
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG Views

Grapher V5.3

User’s Manual

June 2009

Copyright notice
© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

C O N T E N T S
Table of Contents

IBM ILOG Views Grapher V5.3

Preface About This Manual . 5

What You Need to Know .5

Manual Organization. .5

Notation. .6

Typographic Conventions .6

Naming Conventions .6

Chapter 1 Introducing the Grapher Extension of IBM ILOG Views Studio 7

The Main Window. .7

Buffer Windows .8

The Menu Bar .9

The Action Toolbar. .10

The Editing Modes Toolbar .10

The Palettes Panel .10

The Grapher Palettes. .11

Grapher Extension Commands .14

MakeNode .14

NewGrapherBuffer .14

SelectArcLinkImageMode .14
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 3

SelectDoubleLinkImageMode .15

SelectDoubleSplineLinkImageMode .15

SelectLinkImageMode .15

SelectOneLinkImageMode. .16

SelectOneSplineLinkImageMode. .16

SelectOrientedArcLinkImageMode .16

SelectOrientedDoubleLinkImageMode .16

SelectOrientedDoubleSplineLinkImageMode .17

SelectOrientedLinkImageMode .17

SelectOrientedOneLinkImageMode. .17

SelectOrientedOneSplineLinkImageMode. .18

SelectOrientedPolylineLinkImageMode .18

SelectPinEditorMode .18

SelectPolylineLinkImageMode. .18

Chapter 2 Features of the Grapher Package . 21

Graph Management .21

Description of the IlvGrapher Class .22

Loading and Saving Graph Descriptions .23

Grapher Links. .24

Base Class for Links .24

Predefined Grapher Links .26

Creating a Custom Grapher link. .31

Connection Pins. .33

Grapher Interactors .36

Selection Interactor .36

Creating Nodes .37

Creating Links .37

Editing Connection Pins .39

Editing Links. .39

Index . 41
4 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

P R E F A C E
About This Manual

This User’s Manual describes a high-level IBM® ILOG® Views package called the grapher.

What You Need to Know

This manual assumes that you are familiar with the PC or UNIX® environment in which you
are going to use IBM® ILOG® Views, including its particular windowing system. Since
IBM ILOG Views is written for C++ developers, the documentation also assumes that you
can write C++ code and that you are familiar with your C++ development environment so as
to manipulate files and directories, use a text editor, and compile and run C++ programs.

Manual Organization

The manual contains the following chapter:

◆ Introducing the Grapher Extension of IBM ILOG Views Studio describes how to use
IBM® ILOG® Views Studio with the grapher extension.

◆ Features of the Grapher Package describes the features dedicated to the graphic
representation of hierarchical and interconnected information.
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 5

Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:

◆ Code extracts and file names are written in courier typeface.

◆ Entries to be made by the user are written in courier italics.

◆ Some words in italics, when seen for the first time, may be found in the glossary at the
end of this manual.

Naming Conventions

Throughout this manual, the following naming conventions apply to the API.

◆ The names of types, classes, functions, and macros defined in the IBM ILOG Views
Foundation library begin with Ilv.

◆ The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized.

class IlvDrawingView;

◆ The names of virtual and regular methods begin with a lowercase letter; the names of
static methods start with an uppercase letter. For example:

virtual IlvClassInfo* getClassInfo() const;

static IlvClassInfo* ClassInfo*() const;
6 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R
1

Introducing the Grapher Extension of
IBM ILOG Views Studio

This chapter introduces you to the Grapher extension of IBM® ILOG® Views Studio. You
can find information on the following topics:

◆ The Main Window

◆ The Palettes Panel

◆ Grapher Extension Commands

The Main Window

When you launch the application, the Main window of IBM® ILOG® Views Studio appears
as follows:

Note: The chapters concerning the use of the Grapher extension of IBM ILOG Views
assume that you are familiar with the information in the IBM ILOG Views Studio User’s
Manual.
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 7

Figure 1.1

Figure 1.1 IBM ILOG Views Studio Main Window with Grapher Extension at Start-up

The Main window appears much as it does when only the Foundations package is installed.
However, you will notice that with the Grapher package you have access to an additional
buffer window, additional palettes in the Palettes panel, and additional items in the menu bar
and toolbars of the interface.

Buffer Windows

Applications and panels are created in the buffer windows displayed in the Main window.
The current buffer type is shown at the bottom of the Main window.

With the Grapher extension of IBM® ILOG® Views Studio, you can edit the following
types of buffers:
8 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

The Main Window
◆ Grapher

◆ 2D Graphics

An empty Graphics buffer is displayed by default when you launch IBM ILOG Views
Studio.

The Grapher Buffer Window

The Grapher buffer window lets you display and edit graphs. It uses an IlvGrapher to load,
edit, and save nodes and links.

To create a new Grapher buffer window:

1. Choose New from the File menu.

2. Then choose Grapher from the submenu that appears.

To open this window, you can also execute the NewGrapherBuffer command from the
Commands panel, which you can display by choosing Commands from the Tools menu.

When you open a .ilv file that was generated by an IlvGrapher, a Grapher buffer
window is automatically opened.

The 2D Graphics Buffer Window

The 2D Graphics buffer is the default for the Foundation package. It is still available with the
Grapher extension of IBM ILOG Views Studio. It allows you to edit the contents of an
IlvManager or an IlvContainer. It uses an IlvManager to load, edit, and save objects.

To create a new 2D Graphics buffer window:

1. Choose New from the File menu.

2. Then choose 2D Graphics from the submenu that appears.

To open this window, you can also execute the NewGraphicBuffer command from the
Commands panel, which you can display by choosing Commands from the Tools menu.

When you open a .ilv file that was generated by an IlvManager, a 2D Graphics buffer
window is automatically opened.

The Menu Bar

When the Grapher package is installed, an additional command is available through the
menu bar in the Main window:

Note: You will notice the following difference as you switch between the different types of
buffers in the Main window:

Each buffer type has its own set of editing modes. When you change the current buffer, the
editing modes available as icons in the toolbar change accordingly.
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 9

Figure 1.2

Figure 1.2 IBM ILOG Views Studio Grapher Extension Menu Bar

In the menu File > New, there is now the menu item Grapher, which creates a new Grapher
buffer. This is the command NewGrapherBuffer.

The Action Toolbar

The Action toolbar remains unchanged from the Foundation package:

The Editing Modes Toolbar

The Editing Modes toolbar appears as follows when the Grapher buffer is the active window
in the work space:

Figure 1.3

Figure 1.3 IBM ILOG Views Studio Grapher Extension Editing Modes Toolbar

Make Node - Use this button to make the selected objects into nodes. It
implements the MakeNode command.

