
© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

IBM ILOG Views

Manager V5.3

User’s Manual

June 2009

usrmanager.book Page 1 Tuesday, July 28, 2009 11:41 AM

usrmanager.book Page 2 Tuesday, July 28, 2009 11:41 AM

Copyright notice
© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

usrmanager.book Page 2 Tuesday, July 28, 2009 11:41 AM

C O N T E N T S

usrmanager.book Page 3 Tuesday, July 28, 2009 11:41 AM
Table of Contents

IBM ILOG Views Manager V5.3

Preface About This Manual . 5

What You Need to Know .5

Manual Organization .5

Notation. .6

Typographic Conventions .6

Naming Conventions .6

Chapter 1 Basic Manager Features . 7

Introducing Managers .7

Layers .8

Views .9

View Transformer. .9

Event Handling. .9

Main Features of IlvManager .10

Manager Views .11

View Transformations .13

Double-buffering. .13

Manager Layers .14

Layer Index .15
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 3

usrmanager.book Page 4 Tuesday, July 28, 2009 11:41 AM
Layer Selectability .16

Layer Visibility .16

Layer Rendering. .17

Managing Objects .18

Modifying the Geometry of Graphic Objects .18

Selecting Objects .19

Selection Procedures .20

Managing Selected Objects .20

Managing Object Properties. .21

Arranging Objects .21

Drawing and Redrawing .23

Optimizing Drawing Tasks .24

Saving and Reading. .25

Chapter 2 Manager Event Handling . 27

The Event Handling Mechanism. .27

Event Hooks .28

View Interactors .28

Predefined View Interactors .29

Example: Implementing the IlvDragRectangleInteractor Class .30

Example of an Extension: IlvMoveInteractor .36

Object Interactors .43

Accelerators .43

Example: Changing the Key Assigned to an Accelerator. .44

Predefined Manager Accelerators .44

Chapter 3 Advanced Manager Features. 47

Observers .47

General Notifications .48

Manager View Notifications .48

Manager Layer Notifications .49

Manager Contents Notifications .50
4 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

usrmanager.book Page 5 Tuesday, July 28, 2009 11:41 AM
Graphic Object Geometry Notifications .50

Example .50

View Hooks. .51

Manager View Hooks .52

Example: Monitoring the Number of Objects in a Manager .53

Example: Maintaining a Scale Displayed With No Transformation .53

Manager Grid .55

Example: Using a Grid .56

Undoing and Redoing Actions .57

Command Class. .57

Managing Undo .57

Example: Using the IlvManagerCommand Class to Undo/Redo .58

Managing Modifications .59

Index . 61
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 5

usrmanager.book Page 6 Tuesday, July 28, 2009 11:41 AM
6 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

P R E F A C E

usrmanager.book Page 5 Tuesday, July 28, 2009 11:41 AM
About This Manual

This User’s Manual describes how to coordinate a large quantity of graphic objects through
the use of a manager, that is, through the IlvManager class and its associated classes.

What You Need to Know

This manual assumes that you are familiar with the PC or UNIX® environment in which you
are going to use IBM® ILOG® Views, including its particular windowing system. Since
IBM ILOG Views is written for C++ developers, the documentation also assumes that you
can write C++ code and that you are familiar with your C++ development environment so as
to manipulate files and directories, use a text editor, and compile and run C++ programs.

Manual Organization

The manual contains the following chapter:

◆ Chapter 1 describes the main principles behind using managers.

◆ Chapter 2 describes how events are handled when using managers.

◆ Chapter 3 describes advanced features of managers.
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 5

usrmanager.book Page 6 Tuesday, July 28, 2009 11:41 AM
Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:

◆ Code extracts and file names are written in courier typeface.

◆ Entries to be made by the user are written in courier italics.

◆ Some words in italics, when seen for the first time, may be found in the glossary at the
end of this manual.

Naming Conventions

Throughout this manual, the following naming conventions apply to the API.

◆ The names of types, classes, functions, and macros defined in the
IBM ILOG Views Foundation library begin with Ilv.

◆ The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized.

class IlvDrawingView;

◆ The names of virtual and regular methods begin with a lowercase letter; the names of
static methods start with an uppercase letter. For example:

virtual IlvClassInfo* getClassInfo() const;

static IlvClassInfo* ClassInfo*() const;
6 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrmanager.book Page 7 Tuesday, July 28, 2009 11:41 AM
1

Basic Manager Features

This section describes how to coordinate a large quantity of graphic objects through the use
of a manager, that is, through the IlvManager class and its associated classes.

The basic features of managers are described, in the following order:

◆ Introducing Managers

◆ Manager Views

◆ Manager Layers

◆ Managing Objects

◆ Drawing and Redrawing

◆ Optimizing Drawing Tasks

◆ Saving and Reading

Introducing Managers

A manager coordinates the interactions between the display of graphic objects in multiple
views and the organization of graphic objects in multiple storage places. This is illustrated in
Figure 1.1:
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 7

usrmanager.book Page 8 Tuesday, July 28, 2009 11:41 AM
Figure 1.1

Figure 1.1 Manager Concept

To introduce some of the important concepts related to managers, the following items are
described:

◆ Layers

◆ Views

◆ View Transformer

◆ Event Handling

◆ Main Features of IlvManager

Layers

Instances of the IlvManager class handle a set of graphic objects derived from the
IBM® ILOG® Views class called IlvGraphic. When you organize graphic objects that the
manager coordinates, you create an unlimited number of graphic objects and place them in
multiple storage areas. These storage areas appear in superimposed layers. That is why they
are called manager layers.

View 1

View 2
View 3

Manager
8 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

Introducing Managers

usrmanager.book Page 9 Tuesday, July 28, 2009 11:41 AM
A manager is therefore a tool designed to handle objects placed in different priority levels .
Priority level here means that objects stored in a higher screen layer are displayed in front of
objects in lower layers.

Each graphic object stored in a layer is unique to that layer and can be stored only in that
layer.

Graphic objects stored throughout the manager all share the same coordinate system.

Views

A manager uses one or multiple views to display its set of graphic objects. These views are
instances of the class IlvView and you can connect as many as you want to the manager.

View Transformer

A geometric transformation (class IlvTransformer) can be associated with each view
connected to a manager. When drawing its graphic objects in a view, the manager will use
the transformer of the view, thereby providing a different representation of the same objects
in each view (zoomed, unzoomed, translated, rotated, and so on).

Event Handling

All events are handled by means of event hooks, view interactors, object interactors, or
accelerators. These are described briefly here and in more detail in section Manager Event
Handling.

Event Hooks

The IlvManagerEventHook class is intended to monitor or filter events dispatched to the
manager.

Interactors

Interactors are classes designed to handle user interactions involving a single or a complex
combination of events.

◆ View interactors are classes derived from IlvManagerViewInteractor and handle
interactions in the context of a whole view.

◆ Object interactors are derived from IlvInteractor and handle user interactions
involving a single graphic object or a set of graphic objects.

Note: An object must never be stored in more than one holder such as IlvManager,
IlvContainer, or IlvGraphicSet.
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 9

usrmanager.book Page 10 Tuesday, July 28, 2009 11:41 AM
Accelerators

An accelerator is an association of an event description with a user-defined action. In other
words, when the event occurs the manager calls the action. This very basic interaction
mechanism is limited to a single response to a single event, such as double-clicking with the
left mouse button or pressing Ctrl-F.

Main Features of IlvManager

The IlvContainer class already provides ways of handling graphic objects. However, you
may require more powerful features. Here is a list of circumstances under which you might
need to use a manager:

◆ You need to handle a large number of graphic objects (hundreds or thousands) and
encounter a performance problem using an IlvContainer.

◆ You wish to associate a specific behavior with a view, but not with a particular graphic
object.

◆ You want multiple views of the same graphic objects, but without duplicating them.
Remember that objects of the IlvGraphic class are not linked to any particular
IlvView.

◆ You want to display the graphic objects with differing priorities.

◆ You want to add extra properties to objects, either individually or within a group, which
would allow them to be visible or selectable.

◆ You want to save your graphic objects.

Managers provide a solution to these problems. They also offer advanced features that
complex graphic applications may need:

◆ Commands

◆ Input/Output

◆ Double-buffering

◆ Observers

◆ View Hooks

◆ Grid

Commands

Objects can be manipulated and views can be changed by means of instances of the
IlvManagerCommand class. This class has been designed to give IlvManager the ability
to undo and redo changes.
10 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

Manager Views

usrmanager.book Page 11 Tuesday, July 28, 2009 11:41 AM
Input/Output

Instances of the IlvGraphic class can deal with input/output. Similarly, the IlvManager
class has a set of member functions to read and write object descriptions. Manager
properties, such as the layer or name of an object, can also be read and written.

Double-buffering

When manipulating thousands of overlapping objects, redrawing operations can be very
time-consuming. They can also be unattractive if each redrawn element reappears
sequentially on the screen. These problems can be avoided by using the double-buffering
technique implemented in IlvManager. When this feature is activated, all drawing
functions are performed in a hidden image; when the area has been completely updated, the
image is drawn at once in the working view.

Observers

This mechanism, based on the classes IlvManagerObserver and
IlvManagerObservable, allows the application to be notified when certain modifications
are done to the manager (adding or removing a view, setting a transformer on a view, adding
graphic objects, adding or removing a layer, and so on).

View Hooks

Specific actions can be triggered under predefined circumstances. The manager view hooks
let you connect events that occur in a manager with actions to be performed. This will be
described in more detail in section View Hooks. Some application tasks performed with view
hooks can be implemented with observers.

Grid

This tool allows you to force mouse events to occur only at locations defined by a snapping
grid.

Manager Views

Attaching multiple views to a manager allows your program to display graphic objects
simultaneously in various configurations. This is illustrated in Figure 1.2.
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 11

usrmanager.book Page 12 Tuesday, July 28, 2009 11:41 AM
Figure 1.2

Figure 1.2 Multiple Views Bound To a Manager

The following IlvManager member functions handle the binding of views to a manager:

◆ IlvManager::addView - Attaches a view to the manager. All events are then handled
by the hierarchy of interactors in place in the manager.

◆ IlvManager::removeView - Removes a view from the manager view list. The view is
no longer handled by the manager.

◆ IlvManager::getViews - Returns an array of pointers to all the views currently
connected to the manager.

The following aspects of manager views are described in this section:

◆ View Transformations

◆ Double-buffering

View 1

View 2
View 3

Manager
12 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

Manager Views

usrmanager.book Page 13 Tuesday, July 28, 2009 11:41 AM
View Transformations

Use the following IlvManager member functions to modify the transformer associated
with the view (except for IlvManager::fitToContents, which modifies the size of the
view):

◆ IlvManager::setTransformer

◆ IlvManager::addTransformer

◆ IlvManager::translateView

◆ IlvManager::zoomView

◆ IlvManager::rotateView

◆ IlvManager::fitToContents

◆ IlvManager::fitTransformerToContents

◆ IlvManager::ensureVisible

Example: Zooming a View

This accelerator zooms a view using a scaling factor of two:

The point given in the zoomView argument keeps its position after the zoom. The last
parameter forces the redrawing of the view.

Double-buffering

The double-buffering member functions can be used to prevent the screen from flickering
when many objects are manipulated. For each manager view, this feature requires the
allocation of a hidden bitmap the size of the view. Depending on the number of views and
the color model, double-buffering may consume a large amount of memory.

The member functions that handle double-buffering are:

◆ IlvManager::isDoubleBuffering

◆ IlvManager::setDoubleBuffering

static void
ZoomView(IlvManager* manager, IlvView* view, IlvEvent& event, IlvAny)
{
 IlvPoint pt(event.x(), event.y());
 manager->zoomView(view, pt, IlvFloat(2), IlvFloat(2), IlvTrue);
}

I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 13

usrmanager.book Page 14 Tuesday, July 28, 2009 11:41 AM
◆ IlvManager::setBackground

Example

This function switches the double-buffering mode of the given view:

Manager Layers

Layers are storage places for graphic objects, as shown in Figure 1.3.

