

The IlvFloodFilter Class .103

The IlvGaussianBlurFilter Class .103

The IlvImageFilter Class .104

The IlvLightingFilter Class .104

The IlvLightSource Class .106

The IlvMergeFilter Class .107

The IlvMorphologyFilter Class .107

The IlvOffsetFilter Class .107

The IlvTileFilter Class .107

The IlvTurbulenceFilter Class .107

The IlvFilterFlow Class .108

Using IlvFilteredGraphic to Apply Filter Flows to Graphic Objects .109

Chapter 6 The Display System . 111

IlvDisplay: The Display System Class .112

Connecting to the Display Server. .113

Opening a Connection and Checking the Display .113

Closing a Connection and Ending a Session .114

Display System Resources .114

The getResource Method. .115

How Display System Resources are Stored .115

Default Display System Resources .116

Environment Variables and Resource Names .116

Display System Resources on Windows .117

Home .118

The Display Path .118

Setting the Display Path. .119
8 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

usrfoundation.book Page 9 Tuesday, July 28, 2009 10:34 AM
The Path Resource .119

The ILVPATH Environment Variable .119

Querying or Modifying the Display Path. .119

Example: Add a Directory to the Display Path .120

Chapter 7 Views . 121

View Hierarchies: Two Perspectives .121

Window-Oriented View Hierarchy .122

Class-Oriented View Hierarchy .123

IlvAbstractView: The Base Class .124

IlvView: The Drawing Class. .124

IlvView Subclasses .125

The IlvElasticView Class .125

The IlvDrawingView Class .125

The IlvContainer Class. .126

The IlvScrollView Class. .126

Chapter 8 Drawing Ports . 127

IlvPort: The Drawing Port Class .127

Derived Classes of IlvPort. .128

The IlvSystemPort Class .129

The IlvPSDevice Class .129

Chapter 9 Containers . 131

IlvContainer: The Graphic Placeholder Class .131

General-Purpose Member Functions .132

Applying Functions to Objects .132

Tagged Objects .132

Object Properties .132

Displaying Containers .133

Drawing Member Functions .133

Geometric Transformations .134

Managing Double Buffering .135
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 9

usrfoundation.book Page 10 Tuesday, July 28, 2009 10:34 AM
Reading Objects from Disk .135

Managing Events: Accelerators .135

Member Functions .136

Implementing Accelerators: IlvContainerAccelerator .136

Predefined Container Accelerators .137

Managing Events: Object Interactors. .137

Using Object Interactors. .138

Predefined Object Interactors .140

Example: Linking an Interactor and an Accelerator .141

Creating Objects with Complex Behavior .145

Example: Creating a Slider .145

Associating a Behavior with Your Device. .146

Building and Extending your Device .147

Chapter 10 Dynamic Modules . 149

IlvModule: The Dynamic Module Class .150

Dynamic Module Code Skeleton .150

Building a Dynamic Module .151

Loading a Dynamic Module .153

Implicit Mode .153

Explicit Mode .154

An Example: Dynamic Access .154

Writing the Sample Module Definition File .155

Implementing the New Class .155

Loading and Registration of the Example .157

Registration Macros .157

Adding the Sample Class to a Dynamic Module .158

Chapter 11 Events . 161

IlvEvent: The Event Handler Class .161

Recording and Playing Back Event Sequences: IlvEventPlayer .161

Functions Handling Event Recording. .162
10 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

usrfoundation.book Page 11 Tuesday, July 28, 2009 10:34 AM
The IlvTimer Class .162

External Input Sources (UNIX only) .163

Idle Procedures .163

Low-level Event Handling .164

Main Loop Definition: An Example .164

Chapter 12 IlvNamedProperty: The Persistent Properties Class. 167

Associating Named Properties with Objects .167

Extension of Named Properties .168

Example: Creating a Named Property .169

Chapter 13 Printing in IBM ILOG Views . 175

The IlvPrintableDocument Class .176

Iterators .176

Example .176

The IlvPrintable Class .176

The IlvPrintableLayout Class .178

The IlvPrinter Class .179

The IlvPrintUnit Class .179

The IlvPaperFormat Class .180

Dialogs .181

Chapter 14 IBM ILOG Script Programming . 185

IBM ILOG Script for IBM ILOG Views .186

Making IBM ILOG Views Applications Scriptable .186

Including the Header File .187

Linking with IBM ILOG Script for IBM ILOG Views Libraries .187

Binding IBM ILOG Views Objects .187

Getting the Global IBM ILOG Script Context .187

Binding IBM ILOG Views Objects .188

Loading IBM ILOG Script Modules .189

Inline Scripts .190

Default IBM ILOG Script Files .190
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 11

usrfoundation.book Page 12 Tuesday, July 28, 2009 10:34 AM
Independent IBM ILOG Script Files .190

IBM ILOG Script Static Functions .190

Using IBM ILOG Script Callbacks .191

Writing a Callback .191

Setting an IBM ILOG Script Callback .191

Handling Panel Events .192

The OnLoad Function .192

The onShow Property .192

The onHide Property .193

The onClose Property .193

Creating IBM ILOG Views Objects at Run Time .193

Common Properties of IBM ILOG Views Objects .194

className .194

name .194

help .194

Using Resources in IBM ILOG Script for IBM ILOG Views .195

Using Resource Names with IBM ILOG Script for IBM ILOG Views .195

Using Bitmaps with IBM ILOG Script for IBM ILOG Views .196

Using Fonts with IBM ILOG Script for IBM ILOG Views .196

Guidelines for Developing Scriptable Applications .196

Resource Names .197

Chapter 15 Internationalization. 201

What is i18n? .202

Checklist for Localized Environments .202

Creating a Program to Run in a Localized Environment .203

Locale Requirements. .204

Checking Your System’s Locale Requirements .205

Locale Name Format .206

Current Default Locale .207

Changing the Current Default Locale. .208

X Library Support (UNIX only) .209
12 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

usrfoundation.book Page 13 Tuesday, July 28, 2009 10:34 AM
IBM ILOG Views Locale Support .209

IBM ILOG Views Locale Names. .210

Determining IBM ILOG Views Support for the Locale .211

Required Fonts. .212

Localized Message Database Files in IBM ILOG Views .214

The IlvMessageDatabase Class .215

Language of the Message Database Files. .216

Location of the Message Database Files .216

Determining Parameters of the Message Database Files .219

Loading the Message Database .220

.dbm File Format .222

How to Dynamically Change Your Display Language .225

Using IBM ILOG Views with Far Eastern Languages .226

Data Input Requirements. .227

Input Method (IM). .227

Far Eastern Input Method Servers Tested with IBM ILOG Views .228

How to Control the Language Used for Data Input .228

Limitations of Internationalization Features .228

Troubleshooting. .229

Reference: Encoding Listings .230

Reference: Supported Locales on Different Platforms .236

Appendix A Packaging IBM ILOG Views Applications. 257

Launching ilv2data .258

The ilv2data Panel .258

Launching ilv2data with a Batch Command .259

Adding a Resource File to a UNIX Library .260

Adding a Resource File to a Windows DLL .261

Appendix B Using IBM ILOG Views on Microsoft Windows . 263

Creating a New IBM ILOG Views Application on Microsoft Windows.263

Incorporating Windows Code into an IBM ILOG Views Application264
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 13

usrfoundation.book Page 14 Tuesday, July 28, 2009 10:34 AM
Integrating IBM ILOG Views Code into a Windows Application .266

Exiting an Application Running on Microsoft Windows .266

Windows-specific Devices .267

Printing .267

Selecting a Printer .267

Using GDI+ Features with IBM ILOG Views. .268

What is GDI+ .268

GDI+ and IBM ILOG Views .268

Controlling GDI+ Features at Run Time. .269

Limitations .270

Using Multiple Display Monitors with IBM ILOG Views .270

Appendix C Using IBM ILOG Views on X Window Systems . 273

Libraries .273

Using the Xlib Version, libxviews .274

Using the Motif Version, libmviews .274

Adding New Sources of Input .275

ONC-RPC Integration. .275

Integrating IBM ILOG Views with a Motif Application Using libmviews275

Initializing Your Application .275

Standard IBM ILOG Views Initialization Procedure .276

Motif Application Initialization Procedure .276

Retrieving Connection Information. .276

Using an Existing Widget .276

Running the Main Loop .277

Sample Program Using Motif and IBM ILOG Views. .277

Integrating IBM ILOG Views with an X Application Using libxviews.279

Integration Steps .279

Complete Template .280

Complete Example with Motif. .280
14 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

usrfoundation.book Page 15 Tuesday, July 28, 2009 10:34 AM
Appendix D Portability Limitations . 283

Non-Supported or Limited Features. .283

The Main Event Loop. .285

Appendix E Error Messages. 287

The IlvError Class .287

Fatal Errors .288

Warnings .291

Appendix F IBM ILOG Script 2.0 Language Reference . 295

Syntax .296

IBM ILOG Script Program Syntax .296

Compound Statements .296

Comments .297

Identifier Syntax .297

Expressions .298

IBM ILOG Script Expressions .298

Literals .299

Variable Reference .300

Property Access .301

Assignment Operators .302

Function Call .303

Special Keywords. .304

Special Operators .304

Other Operators .306

Statements .307

Conditional Statement .308

Loops .309

Variable Declaration .311

Function Definition .314

Default Value .315

Numbers .315
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 15

usrfoundation.book Page 16 Tuesday, July 28, 2009 10:34 AM
Number Literal Syntax .316

Special Numbers .316

Automatic Conversion to a Number .317

Number Methods .318

Numeric Functions .318

 Numeric Constants .319

Numeric Operators .320

Strings .322

String Literal Syntax .322

Automatic Conversion to a String .323

String Properties .324

String Methods .324

String Functions .327

String Operators .328

Booleans .330

Boolean Literal Syntax .330

Automatic Conversion to a Boolean. .331

Boolean methods .331

Logical Operators .331

 Arrays .332

IBM ILOG Script Arrays .333

Array Constructor .333

Array Properties .334

Array Methods .335

Objects .336

IBM ILOG Script Objects .336

Defining Methods .337

The this Keyword .337

Object Constructor .337

User-defined Constructors .338

Built-in Methods .338
16 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

usrfoundation.book Page 17 Tuesday, July 28, 2009 10:34 AM
Dates .338

IBM ILOG Script Date Values .339

Date Constructor .339

Date Methods .341

Date Functions .342

Date Operators .342

The null Value .342

The IBM ILOG Script null Value .342

Methods of null. .343

The undefined Value .343

The IBM ILOG Script undefined Value. .343

Methods of undefined. .343

Functions .344

IBM ILOG Script Functions .344

Function Methods. .344

Miscellaneous. .345

Index . 347
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 17

usrfoundation.book Page 18 Tuesday, July 28, 2009 10:34 AM
18 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

P R E F A C E

usrfoundation.book Page 19 Tuesday, July 28, 2009 10:34 AM
About This Manual

This User’s Manual explains how to use the C++ API and grammar that are detailed in the
IBM ILOG Views Foundation Reference Manual.

What You Need to Know

This manual assumes that you are familiar with the PC or UNIX environment in which you
are going to use IBM® ILOG® Views, including its particular windowing system. Since
IBM ILOG Views is written for C++ developers, the documentation also assumes that you
can write C++ code and that you are familiar with your C++ development environment so as
to manipulate files and directories, use a text editor, and compile and run C++ programs.

Manual Organization

This manual provides conceptual and hands-on information for developing applications that
incorporate IBM® ILOG® Views Foundation. It describes the fundamentals that underlie
IBM® ILOG® Views graphic objects and shows how to create and use graphic objects.

This manual contains the following chapters:
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 19

usrfoundation.book Page 20 Tuesday, July 28, 2009 10:34 AM
◆ Chapter 1, Introducing IBM ILOG Views Foundation provides an overview of
IBM ILOG Views Foundation.

◆ Chapter 2, Graphic Objects describes the concept of a graphic object and explains the
use of the many classes derived from the IlvGraphic class.

◆ Chapter 3, Graphic Resources describes the resource and palette classes that define the
appearance of graphic objects and text.

◆ Chapter 4, Graphic Formats describes the vectorial and bitmap formats available with
IBM ILOG Views.

◆ Chapter 5, Image Processing Filters shows the subclasses of IlvBitmapFilter that
allow you to process your bitmap images in various ways, such as combining two images
with a selection of filters.

◆ Chapter 6, The Display System provides information on IlvDisplay,
IBM ILOG Views’ basic class for connection to the display system.

◆ Chapter 8, Drawing Ports describes the IlvPort base class.

◆ Chapter 7, Views explains the concept of a view or visual display area as used in
IBM ILOG Views.

◆ Chapter 9, Containers explains how to use containers to provide efficient display and
behavior of graphic objects in applications.

◆ Chapter 10, Dynamic Modules contains information about creating and loading a
dynamic library or DLL.

◆ Chapter 11, Events contains information on the classes that implement event loops.

◆ Chapter 12, IlvNamedProperty: The Persistent Properties Class explains how to
associate application-dependent data with IBM ILOG Views objects.

◆ Chapter 13, Printing in IBM ILOG Views explains how to use the IBM ILOG Views
printing framework to define printer, document, and paper formats and other printing
controls.

◆ Chapter 14, IBM ILOG Script Programming explains how to use IBM ILOG Script, the
IBM ILOG Views high-level scripting language.

◆ Chapter 15, Internationalization explains how to develop localized language versions of
IBM ILOG Views applications.

The appendixes provide auxiliary and reference information as follows:

◆ Appendix A, Packaging IBM ILOG Views Applications describes the ilv2data tool for
packaging your applications with IBM ILOG Views.

◆ Appendix B, Using IBM ILOG Views on Microsoft Windows discusses requirements and
give tips on interfacing IBM ILOG Views with Microsoft Windows.
20 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

usrfoundation.book Page 21 Tuesday, July 28, 2009 10:34 AM
◆ Appendix C, Using IBM ILOG Views on X Window Systems discusses requirements and
give tips on interfacing IBM ILOG Views with the X Window system.

◆ Appendix D, Portability Limitations discusses the system-dependent aspects of
IBM ILOG Views Foundation that may limit portability across multiple platforms.

◆ Appendix E, Error Messages lists the error messages that ILOG Views Foundation may
generate and discusses possible causes and workarounds.

◆ Appendix F, IBM ILOG Script 2.0 Language Reference is a reference for the syntax of
IBM ILOG Script.

Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:

◆ Code extracts and file names are written in a "code" typeface.

◆ Entries to be made by the user, such as in dialog boxes, are written in a "code"
typeface.

◆ Command variables to be supplied by the user are written in italics.

◆ Some words in italics, when seen for the first time, may be found in the glossary.

Naming Conventions

Throughout the documentation, the following naming conventions apply to the API.

◆ The names of types, classes, functions, and macros defined in the ILOG Views
Foundation library begin with Ilv, for example IlvGraphic.

◆ The names of types and macros not specific to IBM ILOG Views begin with Il, for
example IlBoolean.

◆ The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized.

class IlvDrawingView;

◆ The names of virtual and regular methods begin with a lowercase letter; the names of
static methods start with an uppercase letter. For example:

virtual IlvClassInfo* getClassInfo() const;

static IlvClassInfo* ClassInfo*() const;
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 21

usrfoundation.book Page 22 Tuesday, July 28, 2009 10:34 AM
A Note on Examples

The documentation offers examples and explanations of how to use IBM ILOG Views
effectively. Moreover, some examples are extracted from the source code delivered with
IBM ILOG Views, which is in the samples directory, just below the directory where
IBM ILOG Views is installed.

Further Reading

The following books furnish information on the C++ programming language:

◆ Lippman, Stanley B. C++ Primer, 3rd ed. Reading, MA: Addison-Wesley, 1998.

◆ Stroustrup, Bjarne. The C++ Programming Language, 3rd ed. Reading, MA: Addison-
Wesley, 1997.

◆ Stroustrup, Bjarne. The Design and Evolution of C++. Reading, MA: Addison-Wesley,
1994.

◆ ISO/IEC 14882:1998 Programming Languages - C++ and
ISO/IEC 14882-1998 Information Technology - Programming Languages - C++

The ISO/ANSI C++ Standard. Available in online and printed forms from the American
National Standards Institute (http://www.ansi.org).

The following books provide good advice on several graphics-related issues:

◆ Foley, James D., Andries van Dam, Steven K. Feiner, and John F. Hughes, Computer
Graphics: Principles and Practice, 2nd ed. Reading, MA: Addison-Wesley, 1996.

◆ Graphics Gems.
Vol. I: Glassner, Andrew S. (ed.), 1990. Reissue 1993.
Vol. II: Arvo, James (ed.), 1991. Reissue 1994.
Vol. III: Kirk, David (ed.), 1992, 1994.
Vol. IV: Heckbert, Paul S. (ed.), 1994
Vol. V: Paeth, Alan W. (ed.), 1995.
Boston: Academic Press.

◆ Murray, James D. and William van Ryper. Encyclopedia of Graphics File Formats, 2nd
ed. Sebastopol, CA: O’Reilly and Associates, 1996.

◆ Nye, Adrian.
Vol. 1 Xlib Programming Manual, 3rd ed., 1992.
Vol. 2 Xlib Reference Manual, 3rd ed., 1992
O’Reilly & Associates.

◆ O’Rourke, Joseph. Computational Geometry in C, 2nd ed. Cambridge University Press,
1998.
22 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

usrfoundation.book Page 23 Tuesday, July 28, 2009 10:34 AM
◆ Rogers, David F. and J. Alan Adams. Mathematical Elements for Computer Graphics.
McGraw-Hill Publishing Co., 1990.

◆ Young, Douglas A. The X Window System: Programming and Applications with Xt, OSF/
Motif, 2nd ed. Prentice Hall, 1994.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 23

usrfoundation.book Page 24 Tuesday, July 28, 2009 10:34 AM
24 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 25 Tuesday, July 28, 2009 10:34 AM
1

Introducing IBM ILOG Views Foundation

IBM® ILOG® Views Foundation is the base IBM ILOG Views package, providing the core
features for developers creating graphical user interfaces (GUIs) and interactive two-
dimensional graphics for applications running in UNIX and PC environments.

We include here:

◆ The Application Programming Interface (API) introducing the set of C++ libraries for
designing your graphic interface.

◆ Using IBM ILOG Views which provides an orientation to the basic concepts of views and
graphic objects.

Application Programming Interface (API)

IBM® ILOG® Views is organized as a set of C++ class libraries accompanied by several
auxiliary editing tools to help you design your interfaces.

Libraries

The IBM ILOG Views libraries provide the API needed to implement the programmable
portions of your applications. As a true object-oriented C++ library, IBM ILOG Views
emphasizes code reuse through inheritance. Each derived class specializes its base class,
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 25

usrfoundation.book Page 26 Tuesday, July 28, 2009 10:34 AM
adding to or modifying inherited structure and behavior. This means that if a particular class
does not have a feature you are looking for, you should also check its base class to see if the
feature is inherited. When deriving your own classes, you can use the existing class features
and write only the new code you need, thus reducing development and maintenance costs.

The IBM ILOG Views API is written in C++, a superset of C, from which you can call your
C routines if necessary. Because C++ is flexible and resource efficient, it has become the
most widely used and preferred object-oriented language.

The object-oriented capabilities provided by C++ allow code reuse and thus saves coding
time. With a class hierarchy, a library of C++ classes is more flexible, extensible, and
dependable than a procedure-oriented library.

Object-oriented programming suits graphics-oriented applications particularly well, because
graphic objects often have similar operations performed on them. For example, a button is a
specialized type of rectangle, and can thus inherit all the features of a rectangle without
recoding. This hierarchical nature provides for easier, timesaving development and
maintenance procedures.

Object-oriented code allows you to extend or specialize IBM ILOG Views objects for your
own application (or library) without knowing the details of the IBM ILOG Views
implementation. Similarly, your customers can specialize your objects without knowing
details of your implementation. In addition, you can create your own library for your
applications on top of the IBM ILOG Views library by creating subclasses.

Class Hierarchy

The organization of IBM ILOG Views class hierarchy makes it easy for you to find what you
need. For example, using the classes in the diagram below, you can easily create
sophisticated interfaces with minimum coding.
26 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Using IBM ILOG Views

usrfoundation.book Page 27 Tuesday, July 28, 2009 10:34 AM
Figure 1.1

Figure 1.1 Partial Class Hierarchy of IBM ILOG Views Graphic Objects

Using IBM ILOG Views

You use IBM® ILOG® Views Foundation to create graphical user interfaces (GUIs) and
interactive two-dimensional graphics for applications running in UNIX and PC
environments.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 27

usrfoundation.book Page 28 Tuesday, July 28, 2009 10:34 AM
Here are introductions to some basic terms and concepts related to IBM ILOG Views. Later
chapters cover in detail the classes for implementing them in the API.

◆ Windows and Views defines views, windows, and related terminology.

◆ Containers: Controlling the View discusses the role of containers in your use of
IBM ILOG Views. It also discusses the difference between a container and a manager.

◆ Introducing Graphic Objects provides an orientation to displaying and transforming
graphic objects in IBM ILOG Views.

◆ Drawing Attributes and Palettes discusses the rich variety of colors, fonts, and other
IBM ILOG Views resources that affect the appearance of graphic objects.

◆ Basic Drawing Types relates the drawing attributes to lines, regions, and strings: the
fundamental types of drawings in IBM ILOG Views.

Windows and Views

In IBM® ILOG® Views, a view is an object to which basic services can be added, and
which is associated with the window of the underlying display system, such as X Window™
in UNIX. Drawing frequently takes place in the view, which displays an image of the objects
or a subset of them. This image can be geometrically transformed by moving, zooming, or
rotating without affecting the objects themselves.

What is a View?

Your initial efforts when you write an IBM® ILOG® Views program will be focused on
creating and combining views where people can display and possibly interact with your
program.

A view is a visual place holder—a rectangular area on your screen—where elements of your
IBM ILOG Views application are displayed.
28 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Windows and Views

usrfoundation.book Page 29 Tuesday, July 28, 2009 10:34 AM
Figure 1.2

Figure 1.2 A View

Each view is distinguished by its:

◆ location (x,y coordinates that you define),

◆ size (height and width that you define),

◆ visibility (a view might be present but not visible).

You create visible elements of your IBM ILOG Views application by combining views and
their contents.

Looking at a View Window

Here is a simplified drawing of an IBM® ILOG® Views window:

Figure 1.3

Figure 1.3 An IBM ILOG Views Window
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 29

usrfoundation.book Page 30 Tuesday, July 28, 2009 10:34 AM
This window contains buttons enabling you to draw rectangles and ellipses, and an arrow
button to select an existing object and either move or resize it. It has a set of scroll bars for
moving different parts of a larger working view into the display area.

This window is composed of four different IBM ILOG Views views:

◆ Top-Level View: Top Window

◆ Scroll View

◆ Tools View

◆ Working View

Top-Level View: Top Window

The purpose of the top window is generally to hold various kinds of lower-level views. You
rarely draw directly into a top window, but most often into one of the lower-level views that
it holds.

Figure 1.4

Figure 1.4 Top Window

Views of this kind are the only views that:

◆ Include a title bar.

◆ Can be associated with a system menu that allows the user of your programs to intervene
concerning such things as resizing or iconifying your window.

You can associate as many lower-level views as you need with the top window. The top
window holds not only the title of the window but also its current size. None of the views
held within the top window can extend beyond the rectangular perimeter of the top window.
A corollary of this situation is that a top window can never be held within any other kind of
lower-level view.

Scroll View

The scroll view is a lower-level view.The sole purpose of the scroll view is to contain a pair
of scroll bars, allowing you to scroll the lower-level drawing view that is contained within
the scroll view.
30 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Windows and Views

usrfoundation.book Page 31 Tuesday, July 28, 2009 10:34 AM
Figure 1.5

Figure 1.5 Scroll View

Tools View

The tools view is a lower-level view that contains drawing and selection command buttons.
This kind of view can store and display graphic objects as well as coordinate actions that the
user can perform on these objects.

Figure 1.5 Tools View

Working View

The working view is the lowest-level view. The working view is larger than the part that you
see at any particular moment. In the following figure, the white rectangle in the middle of the
large gray rectangle represents what you see. For example, there’s an ellipse in the top-right-
hand corner of the view that is not currently visible. To see it, the user has to use the scroll
bars in the higher-level scroll view.

Note: This type of window is provided with the Gadgets package of IBM ILOG Views.
There is a native implementation in the Foundation package, for Microsoft Windows and
Motif ports only.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 31

usrfoundation.book Page 32 Tuesday, July 28, 2009 10:34 AM
Figure 1.6

Figure 1.6 Working View

You can control the working area of change by clipping. While a clipping region is active,
only changes to that region are displayed.

Figure 1.7

Figure 1.7 Clipped Area

Containers: Controlling the View

Containers coordinate the storage and display of graphic objects.

Figure 1.8

Figure 1.8 A Container

Clipping Region
32 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Introducing Graphic Objects

usrfoundation.book Page 33 Tuesday, July 28, 2009 10:34 AM
Fundamentally, a container is a view, with predefined callbacks to handle the automatic
refresh of the graphic objects it stores, as well as the system events and user events that
occur in that view.

Each graphic object stored in a container is unique and can only be displayed by that
container. In short, a container:

◆ is essentially another kind of view where you can collect any number of graphic objects.

◆ automatically manages all drawing operations within the view.

◆ can associate interactors to its objects to give them particular behaviors.

◆ lets you access objects by their names.

◆ can use a transformer to move, zoom, and rotate when drawing objects.

◆ associates single actions with events received by the view.

Containers versus Managers

IBM ILOG Views groups objects in one of two basic types of storage data structures:

◆ Containers

◆ Managers

A view is associated with a set of graphic objects stored in a container or manager.

A container stores a certain number of graphic objects, and it is associated with a view,
which displays the objects stored in the container. Each object can be associated with a
specific behavior, and accelerators—which are keyboard events that immediately call a
predefined function—can be attached to the container itself. Containers are part of the
functionality of the Foundation package.

A manager is another type of data structure that provides layers, multiple-view, fast redraw,
persistency, and editing functionality. For details on managers see the Managers
documentation.

Introducing Graphic Objects

Using a two-dimensional vector graphic engine, IBM® ILOG® Views provides drawing
ports (memory, screen, and dumpfile) as well as a large set of drawing primitives to create
basic geometric forms. You can draw basic geometric shapes such as arcs, curves,
rectangles, labels, and so on. You can draw on the screen, in memory, or generate dump files

Note: For efficient drawing of numerous objects, multiple views, and layers, you should
use the managers instead of containers.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 33

usrfoundation.book Page 34 Tuesday, July 28, 2009 10:34 AM
such as PostScript. You can create black-and-white and color images. The graphic engine
builds on these primitives to define graphic objects.

Displaying Graphic Objects

A graphic object is an image that users can view on their screen. When you display a graphic
object, you associate the coordinates of the graphic object with the coordinate system of a
particular container.

Figure 1.9

Figure 1.9 Geometric Properties of Graphic Objects

Geometric properties define the shape and placement of your graphic object. Every graphic
object has an x value, a y value, and dimensions (that is, width and height). The x and y
values indicate the upper-left corner of the graphic object bounding box, which is the
smallest rectangle that entirely contains the area covered by this object.

You define the exact shapes of graphic objects in your IBM ILOG Views–based programs
and then make them concrete using various drawing member functions. Other member
functions provide you with information about your graphic objects, and let you carry out
geometric tests concerning the shapes that you are using. For example, you can check
whether a point with given coordinates lies inside a certain shape.

Interactors

IBM ILOG Views makes a clear separation between graphic objects and behaviors, thus
allowing you to apply a particular behavior to an object.

In IBM ILOG Views, a predefined behavior is called an “interactor.” An interactor can be
applied to any graphic object to give it a particular behavior, thus defining its functionality.

For example, by applying a “button” interactor to an object, that object, which before only
had a visual aspect, now takes on the behavior of a button—that is, when you click it, it
blinks.

x

y

(0,0)
34 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Drawing Attributes and Palettes

usrfoundation.book Page 35 Tuesday, July 28, 2009 10:34 AM
Figure 1.10

Figure 1.10 Object/Interactor Concept

The benefits of separating objects from behavior is that you can apply a certain type of
behavior to any type of graphic object. For example, you can apply button behavior to a
bitmap (such as an icon) with only a single line of code.

Furthermore, it is quite easy to extend behavior by subclassing the interactor classes
provided with IBM ILOG Views.

Drawing Attributes and Palettes

With IBM® ILOG® Views you have at your disposal a large selection of fill and line
patterns, colors, and font attributes to apply to graphic objects and text.

Because these resources are grouped in palettes and are shared among any number of
objects, you can easily make global changes while minimizing memory consumption.

Color

In a simple drawing situation, such as the creation of a rectangle, the actual drawing is
carried out with what is referred to as the foreground color, and the area “behind” the
drawing is referred to as the background color.

◆ Foreground Color The foreground color is used for drawing dots, arcs, lines, polylines,
and so on. It is also used to display character strings and to fill areas such as polygons
and arcs.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 35

usrfoundation.book Page 36 Tuesday, July 28, 2009 10:34 AM
◆ Background Color The background color is used as a second color when filling with
patterns and drawing character strings.

Line Style and Width

Besides ordinary lines, referred to as “solid,” you can draw straight lines and curves
composed of dots or dashes. This is the line style. Line width refers to the thickness of the
lines in a drawing.

The line style and width define the exact visible aspect of all line drawings as well as line-
type drawings including polyline and spline.

Patterns

A pattern refers to the design used to fill surfaces. In IBM ILOG Views, there are two types
of pattern, distinguished by the number of colors that can be applied.

Monochrome Pattern

The word “pattern” designates a monochrome (or two-color) design. IBM ILOG Views
offers sixteen ready-to-use patterns.

Here is an example of a pattern:

Figure 1.11

Figure 1.11 A Pattern

This particular pattern could be obtained by using a mask composed of a 16x16 array of bits,
as you see here:
36 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Basic Drawing Types

usrfoundation.book Page 37 Tuesday, July 28, 2009 10:34 AM
Figure 1.12

Figure 1.12 A Pattern Mask

Inside a pattern mask, we speak of the 1 bits as the foreground , and the 0 bits as the
background . In other words, the pattern resource invokes the color resource.

Color Pattern

Whereas an ordinary pattern is two-dimensional, a color pattern incorporates a third
dimension, depth , to deal with color.

Instead of having simply a 1 or a 0 at each location in the array, you insert a number that
indicates the color to be used at that point in the color pattern. The default value for the color
pattern is zero (0) indicating that no color pattern is to be used.

Font

Fonts are used with character strings, that is, when drawing text.

Basic Drawing Types

Basically, there are three kinds of drawings in IBM® ILOG® Views: lines, regions, and
strings, with the attributes applied depending on the individual drawing needs and
capabilities.

Lines

This category includes straight lines, curves and open-ended sets of connected straight lines
or curves. Attributes are applied to lines as follows:

◆ Color Straight lines or curves are drawn with the current foreground color.

◆ Line Style The current line style (such as solid, dots or dashes) determines how the
straight lines or curves are drawn.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 37

usrfoundation.book Page 38 Tuesday, July 28, 2009 10:34 AM
◆ Line Width An unsigned integer indicates the current line width.

◆ Pattern Using monochrome (two-color), lines are drawn with the current pattern, but
this is noticeable only with thick lines.

◆ Color Pattern Using color, lines are drawn with the current color pattern. Here again,
this effect is noticeable only for thick lines.

Regions

This term designates closed sets of connected lines or curves. Attributes are applied to
regions as follows:

◆ Color The closed curve around a region retains its original color; that is, the current
foreground color.

◆ Pattern Regions are filled with the current fill pattern or fill mask pattern.

◆ Color Pattern Regions are filled with the current color pattern.

◆ Fill Style This value determines if patterns are to be handled as masks, monochrome
patterns or color patterns.

◆ Fill Rule Determines the fill strategy for self-intersecting polygons. For details see Fill
Rule on page 81.

◆ Arc Mode Determines how an arc is closed for filling. For details see Arc Mode on
page 82.

Strings

Attributes are applied to strings as follows:

◆ Color The actual characters are printed with the foreground color.

◆ Font The font in which the string is printed.
38 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 39 Tuesday, July 28, 2009 10:34 AM
2

Graphic Objects

IBM® ILOG® Views provides a hierarchy of classes that let you create various high-level
graphic objects. The starting points for these objects are the classes IlvGraphic and
IlvSimpleGraphic.

◆ IlvGraphic: The Graphic Objects Class is the foundation class for IBM ILOG Views
graphic objects.

◆ The IlvSimpleGraphic Class is a fundamental class that inherits from IlvGraphic. It
allows you to assign graphic resources and apply transformations to your graphic
objects.

◆ Predefined Graphic Objects illustrates the numerous graphic objects provided by
IBM ILOG Views for producing standard geometric forms such as arcs, rectangles, and
so forth.

◆ Composite Graphic Objects allow you to optimize object usage by grouping for various
purposes.

◆ Other Base Classes describe the additional graphic classes used primarily with other
IBM ILOG Views packages.

◆ Creating a New Graphic Object Class illustrates in detail how to create a new,
customized graphic object in IBM ILOG Views.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 39

usrfoundation.book Page 40 Tuesday, July 28, 2009 10:34 AM
IlvGraphic: The Graphic Objects Class

IBM® ILOG® Views graphic objects inherit attributes from the abstract base class
IlvGraphic. This class allows an IBM ILOG Views graphic object to draw itself at a given
destination port, and, if desired, with a transformation of its coordinates determined by an
associated object of the IlvTransformer class.

IlvGraphic has member functions that allow you to set and change geometric dimensions.
A handful of member functions are given to set and get user properties that can be associated
with an object for application-specific purposes. The IlvGraphic class does not actually
implement these member functions. They are declared as virtual member functions, and are
defined to do various operations in the classes that inherit IlvGraphic attributes. Though
the member functions to manipulate geometric shapes and graphic attributes are present,
they do nothing.

Member Functions

IlvGraphic member functions can be presented in several groups:

◆ Geometric properties These member functions handle location, size, and drawing
properties, which include the IlvGraphic::draw method used to draw the graphic
object. The virtual IlvGraphic::draw method should be defined conjointly with the
method IlvGraphic::boundingBox, which defines the smallest rectangle that
entirely contains all the area covered by the graphic object.

◆ Graphic properties Use these member functions to change the visible aspect of the
objects, that is, their color or pattern. You do so by means of member functions that
indicate graphic properties of graphic objects and modify the palette bound to these
graphic objects. The following example shows how to set the background of any graphic
object:

◆ Named properties Named properties handle the persistence of properties associated
with graphic objects (see Chapter 12).

◆ User properties IlvGraphic objects can be associated with a set of source code user
properties. User properties are a set of key-value pairs, where the key is an
refcppfoundation:IlSymbol object and the value may be any kind of information
value. User properties are not persistent.

These member functions provide you with a simple way to connect your graphic objects
with information that comes from your application. You can keep track of the graphic

IlvButton* mybutton = new IlvButton(display,
 IlvPoint(20,20),
 "Quit");
IlvColor* color = display->getColor("gold");
if (color) mybutton->setBackground(color);
40 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvGraphic: The Graphic Objects Class

usrfoundation.book Page 41 Tuesday, July 28, 2009 10:34 AM
part of your application by storing the pointers to objects you create, and connect the
graphic side to the application by means of user properties, for example:

Some member functions provide tag management. Tags are markers that you can apply
to graphic objects to identify them. You can then use various IBM ILOG Views functions
to manipulate only the tagged objects.

◆ Gadget properties Gadget properties handle the sensitivity of objects to events, the
callbacks to be called when the object is activated, the client data stored with objects, and
the object interactor associated with the object class. For details on using callbacks, see
the section Callbacks.

◆ Focus chain properties The focus indicates the object on the screen that is receiving
any keyboard events. The focus chain is the order of the objects on the screen that receive
the focus. The focus moves to the next object in the focus chain when, typically, the Tab
key is pressed, or to the previous object when shift-Tab is pressed.

◆ Class information Subtypes of the class IlvGraphic can handle information at the
class level. This means that all instances of a given class can share the same information.
For example, IlvGraphic::className allows you to get the class name and
IlvGraphic::isSubtypeOf returns IlTrue if the target IlvGraphic object is a
subclass of the given class argument. This example shows how to use class information
member functions:

IlInt index = 10;
IlSymbol* key = IlGetSymbol(“objectIndex”);
mybutton->addProperty(key, (IlAny)index);

IlvButton* button = new IlvButton(display,
 IlvPoint(10,10),
 “sample”);
// Get the IlvClassInfo object associated with the button class.
IlvClassInfo* classInfo = button->getClassInfo();

// Get the name of the IlvGraphic class and print it: “IlvButton”
const char* name = classInfo->getClassName();
IlvPrint(name);

// Get the name of the super class and print it: “IlvMessageLabel”
name = classInfo->getSuperClass()->getClassName();
IlvPrint(name);

IlBoolean isSubtype =
 classInfo->isSubtypeOf(IlvSimpleGraphic::ClassInfo());
name = isSubtype ? “It’s a subtype” : “error”;
IlvPrint(name);
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 41

usrfoundation.book Page 42 Tuesday, July 28, 2009 10:34 AM
◆ Class properties Static member functions and their non-static equivalents let you
handle properties at the class level, that is, these properties are defined for every instance
of the class. In some methods, the IlBoolean parameter allows you to operate
iteratively on each superclass of the object until a match is found. Here are the member
functions that deal with class properties:

Here is an example that shows how to use class properties:

Let us imagine a map where graphic instances are shown with toggle-like sensitive
behavior (IBM ILOG Views provides specific objects called interactors that allow you to
associate a behavior with graphic objects). Sometimes we may want these elements to be
insensitive. Instead of scanning the object list to set the sensitivity to IlFalse, we use a
class-level property in this way:

Let myClass be a subclass of IlvGraphic; and let myInteractor, a subclass of
IlvToggleInteractor, be an interactor attached to myClass.

In the applicative code, the application tests whether sensitivity must be inverted. There
is another way to add a property to a class object, using a static member function, since
both statements are equivalent:

void AddProperty(const IlSymbol* key, IlAny value);
void RemoveProperty(const IlSymbol* key);
void ReplaceProperty(const IlSymbol* key, IlAny value);
void GetProperty(const IlSymbol* key,
 IlBoolean checkSuperClass = IlFalse);
const IlvClassInfo* HasProperty(const IlSymbol* key,
 IlBoolean checkSuperClass = IlFalse);
void addClassProperty(const IlSymbol* key, IlAny value);
IlBoolean removeClassProperty(const IlSymbol* key);
IlBoolean replaceClassProperty(const IlSymbol* key,
 IlAny value);
IlAny getClassProperty(const IlSymbol* key,
 IlBoolean checkSupCl = IlFalse) const;
const IlvClassInfo* hasClassProperty(const IlSymbol* key,
 IlBoolean checkSupCl = IlFalse) const;

// Add the class-level property
myClass* obj = new myClass(display);
obj->addClassProperty(IlGetSymbol(“sensitive”),
 (IlAny)IlTrue);

if (anyValue == IlTrue)
{
 myClass::AddProperty(IlGetSymbol(“sensitive”),
 (IlAny)IlFalse);
}

42 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvGraphic: The Graphic Objects Class

usrfoundation.book Page 43 Tuesday, July 28, 2009 10:34 AM
In the implementation file of the myInteractor class, we redefine the parent class
method IlvInteractor::handleEvent to add our specific behavior, that is freezing
the sensitivity when a certain condition is present:

◆ Input/Output properties These member functions let you read and write your object
descriptions from and to special kinds of streams, known as IlvInputFile and
IlvOutputFile, which handle the reading and writing of objects from C++ streams.

IBM ILOG Views offers a basic implementation of these classes, which were designed
so that you can easily add your specific information. Therefore, when you need to save
and load application-dependent data, you should create your own subtypes of these two
classes.

● Writing Graphic Objects

The IlvOutputFile class writes the complete description of a series of objects in an
output stream. You can use this class in the following way:

● Reading Graphic Objects

IlBoolean
myInteractor::handleEvent(IlvGraphic* object,
 IlvEvent& event,
 IlvContainer* cont,
 IlvTransformer* transf)
{
 // gets the sensitivity state
 IlSymbol* symbol = IlGetSymbol(“sensitive”);
 if (object->hasClassProperty(symbol))
 {
 if (!object->getClassProperty(symbol))
 return IlFalse;
 }
 return IlvViewToggleInteractor::handleEvent(object,
 event,
 cont,
 transf);
}

 // Open a file output stream
 fstream outstream(“image.ilv”, ios::out | ios::trunc);

 // Initialize the number of objects and their array of pointers
 const IlvUInt n = 10;
 IlvGraphic* outObjects[n];
 for (IlvUInt i=0; i<n; i++)
 outObjects[i] = new IlvRectangle(display,
 IlvRect(0, 0, 200, 100));

 // Create the IlvOutputFile
 IlvOutputFile outfile(outstream);

 // Write the objects and get in outTotalCount the number
 // of objects actually stored
 IlvUInt outTotalCount = 0;
 outfile.saveObjects(n, outObjects, outTotalCount);
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 43

usrfoundation.book Page 44 Tuesday, July 28, 2009 10:34 AM
The IlvInputFile class is the main class for reading objects from a stream. The
following code shows how to read IlvGraphic objects from an input stream:

Callbacks

When an object is designated by the user to perform an action, the user may need to call a
specific function, a callback, that the user has defined. These functions are usually called by
the handleEvent method of the object.

There are two ways you can set a specific callback to be called when an action is triggered:

◆ Register the callback as a pointer to a user-defined function.

This function must be an IlvGraphicCallback type.

The type IlvGraphicCallback is defined in the file <ilviews/graphic.h>:

#include <ilviews/graphic.h>
typedef void (* IlvGraphicCallback)(IlvGraphic* obj, IlAny arg);

The first argument (obj) is the graphic object that called the callback and the second
argument (arg) is the user data. The user data could be defined when setting the
callback to a particular gadget. If no data is defined, the parameter is the graphic object’s
client data that you can set with the IlvGraphic::setClientData method.

◆ Register a callback name that is in turn associated with a function to be called by the
graphic object container. The association between a callback function and its name must
be unique for a particular container.

Registering Callbacks

The methods used to register a callback in a container are:

 // Open a file input stream
 fstream instream(“image.ilv”, ios::in);

 // Create the IlvInputFile
 IlvInputFile infile(instream);

 // Get the number of created objects and their array of pointers
 IlUInt InTotalCount = 0;
 IlvGraphic* const* inObjects = infile.readObjects(display,
 InTotalCount);

#include <ilviews/contain.h>

void registerCallback(const char* callbackName,
 IlvGraphicCallback callback);
void unregisterCallback(const char* callbackName);
IlvGraphicCallback getCallback(const IlSymbol* callbackName) const;
44 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvGraphic: The Graphic Objects Class

usrfoundation.book Page 45 Tuesday, July 28, 2009 10:34 AM
Callback Types

An object can define several callback types. Each callback type corresponds to a specific
action. For example, you can find, in every gadget, a “Focus In” callback type that refers to
the callbacks to be invoked when the gadget receives the keyboard focus.

Each callback type stores a list of callbacks to be invoked when the related event occurs. The
class IlvGraphic contains generic methods that allow you to add or remove a callback for
a specific callback type:

The argument data that you can pass when adding a callback is sent to the callback. It
corresponds to the argument named arg in the IlvGraphicCallback definition.

The Main Callback

The Main callback type can be used to perform the main action of an object that is
designated to perform several actions. For example, it could be used when a button object is
activated, or when you double-click on an item in a string list.

Some useful methods help you set the Main callback of an object:

#include <ilviews/graphic.h>

void addCallback(const IlSymbol* callbackType,
 IlvGraphicCallback callback);
void addCallback(const IlSymbol* callbackType,
 const IlSymbol* callbackName);
void addCallback(const IlSymbol* callbackType,
 IlvGraphicCallback callback,
 IlAny data);
void addCallback(const IlSymbol* callbackType,
 const IlSymbol* callbackName,
 IlAny data);
void removeCallback(const IlSymbol* callbackType,
 IlvGraphicCallback callback);
void removeCallback(const IlSymbol* callbackType,
 const IlSymbol* callbackName);

#include <ilviews/graphic.h>

IlvGraphicCallback getCallback() const;
IlSymbol* getCallbackName() const;
void setCallback(IlvGraphicCallback callback);
void addCallback(IlvGraphicCallback callback);
void setCallback(IlvGraphicCallback callback, IlAny data);
void addCallback(IlvGraphicCallback callback, IlAny data);
void setCallback(const IlSymbol* callbackName);
void setCallback(const IlSymbol* callbackName, IlAny data);
void setCallbackName(const IlSymbol* callbackName);
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 45

usrfoundation.book Page 46 Tuesday, July 28, 2009 10:34 AM
The IlvSimpleGraphic Class

IlvSimpleGraphic is a fundamental class inherited from IlvGraphic.
IlvSimpleGraphic implements all functionality of the IlvGraphic class and adds to
each instance an IlvPalette resource used to draw the object. This class lets you carry out
operations that access and change graphic properties such as colors, fonts, and patterns that
are gathered in an IlvPalette instance associated with the graphic object. It also allows
you to apply geometric transformations to objects.

IlvSimpleGraphic objects contain their own IlvPalette object. This means that a
graphical object is simultaneously a geometric shape and a set of attributes to display this
shape. Thus, from this class you can create new objects needed for your application. Some
member functions will be needed, some not. The IBM® ILOG® Views object library
contains a large number of such objects, and offers a wide range of solutions for almost all
kinds of problems.

Member Functions

The IlvSimpleGraphic class includes member functions that allow you to access palette
attributes. Every IlvSimpleGraphic object has an IlvPalette object, which can be
shared among objects. Therefore, when you ask an IlvSimpleGraphic object to change a
graphic property such as its foreground, the following operations are performed:

1. The IlvDisplay::getPalette function is used to search for a new IlvPalette for
the new foreground.

2. The member function IlvResource::lock is called for the new palette to increment
its reference count.

3. The graphic object’s old palette is called.

4. The member function IlvResource::unLock is called for the old palette.

5. The new palette is registered as the current palette of the object.

These operations guarantee the sharing of the IlvPalette. Users are encouraged to use the
same mechanism in the case of IlvPalette objects. This is why member functions that can
manipulate resources by changing the graphic attributes, such as
IlvGraphic::setForeground, are defined as virtual functions.

Graphic Attributes

The IlvSimpleGraphic constructor needs the IlvPalette object from which it is to
obtain resources. The palette parameter can be set to a specific value or left unspecified,
by which it takes the value 0. When the palette is set to 0, the default palette of the display
object is used. This palette is the one returned by the member function
46 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Predefined Graphic Objects

usrfoundation.book Page 47 Tuesday, July 28, 2009 10:34 AM
IlvDisplay::defaultPalette. The palette parameter is locked when the object is
created and unlocked when it is deleted.

Predefined Graphic Objects

This section presents basic classes, all subclasses of IlvSimpleGraphic, that provide you
with predefined graphic objects.

IlvArc

An IlvArc object appears as an outlined arc of an ellipse.

IlvFilledArc

An IlvFilledArc object appears as a filled arc.

IlvEllipse

An IlvEllipse object appears as an outlined ellipse.

IlvFilledEllipse

An IlvFilledEllipse object appears as a filled ellipse.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 47

usrfoundation.book Page 48 Tuesday, July 28, 2009 10:34 AM
IlvIcon

An IlvIcon object appears as an image.

IlvZoomableIcon

An IlvZoomableIcon object is a kind of IlvIcon object that can be zoomed in or
reshaped.

IlvTransparentIcon

An IlvTransparentIcon object appears as an image that can have transparent areas.
48 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Predefined Graphic Objects

usrfoundation.book Page 49 Tuesday, July 28, 2009 10:34 AM
IlvZoomableTransparentIcon

An IlvZoomableTransparentIcon object is a version of the IlvZoomableIcon object
that leaves the background of the image (the 0 bits) unchanged.

IlvLabel

An IlvLabel object appears as a single line of text. It cannot be zoomed in nor reshaped.

IlvFilledLabel

An IlvFilledLabel object appears as a single line of text, drawn on a filled rectangle that
exactly fits the bounding box of the text.

IlvListLabel

An IlvListLabel object appears as a vertical list of strings, so that it looks like a series of
IlvLabels.

IlvZoomableLabel

An IlvZoomableLabel object acts just like a regular IlvLabel object, but any
transformation can be applied to it, including zooming.

IlvLine

An IlvLine object appears as a straight line between two given points.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 49

usrfoundation.book Page 50 Tuesday, July 28, 2009 10:34 AM
IlvArrowLine

An IlvArrowLine object appears as a straight line between two given points, with a small
arrow head drawn on the line trajectory.

IlvReliefLine

An IlvReliefLine object appears as a line with a three-dimensional look. How the
IlvReliefLine looks depends on the thickness of the line.

IlvMarker

An IlvMarker object is drawn as a specific graphic symbol at a given location.

IlvZoomableMarker

An IlvZoomableMarker object is a version of the IlvMarker object that can be zoomed
as follows:

◆ For zooming out, the current size is reduced to fit the transformed bounding box.

◆ For zooming in, the current size stays fixed to that specified by the
IlvMarker::setSize method.

IlvPolyPoints

IlvPolyPoints is an abstract class from which is derived every class having shapes
composed of several point coordinates.
50 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Predefined Graphic Objects

usrfoundation.book Page 51 Tuesday, July 28, 2009 10:34 AM
IlvPolySelection

The IlvPolySelection class is used to fill squares on all the points of an object of type
IlvPolyPoints.

IlvPolyline

An IlvPolyline object appears as connected segments.

IlvArrowPolyline

An IlvArrowPolyline object appears as a polyline and adds one or more arrows to the
various lines.

IlvPolygon

An IlvPolygon object appears as a filled polygon.

IlvOutlinePolygon

An IlvOutlinePolygon object appears as an outlined and filled polygon.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 51

usrfoundation.book Page 52 Tuesday, July 28, 2009 10:34 AM
IlvRectangle

An IlvRectangle object appears as an outlined rectangle.

IlvFilledRectangle

An IlvFilledRectangle object appears as a solid rectangle.

IlvRoundRectangle

An IlvRoundRectangle object appears as an outlined, round-cornered rectangle.

Note: Rectangles can be rotated only at 90, 180, 270 and 360 degrees. If you need to
rotate a rectangle at other angles, use a polygon instead.
52 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Predefined Graphic Objects

usrfoundation.book Page 53 Tuesday, July 28, 2009 10:34 AM
IlvFilledRoundRectangle

An IlvFilledRoundRectangle object appears as a filled, round-cornered rectangle.

IlvShadowRectangle

An IlvShadowRectangle object appears as a shadowed IlvFilledRectangle object.

IlvShadowLabel

An IlvShadowLabel object appears as an IlvShadowRectangle containing a text string
that is clipped by the containing rectangle.

IlvGridRectangle

An IlvGridRectangle object appears as a rectangular grid.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 53

usrfoundation.book Page 54 Tuesday, July 28, 2009 10:34 AM
IlvReliefRectangle

An IlvReliefRectangle object appears as a filled rectangle in relief.

IlvReliefLabel

An IlvReliefLabel object appears as a relief rectangle that holds a single line of text.

IlvReliefDiamond

An IlvReliefDiamond object appears as a filled diamond in relief.

IlvSpline

An IlvSpline object appears as an outline Bézier spline.
54 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Composite Graphic Objects

usrfoundation.book Page 55 Tuesday, July 28, 2009 10:34 AM
IlvClosedSpline

An IlvClosedSpline object appears as a closed Bézier spline.

IlvFilledSpline

An IlvFilledSpline object appears as a filled Bézier spline.

Composite Graphic Objects

Composite graphic object classes and subclasses provide member functions that allow you
to reference instances of IlvGraphic subtyped objects. You can use these references for:

◆ Controlling polygon fill. See Filling Polygons: IlvGraphicPath on page 55.

◆ Grouping objects. See Grouping Objects: IlvGraphicSet on page 56.

◆ Modifying properties of one object without duplicating or modifying the object itself.
See Referencing Objects: IlvGraphicHandle on page 57.

For example, in an electronic schema displaying a thousand transistors, you would
consume much less memory by creating one transistor image and a thousand handle
objects to reference it than by creating a thousand separate images.

Filling Polygons: IlvGraphicPath

An IlvGraphicPath object is a collection of polypoint objects, that is, each object consists
of a series of points. The polypoint objects are drawn differently depending on the value of
the draw rule attribute of the object:

◆ IlvStrokeOnly: Polylines.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 55

usrfoundation.book Page 56 Tuesday, July 28, 2009 10:34 AM
◆ IlvFillOnly: Filled polygons.

◆ IlvStrokeAndFill: Both of the above, that is, filled polygons with an outline.

The palette defined by the IlvSimpleGraphic superclass is used to draw the outline of the
polygons. IlvGraphicPath defines a second palette (backgroundPalette) to fill them.

While the resources (graphic attributes such as color) used to draw the polypoints for both
the IlvGraphicPath and IlvPolygon functions are the same, the ways in which the
shapes affect each other are different. Each polypoint has an influence on the rendering of
the other polypoints (not applicable in IlvStrokeOnly mode). For example, depending on
the position of its points, a polypoint may appear either as an ordinary polygon or as a hole
in another polygon:

IlvGraphicPath also allows user-specific actions when the polypoints are drawn. This is
done by attaching a data structure to the IlvGraphicPath.

Note that the bounding box of IlvGraphicPath does not take into consideration the
bounding box of the graphic object displayed along the path. The IlvGraphic is only
known to the stepping data structure. However, the IlvGraphicPath provides a member
function which allows you to extend the bounding box of the graphic path by the given
value:

void setBBoxExtent(IlUInt extent);
Usually you would do the following:

grpath->setPathDrawingData(new IlvPathDrawingData(step, obj));
grpath->setBBoxExtent(bboxExtension);

where bboxExtension is computed from the geometry of obj and the way it will be
displayed (whether rotations are involved or not).

The diagonal of the object’s bounding box is a reasonable value for bboxExtension.

Grouping Objects: IlvGraphicSet

An IlvGraphicSet object organizes a set of IlvGraphic objects.

IlvGraphicPathIlvPolygons
56 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Composite Graphic Objects

usrfoundation.book Page 57 Tuesday, July 28, 2009 10:34 AM
It implements all geometric and graphic member functions by means of calls to the member
functions of the objects that it contains (for example, the draw method of IlvGraphicSet
calls the draw methods of the objects contained in the graphic set).

Referencing Objects: IlvGraphicHandle

An IlvGraphicHandle object is used to reference an IlvGraphic object. The
IlvGraphicHandle object is called the handle object (or simply handle), and the
IlvGraphic object is called the referenced object.

Referencing Objects

This relationship enables you to use the handle object to indirectly access the referenced
object. Also, the same referenced object can be shared among several handles. Through
handle objects, you can thus reproduce a complex graphic object many times by simply
creating new handles that all reference the same original object. Since handles consume
much less memory than creating new images, using handle objects is very economical.

Owning Objects

You can decide to make a handle object the owner of the unique referenced object with
which it is associated. If you do this, you should no longer access the referenced object
directly, but only through its handle.

When a handle owns its referenced object, a delete operation on the handle removes both the
handle and the referenced object. On the other hand, when there is no ownership relationship
between the handle and its referenced object, a delete operation removes only the handle,
leaving the other graphic object intact.

IlvTransformedGraphic

You can use the specialized graphic handle subclass, IlvTransformedGraphic, to display
the same object several times with different geometric transformations applied to it.

The IlvTransformedGraphic class is derived from the basic handle class,
IlvGraphicHandle. An object of the IlvTransformedGraphic type is a kind of handle
that is associated with a certain referenced object of the IlvGraphic class. An
IlvTransformedGraphic instance is drawn by applying a graphic transformation to its
referenced object.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 57

usrfoundation.book Page 58 Tuesday, July 28, 2009 10:34 AM
Object geometry is disturbed by various transformations because of rounding errors. To
avoid this, the object can be associated with IlvTransformedGraphic.

IlvFixedSizeGraphic

You can use the specialized graphic handle subclass, IlvFixedSizeGraphic, to always
display an object at the same size. For example, suppose there is a map displayed with an
IlvButton object used for quitting the map viewer. When the map is zoomed and
unzoomed, the button, of course, should stay the same size. To accomplish this, you can
reference the button with the specialized IlvGraphicHandle object
IlvFixedSizeGraphic.

The IlvFixedSizeGraphic class is derived, like IlvTransformedGraphic, from the
IlvGraphicHandle class. An IlvFixedSizeGraphic object is a kind of handle, which
is associated with a certain referenced object of the IlvGraphic class. An
IlvFixedSizeGraphic instance is drawn by applying a graphic transformation to its
referenced object so that the referenced object can never change its visible size.

Whatever the transformation applied, the object keeps the same dimensions and a constant
offset relative to a reference point. These values are internally computed by the
IBM ILOG Views libraries or are specified by the user.

IlvGraphicInstance

You can use the specialized graphic handle subclass, IlvGraphicInstance, to
encapsulate an object with a graphic resource modification.

The IlvGraphicInstance references another graphic object so that it can be drawn with
another palette attribute. You can use an optional IlvTransformer to apply a geometric
transformation to this object.

Other Base Classes

Some subclasses of IlvSimpleGraphic form base classes for more complex graphic
objects.

IlvGauge

Gauges are graphic objects that provide a representation of a certain value contained
between a minimum and a maximum value. IlvGauge is the main abstract class from which
all gauge objects derive.

IlvScale

IlvScale is an abstract class from which are derived all instances of scale object classes. It
manages the basic required information concerning scales.
58 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Creating a New Graphic Object Class

usrfoundation.book Page 59 Tuesday, July 28, 2009 10:34 AM
IlvGadget

The IlvGadget class is the base class for all the IBM ILOG Views Gadgets package
classes. It implements all the basic functionalities of gadgets by providing the necessary
parameters to create a graphic object with a palette allowing shadowing management.

For details on gadgets, see the Gadgets documentation.

IlvGroupGraphic

IlvGroupGraphic is a graphic object class used to display and manipulate a set of graphic
objects as a group. This class is used in the IBM ILOG Views Prototypes package.

For details, see the Prototypes documentation.

IlvMapxx

Some IlvMapxx classes are subclasses of IlvSimpleGraphic, providing various graphic
services for the IBM ILOG Views Maps package, such as scales (IlvMapScale,
IlvMapDefaultScaleBar, and IlvMapDefaultNeedle) .

For details on all mapping classes, see the Maps documentation.

Creating a New Graphic Object Class

Here is an example of how you can subtype graphic objects, creating new graphic object
classes.

The Example: ShadowEllipse

In this example a new graphic object, ShadowEllipse, will be created, which inherits from
IlvSimpleGraphic:

The ShadowEllipse object is a normal IlvEllipse object with a drop shadow
underneath.

This example shows how you can design such an object from scratch by implementing a
subtype of the IlvSimpleGraphic class, which is the procedure most commonly used. We
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 59

usrfoundation.book Page 60 Tuesday, July 28, 2009 10:34 AM
will show how to implement member functions that deal with geometric properties and
drawing, how to manipulate the object’s palette, and how to make this object persistent.

Stepping through the Example

The example is developed in:

◆ Basic Steps to Subtype a Graphic Object

◆ Redefining IlvGraphic Member Functions

◆ Creating the Header File

◆ Implementing the Object Functions

◆ Updating the Palettes

◆ Saving and Loading the Object Description

Basic Steps to Subtype a Graphic Object

To create derived classes of the IlvGraphic class, you:

1. Create a header file that declares the new class and the necessary overloaded member
functions. Not every member function needs to be overloaded.

2. Add the DeclareTypeInfo(); statement in the class definition.

This creates the necessary fields and member function declarations for input/output
operations and class hierarchy information.

3. Add the DeclareIOConstructors(ShadowEllipse); statement in the class
declaration, which declares two additional constructors:

◆ The following constructor initializes a new ShadowEllipse graphic object, which is a
copy of source:

 ShadowEllipse(const ShadowEllipse& source);

◆ The following constructor initializes a new ShadowEllipse graphic object from the
parameters read in the inputfile:

 ShadowEllipse(IlvInputFile& inputfile,
 IlvPalette* palette = 0);

4. Create an implementation file (usually class.cpp) to implement the member functions
that you need. Outside the body of a function, add a call to the two following macros:

◆ IlvRegisterClass, which updates the class hierarchy information.

◆ IlvPredefinedIOMembers, which is used to define the member functions copy and
read.
60 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Creating a New Graphic Object Class

usrfoundation.book Page 61 Tuesday, July 28, 2009 10:34 AM
Redefining IlvGraphic Member Functions

The following member functions of IlvGraphic must always be redefined (these are the
member functions that make IlvGraphic an abstract class):

The other member functions—such as IlvGraphic::move, IlvGraphic::resize,
IlvGraphic::rotate, and IlvGraphic::contains—have a default implementation
from the IlvGraphic class. That is, IlvGraphic::resize is implemented by means of a
call to your applyTransform function, and so on.

If the new class has a parent that defines some of these member functions, you can simply
inherit the functions from this parent.

Creating the Header File

For this example, you create a header file that declares the new class and the necessary
overloaded member functions.

The header file shadellp.h contains the following lines:

#define DefaultShadowThickness 4

class ShadowEllipse
: public IlvSimpleGraphic {
public:
 ShadowEllipse(IlvDisplay* display,
 const IlvRect& rect,
 IlUShort thickness = DefaultShadowThickness,
 IlvPalette* palette = 0)
 : IlvSimpleGraphic(display, palette),
 _rect(rect), _thickness(thickness)
 {
 _invertedPalette = 0;
 computeInvertedPalette();
 }
 ~ShadowEllipse();

 virtual void draw(IlvPort*, const IlvTransformer* t = 0,
 const IlvRegion* clip = 0) const;
 virtual IlBoolean contains(const IlvPoint& p,
 const IlvPoint& tp,
 const IlvTransformer* t) const;
 virtual void boundingBox(IlvRect& rect,
 const IlvTransformer* t = 0) const;
 virtual void applyTransform(const IlvTransformer* t);
 IlUShort getThickness() const

virtual void draw(IlvPort* dst,
 const IlvTransformer* t = 0,
 const IlvRegion* clip = 0) const;
virtual void boundingBox(IlvRect& bbox,
 const IlvTransformer* t = 0) const;
virtual void applyTransform(const IlvTransformer* t);
virtual void write(IlvOutputFile&) const;
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 61

usrfoundation.book Page 62 Tuesday, July 28, 2009 10:34 AM
 { return _thickness; }
 void setThickness(IlUShort thickness)
 { _thickness = thickness; }

 virtual void setBackground(IlvColor* c);
 virtual void setForeground(IlvColor* c);
 virtual void setMode(IlvDrawMode m);
 virtual void setPalette(IlvPalette* p);

 DeclareTypeInfo();
 DeclareIOConstructors(ShadowEllipse);
protected:
 IlvRect _rect;
 IlUShort _thickness;
 IlvPalette* _invertedPalette;
 void computeInvertedPalette();
};

This object, like a few others in the standard IBM ILOG Views library, makes use of two
different IlvPalette objects. This is a common practice when you want your object to be
very efficient in terms of drawing time, since you do not need to create dummy palette
objects when drawing the ellipse itself and its shadow.