Pin Editor Mode - Use this mode to interactively edit the connection pins defined
on grapher nodes. For more information on how you can use this mode, please
refer to Editing Connection Pins.

The Palettes Panel

When using the Grapher extension of IBM® ILOG® Views Studio, you have access to the
Grapher links through the Palettes panel.
10 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

The Palettes Panel
You will notice in the upper pane of the Palettes panel two additional palettes that are
provided with the Grapher extension. Click the appropriate palette in the upper pane to
display the various Grapher links in the lower pane:

Figure 1.4

Figure 1.4 IBM ILOG Views Studio Grapher Extension Palettes Panel

The following section describes the objects provided with the Grapher extension. For a
description of the objects provided with the Foundation package, see the IBM ILOG Views
Studio User’s Manual.

The Grapher Palettes

The Grapher palettes contain the following objects that can be used to create Grapher links.
(Links can also be created by using link edit commands from the command panel.)
To select a linking mode, click on the link itself between the two IlvShadowRectangles,
and the link will appear bounded with an orange box.
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 11

These modes can only be used in a Grapher buffer.

ArcLinkImage

Use this mode to link two grapher nodes with an IlvArcLinkImage object. Press
the left mouse button on the first node and drag the cursor to the second node.
Release the mouse button to finish the operation.

DoubleLinkImage

Use this mode to link two grapher nodes with an IlvDoubleLinkImage object.
Press the left mouse button on the first node and drag the cursor to the second node.
Release the mouse button to finish the operation.

DoubleSplineLinkImage

Use this mode to link two grapher nodes with an IlvDoubleSplineLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

LinkImage

Use this mode to link two grapher nodes with an IlvLinkImage object. Press the
left mouse button on the first node and drag the cursor to the second node. Release
the mouse button to finish the operation.

OneLinkImage

Use this mode to link two grapher nodes with an IlvOneLinkImage object. Press
the left mouse button on the first node and drag the cursor to the second node.
Release the mouse button to finish the operation.

OneSplineLinkImage

Use this mode to link two grapher nodes with an IlvOneSplineLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

OrientedArcLinkImage

Use this mode to link two grapher nodes with an oriented IlvArcLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

Note: A Grapher link can only be created between nodes, therefore the objects to be linked
must first be declared as nodes using the MakeNode command. First select the objects and
then click the Make Node button on the Editing Modes toolbar.
12 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

The Palettes Panel
OrientedDoubleLinkImage

Use this mode to link grapher nodes with an oriented IlvDoubleLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

OrientedDoubleSplineLinkImage

Use this mode to link selected grapher nodes with an oriented
IlvDoubleSplineLinkImage object. Press the left mouse button on the first
node and drag the cursor to the second node. Release the mouse button to finish the
operation.

OrientedLinkImage

Use this mode to link two grapher nodes with an oriented IlvLinkImage object.
Press the left mouse button on the first node and drag the cursor to the second node.
Release the mouse button to finish the operation.

OrientedOneLinkImage

Use this mode to link two grapher nodes with an oriented IlvOneLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

OrientedOneSplineLinkImage

Use this mode to link grapher nodes with an oriented IlvOneSplineLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

OrientedPolylineLinkImage

Use this mode to link grapher nodes with an oriented IlvPolylineLinkImage
object. Click on the first node, then on intermediate points as required, and double-
click on the second node to finish the operation.

PolylineLinkImage

Use this mode to link grapher nodes with an IlvPolylineLinkImage object.
Click on the first node, then on intermediate points as required, and double-click on
the second node to finish the operation.

IlvSCGrapherRectangle

This creates an IlvSCGrapherRectangle object to display the
contents of an IlvGrapher. Use either the drag-and-drop operation
or the creation mode operation. (This command is found in the
Grapher Views palette.)
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 13

Grapher Extension Commands

This section presents an alphabetical listing of the additional, predefined commands that are
available in the Grapher extension of IBM® ILOG® Views Studio. (All of the
IBM ILOG Views Studio Foundation commands are also available.) For each command, it
indicates its label, how to access it if it is accessible other than through the Commands panel,
the category to which it belongs, and what it is used for.

To display the Commands panel, choose Commands from the Tools menu in the Main
window or click the Commands icon in the Action toolbar.

MakeNode

NewGrapherBuffer

SelectArcLinkImageMode

Label Node

Path Main window: Editing Modes toolbar when editing Grapher buffers.

Category grapher, studio

Action If the current buffer is a Grapher buffer, this command makes the selected
objects into nodes.

Label Grapher

Path Main window: File menu > New

Category buffer, grapher

Action Creates a new Grapher buffer. This buffer becomes the current buffer.

Label Arc-shaped link

Path Palettes Panel: Grapher Links palette.
14 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

Grapher Extension Commands
SelectDoubleLinkImageMode

SelectDoubleSplineLinkImageMode

SelectLinkImageMode

Category mode, grapher

Action Creates an arc-shaped link between two nodes. See section
IlvArcLinkImage.

Label DoubleLinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a two-bend link between two nodes. See section
IlvDoubleLinkImage.

Label DoubleSplineLinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a two-bend curved link between two nodes. See section
IlvDoubleSplineLinkImage.

Label LinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a direct link between two nodes. See section Base Class for Links.
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 15

SelectOneLinkImageMode

SelectOneSplineLinkImageMode

SelectOrientedArcLinkImageMode

SelectOrientedDoubleLinkImageMode

Label OneLinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a one-bend link between two nodes. See section IlvOneLinkImage.

Label OneSplineLinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a one-bend curved link between two nodes. See section
IlvOneSplineLinkImage.

Label Oriented Arc-shaped link

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented arc-shaped link between two nodes. See section
IlvArcLinkImage.

Label Oriented DoubleLinkImage

Path Palettes Panel: Grapher Links palette.
16 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

Grapher Extension Commands
SelectOrientedDoubleSplineLinkImageMode

SelectOrientedLinkImageMode

SelectOrientedOneLinkImageMode

Category mode, grapher

Action Creates an oriented two-bend link between two nodes. See section
IlvDoubleLinkImage.

Label Oriented DoubleSplineLinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented two-bend curved link between two nodes. See section
IlvDoubleSplineLinkImage.

Label Oriented LinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented direct link between two nodes. See section Base Class
for Links.

Label Oriented OneLinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented one-bend link between two nodes. See section
IlvOneLinkImage.
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 17

SelectOrientedOneSplineLinkImageMode

SelectOrientedPolylineLinkImageMode

SelectPinEditorMode

SelectPolylineLinkImageMode

Label Oriented OneSplineLinkImage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented one-bend curved link between two nodes. See section
IlvOneSplineLinkImage.

Label Free-shape oriented link

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented free-shaped link between two nodes. See section
IlvPolylineLinkImage.

