
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG Views

Graph Layout V5.3

User’s Manual

June 2009

Copyright notice
© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

C O N T E N T S
Table of Contents

IBM ILOG Views Graph Layout V5.3

Preface About This Manual . 9

What You Need to Know .9

Manual Organization .10

Notation. .10

Typographic Conventions .10

Naming Conventions .10

A Note on Examples .11

Related Documentation .11

Books .11

Bibliographies. .12

Journals .12

Conferences. .13

Chapter 1 Introducing the Graph Layout Package . 15

What is the Graph Layout Package of IBM ILOG Views? .15

Features of IBM ILOG Views Graph Layout .17

IBM ILOG Views Graph Layout in User Interface Applications .21

Chapter 2 Basic Concepts. 25

Graph Layout: A Brief Introduction .25
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 3

What is a Good Layout?. .26

Methods for Using Layout Algorithms .27

Graph Layout in IBM ILOG Views .27

The Base Class: IlvGraphLayout .28

Basic Operations with IlvGraphLayout .29

Instantiating a Subclass of IlvGraphLayout .29

Attaching a Grapher .29

Performing a Layout .30

Detaching a Grapher .31

Layout Parameters in IlvGraphLayout .31

Allowed Time .31

Animation .32

Layout Region .33

Preserve Fixed Links .34

Preserve Fixed Nodes .35

Random Generator Seed Value .35

Use Default Parameters .37

Chapter 3 Getting Started with Graph Layout . 39

Basic Steps for Using Layout Algorithms: A Summary .39

Sample Application .40

Launching IBM ILOG Views Studio with the Graph Layout Extension 41

A Quick Look at the Interface. .42

Chapter 4 Layout Algorithms . 45

Determining the Appropriate Layout Algorithm .45

Generic Parameters Support .48

Layout Characteristics .49

Tree Layout .49

Samples .50

What Types of Graphs? .51

Application Domains .51
4 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Features .52

Limitations .52

Brief Description of the Algorithm .53

Code Sample .55

Parameters .55

Generic Parameters .56

Specific Parameters (All Tree Layout Modes) .56

Free Layout Mode .59

Level Layout Mode .70

Radial Layout Mode .72

Tip-Over Layout Modes .77

For Experts: Further Tips and Tricks .79

Hierarchical Layout .84

Samples .84

What Types of Graphs? .86

Application Domains .86

Features .86

Limitations .87

Brief Description of the Algorithm .87

Code Sample .89

Parameters .89

Generic Parameters .89

Specific Parameters .90

Sequences of Graph Layout .102

Orthogonal Link Layout .106

Samples .106

What Types of Graphs? .108

Application Domains .108

Features .108

Limitations .109

Brief Description of the Algorithm .109
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 5

Code Sample .110

Parameters .110

Generic Parameters .110

Specific Parameters .111

Random Layout .115

Sample .115

What Types of Graphs? .115

Features .116

Limitations .116

Brief Description of the Algorithm .116

Code Sample .116

Parameters .117

Generic Parameters .117

Specific Parameters .118

Bus Layout .119

Sample .119

What Types of Graphs? .119

Application Domains .119

Features .119

Brief Description of the Algorithm .120

Code Sample .120

Parameters .121

Generic Parameters .121

Specific Parameters .122

Chapter 5 Using Advanced Features . 133

Using a Layout Report .133

Layout Report Classes .134

Creating a Layout Report .134

Reading a Layout Report .135

Information Stored in a Layout Report .135

Using Layout Event Listeners .135
6 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Using the Graph Model .136

The Graph Model Concept. .137

The IlvGraphModel Class. .138

Using the IlvGrapherAdapter .141

Laying Out a Non-Views Grapher .141

Using the Filtering Features to Lay Out a Part of an IlvGrapher .142

Filtering by Layers .143

Filtering by Graphic Objects .144

Laying Out Graphs with Nonzoomable Graphic Objects .144

A Special Case: Nonzoomable Graphic Objects .145

Reference Transformers .145

How a Reference Transformer is Used .146

Reference Views .146

Specifying a Reference Transformer .147

Defining a New Type of Layout .148

Questions and Answers about Using the Layout Algorithms .152

Index . 163
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 7

8 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

P R E F A C E
About This Manual

The IBM® ILOG® Views Component Suite provides special support for applications that
need to display graphs (networks) of nodes and links. Any graphic object can be defined to
behave like a node and be connected to other nodes via links, which themselves can have
many different forms. The Graph Layout package provides high-level, ready-to-use graph
drawing services that allow you to obtain readable representations easily.

This User’s Manual explains how to use the C++ API and grammar that are detailed in the
IBM ILOG Views Graph Layout Reference Manual.

What You Need to Know

This manual assumes that you are familiar with the PC or UNIX® environment in which you
are going to use IBM® ILOG® Views, including its particular windowing system. Since
IBM ILOG Views is written for C++ developers, the documentation also assumes that you
can write C++ code and that you are familiar with your C++ development environment so as
to manipulate files and directories, use a text editor, and compile and run C++ programs.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 9

Manual Organization

This manual provides information for developing applications that incorporate the
IBM ILOG Views Graph Layout package. It describes the fundamentals that underlie the
graph algorithms and shows how to create customized graph layouts.

This manual contains the following chapters:

◆ Chapter 1, Introducing the Graph Layout Package describes the Graph Layout package
of IBM ILOG Views and its features.

◆ Chapter 2, Basic Concepts provides background information and basic concepts for
using Graph Layout.

◆ Chapter 3, Getting Started with Graph Layout provides information to get started quickly
using Graph Layout.

◆ Chapter 4, Layout Algorithms describes the layout algorithms provided with the Graph
Layout package.

◆ Chapter 5, Using Advanced Features provides information on using a layout report,
using layout event listeners, using a graph model, laying out a non-Views grapher, laying
out a portion of a graph, laying out graphs with nonzoomable objects, and defining new
types of layouts.

Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:

◆ Code extracts and file names are written in a "code" typeface.

◆ Entries to be made by the user, such as in dialog boxes, are written in a "code"
typeface.

◆ Command variables to be supplied by the user are written in italics.

◆ Some words in italics, when seen for the first time, may be found in the glossary.

Naming Conventions

Throughout the documentation, the following naming conventions apply to the API.

◆ The names of types, classes, functions, and macros defined in the
IBM ILOG Views Foundation library begin with Ilv, for example IlvGraphic.
10 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

◆ The names of types and macros not specific to IBM ILOG Views begin with Il, for
example IlBoolean.

◆ The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized.

class IlvDrawingView;

◆ The names of virtual and regular methods begin with a lowercase letter; the names of
static methods start with an uppercase letter. For example:

virtual IlvClassInfo* getClassInfo() const;

static IlvClassInfo* ClassInfo*() const;

A Note on Examples

The documentation offers examples and explanations of how to use IBM ILOG Views
effectively. Moreover, some examples are extracted from the source code delivered with
IBM ILOG Views, which is in the samples directory, just below the directory where
IBM ILOG Views is installed.

Related Documentation

The following documentation may provide helpful information when using
IBM ILOG Views Graph Layout.

Books

The first book dedicated to graph layout has been published:

Di Battista, Giuseppe, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999 (see http://
www.cs.brown.edu/people/rt/gdbook.html or http://www.prenhall.com/
books/esm_0133016153.html).

Graph layout is closely related to graph theory, for which extensive literature exists. See:

Clark, John and Derek Allan Holton. A First Look at Graph Theory. World Scientific
Publishing Company, 1991.

For a mathematics-oriented introduction to graph theory, see:

Diestel, Reinhard. Graph Theory. 2nd ed. Springer-Verlag, 2000.

A more algorithmic approach may be found in:

Gibbons, Alan. Algorithmic Graph Theory. Cambridge University Press, 1985.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 11

Gondran, Michel and Michel Minoux. Graphes et algorithmes, 3rd ed. Eyrolles, Paris,
1995 (in French).

Bibliographies

A comprehensive bibliographic database of papers in computational geometry (including
graph layout) can be found in:

The Geometry Literature Database
(http://compgeom.cs.uiuc.edu/~jeffe/compgeom/biblios.html)

A recommended bibliographic survey paper is the following:

Di Battista, Giuseppe, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. “Algorithms
for Drawing Graphs: an Annotated Bibliography.” Computational Geometry: Theory
and Applications 4 (1994): 235-282 (also available at http://www.cs.brown.edu/
people/rt/gd-biblio.html).

Journals

The following is an electronic journal:

Journal of Graph Algorithms and Applications
(http://www.cs.brown.edu/publications/jgaa)

Special issues of the following journals are dedicated to graph drawing:

Algorithmica
(http://link.springer-ny.com/link/service/journals/00453/)

Computational Geometry: Theory and Applications
(http://www.elsevier.nl/inca/publications/store/5/0/5/6/2/9/)

Journal of Visual Languages and Computing
(http://www.academicpress.com/jvlc)

The following journals occasionally publish papers on graph layout:

Information Processing Letters
(http://www.elsevier.nl/inca/publications/store/5/0/5/6/1/2/)

Computer-aided Design
(http://www.elsevier.nl/inca/publications/store/3/0/4/0/2/)

IEEE Transactions on Software Engineering
(http://www.computer.org/tse/)

Many papers are presented at many conferences in Combinatorics and Computer Science.
12 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Conferences

An annual Symposium on Graph Drawing has been held since 1992. The proceedings are
published by Springer-Verlag in the Lecture Notes in Computer Science series (for 1999 see,
for example, http://link.springer.de/link/service/series/0558/tocs/
t1731.htm). The 2000 Symposium is being held in Colonial Williamsburg, Virginia (see
http://www.cs.virginia.edu/~gd2000/).
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 13

14 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R
1

Introducing the Graph Layout Package

This chapter introduces you to the Graph Layout package of IBM® ILOG® Views. The
following topics are covered:

◆ What is the Graph Layout Package of IBM ILOG Views?

◆ Features of IBM ILOG Views Graph Layout

◆ IBM ILOG Views Graph Layout in User Interface Applications

What is the Graph Layout Package of IBM ILOG Views?

Many types of complex business data can be best visualized as a set of nodes and
interconnecting links, more commonly called a graph or a network. Examples of graphs
include business organizational charts, work flow diagrams, telecom network displays, and
genealogical trees. Whenever these graphs become large or heavily interconnected, it
becomes difficult to see the relationships between the various nodes and links (also called
“edges”). This is where IBM ILOG Views Graph Layout algorithms help.

IBM ILOG Views provides special support for applications that need to display graphs. Any
graphic object can be defined to behave like a node and can be connected to other nodes via
links, which themselves can have many different forms.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 15

The Graph Layout package provides high-level, ready-to-use relationship visualization
services. It allows you to take any “messy” graph and apply a sophisticated graph layout
algorithm to rearrange the positions of the nodes and links. The result is a more readable and
understandable picture.

The Graph Layout package is composed of the following modules:

◆ ilvlayout A high-level, generic framework for the graph layout services provided by
IBM ILOG Views.

◆ ilvbus A layout algorithm designed to display bus network topologies (that is, a set of
nodes connected to a bus node).

◆ ilvhierarchical A layout algorithm that arranges nodes in horizontal or vertical
levels such that the links flow in a uniform direction.

◆ ilvorthlink A layout algorithm that reshapes the links of a graph without moving the
nodes.

◆ ilvrandom A layout algorithm that moves the nodes of the graph at randomly computed
positions inside a user-defined region.

◆ ilvtree A layout algorithm that arranges the nodes of a tree horizontally, vertically, or
in circular layers, starting from the root of the tree.

Before getting started with the Graph Layout package, take a look at two sample drawings of
the same graph. For the first one, the nodes were placed randomly when the graph was
drawn.

Figure 1.1
16 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Features of IBM ILOG Views Graph Layout
Using the Tree Layout algorithms provided in IBM ILOG Views, the following drawing was
obtained:

Figure 1.2

In the second drawing, the layout algorithm has distributed the nodes with the tree structure
exposed, avoiding overlapping nodes and showing the symmetries of the graph. This
drawing presents a much more readable layout than the first drawing does.

Features of IBM ILOG Views Graph Layout

The Graph Layout package of IBM ILOG Views provides several ready-to-use layout
algorithms. In addition, new layout algorithms can be developed using the generic layout
framework of the Graph Layout package.

The Graph Layout package provides the following ready-to-use layout algorithms:

◆ Tree Layout
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 17

◆ Hierarchical Layout

◆ Orthogonal Link Layout
18 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Features of IBM ILOG Views Graph Layout
◆ Random Layout

◆ Bus Layout
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 19

The Graph Layout package provides the following features for using the layout algorithms.
(Note that some of these features are not supported by all the algorithms provided with
IBM ILOG Views.)

◆ Capability to fit the layout into a manager view or a user-defined rectangle

◆ Capability to take into account the size of the nodes when performing the layout to avoid
overlapping nodes

◆ Capability to perform the layout using only the nodes and links that are on user-defined
layers of the graph

◆ Capability to perform the layout only on those parts of the graph that meet user-defined
conditions

◆ Capability to use non-Views graphers

◆ Layout reports providing information concerning the behavior of the layout algorithm

◆ Layout-event listeners that can receive and report information during the graph layout

◆ A generic framework for customizing the layout algorithms. The following generic
parameters are defined. (Note that not all the layout algorithms provided with
IBM ILOG Views support all these parameters. Whether a generic parameter is
supported depends on the particular layout algorithm.)

● Allowed Time

This parameter allows the layout algorithm to stop computation when a user-defined
time specification is exceeded.

● Animation

This parameter allows the layout algorithm to redraw the graph after each iteration or
step.
20 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

IBM ILOG Views Graph Layout in User Interface Applications
● Preserve Fixed Nodes

This parameter allows the layout algorithm to preserve the location of selected nodes.
Certain nodes can be specified as fixed and will not be moved when the layout is
performed. The layout algorithm can “pin” specified nodes in place.

● Preserve Fixed Links

This parameter allows the layout algorithm to preserve the shape of selected links.
Certain links can be specified as fixed and will not be reshaped when the layout is
performed. The layout algorithm can “pin” specified links in place.

● Filtering

The layout algorithms are able to perform the layout using only the nodes and links
that are on user-defined layers of the grapher (see Filtering by Layers) or to exclude
nodes and links on an individual basis (see Filtering by Graphic Objects).

● Layout Region

This parameter allows the layout algorithm to control the size of the graph drawing.

● Random Generator Seed Value

This parameter allows the layout algorithm to use randomly-generated numbers that
can be initialized with a user-defined seed value. These seed values are then used
during layout computations to produce different layouts of the graph.

● Use Default Parameters

This parameter allows the layout algorithm to return to using default parameter
settings after the default settings have been modified.

IBM ILOG Views Graph Layout in User Interface Applications

Many fields use graph drawings and graph layouts in user interface applications. Therefore,
the IBM ILOG Views Graph Layout package is particularly well-suited for these kinds of
applications. The following is a list of some of the fields where the graph layout capabilities
of the Graph Layout package can be used:

◆ Telecom and Networking

● LAN Diagrams (Bus Layout)

◆ Electrical Engineering

● Logic Diagrams (Hierarchical Layout)

● Circuit Block Diagrams (Hierarchical Layout, Orthogonal Link Layout, Bus Layout)

◆ Industrial Engineering
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 21

● Industrial Process Charts (Hierarchical Layout)

● Schematic Design Diagrams (Orthogonal Link Layout, Hierarchical Layout)

● Equipment/Resource Control Charts (Bus Layout, Orthogonal Link Layout)

◆ Business Processing

● Workflow Diagrams (Hierarchical Layout)

● Process Flow Diagrams (Hierarchical Layout)

● Organization Charts (Tree Layout)

● Entity Relation Diagrams (Orthogonal Link Layout)

● PERT Charts (Hierarchical Layout)

◆ Software Management/Software (Re-)Engineering

● UML Diagrams (Hierarchical Layout, Tree Layout)

● Flow Charts (Hierarchical Layout)

● Data Inspector Diagrams (Orthogonal Link Layout, Hierarchical Layout)

● Call Graphs (Hierarchical Layout, Tree Layout)

◆ CASE Tools

● Design Diagrams (Orthogonal Link Layout, Hierarchical Layout)

◆ Data Base and Knowledge Engineering

● Decision Trees (Tree Layout)

● Database Query Graphs (Hierarchical Layout)

◆ The World Wide Web

● Web Site Maps (Tree Layout)
22 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R
2

Basic Concepts

In this chapter, you will learn about some basic concepts and background information that
will help you when using the IBM® ILOG® Views Graph Layout package. The following
topics are covered:

◆ Graph Layout: A Brief Introduction

◆ Graph Layout in IBM ILOG Views

◆ The Base Class: IlvGraphLayout

◆ Basic Operations with IlvGraphLayout

◆ Layout Parameters in IlvGraphLayout

Graph Layout: A Brief Introduction

This section provides some background information about graph layout in general, not
specifically related to the IBM ILOG Views Graph Layout package.

Simply speaking, a graph is a data structure which represents a set of entities, called nodes,
connected by a set of links. (A node can also be referred to as a vertex. A link can also be
referred to as an edge or a connection.) In practical applications, graphs are frequently used
to model a very wide range of things: computer networks, software program structures,
project management diagrams, and so on. Graphs are powerful models because they permit
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 25

applications to benefit from the results of graph theory research. For instance, efficient
methods are available for finding the shortest path between two nodes, the minimum cost
path, and so on.

Graph layout is used in graphical user interfaces of applications that need to display graph
models. To lay out a graph means to draw the graph so that an appropriate, readable
representation is produced. Essentially, this involves determining the location of the nodes
and the shape of the links. For some applications, the location of the nodes may be already
known (based on the geographical positions of the nodes, for example). However, for other
applications, the location is not known (a pure “logical” graph) or the known location, if
used, would produce an unreadable drawing of the graph. In these cases, the location of the
nodes must be computed.

But what is meant by an “appropriate” drawing of a graph? In practical applications, it is
often necessary for the graph drawing to respect certain quality criteria. These criteria may
vary depending on the application field or on a given standard of representation. It is often
difficult to speak about what a good layout consists of. Each end user may have different,
subjective criteria for qualifying a layout as “good”. However, one common goal exists
behind all the criteria and standards: the drawing must be easy to understand and provide
easy navigation through the complex structure of the graph.

What is a Good Layout?

To deal with the various needs of different applications, many classes of graph layout
algorithms have been developed. A layout algorithm addresses one or more quality criteria,
depending on the type of graph and the features of the algorithm, when laying out a graph.
The most common criteria are:

◆ Minimizing the number of link crossings

◆ Minimizing the total area of the drawing

◆ Minimizing the number of bends (in orthogonal drawings)

◆ Maximizing the smallest angle formed by consecutive incident links

◆ Maximizing the display of symmetries

How can a layout algorithm meet each of these quality criteria and standards of
representation? If you look at each individual criteria, some can be met quite easily, at least
for some classes of graphs. For other classes, it may be quite difficult to produce a drawing
that meets the criteria. For example, minimizing the number of link crossings is relatively
simple for trees (that is, graphs without cycles). However, for general graphs, minimizing
the number of link crossings is a mathematical NP-complete problem (that is, with all
known algorithms, the time required to perform the layout grows very fast with the size of
the graph.)
26 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Graph Layout in IBM ILOG Views
Moreover, if you want to meet several criteria at the same time, an optimal solution simply
may not exist with respect to each individual criteria because many of the criteria are
mutually contradictory. Time-consuming trade-offs may be necessary. In addition, it is not a
trivial task to assign weights to each criteria. Multicriteria optimization is, in most cases, too
complex to implement and much too time-consuming. For these reasons, layout algorithms
are often based on heuristics and may provide less than optimal solutions with respect to one
or more of the criteria. Fortunately, in practical terms, the layout algorithms will still often
provide reasonably readable drawings.

Methods for Using Layout Algorithms

Layout algorithms can be employed in a variety of ways in the various applications in which
they are used. The most common ways of using an algorithm are the following:

◆ Automatic layout

The layout algorithm does everything without any user intervention, except perhaps the
choice of the layout algorithm to be used. Sometimes a set of rules can be coded to
choose automatically (and dynamically) the most appropriate layout algorithm for the
particular type of graph being laid out.

◆ Semi-automatic layout

The end user is free to improve the result of the automatic layout procedure by hand. At
times the end user can move and “pin” nodes at a desired location and perform the layout
again. In other cases, a part of the graph is automatically set as “read-only” and the end
user can modify the rest of the layout.

◆ Static layout

The layout algorithm is completely redone (“from scratch”) each time the graph is
changed.

◆ Incremental layout

When the layout algorithm is performed a second time on a modified graph, it tries to
preserve the stability of the layout as much as possible. The layout is not performed
again from scratch. The layout algorithm also tries to economize CPU time by using the
previous layout as an initial solution. Some layout algorithms and layout styles are
incremental by nature. For others, incremental layout may be impossible.

Graph Layout in IBM ILOG Views

In IBM ILOG Views, graphs are instances of the class IlvGrapher. We call these instances
graphers. The nodes, which are instances of IlvGraphic, and the links, which are
instances of IlvLinkImage, “know” how to draw themselves. The nodes can have arbitrary
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 27

coordinates, or they can be placed interactively or by code. All that needs to be done to lay
out the grapher to obtain a readable drawing is to compute and assign appropriate
coordinates for the nodes. In some cases, the shape of the links may also need to be
modified. The main task of the Graph Layout package is to provide support for the operation
of laying out a grapher—that is, drawing the graph.

The Graph Layout package of IBM ILOG Views benefits from its integration with the graph
visualization and graph manipulation features of the IBM ILOG Views 2D Graphics
Professional product. This core library provides a wide range of very useful features to build
powerful graphic interfaces easily:

◆ Predefined, extensible types of graphic objects for nodes and links

◆ A customizable mechanism to choose the contact points between links and nodes

◆ Grapher interactor classes

◆ Multiple views of the same grapher

◆ Management of multiple layers

◆ Selections management

◆ Events management

◆ Listeners on the contents of the grapher and/or on the views

◆ Printing facilities

◆ User properties on nodes and links

◆ Input/output operations

For details on these features, see the IBM ILOG Views Foundation and 2D Graphics
Professional User’s Manuals.

The Base Class: IlvGraphLayout

The IlvGraphLayout class is the base class for all layout algorithms. This class is an
abstract class and cannot be used directly. You must use one of its subclasses
(IlvTreeLayout, IlvHierarchicalLayout, IlvOrthogonalLinkLayout,
IlvRandomLayout, or IlvBusLayout). You can also create your own subclasses to
implement other layout algorithms (see Defining a New Type of Layout).

Note: The Graph Layout package allows you to add layout capabilities to applications
that do not use the IBM ILOG Views grapher. For details, see Laying Out a Non-Views
Grapher.
28 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Basic Operations with IlvGraphLayout
Despite the fact that only subclasses of IlvGraphLayout are directly used to obtain the
layouts, it is still necessary to learn about this class because it contains methods that are
inherited (or overridden) by the subclasses. And, of course, you will need to understand it if
you subclass it yourself.

You can find more information about the class IlvGraphLayout in the sections:

◆ Basic Operations with IlvGraphLayout tells you about the basic methods you need using
the subclasses of IlvGraphLayout.

◆ Layout Parameters in IlvGraphLayout contains the methods that are related to the
customization of the layout algorithms.

◆ Using Layout Event Listeners is an advanced feature that tells you about the layout event
listener mechanism.

◆ Defining a New Type of Layout is an advanced feature that tells you how to implement
new subclasses.

Basic Operations with IlvGraphLayout

When subclassing IlvGraphLayout, you will normally use the basic methods described in
this section.

Instantiating a Subclass of IlvGraphLayout

The class IlvGraphLayout is an abstract class. You will instantiate a subclass as shown in
the following example:

If you want to use the layout report that is returned by the layout algorithm, you need to
declare a handle for the appropriate layout report class, as in this example:

For more information on the layout report, see Using a Layout Report.

Attaching a Grapher

The IlvGraphLayout::attach method of the IlvGraphLayout class allows you to
specify the grapher you want to lay out:

void attach(IlvGrapher* grapher)

IlvOrthogonalLinkLayout* layout = new IlvOrthogonalLinkLayout();

IlvGraphLayoutReport* layoutReport;
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 29

For example:

You must attach the grapher before performing the layout. The method
IlvGraphLayout::attach first detaches the grapher that is already attached, if any. You
can obtain the attached grapher using the method IlvGraphLayout::getGrapher.

Performing a Layout

The IlvGraphLayout::performLayout method starts the layout algorithm using the
currently attached grapher and the current settings for the layout parameters (see Layout
Parameters in IlvGraphLayout).

IlvGraphLayoutReport* performLayout()

The layout algorithm first verifies whether it is necessary to perform the layout. It checks
internal flags to see whether the grapher or any of the parameters have been changed since
the last time the layout was successfully performed. A “change” can be any of the following:

◆ Nodes or links were added or removed.

◆ Nodes or links were moved or reshaped.

◆ The value of a layout parameter was modified.

◆ The size of a manager view into which the layout must fit changed. (The layout region
mechanism is explained in Layout Region.)

Users often do not want the layout to be computed again if no changes occurred. If there
were no changes, the method IlvGraphLayout::performLayout returns without
performing the layout.

The protected abstract method IlvGraphLayout::layout is then called. This means that
the control is passed to the subclasses that are implementing this method. The
implementation computes the layout and moves the nodes to new positions.