Figure 1.3

Figure 1.3 Layers

Once these objects have been stored they are controlled by and organized under the same
manager. Each layer is unique to and can be controlled by only one manager. Each graphic
object handled by a manager belongs to one and only one layer.

Note: You must use the setBackground member function to change the background color
of a view in double-buffering mode.

static void
ToggleDoubleBuffering(IlvManager* manager, IlvView* view)
{
 manager->setDoubleBuffering(view,
 !manager->isDoubleBuffering(view));
}

Note: For more member functions dealing with layers, see the IlvManager and
IlvManagerLayer classes.

Layer 2

Layer 1

Layer 3
14 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

Manager Layers

usrmanager.book Page 15 Tuesday, July 28, 2009 11:41 AM
This section is divided as follows:

◆ Layer Index

◆ Layer Selectability

◆ Layer Visibility

◆ Layer Rendering

Layer Index

Layers are stored by the manager according to their index. The first layer has index 0 and
layer N has index N-1. Layers are represented by an instance of the IlvManagerLayer
class, but most of the time they are identified in member function signatures by their index
in the manager. Various member functions let you manipulate these layers or the objects that
they own.

The manager draws the layers one by one, starting at index 0. Consequently, the top-most
layer on the screen is the one with the highest index. This introduces a visual hierarchy
among graphic objects based on their layer index. In general, graphic objects of a more static
nature—for instance, objects used as background for your IBM ILOG Views programs—are
put in a lower layer of the manager. Graphic objects of a dynamic nature—objects with
which users interact—are typically put in a higher layer. The top-most layer (the one with
the highest index) is reserved for use by the manager; it contains the selection objects
displayed as square handles around selected objects. Since the manager increases the index
of this layer as new layers are added, it always remains on the top of the stack.

Setting-Up Layers

By default, a manager is created with two layers. You can change this number when creating
a manager by using the second parameter of the constructor. You can also change this
number once the manager has been created, by using the IlvManager::setNumLayers
member function.

Example
The following code adds an object to the second layer (specified by index 1) of the manager
and then moves the object to layer 0.

Reminder: You must refer to the layers by index numbers starting with 0. For example,
layer 3 is indexed as 2.

 manager->addObject(object, IlvTrue, 1);
 manager->setLayer(object, 0);
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 15

usrmanager.book Page 16 Tuesday, July 28, 2009 11:41 AM
When adding a graphic object using a non-existing layer index, the number of layers is
increased automatically.

Layer Selectability

Layer selectability indicates whether the application end-user can select the objects within a
certain layer. Preventing your program user from selecting graphic objects in a layer means
that these objects are fixed and unchangeable. The following member functions are used for
layer selectability:

◆ IlvManager::setSelectable

◆ IlvManager::isSelectable

Layer Visibility

Layer visibility indicates whether the objects within a certain layer should be visible to the
user. This notion of layer visibility is not as simple as it seems because a layer can be hidden
in several different ways:

◆ Globally - Hidden in all the manager views.

◆ Locally - Hidden in one or several manager views.

◆ Contextually - Hidden by an application visibility filter.

A layer is displayed in a view if it is not hidden in any of these ways.

Global Visibility

If a layer is hidden globally, it will not be displayed in any of the manager views. The
following IlvManager member functions allow you to get or set the global visibility of a
layer:

◆ setVisible (int layer, IlBoolean val)

◆ isVisible (int layer)

Local Visibility

Use the following IlvManager member functions to get or set the visibility of a layer for a
given manager view:

◆ setVisible (const IlvView* view, int layer, IlBoolean visible)

◆ isVisible (const IlvView* view, int layer)

 IlvManager* manager = new IlvManager(display); // A manager with 2 layers
 IlvRectangle* rect = new IlvRectangle(display, IlvRect(0, 0, 100, 100));
 // Add the object in layer 7 and create intermediate layers
 manager->addObject(rect, IlFalse, 7);
16 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

Manager Layers

usrmanager.book Page 17 Tuesday, July 28, 2009 11:41 AM
Visibility Filter

IlvLayerVisibilityFilter is an abstract class. Subclasses must redefine the virtual
member function IlvLayerVisibilityFilter::isVisible to return the visibility
status of the layer.

Each manager layer handles a list of visibility filters. When a layer must be drawn in a view,
the manager calls the member function IlvLayerVisibilityFilter::isVisible for
all the filters of the layer; if a visibility filter returns IlFalse, the layer is not displayed.
This mechanism only allows the application to hide layers that would be otherwise visible; it
does not allow you to show hidden layers.

To add a visibility filter to a layer, use IlvManagerLayer::addVisibilityFilter.

Layer Rendering

Layer rendering indicates how the layer is to be rendered onto the drawing device. Two
attributes of the layer can change its rendering:

◆ Alpha Value

◆ Anti-aliasing Mode

Alpha Value

The alpha value of a layer represents the opacity with which this layer will be drawn above
other layers. If the layer contains objects having transparent colors, the transparency of the
layer and the transparent objects will be composed.

The default value for this setting is IlvFullIntensity, which means that the layer is
completely opaque.

See the IlvManagerLayer::setAlpha method for details.

Anti-aliasing Mode

The anti-aliasing mode of a layer is a global setting that will be applied to all the objects of
this layer. It indicates the anti-aliasing mode with which objects are going to be rendered.

The default value for this setting is IlvDefaultAntialiasingMode, which means that
the anti-aliasing mode of the layer will be inherited from the drawing port itself. For
example, if the anti-aliasing mode of a manager view has been set to
IlvUseAntialiasingMode (see IlvPort::setAntialiasingMode), it means that all
the layers of this view will use anti-aliasing. You can override this setting for a specific layer
by indicating that you do not need anti-aliasing for this layer.

See the IlvManagerLayer::setAntialiasingMode method for details.

Note: These features are only supported on Microsoft Windows with GDI+ installed. See
Appendix B / GDI+ of the Foundation User’s Manual for details
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 17

usrmanager.book Page 18 Tuesday, July 28, 2009 11:41 AM
Managing Objects

This section explains how to manipulate the objects contained in a manager. It is divided as
follows:

◆ Modifying the Geometry of Graphic Objects

◆ Selecting Objects

◆ Selection Procedures

◆ Managing Selected Objects

◆ Managing Object Properties

◆ Arranging Objects

Modifying the Geometry of Graphic Objects

The IlvManager class has been designed to handle a large number of graphic objects. In
order to perform graphical operations efficiently (for example, redrawing part of a view,
locating the objects at a given position, and so on), the manager uses a complex internal data
structure where graphic objects are organized according to their geometry, that is, their
bounding box. To keep this data structure up to date, the manager needs to be aware of any
modification in the geometry of its graphic objects. This is why any such modification
should be carried out in the following manner:

1. Take the object out of the manager list.

2. Manipulate its geometric characteristics.

3. Put the object back into the manager list.

The easiest way to do this is to use the dedicated IlvManager member functions respecting
these requirements:

◆ IlvManager::applyToObject

◆ IlvManager::applyToObjects

◆ IlvManager::applyInside

◆ IlvManager::applyIntersects

◆ IlvManager::applyToTaggedObjects

◆ IlvManager::applyToSelections
18 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

Managing Objects

usrmanager.book Page 19 Tuesday, July 28, 2009 11:41 AM
For simple geometric operations such as moving, translating, or reshaping, IlvManager
provides the following member functions that do not need to call
IlvManager::applyToObject:

◆ IlvManager::translateObject

◆ IlvManager::moveObject

◆ IlvManager::reshapeObject

Example: Translating an Object

The following code gets a pointer to an object named test from the manager. If this object
exists, it is translated 10 pixels right and 20 pixels down, and then redrawn (fourth
parameter set to IlTrue):

Applying Functions to Objects in a Region

In order to apply a user-defined function to objects that are located either partly or wholly
within a specific region, use the following IlvManager member functions:

◆ IlvManager::applyInside

◆ IlvManager::applyIntersects

Selecting Objects

Use the following two member functions of IlvManager to handle the selection state of
objects:

◆ IlvManager::isSelected

◆ IlvManager::setSelected

Note: Do not change the size of a managed object by calling its
IlvGraphic::translate or IlvGraphic::scale member functions. The manager
use sophisticated data structures and an intricate indexing system for tracking the position
of objects with respect to each other. You should not interfere with these mechanisms.

 object = manager->getObject(“test”);
 if (object)
 manager->translateObject(object, 10, 20, IlvTrue);
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 19

usrmanager.book Page 20 Tuesday, July 28, 2009 11:41 AM
Example:

The following code gets a pointer to an object named test from the manager. If this object
exists, it is selected (second parameter is set to IlTrue) and redrawn (third parameter set to
IlTrue):

Selection Procedures

The IlvManager member functions involved in selection tasks are the following:

◆ IlvManager::applyToSelections

◆ IlvManager::numberOfSelections

◆ IlvManager::deSelectAll

◆ IlvManager::getSelections

◆ IlvManager::deleteSelections

◆ IlvManager::getSelection

◆ IlvManager::setMakeSelection

Example: Customizing Selection Handle Objects

This example shows how to attach new selection handle objects to line objects:

The following code changes the function called to create the selection object. If the selected
object is an IlvLine or an instance of a class derived from it, the manager uses the
IlvLineHandle object to draw the selection:

manager->setMakeSelection(MakeSelection);

Managing Selected Objects

Selecting is a basic process for managers and most manager functions should apply to a
selected list of objects. A manager selection can be thought of as a special set holding some
of the managed objects. To display selected objects within a manager, IBM® ILOG® Views

 object = manager->getObject(“test”);
 if (object)
 manager->setSelected(object, IlvTrue, IlvTrue);

static IlvDrawSelection*
MakeSelection(IlvManager* manager, IlvGraphic* graphic)
{
 if (graphic->isSubtypeOf(“IlvLine”))
 return new IlvLineHandle(manager->getDisplay(), graphic);
 else
 return new IlvDrawSelection(manager->getDisplay(), graphic);
}

20 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

Managing Objects

usrmanager.book Page 21 Tuesday, July 28, 2009 11:41 AM
creates selection objects that are stored in the manager. The difference between these objects
and others is that they are internally managed and cannot be manipulated.

Example: Translating the Selected Objects

The following example shows an accelerator that translates all selected objects ten pixels
right and 20 pixels down. This accelerator uses the IlvManager::applyToSelections
member function to translate each of the objects. Redrawing of the objects is done once at
the end of the call to this method, as is done for all the apply functions, because its third
parameter is set to the default value IlTrue.

Managing Object Properties

Several member functions of the IlvManager class describe properties that are assigned to
an object when it is added to a manager (for example, IlvManager::isSelectable,
IlvManager::setSelectable, IlvManager::isResizeable, and so on).

You can also add specific properties to each object by means of the property-related member
functions of the IlvGraphic class. These properties are application-dependent and have no
effect on the manager.

IlvManager provides member functions to check whether an object has a property or to
change a property of an object.

Example: Setting an Object as Unmovable

This is an example of how to set an object in a manager as unmovable:

Arranging Objects

The IlvManager class provides member functions to help organize the layout of graphic
objects.

static void
TranslateSelectedObjects (IlvGraphic* object, IlvAny arg)
{
 IlvManager* manager = (IlvManager*) arg;
 manager->translateObject(object, 10, 20, IlvFalse);
}

static void
TranslateAccelerator(IlvManager* manager, IlvView*, IlvEvent&, IlvAny)
{
 manager->applyToSelections(TranslateSelectedObjects, manager);
}

 object = manager->getObject(“test”);
 if (object)
 manager->setMoveable(object, IlvFalse);
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 21

usrmanager.book Page 22 Tuesday, July 28, 2009 11:41 AM
◆ Grouping

◆ Aligning and Duplicating

Grouping

The IlvManager::group member function lets you create an IlvGraphicSet from an
array of objects and put the objects from an IlvGraphicSet into the manager.