Label PinEditor

Path Main window: Editing Modes toolbar when editing Grapher buffers.

Category grapher

Action Sets the Pin editing mode on the current buffer. See section Editing
Connection Pins.

Label Free-shape link

Path Palettes Panel: Grapher Links palette.
18 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

Grapher Extension Commands
Category mode, grapher

Action Creates a free-shaped link between two nodes. See section
IlvPolylineLinkImage.
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 19

20 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R
2

Features of the Grapher Package

In this section, you will discover a high-level IBM® ILOG® Views package called the
Grapher. This package includes powerful features dedicated to the graphic representation of
hierarchical and interconnected information. This section contains information on the
following:

◆ Graph Management - The first section introduces you to the graph management class
IlvGrapher. This class is a natural extension of the manager concepts. It is based on the
IlvManager class, and adds built-in mechanisms to handle interconnected graphic
objects.

◆ Grapher Links - The second section explains the concept of grapher links and how these
entities are represented by a class hierarchy of customizable graphic objects.

◆ Grapher Interactors - The third section demonstrates how you can interact with a graph
representation through several families of interactors.

Graph Management

This section describes the management of graphs in IBM® ILOG® Views. It is divided into
two parts:

◆ Description of the IlvGrapher Class
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 21

◆ Loading and Saving Graph Descriptions

Description of the IlvGrapher Class

Graphic objects representing graphs are stored in instances of the IlvGrapher class. This
class derives from the IlvManager class and inherits all its features. The constructors of
IlvManager (the base class) and IlvGrapher have the same parameters:

In addition to the IlvManager concepts, the IlvGrapher class introduces a distinction
between three types of graphic objects:

◆ Nodes - Nodes are the visual reference points in a hierarchy of information. A node is a
graphic object—a subtype of the IlvGraphic class—that takes on a particular
functionality when added to the grapher with the IlvGrapher::addNode method. This
functionality allows links and nodes to stay connected when a node is moved.

◆ Links - Links are the visual representation of connections between nodes. A link is an
instance of the IlvLinkImage class or one of its subclasses. It is added to the grapher
with the IlvGrapher::addLink method. Since links can only exist between two
existing nodes, you must create them with two graphic objects that are known as nodes
by the grapher. You can use ghost nodes (added with the IlvGrapher::addGhostNode
method) to create free-end links.

◆ Ordinary graphic objects - As is the case in a regular IlvManager instance, you can
incorporate in your graph any IlvGraphic objects that represent neither nodes nor
links.

The IlvGrapher class provides a set of member functions to manage links and nodes. You
can, for example, replace a link with another one through a call to the
IlvGrapher::changeLink method.

You can also transform a graphic object stored in the grapher into a node by calling the
IlvGrapher::makeNode method. You can apply this method to a grapher link. This allows
you to connect the link to other nodes. When dealing with a link that has a node behavior,
you must make sure that there is no cycle in the geometric dependencies that govern the
position of this link. Similarly, you can transform a graphic object into a grapher link with
the IlvGrapher::makeLink method. The created link will be an instance of the
IlvLinkHandle class, which is described in section Grapher Links.

Once objects are stored in an IlvGrapher, you can make a distinction between nodes,
links, and ordinary graphic instances by using the IlvGrapher::isNode and
IlvGrapher::isLink methods.

IlvGrapher(IlvDisplay* display,
 int layers = 2,
 IlvBoolean useacc = IlvTrue,
 IlvUShort maxInList = IlvMaxObjectsInList,
 IlvUShort maxInNode = IlvMaxObjectsInList);
22 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

Graph Management
The IlvGrapher API also provides several methods to query the topology of your graph.
For example, you can test whether two given nodes are connected by using the
IlvGrapher::isLinkBetween method. You can also retrieve all the outgoing or
incoming links of a node by using the IlvGrapher::getLinks method.

The sample code below shows how to use the IlvGrapher::mapLinks method to select
all the outgoing links of a node:

static void SelectLink(IlvGraphic* g, IlvAny arg)
{
ILVCAST(IlvGrapher*,arg)->setSelected(g,IlvTrue);
}

{
...
IlvGrapher* graph =;
IlvGraphic* node =; // The node being considered
//== Call the SelectLink function on all outgoing links of <node>
graph->mapLinks(node,SelectLink,graph,IlvLinkFrom);
...
}

Finally, the IlvGrapher class provides two predefined layout methods to arrange nodes in
a vertical or horizontal tree structure. These layouts are implemented in the
IlvGrapher::nodeXPretty and IlvGrapher::nodeYPretty methods.

An example showing how to create a simple grapher is provided in the <ILVHOME>/
samples/grapher/simple directory. Also, you can refer to the IBM ILOG Views
Grapher Reference Manual for more information on the member functions of the
IlvGrapher class.

Loading and Saving Graph Descriptions

The IlvGrapher class reads graphs by using the IlvGraphInputFile class, and saves
graphs by using the IlvGraphOutputFile class.

IlvGraphOutputFile

The IlvGraphOutputFile class is a subclass of IlvManagerOutputFile. In this
subclass, the virtual method IlvGraphOutputFile::writeObject has been redefined to
add specific information about each object before its description block. In our case, this
information is the layer index, the type of the object (node, link, both, or an ordinary object),
as well as the connection pins. Connection pins are described in section Grapher Links.

IlvGraphInputFile

The IlvGraphInputFile class is a subclass of IlvManagerInputFile. In this subclass
the virtual method IlvGraphInputFile::readObject has been redefined to read the
specific information written by the IlvGraphOutputFile::writeObject method.
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 23

Grapher Links

This section introduces the C++ classes that implement links in a grapher. These classes
inherit the interface of the IlvGraphic class and add specific methods to handle the
relationship between a link and its connected nodes. The following items are described:

◆ Base Class for Links

◆ Predefined Grapher Links

◆ Creating a Custom Grapher link

◆ Connection Pins

Base Class for Links

Figure 2.1 illustrates a straight link connecting two nodes:

Figure 2.1

Figure 2.1 Direct Link Between Two Nodes

An IlvLinkImage instance is a graphic object that represents the connection between two
nodes. By default, it is drawn as a straight line joining the two nodes. The constructor of the
IlvLinkImage class is as follows:

The from parameter is an object of type IlvGraphic that represents the start node of the
link. The to parameter is an object of type IlvGraphic object that represents its end node.
The oriented parameter specifies whether the link ends with an arrow-head.

Several member functions, prefixed by set and get, let you access these properties. For
example, the end node can be accessed with the IlvLinkImage::getTo and
IlvLinkImage::setTo methods. Similarly, you can change the oriented mode of the link
with the IlvLinkImage::setOriented method.