The IlvGraphLayout::performLayout method returns an instance of
IlvGraphLayoutReport (or of a subclass) that contains information about the behavior of
the layout algorithm. It tells you whether the algorithm performed normally, or whether a
particular, predefined case occurred. (For a more detailed description of the layout report,
see Using a Layout Report.)

Note that the layout report that is returned can be an instance of a subclass of
IlvGraphLayoutReport depending on the particular subclass of IlvGraphLayout you
are using. Subclasses of IlvGraphLayoutReport are used to store layout algorithm-
dependent information.

IlvGrapher* grapher = new IlvGrapher(display);
// Add nodes and links to the grapher here
layout->attach(grapher);
30 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Layout Parameters in IlvGraphLayout
Detaching a Grapher

You call the IlvGraphLayout::detach method when you no longer need the layout
instance. If the IlvGraphLayout::detach method is not called, some objects may not be
deleted. This method also performs cleaning operations on the grapher (properties are
removed that may have been added by the layout algorithm on the grapher’s objects) and
reinitializes parameters as mentioned in Attaching a Grapher.

void detach()

Layout Parameters in IlvGraphLayout

The IlvGraphLayout class defines a number of generic parameters. These parameters can
be used to customize the layout algorithms.

Although the IlvGraphLayout class defines the generic parameters, it does not control
how these parameters are used by its subclasses. Each layout algorithm (that is, each
subclass of IlvGraphLayout) supports a subset of the generic parameters and determines
the way in which it uses the parameters. When you create your own layout algorithm by
subclassing IlvGraphLayout, you decide whether to use the parameters and the way in
which you are going to use them.

The IlvGraphLayout class defines the following generic parameters:

◆ Allowed Time

◆ Animation

◆ Layout Region

◆ Preserve Fixed Links

◆ Preserve Fixed Nodes

◆ Random Generator Seed Value

◆ Use Default Parameters

Table 4.2 provides a summary of the generic parameters supported by each layout algorithm.
If you are using one of the subclasses provided with IBM ILOG Views, check the
documentation for that subclass to know whether it supports a given parameter and whether
it interprets the parameter in a particular way.

Allowed Time

Several layout algorithms can be designed to stop computation when a user-defined time
specification is exceeded. This may be done for different reasons: as a security measure to
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 31

avoid a long computation time on very large graphs or as an upper limit for algorithms that
iteratively improve a current solution and have no other criteria to stop the computation.

IBM ILOG Views allows you to specify the allowed time:

void IlvGraphLayout::setAllowedTime(IlvRuntimeType time)

To obtain the current value, use the method:

IlvRuntimeType IlvGraphLayout::getAllowedTime() const

If you subclass IlvGraphLayout, use the following call to know whether the specified
time was exceeded:

IlBoolean IlvGraphLayout::isLayoutTimeElapsed() const

The time is in seconds. The default value is 32.0 seconds.

To indicate whether a subclass of IlvGraphLayout supports this mechanism, the following
method is provided:

IlBoolean IlvGraphLayout::supportsAllowedTime() const

The default implementation returns IlFalse. A subclass can override this method to return
IlTrue to indicate that this mechanism is supported.

Animation

Some iterative layout algorithms can optionally redraw the graph after each iteration or step.
This may create a pleasant animation effect and may be used to keep the user aware of the
evolution of the layout computation by showing intermediate results (as a kind of progress
bar). However, this increases the duration of the layout because additional redrawing
operations need to be performed.

IBM ILOG Views allows you to specify that a redraw of the grapher must be performed after
each iteration (or step):

void IlvGraphLayout::setAnimate(IlBoolean option)

To obtain the current value, use the following method:

IlBoolean IlvGraphLayout::isAnimate()

The default value is IlFalse.

To indicate whether a subclass of IlvGraphLayout supports this mechanism, the following
method is provided:

IlBoolean IlvGraphLayout::supportsAnimation()

The default implementation returns IlFalse. A subclass can override this method to return
IlTrue to indicate that this mechanism is supported.
32 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Layout Parameters in IlvGraphLayout
Layout Region

Some layout algorithms can control the size of the graph drawing and can take into account
a user-defined layout region. For example, you can specify that the layout should fit a given
rectangle within a manager view or that it should fit the entire manager view.

IBM ILOG Views allows you to specify a layout region in three different ways:

◆ You can indicate that the size of the drawing must fit (exactly or approximately) the size
of a given manager view:

void IlvGraphLayout::setLayoutRegion(IlvView* view)

◆ You can specify a region (the rectangle rect) that the drawing must fit (exactly or
approximately) with the dimensions of the rectangle being given in the manager view
coordinates:

void IlvGraphLayout::setLayoutRegion(IlvView* view, const
IlvRect& rect)

◆ You can specify a region (the rectangle rect) that the drawing must fit (exactly or
approximately) with the dimensions of the rectangle being given in manager (or grapher)
coordinates:

void IlvGraphLayout::setLayoutRegion(const IlvRect& rect)

You must use the last method if you want to perform the layout with no manager view
attached to the grapher or if you want to define the layout region in manager coordinates.

You can obtain the rectangle that defines the current layout region using the method:

void IlvGraphLayout::getLayoutRegion (IlvRect& rect) const

This method returns a copy of the rectangle that the graph drawing must fit (exactly or
approximately). The dimensions of the rectangle are in the manager (grapher) coordinates.
Depending on the last method you called, one of the following cases can occur:

◆ If IlvGraphLayout::setLayoutRegion(const IlvRect&) was the last method
called, it returns the rectangle with no transformation.

◆ If IlvGraphLayout::setLayoutRegion(IlvView*, const IlvRect&) was the
last method called, it returns the rectangle transformed to the manager coordinates (using
the transformer of the view).

◆ If IlvGraphLayout::setLayoutRegion(IlvView*) was the last method called, it
returns a rectangle with the attributes x=0, y=0. The attributes, width and height, are
equal to the current width and height of the view transformed to the manager coordinates
(using the transformer of the view).
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 33

◆ None of the methods was called. (This is the default behavior.) If at least one manager
view is attached to the grapher, it returns a rectangle with the attributes x=0, y=0. The
width and height are equal to the current width and height of the first attached view,
transformed to the manager coordinates (using the transformer of the view). If no view is
attached, it returns an empty rectangle.

To indicate whether a subclass of IlvGraphLayout supports the layout region mechanism,
the following method is provided:

IlBoolean IlvGraphLayout::supportsLayoutRegion() const

The default implementation returns IlFalse. A subclass can override this method in order
to return IlTrue to indicate that this mechanism is supported.

Note that if you are performing the layout using the default settings, there must be at least
one manager view (an instance of IlvView*) attached to the grapher.

Preserve Fixed Links

At times, you may want some links of the graph to be “pinned” (that is, to stay in their
current shape when the layout is performed). You need a way to indicate the links that the
layout algorithm cannot reshape. This makes sense especially when using a Semi-automatic
layout (the method where the end user fine tunes the layout by hand after the layout is
completed) or when using an Incremental layout (the method where the graph and/or the
shape of the links is modified after the layout has been performed and then the layout is
performed again).

IBM ILOG Views allows you to specify that a link is fixed using the method:

void IlvGraphLayout::setFixed(IlAny link, IlBoolean fixed)

If fixed is IlTrue, it means that the link is fixed. To obtain the current setting for a link:

IlBoolean IlvGraphLayout::isFixed(IlAny link) const

The default value is IlFalse.

To remove the fixed attribute from all links in the grapher, use the method:

void IlvGraphLayout::unfixAllLinks()

You can read the current option using the method:

IlBoolean IlvGraphLayout::isPreserveFixedLinks() const

To indicate whether a subclass of IlvGraphLayout supports this mechanism, the following
method is provided:

Note: The fixed attributes you may have set will be taken into consideration only if you
call the method void IlvGraphLayout::setPreserveFixedLinks(IlBoolean
option) with an IlTrue argument.
34 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Layout Parameters in IlvGraphLayout
IlBoolean IlvGraphLayout::supportsPreserveFixedLinks() const

The default implementation returns IlFalse. A subclass can override this method in order
to return IlTrue to indicate that this mechanism is supported.

Preserve Fixed Nodes

At times, you may want some nodes of the graph to be “pinned” (that is, to stay in their
current position when the layout is performed). You need a way to indicate the nodes that the
layout algorithm cannot move. This makes sense especially when using a Semi-automatic
layout (the method where the user fine tunes the layout by hand after the layout is
completed) or when using an Incremental layout (the method where the graph and/or the
position of the nodes is modified after the layout has been performed and then the layout is
performed again).

IBM ILOG Views allows you to specify that a node is fixed using the method:

void IlvGraphLayout::setFixed(IlAny node, IlBoolean fixed)

If fixed is IlTrue, it means that the node is fixed. To obtain the current setting for a node:

IlBoolean IlvGraphLayout::isFixed(IlAny node) const

The default value is IlFalse.

To remove the fixed attribute from all nodes in the grapher, use the method:

void IlvGraphLayout::unfixAllNodes()

You can read the current option using the method:

IlBoolean IlvGraphLayout::isPreserveFixedNodes() const

To indicate whether a subclass of IlvGraphLayout supports this mechanism, the following
method is provided:

IlBoolean IlvGraphLayout::supportsPreserveFixedNodes() const

The default implementation returns IlFalse. A subclass can override this method in order
to return IlTrue to indicate that this mechanism is supported.

Random Generator Seed Value

Some layout algorithms use random numbers (or randomly chosen parameters) for which
they accept a user-defined seed value. For example, the Random Layout uses the random
generator to compute the coordinates of the nodes.

Note: The fixed attributes you may have set will be taken into consideration only if you
call the method void IlvGraphLayout::setPreserveFixedNodes(IlBoolean
option) with an IlTrue argument.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 35

Subclasses of IlvGraphLayout that are designed to support this mechanism allow the user
to choose one of three ways of initializing the random generator:

◆ With a default value that is always the same.

◆ With a user-defined seed value that can be changed when re-performing the layout.

◆ With an arbitrary seed value, which is different each time. In this case, the random
generator is initialized based on the system time.

The user chooses the initialization option depending on what happens when the layout
algorithm is performed again on the same graph. If the same seed value is used, the same
layout is produced, which may be the desired result. In other situations, the user may want to
produce different layouts in order to select the best one. This can be achieved by performing
the layout several times using different seed values.

Here is an example of how this parameter can be used in combination with the
IlvRandomLayout class in your implementation of the method
IlvGraphLayout::layout():

To specify the seed value, use the method:

void IlvGraphLayout::setSeedValueForRandomGenerator(IlUShort
seed)

and to obtain the current value:

IlUShort IlvGraphLayout::getSeedValueForRandomGenerator() const

The default value is 0.

You can read the current option using the method:

IlBoolean IlvGraphLayout::isUseSeedValueForRandomGenerator()
const

To indicate whether a subclass of IlvGraphLayout supports this parameter, the following
method is provided:

IlBoolean IlvGraphLayout::supportsRandomGenerator() const

The default implementation returns IlFalse. A subclass can override this method in order
to return IlTrue to indicate that this parameter is supported.

IlvRandomLayout* layout = new IlvRandomLayout();
IlvRandom* random = (layout->isUseSeedValueForRandomGenerator()) ?
 new IlvRandom(layout->getSeedValueForRandomGenerator()) :
 new IlvRandom();

Note: The user-defined seed value is used only if you call the method void
IlvGraphLayout::setUseSeedValueForRandomGenerator(IlBoolean
option) with an IlTrue argument.
36 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Layout Parameters in IlvGraphLayout
Use Default Parameters

All the generic parameters have a default value. After modifying parameters, you may want
the layout algorithm to use the default values. Then, you may want to return to your
customized values. IBM® ILOG® Views keeps the previous settings when selecting the
default values mode. You can switch between the default values mode and the mode for your
own settings using the method:

void IlvGraphLayout::setUseDefaultParameters(IlBoolean option)

To obtain the current value:

IlBoolean IlvGraphLayout::isUseDefaultParameters() const

The default value is IlFalse. This means that any setting you make will be taken into
consideration and the parameters that have not been specified will have their default values.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 37

38 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R
3

Getting Started with Graph Layout

This chapter provides information to get started using the Graph Layout package of
IBM® ILOG® Views. The following topics are covered:

◆ Basic Steps for Using Layout Algorithms: A Summary

◆ Sample Application

◆ Launching IBM ILOG Views Studio with the Graph Layout Extension

Basic Steps for Using Layout Algorithms: A Summary

To use the layout algorithms provided by the Graph Layout package of IBM ILOG Views,
you will usually perform the following steps:

1. Create a grapher object (IlvGrapher) and fill it with nodes and links.

2. Create an instance of the layout algorithm (any subclass of IlvGraphLayout). For
details, see Instantiating a Subclass of IlvGraphLayout.

3. Attach the grapher to the layout instance. See Attaching a Grapher.

4. Modify the default settings for the layout parameters, if needed. See Layout Parameters
in IlvGraphLayout.

5. Call the performLayout method. See Performing a Layout.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 39

6. Read and display information from the layout report. The layout report is an object in
which the layout algorithm stores information about its behavior. For details, see Using a
Layout Report.

7. When the layout instance is no longer needed, detach the grapher from the layout
instance. See Detaching a Grapher.

A sample application that illustrates these steps is provided with the release. The section
Sample Application tells you how to compile and run the application and provides the
sample code. You can use this application as an example to get started with the layout
algorithms of the Graph Layout package.

Sample Application

The basic steps for using the layout algorithms are illustrated in the sample application
provided with this release. The sample uses the Orthogonal Link Layout, but the principles
are similar for any of the other layouts.

The source code of the application is named layoutsample1.cpp and can be found at the
location:

<installdir>/samples/layout/userman/layoutsample1.cpp

To compile and run the sample, do the following:

1. Go to the <installdir>/samples/layout/userman/<system> directory.

2. On UNIX, set the variable that stores the path of dynamic libraries, as explained in the
<installdir>/readme.htm file delivered with the product.

3. Compile the application:

On UNIX:

make

On Windows:

nmake (in a DOS Console).
or use the Microsoft Studio Workspace userman.dsw file.

4. Run the application:

layoutsample1
40 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Launching IBM ILOG Views Studio with the Graph Layout Extension
The layoutsample1.cpp contains the following code:

The sample application produces the following graph:

Figure 3.1

Figure 3.1 Output from Sample Application

Launching IBM ILOG Views Studio with the Graph Layout Extension

To launch IBM® ILOG® Views Studio with the Graphic Layout extension, do the
following:

 // Declare a handle for the layout instance
 IlvOrthogonalLinkLayout* layout = new IlvOrthogonalLinkLayout();

 // Attach the grapher to the layout instance
 layout->attach(grapher);

 // Perform the layout and get the layout report
 IlvGraphLayoutReport* layoutReport = layout->performLayout();

 // Print information from the layout report (optional)
 IlvPrint(“layout done in %.8g sec., code = %d”,
 layoutReport->getLayoutTime(),
 layoutReport->getCode());
 // Detach the grapher from the layout instance
 layout->detach();

 // Delete the layout instance
 delete layout;
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 41

1. Go to the directory $ILVHOME/studio/<system> of the IIBM ILOG Views distribution.

2. Type ivfstudio -selectPlugins.

3. A window appears listing the available plug-ins. For Graph Layout, the various layouts
are listed.

4. Check the layout(s) and any other plug-ins you may want to use.

5. Click OK to validate and launch IBM ILOG Views Studio with the plug-ins you have
selected.

A Quick Look at the Interface

When you launch IBM ILOG Views Studio with the Graph Layout extension, the Main
window with the Palettes panel appears on your screen.

1. To use the Graph Layout extension, you must create a grapher buffer. Click File, New,
Grapher.

2. On the Buffer toolbar, click to open the Layout inspector. (Or select the Layout
inspector command from the Tools menu.)
42 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Launching IBM ILOG Views Studio with the Graph Layout Extension
3. Populate the grapher buffer with nodes and links.

4. Select a layout from the list of layouts.

5. Click the apply button.

The selected layout is applied.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 43

44 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R
4

Layout Algorithms

This chapter describes the layout algorithms of the IBM ILOG Views Graph Layout
package. The following topics are covered:

◆ Determining the Appropriate Layout Algorithm

◆ Tree Layout

◆ Hierarchical Layout

◆ Orthogonal Link Layout

◆ Random Layout

◆ Bus Layout

Determining the Appropriate Layout Algorithm

When using the Graph Layout package, you need to determine which of the ready-to-use
layout algorithms is appropriate for your particular needs. Some layout algorithms can
handle a wide range of graphs. Others are designed for particular classes of graphs and will
give poor results or will reject graphs that do not belong to these classes. For example, a
Tree Layout algorithm is designed for tree graphs, but not cyclic graphs. Therefore, it is
important to lay out a graph using the appropriate layout algorithm.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 45

Table 4.1 can help you determine which of the layout algorithms is best suited for a
particular type of graph. Across the top of the table are various classifications of different
types of graphs. The layout algorithms appear on the left side of the table. By identifying
some the general characteristics of the graph you want to lay out, you can see from the table
whether a layout algorithm is suited for that particular type of graph. The illustrations in the
table cells provide an example of the drawing produced when a layout algorithm is applied
to a particular type of graph. For example, if you know that the structure of the graph is a
tree, you can look at the Domain-Independent Graphs/Trees column to see which layout
algorithms are appropriate. The Tree Layout, Hierarchical Layout, and Orthogonal Link
Layout could all be used. Use the illustrations in the table cells to help you further narrow
your choice.
46 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Determining the Appropriate Layout Algorithm

Table 4.1 Layout Algorithms and Common Types of Graphs

Layout

Domain-Independent Graphs

Telecom-Oriented
RepresentationsTrees Cyclic Graphs

Combination of
Cycles and
Trees

Any Graph

Tree Layout

Hierarchical
Layout

I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 47

Generic Parameters Support

The generic parameters of the Graph Layout package allow you to customize the behavior of
the layout algorithms to meet specific needs. Table 4.2 indicates the generic parameters that
are supported by each layout algorithm. These parameters are defined in the base class of all
layout algorithms, IlvGraphLayout.

Orthogonal
Link Layout

Bus Layout

For bus topologies

Table 4.2 Generic Parameters Supported by Layout Algorithms

Layout Algorithm
Allowed
Time

Animation Fixed Links
Fixed
Nodes

Layout
Region

Random
Generator
Seed Value

Tree Layout Yes Yes Yes

Hierarchical Layout Yes Yes Yes

Orthogonal Link Layout Yes Yes Yes N/A

Random Layout Yes Yes Yes

Bus Layout Yes Yes

Table 4.1 Layout Algorithms and Common Types of Graphs (Continued)

Layout

Domain-Independent Graphs

Telecom-Oriented
RepresentationsTrees Cyclic Graphs

Combination of
Cycles and
Trees

Any Graph
48 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Layout Characteristics
Layout Characteristics

It is often useful to know how certain settings will affect the resulting layout of the graph
after the layout algorithm has been applied. Table 4.3 provides additional information about
the behavior of the layout algorithms.

Tree Layout

In this section, you will learn about the Tree Layout algorithm provided with the
IBM® ILOG® Views Graph Layout package (class IlvTreeLayout from the library
ilvtree).

Table 4.3 Layout Characteristics of Layout Algorithms

Layout Algorithm
Do the initial positions of the

nodes affect the layout?1

1 All of the layout classes provided in IBM ILOG Views (except the Orthogonal Link Layout) support the fixed nodes mechanism. This
means that you can specify nodes that cannot be moved during the layout.

How do I get a different layout of the same graph
when I perform the layout a second time?

Tree Layout Yes You can completely change the layout by moving
nodes or selecting a different root node. To change
the dimensions of the graph, use the various offset
parameters, or, in some layout modes, the aspect
ratio parameter.

Hierarchical Layout No You can use specified node level indices to change
the level structure. You can use specified node
position indices to change the node order within the
levels. You can change the layout by changing the
link priorities. To change only the dimensions of the
graph, use the various offset parameters.

Orthogonal Link Layout No You can completely change the layout by changing
the link connection policy. You can change the
dimensions of the graph by using the link offset and
final segment length parameters.

Random Layout No This is the default behavior when using the default
parameter settings (the random generator is
initialized differently each time).

Bus Layout No You change the dimensions of the graph by using the
various dimensional parameters.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 49

Samples

Here are some sample drawings produced with the Tree Layout:

Figure 4.1

Figure 4.1 Sample Tree Layout in Free Layout Mode with Center Alignment and Flow Direction to
the Right

Figure 4.2

Figure 4.2 Sample Tree Layout with Flow Direction to the Bottom, Orthogonal Link Style, and Tip-
Over Alignment at Some Leaf Nodes
50 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
Figure 4.3

Figure 4.3 Sample Tree Layout in Radial Layout Mode with Aspect Ratio 1.3

What Types of Graphs?

◆ Tree layout is primarily designed for pure trees. It can also be used for non-trees, that is,
for cyclic graphs. In this case, the algorithm computes and uses a spanning tree of the
graph, ignoring all links that do not belong to the spanning tree.

◆ Directed and undirected trees. If the links are directed, the algorithm automatically
chooses the canonical root node. If the links are undirected, you can choose a root node.

◆ Connected and disconnected graphs. If the graph is not connected, the layout algorithm
treats each connected component separately. Each component has exactly one root node.
In this case, a forest of trees is laid out.

Application Domains

Application domains of the Tree Layout include:

◆ Business processing (organizational charts)

◆ Software management/software (re-)engineering (UML diagrams, call graphs)

◆ Database and knowledge engineering (decision trees)

◆ The World Wide Web (Web site maps)
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 51

Features

◆ Takes into account the size of the nodes so that no overlapping occurs.

◆ Optionally, reshapes the links to give them an orthogonal form (alternating horizontal
and vertical line segments).

◆ Various layout modes: free, in levels, radial, or automatic tip-over.

◆ In the free layout mode: arranges the children of each node, starting recursively from the
root, so that the links flow uniformly in the same direction.

◆ In the level layout mode: partitions the nodes into levels, and arranges the levels
horizontally or vertically.

◆ In radial layout mode: partitions the nodes into levels, and arranges the levels in circles
or ellipses around the root.

◆ In the tip-over modes: arranges the nodes in a similar way to the free layout mode, but
tries to tip over children automatically to better fit the layout to the given aspect ratio.

◆ Provides several alignment and offset options.

◆ Allows specifying nodes that must be directly neighbored.

◆ Takes the old position of nodes into account. Positions the nodes without changing the
relative order of the nodes in the tree, so that the layout is stable on incremental changes
of the graph.

◆ Very efficient, scalable algorithm. Produces a nice layout quickly even if the number of
nodes is huge.

Limitations

◆ If “orthogonal” is not specified as the link style (see Link Style), some links may overlap
nodes, depending on the size of the nodes and the alignment and offset parameters.

◆ The layout algorithm first determines a spanning tree of this graph. If the graph is not a
pure tree, some links will not become part of the spanning tree. These links are ignored.
Hence, they may cross other links or overlap nodes in the final layout.

◆ The algorithm tries to preserve the relative order of the children of each node for
incremental stability. It uses a heuristic to calculate the relative order from the old
positions. The heuristic may fail if children overlap on their old positions or are neither
horizontally nor vertically aligned.

◆ Despite preserving the relative order of the children, in rare cases the layout is not
perfectly stable in the radial modes. Subsequent layouts may rotate the nodes around the
root, although the relative circular order of the nodes within their circular levels is still
preserved.
52 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
◆ The tip-over layout modes perform several tries with different tip-over alignment options
according to various heuristics. From these, the algorithm picks the layout that best fits
the given aspect ratio. This may not be the optimal layout for the aspect ratio, but it is the
best layout among the performed tries. To calculate the absolutely best fitting layout is
computationally infeasible (it is generally an NP-complete problem).

Brief Description of the Algorithm

For the Tree Layout, the core algorithm for the layout modes free, level, and radial works in
just two steps and is very fast.

◆ Step 1: Calculation of the spanning tree

◆ Step 2: Calculation of node positions and link shapes

The variations for the layout mode tip-over perform the second step several times and pick
the result that best fits the given aspect ratio (the ratio between width and height of the
drawing area). Therefore, the tip-over layout modes are slower.

Step 1: Calculation of the spanning tree

If the graph is disconnected, the layout algorithm chooses a root node for each connected
component. Starting from the root node, it traverses the graph to choose the links of the
spanning tree. If the graph is a pure tree, all links will be chosen. If the graph has cycles,
some links will not become part of the spanning tree. These links are called non-tree links,
while the links of the spanning tree are called tree links. The non-tree links are ignored in
step 2 of the algorithm.

The root is the black node in Figure 4.1, Figure 4.2 and Figure 4.3. In the spanning tree, each
node except the root has a parent node. All nodes that have the same parent are called
children with respect to the parent and siblings among themselves. Nodes without children
are called leaves. Each child at a node starts a subtree (also called a branch of the tree).
Figure 4.4 illustrates a spanning tree.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 53

Figure 4.4

Figure 4.4 Sketch of Spanning Tree

Step 2: Calculation of node positions and link shapes

The layout algorithm arranges the nodes according to the layout mode and the offset and
alignment options. In free and level modes, the nodes are arranged horizontally or vertically
so that all tree links flow roughly in the same direction. In the radial modes, the nodes are
arranged in circles or ellipses around the root so that all tree links flow radially away from
the root. Finally, the link shapes are calculated according to the link style and alignment
options.

root

parent

children of parent
(siblings)

tree link

non-tree link

non-tree link

branch

branch
leaves
54 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
Code Sample

Below is a code sample using the IlvTreeLayout class:

Parameters

The Tree Layout uses generic parameters, common to other graph layouts, and specific
parameters applicable in tree layouts only. Refer to the following sections for general
information on parameters among the graph layouts:

◆ Generic Parameters Support

◆ Layout Characteristics

The Tree Layout parameters are described in detail in this topic under:

◆ Generic Parameters

◆ Specific Parameters (All Tree Layout Modes)

// ...