The ShadowEllipse class defines the member functions draw, contains, and
boundingBox. It also defines the necessary palette-management related member functions
to update both the standard palette object (the one stored in the IlvSimpleGraphic class)
and the new one, _invertedPalette.

No input/output member functions are declared in this synopsis. In fact, they are declared by
the DeclareTypeInfo macro that declares them as external. These member functions are
read, write, and copy. They have no default implementation, and you must provide a
version of these for each of your subclasses of the IlvGraphic class. There is a second
version of this macro, called DeclareTypeInfoRO, that does not declare the member
function write, if you know this object type will never be saved.

Implementing the Object Functions

For this example, you created a header file that declares the new class and the necessary
overloaded member functions.

This section explains the code for the functions implemented in the file shadellp.cpp.
62 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Creating a New Graphic Object Class

usrfoundation.book Page 63 Tuesday, July 28, 2009 10:34 AM
computeInvertedPalette Member Function

The member function computeInvertedPalette computes the inverted palette from the
one we get by means of the call to the member function getPalette. We create this
inverted palette, unlock the previous one (if there was one), and lock the new one.

This function is called whenever the original palette is modified (by overloading the
appropriate member functions), and when the object is originally created.

Creating this second palette may seem strange. In the member function draw, the second
palette is used only when calling two IlvDisplay drawing member functions. Another
method could have been to call the member function IlvPalette::invert before we call
these member functions and then bring the palette to its original state by another call to
IlvPalette::invert. Developing with IBM ILOG Views shows that this is not an
efficient way of manipulating objects. Palette management is one of the very efficient tasks
performed by IBM ILOG Views and you should not hesitate to use palette management
when needed.

Destructor

In the destructor, we need to release the inverted palette to the display, so it can be deleted if
not used by any other object.

draw Member Function

The member function draw fills the two ellipses, then draws the topmost ellipse border. The
global bounding rectangle (_rect) actually covers both ellipses.

Now we can show the member function draw. It demonstrates that drawing an object is
merely a call to some of the primitive member functions of the IlvDisplay class:

void
ShadowEllipse::draw(IlvPort* dst, const IlvTransformer* t,
 const IlvRegion* clip) const
{
 // Transform the bounding rectangle ______________________________
 IlvRect rect = _rect;
 if (t)
 t->apply(rect);

void
ShadowEllipse::computeInvertedPalette()
{
 IlvPalette* newPalette = getDisplay()->getInvertedPalette(getPalette());
 newPalette->lock();
 if (_invertedPalette)
 _invertedPalette->unLock();
 _invertedPalette = newPalette;
}

ShadowEllipse::~ShadowEllipse()
{
 _invertedPalette->unLock();
}

I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 63

usrfoundation.book Page 64 Tuesday, July 28, 2009 10:34 AM
 // Store both the display and palette ____________________________
 IlvPalette* palette = getPalette();

 // Find a correct value for thickness ____________________________
 IlUShort thickness = _thickness;
 if ((rect.w() <= thickness) || (rect.h() <= thickness))
 thickness = IlMin(rect.w(), rect.h());

 // Compute actual shadow rectangle _______________________________
 rect.grow(-thickness, -thickness);
 IlvRect shadowRect = rect;
 shadowRect.translate(thickness, thickness);

#if defined(USE_2_PALETTES)
 // Set the clipping region for both palettes _____________________
 if (clip) {
 palette->setClip(clip);
 _invertedPalette->setClip(clip);
 }
 // Fill shadow Ellipse ___
 dst->fillArc(palette, shadowRect, 0., 360.);

 // Fill inverted Ellipse ___
 dst->fillArc(_invertedPalette, rect, 0., 360.);

 // Draw ellipse __
 dst->drawArc(palette, rect, 0., 360.);
 if (clip) {
 palette->setClip();
 _invertedPalette->setClip();
 }
#else /* !USE_2_PALETTES */
 // Set the clipping region for both palettes _____________________
 if (clip)
 palette->setClip(clip);

 // Fill shadow ellipse ___
 dst->fillArc(palette, shadowRect, 0., 360.);

 // Compute inverted palette and fill inverted ellipse ____________
 palette->invert();
 dst->fillArc(palette, rect, 0., 360.);
 palette->invert();
 // Draw elliptic border __
 dst->drawArc(palette, rect, 0., 360.);

 // Set the clipping region for both palettes _____________________
 if (clip)
 palette->setClip();
#endif /* !USE_2_PALETTES */
}

We do not need the transformer t to perform our drawing work, because we want the
thickness to be the same whatever the transformation is.
64 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Creating a New Graphic Object Class

usrfoundation.book Page 65 Tuesday, July 28, 2009 10:34 AM
The clip parameter can be used when complex drawing is to take place (which is not the
case here). You must reset the clipping region of all affected palettes to an empty region
before you return from this function.

boundingBox Member Function

The member function boundingBox simply transforms the global bounding rectangle.

contains Member Function

The member function contains returns IlTrue if the point is inside one of the two
ellipses. All the coordinates are given in terms of the view’s coordinate system.

static IlBoolean
IsPointInEllipse(const IlvPoint& p, const IlvRect& bbox)
{
 if (!bbox.contains(p))
 return IlFalse;
 IlUInt rx = bbox.w() / 2,
 ry = bbox.h() / 2;
 IlUInt dx = (p.x() - bbox.centerx()) * (p.x() - bbox.centerx()),
 dy = (p.y() - bbox.centery()) * (p.y() - bbox.centery()),
 rrx = rx*rx,
 rry = ry*ry;
 return (rrx * dy + rry * dx <= rrx * rry) ? IlTrue : IlFalse;
}
IlBoolean
ShadowEllipse::contains(const IlvPoint&, const IlvPoint& tp,
 const IlvTransformer* t) const
{
 IlvRect rect = _rect;
 if (t)
 t->apply(rect);
 if ((rect.w() <= _thickness) || (rect.h() <= _thickness))
 return IsPointInEllipse(tp, rect);
 else {
 rect.grow(-_thickness, -_thickness);
 IlvRect shadowRect = rect;
 shadowRect.translate(_thickness, _thickness);
 return (IlBoolean)(IsPointInEllipse(tp, rect) ||
 IsPointInEllipse(tp, shadowRect));
 }
}

void
ShadowEllipse::boundingBox(IlvRect& rect,
 const IlvTransformer* t) const
{
 rect = _rect;
 if (t)
 t->apply(rect);
}

Note: The bounding box must contain the complete drawing to avoid erasing errors.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 65

usrfoundation.book Page 66 Tuesday, July 28, 2009 10:34 AM
You can see that contains calls the static function IsPointInEllipse which tests
whether the point parameter is inside the ellipse defined by the rectangle parameter.

applyTransform Member Function

The applyTransform member function applies the transformer to the rectangle of the
graphic.

void ShadowEllipse::applyTransform(const IlvTransformer* t)
{
 if (t)
 t->apply(_rect);
}

Updating the Palettes

To make sure that both palettes are updated when modifications are applied to the original
one, we need to overload the following member functions.

Saving and Loading the Object Description

Now come the input/output member functions that we have declared in the class synopsis
using the DeclareTypeInfo macro.

void
ShadowEllipse::setBackground(IlvColor* color)
{
 IlvSimpleGraphic::setBackground(color);
 computeInvertedPalette();
}

// --
void
ShadowEllipse::setForeground(IlvColor* color)
{
 IlvSimpleGraphic::setForeground(color);
 computeInvertedPalette();
}

// --
void
ShadowEllipse::setMode(IlvDrawMode mode)
{
 getPalette()->setMode(mode);
 _invertedPalette->setMode(mode);
}

// --
void
ShadowEllipse::setPalette(IlvPalette* palette)
{
 IlvSimpleGraphic::setPalette(palette);
 computeInvertedPalette();
}

66 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Creating a New Graphic Object Class

usrfoundation.book Page 67 Tuesday, July 28, 2009 10:34 AM
copy and read Member Functions

Another macro can be used to define the member functions copy and read:

This macro must be used in the implementation file, outside any function definition block,
just like IlvRegisterClass.

It is equivalent to:

The static member function read calls the class reading constructor and returns the new
instance. The macro DeclareIOConstructors declares the reading and copying
constructors in the header file. The definition of these constructors must be written in this
way in the implementation file:

The above constructor calls the superclass reading constructor, which reads the
superclass-specific information from the stream object. Then the subclass can read its own
information.

The member function copy creates a copy of the IlvShadowEllipse class, calling the
class copy constructor:

IlvPredefinedIOMembers(IlvShadowEllipse);

IlvGraphic*
ShadowEllipse::read(IlvInputFile& input, IlvPalette* palette)
{
 return new ShadowEllipse(input, palette);
}
IlvGraphic*
ShadowEllipse::copy() const
{
 return new ShadowEllipse(*this);
}

ShadowEllipse::ShadowEllipse(IlvInputFile& f,
 IlvPalette* pal)
: IlvSimpleGraphic(f, pal),
 _rect(),
 _thickness(0)
{
 int thickness;
 f.getStream() >> _rect >> thickness;
 _thickness = (IlvDim)thickness;
 _invertedPalette = 0;
 computeInvertedPalette();
}

ShadowEllipse::ShadowEllipse(const ShadowEllipse& source)
: IlvSimpleGraphic(source),
 _rect(source._rect),
 _thickness(source._thickness)
{
 _invertedPalette = source._invertedPalette;
 _invertedPalette->lock();
}

I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 67

usrfoundation.book Page 68 Tuesday, July 28, 2009 10:34 AM
write Member Function

The member function write writes the dimensions of the rectangle and the thickness of the
shadow to the given ostream output stream:

This write method is special because the IlvSimpleGraphic superclass has no
information to write. It is better to call the superclass write method to be consistent with
the read method, if the superclass has information to write. Here is an example of a usual
write method:

IlvRegisterClass Macro

Outside of the body of any function, we have to register the class IlvShadowEllipse as a
subclass of the class IlvSimpleGraphic.

void
ShadowEllipse::write(IlvOutputFile& f) const
{
 f.getStream() << _rect << IlvSpc() << (int)_thickness;
}

void
IlvRoundRectangle::write(IlvOutputFile& os) const
{
 IlvRectangle::write(os);
 os.getStream() << IlvSpc() << _radius;
}

IlvRegisterClass(ShadowEllipse, IlvSimpleGraphic);
68 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 69 Tuesday, July 28, 2009 10:34 AM
3

Graphic Resources

The classes that implement graphic resources are IlvResource and its subclasses. There
are five basic kinds of graphic drawing resources (subclasses of IlvResource) in
IBM® ILOG® Views: color, line style, pattern, color pattern, and font, each supported by
its corresponding class. Another subclass of IlvResource, the IlvPalette class,
manages a group of resources. Additionally, IlvQuantizer is the abstract base class of all
color conversion classes.

◆ IlvResource: The Resource Object Base Class

◆ IlvColor: The Color Class

◆ IlvLineStyle: The Line Style Class

◆ IlvPattern and IlvColorPattern: The Pattern Classes

◆ IlvFont: The Font Class

◆ IlvCursor: The Cursor Class

◆ Other Drawing Parameters describes additional settings that you control via the palette.

◆ IlvPalette: Drawing Using a Group of Resources

◆ IlvQuantizer: The Image Color Quantization Class
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 69

usrfoundation.book Page 70 Tuesday, July 28, 2009 10:34 AM
IlvResource: The Resource Object Base Class

All of the drawing member functions of the IlvPort class take a parameter of the
IlvPalette type, which is a subclass of IlvResource.

Figure 3.0 IlvResource Hierarchy

Resources are described further in the topics:

◆ Predefined Graphic Resources

◆ Named Resources

◆ Resource Creation and Destruction: lock and unLock

Predefined Graphic Resources

The following list summarizes the IlvDisplay member functions that produce the
predefined graphic resources:

IlvColor* defaultBackground() const;
IlvColor* defaultForeground() const;
IlvFont* defaultFont() const;
IlvLineStyle* defaultLineStyle() const;
IlvPattern* defaultPattern() const;
IlvCursor* defaultCursor() const;

◆ The foreground color default value in a palette is the color returned by
IlvDisplay::defaultForeground.

◆ The background color default value in a palette is the color returned by
IlvDisplay::defaultBackground.

◆ The default font value in a palette is the font returned by IlvDisplay::defaultFont.

◆ The default line style value in a palette is the line style returned by
IlvDisplay::defaultLineStyle.

IlvResource

IlvPalette IlvFont IlvColorPattern IlvCursor

IlvColor IlvPattern IlvLineStyle
70 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvResource: The Resource Object Base Class

usrfoundation.book Page 71 Tuesday, July 28, 2009 10:34 AM
◆ The default fill pattern value in a palette is the pattern returned by
IlvDisplay::defaultPattern.

◆ The default cursor value in a palette is the pattern returned by
IlvDisplay::defaultCursor.

The graphic resource classes are subclasses of IlvResource. For details on these
subclasses see:

◆ IlvColor: The Color Class

◆ IlvLineStyle: The Line Style Class

◆ IlvPattern and IlvColorPattern: The Pattern Classes

◆ IlvFont: The Font Class

◆ IlvCursor: The Cursor Class

In IBM ILOG Views, the drawing resources are assembled into an object of the
IlvPalette class, also a subclass of IlvResource. For more details on palettes see:

◆ IlvPalette: Drawing Using a Group of Resources

Named Resources

You can assign specific names to resources by using the IlvResource member functions:

void setName(const char* name);
const char* getName() const;

Resource Creation and Destruction: lock and unLock

Because the creation of graphic resources is generally memory intensive on most graphic
systems, IBM® ILOG® Views implements a caching mechanism to minimize graphic
resource allocation.

Resource objects are maintained by the IlvDisplay instances of your application. They
should normally not be created and destroyed using the operators new and delete. Instead,
IBM ILOG Views provides the following member functions:

Note: IlvFont and IlvColor make private use of their name field, so these classes
restrict the use of IlvResource::setName. IlvFont disables the use of
IlvResource::setName, and IlvColor only allows the renaming of mutable colors.
Non-mutable colors either have a predefined name or get a default name based on their
RGB values.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 71

usrfoundation.book Page 72 Tuesday, July 28, 2009 10:34 AM
◆ IlvDisplay methods getXXX, where XXX stands for a resource class name without the
Ilv prefix (for instance, IlvDisplay::getColor, IlvDisplay::getFont, and so
on).

◆ Methods IlvResource::lock and IlvResource::unLock respectively increment
and decrement the internal reference count of the resource. When this count reaches
zero, the resource is deleted.

Locking and Unlocking Procedures

Graphic resources should be used in the following manner:

1. Request your IlvDisplay instance to allocate a resource for you. If this resource
already exists in the system (for instance, the color you query for is already in use in a
palette somewhere), no further allocation is done, and the existing resource is returned.

2. Inform IBM ILOG Views that this resource must be kept safe by calling
IlvResource::lock, then use that resource.

3. Use IlvResource::unLock to let IBM ILOG Views know that you have finished
using the resource.

Resource management is closely concerned with the ways in which you lock and unlock
your resources. Whenever you need a specific resource in one of your persistent objects, you
should use this mechanism to make sure that it will stay safe within your IlvDisplay
instance. If your application needs more than one instance of IlvDisplay, you have to
create resources within each environment, since resources cannot be shared between the
different IlvDisplay contexts.

During the lifetime of a resource, the number of calls to IlvResource::lock must exactly
match the number of calls to IlvResource::unLock. If there are more calls to lock, the
resource remains allocated even if it is no longer in use, and therefore limits your
application’s requirements. If there are more calls to unlock, the application may crash
because of a memory error.

Rules for Locking and Unlocking

You should follow these rules for locking and unlocking graphic resources:

◆ Once you get a resource, lock it, use it, and unlock it when you are done.

◆ You should not unlock a resource that you have not locked yourself, unless you are sure
that your operation is correct.

◆ You should never use a resource after you have unlocked it, just like you should never
use a pointer after you have freed it; IlvResource::unLock potentially means
delete.

◆ There are times when you do not need to lock and unlock a resource. For instance, if you
get the foreground color of an object and pass it to another object that will lock it. In such
cases, locking and unlocking the resource is not necessary, but it does no damage either.
72 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvColor: The Color Class

usrfoundation.book Page 73 Tuesday, July 28, 2009 10:34 AM
IlvColor: The Color Class

Color is described in the topics:

◆ Color Models

◆ Using the IlvColor Class

◆ Converting between Color Models

◆ Computing Shadow Colors

Color Models

The description of a color, in IBM® ILOG® Views, is stored in an instance of IlvColor.

RGB

Colors can be handled in IBM ILOG Views using the familiar RGB (red/green/blue) system.
In this system, a color is entirely defined through its three component values: red, green
and blue. These values are stored as unsigned 16-bit numbers. For example, black is
defined with its three components set to zero, and white has its three components set to
65535.

HSV

Alternatively, you can use the HSV (hue/saturation/value of luminosity) model, shown here:
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 73

usrfoundation.book Page 74 Tuesday, July 28, 2009 10:34 AM
Figure 3.1

Figure 3.1 Hue, Saturation, and Value of Luminosity (HSV) Model

The preceding figure illustrates a mathematical model based upon three parameters: H (hue),
S (saturation) and V (value of luminosity). Following are their possible values:

◆ H The hue parameter, H, is an angle from 0 to 360°. For fixed values of the S and V
parameters (somewhere towards their upper limits), varying the angle H through a full
circle would take you through the entire spectrum of colors.

◆ S For a given H parameter, varying the S value changes the vividness of the color. At the
vertical axis of the cone, where S is zero, there is a total absence of any chromatic
intensity, which means that there is a shade of gray. On the outer surface of the cone,
where S has the value 1.0, the intensity is maximal, which means that colors are as vivid
as possible.

◆ V The third parameter, V, determines the quantity of light in which the colors are bathed,
in other words, the brightness of the spectrum obtained by varying the angle H through a
full circle. The bottom point of the cone, where V is zero, represents the color black. As
we ascend, the spectrum of the hue circle becomes increasingly brighter. The top of the
vertical axis, where V has the value 1.0, represents the color white.

Using the IlvColor Class

In IBM ILOG Views, the IlvColor class lets you manipulate both the RGB and the HSV
color models. You obtain a color by requesting your IlvDisplay object to get it for you.
74 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvColor: The Color Class

usrfoundation.book Page 75 Tuesday, July 28, 2009 10:34 AM
Colors are generally stored in a color table—sometimes referred to as a lookup table—that is
maintained internally by your IlvDisplay object. You can obtain the index of a color
object (a long unsigned integer) by means of the member function IlvColor::getIndex.
You can then use this number for remapping processes involving color bitmaps when you
want to map pixel values to color objects.

Color Name

Colors always have a name. IBM ILOG Views has a predefined set of color names. The
naming mechanism comes from the X Window color-naming scheme. Each name in this set
is associated with a specific RGB triplet. If a color is not specified by a predefined name but
by an RGB value, this color gets a default name of the following form: “#RRRRGGGGBBBB”,
where each of the red, green and blue values is represented by four hexadecimal digits.

Only mutable colors can be renamed, however. The name of a static color cannot be
modified. It either belongs to the set of predefined color names or is computed from the
RGB values defining the color.

New Colors

IlvColor does not have a public constructor; you must get the colors from the display.
Several IlvDisplay::getColor member functions enable you to obtain a new color,
specifying either RGB values, HSV values, or a name. You can also indicate if the color
must be mutable or not. If a problem arises making it impossible to create the desired color,
these member functions return 0.

The IlvDisplay class provides two member functions returning internal resources that are
often used as callback values for unspecified colors. These functions are:

IlvColor* defaultForeground();
IlvColor* defaultBackground();

Usually, these foreground and background colors are black and gray respectively. They can
easily be set to whatever colors you like by means of your display system resource
mechanism.

Mutable Colors

An IBM ILOG Views color can be either static (impossible to modify after its creation) or
mutable. In the latter case, you can use modifier member functions that are set to
dynamically modify a color, even when there are drawings with this color on the screen.

Mutable colors can be renamed using the method IlvResource::setName. Unlike static
colors, mutable colors are not transparently shared. The method IlvDisplay::getColor
always creates a new object if the parameter mutable is IlTrue. Mutable colors are more
costly, in terms of internal resource management.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 75

usrfoundation.book Page 76 Tuesday, July 28, 2009 10:34 AM
Converting between Color Models

Two global functions are available to convert color values from the RGB system to HSV, and
the reverse.

◆ IlvRGBtoHSV

◆ IlvHSVtoRGB

Computing Shadow Colors

Use the IlvComputeReliefColors global function to compute the colors that make a
shadow effect.

IlvLineStyle: The Line Style Class

You can create your own line styles by requesting IlvLineStyle resource objects from
your IlvDisplay object and specifying the way dashes are to be drawn.

A line style is an array of unsigned characters returned by the member function
IlvLineStyle::getDashes. The length of the array is returned by the
IlvLineStyle::getCount member function. This array must not be modified or deleted
by the user.

Starting with the “pen down,” IBM® ILOG® Views draws the number of foreground-
colored pixels that is indicated by the first element of the IlvLineStyle::getDashes
array. Then, the second element indicates the number of pixels to be skipped before the
drawing starts up again until the array is completely read. Then, the loop begins again. The
IlvLineStyle::getOffset member function returns the number of pixels to be skipped
before the loop restarts.

New Line Styles

You can create your own line styles by requesting IlvLineStyle resource objects from
your IlvDisplay object and specifying the way dashes are to be drawn.

Line styles can be named. To obtain a new line style, use the following member functions of
the class IlvDisplay:

IlvLineStyle* getLineStyle(IlUShort count,
 const unsigned char* dashes,
 IlUShort offset = 0);
IlvLineStyle* getLineStyle(const char* name) const;

The class IlvDisplay provides a set of predefined line styles that you can obtain using
their name:
76 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvPattern and IlvColorPattern: The Pattern Classes

usrfoundation.book Page 77 Tuesday, July 28, 2009 10:34 AM
Figure 3.2

Figure 3.2 Line Styles

IlvPattern and IlvColorPattern: The Pattern Classes

A pattern can be of any size and either monochrome, defined with only one bit per pixel, or
colored. For details see:

◆ Monochrome Patterns

◆ Colored Patterns

Monochrome Patterns

Monochrome patterns are handled by the IlvPattern class. Two constructors are provided
that you can use depending on the data available:

IlvPattern(IlvDisplay* display,
 IlvDim w,
 IlvDim h,
 unsigned char* data);
IlvPattern(IlvBitmap* bitmap);

The first constructor initializes a new IlvPattern object with a pattern w pixels wide and h
pixels high, filled in by the data stored in the data array of bit values. The pixel values are
packed into 16-bit words from left to right in a most-significant-bits-first manner, and each
scan line, stored from top to bottom, must be padded to 16 bits.

The second constructor initializes a new IlvPattern object from the given bitmap
monochrome image.

To obtain a previously defined pattern, use the member function
IlvDisplay::getPattern.

Other patterns are predefined within IBM® ILOG® Views, which you can access by name.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 77

usrfoundation.book Page 78 Tuesday, July 28, 2009 10:34 AM
Figure 3.3

Figure 3.3 Predefined Pattern Resources

Colored Patterns

Patterns can also be colored and are represented by instances of the IlvColorPattern
class.

IlvFont: The Font Class

A text string is drawn with specific spacing values as in the following illustration:

Figure 3.4

Figure 3.4 Spacing Values

You can get the parameters of an IlvFont object by using the member functions
IlvFont::getFamily, IlvFont::getSize, IlvFont::getStyle, and
IlvFont::getFoundry.

The member functions IlvFont::ascent, IlvFont::descent, and IlvFont::height
return the font metrics.
78 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvFont: The Font Class

usrfoundation.book Page 79 Tuesday, July 28, 2009 10:34 AM
You can also get the metrics of a specific string by means of calls to the member functions
IlvFont::stringWidth, IlvFont::stringHeight, and IlvFont::sizes.

The member function IlvFont::isFixed returns IlTrue if the font object has a fixed
width for all characters (which is not the case in the above figure).

You can also obtain the width of the narrowest and widest characters of this font by means of
the width values returned by the two member functions IlvFont::maxWidth and
IlvFont::minWidth. When both return the same value, IlvFont::isFixed returns
IlTrue.

Additional details of the font class are given in:

◆ New Fonts

◆ Font Names

New Fonts

IlvFont does not have a public constructor. New fonts must be obtained from the display
using one of the two member functions IlvDisplay::getFont. You can specify a font
name or a set of font characteristics:

◆ Family

◆ Size

◆ Style

◆ Foundry

Font Names

All fonts have a name. When a font is not created using a valid font name but a set of
values— family, size, style and foundry—IBM ILOG Views computes from these values a
name of the form:

"%family-size-style-foundry"

where:

◆ family is the string specified as the parameter family.

◆ size is the ASCII representation of the parameter size.

◆ style is a combination of the letters B, I and U, standing respectively for bold, italic and
underlined (upper and lower case do not matter). This field can be empty, in which case
the normal style is assumed.

◆ foundry is an optional string. It often identifies the company that designed the font.
This field is seldom specified. When it is ignored, the trailing ‘-’ can be omitted too.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 79

usrfoundation.book Page 80 Tuesday, July 28, 2009 10:34 AM
Fonts cannot be renamed.

Following are examples of syntactically well-formed IBM ILOG Views font names (which
are not necessarily valid font names in the sense that they may not exist on all platforms):

◆ "%helvetica-12-"

◆ "%time-12-BU"

◆ "%courier-14-i-adobe"

◆ "%terminal-11--bitstream"

IlvCursor: The Cursor Class

The IBM® ILOG® Views cursor is an icon appearing on the screen that follows every
mouse movement. Cursors are maintained in IBM ILOG Views by means of the IlvCursor
class. Other cursors are predefined, which you can access by name.

Figure 3.5

Figure 3.5 Predefined Cursors and their Names

Other Drawing Parameters

The following attributes affect drawing operations and are used in the IlvPalette class:
Line Width, Fill Style, Fill Rule, Arc Mode, Draw Mode, Alpha Value, and Anti-Aliasing
Mode.

These attributes are represented by C++ type definitions. Although they cannot be called
“resources,” as they are not represented by subclasses of IlvResource, they operate in
conjunction with the graphic resources to define the drawing attributes of
IBM® ILOG® Views drawings.

Line Width

The line width is an unsigned short integer. Zero (0) is a valid value, producing a line whose
width is such that it can be drawn as thin and rapidly as possible.
80 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Other Drawing Parameters

usrfoundation.book Page 81 Tuesday, July 28, 2009 10:34 AM
Fill Style

The most complex of the graphic resources is that of patterns, where there are the simple
masking patterns of the monochrome (two-color) domain and the rich pixel patterns of color.
This aspect is referred to as the fill style.

The fill style indicates the way in which patterns are used to fill shapes. There are three
possible cases represented in the IlvFillStyle enumeration type. A monochrome pattern
is used when the fill mode is IlvFillPattern or IlvFillMaskPattern. Its value is an
instance of IlvPattern, whether created by the user or returned by specific member
functions of the IlvDisplay class. Color pattern refers to what is used to fill shapes when
the fill mode is IlvFillColorPattern.

IlvFillPattern

With IlvFillPattern a shape is filled by being copied with the chosen pattern. In an
IBM ILOG Views object, there is a pattern property, which refers to an object of the
IlvPattern class. To fill a shape with a given pattern:

◆ Each “0” pixel in the relevant IlvPattern object produces a colored pixel with the
current background color

◆ Each “1” pixel in the IlvPattern object produces a colored pixel with the current
foreground color.

This is the default value of the fill-style property of an IlvPalette object.

IlvFillMaskPattern

IlvFillMaskPattern is similar to the IlvFillPattern style, except that “0” pixels in
the relevant IlvPattern object have no effect upon the corresponding pixels in the
destination port. That is, the drawing masks its destination.

IlvFillColorPattern

In the case of IlvFillColorPattern, the pattern used to fill a shape is indicated, not by
the pattern property of the IlvPalette object, but rather by its colored pattern property. It
is used when you wish to fill a region with a full-color pattern; that is, an actual object of the
IlvColorPattern class. The pattern property plays no role in the case of this filling mode.

Fill Rule

This attribute indicates how self-intersecting polygons are filled, since there is an ambiguity
concerning what is meant by “fill” in the case of such surfaces.

The fill rule indicates which points are to be considered as inside a filled polygon, depending
on the count of crossing segments that define the shape of the area to be filled. The
IlvFillRule provides two possibilities:
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 81

usrfoundation.book Page 82 Tuesday, July 28, 2009 10:34 AM
◆ IlvEvenOddRule According to this rule, in the case of the complex polygon shown
below, the central area of the star is not considered to lie inside the polygon, and
therefore, is not filled. This is the default value.

◆ IlvWindingRule According to this rule, the central area of the star is considered to lie
inside the polygon, and therefore, is filled.

Figure 3.6

Figure 3.6 IlvFillRule

Arc Mode

The arc mode indicates the way to close arcs in order to fill them, that is, the way in which
filled arcs are to be drawn: either by radii that form a wedge-shaped “pie” or by a simple
“chord” line segment. There are two possible cases that are handled by the IlvArcMode
enumeration type.

◆ IlvArcPie The arc is closed by adding two lines, from the center of the complete circle
to the start and end points of the arc. This is the default mode.

◆ IlvArcChord The arc is closed by adding a line from the start point to the end point.

Figure 3.7

Figure 3.7 Arc Modes
82 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Other Drawing Parameters

usrfoundation.book Page 83 Tuesday, July 28, 2009 10:34 AM
Draw Mode

The draw mode specifies the operation to be performed on pixels when they are sent to the
destination port. The operation is the one that affects the destination pixel value when the
source pixel value is to be drawn at that place. The draw mode has several possible values,
which are handled by the IlvDrawMode enumeration type. Except for the IlvModeXor
value, used in temporary drawings, these types produce no significant graphic result when
drawing in color.

◆ IlvModeSet The resulting pixel is a copy of the source pixel.

◆ IlvModeOr The resulting pixel is the result of an OR operation on the source and
destination pixels.

◆ IlvModeAnd The resulting pixel is the result of an AND operation on the source and
destination pixels.

◆ IlvModeXor The resulting pixel is the result of an XOR (exclusive or) operation on the
source and destination pixels. This mode can be used a second time to delete a drawing.

◆ IlvModeNot The resulting pixel is the result of the NOT operation on the destination
pixel. The source pixel value is not used.

◆ IlvModeInvert The resulting pixel is the result of a NOT operation on the source pixel.

◆ IlvModeNotOr The resulting pixel is the result of a NOT OR operation upon the source
and destination pixels.

◆ IlvModeNotAnd The resulting pixel is the result of a NOT AND operation upon the
source and destination pixels.

◆ IlvModeNotXor The resulting pixel is the result of an NOT XOR operation upon the
source and destination pixels. When you draw the same object twice with
IlvModeNotXor set, the drawing disappears.

Alpha Value

The alpha value indicates the amount of transparency the drawing will be given. A value of 0
means that the drawing will be completely transparent, that is, nothing will be drawn. A
value of IlvFullIntensity means that the drawing will be opaque.

Drawing involves the use of two objects:

◆ An IlvPort object. This is the port where the drawing will be done. See Chapter 8,
Drawing Ports for details.

◆ An IlvPalette object. This is a set of graphic resources that will be used to draw. See
IlvPalete for details.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 83

usrfoundation.book Page 84 Tuesday, July 28, 2009 10:34 AM
It is possible to control transparency at both levels: For example, you can set an alpha value
on the port (using IlvPort::setAlpha) and also on the palette you are going to draw with
(IlvPalette::setAlpha). In this case, the resulting drawing will use the composition of
the two alpha values.

Anti-Aliasing Mode

The anti-aliasing mode indicates whether smooth lines are drawn using anti-aliasing. The
possible values for this mode are:

◆ IlvDefaultAntialiasingMode The anti-aliasing mode is not explicitly specified. It
will be inherited using a default value.

◆ IlvNoAntialiasingMode No anti-aliasing will be used to draw.

◆ IlvUseAntialiasingMode Drawings will be done using anti-aliasing.

The anti-aliasing mode can be specified at different levels:

◆ IlvDisplay To set the default anti-aliasing mode of the display
(IlvDisplay::setAntialiasingMode).

◆ IlvPort To set the anti-aliasing mode of a whole port
(IlvPort::setAntialiasingMode).

◆ IlvPalette To set the anti-aliasing mode of a palette
(IlvPalette::setAntialiasingMode).

The following rules are applied to determine if the final drawing will use anti-aliasing or not:

◆ For the palette:

● If the anti-aliasing mode of the palette has been set (using the member function
IlvPalette::setAntialiasingMode) then this mode is used.

● Otherwise, the palette has the IlvDefaultAntialiasingMode, and the mode of the
port in which the drawing is done is used.

◆ For the port:

● If the anti-aliasing mode of the port has been set (using the member function
IlvPort::setAntialiasingMode) then this mode is used.

● Otherwise, the port has the IlvDefaultAntialiasingMode, and the mode of the
display is used.

◆ For the display, the default anti-aliasing mode is IlvNoAntialiasingMode. This
setting can be changed by either:

Note: This attribute is currently being supported only on Windows platforms using GDI+.
See the section Using GDI+ Features with IBM ILOG Views on page 268 for details.
84 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvPalette: Drawing Using a Group of Resources

usrfoundation.book Page 85 Tuesday, July 28, 2009 10:34 AM
● Using the member function IlvDisplay::setAntialiasingMode.

● Setting the resource Antialiasing to true.

● Setting the environment variable IlvAntialiasing to true.

IlvPalette: Drawing Using a Group of Resources

In IBM® ILOG® Views, the drawing resources are assembled into an object of the
IlvPalette class. The only way to draw anything is to use an IlvPalette object. Most
predefined graphic objects handle one IlvPalette (but sometimes more) to draw
themselves.

Unlike other IlvResource subclasses, IlvPalette has public constructors. However, the
standard way of creating a palette is still to get it from the IlvDisplay::getPalette
methods. The public constructors must only be used to create palettes that cannot be shared.

An IlvPalette can be shared or not. Named palettes are a subset of shared palettes.

For additional details, see the sections:

◆ Locking and Unlocking Resources

◆ Clipping Area

◆ Creating a Non-shared Palette

◆ Creating a Shared Palette

◆ Naming Palettes

Locking and Unlocking Resources

An IlvPalette locks all the resources it contains and unlocks them when they are no
longer used (palette destruction or replacement of a resource).

Clipping Area

The following methods are used to change the clipping area used to draw with the palette.

void setClip(const IlvRect* = 0) const;
void setClip(const IlvRegion*) const;

Note: This attribute is currently being supported only on Windows platforms using GDI+.
See the section Using GDI+ Features with IBM ILOG Views on page 268 for details.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 85

usrfoundation.book Page 86 Tuesday, July 28, 2009 10:34 AM
If you use a drawing method, the drawing will appear only in the clipping area; other areas
will not be modified.

That is why you must clip the drawing when you write the draw method of an IlvGraphic
subclass. The draw method gives you a clipping region as a parameter. You must set this clip
on all the palettes that you are using to do the drawing. Once you have finished drawing, you
must reset the clip of each palette to its previous clip, since the palettes are shared. This can
be done using the IlvPushClip class.

Here is an example:

void MyGraphic::draw(IlvPort* dst,
 const IlvTransformer* t,
 const IlvRegion* clip) const
{
 IlvPalette* myPalette = getPalette();
 IlvPushClip (*myPalette, clip);
 IlvPoint p1(10, 10), p2(50, 50);
 // Do my drawings
 dst->drawLine(myPalette, p1, p2);
}

Creating a Non-shared Palette

You can create a palette that cannot be shared by using the public constructors of
IlvPalette:

IlvPalette(IlvDisplay* display);
IlvPalette(IlvPalette* palette);
IlvPalette(IlvDisplay* display,
 IlvColor* background,
 IlvColor* foreground,
 IlvFont* font,
 IlvPattern* pattern);

The first constructor creates a default palette, the second creates a copy of the palette given
as its argument, and the third creates the palette with its characteristics passed as arguments.
Once you have a new palette, you can use its member functions to set its internal resources
(doing so with shared palettes is not recommended).

You can use this technique on the rare occasions when you do not want the palette to be
shared at all or when you want to have total control on the way the palette is shared. You
then have the responsibility of deleting it explicitly when it is no longer needed. Note that a
palette built this way still uses shared resources (colors, fonts, and so on).

Creating a Shared Palette

Each IlvDisplay instance maintains a list of shared palettes. When you need a new
palette, you must ask the display to supply it. This class provides a method
IlvDisplay::getPalette that lets you specify the internal resources of the palette. The
86 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvPalette: Drawing Using a Group of Resources

usrfoundation.book Page 87 Tuesday, July 28, 2009 10:34 AM
other member function IlvDisplay::getPalette(const char* name) is discussed in
the next section on named palettes.

If a palette matching your requirements already exists in the list, this palette is returned. If no
such palette is found in the list of shared palettes, a new palette is created, added to the list
and returned. The member function IlvDisplay::getPalette does not lock the returned
palette. You can set some resource parameters of this function to NULL. The display then
uses the corresponding default resources.

The use of shared palettes is very common and sufficient for most applications. However,
you must keep in mind that these palettes are indeed shared and that modifying one of them
is very likely to have undesirable side effects. Most of the time, palettes are used to control
the way graphic objects (that is, subclasses of IlvGraphic) are drawn.

You should not try to modify a palette itself, but instead use the graphic object member
functions to modify its graphic properties. The graphic object then gets another palette for
the display and keeps the old palette unchanged, in case it is used somewhere else in the
application.

The following code shows the right and wrong ways of using palettes:

Naming Palettes

As with most other resources, palettes can be named using their IlvResource::setName
member function. This function overwrites any existing name, so before naming a palette,
you should check if the palette already has a name.

You can use the member function IlvDisplay::getPalette(const char* name) to
retrieve a shared palette by its name.

The name of a palette is saved when graphic objects are written to an output stream. When
this data is read as an input stream, the display first tries to find an existing palette with the
same name. If none is found, the display tries to load the palette the usual way (that is, it
looks for an existing palette matching the description, and if none exists, it creates a new
palette and names it).

// To set the foreground color of IlvGraphic* graphic
IlvColor* color = graphic->getDisplay()->getColor("blue");

// The following line will affect all objects sharing the palette
graphic->getPalette()->setForeground(color); // Wrong way

// The following line will give another palette to the graphic object
// and will not affect objects pointing to the previous palette
graphic->setForeground(color); // Right way
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 87

usrfoundation.book Page 88 Tuesday, July 28, 2009 10:34 AM
IlvQuantizer: The Image Color Quantization Class

IlvQuantizer is the abstract base class of all color conversion classes. It is used to convert
true color images to indexed images of given numbers of colors. It defines basic
functionality common to all IBM® ILOG® Views quantizers such as dithering.

Subclasses must redefine the IlvQuantizer::computeColorMap method to return an
appropriate IlvColorMap.

It has two main subclass categories:

◆ The first category uses a fixed colormap.

◆ The second one computes a colormap from the input image.

Currently IBM ILOG Views has four predefined quantizers:

◆ The IlvFixedQuantizer remaps true color images to indexed ones according to a user
specified colormap.

◆ The IlvQuickQuantizer specializes the IlvFixedQuantizer with a predefined
colormap distributed in the color cube with 3 bits for the red component, 3 bits for the
green component and 2 bits for the blue component, leading to a 256 color map well
distributed in the color cube.

◆ The IlvNetscapeQuantizer specializes the IlvFixedQuantizer with a predefined
colormap known as the Netscape colormap. This colormap has 216 entries. Images
generated with this colormap are guaranteed not to dither in the Netscape web browser.

◆ The IlvWUQuantizer computes a colormap from the input image using the Wu
algorithm. This algorithm generates very accurate colormaps even with a low number of
colors (see the quantize sample). It is, however, slower than the others.

Other methods for quantization not implemented in IBM ILOG Views are Neural Nets and
Octrees.

Sample code:

IlvWUQuantizer quantizer;
// bdata is an instance of an IlvRGBBitmapData
IlvIndexedBitmapData* idata = quantizer.quantizer(bdata, 64);
88 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 89 Tuesday, July 28, 2009 10:34 AM
4

Graphic Formats

IBM® ILOG® Views is mainly a tool for manipulating vectorial entities, that is, shapes
made of lines and curves that can easily be manipulated to change their visual aspect in
terms of geometric characteristics. But IBM ILOG Views also has the capability of
manipulating raster or bitmap images.

◆ Graphic Formats Supported

◆ Bitmaps describes the characteristics of bitmap images

◆ IlvBitmap: The Bitmap Image Class

◆ IlvBitmapData: The Portable Bitmap Data Management Class

Graphic Formats Supported

IBM® ILOG® Views can work with the following vectorial and bitmap formats:

◆ Vectorial:

● DXF (input and output)

● DCW (input)

● WMF (Microsoft Windows only, output)
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 89

usrfoundation.book Page 90 Tuesday, July 28, 2009 10:34 AM
● PostScript (output)

◆ Bitmap (input and output):

● BMP - the standard Microsoft Windows bitmap format.

● JPG or JPEG - one of the most common formats used, especially for photos

● PNG

● SGI RGB - mainly used on the SGI Platform

● TIFF - Tagged Image Format File

● PPM - mainly used on UNIX platforms

● WBMP - used on WAP devices

For details on using bitmaps in IBM ILOG Views, see the section Bitmaps on page 90 and
the IlvBitmap class.

Bitmaps

IBM® ILOG® Views supports bitmap (also called raster) images. Bitmaps have the
following characteristics.

Color Bitmaps

If your display system has no true-color capabilities, each pixel value represents a color
index. To find the exact color that will be displayed for this pixel, the system lookup table is
consulted. If your display system has true-color capabilities, each pixel of the bitmap stores
its complete color information.

Black-and-White Bitmaps

Images can also be monochrome. In this case, there is only one bit per pixel. The drawing of
these one-bit-deep bitmaps takes place by setting the “1” pixels to the foreground color of
the palette given to the IlvDisplay instance and the “0” pixels to the background color of
the palette. When displayed as a transparent bitmap, the “0” pixels leave the destination port
unchanged.

Transparent Bitmaps and Masks

A colored bitmap can be associated with a mask. A mask is a monochrome bitmap that
indicates which of the pixels in the actual source image will be displayed. The pixels in the
bitmap that correspond to “0” bits in the mask are not displayed, achieving the effect of a
transparent bitmap. A transparent bitmap is a color bitmap that has transparent parts.
90 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvBitmap: The Bitmap Image Class

usrfoundation.book Page 91 Tuesday, July 28, 2009 10:34 AM
IlvBitmap: The Bitmap Image Class

Raster or bitmap images are represented by instances of the IlvBitmap class. For details on
using IlvBitmap, see:

◆ Bitmap-Related Member Functions

◆ Bitmap Formats

◆ Loading Bitmaps: Streamers

◆ Loading Transparent Bitmaps

Bitmap-Related Member Functions

Special member functions dealing with bitmaps can be found in the IlvDisplay class.

Bitmaps are very often shared between different objects. For example, the same bitmap can
be used as a fill pattern and an image on its own. Therefore, we need a management of
bitmap resources, which is accomplished by a locking/unlocking policy.

Bitmap management is closely concerned with the ways in which you lock or unlock your
bitmaps. Whenever you need a specific bitmap in one of your persistent objects, use the
following mechanism to make sure that it will stay safe within your IlvDisplay instance:

void lock();

This member function of the class IlvBitmap ensures that your bitmap will never be
modified or destroyed before every object that needs it tells IBM ILOG Views to do so.
Basically, this function increments a reference count initially set to 0.

void unLock();

This member function unlocks your bitmap; that is, it decrements the reference count of the
bitmap and deletes it when this count becomes 0. The creation/deletion mechanism of an
IlvBitmap object by the new and delete C++ operators must be reserved for bitmap
objects used in a temporary way and which are not shared.

Bitmap Formats

IBM ILOG Views allows you to create IlvBitmap objects from files or streams containing
images in various formats. These formats are:

◆ BMP (all subtypes, RLE and RGB encoded, Indexed and True Color). This format is
very common on Microsoft Windows platforms. Not compressed.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 91

usrfoundation.book Page 92 Tuesday, July 28, 2009 10:34 AM
◆ Portable Network Graphics (PNG). This format is becoming more common. It allows
transparent areas or colors, has indexed and high resolution true color subtypes.

◆ Joint Photographic Experts Group (JPEG) This format is widely used for photographic
images. It is “lossy,” meaning that original information is missing in a JPEG image. This
format allows important compression factors.

◆ Portable Pixmap (PPM, PGM, PBM) This format is very common on UNIX platforms.
It is uncompressed and generates huge files.

◆ WAP Bitmap (WBMP) This format is used on WAP devices, such as mobile phones. It is
a monochrome format.

Loading Bitmaps: Streamers

Each of the bitmap formats is associated with a streamer object (class
IlvBitmapStreamer).

Streamers can be registered at compile time or at run time. Registering a streamer at compile
time consists of including the header file for this format:

You then just use the following call to load an image into a bitmap:

IlvBitmap* IlvDisplay::readBitmap(const char* filename);

Image type is recognized using a file signature, and the correct streamer is called
automatically by IlvDisplay::readBitmap.

Note: This format is the patent-free replacement for GIF. See http://
www.libpng.org/pub/png/.

Table 4.1 Header Files for Bitmap Formats

Bitmap Format Header File

JPEG ilviews/bitmaps/jpg.h

PNG ilviews/bitmaps/png.h

BMP ilviews/bitmaps/bmp.h

PPM ilviews/bitmaps/ppm.h

SGI RGB ilviews/bitmaps/rgb.h

TIFF ilviews/bitmaps/tiff.h

WBMP ilviews/bitmaps/wbmp.h
92 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvBitmapData: The Portable Bitmap Data Management Class

usrfoundation.book Page 93 Tuesday, July 28, 2009 10:34 AM
All the bitmap streamers are dynamic modules. It means that the reader or writer is
dynamically loaded when necessary. Thus, you need only to request IBM ILOG Views to
read or write an image, and it will do it for all known formats.

Streamers are modules and can be loaded at run time if an unknown (or unregistered) file
format is being loaded. The corresponding module (if any) will be loaded and the streamer
registered. This works only on platforms where modules are supported.

Additional formats are always registered and do not need modules:

◆ XPM

◆ XBM

Loading Transparent Bitmaps

An IlvTransparentIcon object appears as a bitmap. Pixels in the source bitmap with a
zero value do not affect the destination port when the drawing is performed. Usually the
transparent region of the bitmap icon lets the background pattern show through. This process
works only for monochrome bitmaps or colored bitmaps that have either a transparency
mask or a transparent color index.

IBM ILOG Views is able to load transparent bitmaps from the following file formats :

◆ XPM

The transparent areas match the areas defined as “none” in the bitmap description file. If
this information is omitted, the bitmap is not loaded as a transparent icon.

◆ PNG

IBM ILOG Views uses transparency information form the PNG stream to create
transparent areas in the bitmap.

IlvBitmapData: The Portable Bitmap Data Management Class

IlvBitmapData and its associated classes provide portable bitmap data management. For
details see:

◆ The IlvBitmapData Class

◆ The IlvIndexedBitmapData Class

◆ The IlvRGBBitmapData Class

◆ The IlvBWBitmapData Class
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 93

usrfoundation.book Page 94 Tuesday, July 28, 2009 10:34 AM
The IlvBitmapData Class

Raster images in display systems such as X11 or Windows are generally represented using
very system-dependent representations. These representations are deeply dependent on the
display system configuration, forcing you to write display depth dependent code. The
IlvBitmapData class allows you to describe raster images using a common portable API.
IlvBitmapData is the base class of three subclasses that allow management of indexed
images, true color images with alpha channel, and black and white images commonly used
for masking and clipping. Bitmap data are managed like resources and can be locked/
unlocked. This class is generally not used directly. The IlvBitmapData class manages
memory, reference counting, and generic access to pixels of the image. It also provides
access to basic image processing methods such as stretching. IBM® ILOG® Views also
provides functionality for converting true color images to indexed images, a process known
as quantizing (see IlvQuantizer: The Image Color Quantization Class on page 88). You also
have access to the full SVG specification filters, allowing for very advanced image
processing features (see Chapter 5).

The IlvIndexedBitmapData Class

The IlvIndexedBitmapData class is dedicated to indexed color images, where raster data
is described as indexes to a color map (8-bit values, meaning that you can have only 256
colors in an indexed bitmap data).

Creating an Indexed Bitmap Data of Dimensions 256 * 256 Pixels

The first step is to create a colormap. We create a colormap with 256 entries. We then fill this
colormap with grayscale values. Each component is described using 8 bits for each
component.

IlvColorMap* cmap = new IlvColorMap(256);
for (IlUInt idx = 0; idx < 256; ++idx) {
 // sets the red, green and blue components for a entry
 cmap->setEntry(idx, idx, idx, idx);
}

We then create an indexed bitmap data of desired size:

IlvIndexedBitmapData* idata = new IlvIndexedBitmapData(256, 256, cmap);

We then fill the bitmap data with a gradient of indexes:

for (IlUInt h = 0; h < 256; ++h)
 for (IlUInt w = 0; w < 256; ++w)
 idata->setPixel(w, h, h);

To be able to display this bitmap data on the screen, you have to create an IlvBitmap from
it.

IlvBitmap* bitmap = new IlvBitmap(display, idata);
94 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvBitmapData: The Portable Bitmap Data Management Class

usrfoundation.book Page 95 Tuesday, July 28, 2009 10:34 AM
You can then use the IlvIcon class to create a graphic object from this.

The IlvRGBBitmapData Class

The IlvRGBBitmapData class is dedicated to true color images, where raster data is a
direct representation of the colors of the pixels.

Creating a True Color Bitmap Data of Dimensions 256 * 256 Pixels and Filling
it With a Gradient
IlvRGBBitmapData* bdata = new IlvRGBBitmapData(256, 256);
for (IlUInt h = 0; h < 256; ++h)
 for (IlUInt w = 0; w < 256; ++w)
 bdata->fastSetRGBPixel(w, h, w, h, w);

As with IlvIndexedBitmapData, you can then create an IlvBitmap and display it using
IBM ILOG Views standard methods.

When on an 8-bit color display, the IBM® ILOG® Views library automatically converts this
true color image to an indexed image using an algorithm yielding a very high quality image.

The internal representation for true color bitmap data is an array of width * height entries.
Each entry is a 4-byte quadruplet describing a pixel as follows:

◆ First byte is the alpha component.

◆ Second byte is the red component.

◆ Third byte is the green component.

◆ Fourth byte is the blue component.

The array can be described top-bottom or bottom-top, so you have a line access method
using IlvBitmapData::getRowStartData.

You can use various methods to access raster data:

◆ IlvBitmapData::getData returns a pointer to the raw raster data.

◆ IlvRGBBitmapData::getRGBPixel allows you to retrieve a given pixel.

◆ IlvRGBBitmapData::getRGBPixels allows you to retrieve the RGB representation
of a given rectangle.

◆ IlvRGBBitmapData::fill allows you to fill a rectangle with a given color.

◆ IlvRGBBitmapData::copy allows you to copy a rectangle of a bitmap data to a given
position in another bitmap data.

◆ IlvRGBBitmapData::blend allows you to smoothly blend a bitmap data into another
using a blend factor.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 95

usrfoundation.book Page 96 Tuesday, July 28, 2009 10:34 AM
◆ IlvRGBBitmapData::alphaCompose uses the alpha channel to compose two bitmap
data.

◆ IlvRGBBitmapData::tile allows you to tile a bitmap data into another.

◆ IlvRGBBitmapData::stretch allows you to stretch a portion of a bitmap data into
another.

◆ IlvRGBBitmapData::stretchSmooth allows you to stretch a portion of a bitmap
data into another using high quality resampling methods.

You can also independently access the color and alpha values for a given pixel.

The IlvBWBitmapData Class

This class is dedicated to black and white images, where only two values are possible for a
given pixel: on or off.
96 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 97 Tuesday, July 28, 2009 10:34 AM
5

Image Processing Filters

This chapter presents the various image processing classes that IBM® ILOG® Views
provides.

These classes are all related to the SVG filters (for a complete description of the features, see
http://www.w3.org/TR/2000/CR-SVG-20001102/filters.html).

IlvBitmapFilter: The Image Processing Class

IlvBitmapFilter is the base class of all image processing classes in
IBM® ILOG® Views. It defines the interface for image processing classes using a single
method:

IlvBitmapFilter::apply

This method accepts an array of IlvBitmapData and returns another IlvBitmapData.

The ilvbmpflt library from the IBM ILOG Views foundation package defines many
subclasses of IlvBitmapFilter; most of them are implementations of the W3Cs SVG
filters specification. In the following sections, you will find a list of the image processing
classes and their features.

◆ The IlvBlendFilter Class

◆ The IlvColorMatrixFilter Class
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 97

usrfoundation.book Page 98 Tuesday, July 28, 2009 10:34 AM
◆ The IlvComponentTransferFilter Class

◆ The IlvComposeFilter Class

◆ The IlvConvolutionFilter Class

◆ The IlvDisplaceFilter Class

◆ The IlvFloodFilter Class

◆ The IlvGaussianBlurFilter Class

◆ The IlvImageFilter Class

◆ The IlvLightingFilter Class

◆ The IlvLightSource Class

◆ The IlvMergeFilter Class

◆ The IlvMorphologyFilter Class

◆ The IlvOffsetFilter Class

◆ The IlvTileFilter Class

◆ The IlvTurbulenceFilter Class

◆ The IlvFilterFlow Class

◆ Using IlvFilteredGraphic to Apply Filter Flows to Graphic Objects

The IlvBlendFilter Class

The IlvBlendFilter class lets you blend two images A and B using various modes.

The blend modes define the following formulas:

◆ Normal Blend Mode: cr = (1 - qa) * cb + ca

◆ Multiply Blend Mode: cr = (1 - qa) * cb + (1 - qb) * ca + ca * cb

◆ Screen Blend Mode: cr = cb + ca - ca * cb

◆ Darken Blend Mode: cr = Min((1 - qa) * cb + ca, (1 - qb) * ca + cb)

◆ Lighten Blend Mode: cr = Max((1 - qa) * cb + ca, (1 - qb) * ca + cb)

where:

cr Result color (RGB) - premultiplied

qa Opacity value at a given pixel for image A

qb Opacity value at a given pixel for image B
98 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvBitmapFilter: The Image Processing Class

usrfoundation.book Page 99 Tuesday, July 28, 2009 10:34 AM
For all blend modes, the resulting opacity qr is computed as follows:

qr = 1 - (1 - qa) * (1 - qb)

The IlvColorMatrixFilter Class

The IlvColorMatrixFilter class lets you apply a matrix transformation on the RGBA
components of an input image.

The matrix is given as 5*4 row major order coefficients.

| R' | | a00 a01 a02 a03 a04 | | R |

| G' | | a10 a11 a12 a13 a14 | | G |

| B' | = | a20 a21 a22 a23 a24 | * | B |

| A' | | a30 a31 a32 a33 a34 | | A |

| 1 | | 0 0 0 0 1 | | 1 |

This class has three subclasses with specific coefficients.

The IlvSaturationFilter Class

IlvSaturationFilter computes the transformation matrix from the formula:

| R' | |0.213+0.787s 0.715-0.715s 0.072-0.072s 0 0 | | R |

| G' | |0.213-0.213s 0.715+0.285s 0.072-0.072s 0 0 | | G |

| B' | = |0.213-0.213s 0.715-0.715s 0.072+0.928s 0 0 | * | B |

| A' | | 0 0 0 1 0 | | A |

| 1 | | 0 0 0 0 1 | | 1 |

where s is the saturation factor.

The IlvHueRotateFilter Class

IlvHueRotateFilter computes the transformation matrix from the formula:

| R' | | a00 a01 a02 0 0 | | R |

| G' | | a10 a11 a12 0 0 | | G |

| B' | = | a20 a21 a22 0 0 | * | B |

| A' | | 0 0 0 1 0 | | A |

| 1 | | 0 0 0 0 1 | | 1 |

ca Color (RGB) at a given pixel for image A (premultiplied)

cb Color (RGB) at a given pixel for image B (premultiplied)
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 99

usrfoundation.book Page 100 Tuesday, July 28, 2009 10:34 AM
where the terms a00, a01, and so on, are calculated as follows:

 | a01 a01 a02 | [+0.213 +0.715 +0.072]

 | a10 a11 a12 | = [+0.213 +0.715 +0.072] +

 | a20 a21 a22 | [+0.213 +0.715 +0.072]

 [+0.787 -0.715 -0.072]

 cos(hueRotate value) * [-0.212 +0.285 -0.072] +

 [-0.213 -0.715 +0.928]

 [-0.213 -0.715 +0.928]

 sin(hueRotate value) * [+0.143 +0.140 -0.283]

 [-0.787 +0.715 +0.072]

where value is the angle of rotation for the hue.

Thus, the upper-left term of the hue matrix turns out to be:

.213 + cos(hueRotate value)*.787 - sin(hueRotate value)*.213

The IlvLuminanceToAlphaFilter Class

IlvLuminanceToAlphaFilter computes the transformation matrix from the formula:

| R' | | 0 0 0 0 0 | | R |

| G' | | 0 0 0 0 0 | | G |

| B' | = | 0 0 0 0 0 | * | B |

| A' | | 0.2125 0.7154 0.0721 0 0 | | A |

| 1 | | 0 0 0 0 1 | | 1 |

This filter converts color images to grayscale images.

The IlvComponentTransferFilter Class

The IlvComponentTransferFilter class lets you perform component-wise remapping
on images as follows:

R' = feFuncR(R)

G' = feFuncG(G)

B' = feFuncB(B)

A' = feFuncA(A)
100 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvBitmapFilter: The Image Processing Class

usrfoundation.book Page 101 Tuesday, July 28, 2009 10:34 AM
feFuncR, feFuncG, feFuncB, and feFuncA define the transfer functions for each
component.

It allows operations such as brightness adjustment, contrast adjustment, color balance, or
thresholding.

Five predefined transfer functions are defined:

◆ identity: C' = C

◆ table: the function is defined by linear interpolation into a lookup table by attribute
values, which provides a list of n+1 values (that is, v0 to vn) in order to identify n
interpolation ranges. Interpolations use the following formula:

k/N <= C < (k+1)/N => C' = vk + (C - k/N)*N * (vk+1 - vk)

◆ discrete: the function is defined by the step function defined by attribute values, which
provides a list of n values (that is, v0 to vn-1) in order to identify a step function
consisting of n steps. The step function is defined by the following formula:

k/N <= C < (k+1)/N => C' = vk

◆ linear: the function is defined by the following linear equation:

C' = slope * C + intercept

where slope and intercept are user specified.

◆ gamma: the function is defined by the following exponential function:

C' = amplitude * pow(C, exponent) + offset

where amplitude, exponent, and offset are user specified.

Transfer functions are classes on their own and can be redefined (see
IlvTransferFunction, IlvIdentityTransfer, IlvLinearTransfer,
IlvTableTransfer, IlvDiscreteTransfer, and IlvGammaTransfer).

The IlvComposeFilter Class

The IlvComposeFilter class lets you perform the combination of the two input images
pixel-wise in image space using one of the Porter-Duff compositing operations: over, in,
atop, out, xor. Additionally, a component-wise arithmetic operation (with the result
clamped between [0..1]) can be applied. You have a choice of these six operators for the
compositing, shown in Table 5.1 on page 102.

The resulting color is given by the formula:

Cresult = Fa * Ca + Fb * Cb

where:

◆ Fa and Fb depend on the operator as shown in Table 5.1 on page 102.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 101

usrfoundation.book Page 102 Tuesday, July 28, 2009 10:34 AM
◆ Ca is the color from the first image, and Cb is the color from the second image.

◆ In the table, Aa is the alpha value from the first image and Ab is the alpha value from the
second image.

The IlvConvolutionFilter Class

The IlvConvolutionFilter class lets you apply a matrix convolution filter effect. A
convolution combines pixels in the input image with neighboring pixels to produce a
resulting image. A wide variety of imaging operations can be achieved through
convolutions, including blurring, edge detection, sharpening, embossing and beveling.

A matrix convolution is based on an n-by-m matrix (the convolution kernel) which describes
how a given pixel value in the input image is combined with its neighboring pixel values to
produce a resulting pixel value. Each result pixel is determined by applying the kernel
matrix to the corresponding source pixel and its neighboring pixels.

To illustrate, suppose you have an input image which is 5 pixels by 5 pixels, whose color
values are as follows:

 0 20 40 235 235

 100 120 140 235 235

 200 220 240 235 235

 225 225 255 255 255

 225 225 255 255 255

and you define a 3-by-3 convolution kernel as follows:

 1 2 3

 4 5 6

Table 5.1 Compositing Operators

Operator Operation

over Fa = 1, Fb = 1 - Aa

in Fa = Ab, Fb = 0

out Fa = 1 - Ab, Fb = 0

atop Fa = Ab, Fb = 1 - Aa

xor 1 - Ab, Fb = a - Aa

arithmetic Cresult = k1 * Ca * Cb + k2 * Ca + k3 * Ca * Cb + k4
102 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvBitmapFilter: The Image Processing Class

usrfoundation.book Page 103 Tuesday, July 28, 2009 10:34 AM

 7 8 9

Let us focus on the pixel at the second row and second column of the image (the source pixel
value is 120). Then the resulting pixel value will be:

(1* 0 + 2* 20 + 3* 40 +

4*100 + 5*120 + 6*140 +

7*200 + 8*220 + 9*240) / (1+2+3+4+5+6+7+8+9)

You can specify a divisor (a number by which the result of the matrix convolution is divided)
and a bias (a number by which the result of the matrix convolution is added).