Besides storing these properties, the purpose of the IlvLinkImage class is to:

IlvLinkImage(IlvDisplay* display,
 IlvBoolean oriented,
 IlvGraphic* from,
 IlvGraphic* to,
 IlvPalette* palette=0);
24 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

Grapher Links
◆ Compute the shape of the link as a function of its associated nodes and define how the
link behaves when the geometry of the nodes changes. This task is carried out by the
IlvLinkImage::getLinkPoints virtual method.

◆ Define how the link is drawn. This is done using the computed shape and is implemented
in the virtual methods inherited from the IlvGraphic class.

Subclassing IlvLinkImage is useful when you want to create a link with a different
behavior and/or drawing aspect. To change the behavior, overload the
IlvLinkImage::getLinkPoints method:

The returned array should not be deleted by the caller. You need to allocate this array on a
common memory pool by using the IlvPointPool class. In this method, you can query the
geometry of the start and end nodes to determine the points defining the shape of the link.
There are two categories of such points:

◆ The end points of the link. These define where the link starts and ends.

◆ The intermediate points. These define the overall aspect of the link.

The IlvLinkImage class uses the IlvLinkImage::computePoints method to compute
the location of the end points of the link:

The default implementation first checks whether the link is associated with a connection pin
on the nodes. (See section Connection Pin Management Class for more information.) If no
connection pin is defined, the intersection of the link with the bounding boxes of the start
and end nodes is computed. This is illustrated in Figure 2.2:

Figure 2.2

Figure 2.2 End point Location When No Connection Pin is Defined

virtual IlvPoint* getLinkPoints(IlvUInt& count,
 const IlvTransformer* t) const;

virtual void computePoints(IlvPoint& src,
 IlvPoint& dst,
 const IlvTransformer* t = 0) const;
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 25

Predefined Grapher Links

Predefined link classes are available in the grapher library. Each of these classes adds a
specific behavior or drawing functionality to the IlvLinkImage base class. You can either
use these classes as they are or subclass them to create customized links. The following
classes are available:

◆ IlvLinkHandle

◆ IlvLinkLabel

◆ IlvOneLinkImage

◆ IlvOneSplineLinkImage

◆ IlvDoubleLinkImage

◆ IlvDoubleSplineLinkImage

◆ IlvArcLinkImage

◆ IlvPolylineLinkImage

IlvLinkHandle

The IlvLinkHandle class is an example of a link class where the shape and behavior of the
link are directly inherited from IlvLinkImage, and where only the drawing of the link has
been redefined.

This class lets you reference any type of graphic object to make it behave as a grapher link.
Also, a graphic object can be referenced by several IlvLinkHandle instances. This allows
you to create very lightweight links with complex shapes. Figure 2.3 illustrates an example
of an IlvLinkHandle instance referencing a polygon:

Figure 2.3

Figure 2.3 Graphic Objects Used as a Link
26 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

Grapher Links
The constructor of this class is as follows:

Once added to the grapher, this instance will draw the graphic object object as a link
between the nodes from and to, using the width width. The owner parameter describes the
relationship between the handle and its referenced object. When a handle owns its
referenced object, the handle is responsible for deleting this object. This means that you can
safely share a referenced object as long as it is not owned by any of its handles.

An example showing how to use the IlvLinkHandle class is provided in the <ILVHOME>/
samples/grapher/linkhand directory.

IlvLinkLabel

The IlvLinkLabel class also inherits the shape and behavior of the IlvLinkImage class.
Links of the IlvLinkLabel type can be labelled with a user-defined character string.

This string can be specified by means of the label parameter of the constructor. It can also
be specified once the link is created, by using the IlvLinkLabel::setLabel method.

Figure 2.4 shows two IlvLinkLabel objects:

Figure 2.4

Figure 2.4 Labelled Links

IlvOneLinkImage

The IlvOneLinkImage class derives from the IlvLinkImage class and defines a new
shape and a new behavior. Instances of this class are composed of two perpendicular lines, as
illustrated in Figure 2.5:

IlvLinkHandle(IlvDisplay* display,
 IlvGraphic* object,

 IlvGraphic* from,
 IlvGraphic* to,
 IlvDim width = 0,
 IlvBoolean owner = IlvTrue
 IlvPalette* palette=0);
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 27

Figure 2.5

Figure 2.5 IlvOneLinkImage

The shape of the link depends on its orientation property, which indicates whether the link
that leaves the from node starts out vertically (IlvVerticalLink) or
horizontally (IlvHorizontalLink). This property can be specified in the constructor or it
can be specified once the link is created, by using the
IlvOneLinkImage::setOrientation method.

IlvOneSplineLinkImage

This class is a subclass of IlvOneLinkImage that draws the link as a spline:

Figure 2.6

Figure 2.6 IlvOneSplineLinkImage

The position of the end points is similar to the one computed in the IlvOneLinkImage
class. The two control points of the drawn spline are both at the intersection of the start and
end tangents of the link. You can modify the position of the double-control point by using
the IlvOneSplineLinkImage::setControlPoint method.
28 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

Grapher Links
IlvDoubleLinkImage

The IlvDoubleLinkImage class derives from IlvLinkImage and defines a new shape
and a new behavior. Instances of this class are composed of three connected lines
intersecting at a 90° angle, as illustrated in Figure 2.7.

Figure 2.7

Figure 2.7 IlvDoubleLinkImage

The layout of the three segments follows two modes that are set with the
IlvDoubleLinkImage::setFixedOrientation method:

◆ Automatic - The orientation of the segments depends on the vertical and horizontal
separation between the two nodes. The middle segment takes the orientation of the
largest separation.

◆ Fixed - The orientation of the link is fixed and specifies the direction (horizontal or
vertical) the link takes upon leaving the starting node.

IlvDoubleSplineLinkImage

The IlvDoubleSplineLinkImage class is a subclass of IlvDoubleLinkImage that
draws the links with smooth curves instead of straight segments, as shown in Figure 2.8. The
behavior of these links is the same as in the IlvDoubleLinkImage class.
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 29

Figure 2.8

Figure 2.8 IlvDoubleSplineLinkImage

IlvArcLinkImage

The IlvArcLinkImage class is a subclass of IlvLinkImage that defines a new shape and
a new behavior. Links of this type are drawn as an arc joining the two nodes, as shown in
Figure 2.9:

Figure 2.9

Figure 2.9 IlvArcLinkImage Joining Three Nodes

The arc is drawn as a spline with two control points. The distance between these control
points and the segment joining the end points of the link (also called the arc offset) can be
specified with one of the following:

◆ A fixed value, using the IlvArcLinkImage::setFixedOffset method,

◆ A value proportional to the length of the segment, using the
IlvArcLinkImage::setOffsetRatio method.