The IlvManager::unGroup member function lets you do the inverse of this.

Example: Grouping Objects

This is an example of an accelerator that groups selected objects:

The first line checks the number of objects and returns if no objects are selected. Then, a
pointer to the selected objects is obtained using the IlvManager::getSelections
member function. The next line creates the group. The new object is selected at the end of
this accelerator.

Aligning and Duplicating

Some IlvManager member functions are defined to automatically align objects with
respect to each other:

◆ IlvManager::align

◆ IlvManager::makeColumn

◆ IlvManager::makeRow

◆ IlvManager::sameWidth

◆ IlvManager::sameHeight

Another member function duplicates objects, that is, it creates a copy of the objects and
inserts them into the manager:

Note: Graphic objects grouped in a graphic set are no longer handled by the manager.
The manager only sees the graphic set.

static void
Group(IlvManager* manager, IlvView*, IlvEvent&, IlvAny)
{
 if (!manager->numberOfSelections()) return;
 IlvUInt n;
 IlvGraphic* const* objs = manager->getSelections(n);
 IlvGraphicSet* g = manager->group(n, (IlvGraphic* const*)objs);
 if (g) manager->setSelected((IlvGraphic*)g, IlvTrue, IlvTrue);
}

22 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

Drawing and Redrawing

usrmanager.book Page 23 Tuesday, July 28, 2009 11:41 AM
◆ IlvManager::duplicate

Example: Make All Selected Objects the Same Width

This accelerator gives the width of the first selected object to all the selected objects:

The value IlTrue passed to IlvManager::sameWidth indicates that the objects are
automatically redrawn.

Drawing and Redrawing

Use the following IlvManager member functions to draw objects:

◆ IlvManager::draw

◆ IlvManager::reDraw

◆ IlvManager::bufferedDraw

The IlvManager::bufferedDraw method works in the same way as double-buffering
does, with the following differences:

◆ It is local to a view, a region, or an object.

◆ It only lasts for the duration of the drawing operation.

The next section, Optimizing Drawing Tasks, describes other IlvManager member
functions used to redraw graphic objects efficiently in a manager.

Redrawing All Views

In some cases, you may want to refresh all the views managed by an IlvManager. To do so,
call one of the IlvManager::reDraw member functions:

manager->reDraw();

Note: These modifications are always applied to the currently selected objects

static void
SameWidth(IlvManager* manager, IlvView*, IlvEvent&, IlvAny)
{
 manager->sameWidth(IlvTrue);
}

I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 23

usrmanager.book Page 24 Tuesday, July 28, 2009 11:41 AM
Optimizing Drawing Tasks

A special manager feature lets you perform several geometric operations and redraw only
when all the modifications are done. This is implemented by the use of the update region,
which is a region made up of invalidated rectangles.

The update region stores the appropriate regions before any modifications are carried out on
objects. It also stores the relevant regions after these modifications have been carried out for
each view.

To successfully perform an application task, you must mark the regions where relevant
objects are located as invalid, apply the function, and then invalidate the regions where the
objects involved are now placed. This mechanism is simplified by means of a set of member
functions of the IlvManager class. Regions to be updated are refreshed only when
IlvManager::reDrawViews is called, which means that refreshing the views of a
manager is done by marking regions to be redrawn in a cycle of
IlvManager::initReDraws and IlvManager::reDrawViews.

These cycles can be nested so that only the last call to the IlvManager::reDrawViews
member function actually updates the display.

The IlvManager member functions that help you optimize drawing tasks are:

◆ IlvManager::initReDraws - Marks the beginning of the drawing optimization
operation by emptying the region to update for each managed view. Once this step is
completed, direct or indirect calls to a draw directive are deferred. For every
IlvManager::initReDraws, there should be one call to
IlvManager::reDrawViews, or else a warning is issued. Calls to
IlvManager::initReDraws can be embedded so that the actual refresh takes place
only when the last call to IlvManager::reDrawViews is reached.

◆ IlvManager::invalidateRegion - Marks a region as invalid. This region will be
redrawn later. Each call to IlvManager::invalidateRegion adds the region to the
update region in every view.

◆ IlvManager::reDrawViews - Sends the drawing commands for the whole update
region. All the objects involved in previous calls to
IlvManager::invalidateRegion are then updated.

◆ IlvManager::abortReDraws - Aborts the mechanism of deferred redraws (for
example, if you need to refresh the whole screen). This function resets the update region
to empty. If needed, you should start again with an IlvManager::initReDraws call.

◆ IlvManager::isInvalidating - Returns IlTrue when the manager is in an
IlvManager::initReDraws/IlvManager::reDrawViews state.
24 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

Saving and Reading

usrmanager.book Page 25 Tuesday, July 28, 2009 11:41 AM
The successive use of these member functions is a mechanism used in the
IlvManager::applyToObject member function. In fact, the call:

is equivalent to:

The IlvManager::invalidateRegion member function works with the bounding box of
the object given in the parameter. When an operation applied to the object modifies its
bounding box, IlvManager::invalidateRegion must be called twice; once before and
once after the operation.

For example, when moving an object, you must invalidate the region where the object was
initially located and invalidate the final region so that the object can be redrawn. If the object
bounding box is not modified, only one call to IlvManager::invalidateRegion is
necessary.

Saving and Reading

Manager objects and their properties can be saved and read from particular streams. To
make it easy to save and restore a set of IlvGraphic objects, two classes are provided:

◆ IlvManagerOutputFile (a subtype of IlvOutputFile)

◆ IlvManagerInputFile (a subtype of IlvInputFile)

These two classes add only manager-specific information to the object description blocks.

The IlvManagerInputFile class reads the files that have been created using
IlvManagerOutputFile.

 manager->applyToObject(obj, func, userArg, IlvTrue);

 manager->initReDraws();
 manager->invalidateRegion(obj);
 manager->applyToObject(obj, func, userArg, IlvFalse);
 manager->invalidateRegion(obj);
 manager->reDrawViews();
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 25

usrmanager.book Page 26 Tuesday, July 28, 2009 11:41 AM
Example: Using the IlvManagerOutputFile Class

The following is an example of subtyping of the IlvOutputFile class, where the
IlvOutputFile::writeObject member function is implemented to add the manager-
specific information for each object:

New information is added before the object descriptor block is written. It indicates the layer
where the graphic object lies. If the object was not managed by the manager,
IBM ILOG Views writes the value -1 to getStream (which is not a valid layer index). The
value -1 indicates that the object should not be added to the manager object set.

The C++ code used to implement the IlvManagerInputFile::readObject member
function is shown here:

The object read is added to the manager only if its layer index is greater than or equal to 0.

void
IlvManagerOutputFile::writeObject(const IlvGraphic* object)
{
 if (getManager()->isManaged(object))
 getStream() << getManager()->getLayer(object) << IlvSpc();
 else
 getStream() << "-1 ";
 writeObjectBlock(object);
}

Note: Specialized IBM ILOG Views graphic objects called “gadgets” need the following
subclasses: IlvGadgetManagerInputFile (subclass of IlvInputFile) and
IlvGadgetManagerOutputFile (subclass of IlvOutputFile). These subclasses
handle the persistence of gadget-related properties. Subtyping these two classes is
allowed, but it is mandatory to insert the string “Gadget” in the subtyped C++ class
name.

IlvGraphic*
IlvManagerInputFile::readObject()
{
 IlvGraphic* object;
 int layer;
 getStream() >> layer;
 IlUInt dummyIndex;
 IlvGraphic* object = readObjectBlock(dummyIndex);
 if (object && (layer >= 0))
 getManager()->addObject(object, IlFalse, layer);
 return object;
}

26 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

C H A P T E R

usrmanager.book Page 27 Tuesday, July 28, 2009 11:41 AM
2

Manager Event Handling

This section describes how managers handle events.

An event can be handled by different types of manager components:

◆ Event Hooks

◆ View Interactors

◆ Object Interactors

◆ Accelerators

First, the mechanism for handling events is described. Then, the different manager
components that handle events are presented.

The Event Handling Mechanism

The mechanism used by a manager when it receives an event is as follows:

1. It sends the event to the list of event hooks.

2. If none of the event hooks consume the event, it is sent to the interactor associated with
the view that received the event.
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 27

usrmanager.book Page 28 Tuesday, July 28, 2009 11:41 AM
3. If there is no view interactor, the manager looks for the top most graphic object at the
event position and sends the event to its object interactor.

4. If there is no object or no object interactor, or if the object interactor does not handle the
event, it is dispatched to the manager accelerators.

Event Hooks

Event hooks are instances of the IlvManagerEventHook class. They are used to monitor
or filter events occurring in all the views associated with the manager. Each manager has a
list of event hooks. They can be added or removed from the list using the following
IlvManager member functions:

◆ IlvManager::installEventHook

◆ IlvManager::removeEventHook

Event hooks are the first ones to get hold of the events occurring in a manager.

When it receives an event, the manager calls the handleEvent member function of each
event hook one after the other. If one of them returns IlTrue, the subsequent event hooks
are not called and the event is considered to be consumed. If none of the event hooks
consume the event, it is dispatched further to interactors or accelerators.

View Interactors

The role of the IlvManagerViewInteractor class is to handle complex sequences of user
events to be treated by a particular IlvView associated with a manager.

Setting or removing an interactor on a view can be done using the following IlvManager
member functions:

◆ IlvManager::getInteractor

◆ IlvManager::setInteractor

◆ IlvManager::removeInteractor

In this section, the predefined view interactors are first listed and then two examples
showing how to implement view interactors are presented, as follows:

◆ Predefined View Interactors

◆ Example: Implementing the IlvDragRectangleInteractor Class

◆ Example of an Extension: IlvMoveInteractor
28 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

View Interactors

usrmanager.book Page 29 Tuesday, July 28, 2009 11:41 AM
Predefined View Interactors

Predefined interactors obtained by instantiating subclasses derived from the
IlvDragRectangleInteractor class are listed here:

◆ IlvDragRectangleInteractor

Lets the user draw a rectangle that can be used for any purpose by subclasses (see section
Example: Implementing the IlvDragRectangleInteractor Class for an example showing
how to use this interactor).

Include <ilviews/manager/dragrin.h>

◆ IlvMakeRectangleInteractor

Allows you to create IlvRectangle objects.

Include <ilviews/manager/mkrectin.h>

◆ IlvMakeFilledRectangleInteractor

Allows you to create IlvFilledRectangle objects.

Include <ilviews/manager/mkrectin.h>

◆ IlvMakeReliefRectangleInteractor

Allows you to create IlvReliefRectangle objects.

Include <ilviews/manager/mkrelfin.h>

◆ IlvMakeReliefDiamondInteractor

Allows you to create IlvReliefDiamond objects.

Include <ilviews/manager/mkrelfin.h>

◆ IlvMakeRoundRectangleInteractor

Allows you to create IlvRoundRectangle objects.

Include <ilviews/manager/mkround.h>.

◆ IlvMakeFilledRoundRectangleInteractor

Allows you to create IlvFilledRoundRectangle objects.

Include <ilviews/manager/mkround.h>

◆ IlvMakeEllipseInteractor

Allows you to create IlvEllipse objects.

Include <ilviews/manager/mkarcin.h>

◆ IlvMakeFilledEllipseInteractor
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 29

usrmanager.book Page 30 Tuesday, July 28, 2009 11:41 AM
Allows you to create IlvFilledEllipse objects.

Include <ilviews/manager/mkarcin.h>

◆ IlvMakeZoomInteractor

Handles the zooming command. You draw a rectangular region into which you wish to
zoom.