IlvGrapher* grapher = new IlvGrapher(display);
IlvView* view = new IlvView(display, ““, ““, IlvRect(0, 0, 100, 100));
grapher->addView(view);
view->show();

// ... Fill in the grapher with nodes and links here
// ... Suppose we have added rootNode as a node in the grapher
IlvGraphic* rootNode = 0;

IlvTreeLayout* layout = new IlvTreeLayout();
layout->attach(grapher);

// Specify the root node, orientation and alignment
layout->setRoot(rootNode);
layout->setFlowDirection(IlvRight);
layout->setGlobalAlignment(IlvLayoutCenterAlignment);

// Perform the layout
IlvGraphLayoutReport* layoutReport = layout->performLayout();
if (layoutReport->getCode() != IlvLayoutReportLayoutDone)
 IlvWarning(“Layout not done. Error code = %d\n”, layoutReport->getCode());

// If this grapher is not anymore subject of layout:
layout->detach();

// Once the layout algorithm is not anymore needed:
delete layout;
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 55

Generic Parameters

The IlvTreeLayout class supports the following generic parameters defined in the
IlvGraphLayout class:

◆ Allowed Time

◆ Preserve Fixed Links

◆ Preserve Fixed Nodes

The following paragraphs describe the particular way in which these parameters are used by
this subclass.

Allowed Time

The layout algorithm stops if the allowed time setting has elapsed. (For a description of this
layout parameter in the IlvGraphLayout class, see Allowed Time.) If the layout stops
early because the allowed time has elapsed, the nodes and links are not moved from their
positions before the layout call.

Preserve Fixed Links

The layout algorithm does not reshape the links that are specified as fixed. (For more
information on link parameters in the IlvGraphLayout class, see Preserve Fixed Links and
Link Style.)

Preserve Fixed Nodes

The layout algorithm does not move the nodes that are specified as fixed. (For more
information on node parameters in the IlvGraphLayout class, see Preserve Fixed Nodes.)
Moreover, the layout algorithm ignores fixed nodes completely and also does not route the
links that are incident to the fixed nodes. This can result in undesired overlapping nodes and
link crossings. However, this feature is useful for individual, disconnected components that
can be laid out independently.

Specific Parameters (All Tree Layout Modes)

The following parameters are specific to the IlvTreeLayout class. They apply to all layout
modes.

◆ Root Node

◆ For Experts: Further Options for Root Nodes

◆ Position

◆ Compass Directions

◆ Layout Mode
56 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
Root Node

The final layout is influenced mainly by the choice of the root node.

The root node is placed in a prominent position. For instance, in a top-down drawing with
free layout mode it is placed at the top of the tree; with radial mode it is placed at the center
of the tree.

The spanning tree is calculated starting from the root node. If the graph is disconnected, the
layout algorithm needs one root node for each connected component.

The layout algorithm automatically selects a root node when needed. It uses a heuristic that
calculates preferences for all nodes to become a root. It chooses the node with the highest
preference. The heuristic gives nodes without incoming links the highest preference, and
leaf nodes without outgoing links the lowest preference. Hence, in a directed tree, the
canonical root is always chosen automatically.

It is possible to influence the choice of the root node. To select a node explicitly as the root,
use the method:

void IlvTreeLayout::setRoot(IlAny node);

This gives the node the maximal preference to become the root during layout. If only one
node is specified this way, the algorithm selects this node. If several nodes of the same
connected component are specified this way, the layout algorithm chooses one of them as
the root.

For Experts: Further Options for Root Nodes

The layout algorithm manages a list of the root nodes that have been specified by the
IlvTreeLayout::setRoot method. To obtain this list, use the method:

const IlList* IlvTreeLayout::getSpecRoots() const;

After layout, you can also retrieve the list of root nodes that were actually used by the
algorithm. This list is not necessarily the same as the list of specified roots. For instance, it
contains the chosen root nodes if none were specified, or if too many were specified. To
obtain the list of root nodes that were used by the algorithm, call the method:

const IlList* IlvTreeLayout::getCalcRoots() const;

Note that the returned lists are constant. You should not change them directly. However, you
can iterate over the lists and retrieve the root nodes, as in the following example, to perform
special root operations:

IlvLink* link = layout->getCalcRoots()->getFirst();
while (link) {
 root = (IlvGraphic*)link->getValue();
 link = link->getNext();
 // ... perform special operation with root
}

I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 57

To directly manipulate the root node preference value of an individual node, you can use the
method:

IlvTreeLayout::setRootPreference(IlAny node, IlInt preference);

In this case, the layout uses the specified value instead of the heuristically calculated
preference for this node. The normal preference value should be between 0 and 10000.
Specifying a root node explicitly corresponds to setting the preference value to 10000. If you
want to prohibit a node from becoming the root, specify a preference value of zero (0).

A negative preference value indicates that the layout algorithm should recalculate the root
node preference, using the heuristic. You can clear the root node setting as follows: If a root
was specified by the IlvTreeLayout::setRoot method but this node should no longer be
the root in subsequent layouts, then call:

layout->setPreference(node, -1);

This also removes the node from the list of specified roots.

Position

The position of the top left corner of the layout can be set to (10, 10) in the following way:

IlvPoint point(10, 10);

layout->IlvTreeLayout::setPosition(point, IlTrue);

If the graph consists of only a single tree, it is often more convenient to set the position of
the root node instead. This can be done by the same method, passing IlFalse instead of
IlTrue:

layout->IlvTreeLayout::setPosition(point, IlFalse);

If no position is specified, the layout keeps the root node at its previous position.

To obtain the current position, use:

const IlvPoint* IlvTreeLayout::getPosition() const;

This method returns a null pointer if no position was specified. If it returns a point, you can
query whether the specified position is either the top left corner or the position of the first
root node:

IlBoolean IlvTreeLayout::isRootPosition() const;

Compass Directions

To simplify the explanations of the layout parameters, we use the compass directions north,
south, east and west. The center of the root node of a tree is considered the north pole.

In the nonradial layout modes, the link flow direction always corresponds to the south
direction. If the root node is placed at the top of the drawing, then north is at the top, south at
the bottom, east on the right, and west on the left side. If the root node is placed at the left
border of the drawing, then north is on the left, south on the right, east at the top, and west at
the bottom.
58 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
In the radial layout modes, the root node is placed in the center of the drawing, hence the
meaning of north and south depends on the position relative to the root: the north side of the
node is the side closer to the root, and the south side is the side that is further away from the
root. The east direction is counterclockwise around the root, and the west direction is
clockwise around the root. This is similar to a cartographic map of a real globe that shows
the area of the north pole as if you were looking down at the top of the globe.

Compass directions are used to give uniform names to certain layout options. They occur in
the alignment options, the level justification option and the east-west neighboring feature,
which are explained later. In Figure 4.5 and Figure 4.15, a compass icon shows the compass
directions in these drawings.

Layout Mode

The tree layout algorithm has various layout modes. To select a layout mode, use the
method:

void IlvTreeLayout::setLayoutMode(IlvTreeLayoutMode mode);

To obtain the current layout mode, call:

IlvTreeLayoutMode IlvTreeLayout::getLayoutMode() const;

The type IlvTreeLayoutMode is an IlList type defined in the file ilviews/layout/
tree.h. The choices of layout modes are shown in Table 4.4:

Free Layout Mode

The free layout mode arranges the children of each node starting recursively from the root so
that the links flow roughly in the same direction. For instance, if the link flow direction is

Table 4.4 Tree Layout Modes

IlList Type See Section

IlvTreeLayoutFreeMode Free Layout Mode

IlvTreeLayoutLevelMode Level Layout Mode

IlvTreeLayoutRadialMode Radial Layout Mode

IlvTreeLayoutAlternatingRadialMode Alternating Radial Mode

Tip-Over Layout Modes

IlvTreeLayoutTipOverMode Tip Over Fast

IlvTreeLayoutTipRootsOverMode Tip Roots Over

IlvTreeLayoutTipLeavesOverMode Tip Leaves Over

IlvTreeLayoutTipRootsAndLeavesOverMode Tip Roots and Leaves Over
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 59

top-down, the root node is placed at the top of the drawing. Siblings (that is, nodes with the
same parent) are justified at their top borders, but nodes of different tree branches (that is,
nodes with different parents) are not justified.

The following statement sets the free layout mode:

layout->IlvTreeLayout::setLayoutMode(IlvTreeLayoutFreeMode);

Additional parameter information for free tree layout is as follows:

◆ Flow Direction

◆ Alignment

● Global Alignment

● Alignment of Individual Nodes

● Tip-over Alignment

◆ Link Style

● Global Link Style

● Individual Link Style

◆ Spacing Parameters

◆ For Experts: Further Spacing Parameters

Flow Direction

The flow direction parameter specifies the direction of the tree links. The compass icons
show the compass directions in these layouts. This is illustrated in Figure 4.5.
60 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
Figure 4.5

Figure 4.5 Flow Directions

If the flow direction is to the bottom, the root node is placed topmost. Each parent node is
placed above its children, which are normally arranged horizontally.

If the flow direction is to the right, the root node is placed leftmost. Each parent node is
placed to the left of its children, which are normally arranged vertically. To specify the flow
direction, use the following method:

void IlvTreeLayout::setFlowDirection(IlvDirection direction);

The valid values for direction are:

◆ IlvRight (the default)

◆ IlvLeft

◆ IlvBottom

Note: The alignment option specifies how children are arranged. Normal alignment here
means any alignment option except the tip-over alignment option.

IlvBottom IlvTop

IlvLeft IlvRight

N

EW

S

N

E W

S

N
E

W

S

N
E

W
S

I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 61

◆ IlvTop

To obtain the current choice, use the following method:

IlvDirection IlvTreeLayout::getFlowDirection() const;

Alignment

The alignment option controls how a parent is placed relative to its children. The alignment
can be set globally, in which case all nodes are aligned in the same way, or locally on each
node, with the result that different alignments occur in the same drawing.

Figure 4.6

Figure 4.6 Alignment Options

Global Alignment
To set the global alignment, use the following method:

void IlvTreeLayout::setGlobalAlignment(IlvLayoutAlignment
alignment);

The valid values for alignment are:

◆ IlvLayoutCenterAlignment (the default)

The parent is centered over its children, taking the center of the children into account.

◆ IlvLayoutBorderCenterAlignment

The parent is centered over its children, taking the border of the children into account. If
the size of the first and the last child varies, the border center alignment places the parent
closer to the larger child than the default center alignment.

◆ IlvLayoutEastAlignment

center alignment west alignment

border center alignment east alignment
62 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
The parent is aligned with the border of its easternmost child. For instance, if the flow
direction is to the bottom, east is the direction to the right. If the flow direction is to the
top, east is the direction to the left. See Compass Directions for details.

◆ IlvLayoutWestAlignment

The parent is aligned with the border of its westernmost child. For instance, if the flow
direction is to the bottom, west is the direction to the left. If the flow direction is to the
right, west is the direction to the bottom. See Compass Directionsfor details.

◆ IlvLayoutTipOverAlignment

The children are arranged sequentially instead of in parallel, and the parent node is
placed with an offset to the children. For details see Tip-over Alignment.

◆ IlvLayoutMixedAlignment

Each parent node can have a different alignment. In this case the alignment of each
individual node can be set, with the result that different alignments can occur in the same
graph.

To obtain the current choice, use the following method:

IlvLayoutAlignment IlvTreeLayout::getGlobalAlignment() const;

Alignment of Individual Nodes
All nodes have the same alignment unless the global alignment is set to
IlvLayoutMixedAlignment. Only when the global alignment is set to “mixed” can each
node have an individual alignment style.

Figure 4.7

Figure 4.7 Different Alignments Mixed in the Same Drawing

To set and retrieve the alignment of an individual node, use the following methods:

void IlvTreeLayout::setAlignment(IlAny node, IlvLayoutAlignment
alignment);
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 63

IlvLayoutAlignment IlvTreeLayout::getAlignment(IlAny node) const;

The valid values for the individual alignments of a node are:

◆ IlvLayoutCenterAlignment (the default)

◆ IlvLayoutBorderCenterAlignment

◆ IlvLayoutEastAlignment

◆ IlvLayoutWestAlignment

◆ IlvLayoutTipOverAlignment

Tip-over Alignment
Normally the children of a node are placed in a parallel arrangement with siblings directly
neighbored to each other. Tip-over alignment means a sequential arrangement of the
children instead.

Figure 4.8

Figure 4.8 Normal Alignment and Tip-over Alignment

Tip-over alignment is useful if the tree has many leaves. With normal alignment, this would
result in the layout being very wide. If the global alignment style is tip-over, the drawing is
very high instead. In order to balance the width and height of the drawing, you can set the
global alignment to “mixed”:

layout-
>IlvTreeLayout::setGlobalAlignment(IlvLayoutMixedAlignment);

and the individual alignment to “tip-over” for some parents with a high number of children:

Normal Alignment

Tip-Over Alignment
64 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
layout->IlvTreeLayout::setAlignment(parent,
IlvLayoutTipOverAlignment);

Tip-over alignment can be specified explicitly for some (or all) nodes. Furthermore, the Tree
Layout offers layout modes that automatically determine when to tip over, yielding a
drawing fit to a given aspect ratio. These layout modes are described in Tip-Over Layout
Modes.

Figure 4.9

Figure 4.9 Tip-over Alignment

Tip-over alignment works very well with the Orthogonal Link Layout.

Link Style

When the layout algorithm moves the nodes, straight-line links—such as instances of
IlvLinkImage—will automatically “follow” the new positions of their end nodes. If the
grapher contains other types of links (for example, IlvPolylineLinkImage or
IlvDoubleSplineLinkImage), the shape of the link may not be appropriate because the
intermediate points of the link will not be moved. In this case, you can ask the layout
algorithm to automatically remove all the intermediate points of the links (if any). Also, you
can specify that the links be reshaped into an “orthogonal” form. You can set the link style
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 65

globally, in which case all links have the same kind of shape, or locally on each link, in
which case different link shapes occur in the same drawing.

Global Link Style
To set the global link style, the following method is provided:

void IlvTreeLayout::setGlobalLinkStyle(IlvLayoutLinkStyle style);

The valid values for style are:

◆ IlvLayoutNoReshapeLinkStyle

None of the links is reshaped in any manner.

◆ IlvLayoutStraightLineLinkStyle

All the intermediate points of the links (if any) are removed. This is the default value.
See Figure 4.1 and Figure 4.3 as examples.

◆ IlvLayoutOrthogonalLinkStyle

The links are reshaped in an orthogonal form (alternating horizontal and vertical
segments). See Figure 4.2 and Figure 4.9 as examples.

◆ IlvLayoutMixedLinkStyle

Each link can have a different link style. In this case, the style of each individual link can
be set to have different link shapes occurring on the same graph.

To obtain the current choice, use the following method:

IlvLayoutLinkStyle getLinkStyle() const;

Individual Link Style
All links have the same style of shape unless the global link style is
IlvLayoutMixedStyle. Only when the global link style is set to “mixed” can each link
have an individual link style.

Note: The layout algorithm calls the method
IlvGrapherAdapter::ensureReshapeableLinks on the attached graph model to
ensure that all the links can be reshaped as needed. With an IlvGrapher, this method may
replace links with the appropriate type of link and install the appropriate link connector on
the nodes. For details on the graph model, see Using the Graph Model.
66 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
Figure 4.10

Figure 4.10 Different Link Styles Mixed in the Same Drawing

To set and retrieve the style of an individual link, use the following methods:

void IlvTreeLayout::setLinkStyle(IlAny link, IlvLayoutLinkStyle
style);

IlvLayoutLinkStyle IlvTreeLayout::getLinkStyle(IlAny link) const;

The valid values for the individual alignments of a node are:

◆ IlvLayoutStraightLineLinkStyle (the default)

◆ IlvLayoutNoReshapeLinkStyle

◆ IlvLayoutOrthogonalLinkStyle

Spacing Parameters

The spacing of the layout is controlled mainly by three spacing parameters: the distance
between a parent and its children, the minimal distance between siblings, and the minimal
distance between nodes of different branches. For instance, if the flow direction is to the top
or bottom, the offset between parent and children is vertical, while the sibling offset and the
branch offset are horizontal.

Note: The link style of a Tree Layout graph requires links in an IlvGrapher that can be
reshaped. Links of type IlvLinkImage, IlvOneLinkImage, IlvDoubleLinkImage,
IlvOneSplineLinkImage, and IlvDoubleSplineLinkImage cannot be reshaped. You
can use the class IlvPolylineLinkImage instead.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 67

For tip-over alignment, there is a fourth spacing parameter: the minimal distance between
branches starting at a node with tip-over alignment. This offset is always orthogonal to the
normal branch offset, that is, if the flow direction is to the top or bottom, the tip-over branch
offset is vertical.

Figure 4.11

Figure 4.11 Spacing Parameters

The spacing parameters can be set by the following methods:

void IlvTreeLayout::setParentChildOffset(IlvPos offset);

void IlvTreeLayout::setSiblingOffset(IlvPos offset);

void IlvTreeLayout::setBranchOffset(IlvPos offset);

void IlvTreeLayout::setTipOverBranchOffset(IlvPos offset);
68 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
They can be obtained by the corresponding methods:

IlvPos IlvTreeLayout::getParentChildOffset() const;

IlvPos IlvTreeLayout::getSiblingOffset() const;

IlvPos IlvTreeLayout::getBranchOffset() const;

IlvPos IlvTreeLayout::getTipOverBranchOffset() const;

For Experts: Further Spacing Parameters

If the link style is orthogonal, the shape of the links from the parent to its children looks like
a fork (see Figure 4.7). The position of the bend points in this shape can be influenced by the
orthogonal fork percentage, a value between 0 and 100. This is a percentage of the parent
child offset. If the orthogonal fork percentage is 0, the link shape forks directly at the parent
node. If the percentage is 100, the link shape forks at the child node. A good choice is
between 25 and 75. This percentage can be set and obtained by the following methods:

void IlvTreeLayout::setOrthForkPercentage(IlInt percentage);

IlInt IlvTreeLayout::getOrthForkPercentage() const;

If the link style is not orthogonal, links may overlap neighboring nodes. This happens only
in very few cases, for instance, if a link starts at a very small node that is neighbored by a
huge node. This deficiency can be fixed by increasing the branch offset. However, this
influences the layout globally, affecting nodes without that deficiency. To avoid a global
change, you can change the overlap percentage instead, which is a value between 0 and 100.
This value is used by an internal heuristic of the layout algorithm that considers a node to be
smaller by this percentage. The default percentage is 30. This usually results in a better
usage of the space. However, if very small nodes are neighbored to huge nodes, it is
recommended decreasing the overlap percentage or setting it to 0 to switch this heuristic off
to avoid links overlapping nodes. The overlap percentage can be set and obtained by the
following methods:

void IlvTreeLayout::setOverlapPercentage(IlInt percentage);

IlInt IlvTreeLayout::getOverlapPercentage() const;

Tip: It is recommended that you always set the orthogonal fork percentage to a larger value
than the overlap percentage.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 69

Figure 4.12

Figure 4.12 The Effect of the Overlap Percentage

Level Layout Mode

The level layout mode partitions the node into levels and arranges the levels horizontally or
vertically. The root is placed at level 0, its children at level 1, the children of those children
at level 2, and so on. In contrast to the free layout mode, in level layout mode the nodes of
the same level are justified with each other even if they are not siblings (that is, they do not
have the same parent). Figure 4.13 shows the same graph in free layout mode and in level
layout mode.

The following statement sets the level layout mode:

layout->IlvTreeLayout::setLayoutMode(IlvTreeLayoutLevelMode);

Overlap Percentage = 60 % Overlap Percentage = 0 %
70 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
Figure 4.13

Figure 4.13 Free Layout Mode and Level Layout Mode

Additional parameter information for level tree layout is as follows:

◆ General Parameters

◆ Level Justification

General Parameters

Most layout parameters that work for the free layout mode work as well for the level layout
mode. You can set the flow direction, the spacing offsets, the global or individual link style,
and the global or individual alignment. See Free Layout Mode for details.

The differences from the free layout mode are:

◆ The tip-over alignment does not work in level layout mode.

◆ The parent-child offset parameter controls the spacing between the levels. In level layout
mode, it is the minimal distance between parent and its children, while in free layout
mode, it is the exact distance between parent and its children.

◆ The overlap percentage has no effect in level layout mode.

Level Justification

In level layout mode with flow direction to the top or bottom, the nodes are organized in
horizontal levels such that the nodes of the same level are placed approximately at the same
y-coordinate. The nodes can be justified, depending on whether the top border, the bottom
border, or the center of all nodes of the same level should have the same y-coordinate.

Layout mode “level”

Layout mode “free”
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 71

In flow direction to the left or right, the nodes are organized in vertical levels approximately
at the same x-coordinate. The nodes of the same level can be justified at the left border, at
the right border, or at the center.

To distinguish the justification independently from the flow direction, we use the directions
north and south (see section Compass Directions). The north border of a node is the border
that is closer to the level where its parent is placed, and the south border of a node is the
border that is closer to the level where its children are placed. If the flow direction is to the
bottom, the level justification north means that the nodes are justified at the top border, and
south means that the nodes are justified at the bottom border. If the flow direction is to the
top, it is converse: north means the bottom border and south means the top border. If the
flow direction is to the right, then north means the left border and south means the right
border.

Figure 4.14

Figure 4.14 Level Justification

To specify the level justification, use the following method:

void IlvTreeLayout::setLevelJustification(IlvLayoutAlignment
justification);

To obtain the current value, use the method:

IlvLayoutAlignment IlvTreeLayout::getLevelJustification() const;

The valid choices for the justification are:

◆ IlvLayoutCenterAlignment (the default)

◆ IlvLayoutNorthAlignment

◆ IlvLayoutSouthAlignment

Radial Layout Mode

The radial layout mode partitions the node into levels and arranges the levels in circles
around the root node. Figure 4.15 shows an example of the radial layout mode. The compass
icons show the compass directions in this drawing.

north justified south justified center justified

N

EW

S

72 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
The following statement sets the radial layout mode:

layout->IlvTreeLayout::setLayoutMode(IlvTreeLayoutRadialMode);

Figure 4.15

Figure 4.15 Radial Layout Mode

The following statement sets the radial layout mode:

layout->IlvTreeLayout::setLayoutMode(IlvTreeLayoutRadialMode);

Additional parameter information for radial tree layout is as follows:

◆ General Parameters

◆ Alternating Radial Mode

◆ Aspect Ratio

◆ Spacing Parameters

◆ For Experts: Further Parameters

General Parameters

Most layout parameters that work for the free and level layout mode work as well for the
radial layout mode. You can set the spacing offsets, the level justification, the global or
individual link style, and the global or individual alignment. See Free Layout Mode and
Level Layout Mode for details.

N
E

W
S

N

E

W

S

N

E

W

S

I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 73

Here is a list of differences from the other modes:

◆ The tip-over alignment does not work in radial layout mode.

◆ The orthogonal link style does not work in radial mode.

◆ The parent-child offset parameter controls the minimal distance between the circular
levels. However, it is sometimes necessary to increase the offset between circular levels
to obtain enough space on the circle to place all nodes of a level.

◆ The level justification north means justification at the inner border of the circular level
(that is, towards the root), and the level justification south means justification at the outer
border of the circular level (that is, away from the root).

◆ The level justifications north and south sometimes result in node overlapping.

◆ The overlap percentage has no effect in radial layout mode.

Alternating Radial Mode

If levels contain many nodes, it is sometimes necessary to increase the radius of the circular
level to provide enough space on the circumference of the circle for all the nodes. This may
result in a considerable distance from the previous level. To avoid this, there is an
alternating radial mode. This mode places the nodes of a level alternating onto two circles
instead of one circle, resulting in a better space usage of the layout.

The alternating radial mode uses two circles only when necessary. For many small and light
trees, there will be no difference from the normal radial mode. Only for large graphs with a
high degree of children will the alternating radial mode have an effect.

The following statement sets the alternating radial layout mode:

layout->c(IlvTreeLayoutAlternatingRadialMode);
74 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
Figure 4.16

Figure 4.16 Radial and Alternating Radial Layout Mode

Aspect Ratio

If the drawing area is not a square, arranging levels as circles is not always the best choice.
You can specify the aspect ratio of the drawing area to better fit the layout to the area. In this
case, the algorithm uses ellipses instead of circles. See Figure 4.3 for an example.

If the drawing area is a view (a subclass of IlvAbstractView), you can use this method:

void IlvTreeLayout::setAspectRatio(const IlvAbstractView* view);

If the drawing area is given only as a rectangle, use:

void IlvTreeLayout::setAspectRatio(const IlvRect& rect);

If neither a view nor a rectangle is given, you can calculate the aspect ratio from the width
and height of the drawing area as aspectRatio = width/height and use this method:

void IlvTreeLayout::setAspectRatio(IlDouble aspectRatio);

To obtain the current aspect ratio, call:

IlDouble IlvTreeLayout::getAspectRatio() const;

Spacing Parameters

The spacing parameters of the radial layout mode are controlled by the same methods as for
the free or level layout mode:

void IlvTreeLayout::setParentChildOffset(IlvPos offset);

void IlvTreeLayout::setSiblingOffset(IlvPos offset);

void IlvTreeLayout::setBranchOffset(IlvPos offset);

radial alternating radial
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 75

Note that the sibling and branch offsets are minimal distances tangential to the circles or
ellipses, while the parent-child offset is a minimal distance radial to the circles or ellipses.
Figure 4.17 shows the spacing parameters in radial mode.