The kernel is described by the IlvBitmapDataKernel class.

The IlvDisplaceFilter Class

The IlvDisplaceFilter class lets you displace pixels from an image using pixel values
of another image.

This is the transformation to be performed:

P'(x,y) <- P(x + scale * ((XC(x,y) - .5), y + scale * (YC(x,y) -
.5))

where:

◆ P(x,y) is the input image.

◆ P'(x,y) is the destination.

◆ XC(x,y) and YC(x,y) are the component values of the displacement map. They can be
chosen from any of the color components of the image map (an example is that the Red
component displaces in X while the Alpha component displaces in Y.

◆ scale is a user-specified scaling value.

The IlvFloodFilter Class

The IlvFloodFilter class lets you fill an image with a given color.

The IlvGaussianBlurFilter Class

The IlvGaussianBlurFilter class lets you apply a Gaussian blur effect to an image. The
Gaussian blur kernel is an approximation of the normalized convolution:

H(x) = exp(-x^2/ (2*s^2)) / sqrt(2* pi*s^2)

where s is a user-specified deviation.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 103

usrfoundation.book Page 104 Tuesday, July 28, 2009 10:34 AM
This filter uses the IlvConvolutionFilter internally.

The IlvImageFilter Class

The IlvImageFilter class lets you load an image from a string describing the image
name.

The IlvLightingFilter Class

The IlvLightingFilter class lets you light an image using the alpha channel as a bump
map. Several types of lights can be specified (see later).

This class is an abstract class and has two usable subclasses.

The IlvDiffuseLightingFilter Class

For the IlvDiffuseLightingFilter class, the resulting image is an RGBA opaque
image based on the light color with alpha = 1.0 everywhere. The lighting calculation follows
the standard diffuse component of the Phong lighting model. The resulting image depends
on the light color, light position, and surface geometry of the input bump map.

The light map produced by this filter primitive can be combined with a texture image using
the multiply term of the arithmetic IlvComposeFilter compositing method. Multiple
light sources can be simulated by adding several of these light maps together before
applying it to the texture image.

The resulting RGBA image is computed as follows:

Dr = kd * N.L * Lr

Dg = kd * N.L * Lg

Db = kd * N.L * Lb

Da = 1.0

where:

N is a function of x and y and depends on the surface gradient as follows:

The surface described by the input alpha image Ain (x,y) is:

Z (x,y) = surfaceScale * Ain (x,y)

kd Diffuse lighting constant

N Surface normal unit vector, a function of x and y (see below)

L Unit vector pointing from surface to light, a function of x and y in
the point and spot light cases

Lr, Lg, Lb RGB components of light, a function of x and y in the spot light
case
104 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvBitmapFilter: The Image Processing Class

usrfoundation.book Page 105 Tuesday, July 28, 2009 10:34 AM
Surface normal is calculated using the Sobel gradient 3x3 filter:

Nx (x,y)= - surfaceScale * 1/4*((I(x+1,y-1) + 2*I(x+1,y) + I(x+1,y+1))
 - (I(x-1,y-1) + 2*I(x-1,y) + I(x-1,y+1)))

Ny (x,y)= - surfaceScale * 1/4*((I(x-1,y+1) + 2*I(x,y+1) + I(x+1,y+1))
 - (I(x-1,y-1) + 2*I(x,y-1) + I(x+1,y-1)))

Nz (x,y) = 1.0

N = (Nx, Ny, Nz) / Norm((Nx,Ny,Nz))

See IlvLightSource for a further description of L, the unit vector from the image sample
to the light.

The IlvSpecularLightingFilter Class

For IlvSpecularLightingFilter, the resulting image is an RGBA image based on the
light color. The lighting calculation follows the standard specular component of the Phong
lighting model. The resulting image depends on the light color, light position, and surface
geometry of the input bump map. The result of the lighting calculation is added. The filter
primitive assumes that the viewer is at infinity in the z direction (that is, the unit vector in the
eye direction is (0,0,1) everywhere).

This filter primitive produces an image that contains the specular reflection part of the
lighting calculation. Such a map is intended to be combined with a texture using the add
term of the arithmetic IlvComposeFilter method. Multiple light sources can be simulated
by adding several of these light maps before applying it to the texture image.

The resulting RGBA image is computed as follows:

Sr = ks * pow(N.H, specularExponent) * Lr

Sg = ks * pow(N.H, specularExponent) * Lg

Sb = ks * pow(N.H, specularExponent) * Lb

Sa = max(Sr, Sg, Sb)

where:

See IlvDiffuseLightingFilter for definitions of N and (Lr, Lg, Lb).

The definition of H reflects our assumption of the constant eye vector E = (0,0,1):

H = (L + E) / Norm(L+E)

where L is the light unit vector.

ks Specular lighting constant

N Surface normal unit vector, a function of x and y (see below)

H "Halfway" unit vector between eye unit vector and light unit vector

Lr, Lg, Lb RGB components of light
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 105

usrfoundation.book Page 106 Tuesday, July 28, 2009 10:34 AM
The IlvLightSource Class

The IlvLightSource class lets you model lights. It has three usable subclasses

The IlvDistantLight Class

IlvDistantLight models an infinite light source using an azimuth and an elevation:

Lx = cos(azimuth)*cos(elevation)

Ly = sin(azimuth)*cos(elevation)

Lz = sin(elevation)

The IlvPointLight Class

IlvPointLight models an positional light using three coordinates Lightx, Lighty, and
Lightz.

The IlvSpotLight Class

IlvSpotLight models a positional spot light using three coordinates Lightx, Lighty, and
Lightz.

Lx = Lightx - x

Ly = Lighty - y

Lz = Lightz - Z(x,y)

L = (Lx, Ly, Lz) / Norm(Lx, Ly, Lz)

where:

Given S as the unit vector pointing from the light to the point (pointsAtX, pointsAtY,
pointsAtZ) in the x-y plane:

Sx = pointsAtX - Lightx

Sy = pointsAtY - Lighty

Sz = pointsAtZ - Lightz

S = (Sx, Sy, Sz) / Norm(Sx, Sy, Sz)

Lightx,
Lighty, and
Lightz

The input light position

Lr, Lg, Lb The light color vector, is a function of position in the spot light case
only:
Lr = Lightr*pow((-L.S),specularExponent)
Lg = Lightg*pow((-L.S),specularExponent)
Lb = Lightb*pow((-L.S),specularExponent)
106 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvBitmapFilter: The Image Processing Class

usrfoundation.book Page 107 Tuesday, July 28, 2009 10:34 AM
The IlvMergeFilter Class

The IlvMergeFilter class lets you composite input image layers on top of each other
using the over operator.

Many effects produce a number of intermediate layers in order to create the final output
image. This filter allows us to collapse them into a single image. Although this could be
done by using n-1 IlvComposeFilter filters, it is more convenient to have this common
operation available in this form, and offers the implementation some additional flexibility.

The IlvMorphologyFilter Class

The IlvMorphologyFilter class lets you perform "fattening" or "thinning" of artwork. It
is particularly useful for fattening or thinning an alpha channel.

The dilation (or erosion) kernel is a rectangle with a width of 2*x-radius+1 and a height
of 2*y-radius+1 where radius is a user-specified value. In dilation, the output pixel is
the individual component-wise maximum of the corresponding R,G,B,A values in the input
image kernel rectangle. In erosion, the output pixel is the individual component-wise
minimum of the corresponding R,G, B, A values in the input image kernel rectangle.

The IlvOffsetFilter Class

The IlvOffsetFilter class lets you offset an image by given x and y values. This is
important for effects such as drop shadows.

The IlvTileFilter Class

The IlvTileFilter class lets you create a target image with a repeated, tiled pattern.

The IlvTurbulenceFilter Class

The IlvTurbulenceFilter lets you create an image using the Perlin turbulence function.
It allows the synthesis of artificial textures such as clouds or marble.

The resulting image will have maximal size in the image space.

It is possible to create bandwidth-limited noise by synthesizing only one octave.

You can choose whether fractal noise or turbulence is created and the number of repetitions
(octaves) of the noise generation functions to use.

Note: For a detailed description the of the Perlin turbulence function, see "Texturing and
Modeling", Ebert et al, AP Professional, 1994.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 107

usrfoundation.book Page 108 Tuesday, July 28, 2009 10:34 AM
The IlvFilterFlow Class

The IlvFilterFlow class lets you chain IlvBitmapFilter instances using names as
inputs and outputs. An example of such a flow is the creation of a drop shadow effect. You
use the alpha channel of an image as the input for a Gaussian blur; you then offset the
blurred image and merge this with the source image.

The IlvFilterFlow class can be created programmatically but it is much more convenient
to use the XML representation of filter flows, in a similar way to the definition of filters in
SVG.

An example of such a flow is given by the following XML file (see $ILVHOME/data/
filters for many predefined XML filter flows):

<?xml version="1.0"?>
<filters>
 <filter id="DropShadow2" x="-10" y="-10" width="125" height="125">
 <desc>Applies a drop shadow effect</desc>
 <feGaussianBlur in="SourceAlpha" stdDeviation="3"/>
 <feOffset dx="2" dy="2" result="offsetBlur"/>
 <feComposite in="SourceGraphic" in2="offsetBlur" operator="over"/>
 </filter>
</filters>

Here is a line-by-line description:

<?xml version="1.0"?>

The definition of IBM ILOG Views filters follows XML conventions.

<filters>

Opening element for filters (the file can contain any number of filters)

<filter id="DropShadow2" x="-10" y="-10" width="125" height="125">

Opening element for a filter name DropShadow2.

Some filters extend the source image by some pixels in all dimensions, so we must specify
the additional extension of the filter.

This filter grows the source image by 10 pixels at the left and top and extends the width and
height by 25 pixels.

<desc>Applies a drop shadow effect</desc>
108 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvBitmapFilter: The Image Processing Class

usrfoundation.book Page 109 Tuesday, July 28, 2009 10:34 AM
This tag contains a description of the filter.

<feGaussianBlur in="SourceAlpha" stdDeviation="3"/>

The first atomic filter to use in this flow is an IlvGaussianBlurFilter with a deviation
of 3 in both directions.

Two predefined names are defined by the filter flow:

◆ SourceAlpha: contains only the Alpha values of the input image.

◆ SourceGraphic: contains the input image.

Here we only need to apply the blur on the alpha component of the image.

<feOffset dx="2" dy="2" result="offsetBlur"/>

The second atomic filter is an IlvOffsetFilter with displacement 2.

When not specified, the input from a filter is the output of the previous filter, so it does not
need to be specified. The result will be an image stored with the name offsetBlur.

<feComposite in="SourceGraphic" in2="offsetBlur" operator="over"/>

The third and last atomic filter is an IlvComposeFilter that will compose the offset
blurred image with the input image using the over operator.

</filter>

Closes the filter flow description.

</filters>

Closes the filters enumeration.

Such an IlvFilterFlow can be created by using the following lines. We suppose that the
file containing the filter flow is stored on the disk under the name standard.xml:

IlIUrlStream input("standard.xml");
IlvFilterFlow* flow = new IlvFilterFlow(input, "DropShadow2");

Using IlvFilteredGraphic to Apply Filter Flows to Graphic Objects

The IBM® ILOG® Views foundation package provides a simple way to apply filter flows to
graphic objects: the IlvFilteredGraphic class.

This class encapsulates a graphic object and internally computes an IlvBitmapData from
the draw method of the object. It then applies a given filter flow to this IlvBitmapData
and draws the result on the screen. It is then very easy to add image processing effects to
vectorial objects.

Sample code:

IlvZoomableLabel* embosssource = new IlvZoomableLabel(display,
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 109

usrfoundation.book Page 110 Tuesday, July 28, 2009 10:34 AM
 IlvPoint(100, 100),
 "Views");

 embosssource->setForeground(display->getColor((IlvIntensity)(5 * 255),
 (IlvIntensity)(5 * 255),
 (IlvIntensity)(56 * 255)));
 embosssource->setFont(display->getFont("%Helvetica-75-"));
 IlvFilteredGraphic* emboss = new IlvFilteredGraphic(display,
 embosssource,
 "standard.xml#DropShadow",
 IlTrue);

Many predefined filter flows are provided in the IBM ILOG Views distribution in the
$ILVHOME/data/filters directory. You can use them interactively with the
IBM ILOG Views Studio application.
110 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 111 Tuesday, July 28, 2009 10:34 AM
6

The Display System

The IlvDisplay class is a fundamental class in the IBM® ILOG® Views library. It
handles every aspect of the connection with the display system. The topics are:

◆ IlvDisplay: The Display System Class

◆ Connecting to the Display Server

◆ Display System Resources

◆ Home

◆ The Display Path
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 111

usrfoundation.book Page 112 Tuesday, July 28, 2009 10:34 AM
IlvDisplay: The Display System Class

To develop a graphic application using IBM® ILOG® Views, you use a set of IlvDisplay
member functions or IBM ILOG Views primitives:

Figure 6.0 IlvDisplay Drawing Member Functions: The Primitives

The class IlvDisplay enables you to communicate transparently with a display system
such as X Window or Microsoft Windows.

Two basic tasks are drawing commands and graphic resource handling:

◆ Drawing Commands Drawing commands handle the basic geometric classes for such
entities as points, rectangles, regions (list of rectangles), curves, and strings.

There are more than twenty drawing member functions of this kind (see the IlvPort
class for details). Drawing operations produce their results inside a region—either in
memory or on the screen—that is defined as an instance of the IlvPort class.

Graphic application developer

IBM ILOG Views primitives

Drawing commands Graphic resources

X Window
with Motif

Microsoft
Windows

Other
display
systems
112 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Connecting to the Display Server

usrfoundation.book Page 113 Tuesday, July 28, 2009 10:34 AM
◆ Graphic Resources Some IlvDisplay drawing member functions deal with graphic
resources, such as colors, line styles, patterns, and fonts. These resources are objects that
inherit the features of a class called IlvResource. They are created by means of various
IlvDisplay member functions. Specific resources are grouped together into objects of
the IlvPalette class for drawing purposes.

Connecting to the Display Server

To initialize an IBM® ILOG® Views session, you have to create an instance of the
IlvDisplay class. This involves:

◆ Opening a Connection and Checking the Display

◆ Closing a Connection and Ending a Session

Opening a Connection and Checking the Display

The member function IlvDisplay::isBad returns a Boolean value that tells you whether
the IlvDisplay object has been successfully created, as shown in the following code. The
reasons for a display failure vary from one display system to another.

For more information about IBM ILOG Views error messages, see Appendix E, Error
Messages.

IlvDisplay* display = new IlvDisplay(“AppName”,
 “DisplayName”,
 argc,
 argv);
if (display->isBad()) {
 delete display;
 IlvFatalError(“Could not create display”);
 IlvExit(-1);
}

const char* dirName = “./localDirectory/subDirectory”;
const char* fileName = “foo.txt”;
display->prependToPath(dirName);
// Now, if a file such as
// “./localDirectory/subDirectory/foo.txt”
// or
// “.\localDirectory\subDirectory\foo.txt”
// exists, we should be able to find it.
const char* filePath = display->findInPath(fileName);
if (filePath)
 IlvPrint(“File %s found at %s”, fileName, filePath);
else
 IlvWarning(“File %s not found”, fileName);
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 113

usrfoundation.book Page 114 Tuesday, July 28, 2009 10:34 AM
Closing a Connection and Ending a Session

To close a connection to the display server, just destroy the IlvDisplay object. The
destructor, IlvDisplay::~IlvDisplay, immediately frees all graphic resources used by
the display.

If the IlvDisplay was created on the basis of an existing link to a display system, delete
does not destroy this link. Except in the rare cases of multidisplay applications, destroying
the IlvDisplay means the end of the session, since you cannot do much without a display.

You must call IlvExit to end the session properly. It frees memory allocated by
IBM ILOG Views. This is especially important with Microsoft Windows, where this
memory is not automatically freed by the system.

delete display;
IlvExit(0);

Display System Resources

A display system resource is an association of two strings: a name and a value. Display
system resources are very convenient for building customizable applications.

The resource name-value pair can be specified as follows in specific sections of a resource
file (the .Xdefaults file on UNIX or the .INI file on PCs, for example):

[MyApplication]
view.background=green
label.txt=This is my contents

The value associated with the resource name can be modified by the end user at run time.

More details on display system resources are in the topics:

◆ The getResource Method

◆ How Display System Resources are Stored

◆ Default Display System Resources

◆ Environment Variables and Resource Names

◆ Display System Resources on Windows

Note: “Display system” resources are not to be confused with “graphic” resources,
which are described in Chapter 3, Graphic Resources.

Note: Resource files have an [IlogViews] section that is common to all
IBM ILOG Views applications.
114 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Display System Resources

usrfoundation.book Page 115 Tuesday, July 28, 2009 10:34 AM
The getResource Method

The application uses the IlvDisplay::getResource method to retrieve a resource value
from the display system.

const char* res = display->getResource("resourceName", default);

The method IlvDisplay::getResource returns a value string associated with the
application name of the current IBM ILOG Views session, which is specified in the
IlvDisplay constructor, and the string representing the resource name. If no resource
matches the given string, then this member function returns the default value provided in the
optional default string parameter. The only type returned by
IlvDisplay::getResource is const char*. It is up to the application programmer to
convert the string to another data type. The place in memory where the result of an
IlvDisplay::getResource call is stored gets reused each time you call the function.
Thus, the previous result is overwritten. If you want to save your result, you must recopy it
right away.

How Display System Resources are Stored

The way resources are stored within your display system configuration files is system-
dependent.

◆ With Microsoft Windows, you must add the following line to the VIEWS.INI file or the
application-dependent .INI file. (The VIEWS.INI file can be found in the Windows
directory.)

[AppName]
myDialogTitle=Load file

◆ On the X Window system, you must pass the following line to the resource manager:

AppName*myDialogTitle: Load file

You can use the xrdb program or include it into a file read by X clients (the
.Xdefaults file or the file specified by your XENVIRONMENT variable).
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 115

usrfoundation.book Page 116 Tuesday, July 28, 2009 10:34 AM
Default Display System Resources

When an instance of the IlvDisplay class is created, the default display system resources
are initialized using the system resources mechanism:

Environment Variables and Resource Names

Default UNIX and PC environment variables have precedence over the resource name
specified in resource files (namely .Xdefault, and .INI). The following table gives a list
of environment variables with their associated resource names.

Table 6.1 IlvDisplay Default Resources

IlvDisplay Method
System Resource
Name

Default Value

IlvDisplay::defaultForeground foreground black

IlvDisplay::defaultBackground background gray

IlvDisplay::defaultFont font system-dependent

IlvDisplay::defaultNormalFont normalfont system-dependent

IlvDisplay::defaultBoldFont boldfont system-dependent

IlvDisplay::defaultItalicFont italicfont system-dependent

IlvDisplay::defaultLargeFont largefont system-dependent

Table 6.2 Environment Variables and Resource Names

Environment Variable Name Resource Name

ILVHOME home.
For details see the section Home.

ILVLANG lang.
For more information, see the section The
IlvMessageDatabase Class.

ILVDB messageDB.
For more information, see the section The
IlvMessageDatabase Class.

ILVLOOK look.
The look resource takes either one of the
following values: motif, windows, or win95.
For more information, refer to the Gadgets
documentation.
116 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Display System Resources

usrfoundation.book Page 117 Tuesday, July 28, 2009 10:34 AM
Display System Resources on Windows

On the Microsoft Windows environment, you can define Windows-specific resources in
addition to the standard resources. These resources are listed below:

◆ [TTY] If this resource is set to TRUE, a message window is created to which all IBM
ILOG messages are sent. The default value is FALSE.

◆ [TTYw], [TTYh],
[TTYx], [TTYy] These resources specify the size and position of the message window,
provided that TTY is set to TRUE. The default values are TTYw=200, TTYh=100,
TTYx=screen_width-TTYw, TTYy=screen_height-TTYh.

◆ [UseRightButton] If this resource is set to TRUE and your mouse has two buttons, the
IlvEvent generated by the IBM ILOG Views library holds the IlvRightButton
value. Otherwise, it contains the IlvMiddleButton value. The default value is FALSE.

For more information, see the member functions
IlvDisplay::isRightButtonValueUsed and
IlvDisplay::useRightButtonValue .

◆ [SolidColors] If this resource is set to TRUE, the VGA system palette is used. The
default value is FALSE if the number of colors available on the system is greater than 16;
otherwise the default value is TRUE. This avoids dithered images on low-color graphical
systems.

◆ [Warnings] If this resource is set to TRUE, the warning messages are displayed. The
default value is FALSE.

The member function IlvDisplay::getResource searches for resource definitions in
several files, which are listed below in a decreasing order of priority:

1. EXECDIR\APP.INI

2. EXECDIR\PROG.INI

3. EXECDIR\VIEWS.INI

4. WINDIR\APP.INI

5. WINDIR\PROG.INI

6. WINDIR\VIEWS.INI

EXECDIR is the directory containing the executable program, and WINDIR is the directory
where Microsoft Windows is installed. APP represents the name of the your application; this
string is the one you provide to the IlvDisplay constructor. PROG is the base name of the
executable file, its complete name being PROG.EXE.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 117

usrfoundation.book Page 118 Tuesday, July 28, 2009 10:34 AM
Home

Most IBM® ILOG® Views applications might need to load predefined data files. For data
files to be transparently loaded, libraries need a way to locate these data files on the disk.
This is done by getting the value of the ILVHOME environment variable. If this variable is
undefined, IBM ILOG Views tries to retrieve the value of the display system resource home.
Generally, this value is set to the directory where IBM ILOG Views was installed (the one
containing the subdirectories include, lib, data, and so on).

There are two global functions that force the setting of home:

◆ IlvGetDefaultHome

◆ IlvSetDefaultHome

Use these functions if you want to provide a reasonable default value for a specific
application without asking the user to set the environment variable ILVHOME or the resource
home.

The value of home is used to compute the default value of the display path, described in the
next section.

The Display Path

The access to files is greatly simplified by the display path mechanism. If the path name
provided in a call to the functions that open and read files is relative, the function searches
for the file name in the directories specified in the display path.

The member functions of IlvDisplay can be used to check and manipulate the display
path, as well as to check whether a file name exists in any of the directories specified in the
display path.

For details on the display path mechanism, see:

◆ Setting the Display Path

◆ The Path Resource

◆ The ILVPATH Environment Variable

◆ Querying or Modifying the Display Path

◆ Example: Add a Directory to the Display Path

Note: The old IlvHome display system resource is maintained for compatibility reasons
but is deprecated.
118 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

The Display Path

usrfoundation.book Page 119 Tuesday, July 28, 2009 10:34 AM
Setting the Display Path

The display path is a string that contains multiple directory path names, separated by the
regular system path separator (‘:’ under UNIX, and ‘;’ for DOS).

Initially (when the IlvDisplay instance is created), the display path is set to the
concatenation of three distinct elements as follows (using UNIX notation for path):
<.:user path:system path:>

◆ The first section contains only the current directory (noted ‘.’).

◆ The second section, user path, is composed of the contents of the display resource
path followed by the contents of the environment variable ILVPATH.

◆ The third section, system path, contains subdirectories of IlvHome.

In short, the IlvPath initial value is (assuming ILVHOME is defined):

.:<path resource>:$ILVPATH:$ILVHOME/data:$ILVHOME/data/icon:$ILVHOME
data/images

The Path Resource

◆ On X Window, the path resource will be, for example:

AppName*path: /usr/local/views/ilv

◆ On Microsoft Windows, the path resource can be in the VIEWS.INI or application-
dependent file .INI:

[AppName]
path=C:\USER\DATA\ILV

The ILVPATH Environment Variable

The ILVPATH environment variable can be set by the user before the application is launched.

◆ With UNIX, this setting can be defined by the lines:

$ ILVPATH=/usr/home/user/ilvimages:/usr/home/user/ilvpanels
$ export ILVPATH

◆ In a Microsoft Windows command prompt window, this setting could be:

C:\> SET ILVPATH=C:\USER\DATA\ILV;C:\USER\DATA\IMAGES

Querying or Modifying the Display Path

The class IlvDisplay provides member functions to manipulate the display path. These
are IlvDisplay::getPath, IlvDisplay::setPath, IlvDisplay::appendToPath,
and IlvDisplay::prependToPath.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 119

usrfoundation.book Page 120 Tuesday, July 28, 2009 10:34 AM
These methods allow the user to get, set, and modify the user path (that is, the second
section of the display path). The structure of the display path remains the same, that is:
<.:user path:system path.>

The method IlvDisplay::findInPath is used to:

◆ Check whether a file is in the display path.

◆ Get its absolute path name.

Example: Add a Directory to the Display Path

The following example shows how to add a directory to the display path and check whether
a file is in the display path.

IlvDisplay* display = new IlvDisplay(“AppName”,
 “DisplayName”,
 argc,
 argv);
if (display->isBad()) {
 delete display;
 IlvFatalError(“Could not create display”);
 IlvExit(-1);
}

const char* dirName = “./localDirectory/subDirectory”;
const char* fileName = “foo.txt”;
display->prependToPath(dirName);
// Now, if a file such as
// “./localDirectory/subDirectory/foo.txt”
// or
// “.\localDirectory\subDirectory\foo.txt”
// exists, we should be able to find it.
const char* filePath = display->findInPath(fileName);
if (filePath)
 IlvPrint(“File %s found at %s”, fileName, filePath);
else
 IlvWarning(“File %s not found”, fileName);
120 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 121 Tuesday, July 28, 2009 10:34 AM
7

Views

Chapter 8, Drawing Ports explained the drawing port concept managed by the IlvPort
class. The views hierarchy deals with another IlvPort subclass, IlvAbstractView and
its derived subclasses. IlvView is a major subclass, representing the actual place on the
screen where drawing occurs.

◆ View Hierarchies: Two Perspectives discusses ways you can look at the components that
make up a view. The approaches are a:

● Window-Oriented View Hierarchy

● Class-Oriented View Hierarchy

◆ IlvAbstractView: The Base Class

◆ IlvView: The Drawing Class

◆ IlvView Subclasses

◆ The IlvScrollView Class

View Hierarchies: Two Perspectives

There are two ways of looking at how views are constructed:
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 121

usrfoundation.book Page 122 Tuesday, July 28, 2009 10:34 AM
◆ Window-oriented. From the viewpoint of somebody sitting in front of a screen and using
IBM ILOG Views, different kinds of views are assembled into various windows having
different appearances. In fact they are created one after the other.

◆ Class-oriented. From a C++ viewpoint, the IlvView and related classes enable you to
create the different kinds of views that together create windows.

Window-Oriented View Hierarchy

Here is a schematic representation of the window-oriented view hierarchy, with the
corresponding classes also shown.

Figure 7.1

Figure 7.1 View Hierarchy

Parent-Child Relationships

The terms “parent” and “child” designate the relationship between pairs of views, taking into
account which one contains the other. In the figure, the top-level view is the parent of both
the tools and the scroll views, and the latter is the parent of the working view. Inversely, the
scroll view is a child of the top-level view, and so on.

C++ classes and subclasses also represent parent-child relationships. Note that there is no
one-to-one correspondence between the window-oriented versus class-oriented view
hierarchies. The C++ class hierarchy is a different way of looking at how a view is
constructed. For the complete class-oriented diagram, see the Class-Oriented View
Hierarchy on page 123.

IlvView (Top view)

IlvView (Working view)

IlvScrollView (Scroll view)

IlvContainer (Tools view)

TOP

top-level view

scroll
view

working
view

tools
view

The top-level view is the
PARENT of the tools view

The tools view is the
CHILD of the top-level view
122 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

View Hierarchies: Two Perspectives

usrfoundation.book Page 123 Tuesday, July 28, 2009 10:34 AM
Class-Oriented View Hierarchy

In the Window-Oriented View Hierarchy on page 122 we looked briefly at four different
kinds of views, which are instances of the following classes (or subclasses):

◆ IlvView for the top-level view (the top window) and the working view.

◆ IlvContainer for the tools view.

◆ IlvScrollView for the scroll view.

The following diagram shows these and other classes that derive from IlvAbstractView.

Figure 7.2

Figure 7.2 The IlvAbstractView Base Class

These views classes give rise to actual windows or views that are displayed on your screen.
When you instantiate one of the derived subclasses of IlvAbstractView, the object you
obtain is referred to as a view. A window on the screen is, in fact, an associated set of one or
several views.

For More Details See

◆ IlvAbstractView: The Base Class

◆ IlvView: The Drawing Class

◆ The IlvScrollView Class

◆ IlvView Subclasses for more details on IlvElasticView, IlvDrawingView, and
IlvContainer.

IlvContainer

IlvDrawingViewIlvElasticView

IlvAbstractView

IlvView IlvScrollView

IlvElasticView IlvDrawingView

IlvContainer
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 123

usrfoundation.book Page 124 Tuesday, July 28, 2009 10:34 AM
IlvAbstractView: The Base Class

IlvAbstractView is an abstract class (of which instances can only be made from subtyped
classes). This class has functions for handling basic properties of a window, such as size,
visibility, color, and so on. The IlvAbstractView object encapsulates the real interface
object of your display system (that is, a system view, sometimes referred to as a widget).
This interface object is platform-dependent and may be accessed by the following function:

IlvSystemView getSystemView() const;

where IlvSystemView is the basic type of the display system widget.

IlvView: The Drawing Class

The class IlvView is one of the descendants of IlvAbstractView (and thus of IlvPort)
in the Class-Oriented View Hierarchy on page 123.

The IlvView subclass is a major class, since it represents the actual place on the screen
where drawing occurs. An instance of IlvView can also contain zones that are sensitive to
mouse clicks.

The IlvView class and its subclasses provide objects that are used to draw things on the
screen. They may be top-level windows or children of a previously created parent view.

Two constructors are specifically used to create a new top-window in your display instance:

IlvView(IlvDisplay* display,
 const char* name,
 const char* title,
 const IlvRect& size,
 IlBoolean visible = IlTrue);

IlvView(IlvDisplay* display,
 const char* name,
 const char* title,
 const IlvRect& size,
 IlUInt properties,
 IlBoolean visible = IlTrue,
 IlvSystemView transientFor = 0);

The second constructor allows you to specify the top-window aspect that deals with borders,
banners, and handles. You can provide a valid system view value to the transientFor
parameter. If you do, your new IlvView object will be transient for that system view. This
has the interesting effect that when the system view is iconified, your view is implicitly
iconified as well.

Some member functions of the IlvView class are specific and meaningful only if the view
is a top-window.
124 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IlvView Subclasses

usrfoundation.book Page 125 Tuesday, July 28, 2009 10:34 AM
The other constructors are:

IlvView(IlvAbstractView* parent,
 const IlvRect& size,
 IlBoolean visible = IlTrue);

IlvView(IlvDisplay* display,
 IlvSystemView parent,
 const IlvRect& size,
 IlBoolean visible = IlTrue);

The parent parameter is either an IlvAbstractView or an existing IlvSystemView.

The last constructor of IlvView is used to let IBM® ILOG® Views take control over an
existing IlvSystemView such as one created by another application.

IlvView(IlvDisplay* display,
 IlvSystemView existingWindow);

You will use this constructor when you want to extend a native application (written with the
Microsoft Windows SDK or MFC or, on UNIX, X Window or Motif code) with
IBM ILOG Views graphic capabilities.

You will probably create your IlvDisplay from an existing connection (see Connecting to
the Display Server). Because the windows hierarchy is likely to have been set up already,
your IlvView objects will have to take control of existing windows.

IlvView Subclasses

The subclasses of IlvView, completing that portion of the Class-Oriented View Hierarchy,
are as follows:

The IlvElasticView Class

The IlvElasticView class offers the same capabilities as IlvView except that, when
instances of this class are resized, they resize their children in an elastic manner. This is a
special IlvView class available for a view containing other views for which you want
automatic resizing.

The IlvDrawingView Class

Another subclass of IlvView is IlvDrawingView. The IlvDrawingView class has
predefined member functions for handling incoming events such as expose and resize
events.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 125

usrfoundation.book Page 126 Tuesday, July 28, 2009 10:34 AM
The IlvContainer Class

The IlvContainer class is the first class in the Class-Oriented View Hierarchy that
coordinates the storage and display of graphic objects. Numerous specialized subclasses are
described in Containers.

The IlvScrollView Class

A special type of view in the Class-Oriented View Hierarchy is managed by an instance of
the IlvScrollView class. To operate properly, this class needs a widget toolkit linked with
your application.

An IlvScrollView must contain a single child view, which is usually bigger than its
parent. The IlvScrollView takes care of all automatic scrolling operations. It does so by
means of scroll bars, located on the right and bottom of the scrolling view. You can
manipulate the scroll bars to display new areas of the subview.

You can handle a non-IBM® ILOG® Views window object within an IlvScrollView
object. This can be any of your system windows, such as one created by another application.

Note: IlvScrollView has an implementation on Microsoft Windows and on top of
Motif only (the ports that have native controls). If you have the IBM ILOG Views Gadgets
package, the class IlvScrolledView provides similar services.
126 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 127 Tuesday, July 28, 2009 10:34 AM
8

Drawing Ports

A drawing port, defined by the IlvPort class, is an area where the user will be drawing. It
may be to any output device such as the screen or a printer. Details are discussed in the
topics:

◆ IlvPort: The Drawing Port Class

◆ Derived Classes of IlvPort

◆ The IlvSystemPort Class

◆ The IlvPSDevice Class

IlvPort: The Drawing Port Class

The class IlvPort defines a drawing port. The IlvPort class has the necessary member
functions to draw any shape to a specific dump device such as a printer. These member
functions are:

◆ The virtual member function IlvPort::initDevice, called by the init function,
initializes the dump device and writes its result to the file filename.

◆ The virtual member function IlvPort::isBad returns IlTrue if the dumping device
is not valid. This return value indicates an initialization problem.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 127

usrfoundation.book Page 128 Tuesday, July 28, 2009 10:34 AM
◆ The virtual member function IlvPort::end closes the dump device and does all the
necessary cleaning.

◆ The virtual member function IlvPort::send lets you send any character string to an
output device so you can send information to the device.

◆ The virtual member function IlvPort::newPage produces an output page and
prepares the dump device for a new page. It returns IlFalse if there was an error. In this
case, you should stop producing output data.

◆ The virtual member function IlvPort::setTransformer lets you apply an additional
transformer—that is, any geometric transformation— to the coordinates with which you
“feed” the drawing functions.

Derived Classes of IlvPort

The illustration below shows some of the predefined classes that derive from IlvPort:

Figure 8.1

Figure 8.1 The IlvPort Base Class

The class IlvPort defines a drawing port in one of two ways, either:

◆ Physically as a screen or bitmap, via The IlvSystemPort Class.

◆ In a dedicated zone as a file or a printer.

The other two subclasses are:

◆ IlvBitmap, providing bitmap support as described in Bitmaps.

◆ The subclass IlvAbstractView is the base class for views. This subject is treated at
length in Chapter 7, Views. See especially IlvAbstractView: The Base Class.

IlvDrawingViewIlvElasticView

IlvPort

IlvPSDevice IlvSystemPort

IlvBitmap IlvAbstractView
128 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

The IlvSystemPort Class

usrfoundation.book Page 129 Tuesday, July 28, 2009 10:34 AM
The IlvSystemPort Class

The class IlvSystemPort defines a rectangular area in which the user can draw. It can be
either a real place or a virtual place. In the first case, the user draws directly into a region of
the screen of the workstation. In the second case, the user draws into a bitmap in memory.
The classes IlvBitmap and IlvAbstractView are derived from IlvSystemPort to
accommodate these two possibilities. The IlvBitmap class is described later in this chapter.
The IlvAbstractView class and its subclasses are described in the next chapter.

The IlvPSDevice Class

To redirect the drawing operations to a dumping device, such as a printer or a plotter,
IBM® ILOG® Views calls the member functions of the subclass that implement all the
drawing operations. These member functions have to be overloaded to define the drawing
operations needed in the various implementations of dump devices.

So that you can immediately “print what you see,” IBM ILOG Views provides you with a
predefined class, IlvPSDevice.

The IlvPSDevice class lets you print any region of a view to a text file that can be
immediately printed on a PostScript printer. Furthermore, all the drawing member functions
are implemented to create the PostScript code corresponding to the expected result.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 129

usrfoundation.book Page 130 Tuesday, July 28, 2009 10:34 AM
130 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 131 Tuesday, July 28, 2009 10:34 AM
9

Containers

A container is an instance of the IlvContainer class, which is a special kind of view that
can store and display graphic objects. The subject is covered in depth in the following
sections:

◆ IlvContainer: The Graphic Placeholder Class

◆ Displaying Containers

◆ Managing Events: Accelerators

◆ Managing Events: Object Interactors

◆ Creating Objects with Complex Behavior

IlvContainer: The Graphic Placeholder Class

IlvContainer is the graphic placeholder class. Its member functions for handling objects
within containers are described in:

◆ General-Purpose Member Functions

◆ Applying Functions to Objects

◆ Tagged Objects
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 131

usrfoundation.book Page 132 Tuesday, July 28, 2009 10:34 AM
◆ Object Properties

General-Purpose Member Functions

Some member functions of the IlvContainer class, for example
IlvContainer::addObject and IlvContainer::removeObject, enable you to store
and remove objects within containers. (See the IBM ILOG Views Reference Manual for
more details.) The IlvContainer object stores graphic objects in a list.

Applying Functions to Objects

Additional member functions are used to apply user-defined functions to the container
objects. These are:

◆ IlvContainer::applyToObjects Apply a user-defined function to each object in a
IlvContainer.

◆ IlvContainer::applyToObject Apply a user-defined function to the specified
graphic object only.

Tagged Objects

The IlvContainer class provides member functions to manage graphic objects that have
been tagged by the user. A tag is a kind of marker represented by an object of the IlSymbol
class and which can be associated with several graphic objects:

◆ IlvContainer::applyToTaggedObjects is similar to the method
IlvContainer::applyToObjects but is used with tagged objects.

◆ IlvContainer::getTaggedObjects returns an array of pointers to objects stored in
the container which are tagged with the specified tag.

◆ IlvContainer::removeTaggedObjects removes from the container all the objects
tagged with the specified tag.

IlSymbol Class

IBM ILOG Views sometimes needs string constants to manipulate specific entities, such as
tags. To do this, there is a generic manner of handling unique strings within a given
application. The strings are called symbols, and are managed by the IlSymbol class.

The IlGetSymbol global function lets you create new symbols or access symbols already
created.

Object Properties

Several member functions of the IlvContainer class let you manage container object
properties, such as the functions IlvContainer::getObject,
132 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Displaying Containers

usrfoundation.book Page 133 Tuesday, July 28, 2009 10:34 AM
IlvContainer::setObjectName, and IlvContainer::setVisible. For example, it
is possible to:

◆ Access a graphic object according to different criteria: its name or its index identifier,
since the container stores objects in a list.

◆ Interchange two objects with respect to their order in the container list
(IlvContainer::swap method).

◆ Request an object’s state of visibility or to change the state. (Visibility refers to whether
the object is visible on the screen or not.)

◆ Ask by means of the static method IlvContainer::GetContainer where a graphic
object is stored, that is, in which container. You cannot store an object in more than one
container.

Displaying Containers

The member functions for displaying containers are described in:

◆ Drawing Member Functions

◆ Geometric Transformations

◆ Managing Double Buffering

◆ Reading Objects from Disk

Drawing Member Functions

Although the member functions IlvContainer::draw and IlvContainer::reDraw are
inherited from the parent IlvDrawingView class, they interact in a specific way with
containers. Following is a list of these specific member functions:

◆ IlvContainer::draw is used to draw all IlvGraphic objects stored in the
IlvContainer object. When you add an object to a container, calling this method is
sufficient. Two virtual member functions allow the user to draw at any destination port
with any transformer, and with a clipping region specified.

◆ IlvContainer::reDraw If you need to refresh your working area (for example, when
an object is translated), use this method, which erases the specified clipping region
before calling the IlvContainer::draw method.

Note: Since the member function IlvContainer::GetContainer is static, it is not
necessary to apply it to an existing instance of IlvContainer. You can use this method
from anywhere, with the notation: IlvContainer::GetContainer(myobject);
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 133

usrfoundation.book Page 134 Tuesday, July 28, 2009 10:34 AM
◆ IlvContainer::reDrawObj When applied to a graphic object, redraws the object’s
bounding box.

◆ IlvContainer::bufferedDraw Performs a temporary drawing in a hidden pixmap,
then displays the pixmap on the screen at once. It is different from double buffering in
that the operation is localized to a rectangle, a region, or an object, and lasts only as long
as the drawing operation.

One function draws the area included in the specified IlvRect object and another draws
the area included in the specified IlvRegion object. Both of them draw in the
coordinate system of the container. The third form draws the specified IlvGraphic
object in the coordinate system of the object.

Geometric Transformations

Several member functions deal with geometric transformations applied to the container
view, that is, they handle the IlvTransformer object associated with the view.

◆ IlvContainer::getTransformer Returns the transformer associated with the
container view. If 0 is returned, this container has no transformer, that is, there is identity
between the object and its display.

◆ IlvContainer::setTransformer Sets the specified transformer parameter.

◆ IlvContainer::addTransformer Sets up the current transformer with the one given
as a parameter, and sets the resulting transformer as the new current one.

◆ IlvContainer::translateView and IlvContainer::zoomView Sets up the
current transformer with, respectively, a translation transformer and a zooming
transformer.

◆ IlvContainer::fitToContents Resizes the container view so that its bounding box
exactly fits around all the objects that have the visibility attribute set to IlTrue. The top-
left coordinates of the view remain at the same location. This method is typically used
when the container reads a set of IlvGraphic objects from a file, without knowing their
positions beforehand:

IlvRect size(0, 0, 300, 300);
IlvContainer* cont = new IlvContainer(display, “Cont”, “My Window”,
 size, IlTrue, IlFalse);
cont->readFile(“myfile.ilv”);
cont->fitToContents();
134 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Managing Events: Accelerators

usrfoundation.book Page 135 Tuesday, July 28, 2009 10:34 AM
◆ IlvContainer::fitTransformerToContents Computes a new transformer so that
all objects that have the visibility attribute set to IlTrue can be seen in the view. The
container view size does not change. A call to IlvDrawingView::reDraw is issued if
the IlBoolean argument is set to IlTrue. This method is typically used when the user
wants to have a global look at a map after zooming it several times:

Managing Double Buffering

The double buffering mode enables animated displays or displays with numerous objects to
appear without flickering. This mode is handled by the following member functions:

◆ IlvContainer::setDoubleBuffering Indicates whether or not the container
should use double buffering.

◆ IlvContainer::isDoubleBuffering Informs as to whether double buffering is or
is not in use.

Reading Objects from Disk

Two member functions exist for reading objects from disk:

◆ IlvContainer::readFile Reads from a file whose name is specified as a parameter.

◆ IlvContainer::read Reads from the input stream specified as a parameter.

Both these member functions return the result of their reading: IlTrue if successful,
IlFalse if an error occurred.

Managing Events: Accelerators

An accelerator manages a single user event that occurs in the container to which the
accelerator is attached. An accelerator is the direct connection from this single user event to
a function call. You can declare a given function to be called if an appropriate event occurs.
If the appropriate event occurs, the accelerator triggers a visible response from the container
to which it is attached.

static void
ShowAllMap(IlvContainer* container)
{
 container->fitTransformerToContents(IlTrue);
}

Note: Containers do not have any write member functions to save their contents as do
managers. For details on managers, see the Managers documentation.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 135

usrfoundation.book Page 136 Tuesday, July 28, 2009 10:34 AM
You can also install an instance of the IlvContainerAccelerator class in an accelerator
list. This instance contains the description of the event to be watched for, and a member
function of this class is called when this event occurs.

For more details, see:

◆ Member Functions

◆ Implementing Accelerators: IlvContainerAccelerator

◆ Predefined Container Accelerators

Member Functions

Several member functions deal with accelerators:

◆ IlvContainer::addAccelerator Installs a new accelerator in the container. In the
example below, the function Quit is triggered when one event matches the keyboard
event “release Q key.”

◆ IlvContainer::removeAccelerator Removes the association between the event
description given in the argument and the action previously set by
IlvContainer::addAccelerator.

◆ IlvContainer::getAccelerator Queries a container for a particular accelerator
action and user argument.

Implementing Accelerators: IlvContainerAccelerator

If you need to add parameters to a callback function, you can implement accelerators by
means of class subtyping, through the IlvContainerAccelerator class.

The member functions dealing with this class are the following:

◆ IlvContainer::addAccelerator Installs an IlvContainerAccelerator object
in the container. The previous example can thus be written in the following way:

static void
Quit(IlvContainer* cont, IlvEvent&, IlAny)
{
 IlvDisplay* d = cont->getDisplay();
 delete d;
 IlvExit(0);
}IlvRect size(0, 0, 300, 300);
IlvContainer* cont = new IlvContainer(display, "Cont", "My Window",
 size, IlTrue, IlFalse);
cont->addAccelerator(Quit, IlvKeyUp, ’Q’, 0);

IlvContainerAccelerator* acc =
 new IlvContainerAccelerator(Quit, IlvKeyUp, ’Q’, 0);
cont->addAccelerator(acc);
136 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Managing Events: Object Interactors

usrfoundation.book Page 137 Tuesday, July 28, 2009 10:34 AM
◆ IlvContainer::removeAccelerator Removes the given accelerator argument
from the container list. The accelerator is not deleted.

◆ IlvContainer::getAccelerator Returns a pointer to the
IlvContainerAccelerator instance that matches the given event argument, or 0 if
no matching accelerator exists.

Predefined Container Accelerators

IBM ILOG Views provides a number of predefined accelerators to allow your programs to
easily manipulate the visible aspect of the objects that are stored in a container:

Managing Events: Object Interactors

An object interactor filters user events for the graphic object to which it is attached. If an
appropriate series of events occurs, the object interactor triggers a visible response from that
graphic object. This response is called the object behavior.

IBM® ILOG® Views provides a comprehensive set of predefined object interactors. If you
find yourself needing a very specific functionality not already predefined in
IBM ILOG Views, you can subtype one of the interactor classes and replace its member
function handleEvent with the functionality you need.

Table 9.1 Predefined Container Accelerators

Event Type Key or Button Action

IlvKeyDown i Sets the transformer to identity.

IlvKeyDown <Right> Moves the view to the left.

IlvKeyDown <Left> Moves the view to the right.

IlvKeyDown <Down> Moves the view to the top
(decreasing x)

IlvKeyDown <Up> Moves the view to the bottom.
(increasing x)

IlvKeyDown Z Zooms into the view.

IlvKeyDown U Zooms out from the view.

IlvKeyDown R Rotates the view 90 degrees
counterclockwise.

IlvKeyDown f Computes a new transformer so that
every object can be seen.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 137

usrfoundation.book Page 138 Tuesday, July 28, 2009 10:34 AM
Figure 9.1

Figure 9.1 Attaching an Interactor to an Object

The class IlvInteractor lets you associate a behavior with an object.

For more details on object interactors, see:

◆ Using Object Interactors

◆ Predefined Object Interactors

◆ Example: Linking an Interactor and an Accelerator

Using Object Interactors

The member functions that deal with object interactors are the following:

◆ IlvGraphic::getInteractor Returns the IlvInteractor instance associated
with the IlvGraphic object given as an argument.

◆ IlvGraphic::setInteractor Associates the IlvInteractor object given as an
argument with the given IlvGraphic object.

Note: These object interactors are not intended for creating editors. The
IBM ILOG Views Manager interactors that are associated with the whole view instead of
individual objects are used to create interactive editors.
138 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Managing Events: Object Interactors

usrfoundation.book Page 139 Tuesday, July 28, 2009 10:34 AM
In the following example, a predefined IBM ILOG Views interactor is associated with an
IlvLabel graphic. It is an instance of the IlvMoveInteractor class which lets the user
move an object by pressing the left mouse button when pointing to this object.

The static member function IlvInteractor::Get returns the unique instance of the
object interactor whose name is “Move.” You usually do not create an interactor by calling
its constructor directly, but by using this static member function. This is because most object
interactors can be shared by numerous graphic objects at the same time.

Registering a New IlvInteractor Subclass

If you subtype the IlvInteractor class, you have to register your subclass in order to use
the static member function IlvInteractor::Get. Below is that part of the header file
where the IlvInteractor class in MyInteractor class is subtyped:

Note that we have added the line that calls the macro DeclareInteractorTypeInfo that
allows for class persistence, as well as registration. This macro forces you to define a
constructor that expects a reference to an IlvInputFile, a copy constructor that expects a
reference to a MyInteractor, and a write member function that is needed to save the
interactor instance. Of course the constructor and the write must match, just as in the case of
the class IlvGraphic.

In the situation where your interactor has no extra information to save, you would have used
the macro DeclareInteractorTypeInfoRO that does not force you to define a write
member function.

IlvRect size(0, 0, 300, 300);
IlvContainer* cont = new IlvContainer(display, "Cont", "My Window",
 size, IlTrue, IlFalse);
IlvLabel* label = new IlvLabel(display, IlvPoint(100,100),
 "Hello world!");
cont->addObject(label);
label->setInteractor(IlvInteractor::Get("Move"));

class MyInteractor
: public IlvInteractor {
public:
 IlBoolean handleEvent(IlvGraphic* obj,
 IlvEvent& event,
 IlvTransformer* t);
 ...
 DeclareInteractorTypeInfo(MyInteractor);
};
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 139

usrfoundation.book Page 140 Tuesday, July 28, 2009 10:34 AM
In the example there is not any extra information to save, but for the completeness of the
example, we pretend to have a dummy integer value to save and read:

If you had used DeclareInteractorTypeInfoRO, the constructor would have been
empty, and write would not have been defined.

In the source file, outside the body of any other function, you must write the two following
instructions:

◆ IlvPredefinedInteractorIOMembers(MyInteractor)

IlvPredefinedInteractorIOMembers is a macro that generates the proxy function
for you that will call your constructor from input file and define the copy member
function.

◆ IlvRegisterInteractorClass(MyInteractor, IlvInteractor);

IlvRegisterInteractorClass is a macro that registers the class MyInteractor as
a new available interactor class. The second parameter must be the name of the parent
class.

Predefined Object Interactors

Several classes help you program predefined object interactors:

◆ IlvButtonInteractor This class can be attached to any graphic object to make it
behave like a standard interface button.

◆ IlvRepeatButtonInteractor This class is a subtype of the class
IlvButtonInteractor. It handles an automatic repeat action of the button, as if the
user were pressing and releasing the mouse button at a given speed.

◆ IlvToggleInteractor This class is a subtype of the class IlvButtonInteractor.
This subclass inverts the object (calls its member function invert) to which this
interactor is associated when the user presses then releases the mouse button over it.

◆ IlvMoveInteractor Lets the user move an object by clicking on it and dragging the
pointing device to another place.

MyInteractor::MyInteractor(IlvInputFile& file)
: IlvInteractor(file)
{
 IlInt i;
 file.getStream() >> i; // Read a (dummy) integer value
}

IlvInteractor*
MyInteractor::write(IlvOutputFile& file)
{
 file.getStream() << (IlInt)0;
}

140 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Managing Events: Object Interactors

usrfoundation.book Page 141 Tuesday, July 28, 2009 10:34 AM
◆ IlvReshapeInteractor Lets the user reshape an object by creating a rectangle with
the right mouse button. The rectangle becomes the object’s new bounding box.

◆ IlvMoveReshapeInteractor Combines the two interactors IlvMoveInteractor
and IlvReshapeInteractor.

◆ IlvDragDropInteractor Provides a way to drag and drop an object from a container
to another view. It lets you click an object and move a copy of the object around, even
outside the container itself.

Example: Linking an Interactor and an Accelerator

In the following example, we create the window below and the two enclosed drawings:

Figure 9.2

Figure 9.2 Container with Two Objects

In other words, we create a container as a top window, then we add two objects to the
container: a gray ellipse and an arc. However, before actually placing these objects in the
container, we create a reshaping interactor, enabling us to use the mouse to change the shape
of a graphic object. We actually use this single interactor in two places:

◆ Immediately after adding the ellipse to the container, we associate the reshaping
interactor with this object.

◆ Immediately after adding the arc to the container, we associate the same reshaping
interactor with it.

We can now click either of the two graphic objects, and the reshaping interactor lets us
change the shape of the selected object by dragging the mouse.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 141

usrfoundation.book Page 142 Tuesday, July 28, 2009 10:34 AM
Furthermore, after creating the two objects and the unique interactor, we create an
accelerator for the container, so we can get printed information about an object by double-
clicking it with the left mouse button:

◆ If we double-click the ellipse, we get the following message:
Object is an IlvFilledEllipse

◆ If we double-click the arc, we get the following message:
Object is an IlvArc

We write a three-argument function called PrintType, which has the predefined type
IlvContainerAction, to produce these messages. The name of this function is given to
the container as the first argument of the call to the member function
IlvContainer::addAccelerator.
142 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Managing Events: Object Interactors

usrfoundation.book Page 143 Tuesday, July 28, 2009 10:34 AM
Following is the entire demonstration program. To keep the example short, we do not
provide any way to exit from the program:

Analyzing the Example

This section explains the code used for the above example.

static void PrintType(IlvContainer*, IlvEvent&, IlAny);

#include <ilviews/contain/contain.h>
#include <ilviews/graphics/ellipse.h>
#include <ilviews/graphics/arc.h>
#include <ilviews/graphics/inter.h>

static void PrintType(IlvContainer*, IlvEvent&, IlAny);

int
main(int argc, char* argv[])
{

IlvDisplay* display = new IlvDisplay("Demo", "", argc, argv);
 if (!display || display->isBad()) {
 IlvFatalError("Couldn't open display");
 delete display;
 IlvExit(-1);
 }
 IlvContainer* container =
 new IlvContainer(display, "Demo", "Demo",
 IlvRect(0, 0, 200, 200),
 IlTrue, IlFalse);
 IlvInteractor* reshape = IlvInteractor::Get("Reshape");
 IlvGraphic* object =
 new IlvFilledEllipse(display, IlvRect(150, 50, 40, 20));

 container->addObject(object);
 object->setInteractor(reshape);
 container->addObject(object =
 new IlvArc(display, IlvRect(10, 150, 40, 40), 0., 60.));
 object->setInteractor(reshape);
 container->addAccelerator(PrintType,
 IlvDoubleClick,
 IlvLeftButton);
 container->show();
 IlvMainLoop();
 return 0;
}

static void
PrintType(IlvContainer* view, IlvEvent& event, IlAny)
{
 IlvGraphic* object =
 view->contains(IlvPoint(event.x(), event.y()));
 if (object)
 IlvPrint("Object is an ‘%s’\n" , object->className());
}

I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 143

usrfoundation.book Page 144 Tuesday, July 28, 2009 10:34 AM
The user-defined PrintType function is called by an accelerator, which is launched when
the user double-clicks a graphic object with the left mouse button. The signature of the
PrintType function corresponds to the type that is called IlvContainerAction.

IlvContainer* container = new IlvContainer(display, "Demo", "Demo",
 IlvRect(0, 0, 200, 20), IlTrue, IlFalse);

A container is created as the top-level view.

IlvInteractor* reshape = IlvInteractor::Get("Reshape");

A reshaping interactor is located. This was registered automatically when you included
<ilviews/graphics/inter.h>.

IlvGraphic* object = new IlvFilledEllipse(display, IlvRect(150,50, 40,20));
container->addObject(object);

A filled ellipse is created and added to the container.

object->setInteractor(reshape);

The reshaping interactor is associated with the filled ellipse.

container->addObject(object =
 new IlvArc(display, IlvRect(10, 150, 40, 40), 0., 60.));

An arc is added to the container.

object->setInteractor(reshape);

The reshaping interactor is associated with the arc.

container->addAccelerator(PrintType, IlvDoubleClick, IlvLeftButton);

An accelerator is added to the container. This accelerator applies the user-defined function
named PrintType whenever the user double-clicks an object with the left mouse button.

This is the actual implementation of the user-defined PrintType function. We access the
object located under the mouse pointer by calling the member function
IlvContainer::contains. We use the function IlvPrint to ensure the portability of
this example.

static void
PrintType(IlvContainer* view, IlvEvent& ev, IlAny)
{
 IlvGraphic* object = view->contains(IlvPoint(ev.x(), ev.y()));
 if (object)
 IlvPrint("Object is a '%s’\n", object–>className());
}

144 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Creating Objects with Complex Behavior

usrfoundation.book Page 145 Tuesday, July 28, 2009 10:34 AM
Creating Objects with Complex Behavior

The behavior handled by a container and its interactors is usually more sophisticated than
just a series of simple actions.

Creating such an object is developed in the topics:

◆ Example: Creating a Slider

◆ Associating a Behavior with Your Device

◆ Building and Extending your Device

Example: Creating a Slider

Let us suppose that you have written a C++ program to drive a multimedia system and you
are going to use IBM ILOG Views to create the graphical user interface for your software.
You would like to incorporate the following kind of device into your GUI:

Figure 9.3

Figure 9.3 Creating a Visual Device: the Slider

You want your user to be able to change the width of the black bar by placing the cursor
anywhere on the bar and dragging the mouse either to the left or to the right. And, as soon as
the width of the bar is changed, a function in your C++ software changes the volume of the
audio system accordingly. There are two different aspects to the behavior of the slider:

◆ Visible Elements From a purely graphic point of view, the appearance of the device is
modified when the user intervenes with the mouse. The black rectangle becomes either
narrower or wider, depending on the direction in which the cursor is dragged.

There is thus a modification of the shape of a geometric form. In this example, it is a
black rectangle that changes its width, but you could imagine many other kinds of
meters, gauges, and dials that could have this same basic behavior. For example, you
might have an elliptically-shaped object that becomes either thinner or fatter depending
on the direction in which the cursor is dragged.

Note: Remember that you can also use the Prototypes package of IBM ILOG Views to
create your own specialized objects.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 145

usrfoundation.book Page 146 Tuesday, July 28, 2009 10:34 AM
◆ Functional Elements The real purpose of the slider, of course, is to bring about changes
in a domain that is quite remote from the on-screen graphics environment; namely, the
audio domain. This is the operational behavior of the slider.

To handle the operational behavior of the slider, we can imagine a function called
SliderValue that returns the current value of the slider, and another function,
SliderChange, that returns the positive or negative value by which the setting of the
slider has just been changed. With these two values, you could establish links to the
audio sections of your software, so that the volume is changed accordingly.

Associating a Behavior with Your Device

In the context of IBM ILOG Views, we can create a special object—a behavioral object or
interactor—that encapsulates the particular behavior described in the section Example:
Creating a Slider. In other words, it is an instance of the basic class IlvInteractor. Once
you have a behavioral object, you can associate it with various concrete things—a window, a
view, a black rectangle, and a few numbers—in order to build an actual slider on the screen.

In the case of the slider, we would probably begin by using IlvInteractor to derive a
class called IlvGaugeInteractor with member functions such as SliderValue and
SliderChange for the operational behavior that we described above.

The member function handleEvent of this IlvGaugeInteractor class would be written
in such a way that it changes the size of the rectangle (or whatever other shape is used) that
indicates the current value of the slider.

Since the application domain in which we want to use our slider is rather special, we would
probably then derive a subclass of IlvGaugeInteractor, called AudioSlider, with
special-purpose member functions for setting the values of audio parameters in a multimedia
system. So, we would then have the following class hierarchy:

Figure 9.4

Figure 9.4 IlvAudioSlider Hierarchy

IlvInteractor

IlvGaugeInteractor

IlvAudioSlider
146 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Creating Objects with Complex Behavior

usrfoundation.book Page 147 Tuesday, July 28, 2009 10:34 AM
Building and Extending your Device

The example that follows illustrates a typical manner in which an open-ended product such
as IBM ILOG Views can be extended:

1. Connect your application to a display server.

2. Create an empty top window where elements of your application can be organized and
displayed.

The following code creates a container, which is the top window located in (0, 0), with
a size of 100 units wide and 35 units high.

IlvRect viewsize(0, 0, 100, 35);
IlvContainer* topview = new IlvContainer(display, "Audio volume",
 "Audio volume", viewsize);

The container coordinates the storage and the display of your graphic objects.

Since you intend to draw certain objects inside this window, and then cause one of these
objects to behave in a specific manner by associating an interactor with it, you are
obliged to make use of a container.

3. Place graphic objects in the container.

The following code places two independent objects inside the container:

container->addObject(scale);
container->addObject(bar);

4. Create functional behavior.

In this final step, you give the bar the kind of audio-volume slider behavior that is
normally associated with an audio slider. Recall that this behavior was encapsulated in a
class called AudioSlider. So, the behavior of the audio-volume slider can be given by
means of the following lines:

IlvInteractor* inter = new AudioSlider();
bar->setInteractor(inter);
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 147

usrfoundation.book Page 148 Tuesday, July 28, 2009 10:34 AM
where the class AudioSlider is defined as:

class Audioslider
: IlvGaugeInteractor {
public:
 .../...
 virtual void doIt(IlvGauge* gauge)
 {
 setVolume(gauge->getValue());
 }
};
148 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 149 Tuesday, July 28, 2009 10:34 AM
10

Dynamic Modules

A dynamic module is composed of a set of object files that are contained in a shared library
(also called a dynamic link library or DLL). IBM® ILOG® Views is able to load
dynamically, on the fly and at run time, a dynamic module that lets you define new classes,
and therefore provide more functionality to a running program.

Typically, dynamic modules are used when files are read. For example, if a data file contains
a reference to an IlvGraphic subclass that the application reading the file does not expect,
IBM ILOG Views generates an error message and stops reading the file immediately. With
dynamic modules, IBM ILOG Views can load the code that defines this class and make it
available in a dynamic way.

For details on using dynamic modules, see:

◆ IlvModule: The Dynamic Module Class

◆ Building a Dynamic Module

◆ Loading a Dynamic Module

◆ An Example: Dynamic Access
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 149

usrfoundation.book Page 150 Tuesday, July 28, 2009 10:34 AM
IlvModule: The Dynamic Module Class

Every dynamic module is an instance of a subclass of the IlvModule base class, defined in
the header file <ilviews/base/modules.h>.

Every dynamic module must define one and only one subclass. The constructor of this class
is called when IBM® ILOG® Views loads the module, making it possible to perform all the
static initializations that the module requests (graphic classes registration, for example).