Include <ilviews/manager/geointer.h>

◆ IlvMakeUnZoomInteractor

Handles the unzooming command. You draw a rectangular region into which the area
you are watching is unzoomed.

Include <ilviews/manager/geointer.h>

◆ IlvMakeBitmapInteractor

Allows you to create a bitmap from the view. You drag a rectangle and an IlvIcon
object is created from the contents of the rectangle selected.

Include <ilviews/manager/utilint.h>

◆ IlvSelectInteractor

Allows you to select, translate, and resize graphic objects.

Include <ilviews/manager/selinter.h>

◆ IlvMakeLineInteractor

Allows you to create IlvLine objects. Two derived classes are defined to create
different types of lines: IlvMakeArrowLineInteractor and
IlvMakeReliefLineInteractor.

Include <ilviews/manager/mklinein.h>

Example: Implementing the IlvDragRectangleInteractor Class

This example demonstrates how the IlvDragRectangleInteractor member functions
are implemented. The example can be used as a starting point to create your own interactor.

The IlvDragRectangleInteractor interactor allows the user to designate a rectangular
region in a view. This rectangle can then be used for various purposes in derived interactors;
for instance, a subclass dedicated to the creation of a graphic object can use the rectangle to
define the bounding box of the new object.
30 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

View Interactors

usrmanager.book Page 31 Tuesday, July 28, 2009 11:41 AM
Here is a slightly revised version of the synopsis of this class:

Three protected fields are defined:

◆ _xor_rectangle - Holds the coordinates of the rectangle being dragged by the user.

◆ _firstx and _firsty - The coordinates of the first button-down event received. This
point is used as the start of the selected rectangle. It can be any one of the 4 corners
depending on the direction in which the user drags the rectangle.

The constructor does nothing and the initialization is done by the doIt member function.

Also, four member functions of the IlvManagerViewInteractor class are overloaded:

◆ abort Member Function

◆ handleEvent Member Function

◆ drawGhost Member Function

◆ doIt Member Function

abort Member Function

This member function is called to cancel the interaction. The rectangle width is set to 0.

void
IlvDragRectangleInteractor::abort()
{
 _xor_rectangle.w(0);
}

handleEvent Member Function

The following shows a simplified version of the
IlvDragRectangleInteractor::handleEvent member function.

void

class IlvDragRectangleInteractor
: public IlvManagerViewInteractor
{
public:
 IlvDragRectangleInteractor(IlvManager* manager, IlvView* view)
 : IlvManagerViewInteractor(manager, view) {}

 virtual void handleEvent(IlvEvent& event);
 virtual void drawGhost();
 virtual void doIt(IlvRect&);
 virtual void abort();

 IlvRect& getRectangle();
protected:
 IlvRect _xor_rectangle;
 IlvPos _firstx;
 IlvPos _firsty;
};
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 31

usrmanager.book Page 32 Tuesday, July 28, 2009 11:41 AM
IlvDragRectangleInteractor::handleEvent(IlvEvent& event)
{
 switch(event.type()) {
 case IlvKeyUp:
 case IlvKeyDown:
 getManager()->shortCut(event, getView());
 break;
 case IlvButtonDown:
 if (event.button() != IlvLeftButton)
 getManager()->shortCut(event, getView());
 else {
 _xor_rectangle.w(0);
 IlvPoint p(event.x(), event.y());
 if (getTransformer()) getTransformer()->inverse(p);
 _firstx = p.x();
 _firsty = p.y();
 }
 break;
 case IlvButtonDragged:
 if ((event.button() != IlvLeftButton))
 getManager()->shortCut(event, getView());
 else {
 if (_xor_rectangle.w()) drawGhost();
 IlvPoint p(event.x(), event.y());
 if (getTransformer()) getTransformer()->inverse(p);
 _xor_rectangle.move(IlvMin(_firstx, p.x()),
 IlvMin(_firsty, p.y()));
 _xor_rectangle.resize((IlvDim)(IlvMax(_firstx, p.x())
 -_xor_rectangle.x()),
 (IlvDim)(IlvMax(_firsty, p.y())
 -_xor_rectangle.y()));
 ensureVisible(IlvPoint(event.x(), event.y()));
 drawGhost();
 }
 break;
 case IlvButtonUp:
 if (event.button() != IlvLeftButton)
 getManager()->shortCut(event, getView());
 else {
 if (!_xor_rectangle.w()) return;
 drawGhost();
 IlvRect rect(_xor_rectangle);
 _xor_rectangle.w(0);
 doIt(rect);
 }
 break;
 }

Here, only button events are managed. Other events are discarded or sent to the manager for
possible dispatch to accelerators by means of a call to the IlvManager::shortCut
member function.

The following types of events are handled by the handleEvent member function:

◆ Keyboard Events

◆ Button-Down Events
32 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

View Interactors

usrmanager.book Page 33 Tuesday, July 28, 2009 11:41 AM
◆ Button-Dragged Events

◆ Button-Up Events

Keyboard Events
You want to ignore these events. The best way to do this without losing the information
conveyed by the event is to bypass the natural view interactor process and send the event
back to the manager where it might match an accelerator:

Button-Down Events

The mouse position is stored in _firstx and _firsty and the rectangle is reset. This is
done by setting the width of the rectangle to 0. Then, the coordinates are stored in the object
coordinate system:

if (event.button() != IlvLeftButton)
 getManager()->shortCut(event, getView());
else {
 _xor_rectangle.w(0);
 IlvPoint p(event.x(), event.y());
 if (getTransformer()) getTransformer()->inverse(p);
 _firstx = p.x();
 _firsty = p.y();
}

Button-Dragged Events
case IlvButtonDragged:
...
break;

If _xor_rectangle is valid, the rectangle has been drawn with drawGhost and has to be
erased:

if (_xor_rectangle.w()) drawGhost();

The new rectangle is computed in the object coordinate system:

case IlvKeyUp:
case IlvKeyDown:
 getManager()->shortCut(event, getView());
 break;

case IlvButtonDown:
...
break;

IlvPoint p(event.x(), event.y());
if (getTransformer()) getTransformer()->inverse(p);
_xor_rectangle.move(IlvMin(_firstx, p.x()),
 IlvMin(_firsty, p.y()));
_xor_rectangle.resize((IlvDim)(IlvMax(_firstx, p.x())
 -_xor_rectangle.x()),
 (IlvDim)(IlvMax(_firsty, p.y())
 -_xor_rectangle.y()));
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 33

usrmanager.book Page 34 Tuesday, July 28, 2009 11:41 AM
The following ensures that the dragged point remains on the screen. When the view is in a
scrolled view, you can change the view coordinates to keep the mouse position visible:

ensureVisible(IlvPoint(event.x(), event.y()));

The new rectangle is drawn:

drawGhost();

Button-Up Events
A button-up event signifies the end of the interaction; the rectangle has been defined:

The previous ghost image is erased:

The current rectangle is saved and the interactor is reset:

The doIt virtual member function is called. Subclasses overload this method to perform
their final task using the rectangle provided as the parameter:

drawGhost Member Function

The IlvDragRectangleInteractor::drawGhost member function draws a ghost
image of _xor_rectangle:

Because _xor_rectangle is expressed in the object coordinate system, the transformer of
the view must be applied before drawing the rectangle.

doIt Member Function

The IlvDragRectangleInteractor::doIt member function does nothing; it is
designed to be overloaded to perform actions once the user has selected a rectangular region.

case IlvButtonUp:
...
break;

drawGhost();

IlvRect rect(_xor_rectangle);
_xor_rectangle.w(0);

doIt(rect);

void
IlvDragRectangleInteractor::drawGhost()
{
 IlvManager* mgr = getManager();
 if (_xor_rectangle.w()) {
 IlvRect rect = _xor_rectangle;
 if(getTransformer()) getTransformer()->apply(rect);

 getView()->drawRectangle(mgr->getPalette(),rect);
 }
}

34 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

View Interactors

usrmanager.book Page 35 Tuesday, July 28, 2009 11:41 AM
Two examples of how to overload this member function are presented:

◆ The first example shows how to create a new IlvRectangle object with the rectangular
region (the same way as the IlvMakeRectangleInteractor class does).

◆ The second example shows how to select all the objects located in the rectangular region.
This illustrates how to manipulate the selection within a manager without using the
select interactor.

Example 1: IlvMakeRectangleInteractor
Here is a simplified version of the IlvMakeRectangleInteractor::doIt member
function, derived from the IlvDragRectangleInteractor class. This member function
deselects all the objects of the manager, creates an IlvRectangle instance, adds it to the
manager, and sets the selection on it.

Example 2: Selector
This example shows how to implement a simple interactor to select graphic objects. The
IlvDragRectangleInteractor::doIt member function is overloaded in order to select
every object located within the region the user has created.

The SelectAnObject function is defined. This is called by an application member
function of the manager. The manager is available in the manager parameter:

The doIt member function calls SelectAnObject for each object located in the
designated rectangle. To find these objects, call the manager member function
applyInside:

void
IlvMakeRectangleInteractor::doIt(IlvRect& rect)
{
 IlvGraphic* obj = new IlvRectangle(getDisplay(), rect);
 getManager()->deSelect();
 getManager()->addObject(obj);
 getManager()->makeSelected(obj);
}
IlvGraphic* obj = new IlvRectangle(getDisplay(), rect);

static void
SelectAnObject(IlvGraphic* object, IlvAny manager)
{
 ((IlvManager*)manager)->setSelected(object, IlTrue);
}

void
MyRectangleSelector::doIt(IlvRect& rect)
{
 getManager()->applyInside(rect, SelectAnObject, (IlvAny)getManager());
}

I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 35

usrmanager.book Page 36 Tuesday, July 28, 2009 11:41 AM
Example of an Extension: IlvMoveInteractor

This is a complete example of a direct subtype of the IlvManagerViewInteractor class.
It allows the user to move a graphic object to another location by dragging it with the mouse.
Here is the declaration of this class (it can also be found in the header file <ilviews/
manager/movinter.h>):

This interactor lets you select and deselect objects by clicking on them with the left mouse
button and the Shift key pressed. You can move an object or a set of selected objects but you
cannot resize them.

The following protected fields are used in this class:

◆ _deltax, _deltay - Stores the distance between the mouse and the top-left corner of
the objects being moved.

◆ _bbox - Stores the bounding box of the objects being moved.

◆ _move - Keeps a pointer to the object being moved.

◆ _xor_rectangle - Stores the rectangle dragged to mark a region.

◆ _wasSelected - Keeps a Boolean value indicating whether the designated object was
selected before it was moved. This information is required because the object is selected
when you start to move it. There are two different cases in this interactor, depending on

class IlvMoveInteractor
: public IlvManagerViewInteractor
{
public:
 IlvMoveInteractor(IlvManager* manager,
 IlvView* view)
 : IlvManagerViewInteractor(manager, view),

_move(0) {}

 virtual void handleEvent(IlvEvent& event);
 virtual void handleExpose(IlvRegion* clip = 0);
 virtual void drawGhost();
 void drawGhost(const IlvRect&,
 IlvRegion* clip = 0);
 void drawGhost(IlvGraphic*, IlvRegion* clip = 0);
 virtual void doIt(const IlvPoint&);
 const IlvRect& getRectangle() const {return _xor_rectangle;}
protected:
 IlvPos _deltax, _deltay;
 IlvRect _bbox;
 IlvGraphic* _move;
 IlvRect _xor_rectangle;
 IlBoolean _wasSelected;
 void handleButtonDown(const IlvPoint&);
 void handleButtonDragged(const IlvPoint&);
 void handleButtonUp(const IlvPoint&);
};
36 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

View Interactors

usrmanager.book Page 37 Tuesday, July 28, 2009 11:41 AM
whether one or more object is being moved. If more than one object is moved, a moving
rectangle that encloses the bounding boxes of these objects is displayed. Otherwise, the
moving objects themselves are displayed.