Figure 4.17

Figure 4.17 Spacing Parameters in Radial Layout Mode

For Experts: Further Parameters

If a node has many children, they may cover a major part of the circle, and hence are placed
nearly 360 degree around the node. This can result in links overlapping other nodes. The
deficiency can be fixed by increasing the offset between parent and children. However, this
influences the layout globally, also affecting nodes without the deficiency. To avoid a global
change, you can limit the maximal angle between the two rays from the parent (if it is not the
root) to its two outermost children. This increases the offset between parent and children
only where necessary. Use the following method to set and obtain the angle in degrees:

void IlvTreeLayout::setMaxChildrenAngle(IlInt angle);

IlInt IlvTreeLayout::getMaxChildrenAngle() const;

Recommended values are between 30 and 180. Setting the value to 0 means the angle is
unrestricted. The calculation of the angle is not very precise above 180 degrees, or if the
aspect ratio is not 1.0.
76 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
Figure 4.18

Figure 4.18 Maximal Children Angle

Tip-Over Layout Modes

As in radial layout, drawing in free layout mode can be adjusted to the aspect ratio of the
area. Free layout mode can also use tip-over alignment to balance the drawing between
height and depth.

While tip-over alignment can be specified explicitly for individual nodes, the Tree Layout
Algorithm also has layout modes that automatically use tip-over alignment when needed.
These are the tip-over layout modes.

The tip-over layout modes work as follows: Several tries are performed in free layout mode.
For each try, some tip-over alignments are set for individual nodes, while the specified
alignment of all other nodes is preserved. The algorithm picks the try that best fits the
specified aspect ratio of the drawing area.

The aspect ratio can be set by one of the following methods (see Aspect Ratio in the Radial
Layout Mode):

void IlvTreeLayout::setAspectRatio(const IlvAbstractView* view);

void IlvTreeLayout::setAspectRatio(const IlvRect& rect);

void IlvTreeLayout::setAspectRatio(IlDouble aspectRatio);

The tip-over modes are slightly more time-consuming than the other layout modes. For very
large trees, it is recommended that you set the allowed layout time to a high value (that is,
60 seconds) when using the tip-over modes, by:

layout->IlvGraphLayout::setAllowedTime(60);

unrestricted maximal children angle maximal children angle = 90 degree
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 77

This avoids running short of time for sufficient iterations of the layout algorithm. Because it
would be too time-consuming to check all possibilities of tip-over alignment use, there are
heuristics that check only certain tries, according to four different strategies:

◆ Tip Leaves Over

◆ Tip Roots Over

◆ Tip Roots and Leaves Over

◆ Tip Over Fast

Figure 4.19

Figure 4.19 Tip-Over Strategies

Tip Leaves Over

To use this tip-over strategy, set the layout mode in this way:

layout-
>IlvTreeLayout::setLayoutMode(IlvTreeLayoutTipLeavesOverMode);

The heuristic first tries the layout without any additional tip-over options. Then it tries to tip
over the leaves, then the leaves and their parents, then additionally the parents of these
parents, and so on. As a result, the nodes closer to the root use normal alignment, and the
nodes closer to the leaves use tip-over alignment.

tip leaves over tip roots over

tip roots and leaves over
78 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
Tip Roots Over

To use this tip-over strategy, set:

layout-
>IlvTreeLayout::setLayoutMode(IlvTreeLayoutTipRootsOverMode);

The heuristic first tries the layout without any additional tip-over options. Then it tries to tip
over the root node, then the root and its children, then additionally the children of these
children, and so on. As a result, the nodes closer to the leaves use normal alignment, and the
nodes closer to the root use tip-over alignment.

Tip Roots and Leaves Over

To use this tip-over strategy, set:

layout-
>IlvTreeLayout::setLayoutMode(IlvTreeLayoutTipRootsAndLeavesOverM
ode);

The heuristic first tries the layout without any additional tip-over options. Then it tries to tip
over the root node and the leaves simultaneously; then the root and its children, and the
leaves and its parent; then additionally the children of these children and the parents of these
parents, and so on. As result, the nodes in the middle of the tree use normal alignment, and
the nodes closer to the root or leaves use the tip-over alignment.

This is the slowest strategy because it includes all tries of the strategy “tip leaves over” as
well as all tries of the strategy “tip roots over.”

Tip Over Fast

The fast tip-over is a compromise between all other strategies. To use this strategy, set the
layout mode in this way:

layout->IlvTreeLayout::setLayoutMode(IlvTreeLayoutTipOverMode);

The heuristic tries a small selection of the other strategies, not all possibilities. Therefore, it
is the fastest strategy for large graphs.

It is possible that all four strategies yield the same result, because the strategies are not
disjoint, that is, certain tries are performed with all four strategies. Furthermore, the tip-over
modes do not necessarily produce the optimal layout that gives the best possible fit to the
aspect ratio. The reason is that certain unusual configurations of tip-over alignment are
never tried, because otherwise the running time would be too high.

For Experts: Further Tips and Tricks

Here are more featured items for using Tree Layout:

◆ East-West Neighbors

◆ Retrieving Link Categories
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 79

◆ Sequences of Layouts with Incremental Changes

◆ Interactive Editing

◆ Specifying the Order of Children

East-West Neighbors

You can specify that two unrelated nodes must be directly neighbored in a direction
perpendicular to the flow direction. In level or radial layout mode, both nodes are placed in
the same level next to each other. In free layout or tip-over mode, both nodes are placed
aligned at the north border. Such nodes are called east-west neighbors, because one node is
placed as the direct neighbor on the east side of the other node (and the other node becomes
the direct neighbor on the west side of the first node). See also Compass Directions).

Technically, both nodes are treated as parent and child, even if there may be no link in
between. Therefore, one of the two nodes can have a real parent, but the other node should
not, because its virtual parent is its east-west neighbor.

This feature can be used, for example, for annotating nodes in a typed syntax tree occurring
in compiler construction. Figure 4.20 illustrates the usage.

Figure 4.20

Figure 4.20 Annotated Syntax Tree of Statement a[25] = b[24] + 0.5;

Use the following method to specify that two nodes are east-west neighbors:

dark gray: the syntax tree
light gray: the type annotations

east neighborwest neighbor
80 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
void IlvTreeLayout::setEastWestNeighboring(IlAny eastNode, IlAny
westNode);

You can also use the following method, which is identical except for the reversed parameter
order:

void IlvTreeLayout::setWestEastNeighboring(IlAny westNode, IlAny
eastNode);

If the flow direction is to the bottom, the latter method may be easier to remember, because
in this case west is to the left of east in the layout, similar to the text flow of the parameters.

To obtain which node is the east or west neighbor of a node, call:

IlAny IlvTreeLayout::getEastNeighbor(IlAny node);

IlAny IlvTreeLayout::getWestNeighbor(IlAny node);

Note that each node can have maximally one east neighbor and one west neighbor, because
they are directly neighbored. If more than one direct neighbor is specified, it will be partially
ignored. Cyclic specifications can cause conflict as well. For instance, if node B is the east
neighbor of node A and node C is the east neighbor of B, then node A cannot be the east
neighbor of C. (Strictly speaking, such cycles could be technically possible in some
situations in the radial layout mode, but nonetheless they are not allowed in any layout
mode.)

If B is the east neighbor of A, then A is automatically the west neighbor of B. On the other
hand, the east neighbor of A can itself have another east neighbor. This allows creating
chains of east-west neighbors, which is a common way to visualize lists of trees. Two
examples are shown in Figure 4.21.

Figure 4.21

Figure 4.21 Chains of East-West Neighbors to Visualize Lists of Trees

Retrieving Link Categories

The Tree Layout Algorithm works on a spanning tree, as mentioned in a Brief Description of
the Algorithm. If the graph to be laid out is not a pure tree, the algorithm ignores some links.
In order to perform a special treatment of such links, it is possible to obtain the list of non-
tree links.

w
es

t

neighb.

east w
es

t

neighb.

east w
es

t

neighb.

east w
es

t

neighb.

east
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 81

There are parents and children in the spanning tree. We distinguish the following link
categories:

◆ Forward tree link: a link from a parent to its child.

◆ Backward tree link: a link from a child to its parent. If the link is drawn as a directed
arrow, the arrow will point converse to the flow direction.

◆ Non-tree link: a link between two unrelated nodes; neither one is a child of the other.

Figure 4.22

Figure 4.22 Link Categories

The layout algorithm uses these link categories internally but does not store them
permanently for the sake of time and memory efficiency. If you want to perform a special
treatment on some link categories (for example, to call the Orthogonal Link Layout on the
non-tree links), you must specify before layout that you want to access the link categories
after layout. In order to do this, use the method
IlvTreeLayout::setCategorizingLinks in the following way:

layout->setCategorizingLinks(IlTrue);
// now perform a layout
layout->performLayout();
// now you can access the link categories

After layout, the link categories are available in three lists that can be obtained by these
methods:

const IlList* IlvTreeLayout::getCalcForwardTreeLinks() const;

const IlList* IlvTreeLayout::getCalcBackwardTreeLinks() const;

const IlList* IlvTreeLayout::getCalcNonTreeLinks() const;

These lists get filled each time the layout is called, unless you switch categorizing links back
to IlFalse.

forward
tree link non-tree

link
non-tree
link

non-
tree
link

backward
tree link
82 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Tree Layout
Note that the returned lists are constant. You should not change them directly. However, you
can iterate over the lists and retrieve the links of each category, for example, to perform a
special operation for non-tree links:

IlvLink* link = layout->getCalcNonTreeLinks()->getFirst();
while (link) {
 linkimage = (IlvLinkImage*)link->getValue();
 link = link->getNext();
 // ... perform special operation with linkimage
}

Sequences of Layouts with Incremental Changes

You can work with trees that become out-of-date from time to time, for example, those that
need to be extended with more children. If you perform a layout after an extension, you
probably want to identify the parts that were already laid out in the original graph. The Tree
Layout Algorithm supports such incremental changes because it takes the previous positions
of the nodes into account. It preserves the relative order of the children in the next layout.

Interactive Editing

The fact that the relative order is preserved is particularly useful during interactive editing. It
allows you to easily correct the layout. For instance, if the first layout places a node A left to
its sibling B but you need it in reverse order, you can simply move A to the right of B and
start a new layout to clean up the drawing. In this second layout, A will stay to the right of B,
and the subtree of A will “follow” node A.

Figure 4.23

Figure 4.23 Interactive Editing to Achieve Specific Order of Children

Specifying the Order of Children

Some applications require a specific relative order of children in the tree. That means, for
instance—with flow direction to the bottom—which child must be placed to the left of
another child. Even if the graph was never laid out, you can use the coordinates to specify a
certain order of the children at a node in the following way:
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 83

◆ In free or level layout mode with flow direction to the bottom or top, determine the
maximal width “W” of all nodes. Simply move the child that should be leftmost to the
coordinate (0, 0), and the child that should get the ith relative position (in order from
left to right) to coordinate ((W+1)*i, 0).

◆ If the flow direction is to the left or to the right, determine the maximal height H of all
nodes. Move the child that should be topmost to the coordinate (0, 0), and the child
that should get the ith relative position (in the order from top to bottom) to coordinate
(0, (H+1)*i).

◆ In the radial layout modes, determine the maximal diagonal D = W2 + H of all nodes. If
the position of the parent is (x, y) before layout, then move the child that should be the
first in the circular order to the coordinate (x, y+D), and the child that should get the ith
relative position in the circular order to coordinate (x+D*i, y+D).

If you want to specify a relative order for all nodes in radial mode, you must do this for
the parents before you do it for the children. In this case, the movements can be easily
performed during a depth-first traversal from the root to the leaves.

The layout that is performed after the movement arranges the children with the desired
relative order.

Hierarchical Layout

In this section, you will learn about the Hierarchical Layout algorithm provided with the
IBM ILOG Views Graph Layout package (class IlvHierarchicalLayout from the
library ilvhierarchical).

Samples

Here are some sample drawings produced with the Hierarchical Layout:
84 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Hierarchical Layout
Figure 4.24

Figure 4.24 Sample Layout with Self-Loops, Multiple Links, and Cycles

Figure 4.25

Figure 4.25 Flowchart with Orthogonal Link Style
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 85

What Types of Graphs?

Any type of graph:

◆ Preferably graphs with directed links (The algorithm takes the link direction into
account.)

◆ Connected and disconnected graphs

◆ Planar and nonplanar graphs

Application Domains

Application domains of the Hierarchical Layout include:

◆ Electrical engineering (logic diagrams, circuit block diagrams)

◆ Industrial engineering (industrial process diagrams, schematic design diagrams)

◆ Business processing (workflow diagrams, process flow diagrams, PERT charts)

◆ Software management/software (re-)engineering (UML diagrams, flowcharts, data
inspector diagrams, call graphs)

◆ Database and knowledge engineering (database query graphs)

◆ CASE tools (designs diagrams)

Features

◆ Organizes nodes without overlaps in horizontal or vertical levels.

◆ Arranges the graph such that the majority of links are short and flow uniformly in the
same direction (from left to right, from top to bottom, and so on).

◆ Reduces the number of link crossings. Most of the time, produces drawings with no
crossings or only a small number of crossings.

◆ Often produces balanced drawings that emphasize the symmetries in the graph.

◆ Supports self-links (that is, links with the same origin and destination node), multiple
links between the same pair of nodes, and cycles.

◆ Efficient, scalable algorithm. Produces a nice layout relatively quickly for most sparse
and medium-dense graphs, even if the number of nodes is very large.

◆ Provides several alignment and offset options.

◆ The computation time depends on the number of nodes, the number of levels, and the
number of links that cross several levels. Most of the time, the links are placed between
adjacent levels, which keeps the computation time small.
86 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Hierarchical Layout
Limitations

◆ The algorithm tries to minimize the number of link crossings (which is generally an NP-
complete problem). It is mathematically impossible to solve this problem quickly for any
graph size. Therefore, the algorithm uses a very fast heuristic that obtains a good layout,
but not always with the theoretical minimum number of link crossings.

◆ The algorithm tries to place the nodes such that all links point uniformly in the same
direction. It is impossible to place cycles of links in this way. For this reason, it
sometimes produces a graph where a small number of links are reversed to point in the
opposite direction. The algorithm tries to minimize the number of reversed links (which,
again, is an NP-complete problem). Therefore, the algorithm uses a very fast heuristic
resulting in a good layout, but not always with the theoretical minimum number of
reversed links.

◆ The computation time required to obtain an appropriate drawing depends most
significantly on the number of bends in the links. Since the algorithm places one bend
whenever a link crosses a level, the number of bends can grow relatively quickly if the
layout requires many long links that span several levels. Therefore, the layout process
may become very time-consuming for dense graphs (the number of links is relatively
high compared to the number of nodes) or for graphs that require a large number of node
levels.

Brief Description of the Algorithm

This algorithm works in four steps.

Step 1: Leveling

The nodes are partitioned into groups. Each group of nodes forms a level. The objective is to
group the nodes in such a way that the links always point from a level with a smaller index
to a level with a larger index.

Step 2: Crossing Reduction

The nodes are sorted within each level. The algorithm tries to keep the number of link
crossings small when, for each level, the nodes are placed in this order on a line (see
Figure 4.26). This ordering results in the relative position index of each node within its level.

Step 3: Node Positioning

From the level indices and position indices, balanced coordinates for the nodes are
calculated. For instance, for a layout where the link flow is from top to bottom, the nodes are
placed along horizontal lines such that all nodes belonging to the same level have
(approximately) the same y-coordinate. The nodes of a level with a smaller index have a
smaller y-coordinate than the nodes of a level with a higher index. Within a level, the nodes
with a smaller position index have a smaller x-coordinate than the nodes with a higher
position index.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 87

Step 4: Link Routing

The shapes of the links are calculated such that the links bypass the nodes at the level lines.
In many cases, this requires that a bend point be created whenever a link needs to cross a
level line. In a top-to-bottom layout, these bend points have the same y-coordinate as the
level line they cross. (Note that these bend points also obtain a position index).

Figure 4.26 shows how the Hierarchical Layout algorithm uses the level and position indices
to draw the graph.

Figure 4.26

Figure 4.26 Level and Position Indices

The steps of the layout algorithm can be affected in several ways. For instance, you can
specify the desired level index that the algorithm should choose for a node in Step 1 or the
desired relative node position within the level in Step 2. You can also specify the
justification of the nodes within a level and the style of the links shapes.

level 1

level 0

level 2

level 3

position 0 position 1

position 0 position 1 position 2 position 3

position 0

position 1

position 2

position 0
88 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Hierarchical Layout
Code Sample

Below is a code sample using the IlvHierarchicalLayout class:

Parameters

The Hierarchical Layout uses generic parameters, common to other graph layouts, and
specific parameters applicable in hierarchical layouts only. Refer to the following sections
for general information on parameters among the graph layouts:

◆ Generic Parameters Support

◆ Layout Characteristics

The Hierarchical Layout parameters are described in detail in this topic under:

◆ Generic Parameters

◆ Specific Parameters

Generic Parameters

The IlvHierarchicalLayout class supports the following generic parameters defined in
the IlvGraphLayout class:

◆ Allowed Time

// ...
IlvGrapher* grapher = new IlvGrapher(display);

// ... Fill in the grapher with nodes and links here

IlvHierarchicalLayout* layout = new IlvHierarchicalLayout();
layout->attach(grapher);

// Set the layout parameters, e.g., flow to bottom:
layout->setFlowDirection(IlvBottom);

// ...
// Perform the layout
IlvGraphLayoutReport* layoutReport = layout->performLayout();
if (layoutReport->getCode() != IlvLayoutReportLayoutDone)
 IlvWarning(“Layout not done, Error code = %d\n”, layoutReport->getCode());

// ...
// If this grapher is not anymore subject of layout:
layout->detach();

// ...
// Once the layout algorithm is not anymore needed:
delete layout;
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 89

◆ Preserve Fixed Links

◆ Preserve Fixed Nodes

The following paragraphs describe the particular way in which these parameters are used by
this subclass.

Allowed Time

The layout algorithm stops if the allowed time setting has elapsed. (For a description of this
layout parameter in the IlvGraphLayout class, see Allowed Time.) If the layout stops
early because the allowed time elapsed, the nodes and links are not moved at all and remain
in the same position they had before the call of layout.

Preserve Fixed Links

The layout algorithm does not reshape the links that are specified as fixed. (For more
information on link parameters in the IlvGraphLayout class, see Preserve Fixed Links and
Link Style.)

Preserve Fixed Nodes

The layout algorithm does not move the nodes that are specified as fixed. (For more
information on node parameters in the IlvGraphLayout class, see Preserve Fixed Nodes.)
Moreover, the layout algorithm ignores fixed nodes completely and also does not route the
links that are incident to the fixed nodes. This can result in undesired overlapping nodes and
link crossings. However, this feature is useful for individual, disconnected components that
can be laid out independently.

Specific Parameters

The following parameters are specific to the IlvHierarchicalLayout class:

◆ Flow Direction

◆ Level Justification

◆ Link Style

◆ Connector Style

◆ Link Priority

◆ Level Index

◆ Position Index

◆ Spacing Parameters

Flow Direction

The flow direction parameter specifies the direction in which the majority of the links should
point. If the flow direction is to the top or to the bottom, the node levels are oriented
90 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Hierarchical Layout
horizontally and the links mostly vertically. If the flow direction is to the left or to the right,
the node levels are oriented vertically and the links mostly horizontally.

If the flow direction is to the bottom, the nodes of the level with index 0 are placed at the top
border of the drawing. The nodes with level index 0 are usually the root nodes of the
drawing (that is, the nodes without incoming links). If the flow direction is to the top, the
nodes with level index 0 are placed at the bottom border of the drawing. If the flow direction
is to the right, the nodes are placed at the left border of the drawing.

Figure 4.27

Figure 4.27 Flow Directions

To specify the flow direction, use the following method:

void IlvHierarchicalLayout::setFlowDirection(IlvDirection
direction);

The valid values for direction are:

◆ IlvRight (the default)

◆ IlvLeft

◆ IlvBottom

◆ IlvTop

To obtain the current choice, use the following method:

IlvDirection IlvHierarchicalLayout::getFlowDirection() const;

Flow to Bottom Flow to Top

Flow to Right

Flow to Left
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 91

Level Justification

If the layout uses horizontal levels, the nodes of the same level are placed approximately at
the same y-coordinate. The nodes can be justified, depending on whether the top border, or
the bottom border, or the center of all nodes of the same level should have the same y-
coordinate.

If the layout uses vertical levels, the nodes of the same level are placed approximately at the
same x-coordinate. In this case, the nodes can be justified to be aligned at the left border, at
the right border, or at the center of the nodes that belong to the same level.

To specify the level justification, use the following method:

void IlvHierarchicalLayout::setLevelJustification(IlvDirection
justification);

If the flow direction is to the top or to the bottom, the valid values for justification are:

◆ IlvTop

◆ IlvBottom

◆ IlvCenter (the default)

Figure 4.28

Figure 4.28 Level Justification for Horizontal Levels

If the flow direction is to the left or to the right, the valid values for justification are:

◆ IlvLeft

◆ IlvRight

◆ IlvCenter (the default)

Top Justification Center Justification Bottom Justification
92 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Hierarchical Layout
Figure 4.29

Figure 4.29 Level Justification for Vertical Levels

To obtain the current value, use the following method:

IlvDirection IlvHierarchicalLayout::getLevelJustification()
const;

Link Style

The layout algorithm positions the nodes and routes the links. To avoid overlapping nodes
and links, it creates bend points for the shapes of links. The link style parameter controls the
position and number of bend points. The link style can be set globally, in which case all links
have the same kind of shape, or locally on each link such that different link shapes occur in
the same drawing.

Left Justification Center Justification Right Justification
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 93

Figure 4.29 Link Styles

Global Link Style
To set the global link style, use the following method:

void IlvHierarchicalLayout::setGlobalLinkStyle(IlvLayoutLinkStyle
style);

The valid values for style are:

◆ IlvLayoutPolylineLinkStyle

All links get a polyline shape. A polyline shape consists of a sequence of line segments
that are connected at bend points. The line segments can be turned into any direction.
This is the default value.

◆ IlvLayoutOrthogonalLinkStyle

All links get an orthogonal shape. An orthogonal shape consists of orthogonal line
segments that are connected at bend points. An orthogonal shape is a polyline shape
where the segments can be turned only in directions of 0, 90, 180 or 270 degrees.

◆ IlvLayoutStraightLineLinkStyle

All links get a straight-line shape. All intermediate bend points (if any) are removed.
This often causes overlapping nodes and links.

Note: The layout algorithm calls the method
IlvGraphModel::ensureReshapeableLinks on the attached graph model to ensure
that all the links can be reshaped as needed. With an IlvGrapher, this method may replace
links with the appropriate type of link and install the appropriate grapher pin on the nodes.
For details on this method, see the Reference Manual. For details on the graph model, see
the section Using the Graph Model.

Polyline Links Orthogonal Links Straight-line Links
94 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Hierarchical Layout
◆ IlvLayoutNoReshapeLinkStyle

None of the links is reshaped in any manner.

◆ IlvLayoutMixedLinkStyle

Each link can have a different link style. In this case, the style of each individual link can
be set such that different link shapes can occur in the same graph.

To obtain the current choice, use the following method:

IlvLayoutLinkStyle IlvHierarchicalLayout::getGlobalLinkStyle()
const;

Individual Link Style
All links have the same style of shape unless the global link style is MIXED_STYLE. Only
when the global link style is MIXED_STYLE can each link have an individual link style.

Figure 4.30

Figure 4.30 Different Link Styles Mixed in the Same Drawing

To set and retrieve the style of an individual line, use the following methods:

void IlvHierarchicalLayout::setLinkStyle(lvAny link,
IlvLayoutLinkStyle style);

IlvLayoutLinkStyle IlvHierarchicalLayout::getLinkStyle(IlAny
link) const;

The valid values for the local link style are the same as for the global link style:

◆ IlvLayoutPolylineLinkStyle

◆ IlvLayoutOrthogonalLinkStyle

◆ IlvLayoutStraightLineLinkStyle
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 95

◆ IlvLayoutNoReshapeLinkStyle

Connector Style

The layout algorithm positions the end points of links (the connector pins) at the nodes
automatically. The connector style parameter specifies how these end points are calculated.

Figure 4.31

Figure 4.31 Connector Styles

To set the connector style, use the following method:

void
IlvHierarchicalLayout::setConnectorStyle(IlvLayoutConnectorStyle
style);

The following options are available for style:

◆ IlvLayoutCenteredPins

The end points of the links are placed in the center of the border where the links are
attached. This option is well-suited for polyline links and straight-line links. It is less
well-suited for orthogonal links, because orthogonal links can look ambiguous in this
style.

◆ IlvLayoutClippedPins

Each link pointing to the center of the node is clipped at the node border. The connector
pins are placed at the points on the border where the links are clipped. This option is
particularly well-suited for polyline links.

◆ IlvLayoutEvenlySpacedPins

Note: The link style of the Hierarchical Layout requires links in an IlvGrapher that can be
reshaped. Links of type IlvLinkImage, IlvOneLinkImage, IlvDoubleLinkImage,
IlvOneSplineLinkImage and IlvDoubleSplineLinkImage cannot be reshaped. You
can use the class IlvPolylineLinkImage instead.
96 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Hierarchical Layout
The connector pins are evenly distributed along the node border. This style guarantees
that the end points of the links do not overlap. This is the best style for orthogonal links
and works well for other link styles.