Once you have declared (in a public header file) and defined your module class, you have to
enable IBM ILOG Views to load it. To do so, add a call, outside the body of any function, to
the macro ILVINITIALIZEMODULE, providing the class name of the module that you have
defined as its only parameter.

Dynamic Module Code Skeleton

The skeleton of an IBM ILOG Views dynamic module is the following:

#include <ilviews/base/modules.h>

// Pre-initialization code goes here
// This is, typically, the declaration of global variables or
// static data members.

class MyModule
: public IlvModule {
public:
 MyModule(void*)
 {
 // Initialization code goes here
 }
};

ILVINITIALIZEMODULE(MyModule);

The parameter that is provided to the constructor of the module class makes it possible for
you to send application-dependent data to your module initialization. This is required if your
module needs external data to initialize properly. We will clarify this point later in this
chapter (see the section Explicit Mode).

Note: Most of the time, the complete initialization of a module has to be split into two
parts: the declaration of variables, outside the code of any function, and their
initialization, which may require function calls, that must appear in the module
constructor.
150 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Building a Dynamic Module

usrfoundation.book Page 151 Tuesday, July 28, 2009 10:34 AM
Building a Dynamic Module

Dynamic modules are system-dependent. This section explains how to compile and install a
dynamic module properly, or in other words how to create a shared library that will load
correctly, depending on the system you are using.

UNIX Systems

If you are working on UNIX, use the following generic syntax:

<CCC> -c -O -I$ILVHOME/include moduleSrc.cpp
<MAKESHLIB> -o module.<SHEXT> moduleSrc.o [other object files...]

The table below lists the various options available for the different ports of
IBM® ILOG® Views. Note that you always have to specify the extension of the module file
name.

If you are a:

◆ Linux or Solaris user Make sure that the LD_LIBRARY_PATH variable contains a path
to the modules to be loaded. On Linux, the executable must be linked with the library
libdl.so.

Table 10.1 Compiling Options of Dynamic Modules for UNIX Systems

Port Name CCC MAKESHLIB SHEXT

alpha_5.1_6.5 cxx -x cxx /usr/lib/cmplrs/cc/ld
-shared

so

hp32_11_3.73 aCC +DAportable -mt - AA -z +Z aCC -b -n -mt -AA
-Wl,+s

sl

hp64_11_3.73 aCC +DAportable -mt - AA -z +D
A2.0W

aCC -b -n -mt -AA
+DA2.0W

sl

x86_sles10.0_4.1
x86_RHEL4.0_3.4
x86-64_RHEL4.0_3.4

g++ -fPIC g++ -shared so

rs6000_5.1_6.0
power32_aix5.2_7.0

xlC -qrtti=all xlC -qmkshrobj=1024 so

ultrasparc32_8_6.2
ultrasparc32_10_11

CC -KPIC CC -G -h so

ultrasparc64_8_6.2
ultrasparc64_10_11

CC -KPIC -mt -xtarget=ultra -x
arch=v9

CC -xtarget=ultra
-xarch=v9 -G -h

so
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 151

usrfoundation.book Page 152 Tuesday, July 28, 2009 10:34 AM
Windows Systems

On Microsoft Windows, a dynamic module is in fact a DLL.

This functionality is only available in the format dll_mda. This is due to the fact that
IBM ILOG Views stores the registered classes in a global variable that would be re-created
locally by every module if we tried to link the “client” (that is, the application that loads the
module) statically.

All you need to do to build your module is add the flag /DILVDLL when compiling your
object files. For an optimized code, the complete set of compiler flags for the module files
should be the following:.

Use the following lines to link your module:

LINK /SUBSYSTEM:WINDOWS /DLL <ILVHOME>/lib/[PLATFORM]/dll_md/<lib>.lib\
<systemLibs> -OUT:<moduleName>.dll moduleSrc.obj [objectfiles...]

where [PLATFORM] can take one of the following values x86_.net2003_7.1,
x86_.net2005_8.0, x86_.net2008_9.0, x64_.net2008_9.0.

 Note that for x64_.net2008_9.0, you must also add the following linker option:

/MACHINE:X64

As mentioned, the application that you want to be module-enabled must be linked with the
IBM ILOG Views DLLs as well. Of course, as always when using DLLs, you have to make
sure that your system path contains the access path to the directory where you want to store
your modules.

Versioning Note

IBM ILOG Views dynamic modules have no versioning mechanism. You must make sure
that the installed dynamic modules are binary-compatible with the application that loads
them. This means that a module that was built with IBM ILOG Views version X.Y will run
with all the X.Y.Z versions, but will have to be recompiled if loaded by an application that
was developed with IBM ILOG Views X.W.

Table 10.2 Compiling Options of Dynamic Modules for Windows Systems

Port Name Compiler Flags

x86_.net2003_7.1 CL /Gs /Ot /Ox /O2 /c /DWIN32 /MD /W3 /G3 /DILVDLL
/I<ILVHOME>/include moduleSrc.cpp

x86_.net2005_8.0
and
x86_.net2008_9.0

CL /Gs /O1 /c /DWIN32 /MD /W3 /DILVDLL
/I<ILVHOME>/include moduleSrc.cpp

x64_.net2008_9.0 CL /Gs /O1 /c /DWIN64 /MD /W3 /DILVDLL
/I<ILVHOME>/include moduleSrc.cpp
152 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Loading a Dynamic Module

usrfoundation.book Page 153 Tuesday, July 28, 2009 10:34 AM
Loading a Dynamic Module

Basically, a dynamic module can be loaded in two different ways, either implicitly or
explicitly.

◆ Implicit Mode: The implicit mode is transparent for the end user, which means that new
classes are loaded by the application when they are referred to by their name.

◆ Explicit Mode: In explicit mode, you specify precisely which module is to be loaded and
where it can be found.

Implicit Mode

In implicit mode, IBM® ILOG® Views loads new classes when they appear in a data file
and when a class name is not registered in the loading application.

For this mode to work properly, you must create a module definition file. For
IBM ILOG Views to know automatically which classes are defined and which dynamic
module they are in, you must create a module definition file (with the.imd extension) and
place it in the same directory as your shared library. This file must have the same name as
the module, except that its extension must be imd, instead of so, sl, or dll. Creating this
file allows IBM ILOG Views to know which classes are defined without having to open and
read all the dynamic modules it finds.

Let us suppose that you have created the module myModule.dll on Microsoft Windows.
You have to create a file called myModule.imd in the same directory as myModule.dll to
enable IBM ILOG Views to call the classes defined in this file automatically.

The contents of this file is ASCII text that will be read by IBM ILOG Views at start-up to
identify which classes are defined and in which module they are located. The file must
always begin with the following lines:

<?xml version="1.0"?>
<module>

and end with the closing tag:

</module>

Within the <module> block, you must have any number of groups of the form:

<class name = "NewClass" rootClass = "RootClass"/>

where RootClass is the name of the topmost class in the class hierarchy (IlvGraphic, for
example), and NewClass is the name of the class you created. If you have defined more than
one class in your module, just add other <class> tags.

If the classes that are defined in your module derive from more than one root base class, you
can add as many new blocks as there are root base classes.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 153

usrfoundation.book Page 154 Tuesday, July 28, 2009 10:34 AM
When an IBM ILOG Views application starts, the module path is read to search for possible
modules (files that have the proper extension). If both a module and an associated imd file
are found, the description file is read and the information it contains is stored for future
implicit class loading.

Explicit Mode

You can use the explicit module loading mode when your application knows which modules
to load and where they can be found.

Let us suppose that you have created a module called myModule.dll on Microsoft
Windows in C:\ilog\Views\Modules. If this directory is in your PATH variable, you can
directly load your module (and therefore perform all the appropriate initialization) by calling
the static member function Load:

IlvModule* myModule = IlvModule::Load("myModule", myParameter);

IBM® ILOG® Views will attempt to open this module for you, sending the parameter
myParameter to the module constructor, which you can use to send specific information to
specific modules. When loading a module in implicit mode, this parameter is always set to 0.

The first parameter lets you specify a name for a module. It is sometimes easier to
manipulate module names instead of pointers to IlvModule.

If the loading fails, Load returns 0.

The dynamic library is unloaded when the module instance that is returned is destroyed.

An Example: Dynamic Access

The purpose of this example is to make a graphic class dynamically accessible from a
running application.

Let us suppose that we have a class CrossedRectangle, deriving from
IlvFilledRectangle, that is displayed as an outlined rectangle with a cross in it. The
example is developed in:

◆ Writing the Sample Module Definition File

◆ Implementing the New Class

◆ Loading and Registration of the Example

◆ Registration Macros

◆ Adding the Sample Class to a Dynamic Module
154 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

An Example: Dynamic Access

usrfoundation.book Page 155 Tuesday, July 28, 2009 10:34 AM
Writing the Sample Module Definition File

First, you have to make sure that IBM ILOG Views properly loads the code of this class
when a data file refers to its name, thus allowing the corresponding module to be implicitly
loaded.

To that end, we have to write a module definition file, which in our example will be very
simple since we only have one class.

Here is the content of an appropriate module definition file for this module. Since we have
only one class, whose root base class is IlvGraphic, the definition file is as follows:

<?xml version = "1.0"?>
<module name="correct" version="1.0">
<class name = "CrossedRectangle" rootClass = "IlvGraphic"/>
</module>

We could have added many other classes to this module definition file, even classes that do
not inherit from IlvGraphic. You can add classes to the same module in an incremental
way.

Implementing the New Class

Once the module definition file is written, we have to do some more work to implement this
new class. The specifications are quite simple:

◆ Create a filled rectangle that displays a cross inside a frame.

◆ Make sure that this new class is persistent.

◆ Add this class to a dynamic module.

Although you are probably already familiar with the first two steps, we provide the
corresponding code below. The last point represents the most difficult part. We must need to
know how we are going to proceed to register our class properly. Unfortunately, the macro
IlvRegisterClass does not work in a dynamic loading context, or at least not in a
portable way. IBM ILOG Views provides a few macros very close to the ones that you are
already familiar with for solving this problem. We will discuss them after you see the code
for the CrossedRectangle class, which is given below.

#include <ilviews/graphics/rectangl.h>

class CrossedRectangle
: public IlvFilledRectangle {
public:
 MyRectangle(IlvDisplay* display,
 const IlvRect& size, IlvPalette* pal=0)
 : IlvFilledRectangle(display, drawrect, palette)
 {}
 virtual void draw(IlvPort* dst, const IlvTransformer* t = 0,
 const IlvRegion* clip = 0) const;
 DeclareTypeInfoRO();
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 155

usrfoundation.book Page 156 Tuesday, July 28, 2009 10:34 AM
 DeclareIOConstructors(MyRectangle);
};

// Copy constructor
CrossedRectangle::CrossedRectangle(const CrossedRectangle& source)
: IlvFilledRectangle(source)
{}

// Read constructor
CrossedRectangle::CrossedRectangle(IlvInputFile& is,
 IlvPalette* pal)
: IlvFilledRectangle(is, pal)
{}

void
CrossedRectangle::draw(IlvPort* dst, const IlvTransformer* t,
 const IlvRegion* clip) const
{
 if (clip)
 _palette->setClip(clip);
 IlvRect r = _drawrect;
 if (t)
 t->apply(r);
 dst->drawRectangle(_palette, r);
 dst->drawLine(_palette, r.upperLeft(), r.lowerRight()));
 dst->drawLine(_palette, r.upperRight(), r.lowerLeft());
 if (clip)
 _palette->setClip();
}

IlvPredefinedIOMembers(CrossedRectangle)

The draw method is straightforward.

You can see that, as required, this class contains a copy constructor and persistence-related
methods. (It has no write method since we do not have any information to save, and so we
used the DeclareTypeInfoRO macro in the class declaration).

We have already addressed two of the three points for implementing the new class.

The usual way to register this class with the IBM ILOG Views persistence mechanism
would be to use the well-known statement:

IlvRegisterClass(CrossedRectangle, IlvFilledRectangle);

which appears outside the body of any function.

If an application links with that code, it will be able to manipulate, save, and read instances
of the class CrossedRectangle. Remember, however, that you want to make the
CrossedRectangle class known to existing applications that were not aware of it when
they were developed so that they can read data files generated by applications in which this
class is defined. To do so, you have to plug this class into a dynamic module, and you cannot
use the preceding macro for this purpose.
156 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

An Example: Dynamic Access

usrfoundation.book Page 157 Tuesday, July 28, 2009 10:34 AM
Loading and Registration of the Example

It is important to understand what happens when a module is loaded and what registration
actually does:

◆ When a module is loaded, its constructor is called.

◆ Registration is both the declaration of class-level variables that store class-level attributes
and function calls that actually update these variables.

With the dynamic modules feature, IBM ILOG Views provides an alternate form of the
IlvRegisterXXXClass macros, which are used in many places (in IlvGraphic and
IlvNamedProperty subclasses, for example). This set of macros separates the declaration
part of the registration from its definition.

The name of the macro used for the declarative part of the registration is similar to
IlvRegisterXXXClass, except that IlvRegister is replaced by IlvPreRegister. The
second parameter of IlvRegisterXXXClass is dropped. This macro call must appear
outside the body of any function (it declares only class-level variables).

The name of the macro used for the definition part of the registration is similar to
IlvRegisterXXXClass, except that IlvRegister is replaced by IlvPostRegister.
The second parameter of IlvRegisterXXXClass remains. Thus, macro calls must appear
inside the body of a function that must be called to actually perform the proper registration
(it does call code to register new classes).

In our example, to register the graphic class, we have to use both the macros
IlvPreRegisterClass (outside the body of any function) and IlvPostRegisterClass
(inside the body of a function).

Registration Macros

Below is a list of the macros that you must use for registering most of the IBM ILOG Views
classes that are persistent (c indicates the class name that is being registered, and s indicates
its parent class name):

Table 10.3 Registration Macros in Dynamic Modules

Class Name Static Registration Macros Registration Macros in Dynamic Modules

IlvGraphic IlvRegisterClass(c, s); IlvPreRegisterClass(c);
IlvPostRegisterClass(c, s);

IlvNamedProper
ty

IlvRegisterPropertyClass(c, s); IlvPreRegisterPropertyClass(c);
IlvPostRegisterPropertyClass(c, s);

IlvView IlvRegisterViewClass(c, s); IlvPreRegisterViewClass(c);
IlvPostRegisterViewClass(c, s);
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 157

usrfoundation.book Page 158 Tuesday, July 28, 2009 10:34 AM
Because we are dealing with a subclass of IlvGraphic, the IlvPreRegisterClass and
IlvPostRegisterClass macros are all we need to complete the source code of our
module.

Adding the Sample Class to a Dynamic Module

Here is the code that we have to add to the definition of the CrossedRectangle class to
make the final source code compilable as an IBM ILOG Views dynamic module:

#include <ilviews/modules.h>

IlvPreRegisterClass(CrossedRectangle);

class MyModule
: public IlvModule
{
public:
 MyModule(void*)
 {
 IlvPostRegisterClass(CrossedRectangle, IlvFilledRectangle);
 }
};

ILVINITIALIZEMODULE(MyModule);

IlvGadgetItem IlvRegisterGadgetItemClass(c,
s);

IlvPreRegisterGadgetItemClass(c);
IlvPostRegisterGadgetItemClass(c,
s);
For details on gadgets, refer to the Gadgets
documentation.

IlvNotebookPag
e

IlvRegisterNotebookPageClass(c,
s);

IlvPreRegisterNotebookPageClass(c);
IlvPostRegisterNotebookPageClass(c,
s);

IlvSmartSet IlvRegisterSmartSetClass(c, s); IlvPreRegisterSmartSetClass(c);
IlvPostRegisterSmartSetClass(c, s);

IlvGroup IlvRegisterGroupClass(c, s); IlvPreRegisterGroupClass(c);
IlvPostRegisterGroupClass(c, s);

IlvGroupNode IlvRegisterGroupNodeClass(c,
s);

IlvPreRegisterGroupNodeClass(c);
IlvPostRegisterGroupNodeClass(c,
s);

IlvUserAccesso
r

IlvRegisterUserAccessorClass(c,
s);

IlvPreRegisterUserAccessorClass(c);
IlvPostRegisterUserAccessorClass(c,
s);

Table 10.3 Registration Macros in Dynamic Modules (Continued)

Class Name Static Registration Macros Registration Macros in Dynamic Modules
158 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

An Example: Dynamic Access

usrfoundation.book Page 159 Tuesday, July 28, 2009 10:34 AM
Note that you can add this code to a #if defined()/#else/#endif precompiler block,
with the regular

IlvRegisterClass(CrossedRectangle, IlvFilledRectangle);

in the #else part of if. You will then be able to compile your code as a regular static object
file or as a dynamic module:

#if defined(MAKE_A_MODULE)
#include <ilviews/modules.h>

IlvPreRegisterClass(CrossedRectangle);

class MyModule
: public IlvModule
{
public:
 MyModule(void*)
 {
 IlvPostRegisterClass(CrossedRectangle, IlvFilledRectangle);
 }
};

ILVINITIALIZEMODULE(MyModule);
#else /* DONT_MAKE_A_MODULE */
IlvRegisterClass(CrossedRectangle, IlvFilledRectangle);
#endif /* DONT_MAKE_A_MODULE */
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 159

usrfoundation.book Page 160 Tuesday, July 28, 2009 10:34 AM
160 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 161 Tuesday, July 28, 2009 10:34 AM
11

Events

This chapter contains information about events and event loops. You will see how to
manipulate timers, how to add external sources of data, and how to customize the event loop.
Refer to the sections:

◆ IlvEvent: The Event Handler Class

◆ The IlvTimer Class

◆ External Input Sources (UNIX only)

◆ Idle Procedures

◆ Low-level Event Handling

IlvEvent: The Event Handler Class

Mouse and keyboard events are handled by the IlvEvent class.

Recording and Playing Back Event Sequences: IlvEventPlayer

Using IlvEventPlayer, IBM® ILOG® Views can record sequences of events that occur
in the views that it controls. These event sequences can be saved or read from a data file, and
played back at any speed.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 161

usrfoundation.book Page 162 Tuesday, July 28, 2009 10:34 AM
Functions Handling Event Recording

A set of global functions exists that let you start recording events and playing an event
sequence back:

◆ IlvCurrentEventPlayer

◆ IlvRecordingEvents

The IlvTimer Class

IBM® ILOG® Views has an internal mechanism for implementing timers. The internal
mechanism is hidden and system-dependent. It is based on the IlvTimer class.

The purpose of a timer is to call a function repeatedly, once every given time period. If you
want one of your functions to be called in this way, create an IlvTimer instance and call its
member function IlvTimer::run. The timer object calls its member function
IlvTimer::doIt each time this period expires. Timers are based on the timeout
mechanisms of the display system.

The timer automatically repeats the call to IlvTimer::doIt after every period if not
specified to run only once. Before calling IlvTimer::doIt, the event loop disables the
timer. After returning from IlvTimer::doIt, if it is not a run-once timer and if it is still
disabled (it can be enabled by a call to IlvTimer::run from within the timer’s callback),
the timer is enabled again. This mechanism shows that a timer is not active during its own
callback, even if the callback contains a local event loop. This is only true when the timer is
triggered by the event loop, not when the application explicitly calls the IlvTimer::doIt
method. The application is responsible for deleting the timers it has created.

The IlvTimer class can be used in two different cases:

◆ The first case supposes that you have a user-defined function which must match the
IlvTimerProc type:

typedef void (* IlvTimerProc)(IlvTimer* timer,IlAny userarg);

In this case, you simply instantiate an IlvTimer object, specifying this function and an
argument it can use.

◆ The second case uses a derived subclass of IlvTimer with overloading of the member
function IlvTimer::doIt.

Note: If the function called by the timer takes too much time to execute compared to the
periodicity of the timer, the periodicity may not be respected.
162 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

External Input Sources (UNIX only)

usrfoundation.book Page 163 Tuesday, July 28, 2009 10:34 AM
External Input Sources (UNIX only)

On UNIX platforms, IBM® ILOG® Views allows the application to add new sources of
input using file descriptors. These alternate input sources can be registered and unregistered
with the IlvEventLoop methods IlvEventLoop::addInput,
IlvEventLoop::addOutput, IlvEventLoop::removeInput, and
IlvEventLoop::removeOutput. For backward compatibility, the old functions
IlvRegisterInput, IlvRegisterOutput, IlvUnRegisterInput and
IlvUnRegisterOutput are still supported; they are equivalent to:

IlvEventLoop::getEventLoop()->[add|remove][Input|Output]()

IBM ILOG Views does not read any data from these input sources but rather monitors them
and notifies the application when the file descriptor has received input or is ready for
writing. When this happens, IBM ILOG Views calls the application callback routine
associated with the given source of input; this callback routine is then responsible for
reading (or writing) data from (or to) the file descriptor. It is also the responsibility of the
application to open the file descriptors before adding them as new input sources in
IBM ILOG Views and to close them after removing them.

Here is an example of a short IBM ILOG Views program reading from the standard input
and copying it one word per line to the standard output.

#include <strstream.h>
#include <string.h>
#include <ilviews/view.h>

static void MyInputCallback(int, IlAny) {
 char buffer[1048];
 cin >> buffer;
 cout << buffer << endl;
 if (!strcasecmp(buffer, "quit"))
 exit(0);
}

int main(int, char*[]) {
 IlvEventLoop::getEventLoop()->addInput(0 /*stdin*/,
 MyInputCallback, 0, 0);
 IlvMainLoop();
}

Idle Procedures

An idle procedure is a function provided by the application and called by the event loop at
times when the application would otherwise be idle, waiting for events. Idle procedures must
perform short computations; if an idle procedure is too long, it can affect the interactive
response of the application.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 163

usrfoundation.book Page 164 Tuesday, July 28, 2009 10:34 AM
Idle procedures are useful to perform tasks that do not need to be done before other tasks can
continue. Their immediate completion should not be crucial to the application. For instance,
idle procedures can be used to create hidden dialog boxes before they are requested by user
actions.

When an idle procedure returns IlTrue, it is automatically removed and will not be called
again. If it returns IlFalse, it is called each time the application is idle, until it returns
IlTrue or it is explicitly removed by the application.

To register and unregister idle procedures, the application uses the IlvEventLoop methods
IlvEventLoop::addIdleProc and IlvEventLoop::removeIdleProc. The returned
value of IlvEventLoop::addIdleProc is an ID that can be used for explicitly removing
an idle procedure by calling IlvEventLoop::removeIdleProc. Generally, idle
procedures do not need to be removed; they return IlTrue instead.

Low-level Event Handling

The most common way for an application to handle events is to call IlvMainLoop after the
application is initialized. IlvMainLoop is simply an infinite loop that gets the next
incoming event and dispatches it to the appropriate component. However, some applications
may need to define their own event loop. To do this, IBM® ILOG® Views provides the
following functions or methods:

◆ IlvDisplay methods for defining event loops are:

● IlvDisplay::hasEvents

● IlvDisplay::readAndDispatchEvents

● IlvDisplay::waitAndDispatchEvents

◆ IlvEventLoop methods for defining event loops are:

● IlvEventLoop::pendingInput

● IlvEventLoop::processInput

● IlvEventLoop::nextEvent

● IlvEventLoop::dispatchEvent

Main Loop Definition: An Example

Here is a list of constructions that are equivalent to IlvMainLoop:

while (1)
 display->waitAndDispatchEvents();

while (1)
164 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Low-level Event Handling

usrfoundation.book Page 165 Tuesday, July 28, 2009 10:34 AM
 IlvEventLoop::getEventLoop()->processInput(IlvInputAll);

Windows platforms only:

MSG msg;
while (IlvEventLoop::getEventLoop()->nextEvent(&msg))
 IlvEventLoop::getEventLoop()->dispatchEvent(&msg);

MSG msg; // obsolete version
while (IlvNextEvent(&msg))
 IlvDispatchEvent(&msg);

UNIX platforms only:

XEvent xev;
while (1) {
 IlvEventLoop::getEventLoop()->nextEvent(&xev);
 IlvEventLoop::getEventLoop()->dispatchEvent(&xev);
}

XEvent xev; // obsolete version
while (1) {
 IlvNextEvent(&xev);
 IlvDispatchEvent(&xev);
}

UNIX platforms using only libmviews (as opposed to libxviews):

XtAppMainLoop(IlvApplicationContext());

XEvent xev;
while (1) {
 XtAppNextEvent(IlvApplicationContext(), &xev);
 XtDispatchEvent(&xev);
}

I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 165

usrfoundation.book Page 166 Tuesday, July 28, 2009 10:34 AM
166 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 167 Tuesday, July 28, 2009 10:34 AM
12

IlvNamedProperty: The Persistent
Properties Class

The class IlvNamedProperty is used to associate application-dependent information with
IBM® ILOG® Views objects. This information, called a named property, is stored in a
subclass of IlvNamedProperty that you define. Unlike a user property, a named property
is copied with your object and made persistent so that its content is preserved when data files
are saved or read.

Using and extending named properties are described in the following sections:

◆ Associating Named Properties with Objects

◆ Extension of Named Properties

Associating Named Properties with Objects

As with user properties, you associate a named property with a graphic object using an
IlSymbol. An IlSymbol is attached to one and only one subclass of IlvNamedProperty
to ensure that the type of the retrieved property is correct.

To handle named properties, you can use the following three member functions of the class
IlvGraphic:

IlvNamedProperty* getNamedProperty(const IlSymbol*) const;
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 167

usrfoundation.book Page 168 Tuesday, July 28, 2009 10:34 AM
IlvNamedProperty* setNamedProperty(IlvNamedProperty*);
IlvNamedProperty* removeNamedProperty(IlSymbol*);

You can see that an IlSymbol is all you need to indicate which named property you are
dealing with.

A Predefined Named Property: the Tooltip

An example of a predefined named property is the tooltip, a small text window that pops up
when the pointing device enters a panel control element (such as a gadget) and stays for a
moment. The class IlvToolTip is defined in the header file <ilviews/graphics/
tooltip.h>.

To set a tooltip for a graphic object, retrieve it, and then remove it, write the following:

obj->setNamedProperty(new IlvToolTip("Text"));
...
IlvToolTip* toolTip = IlvToolTip::GetToolTip(obj);
...
delete obj->removeNamedProperty(toolTip->getSymbol());

Named properties may be transferred from object to object. To remove a named property
from the list of named properties without deleting it, use the
IlvGraphic::removeNamedProperty member function. To delete a named property and
thus clear the memory it occupies, you must call delete explicitly.

Because a subclass of IlvNamedProperty and the symbol (that is, the pointer to
IlSymbol) that refers to it are tightly coupled, most of the time this symbol is a static data
member of the property class. Note, however, that this is not mandatory. Using a static data
member of the property class makes it possible for you to retrieve a named property from an
object using a symbol that you may not know, but which is directly accessible from the class.

In the above example, you can see that the symbol used by the tooltip property never
appears. To retrieve the named property, we simply get the property symbol using the
member function IlvNamedProperty::getSymbol.

Note that named properties are copied and saved with the object, and they are deleted when
you delete the object. Named properties behave like additional data members of existing
classes, with the possibility of defining a powerful API to access the data at the level of the
named property class.

Extension of Named Properties

Creating your own named property class is a straightforward, three-step procedure:

1. Create a subclass of IlvNamedProperty.

2. Choose the symbol that will be used to access this property.
168 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Extension of Named Properties

usrfoundation.book Page 169 Tuesday, July 28, 2009 10:34 AM
We remind you that in IBM ILOG Views all symbols whose names begin with the
characters "_ilv" are reserved for internal use.

3. Define how this class will be persistent and register this class with IBM ILOG Views.

Using a very simple example—the storage of two values—the following section explains
how to create a named property that you can associate with graphic objects. You can,
however, build named properties with member functions to handle more elaborate data
members, or have named properties that store pointers to existing classes. Using named
properties, you can link application data with a high level of complexity to light graphic
objects, with minimum coding and without altering the API of your application classes.

Example: Creating a Named Property

To illustrate, we are going to create a named property that holds both an integer and a
character string and make it easily accessible and persistent.

The general development tasks are:

◆ Declaring the Named Property: Header File

◆ Defining the Symbol for Accessing the Named Property

◆ Defining the Constructor for the Named Property

◆ Defining the setString Member Function

◆ Defining the Persistence and Copy Constructors

◆ Defining the write Member Function

◆ Providing an Entry Point to the Read and Copy Constructors

◆ Registering the Class

◆ Using the New Named Property

Declaring the Named Property: Header File

The named property that we are going to create must be a subclass of IlvNamedProperty.
The named property stores an integer and a string. Its complete header file is given below:

#include <ilviews/base/graphic.h>

class MyProperty
: public IlvNamedProperty
{
public:
 MyProperty(int integer,
 char* string);
 virtual ~MyProperty();

 int getInteger() const { return _integer; }
 void setInteger(int integer) { _integer = integer; }
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 169

usrfoundation.book Page 170 Tuesday, July 28, 2009 10:34 AM
 const char* getString() const { return _string; }
 void setString(const char* string);

 static IlSymbol* GetSymbol();

 DeclarePropertyInfo();
 DeclarePropertyIOConstructors(MyProperty);

private:
 int _integer;
 char* _string;
 static IlSymbol* _Symbol;
};

In addition to the two data members _integer and _string (and their accessors), we will
focus on the _Symbol static data member and on the two macro calls that appear in the
declaration part of the class, namely DeclarePropertyInfo and
DeclarePropertyIOConstructors.

Note that the destructor of the class is virtual like the one of the base class
IlvNamedProperty.

Defining the Symbol for Accessing the Named Property

First we are going to define the property symbol that will be used to access the class. A
simple way to define this symbol is to make it a static data member of your property class,
_Symbol, and provide it with a public accessor, GetSymbol. By doing this, any application
will be able to retrieve an instance of MyProperty without having to know which symbol is
used to associate it with an object.

Therefore, the public and static accessor GetSymbol is defined to return the appropriate
IlSymbol and create it if necessary.

In the code below, an extract of the implementation file, we define both the accessor to the
property symbol and the static data member, which we initialize to 0. Note that the symbol is
created the first time it is queried in MyProperty::GetSymbol.

IlSymbol*
MyProperty::GetSymbol()
{
 if (!_Symbol)
 _Symbol = IlGetSymbol("MyPropertySymbol");
 return _Symbol;
}

IlSymbol* MyProperty::_Symbol = 0;

Defining the Constructor for the Named Property

Let’s now examine the constructor and the destructor. All we need to do is call the
constructor of the parent class, IlvNamedProperty, and initialize our data members:

MyProperty::MyProperty(int integer,
 char* string)
170 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Extension of Named Properties

usrfoundation.book Page 171 Tuesday, July 28, 2009 10:34 AM
: IlvNamedProperty(GetSymbol()),
 _integer(integer),
 _string(0)
{
 setString(string);
}

MyProperty::~MyProperty()
{
 if (_string)
 delete [] _string;
}

The first time a property of the MyProperty type is created, the static member function
GetSymbol is called to set the static data member _Symbol to a valid value.

The string parameter is copied by the setString member function that will check
whether the data member _string is valid. This is why we initialize this data member to 0
in the initializers of the constructor. This parameter is destroyed in the destructor, if it was
valid.

Defining the setString Member Function

Below is the definition of the setString member function that copies and stores the string:

void
MyProperty::setString(const char* string)
{
 if (_string)
 delete [] _string;
 _string = string
 ? strcpy(new char [strlen(string)+1], string)
 : 0;
}

This code is quite simple. If a valid string—a non-null string— was stored, it is destroyed. If
the parameter is valid—non-null—a copy of this string is made and stored. If the parameter
is not valid, the data member is simply reset to 0.

At this stage, our class can store and retrieve both an integer and a character-string value.

Defining the Persistence and Copy Constructors

For our named property to be complete, we have to add the class-level information and
persistence-related member functions. The easiest way to do this is to use the following two
macros in the body of the class declaration:

◆ DeclarePropertyInfo declares the class information data members for the
MyProperty class. These members are used to retrieve information, such as the class
name and its hierarchy. It also declares the member functions that are required to
implement persistence for this class.

◆ DeclarePropertyIOConstructors declares the constructors required for
persistence and copy.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 171

usrfoundation.book Page 172 Tuesday, July 28, 2009 10:34 AM
These macros make it very easy to add copy and persistence functionality to your class.

Once the macros have been declared, all we have to do to add copy and persistence features
to our class is to define a copy constructor and a constructor that take an IlvInputFile
reference as its parameter:

MyProperty::MyProperty(const MyProperty& source)
: IlvNamedProperty(GetSymbol()),
 _integer(source._integer),
 _string(0)
{
 setString(source._string);
}

MyProperty::MyProperty(IlvInputFile& i, IlSymbol* s)
: IlvNamedProperty(GetSymbol()),
 _integer(0),
 _string(0)
{
 // 's' should be equal to GetSymbol()
 i.getStream() >> _integer >> IlvQuotedString();
 setString(IlvQuotedString().Buffer);
}

The first constructor initializes a new instance of MyProperty with a copy of its source
parameter.

The second constructor reads the provided input stream to initialize its instance with what is
read.

Defining the write Member Function

Now that we are able to read a new instance of the class, we can save it. To do so, we have to
define a write member function, which is implicitly declared by the macro
DeclarePropertyInfo.

void
MyProperty::write(IlvOutputFile& o) const
{

o.getStream() << _integer << IlvSpc() << IlvQuotedString(_string);
}

The saving order must be the same as the reading order.

Note that you may define a named property that does not have any additional information to
save. In this case, you would use the DeclarePropertyInfoRO macro instead of
DeclarePropertyInfo in the class declaration and drop the write member function that
would be useless.

Providing an Entry Point to the Read and Copy Constructors

To provide IBM ILOG Views with an entry point to the read and copy constructors, you
must add another macro to the implementation file, outside the body of any function, as
follows:
172 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Extension of Named Properties

usrfoundation.book Page 173 Tuesday, July 28, 2009 10:34 AM
 IlvPredefinedPropertyIOMembers(MyProperty)

Calling this macro actually creates a read static member function that invokes the read
constructor. It also defines a copy member function that calls the copy constructor.

Registering the Class

The final step to have our named property up and running in our application is to register the
MyProperty class with IBM ILOG Views as follows:

 IlvRegisterPropertyClass(MyProperty, IlvNamedProperty);

Calling the macro IlvRegisterPropertyClass registers the class MyProperty with the
IBM ILOG Views persistence mechanism.

Using the New Named Property

You can now use this new named property as an extension of any graphic object with which
it would be associated:

IlvGraphic* myObject = ...;
myObject->setNamedProperty(new MyProperty(12, "Some text"));
...
MyProperty* property =

(MyProperty*)(myObject->getNamedProperty(MyProperty::GetSymbol());
if (property && (property->getInteger() == someValue))

doSomething();

You have extended your graphic object’s API in a persistent manner, without subclassing the
base class.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 173

usrfoundation.book Page 174 Tuesday, July 28, 2009 10:34 AM
174 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 175 Tuesday, July 28, 2009 10:34 AM
13

Printing in IBM ILOG Views

IBM® ILOG® Views provides a framework for printing. This framework consists of the
following classes:

◆ The IlvPrintableDocument Class describes a document, that is, a list of printable objects
associated with page layouts.

◆ The IlvPrintable Class describes a printable object, various subclasses deal with printing
containers, manager views, text, and so forth.

◆ The IlvPrintableLayout Class describes the page layout of the document using
predefined areas such as background, foreground, header, and footer. Predefined layouts
allow printing on one or multiple pages, or identity layouts.

◆ The IlvPrinter Class describes the printer and its physical characteristics such as paper
format, margins, color or grayscale capabilities, and page orientation.

◆ The IlvPrintUnit Class describes a printing unit and allows conversion of various units
such as Pica, Centimeter, Inches, and Points.

◆ The IlvPaperFormat Class describes physical paper formats such as A4, Letter, and so
forth.

◆ The Dialogs section describes the user interface dialogs provided by IBM ILOG Views
for choosing printer and printer characteristics. A print preview dialog is also available in
the Gadgets package.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 175

usrfoundation.book Page 176 Tuesday, July 28, 2009 10:34 AM
The IlvPrintableDocument Class

The IlvPrintableDocument class manages a list of printable objects. It uses iterators to
sequence through the printable objects. It provides a default layout, but each printable can
specify its own layout.

Multiple copies of the document can be printed using two modes:

◆ The whole document is printed n times.

◆ Each page is printed n times, then the next page is printed.

Iterators

Iterators are instances of the inner class IlvPrintableDocument::Iterator. The most
used are returned by the following IlvPrintableDocument methods:

◆ IlvPrintableDocument::begin() const;

◆ IlvPrintableDocument::end() const; iterators are then used like any other
variable.

Example

IlvPrintableDocument document;
// add some printables to the document
document.append(new IlvPrintableContainer(container);
.....
// the iterate through the printables
IlvPrintableDocument::Iterator begin = document.begin();
IlvPrintableDocument::Iterator end = document.end();

for (IlvPrintableDocument::Iterator iter = document.begin();
 iter != end;
 ++iter) {
 // do something with the printable.
 IlvPrintable* printable = iter.getPrintable();

}

The IlvPrintable Class

IlvPrintable is an abstract class that provides a base for describing objects that can be
printed. Its is associated with a printable job that contains the printing parameters for a given
job.

A printable can be described by subclassing the following methods:
176 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

The IlvPrintable Class

usrfoundation.book Page 177 Tuesday, July 28, 2009 10:34 AM
◆ public virtual IlvRect getBBox(IlvPrintableJob const& job) const =

0;

◆ protected virtual IlBoolean internalPrint(IlvPrintableJob const&

job) const = 0;

A few subclasses of IlvPrintable are available:

◆ IlvPrintableContainer encapsulates an instance of IlvContainer.

// declares a printable using the given region of a container.
// if the rectangle is null then the whole container is printed.
IlvPrintableContainer* printcont = new IlvPrintableContainer(container,
 &rect);

◆ IlvPrintableText allows printing of text. An alignment parameter can be specified.

// declares a printable using a simple text.
IlvPrintableText* printtext = new IlvPrintableText
 (display->defaultPalette(),
 "This is a text",
 IlvCenter);

◆ IlvPrintableFormattedText allows printing of text with various predefined
attributes. Each Conversion specification is introduced by the character %. The following
attributes are defined:

 You may still print %p codes by replacing them with %\p.

// declares a printable formated text
IlvPrintableFormattedText* printftext = new
 IlvPrintableFormattedText(display->defaultPalette(),
 "%N : (Page %p/%P - %d/%M/%y - %h:%m:s)");

%p The index of the page will be printed.

%P The total number of pages will be printed.

%N The document name will be printed.

%y The year will be printed.

%M The month will be printed numerically.

%d The day of the month will be printed.

%h The hour of the day (0-24) will be printed.

%H The hour will be printed.

%m The minute will be printed.

%s The second will be printed.

%AM The AM/PM indicator will be printed in upper case.

%am The am/pm indicator will be printed in lower case.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 177

usrfoundation.book Page 178 Tuesday, July 28, 2009 10:34 AM
◆ IlvPrintableGraphic encapsulates an instance of IlvGraphic. Any IlvGraphic
object can be printed.

// declares a printable graphic
IlvGraphic* ellipse = new IlvFilledEllipse(display,
 IlvRect(0, 0, 100, 50));
IlvPrintableGraphic* printgraphic = new IlvPrintableGraphic(ellipse);

◆ IlvPrintableFrame encapsulates a simple rectangle.

// declares a printable frame
IlvPrintableFrame* printframe = new IlvPrintableFrame
 (display->defaultPalette());

◆ IlvPrintableManager, IlvPrintableMgrView, and
IlvPrintableManagerLayer (available only with the manager package) allow a
whole manager, a manager view, or a manager layer, respectively, to be printed.

◆ IlvPrintableComposite allows you to define a printable as a composition of
printables.

The IlvPrintableLayout Class

IlvPrintableLayout is an abstract class that is the base class for describing page layouts.
It defines a usable area by specifying left, right, top, bottom, and gutter margins.

It defines five subareas within the usable area and associates them with printables:

◆ The main area that will be used to print the main printable.

You can choose to stretch the printable to the usable area or to keep the printable aspect
ratio.

◆ The header area that will be used to print a header printable.

◆ The footer area that will be used to print a footer printable.

◆ The background area that will be printed behind the main area.

◆ The foreground area that will be printed in front of the main area.

The dimensions of the header and footer areas can be specified.

Predefined layouts are:

◆ IlvPrintableLayoutOnePage lays out the printable on one page. This layout uses a
single page to render the printable.

◆ IlvPrintableLayoutMultiplePages lays out the printable on an array of pages.
The dimension of the pages matrix is user specified.
178 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

The IlvPrinter Class

usrfoundation.book Page 179 Tuesday, July 28, 2009 10:34 AM
This layout defines a virtual page that spans through the multiple pages. The header area
is defined at the top of the virtual page, the footer area at the bottom of the virtual page.

◆ IlvPrintableLayoutIdentity allows the printed document to be the same size as
the printable.

This layout inherits from IlvPrintableLayoutMultiplePages and uses whatever
number of pages are necessary.

◆ IlvPrintableLayoutFixedSize allows you to choose the printed document size.

This layout inherits from IlvPrintableLayoutMultiplePages and uses whatever
number of pages are necessary.

The IlvPrinter Class

The IlvPrinter class describes a physical printer with characteristics such as paper size,
paper orientation, and physical margins. It encapsulates an instance of IlvPort.

This is an abstract class and it has two predefined subclasses:

◆ IlvPSPrinter that allows you to print to a PostScript file.

// creating a PostScript printer
IlvPSPrinter* psprinter = new IlvPSPrinter(display);
psprinter->setPaperFormat(*IlvPaperFormat::Get("A3"));
psprinter->setOrientation(IlvPrinter::Landscape);
psprinter->setDocumentName("viewsprint.ps");

◆ IlvWindowsPrinter that allows printing to a printer connected to a Windows
computer (this class is only available on Windows).

Some characteristics are dependent on the printer and cannot be set, such as paper size or
margins.

// creating a Windows printer
IlvWindowsPrinter* wprinter = new IlvWindowsPrinter(display);

The IlvPrintUnit Class

The IlvPrintUnit class allows you to describe a dimensional unit. Units of various types
can be converted.

Four commonly used units have been defined:

◆ IlvPrintPointUnit represents units in centimeters. This is the reference unit.

◆ IlvPrintCMUnit represents units in centimeters.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 179

usrfoundation.book Page 180 Tuesday, July 28, 2009 10:34 AM
◆ IlvPrintInchUnit represents units in inches.

◆ IlvPrintPicaUnit represents units in centimeters.

 This class is mainly useful when using IlvPSPrinter.

Converting units:

IlvPrintCMUnit oneMeter(100.0);
IlvPrintInchUnit oneMeterInInches(oneMeter);
IlvDim result = oneMeterInInches.getUnits();

The IlvPaperFormat Class

The IlvPaperFormat class describes paper formats. Paper formats can be registered and
queried by name.

 A number of commonly used paper formats have been preregistered. Dimensions must be
given in PostScript points.

Retrieving a paper format:

IlvPaperFormat* letterformat = IlvPaperFormat::Get("Letter");

Creating a new paper format:

IlvPrintCMUnit width(100.0);
IlvPrintCMUnit height(100.0);
IlvPaperFormat::Register("MyFormat", width.getPoints(), height.getPoints());

Predefined paper formats are shown in Table 13.1:

Note: On the Windows platform, when using IlvWindowsPrinter, the printer driver is
responsible for the paper sizes, so this class is used only with IlvPSPrinter.

Table 13.1 Predefined Paper Formats

Name Width (in points) Height (in points)

A0 2380 3368

A1 1684 2380

A2 1190 1684

A3 842 1190

A4 595 842

A5 421 595
180 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Dialogs

usrfoundation.book Page 181 Tuesday, July 28, 2009 10:34 AM
Dialogs

The Gadgets package comes with predefined dialogs for previewing the print job or
selecting the PostScript printer capabilities.

The IlvPostScriptPrinterDialog class allows you to select various PostScript printer
capabilities such as:

◆ Output Filename

◆ Orientation

◆ Color Mode

◆ Paper Format

◆ Collate Mode

◆ Number of copies

◆ Margins

A6 297 421

B4 709 1003

B5 516 729

C5 459 649

Quarto 610 780

Folio 612 936

Statement 396 612

Monarch 279 540

Executive 540 720

Ledger 1224 792

Tabloid 792 1224

Legal 612 1008

Letter 612 792

Table 13.1 Predefined Paper Formats (Continued)

Name Width (in points) Height (in points)
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 181

usrfoundation.book Page 182 Tuesday, July 28, 2009 10:34 AM
Usage example: (see Figure 13.1).

IlvPostScriptPrinterDialog psdialog(display);
 psdialog.get();
 IlvPrinter::Orientation orientation = psdialog.getOrientation();
 IlBoolean collate = psdialog.isCollateOn();

Figure 13.1

Figure 13.1 PS Printer Example

The IlvPrinterPreviewDialog class allows you to preview a printing job (see
Figure 13.2). It supports various modes such as:

◆ One page preview

◆ Two page preview

◆ Tiled preview

A custom zooming factor can be specified.
182 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Dialogs

usrfoundation.book Page 183 Tuesday, July 28, 2009 10:34 AM
Figure 13.2

Figure 13.2 Print Preview Example
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 183

usrfoundation.book Page 184 Tuesday, July 28, 2009 10:34 AM
184 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 185 Tuesday, July 28, 2009 10:34 AM
14

IBM ILOG Script Programming

This chapter is a programming guide to IBM ILOG Script for IBM® ILOG® Views. It
covers the following topics:

◆ An introduction to IBM ILOG Script for IBM ILOG Views

◆ Making IBM ILOG Views Applications Scriptable

◆ Binding IBM ILOG Views Objects

◆ Loading IBM ILOG Script Modules

◆ Using IBM ILOG Script Callbacks

◆ Handling Panel Events

◆ Creating IBM ILOG Views Objects at Run Time

◆ Common Properties of IBM ILOG Views Objects

◆ Using Resources in IBM ILOG Script for IBM ILOG Views

◆ The topic concludes with Guidelines for Developing Scriptable Applications and
reference tables providing Resource Names that you can use in your scripting.

Details on the syntax of IBM ILOG Script are in Appendix F, IBM ILOG Script 2.0
Language Reference.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 185

usrfoundation.book Page 186 Tuesday, July 28, 2009 10:34 AM
IBM ILOG Script for IBM ILOG Views

IBM ILOG Script for IBM® ILOG® Views is an object-oriented scripting language for
developing high-performance graphic applications.

IBM ILOG Script for IBM ILOG Views is an enhanced version of IBM ILOG Script, an
IBM ILOG implementation of the JavaScript™ scripting language that lets you access most
of the IBM ILOG Views powerful graphic objects.

For full details of the IBM ILOG scripting features, refer to the following documentation:

◆ This chapter explains how to program IBM ILOG Views graphic objects with
IBM ILOG Script.

◆ The IBM ILOG Script Manual shows you how to use IBM ILOG Script for
IBM ILOG Views from ivfstudio, which includes the extension of IBM ILOG Views
Studio that lets you write IBM ILOG Views applications in IBM ILOG Script.

◆ The ILOG Views Foundation Reference Manual provides all the information you need
concerning the IBM ILOG Views objects supported by IBM ILOG Script for
IBM ILOG Views.

Making IBM ILOG Views Applications Scriptable

To use IBM ILOG Script in an IBM ILOG Views application, you have to make this
application scriptable. The interpreter of IBM ILOG Script for IBM ILOG Views is
implemented as C++ libraries. Therefore, if you want to use an IBM ILOG Views
application with IBM ILOG Script for IBM ILOG Views, you have to:

◆ Include the appropriate header file in the source files of your application, as described in
Including the Header File.

◆ Link your application using the supplied IBM ILOG Script for IBM ILOG Views
libraries, as described in Linking with IBM ILOG Script for IBM ILOG Views Libraries.

Note: It includes material regarding programming of optional panels and gadgets. For
complete information on these options, refer to the appropriate IBM ILOG Views
documentation packages.

Note: You can also generate IBM ILOG Views scriptable applications from the extension of
IBM ILOG Views Studio that lets you write IBM ILOG Views applications in
IBM ILOG Script. For more information, refer to the IBM ILOG Views Studio User’s
Manual.
186 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Binding IBM ILOG Views Objects

usrfoundation.book Page 187 Tuesday, July 28, 2009 10:34 AM
Including the Header File

Include the following header file in the main source file of your application:

#include <ilviews/jvscript/script.h>

You need to include this file only once. You do not have to include it in each one of the
source files of your application.

Linking with IBM ILOG Script for IBM ILOG Views Libraries

In addition to the IBM ILOG Views libraries, you must link your application with the
following IBM ILOG Script for IBM ILOG Views libraries:

On Microsoft Windows

◆ ilvjs.lib

◆ iljs.lib

◆ iljsgide.lib

On UNIX

◆ libilvjs

◆ libiljs

◆ libiljsgide

Binding IBM ILOG Views Objects

To use IBM® ILOG® Views objects, such as gadgets and panels, in IBM ILOG Script, you
must make these objects accessible using a binding procedure. To bind an object:

◆ First get an IBM ILOG Script context. This is described in Getting the Global
IBM ILOG Script Context.

◆ Invoke the bind method, discussed in Binding IBM ILOG Views Objects.

A bound object becomes accessible from IBM ILOG Script.

Getting the Global IBM ILOG Script Context

An IBM ILOG Script context is a gateway between IBM® ILOG® Views and the scripting
language that should be created before binding any IBM ILOG Views objects. If, as
explained in the previous section, you have included the script.h header file in the files of
your application and linked that application with the appropriate libraries, the global context
will be created automatically.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 187

usrfoundation.book Page 188 Tuesday, July 28, 2009 10:34 AM
To activate this context, invoke the following function:

IlvScriptLanguage* jvscript = IlvScriptLanguage::Get("JvScript");
IlvScriptContext* theContext = jvscript->getGlobalContext();

This function returns a pointer to the global IBM ILOG Script context.

Binding IBM ILOG Views Objects

To bind an IBM® ILOG® Views object, call the following function:

IlvScriptContext::bind(IlvValueInterface* object,
 const char* name);

This function takes a pointer to the object to be bound as its first parameter and the character
string to which the object is bound as its second parameter. IBM ILOG Script programmers
can use this name to access the associated object. The pointer is of the type
IlvValueInterface, which is a superclass for most of the IBM ILOG Views classes.

Thus, you can bind an IlvApplication object with the following code:

IlvScriptLanguage* jvscript = IlvScriptLanguage::Get("JvScript);
IlvScriptContext* theContext = jvscript->getGlobalContext();
theContext->bind(theApp, "Application");
// theApp is the pointer to an IlvApplication

The above code binds the IlvApplication object to IBM ILOG Script through the
Application symbol. Consequently, you can access the properties attached to
Application from IBM ILOG Script:

var name = Application.name;

Accessing IBM ILOG Views Objects in IBM ILOG Script

You might want to bind all the IBM ILOG Views objects in your application. To do so, the
best solution is to bind only the root object. This is because you can access, either directly or
indirectly, almost any other IBM ILOG Views object starting from that object.

In an IBM ILOG Views application generated from ivfstudio, for example, you can
access the pointers to the panels through the pointer to the application by calling the
IlvApplication::getPanel method. Similarly, you can then access the gadgets in the
panels by invoking the IlvContainer::getObject method. This is the reason why, in
such applications, the only object that should be bound is an IlvApplication object.

The Application Object

In applications generated with ivfstudio, the IlvApplication object is bound with the
Application symbol. You can access any other IBM ILOG Views object starting from the
Application object.

Let us suppose that your application contains one panel named myPanel. Here is how you
can access it in IBM ILOG Script:
188 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Loading IBM ILOG Script Modules

usrfoundation.book Page 189 Tuesday, July 28, 2009 10:34 AM
var panel = Application.getPanel("myPanel");

To change its title, you can type:

panel.title = "New title";

If the panel in your application contains one button called myButton, you can access it
using the following code:

var button = panel.getObject("myButton");

To change the button label, type:

button.label = "A new label";

Accessing Panels and Gadgets

Below are easier ways to access an application’s panels and gadgets.

To access the panel named myPanel in IBM ILOG Script, you can type:

var panel = Application.myPanel;

To change its title:

Application.myPanel.title = "A new title";

To access gadgets in the panel:

var button = panel.myButton;

Note that only panels and gadgets that have regular names can be accessed that way. If a
panel or gadget name includes special characters, such as &, +, -, =, space, and so on, you
will not be able to access them using the procedures described above. Be careful not to use
these characters in the name of panels and gadgets.

Loading IBM ILOG Script Modules

Three different types of scripts can be loaded into a scriptable IBM® ILOG® Views
application:

◆ Inline Scripts

◆ Default IBM ILOG Script Files

◆ Independent IBM ILOG Script Files

Static functions that may be defined in these scripts have a limited function, as discussed in
IBM ILOG Script Static Functions.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 189

usrfoundation.book Page 190 Tuesday, July 28, 2009 10:34 AM
Inline Scripts

Scripts that you create from ivfstudio while designing graphic panels are called inline
scripts. These scripts are saved in .ilv files by ivfstudio. Inline scripts are loaded
together with the .ilv files in which they are stored when these files are loaded into an
IBM ILOG Views scriptable application. See Making IBM ILOG Views Applications
Scriptable.

Default IBM ILOG Script Files

When an .ilv file, such as panel.ilv, that does not contain inline scripts is being loaded
into an IBM ILOG Views scriptable application, IBM ILOG Views looks into the directory
where the file is located for an IBM ILOG Script file with the same name that has the .js
extension and automatically loads it. The panel.js file is called the default
IBM ILOG Script file of panel.ilv.

Independent IBM ILOG Script Files

You can load independent IBM ILOG Script modules into an IBM ILOG Views scriptable
application using the IlvScriptContext::loadScript method:

IlvScriptContext::loadScript("c:\\myscripts\\myscript.js");

Using this method, you can load IBM ILOG Script files that are shared by several
applications.

IBM ILOG Script Static Functions

Inline and default scripts are associated with an .ilv file. The names of static functions
defined in such scripts have a limited scope:

◆ The name scope of an IBM ILOG Script static function is limited to the module where it
is defined. It is not visible from other IBM ILOG Script modules.

◆ It can only be used as a callback for the gadgets in the associated .ilv file and for the
gadgets in the subpanels of the gadget container defined by the associated .ilv file, if
any.

Here is an example of a static function:

static function OnClick(graphic)
{
 graphic.foreground = "red";
}

190 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Using IBM ILOG Script Callbacks

usrfoundation.book Page 191 Tuesday, July 28, 2009 10:34 AM
Using IBM ILOG Script Callbacks

IBM® ILOG® Views gadgets are able to recognize specific mouse or keyboard events that
apply to them and invoke the associated predefined IBM ILOG Script callback functions.

To handle gadget events using callbacks, you must:

◆ Write the callback functions: see Writing a Callback

◆ Set the callback: see Setting an IBM ILOG Script Callback

Writing a Callback

In IBM ILOG Script for IBM ILOG Views, callbacks have the following signature:

function CallBack(gadget, value)

Here is an example of a callback:

function OnButtonClick(button, value)
{
 button.foreground = "red";
 writeln("The additional value is: " + value);
}

The second argument passed to the callback is an optional value that you can specify when
you set a callback in ivfstudio. The contents of the callback function can therefore be the
following:

function OnGadgetClick(gadget)
{
 gadget. foreground = "red";
}

Setting an IBM ILOG Script Callback

There are two ways to set a callback to a gadget:

◆ You can set callbacks in IBM ILOG Views Studio, while designing panels. This is the
easiest way.

◆ You can set callbacks with the IlvGraphic::setCallback method. Using this
method, you can set a callback to a gadget or modify it at run time. Here is an example:

myGadget.setCallback("Generic", "myCallback", "JvScript");

The first argument is the callback type that identifies the event to handle. The second
argument is the callback function you defined. The third argument is always JvScript.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 191

usrfoundation.book Page 192 Tuesday, July 28, 2009 10:34 AM
Handling Panel Events

You can use IBM ILOG Script functions to be informed whenever the panels of your
application are created, displayed, hidden, or deleted. To handle these events you use:

◆ The OnLoad Function

◆ The onShow Property

◆ The onHide Property

◆ The onClose Property

The OnLoad Function

When an IlvContainer object is created, it looks for an IBM ILOG Script function
OnLoad and invokes it, passing the container as its argument. If there are several OnLoad
functions, the container will look in the following modules in order and call the first OnLoad
function encountered:

1. The inline script module

2. The default IBM ILOG Script module

3. Other IBM ILOG Script modules

The IBM ILOG Script function OnLoad should have the following signature:

function OnLoad(theContainer)
{
 // Initialization code
}

The OnLoad function is generally used to perform initialization once the panels in the
application have been created.

The onShow Property

IlvContainer has an onShow property to which you can pass an IBM ILOG Script
function. The specified function is called when the container is displayed on the screen. For
example:

function OnShow(theContainer)
{
 writeln("Hi, " + theContainer.name + " is displayed.");
}

function OnLoad(theContainer)
{
 theContainer.onShow = OnShow;
}
192 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Creating IBM ILOG Views Objects at Run Time

usrfoundation.book Page 193 Tuesday, July 28, 2009 10:34 AM
In this example, the OnShow function is used to handle the onShow event applied to
theContainer.

The onHide Property

The onHide property is similar to the onShow property except that the specified function is
called when the container is hidden. For example:

function WhenPanelHides(theContainer)
{
 writeln("Hi, I am " + theContainer.name + ", see you later.");
}

function OnLoad(theContainer)
{
 theContainer.onHide = WhenPanelHides;
}

The onClose Property

The onClose property is similar to the onShow property except that the specified function is
called when the container is being closed. For example:

function OnClose(theContainer)
{
 writeln("Hi, " + theContainer.name + " has terrible news ...");
}

function OnLoad(theContainer)
{
 theContainer.onClose = OnClose;
}

Creating IBM ILOG Views Objects at Run Time

In IBM ILOG Script for IBM® ILOG® Views, you can use the new operator to create
IBM ILOG Views objects at run time just as you would create other IBM ILOG Script
native objects, such as strings, numbers, and so on.

You can create the following types of objects at run time:

◆ IlvPoint

◆ IlvRect

◆ IlvGadgetContainer

To create a gadget, such as an IlvButton, we recommend that you use IBM ILOG Views
Studio.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 193

usrfoundation.book Page 194 Tuesday, July 28, 2009 10:34 AM
IlvPoint and IlvRect

Certain IBM ILOG Views object methods take an IlvPoint or an IlvRect as their
arguments. These can be created at run time as shown below:

var myPoint = new IlvPoint(20, 20);
myPanel.move(myPoint);

IlvGadgetContainer

You can create new panels at run time. Here is an example:

var size = new IlvRect(20, 20, 400, 300);
var myNewPanel = new IlvGadgetContainer("Panel", "My panel", size);
myNewPanel.readFile("panel.ilv");
myNewPanel.readDraw();
Application.addPanel(myNewPanel);

We recommend that you add the new panel to Application after it has been created.

For more information, see “Accessors for class IlvGadgetContainer” in the Gadgets
Accessor Reference Manual.

Common Properties of IBM ILOG Views Objects

The following properties useful in scripting are common to all IBM® ILOG® Views
objects:

◆ className

◆ name

◆ help

className

className is a read-only string that indicates the type of the object. Object types are
documented in the ILOG Views Foundation Reference Manual.

name

name is a string that identifies the object. A panel should have a unique name within the
application. A gadget should have a unique name within its container.

help

help is a read-only string that gives the object description. This property is very useful
when debugging a scriptable IBM ILOG Views application.
194 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Using Resources in IBM ILOG Script for IBM ILOG Views

usrfoundation.book Page 195 Tuesday, July 28, 2009 10:34 AM
For example, in the IBM ILOG Views Studio script debugger, type Application.help to
get a list of the supported properties and methods:

> Application.help
= ViewsObject :
Method getPanel;
Method addPanel;
Method removePanel;
Method setState;
Method quit;
Object rootState;
String name;
String className;

To get more information on the method IlvApplication::getPanel, just type
Application.getPanel.help:

> Application.getPanel.help
= Object getPanel(String name)

You can also obtain information on the IlvApplication::getPanel method by typing
Application.getPanel:

> Application.getPanel
= [Views method: Object getPanel(String name)]

Using Resources in IBM ILOG Script for IBM ILOG Views

Resources in IBM ILOG Script for IBM® ILOG® Views, such as colors, bitmaps, and
fonts, are identified by a name or a string. The following sections show you how to use them:

◆ Using Resource Names with IBM ILOG Script for IBM ILOG Views

◆ Using Bitmaps with IBM ILOG Script for IBM ILOG Views

◆ Using Fonts with IBM ILOG Script for IBM ILOG Views

Using Resource Names with IBM ILOG Script for IBM ILOG Views

To modify the resource associated with a given IBM ILOG Views object (whether a color, a
pattern, a line or fill style, an arc mode, and so on) use its name. Here are a few examples:

myButton.foreground = "red";
myButton.pattern = "solid";
myLabel.alignment = "right";

Resource names are listed in Resource Names.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 195

usrfoundation.book Page 196 Tuesday, July 28, 2009 10:34 AM
Using Bitmaps with IBM ILOG Script for IBM ILOG Views

Bitmaps are identified by their names. To modify an IBM® ILOG® Views bitmap, use its
name as shown in the example below:

myButton.bitmap = "ilog.ic";
myPanel.backgroundBitmap = "subdir/mybmp.gif";

The specified bitmaps must be stored in the directories defined in ILVPATH. If the bitmaps
are located in another directory, indicate the complete access path:

myButton.bitmap = "/mybmps/myicon.gif";

Using Fonts with IBM ILOG Script for IBM ILOG Views

In IBM ILOG Script for IBM® ILOG® Views, fonts are usually identified by character
strings with the following format:

%fontName-fontSize-fontFlags

fontName is the name of the font family, such as Courier, Helvetica or Times. fontSize is
an integer that indicates the font size. fontFlags is a series of characters that indicates the
font style: B for Bold, I for Italic and U for Underlined. Leave this field empty if you want
the font to appear plain.