The following member function are described in this section:

◆ handleEvent Member Function

◆ drawGhost Member Function

◆ drawGhost for a Rectangle

◆ drawGhost for an Object

◆ doIt Member Function

◆ handleButtonDown Member Function

◆ handleButtonDragged Member Function

◆ handleButtonUp Member Function

handleEvent Member Function

The following code focuses on mouse events. All other events are dispatched to accelerators
by a call to IlvManager::shortCut, but only if an object is not being moved at this point.
This is because some accelerators might remove the object being worked on, which can be
dangerous:

void
IlvMoveInteractor::handleEvent(IlvEvent& event)
{
 switch (event.type()) {
 case IlvButtonDown:
 _xor_rectangle.w(0);
 _move = 0;
 if (event.modifiers() & (IlvLockModifier | IlvNumModifier)) {
 getManager()->getDisplay()->bell();
 return;
 }
 if (event.button() != IlvLeftButton) {
 getManager()->shortCut(event, getView());
 return;
 }
 if (!event.modifiers())
 handleButtonDown(IlvPoint(event.x(), event.y()));
 else {
 IlvManager* manager = getManager();
 if (event.modifiers() & IlvShiftModifier) {
 IlvPoint p(event.x(), event.y());
 IlvGraphic* obj = manager->lastContains (p,getView());
 IlvDrawSelection* sel = 0;
 if (obj) sel = getSelection(obj);
 if (!sel && obj && manager()->isSelectable(obj)) {
 manager->setSelected(!manager->isSelected(obj));
 }
 } else
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 37

usrmanager.book Page 38 Tuesday, July 28, 2009 11:41 AM
 manager->shortCut(event, getView());
 }
 break;
 case IlvButtonUp:
 if (event.button() == IlvLeftButton)
 handleButtonUp(IlvPoint(event.x(), event.y()));
 else getManager()->shortCut(event, getView());
 break;
 case IlvButtonDragged:
 if (event.modifiers() == IlvLeftButton){
 IlvPoint p(event.x(), event.y());
 handleButtonDragged(p);
 }
 break;
 default:
 if (!_move)
 getManager()->shortCut(event, getView());
 break;
 }

The following types of events are handled by the handleEvent member function:

◆ Button-Down Events

◆ Button-Up Events

◆ Button-Dragged Events

Button-Down Events
The interactor is initialized by setting _move and _xor_rectangle:

Only the left button is handled. If the event involves another mouse button, the event is
ignored and dispatched to manager accelerators:

The handleButtonDown member function is called if there is no event modifier:

_xor_rectangle.w(0);
_move = 0;

if (event.button() != IlvLeftButton) {
 getManager()->shortCut(event, getView());
 return;
}

if (!event.modifiers())
 handleButtonDown(IlvPoint(event.x(), event.y()));
38 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

View Interactors

usrmanager.book Page 39 Tuesday, July 28, 2009 11:41 AM
If the Shift modifier is set, the selection state of the object pointed to by the mouse is
toggled:

Button-Up Events
If the event comes from the left button, handleButtonUp is called. Otherwise, the event is
dispatched to accelerators.

Button-Dragged Events
The handleButtonDragged member function is called, but only if the event comes from
the left button.

drawGhost Member Function

This member function is split in three parts: the common part, which is the entry point from
the member function handleEvent, and two others, depending on the type of translation
being done.

If there is only one selected object, a specific drawGhost is called for this object.
Otherwise, another drawGhost function that handles a rectangle is called:

if (event.modifiers() & IlvShiftModifier) {
 IlvPoint p(event.x(), event.y());
 IlvGraphic* obj = manager->lastContains(p, getView());
 IlvDrawSelection* sel = 0;
 if (obj) sel = getSelection(obj);
 if (!sel && obj && manager()->isSelectable(obj)) {
 manager->setSelected(!manager->isSelected(obj));
 }
}

case IlvButtonUp:
 if (event.button() == IlvLeftButton)
 handleButtonUp(IlvPoint(event.x(), event.y()));
 else getManager()->shortCut(event, getView());
 break;

case IlvButtonDragged:
 if (event.modifiers() == IlvLeftButton){
 IlvPoint p(event.x(), event.y());
 handleButtonDragged(p);
 }
 break;

void
IlvMoveInteractor::drawGhost()
{
 if (!_xor_rectangle.w()) return;
 if (manager()->numberOfSelections() == 1)
 drawGhost(_move);
 else
 drawGhost(_xor_rectangle);
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 39

usrmanager.book Page 40 Tuesday, July 28, 2009 11:41 AM
drawGhost for a Rectangle

This member function is called if there is more than one selected object. It displays the
bounding box of all the selected objects being moved in the view. The palette of the
IlvManager object is used:

drawGhost for an Object

This member function is called if there is only one selected object. It displays the object at
its new coordinates by calling the draw member function after its palette has been set to XOR
mode. The new coordinates are computed from the difference between the coordinates of the
rectangle being dragged and the coordinates of the original bounding box of the object:

doIt Member Function

The doIt member function must apply the translation to all selected objects. The delta
parameter gives the translation vector expressed in the view coordinate system so it must be
converted to the object coordinate system. Then the objects must be translated. This cannot
be done by calling the IlvGraphic member functions directly; it must be done by the

void
IlvMoveInteractor::drawGhost(const IlvRect& rect, IlvRegion* clip)
{
 if (!rect.w()) return;
 IlvManager* manager = getManager();
 if (clip) manager->getPalette()->setClip(clip);

 getView()->drawRectangle(manager->getPalette(),rect);
 if (clip) manager->getPalette()->setClip();
}

void
IlvMoveInteractor::drawGhost(IlvGraphic* obj, IlvRegion* clip)
{
 if (!getManager()->isMoveable(obj) || !_xor_rectangle.w())
 return;
 IlvPos tempdx, tempdy;
 if (getTransformer()) {
 IlvRect r1(_xor_rectangle);
 IlvRect r2(_bbox);
 getTransformer()->inverse(r1);
 getTransformer()->inverse(r2);
 tempdx = r1.x() - r2.x();
 tempdy = r1.y() - r2.y();
 } else {
 tempdx = _xor_rectangle.x() - _bbox.x();
 tempdy = _xor_rectangle.y() - _bbox.y();
 }
 obj->translate(tempdx, tempdy);
 obj->setMode(IlvModeXor);
 obj->draw(getView(), getTransformer(), clip);
 obj->setMode(IlvModeSet);
 obj->translate(-tempdx, -tempdy);
}

40 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

View Interactors

usrmanager.book Page 41 Tuesday, July 28, 2009 11:41 AM
manager. Here, IlvManager::applyToSelections calls TranslateObject for each
selected object:

handleButtonDown Member Function

The handleButtonDown member function selects the object to be moved, storing its
previous state in _wasSelected. Then, it computes the _bbox field by means of a call to
the ComputeBBoxSelections function. This function returns in _bbox the bounding box
of all the selected objects:

static void
ComputeBBoxSelections(IlvManager* manager, IlvRect& bbox, IlvView* view)
{
 bbox.resize(0, 0);
 IlUInt nbselections;
 IlvGraphic** objs = manager->getSelections(nbselections);
 IlvRect rect;
 IlvTransformer* t = manager->getTransformer(view);
 for (IlUInt i=0; i < nbselections; i++) {
 objs[i]->boundingBox(rect, t);
 bbox.add(rect);
 }
}
void
IlvMoveInteractor::handleButtonDown(const IlvPoint& p)
{
 IlvGraphic* obj = getManager()->lastContains(p, getView());
 if (!obj) return;
 IlvDrawSelection* sel = manager()->getSelection(obj);
 if (!sel && getManager()->isSelectable(obj)) {
 getManager()->deSelect();
 getManager()->makeSelected(obj);
 _wasSelected = IlFalse;
 sel = getManager()->getSelection(obj);
 } else
 _wasSelected = IlTrue;

void
TranslateObject(IlvGraphic* object, IlvAny argDelta)
{
 IlvPoint* delta = (IlvPoint*)argDelta;
 object->translate(delta.x(), delta.y());
}

void
IlvMoveInteractor::doIt(const IlvPoint& delta)
{
 IlvPoint origin(0, 0),
 tdelta(delta);
 if (getTransformer()) {
 getTransformer()->inverse(origin);
 getTransformer()->inverse(tdelta);
 }
 IlvPoint dp(tdelta.x()-origin.x(),
 tdelta.y()-origin.y());
 getManager->applyToSelections(TranslateObject, &dp);
}

I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 41

usrmanager.book Page 42 Tuesday, July 28, 2009 11:41 AM
 if (sel) {
 ComputeBBoxSelections(getManager(), _bbox, getView());
 _move = obj;
 _deltax = _bbox.x() - p.x();
 _deltay = _bbox.y() - p.y();
 }
}

The ComputeBBoxSelections section is described in more detail.

The first part initializes the result to the empty rectangle, and then queries the manager for
all the selected objects. nbselections is the number of selected objects in the array objs:

The next part starts a loop to scan every object:

This next part reads the bounding box of each object, transformed in the view coordinate
system, and adds it to the result:

handleButtonDragged Member Function

If there is a moving object and if it is moveable, the dragging position is snapped to the
manager grid (if one exists) and a new _xor_rectangle is computed. Then, the member
function ensureVisible makes sure that the point the user drags will remain on the visible
part of the view:

void
IlvMoveInteractor::handleButtonDragged(const IlvPoint& point)
{
 if (!_move) return;
 IlvPoint p = point;
 IlvRect rect;
 if (getManager()->isMoveable(_move)) {
 if (_xor_rectangle.w()) drawGhost();
 p.translate(_deltax, _deltay);
 getManager()->snapToGrid(getView(), p);
 p.translate(-_deltax, -_deltay);
 _xor_rectangle.move(p.x() + _deltax, p.y() + _deltay);
 _xor_rectangle.resize(_bbox.w(), _bbox.h());
 ensureVisible(p);
 drawGhost();
 }
}

bbox.resize(0, 0);
IlUInt nbselections;
IlvGraphic** objs = manager->getSelections(nbselections);

IlvRect rect;
for (IlUInt i=0; i < nbselections; i++) {

objs[i]->boundingBox(rect, t);
for (IlUInt i=0; i < nbselections; i++) {
 objs[i]->boundingBox(rect, t);
 bbox.add(rect);
}

42 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

Object Interactors

usrmanager.book Page 43 Tuesday, July 28, 2009 11:41 AM
handleButtonUp Member Function

If there are objects to move, they are translated by calling the member function doIt.
Otherwise, the last designated object is deselected:

Object Interactors

The IlvManagerObjectInteractor class is deprecated since IBM ILOG Views 4.0.

For a description of how to use object interactors, see section Managing Events: Object
Interactors in Chapter 8, IlvContainer: The Graphic Placeholder Class of the
IBM ILOG Views Foundation User’s Manual.

Accelerators

An accelerator is a simple binding of an event description with an application function called
the accelerator action. Accelerators provide a quick way of attaching a behavior to a
manager, but the interaction is basic; it only involves one event (for instance, a key press or
a mouse click).

An accelerator is not bound to a particular view or graphic object; it can be triggered in any
view or any object of the manager. However, accelerators come last in the manager event
dispatching mechanism. They can only be activated if event hooks, view interactors, and
object interactors have not intercepted the event.