◆ IlvLayoutAutomaticPins

The connector style is selected automatically depending on the link style. If any of the
links have an orthogonal style, the algorithm chooses evenly spaced connectors. If all the
links are straight, it chooses centered connectors. Otherwise, it chooses clipped
connectors.

To obtain the current choice, use the following method:

IlvLayoutConnectorStyle

IlvHierarchicalLayout::getConnectorStyle() const;

Link Priority

The layout algorithm tries to place the nodes such that all links are short, point in the flow
direction, and do not cross each other. However, this is not always possible. Often, links
cannot have the same length. If the graph has cycles, some links must be reversed against the
flow direction. If the graph is nonplanar, some links have to cross each other.

The link priority parameter controls which links should be selected if long, reversed, or
crossing links are necessary. Links with a low priority are more likely to be selected than
links with a high priority. This does not mean that low-priority links are always longer,
reversed, or crossed, because the graph may have a structure such that no long, reversed or
crossing links are necessary.

To set or retrieve the link priority, use the following methods.

void IlvHierarchicalLayout::setLinkPriority(IlAny link, IlDouble
priority);

IlFloat IlvHierarchicalLayout::getLinkPriority(IlAny link) const;

The default value of the link priority is 1.0. Negative link priorities are not allowed.

For an example of using the link priority, consider a cycle A->B->C->D->E->A. It is
impossible to lay out this graph without reversing any link. Therefore, the layout algorithm
selects one link to be reversed. To control which link is selected, you can give one link a
lower priority than the others. This link will be reversed. In Figure 4.32, the bottom layout
shows the use of the link priority. The link C->D was given the priority 0.5, while all the
other links have the priority 1.0. Therefore C-D is reversed. The top layout in Figure 4.32
shows what happens when all links have the same priority. Link E->A is reversed.

Note: The connector style parameter requires grapher pins at the nodes of an IlvGrapher
that allow connector pins to be placed freely at the node border. It is recommended that you
install IlvRelativeLinkConnector at nodes that are contained in an IlvGrapher.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 97

Figure 4.32

Figure 4.32 Working With Link Priorities

Level Index

In Step 1 of the layout algorithm (the leveling phase), the nodes are partitioned into levels.
These levels are indexed starting from 0. For instance, when the flow direction is to the
bottom, the nodes of the level with index 0 are placed at the topmost horizontal level line,
and the nodes with larger level index are placed at a lower position than the nodes with
smaller level index (see Figure 4.26). The layout algorithm calculates these level indices
automatically.

You can affect how the levels are partitioned by specifying the level indices for some nodes.
The nodes are placed in the specified level.

To specify the level index of a node, use the following method:

void IlvHierarchicalLayout::setSpecNodeLevelIndex(IlAny node,
IlInt index);

The default value is -1. If the default value is used or if a node is set to a negative level
index, the layout algorithm automatically calculates an appropriate level index during the
leveling phase of the algorithm.

To obtain the current level for a node, use the following method:

IlInt IlvHierarchicalLayout::getSpecNodeLevelIndex(IlAny node)

const;

Figure 4.33 illustrates a hierarchical layout with the same level specified for each node of the
graph.

Warning: Using arbitrarily large level indices is not recommended. For instance, if you set
the level index of a node to 100000, the layout algorithm would create 100,000 levels even
if the graph has much fewer nodes. This would cause the layout algorithm to become
unnecessarily slow.

All links have the
same priority.

Link C -> D has a
lower priority than
the other links.
98 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Hierarchical Layout
Figure 4.33

Figure 4.33 All Nodes Fixed at Same Level

Position Index

In Step 2 of the layout algorithm (the crossing reduction phase), the nodes are ordered within
the levels. All nodes that belong to the same level get a position index starting from 0. For
instance, when the flow direction is to the bottom, the node with the position index 0 is
placed in the left-most position within its level. The nodes with a larger position index are
placed more to the right than the nodes with a smaller position index in the same level. The
nodes of different levels are independent. The node of the first level with the position index
0 is left of the node of the first level with the position index 1, but not necessarily left of a
node of another level with position index 0. Note that long links crossing a level also obtain
a position index (see Figure 4.26). The layout algorithm calculates these position indices
automatically.

You can affect how the nodes are positioned within each level by specifying the position
index of some nodes. The nodes are placed at the specified position within their level.

To specify the position index of a node, use the following method:

void IlvHierarchicalLayout::setSpecNodePositionIndex(IlAny node,
IlInt index);

The default value is -1. If the default value is used, if a node is set to a negative position
index, or if a node is set to a position index that is larger than the number of nodes of its
level, the layout calculates automatically an appropriate position index during the crossing
reduction step.

To obtain the current position index of a node, use the following method:

IlInt IlvHierarchicalLayout::getSpecNodePositionIndex(IlAny node)
const;

Spacing Parameters

The spacing of the layout is controlled by three kinds of spacing parameters: the minimal
offset between nodes, the minimal offset between parallel segments of links and the minimal
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 99

offset between a node border and a bend point of a link or a link segment that is parallel to
this border. The offset between parallel segments of links is at the same time the offset
between bend points of links. All three kind of parameters occur in both directions:
horizontally and vertically.

Figure 4.34

Figure 4.34 Spacing Parameters

The spacing parameters can be set for the horizontal direction by the following methods:

void IlvHierarchicalLayout::setHorizontalNodeOffset(IlvPos
offset);

void IlvHierarchicalLayout::setHorizontalLinkOffset(IlvPos
offset);

void IlvHierarchicalLayout::setHorizontalNodeLinkOffset(IlvPos
offset);

The spacing parameters can be set for the vertical direction by the following methods:

void IlvHierarchicalLayout::setVerticalNodeOffset(IlvPos offset);

void IlvHierarchicalLayout::setVerticalLinkOffset(IlvPos offset);

void IlvHierarchicalLayout::setVerticalNodeLinkOffset(IlvPos
offset);

The spacing parameters can be obtained by the corresponding methods:

IlvPos IlvHierarchicalLayout::getHorizontalNodeOffset() const;

IlvPos IlvHierarchicalLayout::getHorizontalLinkOffset() const;

IlvPos IlvHierarchicalLayout::getHorizontalNodeLinkOffset()
const;

Horizontal
Node
Offset

Horizontal
Node-Link
Offset

Vertical
Node
Offset

Horizontal Link
Offset

Horizontal
Node-Link
Offset
100 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Hierarchical Layout
IlvPos IlvHierarchicalLayout::getVerticalNodeOffset() const;

IlvPos IlvHierarchicalLayout::getVerticalLinkOffset() const;

IlvPos IlvHierarchicalLayout::getVerticalNodeLinkOffset() const;

For a layout with horizontal levels (the flow direction is to the top or to the bottom), the
horizontal node offset is the minimal distance between nodes of the same level. The vertical
node offset is the minimal distance between nodes of different levels, that is, the minimal
distance between the levels. For non-orthogonal link styles, the horizontal link offset is
basically the minimal distance between bend points of links. The horizontal node-link offset
is the minimal distance between the node border and the bend point of a link. For horizontal
levels, the vertical link offset and the vertical node-link offset play a role only if the link
shapes are orthogonal.

Similarly, for a layout with vertical levels (the flow direction is to the left or to the right), the
vertical node offset controls node distances within the levels. The horizontal node offset is
the minimal distance between the levels. In this case, the vertical link offset and the vertical
node-link offset always play a role, while the horizontal link offset and the horizontal node-
link offset affect the layout only with orthogonal links.

For orthogonal links, the horizontal link offset is the minimal distance between parallel,
vertical link segments. The vertical link offset is the minimal distance between parallel,
horizontal link segments. However, the layout algorithm cannot always satisfy these offset
requirements. If a node is very small but has many incident links, it may be impossible to
place the links orthogonally with the specified minimal link distance on the node border. In
this case, the algorithm places some link segments closer than the specified link offset.

Figure 4.35

Figure 4.35 Spacing Parameters for Orthogonal Links

Horizontal
Node-Link
Offset

Vertical
Link Offset

Horizontal
Link
Offset

Link Offset
Violation
Caused by a
“Too-Small”
Node
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 101

Sequences of Graph Layout

In some circumstances, you may need to use a sequence of layouts on the same graph. For
example:

◆ You work with graphs that become out-of-date and need to extend the graph. If you
perform a layout on the extended graph, you probably want to identify the parts that were
already laid out in the original graph. The layout should not change very much when
compared to the layout of the original graph.

◆ The first layout results in a drawing with minor deficiencies. You want to solve these
deficiencies manually and perform a second layout to clean up the drawing. For the parts
of the graph that were already acceptable after the first layout, the second layout
probably should not change them very much.

The Hierarchical Layout supports sequences of layout that “do not change very much.” It
allows you to preserve the level index of a node and the position index of the node within the
level. By doing this, the relative position of a node compared to a previous layout does not
change. The algorithm calculates new coordinates for the nodes and new routings for the
links to adjust the absolute positions of the objects in order to clean up the drawing. The
relative order such as “node A is in a level above node B” or “node A is left of node B” can
be preserved.

The parameters for hierarchical sequences are described in:

◆ Calculated Level Index

◆ Calculated Position Index

◆ Layout Refinements

Calculated Level Index

The layout algorithm allows you to access the level index that was calculated for a node by a
previous layout. To do this, use the following method:

IlInt IlvHierarchicalLayout::getCalcNodeLevelIndex(IlAny node)
const;

If the node was never laid out, this method returns -1. Otherwise, it returns the previous
level index of the node.

The method can be used to specify the level index for the next layout in the following way:

When this is done, it ensures that the node is placed at the same level as in the previous
layout.

IlInt index = layout->getCalcNodeLevelIndex(node);
layout->setSpecNodeLevelIndex(node, index);
102 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Hierarchical Layout
If the graph is detached from the layout algorithm, the calculated level index of a node is set
back to -1.

Calculated Position Index

The layout algorithm allows you to access the position index within a level that was
calculated for a node by a previous layout. To do this, use the following method:

IlInt IlvHierarchicalLayout::getCalcNodePositionIndex(IlAny node)
const

If the node was never laid out, this method returns -1. Otherwise, it returns the previous
position index of the node within its level.

To ensure that the node is placed at the same level at the same relative position as in the
previous layout, use the following:

Note: You should be aware of the difference between the methods
IlvHierarchicalLayout::getCalcNodeLevelIndex and
IlvHierarchicalLayout::getSpecNodeLevelIndex. The first one returns the level
index calculated by the previous layout. The second one returns the specified level index,
even if there was no previous layout. For instance, consider two nodes A and B. Node A has
no specified level index and node B has a specified level index 5. Before the first layout, the
method IlvHierarchicalLayout::getCalcNodeLevelIndex returns -1 for both
nodes because the levels have not been calculated yet. However,
IlvHierarchicalLayout::getSpecNodeLevelIndex returns -1 for A and 5 for B.
After the first layout, node A may be placed at level 4. Now,
IlvHierarchicalLayout::getCalcNodeLevelIndex returns 4 for node A and 5 for
node B and IlvHierarchicalLayout::getSpecNodeLevelIndex still returns -1 for A
and 5 for B.

layout->setSpecNodeLevelIndex(node,
 layout->getCalcNodeLevelIndex(node));
layout->setSpecNodePositionIndex(node,
 layout->getCalcNodePositionIndex(node));
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 103

If the graph is detached from the layout algorithm, the calculated position index of a node is
set back to -1.

Layout Refinements

The following example shows how to use the calculated and specified level and position
indices to refine a layout. Assume that you want to place a leaf node in the level with the
highest index (see Figure 4.36). Since you do not know before laying out the graph how
many levels will be created, you cannot specify the highest level index at the beginning. You
must perform a first layout, iterate over the nodes, and retrieve the highest calculated level.
If the leaf node is not already placed at the highest level index, you must specify this level

Note: You should be aware of the difference between the methods
IlvHierarchicalLayout::getCalcNodePositionIndex and
IlvHierarchicalLayout::getSpecNodePositionIndex. The first one returns the
position index calculated by the previous layout and -1 if there was no previous layout. The
second one returns the specified position index, even if there was no previous layout. This
behavior is similar to the behavior of the specified and calculated level index (see the
section Calculated Level Index).
104 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Hierarchical Layout
index for the leaf node while preserving the level and position indices of all other nodes.
Then perform the layout a second time. The following code fragment shows how to do this.

// ...
IlvHierarchicalLayout* layout = new IlvHierarchicalLayout();
layout->attach(grapher);

// perform a first layout
IlvGraphLayoutReport* layoutReport = layout->performLayout();

// ...

// calculate the maximal level index, and preserve the relative node positions
// for the next layout

IlInt maxLevelIndex = -1;
IlUInt count;
IlvGraphic* const* allObjects = grapher->getObjects(count);
for (i = 0 ; i < count ; ++i) {
 IlvGraphic* node = allObjects[i];
 if (grapher->isNode(node)) {
 IlInt levelIndex = layout->getCalcNodeLevelIndex(node);
 IlInt positionIndex = layout->getCalcNodePositionIndex(node);
 if (maxLevelIndex < levelIndex)
 maxLevelIndex = levelIndex;
 layout->setSpecNodeLevelIndex(node, levelIndex);
 layout->setSpecNodePositionIndex(node, positionIndex);
 }
}

// if the leaf node was not at maximal level index, specify the maximal
// level index for the leaf node and perform layout again

if (layout->getCalcNodeLevelIndex(leafnode) != maxLevelIndex) {
 layout->setSpecNodeLevelIndex(leafnode, maxLevelIndex);
 layout->setSpecNodePositionIndex(leafnode, -1);
 layoutReport = layout->performLayout();
 // ...
}

layout->detach();
delete layout;
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 105

Figure 4.36

Figure 4.36 Moving the Leaf Node to the Lowest Level (Highest Level Index)

Orthogonal Link Layout

In this section, you will learn about the Orthogonal Link Layout algorithm from the
IBM ILOG Views Graph Layout package (class IlvOrthogonalLinkLayout from the
library ilvorthlink).

Samples

Here are sample drawings produced with the Orthogonal Link Layout:

Leaf Node After First Layout Leaf Node After Second Layout
106 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Orthogonal Link Layout
Figure 4.37

Figure 4.37 Orthogonal Link Drawing Produced with the Orthogonal Link Option

Figure 4.38

Figure 4.38 Orthogonal Link Drawing Produced with the Direct Links Option
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 107

What Types of Graphs?

Any type of graph:

◆ Connected and disconnected

◆ Planar and nonplanar graphs

Application Domains

Application domains of the Orthogonal Layout include:

◆ Electrical engineering (circuit block diagrams)

◆ Industrial engineering (schematic design diagrams, equipment/resource control charts)

◆ Business processing (entity relation diagrams)

◆ Software management/software (re-)engineering (data inspector diagrams)

◆ Database and knowledge engineering (sociology, genealogy)

◆ CASE tools (design diagrams)

Features

◆ Reshapes the links of a graph in either an “orthogonal” or a “direct” style, without
moving the nodes.

◆ Efficient, scalable algorithm.

◆ The shapes of the links are computed in such a way as to reduce the number of link-to-
link and link-to-node crossings.

◆ Supports links with different widths.

◆ Automatically arranges the final segments of the links (the segments near the origin or
destination node) to obtain a “bundle” of parallel links.

◆ Allows you to specify which side of the node (top, bottom, left, or right) a link can be
connected to.

◆ Supports self-links (that is, links with the same origin and destination node).

◆ Supports multiple links (that is, more than one link between the same origin and
destination nodes).

◆ Allows you to specify “pinned” (fixed) links that the layout algorithm cannot reshape.
108 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Orthogonal Link Layout
Limitations

◆ Link-to-link and link-to-node crossings cannot always be avoided, especially in highly
connected graphs with links between distant nodes. This limitation is closely related to
the efficiency issues of this intrinsically complex layout problem.

Brief Description of the Algorithm

The Orthogonal Link Layout algorithm is based on a combinatorial optimization that
chooses the “optimal” shape of the links in order to minimize a cost function. This cost
function is proportional to the number of link-to-link and link-to-node crossings.

For efficiency reasons, the basic shape of each link is chosen from a set of predefined
shapes. These shapes are different for each link-style option. See the orthogonal link style in
Figure 4.37 and the direct link style in Figure 4.38.

The shape of a link also depends on the relative position of the origin and destination nodes.
For instance, when two nodes are very close or they overlap, the shape of the link is chosen
to provide the best visibility of the link.

The exact shape of a link is computed taking into account additional constraints. The layout
algorithm tries to:

◆ Minimize the number of crossings between the links incident to a given side of a node.

◆ Space the final segments of the links incident to a given side of a node equally on the
node, no matter what their width.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 109

Code Sample

Below is a code sample using the IlvOrthogonalLinkLayout class:

Parameters

The Orthogonal Link Layout uses generic parameters, common to other graph layouts, and
specific parameters applicable in orthogonal link layouts only. Refer to the following
sections for general information on parameters among the graph layouts:

◆ Generic Parameters Support

◆ Layout Characteristics

The Orthogonal Link Layout parameters are described in detail in this topic under:

◆ Generic Parameters

◆ Specific Parameters

Generic Parameters

The IlvOrthogonalLinkLayout class supports the following generic parameters as
defined in the class IlvGraphLayout:

◆ Allowed Time

◆ Preserve Fixed Links

// ...
IlvGrapher* grapher = new IlvGrapher(display);

// ... Fill in the grapher with nodes and links here

IlvOrthogonalLinkLayout* layout = new IlvOrthogonalLinkLayout();
layout->attach(grapher);

// Set the layout parameters, e.g., the offset between links:
layout->setLinkOffset(5);

// Perform the layout
IlvGraphLayoutReport* layoutReport = layout->performLayout();
if (layoutReport->getCode() != IlvLayoutReportLayoutDone)
 IlvWarning(“Layout not done. Error code = %d\n”, layoutReport->getCode());
// ...
// If this grapher is not anymore subject of layout:
layout->detach();

// Once the layout algorithm is not anymore needed:
delete layout;
110 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Orthogonal Link Layout
The following comments describe the particular way in which these parameters are used by
this subclass.

Allowed Time

The layout algorithm stops if the allowed time setting has elapsed. (For a description of this
layout parameter in the IlvGraphLayout class, see Allowed Time.)

Preserve Fixed Links

The layout algorithm does not reshape the links that are specified as fixed. (For more
information on link parameters in the IlvGraphLayout class, see Preserve Fixed Links.)

Specific Parameters

The following parameters are specific to the IlvOrthogonalLinkLayout class:

◆ Dimensional Parameters

◆ Link Style

◆ Number of Optimization Iterations

◆ Same Shape for Multiple Links

◆ Link Crossing Penalty

Dimensional Parameters

Figure 4.39 illustrates the dimensional parameters used in the Orthogonal Link Layout
algorithm. These parameters are:

◆ Link Offset

◆ Minimum Final Segment Length
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 111

Figure 4.39

Figure 4.39 Dimensional Parameters for the Orthogonal Link Layout Algorithm

Link Offset
The layout algorithm computes the final connecting segments of the links (that is, the
segments near the origin and destination nodes) in order to obtain parallel lines spaced at a
user-defined distance. Since the links can have different widths, it takes into account the
width of the links, when computing the offset. To specify the offset, use the method:

void IlvOrthogonalLinkLayout::setLinkOffset(IlUInt offset);

To obtain the current value, use the method:

IlUInt IlvOrthogonalLinkLayout::getLinkOffset() const;

Minimum Final Segment Length
You can specify a minimum value for the length of the final connecting segments of the
links (that is, the segments near the origin and destination nodes) using the method:

LinkOffset

MinFinalSegmentLength>
=

MinFinalSegmentLength>
=

LinkOffset

LinkOffset
112 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Orthogonal Link Layout
void IlvOrthogonalLinkLayout::setMinFinalSegmentLength(IlUInt
length);

To obtain the current value, use the method:

IlUInt IlvOrthogonalLinkLayout::getMinFinalSegmentLength() const;

The default value is 10.

Link Style

The layout algorithm provides two link styles. To specify the link style, the following
method can be used:

void IlvOrthogonalLinkLayout::setLinkStyle(IlvLayoutLinkStyle
style);

The valid values for style are:

◆ IlvLayoutOrthogonalLinkStyle

The links are reshaped to a polygonal line of alternating horizontal and vertical
segments. Figure 4.37 shows a layout produced with this style. This is the default.

◆ IlvLayoutDirectLinkStyle

The links are reshaped to a polygonal line composed of three segments: a straight-line
segment that starts and ends with a small horizontal or vertical segment. Figure 4.38
shows a layout produced with this style.

To obtain the current choice, use the following method:

IlvLayoutLinkStyle IlvOrthogonalLinkLayout::getLinkStyle() const;

Number of Optimization Iterations

The link shape optimization is stopped if the number of iterations exceeds the allowed
number of iterations or the time exceeds the allowed time. To specify this number, use the
method:

Note: The layout algorithm calls the method
IlvGraphModel::ensureReshapeableLinks on the attached graph model to ensure
that all the links can be reshaped as needed, including their connection points. With an
IlvGrapher, this method may replace links with the appropriate type of link and install the
appropriate link connector on the nodes. For details on this method, see the Reference
Manual. For details on the graph model, see Using the Graph Model.

Note: The link style requires links in an IlvGrapher that can be reshaped. Links of type
IlvLinkImage, IlvOneLinkImage, IlvDoubleLinkImage,
IlvOneSplineLinkImage, and IlvDoubleSplineLinkImage cannot be reshaped. You
can use the class IlvPolylineLinkImage instead.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 113

void IlvOrthogonalLinkLayout::setAllowedNumberOfIterations(IlUInt
iterations);

To obtain the current value, use the method:

IlUInt IlvOrthogonalLinkLayout::getAllowedNumberOfIterations()

const

Same Shape for Multiple Links

You can force the layout algorithm to compute the same shape for all the links having
common origin and destination nodes. The links will have parallel shapes. To enable or
disable this option, use the method:

void
IlvOrthogonalLinkLayout::setSameShapeForMultipleLinks(IlBoolean
option);

To obtain the current value, use the method:

IlBoolean IlvOrthogonalLinkLayout::isSameShapeForMultipleLinks()
const;

The default value is IlFalse.

Link Crossing Penalty

The computation of the shape of the links is driven by the objective to minimize a cost
function, which is proportional to the number of link-to-link and link-to-node crossings. By
default, these two types of crossings have equal weights. You can increase or decrease the
weight of the link-to-node crossings using the method:

void IlvOrthogonalLinkLayout::setLinkToNodeCrossingPenalty(IlUInt
penalty);

The default value is 1. To increase the possibility of obtaining a layout with no link-to-node
crossings (or with only a few crossings), set the parameter to a value greater than one. For
example, set penalty to 5.

To obtain the current value, use the method:

IlUInt IlvOrthogonalLinkLayout::getLinkToNodeCrossingPenalty()
const;

You can also increase or decrease the weight of the link-to-link crossings using the method:

void IlvOrthogonalLinkLayout::setLinkToLinkCrossingPenalty(IlUInt
penalty);

Note: You may want to disable the link shape optimization by setting the number of
iterations to zero in order to increase the speed of the layout process.
114 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Random Layout
The default value is 1. To increase the possibility of obtaining a layout with no link-to-link
crossings (or with a only few crossings), set the parameter to a value greater than one. For
example, set penalty to 5.

To obtain the current value, use the method:

IlUInt IlvOrthogonalLinkLayout::getLinkToLinkCrossingPenalty()
const;

Random Layout

In this section, you will learn about the Random Layout algorithm from the
IBM® ILOG® Views Graph Layout package (class IlvRandomLayout from the library
ilvrandom).

Sample

Here is a sample drawing produced with the Random Layout:

Figure 4.40

Figure 4.40 Graph Drawing Produced with the Random Layout

What Types of Graphs?

Any type of graph:

◆ Connected and disconnected

◆ Planar and nonplanar graphs
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 115

Features

Random placement of the nodes of a grapher inside a given region.

Limitations

◆ The algorithm computes random coordinates for the upper-left corner of the graphic
objects representing the nodes. In some cases, this may not be appropriate.

◆ To ensure that the nodes do not overlap the margins of the layout region, the algorithm
computes the coordinates randomly inside a region whose width and height are smaller
than the width and height of the layout region. The difference is the maximum width and
the maximum height of the nodes, respectively. In some cases, this may not be
appropriate.

Brief Description of the Algorithm

The Random Layout algorithm is not really a layout algorithm. It simply places the nodes at
randomly computed positions inside a user-defined region. Nevertheless, the Random
Layout algorithm may be useful when a random, initial placement is needed by another
layout algorithm or in cases where an attractive, readable drawing is not important.