This arc offset can take negative values, in which case the control points are located on the
right of the oriented segment joining the start and end points. You can therefore connect two
nodes with several links without any overlapping, by using different arc offsets.
30 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

Grapher Links
IlvPolylineLinkImage

This class lets you dynamically define the intermediate points of a link. These points are
stored in each IlvPolylineLinkImage instance and can be specified using several
methods:

◆ IlvPolylineLinkImage::setPoints

◆ IlvPolylineLinkImage::addPoints

◆ IlvPolylineLinkImage::removePoints

◆ IlvPolylineLinkImage::movePoint

As with all link classes, the resulting shape is computed in the
IlvPolylineLinkImage::getLinkPoints method. You can also specify whether the
link is to be drawn with straight segments or with curves by calling the
IlvPolylineLinkImage::drawSpline method. Figure 2.10 shows an example of the
free-form links created by IlvPolylineLinkImage instances:

Figure 2.10

Figure 2.10 IlvPolylineLinkImage

Creating a Custom Grapher link

In this section, IlvLinkImage is subclassed to create a grapher link that meets the
following specifications:

◆ The link is always drawn as a straight line between its two nodes.

◆ The start point is either defined by a connection pin or located at the center of the start
node.
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 31

◆ The end point is such that the link stays perpendicular to the face of the end node closest
to the start point. If this cannot be done, the end point is located on the closest corner of
the node bounding box.

The link is drawn the same way as in the base class IlvLinkImage. Therefore, the
corresponding methods inherited from IlvGraphic are left unchanged. Also, there are only
two points defining the shape of the link (the two end points, and no intermediate points).
There are two possibilities for defining the link: overloading the
IlvLinkImage::getLinkPoints method or the IlvLinkImage::computePoints
method. The second alternative has been chosen for this example:

void
MyLink::computePoints(IlvPoint& src,
 IlvPoint& dst,
 const IlvTransformer* t) const
{
 //== [1] ==
 IlvGrapherPin* pin = IlvGrapherPin::Get(getFrom());
 if (!pin || !pin->getLinkLocation(getFrom(),this,t,src)) {
 IlvRect bbox;
 getFrom()->boundingBox(bbox,t);
 src.move(bbox.centerx(),bbox.centery());
 }

 //== [2] ==
 IlvRect toBBox;
 getTo()->boundingBox(toBBox,t);
 if (src.x()<toBBox.x()) {
 if (src.y() < toBBox.y()) // Upper left quadrant
 dst.move(toBBox.x(),
 toBBox.y());
 else if (src.y() >= toBBox.bottom()) // Lower left quadrant
 dst.move(toBBox.x(),
 toBBox.y()+toBBox.h()-1);
 else // Left quadrant
 dst.move(toBBox.x(),
 src.y());
 } else if (src.x()>=toBBox.right()) {

 if (src.y() < toBBox.y()) // Upper right quadrant
 dst.move(toBBox.x()+toBBox.w()-1,
 toBBox.y());
 else if (src.y() >= toBBox.bottom()) // Lower right quadrant
 dst.move(toBBox.x()+toBBox.w()-1,
 toBBox.y()+toBBox.h()-1);
 else // Right quadrant
 dst.move(toBBox.x()+toBBox.w()-1,
 src.y());
 } else {
 if (src.y() < toBBox.y()) // Upper quadrant
 dst.move(src.x(),
 toBBox.y());
 else if (src.y() >= toBBox.bottom()) // Lower quadrant
 dst.move(src.x(),
 toBBox.y()+toBBox.h()-1);
 else // src inside toBBox
32 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

Grapher Links
 dst.move(toBBox.centerx(),toBBox.centery());
 }
}

In the first part ([1]) of the code, a verification is made to see whether the link is attached to
a connection pin defined on its start node. If this is not the case, the center of the bounding
box of this node is taken.

Once the location of the start point has been computed, the position of the start point with
respect to the bounding box of the end node is verified ([2]). There are nine possible cases
(the eight quadrants defined by toBBox, plus the case where the start point is inside
toBBox), each defining a unique location.

Connection Pins

Connection pins allow you to control the exact location of link end points on grapher nodes.
When a link is attached to a connection pin, the connecting point stays the same, regardless
of the relative position of its start and end nodes.

The following items are described in this section:

◆ Connection Pin Management Class

◆ An All-Purpose IlvGrapherPin Subclass

◆ Extending the IlvGrapherPin Class

Connection Pin Management Class

The IlvGrapherPin abstract class is designed to handle a collection of connection pins. Its
first purpose is to maintain the association between links and pins. To do so, pins are
referenced by indexes. You can connect a link to a given connection pin with the
IlvGrapherPin::setPinIndex method:

IlvLinkImage* link = …;
//== Recover the IlvGrapherPin instance associated with the starting node
IlvGrapherPin* pin = IlvGrapherPin::Get(link->getFrom());
//== Connect the link to the pin whose index is 0
pin->setPinIndex(link,0,IlvTrue);

Likewise, you can recover the index of the connection pin to which a link is attached, by
using the IlvGrapherPin::getPinIndex method.

The second purpose of the IlvGrapherPin class is to provide an interface to query the
coordinates of the connecting points available for a given node. Each concrete subclass must
provide an implementation for the IlvGrapherPin::getCardinal and
IlvGrapherPin::getLocation methods:

virtual IlvUInt getCardinal(const IlvGraphic* node,
 const IlvTransformer* t) const;
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 33

This method returns the number of connection pins handled by the instance for the specified
node node when displayed with the transformer t.

This method returns, in the where parameter, the coordinates of the connection pin specified
by the index pinIndex on the node node, when displayed with the transformer t.

Other methods of this interface (IlvGrapherPin::getClosest,
IlvGrapherPin::getLinkLocation, and so on) have a default implementation that can
be overloaded. For example, the getClosest method considers all available connection
pins and uses the getLocation method. You can change this method to:

◆ provide a faster implementation (getLocation may contain computations that can be
done only once in getClosest),

◆ return the first unused pin instead of the closest one in terms of distance.

An All-Purpose IlvGrapherPin Subclass

The IlvGenericPin class is a predefined concrete subclass of IlvGrapherPin that
makes it possible to dynamically define the connection pins on a node. New connection pins
are specified by their desired location on the node when this node is displayed through a
given transformer. Once this position is stored, the IlvGenericPin class will use the shape
of the object to accurately locate the connecting point regardless of the applied transformer.