The accelerator action must be defined as an IlvManagerAcceleratorAction:

typedef void (* IlvManagerAcceleratorAction)(IlvManager*, IlvView*,
 IlvEvent&, IlvAny);

void
IlvMoveInteractor::handleButtonUp(const IlvPoint&)
{
 if (!_move) return;
 IlvDrawSelection* sel = getManager()->getSelection(_move);
 if (_move && _xor_rectangle.w() && sel) {
 drawGhost();
 IlvDeltaPoint delta(_xor_rectangle.x() - _bbox.x(),
 _xor_rectangle.y() - _bbox.y());
 _xor_rectangle.w(0);
 _move = 0;
 doIt(delta);
 } else {
 _xor_rectangle.w(0);
 _move = 0;
 if (sel && _wasSelected) getManager()->deSelect();
 }
}

I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 43

usrmanager.book Page 44 Tuesday, July 28, 2009 11:41 AM
The following IlvManager member functions allow you to manipulate manager
accelerators:

◆ IlvManager::addAccelerator

◆ IlvManager::getAccelerator

◆ IlvManager::removeAccelerator

◆ IlvManager::shortCut

The IlvManager::shortCut member function is called to dispatch an event to
accelerators. If an accelerator event description matches the event to dispatch, the
accelerator action is called.

Example: Changing the Key Assigned to an Accelerator

The code below assigns the Ctrl-F key instead of ‘f’ to the action
IlvManager::fitTransformerToContents.

Predefined Manager Accelerators

Managers have built-in accelerators, which are listed below. You can disconnect them by
setting the accelerators parameter of the manager constructor to IlFalse.

 IlvManagerAcceleratorAction action;
 IlvAny arg;
 if (manager->getAccelerator(&action, &arg, IlvKeyUp, ‘f’))
 {
 manager->addAccelerator(action,
 IlvKeyUp,
 IlvCtrlChar(‘f’),
 0,
 arg);
 manager->removeAccelerator(IlvKeyUp, ‘f’);
 }

Table 2.1 Predefined Manager Accelerators

Event Type Key or Button Action

IlvKeyUp f Modifies the zoom factor of the view so that all
objects can be seen (f for fit).

IlvKeyUp i Sets the transformer of this view to the identity
matrix.

IlvKeyUp p Moves selected objects to a higher layer.

IlvKeyUp P Moves selected objects to a lower layer.
44 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

Accelerators

usrmanager.book Page 45 Tuesday, July 28, 2009 11:41 AM
IlvKeyUp Ctrl-D Duplicates all selected objects and moves the
copied objects slightly.

IlvKeyUp Ctrl-A Selects all objects.

IlvKeyUp Ctrl-S Selects the object designated by the pointing
device.

IlvKeyUp Del Deletes all selected objects.

IlvKeyDown r Re-executes the last command.

IlvKeyDown u Undoes the last command.

IlvKeyUp Ctrl-G Groups the selected objects into an
IlvGraphicSet.

IlvKeyUp Ctrl-U Ungroups an IlvGraphicSet.

IlvKeyDown Right Translates the view left.

IlvKeyDown Left Translates the view right.

IlvKeyDown Down Translates the view up.

IlvKeyDown Up Translates the view down.

IlvKeyUp Z Zooms into the view.

IlvKeyUp U Zooms out of the view.

IlvKeyUp Ctrl-B Deselects all objects.

IlvKeyUp Ctrl-T Inverts all selected objects.

IlvKeyUp Y Flips the selected objects horizontally.

IlvKeyUp y Flips the selected objects vertically.

IlvKeyUp . (dot) Flips the selected objects both horizontally and
vertically.

IlvKeyUp Ctrl-C Copies selected objects on the clipboard.

IlvKeyDown Ctrl-V Inserts objects from the clipboard.

IlvKeyUp Ctrl-X Deletes selected objects but saves them on the
clipboard.

Table 2.1 Predefined Manager Accelerators (Continued)

Event Type Key or Button Action
I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W 45

usrmanager.book Page 46 Tuesday, July 28, 2009 11:41 AM
By means of calls to IlvManager::getAccelerator, you can reassign these keys to fit
your own application needs. You can also add your own interactors to this primary list,
remove any of them, or overload them so they act differently.

IlvKeyDown R Rotates the view 90 degrees counter-clockwise.

IlvKeyDown C Centers the view on the indicated point.

IlvKeyUp T Encapsulates relevant object in
IlvTransformer graphic(s).

Table 2.1 Predefined Manager Accelerators (Continued)

Event Type Key or Button Action
46 I B M I L O G V I E W S V 5 . 3 — D O C U M E N T A T I O N O V E R V I E W

C H A P T E R

usrmanager.book Page 47 Tuesday, July 28, 2009 11:41 AM
3

Advanced Manager Features

This section describes more advanced features of managers. These are as follows:

◆ Observers

◆ View Hooks

◆ Manager Grid

◆ Undoing and Redoing Actions

Observers

Applications can be notified when the state of a manager changes. This notification
mechanism is based on IlvManagerObserver, a subclass of IlvObserver. Observers are
created by the application and set on the manager. The manager is in charge of sending
messages to the observer under certain circumstances called reasons.

Notification messages are classified by their reason into different categories. An observer
can choose to receive messages of one or several categories by setting its interest mask. The
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 47

usrmanager.book Page 48 Tuesday, July 28, 2009 11:41 AM
manager will only send a message to the observer if the notification reason belongs to a
category of the observer interest mask. These categories are shown in Table 3.1:

An application wishing to get notification messages must define a subclass of
IlvManagerObserver and overload the virtual member function update. In this member
function, the observer receives an instance of IlvManagerMessage, or a subclass,
containing the reason and additional relevant information about the notification.

General Notifications

This category concerns general notifications on the managers.

Interest mask: IlvMgrMsgGeneralMask

◆ Delete the manager

Reason: IlvMgrMsgDelete

Message type: IlvManagerMessage

Manager View Notifications

This category concerns notifications on operations performed on manager views.

Interest mask: IlvMgrMsgViewMask

◆ Add a view to the manager

Reason: IlvMgrMsgAddView

Message type: IlvManagerAddViewMessage

◆ Remove a view from the manager

Reason: IlvMgrMsgRemoveView

Message type: IlvManagerRemoveViewMessage

◆ Set an interactor on a view

Table 3.1 Notification Categories

Category Description Mask

General IlvMgrMsgGeneralMask

Manager view IlvMgrMsgViewMask

Manager layer IlvMgrMsgLayerMask

Manager contents IlvMgrMsgContentsMask

Object geometry IlvMgrMsgObjectGeometryMask
48 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

Observers

usrmanager.book Page 49 Tuesday, July 28, 2009 11:41 AM
Reason: IlvMgrMsgSetInteractor

Message type: IlvManagerSetInteractorMessage

◆ Set a transformer on a view

Reason: IlvMgrMsgSetTransformer

Message type: IlvManagerSetTransformerMessage

Manager Layer Notifications

This category concerns notifications on operations performed on manager layers.

Interest mask: IlvMgrMsgLayerMask

◆ Add a layer to the manager

Reason: IlvMgrMsgAddLayer

Message type: IlvManagerLayerMessage

◆ Remove a layer from the manager

Reason: IlvMgrMsgRemoveLayer

Message type: IlvManagerLayerMessage

◆ Change the index of a layer

Reason: IlvMgrMsgMoveLayer

Message type: IlvManagerMoveLayerMessage

◆ Swap indexes between two layers

Reason: IlvMgrMsgSwapLayer

Message type: IlvManagerSwapLayerMessage

◆ Set the name of a layer

Reason: IlvMgrMsgLayerName

Message type: IlvManagerLayerNameMessage

◆ Set the visibility of a layer

Reason: IlvMgrMsgLayerVisibility

Message type: IlvManagerLayerVisibilityMessage

◆ Set the selectabililty of a layer

Reason: IlvMgrMsgLayerSelectability

Message type: IlvManagerLayerMessage
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 49

usrmanager.book Page 50 Tuesday, July 28, 2009 11:41 AM
Manager Contents Notifications

This category concerns notifications on the changes in the contents of managers.

Interest mask: IlvMgrMsgContentsMask

◆ Add a graphic object to the manager

Reason: IlvMgrMsgAddObject

Message type: IlvManagerContentsMessage

◆ Remove a graphic object from the manager

Reason: IlvMgrMsgRemoveObject

Message type: IlvManagerContentsMessage

◆ Set the layer of a graphic object

Reason: IlvMgrMsgObjectLayer

Message type: IlvManagerObjectLayerMessage

Graphic Object Geometry Notifications

This category concerns notifications on a change of geometry of the objects (for example,
move, resize, and rotate).

Interest mask: IlvMgrMsgObjectGeometryMask

◆ Change the geometry of a graphic object

Reason: IlvMgrMsgObjectGeometry

Message type: IlvManagerObjectGeometryMessage

Example

Here is the implementation of an observer that receives notifications on adding or removing
layers and views.

class MyManagerObserver
: public IlvManagerObserver
{
public:
 MyManagerObserver(IlvManager* manager)
 : IlvManagerObserver(manager,
 IlvMgrMsgLayerMask | IlvMgrMsgViewMask)
 {}
 virtual void update(IlvObservable* o, IlvAny arg);
};
50 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

View Hooks

usrmanager.book Page 51 Tuesday, July 28, 2009 11:41 AM
The update member function:

To attach the observer to the manager:

MyManagerObserver* observer = new MyManagerObserver(manager);

View Hooks

Manager view hooks are part of a mechanism allowing the application to be notified when
certain actions are performed on or by the manager. This can be used for various reasons
such as monitoring the contents of a manager, performing additional drawings when the
manager redraws its graphic objects, or taking an action when the transformer of a manager
view changes.

This section is divided as follows:

◆ Manager View Hooks

◆ Example: Monitoring the Number of Objects in a Manager

◆ Example: Maintaining a Scale Displayed With No Transformation

void MyManagerObserver::update(IlvObservable* obs, IlvAny arg)
{
 IlvManager* manager = ((IlvManagerObservable*)obs)->getManager();
 switch(((IlvManagerMessage*) arg)->_reason) {
 // __ Notification on manager view
 case IlvMgrMsgAddView:
 IlvPrint("Add view notification");
 break;
 case IlvMgrMsgRemoveView:
 IlvPrint("Remove view notification");
 break;
 // __ Notification on manager layer
 case IlvMgrMsgAddLayer:
 IlvPrint("Add layer notification: %d",
 ((IlvManagerLayerMessage*)arg)->getLayer());
 break;
 case IlvMgrMsgRemoveLayer:
 IlvPrint("Remove layer notification: %d",
 ((IlvManagerLayerMessage*)arg)->getLayer());
 break;
 default:
 IlvPrint("Unhandled notification");
 break;
 }
}

Note: Another notification mechanism is described in section Observers.
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 51

usrmanager.book Page 52 Tuesday, July 28, 2009 11:41 AM
Manager View Hooks

A manager view hook is an instance of the IlvManagerViewHook class. To be active, it
must be associated with a manager view. Each manager view handles a list of view hooks.
To connect and disconnect view hooks from a manager view, use the following
IlvManager member functions:

◆ IlvManager::installViewHook

◆ IlvManager::removeViewHook

The IlvManagerViewHook class has a number of virtual member functions that are
automatically called by the manager when certain predefined operations occur. Here is the
list of these member functions and the circumstances under which they are called:

◆ IlvManagerViewHook::beforeDraw

Called before the manager draws in the manager view. Applications often overload this
member function to perform additional drawings before the manager displays its graphic
objects.

◆ IlvManagerViewHook::afterDraw

Called after the manager has drawn in the manager view. Applications often overload
this member function to perform additional drawings on top of the graphic objects
displayed by the manager.

◆ IlvManagerViewHook::afterExpose

Called after the manager has received an Expose event in the view.

◆ IlvManagerViewHook::interactorChanged

Called when the interactor of the manager view changes.

◆ IlvManagerViewHook::transformerChanged

Called when the transformer of the manager view changes.

◆ IlvManagerViewHook::viewResized

Called when the manager view is resized.