Code Sample

Below is a code sample using the IlvRandomLayout class:

// ...
IlvGrapher* grapher = new IlvGrapher(display);

// ... Fill in here the grapher with nodes and links in

IlvRandomLayout* layout = new IlvRandomLayout();
layout->attach(grapher);

// Perform the layout
IlvGraphLayoutReport* layoutReport = layout->performLayout();
if (layoutReport->getCode() != IlvLayoutReportLayoutDone)
 IlvWarning(“Layout not done. Error code = %d\n”, layoutReport->getCode());

// ...
// If the grapher is not anymore subject of layout:
layout->detach();

// Once the layout algorithm is not anymore needed:
delete layout;
116 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Random Layout
Parameters

The Random Layout uses generic parameters, common to other graph layouts, and specific
parameters applicable in random layouts only. Refer to the following sections for general
information on parameters among the graph layouts:

◆ Generic Parameters Support

◆ Layout Characteristics

The Random Layout parameters are described in detail in this topic under:

◆ Generic Parameters

◆ Specific Parameters

Generic Parameters

The IlvRandomLayout class supports generic parameters defined in the IlvGraphLayout
class. The following comments describe the particular way in which these parameters are
used by this subclass:

◆ Layout Region

◆ Preserve Fixed Links

◆ Preserve Fixed Nodes

◆ Random Generator Seed Value

Layout Region

The layout algorithm uses the layout region setting (either your own or the default setting) to
control the size and the position of the graph drawing. All three ways to specify the layout
region are available for this subclass. (For a description of this parameter in the
IlvGraphLayout class, see Layout Region.)

Remember that if you are using the default settings, there must be a view (an instance of
IlvView) attached to the grapher. If no view is attached, and no layout region is explicitly
specified, the layout algorithm cannot produce reasonable results.

If a layout region is specified, this region is used. If no layout region is specified but a view
is attached, the size and position of the graph drawing is computed to approximately fill the
view.

Preserve Fixed Links

The layout algorithm does not reshape the links that are specified as fixed. (For more
information on link parameters in the IlvGraphLayout class, see Preserve Fixed Links.)
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 117

Preserve Fixed Nodes

The layout algorithm does not move the nodes that are specified as fixed. (For more
information on node parameters in the IlvGraphLayout class, see Preserve Fixed Nodes.)

Random Generator Seed Value

The Random Layout uses a random number generator to compute the coordinates. You can
specify a particular value to be used as a seed value. (For more information on this
parameter in the IlvGraphLayout class, see Random Generator Seed Value.) For the
default behavior, the random generator is initialized using the current system clock.
Therefore, different layouts are obtained if you perform the layout repeatedly on the same
graph.

Specific Parameters

Information on the Link Style parameter specific to the IlvRandomLayout class is as
follows.

Link Style

When the layout algorithm moves the nodes, straight-line links, such as instances of
IlvLinkImage, will automatically “follow” the new positions of their end nodes. If the
grapher contains other types of links (for example, IlvPolylineLinkImage or
IlvSplineLinkImage), the shape of the link may not be appropriate because the
intermediate points of the link will not be moved. In this case, you can ask the layout
algorithm to automatically remove all the intermediate points of the links (if any). To do this,
the following method is provided:

void IlvRandomLayout::setLinkStyle(IlvLayoutLinkStyle style);

The valid values are:

◆ IlvLayoutNoReshapeLinkStyle

None of the links is reshaped in any manner.

◆ IlvLayoutStraightLineLinkStyle

All the intermediate points of the links (if any) are removed. This is the default value.

To obtain the current choice, use the following method:

Note: If the IlvLayoutStraightLineLinkStyle style is selected, the layout algorithm
calls the method IlvGraphModel::ensureStraightLineLinks() on the attached
graph model to ensure that all the links can have a straight-line shape. With an
IlvGrapher, this method may replace links with new type of links. For details on this
method, see the Reference Manual. For details on the graph model, see the section Using
the Graph Model.
118 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Bus Layout
IlvLayoutLinkStyle IlvRandomLayout::getLinkStyle() const;

Bus Layout

In this section, you will learn about the Bus Layout algorithm from the ILOG Views Graph
Layout package (class IlvBusLayout from the library ilvbus).

Sample

Here is a sample drawing produced with the Bus Layout:

Figure 4.41

Figure 4.41 Bus Topology Produced with the Bus Layout using the No Ordering Option

What Types of Graphs?

◆ Bus network topologies (a set of nodes connected to a bus object)

Application Domains

Application domains of the Bus Layout include:

◆ Telecom and networking (LAN diagrams)

◆ Electrical engineering (circuit block diagrams)

◆ Industrial engineering (equipment/resource control charts)

Features

◆ Displays bus topologies.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 119

◆ Takes into account the size of the nodes so that no overlapping occurs.

◆ Provides several ordering options. The nodes can be arranged on the bus by height, in a
user-defined order, or in an arbitrary order.

◆ Allows easy customization of the dimensional parameters.

Brief Description of the Algorithm

Bus topology is well-known in network management and telecommunications fields. The
Bus Layout class can display these topologies nicely. It represents the “bus” as a “serpent”
polyline. The width of the “serpent” is user-defined (via the width of the layout region
parameter) and the height is computed so that enough space is available for all the nodes.

Code Sample

Below is a code sample using the IlvBusLayout class:

// ...
IlvGrapher* grapher = new IlvGrapher(display);

// ... Fill in the grapher with nodes and links here

// Create the bus node; the number of points and
// the coordinates are not important
IlvPoint point(10,10);
IlvPolyline* bus = new IlvPolyline(display, 1, &point);
grapher->addNode(bus);

// ... Fill in the grapher with links between each node
// and the bus here

IlvBusLayout* layout = new IlvBusLayout();
layout->attach(grapher);

// Specify the bus node
layout->setBus(bus);

IlvGraphLayoutReport* layoutReport = layout->performLayout();
if (layoutReport->getCode() != IlvLayoutReportLayoutDone)
 IlvWarning(“Layout not done. Error code = %d\n”, layoutReport->getCode());
// ...
// If the grapher is not anymore subject of layout:
layout->detach();

// Once the layout algorithm is not anymore needed:
delete layout;
120 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Bus Layout
Parameters

The Bus Layout uses generic parameters, common to other graph layouts, and specific
parameters applicable in bus layouts only. Refer to the following sections for general
information on parameters among the graph layouts:

◆ Generic Parameters Support

◆ Layout Characteristics

The Bus Layout parameters are described in detail in this topic under:

◆ Generic Parameters

◆ Specific Parameters

Generic Parameters

The IlvBusLayout class supports generic parameters defined in the IlvGraphLayout
class. The following comments describe the particular way in which these parameters are
used by this subclass:

◆ Layout Region

◆ Preserve Fixed Links

◆ Preserve Fixed Nodes

Layout Region

The layout algorithm uses the layout region setting (either your own or the default setting) to
control the size and the position of the graph drawing. All three ways of specifying the
layout region are available for this subclass. (For a description of this parameter in the
IlvGraphLayout class, see Layout Region.)

Remember that if you are using the default settings, there must be a view (an instance of
IlvView) attached to the grapher. If no view is attached, and no layout region is explicitly
specified, the layout algorithm cannot produce reasonable results.

If a layout region is specified, this region is used. If no layout region is specified but a view
is attached, the size and position of the graph drawing is computed to approximately fill the
view.

The size of the layout is chosen with respect to the layout region (see Figure 4.42). The
height of the layout region is not taken into account. The height of the layout will be smaller
or larger, depending on the number of nodes, the size of the nodes, and the other specified
parameters.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 121

Preserve Fixed Links

The layout algorithm does not reshape the links that are specified as fixed. (For more
information on link parameters in the IlvGraphLayout class, see Preserve Fixed Links.)

Preserve Fixed Nodes

The layout algorithm does not move the nodes that are specified as fixed. (For more
information on node parameters in the IlvGraphLayout class, see Preserve Fixed Nodes.)

Specific Parameters

The following parameters are specific to the IlvBusLayout class:

◆ Order

◆ Bus Node

◆ Link Style

◆ Dimensional Parameters

Order

The order parameter specifies how to arrange the nodes.

To specify the ordering option for the nodes, use the method:

void IlvBusLayout::setOrdering(IlvBusOrder ordering);

The valid values are:

◆ IlvBusNoOrdering

The nodes are arranged on the bus in an arbitrary order. This is the default value.

◆ IlvBusOrderByHeight

The nodes are arranged on the bus according to height, starting at the upper-left corner of
the bus with the tallest node. This option can save vertical space.

◆ IlvBusOrderByIndex

This option allows you to specify a particular order for the nodes. The nodes are arranged
on the bus according to their index values, starting at the upper-left corner of the bus with
the node with the smallest index. Nodes for which you do not specify an index are placed
after the nodes for which an index is specified.

The IlvBusOrderByIndex option allows you to specify the order of the nodes,
according to physical, geographical data for example. If this option is chosen, the
algorithm sorts the nodes in ascending order according to their index values.

To obtain the current value, use the method:

IlvBusOrder IlvBusLayout::getOrdering() const;
122 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Bus Layout
The index is an integer value associated with a node and is specified using the method:

void IlvBusLayout::setIndex(IlAny node, IlInt index);

The values of the indexes cannot be negative. To obtain the current index of a node, use the
method:

IlInt IlvBusLayout::getIndex(IlAny node) const;

If no index is specified for the node, the value NoIndex is returned.

The ordering options for the Bus Layout are illustrated in Table 4.5.

Table 4.5 Ordering Options of the Nodes for the Bus Layout Algorithm

Ordering Layout

IlvBusNoOrdering
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 123

Bus Node

To represent bus topologies, the algorithm reshapes a special node, called the “bus node”,
and gives it a “serpent” form. This bus node must be an instance of the IlvPolyline class.
Before performing the layout, you must create this object and add it to the grapher as a node.
(The number of points in the object you create is not important.) Then, you must specify the
node as “bus node” using the method:

void IlvBusLayout::setBus(IlvPolyline* bus);

To obtain the current selection for the bus node, use the method:

IlvPolyline* IlvBusLayout::getBus() const;

You can also use subclasses of IlvPolyline. (See the code provided in Code Sample.)

Link Style

When the layout algorithm moves the nodes, straight-line links, such as instances of
IlvLinkImage, will automatically “follow” the new positions of their end nodes. If the
grapher contains other types of links (for example, IlvPolylineLinkImage or
IlvDoubleSplineLinkImage), the shape of the link may not be appropriate because the
intermediate points of the link will not be moved. In this case, you can ask the layout

IlvBusOrderByHeight

IlvBusOrderByIndex

Table 4.5 Ordering Options of the Nodes for the Bus Layout Algorithm

Ordering Layout
124 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Bus Layout
algorithm to automatically remove all the intermediate points of the links (if any). To do this,
the following method is provided:

void IlvBusLayout::setLinkStyle(IlvLayoutLinkStyle style);

The valid values are:

◆ IlvLayoutNoReshapeLinkStyle

None of the links is reshaped in any manner.

◆ IlvLayoutStraightLineLinkStyle

All the intermediate points of the links (if any) are removed. This is the default value.

To obtain the current choice, use the following method:

IlvLayoutLinkStyle IlvBusLayout::getLinkStyle() const;

Dimensional Parameters

Figure 4.42 illustrates the dimensional parameters used in the Bus Layout algorithm. These
parameters are:

◆ Horizontal Offset

◆ Vertical Offset to Level

◆ Vertical Offset to Previous Level

◆ Margin

◆ Margin on Bus

Note: If the IlvLayoutStraightLineLinkStyle style is selected, the layout algorithm
calls the method IlvGraphModel::ensureStraightLineLinks on the attached graph
model to ensure that all the links have a straight-line shape. With an IlvGrapher, this
method may replace links with new types of links. For details on this method, see the
Reference Manual. For details on the graph model, see the section Using the Graph Model.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 125

Figure 4.42

Figure 4.42 Dimensional Parameters for the Bus Layout Algorithm

Horizontal Offset
This parameter represents the horizontal distance between two nodes. To specify the
horizontal offset, use the method:

void IlvBusLayout::setHorizontalOffset(IlUInt offset);

To obtain the current value, use the method:

IlUInt IlvBusLayout::getHorizontalOffset() const;

Vertical Offset to Level
This parameter represents the vertical distance between a row of nodes and the next
horizontal segment of the bus node. To specify this parameter, use the method:

void IlvBusLayout::setVerticalOffsetToLevel(IlUInt offset);

To obtain the current value, use the method:

IlUInt IlvBusLayout::getVerticalOffsetToLevel() const;

Vertical Offset to Previous Level
This parameter represents the vertical distance between a row of nodes and the previous
horizontal segment of the bus node. To specify this parameter, use the method:

void IlvBusLayout::setVerticalOffsetToPreviousLevel(IlUInt
offset);

To obtain the current value, use the method:

IlUInt IlvBusLayout::getVerticalOffsetToPreviousLevel() const;
126 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Bus Layout
Margin
This parameter represents the offset distance between the layout region and the bounding
rectangle of the layout. To specify this parameter, use the method:

void IlvBusLayout::setMargin(IlUInt margin);

To obtain the current value, use the method:

IlUInt IlvBusLayout::getMargin() const;

Margin on Bus
On the odd horizontal levels (first, third, fifth, and so on) of the bus starting from the top,
this parameter represents the offset distance between the left side of the first node on the left
and the left side of the bus object.

On the even horizontal levels (second, fourth, sixth, and so on) of the bus starting from the
top, this parameter represents the offset distance between the right side of the last node on
the right and the right side of the bus object. (See Figure 4.42 for an illustration of the
margin-on-bus parameter.)

To specify this parameter, use the method:

void IlvBusLayout::setMarginOnBus(IlUInt margin);

To obtain the current value, use the method:

IlUInt IlvBusLayout::getMarginOnBus() const;
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 127

128 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R
5

Using Advanced Features

This chapter describes advanced features for using the Graph Layout package of
IBM® ILOG® Views. The following topics are covered:

◆ Using a Layout Report

◆ Using Layout Event Listeners

◆ Using the Graph Model

◆ Laying Out a Non-Views Grapher

◆ Using the Filtering Features to Lay Out a Part of an IlvGrapher

◆ Laying Out Graphs with Nonzoomable Graphic Objects

◆ Defining a New Type of Layout

◆ Questions and Answers about Using the Layout Algorithms

Using a Layout Report

Layout reports are objects used to store information about the particular behavior of a layout
algorithm. After the layout is completed, this information is available to be read from the
layout report.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 133

Layout Report Classes

Each layout class instantiates a particular class of IlvGraphLayoutReport each time the
layout is performed. Table 5.1 shows the layout classes and their corresponding layout
reports.

Creating a Layout Report

All layout classes inherit the IlvGraphLayout::performLayout method from the
IlvGraphLayout class. This method calls IlvGraphLayout::createLayoutReport to
obtain a new instance of the layout report. This instance is returned when
IlvGraphLayout::performLayout returns. The default implementation in the base
layout class creates an instance of IlvGraphLayoutReport. Some subclasses override this
method to return an appropriate subclass. Other classes, such as IlvRandomLayout, do not
need specific information to be stored in the layout report and do not override
IlvGraphLayout::createLayoutReport. In this case, the base class
IlvGraphLayoutReport is used.

When using the layout classes provided with IBM ILOG Views, you do not need to
instantiate the layout report yourself. This is done automatically.

The instantiation is made by internal methods and is managed by the class. Thus, you do not
need to delete the instance returned by the IlvGraphLayout::performLayout method.

Table 5.1 Layout Report Classes

Layout Class Layout Report Class

IlvTreeLayout IlvGraphLayoutReport

IlvHierarchicalLayout IlvGraphLayoutReport

IlvOrthogonalLinkLayout IlvGraphLayoutReport

IlvRandomLayout IlvGraphLayoutReport

IlvBusLayout IlvGraphLayoutReport
134 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Using Layout Event Listeners
Reading a Layout Report

To read a layout report, all you need to do is store the layout report instance returned by the
IlvGraphLayout::performLayout method and read the information, as shown in the
following example for the Spring Embedder Layout:

Information Stored in a Layout Report

The base class IlvGraphLayoutReport stores the following information:

◆ Code

This field contains information about special, predefined cases that may have occurred
during the layout. The possible values are the following:

● IlvLayoutReportLayoutDone appears if the layout was performed successfully.

● IlvLayoutReportNotNeeded appears if the layout was not performed because no
changes occurred in the grapher and parameters since the last time the layout was
performed successfully.

● IlvLayoutReportEmptyGrapher appears if the grapher is empty.

● IlvLayoutReportNoMoveableNode appears if you specified all the nodes as fixed.

To read the code, use the method:

int IlvGraphLayoutReport::getCode()

◆ Layout Time

This field contains the total duration of the layout algorithm at the end of the layout. To
read the time (in milliseconds), use the method:

IlvRunTimeType IlvGraphLayoutReport::getLayoutTime()

Using Layout Event Listeners

The layout event listeners mechanism provides a way to inform the end user of what is
happening during the layout. At times, a layout algorithm may take a long time to execute,
especially when dealing with large graphs. In addition, an algorithm may not converge in
some cases. No matter what the situation, the end user should be informed of the events that
occur during the layout. This can be done by implementing a simple progress bar or by

IlvGraphLayoutReport* layoutReport = layout->performLayout();
if (layoutReport->getCode() == IlvLayoutReportLayoutDone)
 IlvPrint(“Layout done.”);
else IlvWarning(“Layout not done. Error code = %d\n”,
 layoutReport->getCode());
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 135

displaying appropriate information, such as the current cost function value, after each
iteration or step.

The layout event listener is defined by the IlvGraphLayoutListener class. To receive
the layout events delivered during the layout, a class must implement the
IlvGraphLayoutListener interface and must register itself using the
addGraphLayoutEventListener method of the IlvGraphLayout class.

When you subclass the IlvGraphLayoutListener class, you must implement the
IlvGraphLayout::layoutStepPerformed method. The layout algorithm will call this
method on all the registered layout event listeners, passing the layout report as an argument.
In this way, you can read information about the current state of the layout report. (For
example, you can read this information after each iteration or step of the layout algorithm).

The following example shows how to implement a layout event listener. This example uses
the Orthogonal Link Layout.

Then, register the listener on the layout instance as follows:

Using the Graph Model

The IlvGraphModel class defines a suitable, generic API for graphs that have to be laid out
with IBM® ILOG® Views graph layout algorithms.

class OrthogonalIterationListener
: public IlvGraphLayoutListener
{
public:
 OrthogonalIterationListener()
 : IlvGraphLayoutListener(), i(0)
 { }
 void layoutStepPerformed(const IlvGraphLayoutEvent& event)
 {
 ++i;
 IlvOrthogonalLinkLayout* layout =
 (IlvOrthogonalLinkLayout*)event.getLayout();
 IlvPrint(“iteration %d over %d”,
 i,
 layout->getAllowedNumberOfIterations());
 }
private:
 IlUInt i;
};

 IlvGraphLayout* layout = new IlvOrthogonalLinkLayout();
 OrthogonalIterationListener* listener = new OrthogonalIterationListener();

 layout->addGraphLayoutEventListener(listener);
136 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Using the Graph Model
All the layout algorithms provided in IBM ILOG Views are designed to lay out a graph
model. This allows applications to benefit from the graph layout algorithms whether or not
they use the IBM ILOG Views grapher IlvGrapher). However, to make things very simple
for the common case of applications that manipulate an IlvGrapher, it is not mandatory to
work directly with the graph model except for some of the advanced features such as
filtering.

The Graph Model Concept

With a graph model, you can use already-built graphs, nodes, and links that have been
developed without IBM® ILOG® Views and apply the layout algorithms of
IBM ILOG Views. The graph model provides the basic, generic operations for performing
the layout. A subclass must be written to adapt the graph model to specific graph, node, and
link objects. This subclass plays the role of an “adapter” or bridge between the application
objects and the graph model. This often makes it much easier to add graph features to
existing applications.

Figure 5.1 shows the relationship between the graph model and graph layout algorithms,
IBM ILOG Views graphers, non-Views graphers, and manager views.

Figure 5.1

Figure 5.1 Graph Model in the IBM ILOG Views Graph Layout Package

Layout Algorithm
IlvGraphLayout

Display Results
IlvView

Custom Adapter
subclass of

IlvGraphModel

Custom Graph
Object

Filter
IlvLayoutGraphicFilter

(optional)

ILOG Views Grapher
IlvGrapher

Graph Model
IlvGraphModel

Adapter
IlvGrapherAdapter

(optional)
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 137

You can see from this diagram that instead of using a concrete graph class such as
IlvGrapher directly, the layout algorithms interact with the graph via the graph model.
This is the key for achieving a truly generic graph layout framework. Note that the use of an
IlvView to display the result of the layout is not mandatory.

The IlvGraphModel Class

The IlvGraphModel class is an abstract class. Because it does not provide a concrete
implementation of a graph data structure, a complete implementation must be provided by
“adapter” classes. The adapters extend the IlvGraphModel class and must use an
underlying graph data structure. A special adapter class called IlvGrapherAdapter is
provided so that an IlvGrapher can be used as the underlying graph data structure.

The methods defined in the IlvGraphModel class can be divided into several categories
that provide information on the structure of the graph, the geometry of the graph,
modification of the graph geometry, and notification of changes in the graph.

Information on the Structure of the Graph

The following methods of the IlvGraphModel class allow the layout algorithms to retrieve
information on the structure of the graph:

IlList IlvGraphModel::getNodesAndLinks()

IlList IlvGraphModel::getNodes()

IlUInt IlvGraphModel::getNodesCount()

IlList IlvGraphModel::getLinks()

IlUInt IlvGraphModel::getLinksCount()

IlBoolean IlvGraphModel::isNode(IlAny obj)

IlBoolean IlvGraphModel::isLink(IlAny obj)

IlList IlvGraphModel::getLinks(IlAny node)

IlUInt IlvGraphModel::getLinksCount(IlAny node)

IlList IlvGraphModel::getLinksFrom(IlAny node)

IlUInt IlvGraphModel::getLinksFromCount(IlAny node)

Note: If an application uses the IlvGrapher class, the grapher can be attached directly
to the layout instance without explicitly using a graph model. (See the
IlvGraphLayout::attach(IlvGrapher) method.) In this case, the appropriate
adapter (IlvGrapherAdapter) will be created internally. This adapter can be retrieved
using the IlvGraphLayout::getGraphModel() method, which will return an instance
of IlvGrapherAdapter.
138 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Using the Graph Model
IlList IlvGraphModel::getLinksTo(IlAny node)

IlUInt IlvGraphModel::getLinksToCount(IlAny node)

IlList IlvGraphModel::getNeighbors(IlAny node)

IlUInt IlvGraphModel::getNodeDegree(IlAny node)

IlAny IlvGraphModel::getFrom(IlAny link)

IlAny IlvGraphModel::getTo(IlAny link)

IlAny IlvGraphModel::getOpposite(IlAny link, IlAny node)

IlBoolean IlvGraphModel::isLinkBetween(IlAny node1, IlAny node2)

Most of these methods have a name and definition very similar to the corresponding
methods of the IlvGrapher class. The main difference is that the arguments of the
IlvGraphModel methods are IlAny instead of IlvGraphic or IlvLinkImage.

Information on the Geometry of the Graph

The following methods of the IlvGraphModel class allow the layout algorithms to retrieve
information on the geometry of the graph:

IlvGraphModel::boundingBox(IlAny nodeOrLink, IlvRect& rect)

IlvPoint* IlvGraphModel::getLinkPoints(IlAny link, IlUInt& count)

IlvPoint IlvGraphModel::getLinkPointAt(IlAny link, IlUInt index)

IlInt IlvGraphModel::getLinkPointsCount(IlAny link)

IlUInt IlvGraphModel::getLinkWidth(IlAny link)

The IlvGraphModel::boundingBox method is called by a layout algorithm whenever it
needs to get the position and the dimension of a node or a link. The other methods are used
mainly by link layout algorithms.

Modification of the Geometry of the Graph

The following methods of the IlvGraphModel class allow a layout algorithm to modify the
geometry of the graph:

void IlvGraphModel::moveNode(IlAny node, IlInt x, IlInt y,
IlBoolean redraw)

void IlvGraphModel::reshapeLink(IlAny link, IlvPoint fromPoint,
IlvPoint* points,
IlUInt startIndex, IlUInt length,
IlvPoint toPoint, IlBoolean redraw)

Layout algorithms that compute new coordinates for the nodes use the
IlvGraphModel::moveNode method. Link layout algorithms that compute new shapes for
the links call one of the IlvGraphModel::reshapeLink methods.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 139

Notification of Changes

The following methods of the IlvGraphModel class allow a layout algorithm to be notified
of changes in the graph:

void IlvGraphModel::addGraphModelListener(IlvGraphModelListener*
listener)

void
IlvGraphModel::removeGraphModelListener(IlvGraphModelListener*
listener)

void IlvGraphModel::fireGraphModelEvent(IlvGraphModelEvent&
event)

A “change” in the graph can be a structure change (that is, a node or a link was added or
removed) or a geometry change (that is, a node or a link was moved or reshaped). The graph
model event listener mechanism provides a means to keep the layout algorithms informed of
these changes. When the layout algorithm is restarted on the same graph, it is able to detect
whether the graph has changed since the last time the layout was successfully performed. If
necessary, the layout can be performed again. If there is no change in the graph, the layout
algorithm can avoid unnecessary work by not performing the layout.

The graph model event listener is a subclass of the IlvGraphModelListener class. To
receive the graph model events (that is, instances of the IlvGraphModelEvent class), a
subclass of the IlvGraphModelListener class must register itself using the
IlvGraphModel::addGraphModelListener method of the IlvGraphModel class.

Storing and Retrieving Data Objects (“Properties”)

The following methods of the IlvGraphModel class allow a layout algorithm to store data
objects for each node:

void IlvGraphModel::setProperty(IlAny nodeOrLink, const char* key,

IlAny value)

IlAny IlvGraphModel::getProperty(IlAny nodeOrLink, const char*

key)

Note: The creation of the graph model event listener is handled transparently by the
IlvGraphLayout class. Therefore, there is usually no need to manipulate this listener
directly.
140 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Laying Out a Non-Views Grapher
The layout algorithm may need to associate a set of properties with the nodes and links of
the graph. Properties are a set of key-value pairs, where the key is a const char* object
and the value can be any kind of information value.