Here is an example of how to use this class to add connection pins on the four corners of a
node bounding box:

IlvGraphic* node = ...;
//== Create an empty instance of IlvGenericPin
IlvGenericPin* pin = new IlvGenericPin();
//== Add the four connecting points
IlvRect bbox;
node->boundingBox(bbox,0);
pin->addPin(node,IlvPoint(bbox.x(),bbox.y()),0);
pin->addPin(node,IlvPoint(bbox.x()+bbox.w()-1,bbox.y()),0);
pin->addPin(node,IlvPoint(bbox.x()+bbox.w()-1,bbox.y()+bbox.h()-1),0);
pin->addPin(node,IlvPoint(bbox.x(),bbox.y()+bbox.h()-1),0);
//== Attach the IlvGenericPin instance to the node
pin->set(node);

virtual IlvBoolean getLocation(IlvUInt pinIndex,
 const IlvGraphic* node,
 const IlvTransformer* t,
 IlvPoint& where) const;

Note: The points in this example are given in the object coordinate system when no
transformer is applied.
34 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

Grapher Links
Extending the IlvGrapherPin Class

An example of a concrete IlvGrapherPin subclass that handles a single connection pin
located at the center of a node bounding box is presented here. This class, called
CenterPin, is declared as follows:

#include <ilviews/grapher/pin.h>

class CenterPin
: public IlvGrapherPin
{
public:
 CenterPin() {}

 virtual IlvUInt getCardinal(const IlvGraphic*,
 const IlvTransformer*) const;

 virtual IlvBoolean getLocation(IlvUInt,
 const IlvGraphic*,
 const IlvTransformer* t,
 IlvPoint&) const;
 DeclarePropertyInfoRO();
 DeclarePropertyIOConstructors(CenterPin);
};

The constructor of the CenterPin class does nothing since this class does not store any
information. The DeclarePropertyInfoRO and DeclarePropertyIOConstructors
macros are used to make the CenterPin class persistent. Only the getCardinal and
getLocation methods are overloaded since the implementation of the other
IlvGrapherPin methods does not need to be changed. The source file for the CenterPin
class defines the following methods:

#include <centerpin.h>

// ---
// - IO Constructors
CenterPin::CenterPin(IlvInputFile& input, IlvSymbol* s)
: IlvGrapherPin(input, s) {}

CenterPin::CenterPin(const CenterPin& src)
: IlvGrapherPin(src) {}
// ---
IlvUInt
CenterPin::getCardinal(const IlvGraphic*,
 const IlvTransformer*) const
{
 return 1;
}

// ---
IlvBoolean
CenterPin::getLocation(IlvUInt,
 const IlvGraphic* node,
 const IlvTransformer* t,
 IlvPoint& where) const
{

I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 35

 IlvRect bbox;
 node->boundingBox(bbox, t);
 where.move(bbox.centerx(), bbox.centery());
 return IlvTrue;
}

// ---
// - Macros to register the class and make it persistent
IlvPredefinedPropertyIOMembers(CenterPin)
IlvRegisterPropertyClass(CenterPin, IlvGrapherPin);

The implementation of the getCardinal method is straightforward and returns 1 for any
node and transformer. The getLocation method simply queries the transformed bounding
box of the node and returns its center. (The index of the connection pin is not used since this
class defines only one connection pin.) The declaration of the CenterPin class is provided
in the file <ILVHOME>/samples/grapher/include/centerpin.h. Its implementation
can be found in the file <ILVHOME>/samples/grapher/src/centerpin.cpp.

Grapher Interactors

The IlvManager class provides a wide range of interactors that are used to create objects
and change their shape. The IlvGrapher class contains specific interactors designed to
create new nodes and links and change the way they are connected:

◆ Selection Interactor

◆ Creating Nodes

◆ Creating Links

◆ Editing Connection Pins

◆ Editing Links

Selection Interactor

The IlvGraphSelectInteractor class derives from the IlvSelectInteractor class.
It contains additional member functions used to manage the drawing of ghost images for
links attached to nodes that are moved or enlarged. This class has the following constructor:

IlvGraphSelectInteractor(IlvManager* manager, IlvView* view);

This constructor initializes a new instance of the IlvGraphSelectInteractor class that
lets you select individual objects or groups of objects in the view view connected to the
manager manager. This manager is assumed to be an instance of the IlvGrapher class.
36 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

Grapher Interactors
Creating Nodes

The IlvMakeNodeInteractor class is the base class for interactors that allow the user to
interactively create nodes in a grapher. Instances of this class must be attached to a grapher
and one of its connected views, as shown here:

IlvGrapher* graph = ...;
IlvView* view = ...;
IlvMakeNodeInteractor * inter = new IlvMakeNodeInteractor(graph, view);
graph->setInteractor(inter);

To create a node, drag a rectangular region in the working view. There are two ways to
specify what type of graphic object is created:

◆ Subtype the IlvMakeNodeInteractor class and overload its
IlvMakeNodeInteractor::createNode method.

◆ Subtype the IlvMakeNodeInteractorFactory class and overload its
IlvMakeNodeInteractorFactory::createNode method. You can associate a node
factory with an interactor by using the IlvMakeNodeInteractor::setFactory
method.

The grapher library provides predefined subclasses of IlvMakeNodeInteractor:

◆ IlvMakeShadowNodeInteractor - This interactor creates instances of the
IlvShadowLabel class and stores them as nodes in the grapher.

◆ IlvMakeReliefNodeInteractor - This interactor creates instances of the
IlvReliefLabel class and stores them as nodes in the grapher.

Creating Links

The IlvMakeLinkInteractor class is the base class for interactors that allow the user to
interactively connect nodes in a grapher. Its constructor is as follows:

The oriented parameter specifies whether created links are oriented. An example of how
to create an interactor of this type and connect it to a grapher and one of its view is presented
here:

IlvGrapher* graph = ...;
IlvView* view = graph->getFirstView();
IlvMakeLinkInteractor * inter = new IlvMakeLinkInteractor(graph, view);
graph->setInteractor(inter);

To connect two nodes, perform the following steps:

1. Click the starting node. This node is highlighted if it is considered valid by the interactor.

IlvMakeLinkInteractor(IlvManager* manager,
 IlvView* view,
 IlvBoolean oriented = IlvTrue);
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 37

2. Drag the mouse until it is positioned over the ending node. If this node is valid, it is also
highlighted.

3. Release the mouse button to create the link.

You can control which node is valid by overloading the
IlvMakeLinkInteractor::acceptFrom and IlvMakeLinkInteractor::acceptTo
methods. There are two ways of specifying what type of link should be created:

◆ Subtype the IlvMakeLinkInteractor class and overload its
IlvMakeLinkInteractor::createLink method.

◆ Subtype the IlvMakeLinkInteractorFactory class and overload its
IlvMakeLinkInteractorFactory::createLink method. You can associate a link
factory with an interactor by using the IlvMakeLinkInteractor::setFactory
method.

The Grapher library provides several predefined subclasses of IlvMakeLinkInteractor:

◆ IlvMakeLinkImageInteractor - This class is used to create a link of type
IlvLinkImage.