◆ IlvManagerViewHook::viewRemoved

Called when the manager view is detached from the manager.

◆ IlvManagerViewHook::contentsChanged

Called when the contents of the manager change, that is, graphic objects have been
added, removed, or their geometry has changed.

When an event occurs in view, the manager calls the corresponding member functions of all
the hooks attached to this view.
52 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

View Hooks

usrmanager.book Page 53 Tuesday, July 28, 2009 11:41 AM
Example: Monitoring the Number of Objects in a Manager

The following code is a subclass of IlvManagerViewHook that displays in an
IlvTextField the number of objects contained in the manager:

Example: Maintaining a Scale Displayed With No Transformation

This part presents an example of subtyping an IlvManagerViewHook. At first there is a
map and a circular scale used as a compass card. Then, because of hooks, the manager
translates and zooms the view without affecting the compass card. The
IlvManagerViewHook::afterDraw and
IlvManagerViewHook::transformerChanged member functions are redefined to
redraw the scale to its original dimensions and location.

static void ILVCALLBACK
Quit(IlvView* view, IlvAny)
{
 delete view->getDisplay();
 IlvExit(0);
}

char* labels[] = {“N”, “O”, “S”, “E”, ““};

class ExHook
: public IlvManagerViewHook
{
public :
 ExHook(IlvManager* m, IlvView* v, const IlvRect* psize=0)
 : IlvManagerViewHook(m, v)
 {
 _cirscale = new IlvCircularScale(m->getDisplay(),

class DisplayObjectsHook
: public IlvManagerViewHook
{
public:
 DisplayObjectsHook(IlvManager* manager,
 IlvView* view,
 IlvTextField* textfield)
 : IlvManagerViewHook(manager, view),
 _textfield(textfield)
 {}
 virtual void contentsChanged();
protected:
 IlvTextField* _textfield;
};

void DisplayObjectsHook::contentsChanged()
{
 IlvUInt count = getManager()->getCardinal();
 _textfield->setValue((IlvInt)count, IlvTrue);
}

I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 53

usrmanager.book Page 54 Tuesday, July 28, 2009 11:41 AM
 IlvRect(30, 30, 100, 100),
 “%.4f”,
 0, 100, 90., 360.);
 _cirscale->setLabels(5, (const char* const*)labels);
 }
 virtual void afterDraw(IlvPort*,
 const IlvTransformer* = 0,
 const IlvRegion* = 0,
 const IlvRegion* = 0);
 virtual void transformerChanged(const IlvTransformer*,
 const IlvTransformer*);
protected :
 IlvRect _size;
 IlvCircularScale* _cirscale;
};
void ExHook::afterDraw(IlvPort* dst,
 const IlvTransformer*,
 const IlvRegion*,
 const IlvRegion* clip)
{
 if (getManager()->isInvalidating())
 getManager()->reDrawViews();
 _cirscale->draw(dst, 0, 0 /*clip*/);
 if (dst->isABitmap())
 _cirscale->draw(getView(), 0, 0);
}
void ExHook::transformerChanged(const IlvTransformer* current,
 const IlvTransformer* old)
{
 IlvRect bbox;
 _cirscale->boundingBox(bbox);
 if (old) old->inverse(bbox);
 if (current) current->apply(bbox);
 if (!getManager()->isInvalidating())
 {
 getManager()->initReDraws();
 getManager()->invalidateRegion(getView(), bbox);
 }
}

static void
SetDoubleBuffering(IlvManager* m,
 IlvView* v,
 IlvEvent&,
 IlvAny)
{
 m->setDoubleBuffering(v, !m->isDoubleBuffering(v));
}

int
main(int argc, char* argv[])
{
 IlvDisplay* display = new IlvDisplay(“Example”, ““, argc, argv);
 if (!display || display->isBad())
 {
 IlvFatalError(“Can’t open display”);
 IlvExit(-1);
 }
54 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

Manager Grid

usrmanager.book Page 55 Tuesday, July 28, 2009 11:41 AM
 IlvView* view = new IlvView(display, “ExMan”, “Manager”,
 IlvRect(0, 0, 400, 400));
 view->setDestroyCallback(Quit);
 IlvManager* manager = new IlvManager(display);
 manager->addView(view);
 manager->addAccelerator(SetDoubleBuffering, IlvKeyUp, ‘b’);

 // Description of a map
 manager->read(“../hook.ilv”);

 // Instantiation of the hook class
 ExHook* pHook = new ExHook(manager, view);

 // Connect the hook to the manager view
 manager->installViewHook(pHook);
 manager->setInteractor(new IlvSelectInteractor(manager, view));

 IlvMainLoop();
}

Manager Grid

Most editors provide a snapping grid that forces mouse events to occur at specified
locations. Usually, the coordinates where the user can move the pointing device are located
at grid points. If the manager is configured to allow standard mouse events, all event
locations can be automatically modified so they occur only at specific locations. Thus, the
effect of filtering user events by a manager grid is to modify their locations to the closest
grid point.

The IlvManagerGrid class is responsible for the conversion to a valid grid point of the
coordinates of an event that occurs in a view.

You can set or remove a snapping grid in each of the views handled by a manager. You can
configure these grids to make them:

◆ visible or not visible,

◆ active or inactive.

You can also make the grid take on different shapes by subtyping the IlvManagerGrid
class. The default implementation is a rectangular grid for which you can set the origin and
the horizontal and vertical spacing values.

When a grid is made visible, it draws dots with the color specified as the foreground color of
the palette parameter.

The grid can be made invisible when it is created by setting the visible parameter to
IlFalse. To make the grid initially inactive, set the active parameter to IlFalse.
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 55

usrmanager.book Page 56 Tuesday, July 28, 2009 11:41 AM
To display only a subset of the grid points, use the last two IlvDim-typed parameters. These
indicate the nature of the subset, that is, one out of every quantity of dots along the
horizontal and vertical axes is displayed in the given direction. However, the event location
snapping takes place on each of the grid points, whether shown or not.

Example: Using a Grid

This code sets a new grid to the view view associated with the manager:

Usually, it is not necessary to delete a previous grid, since by default none is associated with
the view.

The following code shows how to create an IlvLine whose ends are on the grid:

All the standard interactors of IBM ILOG Views that create graphic objects use
IlvManager::snapToGrid.

 // Get the previous grid
 IlvManagerGrid* previousGrid = manager->getGrid(view);

 // Create a new instance of IlvManagerGrid
 IlvManagerGrid* newGrid = new IlvManagerGrid(display->getPalette(),
 IlvPoint(0, 0),
 10,
 10);

 // Set the new grid to the view
 manager->setGrid(view, newGrid);

 // If a previous grid existed then delete it
 if (previousGrid)
 delete previousGrid;

static void
AddSnappedLine(IlvManager* manager,
 const IlvView* view,
 const IlvPoint& start,
 const IlvPoint& end)
{
 IlvPoint p1 = start;
 IlvPoint p2 = end;

 // Compute the new coordinates
 manager->snapToGrid(view, p1);
 manager->snapToGrid(view, p2);

 // Create an object IlvLine
 IlvGraphic* object = new IlvLine(manager->getDisplay(), p1, p2);

 // Add the object to the manager
 manager->addObject(object);
}

56 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

Undoing and Redoing Actions

usrmanager.book Page 57 Tuesday, July 28, 2009 11:41 AM
Undoing and Redoing Actions

This section describes how to implement the undo/redo process with the
IlvManagerCommand class.

In order to remember every action that your program user may apply to objects (and the
objects as well), the manager creates specific instances of the IlvManagerCommand class,
depending on what kind of action was required. The manager can then manipulate a stack of
these commands. A request for IlvManager::unDo pops an item off the stack, and applies
the inverse operation that created the popped item.

The IlvManager::reDo operation duplicates the topmost item of the command stack and
executes the operation again.

This section is divided as follows:

◆ Command Class

◆ Managing Undo

◆ Example: Using the IlvManagerCommand Class to Undo/Redo

◆ Managing Modifications

Command Class

Each ready-to-use command in IBM ILOG Views was implemented with the
IlvManagerCommand class. To carry out undo/redo operations, the subtypes of this class
merely store the arguments of commands. The actual command to be remembered is known
by the type of the IlvManagerCommand objects.

If you create a new operation for the manager and you want to undo and redo it, you have to
create a specific subtype of the IlvManagerCommand class. A complete example of this
subtyping is described in Example: Using the IlvManagerCommand Class to Undo/Redo.

Managing Undo

The following IlvManager member functions handle undo operations:

◆ IlvManager::addCommand

◆ IlvManager::isUndoEnabled

◆ IlvManager::setUndoEnabled

◆ IlvManager::forgetUndo

Note: All predefined interactors use the IlvManagerCommand class. Therefore, it is
possible to undo and redo their effect.
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 57

usrmanager.book Page 58 Tuesday, July 28, 2009 11:41 AM
◆ IlvManager::reDo

◆ IlvManager::unDo

Each action applied to manager objects is inserted in a special queue maintained by each
IlvManager instance. The undo/redo process is based on this queue management.

Example: Using the IlvManagerCommand Class to Undo/Redo

This subsection shows the implementation of the IlvTranslateObjectCommand class,
subclass of IlvManagerCommand:

The constructor of this class stores the parameters of the translation operation:

doIt Member Function

The IlvTranslateObjectCommand::doIt member function is implemented as follows:

The operation to be performed is the translation of the object by _dx and _dy.

unDo Member Function

The IlvTranslateObjectCommand::unDo member function is as follows:

The inverse translation is applied and the regions are redrawn.

IlvTranslateObjectCommand::IlvTranslateObjectCommand(IlvManager* manager,
 IlvGraphic* object,
 const IlvPoint& dp)
: IlvManagerCommand(manager),
 _dx(dp.x()),
 _dy(dp.y()),
 _object(object)
{}

void
IlvTranslateObjectCommand::doIt()
{
 _manager->translateObject(_object, _dx, _dy, IlvTrue);
}

void
IlvTranslateObjectCommand::unDo()
{
 _manager->translateObject(_object, -_dx, -_dy, IlvTrue);
}

58 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

Undoing and Redoing Actions

usrmanager.book Page 59 Tuesday, July 28, 2009 11:41 AM
copy Member Function

The IlvTranslateObjectCommand::copy member function creates a copy of the
command object and returns it.