For example, to change the font of an IlvLabel, type the following:

myLabel.font = "%times-16-I";

Guidelines for Developing Scriptable Applications

To create a new scriptable IBM® ILOG® Views application or make an existing application
scriptable, follow these guidelines:

1. Use an object of the class IlvApplication, or of a derived class, as your application’s
root object. Once your IlvApplication object is created, bind it using the name
Application.

2. Add all the panels to the IlvApplication object so that they can be accessed from the
Application object in IBM ILOG Script for IBM ILOG Views.

3. After creating IlvDisplay, initialize the IBM ILOG Script for IBM ILOG Views
auxiliary library using the following code:

IlvJvScriptLanguage::InitAuxiliaryLib(appli->getDisplay());
196 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Resource Names

usrfoundation.book Page 197 Tuesday, July 28, 2009 10:34 AM
Initialization is required when you want to use the IlvCommonDialog object or create
IlvPoint, IlvRect, or IlvGadgetContainer objects in IBM ILOG Script for
IBM ILOG Views.

Resource Names

In this section you will find tables listing the names of resources in IBM ILOG Script for
IBM® ILOG® Views.

Table 14.1 Color Names

Color Name RGB Definition

aliceblue 240, 248, 255
antiquewhite 250, 235, 215
aquamarine 127, 255, 212
azure 240, 255, 255
beige 245, 245, 220
bisque 255, 228, 196
black 0, 0, 0
blanchedalmond 255, 235, 205
blue 0, 0, 255
blueviolet 138, 43, 226
brown1 65, 42, 42
burlywood 222, 184, 135
cadetblue 95, 158, 160
chartreuse 127, 255, 0
chocolate 210, 105, 30
coral 255, 127, 80
cornflowerblue 100, 149, 237
cornsilk 255, 248, 220
cyan 0, 255, 255
darkgoldenrod 184, 134, 11
darkgreen 0, 100, 0
darkkhaki 189, 183, 107
darkolivegreen 85, 107, 47
darkorange 255, 140, 0
darkorchid 153, 50, 204
darksalmon 233, 150, 122
darkseagreen 143, 188, 143
darkslateblue 72, 61, 139
darkslategray 47, 79, 79
darkslategrey 47, 79, 79
darkturquoise 0, 206, 209
darkviolet 148, 0, 211
deeppink 255, 20, 147
deepskyblue 0, 191, 255
dimgray 105, 105, 105
dimgrey 105, 105, 105
dodgerblue 30, 144, 255
firebrick 178, 34, 34
floralwhite 255, 250, 240
forestgreen 34, 139, 34
gainsboro 220, 220, 220
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 197

usrfoundation.book Page 198 Tuesday, July 28, 2009 10:34 AM
ghostwhite 248, 248, 255
gold 255, 215, 0
goldenrod 218, 165, 32
gray 192, 192, 192
green 0, 255, 0
greenyellow 173, 255, 47
grey 192, 192, 192
honeydew 240, 255, 240
hotpink 255, 105, 180
indianred 205, 92, 92
ivory 255, 255, 240
khaki 240, 230, 140
lavender 230, 230, 250
lavenderblush 255, 240, 245
lawngreen 124, 252, 0
lemonchiffon 255, 250, 205
lightblue 173, 216, 230
lightcoral 240, 128, 128
lightcyan 224, 255, 255
lightgoldenrod 238, 221, 130
lightgoldenrod 250, 250, 210
lightgray 211, 211, 211
lightgrey 211, 211, 211
lightpink 255, 182, 193
lightsalmon 255, 160, 122
lightseagreen 32, 178, 170
lightskyblue 135, 206, 250
lightslateblue 132, 112, 255
lightslategray 119, 136, 153
lightslategrey 119, 136, 153
lightsteelblue 176, 196, 222
lightyellow 255, 255, 224
limegreen 50, 205, 50
linen 250, 240, 230
magenta 255, 0, 255
maroon 176, 48, 96
mediumaquamarine 102, 205, 170
mediumblue 0, 0, 205
mediumorchid 186, 85, 211
mediumpurple 147, 112, 219
mediumseagreen 60, 179, 113
mediumslateblue 123, 104, 238
mediumspringgreen 0, 250, 154
mediumturquoise 72, 209, 204
mediumvioletred 199, 21, 133
midnightblue 25, 25, 112
mintcream 245, 255, 250
mistyrose 255, 228, 225
moccasin 255, 228, 181
navajowhite 255, 222, 173
navy 0, 0, 128
navyblue 0, 0, 128
oldlace 253, 245, 230
olivedrab 107, 142, 35
orange 255, 165, 0
orangered 255, 69, 0
orchid 218, 112, 214
palegoldenrod 238, 232, 170
198 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Resource Names

usrfoundation.book Page 199 Tuesday, July 28, 2009 10:34 AM
palegreen 152, 251, 152
paleturquoise 175, 238, 238
paleviolet 219, 112, 147
papayawhip 255, 239, 213
peachpuff 255, 218, 185
peru 205, 133, 63
pink 255, 192, 203
plum 221, 160, 221
powderblue 176, 224, 230
purple 160, 32, 240
red 255, 0, 0
rosybrown 188, 143, 143
royalblue 65, 105, 225
saddlebrown 139, 69, 19
salmon 250, 128, 114
sandybrown 244, 164, 96
seagreen 46, 139, 87
seashell 255, 245, 238
sienna 160, 82, 45
skyblue 135, 206, 235
slateblue 106, 90, 205
slategray 112, 128, 144
slategrey 112, 128, 144
snow 255, 250, 250
springgreen 0, 255, 127
steelblue 70, 130, 180
tan 210, 180, 140
thistle 216, 191, 216
tomato 255, 99, 71
turquoise 64, 224, 208
violet 238, 130, 238
violetred 208, 32, 144
wheat 245, 222, 179
white 255, 255, 255
whitesmoke 245, 245, 245
yellow 255, 255, 0
yellowgreen 154, 205, 50

Table 14.2 Directions

left
right
top
bottom
topLeft
bottomLeft
topRight
bottomRight
center
horizontal
vertical

Table 14.3 Arc Modes

ArcPie
ArcChord

Table 14.4 Fill Rules
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 199

usrfoundation.book Page 200 Tuesday, July 28, 2009 10:34 AM
EvenOddRule
WindingRule

Table 14.5 Fill Styles

FillPattern
FillColorPattern
FillMaskPattern

Table 14.6 Patterns

solid
clear
diaglr
diagrl
dark1
dark2
dark3
dark4
light1
light2
light3
light4
gray
horiz
vert
cross

Table 14.7 Line Styles

solid
dot
dash
dashdot
dashdoubledot
alternate
doubledot
longdash
200 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrfoundation.book Page 201 Tuesday, July 28, 2009 10:34 AM
15

Internationalization

IBM® ILOG® Views allows users to develop international versions of software. You will
find information on:

◆ What is i18n? is a brief introduction to internationalization.

◆ Checklist for Localized Environments lists the requirements for success in creating and
running your programs. Further topics detail requirements for locales, fonts, and
localized message database files. A Troubleshooting checklist gives some problem-
solving techniques if localized messages do not appear on your system during the
development phase.

◆ Using IBM ILOG Views with Far Eastern Languages describes special considerations for
multibyte character languages.

◆ Data Input Requirements

◆ Limitations of Internationalization Features

◆ There is a Reference: Encoding Listings of the encodings supported by
IBM ILOG Views and extensive tables in Reference: Supported Locales on Different
Platforms

Note: This chapter explains how to use IBM ILOG Views internationalization features. To
learn how to write internationalized software, you should refer to general books on the
subject.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 201

usrfoundation.book Page 202 Tuesday, July 28, 2009 10:34 AM
What is i18n?

Internationalization (or the common abbreviation “i18n”) is a software design methodology
that lets users interact with a software application using their native language.
Internationalized software handles data so that the rules of the users’ language are respected.
Users expect their software to meet the following requirements:

◆ Allow input, processing, and display of characters in the language they use.

◆ Allow them to interact with the system using their own language. Prompts and error
messages must be displayed in this language.

◆ Format and process data according to the user’s local rules and environment.

Locale

Support of i18n by IBM ILOG Views is based on the POSIX locale model. A locale is a
collection of data and/or methods that allow internationalized C library and system-
dependent library functions to comply with the users’ language, local customs, and data
encoding. The locale determines the characters and fonts used to display the language. It
also determines how programs display and sort dates, times, currency, and numbers.

Checklist for Localized Environments

Before you begin to use your program in the local language, there are certain things you
must do to ensure that your program will run in the desired language.

◆ You must create the program to run in the localized environment. See Creating a
Program to Run in a Localized Environment.

◆ Your system must support the locale (the language you want to use). See Locale
Requirements.

◆ IBM® ILOG® Views must support the language you want to use. See IBM ILOG Views
Locale Support.

◆ The fonts needed to display the language must be installed on your system. See Required
Fonts.

◆ The files containing messages and other system text (the .dbm files) must be translated
into the local language and available in the proper subdirectories. See Localized Message
Database Files in IBM ILOG Views.

When all of these requirements are in place, you can then run your localized software.
202 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Creating a Program to Run in a Localized Environment

usrfoundation.book Page 203 Tuesday, July 28, 2009 10:34 AM
Creating a Program to Run in a Localized Environment

When creating a program that you intend to use in an internationalized environment, you
code as you normally would for any other program. You must make sure, however, that you
call the IlvSetLocale global function at the beginning of your program. This call should
appear before creating an instance of IlvDisplay. TheIlvSetLocale call is necessary for
IBM® ILOG® Views to set up the underlying information it needs to run correctly in the
default locale environment.

The following example shows a simple program that is ready for an internationalized
environment, meaning that the program can run in different languages. Notice the
IlvSetLocale() call at the beginning of the program.

Note: If you do not have a call to IlvSetLocale in your program, the localized
messages will not appear on the screen and multibyte support will not be enabled. Your
program will behave as if you are running in the C locale, thus displaying only English
messages.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 203

usrfoundation.book Page 204 Tuesday, July 28, 2009 10:34 AM
Locale Requirements

The locale is the language you want your system to support. See the following topics for
locale requirements:

◆ Checking Your System’s Locale Requirements

◆ Locale Name Format

◆ Current Default Locale

◆ Changing the Current Default Locale

// -- -*- C++ -*-
// IlogViews userman source file
// File: doc/fondation/userman/src/internationalization/setLocale.cpp
// --
// Copyright (C) 1990-2000 by ILOG.
// All Rights Reserved.
// --

#include <ilviews/gadgets/gadcont.h>
#include <ilviews/gadgets/textfd.h>
#include <stdio.h>

static void
Quit(IlvView*, IlAny)
{
 IlvExit(0);
}

int main (int argc, char* argv[])
{
 if (!IlvSetLocale()) {
printf(“Falling back to the C locale.\n”);
 }

 IlvDisplay* display = new IlvDisplay(“Test”, 0, argc, argv);
 IlvRect rect(20,20,250,80);
 IlvGadgetContainer* cont = new IlvGadgetContainer(display, “Container”,
“Container”, rect);
 cont->setDestroyCallback(Quit, 0);
 IlvRect rect1(10,10,220,50);

 IlvTextField* tf = new IlvTextField(display, “This is a text field.”,
rect1);
 cont->addObject(tf);
 IlvMainLoop();

 return 0;
}

204 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Locale Requirements

usrfoundation.book Page 205 Tuesday, July 28, 2009 10:34 AM
Checking Your System’s Locale Requirements

To determine if your system meets the locale requirements:

◆ Ask your system administrator whether or not your operating system supports the locale
you need. If your operating system does not support the locale, you cannot run your
localized program.

◆ Depending on the system you are using, you can also do the following to find out if your
system supports the locale:

● On UNIX Systems

● X Library Support (UNIX only)

● On Microsoft Windows Systems

On UNIX Systems

Run the following utility program to get a list of the locales supported by your system:

$ locale -a

Here is an example of what you will get on an HP-UX system if only French (as spoken in
France) and Japanese are supported:

fr_FR.iso88591
fr_FR.iso885915@euro
fr_FR.roman8
fr_FR.utf8
ja_JP.SJIS
ja_JP.eucJP
ja_JP.kana8
ja_JP.utf8

Here is an example of what you will get on a Solaris system, if only French and Japanese are
supported:

fr
fr.ISO8859-15
fr.UTF-8
fr_FR
fr_FR.ISO8859-1
fr_FR.ISO8859-15
fr.ISO8859-15@euro
fr_FR.UTF-8

Note: Locale names are system-dependent. For each example of a system-dependent
name, we will mention only the French and Japanese settings for the HP-UX (10.x or 11),
Solaris (2.6 or 2.7), and Windows platforms.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 205

usrfoundation.book Page 206 Tuesday, July 28, 2009 10:34 AM
fr_FR.UTF-8@euro
ja
ja_JP.eucJP
ja_JP.PCK
ja_JP.UTF-8
japanese

On Microsoft Windows Systems

Look at the Regional Settings in the Control Panel:

1. On the Windows desktop click Start - Settings - Control Panel.

2. Double-click the Regional Settings icon to access the Regional Settings Properties dialog
box.

3. In the Regional Settings notebook page, you will see a list of supported locales.

Locale Name Format

As you can see, locale names are system-dependent. Most systems, however, tend to follow
the XPG (X/Open Portability Guide) naming convention, where a locale name has the
following format:

language_territory.encoding
language is the language name; territory is the territory name (a language can be
spoken in different areas or countries: French, for example, is spoken in France, Canada,
Belgium, Switzerland, and other countries); and encoding is a code set or an encoding
method by which characters are coded.

On UNIX Systems

The following examples show the format of a locale name as displayed on different UNIX
systems. The locale is for French as spoken in France with the Latin1 encoding.

On Microsoft Windows Systems

The following example shows the format of a locale on a Windows system. The locale is for
French as spoken in France with Windows Code Page 1252.

Solaris 8 fr or fr_FR.iso8859-1

HP-UX 11 fr_FR.iso88591

Red Hat Entreprise Linux 4.0 fr_FR.iso88591

Suze 10.0 fr_FR

AIX 5.1 fr_FR or fr_FR.ISO8859-1

Windows XP French_France.1252
206 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Locale Requirements

usrfoundation.book Page 207 Tuesday, July 28, 2009 10:34 AM
Current Default Locale

Your system will have a default locale. Normally, your default locale should be set to the
language you want to use. To find out the current default locale on your system, you can run
one of the following programs:

On UNIX Systems

If your system is set to the French language, here is an example of what you will get on
HP-UX:

default locale: fr_FR.iso88591 fr_FR.iso88591 fr_FR.iso88591
fr_FR.iso88591 fr_FR.iso88591 fr_FR.iso88591

On Solaris, you will get:

default locale: fr

// -- -*- C++ -*-
// IlogViews userman source file
// File: doc/fondation/userman/src/internationalization/checkUnixLocale.cpp
// --
// Copyright (C) 1990-2008 by ILOG.
// All Rights Reserved.
// --

#include <locale.h>
#include <stdio.h>
#include <langinfo.h>
#if defined(linux) && !defined(CODESET)
#define CODESET _NL_CTYPE_CODESET_NAME
#endif /* linux */

int main()
{
 char* loc = setlocale(LC_ALL, ““);
 if (loc) {
 printf(“default locale: %s\n”,loc);
 printf(“encoding %s\n”, nl_langinfo(CODESET));
 } else
 printf(“System does not support this locale\n”);
 return 0;
}

I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 207

usrfoundation.book Page 208 Tuesday, July 28, 2009 10:34 AM
On Microsoft Windows Systems

On Windows XP, if your regional setting has been set to French (Standard), you will get:

default locale: French_France.1252
encoding 1252

Changing the Current Default Locale

For your localized messages to appear on the screen, you may need to change the current
default locale.

On UNIX Systems

You can use one of the following environment variables: LANG or LC_ALL. See your system
documentation to find out the appropriate locale names.

For example, if you want to use Japanese with the EUC encoding:

On HP-UX, type:

$ LANG=ja_JP.eucJP

On Solaris, type:

$ LANG=ja or LANG=japanese

On Microsoft Windows Systems

Change the language using the Regional Settings of the Control Panel.

// -- -*- C++ -*-
// IlogViews userman source file
// File: doc/foundation/userman/src/internationalization/checkWindowsLocale.cpp
// --
// Copyright (C) 1990-2008 by ILOG.
// All Rights Reserved.
// --

#include <locale.h>
#include <stdio.h>
#include <windows.h>

int main(int argc, char* argv[])
{
 printf(“default locale: %s\n”, setlocale(LC_ALL, ““));
 printf(“encoding %d\n”, GetACP());
 return 0;
}

208 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IBM ILOG Views Locale Support

usrfoundation.book Page 209 Tuesday, July 28, 2009 10:34 AM
X Library Support (UNIX only)

Your X Window system needs to support the desired language. You can run the following
program to find out if the appropriate X libraries are available on your system:

For example, on an HP system where Arabic is not supported, setting LANG to
ar_DZ.arabic8, gives the following output:

X does not support locale ar_DZ.arabic8.

IBM ILOG Views Locale Support

Although locale names are system-dependent, and each system has its own way of
identifying the locale information, IBM® ILOG® Views supports a system-independent
scheme for localization.

// -- -*- C++ -*-
// IlogViews userman source file
// File: doc/fondation/userman/src/internationalization/checkXLocale.cpp
// --
// Copyright (C) 1990-2008 by ILOG.
// All Rights Reserved.
// --

#include <X11/Xlib.h>
#include <X11/Xlocale.h>
#include <stdlib.h>
#include <stdio.h>

int
main(int argc, char* argv[])
{
 char* loc = setlocale(LC_CTYPE, ““);
 if (loc == NULL) {
 fprintf(stderr, “System does not support this locale.\n”);
 exit(1);
 }
 if (!XSupportsLocale()) {
 fprintf(stderr, “X does not support locale %s.\n”, loc);
 exit(1);
 }
 if (XSetLocaleModifiers(““) == NULL) {
 fprintf(stderr, “Warning: cannot set locale modifiers for %s.\n”, loc);
 } else
 fprintf(stderr, “Locale %s is supported by Xlib.\n”, loc);
 exit(0);
}

I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 209

usrfoundation.book Page 210 Tuesday, July 28, 2009 10:34 AM
IBM ILOG Views Locale Names

For IBM ILOG Views to use locale-dependent information in a system-independent way,
IBM ILOG Views defines the concept of an IBM ILOG Views locale, whose name is
system-independent. This locale has the following format:

ll_TT.encoding

where:

ll is a two-letter, lowercase abbreviation of the language name.

TT is a two-letter, uppercase abbreviation of the territory name.

encoding is a string that identifies the code set or encoding method used.

For example, in the IBM ILOG Views locale name fr_FR.ISO-8859-1, the fr represents
the language name, French; the FR represents the territory name, France; ISO-8859-1
represents the encoding method used for the language, which is ISO 8859-1.

The following examples show several IBM ILOG Views locale names on UNIX platforms:

◆ fr_FR.ISO-8859-1

◆ de_DE.ISO-8859-1

◆ ja_JP.EUC-JP

◆ ja_JP.Shift_JIS

The following examples show several IBM ILOG Views locale names on Windows
platforms:

◆ fr_FR.windows-1252

◆ de_DE.windows-1252

◆ ja_JP.Shift_JIS

Language Name Specification

In the IBM ILOG Views locale, the language names are specified using the abbreviations
from the ISO 639 Code for the Representation of Names of Languages. Here are several
examples:

◆ en (English)

◆ fr (French)

◆ de (German, from “Deutsch”)

◆ ja (Japanese)

The ISO 639 standard can be consulted on the following Web sites:

http://www.loc.gov/standards/iso639-2/ascii_8bits.html
210 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

IBM ILOG Views Locale Support

usrfoundation.book Page 211 Tuesday, July 28, 2009 10:34 AM
or ftp://std.dkuug.dk/i18n/iso-639-2.txt

More generally, ISO codes can be consulted on the following Web site:

http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_639.html

Territory Name Specification

In the IBM ILOG Views locale, the territory names are specified using the abbreviations
from the ISO 3166 Codes for the Representation of Names of Countries.

The ISO 3166 standard can be consulted on the following Web site:

http://www.iso.org/iso/country_codes/iso_3166_code_lists/
english_country_names_and_code_elements.htm

Here are several examples:

◆ US (United States)

◆ NL (the Netherlands)

◆ FR (France)

◆ DE (Germany, from “Deutschland”)

◆ JP (Japan)

Encoding Specification

In the IBM ILOG Views locale, the encoding identifies the code set or encoding method
used for the language. Examples of encoding methods are:

◆ ISO-8859-1 (ISO 8859/1)

◆ Shift_JIS (Shift Japanese Industrial Standard)

Any character encoding registered by IANA could be used. Currently only character sets
listed in Reference: Encoding Listings are supported by IBM ILOG Views, which tends to
use the preferred MIME notation.

For more information, you can consult the following Web site:

http://www.iana.org/assignments/character-sets

Determining IBM ILOG Views Support for the Locale

To determine if IBM ILOG Views supports the desired locale, you can run the following
program:

Note: This example uses private code that you should not use in a real application.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 211

usrfoundation.book Page 212 Tuesday, July 28, 2009 10:34 AM
For example, on an HP-UX system with your LANG set to fr_FR.iso88591 or on a Solaris
system with your LANG set to fr, you get the following result:

Standard Views locale name: fr_FR.ISO-8859-1

On a Windows system set to Japanese, you get:

Standard Views locale name: ja_JP.Shift_JIS

Required Fonts

Your system must support the fonts required by your locale.

On UNIX Systems

Make sure that the X resources are set to the fonts used by IBM ILOG Views applications.
To do this, edit your .Xdefaults file, which is located in your home directory. If this file
does not exist, you can create it. You should add the following statements to the resource
file:

IlogViews*font: a-valid-font-set-name-for-your-locale
IlogViews*normalfont: a-valid-font-set-name-for-your-locale
IlogViews*italicfont: a-valid-font-set-name-for-your-locale
IlogViews*boldfont: a-valid-font-set-name-for-your-locale
IlogViews*largefont: a-valid-font-set-name-for-your-locale

// -- -*- C++ -*-
// IlogViews userman source file
// File: doc/fondation/userman/src/internationalization/checkViewsLocale.cpp
// --
// Copyright (C) 1990-2008 by ILOG.
// All Rights Reserved.
// --

#include <ilviews/ilv.h>
#include <ilviews/base/locale.h>

int main(int argc, char* argv[])
{
 if (!IlvSetLocale()) {
exit(1);
 }

 char* stdLocale = IlLocale::GetStdLocaleName(setlocale(LC_CTYPE, NULL));
 if (stdLocale)
IlvPrint(“Standard Views locale name: %s\n”, stdLocale);
 else
IlvPrint(“Views does not support this locale.\n”);

 return 0;
}
212 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Required Fonts

usrfoundation.book Page 213 Tuesday, July 28, 2009 10:34 AM
IlogViews*monospacefont: a-valid-font-set-name-for-your-locale
IlogViews*ButtonFont: a-valid-font-set-name-for-your-locale
IlogViews*MenuFont: a-valid-font-set-name-for-your-locale

The value of a-valid-font-set-name-for-your-locale depends on your language
and environment. Fonts are not the same on every system.

If you are running under the Common Desktop Environment (CDE) and have started your
desktop in your language, you can use the “-dt” aliases for the fonts, as shown in the
following example:

IlogViews.font: -dt-interface user-medium-r-normal-m*-*-*-*-*-*-*-*-*
IlogViews.normalfont: -dt-interface user-medium-r-normal-s*-*-*-*-*-*-*-*-*
IlogViews.boldfont: -dt-interface user-bold-r-normal-m*-*-*-*-*-*-*-*-*
IlogViews.italicfont: -dt-interface user-medium-i-normal-m*-*-*-*-*-*-*-*-*
IlogViews.largefont: -dt-interface user-medium-r-normal-xl*-*-*-*-*-*-*-*-*
IlogViews.monospacefont: -dt-interface user-medium-r-normal-m*-*-*-*-*-*-*-*-*
IlogViews.MenuFont: -dt-interface user-bold-r-normal-m*-*-*-*-*-*-*-*-*
IlogViews.ButtonFont: -dt-interface user-bold-r-normal-m*-*-*-*-*-*-*-*-*

If you do not use the “-dt-” aliases for the fonts, you need to add your own font statements in
the .Xdefaults file.

The following are examples of the font statements used on an HP-UX system Japanese:

IlogViews.ButtonFont: -hp-gothic-bold-r-normal--14-101-100-100-c-*-*-*,
 -misc-fixed-bold-r-normal--14-130-75-75-c-70-iso8859-1
IlogViews.MenuFont: -hp-gothic-bold-r-normal--14-101-100-100-c-*-*-*,
 -misc-fixed-bold-r-normal--14-130-75-75-c-70-iso8859-1
IlogViews.boldfont: -hp-gothic-bold-r-normal--14-101-100-100-c-*-*-*,
 -misc-fixed-bold-r-normal--14-130-75-75-c-70-iso8859-1
IlogViews.font: -misc-fixed-medium-r-normal--14-*-75-75-c-*-*-*,
 -misc-fixed-medium-r-normal--15-140-75-75-c-90-iso8859-1
IlogViews.italicfont: -misc-fixed-medium-r-normal--14-*-75-75-c-*-*-*,
 -adobe-helvetica-bold-o-normal--14-140-75-75-p-82-iso8859-1
IlogViews.largefont: -hp-fixed-medium-r-normal--24-230-75-75-c-*-*-*,
 -sony-fixed-medium-r-normal--24-170-100-100-c-120-iso8859-1
IlogViews.monospacefont: -misc-fixed-medium-r-normal--14-*-75-75-c-*-*-*,
 -misc-fixed-medium-r-normal--15-140-75-75-c-90-iso8859-1
IlogViews.normalfont: -misc-fixed-medium-r-normal--14-*-75-75-c-*-*-*,
 -misc-fixed-medium-r-normal--15-140-75-75-c-90-iso8859-1

The following are examples of font statements used on a Solaris system for Japanese:

IlogViews.ButtonFont: -sun-gothic-bold-r-normal--14-120-75-75-c-*-*-*,
 -*-helvetica-bold-r-normal--14-*-*-*-*-*-iso8859-1
IlogViews.MenuFont: -sun-gothic-bold-r-normal--14-120-75-75-c-*-*-*,
 -*-helvetica-bold-r-normal--14-*-*-*-*-*-iso8859-1
IlogViews.boldfont: -sun-gothic-bold-r-normal--14-120-75-75-c-*-*-*,
 -*-helvetica-bold-r-normal--14-*-*-*-*-*-iso8859-1
IlogViews.font: -sun-gothic-medium-r-normal--14-*-75-75-c-*-*-*,
 -*-helvetica-medium-r-normal--14-*-*-*-*-*-iso8859-1
IlogViews.italicfont: -sun-gothic-medium-r-normal--14-*-75-75-c-*-*-*,
 -*-helvetica-medium-o-normal--14-*-*-*-*-*-iso8859-1
IlogViews.largefont: -sun-gothic-medium-r-normal--22-200-75-75-c-*-*-*,
 -*-helvetica-medium-r-normal--24-*-*-*-*-*-iso8859-1
IlogViews.monospacefont: -sun-gothic-medium-r-normal--14-*-75-75-c-*-*-*,
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 213

usrfoundation.book Page 214 Tuesday, July 28, 2009 10:34 AM
 -*-helvetica-medium-r-normal--14-*-*-*-*-*-iso8859-1
IlogViews.normalfont: -sun-gothic-medium-r-normal--14-*-75-75-c-*-*-*,
 -*-helvetica-medium-r-normal--14-*-*-*-*-*-iso8859-1

On Microsoft Windows Systems

In many cases, the default font settings will be adequate. If you need to change the fonts
used by your applications, edit the views.ini file (for all applications) to contain some or
all of the following statements:

[IlogViews]
font=a-valid-font-for-your-language
normalfont=a-valid-font-for-your-language
italicfont=a-valid-font-for-your-language
boldfont=a-valid-font-for-your-language
largefont=a-valid-font-for-your-language
monospacefont: a-valid-font-for-your-locale
buttonFont=a-valid-font-name-for-your-locale
menuFont=a-valid-font-name-for-your-locale

The value a-valid-font-for-your-language depends on the language and
environment you are using. You can use Microsoft Word or any text editor to find a suitable
font name that will display text in your language. The entry in the .ini file should have the
following form:

%--<style>

For example, %helvetica-12-B for the font Helvetica Bold 12 points. If the font should
appear plain, leave out the style parameter and type %helvetica-12- to display text in
Helvetica 12.

The following example shows the fonts for Japanese on a Windows system:

Localized Message Database Files in IBM ILOG Views

IBM® ILOG® Views uses message database files (.dbm files) for the message text, menu
item text, and other text that appears in the user interface. These files are described in detail
in the following topics:

◆ The IlvMessageDatabase Class describes the class mechanism for localization.
214 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Localized Message Database Files in IBM ILOG Views

usrfoundation.book Page 215 Tuesday, July 28, 2009 10:34 AM
◆ For localization, the message database files must be translated into the local language as
described in Language of the Message Database Files.

◆ The files must also be located in the proper directory so that IBM ILOG Views can find
the files when it needs to load the message database. For details see Location of the
Message Database Files.

◆ Determining Parameters of the Message Database Files provides a short program to find
the locale, language and location of the message database files.

◆ Loading the Message Database discusses automatic loading of the default language and
gives various methods of overriding the default language to load another language.

◆ The .dbm File Format describes the format of the message database files and how to
handle old (pre-3.0) formatted files.

◆ You can change the language on the fly with setCurrentLanguage as described in
How to Dynamically Change Your Display Language.

The IlvMessageDatabase Class

IBM ILOG Views provides a simple mechanism to help you manipulate multilingual
applications. This mechanism is called the messages mechanism and is based on the
IlvMessageDatabase class.

It uses a database that stores different translations of the same message. Depending on the
current language, the appropriate message is accessed. Each instance of the IlvDisplay
class creates its own message database. It reads the database description from the file name
provided in the environment variable ILVDB, or views .dbm if this variable is not set. This
file is searched for in the display path. You can access this database by calling the member
function IlvDisplay::getDatabase.

Each string that you plan to show in different languages can be stored in the database with its
different possible translations; that is, you associate a message identifier with different
message strings, depending on the language you target. The language is specified in a
symbol object (IlSymbol class). Following is some sample code:

IlvMessageDatabase database;
IlSymbol* en_US = IlGetSymbol("en_US);
IlSymbol* fr_FR = IlGetSymbol("fr_FR");
database.putMessage("&cancel", en_US, "Cancel");
database.putMessage("&cancel", fr_FR, "Annuler");

The IBM ILOG Views environment variable ILVLANG lets you override your current
language (for example, English, French, or Japanese). For more information see Localized
Message Database Files in IBM ILOG Views.

Note: Although IBM ILOG Views does not support multilingual applications, you can use
multiple languages in the same application if they use compatible encodings.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 215

usrfoundation.book Page 216 Tuesday, July 28, 2009 10:34 AM
Language of the Message Database Files

IBM® ILOG® Views is released with the message database files in English and French. The
files for each supported language are found in a separate directory to facilitate the use of
multiple languages using different encoding methods. If you require a language other than
English or French, you must translate the .dbm files into the desired language. Make sure
your files are in the correct .dbm format. (See the section .dbm File Format for more
information.)

Location of the Message Database Files

Localized message databases are located in a subdirectory under the locale directory. This
subdirectory is named after the corresponding language and the encoding method used. The
subdirectory name has the following format:

<ll_TT.encoding>

For example, on a UNIX system, the French message database files are found in the
subdirectory fr_Fr.ISO-8859-1 under the locale directory. See the section
IBM ILOG Views Locale Names for more information on the IBM ILOG Views locale
naming conventions from which the subdirectory name is derived.

On UNIX Systems

French message database files can be found in the following directories:

◆ <$ILVHOME>/bin/data/locale/fr_FR.ISO-8859-1/editpnl.dbm

◆ <$ILVHOME>/bin/data/locale/fr_FR.ISO-8859-1/ilv2data.dbm

◆ <$ILVHOME>/bin/data/locale/fr_FR.ISO-8859-1/ilvedit.dbm

◆ <$ILVHOME>/data/ivprotos/locale/fr_FR.ISO-8859-1/protos.dbm

◆ <$ILVHOME>/data/iljscript/locale/fr_FR.ISO-8859-1/gide.dbm

◆ <$ILVHOME>/data/iljscript/locale/fr_FR.ISO-8859-1/messages.js

◆ <$ILVHOME>/data/ilviews/locale/fr_FR.ISO-8859-1/views.dbm

◆ <$ILVHOME>/studio/data/ivprotos/locale/fr_FR.ISO-8859-1 /
prstudio.dbm

◆ <$ILVHOME>/studio/data/ivstudio/locale/fr_FR.ISO-8859-1/
jsstudio.dbm

◆ <$ILVHOME>/studio/data/ivstudio/locale/fr_FR.ISO-8859-1/
studio.dbm

◆ <$ILVHOME>/studio/data/ivstudio/locale/fr_FR.ISO-8859-1/
vrstudio.dbm
216 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Localized Message Database Files in IBM ILOG Views

usrfoundation.book Page 217 Tuesday, July 28, 2009 10:34 AM
On Microsoft Windows Systems

French message database files can be found in the following directories:

◆ <$ILVHOME>/bin/data/locale/fr_FR.windows-1252/editpnl.dbm

◆ <$ILVHOME>/bin/data/locale/fr_FR.windows-1252/ilv2data.dbm

◆ <$ILVHOME>/bin/data/locale/fr_FR.windows-1252/ilvedit.dbm

◆ <$ILVHOME>/data/ivprotos/locale/fr_FR.windows-1252/protos.dbm

◆ <$ILVHOME>/data/iljscript/locale/fr_FR.windows-1252/gide.dbm

◆ <$ILVHOME>/data/iljscript/locale/fr_FR.windows-1252/messages.js

◆ <$ILVHOME>/data/ilviews/locale/fr_FR.windows-1252/views.dbm

◆ <$ILVHOME>/studio/data/ivprotos/locale/fr_FR.windows-1252 /
prstudio.dbm

◆ <$ILVHOME>/studio/data/ivstudio/locale/fr_FR.windows-1252/
jsstudio.dbm

◆ <$ILVHOME>/studio/data/ivstudio/locale/fr_FR.windows-1252/
studio.dbm

◆ <$ILVHOME>/studio/data/ivstudio/locale/fr_FR.windows-1252/
vrstudio.dbm
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 217

usrfoundation.book Page 218 Tuesday, July 28, 2009 10:34 AM
You can run the following program to help you find the location of your message database
files.

For example, on an HP-UX system with your LANG set to fr_FR.iso88591 or on a Solaris
system with your LANG set to fr, you get the following result:

Looking under directories: .../locale/fr_FR.ISO-8859-1/

On a Windows system set to Japanese, you get:

Looking under directories: .../locale\ja_JP.Shift_JIS\

// -- -*- C++ -*-
// IlogViews userman source file
// File: doc/fondation/userman/src/internationalization/checkLocalizedPath.cpp
// --
// Copyright (C) 1990-2008 by ILOG.
// All Rights Reserved.
// --

#include <ilviews/ilv.h>
#include <ilog/pathname.h>
#include <stdlib.h>

int main(int argc, char* argv[])
{
 if (!IlvSetLocale()) {
exit(1);
 }

 IlPathName pname(““);
 pname.localize();
 IlvPrint(“\nLooking under directories: .../%s\n\n”,
 pname.getString().getValue());

 return 0;
}

Note: The C locale (that is, the IBM ILOG Views locale en_US), which is considered the
standard, is an exception to the above mentioned rule. IBM ILOG Views .dbm files are
located in the directory of the library that uses them. For example, views.dbm can be
found in the directory:
<$ILVHOME>/data/ilviews/views.dbm.. You do not need to create the en_US.US-
ASCII directory. IBM ILOG Views will automatically fall back to the regular data
directory.
218 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Localized Message Database Files in IBM ILOG Views

usrfoundation.book Page 219 Tuesday, July 28, 2009 10:34 AM
Determining Parameters of the Message Database Files

You can run the following program to determine the current IBM® ILOG® Views display
language and the path names where IBM ILOG Views looks for the message database files.

You need to set the verboseFindInPath environment variable to true for the path names
to be printed out, and you can play with the ILVPATH environment variable to see the effect.

// -- -*- C++ -*-
// IlogViews userman source file
// File: doc/fondation/userman/src/internationalization/checkLocalizedDbm.cpp
// --
// Copyright (C) 1990-2008 by ILOG.
// All Rights Reserved.
// --

#include <ilviews/ilv.h>
#include <ilviews/base/message.h>
#include <ilog/pathlist.h>

int main(int argc, char* argv[])
{
 if (!IlvSetLocale()) {
 exit(1);
 }

 IlvDisplay* display = new IlvDisplay(“CheckLocalizedDbm”, 0, argc, argv);

 IlvPrint(“Current Views display language: %s\n”,
 display->getCurrentLanguage()->name());

 const char* path = display->getPath();

 IlPathList plist(path? path : “./”);
 IlvPrint(“Current path: %s\n”, plist.getString().getValue());

 display->getDatabase()->read(“my-file.dbm”, display);

 return 0;
}

I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 219

usrfoundation.book Page 220 Tuesday, July 28, 2009 10:34 AM
For example, if you run this program on an HP-UX system where LANG=fr_FR.iso88591
or on a Solaris system where LANG=fr, you will get the following results:

Loading the Message Database

IBM® ILOG® Views automatically loads the correct message database, which is located in
the locale/<ll_TT.encoding> directory.

For example, if you work in an ISO 8859-1 French environment, the following call:

display->getDatabase()->read("/my-directory-path/my-file.dbm");

will automatically look for a file in the following directory on UNIX systems:

/my-directory-path/locale/fr_FR.ISO-8859-1/my-file.dbm

and in the following directory on Microsoft Windows systems:

/my-directory-path/locale/fr_FR.windows-1252/my-file.dbm

Overriding the Default Behavior

If you want to override the default behavior and have IBM ILOG Views use another display
language, you can use the ILVLANG environment variable. On a XPG4-compliant UNIX
system, you can also use the LC_MESSAGES environment variable. IBM ILOG Views will
look for the message database files in the following order:

On UNIX Systems

IlvPathList::findInPath file ilviews/locale/fr_FR.ISO-8859-1/views.dbm not in ./.
IlvPathList::findInPath found: <$ILVHOME>/data/ilviews/locale/fr_FR.ISO-8859-1/views.dbm.

Current Views display language: fr_FR

 Current path: ./

IlvPathList::findInPath file locale/fr_FR.ISO-8859-1/my-file.dbm not in ./.
IlvPathList::findInPath file locale/fr_FR.ISO-8859-1/my-file.dbm not in <$ILVHOME>/data/.
IlvPathList::findInPath file locale/fr_FR.ISO-8859-1/my-file.dbm not in <$ILVHOME>/data/icon/.
IlvPathList::findInPath file locale/fr_FR.ISO-8859-1/my-file.dbm not in <$ILVHOME>/data/images/
.
 IlvDisplay::findInPath Couldn’t find ’locale/fr_FR.ISO-8859-1/my-file.dbm’
IlvPathList::findInPath file my-file.dbm not in ./.
IlvPathList::findInPath file my-file.dbm not in <$ILVHOME>/data/.
IlvPathList::findInPath file my-file.dbm not in <$ILVHOME>/data/icon/.
IlvPathList::findInPath file my-file.dbm not in <$ILVHOME>/data/images/.
 IlvDisplay::findInPath Couldn’t find ’my-file.dbm’

Note: In versions of IBM ILOG Views before 3.0, users had to set the ILVLANG
environment variable to the language they wanted to use.
220 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Localized Message Database Files in IBM ILOG Views

usrfoundation.book Page 221 Tuesday, July 28, 2009 10:34 AM
1. ILVLANG

2. LC_MESSAGES

3. LC_CTYPE category of your running locale

On Windows Systems

1. ILVLANG

2. LC_CTYPE category of your running locale

Overriding the Default Behavior Using the LANG Resource

On UNIX Systems

You can set the ILVLANG environment variable to use a language other than the default.
ILVLANG applies to IBM ILOG Views applications only and is system-independent.

For example, if your current IBM ILOG Views locale is French and you want to see Spanish
messages, you could use ILVLANG=es_ES on any UNIX system. Your settings would then
be as follows:

Current Views locale running: fr_FR.ISO-8859-1
Current Views display language: es_ES
Looking under directories: .../locale/es_ES.ISO-8859-1/

In this case, only the messages in your IBM ILOG Views applications will be displayed in
Spanish. The system messages are not affected.

On Microsoft Windows Systems

You can set the lang variable in your views.ini file to use a language other than the
default. For example, if your current IBM ILOG Views locale is French and you want to see
Spanish messages, you could use lang=es_ES. Your settings would then be as follows:

Current Views locale running: fr_FR.windows-1252
Current Views display language: es_ES
Looking under directories: .../locale/es_ES.windows-1252/

Overriding the Default Behavior using LC_MESSAGES (UNIX only)

You can set the LC_MESSAGES environment variable to use a language other than the
default. You should note that if you use the LC_MESSAGES environment variable this will
override all system messages as well.

Note: If you want to change your IBM ILOG Views display language by overriding it with
LC_MESSAGES or ILVLANG environment variables, you need to be sure your program
runs in the same or a stronger encoding (that is, a superset of the encoding) than the one
you plan to use for your messages. This is because the .dbm files are read based on the
IBM ILOG Views locale encoding your program runs in. For example, if you run a
program in Japanese or French, you can always read English messages, the opposite is
not true.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 221

usrfoundation.book Page 222 Tuesday, July 28, 2009 10:34 AM
For example, if your current IBM ILOG Views locale is French and you want to see Italian
messages, you could use LC_MESSAGES=it_IT.iso88591 on an HP-UX system or
LC_MESSAGES=it on a Solaris system. Your settings would then be as follows:

Current Views locale running: fr_FR.ISO-8859-1
Current Views display language: it_IT
Looking under directories: .../locale/it_IT.ISO-8859-1/

In this case, not only will your IBM ILOG Views messages appear in Italian, but all your
system messages will be in Italian as well.

.dbm File Format

In the .dbm format, each supported language is stored in a separate database in order to deal
with multiple languages using different encoding methods.

A .dbm file has the following format:

// IlvMessageDatabase ...
// Language: <ll_TT>
// Encoding: <encoding>
“&message” “message translation...”

The first line is an information line containing information about IlvMessageDatabase,
with the IBM® ILOG® Views version and the creation date.

The language is represented using the ll_TT naming convention of IBM ILOG Views
where ll is the two-letter abbreviation for the language name and TT is the two-letter
abbreviation for the territory name.

The encoding method must be one of the methods supported by IBM ILOG Views. See the
section Reference: Encoding Listings for a list of supported encoding methods.

The following example shows part of a message database file for French:

// IlvMessageDatabase
// Language: fr_FR
// Encoding: ISO-8859-1
"&AlignmentLabelPicture" "Alignement texte / image"
"&Appearance" "Apparence"
"&April" "avril"
222 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Localized Message Database Files in IBM ILOG Views

usrfoundation.book Page 223 Tuesday, July 28, 2009 10:34 AM
If you are translating your .dbm files to your local language, make sure your files are in this
.dbm format.

.dbm File Format in Versions Before 3.0

In IBM ILOG Views version 3.0, the .dbm file format was enhanced to support different
languages that use different and incompatible encoding methods. In the.dbm file format of
versions before 3.0, a message database contains the translation of each message to each of
the supported languages. In other words, all supported language translations are found in the
same database. Although files in the old .dbm format can still be read using
IBM ILOG Views 3.0 and later, new files are generated in the new format.

If you have database files in the old .dbm format, it is a good idea to split your databases into
several files, one for each supported language. Not only will this make maintenance easier,
but it will also avoid encoding incompatibilities.

To split your database files with the old format, use the following program:

$ILVHOME/bin/src/splitdbm.cpp

This program finds the various languages in your .dbm file and suggests a new language
name for each one of them (we recommend that you use the IBM ILOG Views naming

Note: It is recommended that you do the following for localized database message files
for American English. Do not create an en_US.US-ASCII subdirectory in the locale
directory for your files. Put your files directly in your data directory; for example,
views.dbm located in <$ILVHOME>/data/ilviews/. Set the contents of the files as
shown in the following example, even if the encoding that you are running for American
English is not US-ASCII. You can do this because US-ASCII is the weakest encoding and
can be read by any other encoding that IBM ILOG Views supports.

// IlvMessageDatabase
// Language: en_US
// Encoding: US-ASCII
"&AlignmentLabelPicture" "Alignment text / picture"
"&Appearance" "Appearance"
"&April" "April"
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 223

usrfoundation.book Page 224 Tuesday, July 28, 2009 10:34 AM
convention ll_TT), an encoding method (the selected encoding method must be compatible
with the current one), and a name for the file with the new format.

Example

This example shows how to split a database message file.

The following file called your_data_dir/testall.dbm contains the message text for
three languages, American English, French, and Italian:

// IlvMessageDatabase 3 Web Jun 3 11:50:35 1998
"&Hello" 3
"en_US" "Hello"
"fr_FR" "Bonjour"
"it_IT" "Buongiórno"
"&Goodbye" 3
"en_US" "Goodbye"
"fr_FR" "Au revoir"
"it_IT" "Ciao"

To split this file into three files, one file for each language, you should run the splitdbm
program in the French or Italian locale. When you run the program, you will be prompted
for the information the program needs to complete its run. When the run finishes, you should
have three files, each file containing the message text for a single language. On a UNIX
system, the resulting files would be:

your_data_dir/test.dbm
locale/fr_FR.ISO-8859-1/test.dbm
locale/it_IT.ISO-8859-1/test.dbm

The contents of each file would be as follows:

// IlvMessageDatabase
// Language: en_US
// Encoding: US-ASCII
"&Goodbye" "Goodbye"
"&Hello" "Hello"

// IlvMessageDatabase

Note: You should run the splitdbm program using the strongest encoding. The
strongest encoding is the one that encompasses the others. For example, if you want to
split a file that contains English (US-ASCII) and Japanese (Shift_JIS), you should run
splitdbm using a Japanese locale. Shift_JIS contains US-ASCII, but the opposite is not
true. Therefore, Shift_JIS is the strongest encoding and should be used for running the
program.

Note: It is recommended that you do the following when you are splitting a file containing
American English messages. When the splitdbm program prompts you for information,
choose the US-ASCII encoding and store the localized file in your data directory, not
under a locale subdirectory.
224 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Localized Message Database Files in IBM ILOG Views

usrfoundation.book Page 225 Tuesday, July 28, 2009 10:34 AM
// Language: fr_FR
// Encoding: ISO-8859-1
"&Goodbye" "Au revoir"
"&Hello" "Bonjour"

// IlvMessageDatabase
// Language: it_IT
// Encoding: ISO-8859-1
"&Goodbye" "Ciao"
"&Hello" "Buongiórno"

Encoding Compatibility of .dbm Files

Note that an IBM ILOG Views application will only load .dbm files that were written using
an encoding that is compatible with the system environment. Encodings are compatible if
they share the same character set. If you load .dbm files that still use the old format and that
do not contain encoding information, these files are supposed to be in the encoding of the
current locale. Otherwise, information might be improperly or incompletely loaded.

How to Dynamically Change Your Display Language

You can dynamically change your display language. You simply need to call
IlvDisplay::setCurrentLanguage on the display. IBM ILOG Views will reload
automatically all the data files that you currently have loaded and display the new language.
In order to do this, you have to provide the localized versions of these files and they must be
available on your system.

Let's say you have created an application where all the messages are defined in a file named
my_messages.dbm.

If display is your display, just load this file at the beginning of your application through a
call to:

display->getDatabase()->read("my_messages.dbm", display);

If you have started your program in a French locale, IBM ILOG Views will load the file
located in locale/fr_FR.ISO-8859-1/my_messages.dbm.

Now, to change your display language, just call IlvDisplay::setCurrentLanguage
with the new language you want. For example, if you want your display to be in Italian, call:

display->setCurrentLanguage(IlGetSymbol("it_IT"));

IBM ILOG Views will automatically load the file located in:

Note: If you plan to switch languages, you need to start your application in the strongest
encoding. For example, if you plan to switch between French and English, start your
application in French. If however, you want your application to show English messages
when started, override your start-up display language by using the ILVLANG environment
variable or the lang resource on Windows.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 225

usrfoundation.book Page 226 Tuesday, July 28, 2009 10:34 AM
locale/it_IT.ISO-8859-1/my_messages.dbm

It will also load all the other data files that are already open.

To go back to French, call IlvDisplay::setCurrentLanguage again as follows:

display->setCurrentLanguage(IlGetSymbol("fr_FR"));

The sample that you can find in samples/foundation/i18n/changelang is an
illustration of this feature.

Using IBM ILOG Views with Far Eastern Languages

You should read this section if you want your system to support Far Eastern languages, such
as Japanese, Korean, or Chinese. Far Eastern languages are multibyte character languages
that present certain distinctive characteristics that should be taken into account when using
IBM® ILOG® Views.

Although the API remains unchanged, you should keep in mind that a char* value can
contain multibyte characters in a Far Eastern locale.

For example, you can pass a multibyte string to:

void IlvListLabel::setText(const char* text);

and get a multibyte string as the return value of the following:

const char* IlvListLabel::getText() const;

This is true for all the gadget classes (that is, IlvText, IlvTextField and its subclasses,
IlvMessageLabel, IlvStringList, and so on) and the manager view interactors, such
as IlvManagerMakeStringInteractor or IlvManagerMakeTextInteractor.

To help programmers control input in text areas, the mbCheck method has been added to the
IlvTextField and IlvText gadgets. The APIs are defined as follows:

For IlvText:

virtual IlBoolean mbCheck(const char* text);

For IlvTextField:

virtual const char* mbCheck(const char* text);

Note: This can only be done if the encodings are compatible.

Note: The mbCheck method calls the check method when running in a monobyte locale.
226 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Data Input Requirements

usrfoundation.book Page 227 Tuesday, July 28, 2009 10:34 AM
IlvPasswordTextField supports multibyte strings, and the mask is applied by drawable
characters. This means that you can create or perform a setLabel on an
IlvPasswordTextField using multibyte strings.

Internally, IBM ILOG Views manipulates wide-char* values, but there are no documented
public APIs. If you want to use wide-char* values, you must convert back and forth to
char* values before calling any public API. Note that you can use the IlvWChar type,
which is defined as wchar_t in the macros.h file, for your own internationalized API.

Data Input Requirements

◆ IBM® ILOG® Views provides Input Method support, described in Input Method (IM)
on page 227.

◆ Controlling input contexts is discussed in Far Eastern Input Method Servers Tested with
IBM ILOG Views on page 228.

◆ You can disallow localized input as shown in the example in How to Control the
Language Used for Data Input on page 228.

Input Method (IM)

Some languages, such as Far Eastern languages, use a lot of characters. The concept of Input
Method (IM) has been developed to allow entering these characters using the keyboard. An
Input Method is a procedure, a macro, or sometimes a separate process that converts
keystrokes to characters that are encoded in the code set of the current locale.

On UNIX systems, European Input Methods are directly supported in the X library.
However, Far Eastern languages require a separate process to be run.

For these languages, you must have an Input Method (also called a Front-End processor)
running on your system, and set your environment accordingly. On UNIX systems, for
example, this could mean setting the XMODIFIERS environment variable. Please check your
local system documentation to see what needs to be done.

Input through an Input Method server is supported in the following classes:

◆ IlvText, IlvTextField and its subclasses (except for IlvDateField,
IlvNumberField, and IlvPasswordTextField).

◆ Any class that uses an IlvTextField to enter text is also able to use an Input Method
server. This is true, for example, for an IlvMatrix or the
IlvManagerMakeStringInteractor.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 227

usrfoundation.book Page 228 Tuesday, July 28, 2009 10:34 AM
Far Eastern Input Method Servers Tested with IBM ILOG Views

On a UNIX system, you can control the way you use your input contexts. The default is to
share one input context from the top level window. This means that all the input text areas of
this top level window share the input context.

If you want to use different input contexts for each of your input text areas, you can set the
ILVICSHARED environment variable to “no”.

On HP-UX, the following IM servers have been tested successfully with IBM ILOG Views:

◆ For Japanese: xjim, atok8

◆ For Chinese: xtim, xsim

◆ For Korean: xkim

On Solaris, the following IM servers have been tested successfully with IBM ILOG Views:

◆ For Japanese: htt

◆ For Chinese: htt

◆ For Korean: htt

On Windows IBM ILOG Views directly connects to the default IME server.

How to Control the Language Used for Data Input

Any input field object, a subclass of IlvText or IlvTextField, will automatically
connect to an Input Method (as long as SetLocale has been called) so that input can be
done in the current locale.

If an application wants to disallow this behavior (that is, it does not want localized input, but
only ASCII input), it must call the setNeedsInputContext method on the
SimpleGraphic object with the parameter value IlFalse.

virtual void setNeedsInputContext(IlBoolean val)

Example

The code sample in samples/foundation/i18n/controlinput creates two text field
gadgets. The first text field connects to an Input Method so that input can be done in the
current locale. The second text field does not connect to an Input Method, meaning that you
may only be able to type English characters in it.

Limitations of Internationalization Features

The following limitations apply to the current internationalization support features:
228 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Troubleshooting

usrfoundation.book Page 229 Tuesday, July 28, 2009 10:34 AM
◆ Saving or reading a string in an .ilv file is carried out in the encoding of the current
locale. Trying to read a file which is not encoded in the current locale will fail.

◆ No input through an Input Method server is supported for the password text field, since
the user doesn’t have to see what he is typing.

◆ No input through an Input Method server is currently supported for the date field and the
number field. On Windows platforms, the user must disconnect from the FEP in order to
be able to enter text in these gadgets.

◆ IlvAnnoText has no internationalization support.

◆ Depending on the fonts or the language you use, the IBM ILOG Views Studio Main
Window may be too small. But as with any IBM ILOG Views Studio panel, the Main
Window size can be customized by setting the width in the studio.pnl file:

panel "MainPanel" {
 //
width 900;
}

◆ Multibyte variables are not supported in this version. For information on the variables
module of IBM ILOG Views, see the Manager documentation.

◆ You can define any single-byte character with IBM ILOG Views for mnemonics. We
recommend, however, you install mnemonics on single-byte characters that have a
corresponding keyboard key. For example, we do not recommend using accents in
European languages and Hankaku characters in Japanese.

◆ On UNIX systems, only Input Methods implemented using a Back-End architecture are
supported. For example, if you are using the htt import server on Solaris, you should set
the XIMP_TYPE environment variable to XIMP_SYNC_BE_TYPE2 before running your
application.

Troubleshooting

If your localized messages do not appear on your screen, follow these steps:

1. Check that you called IlvSetLocale at the beginning of your program.

2. Check that your system supports the locale and the fonts to display it. On most UNIX
systems, you can run the locale -a command. See the section Locale Requirements.

3. Do not set the ILVLANG environment variable.

4. On UNIX platforms, set LANG to a locale supported by your system and by the
X Window system. For example, to set the LANG variable to French, type:

LANG=fr on Solaris
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 229

usrfoundation.book Page 230 Tuesday, July 28, 2009 10:34 AM
LANG=fr_FR.iso88591 on HP_UX

5. Check that the localized .dbm file in a subdirectory named .../locale/
<ll_TT.encoding>/your_file.dbm. See the section Location of the Message
Database Files.

6. Check that the contents of your .dbm file has the following new format. See the section
.dbm File Format.

// IlvMessageDatabase ...
// Language: <ll_TT>
// Encoding: <encoding>
"&message" "message translation..."

7. If you read a .dbm file with the old format from the IBM ILOG Views Studio editor
(.dbm files with the old format are files created with versions of IBM ILOG Views
before 3.0), and your file appears truncated, this means the encodings are not compatible.
In this case, split your .dbm file. See the section .dbm File Format in Versions Before 3.0.

Reference: Encoding Listings

The following encodings are supported by IBM ILOG Views:

◆ US-ASCII

◆ ISO-8859-1 (Latin1)

◆ ISO-8859-2 (Latin2)

◆ ISO-8859-3 (Latin3)

◆ ISO-8859-4 (Latin4)

◆ ISO-8859-5 (LatinCyrillic)

◆ ISO-8859-6 (LatinArabic)

◆ ISO-8859-7 (LatinGreek)

◆ ISO-8859-8 (LatinHebrew)

◆ ISO-8859-9 (Latin5)

◆ ISO-8859-10 (Latin6)

◆ ISO-8859-11 (LatinThai)

◆ ISO-8859-13 (Latin7)

◆ ISO-8859-14 (Latin8)

◆ SO-8859-15 (Latin9)
230 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Reference: Encoding Listings

usrfoundation.book Page 231 Tuesday, July 28, 2009 10:34 AM
◆ EUC-JP

◆ Shift_JIS

◆ EUC-KR

◆ GB2312

◆ Big5

◆ Big5-HKSCS

◆ EUC-TW

◆ hp-roman8

◆ IBM850

◆ windows-1250

◆ windows-1251

◆ windows-1252

◆ windows-1253

◆ windows-1254

◆ windows-1255

◆ windows-1256

◆ windows-1257

◆ windows-1258

◆ windows-874

◆ windows-949

◆ UTF-8

ISO-8859-1

Latin1 covers most West European languages, such as:

◆ Afrikaans (af)

◆ Albanian (sq)

◆ Basque (eu)

◆ Catalan (ca)

◆ Danish (da)

◆ Dutch (nl)
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 231

usrfoundation.book Page 232 Tuesday, July 28, 2009 10:34 AM
◆ English (en)

◆ Faroese (fo)

◆ Finnish (fi)

◆ French (fr)

◆ Galician (gl)

◆ German (de)

◆ Icelandic (is)

◆ Irish (ga)

◆ Italian (it)

◆ Norwegian (no)

◆ Portuguese (pt)

◆ Scottish (gd)

◆ Spanish (es)

◆ Swedish (sv)

ISO-8859-2

Latin2 covers the languages of Central and Eastern Europe:

◆ Croatian (hr),

◆ Czech (cs),

◆ Hungarian (hu),

◆ Polish (pl),

◆ Romanian (ro),

◆ Slovak (sk),

◆ Slovenian (sl)

ISO-8859-3

Latin3 is popular with authors of Esperanto (eo), Maltese (mt), and it covered Turkish before
the introduction of Latin5.

ISO-8859-4

Latin4 introduced letters for Estonian, Baltic languages, Latvian and Lithuanian,
Greenlandic and Lappish. It is an incomplete precursor of Latin6.
232 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Reference: Encoding Listings

usrfoundation.book Page 233 Tuesday, July 28, 2009 10:34 AM
ISO-8859-5

With these Cyrillic letters you can type Bulgarian (bg), Byelorussian (be), Macedonian
(mk), Russian (ru), Serbian (sr) and Ukrainian (uk).

ISO-8859-6

This is the Arabic (ar) alphabet.

ISO-8859-7

This is modern Greek (el).

ISO-8859-8

This is Hebrew (iw).

ISO-8859-9

Latin5 replaces the rarely needed Icelandic letters in Latin1 with the Turkish (tr) ones.

ISO-8859-10

Latin6 rearranged Latin4, added the last missing Inuit (Greenlandic Eskimo) and non-Skolt
Sami (Lappish) letters, and reintroduced the rarely Icelandic letters to cover the entire
Nordic area:

◆ Estonian (et)

◆ Lapp

◆ Latvian (lv)

◆ Lithuanian (lt)

Skolt Sami still needs a few more accents.

ISO-8859-11

To cover the Thai language. On UNIX systems, this is similar to the tis620 encoding.

ISO-8859-13

To cover the Baltic Rim. Latin7 is going to cover the Baltic Rim and re-establish the Latvian
(lv) support lost in Latin6 and may introduce the local quotation marks. It resembles
WinBaltic, that is, windows-1257.

Note: This version of IBM ILOG Views does not support bidirectional text.

Note: This version of IBM ILOG Views does not support bidirectional text.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 233

usrfoundation.book Page 234 Tuesday, July 28, 2009 10:34 AM
ISO-8859-14

To cover Celtic. Latin8 adds the last Gaelic and Welsh (cy) letters to Latin1 to cover all
Celtic languages.

ISO-8859-15

Similar to Latin1 with euro and oe ligature. The new Latin9 nicknamed Latin0 aims to
update Latin1 by replacing the less needed symbols ¨´¸ with forgotten French and Finnish
letters and placing the U+20AC Euro sign in the cell =A4 of the former international
currency sign ¤.

EUC-JP

Extended UNIX Code for Japanese.

Standardized by OSF, UNIX International, and UNIX Systems Laboratories Pacific. Uses
ISO 2022 rules to select:

◆ code set 0: JIS Roman (a single 7-bit byte set)

◆ code set 1: JIS X0208-1990 (a double 8-bit byte set) restricted to A0-FF in both bytes

◆ code set 2: Half Width Katakana (a single 7-bit byte set) requiring SS2 as the character
prefix

◆ code set 3: JIS X0212-1990 (a double 7-bit byte set) restricted to A0-FF in both bytes
requiring SS3 as the character prefix

Shift_JIS

A Microsoft code that extends csHalfWidthKatakana to include kanji by adding a second
byte when the value of the first byte is in the ranges 81-9F or E0-EF.

EUC-KR (KS C 5861-1992)

Extended UNIX Code for Korean.

GB2312

Multibyte encoding standardized by the People’s Republic of China.

Big5

Multibyte encoding standardized by Taiwan

Big5-HKSCS

Hong-Kong Supplementary Character Set

EUC-TW (cns11643)

Extended UNIX Code for Traditional Chinese
234 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Reference: Encoding Listings

usrfoundation.book Page 235 Tuesday, July 28, 2009 10:34 AM
hp-roman8

HP specific

IBM850

IBM specific

windows-1250

Windows 3.1 Eastern European languages.

windows-1251

Windows 3.1 Cyrillic

windows-1252

Windows 3.1 US (ANSI)

windows-1253

Windows 3.1 Greek

windows-1254

Windows 3.1 Turkish

windows-1255

Hebrew

windows-1256

Arabic

windows-1257

Baltic

windows-1258

Vietnamese

windows-874

Thai

windows-949

Korean (Wansung)

Note: This version of IBM ILOG Views does not support bidirectional text.

Note: This version of IBM ILOG Views does not support bidirectional text.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 235

usrfoundation.book Page 236 Tuesday, July 28, 2009 10:34 AM
UTF-8

Unicode UTF-8

Reference: Supported Locales on Different Platforms

The following tables list, by platform, locales that have been successfully tested as Views
locales.