Using the IlvGrapherAdapter

The IlvGrapherAdapter class is a concrete subclass of IlvGraphModel that allows an
IlvGrapher to be laid out using the layout algorithms provided in IBM ILOG Views. It
provides an implementation for all the abstract methods of IlvGraphModel. It also
provides an overridden implementation of some nonabstract methods of IlvGraphModel to
improve efficiency by taking advantage of the characteristics of the IlvGrapher.

If an application uses the IlvGrapher class, the grapher can be attached directly to the
layout instance without explicitly using the adapter. (See the
IlvGraphLayout::attach(IlvGrapher*)method.) In this case, an
IlvGrapherAdapter is created internally by the layout class. The adapter can be retrieved
using the IlvGraphLayout::getGraphModel()method, which will return an instance of
IlvGrapherAdapter.

Additionally, the IlvGrapherAdapter class provides a way to filter the IlvGrapher. By
using the filtering mechanism, you specify a particular set of nodes and links that have to be
taken into account by the layout algorithm. (See Using the Filtering Features to Lay Out a
Part of an IlvGrapher.)

The IlvGrapherAdapter class also allows you to specify the IlvTransformer that has
to be used for computing the geometry of the graph. (See Laying Out Graphs with
Nonzoomable Graphic Objects.)

Laying Out a Non-Views Grapher

Note: Creating a property and associating it with a node and link is handled
transparently by the layout algorithm whenever it is necessary. Therefore, there is usually
no need to manipulate the properties directly. However, if needed, you can do this in your
own subclass of IlvGraphLayout. In this case, you must define
cleanObjectProperties in your subclass.

Note: For details on how to write your own adapter, see Laying Out a Non-Views
Grapher.

Note: To understand this section better, read Using the Graph Model first.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 141

It is sometimes necessary to add graph layout features to an existing application. If the
application already uses the IBM ILOG Views grapher (IlvGrapher) to manipulate and
display graphs, using the graph layout algorithms provided in IBM ILOG Views is a
straightforward process. No adapter has to be written.

However, the case may arise where an application uses its own classes for nodes, links, and
graphs, and where, for some reason, you do not want to replace these classes with
IBM ILOG Views classes. To enable the graph layout algorithms to work with these graph
objects, a custom adapter (that is, a subclass of IlvGraphModel) must be written.

The adapter must implement all the abstract methods of the IlvGraphModel class. The
nonabstract methods of this class have a default implementation that is really functional.
However, they may not be optimal because they do not take advantage of the characteristics
of the underlying graph implementation. For better performance, the following nonabstract
methods can be overridden in the adapter class:

IlUInt IlvGraphModel::getNodesCount()

IlUInt IlvGraphModel::getLinksCount()

IlUInt IlvGraphModel::getLinksCount(IlAny node)

IlUInt IlvGraphModel::getLinksFromCount(IlAny node)

IlUInt IlvGraphModel::getLinksToCount(IlAny node)

IlUInt IlvGraphModel::getLinkPointAt(IlAny link, IlUInt index)

The efficiency of the layout algorithm depends directly on the efficiency of the
implementation of the adapter class and the underlying graph data structure.

Using the Filtering Features to Lay Out a Part of an IlvGrapher

Applications sometimes need to perform the layout algorithm on a subset of the nodes and
links of a graph. If the graph is not an IlvGrapher, the custom adapter should support the
filtering of a graph. (See Laying Out a Non-Views Grapher.) The methods that are related to
the structure of the graph (IlvGrapherAdapter::getNodes,
IlvGrapherAdapter::getLinks, IlvGrapherAdapter::getNeighbors, and so on)
must behave just as if the graph has changed in some way. They must take into account only
the nodes and links that belong to the part of the graph that must be laid out.

For applications that use IlvGrapher, the filtering feature is built into the
IlvGrapherAdapter. To do this, the IlvGrapherAdapter needs a way to know, for each

Note: To understand this section better, read Using the Graph Model first.
142 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Using the Filtering Features to Lay Out a Part of an IlvGrapher
node or link, whether it must be taken into account during the layout. This is the role of the
“filter” class, IlvLayoutGraphicFilter.

The IlvLayoutGraphicFilter class defines this main method:

IlBoolean IlvLayoutGraphicFilter::accept(IlvGraphic nodeOrLink)

If a filter is specified, the IlvGrapherAdapter calls the
IlvLayoutGraphicFilter::accept method for each node or link whenever necessary.
If the method returns IlTrue, the IlvGrapherAdapter considers the node or the link as
part of the graph that needs to be laid out. Otherwise, it ignores the node or the link.

To specify a filter on an IlvGrapherAdapter, use the following method of the
IlvGrapherAdapter class:

void IlvGrapherAdapter::setFilter(IlvLayoutGraphicFilter* filter)

To remove the filter, call the IlvGrapherAdapter::setFilter method with a null
argument.

To obtain the filter that has been specified, use the method:

IlvLayoutGraphicFilter* IlvGrapherAdapter::getFilter()

There are two ways to filter an IlvGrapher, by layers or by graphic objects. The two
methods can be combined.

Filtering by Layers

Inside an IlvGrapher, nodes and links can be managed by layers. (See the
IlvManagerLayer class). IBM ILOG Views allows you to specify that only nodes and
links belonging to certain layers have to be taken into account when performing the layout.
Use the following methods of the IlvGrapherAdapter class:

void IlvGrapherAdapter::addLayer(IlvManagerLayer* layer)

IlBoolean IlvGrapherAdapter::removeLayer(IlvManagerLayer* layer)

IlBoolean IlvGrapherAdapter::removeAllLayers()

To get an enumeration of the manager layers to be taken into account during the layout, use
the method:

const IlArray& IlvGrapherAdapter::getLayers()

Note: All overridden implementations of the IlvLayoutGraphicFilter::accept
method must respect the following rule: a link cannot be accepted by the filter if any of its
end nodes (origin or destination nodes) are not accepted.

Note: The filter is not managed by the adapter. You have to store it and destroy it when it is
no longer needed.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 143

If no layers have been specified or all the specified layers have been removed, all layers in
the IlvGrapher are used. In this case, the IlvGrapherAdapter::getLayers method
returns an empty array.

When at least one layer is specified, an IlvLayoutGraphicFilter is created internally if
it has not already been specified using the IlvGrapherAdapter::setFilter method.
The default implementation of its IlvLayoutGraphicFilter::accept method will
automatically check whether a node or a link received as an argument belongs to one of the
specified layers.

Filtering by Graphic Objects

The nodes and links to be taken into account during the layout can also be filtered
individually. To do this, a custom subclass of IlvLayoutGraphicFilter must be written.
The filtering rules have to be embedded in the overridden implementation of the
IlvLayoutGraphicFilter::accept method. For example, user properties could be
used by an application to “mark” nodes and links that have to be accepted by the filter. The
filter class could then be written as follows. In this example, the name of the property is
stored in the variable FILTER_PROP.

Laying Out Graphs with Nonzoomable Graphic Objects

class LayoutFilter
: public IlvLayoutGraphicFilter
{
public:
 LayoutFilter()
 {
 }
 IlBoolean accept(IlvGraphic* obj)
 {
 IlAny prop = obj->getProperty(IlGetSymbol(FILTER_PROP));
 if (!prop)
 return IlFalse;
 // accept a link only if its two end-nodes are accepted
 if (obj->isSubtypeOf(IlvLinkImage::ClassInfo()->getClassName())) {
 IlvLinkImage* link = (IlvLinkImage*)obj;
 return (link->getFrom()->getProperty(IlGetSymbol(FILTER_PROP)) &&
 link->getTo()->getProperty(IlGetSymbol(FILTER_PROP)));
 }
 return IlTrue;
 }
};

Note: To understand this section better, read Using the Graph Model first.
144 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Laying Out Graphs with Nonzoomable Graphic Objects
Graph layout algorithms have to deal with the geometry of the graph, that is, the position
and shape of the nodes and links. In addition, they must deal with the layout of an
IlvGrapher. The nodes of an IBM ILOG Views IlvGrapher can be any graphic object,
that is, any subclass of IlvGraphic. The position and size of the nodes are given by their
IlvGraphic::boundingBox(IlvTransformer t) method and usually depend on the
transformer used for their display. Therefore, when an IlvGrapher has to be laid out, the
geometry of the grapher must be considered for a given value of the transformer.

The most natural transformer value that could be chosen is the “identity” transformer. An
identity transformer has no translation, zoom, or rotation factors. In terms of
IBM ILOG Views, this would mean that the geometry of the IlvGrapher would be
considered in the manager coordinates, not in the manager view coordinates (transformed
coordinates). However, the special case of nonzoomable graphic objects must be taken into
account. For this case, the idea of simply using the geometry of the grapher in manager
coordinates is not pertinent.

A Special Case: Nonzoomable Graphic Objects

A graphic object is said to be zoomable if its bounding box follows the zoom level.
Otherwise, the object is nonzoomable. (To know whether a graphic object is zoomable, use
its IlBoolean zoomable() method, or check its documentation.)

If all the nodes and links of an IlvGrapher are zoomable graphic objects, a layout obtained
on the basis of the graph geometry in manager coordinates will “look” the same for any
value of the transformer used for the display. Simply speaking, the drawing of the graph will
just be zoomed, or translated.

When at least one nonzoomable graphic object is used as a node in an IlvGrapher, the
geometry of the grapher in manager coordinates can no longer be used. When drawn with
different transformer values (for instance, at different zoom levels), the same IlvGrapher
can look very different.

Reference Transformers

When a grapher contains nonzoomable graphic objects, it is not possible to deal with the
geometry of the IlvGrapher based on the graph objects bounding boxes systematically
computed for an identity transformer (manager coordinates). To ensure that the drawing of
the laid-out graph is always correct, including the case where nonzoomable graphic objects
are present, the transformer used for the display must be considered. Generally speaking, the
layout of an IlvGrapher depends on the transformer.

Instead of dealing with the issue of zoomable/nonzoomable objects and transformers at the
level of the layout algorithms, the IBM ILOG Views Graph Layout package delegates this
task to the IlvGrapherAdapter.
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 145

Layout algorithms interact with the geometry of the graph using generic methods of the
graph model (IlvGraphModel), such as IlvGraphModel::boundingBox(IlAny
nodeOrLink). The distinction between zoomable and nonzoomable objects, and the notion
of transformer (IlvTransformer), have been pushed completely outside this level of the
layout framework. The layout algorithms consider the geometry of the graph exactly as it is
provided by the graph model. From the point of view of the layout algorithms, the problem
of zoomable and nonzoomable objects is completely transparent. Therefore, when writing a
layout algorithm, you do not need to be concerned with that.

In the case of an IlvGrapher, the IlvGrapherAdapter needs to compute the geometry of
the graph for a given transformer. This is what we call the reference transformer. Usually,
the reference transformer is the transformer that is currently being used for the display of the
IlvGrapher.

How a Reference Transformer is Used

For a simple example of how a reference transformer is used, consider the
IlvGraphModel::boundingBox(IlAny nodeOrLink) method. This abstract method of
the IlvGraphModel class is implemented in the IlvGrapherAdapter. To compute the
bounding box, it calls the IlvGraphic::boundingBox(IlvTransformer t) method of
the graphic object that it receives as an argument. However, it does not handle zoomable
objects and nonzoomable objects in the same way.

If the graphic object is zoomable, the IlvGrapherAdapter::boundingBox(IlAny
nodeOrLink) method of the IlvGrapherAdapter returns the bounding box in manager
coordinates by calling IlvGraphic::boundingBox(null).

If the graphic object is nonzoomable, the IlvGrapherAdapter::boundingBox(IlAny
nodeOrLink)method computes the bounding box according to the reference transformer
and returns a rectangle obtained by applying the inverse transformation to this rectangle.
(See the IlvTransformer::inverse(IlvRect rect) method.)

The geometry of the IlvGrapher is computed in such a manner that the resulting drawing
inside an IlvMgrView using the reference transformer will look fine.

Reference Views

Optionally, an IlvMgrView can be specified as a reference view for the
IlvGrapherAdapter. If a reference view is specified, its current transformer (at the
moment when the layout is started) is automatically used as the reference transformer.
Usually, applications use the same manager view that is used for the display of the
IlvGrapher as the reference view (but this is not mandatory).

To specify the reference view, use the following method:

void IlvGrapherAdapter::setReferenceView(IlvMgrView view)

To get the current reference view, use the method:
146 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Laying Out Graphs with Nonzoomable Graphic Objects
IlvMgrView IlvGrapherAdapter::getReferenceView()

If no view has been specified as the reference view, the method returns null.

Specifying a Reference Transformer

A reference transformer can be specified explicitly using the method:

void IlvGrapherAdapter::setReferenceTransformer(IlvTransformer
transformer)

The current reference transformer is returned by the method:

IlvTransformer IlvGrapherAdapter::getReferenceTransformer()

In most cases, it is not necessary to specify a reference transformer because the last method
automatically chooses it according to the following rules:

◆ If a reference transformer is specified, the specified transformer is returned.

◆ If a reference view has been specified, the transformer of the reference view is returned.

◆ If the IlvGrapher attached to the IlvGrapherAdapter has at least one manager view,
the transformer of the first manager (as returned by the method
IlvManager::getViews()) is returned.

The only cases when you may need to specify a reference transformer or a reference view
are the following:

◆ The IlvGrapher contains nonzoomable objects (that is, the layout cannot be correctly
computed independently of the transformer used for drawing the graph) and more than
one manager view is attached to the grapher.

◆ The IlvGrapher contains nonzoomable objects and you want to perform the layout
without attaching a manager view to the grapher. (Therefore, the default rule for
choosing the current transformer of the first manager view as the reference transformer
cannot be applied.)

If a grapher containing nonzoomable objects is displayed simultaneously in several views,
you can use the IlvGrapherAdapter::setReferenceView method to indicate the view
for which you want the drawing of the graph to be optimal.

If you specified a reference transformer but want to reset this setting and go back to the
default behavior, call the method setReferenceTransformer with a null argument.

Note that if you override the IlvGrapherAdapter::setReferenceTransformer
method, you must call IlvGrapherAdapter::setReferenceTransformer of the super
class to notify the IlvGrapherAdapter that the reference transformer has changed.

Note also that a call to the IlvGrapherAdapter::setReferenceView method overrides
the effect of a call to the IlvGrapherAdapter::setReferenceTransformer method.
In the same way, a call to the IlvGrapherAdapter::setReferenceTransformer
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 147

method overrides the effect of a call to the IlvGrapherAdapter::setReferenceView
method.

Defining a New Type of Layout

If the layout algorithms provided in IBM® ILOG® Views do not meet your needs, you can
develop your own layout algorithms by subclassing IlvGraphLayout.

When a subclass of IlvGraphLayout is created, it automatically fits into the generic layout
framework of IBM ILOG Views and benefits from its infrastructure: generic parameters,
notification of progress, and the capability to lay out any graph object using the generic
graph model.

Sample Code

To illustrate the basic ideas for defining a new layout, the following simple example shows a
possible implementation of the simplest layout algorithm, the Random Layout. The new
layout class is called MyRandomLayout.

The following shows the skeleton of the class:

The constructor is empty. Then, the abstract method layout() of the superclass is
implemented as follows:

class MyRandomLayout
: public IlvGraphLayout
{
public:
 MyRandomLayout()
 {
 }
protected:
 void layout();
};
148 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Defining a New Type of Layout
void
MyRandomLayout::layout()
{
 // obtain the graph model
 IlvGraphModel* graphModel = getGraphModel();

 // obtain the layout report
 IlvGraphLayoutReport* layoutReport = getLayoutReport();

 IlBoolean atLeastOneNodeMoved = IlFalse;

 // obtain the layout region
 IlvRect rect;
 getLayoutRegion(rect);
 IlvPos xMin = rect.x();
 IlvPos yMin = rect.y();
 IlvPos xMax = rect.right();
 IlvPos yMax = rect.bottom();

 // initialize the random generator
 IlvRandom* random = (isUseSeedValueForRandomGenerator()) ?
 new IlvRandom(getSeedValueForRandomGenerator()) :
 new IlvRandom();

 // get the objects in the grapher
 IlList* nodes = graphModel->getNodes();

 // browse the objects in the grapher
 IlLink* l = nodes->getFirst();
 while (l) {
 IlAny node = l->getValue();
l = l->getNext();

 // skip fixed nodes
 if (isPreserveFixedNodes() && isFixed(node))
 continue;

 // compute coordinates
 IlvPos x = xMin + (IlvPos)((xMax - xMin) * random->nextFloat());
 IlvPos y = yMin + (IlvPos)((yMax - yMin) * random->nextFloat());

 // move the node to the computed position
 graphModel->moveNode(node, x, y, IlFalse);
 atLeastOneNodeMoved = IlTrue;

 // notify listeners on layout events
 layoutStepPerformed();
 }
 delete random;

 // set the layout report code
 if (atLeastOneNodeMoved)
layoutReport->setCode(IlvLayoutReportLayoutDone);
 else
layoutReport->setCode(IlvLayoutReportNoMoveableNode);
}

I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 149

Note that the layout() method is protected, which is the access type of the method in
the base class. This will not prevent a user outside the module that contains the class from
performing the layout, because it is started using the public method performLayout.

Steps for Implementing the Layout Method

In our example, the layout method is implemented using the following main steps:

1. Obtain the graph model (getGraphModel() on the layout instance).

2. Obtain the instance of the layout report that is automatically created when the
performLayout method from the superclass is called (getLayoutReport() on the
layout instance).

3. Obtain the layout region parameter (getLayoutRegion() on the layout instance) to
compute the area where the nodes will be placed.

4. Initialize the random generator. (For information on the seed value parameter, see the
Random Generator Seed Value.)

5. Get a list of the nodes (getNodes() on the graph model instance).

6. Browse the nodes, skipping fixed nodes (isFixed(node) on the layout instance) if
asked by the user (isPreserveFixedNodes() on the layout instance).

 IlvGraphModel* graphModel = getGraphModel();

 IlvGraphLayoutReport* layoutReport = getLayoutReport();

 IlvRect rect;
 getLayoutRegion(rect);

 IlvRandom* random = (isUseSeedValueForRandomGenerator()) ?
 new IlvRandom(getSeedValueForRandomGenerator()) :
 new IlvRandom();

 IlList* nodes = graphModel->getNodes();

 // browse the objects in the grapher
 IlLink* l = nodes->getFirst();
 while (l) {
 IlAny node = l->getValue();
 // ...
150 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Defining a New Type of Layout
7. Move each node to the newly computed coordinates inside the layout region
(graphModel.moveNode).

8. Notify the listeners on layout events that a new node was positioned
(layoutStepPerformed() on the layout instance). This allows the user to implement,
for example, a progress bar if a layout event listener was registered on the layout
instance.

9. Finally, set the appropriate code in the layout report.

Of course, depending on the characteristics of the layout algorithm, some of these steps may
be different or unnecessary, or other steps may be needed.

 graphModel->moveNode(node, x, y, IlFalse);
 atLeastOneNodeMoved = IlTrue;

 layoutStepPerformed();

 if (atLeastOneNodeMoved)
layoutReport->setCode(IlvLayoutReportLayoutDone);
 else
layoutReport->setCode(IlvLayoutReportNoMoveableNode);
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 151

Questions and Answers about Using the Layout Algorithms

Table 5.2 provides some helpful suggestions for using the layout algorithms. You may find
some answers to questions that come up when using the Graph Layout package.

Table 5.2 Questions and Answers about the Layout Algorithms

Question Answer

I perform the layout and
nothing happens (no node is
moved). Why?

One possible reason may be: the layout algorithms provided
in IBM ILOG Views are all designed to do nothing, by default,
if no change occurred in the graph since the last time the
layout was performed successfully on the same graph. A
change means that a node was moved, or a node or link was
added, removed, or reshaped.
Another possible reason may be: an error or a special case
occurred during the layout. You should call the
IlvGraphLayoutReport::getCode() method on the
instance of layout report returned by the
IlvGraphLayout::performLayout method. Check this
value with respect to the documentation of the appropriate
layout report class.

After performing the layout,
the graph is laid out far from
its initial position. Why?

Most of the layout algorithms use a layout region parameter to
control the size and position of the layout. (For details of this
parameter in the IlvGraphLayout class, see Layout
Region). Depending on the value of this parameter, the nodes
may be moved far from their initial positions.
To know whether a layout algorithm is designed to use a
layout region parameter, check the documentation to see if
the layout class overrides the supportsLayoutRegion()
method of the base class in order to return IlTrue.

When I use certain layout
algorithms on certain
graphs, there are
overlapping nodes. Why and
what can I do?

One possible reason may be related to the different ways
layout algorithms deal with the size of the nodes.
The Tree, Hierarchical, and Bus algorithms always avoid
overlapping nodes. (The Orthogonal Link algorithm does not
move the nodes.)
In any case, if the layout algorithm supports the layout region
mechanism, you should try to increase the size of the layout
region. For example, if your graph contains hundreds of
nodes, it is not reasonable to use a small layout region, such
as 600x600. There will not be enough space for all the nodes.
You should try a larger layout region, for example 5000x5000.
152 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

Questions and Answers about Using the Layout Algorithms
In some networks, there are
two subnetworks that are not
connected, how will this
affect the layout algorithms
provided in
IBM ILOG Views?

This depends on the layout class you use:
◆ IlvBusLayout: It will work on the “connected

component” of the graph that contains the “bus object”.
(You must specify the bus object as a parameter.) The
other nodes that are not connected to the bus will not be
moved.

◆ IlvTreeLayout, IlvHierarchicalLayout: No
problem, it works well on these graphs. For the Circular
and Radial Tree Layout, each connected subgraph will
be laid out separately and positioned on a row/column
grid.

◆ IlvOrthogonalLinkLayout: No problem, the
algorithm does not differentiate between connected and
disconnected graphs.

However, note that you can always deal with a disconnected
graph by cutting it into several connected subgraphs
(clusters). You can either create a new graph for each
connected graph and lay out the new graph separately, or use
the filtering feature to lay out each connected graph.

There are some attributes of
the network that we know
about (for instance, we know
what the core switch is and
what the center should be).
Are such attributes taken
into account by the layout
algorithm?

It depends on the layout algorithm.
In the Tree Layout algorithm, you can specify the root node.
In the Bus Layout algorithm, you can specify the bus object.
In the Hierarchical Layout algorithm, you can specify node
position indices and level indices.

If I useIBM ILOG Views on
different computers, I
sometimes get different
layouts for the same graph
with the same parameters.
Why?

There are two possible reasons:
◆ Different computers may be slower or faster. If the layout

algorithm you use stops the computation when the
specified allowed time has elapsed, a slower computer
will cause the computation to stop earlier. That may be
the cause of different results. This may happen even with
the same computer if the load of the computer is
increased. You can try to increase the allowed time
specification.

◆ If you use a layout algorithm that uses the random
generator and if you use the default option for the seed
value (that is, the system clock is used), you get different
results even on the same computer.