Managing Modifications

The following IlvManager member functions let you manage the state of objects (modified
or not) handled by the manager:

◆ IlvManager::isModified

◆ IlvManager::setModified

◆ IlvManager::contentsChanged

Example: Setting the State of a Manager to Unmodified

manager->setModified(IlFalse);

There are also two global functions:

◆ IlvGetContentsChangedUpdate

◆ IlvSetContentsChangedUpdate

Example: Disallowing View Hook Calls in contentsChanged

The following code disallows the calls to the IlvManager::contentsChanged member
functions of the existing view hooks associated with the manager view:

IlvSetContentsChangedUpdate(IlTrue);

IlvManagerCommand*
IlvTranslateObjectCommand::copy() const
{
 return new IlvTranslateObjectCommand(_manager, _object, _dx, _dy);
}

I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 59

usrmanager.book Page 60 Tuesday, July 28, 2009 11:41 AM
60 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

I N D E X

usrmanager.book Page 61 Tuesday, July 28, 2009 11:41 AM
Index

A

abortReDraws member function
IlvManager class 24

accelerators
and managers 44, 48
example in managers 44
predefined in managers 44

addAccelerator member function
IlvManager class 44

addCommand member function
IlvManager class 57

addTransformer member function
IlvManager class 13

addView member function
IlvManager class 12

addVisibilityFilter member function
IlvManagerLayer class 17

afterDraw member function
IlvManagerViewHook class 52

afterExpose member function
IlvManagerViewHook class 52

align member function
IlvManager class 22

applyInside member function
IlvManager class 19

applyIntersects member function
IlvManager class 18, 19

applyToInside member function
IlvManager class 18

applyToObject member function
IlvManager class 18, 19, 25

applyToObjects member function
IlvManager class 18

applyToSelections member function
IlvManager class 18, 41

applyToTaggedObjects member function
IlvManager class 18

B

beforeDraw member function
IlvManagerViewHook class 52

binding views 11
bufferedDraw member function

IlvManager class 23

C

C++
prerequisites 5

commands
and managers 11

contentsChanged member function
IlvManager class 59
IlvManagerViewHook class 52

copy member function
IlvTranslateObjectCommand class 59
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 61

usrmanager.book Page 62 Tuesday, July 28, 2009 11:41 AM
D

deleteSelections member function
IlvManager class 20

deSelectAll member function
IlvManager class 20

displaying objects
and managers 21
drawing 23

doIt member function
IlvDragRectangleInteractor class 34
IlvMakeRectangleInteractor class 35
IlvMoveInteractor class 40
IlvTranslateObjectCommand class 58

double-buffering
and managers 13
description 11

draw member function
IlvManager class 23

drawGhost member function
IlvDragRectangleInteractor class 34
IlvMoveInteractor class 39

duplicate member function
IlvManager class 23

E

ensureVisible member function
IlvManager class 13

events
and accelerators 10
and interactors 9
and managers 9

F

fitToContents member function
IlvManager class 13

fitTransformerToContents member function
IlvManager class 13, 44

forgetUndo member function
IlvManager class 57

G

geometric transformations
and managers 9
and views 9

getAccelerator member function
IlvManager class 44

getInteractor member function
IlvManager class 28

getSelections member function
IlvManager class 20

getViews member function
IlvManager class 12

global functions
IlvGetContentsChangedUpdate 59
IlvSetContentsChangedUpdate 59

graphic objects
and managers 19
selecting in manager 19

grids
and managers 55
example 56
snapping 55

group member function
IlvManager class 22

grouping
and managers 22

H

handleEvent member function
IlvDragRectangleInteractor class 31
IlvMoveInteractor class 37

hooks 11, 51

I

IlvContainer class 10
IlvDragRectangleInteractor class 29

doIt member function 34
drawGhost member function 34
handleEvent member function 31

IlvEllipse class 29
IlvFilledRectangle class 29
IlvFilledRoundRectangle class 29
62 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

usrmanager.book Page 63 Tuesday, July 28, 2009 11:41 AM
IlvGadgetManagerInputFile class 26
IlvGadgetManagerOutputFile class 26
IlvGetContentsChangedUpdate global function 59
IlvGraphic class

description 8
scale member function 19
translate member function 19

IlvGraphicSet class 22
IlvInputFile class 25
IlvInteractor class 9
IlvLayerVisibilityFilter class

isVisible member function 17
IlvLine class 20
IlvLineHandle class 20
IlvMakeArrowInteractor class 30
IlvMakeBitmapInteractor class 30
IlvMakeEllipseInteractor class 29
IlvMakeFilledEllipse class 30
IlvMakeFilledEllipseInteractor class 29
IlvMakeFilledRectangleInteractor class 29
IlvMakeFilledRoundRectangleInteractor class

29
IlvMakeLineInteractor class 30
IlvMakeRectangleInteractor class 29

description 29
doIt member function 35

IlvMakeReliefDiamondInteractor class 29
IlvMakeReliefLineInteractor class 30
IlvMakeReliefRectangleInteractor class 29
IlvMakeRoundRectangleInteractor class 29
IlvMakeUnZoomInteractor class 30
IlvMakeZoomInteractor class 30
IlvManager class

abortReDraws member function 24
addAccelerator member function 44
addCommand member function 57
addTransformer member function 13
addView member function 12
align member function 22
applyInside member function 18, 19
applyIntersects member function 18, 19
applyToObject member function 18, 19, 25
applyToObjects member function 18
applyToSelections member function 18, 41
applyToTaggedObjects member function 18

bufferedDraw member function 23
contentsChanged member function 59
deleteSelections member function 20
deSelectAll member function 20
draw member function 23
duplicate member function 23
ensureVisible member function 13
fitToContents member function 13
fitTransformerToContents member function 13,

44
forgetUndo member function 57
getAccelerator member function 44
getInteractor member function 28
getSelection member function 20
getSelections member function 20
getViews member function 12
group member function 22
initReDraws member function 24
installEventHook member function 28
installViewHook member function 52
invalidateRegion member function 24
isDoubleBuffering member function 13
isInvalidating member function 24
isModified member function 59
isSelected member function 19
isUndoEnabled member function 57
makeColumn member function 22
makeRow member function 22
moveObject member function 19
numberOfSelections member function 20
reDo member function 57
reDraw member function 23
reDrawViews member function 24
removeAccelerator member function 44
removeEventHook member function 28
removeInteractor member function 28
removeView member function 12
removeViewHook member function 52
reshapeObject member function 19
rotateView member function 13
sameHeight member function 22
sameWidth member function 22
setBackground member function 14
setDoubleBuffering member function 13
setInteractor member function 28
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 63

usrmanager.book Page 64 Tuesday, July 28, 2009 11:41 AM
setMakeSelection member function 20
setModified member function 59
setNumLayer member function 15
setSelected member function 19
setTransformer member function 13
setUndoEnabled member function 57
shortCut member function 32, 44
snapToGrid member function 56
translateObject member function 19
translateView member function 13
unDo member function 57
unGroup member function 22
view transformation member functions 13
zoomView member function 13

IlvManagerclass
aligning objects member functions 22
main features 10

IlvManagerCommand class
advanced features 57
example 58
instances 10

IlvManagerEventHook class 28
IlvManagerGrid class 55
IlvManagerInputFile class

description 25
readObject member function 26

IlvManagerLayer class
addVisibilityFilter member function 17
setAlpha member function 17

IlvManagerObjectInteractor class 43
IlvManagerOutputFile class

description 25
example 26
writeObject member function 26

IlvManagerViewHook class
afterDraw member function 52
afterExpose member function 52
beforeDraw member function 52
contentsChanged member function 52
description 52
interactorChanged member function 52
transformerChanged member function 52
viewRemoved member function 52
viewResized member function 52

IlvManagerViewInteractor class 9, 28, 36

IlvMoveInteractor class
doIt member function 40
drawGhost member function 39
example 36
handleEvent member function 37

IlvOutputFile class
description 25

IlvRectangle class 35
IlvReliefDiamond class 29
IlvRoundRectangle class 29
IlvSelectInteractor class 30
IlvSetContentsChangedUpdate global function 59
IlvTextField class 53
IlvTranslateObjectCommand class

copy member function 59
description 58
doIt member function 58
unDo member function 58

initReDraws member function
IlvManager class 24

installEventHook member function
IlvManager class 28

installViewHook member function
IlvManager class 52

interactorChanged member function
IlvManagerViewHook class 52

interactors
view 28

invalidateRegion member function
IlvManager class 24

isDoubleBuffering member function
IlvManager class 13

isInvalidating member function
IlvManager class 24

isModified member function
IlvManager class 59

isSelected member function
IlvManager class 19

isUndoEnabled member function
IlvManager class 57

isVisible member function
IlvLayerVisibility class 17
64 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

usrmanager.book Page 65 Tuesday, July 28, 2009 11:41 AM
L

layers
and managers 9, 14
default number 15
description 8
object selectability 16
object visibility 16
setting up 15

M

makeColumn member function
IlvManager class 22

makeRow member function
IlvManager class 22

manager grid 55
manager view hooks

description 52
example 53

managers
and views 9
applying functions in a region 19
binding views 11
commands 10
double-buffering 11, 13
hooks 11
input/output 11
modifying geometric properties of objects 18
optimizing drawing tasks 24
overview 7
reading 25
saving 25
selecting objects 19, 20
selection procedures 20
zooming 13

manual
naming conventions 6
notation 6
organization 5

modifying object states
and managers 59

moveObject member function
IlvManager class 19

multiple views

and managers 11
description 9

N

naming conventions 6
notation 6
numberOfSelections member function

IlvManager class 20

O

object interactors
and managers 43
description 43

object properties
and managers 21

objects
managing 18

R

readObject member function
IlvManagerInputFile class 26

reDo member function
IlvManager class 57

reDraw member function
IlvManager class 23

reDrawViews member function
IlvManager class 24

removeAccelerator member function
IlvManager class 44

removeEventHook member function
IlvManager class 28

removeInteractor member function
IlvManager class 28

removeView member function
IlvManager class 12

removeViewHook member function
IlvManager class 52

reshapeObject member function
IlvManager class 19

rotateView member function
IlvManager class 13
I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L 65

usrmanager.book Page 66 Tuesday, July 28, 2009 11:41 AM
S

sameHeight member function
IlvManager class 22

sameWidth member function
IlvManager class 22

selecting
objects 20

selection procedures
and managers 20
example 20

setAlpha member function
IlvManagerLayer class 17

setBackground member function
IlvManager class 14

setDoubleBuffering member function
IlvManager class 13

setInteractor member function
IlvManager class 28

setMakeSelection member function
IlvManager class 20

setModified member function
IlvManager class 59

setNumLayer member function
IlvManager class 15

setSelected member function
IlvManager class 19

setTransformer member function
IlvManager class 13

setUndoEnabled member function
IlvManager class 57

shortCut member function
IlvManager class 32, 44

snapping grids 55
snapToGrid member function

IlvManager class 56

T

transformerChanged member function
IlvManagerViewHook class 52

translateObject member function
IlvManager class 19

translateView member function
IlvManager class 13

U

unDo member function
IlvManager class 57
IlvTranslateObjectCommand class 58

undo/redo actions 57
unGroup member function

IlvManager class 22
update region 24

V

view hooks 51
view interactors

and managers 28
extending 36
manager example 30
predefined in managers 29

viewRemoved member function
IlvManagerViewHook class 52

viewResized member function
IlvManagerViewHook class 52

views
adding 12
and managers 9
getting 12
multiple 9, 11
removing 12

W

writeObject member function
IlvManagerOutputFile class 26

Z

zoomView member function
IlvManager class 13
66 I B M I L O G V I E W S M A N A G E R V 5 . 3 — U S E R ’ S M A N U A L

	IBM ILOG Views Manager V5.3 User’s Manual
	About This Manual
	Basic Manager Features
	Introducing Managers
	Layers
	Views
	View Transformer
	Event Handling
	Main Features of IlvManager

	Manager Views
	View Transformations
	Double-buffering

	Manager Layers
	Layer Index
	Layer Selectability
	Layer Visibility
	Layer Rendering

	Managing Objects
	Modifying the Geometry of Graphic Objects
	Selecting Objects
	Selection Procedures
	Managing Selected Objects
	Managing Object Properties
	Arranging Objects

	Drawing and Redrawing
	Optimizing Drawing Tasks
	Saving and Reading

	Manager Event Handling
	The Event Handling Mechanism
	Event Hooks
	View Interactors
	Predefined View Interactors
	Example: Implementing the IlvDragRectangleInteractor Class
	Example of an Extension: IlvMoveInteractor

	Object Interactors
	Accelerators
	Example: Changing the Key Assigned to an Accelerator
	Predefined Manager Accelerators

	Advanced Manager Features
	Observers
	General Notifications
	Manager View Notifications
	Manager Layer Notifications
	Manager Contents Notifications
	Graphic Object Geometry Notifications
	Example

	View Hooks
	Manager View Hooks
	Example: Monitoring the Number of Objects in a Manager
	Example: Maintaining a Scale Displayed With No Transformation

	Manager Grid
	Example: Using a Grid

	Undoing and Redoing Actions
	Command Class
	Managing Undo
	Example: Using the IlvManagerCommand Class to Undo/Redo
	Managing Modifications

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	R
	S
	T
	U
	V
	W
	Z