The first table lists the locales currently supported on Microsoft Windows platforms. If
support of a locale is limited to particular platforms, this is listed in the last colum. If this
column is blank then all platforms (2000 to Vista) are supported.

 .

Table 15.1 Microsoft Windows Locale Support

Windows Locale Name
Code
Page

Views Locale Name Limited to Windows

Afrikaans_South Africa 1252 af_ZA.windows-1252

Albanian_Albania 1250 sq_AL.windows-1250

Arabic_Algeria 1256 ar_DZ.windows-1256

Arabic_Bahrain 1256 ar_BH.windows-1256

Arabic_Egypt 1256 ar_EG.windows-1256

Arabic_Iraq 1256 ar_IQ.windows-1256

Arabic_Jordan 1256 ar_JO.windows-1256

Arabic_Kuwait 1256 ar_KW.windows-1256

Arabic_Lebanon 1256 ar_LB.windows-1256

Arabic_Libya 1256 ar_LY.windows-1256

Arabic_Morocco 1256 ar_MA.windows-1256

Arabic_Oman 1256 ar_OM.windows-1256

Arabic_Qatar 1256 ar_QA.windows-1256

Arabic_Saudi Arabia 1256 ar_SA.windows-1256

Arabic_Syria 1256 ar_SY.windows-1256

Arabic_Tunisia 1256 ar_TN.windows-1256
236 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Reference: Supported Locales on Different Platforms

usrfoundation.book Page 237 Tuesday, July 28, 2009 10:34 AM
Arabic_U.A.E. 1256 ar_AE.windows-1256

Arabic_Yemen 1256 ar_YE.windows-1256

Azeri (Cyrillic)_Azerbaijan 1251 az_AZ.windows-1251

Azeri (Latin)_Azerbaijan 1254 az_AZ.windows-1254

Basque_Spain 1252 eu_ES.windows-1252

Belarusian_Belarus 1251 be_BY.windows-1251

Bulgarian_Bulgaria 1251 bg_BG.windows-1251

Catalan_Spain 1252 ca_ES.windows-1252

Chinese_Hong Kong 950 zh_HK.Big5 2000

Chinese_Hong Kong S.A.R 950 zh_HK.Big5-HKSCS XP (see Support of
HKSCS below)

Chinese_Macau 950 zh_MO.Big5 2000

Chinese_People’s Republic
of China

 936 zh_CN.GB2312

Chinese_Singapore 936 zh_SG.GB2312

Chinese_Taiwan 950 zh_TW.Big5

Croatian_Croatia 1250 hr_HR.windows-1250

Czech_Czech Republic 1250 cs_CZ.windows-1250

Danish_Denmark 1252 da_DK.windows-1252

Dutch_Belgium 1252 nl_BE.windows-1252

Dutch_Netherlands 1252 nl_NL.windows-1252

English_Australia 1252 en_AU.windows-1252

English_Belize 1252 en_BZ.windows-1252

English_Ireland 1252 en_IE.windows-1252

English_Jamaica 1252 en_JM.windows-1252

English_New Zealand 1252 en_NZ.windows-1252

Table 15.1 Microsoft Windows Locale Support (Continued)

Windows Locale Name
Code
Page

Views Locale Name Limited to Windows
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 237

usrfoundation.book Page 238 Tuesday, July 28, 2009 10:34 AM
English_Republic of the
Philippines

1252 en_PH.windows-1252

English_South Africa 1252 en_ZA.windows-1252

English_Trinidad y Tobago 1252 en_TT.windows-1252 2000

English_Zimbabwe 1252 en_ZW.windows-1252

English_United States 1252 en_US.windows-1252

English_United Kingdom 1252 en_GB.windows-1252

Estonian_Estonia 1257 et_EE.windows-1257

Faeroese_Faeroe Islands 1252 fo_FO.windows-1252 2000

Farsi_Iran 1256 fa_IR.windows-1256

Finnish_Finland 1252 fi_FI.windows-1252

French_Belgium 1252 fr_BE.windows-1252

French_Canada 1252 fr_CA.windows-1252

French_France 1252 fr_FR.windows-1252

French_Luxembourg 1252 fr_LU.windows-1252

French_Principality of
Monaco

1252 fr_MC.windows-1252

French_Switzerland 1252 fr_CH.windows-1252

German_Austria 1252 de_AT.windows-1252

German_Germany 1252 de_DE.windows-1252

German_Liechtenstein 1252 de_LI.windows-1252

German_Luxembourg 1252 de_LU.windows-1252

German_Switzerland 1252 de_CH.windows-1252

Greek_Greece 1253 el_GR.windows-1253

Hebrew_Israel 1255 iw_IL.windows-1255

Hungarian_Hungary 1250 hu_HU.windows-1250

Table 15.1 Microsoft Windows Locale Support (Continued)

Windows Locale Name
Code
Page

Views Locale Name Limited to Windows
238 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Reference: Supported Locales on Different Platforms

usrfoundation.book Page 239 Tuesday, July 28, 2009 10:34 AM
Icelandic_Iceland 1252 is_IS.windows-1252

Indonesian_Indonesia 1252 in_ID.windows-1252

Italian_Italy 1252 it_IT.windows-1252

Italian_Switzerland 1252 it_CH.windows-1252

Kazakh_Kazakstan 1251 kk_KZ.windows-1251

Japanese_Japan 932 ja_JP.Shift_JIS

Korean_Korea 949 ko_KR.windows-949

Latvian_Latvia 1257 lv_LV.windows-1257

Lithuanian_Lithuania 1257 bo_LT.windows-1257

Macedonian_Former
Yugoslav Republic of
Macedonia

1251 mk_MK.windows-1251

Malay_Brunei Darussalam 1252 ms_BN.windows-1252

Malay_Malaysia 1252 ms_MY.windows-1252

Norwegian
(Bokmål)_Norway

1252 no_NO.windows-1252

Norwegian
(Nynorsk)_Norway

1252 no_NO.windows-1252

Norwegian_Norway 1252 no_NO.windows-1252 2000

Polish_Poland 1250 pl_PL.windows-1250

Portuguese_Brazil 1252 pt_BR.windows-1252

Portuguese_Portugal 1252 pt_PT.windows-1252

Romanian_Romania 1250 ro_RO.windows-1250

Russian_Russia 1251 ru_RU.windows-1251

Serbian (Latin)_Serbia 1250 sh_YU.windows-1250 2000

Serbian (Cyrillic)_Serbia 1251 sr_YU.windows-1251 2000

Table 15.1 Microsoft Windows Locale Support (Continued)

Windows Locale Name
Code
Page

Views Locale Name Limited to Windows
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 239

usrfoundation.book Page 240 Tuesday, July 28, 2009 10:34 AM
Slovak_Slovakia 1250 sk_SK.windows-1250

Slovenian_Slovenia 1250 sl_SI.windows-1250

Spanish_Argentina 1252 es_AR.windows-1252

Spanish_Bolivia 1252 es_BO.windows-1252

Spanish_Chile 1252 es_CL.windows-1252

Spanish_Colombia 1252 es_CO.windows-1252

Spanish_Costa Rica 1252 es_CR.windows-1252

Spanish_Dominican
Republic

1252 es_DO.windows-1252

Spanish_Ecuador 1252 es_EC.windows-1252

Spanish_El Salvador 1252 es_SV.windows-1252

Spanish_Guatemala 1252 es_GT.windows-1252

Spanish_Mexico 1252 es_MX.windows-1252

Spanish_Honduras 1252 es_HN.windows-1252

Spanish_Nicaragua 1252 es_NI.windows-1252

Spanish_Panama 1252 es_PA.windows-1252

Spanish_Paraguay 1252 es_PY.windows-1252

Spanish_Peru 1252 es_PE.windows-1252

Spanish - Modern
Sort_Spain

1252 es_ES.windows-1252 2000

Spanish_Puerto Rico 1252 es_PR.windows-1252

Spanish - Traditional
Sort_Spain

1252 es_ES.windows-1252 2000

Spanish_Spain 1252 es_ES.windows-1252

Spanish_Uruguay 1252 es_UY.windows-1252

Spanish_Venezuela 1252 es_VE.windows-1252

Table 15.1 Microsoft Windows Locale Support (Continued)

Windows Locale Name
Code
Page

Views Locale Name Limited to Windows
240 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Reference: Supported Locales on Different Platforms

usrfoundation.book Page 241 Tuesday, July 28, 2009 10:34 AM
Support of HKSCS

You will need to install a specific package in order to support the Hong Kong Supplementary
Chararcter Set on Windows 2000 and Windows XP (see http://www.microsoft.com/
hk/hkscs/).

Swahili_Kenya 1252 sw_KE.windows-1252

Swedish_Finland 1252 sv_FI.windows-1252

Swedish_Sweden 1252 sv_SE.windows-1252

Tatar_Tatarstan 1251 tt_TS.windows-1251 2000

Thai_Thailand 874 th_TH.windows-874

Turkish_Turkey 1254 tr_TR.windows-1254

Ukrainian_Ukraine 1251 uk_UA.windows-1251

Urdu_Islamic Republic
of Pakistan

1256 ur_PK.windows-1256

Uzbek_Republic
of Uzbekistan

1251 uz_UZ.windows-1251 2000

Table 15.2 HP-UX 11 Locale Support

HP-UX Locale Name Encoding Views Locale Name

C roman8 en_US.US-ASCII

POSIX roman8 en_US.hp-roman8

C.iso88591 iso88591 en_US.ISO-8859-1

C.utf8 utf8 en_US.UTF-8

univ.utf8 utf8 en_US.UTF-8

ar_SA.iso88596 iso88596 ar_SA.ISO-8859-6

bg_BG.iso88595 iso88595 bg_BG.ISO-8859-5

cs_CZ.iso88592 iso88592 cs_CZ.ISO-8859-2

Table 15.1 Microsoft Windows Locale Support (Continued)

Windows Locale Name
Code
Page

Views Locale Name Limited to Windows
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 241

usrfoundation.book Page 242 Tuesday, July 28, 2009 10:34 AM
da_DK.iso88591 iso88591 da_DK.ISO-8859-1

da_DK.roman8 roman8 da_DK.hp-roman8

de_DE.iso88591 iso88591 de_DE.ISO-8859-1

de_DE.roman8 roman8 de_DE.hp-roman8

el_GR.iso88597 iso88597 el_GR.ISO-8859-7

en_GB.iso88591 iso88591 en_GB.ISO-8859-1

en_GB.roman8 roman8 en_GB.hp-roman8

en_US.iso88591 iso88591 en_US.ISO-8859-1

en_US.roman8 roman8 en_US.hp-roman8

es_ES.iso88591 iso88591 es_ES.ISO-8859-1

es_ES.roman8 roman8 es_ES.hp-roman8

fi_FI.iso88591 iso88591 fi_FI.ISO-8859-1

fi_FI.roman8 roman8 fi_FI.hp-roman8

fr_CA.iso88591 iso88591 fr_CA.ISO-8859-1

fr_CA.roman8 roman8 fr_CA.hp-roman8

fr_FR.iso88591 iso88591 fr_FR.ISO-8859-1

fr_FR.roman8 roman8 fr_FR.hp-roman8

hr_HR.iso88592 iso88592 hr_HR.ISO-8859-2

hu_HU.iso88592 iso88592 hu_HU.ISO-8859-2

is_IS.iso88591 iso88591 is_IS.ISO-8859-1

is_IS.roman8 roman8 is_IS.hp-roman8

it_IT.iso88591 iso88591 it_IT.ISO-8859-1

it_IT.roman8 roman8 it_IT.hp-roman8

iw_IL.iso88598 iso88598 iw_IL.ISO-8859-8

ja_JP.SJIS SJIS ja_JP.Shift_JIS

Table 15.2 HP-UX 11 Locale Support (Continued)

HP-UX Locale Name Encoding Views Locale Name
242 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Reference: Supported Locales on Different Platforms

usrfoundation.book Page 243 Tuesday, July 28, 2009 10:34 AM
ja_JP.eucJP eucJP ja_JP.EUC-JP

ko_KR.eucKR eucKR ko_KR.EUC-KR

nl_NL.iso88591 iso88591 nl_NL.ISO-8859-1

nl_NL.roman8 roman8 nl_NL.hp-roman8

no_NO.iso88591 iso88591 no_NO.ISO-8859-1

no_NO.roman8 roman8 no_NO.hp-roman8

pl_PL.iso88592 iso88592 pl_PL.ISO-8859-2

pt_PT.iso88591 iso88591 pt_PT.ISO-8859-1

pt_PT.roman8 roman8 pt_PT.hp-roman8

ro_RO.iso88592 iso88592 ro_RO.ISO-8859-2

ru_RU.iso88595 iso88595 ru_RU.ISO-8859-5

sk_SK.iso88592 iso88592 sk_SK.ISO-8859-2

sl_SI.iso88592 iso88592 sl_SI.ISO-8859-2

sv_SE.iso88591 iso88591 sv_SE.ISO-8859-1

sv_SE.roman8 roman8 sv_SE.hp-roman8

tr_TR.iso88599 iso88599 tr_TR.ISO-8859-9

zh_CN.hp15CN hp15CN zh_CN.GB2312

zh_TW.big5 big5 zh_TW.Big5

zh_TW.eucTW eucTW zh_TW.EUC-TW

Table 15.3 Solaris Locale Support

Solaris Locale Name Encoding Views Locale Name

POSIX 646 en_US.US-ASCII

C 646 en_US.US-ASCII

iso_8859_1 ISO8859 en_US.US-ASCII

Table 15.2 HP-UX 11 Locale Support (Continued)

HP-UX Locale Name Encoding Views Locale Name
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 243

usrfoundation.book Page 244 Tuesday, July 28, 2009 10:34 AM
ar ISO8859-6 ar_AA.ISO-8859-6

bg_BG ISO8859-5 bg_BG.ISO-8859-5

cz ISO8859-2 cs_CZ.ISO-8859-2

da ISO8859-1 da_DK.ISO-8859-1

da.ISO8859-15 ISO8859-15 da_DK.ISO-8859-15

da.ISO8859-15@euro ISO8859-15 da_DK.ISO-8859-15

de ISO8859-1 de_DE.ISO-8859-1

de.ISO8859-15 ISO8859-15 de_DE.ISO-8859-15

de.ISO8859-15@euro ISO8859-15 de_DE.ISO-8859-15

de.UTF-8 UTF-8 de_DE.UTF-8

de.UTF-8@euro UTF-8 de_DE.UTF-8

de_AT ISO8859-1 de_AT.ISO-8859-1

de_AT.ISO8859-15 ISO8859-15 de_AT.ISO-8859-15

de_AT.ISO8859-15@euro ISO8859-15 de_AT.ISO-8859-15

de_CH ISO8859-1 de_CH.ISO-8859-1

el ISO8859-7 el_GR.ISO-8859-7

el.sun_eu_greek sun_eu_greek

en_AU ISO-8859-1 en_AU.ISO-8859-1

en_CA ISO8859-1 en_CA.ISO-8859-1

en_GB ISO8859-1 en_GB.ISO-8859-1

en_GB.ISO8859-15 ISO8859-15 en_GB.ISO-8859-15

en_GB.ISO8859-15@euro ISO8859-15 en_GB.ISO-8859-15

en_IE ISO8859-1 en_IE.ISO-8859-1

en_IE.ISO8859-15 ISO8859-15 en_IE.ISO-8859-15

en_IE.ISO8859-15@euro ISO8859-15 en_IE.ISO-8859-15

Table 15.3 Solaris Locale Support (Continued)

Solaris Locale Name Encoding Views Locale Name
244 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Reference: Supported Locales on Different Platforms

usrfoundation.book Page 245 Tuesday, July 28, 2009 10:34 AM
en_NZ ISO8859-1 en_NZ.ISO-8859-1

en_US ISO-8859-1 en_US.ISO-8859-1

en_US.UTF-8 UTF-8 en_US.UTF-8

es ISO-8859-1 es_ES.ISO-8859-1

es.ISO8859-15 ISO8859-15 es_ES.ISO-8859-15

es.ISO8859-15@euro ISO8859-15 es_ES.ISO-8859-15

es.UTF-8 UTF-8 es_ES.UTF-8

es.UTF-8@euro UTF-8 es_ES.UTF-8

es_AR ISO8859-1 es_AR.ISO-8859-1

es_BO ISO8859-1 es_BO.ISO-8859-1

es_CL ISO8859-1 es_CL.ISO-8859-1

es_CO ISO8859-1 es_CO.ISO-8859-1

es_CR ISO8859-1 es_CR.ISO-8859-1

es_EC ISO8859-1 es_EC.ISO-8859-1

es_GT ISO8859-1 es_GT.ISO-8859-1

es_MX ISO8859-1 es_MX.ISO-8859-1

es_NI ISO8859-1 es_NI.ISO-8859-1

es_PA ISO8859-1 es_PA.ISO-8859-1

es_PE ISO8859-1 es_PE.ISO-8859-1

es_PY ISO8859-1 es_PY.ISO-8859-1

es_SV ISO8859-1 es_SV.ISO-8859-1

es_UY ISO8859-1 es_UY.ISO-8859-1

es_VE ISO8859-1 es_VE.ISO-8859-1

et ISO8859-1 et_EE.ISO-8859-1

fi ISO8859-1 fi_FI.ISO-8859-1

Table 15.3 Solaris Locale Support (Continued)

Solaris Locale Name Encoding Views Locale Name
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 245

usrfoundation.book Page 246 Tuesday, July 28, 2009 10:34 AM
fi.ISO8859-15 ISO8859-15 fi_FI.ISO-8859-15

fi.ISO8859-15@euro ISO8859-15 fi_FI.ISO-8859-15

fr ISO8859-1 fr_FR.ISO-8859-1

fr.ISO8859-15 ISO8859-15 fr_FR.ISO-8859-15

fr.ISO8859-15@euro ISO8859-15 fr_FR.ISO-8859-15

fr.UTF-8 UTF-8 fr_FR.UTF-8

fr.UTF-8@euro UTF-8 fr_FR.UTF-8

fr_BE ISO8859-1 fr_BE.ISO-8859-1

fr_BE.ISO8859-15 ISO8859-15 fr_BE.ISO-8859-15

fr_BE.ISO8859-15@euro ISO8859-15 fr_BE.ISO-8859-15

fr_CA ISO8859-1 fr_CA.ISO-8859-1

fr_CH ISO8859-1 fr_CH.ISO-8859-1

hr_HR ISO8859-2 hr_HR.ISO-8859-2

he ISO8859-8 iw_IL.ISO-8859-8

hu ISO8859-2 hu_HU.ISO-8859-2

it ISO8859-1 it_IT.ISO-8859-1

it.ISO8859-15 ISO8859-15 it_IT.ISO-8859-15

it.ISO8859-15@euro ISO8859-15 it_IT.ISO-8859-15

it.UTF-8 UTF-8 it_IT.UTF-8

it.UTF-8@euro UTF-8 it_IT.UTF-8

lv ISO8859-13 lv_LV.ISO-8859-13

lt ISO8859-13 lt_LT.ISO-8859-13

mk_MK ISO8859-5 mk_MK.ISO-8859-5

nl ISO8859-1 nl_NL.ISO-8859-1

nl.ISO8859-15 ISO8859-15 nl_NL.ISO-8859-15

Table 15.3 Solaris Locale Support (Continued)

Solaris Locale Name Encoding Views Locale Name
246 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Reference: Supported Locales on Different Platforms

usrfoundation.book Page 247 Tuesday, July 28, 2009 10:34 AM
nl.ISO8859-15@euro ISO8859-15 nl_NL.ISO-8859-15

nl_BE ISO8859-1 nl_BE.ISO-8859-1

nl_BE.ISO8859-15 ISO8859-15 nl_BE.ISO-8859-15

nl_BE.ISO8859-15@euro ISO8859-15 nl_BE.ISO-8859-15

no ISO8859-1 no_NO.ISO-8859-1

no_NY ISO8859-1 no_NY.ISO-8859-1

nr ISO8859-2 nr_NA.ISO-8859-2

pl ISO8859-2 pl_PL.ISO-8859-2

pt ISO8859-1 pt_PT.ISO-8859-1

pt.ISO8859-15 ISO8859-15 pt_PT.ISO-8859-15

pt.ISO8859-15@euro ISO8859-15 pt_PT.ISO-8859-15

pt_BR ISO8859-1 pt_BR.ISO-8859-1

ro_RO ISO8859-2 ro_RO.ISO-8859-2

ru ISO8859-5 ru_RU.ISO-8859-5

sk_SK ISO8859-2 sk_SK.ISO-8859-2

sl_SI ISO8859-2 sl_SI.ISO-8859-2

sq_AL ISO8859-2 sq_AL.ISO-8859-2

sr_SP ISO8859-5 sr_SP.ISO-8859-5

sv ISO-8859-1 sv_SE.ISO-8859-1

sv.ISO8859-15 ISO8859-15 sv_SE.ISO-8859-15

sv.ISO8859-15@euro ISO8859-15 sv_SE.ISO-8859-15

sv.UTF-8 UTF-8 sv_SE.UTF-8

sv.UTF-8@euro UTF-8 sv_SE.UTF-8

th_TH TIS620.2533 th_TH.ISO-8859-11

Table 15.3 Solaris Locale Support (Continued)

Solaris Locale Name Encoding Views Locale Name
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 247

usrfoundation.book Page 248 Tuesday, July 28, 2009 10:34 AM
th TIS620.2533 th_TH.ISO-8859-11

tr ISO8859-9 tr_TR.ISO-8859-9

Table 15.4 AIX Locale Support

Aix Locale Name Encoding Views Locale Name

C ISO8859-1 en_US.US-ASCII

POSIX ISO8859-1 en_US.ISO-8859-1

ar_AA ISO8859-6 ar_AA.ISO-8859-6

ar_AA.ISO8859-6 ISO8859-6 ar_AA.ISO-8859-6

Ar_AA

Ar_AA.IBM-1046

bg_BG ISO8859-5 bg_BG.ISO-8859-5

bg_BG.ISO8859-5 ISO8859-5 bg_BG.ISO-8859-5

ca_ES ISO8859-1 ca_ES.ISO-8859-1

ca_ES.ISO8859-1 ISO8859-1 ca_ES.ISO-8859-1

Ca_ES IBM-850 ca_ES.IBM850

Ca_ES.IBM-850 IBM-850 ca_ES.IBM850

cs_CZ ISO8859-2 cs_CZ.ISO-8859-2

cs_CZ.ISO8859-2 ISO8859-2 cs_CZ.ISO-8859-2

da_DK ISO8859-1 da_DK.ISO-8859-1

da_DK.ISO8859-1 ISO8859-1 da_DK.ISO-8859-1

Da_DK IBM-850 da_DK.IBM850

Da_DK.IBM-850 IBM-850 da_DK.IBM850

de_CH ISO8859-1 de_CH.ISO-8859-1

de_CH.ISO8859-1 ISO8859-1 de_CH.ISO-8859-1

Table 15.3 Solaris Locale Support (Continued)

Solaris Locale Name Encoding Views Locale Name
248 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Reference: Supported Locales on Different Platforms

usrfoundation.book Page 249 Tuesday, July 28, 2009 10:34 AM
De_CH IBM-850 de_CH.IBM850

De_CH.IBM-850 IBM-850 de_CH.IBM850

de_DE ISO8859-1 de_DE.ISO-8859-1

de_DE.ISO8859-1 ISO8859-1 de_DE.ISO-8859-1

De_DE IBM-850 de_DE.IBM850

De_DE.IBM-850 IBM-850 de_DE.IBM850

el_GR ISO8859-7 el_GR.ISO-8859-7

el_GR.ISO8859-7 ISO8859-7 el_GR.ISO-8859-7

en_GB ISO8859-1 en_GB.ISO-8859-1

en_GB.ISO8859-1 ISO8859-1 en_GB.ISO-8859-1

En_GB IBM-850 en_GB.IBM850

En_GB.IBM-850 IBM-850 en_GB.IBM850

en_US ISO8859-1 en_US.ISO-8859-1

en_US.ISO8859-1 ISO8859-1 en_US.ISO-8859-1

En_US IBM-850 en_US.IBM850

En_US.IBM-850 IBM-850 en_US.IBM850

es_ES ISO8859-1 es_ES.ISO-8859-1

es_ES.ISO8859-1 ISO8859-1 es_ES.ISO-8859-1

Es_ES IBM-850 es_ES.IBM850

Es_ES.IBM-850 IBM-850 es_ES.IBM850

Et_EE

Et_EE.IBM-922

ET_EE UTF-8 et_EE.UTF-8

ET_EE.UTF-8 UTF-8 et_EE.UTF-8

fi_FI ISO8859-1 fi_FI.ISO-8859-1

Table 15.4 AIX Locale Support (Continued)

Aix Locale Name Encoding Views Locale Name
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 249

usrfoundation.book Page 250 Tuesday, July 28, 2009 10:34 AM
fi_FI.ISO8859-1 ISO8859-1 fi_FI.ISO-8859-1

Fi_FI IBM-850 fi_FI.IBM850

Fi_FI.IBM-850 IBM-850 fi_FI.IBM850

fr_BE ISO8859-1 fr_BE.ISO-8859-1

fr_BE.ISO8859-1 ISO8859-1 fr_BE.ISO-8859-1

Fr_BE IBM-850 fr_BE.IBM850

Fr_BE.IBM-850 IBM-850 fr_BE.IBM850

fr_CA ISO8859-1 fr_CA.ISO-8859-1

fr_CA.ISO8859-1 ISO8859-1 fr_CA.ISO-8859-1

Fr_CA IBM-850 fr_CA.IBM850

Fr_CA.IBM-850 IBM-850 fr_CA.IBM850

fr_CH SO8859-1 fr_CH.ISO-8859-1

fr_CH.ISO8859-1 ISO8859-1 fr_CH.ISO-8859-1

Fr_CH IBM-850 fr_CH.IBM850

Fr_CH.IBM-850 IBM-850 fr_CH.IBM850

fr_FR ISO8859-1 fr_FR.ISO-8859-1

fr_FR.ISO8859-1 ISO8859-1 fr_FR.ISO-8859-1

Fr_FR IBM-850 fr_FR.IBM850

Fr_FR.IBM-850 IBM-850 fr_FR.IBM850

hr_HR ISO8859-2 hr_HR.ISO-8859-2

hr_HR.ISO8859-2 ISO8859-2 hr_HR.ISO-8859-2

hu_HU ISO8859-2 hu_HU.ISO-8859-2

hu_HU.ISO8859-2 ISO8859-2 hu_HU.ISO-8859-2

is_IS ISO8859-1 is_IS.ISO-8859-1

is_IS.ISO8859-1 ISO8859-1 is_IS.ISO-8859-1

Table 15.4 AIX Locale Support (Continued)

Aix Locale Name Encoding Views Locale Name
250 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Reference: Supported Locales on Different Platforms

usrfoundation.book Page 251 Tuesday, July 28, 2009 10:34 AM
Is_IS IBM-850 is_IS.IBM850

Is_IS.IBM-850 IBM-850 is_IS.IBM850

it_IT ISO8859-1 it_IT.ISO-8859-1

it_IT.ISO8859-1 ISO8859-1 it_IT.ISO-8859-1

It_IT IBM-850 it_IT.IBM850

It_IT.IBM-850 IBM-850 it_IT.IBM850

iw_IL ISO8859-8 iw_IL.ISO-8859-8

iw_IL.ISO8859-8 ISO8859-8 iw_IL.ISO-8859-8

Iw_IL

Iw_IL.IBM-856

ja_JP IBM-eucJP ja_JP.EUC-JP

ja_JP.IBM-eucJP IBM-eucJP ja_JP.EUC-JP

Ja_JP IBM-932 ja_JP.Shift_JIS

Ja_JP.IBM-932 IBM-932 ja_JP.Shift_JIS

Jp_JP.pc932

Jp_JP

ko_KR IBM-eucKR ko_KR.EUC-KR

ko_KR.IBM-eucKR IBM-eucKR ko_KR.EUC-KR

Lt_LT

Lt_LT.IBM-921

LT_LT UTF-8 lt_LT.UTF-8

LT_LT.UTF-8 UTF-8 lt_LT.UTF-8

Lv_LV

Lv_LV.IBM-921

LV_LV UTF-8 lv_LV.UTF-8

Table 15.4 AIX Locale Support (Continued)

Aix Locale Name Encoding Views Locale Name
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 251

usrfoundation.book Page 252 Tuesday, July 28, 2009 10:34 AM
LV_LV.UTF-8 UTF-8 lv_LV.UTF-8

mk_MK ISO8859-5 mk_MK.ISO-8859-5

mk_MK.ISO8859-5 ISO8859-5 mk_MK.ISO-8859-5

nl_BE ISO8859-1 nl_BE.ISO-8859-1

nl_BE.ISO8859-1 ISO8859-1 nl_BE.ISO-8859-1

Nl_BE IBM-850 nl_BE.IBM850

Nl_BE.IBM-850 IBM-850 nl_BE.IBM850

nl_NL ISO8859-1 nl_NL.ISO-8859-1

nl_NL.ISO8859-1 ISO8859-1 nl_NL.ISO-8859-1

Nl_NL IBM-850 nl_NL.IBM850

Nl_NL.IBM-850 IBM-850 nl_NL.IBM850

no_NO ISO8859-1 no_NO.ISO-8859-1

no_NO.ISO8859-1 ISO8859-1 no_NO.ISO-8859-1

No_NO IBM-850 no_NO.IBM850

No_NO.IBM-850 IBM-850 no_NO.IBM850

pl_PL ISO8859-2 pl_PL.ISO-8859-2

pl_PL.ISO8859-2 ISO8859-2 pl_PL.ISO-8859-2

pt_BR ISO8859-1 pt_BR.ISO-8859-1

pt_BR.ISO8859-1 ISO8859-1 pt_BR.ISO-8859-1

pt_PT ISO8859-1 pt_PT.ISO-8859-1

pt_PT.ISO8859-1 ISO8859-1 pt_PT.ISO-8859-1

Pt_PT IBM-850 pt_PT.IBM850

Pt_PT.IBM-850 IBM-850 pt_PT.IBM850

ro_RO ISO8859-2 ro_RO.ISO-8859-2

ro_RO.ISO8859-2 ISO8859-2 ro_RO.ISO-8859-2

Table 15.4 AIX Locale Support (Continued)

Aix Locale Name Encoding Views Locale Name
252 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Reference: Supported Locales on Different Platforms

usrfoundation.book Page 253 Tuesday, July 28, 2009 10:34 AM
ru_RU ISO8859-5 ru_RU.ISO-8859-5

ru_RU.ISO8859-5 ISO8859-5 ru_RU.ISO-8859-5

sh_SP ISO8859-2 sh_SP.ISO-8859-2

sh_SP.ISO8859-2 ISO8859-2 sh_SP.ISO-8859-2

sk_SK ISO8859-2 sk_SK.ISO-8859-2

sk_SK.ISO8859-2 ISO8859-2 sk_SK.ISO-8859-2

sl_SI ISO8859-2 sl_SI.ISO-8859-2

sl_SI.ISO8859-2 ISO8859-2 sl_SI.ISO-8859-2

sq_AL ISO8859-1 sq_AL.ISO-8859-1

sq_AL.ISO8859-1 ISO8859-1 sq_AL.ISO-8859-1

sr_SP ISO8859-5 sr_SP.ISO-8859-5

sr_SP.ISO8859-5 ISO8859-5 sr_SP.ISO-8859-5

sv_SE ISO8859-1 sv_SE.ISO-8859-1

sv_SE.ISO8859-1 ISO8859-1 sv_SE.ISO-8859-1

Sv_SE IBM-850 sv_SE.IBM850

Sv_SE.IBM-850 IBM-850 sv_SE.IBM850

tr_TR ISO8859-9 tr_TR.ISO-8859-9

tr_TR.ISO8859-9 ISO8859-9 tr_TR.ISO-8859-9

zh_CN IBM-eucCN zh_CN.GB2312

zh_CN.IBM-eucCN IBM-eucCN zh_CN.GB2312

ZH_CN UTF-8 zh_CN.UTF-8

ZH_CN.UTF-8 UTF-8 zh_CN.UTF-8

zh_TW IBM-eucTW zh_TW.EUC-TW

zh_TW.IBM-eucTW IBM-eucTW zh_TW.EUC-TW

Table 15.4 AIX Locale Support (Continued)

Aix Locale Name Encoding Views Locale Name
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 253

usrfoundation.book Page 254 Tuesday, July 28, 2009 10:34 AM
Zh_TW big5 zh_TW.Big5

Zh_TW.big5 big5 zh_TW.Big5

Table 15.5 OSF Locale Support

Osf Locale Name Encoding Views Locale Name

C ISO8859-1 en_US.US-ASCII

POSIX ISO8859-1 en_US.ISO-8859-1

da_DK.ISO8859-1 ISO8859-1 da_DK.ISO-8859-1

de_CH.ISO8859-1 ISO8859-1 de_CH.ISO-8859-1

de_DE.ISO8859-1 ISO8859-1 de_DE.ISO-8859-1

el_GR.ISO8859-7 ISO8859-7 el_GR.ISO-8859-7

en_GB.ISO8859-1 ISO8859-1 en_GB.ISO-8859-1

en_US.ISO8859-1 ISO8859-1 en_US.ISO-8859-1

en_US.cp850 cp850 en_US.IBM850

es_ES.ISO8859-1 ISO8859-1 es_ES.ISO-8859-1

fi_FI.ISO8859-1 ISO8859-1 fi_FI.ISO-8859-1

fr_BE.ISO8859-1 ISO8859-1 fr_BE.ISO-8859-1

fr_CA.ISO8859-1 ISO8859-1 fr_CA.ISO-8859-1

fr_CH.ISO8859-1 ISO8859-1 fr_CH.ISO-8859-1

fr_FR.ISO8859-1 ISO8859-1 fr_FR.ISO-8859-1

is_IS.ISO8859-1 ISO8859-1 is_IS.ISO-8859-1

it_IT.ISO8859-1 ISO8859-1 it_IT.ISO-8859-1

nl_BE.ISO8859-1 ISO8859-1 nl_BE.ISO-8859-1

nl_NL.ISO8859-1 ISO8859-1 nl_NL.ISO-8859-1

Table 15.4 AIX Locale Support (Continued)

Aix Locale Name Encoding Views Locale Name
254 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Reference: Supported Locales on Different Platforms

usrfoundation.book Page 255 Tuesday, July 28, 2009 10:34 AM
no_NO.ISO8859-1 ISO8859-1 no_NO.ISO-8859-1

pt_PT.ISO8859-1 ISO8859-1 pt_PT.ISO-8859-1

sv_SE.ISO8859-1 ISO8859-1 sv_SE.ISO-8859-1

tr_TR.ISO8859-9 ISO8859-9 tr_TR.ISO-8859-9

Table 15.5 OSF Locale Support (Continued)

Osf Locale Name Encoding Views Locale Name
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 255

usrfoundation.book Page 256 Tuesday, July 28, 2009 10:34 AM
256 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

A P P E N D I X

usrfoundation.book Page 257 Tuesday, July 28, 2009 10:34 AM
A

Packaging IBM ILOG Views Applications

This section explains how to use ilv2data, a tool provided with IBM® ILOG® Views to
safely package application data files together with your IBM ILOG Views application in the
same executable.

What is ilv2data?

The ilv2data executable file allows you to put all the application resources, such as .ilv
and .dbm files and bitmaps (.gif, .bmp, .pbm, and so on), in a file generated by ilv2data
that you will then add to an application project (on PCs) or compile and link with your
IBM ILOG Views application (on UNIX).

This file is a data resource file on Microsoft Windows (.rc) that can be compiled with the
Microsoft Resource Compler (RC.EXE). On UNIX platforms, this file is a regular C++
source file that contains only the definition of static data. This file can be compiled with
your regular C++ compiler. We call this file a resource file in the rest of this section.

A resource file stores a set of data blocks that can be retrieved at run time using the name
with which they were associated when building the resource file.

In This Section

◆ Launching ilv2data

◆ The ilv2data Panel

◆ Launching ilv2data with a Batch Command
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 257

A. Packaging IBM ILOG Views Applications

usrfoundation.book Page 258 Tuesday, July 28, 2009 10:34 AM
◆ Adding a Resource File to a UNIX Library

◆ Adding a Resource File to a Windows DLL

Launching ilv2data

To launch ilv2data:

1. Go to the directory <ILVHOME>/bin/<system>.

2. Compile the executable, if it is not already there (note that ilv2data uses the Gadgets
package).

3. Launch the executable by typing ilv2data.

The following panel appears:

The ilv2data Panel

The ilv2data panel is composed of the following elements:

◆ A File menu that is used to handle resource files. A resource file is the file where you
will put all the resources you want to package together with your application. Once
completed and validated, this file will be saved as a .rc file or as a .cpp file depending
on the platform you have selected (Microsoft Windows or UNIX). The File menu has the
following menu items:

● New—Creates a new resource file.
258 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Launching ilv2data with a Batch Command

usrfoundation.book Page 259 Tuesday, July 28, 2009 10:34 AM
● Open—Opens a resource file.

● Save—Saves the data in the resource file and generates a .rc or a .cpp file
(depending on the selected platform).

◆ Three buttons:

● New—Adds a data block to the list.

● Delete—Removes a data block from the list.

● Edit—Modifies the values associated with the selected item in the list.

When you click New or Edit, the following dialog box is displayed:

The Data block file entry field is where you type the physical name of the resource file you
want to add to the list. It you want to use a file browser to locate the file, click the icon to the
right of the entry field to display a file chooser.

The Data block name field is set by default to the logical name that the program uses to read
the data block. Initially, this name is the same as the one you entered in the Data block file
entry field.

The Apply button validates the data, and the Cancel button cancels the procedure.

Launching ilv2data with a Batch Command

You can launch ilv2data via a command line in which you can specify a number of
options to perform various basic operations.

The available options, along with their description, are given below:

ilv2data [-a key[=val]] [-c] [-d key] [-h] [-i dir] [-l]

Note: If you add a Views (or extension Views like Data Access) data file like a .dbm file,
you must not forget the path of the file from $ILVHOME/data. For example, il you want to
add the dataccess.dbm file, the Data black name must be dataccess/dataccess.dbm
because the full filename of dataccess.dbm is $ILVHOME/data/dataccess/
dataccess.dbm.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 259

A. Packaging IBM ILOG Views Applications

usrfoundation.book Page 260 Tuesday, July 28, 2009 10:34 AM
[-m key[=val]] [-u|w] [-v 0|1] file

◆ -a key[=val] : Add option

Adds the data block name key to the list of resources. val specifies the file to be
inserted. The default value is key.

◆ -c : Check option

Checks the consistency of file.

◆ -d key : Delete option

Deletes the data block key from the list of resources.

◆ -h : Help option

Displays the usage of the command.

◆ -i dir : Include option

Adds the directory dir to the list of paths where data block files are searched for.

◆ -l : List option

Lists all data blocks available in file.

◆ -m key[=val] : Modify option

Refreshes the data block key with the file val.

◆ -u|w : Regenerate option

Regenerates the file file in UNIX mode (-u) or in Windows mode (-w). To find a file
in the display path, use the name of the data block. Use this file if it exists, otherwise use
the old definition of the data block contained in file.

◆ -v 0|1 : Verbose option

Prints comments during execution if the option is set to 1. Errors and warnings are
displayed even when the option is set to 0.

This command returns 0 if execution succeeds and 1 if it fails.

Adding a Resource File to a UNIX Library

To add a resource file to a UNIX library, add the following two lines to a module in the
library that you know will be called by your final application (such as, the library
initialization module):

extern IlUInt IL_MODINIT(<name>Resources)();
static IlUInt forceRes = IL_MODINIT(<name>Resources)();
260 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Adding a Resource File to a Windows DLL

usrfoundation.book Page 261 Tuesday, July 28, 2009 10:34 AM
ilv2data generates a file name with the following format: <name>.cpp.

Adding a Resource File to a Windows DLL

You must add the following lines to any dll module:

#include <windows.h>
#include <ilviews/macros.h>

extern "C" {
 void _declspec(dllimport) IlvAddHandleToResPath(long, int);
 void _declspec(dllimport) IlvRemoveHandleFromResPath(long);
}

BOOL WINAPI
DllEntryPoint(HINSTANCE instance, DWORD reason, LPVOID)
{
 switch (reason) {
 case DLL_PROCESS_ATTACH:
 IlvAddHandleToResPath((long)instance, -1);
 return 1;
 case DLL_PROCESS_DETACH:
 IlvRemoveHandleFromResPath((long)instance);
 return 0;
 }
 return 0;
}
BOOL WINAPI
DllMain(HINSTANCE hinstance, DWORD reason, LPVOID reserved)
{
 return DllEntryPoint(hinstance, reason, reserved);
}

I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 261

A. Packaging IBM ILOG Views Applications

usrfoundation.book Page 262 Tuesday, July 28, 2009 10:34 AM
262 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

A P P E N D I X

usrfoundation.book Page 263 Tuesday, July 28, 2009 10:34 AM
B

Using IBM ILOG Views on Microsoft
Windows

This section is aimed at programmers who develop their applications on Microsoft Windows
or want to merge IBM® ILOG® Views and Windows code. It gives information on:

◆ Creating a New IBM ILOG Views Application on Microsoft Windows

◆ Incorporating Windows Code into an IBM ILOG Views Application

◆ Integrating IBM ILOG Views Code into a Windows Application

◆ Exiting an Application Running on Microsoft Windows

◆ Windows-specific Devices

◆ Using GDI+ Features with IBM ILOG Views

◆ Using Multiple Display Monitors with IBM ILOG Views

Creating a New IBM ILOG Views Application on Microsoft Windows

To create a new IBM® ILOG® Views application that does not contain any Windows code,
all you have to do is create the main function and instantiate the IlvDisplay class by
providing the application name to its constructor:
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 263

B. Using IBM ILOG Views on Microsoft Windows

usrfoundation.book Page 264 Tuesday, July 28, 2009 10:34 AM
int
main(int argc, char* argv[])
{
 IlvDisplay* display = new IlvDisplay("IlogViews", "", argc, argv);
 ...
}

Note that ‘main’ is not the regular entry point of an application running on Microsoft
Windows (it should be ‘WinMain’). Because of the source code portability that
IBM ILOG Views provides, and for easier command line parameter parsing, we choose to
use the regular C++ ‘main’ entry point. The impact of this choice is discussed further in this
topic.

The application name is used for resource scanning (see Display System Resources). The
second argument is not used on Microsoft Windows, and therefore it is replaced by an empty
string. (It is used on X Window where it corresponds to an X display.) The last two
parameters are also not used on Microsoft Windows.

Then you can build your view structure and objects and call the global function
IlvMainLoop.

int
main(int argc, char* argv[])
{
 IlvDisplay* display = new IlvDisplay("IlogViews", "", argc, argv);
 ...
 ...
 IlvMainLoop();
 return 0;
}

Here, since a main function is provided instead of the WinMain entry point that Microsoft
Windows expects to start an application, you have to link your object files with the
ILVMAIN.OBJ file. This file, supplied with IBM ILOG Views, defines a default WinMain
function that does all the necessary initialization operations and calls the main function.

For examples, look at the make or project files in the BIN directory.

Incorporating Windows Code into an IBM ILOG Views Application

You can easily incorporate into your IBM® ILOG® Views application Windows menus and
panels that were created with one of the numerous interface generators that Microsoft
Windows supports. Examples can be found in the subdirectory foundation\windows,

Note: To avoid conflicts with other definitions of the main function, which might be
provided by some compilers, a preprocessor macro redefines the main function as
IlvMain. This macro is declared in the header file <ilviews/ilv.h>.
264 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Incorporating Windows Code into an IBM ILOG Views Application

usrfoundation.book Page 265 Tuesday, July 28, 2009 10:34 AM
which is located under <ILVHOME>\samples. Refer also to the Views Foundation Tutorials
in the online documentation.

The following example displays a panel that was created by any interface builder, and linked
with your application with the resource compiler.

#define VIEW_ID 1010 // The ID of a sub-window in the panel
int PASCAL ILVEXPORTED
DialogProc(HWND dlg, UINT msg, WPARAM wParam, LPARAM lParam)
{
 switch (msg) {
 case WM_INITDIALOG:
 // Create some IlogViews object in the dialog.
 InitIlogViews((IlvDisplay*)lParam, GetDlgItem(dlg, VIEW_ID));
 return 1;
 case WM_COMMAND:
 if (wParam == QUIT_ID) {
 EndDialog(dlg, 1); // Close the dialog
 ReleaseIlogViews(); // Delete IlogViews objects
 PostQuitMessage(0); // Exit the event loop
 return 1;
 }
 }
 return 0;
}

int
main(int argc, char* argv[])
{
 // Connect to the windowing system.
 IlvDisplay* display = new IlvDisplay("IlogViews", "", argc, argv);
 if (display->isBad()) {
 IlvFatalError("Couldn’t connect to display system");
 delete display;
 return 1;
 }
 // Create the dialog box.
 if (DialogBoxParam(display->getInstance(), "MY_PANEL", 0,
 (FARPROC)DialogProc, (long)display) == -1)
 IlvFatalError("Couldn’t create dialog");
 delete display;
 return 1;
}

void
InitIlogViews(IlvDisplay* display, HWND wnd)
{
 // For example: a container that uses the ‘wnd’ window.
 container = new IlvContainer(display, wnd);
 ...
}void
ReleaseIlogViews()
{
 delete container;
}

I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 265

B. Using IBM ILOG Views on Microsoft Windows

usrfoundation.book Page 266 Tuesday, July 28, 2009 10:34 AM
In the InitIlogViews member function, a new IlvContainer object holding an existing
Windows panel, wnd, is created. In your user interface generator, you must specify that
IlogViewsWndClass is the WindowsClass to be used for that window.

In this example, since a main function is provided instead of the WinMain entry point that
Microsoft Windows expects to start an application, you have to link your object files with
the ILVMAIN.OBJ file. This file, supplied with IBM ILOG Views, defines a default
WinMain function that does all the necessary initialization operations and calls the main
function.

Integrating IBM ILOG Views Code into a Windows Application

To integrate IBM® ILOG® Views code into an existing application running on Microsoft
Windows, all you have to do is use the second constructor of the IlvDisplay class, which
takes an instance of your application as its argument:

int PASCAL
WinMain(HANDLE appInstance, HANDLE, LPSTR, int)
{
 ...
 IlvDisplay* display = new IlvDisplay((IlAny)appInstance,
 "ApplicationName");
 ...
}

Note, however, that deleting the IlvDisplay object does not post a QUIT message. This is
done in order not to exit the event loop, as you might want to do some more work after the
IBM ILOG Views session is closed.

Here, because you provide a WinMain entry point to your application, you do not have to
link your executable file using the ILVMAIN.OBJ file.

Exiting an Application Running on Microsoft Windows

Releasing the memory and the system resources before exiting an application is a good
practice on all operating systems. On early versions of Microsoft Windows (3.1, 95), it was
critical; the system had a very limited number of GDI resources (colors, fonts, and so on)
and they were not automatically released. Later versions (NT 4, 2000, XP) have improved
this behaviour. However, it is still highly recommanded to provide a clean way to quit an
application, freeing the memory and releasing system resources before exiting. A convenient
way to do so is to write a function that frees the application data, deletes the IlvDisplay
and call IlvExit(0). This function may then be used as an accelerator, a button
callback, a top window destroy callback, or the like.
266 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Windows-specific Devices

usrfoundation.book Page 267 Tuesday, July 28, 2009 10:34 AM
Windows-specific Devices

In order to manage Windows devices (such as the printer or the metafile generation),
IBM® ILOG® Views provides two classes: IlvWindowsVirtualDevice and
IlvWindowsDevice.

Printing

You can use the IlvWindowsDevice dump device to print your IBM ILOG Views output to
any printer controlled by Microsoft Windows.

Selecting a Printer

You can select a printer by calling the following global function:

const char*
IlvGetWindowsPrinter (Ilboolean dialog = IlTrue);

This function returns a string that describes which printer is about to be used. That string is
internally managed and must not be modified nor deleted.

When called with an IlTrue value for the dialog parameter, a dialog box is displayed that
lets the user specify which printer to use and what size and orientation parameters should be
applied. If this function is called with an IlFalse parameter, a string that describes the
current default printer is returned. If there is an error, or if the user clicks the Cancel button,
NULL is returned.

Note: All display instances must be deleted, as well as all managers. Remember that
containers and managers delete the objects they store when they are destroyed. For
information on managers, see the IBM ILOG Views Managers documentation.

Note: IBM ILOG Views uses internal memory that is allocated dynamically. This memory
is freed only when the application exits.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 267

B. Using IBM ILOG Views on Microsoft Windows

usrfoundation.book Page 268 Tuesday, July 28, 2009 10:34 AM
Using GDI+ Features with IBM ILOG Views

What is GDI+

GDI+ is a way of drawing on Microsoft Windows platforms. It comes with interesting
features such as transparency and anti-aliasing. For more information about GDI+, take a
look at the Microsoft internet site.

Using Dynamic Link Libraries

When using the dynamic IBM ILOG Views libraries (dll_mda), using GDI+ is very simple:
Microsoft provides a DLL (gdiplus.dll) that must be accessible by the IBM ILOG Views
application. This DLL is shipped in the same directory as the dynamic IBM ILOG Views
libraries (dll_mda). To download the latest gdiplus.dll redistributable, go to http://
www.microsoft.com/msdownload/platformsdk/sdkupdate/psdkredist.htm.

Using Static Libraries

When using the static IBM ILOG Views libraries (stat_mda, stat_mta), you need to
install the Microsoft Platform SDK, because you must link your application with the
gdiplus.lib library. To get this SDK, go to http://www.microsoft.com/
msdownload/platformsdk/sdkupdate.

You must also include the <ilviews/windows/ilvgdiplus.h> file when compiling, and
link your application with the ilvgdiplus.lib library. This library can be found in the
directory ILVHOME/lib/[platform]/[subplatform], where ILVHOME is the root
directory in which IBM ILOG Views was installed, and where subplatform is stat_mda
or stat_mta,and where platform is one of the following:

● x86_.net2003_7.1

● x86_.net2005_8.0

● x86_.net2008_9.0

GDI+ and IBM ILOG Views

When GDI+ is installed, IBM ILOG Views provides its benefits by proposing a dedicated
API to the IlvPalette and IlvPort classes. The following methods have been added to
handle transparency and anti-aliasing:

◆ IlvPalette::setAlpha

◆ IlvPalette::getAlpha

◆ IlvPort::setAlpha

◆ IlvPort::getAlpha

◆ IlvPalette::setAntialiasingMode
268 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Using GDI+ Features with IBM ILOG Views

usrfoundation.book Page 269 Tuesday, July 28, 2009 10:34 AM
◆ IlvPalette::getAntialiasingMode

◆ IlvPort::setAntialiasingMode

◆ IlvPort::getAntialiasingMode

See also the sections Alpha Value on page 83 and Anti-Aliasing Mode on page 84.

Controlling GDI+ Features at Run Time

It is possible to specify through resources whether you want GDI+ to be used or not. The
following table summarizes the different resources, their possible values, and the effect of
each value:

For example, the following views.ini file enables anti-aliasing for the entire application.
As the UseGdiPlus resource is not specified, the default is used, that is, GDI+ will be used
only when needed.

[IlogViews]

Antialiasing=true

Table B.1 GDI+ Resources

Resource (.ini file) Environment Variable Value

UseGdiPlus ILVUSEGDIPLUS needed: GDI+ is used only
when it is needed, for example,
when transparency or anti-
aliasing is required. This is the
default.
true: GDI+ is used each time it
is possible.
false: GDI+ is never used.

Antialiasing ILVANTIALIASING false: The anti-aliasing mode
of the display is set to
IlvNoAntialiasingMode.
This is the default.
true: The anti-aliasing mode of
the display is set to
IlvUseAntialiasingMode.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 269

B. Using IBM ILOG Views on Microsoft Windows

usrfoundation.book Page 270 Tuesday, July 28, 2009 10:34 AM
Limitations

The following table summarizes the limitations and unsupported features of the use of GDI+
through IBM ILOG Views:

Using Multiple Display Monitors with IBM ILOG Views

Multiple display monitors provides a set of features that allow an application to make use of
multiple display devices at the same time. Several monitors can be seen as one big monitor,
making it possible to move windows from one screen to the other one.

IBM® ILOG® Views has taken into account this feature, and the following API has been
added to retrieve the coordinates of a monitor: IlvDisplay::screenBBox. This method
allows an application to retrieve the monitor coordinates in which a specific rectangle is
located. For example, it can be used to center a window inside a single monitor. See the
Reference Manual for more details.

Table B.2 GDI+ Limitations with IBM ILOG Views

Fonts GDI+ supports only True Type Fonts. When
using a font that is not a True Type Font,
GDI+ will not be used. Furthermore, when
drawing strings with a transformer, to draw
a vertical string for example, the result may
not exactly match the rendering done with
GDI. This is because the rendering engines
used in GDI+ and GDI are not exactly the
same.

Brushes The Windows HATCHED patterns are not
exactly mapped to the GDI+ HatchStyle.
Thus, switching to GDI+ may change the
drawing of the pattern slightly.

Printing GDI+ is not used by IBM ILOG Views when
drawing on a printer.

Arcs Flat arcs are badly drawn by GDI+. Thus,
GDI+ will not be used to draw flat arcs.

Draw Mode GDI+ does not support other modes than
IlvModeSet. For example, when using
IlvModeXor, GDI+ will not be used.

Windows XP Look and Feel Transparency and anti-aliasing are not
available with gadgets drawn using
Windows XP.
270 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Using Multiple Display Monitors with IBM ILOG Views

usrfoundation.book Page 271 Tuesday, July 28, 2009 10:34 AM
The impact of this feature on existing applications is restricted to the management of top
windows: Each time a top window is displayed, its position must be computed carefully. To
avoid problems, top windows should be relative to other top windows and not to the screen.
For example, most applications have a main panel and several dialogs, all being top
windows. It is better to specify the dialog location relative to the main panel position (using
the IlvView::moveToView method) than to center the dialogs into the whole screen (using
the IlvView::ensureInScreen method).

Note: The method IlvView::ensureInScreen places a view inside a monitor. It
considers the monitor in which the view is located as the working monitor. For example, if a
view is located in monitor 2, calling IlvView::ensureInScreen on the view will leave
the view in monitor 2.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 271

B. Using IBM ILOG Views on Microsoft Windows

usrfoundation.book Page 272 Tuesday, July 28, 2009 10:34 AM
272 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

A P P E N D I X

usrfoundation.book Page 273 Tuesday, July 28, 2009 10:34 AM
C

Using IBM ILOG Views on X Window
Systems

This appendix provides information about using IBM® ILOG® Views on X Window
systems in the UNIX environment.

◆ Libraries describes the two versions of IBM ILOG Views, based on Xlib or Motif.

◆ The capability of Adding New Sources of Input

◆ Performing ONC-RPC Integration

◆ Integrating IBM ILOG Views with a Motif Application Using libmviews

◆ Integrating IBM ILOG Views with an X Application Using libxviews

Libraries

IBM® ILOG® Views libraries are delivered in two versions:

◆ libxviews, which is based on Xlib.

◆ libmviews, which is based on Motif.

When developing an IBM ILOG Views application, you can create at link time either a pure
Xlib application or an application that will be easier to integrate with Motif. Depending on
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 273

C. Using IBM ILOG Views on X Window Systems

usrfoundation.book Page 274 Tuesday, July 28, 2009 10:34 AM
what kind of application you want to obtain, you will link your files either with libxviews
for a pure Xlib application or with libmviews for a Motif-based application. Your source
code is independent of the library you choose to link with.

For details on using these libraries, see:

◆ Using the Xlib Version, libxviews

◆ Using the Motif Version, libmviews

Using the Xlib Version, libxviews

Creating the IlvDisplay object establishes a regular connection with the display system.
From the X Window point of view, the IlvSystemView type provided to IlvDisplay is
equivalent to the Window type. The event loop management is based on a call to select on
the file descriptor corresponding to the connection to the display system. You link with the
libxviews and libX11 libraries.

Restrictions

In early IBM ILOG Views releases, when gadgets were not yet available, some basic
portable GUI components, mainly standard dialogs, were implemented using Motif on
UNIX and Microsoft SDK on Windows. These features, though replaced by more recent
equivalent components in IBM ILOG Views, have been kept for backward compatibility.
They are implemented in libmviews but not in libxviews, which is not based on Motif.
These are:

◆ Standard system dialogs: IlvPromptDialog, IlvInformationDialog,
IlvQuestionDialog, IlvFileSelector and IlvPromptStringsDialog.

These classes are declared in the header file ilviews/dialogs.h. The Gadgets library
libilvgadgt provides portable versions (in pure IBM ILOG Views code) of similar
dialogs. See the ilviews/stdialog.h header file.

◆ The IlvScrollView, based on Motif XmScrolledWindow.

The classes IlvScrolledView and IlvScrolledGadget offer similar services.

Using the Motif Version, libmviews

Creating the IlvDisplay object initializes the Xt library and creates a top shell widget. The
values returned by the member functions IlvAbstractView::getSystemView or
IlvAbstractView::getShellSystemView are actual Motif widgets. The event loop
management is strictly equivalent to a call to XtAppMainLoop. You must have Motif
installed on your platform and you must link with the libmviews library and with the
libXm, libXt and libX11 libraries.

These differences are discussed in detail in the rest of this appendix, and examples on how to
use one or the other mode are provided in the distribution.
274 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Adding New Sources of Input

usrfoundation.book Page 275 Tuesday, July 28, 2009 10:34 AM
Important restriction:

The use of libmviews is deprecated in shared library format. Since version 4.0, all shared
libraries provided by IBM ILOG Views are built using libxviews and are incompatible
with libmviews.

libmviews can only be used with the static version of other IBM ILOG Views libraries

Adding New Sources of Input

IBM® ILOG® Views allows the application to add file descriptors as new sources of input.
See the member functions IlvEventLoop::addInput and IlvEventLoop::addOutput
for details.

ONC-RPC Integration

You can use the BSD sockets or the ONC-RPC with IBM® ILOG® Views once you have
access to the XtAppAddInput functions.

For more information about ONC-RPC, you can take a look at the Sun Network
documentation or the equivalent on your system.

Integrating IBM ILOG Views with a Motif Application Using libmviews

IBM® ILOG® Views was designed to be easily integrated with existing Motif applications.
The library libmviews provides a way to connect an IlvView with an existing Motif
widget and the mechanism required to respond to user action.

In the following sections, you will find information on:

◆ Initializing Your Application

◆ Retrieving Connection Information

◆ Using an Existing Widget

◆ Running the Main Loop

◆ Sample Program Using Motif and IBM ILOG Views

Initializing Your Application

When integrating IBM ILOG Views code with a Motif-based application, you can create an
IBM ILOG Views session in two different ways: you can use either the standard
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 275

C. Using IBM ILOG Views on X Window Systems

usrfoundation.book Page 276 Tuesday, July 28, 2009 10:34 AM
IBM ILOG Views initialization procedure or use the initialization block of the Motif
application and call the second constructor of the IlvDisplay class, as shown below:

Standard IBM ILOG Views Initialization Procedure

IlvDisplay* display = new IlvDisplay("Program", "", argc, argv);

Here, IBM ILOG Views establishes the connection with the display system.

Motif Application Initialization Procedure

Widget top = XtInitialize("", "Program", NULL, NULL, (Cardinal*)&argc, argv);
if (!top) {
 IlvFatalError("Couldn’t open display");
 exit(1);
}
IlvDisplay* display = new IlvDisplay(XtDisplay(top), "X");

Here, standard Xt function calls initialize the connection. You have to specify the
application name in the constructor of IlvDisplay to be able to find display resources
from this string.

Retrieving Connection Information

You can access the topmost shell created by IBM ILOG Views by calling the member
function topShell of the IlvDisplay class. The returned value must be converted to a
Widget.

The Xt application context is returned by the function IlvApplicationContext. The
returned value must be converted to an XtAppContext.

To get all the information about a connection to an X Window application, you must use the
following functions:

XtAppContext appContext = (XtAppContext)IlvApplicationContext();
Widget topLevel = (Widget)display->topShell();

Before using the IlvApplicationContext function, add the following to the application
code:

extern XtAppContext IlvApplicationContext();

To use the XtAppContext object, refer to the Xt documentation.

Using an Existing Widget

Most of the classes that inherit from the IlvView class define a constructor that specifies an
existing widget to be used, instead of your having to create one. Here is how to create an
IlvView object from a widget:
276 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Integrating IBM ILOG Views with a Motif Application Using libmviews

usrfoundation.book Page 277 Tuesday, July 28, 2009 10:34 AM
IlvDisplay* display = ... // display initialization
// Create a DrawingArea widget
Widget drawingArea =
 XtVaCreateManagedWidget("ilvview",
 xmDrawingAreaWidgetClass, parent,
 XmNwidth, 100,
 XmNheight, 100,
 0);
// Realize this widget
XtRealizeWidget(drawingArea);
// Create a IlvView object from this widget.
IlvView* aView = new IlvView(display, drawingArea);

The only restriction is that the widget you use must already be realized (in the Xt
terminology, that is, the widget must have a window) before you call the constructor of
IlvView.

Running the Main Loop

In libmviews, the function IlvMainLoop does exactly the same job as XtAppMainLoop.
You can use the one you want, but IlvMainLoop is provided to make the code portable
between different platforms.

We recommend that you clearly separate IBM ILOG Views code from Motif code if you
plan to port your applications to other platforms.