◆ IlvMakeLabelLinkImageInteractor - This class is used to create a link of type
IlvLinkLabel.

◆ IlvMakeOneLinkImageInteractor - This class is used to create a link of type
IlvOneLinkImage.

◆ IlvMakeOneSplineLinkImageInteractor - This class is used to create a link of
type IlvOneSplineLinkImage.

◆ IlvMakeDoubleLinkImageInteractor - This class is used to create a link of type
IlvDoubleLinkImage.

◆ IlvMakeDoubleSplineLinkImageInteractor - This class is used to create a link of
type IlvDoubleSplineLinkImage.

Creating Polyline Links

The IlvMakePolyLinkInteractor class is a special kind of interactor that does not
derive from IlvMakeLinkInteractor.

This interactor is used to create links whose intermediate points can be explicitly defined. It
lets you control the shape drawn by the user by means of the
IlvMakePolyLinkInteractor::accept method:

virtual IlvBoolean accept(IlvPoint& point);

By overloading this method, you can add specific constraints on the position of the
intermediate points of the link. Once these points have been defined, the link is created with
the IlvMakePolyLinkInteractor::makeLink method, which must be defined in
subclasses to return the appropriate link instance. The grapher library provides one
38 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

Grapher Interactors
predefined subclass, IlvMakePolylineLinkInteractor, which is used to create links of
the IlvPolylineLinkImage type.

Editing Connection Pins

The IlvPinEditorInteractor class lets the user interactively edit the connection pins of
a grapher node. When this interactor is active, selecting a node will highlight its connection
pins, as shown in Figure 2.11:

Figure 2.11

Figure 2.11 Highlighted Connection Pins

Once a grapher node is selected, you can:

◆ Add a new connection pin by clicking inside the node.

◆ Remove a connection pin. To do this, select the pin with the mouse and press the Delete
key.

◆ Move an existing connection pin. To do this, select the pin with the mouse and drag it to
its desired location.

◆ Connect and disconnect links to or from a pin. To do this, first select a connection pin,
and then click the considered link.

Editing Links

When a link is selected, its selection object draws handles that you can use to change its
shape or edit the way it is connected. Figure 2.12 shows a link that has been selected:

Note: If the working node is already associated with a pin management object, this object
must be of the IlvGenericPin type. If the node does not define any connection pin, then
an IlvGenericPin instance is automatically created.
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 39

Figure 2.12

Figure 2.12 A Selected Link

An end point handle can be dragged to:

◆ Change the connection pin to which the link is attached. When the handle is dragged near
a connection pin, the pin is highlighted and the link uses its position to compute the
location of its end point.

◆ Connect the link to another node.

The intermediate point handles can be used to edit the shape of the link. The kind of
interaction allowed by these handles depends on the kind of link being edited.

Note: Link editing can be turned off by using the IlvGrapher::setLinksEditable
method. When an IlvGrapher instance is created, link editing is disabled by default.
40 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

I N D E X
Index

Numerics

2D Graphics buffer window
description of 9

A

accept member function
IlvMakePolyLinkInteractor class 38

acceptFrom member function
IlvMakeLinkInteractor class 38

acceptTo member function
IlvMakeLinkInteractor class 38

addGhostNode member function
IlvGrapher class 22

addLink member function
IlvGrapher class 22

addNode member function
IlvGrapher class 22

addPoints member function
IlvPolylineLinkImage class 31

arc offset
description 30
fixed value 30
proportional value 30

ArcLinkImage mode 12
arcs 30

C

C++
prerequisites 5

changeLink member function
IlvGrapher class 22

computePoints member function
IlvLinkImage class 25, 32

connection pins 10
coordinates 33
description 33
editing 39
managing 33
providing a faster implementation 34
recovering the index 33
returning the unused pin 34

createLink member function
IlvMakeLinkInteractor class 38
IlvMakeLinkInteractorFactory class 38

createNode member function
IlvMakeNodeInteractor class 37
IlvMakeNodeInteractorFactory class 37

D

DoubleLinkImage mode 12
DoubleSplineLinkImage mode 12
drawSpline member function

IlvPolylineLinkImage class 31
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 41

E

editing modes
ArcLinkImage 12
DoubleLinkImage 12
DoubleSplineLinkImage 12
LinkImage 12
OneLinkImage 12
OneSplineLinkImage 12
OrientedArcLinkImage 12
OrientedDoubleLinkImage 13
OrientedDoubleSplineLinkImage 13
OrientedLinkImage 13
OrientedOneLinkImage 13
OrientedOneSplineLinkImage 13
OrientedPolylineLinkImage 13
PolylineLinkImage 13

end node 24
end points

position 28

G

getCardinal member function
IlvGrapherPin class 33

getClosest member function
IlvGrapherPin class 34

getLinkLocation member function
IlvGrapherPin class 34

getLinkPoints member function
IlvLinkImage class 25, 32
IlvPolylineLinkImage class 31

getLinks member function
IlvGrapher class 23

getPinIndex member function
IlvGrapherPin class 33

getTo member function
IlvLinkImage class 24

ghost images
drawing 36

grapher
overview 22

Grapher buffer window
description of 9

graphic objects

transforming 22
graphs

loading 23
managing 21
querying the topology 23
saving 23

H

handles
description 27

I

IlvArcLinkImage class
setFixedOffset member function 30
setOffsetRatio member function 30

IlvContainer class 9
IlvDoubleLinkImage

description 29
IlvDoubleLinkImage class

setFixedOrientation member function 29
IlvDoubleSplineLinkImage class 29, 32
IlvGenericPin class

adding connection pins 34
description 34

IlvGrapher API 23
IlvGrapher class

addGhostNode member function 22
addLink member function 22
addNode member function 22
changeLink member function 22
constructor 22
description 36
getLinks member function 23
isLinkBetween member function 23
isNode member function 22
makeLink member function 22
makeNode member function 22
mapLinks member function 23
nodeXPretty member function 23
nodeYPretty member function 23

IlvGrapherPin class
description 33
getCardinal member function 33
42 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

getClosest member function 34
getLinkLocation member function 34
getPinIndex member function 33
setPinIndex member function 33

IlvGraphic class 22
IlvGraphInputFile class

description 23
readObject member function 23

IlvGraphOutputFile class 23
saving files 23
writeObject member function 23

IlvGraphOutputfile class
writeObject member function 23

IlvGraphSelectInteractor class
constructor 36
description 36

IlvLinkHandle class
constructor 27
description 26
reference to 22

IlvLinkImage class
accessing values 24
computePoints member function 25, 32
computing endpoints 25
constructor 24
creating custom 31
description 22, 24
getLinkPoints member function 25, 32
getTo member function 24
purpose 24
setOriented member function 24
setTo member function 24
subclassing 25