Table 5.2 Questions and Answers about the Layout Algorithms (Continued)

Question Answer
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 153

154 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

I N D E X
Index

A

accept
IlvLayoutGraphicFilter class 143

addGraphLayoutEventListener method
IlvGraphLayout class 136

addGraphModelListener method
IlvGraphModel class 140

addLayer
IlvLayoutGraphicFilter class 143

alignment
free layout mode 62, 63
mixed 63

allowed time parameter
Hierarchical Layout 90
Orthogonal Link Layout 111
Tree Layout 56

angle layout criteria 26
area layout criteria 26
attach method

IlvGraphLayout class 29
attaching a grapher 29
automatic layout 27

B

bends layout criteria 26
boundingBox method

IlvGraphic class 145
IlvGraphModel class 139

Bus Layout
applicable graph types 119
application domains 119
bus node parameter 124
code sample 120
description 120
features 119
generic parameters 121
horizontal offset parameter 126
link style parameter 124
margin on bus parameter 127
margin parameter 127
order parameter 122
ordering options table 123
parameters 121
sample drawing 119
specific parameters 122
vertical offset parameter 126
vertical offset to previous level parameter 126

bus node parameter, Bus Layout 124

C

C++
prerequisites 9

calculated level index
Hierarchical Layout 102

calculated position index
Hierarchical Layout 103

compass directions
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 163

Tree Layout 58
connector style

Hierarchical Layout 96
createLayoutReport method

IlvGraphLayout class 134
creating a layout report 134

D

defining a new type of layout 148
detach method

IlvGraphLayout class 31
detaching a grapher 31

E

east-west neighbors 80
examples

extracted 11

F

features
generic parameter descriptions 20
layout algorithms 17

fields of application for graph layouts 21
filtering

by graphic objects 144
by layers 143

filtering features 142
fireGraphModelEvent method

IlvGraphModel class 140
fixed links parameter

Bus Layout 122
Hierarchical Layout 90
Orthogonal Link Layout 111
Random Layout 117
Tree Layout 56

fixed nodes parameter
Bus Layout 122
Hierarchical Layout 90
Random Layout 118
Tree Layout 56

flow direction
free layout mode 60

flow direction parameter
Hierarchical Layout 90

free layout mode
alignment 62
alignment of individual nodes 63
description 59
experts spacing parameters 69
flow direction 60
global alignment 62
global link style 66
individual link style 66
link style 65
spacing parameters 67
tip-over alignment 64

G

getAlignment method
IlvTreeLayout class 64

getAllowedNumberOfIterations method
IlvOrthogonalLinkLayout class 114

getAllowedTime method
IlvGraphLayout class 32

getAspectRatio method
IlvTreeLayout class 75

getBranchOffset method
IlvTreeLayout class 69

getBus method
IlvBusLayout class 124

getCalcBackwardTreeLinks method
IlvTreeLayout class 82

getCalcForwardTreeLinks method
IlvTreeLayout class 82

getCalcNodeLevelIndex method
IlvHierarchicalLayout class 102

getCalcNodePositionIndex method
IlvHierarchicalLayout class 103

getCalcNonTreeLinks method
IlvTreeLayout class 82

getCalcRoots method
IlvTreeLayout class 57

getCode method
IlvGraphLayoutReport class 135

getConnectorStyle method
IlvHierarchicalLayout class 97
164 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

getEastNeighbor method
IlvTreeLayout class 81

getFilter
IlvLayoutGraphicFilter class 143

getFlowDirection method
IlvHierarchicalLayout class 91
IlvTreeLayout class 62

getFrom method
IlvGraphModel class 139

getGlobalAlignment method
IlvTreeLayout class 63

getGlobalLinkStyle method
IlvHierarchicalLayout class 95

getHorizontalLinkOffset method
IlvHierarchicalLayout class 100

getHorizontalNodeLinkOffset method
IlvHierarchicalLayout class 100

getHorizontalNodeOffset method
IlvHierarchicalLayout class 100

getHorizontalOffset method
IlvBusLayout class 126

getIndex method
IlvBusLayout class 123

getLayers
IlvLayoutGraphicFilter class 143

getLayoutMode method
IlvTreeLayout class 59

getLayoutRegion method
IlvGraphLayout class 33

getLayoutTime method
IlvGraphLayoutReport class 135

getLevelJustification method
IlvHierarchicalLayout class 93
IlvTreeLayout class 72

getLinkPointAt method
IlvGraphModel class 139, 142

getLinkPoints method
IlvGraphModel class 139

getLinkPointsCount method
IlvGraphModel class 139

getLinkPriority method
IlvHierarchicalLayout class 97

getLinks method
IlvGraphModel class 138

getLinksCount method

IlvGraphModel class 138, 142
getLinksFrom method

IlvGraphModel class 138
getLinksFromCount method

IlvGraphModel class 138, 142
getLinksTo method

IlvGraphModel class 139
getLinksToCount method

IlvGraphModel class 139, 142
getLinkStyle method

IlvBusLayout class 125
IlvHierarchicalLayout class 95
IlvOrthogonalLinkLayout class 113
IlvRandomLayout class 118
IlvTreeLayout class 66, 67

getLinkToNodeCrossingPenalty method
IlvOrthogonalLinkLayout class 114, 115

getLinkWidth method
IlvGraphModel class 139

getMargin method
IlvBusLayout class 127

getMarginOnBus method
IlvBusLayout class 127

getMaxChildrenAngle method
IlvTreeLayout class 76

getMinFinalSegmentLength method
IlvOrthogonalLinkLayout class 113

getNeighbors method
IlvGraphModel class 139

getNodes method
IlvGraphModel class 138

getNodesAndLinks method
IlvGraphModel class 138

getNodesCount method
IlvGraphModel class 138, 142

getNodesDegree method
IlvGraphModel class 139

getOpposite method
IlvGraphModel class 139

getOrdering method
IlvBusLayout class 122

getOrthForkPercentage method
IlvTreeLayout class 69

getOverlapPercentage method
IlvTreeLayout class 69
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 165

getParentChildOffset method
IlvTreeLayout class 69

getPosition method
IlvTreeLayout class 58

getProperty method
IlvGraphModel class 140

getReferenceTransformer
IlvLayoutGraphicFilter class 147

getReferenceView
IlvLayoutGraphicFilter class 147

getSeedValueForRandomGenerator method
IlvGraphLayout class 36

getSiblingOffset method
IlvTreeLayout class 69

getSpecNodeLevelIndex method
IlvHierarchicalLayout class 98

getSpecNodePositionIndex method
IlvHierarchicalLayout class 99

getSpecRoots method
IlvTreeLayout class 57

getTipOverBranchOffset method
IlvTreeLayout class 69

getTo method
IlvGraphModel class 139

getVerticalLinkOffset method
IlvHierarchicalLayout class 101

getVerticalNodeLinkOffset method
IlvHierarchicalLayout class 101

getVerticalNodeOffset method
IlvHierarchicalLayout class 101

getVerticalOffsetToLevel method
IlvBusLayout class 126

getWestNeighbor method
IlvTreeLayout class 81

global alignment
free layout mode 62

global link style
free layout mode 66

global link style parameter
Hierarchical Layout 94

Graph Layout
basic procedure for using 39
introduction 25
sample application 40

graph layout

basic concepts 25
fields of application 21
filtering by graphic objects 144
filtering by layers 143
filtering features 142
in IBM ILOG Views 27
in IBM ILOG Views Studio 41
nonzoomable graphic objects 145
questions and answers 152
reference transformers 145
reference views 146
specifying a reference transformer 147
with nonzoomable graphic objects 144

Graph Layout package
available layout styles 17
description of 15
features 17
features for using layout algorithms 20

graph model
concept 137
description of 136
information on the geometry of the graph 139
information on the structure of the graph 138
modifying the geometry of the graph 139
notification of changes of the graph 140
retrieving data objects 140
storing data objects 140

grapher
attaching 29
detaching 31
laying out a non-Views grapher 141

grapher adapter 141
GraphLayoutListener interface 136

H

Hierarchical Layout
applicable graph types 86
application domains 86
calculated level index 102
calculated position index 103
code sample 89
connector style 96
description 87
features 86
166 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

flow direction parameter 90
generic parameters 89
global link style parameter 94
individual link style parameter 95
layout sequences 102
level index parameter 98
level justification parameter 92
limitations 87
link priority parameter 97
link style parameter 93
parameters 89
position index 99
refining a layout 104
sample drawings 84
spacing parameters 99
specific parameters 90

horizontal offset parameter, Bus Layout 126

I

IBM ILOG Views
2D Graphics Professional product 28

IBM ILOG Views Studio graph layout extension 41
IlvBusLayout class

getBus method 124
getHorizontalOffset method 126
getIndex method 123
getLinkStyle method 125
getMargin method 127
getMarginOnBus method 127
getOrdering method 122
getVerticalOffsetToLevel method 126
setBus method 124
setHorizontalOffset method 126
setIndex method 123
setLinkStyle method 125
setMargin method 127
setMarginOnBus method 127
setOrdering method 122
setVerticalOffsetToLevel method 126
setVerticalOffsetToPreviousLevel method

126
IlvGrapher class 142

boundingBox method 145
IlvGrapherAdapter class 141

IlvGraphLayout class 28
addGraphLayoutEventListener method 136
attach method 29
createLayoutReport method 134
detach method 31
getAllowedTime method 32
getLayoutRegion method 33
getSeedValueForRandomGenerator method 36
isAnimate method 32
isFixed method 34, 35
isLayoutTimeElapsed method 32
isPreserveFixedLinks method 34
isPreserveFixedNodes method 35
isUseDefaultParameters method 37
isUseSeedValueForRandomGenerator method

36
layout method 29, 150
layoutReport method 29
layoutStepPerformed method 136
performLayout method 30, 134
setAllowedTime method 32
setAnimate method 32
setFixed method 34, 35
setLayoutRegion method 33
setSeedValueForRandomGenerator method 36
setUseDefaultParameters method 37
supportsAllowedTime method 32
supportsAnimation method 32
supportsLayoutRegion method 34, 152
supportsPreserveFixedLinks method 34
supportsPreserveFixedNodes method 35
supportsRandomGenerator method 36
unfixAllLinks method 34
unfixAllNodes method 35

IlvGraphLayoutListener class 136
IlvGraphLayoutReport class

description 134
getCode method 135
getLayoutTime method 135
stored information 135

IlvGraphModel class
addGraphModelListener method 140
boundingBox method 139
description of 138
fireGraphModelEvent method 140
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 167

getFrom method 139
getLinkPointAt method 139, 142
getLinkPoints method 139
getLinkPointsCount method 139
getLinks method 138
getLinksCount method 138, 142
getLinksFrom method 138
getLinksFromCount method 138, 142
getLinksTo method 139
getLinksToCount method 139, 142
getLinkWidth method 139
getNeighbors method 139
getNodeDegree method 139
getNodes method 138
getNodesAndLinks method 138
getNodesCount method 138, 142
getOpposite method 139
getProperty method 140
getTo method 139
isLink method 138
isLinkBetween method 139
isNode method 138
moveNode method 139
removeGraphModelListener method 140
reshapeLink method 139
setProperty method 140

IlvHierarchicalLayout class
getCalcNodeLevelIndex method 102
getCalcNodePositionIndex method 103
getConnectorStyle method 97
getFlowDirection method 91
getGlobalLinkStyle method 95
getHorizontalLinkOffset method 100
getHorizontalNodeLinkOffset method 100
getHorizontalNodeOffset method 100
getLevelJustification method 93
getLinkPriority method 97
getLinkStyle method 95
getSpecNodeLevelIndex method 98
getSpecNodePositionIndex method 99
getVerticalLinkOffset method 101
getVerticalNodeLinkOffset method 101
getVerticalNodeOffset method 101
setConnectorStyle method 96
setFlowDirection method 91

setGlobalLinkStyle method 94
setHorizontalLinkOffset method 100
setHorizontalNodeLinkOffset method 100
setHorizontalNodeOffset method 100
setLevelJustification method 92
setLinkPriority method 97
setLinkStyle method 95
setSpecNodeLevelIndex method 98
setSpecNodePositionIndex method 99
setVerticalLinkOffset method 100
setVerticalNodeLinkOffset method 100
setVerticalNodeOffset method 100

IlvLayoutGraphicFilter class
accept method 143
addLayer method 143
getFilter method 143
getLayers method 143
getReferenceTransformer method 147
getReferenceView method 147
removeAllLayers method 143
removeLayer method 143
setFilter method 143
setReferenceTransformer method 147
setReferenceView method 146

IlvOrthogonalLinkLayout class
getAllowedNumberOfIterations method 114
getLinkStyle method 113
getLinkToNodeCrossingPenalty method 114,

115
getMinFinalSegmentLength method 113
isSameShapeForMultipleLinks method 114
setAllowedNumberOfIterations method 113
setLinkStyle method 113
setLinkToLinkCrossingPenalty method 114
setLinkToNodeCrossingPenalty method 114
setMinFinalSegmentLength method 112
setOffset method 112
setSameShapeForMultipleLinks method 114

IlvRandomLayout class
getLinkStyle method 118
setLinkStyle method 118

ilvtree library 49
IlvTreeLayout class 49

getAlignment method 64
getAspectRatio method 75
168 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

getBranchOffset method 69
getCalcBackwardTreeLinks method 82
getCalcForwardTreeLinks method 82
getCalcNonTreeLinks method 82
getCalcRoots method 57
getEastNeighbor method 81
getFlowDirection method 62
getGlobalAlignment method 63
getLayoutMode method 59
getLevelJustification method 72
getLinkStyle method 66, 67
getMaxChildrenAngle method 76
getOrthForkPercentage method 69
getOverlapPercentage method 69
getParentChildOffset method 69
getPosition method 58
getSiblingOffset method 69
getSpecRoots method 57
getTipOverBranchOffset method 69
getWestNeighbor method 81
isRootPosition method 58
setAlignment method 63, 65
setAllowedTime method 77
setAspectRatio method 75, 77
setBranchOffset method 68, 75
setEastWestNeighboring method 81
setFlowDirection method 61
setGlobalAlignment method 62, 64
setGlobalLinkStyle method 66
setLayoutMode method 59, 60, 70, 73, 74, 78, 79
setLevelJustification method 72
setLinkStyle method 67
setMaxChildrenAngle method 76
setOrthForkPercentage method 69
setOverlapPercentage method 69
setParentChildOffset method 68, 75
setPosition method 58
setPreference method 58
setRoot method 57
setRootPreference method 58
setSiblingOffset method 68, 75
setTipOverBranchOffset method 68
setWestEastNeighboring method 81

incremental layout 27
individual link style parameter

Hierarchical Layout 95
instantiating a subclass 29
isAnimate method

IlvGraphLayout class 32
isFixed method

IlvGraphLayout class 34, 35
isLayoutTimeElapsed method

IlvGraphLayout class 32
isLink method

IlvGraphModel class 138
isLinkBetween method

IlvGraphModel class 139
isNode method

IlvGraphModel class 138
isPreserveFixedLinks method

IlvGraphLayout class 34
isPreserveFixedNodes method

IlvGraphLayout class 35
isRootPosition method

IlvTreeLayout class 58
isSameShapeForMultipleLinks method

IlvOrthogonalLinkLayout class 114
isUseDefaultParameters method

IlvGraphLayout class 37
isUseSeedValueForRandomGenerator method

IlvGraphLayout class 36

L

layout algorithm
basic procedure for using 39
choosing 45
table of additional information 49
table of applicable graphs 47
table of generic parameters supported 48

layout criteria
angle 26
area 26
bends 26
link crossings 26
symmetries 26

layout method
IlvGraphLayout class 29, 150
steps for implementing 150

layout methods
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 169

automatic 27
incremental 27
semi-automatic 27
static 27

layout modes
Tree Layout 59

layout region parameter
Bus Layout 121
Random Layout 117

layout report
class table 134
creating 134
elapsed time 135
information stored in report 135
reading 135
using 133

layoutReport method
IlvGraphLayout class 29

layouts
Bus Layout 119
characteristics 49
defining a new type 148
Hierarchical Layout 84
Orthogonal Link Layout 106
performing 30
procedure for implementing the layout method 150
Random Layout 115
sample code for defining a new type 148
Tree Layout 49

layoutStepPerformed method
IlvGraphLayout class 136

level index parameter
Hierarchical Layout 98

level justification parameter
Hierarchical Layout 92

level layout mode
description 70

link crossing penalty parameter, Orthogonal Link Layout 114
link crossings layout criteria 26
link offset parameter, Orthogonal Link Layout 112
link priority parameter

Hierarchical Layout 97
link style

free layout mode 65, 66
link style parameter

Bus Layout 124
Hierarchical Layout 93
Orthogonal Link Layout 113
Random Layout 118

links
retrieving categories 81

listener, layout event
code example 136
description 135
IlvGraphLayoutListener interface 136

M

manual
naming conventions 10
notation 10
organization 10

margin on bus parameter, Bus Layout 127
margin parameter, Bus Layout 127
minimum final segment parameter, Orthogonal Link Layout

112
moveNode method

IlvGraphModel class 139

N

naming conventions 10
notation 10
number of optimization iterations parameter, Orthogonal

Link Layout 113

O

order parameter, Bus Layout 122
Orthogonal Link Layout

applicable graph types 108
application domains 108
code sample 110
description 109
features 108
generic parameters 110
limitations 109
link crossing penalty parameter 114
link offset parameter 112
link style parameter 113
170 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

minimum final segment parameter 112
number of optimization iterations parameter 113
parameters 110
same shape for multiple links parameter 114
sample drawing 106
specific parameters 111

P

parameters
Bus Layout 121
description of generic parameters 31
generic, Bus Layout 121
generic, Hierarchical Layout 89
generic, Orthogonal Link Layout 110
generic, Random Layout 117
generic, Tree Layout 56
Hierarchical Layout 89
Orthogonal Link Layout 110
Random Layout 117
specific, Bus Layout 122
specific, Hierarchical Layout 90
specific, Orthogonal Link Layout 111
specific, Tree Layout 56
supported by layout algorithms (table) 48
Tree Layout 55

parameters of IlvGraphLayout
allowed time 31
animation 32
description of 31
layout region 33
preserved fixed links 34
preserved fixed nodes 35
random generator seed value 35
use default parameters 37

performLayout method
IlvGraphLayout class 30, 134

position
Tree Layout 58

position index
Hierarchical Layout 99

preserve fixed links parameter
Bus Layout 122
Hierarchical Layout 90
Orthogonal Link Layout 111

Random Layout 117
Tree Layout 56

preserve fixed nodes parameter
Bus Layout 122
Hierarchical Layout 90
Random Layout 118
Tree Layout 56

R

radial layout mode
description 72

random generator seed value parameter
Random Layout 118

Random Layout
applicable graph types 115
code sample 116
description 116
features 116
generic parameters 117
limitations 116
link style parameter 118
parameters 117
sample drawing 115

reading a layout report 135
reference transformer 146, 147
reference transformers 145
reference views 146
refining a layout

Hierarchical Layout 104
related documentation 11
removeAllLayers

IlvLayoutGraphicFilter class 143
removeGraphModelListener method

IlvGraphModel class 140
removeLayer

IlvLayoutGraphicFilter class 143
report information 135
report, layout 133
reshapeLink method

IlvGraphModel class 139
root node parameter

Tree Layout 57
root node parameter options

Tree Layout 57
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 171

S

same shape for multiple links parameter, Orthogonal Link
Layout 114

sample application 40
semi-automatic layout 27
setAlignment method

IlvTreeLayout class 63, 65
setAllowedNuamberOfIterations method

IlvOrthogonalLinkLayout class 113
setAllowedTime method

IlvGraphLayout class 32
IlvTreeLayout class 77

setAnimate method
IlvGraphLayout class 32

setAspectRatio method
IlvTreeLayout class 75, 77

setBranchOffset method
IlvTreeLayout class 68, 75

setBus method
IlvBusLayout class 124

setConnectorStyle method
IlvHierarchicalLayout class 96

setEastWestNeighboring method
IlvTreeLayout class 81

setFilter
IlvLayoutGraphicFilter class 143

setFixed method
IlvGraphLayout class 34, 35

setFlowDirection method
IlvHierarchicalLayout class 91
IlvTreeLayout class 61

setGlobalAlignment method
IlvTreeLayout class 62, 64

setGlobalLinkStyle method
IlvHierarchicalLayout class 94
IlvTreeLayout class 66

setHorizontalLinkOffset method
IlvHierarchicalLayout class 100

setHorizontalNodeLinkOffset method
IlvHierarchicalLayout class 100

setHorizontalNodeOffset method
IlvHierarchicalLayout class 100

setHorizontalOffset method
IlvBusLayout class 126

setIndex method
IlvBusLayout class 123

setLayoutMode method
IlvTreeLayout class 59, 60, 70, 73, 74, 78, 79

setLayoutRegion method
IlvGraphLayout class 33

setLevelJustification method
IlvHierarchicalLayout class 92
IlvTreeLayout class 72

setLinkPriority method
IlvHierarchicalLayout class 97

setLinkStyle method
IlvBusLayout class 125
IlvHierarchicalLayout class 95
IlvOrthogonalLinkLayout class 113
IlvRandomLayout class 118
IlvTreeLayout class 67

setLinkToLinkCrossingPenalty method
IlvOrthogonalLinkLayout class 114

setLinkToNodeCrossingPenalty method
IlvOrthogonalLinkLayout class 114

setMargin method
IlvBusLayout class 127

setMarginOnBus method
IlvBusLayout class 127

setMaxChildrenAngle method
IlvTreeLayout class 76

setMinFinalSegmentLength method
IlvOrthogonalLinkLayout class 112

setOffset method
IlvOrthogonalLinkLayout class 112

setOrdering method
IlvBusLayout class 122

setOrthForkPercentage method
IlvTreeLayout class 69

setOverlapPercentage method
IlvTreeLayout class 69

setParentChildOffset method
IlvTreeLayout class 68, 75

setPosition method
IlvTreeLayout class 58

setPreference method
IlvTreeLayout class 58

setProperty method
IlvGraphModel class 140
172 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

setReferenceTransformer
IlvLayoutGraphicFilter class 147

setReferenceView
IlvLayoutGraphicFilter class 146

setRoot method
IlvTreeLayout class 57

setRootPreference method
IlvTreeLayout class 58

setSameShapeForMultipleLinks method
IlvOrthogonalLinkLayout class 114

setSeedValueForRandomGenerator method
IlvGraphLayout class 36

setSiblingOffset method
IlvTreeLayout class 68, 75

setSpecNodeLevelIndex method
IlvHierarchicalLayout class 98

setSpecNodePositionIndex method
IlvHierarchicalLayout class 99

setTipOverBranchOffset method
IlvTreeLayout class 68

setUseDefaultParameters method
IlvGraphLayout class 37

setVerticalLinkOffset method
IlvHierarchicalLayout class 100

setVerticalNodeLinkOffset method
IlvHierarchicalLayout class 100

setVerticalNodeOffset method
IlvHierarchicalLayout class 100

setVerticalOffsetToLevel method
IlvBusLayout class 126

setVerticalOffsetToPreviousLevel method
IlvBusLayout class 126

setWestEastNeighboring method
IlvTreeLayout class 81

spacing parameters
for experts 69
free layout mode 67
Hierarchical Layout 99

specifying
reference transformer 147

static layout 27
supportsAllowedTime method

IlvGraphLayout class 32
supportsAnimation method

IlvGraphLayout class 32

supportsLayoutRegion method
IlvGraphLayout class 34, 152

supportsPreserveFixedLinks method
IlvGraphLayout class 34

supportsPreserveFixedNodes method
IlvGraphLayout class 35

supportsRandomGenerator method
IlvGraphLayout class 36

symmetries layout criteria 26

T

time, stop computation algorithms 31
tip-over alignment

free layout mode 64
tip-over layout modes

description 77
Tree Layout

algorithm description 53
applicable graph types 51
application domains 51
code sample 55
compass directions 58
features 52
free layout mode 59
generic parameters 56
incremental changes 83
interactive editing 83
layout mode 59
learning about 49
level layout mode 70
limitations 52
parameters 55
position 58
radial layout mode 72
retrieving link categories 81
root node parameter 57
root node parameter options 57
sample drawings 50
specific parameters 56
specifying the order of children 83
tip-over layout modes 77
tips for experts 79
tips for experts, east-west neighbors 80
I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L 173

U

unfixAllLinks method
IlvGraphLayout class 34

unfixAllNodes method
IlvGraphLayout class 35

V

vertical offset parameter, Bus Layout 126
vertical offset to previous level parameter, Bus Layout 126
174 I B M I L O G V I E W S G R A P H L A Y O U T V 5 . 3 — U S E R ’ S M A N U A L

	IBM ILOG Views Graph Layout V5.3 User’s Manual
	About This Manual
	Introducing the Graph Layout Package
	What is the Graph Layout Package of IBM ILOG Views?
	Features of IBM ILOG Views Graph Layout
	IBM ILOG Views Graph Layout in User Interface Applications

	Basic Concepts
	Graph Layout: A Brief Introduction
	What is a Good Layout?
	Methods for Using Layout Algorithms

	Graph Layout in IBM ILOG Views
	The Base Class: IlvGraphLayout
	Basic Operations with IlvGraphLayout
	Instantiating a Subclass of IlvGraphLayout
	Attaching a Grapher
	Performing a Layout
	Detaching a Grapher

	Layout Parameters in IlvGraphLayout
	Allowed Time
	Animation
	Layout Region
	Preserve Fixed Links
	Preserve Fixed Nodes
	Random Generator Seed Value
	Use Default Parameters

	Getting Started with Graph Layout
	Basic Steps for Using Layout Algorithms: A Summary
	Sample Application
	Launching IBM ILOG Views Studio with the Graph Layout Extension
	A Quick Look at the Interface

	Layout Algorithms
	Determining the Appropriate Layout Algorithm
	Generic Parameters Support
	Layout Characteristics
	Tree Layout
	Samples
	What Types of Graphs?
	Application Domains
	Features
	Limitations
	Brief Description of the Algorithm
	Code Sample

	Parameters
	Generic Parameters
	Specific Parameters (All Tree Layout Modes)

	Free Layout Mode
	Level Layout Mode
	Radial Layout Mode
	Tip-Over Layout Modes
	For Experts: Further Tips and Tricks

	Hierarchical Layout
	Samples
	What Types of Graphs?
	Application Domains
	Features
	Limitations
	Brief Description of the Algorithm
	Code Sample

	Parameters
	Generic Parameters
	Specific Parameters
	Sequences of Graph Layout

	Orthogonal Link Layout
	Samples
	What Types of Graphs?
	Application Domains
	Features
	Limitations
	Brief Description of the Algorithm
	Code Sample

	Parameters
	Generic Parameters
	Specific Parameters

	Random Layout
	Sample
	What Types of Graphs?
	Features
	Limitations
	Brief Description of the Algorithm
	Code Sample

	Parameters
	Generic Parameters
	Specific Parameters

	Bus Layout
	Sample
	What Types of Graphs?
	Application Domains
	Features
	Brief Description of the Algorithm
	Code Sample

	Parameters
	Generic Parameters
	Specific Parameters

	Using Advanced Features
	Using a Layout Report
	Layout Report Classes
	Creating a Layout Report
	Reading a Layout Report
	Information Stored in a Layout Report

	Using Layout Event Listeners
	Using the Graph Model
	The Graph Model Concept
	The IlvGraphModel Class
	Using the IlvGrapherAdapter

	Laying Out a Non-Views Grapher
	Using the Filtering Features to Lay Out a Part of an IlvGrapher
	Filtering by Layers
	Filtering by Graphic Objects

	Laying Out Graphs with Nonzoomable Graphic Objects
	A Special Case: Nonzoomable Graphic Objects
	Reference Transformers
	How a Reference Transformer is Used
	Reference Views
	Specifying a Reference Transformer

	Defining a New Type of Layout
	Questions and Answers about Using the Layout Algorithms

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