Sample Program Using Motif and IBM ILOG Views

The following sample program is a full example of how to integrate IBM ILOG Views code
into a Motif application (samples/foundation/xlib/src/ilvmotif.cpp):

// -- -*- C++ -*-
// IBM ILOG Views samples source file
// File: samples/foundation/xlib/src/ilvmotif.cpp
// --
// Using the grapher in a Motif widget
// --
#include <ilviews/contain/contain.h>
#include <ilviews/graphics/all.h>
#include <stdio.h>
#include <stdlib.h>

// --
// Integration Part with Motif
// --
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Xlib.h>
#include <X11/Shell.h>
#include <Xm/Xm.h>
#include <Xm/DrawingA.h>
#include <Xm/PushB.h>
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 277

C. Using IBM ILOG Views on X Window Systems

usrfoundation.book Page 278 Tuesday, July 28, 2009 10:34 AM
// --
static void
Quit(Widget, XtPointer display, XtPointer)
{
 delete (IlvDisplay*)display;
 exit(0);
}

#define INPUT_MASK (unsigned long)(ButtonPressMask | ButtonReleaseMask |\
 KeyPressMask | KeyReleaseMask |\
 ButtonMotionMask | EnterWindowMask |\
 LeaveWindowMask | PointerMotionMask | \
 ExposureMask | StructureNotifyMask)

extern "C" void IlvDispatchEvent(XEvent* xevent);

static void
ManageInput(Widget, XtPointer, XEvent* xevent, Boolean*)
{
 IlvDispatchEvent(xevent);
}

// --
IlvDisplay*
IlvGetDisplay(Display* xdisplay)
{
 static IlvDisplay* ilv_display = 0;
 if (!ilv_display)

ilv_display = new IlvDisplay(xdisplay, "IlvMotif");
 return ilv_display;
}

// --
IlvContainer*
CreateContainer(Widget widget)
{
 IlvContainer* c = new IlvContainer(IlvGetDisplay(XtDisplay(widget)),
 (IlvSystemView)XtWindow(widget));
 XtAddEventHandler(widget, INPUT_MASK, False,
 ManageInput, (XtPointer)c);
 return c;
}

// --
int
main(int argc, char* argv[])
{
 Widget toplevel = XtInitialize("", "IlvMotif", NULL, 0,
 &argc, argv);
 if (!toplevel)
 exit(1);
 Widget drawArea = XtVaCreateManagedWidget("ilvview",
 xmDrawingAreaWidgetClass,
 (Widget)toplevel,
 XtNwidth, 400,
 XtNheight, 400,
 (IlAny) 0);
 Widget pushb = XtVaCreateManagedWidget("Quit",
278 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Integrating IBM ILOG Views with an X Application Using libxviews

usrfoundation.book Page 279 Tuesday, July 28, 2009 10:34 AM
 xmPushButtonWidgetClass,
 drawArea,
 (IlAny) 0);
 XtRealizeWidget(toplevel);
 IlvContainer* container = CreateContainer(drawArea);
 XtAddCallback(pushb, XmNactivateCallback, Quit, container->getDisplay());
 container->readFile("demo2d.ilv");
 XtMainLoop();
 return 0;
}

Integrating IBM ILOG Views with an X Application Using libxviews

The Xlib version has the capability of integrating any Xlib-based application as soon as it is
provided a pointer to a Display object, a Window to draw to, and a way to receive events
from it.

In the following sections, you will find information on:

◆ Integration Steps

◆ Complete Template

◆ Complete Example with Motif

Integration Steps

To use IBM ILOG Views with any Xlib-based toolkit, you have to:

1. Create an IlvDisplay instance using an existing X Display.

Use the IlvDisplay constructor:

IlvDisplay::IlvDisplay(IlAny exitingXDisplay, const char* name);

For example:

Display* xdisplay;
// ... initialize this Display*: xdisplay = XOpenDisplay(...);
IlvDisplay* ilvdisplay = new IlvDisplay((IlAny)xdisplay, "Views");

2. Create some IlvView or IlvContainer instances using an existing X Window:

Use the IlvView constructor:

IlvView::IlvView(IlvDisplay* display,
 IlvSystemView existingXWindow)

For example:

IlvDisplay* display;
// initialize this 'display'
Window xWindow;
// initialize this X window
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 279

C. Using IBM ILOG Views on X Window Systems

usrfoundation.book Page 280 Tuesday, July 28, 2009 10:34 AM
IlvView* view = new IlvView(display, (IlvSystemView)xWindow);

or

IlvContainer* container = new IlvContainer(display,
 (IlvSystemView)xWindow);

3. Manage the events in these IlvView views:

Once you receive an X event, you must call

IlvEventLoop::getEventLoop()->dispatchEvent(&xevent);

Complete Template

The main procedure looks like this:

main()
{
 // Initialize your toolkit
 Display* xdisplay;
 xdisplay = // XOpenDisplay...;
 // Initialize an IlvDisplay
 IlvDisplay* ilvdisplay = new IlvDisplay((IlAny)xdisplay, "Views");
 // Create an X window:
 Window xwindow;
 xwindow = // ...;
 // Create an IlvContainer
 IlvContainer* container = new IlvContainer(display,(IlvSystemView)xwindow);
 container->addObject(new IlvLabel(...));
 // Now call the toolkit main event loop
}

Complete Example with Motif

Motif is chosen only as an example of an X-based toolkit. A better way to integrate
IBM ILOG Views with Motif is to use the standard IBM ILOG Views library libmviews
that already does the integration for you. The following example is just meant to illustrate
what would need to be done if libmviews was not available (samples/xlib/
ilvmotif.cc):

// ---
// Integration of IlogViews, pure XLib version into a Motif
// application
// ---
#include <ilviews/contain.h>
#include <ilviews/label.h>

#include <X11/Intrinsic.h>
#include <Xm/Xm.h>
#include <Xm/DrawingA.h>
#include <X11/StringDefs.h>

// Define the default input mask for the window
#define INPUT_MASK (unsigned long)(ButtonPressMask | \
280 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Integrating IBM ILOG Views with an X Application Using libxviews

usrfoundation.book Page 281 Tuesday, July 28, 2009 10:34 AM
 ButtonReleaseMask | \
 KeyPressMask | \
 KeyReleaseMask | \
 ButtonMotionMask | \
 EnterWindowMask | \
 LeaveWindowMask | \
 PointerMotionMask | \
 ExposureMask | \
 StructureNotifyMask)

// ---
// This will be called by Xt when events of any of the
// types specified in INPUT_MASK occur.
// To do this, we call upon the XtAddEventHandler function call
// (see main()).
// ---

static void
ManageInput(Widget, XtPointer view, XEvent* xevent, Boolean*)
{
 IlvEventLoop::getEventLoop()->dispatchEvent(xevent);
}
// ---
void
main(int argc,char** argv)
{
 // Initialize X Window:
 Widget toplevel = XtInitialize("", "IlvXlib", NULL, NULL,
 // XtInitialize has a new specific signature in X11r5
#if defined(XlibSpecificationRelease) && (XlibSpecificationRelease >= 5)
 &argc,
#else
 (Cardinal*)&argc,
#endif
 argv);
 // If the top shell couldn’t be created, exit
 if (!toplevel)
 exit(1);

 // Create a Motif widget to draw to
 Widget drawArea = XtVaCreateManagedWidget("ilvview",
 xmDrawingAreaWidgetClass,
 (Widget)toplevel,
 XtNwidth, 400,
 XtNheight, 400,
 0);
 XtRealizeWidget(toplevel);

 // Create an IlvDisplay instance from the existing Display
 IlvDisplay* display = new IlvDisplay(XtDisplay(drawArea), "Views");

 // Create a container associated with the drawing area:
 IlvContainer* container =
 new IlvContainer(display, (IlvSystemView)XtWindow(drawArea));

 // Create a graphic object in the container
 container->addObject(new IlvLabel(display,
 IlvPoint(30, 30),
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 281

C. Using IBM ILOG Views on X Window Systems

usrfoundation.book Page 282 Tuesday, July 28, 2009 10:34 AM
 "an IlvLabel instance"));
 // Let IlogViews know about the events
 XtAddEventHandler(drawArea, INPUT_MASK, IlFalse, ManageInput, NULL);

 // Wait for events to occur
 XtMainLoop();
}

The directory samples/xlib/ contains more examples applying to various toolkits:
ilvmotif.cpp is another integration with Motif, similar to this one, ilvolit.cpp
illustrates an integration with OpenWindow and ilvxview.cpp an integration with XView.
282 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

A P P E N D I X

usrfoundation.book Page 283 Tuesday, July 28, 2009 10:34 AM
D

Portability Limitations

This section provides you with a list of IBM® ILOG® Views features whose portability
might be limited because they are system-dependent. In the following sections, these
features are grouped into:

◆ Non-Supported or Limited Features: Those that are partially or not supported on certain
systems.

◆ The Main Event Loop: Features whose result varies depending on the system on which
they are used, in particular the main event loop.

Non-Supported or Limited Features

The table below gives you a list of IBM® ILOG® Views features that are either partially or
not supported on certain systems.

Table D.1 Non-supported or Limited Features

BitPlanes Not Supported on Microsoft Windows.

Modal mode Not supported on Windows NT.

Pattern size
Microsoft Windows patterns are limited in size. You can create larger
patterns, but only the upper-left corner will define the final pattern.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 283

D. Portability Limitations

usrfoundation.book Page 284 Tuesday, July 28, 2009 10:34 AM
Transparent
patterns

On Microsoft Windows, transparent patterns are available only for
Microsoft Windows predefined HATCHED brushes. This means that
user-defined patterns and some IBM ILOG Views predefined
patterns cannot be transparent. The list of the IBM ILOG Views
patterns built on a predefined Microsoft Windows HATCHED pattern
is: dialoglr, dialogrl, horiz, vert, cross. This limitation is
not applicable when using GDI+, which supports all kind of
transparent brushes.

Line style

The following pattern styles are not valid when drawing lines on
Microsoft Win9x: dashdot, doubledot, and longdash; these all
result in the dash style. Setting the line width to a value greater than
1 causes the line pattern to disappear.

Cursor size

On Microsoft Windows, the size of the cursor is fixed and depends
on the driver. When bitmaps with bad sizes are given to the
IlvCursor constructor, an error message is sent. IBM ILOG Views
provides the method IlvCursor::isBad for testing the success
of the creation of a cursor.

Mouse buttons

Certain types of mouse have only two buttons. In this case, the
events linked to the right button are set as IlvMiddleButton. This
results from the fact that, historically, the first interactors used the
IlvMiddleButton and almost never the IlvRightButton. You
can modify this behavior using the UseRightButton application
resource.

Windows icon
On Windows 95 and Windows NT4, the icon associated with each of
the views is the same for all the views of an application.

Transparency Anti-
aliasing

Available on Windows with GDI+ only. See Appendix B.

Polygons

On Windows 95, the maximal number of points of a polygon is
16381.
However, in some cases, a polygon can be composed of more
points (convex polygons for example).

Mutable colors

Mutable colors may only be used with the pseudo color model. The
pseudo color model is an arbitrary mapping of pixel to color that
depends on the screen depth and is stored in a color map (UNIX
Systems) or a palette (PCs). Mutable colors do not work on direct
color or on true color models.

Window opacity Not supported on UNIX platforms.

Table D.1 Non-supported or Limited Features (Continued)
284 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

The Main Event Loop

usrfoundation.book Page 285 Tuesday, July 28, 2009 10:34 AM
The Main Event Loop

The main IBM® ILOG® Views event loop, defined by the global function IlvMainLoop,
does not work in the same way on X Window and on Microsoft Windows systems. While X
Window servers operate in asynchronous mode, Microsoft Windows works in synchronous
mode. Also, timer management varies depending on the system used.

◆ Synchronous vs. asynchronous mode: On X Window, a request sent to the server is
not immediately processed even if the function returns. It is processed only after it
returns to the main loop. For example, a request for displaying a view is performed only
when the X Window server sends back a map notify event and this event is processed by
the IBM ILOG Views API.

◆ Timers management: On Microsoft Windows, a timer notification is a Windows event
that can be processed in the event loop. On X Window, a timer notification is not an event
and therefore the main loop is not aware of it, whether it is active or not.

Zoomable labels

On UNIX, IlvZoomableLabel objects are bitmaps that can be
zoomed, rotated, and so on. On Microsoft Windows, bitmaps cannot
be used because Microsoft Windows is not able to rotate bitmaps,
and therefore IlvZoomableLabel objects are implemented using
True Type fonts.
The limitation is due to the fact that True Type fonts are not true
vectorial fonts since they work in a step by step way. Moreover, the
Microsoft Windows system is not able to give the real size of a font
(see Microsoft Win32 Programmer’s Reference, Volume 1, page
688: “In Windows, the size of a font is an imprecise value”).

Note: The same limitation appears for the Vectorial fonts contribution
given in the <ILVHOME>/tools/vectfont directory. Vectorial fonts
are implemented using Hershey fonts on UNIX platforms, and True Type or
Hershey fonts on Microsoft Windows platforms.

Strings in XOR
mode

This works on X Window. Since Microsoft Windows cannot draw
strings in the Xor mode, IBM ILOG Views draws an Xor dotted
rectangle that has the same size as the text. To display a real string,
display an Xor label using the methods IlvPort::drawString or
IlvPort::drawIString.

Table D.1 Non-supported or Limited Features (Continued)
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 285

D. Portability Limitations

usrfoundation.book Page 286 Tuesday, July 28, 2009 10:34 AM
286 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

A P P E N D I X

usrfoundation.book Page 287 Tuesday, July 28, 2009 10:34 AM
E

Error Messages

This section discusses IBM® ILOG® Views error message generation, based on The
IlvError Class. It contains a list of the messages that IBM ILOG Views may generate when
running your applications. You will find the message text, the explanation of why the error
message may have been produced, and a possible workaround.

The lists are alphabetical reference lists and describe:

◆ Fatal Errors

◆ Warnings

If you have not overloaded the default error handler, the fatal error messages are prefixed by
two number-sign characters (#), and warnings are prefaced by two dashes (-).

The IlvError Class

IBM® ILOG® Views provides an error message mechanism based on the IlvError class.
There is a default IlvError instance that is automatically installed for every
IBM ILOG Views application.

Note: These are consolidated lists, so some of the error messages are for
IBM ILOG Views packages that you may not have.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 287

E. Error Messages

usrfoundation.book Page 288 Tuesday, July 28, 2009 10:34 AM
This class implements warnings and fatal errors by simply printing out the message
parameter. You can create subtypes of this class to perform more complex actions, and make
IBM ILOG Views use them.

Two global functions get and set the current error handler:

extern "C" IlvError* IlvGetErrorHandler();
extern "C" void IlvSetErrorHandler(IlvError* errorHandler);

To make IBM ILOG Views call the error handler, send each error message through one of
these global functions:

extern "C" void IlvWarning(const char* format, ...);
extern "C" void IlvFatalError(const char* format, ...);

The parameter format has the same format as the regular C function printf. The above
two global functions expect their parameters in the same way as printf does.

Fatal Errors

xxx was called with no arguments

In an arithmetic expression execution, the indicated predefined function should be called
with at least one parameter.

Bad image description header

Unrecognizable bitmap header in an XPM file.

Bad image colors description

Unrecognizable color descriptor in an XPM file.

Cannot open xxx for writing

This indicated filename could not be opened for writing. The UNIX version gives more
information.

couldn’t open dump file

Could not open dump file for writing.

couldn’t open xxx

The indicated filename cannot be opened for reading or writing.

File xxx has a bad format.

The indicated filename is not an IBM ILOG Views data file.

File IlogViews versions do not match

You are trying to read an IBM ILOG Views data file that was produced with a later version
than the library you are running.
288 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Fatal Errors

usrfoundation.book Page 289 Tuesday, July 28, 2009 10:34 AM
Format not implemented.

This BMP format is not implemented.

IlvBitmap::read: couldn’t open file xxx

IlvDisplay::readBitmap: couldn’t open file xxx

The indicated filename could not be opened for reading.

IlvBitmap::read: bad format xxx

Could not read file as a predefined format (XBM, XPM or PBM P0 or P4).

IlvBitmap::read: unknown color index xxx

This indicates a bad color allocation.

IlvBitmap::save: couldn’t open file xxx

Could not open file for writing.

IlvBitmap::saveAscii: Too many colors for ascii format

...(continued)

Too many colors were allocated to read this bitmap with all the required colors.
IBM ILOG Views will try to find the closest existing colors to represent the image as
accurately as possible.

IlvContainer::readFile: couldn’t open file xxx (check ILVPATH)

Specified file could not be loaded. Check your ILVPATH environment variable.

IlvContainer::read: wrong format

The file contents could not be loaded.

IlvDisplay::readAsciiBitmap: wrong type xxx

In IlvDisplay::readAsciiBitmap this is not a recognized file type.

IlvDisplay::readBitmap: unknown format xxx

The indicated file does not contain a known bitmap format.

IlvEventPlayer::load: couldn’t open xxx

Could not open event file for reading.

IlvEventPlayer::save: couldn’t open xxx

Could not open event file for writing.

IlvGetViewInteractor: xxx not registered

The indicated view interactor class name is not registered. You may need to add a call to the
macro IlvLoadViewInteractor.

IlvGifFile() - xxx

A GIF error message. Self explanatory.

IlvInputFile::readNext: unknown class: xxx
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 289

E. Error Messages

usrfoundation.book Page 290 Tuesday, July 28, 2009 10:34 AM
The indicated class is unknown by your binary. Try to include the header file where this class
appears in one of your modules source file.

IlvInputFile::readObject: bad format for: xxx

Not a valid IBM ILOG Views header.

IlvInputFile::readObjectBlock: no object

An object block could not be successfully read.

IlvManagerViewInteractor: no such view

You tried to set a view interactor to a view that is not connected to the manager.

IlvReadAttribute: unknown attribute class xxx

The indicated attribute class name does not match a known class. You may need to register
this attribute class.

IlvReadPBMBitmap: bad format

The header of the PBM file is wrong.

IlvReadPBMBitmap: unknown bitmap format

Wrong PBM format. Known formats are P1 to P6.

IlvPSDevice::drawTransparentBitmap: cannot use image mask

Trying to dump a transparent bitmap that actually is a colored image.

IlvPSDevice::setCurrentPalette: file not opened

The dump file is not opened, but the dump process has started!

IlvVariable::setFormula: error in xxx

There has been an error when trying to read the formula.

IlvVariableContainer::connect: unknown attribute class xxx

IlvVariableManager::connect: unknown attribute class xxx

Need to register this attribute’s type. This error message is deprecated.

Not an IlogViews data file

The indicated file is not an IBM ILOG Views data file.

Not a valid IlogViews message database file

IlvMessageDatabase::read could not convert this file contents into a database format.

Not a XPM format

Not a valid XPM format. IBM ILOG Views can read XPM 2 and C-coded formats.

PolyPoints with zero points

Trying to create an empty polypoints object.

ReadAsciiColorBitmap: couldn’t open xxx
290 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Warnings

usrfoundation.book Page 291 Tuesday, July 28, 2009 10:34 AM
Could not open file for reading.

ReadMonochromeX11Bitmap: couldn’t read bitmap. Data=xxx

Only occurs on Microsoft Windows versions. Could not read XBM bitmap file.

Unknown bitmap format: xxx

In IlvBitmap::read: unknown bitmap format.

Unknown event type: xxx

Reading an event file: could not find a match with a know event type.

Unknown requested type xxx in isSubtypeOf

The parameter to IlvGraphic::isSubtypeOf is not a known class.

Unknown proposed type xxx in isSubtypeOf

The class name of the object that called isSubtypeOf is invalid.

Warnings

(<<IlvPattern*): Pattern has no name. Using ‘noname’

(<<IlvColorPattern*): Pattern has no name. Using ‘noname’

When saving a pattern or a colored pattern, the pattern’s bitmap has no name. You may need
to set the bitmap name before saving it, otherwise it will not be correctly loaded.

CreateBitmapCell: bitmap xxx not found using default

When creating a bitmap cell, the bitmap name was not found internally. You may need to
pre-read the indicated bitmap file.

Found object xxx without IlvPalette

When saving an object, the palette has been replaced. This indicates that you modified your
object when saving it.

Icon bitmap has no name. Using ‘noname’

When saving a transparent icon, the bitmap has no internal name and will not be loaded
properly.

IlvButton::read: could not find bitmap xxx. Using default

When creating a bitmap button, the bitmap name was not found internally. You may need to
pre-read the indicated bitmap file.

IlvDisplay::copyStretchedBitmap: can’t stretch from pixmap to
bitmap

Trying to stretch a color bitmap into a monochrome destination device.

IlvGadgetContainer::read: couldn’t allocate background color
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 291

E. Error Messages

usrfoundation.book Page 292 Tuesday, July 28, 2009 10:34 AM
The container background color that was saved in the data file cannot be allocated. Release
some colors to the system.

IlvGrapher::duplicate: object selection not removed

An error has occured when removing the selection on an object.

IlvGrapher::duplicate: object not found

Trying to duplicate objects that are not stored in the grapher.

IlvIcon::read: could not find bitmap xxx. Using default

When creating an icon, the bitmap name was not found internally. You may need to pre-read
the indicated bitmap file.

IlvIcon::write: no name. Using ‘noname’...

When saving the icon’s bitmap, the bitmap has no name. You may need to set the bitmap
name before saving it, otherwise it will not be correctly loaded.

IlvManager::align: invalid value for align : xxx

Invalid direction parameter for IlvManager::align.

IlvManager::cleanObj: no properties

Trying to clean an object that is not stored in a manager. You may have removed this object
twice, or deleted the object before the manager has removed it.

IlvManager::duplicate: object not found

Trying to duplicate an object that is not in this manager.

IlvManager::reshapeObject: no properties

Trying to reshape an object that is not in this manager.

IlvManager::translateObject: no properties

Trying to translate an object that is not in this manager.

IlvManager::zoomView: invalid transformer

The requested zoom operation would result in a non-reversible transformer.

IlvReadPBMBitmap: bad values

The image description is wrong.

IlvSetLanguage: locale not supported by Xlib

The X11 library to which you linked your application does not support your current locale.
You may need to relink with a shared version of libX11 that supports your locale.

IlvTransformer::inverse(IlvPoint&): bad transformer xxx

IlvTransformer::inverse(IlvFloatPoint&): bad transformer xxx

IlvTransformer::inverse(IlvRect&): bad transformer xxx
292 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Warnings

usrfoundation.book Page 293 Tuesday, July 28, 2009 10:34 AM
The transformer cannot perform the inverse call, because it is not reversible. The indicated
value is the address of the transformer, provided for debugging purposes. Check the
transformer values.

IlvTransparentIcon::read: couldn’t find bitmap xxx. Using default

When reading a transparent icon, the name does not match an internally known bitmap. You
may need to pre-load the corresponding bitmap.

IlvZoomableIcon::read: couldn’t find bitmap xxx. Using default

The bitmap name of the zoomable icon does not match a know bitmap.

Object not removed xxx

In IlvIndexedSet::removeObject, the object is not stored in this indexed set.

Quadtree::add: xxx [bbox] Already in quadtree

An object is stored twice in a manager. The object type and its bounding box are provided.

Quadtree::remove: object xxx [bbox] not in quadtree

An object is removed from the manager but it was not stored in it.

ReadBitmap: Bitmap xxx not found! Using default

ReadColorPattern: Pattern xxx not found!

ReadPattern: Pattern xxx not found! Using ‘solid’

When reading a bitmap, may be used in a pattern. The bitmap name was not found
internally. You may need to pre-read the indicated bitmap file.

ReadLineStyle: LineStyle xxx not found! Using ‘solid’

When reading a line style, could not find the indicated line style identifier.

Too many colors. We’ll keep xxx

Color allocation request failed. IBM ILOG Views tries to find the closest existing color to
complete the bitmap.

WriteBitmap: Bitmap has no name using ‘noname’

When saving a bitmap, the bitmap has no name. You may need to set the bitmap name before
saving it, otherwise it will not be correctly loaded.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 293

E. Error Messages

usrfoundation.book Page 294 Tuesday, July 28, 2009 10:34 AM
294 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

A P P E N D I X

usrfoundation.book Page 295 Tuesday, July 28, 2009 10:34 AM
F

IBM ILOG Script 2.0 Language Reference

This reference covers the syntax of IBM ILOG Script. IBM ILOG Script is an ILOG
implementation of the JavaScriptTM scripting language from Netscape Communications
Corporation.

Language Structure

◆ Syntax

◆ Expressions

◆ Statements

Built-In Values and Functions

◆ Numbers

◆ Strings

◆ Booleans

◆ Arrays

◆ Objects

◆ Dates

◆ The null Value

◆ The undefined Value
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 295

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 296 Tuesday, July 28, 2009 10:34 AM
◆ Functions

◆ Miscellaneous

Syntax

The topics are:

◆ IBM ILOG Script Program Syntax

◆ Compound Statements

◆ Comments

◆ Identifier Syntax

IBM ILOG Script Program Syntax

An IBM ILOG Script program is made of a sequence of statements. Statements may include
conditional statements, loops, function definitions, local variable declarations, and so forth.
An expression can also be used any time a statement is expected, in which case its value is
ignored and only its side effect is taken into account. Expressions may include assignments,
function calls, property access, etc.

Multiple statements or expressions may occur on a single line if they are separated by a
semicolon (;). For example, the two following programs are equivalent:

Program1:

writeln("Hello, world")
x = x+1
if (x > 10) writeln("Too big")

Program2:

writeln("Hello, World"); X = X+1; If (X > 10) Writeln("Too Big")

Compound Statements

A compound statement is a sequence of statements and expressions enclosed in curly
brackets ({}). It can be used to perform multiple tasks any time a single statement is
expected. For example, in the following conditional statement, the three statements and
expressions in curly brackets are executed when the condition a > b is true:

if (a > b) {
var c = a
a = b
b = c
}
296 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Syntax

usrfoundation.book Page 297 Tuesday, July 28, 2009 10:34 AM
The last statement or expression before a closing curly bracket does not need to be followed
by a semicolon, even if it is on the same line. For example, the following program is
syntactically correct and is equivalent to the previous one:

if (a > b) { var c = a; a = b; b = c }

Comments

IBM ILOG Script supports two different styles of comments:

◆ Single line comments. A single line comment starts with // and stops at the end of the
line. Example:

x = x+1 // Increment x,
y = y-1 // then decrement y.

◆ Multiple line comments. A multiple line comment starts with a /* and stops with a */; it
can span multiple lines. Nested multiple line comments are not allowed. Example:

/* The following statement
increments x. */
x = x+1
/* The following statement
decrements y. */
y = y /* A comment can be inserted here */ -1

Identifier Syntax

Identifiers are used in IBM ILOG Script to name variables and functions. An identifier starts
with either a letter or an underscore, and is followed by a sequence of letters, digits, and
underscores.

Here are some examples of identifiers:

car
x12
main_window
_foo

IBM ILOG Script is case sensitive, thus the uppercase letters A-Z are distinct from the
lowercase letters a-z. For example, the identifiers car and Car are distinct.

The names in the table below are reserved and cannot be used as identifiers. Some of these
names are keywords used in IBM ILOG Script; others are reserved for future use.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 297

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 298 Tuesday, July 28, 2009 10:34 AM
The names in the table below are reserved and cannot be used as identifiers. Some of these
names are keywords used in IBM ILOG Script; others are reserved for future use.

Expressions

The topics are:

◆ IBM ILOG Script Expressions

◆ Literals

◆ Variable Reference

◆ Property Access

◆ Assignment Operators

◆ Function Call

◆ Special Keywords

◆ Special Operators

◆ Other Operators

IBM ILOG Script Expressions

Expressions are a combination of literals, variables, special keywords, and operators.

The precedence of operators determines the order in which they are applied when evaluating
an expression. Operator precedence can be overridden by using parentheses.

abstract
boolean
break
byte
case
catch
char
class
const
continue
default
delete
do
double

else
extends
false
final
finally
float
for
function
goto
if
implements
import
in
instanceof

int
interface
long
native
new
null
package
private
protected
public
return
short
static
super

switch
synchronized
this
throw
throws
transient
true
try
typeof
var
void
while
with

Note: For C/C++ programmers: The syntax of IBM ILOG Script expressions is very
close to the C/C++ syntax.
298 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Expressions

usrfoundation.book Page 299 Tuesday, July 28, 2009 10:34 AM
The following table lists the IBM ILOG Script operators and gives their precedence, from
lowest to highest:

Literals

Literals can represent:

◆ Numbers, for example: 12 14.5 1.7e-100

◆ Strings, for example: "Ford" "Hello world\n"

◆ Booleans, either true or false.

◆ The null Value: null.

Table F.1 IBM ILOG Script Operator Precedence

Category Operators

Sequence ,

Assignment = += -= *= /= %= <<= >>= >>>=
&= ^= |=

Conditional ?:

Logical-or | |

Logical-and &&

Bitwise-or |

Bitwise-xor ^

Bitwise-and &

Equality == !=

Relational < <= > >=

Bitwise shift << >> >>>

Addition, substraction + -

Multiply, divide * / %

Negation, increment, typeof ! ~ - ++ -- typeof

Call ()

New new

Property . []
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 299

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 300 Tuesday, July 28, 2009 10:34 AM
See Number Literal Syntax on page 316 and String Literal Syntax on page 322 for further
details about number and string literal syntax.

Variable Reference

Variable reference syntax is shown in the following table.

Table F.2 IBM ILOG Script Variable Syntax

Syntax Effect

variable Returns the value of variable. See Identifier Syntax on
page 297 for the syntax of variables.
If variable doesn't exist, an error is signalled. This is not the
same as referencing an existing variable whose value is the
undefined value—which is legal and returns the undefined
value.
When used in the body of a with statement, a variable
reference is first looked up as a property of the current
default value.
300 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Expressions

usrfoundation.book Page 301 Tuesday, July 28, 2009 10:34 AM
Property Access

There are two syntaxes for accessing a value property:

Table F.3 IBM ILOG Script Property Access Syntax

Syntax Effect

value.name Returns the value of the name property of value, or the
undefined value if this property is not defined. See Identifier
Syntax on page 297 for the syntax of name.
Examples:
 str.length

 getCar().name
Because name must be a valid identifier, this form cannot be
used to access properties which don't have a valid identifier
syntax. For example, the numeric properties of an array
cannot be accessed this way:
 myArray.10 // Illegal syntax

For these properties, use the second syntax.

value[name] Same as the previous syntax, except that this time name is
an evaluated expression which yields the property name.
Examples:
 str["length"] // Same as str.length
 getCar()[getPropertyName()]
 myArray[10]
 myArray[i+1]
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 301

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 302 Tuesday, July 28, 2009 10:34 AM
Assignment Operators

The = operator can be used to assign a new value to a variable or a property:

In addition, the following shorthand operators are also defined:

Table F.4 IBM ILOG Script Assignment Operator Syntax

Syntax Effect

variable = expression Assigns the value of expression to variable. If variable does
not exist, it is created as a global variable.
Examples:
 x = y+1

The whole expression returns the value of expression.

value.name = expression
value[name] = expression

Assigns the value of expression to the given property.
If value doesn't have such a property, then if it is either an
array or an object, the property is created; otherwise, an
error is signalled.
Examples:
 car.name = "Ford"
 myArray[i] = myArray[i]+1

The whole expression returns the value of expression.

Table F.5 Shorthand Operators

Syntax Shorthand For

++X X = X+1

X++ Same as ++X, but returns the initial value of X instead of its
new value.

--X X = X-1

X-- Same as --X, but returns the initial value of X instead of its
new value.

X += Y X = X + Y

X -= Y X = X - Y

X *= Y X = X * Y

X /= Y X = X / Y

X %= Y X = X % Y

X <<= Y X = X << Y

X >>= Y X = X >> Y
302 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Expressions

usrfoundation.book Page 303 Tuesday, July 28, 2009 10:34 AM
Function Call

The syntax for calling a function is:

X >>>= Y X = X >>> Y

X &= Y X = X & Y

X ^= Y X = X ^ Y

X |= Y X = X | Y

Table F.6 IBM ILOG Script Function Call Syntax

Syntax Effect

function(arg1, ..., argn) Calls function with the given arguments, and returns the
result of the call.
Examples:
 parseInt(field)

 writeln("Hello ", name)

 doAction()

 str.substring(start, start+length)

Function is typically either a variable reference or a property
access, but it can be any arbitrary expression; the
expression must yield a function value, or an error is
signalled.
Examples:
 // Calls the function in callbacks[i]
 callbacks[i](arg)

 // Error: a string is not a function
 "foo"()

Table F.5 Shorthand Operators (Continued)

Syntax Shorthand For
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 303

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 304 Tuesday, July 28, 2009 10:34 AM
Special Keywords

Special keywords that can be used are:

Special Operators

The special operators are:

Table F.7 IBM ILOG Script Special Keywords

Syntax Effect

this When referenced in a method, returns the current calling
object; when referenced in a constructor, returns the object
currently being initialized. Otherwise, returns the global
object. See Objects on page 336 for examples.

arguments Returns an array containing the arguments of the current
function. When used outside of a function, an error is
signalled.
For example, the following function returns the sum of all its
arguments:

function sum() {
var res = 0
for (var i=0; i<arguments.length; i++)
res = res+arguments[i]

return res
}

The call sum(1, 3, 5) returns 9.

Table F.8 IBM ILOG Script Special Operator Syntax

Syntax Effect

new constructor(arg1, ...,
argn)

Calls the constructor with the given arguments, and returns
the created value.
Examples:

new Array()
new MyCar("Ford", 1975)

Constructor is typically a variable reference, but it can be any
arbitrary expression.
Example:

new ctors[i](arg) // Invokes constructor
ctors[i]
304 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Expressions

usrfoundation.book Page 305 Tuesday, July 28, 2009 10:34 AM
typeof value Returns a string representing the type of value, as follows:

Type of value Result of typeof value

array "object"

boolean "boolean"

date "date"

function "function"

null "object"

number "number"

object "object"

string "string"

undefined "undefined"

delete variable Delete the global variable variable. This doesn't mean that
the value in variable is deleted, but that variable is removed
from the global environment.
Example:

myVar = "Hello, world" // Create the
global variable myVar
delete myVar
writeln(myVar) // Signals an error

because myVar is undefined
If variable is a local variable, an error is signalled; if variable
is not a known variable, nothing happens.
The whole expression returns the true value.
Note for C/C++ programmers: This operator has a radically
different meaning than in C++, where it is used to delete
objects, not variables and properties.

Table F.8 IBM ILOG Script Special Operator Syntax (Continued)

Syntax Effect
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 305

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 306 Tuesday, July 28, 2009 10:34 AM
Other Operators

Other operators are described in the section dedicated to the datatype they operate on. They
are:

delete value.name
delete value[name]

Remove the property name from the object value.
If value doesn't contain the name property, this expression
does nothing. If the property does exist but cannot be
deleted, an error is signalled. If value is not an object, an
error is signalled.
The whole expression returns the true value.

expression1 , expression2 Evaluates sequentially expression1 and expression2, and
returns the value of expression2. The value of expression1 is
ignored.
The most common use for this operator is inside for loops,
where it can be used to evaluate several expressions where
a single expression is expected:

for (var i=0, j=0; i<10; i++, j+=2) {
writeln(j, " is twice as big as ", i);

}

Table F.9 Other IBM ILOG Script Operators

Syntax Effect

- X
X + Y
X - Y
X * Y
X / Y
X % Y

Arithmetic operators.
These operators perform the usual arithmetic operations. In
addition, the + operator can be used to concatenate strings.
See Numeric Operators on page 320 and String Operators
on page 328.

X == Y
X != Y

Equality operators.
These operators can be used to compare numbers and
strings; see Numeric Operators on page 320 and String
Operators on page 328.
For other types of values, such as dates, arrays, objects, and
so forth, the == operator is true if, and only if, X and Y are
the exact same value. For example:

new Array(10) == new Array(10) −> false
var a = new Array(10); a == a −> true

Table F.8 IBM ILOG Script Special Operator Syntax (Continued)

Syntax Effect
306 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Statements

usrfoundation.book Page 307 Tuesday, July 28, 2009 10:34 AM
Statements

The topics are:

◆ Conditional Statement (if)

◆ Loops (while, for, for..in, break, continue)

◆ Variable Declaration (var)

◆ Function Definition (function, return)

◆ Default Value (with)

X > Y
X >= Y
X < Y
X <= Y

Relational operators.
These operators can be used to compare numbers and
strings. See Numeric Operators on page 320 and String
Operators on page 328.

~ X
X & Y
X | Y
X ^ Y
X << Y
X >> Y
X >>> Y

Bitwise operators.
See Numeric Operators on page 320.

! X
X || Y
X && Y
condition ? X : Y

Logical operators.
See Logical Operators on page 331.

Table F.9 Other IBM ILOG Script Operators (Continued)

Syntax Effect
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 307

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 308 Tuesday, July 28, 2009 10:34 AM
Conditional Statement

The conditional (if) statement has the following syntax:

Table F.10 IBM ILOG Script Conditional Statement Syntax

Syntax Effect

if (expression)
statement1

[else statement2]

Evaluate expression; if it is true, execute statement1;
otherwise, if statement2 is provided, execute statement2.
If expression yields a non-boolean value, this value is
converted to a boolean.
Examples:

if (a == b) writeln("They are equal")
else writeln("They are not equal")

if (s.indexOf("a") < 0) {
write("The string ", s)
writeln(" doesn't contains the letter

a")
}
308 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Statements

usrfoundation.book Page 309 Tuesday, July 28, 2009 10:34 AM
Loops

The loop statements have the following syntax:

Table F.11 IBM ILOG Script Loop Statement Syntax

Syntax Effect

while (expression)
statement

Execute statement repeatedly as long as expression is true.
The test takes place before each execution of statement.
If expression yields a non-boolean value, this value is
converted to a boolean.
Examples:

while (a*a < b) a = a+1

while (s.length) {
r = s.charAt(0)+r
s = s.substring(1)
}

for ([initialize];
[condition] ;
[update])

statement
where condition and update
are expressions, and initialize
is either an expression or has
the form:
var variable = expression

Evaluate initialize once, if present. Its value is ignored. If it
has the form:
 var variable = expression

then variable is declared as a local variable and initialized as
in the var statement.
Then, execute statement repeatedly as long as condition is
true. If condition is omitted, it is taken to be true, which
results in an infinite loop. If condition yields a non-boolean
value, this value is converted to a boolean.
If present, update is evaluated at each pass through the
loop, after statement and before condition. Its value is
ignored.
Example:

for (var i=0; i < a.length; i++) {
sum = sum+a[i]
prod = prod*a[i]

}

I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 309

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 310 Tuesday, July 28, 2009 10:34 AM
for ([var] variable in
expression)
 statement

Iterate over the properties of the value of expression: For
each property, variable is set to a string representing this
property, and statement is executed once.
If the var keyword is present, variable is declared as a local
variable, as with the var statement.
For example, the following function takes an arbitrary value
and displays all its properties and their values:

function printProperties(v) {
for (var p in v)
writeln(p, " -> ", v[p])

}
Properties listed by the for..in statement include method
properties, which are merely regular properties whose value
is a function value. For example, the call
printProperties("foo") would display:

length -> 3
toString -> [primitive method toString]
substring -> [primitive method substring]
charAt -> [primitive method charAt]
etc.

The only properties which are not listed by for..in loops are
the numeric properties of arrays.

break Exit the current while, for or for..in loop, and continue the
execution at the statement immediately following the loop.
This statement cannot be used outside of a loop.
Example:

while (i < a.length) {
if (a[i] == "foo") {
foundFoo = true
break

}
i = i+1

}
// Execution continues here

continue Stop the current iteration of the current while, for or for..in
loop, and continue the execution of the loop with the next
iteration. This statement cannot be used outside of a loop.
Example:

for (var i=0; i < a.length; i++) {
if (a[i] < 0) continue
writeln("A positive number: ", a[i])

}

Table F.11 IBM ILOG Script Loop Statement Syntax (Continued)

Syntax Effect
310 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Statements

usrfoundation.book Page 311 Tuesday, July 28, 2009 10:34 AM
Variable Declaration

The variable declaration has the following syntax:

Table F.12 IBM ILOG Script Variable Declaration Syntax

Syntax Effect

var decl1, ..., decln
where each decli has the
form
variable [= expression]

Declare each variable as a local variable. If an expression is
provided, it is evaluated and its value is assigned to the
variable as its initial value. Otherwise, the variable is set to
the undefined value.
Examples:

var x
var name = "Joe"
var average = (a+b)/2, sum,

message="Hello"
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 311

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 312 Tuesday, July 28, 2009 10:34 AM
var inside a function
definition

When var is used inside of a function definition, the
declared variables are local to the function, and they hide
any global variables with the same name; actually, they have
the same status as function arguments.
For example, in the following program, the variables sum and
res are local to the average function, as well as the
arguments a and b; when average is called, the global
variables with the same names, if any, are temporarily
hidden until the function is exited:

function average(a, b) {
var sum = a+b
var res = sum/2
return res

}
Variables declared with var at any place in a function body
have a scope which is the entire function body. This is
different from local variable scope in C or C++.
For example, in the following function, the variable res
declared in the first branch of the if statement is used in the
other branch and in the return statement:

function max(x, y) {
if (x > y) {
var res = x

} else {
res = y

}
return res

}

Table F.12 IBM ILOG Script Variable Declaration Syntax (Continued)

Syntax Effect
312 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Statements

usrfoundation.book Page 313 Tuesday, July 28, 2009 10:34 AM
var outside a function
definition

When var is used outside of a function definition, that is, at
the same level as function definitions, the declared variables
are local to the current program unit. A program unit is a
group of statements which are considered a whole; the exact
definition of a program unit depends on the application in
which IBM ILOG Script is embedded. Typically, a script file
loaded by the application is treated as a program unit. In this
case, variables declared with var at the file top level are local
to this file, and they hide any global variables with the same
names.
For example, suppose that a file contains the following
program:

var count = 0

function NextNumber() {
count = count+1
return count

}
When this file is loaded, the function NextNumber becomes
visible to the whole application, while count remains local to
the loaded program unit and is visible only inside it.
It is an error to declare the same local variable twice in the
same scope. For example, the following program is incorrect
because res is declared twice:

function max(x, y) {
if (x > y) {

var res = x
} else {

var res = y // Error
}
return res

}

Table F.12 IBM ILOG Script Variable Declaration Syntax (Continued)

Syntax Effect
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 313

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 314 Tuesday, July 28, 2009 10:34 AM
Function Definition

A function definition has the following syntax:

Table F.13 IBM ILOG Script Function Definition

Syntax Effect

[static]
function name(v1,...,vn)
{ statements }

Defines a function name with the given parameters and
body. A function definition can only take place at the top
level; function definitions cannot be nested.
When the function is called, the variables v1,...,vn are set
to the corresponding argument values. Then, the statements
are executed. If a return statement is reached, the function
returns the specified value; otherwise, after the statements
are executed, the function returns the undefined value.
The number of actual arguments does not need to match the
number of parameters: If there are less arguments than
parameters, the remaining parameters are set to the
undefined value; if there are more arguments than
parameters, the exceeding arguments are ignored.
Independently of the parameter mechanism, the function
arguments can be retrieved using the arguments keyword.
Defining a function name is operationally the same as
assigning a specific function value to the variable name; thus
a function definition is equivalent to:

 var name = some function value
The function value can be retrieved from the variable and
manipulated like any other type of value. For example, the
following program defines a function add and assigns its
value to the variable sum, which makes add and sum
synonyms for the same function:

function add(a, b) {
return a+b

}

sum = add
Without the static keyword, the defined function is global
and can be accessed from the whole application. With the
static keyword, the function is local to the current program
unit, exactly like if name was declared with the var keyword:

 var name = some function value

return [expression] Returns the value of expression from the current function. If
expression is omitted, returns the undefined value. The
return statement can only be used in the body of a
function.
314 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Numbers

usrfoundation.book Page 315 Tuesday, July 28, 2009 10:34 AM
Default Value

A default value is used with the following syntax:

Numbers

The topics are:

◆ Number Literal Syntax

◆ Special Numbers

◆ Automatic Conversion to a Number

◆ Number Methods

◆ Numeric Functions

◆ Numeric Constants

◆ Numeric Operators

Table F.14 IBM ILOG Script Default Value

Syntax Effect

with (expression)
statement

Evaluate expression, then execute statement with the value
of expression temporarily installed as the default value.
When evaluating a reference to an identifier name in
statement, this identifier is first looked up as a property of
the default value; if the default value does not have such a
property, name is treated as a regular variable.
For example, the following program displays "The length is
3", because the identifier length is taken as the length
property of the string "abc".

with ("abc") {
writeln("The length is ", length)

}
With statements can be nested; in this case, reference to
identifiers are looked up in the successive default values,
from the innermost to the outermost with statement.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 315

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 316 Tuesday, July 28, 2009 10:34 AM
Number Literal Syntax

Numbers can be expressed in decimal (base 10), hexadecimal (base 16), or octal (base 8.)

A decimal number consists of a sequence of digits, followed by an optional fraction,
followed by an optional exponent. The fraction consists of a decimal point (.) followed by a
sequence of digits; the exponent consists of an e or E followed by an optional + or - sign and
a sequence of digits. A decimal number must have at least one digit.

Here are some examples of decimal number literals:

15

3.14

4e100

.25

5.25e-10

A hexadecimal number consists of 0x or 0X prefix, followed by a sequence of hexadecimal
digits, which include digits (0-9) and the letters a-f or A-F. For example:

0x3ff

0x0

An octal number consists of a 0 followed by a sequence of octal digits, which include the
digits 0-7. For example:

0123

0777

Special Numbers

There are three special numbers: NaN (Not-A-Number), Infinity (positive infinity), and
-Infinity (negative infinity.)

The special number NaN is used to indicate errors in number manipulations. For example,
the square root function Math.sqrt applied to a negative number returns NaN. There is no
representation of NaN as a number literal, but the global variable NaN contains its value.

The NaN value is contagious, and a numeric operation involving NaN always returns NaN.
A comparison operation involving NaN always returns false—even the NaN == NaN
comparison.

Examples:

Note: For C/C++ programmers: Numbers have the same syntax as C and C++ integers
and doubles. They are internally represented as 64-bit double precision floating-point
numbers.
316 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Numbers

usrfoundation.book Page 317 Tuesday, July 28, 2009 10:34 AM
Math.sqrt(-1) −> NaN

Math.sqrt(NaN) −> NaN

NaN + 3 −> NaN

NaN == NaN −> false

NaN <= 3 −> false

NaN >= 3 −> false

The special numbers Infinity and -Infinity are used to indicate infinite values and overflows
in arithmetic operations. The global variable Infinity contains the positive infinity. The
negative infinity can be computed using the negation operator (-Infinity).

Examples:

1/0 −> Infinity

-1/0 −> -Infinity

1/Infinity −> 0

Infinity == Infinity −> true

Automatic Conversion to a Number

When a function or a method which expects a number as one of its arguments is passed a
non-numeric value, it tries to convert this value to a number using the following rules:

◆ A string is parsed as a number literal. If the string does not represent a valid number
literal, the conversion yields NaN.

◆ The boolean true yields the number 1;

◆ The boolean false yields the number 0;

◆ The null value yields the number 0;

◆ A date yields the corresponding number of milliseconds since 00:00:00 UTC, January 1,
1970.

For example, if the Math.sqrt function is passed a string, this string is converted to the
number it represents:

Math.sqrt("25") −> 5

Similarly, operators which take numeric operands attempt to convert any non-numeric
operands to a number:

"3" * "4" −> 12

For operators which can take both strings and numbers, such as +, the conversion to a string
takes precedence over the conversion to a number (see Automatic Conversion to a String on
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 317

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 318 Tuesday, July 28, 2009 10:34 AM
page 323.) In other words, if at least one of the operands is a string, the other operand is
converted to a string; if none of the operands is a string, the operands are both converted to
numbers. For example:

"3" + true −> "3true"

3 + true −> 4

For comparison operators, such as == and >=, the conversion to a number takes precedence
over the conversion to a string. In other words, if at least one of the operands is a number, the
other operand is converted to a number. If both operands are strings, the comparison is made
on strings. For example:

"10" > "2" −> false

"10" > 2 −> true

Number Methods

The only number method is:

Numeric Functions

The following numeric functions are defined:

Table F.15 IBM ILOG Script Number Method

Syntax Effect

number.toString() Returns a string representing the number as a literal.
Example:

(14.3e2).toString() −> "1430"

Note: For C/C++ programmers: Most of these functions are wrap-ups for standard math
library functions.

Table F.16 IBM ILOG Script Numeric Functions

Syntax Effect

Math.abs(x) Returns the absolute value of x.

Math.max(x, y)
Math.min(x, y)

Math.max(x, y) returns the larger of x and y, and
Math.min(x, y) returns the lowest of the two.

Math.random() Returns a pseudo-random number between 0, inclusive, and
1, exclusive.
318 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Numbers

usrfoundation.book Page 319 Tuesday, July 28, 2009 10:34 AM
 Numeric Constants

The following numeric constants are defined:

Math.ceil(x)
Math.floor(x)
Math.round(x)

Math.ceil(x) returns the least integral value greater or
equal to x. Math.floor(x) returns the greatest integral
value less or equal to x. Math.round(x) returns the
nearest integral value of x.

Math.sqrt(x) Returns the square root of x.

Math.sin(x)
Math.cos(x)
Math.tan(x)
Math.asin(x)
Math.acos(x)
Math.atan(x)
Math.atan2(y, x)

Math.sin(x), Math.cos(x) and Math.tan(x) return
trigonometric functions of radian arguments.
Math.asin(x) returns the arc sine of x in the range -PI/2 to
PI/2.
Math.acos(x) returns the arc cosine of x in the range 0 to
PI.
Math.atan(x) returns the arc tangent of x in the range -PI/
2 to PI/2.
Math.atan2(y, x) converts rectangular coordinates (x,
y) to polar (r, a)by computing a as an arc tangent of y/x in
the range -PI to PI.

Math.exp(x)
Math.log(x)
Math.pow(x, y)

Math.exp(x) computes the exponential function ex.
Math.log(x) computes the natural logarithm of x.
Math.pow(x, y) computes x raised to the power y.

Table F.17 IBM ILOG Script Numeric Constants

Syntax Value

NaN Contains the NaN value.

Infinity Contains the Infinity value.

Number.NaN Same as NaN.

Number.MAX_VALUE The maximum representable number, approximately
1.79E+308.

Number.MIN_VALUE The smallest representable positive number, approximately
2.22E-308.

Math.E Euler's constant and the base of natural logarithms,
approximately 2.718.

Table F.16 IBM ILOG Script Numeric Functions (Continued)

Syntax Effect
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 319

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 320 Tuesday, July 28, 2009 10:34 AM
Numeric Operators

The following numeric operators are available:

Math.LN10 The natural logarithm of 10, approximately 2.302.

Math.LN2 The natural logarithm of two, approximately 0.693.

Math.LOG2E The base 2 logarithm of e, approximately 1.442.

Math.LOG10E The base 10 logarithm of e, approximately 0.434.

Math.PI The ratio of the circumference of a circle to its diameter,
approximately 3.142.

Math.SQRT1_2 The square root of one-half, approximately 0.707.

Math.SQRT2 The square root of two, approximately 1.414.

Note: For C/C++ programmers: These operators are the same as in C and C++.

Table F.18 IBM ILOG Script Numeric Operators

Syntax Effect

x + y

x - y

x * y

x / y

The usual arithmetic operations.
Examples:
3 + 4.2 −> 7.2
100 - 120 −> -20
4 * 7.1 −> 28.4
6 / 5 −> 1.2

- x Negation.
Examples:
- 142 −> -142

x % y Returns the floating-point remainder of dividing x by y.
Examples:
12 % 5 −> 2
12.5 % 5 −> 2.5

Table F.17 IBM ILOG Script Numeric Constants (Continued)

Syntax Value
320 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Numbers

usrfoundation.book Page 321 Tuesday, July 28, 2009 10:34 AM
x == y

x != y

The operator == returns true if x and y are equal, and false
otherwise. The operator != is the converse of ==.
Examples:
12 == 12 −> true
12 == 12.1 −> false
12 != 12.1 −> true

x < y

x <= y

x > y

x >= y

The operator < returns true if x is smaller than y, and false
otherwise. The operator <= returns true if x is smaller or
equal to y, and false otherwise; and so on.
Examples:
-1 < 0 −> true
1 < 1 −> false
1 <= 1 −> true

x & y

x | y

x ^ y

The bitwise operations AND, OR, and XOR. X and y must be
integers in the range of -2**32+1 to 2**32-1 (-2147483647 to
2147483647.)
Examples:
14 & 9 −> 8 (1110 & 1001 −> 1000)
14 | 9 −> 15 (1110 | 1001 −> 1111)
14 ^ 9 −> 7 (1110 ^ 1001 −> 111)

~ x Bitwise NOT. X must be an integer in the range of -2**32+1
to 2**32-1 (-2147483647 to 2147483647.)
Examples:
~ 14 −> 1 (~ 1110 −> 0001)

x << y

x >> y

x >>> y

Binary shift operations. X and y must be integers in the
range of -2**32+1 to 2**32-1 (-2147483647 to 2147483647.)
The operator << shifts to the left, >> shifts to the right
(maintaining the sign bit), and >>> shifts to the right, shifting
in zeros from the left.
Examples:
9 << 2 −> 36 (1001 << 2 −> 100100)
9 >> 2 −> 2 (1001 >> 2 −> 10)
-9 >> 2 −> -2 (1..11001 >> 2 −> 1..11110)
-9 >>> 2 −> 1073741821 (1..11001 >>> 2 −>

01..11110)

Table F.18 IBM ILOG Script Numeric Operators (Continued)

Syntax Effect
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 321

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 322 Tuesday, July 28, 2009 10:34 AM
Strings

◆ String Literal Syntax

◆ Automatic Conversion to a String

◆ String Properties

◆ String Methods

◆ String Functions

◆ String Operators

String Literal Syntax

A string literal is zero or more characters enclosed in double (") or single (') quotes.

Here are examples of string literals:

"My name is Hal"

'My name is Hal'

'"Hi there", he said'

"3.14"

"Hello, world\n"

In these examples, the first and the second strings are identical.

The backslash character (\) can be used to introduce an escape sequence, which stands for a
character which cannot be directly expressed in a string literal. Escape sequences allowed in
strings are:

Note: For C/C++ programmers: Except for the use of single quotes, string literals have the
same syntax as in C and C++.

Table F.19 IBM ILOG Script Escape Sequences

Escape Sequence Stands for

\n Newline

\t Tab

\\ Backslash character (\)

\" Double quote (")
322 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Strings

usrfoundation.book Page 323 Tuesday, July 28, 2009 10:34 AM
Here are examples of string literals using escape sequences:

When a string is converted to a number, an attempt is made to parse it as a number literal. If
the string does not represent a valid number literal, the conversion yields NaN.

Automatic Conversion to a String

When a function or a method which expects a string as one of its arguments is passed a non-
string value, this value is automatically converted to a string. For example, if the string
method indexOf is passed a number as its first argument, this number is treated like its string
representation:

"The 10 commandments".indexOf(10) −> 4

Similarly, operators which take string operands automatically convert non-string operands to
strings:

"The " + 10 + " commandments" −> "The 10 commandments"

\' Single quote (')

\b Backspace

\f Form feed

\r Carriage return

\xhh The character whose ASCII code is hh, where hh is a
sequence of two hexadecimal digits.

\ooo The character whose ASCII code is ooo, where ooo is a
sequence of one, two, or three octal digits.

Table F.20 IBM ILOG Script Escape Sequence Examples

String Literal Stands for

"Read \"The Black Bean\"" Read "The Black Bean"

'\'Hello\', he said' 'Hello', he said

"c:\\temp" c:\temp

"First line\nSecond line\nThird line" First line
Second line
Third line

"\xA9 1995-1997" © 1995-1997

Table F.19 IBM ILOG Script Escape Sequences (Continued)

Escape Sequence Stands for
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 323

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 324 Tuesday, July 28, 2009 10:34 AM
The conversion to a string uses the toString method of the given value. All built-in values
have a toString method.

String Properties

Strings have the following properties:

String Methods

Characters in a string are indexed from left to right. The index of the first character in a
string string is 0, and the index of the last character is string.length-1.

Strings have the following methods:

Table F.21 IBM ILOG Script String Properties

Syntax Value

string.length Number of characters in string. This is a read-only property.
Examples
"abc".length −> 3
"".length −> 0

Table F.22 IBM ILOG Script String Methods

Syntax Effect

string.substring
(start [, end])

Returns the substring of string starting at the index start and
ending at the index end-1. If end is omitted, the tail of string
is returned.
Examples:
"0123456".substring(0, 3) −> "012"
"0123456".substring(2, 4) −> "23"
"0123456".substring(2) −> "23456"

string.charAt(index) Returns a one-character string containing the character at
the specified index of string. If index is out of range, an
empty string is returned.
Examples:
"abcdef".charAt(0) −> "a"
"abcdef".charAt(3) −> "d"
"abcdef".charAt(100) −> ""
324 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Strings

usrfoundation.book Page 325 Tuesday, July 28, 2009 10:34 AM
string.charCodeAt(index) Returns the ASCII code of the character at the specified
index of string. If index is out of range, return NaN.
Examples:
"abcdef".charCodeAt(0) −> 97
"abcdef".charCodeAt(3) −> 100
"abcdef".charCodeAt(100) −> NaN

string.indexOf(substring
[, index])

Returns the index in string of the first occurrence of
substring. String is searched starting at index. If index is
omitted, string is searched from the beginning. This method
returns -1 if substring is not found.
Examples:
"abcdabcd".indexOf("bc") −> 1
"abcdabcd".indexOf("bc", 1) −> 1
"abcdabcd".indexOf("bc", 2) −> 5
"abcdabcd".indexOf("bc", 10) −> -1
"abcdabcd".indexOf("foo") −> -1
"abcdabcd".indexOf("BC") −> -1

string.lastIndexOf
(substring [, index])

Returns the index in string of the last occurrence of
substring. String is searched backwards, starting at index. If
index is omitted, string is searched from the end. This
method returns -1 if substring is not found.
Examples:
"abcdabcd".lastIndexOf("bc") −> 5
"abcdabcd".lastIndexOf("bc", 5) −> 5
"abcdabcd".lastIndexOf("bc", 4) −> 1
"abcdabcd".lastIndexOf("bc", 0) −> -1
"abcdabcd".lastIndexOf("foo") −> -1
"abcdabcd".lastIndexOf("BC") −> -1

string.toLowerCase() Returns string converted to lowercase.
Examples:
"Hello, World".toLowerCase() −> "hello, world"

string.toUpperCase() Returns string converted to uppercase.
Examples:
"Hello, World".toUpperCase() −>
"HELLO, WORLD"

Table F.22 IBM ILOG Script String Methods (Continued)

Syntax Effect
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 325

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 326 Tuesday, July 28, 2009 10:34 AM
string.split(separator) Returns an array of strings containing the substrings of
string which are separated by separator. See also the array
method join.
Examples:
"first name,last name,age".split(",") −> an
array a such that a.length is 3, a[0] is "first name", a[1] is
"last name", and a[2] is "age".
If string does not contain separator, an array with one
element containing the whole string is returned.
Examples:
"hello".split(",") −> an array a such that a.length

is 1 and a[0] is "hello",

string.toString() Returns the string itself.

Table F.22 IBM ILOG Script String Methods (Continued)

Syntax Effect
326 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Strings

usrfoundation.book Page 327 Tuesday, July 28, 2009 10:34 AM
String Functions

The following functions operate on strings:

Table F.23 IBM ILOG Script String Functions

Syntax Effect

String.fromCharCode
(code)

Returns a single character string containing the character
with the given ASCII code.
Examples:
String.fromCharCode(65) −> "A"
String.fromCharCode(0xA9) −> "©"

parseInt(string
[, base]) IBM

Parses string as an integer written in the given base, and
returns its value. If the string does not represent a valid
integer, NaN is returned.
Leading white space characters are ignored. If parseInt
encounters a character that is not a digit in the specified
base, it ignores it and all succeeding characters and returns
the integer value parsed up to that point.
If base is omitted, it is taken to be 10, unless string starts
with 0x or 0X, in which case it is parsed in base 16, or with
0, in which case it is parsed in base 8.
Examples:
parseInt("123") −> -123
parseInt("-123") −> -123
parseInt("123.45") −> 123
parseInt("1001010010110", 2) −> 4758
parseInt("a9", 16) −> 169
parseInt("0xa9") −> 169
parseInt("010") −> 8
parseInt("123 poodles") −> 123
parseInt("a lot of poodles") −> NaN

parseFloat(string) Parses string as a floating-point number and return its value.
If the string does not represent a valid number, NaN is
returned.
Leading white space characters are ignored. The string is
parsed up to the first unrecognized character. If no number is
recognized, the function returns NaN.
Examples:
parseFloat("-3.14e-15") −> -3.14e-15
parseFloat("-3.14e-15 poodles") −> -3.14e-15
parseFloat("a fraction of a poodle") −> NaN
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 327

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 328 Tuesday, July 28, 2009 10:34 AM
String Operators

The following operators can be used to manipulate strings:

Table F.24 IBM ILOG Script String Operators

Syntax Effect

string1 + string2 Returns a string containing the concatenation of string1 and
string2.
Examples:
"Hello," + " world" −> "Hello, world"

When the operator + is used to add a string to a non-string
value, the non-string value is first converted to a string.
Examples:
"Your age is " + 23 −> "Your age is 23"
23 + " is your age" −> "23 is your age"
328 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Strings

usrfoundation.book Page 329 Tuesday, July 28, 2009 10:34 AM
string1 == string2

string1 != string2

The operator == returns the boolean true if string1 and
string2 are identical, and false otherwise. Two strings are
identical if they have the same length and contain the same
sequence of characters. The operator != is the converse of
==.
Examples:
"a string" == "a string" −> true
"a string" == "another string" −> false
"a string" == "A STRING" −> false
"a string" != "a string" −> false
"a string" != "another string" −> true

When the operators == and != are used to compare a string
with a number, the string is first converted to a number and
the two numbers are compared numerically.
Examples:
"12" == "+12" −> false
12 == "+12" −> true

Table F.24 IBM ILOG Script String Operators (Continued)

Syntax Effect
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 329

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 330 Tuesday, July 28, 2009 10:34 AM
Booleans

◆ Boolean Literal Syntax

◆ Automatic Conversion to a Boolean

◆ Boolean methods

◆ Logical Operators

Boolean Literal Syntax

There are two boolean literals: true, which represents the boolean value true, and false,
which represents the boolean value false.

string1 < string2

string1 <= string2

string1 > string2

string1 >= string2

The operator < returns true if string1 strictly precedes string2
lexicographically, and false otherwise. The operator <=
returns true if string1 strictly precedes string2
lexicographically or is equal to it, and false otherwise; and so
on.
Examples:
"abc" < "xyz" −> true
"a" < "abc" −> true
"xyz" < "abc" −> false
"abc" < "abc" −> false
"abc" > "xyz" −> false
"a" > "abc" −> false
"xyz" > "abc" −> true

Etc.
When one of these operators is used to compare a string
with a non-string value, the non-string value is first converted
to a string.
Examples:
"2" >= 123 −> true
123 < "2" −> false

When one of these operators is used to compare a string
with a number, the string is first converted to a number and
the two numbers are compared numerically.
Examples:
"10" > "2" −> false
10 > "2" −> true

Table F.24 IBM ILOG Script String Operators (Continued)

Syntax Effect
330 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Booleans

usrfoundation.book Page 331 Tuesday, July 28, 2009 10:34 AM
When converted to a number, true yields 1 and false yields 0.