IlvLinkLabel class
description 27
setLabel member function 27

IlvMakeDoubleLinkImageInteractor class 38
IlvMakeDoubleSplineLinkImageInteractor

class 38
IlvMakeLabelLinkImageInteractor class 38
IlvMakeLinkImageInteractor class 38
IlvMakeLinkInteractor class

acceptFrom member function 38
acceptTo member function 38
createLink member function 38

description 37
predefined subclasses 38
setFactory member function 38

IlvMakeLinkInteractorFactory class
createLink member function 38
subtyping 38

IlvMakeNodeInteractor class
createNode member function 37
description 37
setFactory member function 37

IlvMakeNodeInteractorFactory class
createNode member function 37
subtyping 37

IlvMakeOneLinkImageInteractor class 38
IlvMakeOneSplineLinkImageInteractor class 38
IlvMakePolylineLinkInteractor class 39
IlvMakePolyLinkInteractor class

accept member function 38
description 38
makeLink member function 38

IlvMakeReliefNodeInteractor class 37
IlvMakeShadowNodeInteractor class 37
IlvManager class 9

description 22
interactors 36

IlvOneLinkImage
description 27, 30

IlvOneLinkImage class
reference to 28
setOrientation member function 28

IlvOneSplineLinkImage class
description 28
setControlPoint member function 28

IlvPinEditorInteractor class 39
IlvPointPool class 25
IlvPolylineLinkImage class

addPoints member function 31
description 31
drawSpline member function 31
getLinkPoints member function 31
movePoints member function 31
reference to 39
removePoints member function 31
setPoints member function 31

IlvReliefLabel class 37
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 43

IlvSCGrapherRectangle 13
IlvSelectInteractor class 36
IlvShadowLabel class 37
interactors

description 36
drawing ghost images 36

isLinkBetween member function
IlvGrapher class 23

isNode member function
IlvGrapher class 22

L

LinkImage mode 12
links

changing the behavior 25
computing the endpoints 25
computing the shape 25
creating 37
creating custom links 31
creating polyline links 38
description 22, 24
editing 39
end 24
how they are drawn 25
intermediate points 31
lightweight 26
managing 22
oriented mode 24
predefined classes 26

M

makeLink member function
IlvGrapher class 22
IlvMakePolyLinkInteractor class 38

MakeNode command 10
makeNode member function

IlvGrapher class 22
manual

naming conventions 6
notation 6
organization 5

mapLinks member function
IlvGrapher class 23

movePoints member function
IlvPolylineLinkImage class 31

N

naming conventions 6
NewGrapherBuffer command 9, 14
NewGraphicBuffer command 9
nodes

arranging 23
connecting 37
creating 37
description 22
managing 22
retrieving links 23
testing connection 23

nodeXPretty member function
IlvGrapher class 23

nodeYPretty member function
IlvGrapher class 23

notation 6

O

OneLinkImage mode 12
OneSplineLinkImage mode 12
orientation 28
OrientedArcLinkImage mode 12
OrientedDoubleLinkImage mode 13
OrientedDoubleSplineLinkImage mode 13
OrientedLinkImage mode 13
OrientedOneLinkImage mode 13
OrientedOneSplineLinkImage mode 13
OrientedPolylineLinkImage mode 13

P

perpendicular lines 27
pin editor mode 10
PolylineLinkImage mode 13

R

readObject member function
IlvGraphInputFile class 23
44 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

removePoints member function
IlvPolylineLinkImage class 31

S

segment layout
automatic 29
fixed 29

SelecArcLinkImageMode command 14
SelectDoubleLinkImageMode command 15
SelectDoubleSplineLinkImageMode command 15
SelectLinkImageMode command 15
SelectOneLinkImageMode command 16
SelectOneSplineLinkImageMode command 16
SelectOrientedArcLinkImageMode command 16
SelectOrientedDoubleLinkImageMode command

16
SelectOrientedDoubleSplineLinkImageMode

command 17
SelectOrientedLinkImageMode command 17
SelectOrientedOneLinkImageMode command 17
SelectOrientedOneSplineLinkImageMode

command 18
SelectOrientedPolylineLinkImageMode

command 18
SelectPinEditorMode command 18
SelectPolylineLinkImageMode command 18
setControlPoint member function

IlvOneSplineLinkImage class 28
setFactory member function

IlvMakeLinkInteractor class 38
IlvMakeNodeInteractor class 37

setFixedOffset member function
IlvArcLinkImage class 30

setFixedOrientation member function
IlvDoubleLinkImage class 29

setLabel member function
IlvLinkLabel class 27

setOffsetRatio member function
IlvArcLinkImage class 30

setOrientation member function
IlvOneLinkImage class 28

setOriented member function
IlvLinkImage class 24

setPinIndex member function

IlvGrapherPin class 33
setPoints member function

IlvPolylineLinkImage class 31
setTo member function

IlvLinkImage class 24
smooth curves 29
start node 24

T

three connected lines 29

W

windows
2D Graphics 9
Grapher 9

writeObject member function
IlvGraphOutputFile class 23
I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L 45

46 I B M I L O G V I E W S G R A P H E R V 5 . 3 — U S E R ’ S M A N U A L

	IBM ILOG Views Grapher V5.3 User’s Manual
	About This Manual
	Introducing the Grapher Extension of IBM ILOG Views Studio
	The Main Window
	Buffer Windows
	The Menu Bar
	The Action Toolbar
	The Editing Modes Toolbar

	The Palettes Panel
	The Grapher Palettes

	Grapher Extension Commands
	MakeNode
	NewGrapherBuffer
	SelectArcLinkImageMode
	SelectDoubleLinkImageMode
	SelectDoubleSplineLinkImageMode
	SelectLinkImageMode
	SelectOneLinkImageMode
	SelectOneSplineLinkImageMode
	SelectOrientedArcLinkImageMode
	SelectOrientedDoubleLinkImageMode
	SelectOrientedDoubleSplineLinkImageMode
	SelectOrientedLinkImageMode
	SelectOrientedOneLinkImageMode
	SelectOrientedOneSplineLinkImageMode
	SelectOrientedPolylineLinkImageMode
	SelectPinEditorMode
	SelectPolylineLinkImageMode

	Features of the Grapher Package
	Graph Management
	Description of the IlvGrapher Class
	Loading and Saving Graph Descriptions

	Grapher Links
	Base Class for Links
	Predefined Grapher Links
	Creating a Custom Grapher link
	Connection Pins

	Grapher Interactors
	Selection Interactor
	Creating Nodes
	Creating Links
	Editing Connection Pins
	Editing Links

	Index
	Numerics
	A
	C
	D
	E
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	W