Automatic Conversion to a Boolean

When a function, method or statement which expects a boolean as one of its arguments is
passed a non-boolean value, this value is automatically converted to a boolean as follows:

◆ The number 0 yields false;

◆ The empty string "" yields false;

◆ The null value yields false;

◆ The undefined value yields false;

◆ Any other non-boolean values yield true.

For example:

if ("") writeln("True"); else writeln("False");
if (123) writeln("True"); else writeln("False");

displays "False", then "True".

Boolean methods

The only boolean method is:

Logical Operators

The following boolean operators are available:

Table F.25 IBM ILOG Script Boolean Method

Syntax Effect

boolean.toString() Returns a string representing the boolean, either "true" or "false".
Example:
true.toString −> "true"
false.toString −> "false"

Note: For C/C++ programmers: These operators are the same as in C and C++.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 331

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 332 Tuesday, July 28, 2009 10:34 AM
 Arrays

The topics are:

◆ IBM ILOG Script Arrays

◆ Array Constructor

◆ Array Properties

Table F.26 IBM ILOG Script Logical Operators

Syntax Effect

! boolean Logical negation.
Examples:
! true −> false
! false −> true

exp1 && exp2 Returns true if both boolean expressions exp1 and exp2 are
true. Otherwise, returns false.
If exp1 is false, this expression immediately returns false
without evaluating exp2, so any side effects of exp2 are not
taken into account.
Examples:
true && true −> true
true && false −> false
false && whatever −> false; whatever is not evaluated.

exp1 || exp2 Returns true if either boolean expression exp1 or exp2 is
true. Otherwise, returns false.
If exp1 is true, this expression immediately returns true
without evaluating exp2, so any side effects of exp2 are not
taken into account.
Examples:
false || true −> true
false || false −> false
true || whatever −> true; whatever is not evaluated.

condition ? exp1 : exp2 If condition is true, this expression returns exp1; otherwise, it
returns exp2.
When condition is true, the expression exp2 is not evaluated,
so any side effects it may contain are not taken into account.
Similarly, when condition is false, exp1 is not evaluated.
Examples:
true ? 3.14 : whatever −> 3.14
false ? whatever : "Hello" −> "Hello"
332 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Arrays

usrfoundation.book Page 333 Tuesday, July 28, 2009 10:34 AM
◆ Array Methods

IBM ILOG Script Arrays

Arrays provide a way of manipulating ordered sets of values referenced through an index
starting from 0. Unlike arrays in other languages, IBM ILOG Script arrays do not have a
fixed size and are automatically expanded as new elements are added. For example, in the
following program, an array is created empty, and is then added new elements:

a = new Array() // Create an empty array
a[0] = "first" // Set the element 0
a[1] = "second" // Set the element 1
a[2] = "third" // Set the element 2

Arrays are internally represented as sparse objects, which means that an array where only
the element 0 and the element 10000 have been set occupies just enough memory to store
these two elements, not the 9999 which are between 0 and 10000.

Array Constructor

The array constructor has two distinct syntaxes:

Table F.27 IBM ILOG Script Array Constructor Syntax

Syntax Effect

new Array(length) Returns a new array of length length with its elements from 0
to length-1 set to null.
If length is not a number, and its conversion to a number
yields NaN, the second syntax is used.
Examples:
new Array(12) −> an array a with length 12 and a[0] to

a[11] containing null.
new Array("5") −> an array a with length 5 and a[0] to

a[4] containing null.
new Array("foo") −> see second syntax.

new Array(element1, ...,
elementn)

Returns a new array a of length n with a[0] containing
element1, a[1] containing element2, and so on. If no
argument is given, that is n=0, an empty array is created. If
n=1 and element1 is a number or can be converted to a
number, the first syntax is used.
Examples:
new Array(327, "hello world") −> an array a of

length 2 with a[0] == 327 and a[1] == "hello world".
new Array() −> an array with length 0.
new Array("327") −> see first syntax.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 333

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 334 Tuesday, July 28, 2009 10:34 AM
Array Properties

The array properties are:

Table F.28 IBM ILOG Script Array Properties

Syntax Effect

array[index] If index can be converted to a number between 0 and 2e32-2
(see Automatic Conversion to a Number on page 317),

array[index] is the value of the indexth element of the array.
Otherwise, it is considered as a standard property access.If
this element has never been set, null is returned.
Example: Suppose that the array a has been created with:

a = new Array("foo", 12, true)
Then:
a[0] −> "foo"
a[1] −> 12
a[2] −> true
a[3] −> null
a[1000] −> null

When an element of an array is set beyond the current length
of the array, the array is automatically expanded:

a[1000] = "bar"
// the array is automatically expanded.

Unlike other properties, the numeric properties of an array are
not listed by the for..in statement.

array.length The length of array, which is the highest index of an element
set in array, plus one. It is always included in 0 and 2e31-1.
When a new element is set in the array, and its index is greater
or equal to the current array length, the length property is
automatically increased.
Example: Suppose that the array a has been created with:

a = new Array("a", "b", "c")
Then:
a.length −> 3
a[100] = "bar"; a.length −> 101

You can also change the length of an array by setting its length
property.
a = new Array(); a[4] = "foo"; a[9] = "bar";
a.length −> 10
a.length = 5
a.length −> 5
a.length −> 5
a[4] −> "foo"
a[9] −> null
334 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Arrays

usrfoundation.book Page 335 Tuesday, July 28, 2009 10:34 AM
Array Methods

Arrays have the following methods:

Table F.29 IBM ILOG Script Array Methods

Syntax Effect

array.join([separator]) Returns a string which contains the elements of the array
converted to strings, concatenated together and separated
with separator. If separator is omitted, it is taken to be ",".
Elements which are not initialized are converted to the empty
string. See also the string method split.
Example: Suppose that the array a has been created with

a = new Array("foo", 12, true)
Then:
a.join("//") −> "foo//12//true"
a.join() −> "foo,12,true"

array.sort([function]) Sorts the array. The elements are sorted in place; no new array
is created.
If function is not provided, array is sorted lexicographically:
Elements are compared by converting them to strings and
using the <= operator. With this order, the number 20 would
come before the number 5, since "20" < "5" is true.
If function is supplied, the array is sorted according to the
return value of this function. This function must take two
arguments x and y and return:

◆ -1 if x is smaller than y;

◆ 0 if x is equal to y;

◆ 1 if x is greater than y.

Example: Suppose that the function compareLength is
defined as

function compareLength(x, y) {
if (x.length < y.length) return -1;
else if (x.length == y.length) return 0;
else return 1;

}
and that the array a has been created with:

a = new Array("giraffe", "rat",
"brontosaurus")

Then a.sort() will reorder its elements as follows:
"brontosaurus" "rat" "giraffe"

while a.sort(compareLength) will reorder them as follows:
"rat" "giraffe" "brontosaurus"
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 335

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 336 Tuesday, July 28, 2009 10:34 AM
Objects

The topics are:

◆ IBM ILOG Script Objects

◆ Defining Methods

◆ The this Keyword

◆ Object Constructor

◆ User-defined Constructors

◆ Built-in Methods

IBM ILOG Script Objects

Objects are values which do not contain any predefined properties or methods (except the
toString method), but where new ones can be added. A new, empty object can be created
using the Object constructor. For example, the following program creates a new object,
stores it in the variable myCar, and adds the properties "name" and "year" to it:

myCar = new Object() // o contains no properties
myCar.name = "Ford"
myCar.year = 1985

Now:

myCar.name −> "Ford"

array.reverse() Transposes the elements of the array: The first element
becomes the last, the second becomes the second to last, etc.
The elements are reversed in place; no new array is created.
Example: Suppose that the array a has been created with
a = new Array("foo", 12, "hello", true, false)
Then a.reverse() changes a so that:
a[0] −> false
a[1] −> true
a[2] −> "hello"
a[3] −> 12
a[4] −> "foo"

array.toString() Returns the string "[object Object]".

Table F.29 IBM ILOG Script Array Methods (Continued)

Syntax Effect
336 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Objects

usrfoundation.book Page 337 Tuesday, July 28, 2009 10:34 AM
myCar.year −> 1985

Defining Methods

Since a method is really a property which contains a function value, defining a method
simply consists in defining a regular function, then assigning it to a property.

For example, the following program adds a method "start" to the myCar object defined in
IBM ILOG Script Objects:

function start_engine() {
 writeln("vroom vroom\n")
}

myCar.start = start_engine

Now, the expression myCar.start() will call the function defined as start_engine.
Note that the only reason for using a different name for the function and for the method is to
avoid confusion; we could have written:

function start() {
 writeln("vroom vroom\n")
}

myCar.start = start

The this Keyword

Inside methods, the this keyword can be used to reference the calling object. For example,
the following program defines a method getName, which returns the value of the name
property of the calling object, and adds this method to myCar:

function get_name() {
 return this.name
}

myCar.getName = get_name

Inside constructors, this references the object created by the constructor. When used in a
non-method context, this returns a reference on the global object. The global object
contains variables declared at toplevel, and built-in functions and constructors.

Object Constructor

Objects are created using the following constructor:

Table F.30 IBM ILOG Script Object Constructor

Syntax Effect

new Object() Returns a new object with no properties.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 337

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 338 Tuesday, July 28, 2009 10:34 AM
User-defined Constructors

In addition to the Object constructor, any user-defined function can be used as an object
constructor, using the following syntax:

Inside the constructor, the keyword this can be used to make reference to the object being
initialized.

For example, the following program defines a constructor for cars:

function Car(name, year) {
 this.name = name
 this.year = year
 this.start = start_engine
}

Now, calling

new Car("Ford", "1985")

creates a new object with the properties name and year, and a start method.

Built-in Methods

The only object built-in method is:

Dates

The topics are:

◆ IBM ILOG Script Date Values

◆ Date Constructor

Table F.31 IBM ILOG Script User-defined Constructor

Syntax Effect

new function(arg1, ..., argn) Creates a new object, then calls function(arg1, ..., argn) to
initialize it.

Table F.32 IBM ILOG Script Built-in Method

Syntax Effect

object.toString() Returns the string "[object Object]". This method can be
overridden by assigning the toString property of an
object.
338 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Dates

usrfoundation.book Page 339 Tuesday, July 28, 2009 10:34 AM
◆ Date Methods

◆ Date Functions

◆ Date Operators

IBM ILOG Script Date Values

Date values provide a way of manipulating dates and times. Dates can be best understood as
internally represented by a number of milliseconds since 00:00:00 UTC, January 1, 1970.
This number can be negative, thus expressing a date before 1970.

When converted to a number, a date yields the number of milliseconds since 00:00:00 UTC,
January 1, 1970.

Date Constructor

The date constructor has four distinct syntaxes:

Note: For C/C++ programmers: Unlike dates manipulated by the the standard C library,
date values are not limited to the range of 1970 to 2038, but span over approximately
285,616 years before and after 1970.

Table F.33 IBM ILOG Script Date Constructor

Syntax Effect

new Date() Returns the date representing the current time.

new Date(milliseconds) Returns the date representing 00:00:00 UTC, January 1,
1970, plus milliseconds milliseconds. The argument can be
negative, thus expressing a date before 1970. If the
argument cannot be converted to a number, the third
constructor syntax is used.
Examples:
new Date(0) −> a date representing 00:00:00 UTC,

January 1, 1970.
new Date(1000*60*60*24*20) −> a date

representing twenty days after 00:00:00 UTC, January 1,
1970.
new Date(-1000*60*60*24*20) −> a date

representing twenty days before 00:00:00 UTC, January 1,
1970.
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 339

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 340 Tuesday, July 28, 2009 10:34 AM
new Date(string) Returns the date described by string, which must have the
form:
month/day/year hour:minute:second msecond

The date expressed in string is taken in local time.
Example:
new Date("12/25/1932 14:35:12 820") −> a

date representing December the 25th, 1932, at 2:35 PM plus
12 seconds and 820 milliseconds, local time.

new Date(year,
month,
[, date
[, hours
[, minutes
[, seconds
[, mseconds]]]]]]]])

Returns a new date representing the given year, month,
date, etc., taken in local time. The arguments are:

◆ year: Any integer.

◆ month: range 0-11 (0=January, 1=February, etc)

◆ day: range 1-31, defaults to 1.

◆ hours: range 0-23, defaults to 0.

◆ minutes: range 0-59, defaults to 0.

◆ seconds: range 0-59, defaults to 0.

◆ mseconds: range 0-999, defaults to 0.

Example:
new Date(1932, 11, 25, 14, 35, 12, 820) −>

a date representing December the 25th, 1932, at 2:35 PM
plus 12 seconds and 820 milliseconds, local time.
new Date(1932, 11, 25) −> a date representing

December the 25th, 1932, at 00:00, local time.

Table F.33 IBM ILOG Script Date Constructor (Continued)

Syntax Effect
340 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Dates

usrfoundation.book Page 341 Tuesday, July 28, 2009 10:34 AM
Date Methods

Dates have the following methods:

Table F.34 IBM ILOG Script Date Methods

Syntax Effect

date.getTime()
date.setTime(milliseconds)

Returns (or sets) the number of milliseconds since
00:00:00 UTC, January 1, 1970.
Example: Suppose that the date d has been created with:
d = new Date(3427)

Then:
d.getTime() −> 3427

date.toLocaleString()
date.toUTCString()

Returns a string representing the date in local time
(respectively in UTC.)
Example: Suppose that the date d has been created with:
d = new Date("3/12/1997 12:45:00 0")

Then:
d.toLocaleString() −> "03/12/1997 12:45:00 000"
d.toUTCString() −> "03/12/1997 10:45:00 000",

assuming a local time zone offset of +2 hours with respect
to the Greenwich meridian.

date.getYear()
date.setYear(year)

Returns (or sets) the year of date.

date.getMonth()
date.setMonth(month)

Returns (or sets) the month of date.

date.getDate()
date.setDate(day)

Returns (or sets) the day of date.

date.getHours()
date.setHours(day)

Returns (or sets) the hour of date.

date.getMinutes()
date.setMinutes(day)

Returns (or sets) the minute of date.

date.getSeconds()
date.setSeconds(day)

Returns (or sets) the second of date.

date.getMilliseconds()
date.setMilliseconds(day)

Returns (or sets) the millisecond of date.

date.toString() Returns the same value as date.toLocaleString()
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 341

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 342 Tuesday, July 28, 2009 10:34 AM
Date Functions

The following functions manipulate dates:

Date Operators

There are no specific operators for dealing with dates, but, since numeric operators
automatically convert their arguments to numbers, these operators can be used to compute
the time elapsed between two dates, to compare dates, or to add a given amount of time to a
date. For example:

date1 - date2 −> the number of milliseconds elapsed between date1 and date2.

date1 < date2 −> true if date1 is before date2, false otherwise.

new Date(date+10000) −> a date representing 10000 milliseconds after date.

The following program displays the number of milliseconds spent for executing the
statement <do something>:

before = new Date()
<do something>
after = new Date()
writeln("Time for doing something: ", after-before, " milliseconds.")

The null Value

The topics are:

◆ The IBM ILOG Script null Value

◆ Methods of null

The IBM ILOG Script null Value

The null value is a special value used in some places to specify an absence of information.
For example, an array element which hasn't been set yet has a default null value. The null

Table F.35 IBM ILOG Script Date Functions

Syntax Effect

Date.UTC(string) Same as new Date(string), but string is taken in UTC and
the result is returned as a number rather than as a date
object.

Date.parse(string) Same as new Date(string), but the result is returned as a
number rather than as a date object.
342 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

The undefined Value

usrfoundation.book Page 343 Tuesday, July 28, 2009 10:34 AM
value is not to be confused with the undefined value, which also specifies an absence of
information in some contexts.

The null value can be referenced in programs with the keyword null:

null −> the null value

When converted to a number, null yields 0.

Methods of null

The only method of null is:

The undefined Value

The topics are:

◆ The IBM ILOG Script undefined Value

◆ Methods of undefined

The IBM ILOG Script undefined Value

The undefined value is a special value used in some places to specify an absence of
information. For example, accessing a property of a value which is not defined, or a local
variable which has been declared but not initialized, yields the undefined value.

There is no way of referencing the undefined value in programs. Checking if a value is the
undefined value can be done using the typeof operator:

typeof(value) == "undefined" −> true if value is undefined, false otherwise.

Methods of undefined

The only method of undefined is:

Table F.36 IBM ILOG Script Null Method

Syntax Effect

null.toString() Returns the string "null".

Table F.37 IBM ILOG Script Undefined Method

Syntax Effect

undefined.toString() Returns the string "undefined".
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 343

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 344 Tuesday, July 28, 2009 10:34 AM
Functions

The topics are:

◆ IBM ILOG Script Functions

◆ Function Methods

IBM ILOG Script Functions

In IBM ILOG Script, functions are regular values (also known as "first class" values) which
can be manipulated like any other type of value: They can be passed to functions, returned
by functions, stored into variables or into objects properties, etc.

For example, the function parseInt is actually a function value which is stored in the
parseInt variable:

parseInt −> a function value

This function value can be, for example, assigned to another variable:

myFunction = parseInt

and then called through this variable:

myFunction("-25") −> -25

Function Methods

The only method of functions is:

Table F.38 IBM ILOG Script Function Method

Syntax Effect

function.toString() Returns a string which contains some information about the
function.
Examples:
"foo".substring.toString() −> "[primitive

method substring]"
eval.toString() −> "[primitive function eval]"
344 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

Miscellaneous

usrfoundation.book Page 345 Tuesday, July 28, 2009 10:34 AM
Miscellaneous

Miscellaneous functions are described in the following table.

Table F.39 Miscellaneous Functions

Syntax Effect

stop() Stops the execution of the program at the current statement
and, if the debugger is enabled, enters in debug mode.

write(arg1, ..., argn)
writeln(arg1, ..., argn)

Converts the arguments to strings and prints them to the
current debug output. The implementation of this depends
on the application in which IBM ILOG Script is embedded.
The function writeln prints a newline at the end of the
output, while write does not.

loadFile(string) Loads the script file whose path is string. The path can be
either absolute or relative. If this path does not designate an
existing file, the file is looked up using a method which
depends on the application in which IBM ILOG Script is
embedded; typically, a file with the name string is searched
in a list of directories specified in the application setup.

eval(string) Executes string as a program, and returns the value of the
last evaluated expression. The program in string can use all
the features of the language, except that it cannot define
functions; in other words, the function statement is not
allowed in string.
Examples:
eval("2*3") −> 6
eval("var i=0; for (var j=0; j<100; j++)

i=i+j; i") −> 4950
n=25; eval("Math.sqrt(n)") −> 5
eval("function foo(x) { return x+1 }") −>

error
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 345

F. IBM ILOG Script 2.0 Language Reference

usrfoundation.book Page 346 Tuesday, July 28, 2009 10:34 AM
346 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

I N D E X

usrfoundation.book Page 347 Tuesday, July 28, 2009 10:34 AM
Index

A

accelerators
and containers 135, 136, 137
predefined in containers 137

addAccelerator member function
IlvContainer class 136

addCallback member function
IlvGraphic class 45

addInput member function
IlvEventLoop class 163

addObject member function
IlvContainer class 132

addOutput member function
IlvEventLoop class 163

addTransformer member function
IlvContainer class 134

alpha value 83
alphaCompose member function

IlvRGBBitmapData class 96
anti-aliasing mode 84
application context (X Window) 276
applications

internationalized 201
making scriptable 186, 196
multilingual 215
packaging with IBM ILOG Views 257

apply member function
IlvBitmapFilter class 97

applyToObject member function

IlvContainer class 132
applyToObjects member function

IlvContainer class 132
applyToTaggedObjects member function

IlvContainer class 132
arc mode graphic resource 82
arcs 47
ascent member function

IlvFont class 78

B

begin method
IlvPrintableDocument 176

bibliography 22
bitmap graphic formats 90

portable 93
blend member function

IlvRGBBitmapData class 95
bufferedDraw member function

IlvContainer class 134

C

C++
book references 22
prerequisites 19

callbacks 44
Main 45
registering 44
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 347

usrfoundation.book Page 348 Tuesday, July 28, 2009 10:34 AM
types 45
child 122
classes

creating 155
clipping 32, 85
color resources 35, 73

color conversion 88
color name 75
converting between color models 76
creating new colors 75
HSV color 73
mutable colors 75
quantizer 88
RGB color 73
shadow colors 76
static colors 75

connecting to display server 113
containers

displaying 133
drawing member functions 133
geometric transformations 134
object interactors 137
object properties 132
tagged objects 132

contains member function
IlvContainer class 144

cursor resources 85
cursors

predefined 80

D

dbm file format 222
DeclareInteractorTypeInfo macro 139
DeclareInteractorTypeInfoRO macro 139, 140
DeclareIOConstructors macro 60, 67
DeclarePropertyInfo macro 171
DeclarePropertyInfoRO macro 172
DeclarePropertyIOConstructors macro 171
DeclareTypeInfo macro 60, 62, 66
DeclareTypeInfoRO macro 62, 156
defaultBackground member function

IlvDisplay class 70, 71, 75
defaultCursor member function

IlvDisplay class 70, 71

defaultFont member function
IlvDisplay class 70

defaultForeground member function
IlvDisplay class 70, 75

defaultLineStyle member function
IlvDisplay class 70

defaultPalette member function
IlvDisplay class 47

defaultPattern member function
IlvDisplay class 70

descent member function
IlvFont class 78

dialogs
printing 181

diamonds 54
dispatchEvent virtual member function

IlvEventLoop class 164
display monitors

multiple 270
display path 118
display system 111
display system resources 114

home 116, 118
IlvPath 119
lang 116
look 116
messageDB 116
on Windows 117

doIt member function
IlvTimer class 162

double buffering 135
and containers 135

draw member function
IlvContainer class 133

drawing 121
drawing ports 127
dynamic modules

adding classes 158
compiling options (UNIX) 151
compiling options (Windows) 152
definition 149
explicit mode 154
implicit mode 153
initialization 150
loading 153, 157
348 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

usrfoundation.book Page 349 Tuesday, July 28, 2009 10:34 AM
on UNIX 151
on Windows 152
registration 157
registration macros 157

E

ellipses 47
encoding methods 230
end member function

IlvDevice class 128
end method

IlvPrintableDocument 176
ensureInScreen method

IlvView class 271
environment variables

ILVDB 116
ILVHOME 116, 118
ILVLANG 116, 215, 220, 225
ILVLOOK 116
ILVPATH 119

error messages 287
fatal errors 288
warnings 291

event handlers 161
event loop

external input sources 163
idle procedures 163
low-level event handling 164

events 135
handling low-level 164
keyboard 161
mouse 161
playback 161
player 161
recording 161

examples
extracted 22

extending IBM ILOG Views 147

F

fill member function
IlvRGBBitmapData class 95

fill rule graphic resource 81

fill style graphic resource 81
filters 97

SVG 97
fitToContents member function

IlvContainer class 134
fitTransformerToContents member function

IlvContainer class 135
focus chain 41
font resources 37, 78

creating new fonts 79
names 79

G

gadgets
callbacks 44

gauges 58, 59
GDI+ features 268
geometric transformations

and containers 134
Get static member function

IlvInteractor class 139
getAccelerator member function

IlvContainer class 136, 137
getBBox method

IlvPrintable class 177
getCallback member function

IlvGraphic class 45
getCallbackName member function

IlvGraphic class 45
getColor member function

IlvDisplay class 75
GetContainer member function

IlvContainer class 133
getData member function

IlvBitmapData class 95
getDatabase member function

IlvDisplay class 215
getDisplay member function

IlvResource class 72
getFamily member function

IlvFont class 78
getFont member function

IlvDisplay class 79
getFoundry member function
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 349

usrfoundation.book Page 350 Tuesday, July 28, 2009 10:34 AM
IlvFont class 78
getIndex member function

IlvColor class 75
getInteractor member function

IlvGraphic class 138
getName member function

IlvResource class 71
getNamedProperty member function

IlvNamedProperty class 167
getObject member function

IlvContainer class 132
getPalette member function

IlvDisplay class 46, 85, 86, 87
getRGBPixel member function

IlvRGBBitmapData class 95
getRGBPixels member function

IlvRGBBitmapData class 95
getSize member function

IlvFont class 78
getStyle member function

IlvFont class 78
getSymbol member function

IlvNamedProperty class 168
getSystemView member function

IlvAbstractView class 124
getTaggedObjects member function

IlvContainer class 132
getTransformer member function

IlvContainer class 134
getXXX member functions

IlvDisplay class 72
global functions

IlGetSymbol 132
IlvApplicationContext (X Window) 276
IlvComputeReliefColors 76
IlvCurrentEventPlayer 162
IlvFatalError 288
IlvGetDefaultHome 118
IlvGetErrorHandler 288
IlvHSVToRGB 76
IlvPrint 144
IlvRecordingEvents 162
IlvRGBToHSV 76
IlvSetDefaultHome 118
IlvSetErrorHandler 288

IlvWarning 288
graphic attributes 46
graphic formats 89

bitmap 90
portable bitmap 93
supported 89
vectorial 89

graphic objects
and containers 131
arcs 47
class information 41
class properties 42
creating a new graphic object class 59
diamonds 54
ellipses 47
focus chain properties 41
gadget properties 41
gauges 58, 59
geometric properties 40
graphic properties 40
grids 53
grouping 55
handle 57
icons 48
IlvGraphic class 46
input/output 43
introduction 40
labels 49, 53
lines 49
markers 50
named properties 40
owning 57
polygons 51
predefined 47
reading 44
rectangles 52, 53
referenced 57
referencing 55
splines 54
user properties 40
writing 43

graphic resources 69
arc mode 82
color 35
color pattern 37
350 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

usrfoundation.book Page 351 Tuesday, July 28, 2009 10:34 AM
fill rule 81
fill style 81
font 37
line style 36
line width 80
pattern 36

graphic transformations 57
grids 53
grouping

graphic objects 55, 57

H

handle object 57
handleEvent member function

IlvViewObjectInteractor class 146
interactor classes 137

hasEvent member function
IlvDisplay class 164

height member function
IlvFont class 78

home display system resource 116
home system resource 118
HSV color 73

I

i18n 202
IBM ILOG Script for IBM ILOG Views

accessing objects 188
accessing panels and gadgets 189
application object 188
arc mode name resources 199
binding objects 187, 188
bitmaps 196
callbacks 191
color name resources 197
common properties of objects 194
creating runtime objects 193
default files 190
developing scriptable applications 196
direction name resources 199
fill rule name resources 199
fill style name resources 200
fonts 196

getting the global context 187
handling panel events 192
including the header file 187
independent files 190
inline scripts 190
line style name resources 200
linking to libraries 187
loading modules 189
making applications scriptable 186, 196
onClose property 193
onHide property 193
OnLoad function 192
onShow property 192
panel events 192
pattern name resources 200
programming guide 185
resource names 195, 197
resources 195
setting callbacks 191
static functions 190
using bitmaps 196
using callbacks 191
using fonts 196
using resource names 195
using resources 195
writing callbacks 191

IBM ILOG Script reference
- + * / %

arithmetic operators 306
! || && ?:

logical operators 307
" ’

string delimiters 322
()

function call operator 303
operator precedence 298

,
sequence operator 306

. []
property access operators 301

// /* */
comments 297

;
statement terminator 297

= += -= *= /= %= <<= >>= >>>= &= ^= |=
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 351

usrfoundation.book Page 352 Tuesday, July 28, 2009 10:34 AM
assignment operators 302
== !=

equality operators 306
> >= < <=

relational operators 307
\n \t \\ \" \’ \b \f \r \xhh \ooo

string escape sequences 322
{ }

compound statement delimiters 296
~ & | ^ << >> >>>

bitwise operators 307
abs function 318
acos function 319
arguments keyword 304
array constructor 333
arrays 332

constructor 333
methods 335
properties 334

asin function 319
assignment operators 302
atan function 319
atan2 function 319
booleans 330

operators 331
break statement 310
ceil function 319
charAt method 324
charCodeAt method 325
comments 297
compound statements 296
conditional statement 308
continue statement 310
conversion to a number 317
conversion to a string 323
cos function 319
Date constructor 339
date functions 342
dates 338

constructor 339
functions 342
methods 341
operators 342

default value 315
delete operator 305

E constant 319
eval function 345
expl function 319
expressions 298
floor function 319
for statement 309
for..in statement 310
fromCharCode function 327
function statement 314
functions 344

call 303
definition 314
value 344

getDate method 341
getHours method 341
getMilliseconds method 341
getMinutes method 341
getMonth method 341
getSeconds method 341
getTime method 341
getYear method 341
identifier syntax 297
if statement 308
indexOf method 325
Infinity constant 317, 319
join method 335
lastIndexOf method 325
length property

arrays 334
strings 324

literals 299
LN10 constant 320
LN2 constant 320
loadFile function 345
log function 319
LOG10E constant 320
LOG2E constant 320
logical operators 331
loop statements 309
math functions 318
max function 318
MAX_VALUE constant 319
method definition for objects 337
min function 318
MIN_VALUE constant 319
352 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

usrfoundation.book Page 353 Tuesday, July 28, 2009 10:34 AM
NaN constant 316, 319
new operator 304, 337, 338
null value 342
numbers 315

constants 319
conversion to 317
functions 318
methods 318
operators 320
syntax 316

numeric functions 318
objects 336

constructor 337
user-defined constructor 338
user-defined method 337

operators 299
assignment operators 302
for booleans 331
for dates 342
for numbers 320
for strings 328
precedence 299

parse function 342
parseFloat function 327
PI constant 320
pow function 319
precedence of operators 298
program 296
properties

access 301
assignment 302
deleting 306

random function 318
return keyword 314
reverse method 336
round function 319
semicolon (;) 296
sequence operator (,) 306
setDate method 341
setHours method 341
setMilliseconds method 341
setMinutes method 341
setMonth method 341
setSeconds method 341
setTime method 341

setYear method 341
sin function 319
sort method 335
special numbers 316
split method 326
sqrt function 319
SQRT1_2 constant 320
SQRT2 constant 320
statements 307
static keyword 314
stop function 345
strings 322

conversion to 323
functions 327
methods 324
operators 328
properties 324
syntax 322

substring method 324
syntax 296
tan function 319
this keyword 304, 337
toLocaleString method 341
toLowerCase method 325
toString method 324

array 336
boolean 331
date 341
function 344
null 343
number 318
object 338
string 326
undefined 343

toUpperCase method 325
toUTCString method 341
typeof operator 305
undefined value 343
UTC function 342
var statement 311
variables

assignment 302
declaration as local 311
deleting 305
implicit declaration as global 302
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 353

usrfoundation.book Page 354 Tuesday, July 28, 2009 10:34 AM
reference 300
syntax 297

while statement 309
write function 345
writeln function 345

IBM ILOG Views
and C++ 89
class hierarchy 26
disk space 89
encoding methods for internationalization 230
graphic formats supported 89
libraries 25
making applications scriptable 186, 196
packaging with applications 257
using on Microsoft Windows 263
using on X Window systems 273

icons 48
idle procedures 163
IlGetSymbol global function 132
IlSymbol class 132, 167

messages 215
ilv2data tool

adding a resource file to UNIX 260
adding a resource file to Windows DLL 261
launching 258
launching with a batch command 259
panel 258
what is 257

IlvAbstractView class 121, 124
getSystemView member function 124

IlvApplicationContext function 276
IlvApplicationContext global function (X Window)

276
IlvArc class 47
IlvArcChord symbol 82
IlvArcMode type 82
IlvArcPie symbol 82
IlvArrowLine class 50
IlvArrowPolyline class 51
IlvBitmap class 77, 91
IlvBitmapData class 93, 94

getData member function 95
IlvBitmapFilter class 97

apply member function 97
IlvBlendFilter class 98

ilvbmpflt library 97
IlvButtonInteractor class 140
IlvBWBitmapData class 96
IlvClosedSpline class 55
IlvColor class 71, 73

getIndex member function 75
using 74

IlvColorMatrixFilter class 99
IlvColorPattern class 77
IlvComponentTransferFilter class 100
IlvComposeFilter class 101
IlvComputeReliefColors global function 76
IlvContainer class 123, 131

addAccelerator member function 136
addObject member function 132
addTransformer member function 134
and views 126
applyToObject member function 132
applyToObjects member function 132
applyToTaggedObjects member function 132
bufferedDraw member function 134
contains member function 144
draw member function 133
fitToContents member function 134
fitTransformerToContents member function

135
getAccelerator member function 136, 137
GetContainer member function 133
getObject member function 132
getTaggedObjects member function 132
getTransformer member function 134
isDoubleBuffering member function 135
read member function 135
readFile member function 135
reDraw member function 133
reDrawObj member function 134
removeAccelerator member function 136, 137
removeObject member function 132
removeTaggedObjects member function 132
setDoubleBuffering member function 135
setObjectName member function 133
setTransformer member function 134
setVisible member function 133
swap member function 133
translateView member function 134
354 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

usrfoundation.book Page 355 Tuesday, July 28, 2009 10:34 AM
zoomView member function 134
IlvContainerAccelerator class 136
IlvConvolutionFilter class 102
IlvCurrentEventPlayer global function 162
IlvCursor class 80
ILVDB environment variable 116
IlvDevice class

end member function 128
init member function 127
isBad member function 127
newPage member function 128
send member function 128
setTransformer member function 128

IlvDiffuseLightingFilter class 104
IlvDisplaceFilter class 103
IlvDisplay class 70, 111, 263, 274

appendToPath member function 119
defaultBackground member function 70, 71, 75
defaultCursor member function 70, 71
defaultFont member function 70
defaultForeground member function 70, 75
defaultLineStyle member function 70
defaultPalette member function 47
defaultPattern member function 70
drawing commands 112
getColor member function 75
getDatabase member function 215
getFont member function 79
getPalette member function 46, 85, 86, 87
getPath member function 119
getXXX member functions 72
graphic resources 113
hasEvent member function 164
lock member function 46, 91
message database 215
predefined line styles 77
predefined patterns 78
prependToPath member function 119
primitives 112
readAndDispatchEvents member function 164
screenBBox method 270
setPath member function 119
topShell member function (X Window) 276
unLock member function 46, 91
waitAndDispatchEvents member function 164

IlvDistantLight class 106
IlvDragDropInteractor class 141
IlvDrawingView class 125
IlvDrawMode enumeration type 83
IlvElasticView class 125
IlvEllipse class 47
IlvError class 287
IlvEvenOddRule symbol 82
IlvEvent class 161
IlvEventLoop class

addInput member function 163
addOutput member function 163
dispatchEvent virtual member function 164
nextEvent virtual member function 164
pendingInput virtual member function 164
processInput virtual member function 164
removeInput member function 163
removeOutput member function 163

IlvEventPlayer class 161
IlvFatalError global function 288
IlvFillColorPattern symbol 81
IlvFilledArc class 47
IlvFilledEllipse class 47
IlvFilledLabel class 49
IlvFilledRectangle class 52
IlvFilledRoundRectangle class 53
IlvFilledSpline class 55
IlvFillMaskPattern symbol 81
IlvFillOnly constant

IlvGraphicPath class 56
IlvFillPattern symbol 81
IlvFillRule type 81
IlvFillStyle enumeration type 81
IlvFilteredGraphic class 109
IlvFilterFlow class 108
IlvFixedQuantizer class 88
IlvFixedSizeGraphic class 58
IlvFloodFilter class 103
IlvFont class 71, 78

ascent member function 78
descent member function 78
getFamily member function 78
getFoundry member function 78
getSize member function 78
getStyle member function 78
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 355

usrfoundation.book Page 356 Tuesday, July 28, 2009 10:34 AM
height member function 78
isFixed member function 79
maxWidth member function 79
minWidth member function 79
sizes member function 79
stringHeight member function 79
stringWidth member function 79

IlvGadget class 59
IlvGauge class 58
IlvGaugeInteractor class

handleEvent member function 146
IlvGaussianBlurFilter class 103
IlvGetDefaultHome global function 118
IlvGetErrorHandler global function 288
IlvGetWindowsPrinter global function 267
IlvGraphic class 46, 56, 134, 138

addCallback member function 45
getCallback member function 45
getCallbackName member function 45
getInteractor member function 138
graphic object 46
member functions 40
redefining member functions 61
removeCallback member function 45
setCallback member function 45
setCallbackName member function 45
setInteractor member function 138

IlvGraphicCallback type 44
IlvGraphicHandle class 57
IlvGraphicInstance class 58
IlvGraphicPath class 55
IlvGraphicSet class 56
IlvGridRectangle class 53
IlvGroupGraphic class 59
ILVHOME environment variable 116, 118
IlvHSVToRGB global function 76
IlvHueRotateFilter class 99
IlvIcon class 48
IlvImageFilter class 104
IlvIndexedBitmapData class 94
ILVINITIALIZEMODULE macro 150
IlvInputFile class 43, 44, 139
IlvInteractor class 138, 139

Get static member function 139
IlvLabel class 49, 139

ILVLANG environment variable 116, 215, 220, 225
IlvLightingFilter class 104
IlvLightSource class 106
IlvLine class 49
IlvLineStyle class 76
IlvListLabel class 49
ILVLOOK environment variable 116
IlvLuminanceToAlphaFilter class 100
IlvMain function 264
IlvMainLoop function 277
IlvMainLoop global function 264
IlvMapxx class 59
IlvMarker class 50
IlvMergeFilter class 107
IlvMessageDatabase class 215
IlvModeAnd draw mode 83
IlvModeInvert draw mode 83
IlvModeNot draw mode 83
IlvModeNotAnd draw mode 83
IlvModeNotOr draw mode 83
IlvModeNotXor draw mode 83
IlvModeOr draw mode 83
IlvModeSet draw mode 83
IlvModeXor draw mode 83
IlvModule class 149, 150

Load static member function 154
IlvMorphologyFilter class 107
IlvMoveInteractor class 139, 140
IlvMoveReshapeInteractor class 141
IlvNamedProperty class 167

getNamedProperty member function 167
getSymbol member function 168
removeNamedProperty member function 168
setNamedProperty member function 168

IlvNetscapeQuantizer class 88
IlvOffsetFilter class 107
IlvOutlinePolygon class 51
IlvOutputFile class 43
IlvPalette class 46, 62, 70, 85, 113

draw mode 83
locking and unlocking resources 85
setClip member function 85

IlvPaperFormat class 180
IlvPath display resource 119
ILVPATH environment variable 119
356 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

usrfoundation.book Page 357 Tuesday, July 28, 2009 10:34 AM
IlvPattern class 77
IlvPointLight class 106
IlvPolygon class 51
IlvPolyline class 51
IlvPolyPoints class 50
IlvPolySelection class 51
IlvPort class 112, 121, 127
IlvPostScriptPrinterDialog class 181
IlvPredefinedInteractorIOMembers macro 140
IlvPredefinedIOMembers macro 60, 67
IlvPredefinedPropertyIOMembers macro 173
IlvPrint global function 144
IlvPrintable class 176

getBBox method 177
internalPrint method 177

IlvPrintableComposite class 178
IlvPrintableContainer class 177
IlvPrintableDocument

Iterator class 176
IlvPrintableDocument class 176

begin method 176
end method 176

IlvPrintableFormattedText class 177
IlvPrintableFrame class 178
IlvPrintableGraphic class 178
IlvPrintableLayout class 178
IlvPrintableLayoutFixedSize class 179
IlvPrintableLayoutIdentity class 179
IlvPrintableLayoutMultiplePages class 178
IlvPrintableLayoutOnePage class 178
IlvPrintableManager class 178
IlvPrintableManagerLayer class 178
IlvPrintableMgrView class 178
IlvPrintableText class 177
IlvPrintCMUnit class 179
IlvPrinter class 179
IlvPrinterPreviewDialog class 182
IlvPrintInchUnit class 180
IlvPrintPicaUnit class 180
IlvPrintPointUnit class 179
IlvPrintUnit class 179
IlvPSDevice class 129
IlvPSPrinter class 179
IlvQuantizer class 88

IlvQuickQuantizer class 88
IlvRecordingEvents global function 162
IlvRect class 134
IlvRectangle class 52
IlvRegion class 134
IlvRegisterClass macro 60, 67, 68, 155, 156
IlvRegisterInteractorClass macro 140
IlvRegisterPropertyClass macro 173
IlvReliefDiamond class 54
IlvReliefLabel class 54
IlvReliefLine class 50
IlvReliefRectangle class 54
IlvRepeatButtonInteractor class 140
IlvReshapeInteractor class 141
IlvResource class 69, 70, 113

getDisplay member function 72
getName member function 71
lock member function 72
setName member function 71
unLock member function 72
unLock virtual member function 72

IlvRGBBitmapData class 95
alphaCompose member function 96
blend member function 95
fill member function 95
getRGBPixel member function 95
getRGBPixels member function 95
stretch member function 96
stretchSmooth member function 96
tile member function 96

IlvRGBToHSV global function 76
IlvRoundRectangle class 52
IlvSaturationFilter class 99
IlvScale class 58
IlvScrollView class 123, 126
IlvSetDefaultHome global function 118
IlvSetErrorHandler global function 288
IlvShadowLabel class 53
IlvShadowRectangle class 53
IlvSimpleGraphic class 46, 56

member functions 46
IlvSpecularLightingFilter class 105
IlvSpline class 54
IlvSpotLight class 106
IlvStrokeAndFill constant
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 357

usrfoundation.book Page 358 Tuesday, July 28, 2009 10:34 AM
IlvGraphicPath class 56
IlvStrokeOnly constant

IlvGraphicPath class 55, 56
IlvSystemPort class 129
IlvSystemView type 124
IlvTileFilter class 107
IlvTimer class 162

doIt member function 162
run member function 162

IlvTimerProc type 162
IlvToggleInteractor class 140
IlvToolTip class 168
IlvTransformedGraphic class 57
IlvTransformer class 58
IlvTransparentIcon class 48, 93
IlvTurbulenceFilter class 107
IlvView class 121, 123, 124

ensureInScreen method 271
moveToView method 271

IlvWarning global function 288
IlvWindingRule symbol 82
IlvWindowsDevice 267
IlvWindowsPrinter class 179
IlvWindowsVirtualDevice 267
IlvWuQuantizer class 88
IlvZoomableIcon class 48
IlvZoomableLabel class 49
IlvZoomableMarker class 50
IlvZoomableTransparentIcon class 49
images

color quantization 88
processing 97
processing filters 97

init member function
IlvDevice class 127

Input Method (IM) 227
input sources

alternate 163
external 163
registering 163

interactors 33
and containers 137

internalPrint method
IlvPrintable class 177

internationalization 201

application program requirements 203
considerations for Far Eastern languages 226
data input requirements 227
encoding methods 230
IBM ILOG Views locale names 210
locale requirements 204
message databases 214
required fonts 212
restrictions 228
troubleshooting 229
X library support 209

isBad member function
IlvDevice class 127

isDoubleBuffering member function
IlvContainer class 135

isFixed member function
IlvFont class 79

K

keyboard focus 45

L

labels 49, 53
lang display system resource 116
libmviews library 273
libraries 25
libxviews library 273
line style 36
line style resources 76

creating new line styles 76
line width 36
line width resources 80
lines 37, 49
Load static member function

IlvModule class 154
locale

definition 202
required fonts 212

locales
AIX support 248
HP-UX 11.0 support 241
Microsoft Windows support 236
OSF support 254
358 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

usrfoundation.book Page 359 Tuesday, July 28, 2009 10:34 AM
Solaris 2.7 support 243
supported 236

lock member function
IlvDisplay class 46, 91
IlvResource class 72

look display system resource 116

M

macros
DeclareInteractorTypeInfo 139
DeclareInteractorTypeInfoRO 139
DeclareIOConstructors 60, 67
DeclareTypeInfo 60, 62, 66
DeclareTypeInfoRO 62, 156
ILVINITIALIZEMODULE 150
IlvPredefinedInteractorIOMembers 140
IlvPredefinedIOMembers 60, 67
IlvPredefinedPropertyIOMembers 173
IlvRegisterClass 60, 67, 68, 155, 156
IlvRegisterInteractorClass 140
IlvRegisterPropertyClass 173

main function 264
manual

naming conventions 21
notation 21
organization 19

markers 50
maxWidth member function

IlvFont class 79
message databases 214, 215
messageDB display system resource 116
minWidth member function

IlvFont class 79
module definition file

definition 153
writing 155

Motif applications
integrating with IBM ILOG Views 275

moveToView method
IlvView class 271

multilingual applications 215
multiple display monitors 270

N

named properties
associating with objects 167
creating 169
defining constructors 170, 171
defining the property symbol 170
defining the setString function 171
defining the write function 172
extending 168
header file 169
providing an entry point 172
registering the class 173
tooltips 168
using a new property 173

naming conventions 21
newPage member function

IlvDevice class 128
nextEvent vitual member function

IlvEventLoop class 164
notation 21

O

object interactors
and containers 137
predefined 140
registering 139
using 138

object-oriented programming 26

P

palettes 56, 85
clipping area 85
draw mode 83
locking and unlocking resources 85
naming 87
non-shared 86
shared 86

paper formats 180
parent 122
parent-child relationship 122
Path display system resource 119
pattern 36
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 359

usrfoundation.book Page 360 Tuesday, July 28, 2009 10:34 AM
pattern resources 77
colored 78
monochrome 77
predefined 78

pendingInput virtual member function
IlvEventLoop class 164

persistent properties 167
polygons 51
polypoints 56
portability limitations 283
portable bitmaps 93
primitives 112
printing

dialogs 181
Windows 267

printing in IBM ILOG Views 175
processInput virtual member function

IlvEventLoop class 164
properties

persistent 167

Q

quantizer 88

R

read member function
IlvContainer class 135

readAndDispatchEvents member function
IlvDisplay class 164

readFile member function
IlvContainer class 135

reading objects
and containers 135

rectangles 52, 53
reDraw member function

IlvContainer class 133
reDrawObj member function

IlvContainer class 134
referenced object 57
referencing graphic objects 57
regions 38
registration macros 157
removeAccelerator member function

IlvContainer class 136, 137
removeCallback member function

IlvGraphic class 45
removeInput member function

IlvEventLoop class 163
removeNamedProperty member function

IlvNamedProperty class 168
removeObject member function

IlvContainer class 132
removeOutput member function

IlvEventLoop class 163
removeTaggedObjects member function

IlvContainer class 132
resource files

adding to UNIX library 260
adding to Windows DLL 261

resources 46, 69
and IlvPalette 113
applying 37
cursors 85
default 70
display system 114
fonts 78
IlvDisplay defaults 70
line style 76
locking and unlocking 72
naming 71
patterns 77
summary 70
using 72

RGB color 73
run member function

IlvTimer class 162

S

screenBBox method
IlvDisplay class 270

scripting
making applications scriptable 186, 196

scroll view 30, 123
selecting a printer 267
send member function

IlvDevice class 128
setCallback member function
360 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

usrfoundation.book Page 361 Tuesday, July 28, 2009 10:34 AM
IlvGraphic class 45
setCallbackName member function

IlvGraphic class 45
setClip member function

IlvPalette class 85
setDoubleBuffering member function

IlvContainer class 135
setInteractor member function

IlvGraphic class 138
setName member function

IlvResource class 71
setNamedProperty member function

IlvNamedProperty class 168
setNeedsInputContext method 228
setObjectName member function

IlvContainer class 133
setTransformer member function

IlvContainer class 134
IlvDevice class 128

setVisible member function
IlvContainer class 133

sizes member function
IlvFont class 79

splines 54
streamers 92
stretch member function

IlvRGBBitmapData class 96
stretchSmooth member function

IlvRGBBitmapData class 96
stringHeight member function

IlvFont class 79
strings 38
stringWidth member function

IlvFont class 79
SVG filters 97
swap member function

IlvContainer class 133
symbols 132

T

tagged objects 132
tile member function

IlvRGBBitmapData class 96
timers 162

tools view 31, 123
tooltips

removing 168
setting 168

top shell (X Window) 276
top window 30, 123
top-level view 30
topShell member function (X Window)

IlvDisplay class 276
translateView member function

IlvContainer class 134
transparent icons

IlvBitmap class 93
types

IlvArcMode 82
IlvDrawMode 83
IlvFillRule 81
IlvFillStyle 81
IlvGraphicCallback 44
IlvSystemView 124
IlvTimerProc 162

U

unLock member function
IlvDisplay class 46, 91
IlvResource class 72

unLock virtual member function
IlvResource class 72

V

vectorial graphic formats 89
views 28

and containers 131
and IlvContainer class 126
description 29
hierarchies 121
hierarchy summary 122
IlvAbstractView class 124
IlvDrawingView class 125
IlvElasticView class 125
IlvScrollView class 126
IlvView class 124
scroll view 30
I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L 361

usrfoundation.book Page 362 Tuesday, July 28, 2009 10:34 AM
tools view 31
top window 30
window-oriented hierarchy 29
working view 31

W

waitAndDispatchEvents member function
IlvDisplay class 164

Windows
creating an application 263
devices 267
display system resources 117
GDI+ 268
integrating code into an application 264, 266
printing 267
selecting a printer 267

working view 31, 123

X

X Window systems 273
Xlib 274
XtAppMainLoop function 277

Z

zoomView member function
IlvContainer class 134
362 I B M I L O G V I E W S F O U N D A T I O N V 5 . 3 — U S E R ’ S M A N U A L

	IBM ILOG Views Foundation V5.3 User’s Manual
	About This Manual
	Introducing IBM ILOG Views Foundation
	Application Programming Interface (API)
	Libraries
	Class Hierarchy

	Using IBM ILOG Views
	Windows and Views
	What is a View?
	Looking at a View Window

	Containers: Controlling the View
	Introducing Graphic Objects
	Displaying Graphic Objects
	Interactors

	Drawing Attributes and Palettes
	Color
	Line Style and Width
	Patterns
	Font

	Basic Drawing Types
	Lines
	Regions
	Strings

	Graphic Objects
	IlvGraphic: The Graphic Objects Class
	Member Functions
	Callbacks

	The IlvSimpleGraphic Class
	Member Functions
	Graphic Attributes

	Predefined Graphic Objects
	IlvArc
	IlvFilledArc
	IlvEllipse
	IlvFilledEllipse
	IlvIcon
	IlvZoomableIcon
	IlvTransparentIcon
	IlvZoomableTransparentIcon
	IlvLabel
	IlvFilledLabel
	IlvListLabel
	IlvZoomableLabel
	IlvLine
	IlvArrowLine
	IlvReliefLine
	IlvMarker
	IlvZoomableMarker
	IlvPolyPoints
	IlvPolySelection
	IlvPolyline
	IlvArrowPolyline
	IlvPolygon
	IlvOutlinePolygon
	IlvRectangle
	IlvFilledRectangle
	IlvRoundRectangle
	IlvFilledRoundRectangle
	IlvShadowRectangle
	IlvShadowLabel
	IlvGridRectangle
	IlvReliefRectangle
	IlvReliefLabel
	IlvReliefDiamond
	IlvSpline
	IlvClosedSpline
	IlvFilledSpline

	Composite Graphic Objects
	Filling Polygons: IlvGraphicPath
	Grouping Objects: IlvGraphicSet
	Referencing Objects: IlvGraphicHandle

	Other Base Classes
	IlvGauge
	IlvScale
	IlvGadget
	IlvGroupGraphic
	IlvMapxx

	Creating a New Graphic Object Class
	The Example: ShadowEllipse
	Basic Steps to Subtype a Graphic Object
	Redefining IlvGraphic Member Functions
	Creating the Header File
	Implementing the Object Functions
	Updating the Palettes
	Saving and Loading the Object Description

	Graphic Resources
	IlvResource: The Resource Object Base Class
	Predefined Graphic Resources
	Named Resources
	Resource Creation and Destruction: lock and unLock

	IlvColor: The Color Class
	Color Models
	Using the IlvColor Class
	Converting between Color Models
	Computing Shadow Colors

	IlvLineStyle: The Line Style Class
	New Line Styles

	IlvPattern and IlvColorPattern: The Pattern Classes
	Monochrome Patterns
	Colored Patterns

	IlvFont: The Font Class
	New Fonts
	Font Names

	IlvCursor: The Cursor Class
	Other Drawing Parameters
	Line Width
	Fill Style
	Fill Rule
	Arc Mode
	Draw Mode
	Alpha Value
	Anti-Aliasing Mode

	IlvPalette: Drawing Using a Group of Resources
	Locking and Unlocking Resources
	Clipping Area
	Creating a Non-shared Palette
	Creating a Shared Palette
	Naming Palettes

	IlvQuantizer: The Image Color Quantization Class

	Graphic Formats
	Graphic Formats Supported
	Bitmaps
	IlvBitmap: The Bitmap Image Class
	Bitmap-Related Member Functions
	Bitmap Formats
	Loading Bitmaps: Streamers
	Loading Transparent Bitmaps

	IlvBitmapData: The Portable Bitmap Data Management Class
	The IlvBitmapData Class
	The IlvIndexedBitmapData Class
	The IlvRGBBitmapData Class
	The IlvBWBitmapData Class

	Image Processing Filters
	IlvBitmapFilter: The Image Processing Class
	The IlvBlendFilter Class
	The IlvColorMatrixFilter Class
	The IlvComponentTransferFilter Class
	The IlvComposeFilter Class
	The IlvConvolutionFilter Class
	The IlvDisplaceFilter Class
	The IlvFloodFilter Class
	The IlvGaussianBlurFilter Class
	The IlvImageFilter Class
	The IlvLightingFilter Class
	The IlvLightSource Class
	The IlvMergeFilter Class
	The IlvMorphologyFilter Class
	The IlvOffsetFilter Class
	The IlvTileFilter Class
	The IlvTurbulenceFilter Class
	The IlvFilterFlow Class
	Using IlvFilteredGraphic to Apply Filter Flows to Graphic Objects

	The Display System
	IlvDisplay: The Display System Class
	Connecting to the Display Server
	Opening a Connection and Checking the Display
	Closing a Connection and Ending a Session

	Display System Resources
	The getResource Method
	How Display System Resources are Stored
	Default Display System Resources
	Environment Variables and Resource Names
	Display System Resources on Windows

	Home
	The Display Path
	Setting the Display Path
	The Path Resource
	The ILVPATH Environment Variable
	Querying or Modifying the Display Path
	Example: Add a Directory to the Display Path

	Views
	View Hierarchies: Two Perspectives
	Window-Oriented View Hierarchy
	Class-Oriented View Hierarchy

	IlvAbstractView: The Base Class
	IlvView: The Drawing Class
	IlvView Subclasses
	The IlvElasticView Class
	The IlvDrawingView Class
	The IlvContainer Class

	The IlvScrollView Class

	Drawing Ports
	IlvPort: The Drawing Port Class
	Derived Classes of IlvPort
	The IlvSystemPort Class
	The IlvPSDevice Class

	Containers
	IlvContainer: The Graphic Placeholder Class
	General-Purpose Member Functions
	Applying Functions to Objects
	Tagged Objects
	Object Properties

	Displaying Containers
	Drawing Member Functions
	Geometric Transformations
	Managing Double Buffering
	Reading Objects from Disk

	Managing Events: Accelerators
	Member Functions
	Implementing Accelerators: IlvContainerAccelerator
	Predefined Container Accelerators

	Managing Events: Object Interactors
	Using Object Interactors
	Predefined Object Interactors
	Example: Linking an Interactor and an Accelerator

	Creating Objects with Complex Behavior
	Example: Creating a Slider
	Associating a Behavior with Your Device
	Building and Extending your Device

	Dynamic Modules
	IlvModule: The Dynamic Module Class
	Dynamic Module Code Skeleton

	Building a Dynamic Module
	Loading a Dynamic Module
	Implicit Mode
	Explicit Mode

	An Example: Dynamic Access
	Writing the Sample Module Definition File
	Implementing the New Class
	Loading and Registration of the Example
	Registration Macros
	Adding the Sample Class to a Dynamic Module

	Events
	IlvEvent: The Event Handler Class
	Recording and Playing Back Event Sequences: IlvEventPlayer
	Functions Handling Event Recording

	The IlvTimer Class
	External Input Sources (UNIX only)
	Idle Procedures
	Low-level Event Handling
	Main Loop Definition: An Example

	IlvNamedProperty: The Persistent Properties Class
	Associating Named Properties with Objects
	Extension of Named Properties
	Example: Creating a Named Property

	Printing in IBM ILOG Views
	The IlvPrintableDocument Class
	Iterators
	Example

	The IlvPrintable Class
	The IlvPrintableLayout Class
	The IlvPrinter Class
	The IlvPrintUnit Class
	The IlvPaperFormat Class
	Dialogs

	IBM ILOG Script Programming
	IBM ILOG Script for IBM ILOG Views
	Making IBM ILOG Views Applications Scriptable
	Including the Header File
	Linking with IBM ILOG Script for IBM ILOG Views Libraries

	Binding IBM ILOG Views Objects
	Getting the Global IBM ILOG Script Context
	Binding IBM ILOG Views Objects

	Loading IBM ILOG Script Modules
	Inline Scripts
	Default IBM ILOG Script Files
	Independent IBM ILOG Script Files
	IBM ILOG Script Static Functions

	Using IBM ILOG Script Callbacks
	Writing a Callback
	Setting an IBM ILOG Script Callback

	Handling Panel Events
	The OnLoad Function
	The onShow Property
	The onHide Property
	The onClose Property

	Creating IBM ILOG Views Objects at Run Time
	Common Properties of IBM ILOG Views Objects
	className
	name
	help

	Using Resources in IBM ILOG Script for IBM ILOG Views
	Using Resource Names with IBM ILOG Script for IBM ILOG Views
	Using Bitmaps with IBM ILOG Script for IBM ILOG Views
	Using Fonts with IBM ILOG Script for IBM ILOG Views

	Guidelines for Developing Scriptable Applications
	Resource Names

	Internationalization
	What is i18n?
	Checklist for Localized Environments
	Creating a Program to Run in a Localized Environment
	Locale Requirements
	Checking Your System’s Locale Requirements
	Locale Name Format
	Current Default Locale
	Changing the Current Default Locale
	X Library Support (UNIX only)

	IBM ILOG Views Locale Support
	IBM ILOG Views Locale Names
	Determining IBM ILOG Views Support for the Locale

	Required Fonts
	Localized Message Database Files in IBM ILOG Views
	The IlvMessageDatabase Class
	Language of the Message Database Files
	Location of the Message Database Files
	Determining Parameters of the Message Database Files
	Loading the Message Database
	.dbm File Format
	How to Dynamically Change Your Display Language

	Using IBM ILOG Views with Far Eastern Languages
	Data Input Requirements
	Input Method (IM)
	Far Eastern Input Method Servers Tested with IBM ILOG Views
	How to Control the Language Used for Data Input

	Limitations of Internationalization Features
	Troubleshooting
	Reference: Encoding Listings
	Reference: Supported Locales on Different Platforms

	Appendix A Packaging IBM ILOG Views Applications
	Launching ilv2data
	The ilv2data Panel
	Launching ilv2data with a Batch Command
	Adding a Resource File to a UNIX Library
	Adding a Resource File to a Windows DLL

	Appendix B Using IBM ILOG Views on Microsoft Windows
	Creating a New IBM ILOG Views Application on Microsoft Windows
	Incorporating Windows Code into an IBM ILOG Views Application
	Integrating IBM ILOG Views Code into a Windows Application
	Exiting an Application Running on Microsoft Windows
	Windows-specific Devices
	Printing
	Selecting a Printer

	Using GDI+ Features with IBM ILOG Views
	What is GDI+
	GDI+ and IBM ILOG Views
	Controlling GDI+ Features at Run Time
	Limitations

	Using Multiple Display Monitors with IBM ILOG Views

	Appendix C Using IBM ILOG Views on X Window Systems
	Libraries
	Using the Xlib Version, libxviews
	Using the Motif Version, libmviews

	Adding New Sources of Input
	ONC-RPC Integration
	Integrating IBM ILOG Views with a Motif Application Using libmviews
	Initializing Your Application
	Standard IBM ILOG Views Initialization Procedure
	Motif Application Initialization Procedure
	Retrieving Connection Information
	Using an Existing Widget
	Running the Main Loop
	Sample Program Using Motif and IBM ILOG Views

	Integrating IBM ILOG Views with an X Application Using libxviews
	Integration Steps
	Complete Template
	Complete Example with Motif

	Appendix D Portability Limitations
	Non-Supported or Limited Features
	The Main Event Loop

	Appendix E Error Messages
	The IlvError Class
	Fatal Errors
	Warnings

	Appendix F IBM ILOG Script 2.0 Language Reference
	Syntax
	IBM ILOG Script Program Syntax
	Compound Statements
	Comments
	Identifier Syntax

	Expressions
	IBM ILOG Script Expressions
	Literals
	Variable Reference
	Property Access
	Assignment Operators
	Function Call
	Special Keywords
	Special Operators
	Other Operators

	Statements
	Conditional Statement
	Loops
	Variable Declaration
	Function Definition
	Default Value

	Numbers
	Number Literal Syntax
	Special Numbers
	Automatic Conversion to a Number
	Number Methods
	Numeric Functions
	Numeric Constants
	Numeric Operators

	Strings
	String Literal Syntax
	Automatic Conversion to a String
	String Properties
	String Methods
	String Functions
	String Operators

	Booleans
	Boolean Literal Syntax
	Automatic Conversion to a Boolean
	Boolean methods
	Logical Operators

	Arrays
	IBM ILOG Script Arrays
	Array Constructor
	Array Properties
	Array Methods

	Objects
	IBM ILOG Script Objects
	Defining Methods
	The this Keyword
	Object Constructor
	User-defined Constructors
	Built-in Methods

	Dates
	IBM ILOG Script Date Values
	Date Constructor
	Date Methods
	Date Functions
	Date Operators

	The null Value
	The IBM ILOG Script null Value
	Methods of null

	The undefined Value
	The IBM ILOG Script undefined Value
	Methods of undefined

	Functions
	IBM ILOG Script Functions
	Function Methods

	Miscellaneous

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

